Bug Summary

File:build/source/llvm/include/llvm/IR/IRBuilder.h
Warning:line 1711, column 28
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name OMPIRBuilder.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Frontend/OpenMP -I /build/source/llvm/lib/Frontend/OpenMP -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp

/build/source/llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp

1//===- OpenMPIRBuilder.cpp - Builder for LLVM-IR for OpenMP directives ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file implements the OpenMPIRBuilder class, which is used as a
11/// convenient way to create LLVM instructions for OpenMP directives.
12///
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
16#include "llvm/ADT/SmallSet.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/Analysis/AssumptionCache.h"
19#include "llvm/Analysis/CodeMetrics.h"
20#include "llvm/Analysis/LoopInfo.h"
21#include "llvm/Analysis/OptimizationRemarkEmitter.h"
22#include "llvm/Analysis/ScalarEvolution.h"
23#include "llvm/Analysis/TargetLibraryInfo.h"
24#include "llvm/IR/CFG.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DebugInfoMetadata.h"
27#include "llvm/IR/DerivedTypes.h"
28#include "llvm/IR/GlobalVariable.h"
29#include "llvm/IR/IRBuilder.h"
30#include "llvm/IR/MDBuilder.h"
31#include "llvm/IR/PassManager.h"
32#include "llvm/IR/Value.h"
33#include "llvm/MC/TargetRegistry.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/Target/TargetOptions.h"
37#include "llvm/Transforms/Utils/BasicBlockUtils.h"
38#include "llvm/Transforms/Utils/Cloning.h"
39#include "llvm/Transforms/Utils/CodeExtractor.h"
40#include "llvm/Transforms/Utils/LoopPeel.h"
41#include "llvm/Transforms/Utils/UnrollLoop.h"
42
43#include <cstdint>
44#include <optional>
45
46#define DEBUG_TYPE"openmp-ir-builder" "openmp-ir-builder"
47
48using namespace llvm;
49using namespace omp;
50
51static cl::opt<bool>
52 OptimisticAttributes("openmp-ir-builder-optimistic-attributes", cl::Hidden,
53 cl::desc("Use optimistic attributes describing "
54 "'as-if' properties of runtime calls."),
55 cl::init(false));
56
57static cl::opt<double> UnrollThresholdFactor(
58 "openmp-ir-builder-unroll-threshold-factor", cl::Hidden,
59 cl::desc("Factor for the unroll threshold to account for code "
60 "simplifications still taking place"),
61 cl::init(1.5));
62
63#ifndef NDEBUG
64/// Return whether IP1 and IP2 are ambiguous, i.e. that inserting instructions
65/// at position IP1 may change the meaning of IP2 or vice-versa. This is because
66/// an InsertPoint stores the instruction before something is inserted. For
67/// instance, if both point to the same instruction, two IRBuilders alternating
68/// creating instruction will cause the instructions to be interleaved.
69static bool isConflictIP(IRBuilder<>::InsertPoint IP1,
70 IRBuilder<>::InsertPoint IP2) {
71 if (!IP1.isSet() || !IP2.isSet())
72 return false;
73 return IP1.getBlock() == IP2.getBlock() && IP1.getPoint() == IP2.getPoint();
74}
75
76static bool isValidWorkshareLoopScheduleType(OMPScheduleType SchedType) {
77 // Valid ordered/unordered and base algorithm combinations.
78 switch (SchedType & ~OMPScheduleType::MonotonicityMask) {
79 case OMPScheduleType::UnorderedStaticChunked:
80 case OMPScheduleType::UnorderedStatic:
81 case OMPScheduleType::UnorderedDynamicChunked:
82 case OMPScheduleType::UnorderedGuidedChunked:
83 case OMPScheduleType::UnorderedRuntime:
84 case OMPScheduleType::UnorderedAuto:
85 case OMPScheduleType::UnorderedTrapezoidal:
86 case OMPScheduleType::UnorderedGreedy:
87 case OMPScheduleType::UnorderedBalanced:
88 case OMPScheduleType::UnorderedGuidedIterativeChunked:
89 case OMPScheduleType::UnorderedGuidedAnalyticalChunked:
90 case OMPScheduleType::UnorderedSteal:
91 case OMPScheduleType::UnorderedStaticBalancedChunked:
92 case OMPScheduleType::UnorderedGuidedSimd:
93 case OMPScheduleType::UnorderedRuntimeSimd:
94 case OMPScheduleType::OrderedStaticChunked:
95 case OMPScheduleType::OrderedStatic:
96 case OMPScheduleType::OrderedDynamicChunked:
97 case OMPScheduleType::OrderedGuidedChunked:
98 case OMPScheduleType::OrderedRuntime:
99 case OMPScheduleType::OrderedAuto:
100 case OMPScheduleType::OrderdTrapezoidal:
101 case OMPScheduleType::NomergeUnorderedStaticChunked:
102 case OMPScheduleType::NomergeUnorderedStatic:
103 case OMPScheduleType::NomergeUnorderedDynamicChunked:
104 case OMPScheduleType::NomergeUnorderedGuidedChunked:
105 case OMPScheduleType::NomergeUnorderedRuntime:
106 case OMPScheduleType::NomergeUnorderedAuto:
107 case OMPScheduleType::NomergeUnorderedTrapezoidal:
108 case OMPScheduleType::NomergeUnorderedGreedy:
109 case OMPScheduleType::NomergeUnorderedBalanced:
110 case OMPScheduleType::NomergeUnorderedGuidedIterativeChunked:
111 case OMPScheduleType::NomergeUnorderedGuidedAnalyticalChunked:
112 case OMPScheduleType::NomergeUnorderedSteal:
113 case OMPScheduleType::NomergeOrderedStaticChunked:
114 case OMPScheduleType::NomergeOrderedStatic:
115 case OMPScheduleType::NomergeOrderedDynamicChunked:
116 case OMPScheduleType::NomergeOrderedGuidedChunked:
117 case OMPScheduleType::NomergeOrderedRuntime:
118 case OMPScheduleType::NomergeOrderedAuto:
119 case OMPScheduleType::NomergeOrderedTrapezoidal:
120 break;
121 default:
122 return false;
123 }
124
125 // Must not set both monotonicity modifiers at the same time.
126 OMPScheduleType MonotonicityFlags =
127 SchedType & OMPScheduleType::MonotonicityMask;
128 if (MonotonicityFlags == OMPScheduleType::MonotonicityMask)
129 return false;
130
131 return true;
132}
133#endif
134
135/// Determine which scheduling algorithm to use, determined from schedule clause
136/// arguments.
137static OMPScheduleType
138getOpenMPBaseScheduleType(llvm::omp::ScheduleKind ClauseKind, bool HasChunks,
139 bool HasSimdModifier) {
140 // Currently, the default schedule it static.
141 switch (ClauseKind) {
142 case OMP_SCHEDULE_Default:
143 case OMP_SCHEDULE_Static:
144 return HasChunks ? OMPScheduleType::BaseStaticChunked
145 : OMPScheduleType::BaseStatic;
146 case OMP_SCHEDULE_Dynamic:
147 return OMPScheduleType::BaseDynamicChunked;
148 case OMP_SCHEDULE_Guided:
149 return HasSimdModifier ? OMPScheduleType::BaseGuidedSimd
150 : OMPScheduleType::BaseGuidedChunked;
151 case OMP_SCHEDULE_Auto:
152 return llvm::omp::OMPScheduleType::BaseAuto;
153 case OMP_SCHEDULE_Runtime:
154 return HasSimdModifier ? OMPScheduleType::BaseRuntimeSimd
155 : OMPScheduleType::BaseRuntime;
156 }
157 llvm_unreachable("unhandled schedule clause argument")::llvm::llvm_unreachable_internal("unhandled schedule clause argument"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 157)
;
158}
159
160/// Adds ordering modifier flags to schedule type.
161static OMPScheduleType
162getOpenMPOrderingScheduleType(OMPScheduleType BaseScheduleType,
163 bool HasOrderedClause) {
164 assert((BaseScheduleType & OMPScheduleType::ModifierMask) ==(static_cast <bool> ((BaseScheduleType & OMPScheduleType
::ModifierMask) == OMPScheduleType::None && "Must not have ordering nor monotonicity flags already set"
) ? void (0) : __assert_fail ("(BaseScheduleType & OMPScheduleType::ModifierMask) == OMPScheduleType::None && \"Must not have ordering nor monotonicity flags already set\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 166, __extension__
__PRETTY_FUNCTION__))
165 OMPScheduleType::None &&(static_cast <bool> ((BaseScheduleType & OMPScheduleType
::ModifierMask) == OMPScheduleType::None && "Must not have ordering nor monotonicity flags already set"
) ? void (0) : __assert_fail ("(BaseScheduleType & OMPScheduleType::ModifierMask) == OMPScheduleType::None && \"Must not have ordering nor monotonicity flags already set\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 166, __extension__
__PRETTY_FUNCTION__))
166 "Must not have ordering nor monotonicity flags already set")(static_cast <bool> ((BaseScheduleType & OMPScheduleType
::ModifierMask) == OMPScheduleType::None && "Must not have ordering nor monotonicity flags already set"
) ? void (0) : __assert_fail ("(BaseScheduleType & OMPScheduleType::ModifierMask) == OMPScheduleType::None && \"Must not have ordering nor monotonicity flags already set\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 166, __extension__
__PRETTY_FUNCTION__))
;
167
168 OMPScheduleType OrderingModifier = HasOrderedClause
169 ? OMPScheduleType::ModifierOrdered
170 : OMPScheduleType::ModifierUnordered;
171 OMPScheduleType OrderingScheduleType = BaseScheduleType | OrderingModifier;
172
173 // Unsupported combinations
174 if (OrderingScheduleType ==
175 (OMPScheduleType::BaseGuidedSimd | OMPScheduleType::ModifierOrdered))
176 return OMPScheduleType::OrderedGuidedChunked;
177 else if (OrderingScheduleType == (OMPScheduleType::BaseRuntimeSimd |
178 OMPScheduleType::ModifierOrdered))
179 return OMPScheduleType::OrderedRuntime;
180
181 return OrderingScheduleType;
182}
183
184/// Adds monotonicity modifier flags to schedule type.
185static OMPScheduleType
186getOpenMPMonotonicityScheduleType(OMPScheduleType ScheduleType,
187 bool HasSimdModifier, bool HasMonotonic,
188 bool HasNonmonotonic, bool HasOrderedClause) {
189 assert((ScheduleType & OMPScheduleType::MonotonicityMask) ==(static_cast <bool> ((ScheduleType & OMPScheduleType
::MonotonicityMask) == OMPScheduleType::None && "Must not have monotonicity flags already set"
) ? void (0) : __assert_fail ("(ScheduleType & OMPScheduleType::MonotonicityMask) == OMPScheduleType::None && \"Must not have monotonicity flags already set\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 191, __extension__
__PRETTY_FUNCTION__))
190 OMPScheduleType::None &&(static_cast <bool> ((ScheduleType & OMPScheduleType
::MonotonicityMask) == OMPScheduleType::None && "Must not have monotonicity flags already set"
) ? void (0) : __assert_fail ("(ScheduleType & OMPScheduleType::MonotonicityMask) == OMPScheduleType::None && \"Must not have monotonicity flags already set\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 191, __extension__
__PRETTY_FUNCTION__))
191 "Must not have monotonicity flags already set")(static_cast <bool> ((ScheduleType & OMPScheduleType
::MonotonicityMask) == OMPScheduleType::None && "Must not have monotonicity flags already set"
) ? void (0) : __assert_fail ("(ScheduleType & OMPScheduleType::MonotonicityMask) == OMPScheduleType::None && \"Must not have monotonicity flags already set\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 191, __extension__
__PRETTY_FUNCTION__))
;
192 assert((!HasMonotonic || !HasNonmonotonic) &&(static_cast <bool> ((!HasMonotonic || !HasNonmonotonic
) && "Monotonic and Nonmonotonic are contradicting each other"
) ? void (0) : __assert_fail ("(!HasMonotonic || !HasNonmonotonic) && \"Monotonic and Nonmonotonic are contradicting each other\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 193, __extension__
__PRETTY_FUNCTION__))
193 "Monotonic and Nonmonotonic are contradicting each other")(static_cast <bool> ((!HasMonotonic || !HasNonmonotonic
) && "Monotonic and Nonmonotonic are contradicting each other"
) ? void (0) : __assert_fail ("(!HasMonotonic || !HasNonmonotonic) && \"Monotonic and Nonmonotonic are contradicting each other\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 193, __extension__
__PRETTY_FUNCTION__))
;
194
195 if (HasMonotonic) {
196 return ScheduleType | OMPScheduleType::ModifierMonotonic;
197 } else if (HasNonmonotonic) {
198 return ScheduleType | OMPScheduleType::ModifierNonmonotonic;
199 } else {
200 // OpenMP 5.1, 2.11.4 Worksharing-Loop Construct, Description.
201 // If the static schedule kind is specified or if the ordered clause is
202 // specified, and if the nonmonotonic modifier is not specified, the
203 // effect is as if the monotonic modifier is specified. Otherwise, unless
204 // the monotonic modifier is specified, the effect is as if the
205 // nonmonotonic modifier is specified.
206 OMPScheduleType BaseScheduleType =
207 ScheduleType & ~OMPScheduleType::ModifierMask;
208 if ((BaseScheduleType == OMPScheduleType::BaseStatic) ||
209 (BaseScheduleType == OMPScheduleType::BaseStaticChunked) ||
210 HasOrderedClause) {
211 // The monotonic is used by default in openmp runtime library, so no need
212 // to set it.
213 return ScheduleType;
214 } else {
215 return ScheduleType | OMPScheduleType::ModifierNonmonotonic;
216 }
217 }
218}
219
220/// Determine the schedule type using schedule and ordering clause arguments.
221static OMPScheduleType
222computeOpenMPScheduleType(ScheduleKind ClauseKind, bool HasChunks,
223 bool HasSimdModifier, bool HasMonotonicModifier,
224 bool HasNonmonotonicModifier, bool HasOrderedClause) {
225 OMPScheduleType BaseSchedule =
226 getOpenMPBaseScheduleType(ClauseKind, HasChunks, HasSimdModifier);
227 OMPScheduleType OrderedSchedule =
228 getOpenMPOrderingScheduleType(BaseSchedule, HasOrderedClause);
229 OMPScheduleType Result = getOpenMPMonotonicityScheduleType(
230 OrderedSchedule, HasSimdModifier, HasMonotonicModifier,
231 HasNonmonotonicModifier, HasOrderedClause);
232
233 assert(isValidWorkshareLoopScheduleType(Result))(static_cast <bool> (isValidWorkshareLoopScheduleType(Result
)) ? void (0) : __assert_fail ("isValidWorkshareLoopScheduleType(Result)"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 233, __extension__
__PRETTY_FUNCTION__))
;
234 return Result;
235}
236
237/// Make \p Source branch to \p Target.
238///
239/// Handles two situations:
240/// * \p Source already has an unconditional branch.
241/// * \p Source is a degenerate block (no terminator because the BB is
242/// the current head of the IR construction).
243static void redirectTo(BasicBlock *Source, BasicBlock *Target, DebugLoc DL) {
244 if (Instruction *Term = Source->getTerminator()) {
245 auto *Br = cast<BranchInst>(Term);
246 assert(!Br->isConditional() &&(static_cast <bool> (!Br->isConditional() &&
"BB's terminator must be an unconditional branch (or degenerate)"
) ? void (0) : __assert_fail ("!Br->isConditional() && \"BB's terminator must be an unconditional branch (or degenerate)\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 247, __extension__
__PRETTY_FUNCTION__))
247 "BB's terminator must be an unconditional branch (or degenerate)")(static_cast <bool> (!Br->isConditional() &&
"BB's terminator must be an unconditional branch (or degenerate)"
) ? void (0) : __assert_fail ("!Br->isConditional() && \"BB's terminator must be an unconditional branch (or degenerate)\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 247, __extension__
__PRETTY_FUNCTION__))
;
248 BasicBlock *Succ = Br->getSuccessor(0);
249 Succ->removePredecessor(Source, /*KeepOneInputPHIs=*/true);
250 Br->setSuccessor(0, Target);
251 return;
252 }
253
254 auto *NewBr = BranchInst::Create(Target, Source);
255 NewBr->setDebugLoc(DL);
256}
257
258void llvm::spliceBB(IRBuilderBase::InsertPoint IP, BasicBlock *New,
259 bool CreateBranch) {
260 assert(New->getFirstInsertionPt() == New->begin() &&(static_cast <bool> (New->getFirstInsertionPt() == New
->begin() && "Target BB must not have PHI nodes") ?
void (0) : __assert_fail ("New->getFirstInsertionPt() == New->begin() && \"Target BB must not have PHI nodes\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 261, __extension__
__PRETTY_FUNCTION__))
261 "Target BB must not have PHI nodes")(static_cast <bool> (New->getFirstInsertionPt() == New
->begin() && "Target BB must not have PHI nodes") ?
void (0) : __assert_fail ("New->getFirstInsertionPt() == New->begin() && \"Target BB must not have PHI nodes\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 261, __extension__
__PRETTY_FUNCTION__))
;
262
263 // Move instructions to new block.
264 BasicBlock *Old = IP.getBlock();
265 New->splice(New->begin(), Old, IP.getPoint(), Old->end());
266
267 if (CreateBranch)
268 BranchInst::Create(New, Old);
269}
270
271void llvm::spliceBB(IRBuilder<> &Builder, BasicBlock *New, bool CreateBranch) {
272 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
273 BasicBlock *Old = Builder.GetInsertBlock();
274
275 spliceBB(Builder.saveIP(), New, CreateBranch);
276 if (CreateBranch)
277 Builder.SetInsertPoint(Old->getTerminator());
278 else
279 Builder.SetInsertPoint(Old);
280
281 // SetInsertPoint also updates the Builder's debug location, but we want to
282 // keep the one the Builder was configured to use.
283 Builder.SetCurrentDebugLocation(DebugLoc);
284}
285
286BasicBlock *llvm::splitBB(IRBuilderBase::InsertPoint IP, bool CreateBranch,
287 llvm::Twine Name) {
288 BasicBlock *Old = IP.getBlock();
289 BasicBlock *New = BasicBlock::Create(
290 Old->getContext(), Name.isTriviallyEmpty() ? Old->getName() : Name,
291 Old->getParent(), Old->getNextNode());
292 spliceBB(IP, New, CreateBranch);
293 New->replaceSuccessorsPhiUsesWith(Old, New);
294 return New;
295}
296
297BasicBlock *llvm::splitBB(IRBuilderBase &Builder, bool CreateBranch,
298 llvm::Twine Name) {
299 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
300 BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name);
301 if (CreateBranch)
302 Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
303 else
304 Builder.SetInsertPoint(Builder.GetInsertBlock());
305 // SetInsertPoint also updates the Builder's debug location, but we want to
306 // keep the one the Builder was configured to use.
307 Builder.SetCurrentDebugLocation(DebugLoc);
308 return New;
309}
310
311BasicBlock *llvm::splitBB(IRBuilder<> &Builder, bool CreateBranch,
312 llvm::Twine Name) {
313 DebugLoc DebugLoc = Builder.getCurrentDebugLocation();
314 BasicBlock *New = splitBB(Builder.saveIP(), CreateBranch, Name);
315 if (CreateBranch)
316 Builder.SetInsertPoint(Builder.GetInsertBlock()->getTerminator());
317 else
318 Builder.SetInsertPoint(Builder.GetInsertBlock());
319 // SetInsertPoint also updates the Builder's debug location, but we want to
320 // keep the one the Builder was configured to use.
321 Builder.SetCurrentDebugLocation(DebugLoc);
322 return New;
323}
324
325BasicBlock *llvm::splitBBWithSuffix(IRBuilderBase &Builder, bool CreateBranch,
326 llvm::Twine Suffix) {
327 BasicBlock *Old = Builder.GetInsertBlock();
328 return splitBB(Builder, CreateBranch, Old->getName() + Suffix);
329}
330
331void OpenMPIRBuilder::addAttributes(omp::RuntimeFunction FnID, Function &Fn) {
332 LLVMContext &Ctx = Fn.getContext();
333 Triple T(M.getTargetTriple());
334
335 // Get the function's current attributes.
336 auto Attrs = Fn.getAttributes();
337 auto FnAttrs = Attrs.getFnAttrs();
338 auto RetAttrs = Attrs.getRetAttrs();
339 SmallVector<AttributeSet, 4> ArgAttrs;
340 for (size_t ArgNo = 0; ArgNo < Fn.arg_size(); ++ArgNo)
341 ArgAttrs.emplace_back(Attrs.getParamAttrs(ArgNo));
342
343 // Add AS to FnAS while taking special care with integer extensions.
344 auto addAttrSet = [&](AttributeSet &FnAS, const AttributeSet &AS,
345 bool Param = true) -> void {
346 bool HasSignExt = AS.hasAttribute(Attribute::SExt);
347 bool HasZeroExt = AS.hasAttribute(Attribute::ZExt);
348 if (HasSignExt || HasZeroExt) {
349 assert(AS.getNumAttributes() == 1 &&(static_cast <bool> (AS.getNumAttributes() == 1 &&
"Currently not handling extension attr combined with others."
) ? void (0) : __assert_fail ("AS.getNumAttributes() == 1 && \"Currently not handling extension attr combined with others.\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 350, __extension__
__PRETTY_FUNCTION__))
350 "Currently not handling extension attr combined with others.")(static_cast <bool> (AS.getNumAttributes() == 1 &&
"Currently not handling extension attr combined with others."
) ? void (0) : __assert_fail ("AS.getNumAttributes() == 1 && \"Currently not handling extension attr combined with others.\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 350, __extension__
__PRETTY_FUNCTION__))
;
351 if (Param) {
352 if (auto AK = TargetLibraryInfo::getExtAttrForI32Param(T, HasSignExt))
353 FnAS = FnAS.addAttribute(Ctx, AK);
354 } else
355 if (auto AK = TargetLibraryInfo::getExtAttrForI32Return(T, HasSignExt))
356 FnAS = FnAS.addAttribute(Ctx, AK);
357 } else {
358 FnAS = FnAS.addAttributes(Ctx, AS);
359 }
360 };
361
362#define OMP_ATTRS_SET(VarName, AttrSet) AttributeSet VarName = AttrSet;
363#include "llvm/Frontend/OpenMP/OMPKinds.def"
364
365 // Add attributes to the function declaration.
366 switch (FnID) {
367#define OMP_RTL_ATTRS(Enum, FnAttrSet, RetAttrSet, ArgAttrSets) \
368 case Enum: \
369 FnAttrs = FnAttrs.addAttributes(Ctx, FnAttrSet); \
370 addAttrSet(RetAttrs, RetAttrSet, /*Param*/false); \
371 for (size_t ArgNo = 0; ArgNo < ArgAttrSets.size(); ++ArgNo) \
372 addAttrSet(ArgAttrs[ArgNo], ArgAttrSets[ArgNo]); \
373 Fn.setAttributes(AttributeList::get(Ctx, FnAttrs, RetAttrs, ArgAttrs)); \
374 break;
375#include "llvm/Frontend/OpenMP/OMPKinds.def"
376 default:
377 // Attributes are optional.
378 break;
379 }
380}
381
382FunctionCallee
383OpenMPIRBuilder::getOrCreateRuntimeFunction(Module &M, RuntimeFunction FnID) {
384 FunctionType *FnTy = nullptr;
385 Function *Fn = nullptr;
386
387 // Try to find the declation in the module first.
388 switch (FnID) {
389#define OMP_RTL(Enum, Str, IsVarArg, ReturnType, ...) \
390 case Enum: \
391 FnTy = FunctionType::get(ReturnType, ArrayRef<Type *>{__VA_ARGS__}, \
392 IsVarArg); \
393 Fn = M.getFunction(Str); \
394 break;
395#include "llvm/Frontend/OpenMP/OMPKinds.def"
396 }
397
398 if (!Fn) {
399 // Create a new declaration if we need one.
400 switch (FnID) {
401#define OMP_RTL(Enum, Str, ...) \
402 case Enum: \
403 Fn = Function::Create(FnTy, GlobalValue::ExternalLinkage, Str, M); \
404 break;
405#include "llvm/Frontend/OpenMP/OMPKinds.def"
406 }
407
408 // Add information if the runtime function takes a callback function
409 if (FnID == OMPRTL___kmpc_fork_call || FnID == OMPRTL___kmpc_fork_teams) {
410 if (!Fn->hasMetadata(LLVMContext::MD_callback)) {
411 LLVMContext &Ctx = Fn->getContext();
412 MDBuilder MDB(Ctx);
413 // Annotate the callback behavior of the runtime function:
414 // - The callback callee is argument number 2 (microtask).
415 // - The first two arguments of the callback callee are unknown (-1).
416 // - All variadic arguments to the runtime function are passed to the
417 // callback callee.
418 Fn->addMetadata(
419 LLVMContext::MD_callback,
420 *MDNode::get(Ctx, {MDB.createCallbackEncoding(
421 2, {-1, -1}, /* VarArgsArePassed */ true)}));
422 }
423 }
424
425 LLVM_DEBUG(dbgs() << "Created OpenMP runtime function " << Fn->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Created OpenMP runtime function "
<< Fn->getName() << " with type " << *Fn
->getFunctionType() << "\n"; } } while (false)
426 << " with type " << *Fn->getFunctionType() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Created OpenMP runtime function "
<< Fn->getName() << " with type " << *Fn
->getFunctionType() << "\n"; } } while (false)
;
427 addAttributes(FnID, *Fn);
428
429 } else {
430 LLVM_DEBUG(dbgs() << "Found OpenMP runtime function " << Fn->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Found OpenMP runtime function "
<< Fn->getName() << " with type " << *Fn
->getFunctionType() << "\n"; } } while (false)
431 << " with type " << *Fn->getFunctionType() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Found OpenMP runtime function "
<< Fn->getName() << " with type " << *Fn
->getFunctionType() << "\n"; } } while (false)
;
432 }
433
434 assert(Fn && "Failed to create OpenMP runtime function")(static_cast <bool> (Fn && "Failed to create OpenMP runtime function"
) ? void (0) : __assert_fail ("Fn && \"Failed to create OpenMP runtime function\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 434, __extension__
__PRETTY_FUNCTION__))
;
435
436 // Cast the function to the expected type if necessary
437 Constant *C = ConstantExpr::getBitCast(Fn, FnTy->getPointerTo());
438 return {FnTy, C};
439}
440
441Function *OpenMPIRBuilder::getOrCreateRuntimeFunctionPtr(RuntimeFunction FnID) {
442 FunctionCallee RTLFn = getOrCreateRuntimeFunction(M, FnID);
443 auto *Fn = dyn_cast<llvm::Function>(RTLFn.getCallee());
444 assert(Fn && "Failed to create OpenMP runtime function pointer")(static_cast <bool> (Fn && "Failed to create OpenMP runtime function pointer"
) ? void (0) : __assert_fail ("Fn && \"Failed to create OpenMP runtime function pointer\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 444, __extension__
__PRETTY_FUNCTION__))
;
445 return Fn;
446}
447
448void OpenMPIRBuilder::initialize() { initializeTypes(M); }
449
450void OpenMPIRBuilder::finalize(Function *Fn) {
451 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
452 SmallVector<BasicBlock *, 32> Blocks;
453 SmallVector<OutlineInfo, 16> DeferredOutlines;
454 for (OutlineInfo &OI : OutlineInfos) {
455 // Skip functions that have not finalized yet; may happen with nested
456 // function generation.
457 if (Fn && OI.getFunction() != Fn) {
458 DeferredOutlines.push_back(OI);
459 continue;
460 }
461
462 ParallelRegionBlockSet.clear();
463 Blocks.clear();
464 OI.collectBlocks(ParallelRegionBlockSet, Blocks);
465
466 Function *OuterFn = OI.getFunction();
467 CodeExtractorAnalysisCache CEAC(*OuterFn);
468 CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
469 /* AggregateArgs */ true,
470 /* BlockFrequencyInfo */ nullptr,
471 /* BranchProbabilityInfo */ nullptr,
472 /* AssumptionCache */ nullptr,
473 /* AllowVarArgs */ true,
474 /* AllowAlloca */ true,
475 /* AllocaBlock*/ OI.OuterAllocaBB,
476 /* Suffix */ ".omp_par");
477
478 LLVM_DEBUG(dbgs() << "Before outlining: " << *OuterFn << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Before outlining: "
<< *OuterFn << "\n"; } } while (false)
;
479 LLVM_DEBUG(dbgs() << "Entry " << OI.EntryBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Entry " << OI
.EntryBB->getName() << " Exit: " << OI.ExitBB->
getName() << "\n"; } } while (false)
480 << " Exit: " << OI.ExitBB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Entry " << OI
.EntryBB->getName() << " Exit: " << OI.ExitBB->
getName() << "\n"; } } while (false)
;
481 assert(Extractor.isEligible() &&(static_cast <bool> (Extractor.isEligible() && "Expected OpenMP outlining to be possible!"
) ? void (0) : __assert_fail ("Extractor.isEligible() && \"Expected OpenMP outlining to be possible!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 482, __extension__
__PRETTY_FUNCTION__))
482 "Expected OpenMP outlining to be possible!")(static_cast <bool> (Extractor.isEligible() && "Expected OpenMP outlining to be possible!"
) ? void (0) : __assert_fail ("Extractor.isEligible() && \"Expected OpenMP outlining to be possible!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 482, __extension__
__PRETTY_FUNCTION__))
;
483
484 for (auto *V : OI.ExcludeArgsFromAggregate)
485 Extractor.excludeArgFromAggregate(V);
486
487 Function *OutlinedFn = Extractor.extractCodeRegion(CEAC);
488
489 LLVM_DEBUG(dbgs() << "After outlining: " << *OuterFn << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "After outlining: "
<< *OuterFn << "\n"; } } while (false)
;
490 LLVM_DEBUG(dbgs() << " Outlined function: " << *OutlinedFn << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << " Outlined function: "
<< *OutlinedFn << "\n"; } } while (false)
;
491 assert(OutlinedFn->getReturnType()->isVoidTy() &&(static_cast <bool> (OutlinedFn->getReturnType()->
isVoidTy() && "OpenMP outlined functions should not return a value!"
) ? void (0) : __assert_fail ("OutlinedFn->getReturnType()->isVoidTy() && \"OpenMP outlined functions should not return a value!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 492, __extension__
__PRETTY_FUNCTION__))
492 "OpenMP outlined functions should not return a value!")(static_cast <bool> (OutlinedFn->getReturnType()->
isVoidTy() && "OpenMP outlined functions should not return a value!"
) ? void (0) : __assert_fail ("OutlinedFn->getReturnType()->isVoidTy() && \"OpenMP outlined functions should not return a value!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 492, __extension__
__PRETTY_FUNCTION__))
;
493
494 // For compability with the clang CG we move the outlined function after the
495 // one with the parallel region.
496 OutlinedFn->removeFromParent();
497 M.getFunctionList().insertAfter(OuterFn->getIterator(), OutlinedFn);
498
499 // Remove the artificial entry introduced by the extractor right away, we
500 // made our own entry block after all.
501 {
502 BasicBlock &ArtificialEntry = OutlinedFn->getEntryBlock();
503 assert(ArtificialEntry.getUniqueSuccessor() == OI.EntryBB)(static_cast <bool> (ArtificialEntry.getUniqueSuccessor
() == OI.EntryBB) ? void (0) : __assert_fail ("ArtificialEntry.getUniqueSuccessor() == OI.EntryBB"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 503, __extension__
__PRETTY_FUNCTION__))
;
504 assert(OI.EntryBB->getUniquePredecessor() == &ArtificialEntry)(static_cast <bool> (OI.EntryBB->getUniquePredecessor
() == &ArtificialEntry) ? void (0) : __assert_fail ("OI.EntryBB->getUniquePredecessor() == &ArtificialEntry"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 504, __extension__
__PRETTY_FUNCTION__))
;
505 // Move instructions from the to-be-deleted ArtificialEntry to the entry
506 // basic block of the parallel region. CodeExtractor generates
507 // instructions to unwrap the aggregate argument and may sink
508 // allocas/bitcasts for values that are solely used in the outlined region
509 // and do not escape.
510 assert(!ArtificialEntry.empty() &&(static_cast <bool> (!ArtificialEntry.empty() &&
"Expected instructions to add in the outlined region entry")
? void (0) : __assert_fail ("!ArtificialEntry.empty() && \"Expected instructions to add in the outlined region entry\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 511, __extension__
__PRETTY_FUNCTION__))
511 "Expected instructions to add in the outlined region entry")(static_cast <bool> (!ArtificialEntry.empty() &&
"Expected instructions to add in the outlined region entry")
? void (0) : __assert_fail ("!ArtificialEntry.empty() && \"Expected instructions to add in the outlined region entry\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 511, __extension__
__PRETTY_FUNCTION__))
;
512 for (BasicBlock::reverse_iterator It = ArtificialEntry.rbegin(),
513 End = ArtificialEntry.rend();
514 It != End;) {
515 Instruction &I = *It;
516 It++;
517
518 if (I.isTerminator())
519 continue;
520
521 I.moveBefore(*OI.EntryBB, OI.EntryBB->getFirstInsertionPt());
522 }
523
524 OI.EntryBB->moveBefore(&ArtificialEntry);
525 ArtificialEntry.eraseFromParent();
526 }
527 assert(&OutlinedFn->getEntryBlock() == OI.EntryBB)(static_cast <bool> (&OutlinedFn->getEntryBlock(
) == OI.EntryBB) ? void (0) : __assert_fail ("&OutlinedFn->getEntryBlock() == OI.EntryBB"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 527, __extension__
__PRETTY_FUNCTION__))
;
528 assert(OutlinedFn && OutlinedFn->getNumUses() == 1)(static_cast <bool> (OutlinedFn && OutlinedFn->
getNumUses() == 1) ? void (0) : __assert_fail ("OutlinedFn && OutlinedFn->getNumUses() == 1"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 528, __extension__
__PRETTY_FUNCTION__))
;
529
530 // Run a user callback, e.g. to add attributes.
531 if (OI.PostOutlineCB)
532 OI.PostOutlineCB(*OutlinedFn);
533 }
534
535 // Remove work items that have been completed.
536 OutlineInfos = std::move(DeferredOutlines);
537}
538
539OpenMPIRBuilder::~OpenMPIRBuilder() {
540 assert(OutlineInfos.empty() && "There must be no outstanding outlinings")(static_cast <bool> (OutlineInfos.empty() && "There must be no outstanding outlinings"
) ? void (0) : __assert_fail ("OutlineInfos.empty() && \"There must be no outstanding outlinings\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 540, __extension__
__PRETTY_FUNCTION__))
;
541}
542
543GlobalValue *OpenMPIRBuilder::createGlobalFlag(unsigned Value, StringRef Name) {
544 IntegerType *I32Ty = Type::getInt32Ty(M.getContext());
545 auto *GV =
546 new GlobalVariable(M, I32Ty,
547 /* isConstant = */ true, GlobalValue::WeakODRLinkage,
548 ConstantInt::get(I32Ty, Value), Name);
549 GV->setVisibility(GlobalValue::HiddenVisibility);
550
551 return GV;
552}
553
554Constant *OpenMPIRBuilder::getOrCreateIdent(Constant *SrcLocStr,
555 uint32_t SrcLocStrSize,
556 IdentFlag LocFlags,
557 unsigned Reserve2Flags) {
558 // Enable "C-mode".
559 LocFlags |= OMP_IDENT_FLAG_KMPC;
560
561 Constant *&Ident =
562 IdentMap[{SrcLocStr, uint64_t(LocFlags) << 31 | Reserve2Flags}];
563 if (!Ident) {
564 Constant *I32Null = ConstantInt::getNullValue(Int32);
565 Constant *IdentData[] = {I32Null,
566 ConstantInt::get(Int32, uint32_t(LocFlags)),
567 ConstantInt::get(Int32, Reserve2Flags),
568 ConstantInt::get(Int32, SrcLocStrSize), SrcLocStr};
569 Constant *Initializer =
570 ConstantStruct::get(OpenMPIRBuilder::Ident, IdentData);
571
572 // Look for existing encoding of the location + flags, not needed but
573 // minimizes the difference to the existing solution while we transition.
574 for (GlobalVariable &GV : M.globals())
575 if (GV.getValueType() == OpenMPIRBuilder::Ident && GV.hasInitializer())
576 if (GV.getInitializer() == Initializer)
577 Ident = &GV;
578
579 if (!Ident) {
580 auto *GV = new GlobalVariable(
581 M, OpenMPIRBuilder::Ident,
582 /* isConstant = */ true, GlobalValue::PrivateLinkage, Initializer, "",
583 nullptr, GlobalValue::NotThreadLocal,
584 M.getDataLayout().getDefaultGlobalsAddressSpace());
585 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
586 GV->setAlignment(Align(8));
587 Ident = GV;
588 }
589 }
590
591 return ConstantExpr::getPointerBitCastOrAddrSpaceCast(Ident, IdentPtr);
592}
593
594Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef LocStr,
595 uint32_t &SrcLocStrSize) {
596 SrcLocStrSize = LocStr.size();
597 Constant *&SrcLocStr = SrcLocStrMap[LocStr];
598 if (!SrcLocStr) {
599 Constant *Initializer =
600 ConstantDataArray::getString(M.getContext(), LocStr);
601
602 // Look for existing encoding of the location, not needed but minimizes the
603 // difference to the existing solution while we transition.
604 for (GlobalVariable &GV : M.globals())
605 if (GV.isConstant() && GV.hasInitializer() &&
606 GV.getInitializer() == Initializer)
607 return SrcLocStr = ConstantExpr::getPointerCast(&GV, Int8Ptr);
608
609 SrcLocStr = Builder.CreateGlobalStringPtr(LocStr, /* Name */ "",
610 /* AddressSpace */ 0, &M);
611 }
612 return SrcLocStr;
613}
614
615Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(StringRef FunctionName,
616 StringRef FileName,
617 unsigned Line, unsigned Column,
618 uint32_t &SrcLocStrSize) {
619 SmallString<128> Buffer;
620 Buffer.push_back(';');
621 Buffer.append(FileName);
622 Buffer.push_back(';');
623 Buffer.append(FunctionName);
624 Buffer.push_back(';');
625 Buffer.append(std::to_string(Line));
626 Buffer.push_back(';');
627 Buffer.append(std::to_string(Column));
628 Buffer.push_back(';');
629 Buffer.push_back(';');
630 return getOrCreateSrcLocStr(Buffer.str(), SrcLocStrSize);
631}
632
633Constant *
634OpenMPIRBuilder::getOrCreateDefaultSrcLocStr(uint32_t &SrcLocStrSize) {
635 StringRef UnknownLoc = ";unknown;unknown;0;0;;";
636 return getOrCreateSrcLocStr(UnknownLoc, SrcLocStrSize);
637}
638
639Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(DebugLoc DL,
640 uint32_t &SrcLocStrSize,
641 Function *F) {
642 DILocation *DIL = DL.get();
643 if (!DIL)
644 return getOrCreateDefaultSrcLocStr(SrcLocStrSize);
645 StringRef FileName = M.getName();
646 if (DIFile *DIF = DIL->getFile())
647 if (std::optional<StringRef> Source = DIF->getSource())
648 FileName = *Source;
649 StringRef Function = DIL->getScope()->getSubprogram()->getName();
650 if (Function.empty() && F)
651 Function = F->getName();
652 return getOrCreateSrcLocStr(Function, FileName, DIL->getLine(),
653 DIL->getColumn(), SrcLocStrSize);
654}
655
656Constant *OpenMPIRBuilder::getOrCreateSrcLocStr(const LocationDescription &Loc,
657 uint32_t &SrcLocStrSize) {
658 return getOrCreateSrcLocStr(Loc.DL, SrcLocStrSize,
659 Loc.IP.getBlock()->getParent());
660}
661
662Value *OpenMPIRBuilder::getOrCreateThreadID(Value *Ident) {
663 return Builder.CreateCall(
664 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num), Ident,
665 "omp_global_thread_num");
666}
667
668OpenMPIRBuilder::InsertPointTy
669OpenMPIRBuilder::createBarrier(const LocationDescription &Loc, Directive DK,
670 bool ForceSimpleCall, bool CheckCancelFlag) {
671 if (!updateToLocation(Loc))
672 return Loc.IP;
673 return emitBarrierImpl(Loc, DK, ForceSimpleCall, CheckCancelFlag);
674}
675
676OpenMPIRBuilder::InsertPointTy
677OpenMPIRBuilder::emitBarrierImpl(const LocationDescription &Loc, Directive Kind,
678 bool ForceSimpleCall, bool CheckCancelFlag) {
679 // Build call __kmpc_cancel_barrier(loc, thread_id) or
680 // __kmpc_barrier(loc, thread_id);
681
682 IdentFlag BarrierLocFlags;
683 switch (Kind) {
684 case OMPD_for:
685 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_FOR;
686 break;
687 case OMPD_sections:
688 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SECTIONS;
689 break;
690 case OMPD_single:
691 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL_SINGLE;
692 break;
693 case OMPD_barrier:
694 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_EXPL;
695 break;
696 default:
697 BarrierLocFlags = OMP_IDENT_FLAG_BARRIER_IMPL;
698 break;
699 }
700
701 uint32_t SrcLocStrSize;
702 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
703 Value *Args[] = {
704 getOrCreateIdent(SrcLocStr, SrcLocStrSize, BarrierLocFlags),
705 getOrCreateThreadID(getOrCreateIdent(SrcLocStr, SrcLocStrSize))};
706
707 // If we are in a cancellable parallel region, barriers are cancellation
708 // points.
709 // TODO: Check why we would force simple calls or to ignore the cancel flag.
710 bool UseCancelBarrier =
711 !ForceSimpleCall && isLastFinalizationInfoCancellable(OMPD_parallel);
712
713 Value *Result =
714 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(
715 UseCancelBarrier ? OMPRTL___kmpc_cancel_barrier
716 : OMPRTL___kmpc_barrier),
717 Args);
718
719 if (UseCancelBarrier && CheckCancelFlag)
720 emitCancelationCheckImpl(Result, OMPD_parallel);
721
722 return Builder.saveIP();
723}
724
725OpenMPIRBuilder::InsertPointTy
726OpenMPIRBuilder::createCancel(const LocationDescription &Loc,
727 Value *IfCondition,
728 omp::Directive CanceledDirective) {
729 if (!updateToLocation(Loc))
730 return Loc.IP;
731
732 // LLVM utilities like blocks with terminators.
733 auto *UI = Builder.CreateUnreachable();
734
735 Instruction *ThenTI = UI, *ElseTI = nullptr;
736 if (IfCondition)
737 SplitBlockAndInsertIfThenElse(IfCondition, UI, &ThenTI, &ElseTI);
738 Builder.SetInsertPoint(ThenTI);
739
740 Value *CancelKind = nullptr;
741 switch (CanceledDirective) {
742#define OMP_CANCEL_KIND(Enum, Str, DirectiveEnum, Value) \
743 case DirectiveEnum: \
744 CancelKind = Builder.getInt32(Value); \
745 break;
746#include "llvm/Frontend/OpenMP/OMPKinds.def"
747 default:
748 llvm_unreachable("Unknown cancel kind!")::llvm::llvm_unreachable_internal("Unknown cancel kind!", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp"
, 748)
;
749 }
750
751 uint32_t SrcLocStrSize;
752 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
753 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
754 Value *Args[] = {Ident, getOrCreateThreadID(Ident), CancelKind};
755 Value *Result = Builder.CreateCall(
756 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_cancel), Args);
757 auto ExitCB = [this, CanceledDirective, Loc](InsertPointTy IP) {
758 if (CanceledDirective == OMPD_parallel) {
759 IRBuilder<>::InsertPointGuard IPG(Builder);
760 Builder.restoreIP(IP);
761 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
762 omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false,
763 /* CheckCancelFlag */ false);
764 }
765 };
766
767 // The actual cancel logic is shared with others, e.g., cancel_barriers.
768 emitCancelationCheckImpl(Result, CanceledDirective, ExitCB);
769
770 // Update the insertion point and remove the terminator we introduced.
771 Builder.SetInsertPoint(UI->getParent());
772 UI->eraseFromParent();
773
774 return Builder.saveIP();
775}
776
777void OpenMPIRBuilder::emitOffloadingEntry(Constant *Addr, StringRef Name,
778 uint64_t Size, int32_t Flags,
779 StringRef SectionName) {
780 Type *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
781 Type *Int32Ty = Type::getInt32Ty(M.getContext());
782 Type *SizeTy = M.getDataLayout().getIntPtrType(M.getContext());
783
784 Constant *AddrName = ConstantDataArray::getString(M.getContext(), Name);
785
786 // Create the constant string used to look up the symbol in the device.
787 auto *Str =
788 new llvm::GlobalVariable(M, AddrName->getType(), /*isConstant=*/true,
789 llvm::GlobalValue::InternalLinkage, AddrName,
790 ".omp_offloading.entry_name");
791 Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
792
793 // Construct the offloading entry.
794 Constant *EntryData[] = {
795 ConstantExpr::getPointerBitCastOrAddrSpaceCast(Addr, Int8PtrTy),
796 ConstantExpr::getPointerBitCastOrAddrSpaceCast(Str, Int8PtrTy),
797 ConstantInt::get(SizeTy, Size),
798 ConstantInt::get(Int32Ty, Flags),
799 ConstantInt::get(Int32Ty, 0),
800 };
801 Constant *EntryInitializer =
802 ConstantStruct::get(OpenMPIRBuilder::OffloadEntry, EntryData);
803
804 auto *Entry = new GlobalVariable(
805 M, OpenMPIRBuilder::OffloadEntry,
806 /* isConstant = */ true, GlobalValue::WeakAnyLinkage, EntryInitializer,
807 ".omp_offloading.entry." + Name, nullptr, GlobalValue::NotThreadLocal,
808 M.getDataLayout().getDefaultGlobalsAddressSpace());
809
810 // The entry has to be created in the section the linker expects it to be.
811 Entry->setSection(SectionName);
812 Entry->setAlignment(Align(1));
813}
814
815OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitTargetKernel(
816 const LocationDescription &Loc, InsertPointTy AllocaIP, Value *&Return,
817 Value *Ident, Value *DeviceID, Value *NumTeams, Value *NumThreads,
818 Value *HostPtr, ArrayRef<Value *> KernelArgs) {
819 if (!updateToLocation(Loc))
1
Taking false branch
820 return Loc.IP;
821
822 Builder.restoreIP(AllocaIP);
2
Calling 'IRBuilderBase::restoreIP'
7
Returning from 'IRBuilderBase::restoreIP'
823 auto *KernelArgsPtr =
824 Builder.CreateAlloca(OpenMPIRBuilder::KernelArgs, nullptr, "kernel_args");
8
Calling 'IRBuilderBase::CreateAlloca'
825 Builder.restoreIP(Loc.IP);
826
827 for (unsigned I = 0, Size = KernelArgs.size(); I != Size; ++I) {
828 llvm::Value *Arg =
829 Builder.CreateStructGEP(OpenMPIRBuilder::KernelArgs, KernelArgsPtr, I);
830 Builder.CreateAlignedStore(
831 KernelArgs[I], Arg,
832 M.getDataLayout().getPrefTypeAlign(KernelArgs[I]->getType()));
833 }
834
835 SmallVector<Value *> OffloadingArgs{Ident, DeviceID, NumTeams,
836 NumThreads, HostPtr, KernelArgsPtr};
837
838 Return = Builder.CreateCall(
839 getOrCreateRuntimeFunction(M, OMPRTL___tgt_target_kernel),
840 OffloadingArgs);
841
842 return Builder.saveIP();
843}
844
845void OpenMPIRBuilder::emitCancelationCheckImpl(Value *CancelFlag,
846 omp::Directive CanceledDirective,
847 FinalizeCallbackTy ExitCB) {
848 assert(isLastFinalizationInfoCancellable(CanceledDirective) &&(static_cast <bool> (isLastFinalizationInfoCancellable(
CanceledDirective) && "Unexpected cancellation!") ? void
(0) : __assert_fail ("isLastFinalizationInfoCancellable(CanceledDirective) && \"Unexpected cancellation!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 849, __extension__
__PRETTY_FUNCTION__))
849 "Unexpected cancellation!")(static_cast <bool> (isLastFinalizationInfoCancellable(
CanceledDirective) && "Unexpected cancellation!") ? void
(0) : __assert_fail ("isLastFinalizationInfoCancellable(CanceledDirective) && \"Unexpected cancellation!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 849, __extension__
__PRETTY_FUNCTION__))
;
850
851 // For a cancel barrier we create two new blocks.
852 BasicBlock *BB = Builder.GetInsertBlock();
853 BasicBlock *NonCancellationBlock;
854 if (Builder.GetInsertPoint() == BB->end()) {
855 // TODO: This branch will not be needed once we moved to the
856 // OpenMPIRBuilder codegen completely.
857 NonCancellationBlock = BasicBlock::Create(
858 BB->getContext(), BB->getName() + ".cont", BB->getParent());
859 } else {
860 NonCancellationBlock = SplitBlock(BB, &*Builder.GetInsertPoint());
861 BB->getTerminator()->eraseFromParent();
862 Builder.SetInsertPoint(BB);
863 }
864 BasicBlock *CancellationBlock = BasicBlock::Create(
865 BB->getContext(), BB->getName() + ".cncl", BB->getParent());
866
867 // Jump to them based on the return value.
868 Value *Cmp = Builder.CreateIsNull(CancelFlag);
869 Builder.CreateCondBr(Cmp, NonCancellationBlock, CancellationBlock,
870 /* TODO weight */ nullptr, nullptr);
871
872 // From the cancellation block we finalize all variables and go to the
873 // post finalization block that is known to the FiniCB callback.
874 Builder.SetInsertPoint(CancellationBlock);
875 if (ExitCB)
876 ExitCB(Builder.saveIP());
877 auto &FI = FinalizationStack.back();
878 FI.FiniCB(Builder.saveIP());
879
880 // The continuation block is where code generation continues.
881 Builder.SetInsertPoint(NonCancellationBlock, NonCancellationBlock->begin());
882}
883
884IRBuilder<>::InsertPoint OpenMPIRBuilder::createParallel(
885 const LocationDescription &Loc, InsertPointTy OuterAllocaIP,
886 BodyGenCallbackTy BodyGenCB, PrivatizeCallbackTy PrivCB,
887 FinalizeCallbackTy FiniCB, Value *IfCondition, Value *NumThreads,
888 omp::ProcBindKind ProcBind, bool IsCancellable) {
889 assert(!isConflictIP(Loc.IP, OuterAllocaIP) && "IPs must not be ambiguous")(static_cast <bool> (!isConflictIP(Loc.IP, OuterAllocaIP
) && "IPs must not be ambiguous") ? void (0) : __assert_fail
("!isConflictIP(Loc.IP, OuterAllocaIP) && \"IPs must not be ambiguous\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 889, __extension__
__PRETTY_FUNCTION__))
;
890
891 if (!updateToLocation(Loc))
892 return Loc.IP;
893
894 uint32_t SrcLocStrSize;
895 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
896 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
897 Value *ThreadID = getOrCreateThreadID(Ident);
898
899 if (NumThreads) {
900 // Build call __kmpc_push_num_threads(&Ident, global_tid, num_threads)
901 Value *Args[] = {
902 Ident, ThreadID,
903 Builder.CreateIntCast(NumThreads, Int32, /*isSigned*/ false)};
904 Builder.CreateCall(
905 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_num_threads), Args);
906 }
907
908 if (ProcBind != OMP_PROC_BIND_default) {
909 // Build call __kmpc_push_proc_bind(&Ident, global_tid, proc_bind)
910 Value *Args[] = {
911 Ident, ThreadID,
912 ConstantInt::get(Int32, unsigned(ProcBind), /*isSigned=*/true)};
913 Builder.CreateCall(
914 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_push_proc_bind), Args);
915 }
916
917 BasicBlock *InsertBB = Builder.GetInsertBlock();
918 Function *OuterFn = InsertBB->getParent();
919
920 // Save the outer alloca block because the insertion iterator may get
921 // invalidated and we still need this later.
922 BasicBlock *OuterAllocaBlock = OuterAllocaIP.getBlock();
923
924 // Vector to remember instructions we used only during the modeling but which
925 // we want to delete at the end.
926 SmallVector<Instruction *, 4> ToBeDeleted;
927
928 // Change the location to the outer alloca insertion point to create and
929 // initialize the allocas we pass into the parallel region.
930 Builder.restoreIP(OuterAllocaIP);
931 AllocaInst *TIDAddr = Builder.CreateAlloca(Int32, nullptr, "tid.addr");
932 AllocaInst *ZeroAddr = Builder.CreateAlloca(Int32, nullptr, "zero.addr");
933
934 // We only need TIDAddr and ZeroAddr for modeling purposes to get the
935 // associated arguments in the outlined function, so we delete them later.
936 ToBeDeleted.push_back(TIDAddr);
937 ToBeDeleted.push_back(ZeroAddr);
938
939 // Create an artificial insertion point that will also ensure the blocks we
940 // are about to split are not degenerated.
941 auto *UI = new UnreachableInst(Builder.getContext(), InsertBB);
942
943 BasicBlock *EntryBB = UI->getParent();
944 BasicBlock *PRegEntryBB = EntryBB->splitBasicBlock(UI, "omp.par.entry");
945 BasicBlock *PRegBodyBB = PRegEntryBB->splitBasicBlock(UI, "omp.par.region");
946 BasicBlock *PRegPreFiniBB =
947 PRegBodyBB->splitBasicBlock(UI, "omp.par.pre_finalize");
948 BasicBlock *PRegExitBB = PRegPreFiniBB->splitBasicBlock(UI, "omp.par.exit");
949
950 auto FiniCBWrapper = [&](InsertPointTy IP) {
951 // Hide "open-ended" blocks from the given FiniCB by setting the right jump
952 // target to the region exit block.
953 if (IP.getBlock()->end() == IP.getPoint()) {
954 IRBuilder<>::InsertPointGuard IPG(Builder);
955 Builder.restoreIP(IP);
956 Instruction *I = Builder.CreateBr(PRegExitBB);
957 IP = InsertPointTy(I->getParent(), I->getIterator());
958 }
959 assert(IP.getBlock()->getTerminator()->getNumSuccessors() == 1 &&(static_cast <bool> (IP.getBlock()->getTerminator()->
getNumSuccessors() == 1 && IP.getBlock()->getTerminator
()->getSuccessor(0) == PRegExitBB && "Unexpected insertion point for finalization call!"
) ? void (0) : __assert_fail ("IP.getBlock()->getTerminator()->getNumSuccessors() == 1 && IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB && \"Unexpected insertion point for finalization call!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 961, __extension__
__PRETTY_FUNCTION__))
960 IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB &&(static_cast <bool> (IP.getBlock()->getTerminator()->
getNumSuccessors() == 1 && IP.getBlock()->getTerminator
()->getSuccessor(0) == PRegExitBB && "Unexpected insertion point for finalization call!"
) ? void (0) : __assert_fail ("IP.getBlock()->getTerminator()->getNumSuccessors() == 1 && IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB && \"Unexpected insertion point for finalization call!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 961, __extension__
__PRETTY_FUNCTION__))
961 "Unexpected insertion point for finalization call!")(static_cast <bool> (IP.getBlock()->getTerminator()->
getNumSuccessors() == 1 && IP.getBlock()->getTerminator
()->getSuccessor(0) == PRegExitBB && "Unexpected insertion point for finalization call!"
) ? void (0) : __assert_fail ("IP.getBlock()->getTerminator()->getNumSuccessors() == 1 && IP.getBlock()->getTerminator()->getSuccessor(0) == PRegExitBB && \"Unexpected insertion point for finalization call!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 961, __extension__
__PRETTY_FUNCTION__))
;
962 return FiniCB(IP);
963 };
964
965 FinalizationStack.push_back({FiniCBWrapper, OMPD_parallel, IsCancellable});
966
967 // Generate the privatization allocas in the block that will become the entry
968 // of the outlined function.
969 Builder.SetInsertPoint(PRegEntryBB->getTerminator());
970 InsertPointTy InnerAllocaIP = Builder.saveIP();
971
972 AllocaInst *PrivTIDAddr =
973 Builder.CreateAlloca(Int32, nullptr, "tid.addr.local");
974 Instruction *PrivTID = Builder.CreateLoad(Int32, PrivTIDAddr, "tid");
975
976 // Add some fake uses for OpenMP provided arguments.
977 ToBeDeleted.push_back(Builder.CreateLoad(Int32, TIDAddr, "tid.addr.use"));
978 Instruction *ZeroAddrUse =
979 Builder.CreateLoad(Int32, ZeroAddr, "zero.addr.use");
980 ToBeDeleted.push_back(ZeroAddrUse);
981
982 // EntryBB
983 // |
984 // V
985 // PRegionEntryBB <- Privatization allocas are placed here.
986 // |
987 // V
988 // PRegionBodyBB <- BodeGen is invoked here.
989 // |
990 // V
991 // PRegPreFiniBB <- The block we will start finalization from.
992 // |
993 // V
994 // PRegionExitBB <- A common exit to simplify block collection.
995 //
996
997 LLVM_DEBUG(dbgs() << "Before body codegen: " << *OuterFn << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Before body codegen: "
<< *OuterFn << "\n"; } } while (false)
;
998
999 // Let the caller create the body.
1000 assert(BodyGenCB && "Expected body generation callback!")(static_cast <bool> (BodyGenCB && "Expected body generation callback!"
) ? void (0) : __assert_fail ("BodyGenCB && \"Expected body generation callback!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1000, __extension__
__PRETTY_FUNCTION__))
;
1001 InsertPointTy CodeGenIP(PRegBodyBB, PRegBodyBB->begin());
1002 BodyGenCB(InnerAllocaIP, CodeGenIP);
1003
1004 LLVM_DEBUG(dbgs() << "After body codegen: " << *OuterFn << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "After body codegen: "
<< *OuterFn << "\n"; } } while (false)
;
1005 FunctionCallee RTLFn;
1006 if (IfCondition)
1007 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call_if);
1008 else
1009 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_fork_call);
1010
1011 if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
1012 if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
1013 llvm::LLVMContext &Ctx = F->getContext();
1014 MDBuilder MDB(Ctx);
1015 // Annotate the callback behavior of the __kmpc_fork_call:
1016 // - The callback callee is argument number 2 (microtask).
1017 // - The first two arguments of the callback callee are unknown (-1).
1018 // - All variadic arguments to the __kmpc_fork_call are passed to the
1019 // callback callee.
1020 F->addMetadata(
1021 llvm::LLVMContext::MD_callback,
1022 *llvm::MDNode::get(
1023 Ctx, {MDB.createCallbackEncoding(2, {-1, -1},
1024 /* VarArgsArePassed */ true)}));
1025 }
1026 }
1027
1028 OutlineInfo OI;
1029 OI.PostOutlineCB = [=](Function &OutlinedFn) {
1030 // Add some known attributes.
1031 OutlinedFn.addParamAttr(0, Attribute::NoAlias);
1032 OutlinedFn.addParamAttr(1, Attribute::NoAlias);
1033 OutlinedFn.addFnAttr(Attribute::NoUnwind);
1034 OutlinedFn.addFnAttr(Attribute::NoRecurse);
1035
1036 assert(OutlinedFn.arg_size() >= 2 &&(static_cast <bool> (OutlinedFn.arg_size() >= 2 &&
"Expected at least tid and bounded tid as arguments") ? void
(0) : __assert_fail ("OutlinedFn.arg_size() >= 2 && \"Expected at least tid and bounded tid as arguments\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1037, __extension__
__PRETTY_FUNCTION__))
1037 "Expected at least tid and bounded tid as arguments")(static_cast <bool> (OutlinedFn.arg_size() >= 2 &&
"Expected at least tid and bounded tid as arguments") ? void
(0) : __assert_fail ("OutlinedFn.arg_size() >= 2 && \"Expected at least tid and bounded tid as arguments\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1037, __extension__
__PRETTY_FUNCTION__))
;
1038 unsigned NumCapturedVars =
1039 OutlinedFn.arg_size() - /* tid & bounded tid */ 2;
1040
1041 CallInst *CI = cast<CallInst>(OutlinedFn.user_back());
1042 CI->getParent()->setName("omp_parallel");
1043 Builder.SetInsertPoint(CI);
1044
1045 // Build call __kmpc_fork_call[_if](Ident, n, microtask, var1, .., varn);
1046 Value *ForkCallArgs[] = {
1047 Ident, Builder.getInt32(NumCapturedVars),
1048 Builder.CreateBitCast(&OutlinedFn, ParallelTaskPtr)};
1049
1050 SmallVector<Value *, 16> RealArgs;
1051 RealArgs.append(std::begin(ForkCallArgs), std::end(ForkCallArgs));
1052 if (IfCondition) {
1053 Value *Cond = Builder.CreateSExtOrTrunc(IfCondition,
1054 Type::getInt32Ty(M.getContext()));
1055 RealArgs.push_back(Cond);
1056 }
1057 RealArgs.append(CI->arg_begin() + /* tid & bound tid */ 2, CI->arg_end());
1058
1059 // __kmpc_fork_call_if always expects a void ptr as the last argument
1060 // If there are no arguments, pass a null pointer.
1061 auto PtrTy = Type::getInt8PtrTy(M.getContext());
1062 if (IfCondition && NumCapturedVars == 0) {
1063 llvm::Value *Void = ConstantPointerNull::get(PtrTy);
1064 RealArgs.push_back(Void);
1065 }
1066 if (IfCondition && RealArgs.back()->getType() != PtrTy)
1067 RealArgs.back() = Builder.CreateBitCast(RealArgs.back(), PtrTy);
1068
1069 Builder.CreateCall(RTLFn, RealArgs);
1070
1071 LLVM_DEBUG(dbgs() << "With fork_call placed: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "With fork_call placed: "
<< *Builder.GetInsertBlock()->getParent() << "\n"
; } } while (false)
1072 << *Builder.GetInsertBlock()->getParent() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "With fork_call placed: "
<< *Builder.GetInsertBlock()->getParent() << "\n"
; } } while (false)
;
1073
1074 InsertPointTy ExitIP(PRegExitBB, PRegExitBB->end());
1075
1076 // Initialize the local TID stack location with the argument value.
1077 Builder.SetInsertPoint(PrivTID);
1078 Function::arg_iterator OutlinedAI = OutlinedFn.arg_begin();
1079 Builder.CreateStore(Builder.CreateLoad(Int32, OutlinedAI), PrivTIDAddr);
1080
1081 CI->eraseFromParent();
1082
1083 for (Instruction *I : ToBeDeleted)
1084 I->eraseFromParent();
1085 };
1086
1087 // Adjust the finalization stack, verify the adjustment, and call the
1088 // finalize function a last time to finalize values between the pre-fini
1089 // block and the exit block if we left the parallel "the normal way".
1090 auto FiniInfo = FinalizationStack.pop_back_val();
1091 (void)FiniInfo;
1092 assert(FiniInfo.DK == OMPD_parallel &&(static_cast <bool> (FiniInfo.DK == OMPD_parallel &&
"Unexpected finalization stack state!") ? void (0) : __assert_fail
("FiniInfo.DK == OMPD_parallel && \"Unexpected finalization stack state!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1093, __extension__
__PRETTY_FUNCTION__))
1093 "Unexpected finalization stack state!")(static_cast <bool> (FiniInfo.DK == OMPD_parallel &&
"Unexpected finalization stack state!") ? void (0) : __assert_fail
("FiniInfo.DK == OMPD_parallel && \"Unexpected finalization stack state!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1093, __extension__
__PRETTY_FUNCTION__))
;
1094
1095 Instruction *PRegPreFiniTI = PRegPreFiniBB->getTerminator();
1096
1097 InsertPointTy PreFiniIP(PRegPreFiniBB, PRegPreFiniTI->getIterator());
1098 FiniCB(PreFiniIP);
1099
1100 OI.OuterAllocaBB = OuterAllocaBlock;
1101 OI.EntryBB = PRegEntryBB;
1102 OI.ExitBB = PRegExitBB;
1103
1104 SmallPtrSet<BasicBlock *, 32> ParallelRegionBlockSet;
1105 SmallVector<BasicBlock *, 32> Blocks;
1106 OI.collectBlocks(ParallelRegionBlockSet, Blocks);
1107
1108 // Ensure a single exit node for the outlined region by creating one.
1109 // We might have multiple incoming edges to the exit now due to finalizations,
1110 // e.g., cancel calls that cause the control flow to leave the region.
1111 BasicBlock *PRegOutlinedExitBB = PRegExitBB;
1112 PRegExitBB = SplitBlock(PRegExitBB, &*PRegExitBB->getFirstInsertionPt());
1113 PRegOutlinedExitBB->setName("omp.par.outlined.exit");
1114 Blocks.push_back(PRegOutlinedExitBB);
1115
1116 CodeExtractorAnalysisCache CEAC(*OuterFn);
1117 CodeExtractor Extractor(Blocks, /* DominatorTree */ nullptr,
1118 /* AggregateArgs */ false,
1119 /* BlockFrequencyInfo */ nullptr,
1120 /* BranchProbabilityInfo */ nullptr,
1121 /* AssumptionCache */ nullptr,
1122 /* AllowVarArgs */ true,
1123 /* AllowAlloca */ true,
1124 /* AllocationBlock */ OuterAllocaBlock,
1125 /* Suffix */ ".omp_par");
1126
1127 // Find inputs to, outputs from the code region.
1128 BasicBlock *CommonExit = nullptr;
1129 SetVector<Value *> Inputs, Outputs, SinkingCands, HoistingCands;
1130 Extractor.findAllocas(CEAC, SinkingCands, HoistingCands, CommonExit);
1131 Extractor.findInputsOutputs(Inputs, Outputs, SinkingCands);
1132
1133 LLVM_DEBUG(dbgs() << "Before privatization: " << *OuterFn << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Before privatization: "
<< *OuterFn << "\n"; } } while (false)
;
1134
1135 FunctionCallee TIDRTLFn =
1136 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_global_thread_num);
1137
1138 auto PrivHelper = [&](Value &V) {
1139 if (&V == TIDAddr || &V == ZeroAddr) {
1140 OI.ExcludeArgsFromAggregate.push_back(&V);
1141 return;
1142 }
1143
1144 SetVector<Use *> Uses;
1145 for (Use &U : V.uses())
1146 if (auto *UserI = dyn_cast<Instruction>(U.getUser()))
1147 if (ParallelRegionBlockSet.count(UserI->getParent()))
1148 Uses.insert(&U);
1149
1150 // __kmpc_fork_call expects extra arguments as pointers. If the input
1151 // already has a pointer type, everything is fine. Otherwise, store the
1152 // value onto stack and load it back inside the to-be-outlined region. This
1153 // will ensure only the pointer will be passed to the function.
1154 // FIXME: if there are more than 15 trailing arguments, they must be
1155 // additionally packed in a struct.
1156 Value *Inner = &V;
1157 if (!V.getType()->isPointerTy()) {
1158 IRBuilder<>::InsertPointGuard Guard(Builder);
1159 LLVM_DEBUG(llvm::dbgs() << "Forwarding input as pointer: " << V << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { llvm::dbgs() << "Forwarding input as pointer: "
<< V << "\n"; } } while (false)
;
1160
1161 Builder.restoreIP(OuterAllocaIP);
1162 Value *Ptr =
1163 Builder.CreateAlloca(V.getType(), nullptr, V.getName() + ".reloaded");
1164
1165 // Store to stack at end of the block that currently branches to the entry
1166 // block of the to-be-outlined region.
1167 Builder.SetInsertPoint(InsertBB,
1168 InsertBB->getTerminator()->getIterator());
1169 Builder.CreateStore(&V, Ptr);
1170
1171 // Load back next to allocations in the to-be-outlined region.
1172 Builder.restoreIP(InnerAllocaIP);
1173 Inner = Builder.CreateLoad(V.getType(), Ptr);
1174 }
1175
1176 Value *ReplacementValue = nullptr;
1177 CallInst *CI = dyn_cast<CallInst>(&V);
1178 if (CI && CI->getCalledFunction() == TIDRTLFn.getCallee()) {
1179 ReplacementValue = PrivTID;
1180 } else {
1181 Builder.restoreIP(
1182 PrivCB(InnerAllocaIP, Builder.saveIP(), V, *Inner, ReplacementValue));
1183 assert(ReplacementValue &&(static_cast <bool> (ReplacementValue && "Expected copy/create callback to set replacement value!"
) ? void (0) : __assert_fail ("ReplacementValue && \"Expected copy/create callback to set replacement value!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1184, __extension__
__PRETTY_FUNCTION__))
1184 "Expected copy/create callback to set replacement value!")(static_cast <bool> (ReplacementValue && "Expected copy/create callback to set replacement value!"
) ? void (0) : __assert_fail ("ReplacementValue && \"Expected copy/create callback to set replacement value!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1184, __extension__
__PRETTY_FUNCTION__))
;
1185 if (ReplacementValue == &V)
1186 return;
1187 }
1188
1189 for (Use *UPtr : Uses)
1190 UPtr->set(ReplacementValue);
1191 };
1192
1193 // Reset the inner alloca insertion as it will be used for loading the values
1194 // wrapped into pointers before passing them into the to-be-outlined region.
1195 // Configure it to insert immediately after the fake use of zero address so
1196 // that they are available in the generated body and so that the
1197 // OpenMP-related values (thread ID and zero address pointers) remain leading
1198 // in the argument list.
1199 InnerAllocaIP = IRBuilder<>::InsertPoint(
1200 ZeroAddrUse->getParent(), ZeroAddrUse->getNextNode()->getIterator());
1201
1202 // Reset the outer alloca insertion point to the entry of the relevant block
1203 // in case it was invalidated.
1204 OuterAllocaIP = IRBuilder<>::InsertPoint(
1205 OuterAllocaBlock, OuterAllocaBlock->getFirstInsertionPt());
1206
1207 for (Value *Input : Inputs) {
1208 LLVM_DEBUG(dbgs() << "Captured input: " << *Input << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Captured input: " <<
*Input << "\n"; } } while (false)
;
1209 PrivHelper(*Input);
1210 }
1211 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { for (Value *Output : Outputs) do {
if (::llvm::DebugFlag && ::llvm::isCurrentDebugType(
"openmp-ir-builder")) { dbgs() << "Captured output: " <<
*Output << "\n"; } } while (false); }; } } while (false
)
1212 for (Value *Output : Outputs)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { for (Value *Output : Outputs) do {
if (::llvm::DebugFlag && ::llvm::isCurrentDebugType(
"openmp-ir-builder")) { dbgs() << "Captured output: " <<
*Output << "\n"; } } while (false); }; } } while (false
)
1213 LLVM_DEBUG(dbgs() << "Captured output: " << *Output << "\n");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { for (Value *Output : Outputs) do {
if (::llvm::DebugFlag && ::llvm::isCurrentDebugType(
"openmp-ir-builder")) { dbgs() << "Captured output: " <<
*Output << "\n"; } } while (false); }; } } while (false
)
1214 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { for (Value *Output : Outputs) do {
if (::llvm::DebugFlag && ::llvm::isCurrentDebugType(
"openmp-ir-builder")) { dbgs() << "Captured output: " <<
*Output << "\n"; } } while (false); }; } } while (false
)
;
1215 assert(Outputs.empty() &&(static_cast <bool> (Outputs.empty() && "OpenMP outlining should not produce live-out values!"
) ? void (0) : __assert_fail ("Outputs.empty() && \"OpenMP outlining should not produce live-out values!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1216, __extension__
__PRETTY_FUNCTION__))
1216 "OpenMP outlining should not produce live-out values!")(static_cast <bool> (Outputs.empty() && "OpenMP outlining should not produce live-out values!"
) ? void (0) : __assert_fail ("Outputs.empty() && \"OpenMP outlining should not produce live-out values!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1216, __extension__
__PRETTY_FUNCTION__))
;
1217
1218 LLVM_DEBUG(dbgs() << "After privatization: " << *OuterFn << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "After privatization: "
<< *OuterFn << "\n"; } } while (false)
;
1219 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { for (auto *BB : Blocks) dbgs() <<
" PBR: " << BB->getName() << "\n"; }; } } while
(false)
1220 for (auto *BB : Blocks)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { for (auto *BB : Blocks) dbgs() <<
" PBR: " << BB->getName() << "\n"; }; } } while
(false)
1221 dbgs() << " PBR: " << BB->getName() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { for (auto *BB : Blocks) dbgs() <<
" PBR: " << BB->getName() << "\n"; }; } } while
(false)
1222 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { for (auto *BB : Blocks) dbgs() <<
" PBR: " << BB->getName() << "\n"; }; } } while
(false)
;
1223
1224 // Register the outlined info.
1225 addOutlineInfo(std::move(OI));
1226
1227 InsertPointTy AfterIP(UI->getParent(), UI->getParent()->end());
1228 UI->eraseFromParent();
1229
1230 return AfterIP;
1231}
1232
1233void OpenMPIRBuilder::emitFlush(const LocationDescription &Loc) {
1234 // Build call void __kmpc_flush(ident_t *loc)
1235 uint32_t SrcLocStrSize;
1236 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1237 Value *Args[] = {getOrCreateIdent(SrcLocStr, SrcLocStrSize)};
1238
1239 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_flush), Args);
1240}
1241
1242void OpenMPIRBuilder::createFlush(const LocationDescription &Loc) {
1243 if (!updateToLocation(Loc))
1244 return;
1245 emitFlush(Loc);
1246}
1247
1248void OpenMPIRBuilder::emitTaskwaitImpl(const LocationDescription &Loc) {
1249 // Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
1250 // global_tid);
1251 uint32_t SrcLocStrSize;
1252 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1253 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1254 Value *Args[] = {Ident, getOrCreateThreadID(Ident)};
1255
1256 // Ignore return result until untied tasks are supported.
1257 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskwait),
1258 Args);
1259}
1260
1261void OpenMPIRBuilder::createTaskwait(const LocationDescription &Loc) {
1262 if (!updateToLocation(Loc))
1263 return;
1264 emitTaskwaitImpl(Loc);
1265}
1266
1267void OpenMPIRBuilder::emitTaskyieldImpl(const LocationDescription &Loc) {
1268 // Build call __kmpc_omp_taskyield(loc, thread_id, 0);
1269 uint32_t SrcLocStrSize;
1270 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1271 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1272 Constant *I32Null = ConstantInt::getNullValue(Int32);
1273 Value *Args[] = {Ident, getOrCreateThreadID(Ident), I32Null};
1274
1275 Builder.CreateCall(getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_taskyield),
1276 Args);
1277}
1278
1279void OpenMPIRBuilder::createTaskyield(const LocationDescription &Loc) {
1280 if (!updateToLocation(Loc))
1281 return;
1282 emitTaskyieldImpl(Loc);
1283}
1284
1285OpenMPIRBuilder::InsertPointTy
1286OpenMPIRBuilder::createTask(const LocationDescription &Loc,
1287 InsertPointTy AllocaIP, BodyGenCallbackTy BodyGenCB,
1288 bool Tied, Value *Final, Value *IfCondition,
1289 SmallVector<DependData> Dependencies) {
1290 if (!updateToLocation(Loc))
1291 return InsertPointTy();
1292
1293 uint32_t SrcLocStrSize;
1294 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1295 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1296 // The current basic block is split into four basic blocks. After outlining,
1297 // they will be mapped as follows:
1298 // ```
1299 // def current_fn() {
1300 // current_basic_block:
1301 // br label %task.exit
1302 // task.exit:
1303 // ; instructions after task
1304 // }
1305 // def outlined_fn() {
1306 // task.alloca:
1307 // br label %task.body
1308 // task.body:
1309 // ret void
1310 // }
1311 // ```
1312 BasicBlock *TaskExitBB = splitBB(Builder, /*CreateBranch=*/true, "task.exit");
1313 BasicBlock *TaskBodyBB = splitBB(Builder, /*CreateBranch=*/true, "task.body");
1314 BasicBlock *TaskAllocaBB =
1315 splitBB(Builder, /*CreateBranch=*/true, "task.alloca");
1316
1317 OutlineInfo OI;
1318 OI.EntryBB = TaskAllocaBB;
1319 OI.OuterAllocaBB = AllocaIP.getBlock();
1320 OI.ExitBB = TaskExitBB;
1321 OI.PostOutlineCB = [this, Ident, Tied, Final, IfCondition,
1322 Dependencies](Function &OutlinedFn) {
1323 // The input IR here looks like the following-
1324 // ```
1325 // func @current_fn() {
1326 // outlined_fn(%args)
1327 // }
1328 // func @outlined_fn(%args) { ... }
1329 // ```
1330 //
1331 // This is changed to the following-
1332 //
1333 // ```
1334 // func @current_fn() {
1335 // runtime_call(..., wrapper_fn, ...)
1336 // }
1337 // func @wrapper_fn(..., %args) {
1338 // outlined_fn(%args)
1339 // }
1340 // func @outlined_fn(%args) { ... }
1341 // ```
1342
1343 // The stale call instruction will be replaced with a new call instruction
1344 // for runtime call with a wrapper function.
1345 assert(OutlinedFn.getNumUses() == 1 &&(static_cast <bool> (OutlinedFn.getNumUses() == 1 &&
"there must be a single user for the outlined function") ? void
(0) : __assert_fail ("OutlinedFn.getNumUses() == 1 && \"there must be a single user for the outlined function\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1346, __extension__
__PRETTY_FUNCTION__))
1346 "there must be a single user for the outlined function")(static_cast <bool> (OutlinedFn.getNumUses() == 1 &&
"there must be a single user for the outlined function") ? void
(0) : __assert_fail ("OutlinedFn.getNumUses() == 1 && \"there must be a single user for the outlined function\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1346, __extension__
__PRETTY_FUNCTION__))
;
1347 CallInst *StaleCI = cast<CallInst>(OutlinedFn.user_back());
1348
1349 // HasTaskData is true if any variables are captured in the outlined region,
1350 // false otherwise.
1351 bool HasTaskData = StaleCI->arg_size() > 0;
1352 Builder.SetInsertPoint(StaleCI);
1353
1354 // Gather the arguments for emitting the runtime call for
1355 // @__kmpc_omp_task_alloc
1356 Function *TaskAllocFn =
1357 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_alloc);
1358
1359 // Arguments - `loc_ref` (Ident) and `gtid` (ThreadID)
1360 // call.
1361 Value *ThreadID = getOrCreateThreadID(Ident);
1362
1363 // Argument - `flags`
1364 // Task is tied iff (Flags & 1) == 1.
1365 // Task is untied iff (Flags & 1) == 0.
1366 // Task is final iff (Flags & 2) == 2.
1367 // Task is not final iff (Flags & 2) == 0.
1368 // TODO: Handle the other flags.
1369 Value *Flags = Builder.getInt32(Tied);
1370 if (Final) {
1371 Value *FinalFlag =
1372 Builder.CreateSelect(Final, Builder.getInt32(2), Builder.getInt32(0));
1373 Flags = Builder.CreateOr(FinalFlag, Flags);
1374 }
1375
1376 // Argument - `sizeof_kmp_task_t` (TaskSize)
1377 // Tasksize refers to the size in bytes of kmp_task_t data structure
1378 // including private vars accessed in task.
1379 Value *TaskSize = Builder.getInt64(0);
1380 if (HasTaskData) {
1381 AllocaInst *ArgStructAlloca =
1382 dyn_cast<AllocaInst>(StaleCI->getArgOperand(0));
1383 assert(ArgStructAlloca &&(static_cast <bool> (ArgStructAlloca && "Unable to find the alloca instruction corresponding to arguments "
"for extracted function") ? void (0) : __assert_fail ("ArgStructAlloca && \"Unable to find the alloca instruction corresponding to arguments \" \"for extracted function\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1385, __extension__
__PRETTY_FUNCTION__))
1384 "Unable to find the alloca instruction corresponding to arguments "(static_cast <bool> (ArgStructAlloca && "Unable to find the alloca instruction corresponding to arguments "
"for extracted function") ? void (0) : __assert_fail ("ArgStructAlloca && \"Unable to find the alloca instruction corresponding to arguments \" \"for extracted function\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1385, __extension__
__PRETTY_FUNCTION__))
1385 "for extracted function")(static_cast <bool> (ArgStructAlloca && "Unable to find the alloca instruction corresponding to arguments "
"for extracted function") ? void (0) : __assert_fail ("ArgStructAlloca && \"Unable to find the alloca instruction corresponding to arguments \" \"for extracted function\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1385, __extension__
__PRETTY_FUNCTION__))
;
1386 StructType *ArgStructType =
1387 dyn_cast<StructType>(ArgStructAlloca->getAllocatedType());
1388 assert(ArgStructType && "Unable to find struct type corresponding to "(static_cast <bool> (ArgStructType && "Unable to find struct type corresponding to "
"arguments for extracted function") ? void (0) : __assert_fail
("ArgStructType && \"Unable to find struct type corresponding to \" \"arguments for extracted function\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1389, __extension__
__PRETTY_FUNCTION__))
1389 "arguments for extracted function")(static_cast <bool> (ArgStructType && "Unable to find struct type corresponding to "
"arguments for extracted function") ? void (0) : __assert_fail
("ArgStructType && \"Unable to find struct type corresponding to \" \"arguments for extracted function\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1389, __extension__
__PRETTY_FUNCTION__))
;
1390 TaskSize =
1391 Builder.getInt64(M.getDataLayout().getTypeStoreSize(ArgStructType));
1392 }
1393
1394 // TODO: Argument - sizeof_shareds
1395
1396 // Argument - task_entry (the wrapper function)
1397 // If the outlined function has some captured variables (i.e. HasTaskData is
1398 // true), then the wrapper function will have an additional argument (the
1399 // struct containing captured variables). Otherwise, no such argument will
1400 // be present.
1401 SmallVector<Type *> WrapperArgTys{Builder.getInt32Ty()};
1402 if (HasTaskData)
1403 WrapperArgTys.push_back(OutlinedFn.getArg(0)->getType());
1404 FunctionCallee WrapperFuncVal = M.getOrInsertFunction(
1405 (Twine(OutlinedFn.getName()) + ".wrapper").str(),
1406 FunctionType::get(Builder.getInt32Ty(), WrapperArgTys, false));
1407 Function *WrapperFunc = dyn_cast<Function>(WrapperFuncVal.getCallee());
1408 PointerType *WrapperFuncBitcastType =
1409 FunctionType::get(Builder.getInt32Ty(),
1410 {Builder.getInt32Ty(), Builder.getInt8PtrTy()}, false)
1411 ->getPointerTo();
1412 Value *WrapperFuncBitcast =
1413 ConstantExpr::getBitCast(WrapperFunc, WrapperFuncBitcastType);
1414
1415 // Emit the @__kmpc_omp_task_alloc runtime call
1416 // The runtime call returns a pointer to an area where the task captured
1417 // variables must be copied before the task is run (NewTaskData)
1418 CallInst *NewTaskData = Builder.CreateCall(
1419 TaskAllocFn,
1420 {/*loc_ref=*/Ident, /*gtid=*/ThreadID, /*flags=*/Flags,
1421 /*sizeof_task=*/TaskSize, /*sizeof_shared=*/Builder.getInt64(0),
1422 /*task_func=*/WrapperFuncBitcast});
1423
1424 // Copy the arguments for outlined function
1425 if (HasTaskData) {
1426 Value *TaskData = StaleCI->getArgOperand(0);
1427 Align Alignment = TaskData->getPointerAlignment(M.getDataLayout());
1428 Builder.CreateMemCpy(NewTaskData, Alignment, TaskData, Alignment,
1429 TaskSize);
1430 }
1431
1432 Value *DepArrayPtr = nullptr;
1433 if (Dependencies.size()) {
1434 InsertPointTy OldIP = Builder.saveIP();
1435 Builder.SetInsertPoint(
1436 &OldIP.getBlock()->getParent()->getEntryBlock().back());
1437
1438 Type *DepArrayTy = ArrayType::get(DependInfo, Dependencies.size());
1439 Value *DepArray =
1440 Builder.CreateAlloca(DepArrayTy, nullptr, ".dep.arr.addr");
1441
1442 unsigned P = 0;
1443 for (const DependData &Dep : Dependencies) {
1444 Value *Base =
1445 Builder.CreateConstInBoundsGEP2_64(DepArrayTy, DepArray, 0, P);
1446 // Store the pointer to the variable
1447 Value *Addr = Builder.CreateStructGEP(
1448 DependInfo, Base,
1449 static_cast<unsigned int>(RTLDependInfoFields::BaseAddr));
1450 Value *DepValPtr =
1451 Builder.CreatePtrToInt(Dep.DepVal, Builder.getInt64Ty());
1452 Builder.CreateStore(DepValPtr, Addr);
1453 // Store the size of the variable
1454 Value *Size = Builder.CreateStructGEP(
1455 DependInfo, Base,
1456 static_cast<unsigned int>(RTLDependInfoFields::Len));
1457 Builder.CreateStore(Builder.getInt64(M.getDataLayout().getTypeStoreSize(
1458 Dep.DepValueType)),
1459 Size);
1460 // Store the dependency kind
1461 Value *Flags = Builder.CreateStructGEP(
1462 DependInfo, Base,
1463 static_cast<unsigned int>(RTLDependInfoFields::Flags));
1464 Builder.CreateStore(
1465 ConstantInt::get(Builder.getInt8Ty(),
1466 static_cast<unsigned int>(Dep.DepKind)),
1467 Flags);
1468 ++P;
1469 }
1470
1471 DepArrayPtr = Builder.CreateBitCast(DepArray, Builder.getInt8PtrTy());
1472 Builder.restoreIP(OldIP);
1473 }
1474
1475 // In the presence of the `if` clause, the following IR is generated:
1476 // ...
1477 // %data = call @__kmpc_omp_task_alloc(...)
1478 // br i1 %if_condition, label %then, label %else
1479 // then:
1480 // call @__kmpc_omp_task(...)
1481 // br label %exit
1482 // else:
1483 // call @__kmpc_omp_task_begin_if0(...)
1484 // call @wrapper_fn(...)
1485 // call @__kmpc_omp_task_complete_if0(...)
1486 // br label %exit
1487 // exit:
1488 // ...
1489 if (IfCondition) {
1490 // `SplitBlockAndInsertIfThenElse` requires the block to have a
1491 // terminator.
1492 BasicBlock *NewBasicBlock =
1493 splitBB(Builder, /*CreateBranch=*/true, "if.end");
1494 Instruction *IfTerminator =
1495 NewBasicBlock->getSinglePredecessor()->getTerminator();
1496 Instruction *ThenTI = IfTerminator, *ElseTI = nullptr;
1497 Builder.SetInsertPoint(IfTerminator);
1498 SplitBlockAndInsertIfThenElse(IfCondition, IfTerminator, &ThenTI,
1499 &ElseTI);
1500 Builder.SetInsertPoint(ElseTI);
1501 Function *TaskBeginFn =
1502 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_begin_if0);
1503 Function *TaskCompleteFn =
1504 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_complete_if0);
1505 Builder.CreateCall(TaskBeginFn, {Ident, ThreadID, NewTaskData});
1506 if (HasTaskData)
1507 Builder.CreateCall(WrapperFunc, {ThreadID, NewTaskData});
1508 else
1509 Builder.CreateCall(WrapperFunc, {ThreadID});
1510 Builder.CreateCall(TaskCompleteFn, {Ident, ThreadID, NewTaskData});
1511 Builder.SetInsertPoint(ThenTI);
1512 }
1513
1514 if (Dependencies.size()) {
1515 Function *TaskFn =
1516 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task_with_deps);
1517 Builder.CreateCall(
1518 TaskFn,
1519 {Ident, ThreadID, NewTaskData, Builder.getInt32(Dependencies.size()),
1520 DepArrayPtr, ConstantInt::get(Builder.getInt32Ty(), 0),
1521 ConstantPointerNull::get(Type::getInt8PtrTy(M.getContext()))});
1522
1523 } else {
1524 // Emit the @__kmpc_omp_task runtime call to spawn the task
1525 Function *TaskFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_omp_task);
1526 Builder.CreateCall(TaskFn, {Ident, ThreadID, NewTaskData});
1527 }
1528
1529 StaleCI->eraseFromParent();
1530
1531 // Emit the body for wrapper function
1532 BasicBlock *WrapperEntryBB =
1533 BasicBlock::Create(M.getContext(), "", WrapperFunc);
1534 Builder.SetInsertPoint(WrapperEntryBB);
1535 if (HasTaskData)
1536 Builder.CreateCall(&OutlinedFn, {WrapperFunc->getArg(1)});
1537 else
1538 Builder.CreateCall(&OutlinedFn);
1539 Builder.CreateRet(Builder.getInt32(0));
1540 };
1541
1542 addOutlineInfo(std::move(OI));
1543
1544 InsertPointTy TaskAllocaIP =
1545 InsertPointTy(TaskAllocaBB, TaskAllocaBB->begin());
1546 InsertPointTy TaskBodyIP = InsertPointTy(TaskBodyBB, TaskBodyBB->begin());
1547 BodyGenCB(TaskAllocaIP, TaskBodyIP);
1548 Builder.SetInsertPoint(TaskExitBB, TaskExitBB->begin());
1549
1550 return Builder.saveIP();
1551}
1552
1553OpenMPIRBuilder::InsertPointTy
1554OpenMPIRBuilder::createTaskgroup(const LocationDescription &Loc,
1555 InsertPointTy AllocaIP,
1556 BodyGenCallbackTy BodyGenCB) {
1557 if (!updateToLocation(Loc))
1558 return InsertPointTy();
1559
1560 uint32_t SrcLocStrSize;
1561 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1562 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1563 Value *ThreadID = getOrCreateThreadID(Ident);
1564
1565 // Emit the @__kmpc_taskgroup runtime call to start the taskgroup
1566 Function *TaskgroupFn =
1567 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_taskgroup);
1568 Builder.CreateCall(TaskgroupFn, {Ident, ThreadID});
1569
1570 BasicBlock *TaskgroupExitBB = splitBB(Builder, true, "taskgroup.exit");
1571 BodyGenCB(AllocaIP, Builder.saveIP());
1572
1573 Builder.SetInsertPoint(TaskgroupExitBB);
1574 // Emit the @__kmpc_end_taskgroup runtime call to end the taskgroup
1575 Function *EndTaskgroupFn =
1576 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_taskgroup);
1577 Builder.CreateCall(EndTaskgroupFn, {Ident, ThreadID});
1578
1579 return Builder.saveIP();
1580}
1581
1582OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSections(
1583 const LocationDescription &Loc, InsertPointTy AllocaIP,
1584 ArrayRef<StorableBodyGenCallbackTy> SectionCBs, PrivatizeCallbackTy PrivCB,
1585 FinalizeCallbackTy FiniCB, bool IsCancellable, bool IsNowait) {
1586 assert(!isConflictIP(AllocaIP, Loc.IP) && "Dedicated IP allocas required")(static_cast <bool> (!isConflictIP(AllocaIP, Loc.IP) &&
"Dedicated IP allocas required") ? void (0) : __assert_fail (
"!isConflictIP(AllocaIP, Loc.IP) && \"Dedicated IP allocas required\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1586, __extension__
__PRETTY_FUNCTION__))
;
1587
1588 if (!updateToLocation(Loc))
1589 return Loc.IP;
1590
1591 auto FiniCBWrapper = [&](InsertPointTy IP) {
1592 if (IP.getBlock()->end() != IP.getPoint())
1593 return FiniCB(IP);
1594 // This must be done otherwise any nested constructs using FinalizeOMPRegion
1595 // will fail because that function requires the Finalization Basic Block to
1596 // have a terminator, which is already removed by EmitOMPRegionBody.
1597 // IP is currently at cancelation block.
1598 // We need to backtrack to the condition block to fetch
1599 // the exit block and create a branch from cancelation
1600 // to exit block.
1601 IRBuilder<>::InsertPointGuard IPG(Builder);
1602 Builder.restoreIP(IP);
1603 auto *CaseBB = IP.getBlock()->getSinglePredecessor();
1604 auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
1605 auto *ExitBB = CondBB->getTerminator()->getSuccessor(1);
1606 Instruction *I = Builder.CreateBr(ExitBB);
1607 IP = InsertPointTy(I->getParent(), I->getIterator());
1608 return FiniCB(IP);
1609 };
1610
1611 FinalizationStack.push_back({FiniCBWrapper, OMPD_sections, IsCancellable});
1612
1613 // Each section is emitted as a switch case
1614 // Each finalization callback is handled from clang.EmitOMPSectionDirective()
1615 // -> OMP.createSection() which generates the IR for each section
1616 // Iterate through all sections and emit a switch construct:
1617 // switch (IV) {
1618 // case 0:
1619 // <SectionStmt[0]>;
1620 // break;
1621 // ...
1622 // case <NumSection> - 1:
1623 // <SectionStmt[<NumSection> - 1]>;
1624 // break;
1625 // }
1626 // ...
1627 // section_loop.after:
1628 // <FiniCB>;
1629 auto LoopBodyGenCB = [&](InsertPointTy CodeGenIP, Value *IndVar) {
1630 Builder.restoreIP(CodeGenIP);
1631 BasicBlock *Continue =
1632 splitBBWithSuffix(Builder, /*CreateBranch=*/false, ".sections.after");
1633 Function *CurFn = Continue->getParent();
1634 SwitchInst *SwitchStmt = Builder.CreateSwitch(IndVar, Continue);
1635
1636 unsigned CaseNumber = 0;
1637 for (auto SectionCB : SectionCBs) {
1638 BasicBlock *CaseBB = BasicBlock::Create(
1639 M.getContext(), "omp_section_loop.body.case", CurFn, Continue);
1640 SwitchStmt->addCase(Builder.getInt32(CaseNumber), CaseBB);
1641 Builder.SetInsertPoint(CaseBB);
1642 BranchInst *CaseEndBr = Builder.CreateBr(Continue);
1643 SectionCB(InsertPointTy(),
1644 {CaseEndBr->getParent(), CaseEndBr->getIterator()});
1645 CaseNumber++;
1646 }
1647 // remove the existing terminator from body BB since there can be no
1648 // terminators after switch/case
1649 };
1650 // Loop body ends here
1651 // LowerBound, UpperBound, and STride for createCanonicalLoop
1652 Type *I32Ty = Type::getInt32Ty(M.getContext());
1653 Value *LB = ConstantInt::get(I32Ty, 0);
1654 Value *UB = ConstantInt::get(I32Ty, SectionCBs.size());
1655 Value *ST = ConstantInt::get(I32Ty, 1);
1656 llvm::CanonicalLoopInfo *LoopInfo = createCanonicalLoop(
1657 Loc, LoopBodyGenCB, LB, UB, ST, true, false, AllocaIP, "section_loop");
1658 InsertPointTy AfterIP =
1659 applyStaticWorkshareLoop(Loc.DL, LoopInfo, AllocaIP, !IsNowait);
1660
1661 // Apply the finalization callback in LoopAfterBB
1662 auto FiniInfo = FinalizationStack.pop_back_val();
1663 assert(FiniInfo.DK == OMPD_sections &&(static_cast <bool> (FiniInfo.DK == OMPD_sections &&
"Unexpected finalization stack state!") ? void (0) : __assert_fail
("FiniInfo.DK == OMPD_sections && \"Unexpected finalization stack state!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1664, __extension__
__PRETTY_FUNCTION__))
1664 "Unexpected finalization stack state!")(static_cast <bool> (FiniInfo.DK == OMPD_sections &&
"Unexpected finalization stack state!") ? void (0) : __assert_fail
("FiniInfo.DK == OMPD_sections && \"Unexpected finalization stack state!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1664, __extension__
__PRETTY_FUNCTION__))
;
1665 if (FinalizeCallbackTy &CB = FiniInfo.FiniCB) {
1666 Builder.restoreIP(AfterIP);
1667 BasicBlock *FiniBB =
1668 splitBBWithSuffix(Builder, /*CreateBranch=*/true, "sections.fini");
1669 CB(Builder.saveIP());
1670 AfterIP = {FiniBB, FiniBB->begin()};
1671 }
1672
1673 return AfterIP;
1674}
1675
1676OpenMPIRBuilder::InsertPointTy
1677OpenMPIRBuilder::createSection(const LocationDescription &Loc,
1678 BodyGenCallbackTy BodyGenCB,
1679 FinalizeCallbackTy FiniCB) {
1680 if (!updateToLocation(Loc))
1681 return Loc.IP;
1682
1683 auto FiniCBWrapper = [&](InsertPointTy IP) {
1684 if (IP.getBlock()->end() != IP.getPoint())
1685 return FiniCB(IP);
1686 // This must be done otherwise any nested constructs using FinalizeOMPRegion
1687 // will fail because that function requires the Finalization Basic Block to
1688 // have a terminator, which is already removed by EmitOMPRegionBody.
1689 // IP is currently at cancelation block.
1690 // We need to backtrack to the condition block to fetch
1691 // the exit block and create a branch from cancelation
1692 // to exit block.
1693 IRBuilder<>::InsertPointGuard IPG(Builder);
1694 Builder.restoreIP(IP);
1695 auto *CaseBB = Loc.IP.getBlock();
1696 auto *CondBB = CaseBB->getSinglePredecessor()->getSinglePredecessor();
1697 auto *ExitBB = CondBB->getTerminator()->getSuccessor(1);
1698 Instruction *I = Builder.CreateBr(ExitBB);
1699 IP = InsertPointTy(I->getParent(), I->getIterator());
1700 return FiniCB(IP);
1701 };
1702
1703 Directive OMPD = Directive::OMPD_sections;
1704 // Since we are using Finalization Callback here, HasFinalize
1705 // and IsCancellable have to be true
1706 return EmitOMPInlinedRegion(OMPD, nullptr, nullptr, BodyGenCB, FiniCBWrapper,
1707 /*Conditional*/ false, /*hasFinalize*/ true,
1708 /*IsCancellable*/ true);
1709}
1710
1711/// Create a function with a unique name and a "void (i8*, i8*)" signature in
1712/// the given module and return it.
1713Function *getFreshReductionFunc(Module &M) {
1714 Type *VoidTy = Type::getVoidTy(M.getContext());
1715 Type *Int8PtrTy = Type::getInt8PtrTy(M.getContext());
1716 auto *FuncTy =
1717 FunctionType::get(VoidTy, {Int8PtrTy, Int8PtrTy}, /* IsVarArg */ false);
1718 return Function::Create(FuncTy, GlobalVariable::InternalLinkage,
1719 M.getDataLayout().getDefaultGlobalsAddressSpace(),
1720 ".omp.reduction.func", &M);
1721}
1722
1723OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createReductions(
1724 const LocationDescription &Loc, InsertPointTy AllocaIP,
1725 ArrayRef<ReductionInfo> ReductionInfos, bool IsNoWait) {
1726 for (const ReductionInfo &RI : ReductionInfos) {
1727 (void)RI;
1728 assert(RI.Variable && "expected non-null variable")(static_cast <bool> (RI.Variable && "expected non-null variable"
) ? void (0) : __assert_fail ("RI.Variable && \"expected non-null variable\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1728, __extension__
__PRETTY_FUNCTION__))
;
1729 assert(RI.PrivateVariable && "expected non-null private variable")(static_cast <bool> (RI.PrivateVariable && "expected non-null private variable"
) ? void (0) : __assert_fail ("RI.PrivateVariable && \"expected non-null private variable\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1729, __extension__
__PRETTY_FUNCTION__))
;
1730 assert(RI.ReductionGen && "expected non-null reduction generator callback")(static_cast <bool> (RI.ReductionGen && "expected non-null reduction generator callback"
) ? void (0) : __assert_fail ("RI.ReductionGen && \"expected non-null reduction generator callback\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1730, __extension__
__PRETTY_FUNCTION__))
;
1731 assert(RI.Variable->getType() == RI.PrivateVariable->getType() &&(static_cast <bool> (RI.Variable->getType() == RI.PrivateVariable
->getType() && "expected variables and their private equivalents to have the same "
"type") ? void (0) : __assert_fail ("RI.Variable->getType() == RI.PrivateVariable->getType() && \"expected variables and their private equivalents to have the same \" \"type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1733, __extension__
__PRETTY_FUNCTION__))
1732 "expected variables and their private equivalents to have the same "(static_cast <bool> (RI.Variable->getType() == RI.PrivateVariable
->getType() && "expected variables and their private equivalents to have the same "
"type") ? void (0) : __assert_fail ("RI.Variable->getType() == RI.PrivateVariable->getType() && \"expected variables and their private equivalents to have the same \" \"type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1733, __extension__
__PRETTY_FUNCTION__))
1733 "type")(static_cast <bool> (RI.Variable->getType() == RI.PrivateVariable
->getType() && "expected variables and their private equivalents to have the same "
"type") ? void (0) : __assert_fail ("RI.Variable->getType() == RI.PrivateVariable->getType() && \"expected variables and their private equivalents to have the same \" \"type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1733, __extension__
__PRETTY_FUNCTION__))
;
1734 assert(RI.Variable->getType()->isPointerTy() &&(static_cast <bool> (RI.Variable->getType()->isPointerTy
() && "expected variables to be pointers") ? void (0)
: __assert_fail ("RI.Variable->getType()->isPointerTy() && \"expected variables to be pointers\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1735, __extension__
__PRETTY_FUNCTION__))
1735 "expected variables to be pointers")(static_cast <bool> (RI.Variable->getType()->isPointerTy
() && "expected variables to be pointers") ? void (0)
: __assert_fail ("RI.Variable->getType()->isPointerTy() && \"expected variables to be pointers\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 1735, __extension__
__PRETTY_FUNCTION__))
;
1736 }
1737
1738 if (!updateToLocation(Loc))
1739 return InsertPointTy();
1740
1741 BasicBlock *InsertBlock = Loc.IP.getBlock();
1742 BasicBlock *ContinuationBlock =
1743 InsertBlock->splitBasicBlock(Loc.IP.getPoint(), "reduce.finalize");
1744 InsertBlock->getTerminator()->eraseFromParent();
1745
1746 // Create and populate array of type-erased pointers to private reduction
1747 // values.
1748 unsigned NumReductions = ReductionInfos.size();
1749 Type *RedArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumReductions);
1750 Builder.restoreIP(AllocaIP);
1751 Value *RedArray = Builder.CreateAlloca(RedArrayTy, nullptr, "red.array");
1752
1753 Builder.SetInsertPoint(InsertBlock, InsertBlock->end());
1754
1755 for (auto En : enumerate(ReductionInfos)) {
1756 unsigned Index = En.index();
1757 const ReductionInfo &RI = En.value();
1758 Value *RedArrayElemPtr = Builder.CreateConstInBoundsGEP2_64(
1759 RedArrayTy, RedArray, 0, Index, "red.array.elem." + Twine(Index));
1760 Value *Casted =
1761 Builder.CreateBitCast(RI.PrivateVariable, Builder.getInt8PtrTy(),
1762 "private.red.var." + Twine(Index) + ".casted");
1763 Builder.CreateStore(Casted, RedArrayElemPtr);
1764 }
1765
1766 // Emit a call to the runtime function that orchestrates the reduction.
1767 // Declare the reduction function in the process.
1768 Function *Func = Builder.GetInsertBlock()->getParent();
1769 Module *Module = Func->getParent();
1770 Value *RedArrayPtr =
1771 Builder.CreateBitCast(RedArray, Builder.getInt8PtrTy(), "red.array.ptr");
1772 uint32_t SrcLocStrSize;
1773 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1774 bool CanGenerateAtomic =
1775 llvm::all_of(ReductionInfos, [](const ReductionInfo &RI) {
1776 return RI.AtomicReductionGen;
1777 });
1778 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize,
1779 CanGenerateAtomic
1780 ? IdentFlag::OMP_IDENT_FLAG_ATOMIC_REDUCE
1781 : IdentFlag(0));
1782 Value *ThreadId = getOrCreateThreadID(Ident);
1783 Constant *NumVariables = Builder.getInt32(NumReductions);
1784 const DataLayout &DL = Module->getDataLayout();
1785 unsigned RedArrayByteSize = DL.getTypeStoreSize(RedArrayTy);
1786 Constant *RedArraySize = Builder.getInt64(RedArrayByteSize);
1787 Function *ReductionFunc = getFreshReductionFunc(*Module);
1788 Value *Lock = getOMPCriticalRegionLock(".reduction");
1789 Function *ReduceFunc = getOrCreateRuntimeFunctionPtr(
1790 IsNoWait ? RuntimeFunction::OMPRTL___kmpc_reduce_nowait
1791 : RuntimeFunction::OMPRTL___kmpc_reduce);
1792 CallInst *ReduceCall =
1793 Builder.CreateCall(ReduceFunc,
1794 {Ident, ThreadId, NumVariables, RedArraySize,
1795 RedArrayPtr, ReductionFunc, Lock},
1796 "reduce");
1797
1798 // Create final reduction entry blocks for the atomic and non-atomic case.
1799 // Emit IR that dispatches control flow to one of the blocks based on the
1800 // reduction supporting the atomic mode.
1801 BasicBlock *NonAtomicRedBlock =
1802 BasicBlock::Create(Module->getContext(), "reduce.switch.nonatomic", Func);
1803 BasicBlock *AtomicRedBlock =
1804 BasicBlock::Create(Module->getContext(), "reduce.switch.atomic", Func);
1805 SwitchInst *Switch =
1806 Builder.CreateSwitch(ReduceCall, ContinuationBlock, /* NumCases */ 2);
1807 Switch->addCase(Builder.getInt32(1), NonAtomicRedBlock);
1808 Switch->addCase(Builder.getInt32(2), AtomicRedBlock);
1809
1810 // Populate the non-atomic reduction using the elementwise reduction function.
1811 // This loads the elements from the global and private variables and reduces
1812 // them before storing back the result to the global variable.
1813 Builder.SetInsertPoint(NonAtomicRedBlock);
1814 for (auto En : enumerate(ReductionInfos)) {
1815 const ReductionInfo &RI = En.value();
1816 Type *ValueType = RI.ElementType;
1817 Value *RedValue = Builder.CreateLoad(ValueType, RI.Variable,
1818 "red.value." + Twine(En.index()));
1819 Value *PrivateRedValue =
1820 Builder.CreateLoad(ValueType, RI.PrivateVariable,
1821 "red.private.value." + Twine(En.index()));
1822 Value *Reduced;
1823 Builder.restoreIP(
1824 RI.ReductionGen(Builder.saveIP(), RedValue, PrivateRedValue, Reduced));
1825 if (!Builder.GetInsertBlock())
1826 return InsertPointTy();
1827 Builder.CreateStore(Reduced, RI.Variable);
1828 }
1829 Function *EndReduceFunc = getOrCreateRuntimeFunctionPtr(
1830 IsNoWait ? RuntimeFunction::OMPRTL___kmpc_end_reduce_nowait
1831 : RuntimeFunction::OMPRTL___kmpc_end_reduce);
1832 Builder.CreateCall(EndReduceFunc, {Ident, ThreadId, Lock});
1833 Builder.CreateBr(ContinuationBlock);
1834
1835 // Populate the atomic reduction using the atomic elementwise reduction
1836 // function. There are no loads/stores here because they will be happening
1837 // inside the atomic elementwise reduction.
1838 Builder.SetInsertPoint(AtomicRedBlock);
1839 if (CanGenerateAtomic) {
1840 for (const ReductionInfo &RI : ReductionInfos) {
1841 Builder.restoreIP(RI.AtomicReductionGen(Builder.saveIP(), RI.ElementType,
1842 RI.Variable, RI.PrivateVariable));
1843 if (!Builder.GetInsertBlock())
1844 return InsertPointTy();
1845 }
1846 Builder.CreateBr(ContinuationBlock);
1847 } else {
1848 Builder.CreateUnreachable();
1849 }
1850
1851 // Populate the outlined reduction function using the elementwise reduction
1852 // function. Partial values are extracted from the type-erased array of
1853 // pointers to private variables.
1854 BasicBlock *ReductionFuncBlock =
1855 BasicBlock::Create(Module->getContext(), "", ReductionFunc);
1856 Builder.SetInsertPoint(ReductionFuncBlock);
1857 Value *LHSArrayPtr = Builder.CreateBitCast(ReductionFunc->getArg(0),
1858 RedArrayTy->getPointerTo());
1859 Value *RHSArrayPtr = Builder.CreateBitCast(ReductionFunc->getArg(1),
1860 RedArrayTy->getPointerTo());
1861 for (auto En : enumerate(ReductionInfos)) {
1862 const ReductionInfo &RI = En.value();
1863 Value *LHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64(
1864 RedArrayTy, LHSArrayPtr, 0, En.index());
1865 Value *LHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), LHSI8PtrPtr);
1866 Value *LHSPtr = Builder.CreateBitCast(LHSI8Ptr, RI.Variable->getType());
1867 Value *LHS = Builder.CreateLoad(RI.ElementType, LHSPtr);
1868 Value *RHSI8PtrPtr = Builder.CreateConstInBoundsGEP2_64(
1869 RedArrayTy, RHSArrayPtr, 0, En.index());
1870 Value *RHSI8Ptr = Builder.CreateLoad(Builder.getInt8PtrTy(), RHSI8PtrPtr);
1871 Value *RHSPtr =
1872 Builder.CreateBitCast(RHSI8Ptr, RI.PrivateVariable->getType());
1873 Value *RHS = Builder.CreateLoad(RI.ElementType, RHSPtr);
1874 Value *Reduced;
1875 Builder.restoreIP(RI.ReductionGen(Builder.saveIP(), LHS, RHS, Reduced));
1876 if (!Builder.GetInsertBlock())
1877 return InsertPointTy();
1878 Builder.CreateStore(Reduced, LHSPtr);
1879 }
1880 Builder.CreateRetVoid();
1881
1882 Builder.SetInsertPoint(ContinuationBlock);
1883 return Builder.saveIP();
1884}
1885
1886OpenMPIRBuilder::InsertPointTy
1887OpenMPIRBuilder::createMaster(const LocationDescription &Loc,
1888 BodyGenCallbackTy BodyGenCB,
1889 FinalizeCallbackTy FiniCB) {
1890
1891 if (!updateToLocation(Loc))
1892 return Loc.IP;
1893
1894 Directive OMPD = Directive::OMPD_master;
1895 uint32_t SrcLocStrSize;
1896 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1897 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1898 Value *ThreadId = getOrCreateThreadID(Ident);
1899 Value *Args[] = {Ident, ThreadId};
1900
1901 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_master);
1902 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
1903
1904 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_master);
1905 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
1906
1907 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
1908 /*Conditional*/ true, /*hasFinalize*/ true);
1909}
1910
1911OpenMPIRBuilder::InsertPointTy
1912OpenMPIRBuilder::createMasked(const LocationDescription &Loc,
1913 BodyGenCallbackTy BodyGenCB,
1914 FinalizeCallbackTy FiniCB, Value *Filter) {
1915 if (!updateToLocation(Loc))
1916 return Loc.IP;
1917
1918 Directive OMPD = Directive::OMPD_masked;
1919 uint32_t SrcLocStrSize;
1920 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
1921 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
1922 Value *ThreadId = getOrCreateThreadID(Ident);
1923 Value *Args[] = {Ident, ThreadId, Filter};
1924 Value *ArgsEnd[] = {Ident, ThreadId};
1925
1926 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_masked);
1927 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
1928
1929 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_masked);
1930 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, ArgsEnd);
1931
1932 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
1933 /*Conditional*/ true, /*hasFinalize*/ true);
1934}
1935
1936CanonicalLoopInfo *OpenMPIRBuilder::createLoopSkeleton(
1937 DebugLoc DL, Value *TripCount, Function *F, BasicBlock *PreInsertBefore,
1938 BasicBlock *PostInsertBefore, const Twine &Name) {
1939 Module *M = F->getParent();
1940 LLVMContext &Ctx = M->getContext();
1941 Type *IndVarTy = TripCount->getType();
1942
1943 // Create the basic block structure.
1944 BasicBlock *Preheader =
1945 BasicBlock::Create(Ctx, "omp_" + Name + ".preheader", F, PreInsertBefore);
1946 BasicBlock *Header =
1947 BasicBlock::Create(Ctx, "omp_" + Name + ".header", F, PreInsertBefore);
1948 BasicBlock *Cond =
1949 BasicBlock::Create(Ctx, "omp_" + Name + ".cond", F, PreInsertBefore);
1950 BasicBlock *Body =
1951 BasicBlock::Create(Ctx, "omp_" + Name + ".body", F, PreInsertBefore);
1952 BasicBlock *Latch =
1953 BasicBlock::Create(Ctx, "omp_" + Name + ".inc", F, PostInsertBefore);
1954 BasicBlock *Exit =
1955 BasicBlock::Create(Ctx, "omp_" + Name + ".exit", F, PostInsertBefore);
1956 BasicBlock *After =
1957 BasicBlock::Create(Ctx, "omp_" + Name + ".after", F, PostInsertBefore);
1958
1959 // Use specified DebugLoc for new instructions.
1960 Builder.SetCurrentDebugLocation(DL);
1961
1962 Builder.SetInsertPoint(Preheader);
1963 Builder.CreateBr(Header);
1964
1965 Builder.SetInsertPoint(Header);
1966 PHINode *IndVarPHI = Builder.CreatePHI(IndVarTy, 2, "omp_" + Name + ".iv");
1967 IndVarPHI->addIncoming(ConstantInt::get(IndVarTy, 0), Preheader);
1968 Builder.CreateBr(Cond);
1969
1970 Builder.SetInsertPoint(Cond);
1971 Value *Cmp =
1972 Builder.CreateICmpULT(IndVarPHI, TripCount, "omp_" + Name + ".cmp");
1973 Builder.CreateCondBr(Cmp, Body, Exit);
1974
1975 Builder.SetInsertPoint(Body);
1976 Builder.CreateBr(Latch);
1977
1978 Builder.SetInsertPoint(Latch);
1979 Value *Next = Builder.CreateAdd(IndVarPHI, ConstantInt::get(IndVarTy, 1),
1980 "omp_" + Name + ".next", /*HasNUW=*/true);
1981 Builder.CreateBr(Header);
1982 IndVarPHI->addIncoming(Next, Latch);
1983
1984 Builder.SetInsertPoint(Exit);
1985 Builder.CreateBr(After);
1986
1987 // Remember and return the canonical control flow.
1988 LoopInfos.emplace_front();
1989 CanonicalLoopInfo *CL = &LoopInfos.front();
1990
1991 CL->Header = Header;
1992 CL->Cond = Cond;
1993 CL->Latch = Latch;
1994 CL->Exit = Exit;
1995
1996#ifndef NDEBUG
1997 CL->assertOK();
1998#endif
1999 return CL;
2000}
2001
2002CanonicalLoopInfo *
2003OpenMPIRBuilder::createCanonicalLoop(const LocationDescription &Loc,
2004 LoopBodyGenCallbackTy BodyGenCB,
2005 Value *TripCount, const Twine &Name) {
2006 BasicBlock *BB = Loc.IP.getBlock();
2007 BasicBlock *NextBB = BB->getNextNode();
2008
2009 CanonicalLoopInfo *CL = createLoopSkeleton(Loc.DL, TripCount, BB->getParent(),
2010 NextBB, NextBB, Name);
2011 BasicBlock *After = CL->getAfter();
2012
2013 // If location is not set, don't connect the loop.
2014 if (updateToLocation(Loc)) {
2015 // Split the loop at the insertion point: Branch to the preheader and move
2016 // every following instruction to after the loop (the After BB). Also, the
2017 // new successor is the loop's after block.
2018 spliceBB(Builder, After, /*CreateBranch=*/false);
2019 Builder.CreateBr(CL->getPreheader());
2020 }
2021
2022 // Emit the body content. We do it after connecting the loop to the CFG to
2023 // avoid that the callback encounters degenerate BBs.
2024 BodyGenCB(CL->getBodyIP(), CL->getIndVar());
2025
2026#ifndef NDEBUG
2027 CL->assertOK();
2028#endif
2029 return CL;
2030}
2031
2032CanonicalLoopInfo *OpenMPIRBuilder::createCanonicalLoop(
2033 const LocationDescription &Loc, LoopBodyGenCallbackTy BodyGenCB,
2034 Value *Start, Value *Stop, Value *Step, bool IsSigned, bool InclusiveStop,
2035 InsertPointTy ComputeIP, const Twine &Name) {
2036
2037 // Consider the following difficulties (assuming 8-bit signed integers):
2038 // * Adding \p Step to the loop counter which passes \p Stop may overflow:
2039 // DO I = 1, 100, 50
2040 /// * A \p Step of INT_MIN cannot not be normalized to a positive direction:
2041 // DO I = 100, 0, -128
2042
2043 // Start, Stop and Step must be of the same integer type.
2044 auto *IndVarTy = cast<IntegerType>(Start->getType());
2045 assert(IndVarTy == Stop->getType() && "Stop type mismatch")(static_cast <bool> (IndVarTy == Stop->getType() &&
"Stop type mismatch") ? void (0) : __assert_fail ("IndVarTy == Stop->getType() && \"Stop type mismatch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2045, __extension__
__PRETTY_FUNCTION__))
;
2046 assert(IndVarTy == Step->getType() && "Step type mismatch")(static_cast <bool> (IndVarTy == Step->getType() &&
"Step type mismatch") ? void (0) : __assert_fail ("IndVarTy == Step->getType() && \"Step type mismatch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2046, __extension__
__PRETTY_FUNCTION__))
;
2047
2048 LocationDescription ComputeLoc =
2049 ComputeIP.isSet() ? LocationDescription(ComputeIP, Loc.DL) : Loc;
2050 updateToLocation(ComputeLoc);
2051
2052 ConstantInt *Zero = ConstantInt::get(IndVarTy, 0);
2053 ConstantInt *One = ConstantInt::get(IndVarTy, 1);
2054
2055 // Like Step, but always positive.
2056 Value *Incr = Step;
2057
2058 // Distance between Start and Stop; always positive.
2059 Value *Span;
2060
2061 // Condition whether there are no iterations are executed at all, e.g. because
2062 // UB < LB.
2063 Value *ZeroCmp;
2064
2065 if (IsSigned) {
2066 // Ensure that increment is positive. If not, negate and invert LB and UB.
2067 Value *IsNeg = Builder.CreateICmpSLT(Step, Zero);
2068 Incr = Builder.CreateSelect(IsNeg, Builder.CreateNeg(Step), Step);
2069 Value *LB = Builder.CreateSelect(IsNeg, Stop, Start);
2070 Value *UB = Builder.CreateSelect(IsNeg, Start, Stop);
2071 Span = Builder.CreateSub(UB, LB, "", false, true);
2072 ZeroCmp = Builder.CreateICmp(
2073 InclusiveStop ? CmpInst::ICMP_SLT : CmpInst::ICMP_SLE, UB, LB);
2074 } else {
2075 Span = Builder.CreateSub(Stop, Start, "", true);
2076 ZeroCmp = Builder.CreateICmp(
2077 InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Stop, Start);
2078 }
2079
2080 Value *CountIfLooping;
2081 if (InclusiveStop) {
2082 CountIfLooping = Builder.CreateAdd(Builder.CreateUDiv(Span, Incr), One);
2083 } else {
2084 // Avoid incrementing past stop since it could overflow.
2085 Value *CountIfTwo = Builder.CreateAdd(
2086 Builder.CreateUDiv(Builder.CreateSub(Span, One), Incr), One);
2087 Value *OneCmp = Builder.CreateICmp(
2088 InclusiveStop ? CmpInst::ICMP_ULT : CmpInst::ICMP_ULE, Span, Incr);
2089 CountIfLooping = Builder.CreateSelect(OneCmp, One, CountIfTwo);
2090 }
2091 Value *TripCount = Builder.CreateSelect(ZeroCmp, Zero, CountIfLooping,
2092 "omp_" + Name + ".tripcount");
2093
2094 auto BodyGen = [=](InsertPointTy CodeGenIP, Value *IV) {
2095 Builder.restoreIP(CodeGenIP);
2096 Value *Span = Builder.CreateMul(IV, Step);
2097 Value *IndVar = Builder.CreateAdd(Span, Start);
2098 BodyGenCB(Builder.saveIP(), IndVar);
2099 };
2100 LocationDescription LoopLoc = ComputeIP.isSet() ? Loc.IP : Builder.saveIP();
2101 return createCanonicalLoop(LoopLoc, BodyGen, TripCount, Name);
2102}
2103
2104// Returns an LLVM function to call for initializing loop bounds using OpenMP
2105// static scheduling depending on `type`. Only i32 and i64 are supported by the
2106// runtime. Always interpret integers as unsigned similarly to
2107// CanonicalLoopInfo.
2108static FunctionCallee getKmpcForStaticInitForType(Type *Ty, Module &M,
2109 OpenMPIRBuilder &OMPBuilder) {
2110 unsigned Bitwidth = Ty->getIntegerBitWidth();
2111 if (Bitwidth == 32)
2112 return OMPBuilder.getOrCreateRuntimeFunction(
2113 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_4u);
2114 if (Bitwidth == 64)
2115 return OMPBuilder.getOrCreateRuntimeFunction(
2116 M, omp::RuntimeFunction::OMPRTL___kmpc_for_static_init_8u);
2117 llvm_unreachable("unknown OpenMP loop iterator bitwidth")::llvm::llvm_unreachable_internal("unknown OpenMP loop iterator bitwidth"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2117)
;
2118}
2119
2120OpenMPIRBuilder::InsertPointTy
2121OpenMPIRBuilder::applyStaticWorkshareLoop(DebugLoc DL, CanonicalLoopInfo *CLI,
2122 InsertPointTy AllocaIP,
2123 bool NeedsBarrier) {
2124 assert(CLI->isValid() && "Requires a valid canonical loop")(static_cast <bool> (CLI->isValid() && "Requires a valid canonical loop"
) ? void (0) : __assert_fail ("CLI->isValid() && \"Requires a valid canonical loop\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2124, __extension__
__PRETTY_FUNCTION__))
;
2125 assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) &&(static_cast <bool> (!isConflictIP(AllocaIP, CLI->getPreheaderIP
()) && "Require dedicated allocate IP") ? void (0) : __assert_fail
("!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && \"Require dedicated allocate IP\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2126, __extension__
__PRETTY_FUNCTION__))
2126 "Require dedicated allocate IP")(static_cast <bool> (!isConflictIP(AllocaIP, CLI->getPreheaderIP
()) && "Require dedicated allocate IP") ? void (0) : __assert_fail
("!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && \"Require dedicated allocate IP\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2126, __extension__
__PRETTY_FUNCTION__))
;
2127
2128 // Set up the source location value for OpenMP runtime.
2129 Builder.restoreIP(CLI->getPreheaderIP());
2130 Builder.SetCurrentDebugLocation(DL);
2131
2132 uint32_t SrcLocStrSize;
2133 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2134 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2135
2136 // Declare useful OpenMP runtime functions.
2137 Value *IV = CLI->getIndVar();
2138 Type *IVTy = IV->getType();
2139 FunctionCallee StaticInit = getKmpcForStaticInitForType(IVTy, M, *this);
2140 FunctionCallee StaticFini =
2141 getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini);
2142
2143 // Allocate space for computed loop bounds as expected by the "init" function.
2144 Builder.restoreIP(AllocaIP);
2145 Type *I32Type = Type::getInt32Ty(M.getContext());
2146 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
2147 Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound");
2148 Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound");
2149 Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride");
2150
2151 // At the end of the preheader, prepare for calling the "init" function by
2152 // storing the current loop bounds into the allocated space. A canonical loop
2153 // always iterates from 0 to trip-count with step 1. Note that "init" expects
2154 // and produces an inclusive upper bound.
2155 Builder.SetInsertPoint(CLI->getPreheader()->getTerminator());
2156 Constant *Zero = ConstantInt::get(IVTy, 0);
2157 Constant *One = ConstantInt::get(IVTy, 1);
2158 Builder.CreateStore(Zero, PLowerBound);
2159 Value *UpperBound = Builder.CreateSub(CLI->getTripCount(), One);
2160 Builder.CreateStore(UpperBound, PUpperBound);
2161 Builder.CreateStore(One, PStride);
2162
2163 Value *ThreadNum = getOrCreateThreadID(SrcLoc);
2164
2165 Constant *SchedulingType = ConstantInt::get(
2166 I32Type, static_cast<int>(OMPScheduleType::UnorderedStatic));
2167
2168 // Call the "init" function and update the trip count of the loop with the
2169 // value it produced.
2170 Builder.CreateCall(StaticInit,
2171 {SrcLoc, ThreadNum, SchedulingType, PLastIter, PLowerBound,
2172 PUpperBound, PStride, One, Zero});
2173 Value *LowerBound = Builder.CreateLoad(IVTy, PLowerBound);
2174 Value *InclusiveUpperBound = Builder.CreateLoad(IVTy, PUpperBound);
2175 Value *TripCountMinusOne = Builder.CreateSub(InclusiveUpperBound, LowerBound);
2176 Value *TripCount = Builder.CreateAdd(TripCountMinusOne, One);
2177 CLI->setTripCount(TripCount);
2178
2179 // Update all uses of the induction variable except the one in the condition
2180 // block that compares it with the actual upper bound, and the increment in
2181 // the latch block.
2182
2183 CLI->mapIndVar([&](Instruction *OldIV) -> Value * {
2184 Builder.SetInsertPoint(CLI->getBody(),
2185 CLI->getBody()->getFirstInsertionPt());
2186 Builder.SetCurrentDebugLocation(DL);
2187 return Builder.CreateAdd(OldIV, LowerBound);
2188 });
2189
2190 // In the "exit" block, call the "fini" function.
2191 Builder.SetInsertPoint(CLI->getExit(),
2192 CLI->getExit()->getTerminator()->getIterator());
2193 Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum});
2194
2195 // Add the barrier if requested.
2196 if (NeedsBarrier)
2197 createBarrier(LocationDescription(Builder.saveIP(), DL),
2198 omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
2199 /* CheckCancelFlag */ false);
2200
2201 InsertPointTy AfterIP = CLI->getAfterIP();
2202 CLI->invalidate();
2203
2204 return AfterIP;
2205}
2206
2207OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyStaticChunkedWorkshareLoop(
2208 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
2209 bool NeedsBarrier, Value *ChunkSize) {
2210 assert(CLI->isValid() && "Requires a valid canonical loop")(static_cast <bool> (CLI->isValid() && "Requires a valid canonical loop"
) ? void (0) : __assert_fail ("CLI->isValid() && \"Requires a valid canonical loop\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2210, __extension__
__PRETTY_FUNCTION__))
;
2211 assert(ChunkSize && "Chunk size is required")(static_cast <bool> (ChunkSize && "Chunk size is required"
) ? void (0) : __assert_fail ("ChunkSize && \"Chunk size is required\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2211, __extension__
__PRETTY_FUNCTION__))
;
2212
2213 LLVMContext &Ctx = CLI->getFunction()->getContext();
2214 Value *IV = CLI->getIndVar();
2215 Value *OrigTripCount = CLI->getTripCount();
2216 Type *IVTy = IV->getType();
2217 assert(IVTy->getIntegerBitWidth() <= 64 &&(static_cast <bool> (IVTy->getIntegerBitWidth() <=
64 && "Max supported tripcount bitwidth is 64 bits")
? void (0) : __assert_fail ("IVTy->getIntegerBitWidth() <= 64 && \"Max supported tripcount bitwidth is 64 bits\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2218, __extension__
__PRETTY_FUNCTION__))
2218 "Max supported tripcount bitwidth is 64 bits")(static_cast <bool> (IVTy->getIntegerBitWidth() <=
64 && "Max supported tripcount bitwidth is 64 bits")
? void (0) : __assert_fail ("IVTy->getIntegerBitWidth() <= 64 && \"Max supported tripcount bitwidth is 64 bits\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2218, __extension__
__PRETTY_FUNCTION__))
;
2219 Type *InternalIVTy = IVTy->getIntegerBitWidth() <= 32 ? Type::getInt32Ty(Ctx)
2220 : Type::getInt64Ty(Ctx);
2221 Type *I32Type = Type::getInt32Ty(M.getContext());
2222 Constant *Zero = ConstantInt::get(InternalIVTy, 0);
2223 Constant *One = ConstantInt::get(InternalIVTy, 1);
2224
2225 // Declare useful OpenMP runtime functions.
2226 FunctionCallee StaticInit =
2227 getKmpcForStaticInitForType(InternalIVTy, M, *this);
2228 FunctionCallee StaticFini =
2229 getOrCreateRuntimeFunction(M, omp::OMPRTL___kmpc_for_static_fini);
2230
2231 // Allocate space for computed loop bounds as expected by the "init" function.
2232 Builder.restoreIP(AllocaIP);
2233 Builder.SetCurrentDebugLocation(DL);
2234 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
2235 Value *PLowerBound =
2236 Builder.CreateAlloca(InternalIVTy, nullptr, "p.lowerbound");
2237 Value *PUpperBound =
2238 Builder.CreateAlloca(InternalIVTy, nullptr, "p.upperbound");
2239 Value *PStride = Builder.CreateAlloca(InternalIVTy, nullptr, "p.stride");
2240
2241 // Set up the source location value for the OpenMP runtime.
2242 Builder.restoreIP(CLI->getPreheaderIP());
2243 Builder.SetCurrentDebugLocation(DL);
2244
2245 // TODO: Detect overflow in ubsan or max-out with current tripcount.
2246 Value *CastedChunkSize =
2247 Builder.CreateZExtOrTrunc(ChunkSize, InternalIVTy, "chunksize");
2248 Value *CastedTripCount =
2249 Builder.CreateZExt(OrigTripCount, InternalIVTy, "tripcount");
2250
2251 Constant *SchedulingType = ConstantInt::get(
2252 I32Type, static_cast<int>(OMPScheduleType::UnorderedStaticChunked));
2253 Builder.CreateStore(Zero, PLowerBound);
2254 Value *OrigUpperBound = Builder.CreateSub(CastedTripCount, One);
2255 Builder.CreateStore(OrigUpperBound, PUpperBound);
2256 Builder.CreateStore(One, PStride);
2257
2258 // Call the "init" function and update the trip count of the loop with the
2259 // value it produced.
2260 uint32_t SrcLocStrSize;
2261 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2262 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2263 Value *ThreadNum = getOrCreateThreadID(SrcLoc);
2264 Builder.CreateCall(StaticInit,
2265 {/*loc=*/SrcLoc, /*global_tid=*/ThreadNum,
2266 /*schedtype=*/SchedulingType, /*plastiter=*/PLastIter,
2267 /*plower=*/PLowerBound, /*pupper=*/PUpperBound,
2268 /*pstride=*/PStride, /*incr=*/One,
2269 /*chunk=*/CastedChunkSize});
2270
2271 // Load values written by the "init" function.
2272 Value *FirstChunkStart =
2273 Builder.CreateLoad(InternalIVTy, PLowerBound, "omp_firstchunk.lb");
2274 Value *FirstChunkStop =
2275 Builder.CreateLoad(InternalIVTy, PUpperBound, "omp_firstchunk.ub");
2276 Value *FirstChunkEnd = Builder.CreateAdd(FirstChunkStop, One);
2277 Value *ChunkRange =
2278 Builder.CreateSub(FirstChunkEnd, FirstChunkStart, "omp_chunk.range");
2279 Value *NextChunkStride =
2280 Builder.CreateLoad(InternalIVTy, PStride, "omp_dispatch.stride");
2281
2282 // Create outer "dispatch" loop for enumerating the chunks.
2283 BasicBlock *DispatchEnter = splitBB(Builder, true);
2284 Value *DispatchCounter;
2285 CanonicalLoopInfo *DispatchCLI = createCanonicalLoop(
2286 {Builder.saveIP(), DL},
2287 [&](InsertPointTy BodyIP, Value *Counter) { DispatchCounter = Counter; },
2288 FirstChunkStart, CastedTripCount, NextChunkStride,
2289 /*IsSigned=*/false, /*InclusiveStop=*/false, /*ComputeIP=*/{},
2290 "dispatch");
2291
2292 // Remember the BasicBlocks of the dispatch loop we need, then invalidate to
2293 // not have to preserve the canonical invariant.
2294 BasicBlock *DispatchBody = DispatchCLI->getBody();
2295 BasicBlock *DispatchLatch = DispatchCLI->getLatch();
2296 BasicBlock *DispatchExit = DispatchCLI->getExit();
2297 BasicBlock *DispatchAfter = DispatchCLI->getAfter();
2298 DispatchCLI->invalidate();
2299
2300 // Rewire the original loop to become the chunk loop inside the dispatch loop.
2301 redirectTo(DispatchAfter, CLI->getAfter(), DL);
2302 redirectTo(CLI->getExit(), DispatchLatch, DL);
2303 redirectTo(DispatchBody, DispatchEnter, DL);
2304
2305 // Prepare the prolog of the chunk loop.
2306 Builder.restoreIP(CLI->getPreheaderIP());
2307 Builder.SetCurrentDebugLocation(DL);
2308
2309 // Compute the number of iterations of the chunk loop.
2310 Builder.SetInsertPoint(CLI->getPreheader()->getTerminator());
2311 Value *ChunkEnd = Builder.CreateAdd(DispatchCounter, ChunkRange);
2312 Value *IsLastChunk =
2313 Builder.CreateICmpUGE(ChunkEnd, CastedTripCount, "omp_chunk.is_last");
2314 Value *CountUntilOrigTripCount =
2315 Builder.CreateSub(CastedTripCount, DispatchCounter);
2316 Value *ChunkTripCount = Builder.CreateSelect(
2317 IsLastChunk, CountUntilOrigTripCount, ChunkRange, "omp_chunk.tripcount");
2318 Value *BackcastedChunkTC =
2319 Builder.CreateTrunc(ChunkTripCount, IVTy, "omp_chunk.tripcount.trunc");
2320 CLI->setTripCount(BackcastedChunkTC);
2321
2322 // Update all uses of the induction variable except the one in the condition
2323 // block that compares it with the actual upper bound, and the increment in
2324 // the latch block.
2325 Value *BackcastedDispatchCounter =
2326 Builder.CreateTrunc(DispatchCounter, IVTy, "omp_dispatch.iv.trunc");
2327 CLI->mapIndVar([&](Instruction *) -> Value * {
2328 Builder.restoreIP(CLI->getBodyIP());
2329 return Builder.CreateAdd(IV, BackcastedDispatchCounter);
2330 });
2331
2332 // In the "exit" block, call the "fini" function.
2333 Builder.SetInsertPoint(DispatchExit, DispatchExit->getFirstInsertionPt());
2334 Builder.CreateCall(StaticFini, {SrcLoc, ThreadNum});
2335
2336 // Add the barrier if requested.
2337 if (NeedsBarrier)
2338 createBarrier(LocationDescription(Builder.saveIP(), DL), OMPD_for,
2339 /*ForceSimpleCall=*/false, /*CheckCancelFlag=*/false);
2340
2341#ifndef NDEBUG
2342 // Even though we currently do not support applying additional methods to it,
2343 // the chunk loop should remain a canonical loop.
2344 CLI->assertOK();
2345#endif
2346
2347 return {DispatchAfter, DispatchAfter->getFirstInsertionPt()};
2348}
2349
2350OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyWorkshareLoop(
2351 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
2352 bool NeedsBarrier, llvm::omp::ScheduleKind SchedKind,
2353 llvm::Value *ChunkSize, bool HasSimdModifier, bool HasMonotonicModifier,
2354 bool HasNonmonotonicModifier, bool HasOrderedClause) {
2355 OMPScheduleType EffectiveScheduleType = computeOpenMPScheduleType(
2356 SchedKind, ChunkSize, HasSimdModifier, HasMonotonicModifier,
2357 HasNonmonotonicModifier, HasOrderedClause);
2358
2359 bool IsOrdered = (EffectiveScheduleType & OMPScheduleType::ModifierOrdered) ==
2360 OMPScheduleType::ModifierOrdered;
2361 switch (EffectiveScheduleType & ~OMPScheduleType::ModifierMask) {
2362 case OMPScheduleType::BaseStatic:
2363 assert(!ChunkSize && "No chunk size with static-chunked schedule")(static_cast <bool> (!ChunkSize && "No chunk size with static-chunked schedule"
) ? void (0) : __assert_fail ("!ChunkSize && \"No chunk size with static-chunked schedule\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2363, __extension__
__PRETTY_FUNCTION__))
;
2364 if (IsOrdered)
2365 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
2366 NeedsBarrier, ChunkSize);
2367 // FIXME: Monotonicity ignored?
2368 return applyStaticWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier);
2369
2370 case OMPScheduleType::BaseStaticChunked:
2371 if (IsOrdered)
2372 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
2373 NeedsBarrier, ChunkSize);
2374 // FIXME: Monotonicity ignored?
2375 return applyStaticChunkedWorkshareLoop(DL, CLI, AllocaIP, NeedsBarrier,
2376 ChunkSize);
2377
2378 case OMPScheduleType::BaseRuntime:
2379 case OMPScheduleType::BaseAuto:
2380 case OMPScheduleType::BaseGreedy:
2381 case OMPScheduleType::BaseBalanced:
2382 case OMPScheduleType::BaseSteal:
2383 case OMPScheduleType::BaseGuidedSimd:
2384 case OMPScheduleType::BaseRuntimeSimd:
2385 assert(!ChunkSize &&(static_cast <bool> (!ChunkSize && "schedule type does not support user-defined chunk sizes"
) ? void (0) : __assert_fail ("!ChunkSize && \"schedule type does not support user-defined chunk sizes\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2386, __extension__
__PRETTY_FUNCTION__))
2386 "schedule type does not support user-defined chunk sizes")(static_cast <bool> (!ChunkSize && "schedule type does not support user-defined chunk sizes"
) ? void (0) : __assert_fail ("!ChunkSize && \"schedule type does not support user-defined chunk sizes\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2386, __extension__
__PRETTY_FUNCTION__))
;
2387 LLVM_FALLTHROUGH[[fallthrough]];
2388 case OMPScheduleType::BaseDynamicChunked:
2389 case OMPScheduleType::BaseGuidedChunked:
2390 case OMPScheduleType::BaseGuidedIterativeChunked:
2391 case OMPScheduleType::BaseGuidedAnalyticalChunked:
2392 case OMPScheduleType::BaseStaticBalancedChunked:
2393 return applyDynamicWorkshareLoop(DL, CLI, AllocaIP, EffectiveScheduleType,
2394 NeedsBarrier, ChunkSize);
2395
2396 default:
2397 llvm_unreachable("Unknown/unimplemented schedule kind")::llvm::llvm_unreachable_internal("Unknown/unimplemented schedule kind"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2397)
;
2398 }
2399}
2400
2401/// Returns an LLVM function to call for initializing loop bounds using OpenMP
2402/// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
2403/// the runtime. Always interpret integers as unsigned similarly to
2404/// CanonicalLoopInfo.
2405static FunctionCallee
2406getKmpcForDynamicInitForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
2407 unsigned Bitwidth = Ty->getIntegerBitWidth();
2408 if (Bitwidth == 32)
2409 return OMPBuilder.getOrCreateRuntimeFunction(
2410 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_4u);
2411 if (Bitwidth == 64)
2412 return OMPBuilder.getOrCreateRuntimeFunction(
2413 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_init_8u);
2414 llvm_unreachable("unknown OpenMP loop iterator bitwidth")::llvm::llvm_unreachable_internal("unknown OpenMP loop iterator bitwidth"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2414)
;
2415}
2416
2417/// Returns an LLVM function to call for updating the next loop using OpenMP
2418/// dynamic scheduling depending on `type`. Only i32 and i64 are supported by
2419/// the runtime. Always interpret integers as unsigned similarly to
2420/// CanonicalLoopInfo.
2421static FunctionCallee
2422getKmpcForDynamicNextForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
2423 unsigned Bitwidth = Ty->getIntegerBitWidth();
2424 if (Bitwidth == 32)
2425 return OMPBuilder.getOrCreateRuntimeFunction(
2426 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_4u);
2427 if (Bitwidth == 64)
2428 return OMPBuilder.getOrCreateRuntimeFunction(
2429 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_next_8u);
2430 llvm_unreachable("unknown OpenMP loop iterator bitwidth")::llvm::llvm_unreachable_internal("unknown OpenMP loop iterator bitwidth"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2430)
;
2431}
2432
2433/// Returns an LLVM function to call for finalizing the dynamic loop using
2434/// depending on `type`. Only i32 and i64 are supported by the runtime. Always
2435/// interpret integers as unsigned similarly to CanonicalLoopInfo.
2436static FunctionCallee
2437getKmpcForDynamicFiniForType(Type *Ty, Module &M, OpenMPIRBuilder &OMPBuilder) {
2438 unsigned Bitwidth = Ty->getIntegerBitWidth();
2439 if (Bitwidth == 32)
2440 return OMPBuilder.getOrCreateRuntimeFunction(
2441 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_4u);
2442 if (Bitwidth == 64)
2443 return OMPBuilder.getOrCreateRuntimeFunction(
2444 M, omp::RuntimeFunction::OMPRTL___kmpc_dispatch_fini_8u);
2445 llvm_unreachable("unknown OpenMP loop iterator bitwidth")::llvm::llvm_unreachable_internal("unknown OpenMP loop iterator bitwidth"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2445)
;
2446}
2447
2448OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::applyDynamicWorkshareLoop(
2449 DebugLoc DL, CanonicalLoopInfo *CLI, InsertPointTy AllocaIP,
2450 OMPScheduleType SchedType, bool NeedsBarrier, Value *Chunk) {
2451 assert(CLI->isValid() && "Requires a valid canonical loop")(static_cast <bool> (CLI->isValid() && "Requires a valid canonical loop"
) ? void (0) : __assert_fail ("CLI->isValid() && \"Requires a valid canonical loop\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2451, __extension__
__PRETTY_FUNCTION__))
;
2452 assert(!isConflictIP(AllocaIP, CLI->getPreheaderIP()) &&(static_cast <bool> (!isConflictIP(AllocaIP, CLI->getPreheaderIP
()) && "Require dedicated allocate IP") ? void (0) : __assert_fail
("!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && \"Require dedicated allocate IP\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2453, __extension__
__PRETTY_FUNCTION__))
2453 "Require dedicated allocate IP")(static_cast <bool> (!isConflictIP(AllocaIP, CLI->getPreheaderIP
()) && "Require dedicated allocate IP") ? void (0) : __assert_fail
("!isConflictIP(AllocaIP, CLI->getPreheaderIP()) && \"Require dedicated allocate IP\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2453, __extension__
__PRETTY_FUNCTION__))
;
2454 assert(isValidWorkshareLoopScheduleType(SchedType) &&(static_cast <bool> (isValidWorkshareLoopScheduleType(SchedType
) && "Require valid schedule type") ? void (0) : __assert_fail
("isValidWorkshareLoopScheduleType(SchedType) && \"Require valid schedule type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2455, __extension__
__PRETTY_FUNCTION__))
2455 "Require valid schedule type")(static_cast <bool> (isValidWorkshareLoopScheduleType(SchedType
) && "Require valid schedule type") ? void (0) : __assert_fail
("isValidWorkshareLoopScheduleType(SchedType) && \"Require valid schedule type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2455, __extension__
__PRETTY_FUNCTION__))
;
2456
2457 bool Ordered = (SchedType & OMPScheduleType::ModifierOrdered) ==
2458 OMPScheduleType::ModifierOrdered;
2459
2460 // Set up the source location value for OpenMP runtime.
2461 Builder.SetCurrentDebugLocation(DL);
2462
2463 uint32_t SrcLocStrSize;
2464 Constant *SrcLocStr = getOrCreateSrcLocStr(DL, SrcLocStrSize);
2465 Value *SrcLoc = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
2466
2467 // Declare useful OpenMP runtime functions.
2468 Value *IV = CLI->getIndVar();
2469 Type *IVTy = IV->getType();
2470 FunctionCallee DynamicInit = getKmpcForDynamicInitForType(IVTy, M, *this);
2471 FunctionCallee DynamicNext = getKmpcForDynamicNextForType(IVTy, M, *this);
2472
2473 // Allocate space for computed loop bounds as expected by the "init" function.
2474 Builder.restoreIP(AllocaIP);
2475 Type *I32Type = Type::getInt32Ty(M.getContext());
2476 Value *PLastIter = Builder.CreateAlloca(I32Type, nullptr, "p.lastiter");
2477 Value *PLowerBound = Builder.CreateAlloca(IVTy, nullptr, "p.lowerbound");
2478 Value *PUpperBound = Builder.CreateAlloca(IVTy, nullptr, "p.upperbound");
2479 Value *PStride = Builder.CreateAlloca(IVTy, nullptr, "p.stride");
2480
2481 // At the end of the preheader, prepare for calling the "init" function by
2482 // storing the current loop bounds into the allocated space. A canonical loop
2483 // always iterates from 0 to trip-count with step 1. Note that "init" expects
2484 // and produces an inclusive upper bound.
2485 BasicBlock *PreHeader = CLI->getPreheader();
2486 Builder.SetInsertPoint(PreHeader->getTerminator());
2487 Constant *One = ConstantInt::get(IVTy, 1);
2488 Builder.CreateStore(One, PLowerBound);
2489 Value *UpperBound = CLI->getTripCount();
2490 Builder.CreateStore(UpperBound, PUpperBound);
2491 Builder.CreateStore(One, PStride);
2492
2493 BasicBlock *Header = CLI->getHeader();
2494 BasicBlock *Exit = CLI->getExit();
2495 BasicBlock *Cond = CLI->getCond();
2496 BasicBlock *Latch = CLI->getLatch();
2497 InsertPointTy AfterIP = CLI->getAfterIP();
2498
2499 // The CLI will be "broken" in the code below, as the loop is no longer
2500 // a valid canonical loop.
2501
2502 if (!Chunk)
2503 Chunk = One;
2504
2505 Value *ThreadNum = getOrCreateThreadID(SrcLoc);
2506
2507 Constant *SchedulingType =
2508 ConstantInt::get(I32Type, static_cast<int>(SchedType));
2509
2510 // Call the "init" function.
2511 Builder.CreateCall(DynamicInit,
2512 {SrcLoc, ThreadNum, SchedulingType, /* LowerBound */ One,
2513 UpperBound, /* step */ One, Chunk});
2514
2515 // An outer loop around the existing one.
2516 BasicBlock *OuterCond = BasicBlock::Create(
2517 PreHeader->getContext(), Twine(PreHeader->getName()) + ".outer.cond",
2518 PreHeader->getParent());
2519 // This needs to be 32-bit always, so can't use the IVTy Zero above.
2520 Builder.SetInsertPoint(OuterCond, OuterCond->getFirstInsertionPt());
2521 Value *Res =
2522 Builder.CreateCall(DynamicNext, {SrcLoc, ThreadNum, PLastIter,
2523 PLowerBound, PUpperBound, PStride});
2524 Constant *Zero32 = ConstantInt::get(I32Type, 0);
2525 Value *MoreWork = Builder.CreateCmp(CmpInst::ICMP_NE, Res, Zero32);
2526 Value *LowerBound =
2527 Builder.CreateSub(Builder.CreateLoad(IVTy, PLowerBound), One, "lb");
2528 Builder.CreateCondBr(MoreWork, Header, Exit);
2529
2530 // Change PHI-node in loop header to use outer cond rather than preheader,
2531 // and set IV to the LowerBound.
2532 Instruction *Phi = &Header->front();
2533 auto *PI = cast<PHINode>(Phi);
2534 PI->setIncomingBlock(0, OuterCond);
2535 PI->setIncomingValue(0, LowerBound);
2536
2537 // Then set the pre-header to jump to the OuterCond
2538 Instruction *Term = PreHeader->getTerminator();
2539 auto *Br = cast<BranchInst>(Term);
2540 Br->setSuccessor(0, OuterCond);
2541
2542 // Modify the inner condition:
2543 // * Use the UpperBound returned from the DynamicNext call.
2544 // * jump to the loop outer loop when done with one of the inner loops.
2545 Builder.SetInsertPoint(Cond, Cond->getFirstInsertionPt());
2546 UpperBound = Builder.CreateLoad(IVTy, PUpperBound, "ub");
2547 Instruction *Comp = &*Builder.GetInsertPoint();
2548 auto *CI = cast<CmpInst>(Comp);
2549 CI->setOperand(1, UpperBound);
2550 // Redirect the inner exit to branch to outer condition.
2551 Instruction *Branch = &Cond->back();
2552 auto *BI = cast<BranchInst>(Branch);
2553 assert(BI->getSuccessor(1) == Exit)(static_cast <bool> (BI->getSuccessor(1) == Exit) ? void
(0) : __assert_fail ("BI->getSuccessor(1) == Exit", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp"
, 2553, __extension__ __PRETTY_FUNCTION__))
;
2554 BI->setSuccessor(1, OuterCond);
2555
2556 // Call the "fini" function if "ordered" is present in wsloop directive.
2557 if (Ordered) {
2558 Builder.SetInsertPoint(&Latch->back());
2559 FunctionCallee DynamicFini = getKmpcForDynamicFiniForType(IVTy, M, *this);
2560 Builder.CreateCall(DynamicFini, {SrcLoc, ThreadNum});
2561 }
2562
2563 // Add the barrier if requested.
2564 if (NeedsBarrier) {
2565 Builder.SetInsertPoint(&Exit->back());
2566 createBarrier(LocationDescription(Builder.saveIP(), DL),
2567 omp::Directive::OMPD_for, /* ForceSimpleCall */ false,
2568 /* CheckCancelFlag */ false);
2569 }
2570
2571 CLI->invalidate();
2572 return AfterIP;
2573}
2574
2575/// Redirect all edges that branch to \p OldTarget to \p NewTarget. That is,
2576/// after this \p OldTarget will be orphaned.
2577static void redirectAllPredecessorsTo(BasicBlock *OldTarget,
2578 BasicBlock *NewTarget, DebugLoc DL) {
2579 for (BasicBlock *Pred : make_early_inc_range(predecessors(OldTarget)))
2580 redirectTo(Pred, NewTarget, DL);
2581}
2582
2583/// Determine which blocks in \p BBs are reachable from outside and remove the
2584/// ones that are not reachable from the function.
2585static void removeUnusedBlocksFromParent(ArrayRef<BasicBlock *> BBs) {
2586 SmallPtrSet<BasicBlock *, 6> BBsToErase{BBs.begin(), BBs.end()};
2587 auto HasRemainingUses = [&BBsToErase](BasicBlock *BB) {
2588 for (Use &U : BB->uses()) {
2589 auto *UseInst = dyn_cast<Instruction>(U.getUser());
2590 if (!UseInst)
2591 continue;
2592 if (BBsToErase.count(UseInst->getParent()))
2593 continue;
2594 return true;
2595 }
2596 return false;
2597 };
2598
2599 while (true) {
2600 bool Changed = false;
2601 for (BasicBlock *BB : make_early_inc_range(BBsToErase)) {
2602 if (HasRemainingUses(BB)) {
2603 BBsToErase.erase(BB);
2604 Changed = true;
2605 }
2606 }
2607 if (!Changed)
2608 break;
2609 }
2610
2611 SmallVector<BasicBlock *, 7> BBVec(BBsToErase.begin(), BBsToErase.end());
2612 DeleteDeadBlocks(BBVec);
2613}
2614
2615CanonicalLoopInfo *
2616OpenMPIRBuilder::collapseLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
2617 InsertPointTy ComputeIP) {
2618 assert(Loops.size() >= 1 && "At least one loop required")(static_cast <bool> (Loops.size() >= 1 && "At least one loop required"
) ? void (0) : __assert_fail ("Loops.size() >= 1 && \"At least one loop required\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2618, __extension__
__PRETTY_FUNCTION__))
;
2619 size_t NumLoops = Loops.size();
2620
2621 // Nothing to do if there is already just one loop.
2622 if (NumLoops == 1)
2623 return Loops.front();
2624
2625 CanonicalLoopInfo *Outermost = Loops.front();
2626 CanonicalLoopInfo *Innermost = Loops.back();
2627 BasicBlock *OrigPreheader = Outermost->getPreheader();
2628 BasicBlock *OrigAfter = Outermost->getAfter();
2629 Function *F = OrigPreheader->getParent();
2630
2631 // Loop control blocks that may become orphaned later.
2632 SmallVector<BasicBlock *, 12> OldControlBBs;
2633 OldControlBBs.reserve(6 * Loops.size());
2634 for (CanonicalLoopInfo *Loop : Loops)
2635 Loop->collectControlBlocks(OldControlBBs);
2636
2637 // Setup the IRBuilder for inserting the trip count computation.
2638 Builder.SetCurrentDebugLocation(DL);
2639 if (ComputeIP.isSet())
2640 Builder.restoreIP(ComputeIP);
2641 else
2642 Builder.restoreIP(Outermost->getPreheaderIP());
2643
2644 // Derive the collapsed' loop trip count.
2645 // TODO: Find common/largest indvar type.
2646 Value *CollapsedTripCount = nullptr;
2647 for (CanonicalLoopInfo *L : Loops) {
2648 assert(L->isValid() &&(static_cast <bool> (L->isValid() && "All loops to collapse must be valid canonical loops"
) ? void (0) : __assert_fail ("L->isValid() && \"All loops to collapse must be valid canonical loops\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2649, __extension__
__PRETTY_FUNCTION__))
2649 "All loops to collapse must be valid canonical loops")(static_cast <bool> (L->isValid() && "All loops to collapse must be valid canonical loops"
) ? void (0) : __assert_fail ("L->isValid() && \"All loops to collapse must be valid canonical loops\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2649, __extension__
__PRETTY_FUNCTION__))
;
2650 Value *OrigTripCount = L->getTripCount();
2651 if (!CollapsedTripCount) {
2652 CollapsedTripCount = OrigTripCount;
2653 continue;
2654 }
2655
2656 // TODO: Enable UndefinedSanitizer to diagnose an overflow here.
2657 CollapsedTripCount = Builder.CreateMul(CollapsedTripCount, OrigTripCount,
2658 {}, /*HasNUW=*/true);
2659 }
2660
2661 // Create the collapsed loop control flow.
2662 CanonicalLoopInfo *Result =
2663 createLoopSkeleton(DL, CollapsedTripCount, F,
2664 OrigPreheader->getNextNode(), OrigAfter, "collapsed");
2665
2666 // Build the collapsed loop body code.
2667 // Start with deriving the input loop induction variables from the collapsed
2668 // one, using a divmod scheme. To preserve the original loops' order, the
2669 // innermost loop use the least significant bits.
2670 Builder.restoreIP(Result->getBodyIP());
2671
2672 Value *Leftover = Result->getIndVar();
2673 SmallVector<Value *> NewIndVars;
2674 NewIndVars.resize(NumLoops);
2675 for (int i = NumLoops - 1; i >= 1; --i) {
2676 Value *OrigTripCount = Loops[i]->getTripCount();
2677
2678 Value *NewIndVar = Builder.CreateURem(Leftover, OrigTripCount);
2679 NewIndVars[i] = NewIndVar;
2680
2681 Leftover = Builder.CreateUDiv(Leftover, OrigTripCount);
2682 }
2683 // Outermost loop gets all the remaining bits.
2684 NewIndVars[0] = Leftover;
2685
2686 // Construct the loop body control flow.
2687 // We progressively construct the branch structure following in direction of
2688 // the control flow, from the leading in-between code, the loop nest body, the
2689 // trailing in-between code, and rejoining the collapsed loop's latch.
2690 // ContinueBlock and ContinuePred keep track of the source(s) of next edge. If
2691 // the ContinueBlock is set, continue with that block. If ContinuePred, use
2692 // its predecessors as sources.
2693 BasicBlock *ContinueBlock = Result->getBody();
2694 BasicBlock *ContinuePred = nullptr;
2695 auto ContinueWith = [&ContinueBlock, &ContinuePred, DL](BasicBlock *Dest,
2696 BasicBlock *NextSrc) {
2697 if (ContinueBlock)
2698 redirectTo(ContinueBlock, Dest, DL);
2699 else
2700 redirectAllPredecessorsTo(ContinuePred, Dest, DL);
2701
2702 ContinueBlock = nullptr;
2703 ContinuePred = NextSrc;
2704 };
2705
2706 // The code before the nested loop of each level.
2707 // Because we are sinking it into the nest, it will be executed more often
2708 // that the original loop. More sophisticated schemes could keep track of what
2709 // the in-between code is and instantiate it only once per thread.
2710 for (size_t i = 0; i < NumLoops - 1; ++i)
2711 ContinueWith(Loops[i]->getBody(), Loops[i + 1]->getHeader());
2712
2713 // Connect the loop nest body.
2714 ContinueWith(Innermost->getBody(), Innermost->getLatch());
2715
2716 // The code after the nested loop at each level.
2717 for (size_t i = NumLoops - 1; i > 0; --i)
2718 ContinueWith(Loops[i]->getAfter(), Loops[i - 1]->getLatch());
2719
2720 // Connect the finished loop to the collapsed loop latch.
2721 ContinueWith(Result->getLatch(), nullptr);
2722
2723 // Replace the input loops with the new collapsed loop.
2724 redirectTo(Outermost->getPreheader(), Result->getPreheader(), DL);
2725 redirectTo(Result->getAfter(), Outermost->getAfter(), DL);
2726
2727 // Replace the input loop indvars with the derived ones.
2728 for (size_t i = 0; i < NumLoops; ++i)
2729 Loops[i]->getIndVar()->replaceAllUsesWith(NewIndVars[i]);
2730
2731 // Remove unused parts of the input loops.
2732 removeUnusedBlocksFromParent(OldControlBBs);
2733
2734 for (CanonicalLoopInfo *L : Loops)
2735 L->invalidate();
2736
2737#ifndef NDEBUG
2738 Result->assertOK();
2739#endif
2740 return Result;
2741}
2742
2743std::vector<CanonicalLoopInfo *>
2744OpenMPIRBuilder::tileLoops(DebugLoc DL, ArrayRef<CanonicalLoopInfo *> Loops,
2745 ArrayRef<Value *> TileSizes) {
2746 assert(TileSizes.size() == Loops.size() &&(static_cast <bool> (TileSizes.size() == Loops.size() &&
"Must pass as many tile sizes as there are loops") ? void (0
) : __assert_fail ("TileSizes.size() == Loops.size() && \"Must pass as many tile sizes as there are loops\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2747, __extension__
__PRETTY_FUNCTION__))
2747 "Must pass as many tile sizes as there are loops")(static_cast <bool> (TileSizes.size() == Loops.size() &&
"Must pass as many tile sizes as there are loops") ? void (0
) : __assert_fail ("TileSizes.size() == Loops.size() && \"Must pass as many tile sizes as there are loops\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2747, __extension__
__PRETTY_FUNCTION__))
;
2748 int NumLoops = Loops.size();
2749 assert(NumLoops >= 1 && "At least one loop to tile required")(static_cast <bool> (NumLoops >= 1 && "At least one loop to tile required"
) ? void (0) : __assert_fail ("NumLoops >= 1 && \"At least one loop to tile required\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2749, __extension__
__PRETTY_FUNCTION__))
;
2750
2751 CanonicalLoopInfo *OutermostLoop = Loops.front();
2752 CanonicalLoopInfo *InnermostLoop = Loops.back();
2753 Function *F = OutermostLoop->getBody()->getParent();
2754 BasicBlock *InnerEnter = InnermostLoop->getBody();
2755 BasicBlock *InnerLatch = InnermostLoop->getLatch();
2756
2757 // Loop control blocks that may become orphaned later.
2758 SmallVector<BasicBlock *, 12> OldControlBBs;
2759 OldControlBBs.reserve(6 * Loops.size());
2760 for (CanonicalLoopInfo *Loop : Loops)
2761 Loop->collectControlBlocks(OldControlBBs);
2762
2763 // Collect original trip counts and induction variable to be accessible by
2764 // index. Also, the structure of the original loops is not preserved during
2765 // the construction of the tiled loops, so do it before we scavenge the BBs of
2766 // any original CanonicalLoopInfo.
2767 SmallVector<Value *, 4> OrigTripCounts, OrigIndVars;
2768 for (CanonicalLoopInfo *L : Loops) {
2769 assert(L->isValid() && "All input loops must be valid canonical loops")(static_cast <bool> (L->isValid() && "All input loops must be valid canonical loops"
) ? void (0) : __assert_fail ("L->isValid() && \"All input loops must be valid canonical loops\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2769, __extension__
__PRETTY_FUNCTION__))
;
2770 OrigTripCounts.push_back(L->getTripCount());
2771 OrigIndVars.push_back(L->getIndVar());
2772 }
2773
2774 // Collect the code between loop headers. These may contain SSA definitions
2775 // that are used in the loop nest body. To be usable with in the innermost
2776 // body, these BasicBlocks will be sunk into the loop nest body. That is,
2777 // these instructions may be executed more often than before the tiling.
2778 // TODO: It would be sufficient to only sink them into body of the
2779 // corresponding tile loop.
2780 SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> InbetweenCode;
2781 for (int i = 0; i < NumLoops - 1; ++i) {
2782 CanonicalLoopInfo *Surrounding = Loops[i];
2783 CanonicalLoopInfo *Nested = Loops[i + 1];
2784
2785 BasicBlock *EnterBB = Surrounding->getBody();
2786 BasicBlock *ExitBB = Nested->getHeader();
2787 InbetweenCode.emplace_back(EnterBB, ExitBB);
2788 }
2789
2790 // Compute the trip counts of the floor loops.
2791 Builder.SetCurrentDebugLocation(DL);
2792 Builder.restoreIP(OutermostLoop->getPreheaderIP());
2793 SmallVector<Value *, 4> FloorCount, FloorRems;
2794 for (int i = 0; i < NumLoops; ++i) {
2795 Value *TileSize = TileSizes[i];
2796 Value *OrigTripCount = OrigTripCounts[i];
2797 Type *IVType = OrigTripCount->getType();
2798
2799 Value *FloorTripCount = Builder.CreateUDiv(OrigTripCount, TileSize);
2800 Value *FloorTripRem = Builder.CreateURem(OrigTripCount, TileSize);
2801
2802 // 0 if tripcount divides the tilesize, 1 otherwise.
2803 // 1 means we need an additional iteration for a partial tile.
2804 //
2805 // Unfortunately we cannot just use the roundup-formula
2806 // (tripcount + tilesize - 1)/tilesize
2807 // because the summation might overflow. We do not want introduce undefined
2808 // behavior when the untiled loop nest did not.
2809 Value *FloorTripOverflow =
2810 Builder.CreateICmpNE(FloorTripRem, ConstantInt::get(IVType, 0));
2811
2812 FloorTripOverflow = Builder.CreateZExt(FloorTripOverflow, IVType);
2813 FloorTripCount =
2814 Builder.CreateAdd(FloorTripCount, FloorTripOverflow,
2815 "omp_floor" + Twine(i) + ".tripcount", true);
2816
2817 // Remember some values for later use.
2818 FloorCount.push_back(FloorTripCount);
2819 FloorRems.push_back(FloorTripRem);
2820 }
2821
2822 // Generate the new loop nest, from the outermost to the innermost.
2823 std::vector<CanonicalLoopInfo *> Result;
2824 Result.reserve(NumLoops * 2);
2825
2826 // The basic block of the surrounding loop that enters the nest generated
2827 // loop.
2828 BasicBlock *Enter = OutermostLoop->getPreheader();
2829
2830 // The basic block of the surrounding loop where the inner code should
2831 // continue.
2832 BasicBlock *Continue = OutermostLoop->getAfter();
2833
2834 // Where the next loop basic block should be inserted.
2835 BasicBlock *OutroInsertBefore = InnermostLoop->getExit();
2836
2837 auto EmbeddNewLoop =
2838 [this, DL, F, InnerEnter, &Enter, &Continue, &OutroInsertBefore](
2839 Value *TripCount, const Twine &Name) -> CanonicalLoopInfo * {
2840 CanonicalLoopInfo *EmbeddedLoop = createLoopSkeleton(
2841 DL, TripCount, F, InnerEnter, OutroInsertBefore, Name);
2842 redirectTo(Enter, EmbeddedLoop->getPreheader(), DL);
2843 redirectTo(EmbeddedLoop->getAfter(), Continue, DL);
2844
2845 // Setup the position where the next embedded loop connects to this loop.
2846 Enter = EmbeddedLoop->getBody();
2847 Continue = EmbeddedLoop->getLatch();
2848 OutroInsertBefore = EmbeddedLoop->getLatch();
2849 return EmbeddedLoop;
2850 };
2851
2852 auto EmbeddNewLoops = [&Result, &EmbeddNewLoop](ArrayRef<Value *> TripCounts,
2853 const Twine &NameBase) {
2854 for (auto P : enumerate(TripCounts)) {
2855 CanonicalLoopInfo *EmbeddedLoop =
2856 EmbeddNewLoop(P.value(), NameBase + Twine(P.index()));
2857 Result.push_back(EmbeddedLoop);
2858 }
2859 };
2860
2861 EmbeddNewLoops(FloorCount, "floor");
2862
2863 // Within the innermost floor loop, emit the code that computes the tile
2864 // sizes.
2865 Builder.SetInsertPoint(Enter->getTerminator());
2866 SmallVector<Value *, 4> TileCounts;
2867 for (int i = 0; i < NumLoops; ++i) {
2868 CanonicalLoopInfo *FloorLoop = Result[i];
2869 Value *TileSize = TileSizes[i];
2870
2871 Value *FloorIsEpilogue =
2872 Builder.CreateICmpEQ(FloorLoop->getIndVar(), FloorCount[i]);
2873 Value *TileTripCount =
2874 Builder.CreateSelect(FloorIsEpilogue, FloorRems[i], TileSize);
2875
2876 TileCounts.push_back(TileTripCount);
2877 }
2878
2879 // Create the tile loops.
2880 EmbeddNewLoops(TileCounts, "tile");
2881
2882 // Insert the inbetween code into the body.
2883 BasicBlock *BodyEnter = Enter;
2884 BasicBlock *BodyEntered = nullptr;
2885 for (std::pair<BasicBlock *, BasicBlock *> P : InbetweenCode) {
2886 BasicBlock *EnterBB = P.first;
2887 BasicBlock *ExitBB = P.second;
2888
2889 if (BodyEnter)
2890 redirectTo(BodyEnter, EnterBB, DL);
2891 else
2892 redirectAllPredecessorsTo(BodyEntered, EnterBB, DL);
2893
2894 BodyEnter = nullptr;
2895 BodyEntered = ExitBB;
2896 }
2897
2898 // Append the original loop nest body into the generated loop nest body.
2899 if (BodyEnter)
2900 redirectTo(BodyEnter, InnerEnter, DL);
2901 else
2902 redirectAllPredecessorsTo(BodyEntered, InnerEnter, DL);
2903 redirectAllPredecessorsTo(InnerLatch, Continue, DL);
2904
2905 // Replace the original induction variable with an induction variable computed
2906 // from the tile and floor induction variables.
2907 Builder.restoreIP(Result.back()->getBodyIP());
2908 for (int i = 0; i < NumLoops; ++i) {
2909 CanonicalLoopInfo *FloorLoop = Result[i];
2910 CanonicalLoopInfo *TileLoop = Result[NumLoops + i];
2911 Value *OrigIndVar = OrigIndVars[i];
2912 Value *Size = TileSizes[i];
2913
2914 Value *Scale =
2915 Builder.CreateMul(Size, FloorLoop->getIndVar(), {}, /*HasNUW=*/true);
2916 Value *Shift =
2917 Builder.CreateAdd(Scale, TileLoop->getIndVar(), {}, /*HasNUW=*/true);
2918 OrigIndVar->replaceAllUsesWith(Shift);
2919 }
2920
2921 // Remove unused parts of the original loops.
2922 removeUnusedBlocksFromParent(OldControlBBs);
2923
2924 for (CanonicalLoopInfo *L : Loops)
2925 L->invalidate();
2926
2927#ifndef NDEBUG
2928 for (CanonicalLoopInfo *GenL : Result)
2929 GenL->assertOK();
2930#endif
2931 return Result;
2932}
2933
2934/// Attach metadata \p Properties to the basic block described by \p BB. If the
2935/// basic block already has metadata, the basic block properties are appended.
2936static void addBasicBlockMetadata(BasicBlock *BB,
2937 ArrayRef<Metadata *> Properties) {
2938 // Nothing to do if no property to attach.
2939 if (Properties.empty())
2940 return;
2941
2942 LLVMContext &Ctx = BB->getContext();
2943 SmallVector<Metadata *> NewProperties;
2944 NewProperties.push_back(nullptr);
2945
2946 // If the basic block already has metadata, prepend it to the new metadata.
2947 MDNode *Existing = BB->getTerminator()->getMetadata(LLVMContext::MD_loop);
2948 if (Existing)
2949 append_range(NewProperties, drop_begin(Existing->operands(), 1));
2950
2951 append_range(NewProperties, Properties);
2952 MDNode *BasicBlockID = MDNode::getDistinct(Ctx, NewProperties);
2953 BasicBlockID->replaceOperandWith(0, BasicBlockID);
2954
2955 BB->getTerminator()->setMetadata(LLVMContext::MD_loop, BasicBlockID);
2956}
2957
2958/// Attach loop metadata \p Properties to the loop described by \p Loop. If the
2959/// loop already has metadata, the loop properties are appended.
2960static void addLoopMetadata(CanonicalLoopInfo *Loop,
2961 ArrayRef<Metadata *> Properties) {
2962 assert(Loop->isValid() && "Expecting a valid CanonicalLoopInfo")(static_cast <bool> (Loop->isValid() && "Expecting a valid CanonicalLoopInfo"
) ? void (0) : __assert_fail ("Loop->isValid() && \"Expecting a valid CanonicalLoopInfo\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2962, __extension__
__PRETTY_FUNCTION__))
;
2963
2964 // Attach metadata to the loop's latch
2965 BasicBlock *Latch = Loop->getLatch();
2966 assert(Latch && "A valid CanonicalLoopInfo must have a unique latch")(static_cast <bool> (Latch && "A valid CanonicalLoopInfo must have a unique latch"
) ? void (0) : __assert_fail ("Latch && \"A valid CanonicalLoopInfo must have a unique latch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 2966, __extension__
__PRETTY_FUNCTION__))
;
2967 addBasicBlockMetadata(Latch, Properties);
2968}
2969
2970/// Attach llvm.access.group metadata to the memref instructions of \p Block
2971static void addSimdMetadata(BasicBlock *Block, MDNode *AccessGroup,
2972 LoopInfo &LI) {
2973 for (Instruction &I : *Block) {
2974 if (I.mayReadOrWriteMemory()) {
2975 // TODO: This instruction may already have access group from
2976 // other pragmas e.g. #pragma clang loop vectorize. Append
2977 // so that the existing metadata is not overwritten.
2978 I.setMetadata(LLVMContext::MD_access_group, AccessGroup);
2979 }
2980 }
2981}
2982
2983void OpenMPIRBuilder::unrollLoopFull(DebugLoc, CanonicalLoopInfo *Loop) {
2984 LLVMContext &Ctx = Builder.getContext();
2985 addLoopMetadata(
2986 Loop, {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
2987 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.full"))});
2988}
2989
2990void OpenMPIRBuilder::unrollLoopHeuristic(DebugLoc, CanonicalLoopInfo *Loop) {
2991 LLVMContext &Ctx = Builder.getContext();
2992 addLoopMetadata(
2993 Loop, {
2994 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
2995 });
2996}
2997
2998void OpenMPIRBuilder::createIfVersion(CanonicalLoopInfo *CanonicalLoop,
2999 Value *IfCond, ValueToValueMapTy &VMap,
3000 const Twine &NamePrefix) {
3001 Function *F = CanonicalLoop->getFunction();
3002
3003 // Define where if branch should be inserted
3004 Instruction *SplitBefore;
3005 if (Instruction::classof(IfCond)) {
3006 SplitBefore = dyn_cast<Instruction>(IfCond);
3007 } else {
3008 SplitBefore = CanonicalLoop->getPreheader()->getTerminator();
3009 }
3010
3011 // TODO: We should not rely on pass manager. Currently we use pass manager
3012 // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo
3013 // object. We should have a method which returns all blocks between
3014 // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter()
3015 FunctionAnalysisManager FAM;
3016 FAM.registerPass([]() { return DominatorTreeAnalysis(); });
3017 FAM.registerPass([]() { return LoopAnalysis(); });
3018 FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
3019
3020 // Get the loop which needs to be cloned
3021 LoopAnalysis LIA;
3022 LoopInfo &&LI = LIA.run(*F, FAM);
3023 Loop *L = LI.getLoopFor(CanonicalLoop->getHeader());
3024
3025 // Create additional blocks for the if statement
3026 BasicBlock *Head = SplitBefore->getParent();
3027 Instruction *HeadOldTerm = Head->getTerminator();
3028 llvm::LLVMContext &C = Head->getContext();
3029 llvm::BasicBlock *ThenBlock = llvm::BasicBlock::Create(
3030 C, NamePrefix + ".if.then", Head->getParent(), Head->getNextNode());
3031 llvm::BasicBlock *ElseBlock = llvm::BasicBlock::Create(
3032 C, NamePrefix + ".if.else", Head->getParent(), CanonicalLoop->getExit());
3033
3034 // Create if condition branch.
3035 Builder.SetInsertPoint(HeadOldTerm);
3036 Instruction *BrInstr =
3037 Builder.CreateCondBr(IfCond, ThenBlock, /*ifFalse*/ ElseBlock);
3038 InsertPointTy IP{BrInstr->getParent(), ++BrInstr->getIterator()};
3039 // Then block contains branch to omp loop which needs to be vectorized
3040 spliceBB(IP, ThenBlock, false);
3041 ThenBlock->replaceSuccessorsPhiUsesWith(Head, ThenBlock);
3042
3043 Builder.SetInsertPoint(ElseBlock);
3044
3045 // Clone loop for the else branch
3046 SmallVector<BasicBlock *, 8> NewBlocks;
3047
3048 VMap[CanonicalLoop->getPreheader()] = ElseBlock;
3049 for (BasicBlock *Block : L->getBlocks()) {
3050 BasicBlock *NewBB = CloneBasicBlock(Block, VMap, "", F);
3051 NewBB->moveBefore(CanonicalLoop->getExit());
3052 VMap[Block] = NewBB;
3053 NewBlocks.push_back(NewBB);
3054 }
3055 remapInstructionsInBlocks(NewBlocks, VMap);
3056 Builder.CreateBr(NewBlocks.front());
3057}
3058
3059unsigned
3060OpenMPIRBuilder::getOpenMPDefaultSimdAlign(const Triple &TargetTriple,
3061 const StringMap<bool> &Features) {
3062 if (TargetTriple.isX86()) {
3063 if (Features.lookup("avx512f"))
3064 return 512;
3065 else if (Features.lookup("avx"))
3066 return 256;
3067 return 128;
3068 }
3069 if (TargetTriple.isPPC())
3070 return 128;
3071 if (TargetTriple.isWasm())
3072 return 128;
3073 return 0;
3074}
3075
3076void OpenMPIRBuilder::applySimd(CanonicalLoopInfo *CanonicalLoop,
3077 MapVector<Value *, Value *> AlignedVars,
3078 Value *IfCond, OrderKind Order,
3079 ConstantInt *Simdlen, ConstantInt *Safelen) {
3080 LLVMContext &Ctx = Builder.getContext();
3081
3082 Function *F = CanonicalLoop->getFunction();
3083
3084 // TODO: We should not rely on pass manager. Currently we use pass manager
3085 // only for getting llvm::Loop which corresponds to given CanonicalLoopInfo
3086 // object. We should have a method which returns all blocks between
3087 // CanonicalLoopInfo::getHeader() and CanonicalLoopInfo::getAfter()
3088 FunctionAnalysisManager FAM;
3089 FAM.registerPass([]() { return DominatorTreeAnalysis(); });
3090 FAM.registerPass([]() { return LoopAnalysis(); });
3091 FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
3092
3093 LoopAnalysis LIA;
3094 LoopInfo &&LI = LIA.run(*F, FAM);
3095
3096 Loop *L = LI.getLoopFor(CanonicalLoop->getHeader());
3097 if (AlignedVars.size()) {
3098 InsertPointTy IP = Builder.saveIP();
3099 Builder.SetInsertPoint(CanonicalLoop->getPreheader()->getTerminator());
3100 for (auto &AlignedItem : AlignedVars) {
3101 Value *AlignedPtr = AlignedItem.first;
3102 Value *Alignment = AlignedItem.second;
3103 Builder.CreateAlignmentAssumption(F->getParent()->getDataLayout(),
3104 AlignedPtr, Alignment);
3105 }
3106 Builder.restoreIP(IP);
3107 }
3108
3109 if (IfCond) {
3110 ValueToValueMapTy VMap;
3111 createIfVersion(CanonicalLoop, IfCond, VMap, "simd");
3112 // Add metadata to the cloned loop which disables vectorization
3113 Value *MappedLatch = VMap.lookup(CanonicalLoop->getLatch());
3114 assert(MappedLatch &&(static_cast <bool> (MappedLatch && "Cannot find value which corresponds to original loop latch"
) ? void (0) : __assert_fail ("MappedLatch && \"Cannot find value which corresponds to original loop latch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3115, __extension__
__PRETTY_FUNCTION__))
3115 "Cannot find value which corresponds to original loop latch")(static_cast <bool> (MappedLatch && "Cannot find value which corresponds to original loop latch"
) ? void (0) : __assert_fail ("MappedLatch && \"Cannot find value which corresponds to original loop latch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3115, __extension__
__PRETTY_FUNCTION__))
;
3116 assert(isa<BasicBlock>(MappedLatch) &&(static_cast <bool> (isa<BasicBlock>(MappedLatch)
&& "Cannot cast mapped latch block value to BasicBlock"
) ? void (0) : __assert_fail ("isa<BasicBlock>(MappedLatch) && \"Cannot cast mapped latch block value to BasicBlock\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3117, __extension__
__PRETTY_FUNCTION__))
3117 "Cannot cast mapped latch block value to BasicBlock")(static_cast <bool> (isa<BasicBlock>(MappedLatch)
&& "Cannot cast mapped latch block value to BasicBlock"
) ? void (0) : __assert_fail ("isa<BasicBlock>(MappedLatch) && \"Cannot cast mapped latch block value to BasicBlock\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3117, __extension__
__PRETTY_FUNCTION__))
;
3118 BasicBlock *NewLatchBlock = dyn_cast<BasicBlock>(MappedLatch);
3119 ConstantAsMetadata *BoolConst =
3120 ConstantAsMetadata::get(ConstantInt::getFalse(Type::getInt1Ty(Ctx)));
3121 addBasicBlockMetadata(
3122 NewLatchBlock,
3123 {MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"),
3124 BoolConst})});
3125 }
3126
3127 SmallSet<BasicBlock *, 8> Reachable;
3128
3129 // Get the basic blocks from the loop in which memref instructions
3130 // can be found.
3131 // TODO: Generalize getting all blocks inside a CanonicalizeLoopInfo,
3132 // preferably without running any passes.
3133 for (BasicBlock *Block : L->getBlocks()) {
3134 if (Block == CanonicalLoop->getCond() ||
3135 Block == CanonicalLoop->getHeader())
3136 continue;
3137 Reachable.insert(Block);
3138 }
3139
3140 SmallVector<Metadata *> LoopMDList;
3141
3142 // In presence of finite 'safelen', it may be unsafe to mark all
3143 // the memory instructions parallel, because loop-carried
3144 // dependences of 'safelen' iterations are possible.
3145 // If clause order(concurrent) is specified then the memory instructions
3146 // are marked parallel even if 'safelen' is finite.
3147 if ((Safelen == nullptr) || (Order == OrderKind::OMP_ORDER_concurrent)) {
3148 // Add access group metadata to memory-access instructions.
3149 MDNode *AccessGroup = MDNode::getDistinct(Ctx, {});
3150 for (BasicBlock *BB : Reachable)
3151 addSimdMetadata(BB, AccessGroup, LI);
3152 // TODO: If the loop has existing parallel access metadata, have
3153 // to combine two lists.
3154 LoopMDList.push_back(MDNode::get(
3155 Ctx, {MDString::get(Ctx, "llvm.loop.parallel_accesses"), AccessGroup}));
3156 }
3157
3158 // Use the above access group metadata to create loop level
3159 // metadata, which should be distinct for each loop.
3160 ConstantAsMetadata *BoolConst =
3161 ConstantAsMetadata::get(ConstantInt::getTrue(Type::getInt1Ty(Ctx)));
3162 LoopMDList.push_back(MDNode::get(
3163 Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.enable"), BoolConst}));
3164
3165 if (Simdlen || Safelen) {
3166 // If both simdlen and safelen clauses are specified, the value of the
3167 // simdlen parameter must be less than or equal to the value of the safelen
3168 // parameter. Therefore, use safelen only in the absence of simdlen.
3169 ConstantInt *VectorizeWidth = Simdlen == nullptr ? Safelen : Simdlen;
3170 LoopMDList.push_back(
3171 MDNode::get(Ctx, {MDString::get(Ctx, "llvm.loop.vectorize.width"),
3172 ConstantAsMetadata::get(VectorizeWidth)}));
3173 }
3174
3175 addLoopMetadata(CanonicalLoop, LoopMDList);
3176}
3177
3178/// Create the TargetMachine object to query the backend for optimization
3179/// preferences.
3180///
3181/// Ideally, this would be passed from the front-end to the OpenMPBuilder, but
3182/// e.g. Clang does not pass it to its CodeGen layer and creates it only when
3183/// needed for the LLVM pass pipline. We use some default options to avoid
3184/// having to pass too many settings from the frontend that probably do not
3185/// matter.
3186///
3187/// Currently, TargetMachine is only used sometimes by the unrollLoopPartial
3188/// method. If we are going to use TargetMachine for more purposes, especially
3189/// those that are sensitive to TargetOptions, RelocModel and CodeModel, it
3190/// might become be worth requiring front-ends to pass on their TargetMachine,
3191/// or at least cache it between methods. Note that while fontends such as Clang
3192/// have just a single main TargetMachine per translation unit, "target-cpu" and
3193/// "target-features" that determine the TargetMachine are per-function and can
3194/// be overrided using __attribute__((target("OPTIONS"))).
3195static std::unique_ptr<TargetMachine>
3196createTargetMachine(Function *F, CodeGenOpt::Level OptLevel) {
3197 Module *M = F->getParent();
3198
3199 StringRef CPU = F->getFnAttribute("target-cpu").getValueAsString();
3200 StringRef Features = F->getFnAttribute("target-features").getValueAsString();
3201 const std::string &Triple = M->getTargetTriple();
3202
3203 std::string Error;
3204 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
3205 if (!TheTarget)
3206 return {};
3207
3208 llvm::TargetOptions Options;
3209 return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine(
3210 Triple, CPU, Features, Options, /*RelocModel=*/std::nullopt,
3211 /*CodeModel=*/std::nullopt, OptLevel));
3212}
3213
3214/// Heuristically determine the best-performant unroll factor for \p CLI. This
3215/// depends on the target processor. We are re-using the same heuristics as the
3216/// LoopUnrollPass.
3217static int32_t computeHeuristicUnrollFactor(CanonicalLoopInfo *CLI) {
3218 Function *F = CLI->getFunction();
3219
3220 // Assume the user requests the most aggressive unrolling, even if the rest of
3221 // the code is optimized using a lower setting.
3222 CodeGenOpt::Level OptLevel = CodeGenOpt::Aggressive;
3223 std::unique_ptr<TargetMachine> TM = createTargetMachine(F, OptLevel);
3224
3225 FunctionAnalysisManager FAM;
3226 FAM.registerPass([]() { return TargetLibraryAnalysis(); });
3227 FAM.registerPass([]() { return AssumptionAnalysis(); });
3228 FAM.registerPass([]() { return DominatorTreeAnalysis(); });
3229 FAM.registerPass([]() { return LoopAnalysis(); });
3230 FAM.registerPass([]() { return ScalarEvolutionAnalysis(); });
3231 FAM.registerPass([]() { return PassInstrumentationAnalysis(); });
3232 TargetIRAnalysis TIRA;
3233 if (TM)
3234 TIRA = TargetIRAnalysis(
3235 [&](const Function &F) { return TM->getTargetTransformInfo(F); });
3236 FAM.registerPass([&]() { return TIRA; });
3237
3238 TargetIRAnalysis::Result &&TTI = TIRA.run(*F, FAM);
3239 ScalarEvolutionAnalysis SEA;
3240 ScalarEvolution &&SE = SEA.run(*F, FAM);
3241 DominatorTreeAnalysis DTA;
3242 DominatorTree &&DT = DTA.run(*F, FAM);
3243 LoopAnalysis LIA;
3244 LoopInfo &&LI = LIA.run(*F, FAM);
3245 AssumptionAnalysis ACT;
3246 AssumptionCache &&AC = ACT.run(*F, FAM);
3247 OptimizationRemarkEmitter ORE{F};
3248
3249 Loop *L = LI.getLoopFor(CLI->getHeader());
3250 assert(L && "Expecting CanonicalLoopInfo to be recognized as a loop")(static_cast <bool> (L && "Expecting CanonicalLoopInfo to be recognized as a loop"
) ? void (0) : __assert_fail ("L && \"Expecting CanonicalLoopInfo to be recognized as a loop\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3250, __extension__
__PRETTY_FUNCTION__))
;
3251
3252 TargetTransformInfo::UnrollingPreferences UP =
3253 gatherUnrollingPreferences(L, SE, TTI,
3254 /*BlockFrequencyInfo=*/nullptr,
3255 /*ProfileSummaryInfo=*/nullptr, ORE, OptLevel,
3256 /*UserThreshold=*/std::nullopt,
3257 /*UserCount=*/std::nullopt,
3258 /*UserAllowPartial=*/true,
3259 /*UserAllowRuntime=*/true,
3260 /*UserUpperBound=*/std::nullopt,
3261 /*UserFullUnrollMaxCount=*/std::nullopt);
3262
3263 UP.Force = true;
3264
3265 // Account for additional optimizations taking place before the LoopUnrollPass
3266 // would unroll the loop.
3267 UP.Threshold *= UnrollThresholdFactor;
3268 UP.PartialThreshold *= UnrollThresholdFactor;
3269
3270 // Use normal unroll factors even if the rest of the code is optimized for
3271 // size.
3272 UP.OptSizeThreshold = UP.Threshold;
3273 UP.PartialOptSizeThreshold = UP.PartialThreshold;
3274
3275 LLVM_DEBUG(dbgs() << "Unroll heuristic thresholds:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Unroll heuristic thresholds:\n"
<< " Threshold=" << UP.Threshold << "\n" <<
" PartialThreshold=" << UP.PartialThreshold << "\n"
<< " OptSizeThreshold=" << UP.OptSizeThreshold <<
"\n" << " PartialOptSizeThreshold=" << UP.PartialOptSizeThreshold
<< "\n"; } } while (false)
3276 << " Threshold=" << UP.Threshold << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Unroll heuristic thresholds:\n"
<< " Threshold=" << UP.Threshold << "\n" <<
" PartialThreshold=" << UP.PartialThreshold << "\n"
<< " OptSizeThreshold=" << UP.OptSizeThreshold <<
"\n" << " PartialOptSizeThreshold=" << UP.PartialOptSizeThreshold
<< "\n"; } } while (false)
3277 << " PartialThreshold=" << UP.PartialThreshold << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Unroll heuristic thresholds:\n"
<< " Threshold=" << UP.Threshold << "\n" <<
" PartialThreshold=" << UP.PartialThreshold << "\n"
<< " OptSizeThreshold=" << UP.OptSizeThreshold <<
"\n" << " PartialOptSizeThreshold=" << UP.PartialOptSizeThreshold
<< "\n"; } } while (false)
3278 << " OptSizeThreshold=" << UP.OptSizeThreshold << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Unroll heuristic thresholds:\n"
<< " Threshold=" << UP.Threshold << "\n" <<
" PartialThreshold=" << UP.PartialThreshold << "\n"
<< " OptSizeThreshold=" << UP.OptSizeThreshold <<
"\n" << " PartialOptSizeThreshold=" << UP.PartialOptSizeThreshold
<< "\n"; } } while (false)
3279 << " PartialOptSizeThreshold="do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Unroll heuristic thresholds:\n"
<< " Threshold=" << UP.Threshold << "\n" <<
" PartialThreshold=" << UP.PartialThreshold << "\n"
<< " OptSizeThreshold=" << UP.OptSizeThreshold <<
"\n" << " PartialOptSizeThreshold=" << UP.PartialOptSizeThreshold
<< "\n"; } } while (false)
3280 << UP.PartialOptSizeThreshold << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Unroll heuristic thresholds:\n"
<< " Threshold=" << UP.Threshold << "\n" <<
" PartialThreshold=" << UP.PartialThreshold << "\n"
<< " OptSizeThreshold=" << UP.OptSizeThreshold <<
"\n" << " PartialOptSizeThreshold=" << UP.PartialOptSizeThreshold
<< "\n"; } } while (false)
;
3281
3282 // Disable peeling.
3283 TargetTransformInfo::PeelingPreferences PP =
3284 gatherPeelingPreferences(L, SE, TTI,
3285 /*UserAllowPeeling=*/false,
3286 /*UserAllowProfileBasedPeeling=*/false,
3287 /*UnrollingSpecficValues=*/false);
3288
3289 SmallPtrSet<const Value *, 32> EphValues;
3290 CodeMetrics::collectEphemeralValues(L, &AC, EphValues);
3291
3292 // Assume that reads and writes to stack variables can be eliminated by
3293 // Mem2Reg, SROA or LICM. That is, don't count them towards the loop body's
3294 // size.
3295 for (BasicBlock *BB : L->blocks()) {
3296 for (Instruction &I : *BB) {
3297 Value *Ptr;
3298 if (auto *Load = dyn_cast<LoadInst>(&I)) {
3299 Ptr = Load->getPointerOperand();
3300 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
3301 Ptr = Store->getPointerOperand();
3302 } else
3303 continue;
3304
3305 Ptr = Ptr->stripPointerCasts();
3306
3307 if (auto *Alloca = dyn_cast<AllocaInst>(Ptr)) {
3308 if (Alloca->getParent() == &F->getEntryBlock())
3309 EphValues.insert(&I);
3310 }
3311 }
3312 }
3313
3314 unsigned NumInlineCandidates;
3315 bool NotDuplicatable;
3316 bool Convergent;
3317 InstructionCost LoopSizeIC =
3318 ApproximateLoopSize(L, NumInlineCandidates, NotDuplicatable, Convergent,
3319 TTI, EphValues, UP.BEInsns);
3320 LLVM_DEBUG(dbgs() << "Estimated loop size is " << LoopSizeIC << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Estimated loop size is "
<< LoopSizeIC << "\n"; } } while (false)
;
3321
3322 // Loop is not unrollable if the loop contains certain instructions.
3323 if (NotDuplicatable || Convergent || !LoopSizeIC.isValid()) {
3324 LLVM_DEBUG(dbgs() << "Loop not considered unrollable\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Loop not considered unrollable\n"
; } } while (false)
;
3325 return 1;
3326 }
3327 unsigned LoopSize = *LoopSizeIC.getValue();
3328
3329 // TODO: Determine trip count of \p CLI if constant, computeUnrollCount might
3330 // be able to use it.
3331 int TripCount = 0;
3332 int MaxTripCount = 0;
3333 bool MaxOrZero = false;
3334 unsigned TripMultiple = 0;
3335
3336 bool UseUpperBound = false;
3337 computeUnrollCount(L, TTI, DT, &LI, &AC, SE, EphValues, &ORE, TripCount,
3338 MaxTripCount, MaxOrZero, TripMultiple, LoopSize, UP, PP,
3339 UseUpperBound);
3340 unsigned Factor = UP.Count;
3341 LLVM_DEBUG(dbgs() << "Suggesting unroll factor of " << Factor << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "Suggesting unroll factor of "
<< Factor << "\n"; } } while (false)
;
3342
3343 // This function returns 1 to signal to not unroll a loop.
3344 if (Factor == 0)
3345 return 1;
3346 return Factor;
3347}
3348
3349void OpenMPIRBuilder::unrollLoopPartial(DebugLoc DL, CanonicalLoopInfo *Loop,
3350 int32_t Factor,
3351 CanonicalLoopInfo **UnrolledCLI) {
3352 assert(Factor >= 0 && "Unroll factor must not be negative")(static_cast <bool> (Factor >= 0 && "Unroll factor must not be negative"
) ? void (0) : __assert_fail ("Factor >= 0 && \"Unroll factor must not be negative\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3352, __extension__
__PRETTY_FUNCTION__))
;
3353
3354 Function *F = Loop->getFunction();
3355 LLVMContext &Ctx = F->getContext();
3356
3357 // If the unrolled loop is not used for another loop-associated directive, it
3358 // is sufficient to add metadata for the LoopUnrollPass.
3359 if (!UnrolledCLI) {
3360 SmallVector<Metadata *, 2> LoopMetadata;
3361 LoopMetadata.push_back(
3362 MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")));
3363
3364 if (Factor >= 1) {
3365 ConstantAsMetadata *FactorConst = ConstantAsMetadata::get(
3366 ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor)));
3367 LoopMetadata.push_back(MDNode::get(
3368 Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst}));
3369 }
3370
3371 addLoopMetadata(Loop, LoopMetadata);
3372 return;
3373 }
3374
3375 // Heuristically determine the unroll factor.
3376 if (Factor == 0)
3377 Factor = computeHeuristicUnrollFactor(Loop);
3378
3379 // No change required with unroll factor 1.
3380 if (Factor == 1) {
3381 *UnrolledCLI = Loop;
3382 return;
3383 }
3384
3385 assert(Factor >= 2 &&(static_cast <bool> (Factor >= 2 && "unrolling only makes sense with a factor of 2 or larger"
) ? void (0) : __assert_fail ("Factor >= 2 && \"unrolling only makes sense with a factor of 2 or larger\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3386, __extension__
__PRETTY_FUNCTION__))
3386 "unrolling only makes sense with a factor of 2 or larger")(static_cast <bool> (Factor >= 2 && "unrolling only makes sense with a factor of 2 or larger"
) ? void (0) : __assert_fail ("Factor >= 2 && \"unrolling only makes sense with a factor of 2 or larger\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3386, __extension__
__PRETTY_FUNCTION__))
;
3387
3388 Type *IndVarTy = Loop->getIndVarType();
3389
3390 // Apply partial unrolling by tiling the loop by the unroll-factor, then fully
3391 // unroll the inner loop.
3392 Value *FactorVal =
3393 ConstantInt::get(IndVarTy, APInt(IndVarTy->getIntegerBitWidth(), Factor,
3394 /*isSigned=*/false));
3395 std::vector<CanonicalLoopInfo *> LoopNest =
3396 tileLoops(DL, {Loop}, {FactorVal});
3397 assert(LoopNest.size() == 2 && "Expect 2 loops after tiling")(static_cast <bool> (LoopNest.size() == 2 && "Expect 2 loops after tiling"
) ? void (0) : __assert_fail ("LoopNest.size() == 2 && \"Expect 2 loops after tiling\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3397, __extension__
__PRETTY_FUNCTION__))
;
3398 *UnrolledCLI = LoopNest[0];
3399 CanonicalLoopInfo *InnerLoop = LoopNest[1];
3400
3401 // LoopUnrollPass can only fully unroll loops with constant trip count.
3402 // Unroll by the unroll factor with a fallback epilog for the remainder
3403 // iterations if necessary.
3404 ConstantAsMetadata *FactorConst = ConstantAsMetadata::get(
3405 ConstantInt::get(Type::getInt32Ty(Ctx), APInt(32, Factor)));
3406 addLoopMetadata(
3407 InnerLoop,
3408 {MDNode::get(Ctx, MDString::get(Ctx, "llvm.loop.unroll.enable")),
3409 MDNode::get(
3410 Ctx, {MDString::get(Ctx, "llvm.loop.unroll.count"), FactorConst})});
3411
3412#ifndef NDEBUG
3413 (*UnrolledCLI)->assertOK();
3414#endif
3415}
3416
3417OpenMPIRBuilder::InsertPointTy
3418OpenMPIRBuilder::createCopyPrivate(const LocationDescription &Loc,
3419 llvm::Value *BufSize, llvm::Value *CpyBuf,
3420 llvm::Value *CpyFn, llvm::Value *DidIt) {
3421 if (!updateToLocation(Loc))
3422 return Loc.IP;
3423
3424 uint32_t SrcLocStrSize;
3425 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3426 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3427 Value *ThreadId = getOrCreateThreadID(Ident);
3428
3429 llvm::Value *DidItLD = Builder.CreateLoad(Builder.getInt32Ty(), DidIt);
3430
3431 Value *Args[] = {Ident, ThreadId, BufSize, CpyBuf, CpyFn, DidItLD};
3432
3433 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_copyprivate);
3434 Builder.CreateCall(Fn, Args);
3435
3436 return Builder.saveIP();
3437}
3438
3439OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createSingle(
3440 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
3441 FinalizeCallbackTy FiniCB, bool IsNowait, llvm::Value *DidIt) {
3442
3443 if (!updateToLocation(Loc))
3444 return Loc.IP;
3445
3446 // If needed (i.e. not null), initialize `DidIt` with 0
3447 if (DidIt) {
3448 Builder.CreateStore(Builder.getInt32(0), DidIt);
3449 }
3450
3451 Directive OMPD = Directive::OMPD_single;
3452 uint32_t SrcLocStrSize;
3453 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3454 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3455 Value *ThreadId = getOrCreateThreadID(Ident);
3456 Value *Args[] = {Ident, ThreadId};
3457
3458 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_single);
3459 Instruction *EntryCall = Builder.CreateCall(EntryRTLFn, Args);
3460
3461 Function *ExitRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_single);
3462 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
3463
3464 // generates the following:
3465 // if (__kmpc_single()) {
3466 // .... single region ...
3467 // __kmpc_end_single
3468 // }
3469 // __kmpc_barrier
3470
3471 EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
3472 /*Conditional*/ true,
3473 /*hasFinalize*/ true);
3474 if (!IsNowait)
3475 createBarrier(LocationDescription(Builder.saveIP(), Loc.DL),
3476 omp::Directive::OMPD_unknown, /* ForceSimpleCall */ false,
3477 /* CheckCancelFlag */ false);
3478 return Builder.saveIP();
3479}
3480
3481OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCritical(
3482 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
3483 FinalizeCallbackTy FiniCB, StringRef CriticalName, Value *HintInst) {
3484
3485 if (!updateToLocation(Loc))
3486 return Loc.IP;
3487
3488 Directive OMPD = Directive::OMPD_critical;
3489 uint32_t SrcLocStrSize;
3490 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3491 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3492 Value *ThreadId = getOrCreateThreadID(Ident);
3493 Value *LockVar = getOMPCriticalRegionLock(CriticalName);
3494 Value *Args[] = {Ident, ThreadId, LockVar};
3495
3496 SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args), std::end(Args));
3497 Function *RTFn = nullptr;
3498 if (HintInst) {
3499 // Add Hint to entry Args and create call
3500 EnterArgs.push_back(HintInst);
3501 RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical_with_hint);
3502 } else {
3503 RTFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_critical);
3504 }
3505 Instruction *EntryCall = Builder.CreateCall(RTFn, EnterArgs);
3506
3507 Function *ExitRTLFn =
3508 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_critical);
3509 Instruction *ExitCall = Builder.CreateCall(ExitRTLFn, Args);
3510
3511 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
3512 /*Conditional*/ false, /*hasFinalize*/ true);
3513}
3514
3515OpenMPIRBuilder::InsertPointTy
3516OpenMPIRBuilder::createOrderedDepend(const LocationDescription &Loc,
3517 InsertPointTy AllocaIP, unsigned NumLoops,
3518 ArrayRef<llvm::Value *> StoreValues,
3519 const Twine &Name, bool IsDependSource) {
3520 assert((static_cast <bool> (llvm::all_of(StoreValues, [](Value
*SV) { return SV->getType()->isIntegerTy(64); }) &&
"OpenMP runtime requires depend vec with i64 type") ? void (
0) : __assert_fail ("llvm::all_of(StoreValues, [](Value *SV) { return SV->getType()->isIntegerTy(64); }) && \"OpenMP runtime requires depend vec with i64 type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3523, __extension__
__PRETTY_FUNCTION__))
3521 llvm::all_of(StoreValues,(static_cast <bool> (llvm::all_of(StoreValues, [](Value
*SV) { return SV->getType()->isIntegerTy(64); }) &&
"OpenMP runtime requires depend vec with i64 type") ? void (
0) : __assert_fail ("llvm::all_of(StoreValues, [](Value *SV) { return SV->getType()->isIntegerTy(64); }) && \"OpenMP runtime requires depend vec with i64 type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3523, __extension__
__PRETTY_FUNCTION__))
3522 [](Value *SV) { return SV->getType()->isIntegerTy(64); }) &&(static_cast <bool> (llvm::all_of(StoreValues, [](Value
*SV) { return SV->getType()->isIntegerTy(64); }) &&
"OpenMP runtime requires depend vec with i64 type") ? void (
0) : __assert_fail ("llvm::all_of(StoreValues, [](Value *SV) { return SV->getType()->isIntegerTy(64); }) && \"OpenMP runtime requires depend vec with i64 type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3523, __extension__
__PRETTY_FUNCTION__))
3523 "OpenMP runtime requires depend vec with i64 type")(static_cast <bool> (llvm::all_of(StoreValues, [](Value
*SV) { return SV->getType()->isIntegerTy(64); }) &&
"OpenMP runtime requires depend vec with i64 type") ? void (
0) : __assert_fail ("llvm::all_of(StoreValues, [](Value *SV) { return SV->getType()->isIntegerTy(64); }) && \"OpenMP runtime requires depend vec with i64 type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3523, __extension__
__PRETTY_FUNCTION__))
;
3524
3525 if (!updateToLocation(Loc))
3526 return Loc.IP;
3527
3528 // Allocate space for vector and generate alloc instruction.
3529 auto *ArrI64Ty = ArrayType::get(Int64, NumLoops);
3530 Builder.restoreIP(AllocaIP);
3531 AllocaInst *ArgsBase = Builder.CreateAlloca(ArrI64Ty, nullptr, Name);
3532 ArgsBase->setAlignment(Align(8));
3533 Builder.restoreIP(Loc.IP);
3534
3535 // Store the index value with offset in depend vector.
3536 for (unsigned I = 0; I < NumLoops; ++I) {
3537 Value *DependAddrGEPIter = Builder.CreateInBoundsGEP(
3538 ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(I)});
3539 StoreInst *STInst = Builder.CreateStore(StoreValues[I], DependAddrGEPIter);
3540 STInst->setAlignment(Align(8));
3541 }
3542
3543 Value *DependBaseAddrGEP = Builder.CreateInBoundsGEP(
3544 ArrI64Ty, ArgsBase, {Builder.getInt64(0), Builder.getInt64(0)});
3545
3546 uint32_t SrcLocStrSize;
3547 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3548 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3549 Value *ThreadId = getOrCreateThreadID(Ident);
3550 Value *Args[] = {Ident, ThreadId, DependBaseAddrGEP};
3551
3552 Function *RTLFn = nullptr;
3553 if (IsDependSource)
3554 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_post);
3555 else
3556 RTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_doacross_wait);
3557 Builder.CreateCall(RTLFn, Args);
3558
3559 return Builder.saveIP();
3560}
3561
3562OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createOrderedThreadsSimd(
3563 const LocationDescription &Loc, BodyGenCallbackTy BodyGenCB,
3564 FinalizeCallbackTy FiniCB, bool IsThreads) {
3565 if (!updateToLocation(Loc))
3566 return Loc.IP;
3567
3568 Directive OMPD = Directive::OMPD_ordered;
3569 Instruction *EntryCall = nullptr;
3570 Instruction *ExitCall = nullptr;
3571
3572 if (IsThreads) {
3573 uint32_t SrcLocStrSize;
3574 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3575 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3576 Value *ThreadId = getOrCreateThreadID(Ident);
3577 Value *Args[] = {Ident, ThreadId};
3578
3579 Function *EntryRTLFn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_ordered);
3580 EntryCall = Builder.CreateCall(EntryRTLFn, Args);
3581
3582 Function *ExitRTLFn =
3583 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_end_ordered);
3584 ExitCall = Builder.CreateCall(ExitRTLFn, Args);
3585 }
3586
3587 return EmitOMPInlinedRegion(OMPD, EntryCall, ExitCall, BodyGenCB, FiniCB,
3588 /*Conditional*/ false, /*hasFinalize*/ true);
3589}
3590
3591OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::EmitOMPInlinedRegion(
3592 Directive OMPD, Instruction *EntryCall, Instruction *ExitCall,
3593 BodyGenCallbackTy BodyGenCB, FinalizeCallbackTy FiniCB, bool Conditional,
3594 bool HasFinalize, bool IsCancellable) {
3595
3596 if (HasFinalize)
3597 FinalizationStack.push_back({FiniCB, OMPD, IsCancellable});
3598
3599 // Create inlined region's entry and body blocks, in preparation
3600 // for conditional creation
3601 BasicBlock *EntryBB = Builder.GetInsertBlock();
3602 Instruction *SplitPos = EntryBB->getTerminator();
3603 if (!isa_and_nonnull<BranchInst>(SplitPos))
3604 SplitPos = new UnreachableInst(Builder.getContext(), EntryBB);
3605 BasicBlock *ExitBB = EntryBB->splitBasicBlock(SplitPos, "omp_region.end");
3606 BasicBlock *FiniBB =
3607 EntryBB->splitBasicBlock(EntryBB->getTerminator(), "omp_region.finalize");
3608
3609 Builder.SetInsertPoint(EntryBB->getTerminator());
3610 emitCommonDirectiveEntry(OMPD, EntryCall, ExitBB, Conditional);
3611
3612 // generate body
3613 BodyGenCB(/* AllocaIP */ InsertPointTy(),
3614 /* CodeGenIP */ Builder.saveIP());
3615
3616 // emit exit call and do any needed finalization.
3617 auto FinIP = InsertPointTy(FiniBB, FiniBB->getFirstInsertionPt());
3618 assert(FiniBB->getTerminator()->getNumSuccessors() == 1 &&(static_cast <bool> (FiniBB->getTerminator()->getNumSuccessors
() == 1 && FiniBB->getTerminator()->getSuccessor
(0) == ExitBB && "Unexpected control flow graph state!!"
) ? void (0) : __assert_fail ("FiniBB->getTerminator()->getNumSuccessors() == 1 && FiniBB->getTerminator()->getSuccessor(0) == ExitBB && \"Unexpected control flow graph state!!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3620, __extension__
__PRETTY_FUNCTION__))
3619 FiniBB->getTerminator()->getSuccessor(0) == ExitBB &&(static_cast <bool> (FiniBB->getTerminator()->getNumSuccessors
() == 1 && FiniBB->getTerminator()->getSuccessor
(0) == ExitBB && "Unexpected control flow graph state!!"
) ? void (0) : __assert_fail ("FiniBB->getTerminator()->getNumSuccessors() == 1 && FiniBB->getTerminator()->getSuccessor(0) == ExitBB && \"Unexpected control flow graph state!!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3620, __extension__
__PRETTY_FUNCTION__))
3620 "Unexpected control flow graph state!!")(static_cast <bool> (FiniBB->getTerminator()->getNumSuccessors
() == 1 && FiniBB->getTerminator()->getSuccessor
(0) == ExitBB && "Unexpected control flow graph state!!"
) ? void (0) : __assert_fail ("FiniBB->getTerminator()->getNumSuccessors() == 1 && FiniBB->getTerminator()->getSuccessor(0) == ExitBB && \"Unexpected control flow graph state!!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3620, __extension__
__PRETTY_FUNCTION__))
;
3621 emitCommonDirectiveExit(OMPD, FinIP, ExitCall, HasFinalize);
3622 assert(FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB &&(static_cast <bool> (FiniBB->getUniquePredecessor()->
getUniqueSuccessor() == FiniBB && "Unexpected Control Flow State!"
) ? void (0) : __assert_fail ("FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB && \"Unexpected Control Flow State!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3623, __extension__
__PRETTY_FUNCTION__))
3623 "Unexpected Control Flow State!")(static_cast <bool> (FiniBB->getUniquePredecessor()->
getUniqueSuccessor() == FiniBB && "Unexpected Control Flow State!"
) ? void (0) : __assert_fail ("FiniBB->getUniquePredecessor()->getUniqueSuccessor() == FiniBB && \"Unexpected Control Flow State!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3623, __extension__
__PRETTY_FUNCTION__))
;
3624 MergeBlockIntoPredecessor(FiniBB);
3625
3626 // If we are skipping the region of a non conditional, remove the exit
3627 // block, and clear the builder's insertion point.
3628 assert(SplitPos->getParent() == ExitBB &&(static_cast <bool> (SplitPos->getParent() == ExitBB
&& "Unexpected Insertion point location!") ? void (0
) : __assert_fail ("SplitPos->getParent() == ExitBB && \"Unexpected Insertion point location!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3629, __extension__
__PRETTY_FUNCTION__))
3629 "Unexpected Insertion point location!")(static_cast <bool> (SplitPos->getParent() == ExitBB
&& "Unexpected Insertion point location!") ? void (0
) : __assert_fail ("SplitPos->getParent() == ExitBB && \"Unexpected Insertion point location!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3629, __extension__
__PRETTY_FUNCTION__))
;
3630 auto merged = MergeBlockIntoPredecessor(ExitBB);
3631 BasicBlock *ExitPredBB = SplitPos->getParent();
3632 auto InsertBB = merged ? ExitPredBB : ExitBB;
3633 if (!isa_and_nonnull<BranchInst>(SplitPos))
3634 SplitPos->eraseFromParent();
3635 Builder.SetInsertPoint(InsertBB);
3636
3637 return Builder.saveIP();
3638}
3639
3640OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveEntry(
3641 Directive OMPD, Value *EntryCall, BasicBlock *ExitBB, bool Conditional) {
3642 // if nothing to do, Return current insertion point.
3643 if (!Conditional || !EntryCall)
3644 return Builder.saveIP();
3645
3646 BasicBlock *EntryBB = Builder.GetInsertBlock();
3647 Value *CallBool = Builder.CreateIsNotNull(EntryCall);
3648 auto *ThenBB = BasicBlock::Create(M.getContext(), "omp_region.body");
3649 auto *UI = new UnreachableInst(Builder.getContext(), ThenBB);
3650
3651 // Emit thenBB and set the Builder's insertion point there for
3652 // body generation next. Place the block after the current block.
3653 Function *CurFn = EntryBB->getParent();
3654 CurFn->insert(std::next(EntryBB->getIterator()), ThenBB);
3655
3656 // Move Entry branch to end of ThenBB, and replace with conditional
3657 // branch (If-stmt)
3658 Instruction *EntryBBTI = EntryBB->getTerminator();
3659 Builder.CreateCondBr(CallBool, ThenBB, ExitBB);
3660 EntryBBTI->removeFromParent();
3661 Builder.SetInsertPoint(UI);
3662 Builder.Insert(EntryBBTI);
3663 UI->eraseFromParent();
3664 Builder.SetInsertPoint(ThenBB->getTerminator());
3665
3666 // return an insertion point to ExitBB.
3667 return IRBuilder<>::InsertPoint(ExitBB, ExitBB->getFirstInsertionPt());
3668}
3669
3670OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::emitCommonDirectiveExit(
3671 omp::Directive OMPD, InsertPointTy FinIP, Instruction *ExitCall,
3672 bool HasFinalize) {
3673
3674 Builder.restoreIP(FinIP);
3675
3676 // If there is finalization to do, emit it before the exit call
3677 if (HasFinalize) {
3678 assert(!FinalizationStack.empty() &&(static_cast <bool> (!FinalizationStack.empty() &&
"Unexpected finalization stack state!") ? void (0) : __assert_fail
("!FinalizationStack.empty() && \"Unexpected finalization stack state!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3679, __extension__
__PRETTY_FUNCTION__))
3679 "Unexpected finalization stack state!")(static_cast <bool> (!FinalizationStack.empty() &&
"Unexpected finalization stack state!") ? void (0) : __assert_fail
("!FinalizationStack.empty() && \"Unexpected finalization stack state!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3679, __extension__
__PRETTY_FUNCTION__))
;
3680
3681 FinalizationInfo Fi = FinalizationStack.pop_back_val();
3682 assert(Fi.DK == OMPD && "Unexpected Directive for Finalization call!")(static_cast <bool> (Fi.DK == OMPD && "Unexpected Directive for Finalization call!"
) ? void (0) : __assert_fail ("Fi.DK == OMPD && \"Unexpected Directive for Finalization call!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3682, __extension__
__PRETTY_FUNCTION__))
;
3683
3684 Fi.FiniCB(FinIP);
3685
3686 BasicBlock *FiniBB = FinIP.getBlock();
3687 Instruction *FiniBBTI = FiniBB->getTerminator();
3688
3689 // set Builder IP for call creation
3690 Builder.SetInsertPoint(FiniBBTI);
3691 }
3692
3693 if (!ExitCall)
3694 return Builder.saveIP();
3695
3696 // place the Exitcall as last instruction before Finalization block terminator
3697 ExitCall->removeFromParent();
3698 Builder.Insert(ExitCall);
3699
3700 return IRBuilder<>::InsertPoint(ExitCall->getParent(),
3701 ExitCall->getIterator());
3702}
3703
3704OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createCopyinClauseBlocks(
3705 InsertPointTy IP, Value *MasterAddr, Value *PrivateAddr,
3706 llvm::IntegerType *IntPtrTy, bool BranchtoEnd) {
3707 if (!IP.isSet())
3708 return IP;
3709
3710 IRBuilder<>::InsertPointGuard IPG(Builder);
3711
3712 // creates the following CFG structure
3713 // OMP_Entry : (MasterAddr != PrivateAddr)?
3714 // F T
3715 // | \
3716 // | copin.not.master
3717 // | /
3718 // v /
3719 // copyin.not.master.end
3720 // |
3721 // v
3722 // OMP.Entry.Next
3723
3724 BasicBlock *OMP_Entry = IP.getBlock();
3725 Function *CurFn = OMP_Entry->getParent();
3726 BasicBlock *CopyBegin =
3727 BasicBlock::Create(M.getContext(), "copyin.not.master", CurFn);
3728 BasicBlock *CopyEnd = nullptr;
3729
3730 // If entry block is terminated, split to preserve the branch to following
3731 // basic block (i.e. OMP.Entry.Next), otherwise, leave everything as is.
3732 if (isa_and_nonnull<BranchInst>(OMP_Entry->getTerminator())) {
3733 CopyEnd = OMP_Entry->splitBasicBlock(OMP_Entry->getTerminator(),
3734 "copyin.not.master.end");
3735 OMP_Entry->getTerminator()->eraseFromParent();
3736 } else {
3737 CopyEnd =
3738 BasicBlock::Create(M.getContext(), "copyin.not.master.end", CurFn);
3739 }
3740
3741 Builder.SetInsertPoint(OMP_Entry);
3742 Value *MasterPtr = Builder.CreatePtrToInt(MasterAddr, IntPtrTy);
3743 Value *PrivatePtr = Builder.CreatePtrToInt(PrivateAddr, IntPtrTy);
3744 Value *cmp = Builder.CreateICmpNE(MasterPtr, PrivatePtr);
3745 Builder.CreateCondBr(cmp, CopyBegin, CopyEnd);
3746
3747 Builder.SetInsertPoint(CopyBegin);
3748 if (BranchtoEnd)
3749 Builder.SetInsertPoint(Builder.CreateBr(CopyEnd));
3750
3751 return Builder.saveIP();
3752}
3753
3754CallInst *OpenMPIRBuilder::createOMPAlloc(const LocationDescription &Loc,
3755 Value *Size, Value *Allocator,
3756 std::string Name) {
3757 IRBuilder<>::InsertPointGuard IPG(Builder);
3758 Builder.restoreIP(Loc.IP);
3759
3760 uint32_t SrcLocStrSize;
3761 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3762 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3763 Value *ThreadId = getOrCreateThreadID(Ident);
3764 Value *Args[] = {ThreadId, Size, Allocator};
3765
3766 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_alloc);
3767
3768 return Builder.CreateCall(Fn, Args, Name);
3769}
3770
3771CallInst *OpenMPIRBuilder::createOMPFree(const LocationDescription &Loc,
3772 Value *Addr, Value *Allocator,
3773 std::string Name) {
3774 IRBuilder<>::InsertPointGuard IPG(Builder);
3775 Builder.restoreIP(Loc.IP);
3776
3777 uint32_t SrcLocStrSize;
3778 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3779 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3780 Value *ThreadId = getOrCreateThreadID(Ident);
3781 Value *Args[] = {ThreadId, Addr, Allocator};
3782 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_free);
3783 return Builder.CreateCall(Fn, Args, Name);
3784}
3785
3786CallInst *OpenMPIRBuilder::createOMPInteropInit(
3787 const LocationDescription &Loc, Value *InteropVar,
3788 omp::OMPInteropType InteropType, Value *Device, Value *NumDependences,
3789 Value *DependenceAddress, bool HaveNowaitClause) {
3790 IRBuilder<>::InsertPointGuard IPG(Builder);
3791 Builder.restoreIP(Loc.IP);
3792
3793 uint32_t SrcLocStrSize;
3794 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3795 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3796 Value *ThreadId = getOrCreateThreadID(Ident);
3797 if (Device == nullptr)
3798 Device = ConstantInt::get(Int32, -1);
3799 Constant *InteropTypeVal = ConstantInt::get(Int32, (int)InteropType);
3800 if (NumDependences == nullptr) {
3801 NumDependences = ConstantInt::get(Int32, 0);
3802 PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext());
3803 DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
3804 }
3805 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
3806 Value *Args[] = {
3807 Ident, ThreadId, InteropVar, InteropTypeVal,
3808 Device, NumDependences, DependenceAddress, HaveNowaitClauseVal};
3809
3810 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_init);
3811
3812 return Builder.CreateCall(Fn, Args);
3813}
3814
3815CallInst *OpenMPIRBuilder::createOMPInteropDestroy(
3816 const LocationDescription &Loc, Value *InteropVar, Value *Device,
3817 Value *NumDependences, Value *DependenceAddress, bool HaveNowaitClause) {
3818 IRBuilder<>::InsertPointGuard IPG(Builder);
3819 Builder.restoreIP(Loc.IP);
3820
3821 uint32_t SrcLocStrSize;
3822 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3823 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3824 Value *ThreadId = getOrCreateThreadID(Ident);
3825 if (Device == nullptr)
3826 Device = ConstantInt::get(Int32, -1);
3827 if (NumDependences == nullptr) {
3828 NumDependences = ConstantInt::get(Int32, 0);
3829 PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext());
3830 DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
3831 }
3832 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
3833 Value *Args[] = {
3834 Ident, ThreadId, InteropVar, Device,
3835 NumDependences, DependenceAddress, HaveNowaitClauseVal};
3836
3837 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_destroy);
3838
3839 return Builder.CreateCall(Fn, Args);
3840}
3841
3842CallInst *OpenMPIRBuilder::createOMPInteropUse(const LocationDescription &Loc,
3843 Value *InteropVar, Value *Device,
3844 Value *NumDependences,
3845 Value *DependenceAddress,
3846 bool HaveNowaitClause) {
3847 IRBuilder<>::InsertPointGuard IPG(Builder);
3848 Builder.restoreIP(Loc.IP);
3849 uint32_t SrcLocStrSize;
3850 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3851 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3852 Value *ThreadId = getOrCreateThreadID(Ident);
3853 if (Device == nullptr)
3854 Device = ConstantInt::get(Int32, -1);
3855 if (NumDependences == nullptr) {
3856 NumDependences = ConstantInt::get(Int32, 0);
3857 PointerType *PointerTypeVar = Type::getInt8PtrTy(M.getContext());
3858 DependenceAddress = ConstantPointerNull::get(PointerTypeVar);
3859 }
3860 Value *HaveNowaitClauseVal = ConstantInt::get(Int32, HaveNowaitClause);
3861 Value *Args[] = {
3862 Ident, ThreadId, InteropVar, Device,
3863 NumDependences, DependenceAddress, HaveNowaitClauseVal};
3864
3865 Function *Fn = getOrCreateRuntimeFunctionPtr(OMPRTL___tgt_interop_use);
3866
3867 return Builder.CreateCall(Fn, Args);
3868}
3869
3870CallInst *OpenMPIRBuilder::createCachedThreadPrivate(
3871 const LocationDescription &Loc, llvm::Value *Pointer,
3872 llvm::ConstantInt *Size, const llvm::Twine &Name) {
3873 IRBuilder<>::InsertPointGuard IPG(Builder);
3874 Builder.restoreIP(Loc.IP);
3875
3876 uint32_t SrcLocStrSize;
3877 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3878 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3879 Value *ThreadId = getOrCreateThreadID(Ident);
3880 Constant *ThreadPrivateCache =
3881 getOrCreateInternalVariable(Int8PtrPtr, Name.str());
3882 llvm::Value *Args[] = {Ident, ThreadId, Pointer, Size, ThreadPrivateCache};
3883
3884 Function *Fn =
3885 getOrCreateRuntimeFunctionPtr(OMPRTL___kmpc_threadprivate_cached);
3886
3887 return Builder.CreateCall(Fn, Args);
3888}
3889
3890OpenMPIRBuilder::InsertPointTy
3891OpenMPIRBuilder::createTargetInit(const LocationDescription &Loc, bool IsSPMD) {
3892 if (!updateToLocation(Loc))
3893 return Loc.IP;
3894
3895 uint32_t SrcLocStrSize;
3896 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3897 Constant *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3898 ConstantInt *IsSPMDVal = ConstantInt::getSigned(
3899 IntegerType::getInt8Ty(Int8->getContext()),
3900 IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC);
3901 ConstantInt *UseGenericStateMachine =
3902 ConstantInt::getBool(Int32->getContext(), !IsSPMD);
3903
3904 Function *Fn = getOrCreateRuntimeFunctionPtr(
3905 omp::RuntimeFunction::OMPRTL___kmpc_target_init);
3906
3907 CallInst *ThreadKind = Builder.CreateCall(
3908 Fn, {Ident, IsSPMDVal, UseGenericStateMachine});
3909
3910 Value *ExecUserCode = Builder.CreateICmpEQ(
3911 ThreadKind, ConstantInt::get(ThreadKind->getType(), -1),
3912 "exec_user_code");
3913
3914 // ThreadKind = __kmpc_target_init(...)
3915 // if (ThreadKind == -1)
3916 // user_code
3917 // else
3918 // return;
3919
3920 auto *UI = Builder.CreateUnreachable();
3921 BasicBlock *CheckBB = UI->getParent();
3922 BasicBlock *UserCodeEntryBB = CheckBB->splitBasicBlock(UI, "user_code.entry");
3923
3924 BasicBlock *WorkerExitBB = BasicBlock::Create(
3925 CheckBB->getContext(), "worker.exit", CheckBB->getParent());
3926 Builder.SetInsertPoint(WorkerExitBB);
3927 Builder.CreateRetVoid();
3928
3929 auto *CheckBBTI = CheckBB->getTerminator();
3930 Builder.SetInsertPoint(CheckBBTI);
3931 Builder.CreateCondBr(ExecUserCode, UI->getParent(), WorkerExitBB);
3932
3933 CheckBBTI->eraseFromParent();
3934 UI->eraseFromParent();
3935
3936 // Continue in the "user_code" block, see diagram above and in
3937 // openmp/libomptarget/deviceRTLs/common/include/target.h .
3938 return InsertPointTy(UserCodeEntryBB, UserCodeEntryBB->getFirstInsertionPt());
3939}
3940
3941void OpenMPIRBuilder::createTargetDeinit(const LocationDescription &Loc,
3942 bool IsSPMD) {
3943 if (!updateToLocation(Loc))
3944 return;
3945
3946 uint32_t SrcLocStrSize;
3947 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3948 Value *Ident = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3949 ConstantInt *IsSPMDVal = ConstantInt::getSigned(
3950 IntegerType::getInt8Ty(Int8->getContext()),
3951 IsSPMD ? OMP_TGT_EXEC_MODE_SPMD : OMP_TGT_EXEC_MODE_GENERIC);
3952
3953 Function *Fn = getOrCreateRuntimeFunctionPtr(
3954 omp::RuntimeFunction::OMPRTL___kmpc_target_deinit);
3955
3956 Builder.CreateCall(Fn, {Ident, IsSPMDVal});
3957}
3958
3959void OpenMPIRBuilder::setOutlinedTargetRegionFunctionAttributes(
3960 Function *OutlinedFn, int32_t NumTeams, int32_t NumThreads) {
3961 if (Config.isEmbedded()) {
3962 OutlinedFn->setLinkage(GlobalValue::WeakODRLinkage);
3963 // TODO: Determine if DSO local can be set to true.
3964 OutlinedFn->setDSOLocal(false);
3965 OutlinedFn->setVisibility(GlobalValue::ProtectedVisibility);
3966 if (Triple(M.getTargetTriple()).isAMDGCN())
3967 OutlinedFn->setCallingConv(CallingConv::AMDGPU_KERNEL);
3968 }
3969
3970 if (NumTeams > 0)
3971 OutlinedFn->addFnAttr("omp_target_num_teams", std::to_string(NumTeams));
3972 if (NumThreads > 0)
3973 OutlinedFn->addFnAttr("omp_target_thread_limit",
3974 std::to_string(NumThreads));
3975}
3976
3977Constant *OpenMPIRBuilder::createOutlinedFunctionID(Function *OutlinedFn,
3978 StringRef EntryFnIDName) {
3979 if (Config.isEmbedded()) {
3980 assert(OutlinedFn && "The outlined function must exist if embedded")(static_cast <bool> (OutlinedFn && "The outlined function must exist if embedded"
) ? void (0) : __assert_fail ("OutlinedFn && \"The outlined function must exist if embedded\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3980, __extension__
__PRETTY_FUNCTION__))
;
3981 return ConstantExpr::getBitCast(OutlinedFn, Builder.getInt8PtrTy());
3982 }
3983
3984 return new GlobalVariable(
3985 M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::WeakAnyLinkage,
3986 Constant::getNullValue(Builder.getInt8Ty()), EntryFnIDName);
3987}
3988
3989Constant *OpenMPIRBuilder::createTargetRegionEntryAddr(Function *OutlinedFn,
3990 StringRef EntryFnName) {
3991 if (OutlinedFn)
3992 return OutlinedFn;
3993
3994 assert(!M.getGlobalVariable(EntryFnName, true) &&(static_cast <bool> (!M.getGlobalVariable(EntryFnName, true
) && "Named kernel already exists?") ? void (0) : __assert_fail
("!M.getGlobalVariable(EntryFnName, true) && \"Named kernel already exists?\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3995, __extension__
__PRETTY_FUNCTION__))
3995 "Named kernel already exists?")(static_cast <bool> (!M.getGlobalVariable(EntryFnName, true
) && "Named kernel already exists?") ? void (0) : __assert_fail
("!M.getGlobalVariable(EntryFnName, true) && \"Named kernel already exists?\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 3995, __extension__
__PRETTY_FUNCTION__))
;
3996 return new GlobalVariable(
3997 M, Builder.getInt8Ty(), /*isConstant=*/true, GlobalValue::InternalLinkage,
3998 Constant::getNullValue(Builder.getInt8Ty()), EntryFnName);
3999}
4000
4001void OpenMPIRBuilder::emitTargetRegionFunction(
4002 TargetRegionEntryInfo &EntryInfo,
4003 FunctionGenCallback &GenerateFunctionCallback, int32_t NumTeams,
4004 int32_t NumThreads, bool IsOffloadEntry, Function *&OutlinedFn,
4005 Constant *&OutlinedFnID) {
4006
4007 SmallString<64> EntryFnName;
4008 OffloadInfoManager.getTargetRegionEntryFnName(EntryFnName, EntryInfo);
4009
4010 OutlinedFn = Config.isEmbedded() || !Config.openMPOffloadMandatory()
4011 ? GenerateFunctionCallback(EntryFnName)
4012 : nullptr;
4013
4014 // If this target outline function is not an offload entry, we don't need to
4015 // register it. This may be in the case of a false if clause, or if there are
4016 // no OpenMP targets.
4017 if (!IsOffloadEntry)
4018 return;
4019
4020 std::string EntryFnIDName =
4021 Config.isEmbedded()
4022 ? std::string(EntryFnName)
4023 : createPlatformSpecificName({EntryFnName, "region_id"});
4024
4025 OutlinedFnID = registerTargetRegionFunction(
4026 EntryInfo, OutlinedFn, EntryFnName, EntryFnIDName, NumTeams, NumThreads);
4027}
4028
4029Constant *OpenMPIRBuilder::registerTargetRegionFunction(
4030 TargetRegionEntryInfo &EntryInfo, Function *OutlinedFn,
4031 StringRef EntryFnName, StringRef EntryFnIDName, int32_t NumTeams,
4032 int32_t NumThreads) {
4033 if (OutlinedFn)
4034 setOutlinedTargetRegionFunctionAttributes(OutlinedFn, NumTeams, NumThreads);
4035 auto OutlinedFnID = createOutlinedFunctionID(OutlinedFn, EntryFnIDName);
4036 auto EntryAddr = createTargetRegionEntryAddr(OutlinedFn, EntryFnName);
4037 OffloadInfoManager.registerTargetRegionEntryInfo(
4038 EntryInfo, EntryAddr, OutlinedFnID,
4039 OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion);
4040 return OutlinedFnID;
4041}
4042
4043OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTargetData(
4044 const LocationDescription &Loc, OpenMPIRBuilder::InsertPointTy CodeGenIP,
4045 SmallVectorImpl<uint64_t> &MapTypeFlags,
4046 SmallVectorImpl<Constant *> &MapNames, struct MapperAllocas &MapperAllocas,
4047 bool IsBegin, int64_t DeviceID, Value *IfCond,
4048 BodyGenCallbackTy ProcessMapOpCB, BodyGenCallbackTy BodyGenCB) {
4049 if (!updateToLocation(Loc))
4050 return InsertPointTy();
4051
4052 Builder.restoreIP(CodeGenIP);
4053
4054 // LLVM utilities like blocks with terminators.
4055 // The UI acts as a resume point for code insertion after the BodyGen
4056 auto *UI = Builder.CreateUnreachable();
4057 if (IfCond) {
4058 auto *ThenTI =
4059 SplitBlockAndInsertIfThen(IfCond, UI, /* Unreachable */ false);
4060 ThenTI->getParent()->setName("omp_if.then");
4061 Builder.SetInsertPoint(ThenTI);
4062 } else {
4063 Builder.SetInsertPoint(UI);
4064 }
4065
4066 ProcessMapOpCB(Builder.saveIP(), Builder.saveIP());
4067
4068 uint32_t SrcLocStrSize;
4069 Constant *SrcLocStr = getOrCreateSrcLocStr(Loc, SrcLocStrSize);
4070 Value *srcLocInfo = getOrCreateIdent(SrcLocStr, SrcLocStrSize);
4071
4072 GlobalVariable *MapTypesGV =
4073 createOffloadMaptypes(MapTypeFlags, ".offload_maptypes");
4074 Value *MapTypesArg = Builder.CreateConstInBoundsGEP2_32(
4075 ArrayType::get(Builder.getInt64Ty(), MapTypeFlags.size()), MapTypesGV,
4076 /*Idx0=*/0, /*Idx1=*/0);
4077
4078 GlobalVariable *MapNamesGV =
4079 createOffloadMapnames(MapNames, ".offload_mapnames");
4080 Value *MapNamesArg = Builder.CreateConstInBoundsGEP2_32(
4081 ArrayType::get(Builder.getInt8PtrTy(), MapNames.size()), MapNamesGV,
4082 /*Idx0=*/0, /*Idx1=*/0);
4083
4084 Function *beginMapperFunc =
4085 getOrCreateRuntimeFunctionPtr(omp::OMPRTL___tgt_target_data_begin_mapper);
4086 Function *endMapperFunc =
4087 getOrCreateRuntimeFunctionPtr(omp::OMPRTL___tgt_target_data_end_mapper);
4088
4089 if (BodyGenCB) {
4090 // Create call to start the data region.
4091 emitMapperCall(Builder.saveIP(), beginMapperFunc, srcLocInfo, MapTypesArg,
4092 MapNamesArg, MapperAllocas, DeviceID, MapTypeFlags.size());
4093
4094 BodyGenCB(Builder.saveIP(), Builder.saveIP());
4095
4096 Builder.SetInsertPoint(UI->getParent());
4097 // Create call to end the data region.
4098 emitMapperCall(Builder.saveIP(), endMapperFunc, srcLocInfo, MapTypesArg,
4099 MapNamesArg, MapperAllocas, DeviceID, MapTypeFlags.size());
4100 } else {
4101 emitMapperCall(Builder.saveIP(), IsBegin ? beginMapperFunc : endMapperFunc,
4102 srcLocInfo, MapTypesArg, MapNamesArg, MapperAllocas,
4103 DeviceID, MapTypeFlags.size());
4104 }
4105
4106 // Update the insertion point and remove the terminator we introduced.
4107 Builder.SetInsertPoint(UI->getParent());
4108 if (IfCond)
4109 UI->getParent()->setName("omp_if.end");
4110 UI->eraseFromParent();
4111 return Builder.saveIP();
4112}
4113
4114static Function *
4115createOutlinedFunction(IRBuilderBase &Builder, StringRef FuncName,
4116 SmallVectorImpl<Value *> &Inputs,
4117 OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc) {
4118 SmallVector<Type *> ParameterTypes;
4119 for (auto &Arg : Inputs)
4120 ParameterTypes.push_back(Arg->getType());
4121
4122 auto FuncType = FunctionType::get(Builder.getVoidTy(), ParameterTypes,
4123 /*isVarArg*/ false);
4124 auto Func = Function::Create(FuncType, GlobalValue::InternalLinkage, FuncName,
4125 Builder.GetInsertBlock()->getModule());
4126
4127 // Save insert point.
4128 auto OldInsertPoint = Builder.saveIP();
4129
4130 // Generate the region into the function.
4131 BasicBlock *EntryBB = BasicBlock::Create(Builder.getContext(), "entry", Func);
4132 Builder.SetInsertPoint(EntryBB);
4133 Builder.restoreIP(CBFunc(Builder.saveIP(), Builder.saveIP()));
4134
4135 // Insert return instruction.
4136 Builder.CreateRetVoid();
4137
4138 // Rewrite uses of input valus to parameters.
4139 for (auto InArg : zip(Inputs, Func->args())) {
4140 Value *Input = std::get<0>(InArg);
4141 Argument &Arg = std::get<1>(InArg);
4142
4143 // Collect all the instructions
4144 for (User *User : make_early_inc_range(Input->users()))
4145 if (auto Instr = dyn_cast<Instruction>(User))
4146 if (Instr->getFunction() == Func)
4147 Instr->replaceUsesOfWith(Input, &Arg);
4148 }
4149
4150 // Restore insert point.
4151 Builder.restoreIP(OldInsertPoint);
4152
4153 return Func;
4154}
4155
4156static void
4157emitTargetOutlinedFunction(OpenMPIRBuilder &OMPBuilder, IRBuilderBase &Builder,
4158 TargetRegionEntryInfo &EntryInfo,
4159 Function *&OutlinedFn, int32_t NumTeams,
4160 int32_t NumThreads, SmallVectorImpl<Value *> &Inputs,
4161 OpenMPIRBuilder::TargetBodyGenCallbackTy &CBFunc) {
4162
4163 OpenMPIRBuilder::FunctionGenCallback &&GenerateOutlinedFunction =
4164 [&Builder, &Inputs, &CBFunc](StringRef EntryFnName) {
4165 return createOutlinedFunction(Builder, EntryFnName, Inputs, CBFunc);
4166 };
4167
4168 Constant *OutlinedFnID;
4169 OMPBuilder.emitTargetRegionFunction(EntryInfo, GenerateOutlinedFunction,
4170 NumTeams, NumThreads, true, OutlinedFn,
4171 OutlinedFnID);
4172}
4173
4174static void emitTargetCall(IRBuilderBase &Builder, Function *OutlinedFn,
4175 SmallVectorImpl<Value *> &Args) {
4176 // TODO: Add kernel launch call when device codegen is supported.
4177 Builder.CreateCall(OutlinedFn, Args);
4178}
4179
4180OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createTarget(
4181 const LocationDescription &Loc, OpenMPIRBuilder::InsertPointTy CodeGenIP,
4182 TargetRegionEntryInfo &EntryInfo, int32_t NumTeams, int32_t NumThreads,
4183 SmallVectorImpl<Value *> &Args, TargetBodyGenCallbackTy CBFunc) {
4184 if (!updateToLocation(Loc))
4185 return InsertPointTy();
4186
4187 Builder.restoreIP(CodeGenIP);
4188
4189 Function *OutlinedFn;
4190 emitTargetOutlinedFunction(*this, Builder, EntryInfo, OutlinedFn, NumTeams,
4191 NumThreads, Args, CBFunc);
4192 emitTargetCall(Builder, OutlinedFn, Args);
4193 return Builder.saveIP();
4194}
4195
4196std::string OpenMPIRBuilder::getNameWithSeparators(ArrayRef<StringRef> Parts,
4197 StringRef FirstSeparator,
4198 StringRef Separator) {
4199 SmallString<128> Buffer;
4200 llvm::raw_svector_ostream OS(Buffer);
4201 StringRef Sep = FirstSeparator;
4202 for (StringRef Part : Parts) {
4203 OS << Sep << Part;
4204 Sep = Separator;
4205 }
4206 return OS.str().str();
4207}
4208
4209std::string
4210OpenMPIRBuilder::createPlatformSpecificName(ArrayRef<StringRef> Parts) const {
4211 return OpenMPIRBuilder::getNameWithSeparators(Parts, Config.firstSeparator(),
4212 Config.separator());
4213}
4214
4215GlobalVariable *
4216OpenMPIRBuilder::getOrCreateInternalVariable(Type *Ty, const StringRef &Name,
4217 unsigned AddressSpace) {
4218 auto &Elem = *InternalVars.try_emplace(Name, nullptr).first;
4219 if (Elem.second) {
4220 assert(cast<PointerType>(Elem.second->getType())(static_cast <bool> (cast<PointerType>(Elem.second
->getType()) ->isOpaqueOrPointeeTypeMatches(Ty) &&
"OMP internal variable has different type than requested") ?
void (0) : __assert_fail ("cast<PointerType>(Elem.second->getType()) ->isOpaqueOrPointeeTypeMatches(Ty) && \"OMP internal variable has different type than requested\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4222, __extension__
__PRETTY_FUNCTION__))
4221 ->isOpaqueOrPointeeTypeMatches(Ty) &&(static_cast <bool> (cast<PointerType>(Elem.second
->getType()) ->isOpaqueOrPointeeTypeMatches(Ty) &&
"OMP internal variable has different type than requested") ?
void (0) : __assert_fail ("cast<PointerType>(Elem.second->getType()) ->isOpaqueOrPointeeTypeMatches(Ty) && \"OMP internal variable has different type than requested\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4222, __extension__
__PRETTY_FUNCTION__))
4222 "OMP internal variable has different type than requested")(static_cast <bool> (cast<PointerType>(Elem.second
->getType()) ->isOpaqueOrPointeeTypeMatches(Ty) &&
"OMP internal variable has different type than requested") ?
void (0) : __assert_fail ("cast<PointerType>(Elem.second->getType()) ->isOpaqueOrPointeeTypeMatches(Ty) && \"OMP internal variable has different type than requested\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4222, __extension__
__PRETTY_FUNCTION__))
;
4223 } else {
4224 // TODO: investigate the appropriate linkage type used for the global
4225 // variable for possibly changing that to internal or private, or maybe
4226 // create different versions of the function for different OMP internal
4227 // variables.
4228 Elem.second = new GlobalVariable(
4229 M, Ty, /*IsConstant=*/false, GlobalValue::CommonLinkage,
4230 Constant::getNullValue(Ty), Elem.first(),
4231 /*InsertBefore=*/nullptr, GlobalValue::NotThreadLocal, AddressSpace);
4232 }
4233
4234 return cast<GlobalVariable>(&*Elem.second);
4235}
4236
4237Value *OpenMPIRBuilder::getOMPCriticalRegionLock(StringRef CriticalName) {
4238 std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
4239 std::string Name = getNameWithSeparators({Prefix, "var"}, ".", ".");
4240 return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
4241}
4242
4243Value *OpenMPIRBuilder::getSizeInBytes(Value *BasePtr) {
4244 LLVMContext &Ctx = Builder.getContext();
4245 Value *Null = Constant::getNullValue(BasePtr->getType()->getPointerTo());
4246 Value *SizeGep =
4247 Builder.CreateGEP(BasePtr->getType(), Null, Builder.getInt32(1));
4248 Value *SizePtrToInt = Builder.CreatePtrToInt(SizeGep, Type::getInt64Ty(Ctx));
4249 return SizePtrToInt;
4250}
4251
4252GlobalVariable *
4253OpenMPIRBuilder::createOffloadMaptypes(SmallVectorImpl<uint64_t> &Mappings,
4254 std::string VarName) {
4255 llvm::Constant *MaptypesArrayInit =
4256 llvm::ConstantDataArray::get(M.getContext(), Mappings);
4257 auto *MaptypesArrayGlobal = new llvm::GlobalVariable(
4258 M, MaptypesArrayInit->getType(),
4259 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MaptypesArrayInit,
4260 VarName);
4261 MaptypesArrayGlobal->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4262 return MaptypesArrayGlobal;
4263}
4264
4265void OpenMPIRBuilder::createMapperAllocas(const LocationDescription &Loc,
4266 InsertPointTy AllocaIP,
4267 unsigned NumOperands,
4268 struct MapperAllocas &MapperAllocas) {
4269 if (!updateToLocation(Loc))
4270 return;
4271
4272 auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands);
4273 auto *ArrI64Ty = ArrayType::get(Int64, NumOperands);
4274 Builder.restoreIP(AllocaIP);
4275 AllocaInst *ArgsBase = Builder.CreateAlloca(
4276 ArrI8PtrTy, /* ArraySize = */ nullptr, ".offload_baseptrs");
4277 AllocaInst *Args = Builder.CreateAlloca(ArrI8PtrTy, /* ArraySize = */ nullptr,
4278 ".offload_ptrs");
4279 AllocaInst *ArgSizes = Builder.CreateAlloca(
4280 ArrI64Ty, /* ArraySize = */ nullptr, ".offload_sizes");
4281 Builder.restoreIP(Loc.IP);
4282 MapperAllocas.ArgsBase = ArgsBase;
4283 MapperAllocas.Args = Args;
4284 MapperAllocas.ArgSizes = ArgSizes;
4285}
4286
4287void OpenMPIRBuilder::emitMapperCall(const LocationDescription &Loc,
4288 Function *MapperFunc, Value *SrcLocInfo,
4289 Value *MaptypesArg, Value *MapnamesArg,
4290 struct MapperAllocas &MapperAllocas,
4291 int64_t DeviceID, unsigned NumOperands) {
4292 if (!updateToLocation(Loc))
4293 return;
4294
4295 auto *ArrI8PtrTy = ArrayType::get(Int8Ptr, NumOperands);
4296 auto *ArrI64Ty = ArrayType::get(Int64, NumOperands);
4297 Value *ArgsBaseGEP =
4298 Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.ArgsBase,
4299 {Builder.getInt32(0), Builder.getInt32(0)});
4300 Value *ArgsGEP =
4301 Builder.CreateInBoundsGEP(ArrI8PtrTy, MapperAllocas.Args,
4302 {Builder.getInt32(0), Builder.getInt32(0)});
4303 Value *ArgSizesGEP =
4304 Builder.CreateInBoundsGEP(ArrI64Ty, MapperAllocas.ArgSizes,
4305 {Builder.getInt32(0), Builder.getInt32(0)});
4306 Value *NullPtr = Constant::getNullValue(Int8Ptr->getPointerTo());
4307 Builder.CreateCall(MapperFunc,
4308 {SrcLocInfo, Builder.getInt64(DeviceID),
4309 Builder.getInt32(NumOperands), ArgsBaseGEP, ArgsGEP,
4310 ArgSizesGEP, MaptypesArg, MapnamesArg, NullPtr});
4311}
4312
4313void OpenMPIRBuilder::emitOffloadingArraysArgument(IRBuilderBase &Builder,
4314 TargetDataRTArgs &RTArgs,
4315 TargetDataInfo &Info,
4316 bool EmitDebug,
4317 bool ForEndCall) {
4318 assert((!ForEndCall || Info.separateBeginEndCalls()) &&(static_cast <bool> ((!ForEndCall || Info.separateBeginEndCalls
()) && "expected region end call to runtime only when end call is separate"
) ? void (0) : __assert_fail ("(!ForEndCall || Info.separateBeginEndCalls()) && \"expected region end call to runtime only when end call is separate\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4319, __extension__
__PRETTY_FUNCTION__))
4319 "expected region end call to runtime only when end call is separate")(static_cast <bool> ((!ForEndCall || Info.separateBeginEndCalls
()) && "expected region end call to runtime only when end call is separate"
) ? void (0) : __assert_fail ("(!ForEndCall || Info.separateBeginEndCalls()) && \"expected region end call to runtime only when end call is separate\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4319, __extension__
__PRETTY_FUNCTION__))
;
4320 auto VoidPtrTy = Type::getInt8PtrTy(M.getContext());
4321 auto VoidPtrPtrTy = VoidPtrTy->getPointerTo(0);
4322 auto Int64Ty = Type::getInt64Ty(M.getContext());
4323 auto Int64PtrTy = Type::getInt64PtrTy(M.getContext());
4324
4325 if (!Info.NumberOfPtrs) {
4326 RTArgs.BasePointersArray = ConstantPointerNull::get(VoidPtrPtrTy);
4327 RTArgs.PointersArray = ConstantPointerNull::get(VoidPtrPtrTy);
4328 RTArgs.SizesArray = ConstantPointerNull::get(Int64PtrTy);
4329 RTArgs.MapTypesArray = ConstantPointerNull::get(Int64PtrTy);
4330 RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy);
4331 RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy);
4332 return;
4333 }
4334
4335 RTArgs.BasePointersArray = Builder.CreateConstInBoundsGEP2_32(
4336 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs),
4337 Info.RTArgs.BasePointersArray,
4338 /*Idx0=*/0, /*Idx1=*/0);
4339 RTArgs.PointersArray = Builder.CreateConstInBoundsGEP2_32(
4340 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.PointersArray,
4341 /*Idx0=*/0,
4342 /*Idx1=*/0);
4343 RTArgs.SizesArray = Builder.CreateConstInBoundsGEP2_32(
4344 ArrayType::get(Int64Ty, Info.NumberOfPtrs), Info.RTArgs.SizesArray,
4345 /*Idx0=*/0, /*Idx1=*/0);
4346 RTArgs.MapTypesArray = Builder.CreateConstInBoundsGEP2_32(
4347 ArrayType::get(Int64Ty, Info.NumberOfPtrs),
4348 ForEndCall && Info.RTArgs.MapTypesArrayEnd ? Info.RTArgs.MapTypesArrayEnd
4349 : Info.RTArgs.MapTypesArray,
4350 /*Idx0=*/0,
4351 /*Idx1=*/0);
4352
4353 // Only emit the mapper information arrays if debug information is
4354 // requested.
4355 if (!EmitDebug)
4356 RTArgs.MapNamesArray = ConstantPointerNull::get(VoidPtrPtrTy);
4357 else
4358 RTArgs.MapNamesArray = Builder.CreateConstInBoundsGEP2_32(
4359 ArrayType::get(VoidPtrTy, Info.NumberOfPtrs), Info.RTArgs.MapNamesArray,
4360 /*Idx0=*/0,
4361 /*Idx1=*/0);
4362 // If there is no user-defined mapper, set the mapper array to nullptr to
4363 // avoid an unnecessary data privatization
4364 if (!Info.HasMapper)
4365 RTArgs.MappersArray = ConstantPointerNull::get(VoidPtrPtrTy);
4366 else
4367 RTArgs.MappersArray =
4368 Builder.CreatePointerCast(Info.RTArgs.MappersArray, VoidPtrPtrTy);
4369}
4370
4371bool OpenMPIRBuilder::checkAndEmitFlushAfterAtomic(
4372 const LocationDescription &Loc, llvm::AtomicOrdering AO, AtomicKind AK) {
4373 assert(!(AO == AtomicOrdering::NotAtomic ||(static_cast <bool> (!(AO == AtomicOrdering::NotAtomic ||
AO == llvm::AtomicOrdering::Unordered) && "Unexpected Atomic Ordering."
) ? void (0) : __assert_fail ("!(AO == AtomicOrdering::NotAtomic || AO == llvm::AtomicOrdering::Unordered) && \"Unexpected Atomic Ordering.\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4375, __extension__
__PRETTY_FUNCTION__))
4374 AO == llvm::AtomicOrdering::Unordered) &&(static_cast <bool> (!(AO == AtomicOrdering::NotAtomic ||
AO == llvm::AtomicOrdering::Unordered) && "Unexpected Atomic Ordering."
) ? void (0) : __assert_fail ("!(AO == AtomicOrdering::NotAtomic || AO == llvm::AtomicOrdering::Unordered) && \"Unexpected Atomic Ordering.\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4375, __extension__
__PRETTY_FUNCTION__))
4375 "Unexpected Atomic Ordering.")(static_cast <bool> (!(AO == AtomicOrdering::NotAtomic ||
AO == llvm::AtomicOrdering::Unordered) && "Unexpected Atomic Ordering."
) ? void (0) : __assert_fail ("!(AO == AtomicOrdering::NotAtomic || AO == llvm::AtomicOrdering::Unordered) && \"Unexpected Atomic Ordering.\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4375, __extension__
__PRETTY_FUNCTION__))
;
4376
4377 bool Flush = false;
4378 llvm::AtomicOrdering FlushAO = AtomicOrdering::Monotonic;
4379
4380 switch (AK) {
4381 case Read:
4382 if (AO == AtomicOrdering::Acquire || AO == AtomicOrdering::AcquireRelease ||
4383 AO == AtomicOrdering::SequentiallyConsistent) {
4384 FlushAO = AtomicOrdering::Acquire;
4385 Flush = true;
4386 }
4387 break;
4388 case Write:
4389 case Compare:
4390 case Update:
4391 if (AO == AtomicOrdering::Release || AO == AtomicOrdering::AcquireRelease ||
4392 AO == AtomicOrdering::SequentiallyConsistent) {
4393 FlushAO = AtomicOrdering::Release;
4394 Flush = true;
4395 }
4396 break;
4397 case Capture:
4398 switch (AO) {
4399 case AtomicOrdering::Acquire:
4400 FlushAO = AtomicOrdering::Acquire;
4401 Flush = true;
4402 break;
4403 case AtomicOrdering::Release:
4404 FlushAO = AtomicOrdering::Release;
4405 Flush = true;
4406 break;
4407 case AtomicOrdering::AcquireRelease:
4408 case AtomicOrdering::SequentiallyConsistent:
4409 FlushAO = AtomicOrdering::AcquireRelease;
4410 Flush = true;
4411 break;
4412 default:
4413 // do nothing - leave silently.
4414 break;
4415 }
4416 }
4417
4418 if (Flush) {
4419 // Currently Flush RT call still doesn't take memory_ordering, so for when
4420 // that happens, this tries to do the resolution of which atomic ordering
4421 // to use with but issue the flush call
4422 // TODO: pass `FlushAO` after memory ordering support is added
4423 (void)FlushAO;
4424 emitFlush(Loc);
4425 }
4426
4427 // for AO == AtomicOrdering::Monotonic and all other case combinations
4428 // do nothing
4429 return Flush;
4430}
4431
4432OpenMPIRBuilder::InsertPointTy
4433OpenMPIRBuilder::createAtomicRead(const LocationDescription &Loc,
4434 AtomicOpValue &X, AtomicOpValue &V,
4435 AtomicOrdering AO) {
4436 if (!updateToLocation(Loc))
4437 return Loc.IP;
4438
4439 Type *XTy = X.Var->getType();
4440 assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory")(static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4440, __extension__
__PRETTY_FUNCTION__))
;
4441 Type *XElemTy = X.ElemTy;
4442 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||(static_cast <bool> ((XElemTy->isFloatingPointTy() ||
XElemTy->isIntegerTy() || XElemTy->isPointerTy()) &&
"OMP atomic read expected a scalar type") ? void (0) : __assert_fail
("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic read expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4444, __extension__
__PRETTY_FUNCTION__))
4443 XElemTy->isPointerTy()) &&(static_cast <bool> ((XElemTy->isFloatingPointTy() ||
XElemTy->isIntegerTy() || XElemTy->isPointerTy()) &&
"OMP atomic read expected a scalar type") ? void (0) : __assert_fail
("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic read expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4444, __extension__
__PRETTY_FUNCTION__))
4444 "OMP atomic read expected a scalar type")(static_cast <bool> ((XElemTy->isFloatingPointTy() ||
XElemTy->isIntegerTy() || XElemTy->isPointerTy()) &&
"OMP atomic read expected a scalar type") ? void (0) : __assert_fail
("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic read expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4444, __extension__
__PRETTY_FUNCTION__))
;
4445
4446 Value *XRead = nullptr;
4447
4448 if (XElemTy->isIntegerTy()) {
4449 LoadInst *XLD =
4450 Builder.CreateLoad(XElemTy, X.Var, X.IsVolatile, "omp.atomic.read");
4451 XLD->setAtomic(AO);
4452 XRead = cast<Value>(XLD);
4453 } else {
4454 // We need to bitcast and perform atomic op as integer
4455 unsigned Addrspace = cast<PointerType>(XTy)->getAddressSpace();
4456 IntegerType *IntCastTy =
4457 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
4458 Value *XBCast = Builder.CreateBitCast(
4459 X.Var, IntCastTy->getPointerTo(Addrspace), "atomic.src.int.cast");
4460 LoadInst *XLoad =
4461 Builder.CreateLoad(IntCastTy, XBCast, X.IsVolatile, "omp.atomic.load");
4462 XLoad->setAtomic(AO);
4463 if (XElemTy->isFloatingPointTy()) {
4464 XRead = Builder.CreateBitCast(XLoad, XElemTy, "atomic.flt.cast");
4465 } else {
4466 XRead = Builder.CreateIntToPtr(XLoad, XElemTy, "atomic.ptr.cast");
4467 }
4468 }
4469 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Read);
4470 Builder.CreateStore(XRead, V.Var, V.IsVolatile);
4471 return Builder.saveIP();
4472}
4473
4474OpenMPIRBuilder::InsertPointTy
4475OpenMPIRBuilder::createAtomicWrite(const LocationDescription &Loc,
4476 AtomicOpValue &X, Value *Expr,
4477 AtomicOrdering AO) {
4478 if (!updateToLocation(Loc))
4479 return Loc.IP;
4480
4481 Type *XTy = X.Var->getType();
4482 assert(XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory")(static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4482, __extension__
__PRETTY_FUNCTION__))
;
4483 Type *XElemTy = X.ElemTy;
4484 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||(static_cast <bool> ((XElemTy->isFloatingPointTy() ||
XElemTy->isIntegerTy() || XElemTy->isPointerTy()) &&
"OMP atomic write expected a scalar type") ? void (0) : __assert_fail
("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic write expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4486, __extension__
__PRETTY_FUNCTION__))
4485 XElemTy->isPointerTy()) &&(static_cast <bool> ((XElemTy->isFloatingPointTy() ||
XElemTy->isIntegerTy() || XElemTy->isPointerTy()) &&
"OMP atomic write expected a scalar type") ? void (0) : __assert_fail
("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic write expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4486, __extension__
__PRETTY_FUNCTION__))
4486 "OMP atomic write expected a scalar type")(static_cast <bool> ((XElemTy->isFloatingPointTy() ||
XElemTy->isIntegerTy() || XElemTy->isPointerTy()) &&
"OMP atomic write expected a scalar type") ? void (0) : __assert_fail
("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic write expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4486, __extension__
__PRETTY_FUNCTION__))
;
4487
4488 if (XElemTy->isIntegerTy()) {
4489 StoreInst *XSt = Builder.CreateStore(Expr, X.Var, X.IsVolatile);
4490 XSt->setAtomic(AO);
4491 } else {
4492 // We need to bitcast and perform atomic op as integers
4493 unsigned Addrspace = cast<PointerType>(XTy)->getAddressSpace();
4494 IntegerType *IntCastTy =
4495 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
4496 Value *XBCast = Builder.CreateBitCast(
4497 X.Var, IntCastTy->getPointerTo(Addrspace), "atomic.dst.int.cast");
4498 Value *ExprCast =
4499 Builder.CreateBitCast(Expr, IntCastTy, "atomic.src.int.cast");
4500 StoreInst *XSt = Builder.CreateStore(ExprCast, XBCast, X.IsVolatile);
4501 XSt->setAtomic(AO);
4502 }
4503
4504 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Write);
4505 return Builder.saveIP();
4506}
4507
4508OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicUpdate(
4509 const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X,
4510 Value *Expr, AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
4511 AtomicUpdateCallbackTy &UpdateOp, bool IsXBinopExpr) {
4512 assert(!isConflictIP(Loc.IP, AllocaIP) && "IPs must not be ambiguous")(static_cast <bool> (!isConflictIP(Loc.IP, AllocaIP) &&
"IPs must not be ambiguous") ? void (0) : __assert_fail ("!isConflictIP(Loc.IP, AllocaIP) && \"IPs must not be ambiguous\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4512, __extension__
__PRETTY_FUNCTION__))
;
4513 if (!updateToLocation(Loc))
4514 return Loc.IP;
4515
4516 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4517 Type *XTy = X.Var->getType();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4518 assert(XTy->isPointerTy() &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4519 "OMP Atomic expects a pointer to target memory");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4520 Type *XElemTy = X.ElemTy;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4521 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4522 XElemTy->isPointerTy()) &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4523 "OMP atomic update expected a scalar type");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4524 assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4525 (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4526 "OpenMP atomic does not support LT or GT operations");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4527 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4519, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic update expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic update expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4523, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp
!= AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::
UMin) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && (RMWOp != AtomicRMWInst::UMax) && (RMWOp != AtomicRMWInst::UMin) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4526, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
;
4528
4529 emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, RMWOp, UpdateOp,
4530 X.IsVolatile, IsXBinopExpr);
4531 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Update);
4532 return Builder.saveIP();
4533}
4534
4535// FIXME: Duplicating AtomicExpand
4536Value *OpenMPIRBuilder::emitRMWOpAsInstruction(Value *Src1, Value *Src2,
4537 AtomicRMWInst::BinOp RMWOp) {
4538 switch (RMWOp) {
4539 case AtomicRMWInst::Add:
4540 return Builder.CreateAdd(Src1, Src2);
4541 case AtomicRMWInst::Sub:
4542 return Builder.CreateSub(Src1, Src2);
4543 case AtomicRMWInst::And:
4544 return Builder.CreateAnd(Src1, Src2);
4545 case AtomicRMWInst::Nand:
4546 return Builder.CreateNeg(Builder.CreateAnd(Src1, Src2));
4547 case AtomicRMWInst::Or:
4548 return Builder.CreateOr(Src1, Src2);
4549 case AtomicRMWInst::Xor:
4550 return Builder.CreateXor(Src1, Src2);
4551 case AtomicRMWInst::Xchg:
4552 case AtomicRMWInst::FAdd:
4553 case AtomicRMWInst::FSub:
4554 case AtomicRMWInst::BAD_BINOP:
4555 case AtomicRMWInst::Max:
4556 case AtomicRMWInst::Min:
4557 case AtomicRMWInst::UMax:
4558 case AtomicRMWInst::UMin:
4559 case AtomicRMWInst::FMax:
4560 case AtomicRMWInst::FMin:
4561 case AtomicRMWInst::UIncWrap:
4562 case AtomicRMWInst::UDecWrap:
4563 llvm_unreachable("Unsupported atomic update operation")::llvm::llvm_unreachable_internal("Unsupported atomic update operation"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4563)
;
4564 }
4565 llvm_unreachable("Unsupported atomic update operation")::llvm::llvm_unreachable_internal("Unsupported atomic update operation"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4565)
;
4566}
4567
4568std::pair<Value *, Value *> OpenMPIRBuilder::emitAtomicUpdate(
4569 InsertPointTy AllocaIP, Value *X, Type *XElemTy, Value *Expr,
4570 AtomicOrdering AO, AtomicRMWInst::BinOp RMWOp,
4571 AtomicUpdateCallbackTy &UpdateOp, bool VolatileX, bool IsXBinopExpr) {
4572 // TODO: handle the case where XElemTy is not byte-sized or not a power of 2
4573 // or a complex datatype.
4574 bool emitRMWOp = false;
4575 switch (RMWOp) {
4576 case AtomicRMWInst::Add:
4577 case AtomicRMWInst::And:
4578 case AtomicRMWInst::Nand:
4579 case AtomicRMWInst::Or:
4580 case AtomicRMWInst::Xor:
4581 case AtomicRMWInst::Xchg:
4582 emitRMWOp = XElemTy;
4583 break;
4584 case AtomicRMWInst::Sub:
4585 emitRMWOp = (IsXBinopExpr && XElemTy);
4586 break;
4587 default:
4588 emitRMWOp = false;
4589 }
4590 emitRMWOp &= XElemTy->isIntegerTy();
4591
4592 std::pair<Value *, Value *> Res;
4593 if (emitRMWOp) {
4594 Res.first = Builder.CreateAtomicRMW(RMWOp, X, Expr, llvm::MaybeAlign(), AO);
4595 // not needed except in case of postfix captures. Generate anyway for
4596 // consistency with the else part. Will be removed with any DCE pass.
4597 // AtomicRMWInst::Xchg does not have a coressponding instruction.
4598 if (RMWOp == AtomicRMWInst::Xchg)
4599 Res.second = Res.first;
4600 else
4601 Res.second = emitRMWOpAsInstruction(Res.first, Expr, RMWOp);
4602 } else {
4603 unsigned Addrspace = cast<PointerType>(X->getType())->getAddressSpace();
4604 IntegerType *IntCastTy =
4605 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
4606 Value *XBCast =
4607 Builder.CreateBitCast(X, IntCastTy->getPointerTo(Addrspace));
4608 LoadInst *OldVal =
4609 Builder.CreateLoad(IntCastTy, XBCast, X->getName() + ".atomic.load");
4610 OldVal->setAtomic(AO);
4611 // CurBB
4612 // | /---\
4613 // ContBB |
4614 // | \---/
4615 // ExitBB
4616 BasicBlock *CurBB = Builder.GetInsertBlock();
4617 Instruction *CurBBTI = CurBB->getTerminator();
4618 CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable();
4619 BasicBlock *ExitBB =
4620 CurBB->splitBasicBlock(CurBBTI, X->getName() + ".atomic.exit");
4621 BasicBlock *ContBB = CurBB->splitBasicBlock(CurBB->getTerminator(),
4622 X->getName() + ".atomic.cont");
4623 ContBB->getTerminator()->eraseFromParent();
4624 Builder.restoreIP(AllocaIP);
4625 AllocaInst *NewAtomicAddr = Builder.CreateAlloca(XElemTy);
4626 NewAtomicAddr->setName(X->getName() + "x.new.val");
4627 Builder.SetInsertPoint(ContBB);
4628 llvm::PHINode *PHI = Builder.CreatePHI(OldVal->getType(), 2);
4629 PHI->addIncoming(OldVal, CurBB);
4630 IntegerType *NewAtomicCastTy =
4631 IntegerType::get(M.getContext(), XElemTy->getScalarSizeInBits());
4632 bool IsIntTy = XElemTy->isIntegerTy();
4633 Value *NewAtomicIntAddr =
4634 (IsIntTy)
4635 ? NewAtomicAddr
4636 : Builder.CreateBitCast(NewAtomicAddr,
4637 NewAtomicCastTy->getPointerTo(Addrspace));
4638 Value *OldExprVal = PHI;
4639 if (!IsIntTy) {
4640 if (XElemTy->isFloatingPointTy()) {
4641 OldExprVal = Builder.CreateBitCast(PHI, XElemTy,
4642 X->getName() + ".atomic.fltCast");
4643 } else {
4644 OldExprVal = Builder.CreateIntToPtr(PHI, XElemTy,
4645 X->getName() + ".atomic.ptrCast");
4646 }
4647 }
4648
4649 Value *Upd = UpdateOp(OldExprVal, Builder);
4650 Builder.CreateStore(Upd, NewAtomicAddr);
4651 LoadInst *DesiredVal = Builder.CreateLoad(IntCastTy, NewAtomicIntAddr);
4652 Value *XAddr =
4653 (IsIntTy)
4654 ? X
4655 : Builder.CreateBitCast(X, IntCastTy->getPointerTo(Addrspace));
4656 AtomicOrdering Failure =
4657 llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
4658 AtomicCmpXchgInst *Result = Builder.CreateAtomicCmpXchg(
4659 XAddr, PHI, DesiredVal, llvm::MaybeAlign(), AO, Failure);
4660 Result->setVolatile(VolatileX);
4661 Value *PreviousVal = Builder.CreateExtractValue(Result, /*Idxs=*/0);
4662 Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1);
4663 PHI->addIncoming(PreviousVal, Builder.GetInsertBlock());
4664 Builder.CreateCondBr(SuccessFailureVal, ExitBB, ContBB);
4665
4666 Res.first = OldExprVal;
4667 Res.second = Upd;
4668
4669 // set Insertion point in exit block
4670 if (UnreachableInst *ExitTI =
4671 dyn_cast<UnreachableInst>(ExitBB->getTerminator())) {
4672 CurBBTI->eraseFromParent();
4673 Builder.SetInsertPoint(ExitBB);
4674 } else {
4675 Builder.SetInsertPoint(ExitTI);
4676 }
4677 }
4678
4679 return Res;
4680}
4681
4682OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCapture(
4683 const LocationDescription &Loc, InsertPointTy AllocaIP, AtomicOpValue &X,
4684 AtomicOpValue &V, Value *Expr, AtomicOrdering AO,
4685 AtomicRMWInst::BinOp RMWOp, AtomicUpdateCallbackTy &UpdateOp,
4686 bool UpdateExpr, bool IsPostfixUpdate, bool IsXBinopExpr) {
4687 if (!updateToLocation(Loc))
4688 return Loc.IP;
4689
4690 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4693, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic capture expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4697, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4699, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4691 Type *XTy = X.Var->getType();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4693, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic capture expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4697, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4699, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4692 assert(XTy->isPointerTy() &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4693, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic capture expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4697, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4699, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4693 "OMP Atomic expects a pointer to target memory");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4693, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic capture expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4697, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4699, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4694 Type *XElemTy = X.ElemTy;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4693, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic capture expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4697, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4699, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4695 assert((XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() ||do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4693, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic capture expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4697, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4699, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4696 XElemTy->isPointerTy()) &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4693, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic capture expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4697, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4699, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4697 "OMP atomic capture expected a scalar type");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4693, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic capture expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4697, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4699, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4698 assert((RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4693, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic capture expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4697, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4699, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4699 "OpenMP atomic does not support LT or GT operations");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4693, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic capture expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4697, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4699, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
4700 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { Type *XTy = X.Var->getType(); (
static_cast <bool> (XTy->isPointerTy() && "OMP Atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("XTy->isPointerTy() && \"OMP Atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4693, __extension__
__PRETTY_FUNCTION__)); Type *XElemTy = X.ElemTy; (static_cast
<bool> ((XElemTy->isFloatingPointTy() || XElemTy->
isIntegerTy() || XElemTy->isPointerTy()) && "OMP atomic capture expected a scalar type"
) ? void (0) : __assert_fail ("(XElemTy->isFloatingPointTy() || XElemTy->isIntegerTy() || XElemTy->isPointerTy()) && \"OMP atomic capture expected a scalar type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4697, __extension__
__PRETTY_FUNCTION__)); (static_cast <bool> ((RMWOp != AtomicRMWInst
::Max) && (RMWOp != AtomicRMWInst::Min) && "OpenMP atomic does not support LT or GT operations"
) ? void (0) : __assert_fail ("(RMWOp != AtomicRMWInst::Max) && (RMWOp != AtomicRMWInst::Min) && \"OpenMP atomic does not support LT or GT operations\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4699, __extension__
__PRETTY_FUNCTION__)); }; } } while (false)
;
4701
4702 // If UpdateExpr is 'x' updated with some `expr` not based on 'x',
4703 // 'x' is simply atomically rewritten with 'expr'.
4704 AtomicRMWInst::BinOp AtomicOp = (UpdateExpr ? RMWOp : AtomicRMWInst::Xchg);
4705 std::pair<Value *, Value *> Result =
4706 emitAtomicUpdate(AllocaIP, X.Var, X.ElemTy, Expr, AO, AtomicOp, UpdateOp,
4707 X.IsVolatile, IsXBinopExpr);
4708
4709 Value *CapturedVal = (IsPostfixUpdate ? Result.first : Result.second);
4710 Builder.CreateStore(CapturedVal, V.Var, V.IsVolatile);
4711
4712 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Capture);
4713 return Builder.saveIP();
4714}
4715
4716OpenMPIRBuilder::InsertPointTy OpenMPIRBuilder::createAtomicCompare(
4717 const LocationDescription &Loc, AtomicOpValue &X, AtomicOpValue &V,
4718 AtomicOpValue &R, Value *E, Value *D, AtomicOrdering AO,
4719 omp::OMPAtomicCompareOp Op, bool IsXBinopExpr, bool IsPostfixUpdate,
4720 bool IsFailOnly) {
4721
4722 if (!updateToLocation(Loc))
4723 return Loc.IP;
4724
4725 assert(X.Var->getType()->isPointerTy() &&(static_cast <bool> (X.Var->getType()->isPointerTy
() && "OMP atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("X.Var->getType()->isPointerTy() && \"OMP atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4726, __extension__
__PRETTY_FUNCTION__))
4726 "OMP atomic expects a pointer to target memory")(static_cast <bool> (X.Var->getType()->isPointerTy
() && "OMP atomic expects a pointer to target memory"
) ? void (0) : __assert_fail ("X.Var->getType()->isPointerTy() && \"OMP atomic expects a pointer to target memory\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4726, __extension__
__PRETTY_FUNCTION__))
;
4727 // compare capture
4728 if (V.Var) {
4729 assert(V.Var->getType()->isPointerTy() && "v.var must be of pointer type")(static_cast <bool> (V.Var->getType()->isPointerTy
() && "v.var must be of pointer type") ? void (0) : __assert_fail
("V.Var->getType()->isPointerTy() && \"v.var must be of pointer type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4729, __extension__
__PRETTY_FUNCTION__))
;
4730 assert(V.ElemTy == X.ElemTy && "x and v must be of same type")(static_cast <bool> (V.ElemTy == X.ElemTy && "x and v must be of same type"
) ? void (0) : __assert_fail ("V.ElemTy == X.ElemTy && \"x and v must be of same type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4730, __extension__
__PRETTY_FUNCTION__))
;
4731 }
4732
4733 bool IsInteger = E->getType()->isIntegerTy();
4734
4735 if (Op == OMPAtomicCompareOp::EQ) {
4736 AtomicOrdering Failure = AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
4737 AtomicCmpXchgInst *Result = nullptr;
4738 if (!IsInteger) {
4739 unsigned Addrspace =
4740 cast<PointerType>(X.Var->getType())->getAddressSpace();
4741 IntegerType *IntCastTy =
4742 IntegerType::get(M.getContext(), X.ElemTy->getScalarSizeInBits());
4743 Value *XBCast =
4744 Builder.CreateBitCast(X.Var, IntCastTy->getPointerTo(Addrspace));
4745 Value *EBCast = Builder.CreateBitCast(E, IntCastTy);
4746 Value *DBCast = Builder.CreateBitCast(D, IntCastTy);
4747 Result = Builder.CreateAtomicCmpXchg(XBCast, EBCast, DBCast, MaybeAlign(),
4748 AO, Failure);
4749 } else {
4750 Result =
4751 Builder.CreateAtomicCmpXchg(X.Var, E, D, MaybeAlign(), AO, Failure);
4752 }
4753
4754 if (V.Var) {
4755 Value *OldValue = Builder.CreateExtractValue(Result, /*Idxs=*/0);
4756 if (!IsInteger)
4757 OldValue = Builder.CreateBitCast(OldValue, X.ElemTy);
4758 assert(OldValue->getType() == V.ElemTy &&(static_cast <bool> (OldValue->getType() == V.ElemTy
&& "OldValue and V must be of same type") ? void (0)
: __assert_fail ("OldValue->getType() == V.ElemTy && \"OldValue and V must be of same type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4759, __extension__
__PRETTY_FUNCTION__))
4759 "OldValue and V must be of same type")(static_cast <bool> (OldValue->getType() == V.ElemTy
&& "OldValue and V must be of same type") ? void (0)
: __assert_fail ("OldValue->getType() == V.ElemTy && \"OldValue and V must be of same type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4759, __extension__
__PRETTY_FUNCTION__))
;
4760 if (IsPostfixUpdate) {
4761 Builder.CreateStore(OldValue, V.Var, V.IsVolatile);
4762 } else {
4763 Value *SuccessOrFail = Builder.CreateExtractValue(Result, /*Idxs=*/1);
4764 if (IsFailOnly) {
4765 // CurBB----
4766 // | |
4767 // v |
4768 // ContBB |
4769 // | |
4770 // v |
4771 // ExitBB <-
4772 //
4773 // where ContBB only contains the store of old value to 'v'.
4774 BasicBlock *CurBB = Builder.GetInsertBlock();
4775 Instruction *CurBBTI = CurBB->getTerminator();
4776 CurBBTI = CurBBTI ? CurBBTI : Builder.CreateUnreachable();
4777 BasicBlock *ExitBB = CurBB->splitBasicBlock(
4778 CurBBTI, X.Var->getName() + ".atomic.exit");
4779 BasicBlock *ContBB = CurBB->splitBasicBlock(
4780 CurBB->getTerminator(), X.Var->getName() + ".atomic.cont");
4781 ContBB->getTerminator()->eraseFromParent();
4782 CurBB->getTerminator()->eraseFromParent();
4783
4784 Builder.CreateCondBr(SuccessOrFail, ExitBB, ContBB);
4785
4786 Builder.SetInsertPoint(ContBB);
4787 Builder.CreateStore(OldValue, V.Var);
4788 Builder.CreateBr(ExitBB);
4789
4790 if (UnreachableInst *ExitTI =
4791 dyn_cast<UnreachableInst>(ExitBB->getTerminator())) {
4792 CurBBTI->eraseFromParent();
4793 Builder.SetInsertPoint(ExitBB);
4794 } else {
4795 Builder.SetInsertPoint(ExitTI);
4796 }
4797 } else {
4798 Value *CapturedValue =
4799 Builder.CreateSelect(SuccessOrFail, E, OldValue);
4800 Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile);
4801 }
4802 }
4803 }
4804 // The comparison result has to be stored.
4805 if (R.Var) {
4806 assert(R.Var->getType()->isPointerTy() &&(static_cast <bool> (R.Var->getType()->isPointerTy
() && "r.var must be of pointer type") ? void (0) : __assert_fail
("R.Var->getType()->isPointerTy() && \"r.var must be of pointer type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4807, __extension__
__PRETTY_FUNCTION__))
4807 "r.var must be of pointer type")(static_cast <bool> (R.Var->getType()->isPointerTy
() && "r.var must be of pointer type") ? void (0) : __assert_fail
("R.Var->getType()->isPointerTy() && \"r.var must be of pointer type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4807, __extension__
__PRETTY_FUNCTION__))
;
4808 assert(R.ElemTy->isIntegerTy() && "r must be of integral type")(static_cast <bool> (R.ElemTy->isIntegerTy() &&
"r must be of integral type") ? void (0) : __assert_fail ("R.ElemTy->isIntegerTy() && \"r must be of integral type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4808, __extension__
__PRETTY_FUNCTION__))
;
4809
4810 Value *SuccessFailureVal = Builder.CreateExtractValue(Result, /*Idxs=*/1);
4811 Value *ResultCast = R.IsSigned
4812 ? Builder.CreateSExt(SuccessFailureVal, R.ElemTy)
4813 : Builder.CreateZExt(SuccessFailureVal, R.ElemTy);
4814 Builder.CreateStore(ResultCast, R.Var, R.IsVolatile);
4815 }
4816 } else {
4817 assert((Op == OMPAtomicCompareOp::MAX || Op == OMPAtomicCompareOp::MIN) &&(static_cast <bool> ((Op == OMPAtomicCompareOp::MAX || Op
== OMPAtomicCompareOp::MIN) && "Op should be either max or min at this point"
) ? void (0) : __assert_fail ("(Op == OMPAtomicCompareOp::MAX || Op == OMPAtomicCompareOp::MIN) && \"Op should be either max or min at this point\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4818, __extension__
__PRETTY_FUNCTION__))
4818 "Op should be either max or min at this point")(static_cast <bool> ((Op == OMPAtomicCompareOp::MAX || Op
== OMPAtomicCompareOp::MIN) && "Op should be either max or min at this point"
) ? void (0) : __assert_fail ("(Op == OMPAtomicCompareOp::MAX || Op == OMPAtomicCompareOp::MIN) && \"Op should be either max or min at this point\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4818, __extension__
__PRETTY_FUNCTION__))
;
4819 assert(!IsFailOnly && "IsFailOnly is only valid when the comparison is ==")(static_cast <bool> (!IsFailOnly && "IsFailOnly is only valid when the comparison is =="
) ? void (0) : __assert_fail ("!IsFailOnly && \"IsFailOnly is only valid when the comparison is ==\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4819, __extension__
__PRETTY_FUNCTION__))
;
4820
4821 // Reverse the ordop as the OpenMP forms are different from LLVM forms.
4822 // Let's take max as example.
4823 // OpenMP form:
4824 // x = x > expr ? expr : x;
4825 // LLVM form:
4826 // *ptr = *ptr > val ? *ptr : val;
4827 // We need to transform to LLVM form.
4828 // x = x <= expr ? x : expr;
4829 AtomicRMWInst::BinOp NewOp;
4830 if (IsXBinopExpr) {
4831 if (IsInteger) {
4832 if (X.IsSigned)
4833 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Min
4834 : AtomicRMWInst::Max;
4835 else
4836 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMin
4837 : AtomicRMWInst::UMax;
4838 } else {
4839 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMin
4840 : AtomicRMWInst::FMax;
4841 }
4842 } else {
4843 if (IsInteger) {
4844 if (X.IsSigned)
4845 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::Max
4846 : AtomicRMWInst::Min;
4847 else
4848 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::UMax
4849 : AtomicRMWInst::UMin;
4850 } else {
4851 NewOp = Op == OMPAtomicCompareOp::MAX ? AtomicRMWInst::FMax
4852 : AtomicRMWInst::FMin;
4853 }
4854 }
4855
4856 AtomicRMWInst *OldValue =
4857 Builder.CreateAtomicRMW(NewOp, X.Var, E, MaybeAlign(), AO);
4858 if (V.Var) {
4859 Value *CapturedValue = nullptr;
4860 if (IsPostfixUpdate) {
4861 CapturedValue = OldValue;
4862 } else {
4863 CmpInst::Predicate Pred;
4864 switch (NewOp) {
4865 case AtomicRMWInst::Max:
4866 Pred = CmpInst::ICMP_SGT;
4867 break;
4868 case AtomicRMWInst::UMax:
4869 Pred = CmpInst::ICMP_UGT;
4870 break;
4871 case AtomicRMWInst::FMax:
4872 Pred = CmpInst::FCMP_OGT;
4873 break;
4874 case AtomicRMWInst::Min:
4875 Pred = CmpInst::ICMP_SLT;
4876 break;
4877 case AtomicRMWInst::UMin:
4878 Pred = CmpInst::ICMP_ULT;
4879 break;
4880 case AtomicRMWInst::FMin:
4881 Pred = CmpInst::FCMP_OLT;
4882 break;
4883 default:
4884 llvm_unreachable("unexpected comparison op")::llvm::llvm_unreachable_internal("unexpected comparison op",
"llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 4884)
;
4885 }
4886 Value *NonAtomicCmp = Builder.CreateCmp(Pred, OldValue, E);
4887 CapturedValue = Builder.CreateSelect(NonAtomicCmp, E, OldValue);
4888 }
4889 Builder.CreateStore(CapturedValue, V.Var, V.IsVolatile);
4890 }
4891 }
4892
4893 checkAndEmitFlushAfterAtomic(Loc, AO, AtomicKind::Compare);
4894
4895 return Builder.saveIP();
4896}
4897
4898GlobalVariable *
4899OpenMPIRBuilder::createOffloadMapnames(SmallVectorImpl<llvm::Constant *> &Names,
4900 std::string VarName) {
4901 llvm::Constant *MapNamesArrayInit = llvm::ConstantArray::get(
4902 llvm::ArrayType::get(
4903 llvm::Type::getInt8Ty(M.getContext())->getPointerTo(), Names.size()),
4904 Names);
4905 auto *MapNamesArrayGlobal = new llvm::GlobalVariable(
4906 M, MapNamesArrayInit->getType(),
4907 /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, MapNamesArrayInit,
4908 VarName);
4909 return MapNamesArrayGlobal;
4910}
4911
4912// Create all simple and struct types exposed by the runtime and remember
4913// the llvm::PointerTypes of them for easy access later.
4914void OpenMPIRBuilder::initializeTypes(Module &M) {
4915 LLVMContext &Ctx = M.getContext();
4916 StructType *T;
4917#define OMP_TYPE(VarName, InitValue) VarName = InitValue;
4918#define OMP_ARRAY_TYPE(VarName, ElemTy, ArraySize) \
4919 VarName##Ty = ArrayType::get(ElemTy, ArraySize); \
4920 VarName##PtrTy = PointerType::getUnqual(VarName##Ty);
4921#define OMP_FUNCTION_TYPE(VarName, IsVarArg, ReturnType, ...) \
4922 VarName = FunctionType::get(ReturnType, {__VA_ARGS__}, IsVarArg); \
4923 VarName##Ptr = PointerType::getUnqual(VarName);
4924#define OMP_STRUCT_TYPE(VarName, StructName, Packed, ...) \
4925 T = StructType::getTypeByName(Ctx, StructName); \
4926 if (!T) \
4927 T = StructType::create(Ctx, {__VA_ARGS__}, StructName, Packed); \
4928 VarName = T; \
4929 VarName##Ptr = PointerType::getUnqual(T);
4930#include "llvm/Frontend/OpenMP/OMPKinds.def"
4931}
4932
4933void OpenMPIRBuilder::OutlineInfo::collectBlocks(
4934 SmallPtrSetImpl<BasicBlock *> &BlockSet,
4935 SmallVectorImpl<BasicBlock *> &BlockVector) {
4936 SmallVector<BasicBlock *, 32> Worklist;
4937 BlockSet.insert(EntryBB);
4938 BlockSet.insert(ExitBB);
4939
4940 Worklist.push_back(EntryBB);
4941 while (!Worklist.empty()) {
4942 BasicBlock *BB = Worklist.pop_back_val();
4943 BlockVector.push_back(BB);
4944 for (BasicBlock *SuccBB : successors(BB))
4945 if (BlockSet.insert(SuccBB).second)
4946 Worklist.push_back(SuccBB);
4947 }
4948}
4949
4950void OpenMPIRBuilder::createOffloadEntry(Constant *ID, Constant *Addr,
4951 uint64_t Size, int32_t Flags,
4952 GlobalValue::LinkageTypes) {
4953 if (!Config.isTargetCodegen()) {
4954 emitOffloadingEntry(ID, Addr->getName(), Size, Flags);
4955 return;
4956 }
4957 // TODO: Add support for global variables on the device after declare target
4958 // support.
4959 Function *Fn = dyn_cast<Function>(Addr);
4960 if (!Fn)
4961 return;
4962
4963 Module &M = *(Fn->getParent());
4964 LLVMContext &Ctx = M.getContext();
4965
4966 // Get "nvvm.annotations" metadata node.
4967 NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
4968
4969 Metadata *MDVals[] = {
4970 ConstantAsMetadata::get(Fn), MDString::get(Ctx, "kernel"),
4971 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Ctx), 1))};
4972 // Append metadata to nvvm.annotations.
4973 MD->addOperand(MDNode::get(Ctx, MDVals));
4974
4975 // Add a function attribute for the kernel.
4976 Fn->addFnAttr(Attribute::get(Ctx, "kernel"));
4977 if (Triple(M.getTargetTriple()).isAMDGCN())
4978 Fn->addFnAttr("uniform-work-group-size", "true");
4979}
4980
4981// We only generate metadata for function that contain target regions.
4982void OpenMPIRBuilder::createOffloadEntriesAndInfoMetadata(
4983 EmitMetadataErrorReportFunctionTy &ErrorFn) {
4984
4985 // If there are no entries, we don't need to do anything.
4986 if (OffloadInfoManager.empty())
4987 return;
4988
4989 LLVMContext &C = M.getContext();
4990 SmallVector<std::pair<const OffloadEntriesInfoManager::OffloadEntryInfo *,
4991 TargetRegionEntryInfo>,
4992 16>
4993 OrderedEntries(OffloadInfoManager.size());
4994
4995 // Auxiliary methods to create metadata values and strings.
4996 auto &&GetMDInt = [this](unsigned V) {
4997 return ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), V));
4998 };
4999
5000 auto &&GetMDString = [&C](StringRef V) { return MDString::get(C, V); };
5001
5002 // Create the offloading info metadata node.
5003 NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
5004 auto &&TargetRegionMetadataEmitter =
5005 [&C, MD, &OrderedEntries, &GetMDInt, &GetMDString](
5006 const TargetRegionEntryInfo &EntryInfo,
5007 const OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion &E) {
5008 // Generate metadata for target regions. Each entry of this metadata
5009 // contains:
5010 // - Entry 0 -> Kind of this type of metadata (0).
5011 // - Entry 1 -> Device ID of the file where the entry was identified.
5012 // - Entry 2 -> File ID of the file where the entry was identified.
5013 // - Entry 3 -> Mangled name of the function where the entry was
5014 // identified.
5015 // - Entry 4 -> Line in the file where the entry was identified.
5016 // - Entry 5 -> Count of regions at this DeviceID/FilesID/Line.
5017 // - Entry 6 -> Order the entry was created.
5018 // The first element of the metadata node is the kind.
5019 Metadata *Ops[] = {
5020 GetMDInt(E.getKind()), GetMDInt(EntryInfo.DeviceID),
5021 GetMDInt(EntryInfo.FileID), GetMDString(EntryInfo.ParentName),
5022 GetMDInt(EntryInfo.Line), GetMDInt(EntryInfo.Count),
5023 GetMDInt(E.getOrder())};
5024
5025 // Save this entry in the right position of the ordered entries array.
5026 OrderedEntries[E.getOrder()] = std::make_pair(&E, EntryInfo);
5027
5028 // Add metadata to the named metadata node.
5029 MD->addOperand(MDNode::get(C, Ops));
5030 };
5031
5032 OffloadInfoManager.actOnTargetRegionEntriesInfo(TargetRegionMetadataEmitter);
5033
5034 // Create function that emits metadata for each device global variable entry;
5035 auto &&DeviceGlobalVarMetadataEmitter =
5036 [&C, &OrderedEntries, &GetMDInt, &GetMDString, MD](
5037 StringRef MangledName,
5038 const OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar &E) {
5039 // Generate metadata for global variables. Each entry of this metadata
5040 // contains:
5041 // - Entry 0 -> Kind of this type of metadata (1).
5042 // - Entry 1 -> Mangled name of the variable.
5043 // - Entry 2 -> Declare target kind.
5044 // - Entry 3 -> Order the entry was created.
5045 // The first element of the metadata node is the kind.
5046 Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDString(MangledName),
5047 GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
5048
5049 // Save this entry in the right position of the ordered entries array.
5050 TargetRegionEntryInfo varInfo(MangledName, 0, 0, 0);
5051 OrderedEntries[E.getOrder()] = std::make_pair(&E, varInfo);
5052
5053 // Add metadata to the named metadata node.
5054 MD->addOperand(MDNode::get(C, Ops));
5055 };
5056
5057 OffloadInfoManager.actOnDeviceGlobalVarEntriesInfo(
5058 DeviceGlobalVarMetadataEmitter);
5059
5060 for (const auto &E : OrderedEntries) {
5061 assert(E.first && "All ordered entries must exist!")(static_cast <bool> (E.first && "All ordered entries must exist!"
) ? void (0) : __assert_fail ("E.first && \"All ordered entries must exist!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5061, __extension__
__PRETTY_FUNCTION__))
;
5062 if (const auto *CE =
5063 dyn_cast<OffloadEntriesInfoManager::OffloadEntryInfoTargetRegion>(
5064 E.first)) {
5065 if (!CE->getID() || !CE->getAddress()) {
5066 // Do not blame the entry if the parent funtion is not emitted.
5067 TargetRegionEntryInfo EntryInfo = E.second;
5068 StringRef FnName = EntryInfo.ParentName;
5069 if (!M.getNamedValue(FnName))
5070 continue;
5071 ErrorFn(EMIT_MD_TARGET_REGION_ERROR, EntryInfo);
5072 continue;
5073 }
5074 createOffloadEntry(CE->getID(), CE->getAddress(),
5075 /*Size=*/0, CE->getFlags(),
5076 GlobalValue::WeakAnyLinkage);
5077 } else if (const auto *CE = dyn_cast<
5078 OffloadEntriesInfoManager::OffloadEntryInfoDeviceGlobalVar>(
5079 E.first)) {
5080 OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind Flags =
5081 static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>(
5082 CE->getFlags());
5083 switch (Flags) {
5084 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo: {
5085 if (Config.isEmbedded() && Config.hasRequiresUnifiedSharedMemory())
5086 continue;
5087 if (!CE->getAddress()) {
5088 ErrorFn(EMIT_MD_DECLARE_TARGET_ERROR, E.second);
5089 continue;
5090 }
5091 // The vaiable has no definition - no need to add the entry.
5092 if (CE->getVarSize() == 0)
5093 continue;
5094 break;
5095 }
5096 case OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink:
5097 assert(((Config.isEmbedded() && !CE->getAddress()) ||(static_cast <bool> (((Config.isEmbedded() && !
CE->getAddress()) || (!Config.isEmbedded() && CE->
getAddress())) && "Declaret target link address is set."
) ? void (0) : __assert_fail ("((Config.isEmbedded() && !CE->getAddress()) || (!Config.isEmbedded() && CE->getAddress())) && \"Declaret target link address is set.\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5099, __extension__
__PRETTY_FUNCTION__))
5098 (!Config.isEmbedded() && CE->getAddress())) &&(static_cast <bool> (((Config.isEmbedded() && !
CE->getAddress()) || (!Config.isEmbedded() && CE->
getAddress())) && "Declaret target link address is set."
) ? void (0) : __assert_fail ("((Config.isEmbedded() && !CE->getAddress()) || (!Config.isEmbedded() && CE->getAddress())) && \"Declaret target link address is set.\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5099, __extension__
__PRETTY_FUNCTION__))
5099 "Declaret target link address is set.")(static_cast <bool> (((Config.isEmbedded() && !
CE->getAddress()) || (!Config.isEmbedded() && CE->
getAddress())) && "Declaret target link address is set."
) ? void (0) : __assert_fail ("((Config.isEmbedded() && !CE->getAddress()) || (!Config.isEmbedded() && CE->getAddress())) && \"Declaret target link address is set.\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5099, __extension__
__PRETTY_FUNCTION__))
;
5100 if (Config.isEmbedded())
5101 continue;
5102 if (!CE->getAddress()) {
5103 ErrorFn(EMIT_MD_GLOBAL_VAR_LINK_ERROR, TargetRegionEntryInfo());
5104 continue;
5105 }
5106 break;
5107 }
5108
5109 // Hidden or internal symbols on the device are not externally visible.
5110 // We should not attempt to register them by creating an offloading
5111 // entry.
5112 if (auto *GV = dyn_cast<GlobalValue>(CE->getAddress()))
5113 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
5114 continue;
5115
5116 createOffloadEntry(CE->getAddress(), CE->getAddress(), CE->getVarSize(),
5117 Flags, CE->getLinkage());
5118
5119 } else {
5120 llvm_unreachable("Unsupported entry kind.")::llvm::llvm_unreachable_internal("Unsupported entry kind.", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp"
, 5120)
;
5121 }
5122 }
5123}
5124
5125void TargetRegionEntryInfo::getTargetRegionEntryFnName(
5126 SmallVectorImpl<char> &Name, StringRef ParentName, unsigned DeviceID,
5127 unsigned FileID, unsigned Line, unsigned Count) {
5128 raw_svector_ostream OS(Name);
5129 OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
5130 << llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
5131 if (Count)
5132 OS << "_" << Count;
5133}
5134
5135void OffloadEntriesInfoManager::getTargetRegionEntryFnName(
5136 SmallVectorImpl<char> &Name, const TargetRegionEntryInfo &EntryInfo) {
5137 unsigned NewCount = getTargetRegionEntryInfoCount(EntryInfo);
5138 TargetRegionEntryInfo::getTargetRegionEntryFnName(
5139 Name, EntryInfo.ParentName, EntryInfo.DeviceID, EntryInfo.FileID,
5140 EntryInfo.Line, NewCount);
5141}
5142
5143/// Loads all the offload entries information from the host IR
5144/// metadata.
5145void OpenMPIRBuilder::loadOffloadInfoMetadata(Module &M) {
5146 // If we are in target mode, load the metadata from the host IR. This code has
5147 // to match the metadata creation in createOffloadEntriesAndInfoMetadata().
5148
5149 NamedMDNode *MD = M.getNamedMetadata(ompOffloadInfoName);
5150 if (!MD)
5151 return;
5152
5153 for (MDNode *MN : MD->operands()) {
5154 auto &&GetMDInt = [MN](unsigned Idx) {
5155 auto *V = cast<ConstantAsMetadata>(MN->getOperand(Idx));
5156 return cast<ConstantInt>(V->getValue())->getZExtValue();
5157 };
5158
5159 auto &&GetMDString = [MN](unsigned Idx) {
5160 auto *V = cast<MDString>(MN->getOperand(Idx));
5161 return V->getString();
5162 };
5163
5164 switch (GetMDInt(0)) {
5165 default:
5166 llvm_unreachable("Unexpected metadata!")::llvm::llvm_unreachable_internal("Unexpected metadata!", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp"
, 5166)
;
5167 break;
5168 case OffloadEntriesInfoManager::OffloadEntryInfo::
5169 OffloadingEntryInfoTargetRegion: {
5170 TargetRegionEntryInfo EntryInfo(/*ParentName=*/GetMDString(3),
5171 /*DeviceID=*/GetMDInt(1),
5172 /*FileID=*/GetMDInt(2),
5173 /*Line=*/GetMDInt(4),
5174 /*Count=*/GetMDInt(5));
5175 OffloadInfoManager.initializeTargetRegionEntryInfo(EntryInfo,
5176 /*Order=*/GetMDInt(6));
5177 break;
5178 }
5179 case OffloadEntriesInfoManager::OffloadEntryInfo::
5180 OffloadingEntryInfoDeviceGlobalVar:
5181 OffloadInfoManager.initializeDeviceGlobalVarEntryInfo(
5182 /*MangledName=*/GetMDString(1),
5183 static_cast<OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind>(
5184 /*Flags=*/GetMDInt(2)),
5185 /*Order=*/GetMDInt(3));
5186 break;
5187 }
5188 }
5189}
5190
5191bool OffloadEntriesInfoManager::empty() const {
5192 return OffloadEntriesTargetRegion.empty() &&
5193 OffloadEntriesDeviceGlobalVar.empty();
5194}
5195
5196unsigned OffloadEntriesInfoManager::getTargetRegionEntryInfoCount(
5197 const TargetRegionEntryInfo &EntryInfo) const {
5198 auto It = OffloadEntriesTargetRegionCount.find(
5199 getTargetRegionEntryCountKey(EntryInfo));
5200 if (It == OffloadEntriesTargetRegionCount.end())
5201 return 0;
5202 return It->second;
5203}
5204
5205void OffloadEntriesInfoManager::incrementTargetRegionEntryInfoCount(
5206 const TargetRegionEntryInfo &EntryInfo) {
5207 OffloadEntriesTargetRegionCount[getTargetRegionEntryCountKey(EntryInfo)] =
5208 EntryInfo.Count + 1;
5209}
5210
5211/// Initialize target region entry.
5212void OffloadEntriesInfoManager::initializeTargetRegionEntryInfo(
5213 const TargetRegionEntryInfo &EntryInfo, unsigned Order) {
5214 OffloadEntriesTargetRegion[EntryInfo] =
5215 OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
5216 OMPTargetRegionEntryTargetRegion);
5217 ++OffloadingEntriesNum;
5218}
5219
5220void OffloadEntriesInfoManager::registerTargetRegionEntryInfo(
5221 TargetRegionEntryInfo EntryInfo, Constant *Addr, Constant *ID,
5222 OMPTargetRegionEntryKind Flags) {
5223 assert(EntryInfo.Count == 0 && "expected default EntryInfo")(static_cast <bool> (EntryInfo.Count == 0 && "expected default EntryInfo"
) ? void (0) : __assert_fail ("EntryInfo.Count == 0 && \"expected default EntryInfo\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5223, __extension__
__PRETTY_FUNCTION__))
;
5224
5225 // Update the EntryInfo with the next available count for this location.
5226 EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo);
5227
5228 // If we are emitting code for a target, the entry is already initialized,
5229 // only has to be registered.
5230 if (OMPBuilder->Config.isEmbedded()) {
5231 // This could happen if the device compilation is invoked standalone.
5232 if (!hasTargetRegionEntryInfo(EntryInfo)) {
5233 return;
5234 }
5235 auto &Entry = OffloadEntriesTargetRegion[EntryInfo];
5236 Entry.setAddress(Addr);
5237 Entry.setID(ID);
5238 Entry.setFlags(Flags);
5239 } else {
5240 if (Flags == OffloadEntriesInfoManager::OMPTargetRegionEntryTargetRegion &&
5241 hasTargetRegionEntryInfo(EntryInfo, /*IgnoreAddressId*/ true))
5242 return;
5243 assert(!hasTargetRegionEntryInfo(EntryInfo) &&(static_cast <bool> (!hasTargetRegionEntryInfo(EntryInfo
) && "Target region entry already registered!") ? void
(0) : __assert_fail ("!hasTargetRegionEntryInfo(EntryInfo) && \"Target region entry already registered!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5244, __extension__
__PRETTY_FUNCTION__))
5244 "Target region entry already registered!")(static_cast <bool> (!hasTargetRegionEntryInfo(EntryInfo
) && "Target region entry already registered!") ? void
(0) : __assert_fail ("!hasTargetRegionEntryInfo(EntryInfo) && \"Target region entry already registered!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5244, __extension__
__PRETTY_FUNCTION__))
;
5245 OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
5246 OffloadEntriesTargetRegion[EntryInfo] = Entry;
5247 ++OffloadingEntriesNum;
5248 }
5249 incrementTargetRegionEntryInfoCount(EntryInfo);
5250}
5251
5252bool OffloadEntriesInfoManager::hasTargetRegionEntryInfo(
5253 TargetRegionEntryInfo EntryInfo, bool IgnoreAddressId) const {
5254
5255 // Update the EntryInfo with the next available count for this location.
5256 EntryInfo.Count = getTargetRegionEntryInfoCount(EntryInfo);
5257
5258 auto It = OffloadEntriesTargetRegion.find(EntryInfo);
5259 if (It == OffloadEntriesTargetRegion.end()) {
5260 return false;
5261 }
5262 // Fail if this entry is already registered.
5263 if (!IgnoreAddressId && (It->second.getAddress() || It->second.getID()))
5264 return false;
5265 return true;
5266}
5267
5268void OffloadEntriesInfoManager::actOnTargetRegionEntriesInfo(
5269 const OffloadTargetRegionEntryInfoActTy &Action) {
5270 // Scan all target region entries and perform the provided action.
5271 for (const auto &It : OffloadEntriesTargetRegion) {
5272 Action(It.first, It.second);
5273 }
5274}
5275
5276void OffloadEntriesInfoManager::initializeDeviceGlobalVarEntryInfo(
5277 StringRef Name, OMPTargetGlobalVarEntryKind Flags, unsigned Order) {
5278 OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
5279 ++OffloadingEntriesNum;
5280}
5281
5282void OffloadEntriesInfoManager::registerDeviceGlobalVarEntryInfo(
5283 StringRef VarName, Constant *Addr, int64_t VarSize,
5284 OMPTargetGlobalVarEntryKind Flags, GlobalValue::LinkageTypes Linkage) {
5285 if (OMPBuilder->Config.isEmbedded()) {
5286 // This could happen if the device compilation is invoked standalone.
5287 if (!hasDeviceGlobalVarEntryInfo(VarName))
5288 return;
5289 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
5290 if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
5291 if (Entry.getVarSize() == 0) {
5292 Entry.setVarSize(VarSize);
5293 Entry.setLinkage(Linkage);
5294 }
5295 return;
5296 }
5297 Entry.setVarSize(VarSize);
5298 Entry.setLinkage(Linkage);
5299 Entry.setAddress(Addr);
5300 } else {
5301 if (hasDeviceGlobalVarEntryInfo(VarName)) {
5302 auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
5303 assert(Entry.isValid() && Entry.getFlags() == Flags &&(static_cast <bool> (Entry.isValid() && Entry.getFlags
() == Flags && "Entry not initialized!") ? void (0) :
__assert_fail ("Entry.isValid() && Entry.getFlags() == Flags && \"Entry not initialized!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5304, __extension__
__PRETTY_FUNCTION__))
5304 "Entry not initialized!")(static_cast <bool> (Entry.isValid() && Entry.getFlags
() == Flags && "Entry not initialized!") ? void (0) :
__assert_fail ("Entry.isValid() && Entry.getFlags() == Flags && \"Entry not initialized!\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5304, __extension__
__PRETTY_FUNCTION__))
;
5305 if (Entry.getVarSize() == 0) {
5306 Entry.setVarSize(VarSize);
5307 Entry.setLinkage(Linkage);
5308 }
5309 return;
5310 }
5311 OffloadEntriesDeviceGlobalVar.try_emplace(VarName, OffloadingEntriesNum,
5312 Addr, VarSize, Flags, Linkage);
5313 ++OffloadingEntriesNum;
5314 }
5315}
5316
5317void OffloadEntriesInfoManager::actOnDeviceGlobalVarEntriesInfo(
5318 const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
5319 // Scan all target region entries and perform the provided action.
5320 for (const auto &E : OffloadEntriesDeviceGlobalVar)
5321 Action(E.getKey(), E.getValue());
5322}
5323
5324void CanonicalLoopInfo::collectControlBlocks(
5325 SmallVectorImpl<BasicBlock *> &BBs) {
5326 // We only count those BBs as control block for which we do not need to
5327 // reverse the CFG, i.e. not the loop body which can contain arbitrary control
5328 // flow. For consistency, this also means we do not add the Body block, which
5329 // is just the entry to the body code.
5330 BBs.reserve(BBs.size() + 6);
5331 BBs.append({getPreheader(), Header, Cond, Latch, Exit, getAfter()});
5332}
5333
5334BasicBlock *CanonicalLoopInfo::getPreheader() const {
5335 assert(isValid() && "Requires a valid canonical loop")(static_cast <bool> (isValid() && "Requires a valid canonical loop"
) ? void (0) : __assert_fail ("isValid() && \"Requires a valid canonical loop\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5335, __extension__
__PRETTY_FUNCTION__))
;
5336 for (BasicBlock *Pred : predecessors(Header)) {
5337 if (Pred != Latch)
5338 return Pred;
5339 }
5340 llvm_unreachable("Missing preheader")::llvm::llvm_unreachable_internal("Missing preheader", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp"
, 5340)
;
5341}
5342
5343void CanonicalLoopInfo::setTripCount(Value *TripCount) {
5344 assert(isValid() && "Requires a valid canonical loop")(static_cast <bool> (isValid() && "Requires a valid canonical loop"
) ? void (0) : __assert_fail ("isValid() && \"Requires a valid canonical loop\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5344, __extension__
__PRETTY_FUNCTION__))
;
5345
5346 Instruction *CmpI = &getCond()->front();
5347 assert(isa<CmpInst>(CmpI) && "First inst must compare IV with TripCount")(static_cast <bool> (isa<CmpInst>(CmpI) &&
"First inst must compare IV with TripCount") ? void (0) : __assert_fail
("isa<CmpInst>(CmpI) && \"First inst must compare IV with TripCount\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5347, __extension__
__PRETTY_FUNCTION__))
;
5348 CmpI->setOperand(1, TripCount);
5349
5350#ifndef NDEBUG
5351 assertOK();
5352#endif
5353}
5354
5355void CanonicalLoopInfo::mapIndVar(
5356 llvm::function_ref<Value *(Instruction *)> Updater) {
5357 assert(isValid() && "Requires a valid canonical loop")(static_cast <bool> (isValid() && "Requires a valid canonical loop"
) ? void (0) : __assert_fail ("isValid() && \"Requires a valid canonical loop\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5357, __extension__
__PRETTY_FUNCTION__))
;
5358
5359 Instruction *OldIV = getIndVar();
5360
5361 // Record all uses excluding those introduced by the updater. Uses by the
5362 // CanonicalLoopInfo itself to keep track of the number of iterations are
5363 // excluded.
5364 SmallVector<Use *> ReplacableUses;
5365 for (Use &U : OldIV->uses()) {
5366 auto *User = dyn_cast<Instruction>(U.getUser());
5367 if (!User)
5368 continue;
5369 if (User->getParent() == getCond())
5370 continue;
5371 if (User->getParent() == getLatch())
5372 continue;
5373 ReplacableUses.push_back(&U);
5374 }
5375
5376 // Run the updater that may introduce new uses
5377 Value *NewIV = Updater(OldIV);
5378
5379 // Replace the old uses with the value returned by the updater.
5380 for (Use *U : ReplacableUses)
5381 U->set(NewIV);
5382
5383#ifndef NDEBUG
5384 assertOK();
5385#endif
5386}
5387
5388void CanonicalLoopInfo::assertOK() const {
5389#ifndef NDEBUG
5390 // No constraints if this object currently does not describe a loop.
5391 if (!isValid())
5392 return;
5393
5394 BasicBlock *Preheader = getPreheader();
5395 BasicBlock *Body = getBody();
5396 BasicBlock *After = getAfter();
5397
5398 // Verify standard control-flow we use for OpenMP loops.
5399 assert(Preheader)(static_cast <bool> (Preheader) ? void (0) : __assert_fail
("Preheader", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5399
, __extension__ __PRETTY_FUNCTION__))
;
5400 assert(isa<BranchInst>(Preheader->getTerminator()) &&(static_cast <bool> (isa<BranchInst>(Preheader->
getTerminator()) && "Preheader must terminate with unconditional branch"
) ? void (0) : __assert_fail ("isa<BranchInst>(Preheader->getTerminator()) && \"Preheader must terminate with unconditional branch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5401, __extension__
__PRETTY_FUNCTION__))
5401 "Preheader must terminate with unconditional branch")(static_cast <bool> (isa<BranchInst>(Preheader->
getTerminator()) && "Preheader must terminate with unconditional branch"
) ? void (0) : __assert_fail ("isa<BranchInst>(Preheader->getTerminator()) && \"Preheader must terminate with unconditional branch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5401, __extension__
__PRETTY_FUNCTION__))
;
5402 assert(Preheader->getSingleSuccessor() == Header &&(static_cast <bool> (Preheader->getSingleSuccessor()
== Header && "Preheader must jump to header") ? void
(0) : __assert_fail ("Preheader->getSingleSuccessor() == Header && \"Preheader must jump to header\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5403, __extension__
__PRETTY_FUNCTION__))
5403 "Preheader must jump to header")(static_cast <bool> (Preheader->getSingleSuccessor()
== Header && "Preheader must jump to header") ? void
(0) : __assert_fail ("Preheader->getSingleSuccessor() == Header && \"Preheader must jump to header\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5403, __extension__
__PRETTY_FUNCTION__))
;
5404
5405 assert(Header)(static_cast <bool> (Header) ? void (0) : __assert_fail
("Header", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5405
, __extension__ __PRETTY_FUNCTION__))
;
5406 assert(isa<BranchInst>(Header->getTerminator()) &&(static_cast <bool> (isa<BranchInst>(Header->getTerminator
()) && "Header must terminate with unconditional branch"
) ? void (0) : __assert_fail ("isa<BranchInst>(Header->getTerminator()) && \"Header must terminate with unconditional branch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5407, __extension__
__PRETTY_FUNCTION__))
5407 "Header must terminate with unconditional branch")(static_cast <bool> (isa<BranchInst>(Header->getTerminator
()) && "Header must terminate with unconditional branch"
) ? void (0) : __assert_fail ("isa<BranchInst>(Header->getTerminator()) && \"Header must terminate with unconditional branch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5407, __extension__
__PRETTY_FUNCTION__))
;
5408 assert(Header->getSingleSuccessor() == Cond &&(static_cast <bool> (Header->getSingleSuccessor() ==
Cond && "Header must jump to exiting block") ? void (
0) : __assert_fail ("Header->getSingleSuccessor() == Cond && \"Header must jump to exiting block\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5409, __extension__
__PRETTY_FUNCTION__))
5409 "Header must jump to exiting block")(static_cast <bool> (Header->getSingleSuccessor() ==
Cond && "Header must jump to exiting block") ? void (
0) : __assert_fail ("Header->getSingleSuccessor() == Cond && \"Header must jump to exiting block\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5409, __extension__
__PRETTY_FUNCTION__))
;
5410
5411 assert(Cond)(static_cast <bool> (Cond) ? void (0) : __assert_fail (
"Cond", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5411, __extension__
__PRETTY_FUNCTION__))
;
5412 assert(Cond->getSinglePredecessor() == Header &&(static_cast <bool> (Cond->getSinglePredecessor() ==
Header && "Exiting block only reachable from header"
) ? void (0) : __assert_fail ("Cond->getSinglePredecessor() == Header && \"Exiting block only reachable from header\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5413, __extension__
__PRETTY_FUNCTION__))
5413 "Exiting block only reachable from header")(static_cast <bool> (Cond->getSinglePredecessor() ==
Header && "Exiting block only reachable from header"
) ? void (0) : __assert_fail ("Cond->getSinglePredecessor() == Header && \"Exiting block only reachable from header\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5413, __extension__
__PRETTY_FUNCTION__))
;
5414
5415 assert(isa<BranchInst>(Cond->getTerminator()) &&(static_cast <bool> (isa<BranchInst>(Cond->getTerminator
()) && "Exiting block must terminate with conditional branch"
) ? void (0) : __assert_fail ("isa<BranchInst>(Cond->getTerminator()) && \"Exiting block must terminate with conditional branch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5416, __extension__
__PRETTY_FUNCTION__))
5416 "Exiting block must terminate with conditional branch")(static_cast <bool> (isa<BranchInst>(Cond->getTerminator
()) && "Exiting block must terminate with conditional branch"
) ? void (0) : __assert_fail ("isa<BranchInst>(Cond->getTerminator()) && \"Exiting block must terminate with conditional branch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5416, __extension__
__PRETTY_FUNCTION__))
;
5417 assert(size(successors(Cond)) == 2 &&(static_cast <bool> (size(successors(Cond)) == 2 &&
"Exiting block must have two successors") ? void (0) : __assert_fail
("size(successors(Cond)) == 2 && \"Exiting block must have two successors\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5418, __extension__
__PRETTY_FUNCTION__))
5418 "Exiting block must have two successors")(static_cast <bool> (size(successors(Cond)) == 2 &&
"Exiting block must have two successors") ? void (0) : __assert_fail
("size(successors(Cond)) == 2 && \"Exiting block must have two successors\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5418, __extension__
__PRETTY_FUNCTION__))
;
5419 assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(0) == Body &&(static_cast <bool> (cast<BranchInst>(Cond->getTerminator
())->getSuccessor(0) == Body && "Exiting block's first successor jump to the body"
) ? void (0) : __assert_fail ("cast<BranchInst>(Cond->getTerminator())->getSuccessor(0) == Body && \"Exiting block's first successor jump to the body\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5420, __extension__
__PRETTY_FUNCTION__))
5420 "Exiting block's first successor jump to the body")(static_cast <bool> (cast<BranchInst>(Cond->getTerminator
())->getSuccessor(0) == Body && "Exiting block's first successor jump to the body"
) ? void (0) : __assert_fail ("cast<BranchInst>(Cond->getTerminator())->getSuccessor(0) == Body && \"Exiting block's first successor jump to the body\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5420, __extension__
__PRETTY_FUNCTION__))
;
5421 assert(cast<BranchInst>(Cond->getTerminator())->getSuccessor(1) == Exit &&(static_cast <bool> (cast<BranchInst>(Cond->getTerminator
())->getSuccessor(1) == Exit && "Exiting block's second successor must exit the loop"
) ? void (0) : __assert_fail ("cast<BranchInst>(Cond->getTerminator())->getSuccessor(1) == Exit && \"Exiting block's second successor must exit the loop\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5422, __extension__
__PRETTY_FUNCTION__))
5422 "Exiting block's second successor must exit the loop")(static_cast <bool> (cast<BranchInst>(Cond->getTerminator
())->getSuccessor(1) == Exit && "Exiting block's second successor must exit the loop"
) ? void (0) : __assert_fail ("cast<BranchInst>(Cond->getTerminator())->getSuccessor(1) == Exit && \"Exiting block's second successor must exit the loop\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5422, __extension__
__PRETTY_FUNCTION__))
;
5423
5424 assert(Body)(static_cast <bool> (Body) ? void (0) : __assert_fail (
"Body", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5424, __extension__
__PRETTY_FUNCTION__))
;
5425 assert(Body->getSinglePredecessor() == Cond &&(static_cast <bool> (Body->getSinglePredecessor() ==
Cond && "Body only reachable from exiting block") ? void
(0) : __assert_fail ("Body->getSinglePredecessor() == Cond && \"Body only reachable from exiting block\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5426, __extension__
__PRETTY_FUNCTION__))
5426 "Body only reachable from exiting block")(static_cast <bool> (Body->getSinglePredecessor() ==
Cond && "Body only reachable from exiting block") ? void
(0) : __assert_fail ("Body->getSinglePredecessor() == Cond && \"Body only reachable from exiting block\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5426, __extension__
__PRETTY_FUNCTION__))
;
5427 assert(!isa<PHINode>(Body->front()))(static_cast <bool> (!isa<PHINode>(Body->front
())) ? void (0) : __assert_fail ("!isa<PHINode>(Body->front())"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5427, __extension__
__PRETTY_FUNCTION__))
;
5428
5429 assert(Latch)(static_cast <bool> (Latch) ? void (0) : __assert_fail (
"Latch", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5429, __extension__
__PRETTY_FUNCTION__))
;
5430 assert(isa<BranchInst>(Latch->getTerminator()) &&(static_cast <bool> (isa<BranchInst>(Latch->getTerminator
()) && "Latch must terminate with unconditional branch"
) ? void (0) : __assert_fail ("isa<BranchInst>(Latch->getTerminator()) && \"Latch must terminate with unconditional branch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5431, __extension__
__PRETTY_FUNCTION__))
5431 "Latch must terminate with unconditional branch")(static_cast <bool> (isa<BranchInst>(Latch->getTerminator
()) && "Latch must terminate with unconditional branch"
) ? void (0) : __assert_fail ("isa<BranchInst>(Latch->getTerminator()) && \"Latch must terminate with unconditional branch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5431, __extension__
__PRETTY_FUNCTION__))
;
5432 assert(Latch->getSingleSuccessor() == Header && "Latch must jump to header")(static_cast <bool> (Latch->getSingleSuccessor() == Header
&& "Latch must jump to header") ? void (0) : __assert_fail
("Latch->getSingleSuccessor() == Header && \"Latch must jump to header\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5432, __extension__
__PRETTY_FUNCTION__))
;
5433 // TODO: To support simple redirecting of the end of the body code that has
5434 // multiple; introduce another auxiliary basic block like preheader and after.
5435 assert(Latch->getSinglePredecessor() != nullptr)(static_cast <bool> (Latch->getSinglePredecessor() !=
nullptr) ? void (0) : __assert_fail ("Latch->getSinglePredecessor() != nullptr"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5435, __extension__
__PRETTY_FUNCTION__))
;
5436 assert(!isa<PHINode>(Latch->front()))(static_cast <bool> (!isa<PHINode>(Latch->front
())) ? void (0) : __assert_fail ("!isa<PHINode>(Latch->front())"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5436, __extension__
__PRETTY_FUNCTION__))
;
5437
5438 assert(Exit)(static_cast <bool> (Exit) ? void (0) : __assert_fail (
"Exit", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5438, __extension__
__PRETTY_FUNCTION__))
;
5439 assert(isa<BranchInst>(Exit->getTerminator()) &&(static_cast <bool> (isa<BranchInst>(Exit->getTerminator
()) && "Exit block must terminate with unconditional branch"
) ? void (0) : __assert_fail ("isa<BranchInst>(Exit->getTerminator()) && \"Exit block must terminate with unconditional branch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5440, __extension__
__PRETTY_FUNCTION__))
5440 "Exit block must terminate with unconditional branch")(static_cast <bool> (isa<BranchInst>(Exit->getTerminator
()) && "Exit block must terminate with unconditional branch"
) ? void (0) : __assert_fail ("isa<BranchInst>(Exit->getTerminator()) && \"Exit block must terminate with unconditional branch\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5440, __extension__
__PRETTY_FUNCTION__))
;
5441 assert(Exit->getSingleSuccessor() == After &&(static_cast <bool> (Exit->getSingleSuccessor() == After
&& "Exit block must jump to after block") ? void (0)
: __assert_fail ("Exit->getSingleSuccessor() == After && \"Exit block must jump to after block\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5442, __extension__
__PRETTY_FUNCTION__))
5442 "Exit block must jump to after block")(static_cast <bool> (Exit->getSingleSuccessor() == After
&& "Exit block must jump to after block") ? void (0)
: __assert_fail ("Exit->getSingleSuccessor() == After && \"Exit block must jump to after block\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5442, __extension__
__PRETTY_FUNCTION__))
;
5443
5444 assert(After)(static_cast <bool> (After) ? void (0) : __assert_fail (
"After", "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5444, __extension__
__PRETTY_FUNCTION__))
;
5445 assert(After->getSinglePredecessor() == Exit &&(static_cast <bool> (After->getSinglePredecessor() ==
Exit && "After block only reachable from exit block"
) ? void (0) : __assert_fail ("After->getSinglePredecessor() == Exit && \"After block only reachable from exit block\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5446, __extension__
__PRETTY_FUNCTION__))
5446 "After block only reachable from exit block")(static_cast <bool> (After->getSinglePredecessor() ==
Exit && "After block only reachable from exit block"
) ? void (0) : __assert_fail ("After->getSinglePredecessor() == Exit && \"After block only reachable from exit block\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5446, __extension__
__PRETTY_FUNCTION__))
;
5447 assert(After->empty() || !isa<PHINode>(After->front()))(static_cast <bool> (After->empty() || !isa<PHINode
>(After->front())) ? void (0) : __assert_fail ("After->empty() || !isa<PHINode>(After->front())"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5447, __extension__
__PRETTY_FUNCTION__))
;
5448
5449 Instruction *IndVar = getIndVar();
5450 assert(IndVar && "Canonical induction variable not found?")(static_cast <bool> (IndVar && "Canonical induction variable not found?"
) ? void (0) : __assert_fail ("IndVar && \"Canonical induction variable not found?\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5450, __extension__
__PRETTY_FUNCTION__))
;
5451 assert(isa<IntegerType>(IndVar->getType()) &&(static_cast <bool> (isa<IntegerType>(IndVar->
getType()) && "Induction variable must be an integer"
) ? void (0) : __assert_fail ("isa<IntegerType>(IndVar->getType()) && \"Induction variable must be an integer\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5452, __extension__
__PRETTY_FUNCTION__))
5452 "Induction variable must be an integer")(static_cast <bool> (isa<IntegerType>(IndVar->
getType()) && "Induction variable must be an integer"
) ? void (0) : __assert_fail ("isa<IntegerType>(IndVar->getType()) && \"Induction variable must be an integer\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5452, __extension__
__PRETTY_FUNCTION__))
;
5453 assert(cast<PHINode>(IndVar)->getParent() == Header &&(static_cast <bool> (cast<PHINode>(IndVar)->getParent
() == Header && "Induction variable must be a PHI in the loop header"
) ? void (0) : __assert_fail ("cast<PHINode>(IndVar)->getParent() == Header && \"Induction variable must be a PHI in the loop header\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5454, __extension__
__PRETTY_FUNCTION__))
5454 "Induction variable must be a PHI in the loop header")(static_cast <bool> (cast<PHINode>(IndVar)->getParent
() == Header && "Induction variable must be a PHI in the loop header"
) ? void (0) : __assert_fail ("cast<PHINode>(IndVar)->getParent() == Header && \"Induction variable must be a PHI in the loop header\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5454, __extension__
__PRETTY_FUNCTION__))
;
5455 assert(cast<PHINode>(IndVar)->getIncomingBlock(0) == Preheader)(static_cast <bool> (cast<PHINode>(IndVar)->getIncomingBlock
(0) == Preheader) ? void (0) : __assert_fail ("cast<PHINode>(IndVar)->getIncomingBlock(0) == Preheader"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5455, __extension__
__PRETTY_FUNCTION__))
;
5456 assert((static_cast <bool> (cast<ConstantInt>(cast<PHINode
>(IndVar)->getIncomingValue(0))->isZero()) ? void (0
) : __assert_fail ("cast<ConstantInt>(cast<PHINode>(IndVar)->getIncomingValue(0))->isZero()"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5457, __extension__
__PRETTY_FUNCTION__))
5457 cast<ConstantInt>(cast<PHINode>(IndVar)->getIncomingValue(0))->isZero())(static_cast <bool> (cast<ConstantInt>(cast<PHINode
>(IndVar)->getIncomingValue(0))->isZero()) ? void (0
) : __assert_fail ("cast<ConstantInt>(cast<PHINode>(IndVar)->getIncomingValue(0))->isZero()"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5457, __extension__
__PRETTY_FUNCTION__))
;
5458 assert(cast<PHINode>(IndVar)->getIncomingBlock(1) == Latch)(static_cast <bool> (cast<PHINode>(IndVar)->getIncomingBlock
(1) == Latch) ? void (0) : __assert_fail ("cast<PHINode>(IndVar)->getIncomingBlock(1) == Latch"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5458, __extension__
__PRETTY_FUNCTION__))
;
5459
5460 auto *NextIndVar = cast<PHINode>(IndVar)->getIncomingValue(1);
5461 assert(cast<Instruction>(NextIndVar)->getParent() == Latch)(static_cast <bool> (cast<Instruction>(NextIndVar
)->getParent() == Latch) ? void (0) : __assert_fail ("cast<Instruction>(NextIndVar)->getParent() == Latch"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5461, __extension__
__PRETTY_FUNCTION__))
;
5462 assert(cast<BinaryOperator>(NextIndVar)->getOpcode() == BinaryOperator::Add)(static_cast <bool> (cast<BinaryOperator>(NextIndVar
)->getOpcode() == BinaryOperator::Add) ? void (0) : __assert_fail
("cast<BinaryOperator>(NextIndVar)->getOpcode() == BinaryOperator::Add"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5462, __extension__
__PRETTY_FUNCTION__))
;
5463 assert(cast<BinaryOperator>(NextIndVar)->getOperand(0) == IndVar)(static_cast <bool> (cast<BinaryOperator>(NextIndVar
)->getOperand(0) == IndVar) ? void (0) : __assert_fail ("cast<BinaryOperator>(NextIndVar)->getOperand(0) == IndVar"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5463, __extension__
__PRETTY_FUNCTION__))
;
5464 assert(cast<ConstantInt>(cast<BinaryOperator>(NextIndVar)->getOperand(1))(static_cast <bool> (cast<ConstantInt>(cast<BinaryOperator
>(NextIndVar)->getOperand(1)) ->isOne()) ? void (0) :
__assert_fail ("cast<ConstantInt>(cast<BinaryOperator>(NextIndVar)->getOperand(1)) ->isOne()"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5465, __extension__
__PRETTY_FUNCTION__))
5465 ->isOne())(static_cast <bool> (cast<ConstantInt>(cast<BinaryOperator
>(NextIndVar)->getOperand(1)) ->isOne()) ? void (0) :
__assert_fail ("cast<ConstantInt>(cast<BinaryOperator>(NextIndVar)->getOperand(1)) ->isOne()"
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5465, __extension__
__PRETTY_FUNCTION__))
;
5466
5467 Value *TripCount = getTripCount();
5468 assert(TripCount && "Loop trip count not found?")(static_cast <bool> (TripCount && "Loop trip count not found?"
) ? void (0) : __assert_fail ("TripCount && \"Loop trip count not found?\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5468, __extension__
__PRETTY_FUNCTION__))
;
5469 assert(IndVar->getType() == TripCount->getType() &&(static_cast <bool> (IndVar->getType() == TripCount->
getType() && "Trip count and induction variable must have the same type"
) ? void (0) : __assert_fail ("IndVar->getType() == TripCount->getType() && \"Trip count and induction variable must have the same type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5470, __extension__
__PRETTY_FUNCTION__))
5470 "Trip count and induction variable must have the same type")(static_cast <bool> (IndVar->getType() == TripCount->
getType() && "Trip count and induction variable must have the same type"
) ? void (0) : __assert_fail ("IndVar->getType() == TripCount->getType() && \"Trip count and induction variable must have the same type\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5470, __extension__
__PRETTY_FUNCTION__))
;
5471
5472 auto *CmpI = cast<CmpInst>(&Cond->front());
5473 assert(CmpI->getPredicate() == CmpInst::ICMP_ULT &&(static_cast <bool> (CmpI->getPredicate() == CmpInst
::ICMP_ULT && "Exit condition must be a signed less-than comparison"
) ? void (0) : __assert_fail ("CmpI->getPredicate() == CmpInst::ICMP_ULT && \"Exit condition must be a signed less-than comparison\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5474, __extension__
__PRETTY_FUNCTION__))
5474 "Exit condition must be a signed less-than comparison")(static_cast <bool> (CmpI->getPredicate() == CmpInst
::ICMP_ULT && "Exit condition must be a signed less-than comparison"
) ? void (0) : __assert_fail ("CmpI->getPredicate() == CmpInst::ICMP_ULT && \"Exit condition must be a signed less-than comparison\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5474, __extension__
__PRETTY_FUNCTION__))
;
5475 assert(CmpI->getOperand(0) == IndVar &&(static_cast <bool> (CmpI->getOperand(0) == IndVar &&
"Exit condition must compare the induction variable") ? void
(0) : __assert_fail ("CmpI->getOperand(0) == IndVar && \"Exit condition must compare the induction variable\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5476, __extension__
__PRETTY_FUNCTION__))
5476 "Exit condition must compare the induction variable")(static_cast <bool> (CmpI->getOperand(0) == IndVar &&
"Exit condition must compare the induction variable") ? void
(0) : __assert_fail ("CmpI->getOperand(0) == IndVar && \"Exit condition must compare the induction variable\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5476, __extension__
__PRETTY_FUNCTION__))
;
5477 assert(CmpI->getOperand(1) == TripCount &&(static_cast <bool> (CmpI->getOperand(1) == TripCount
&& "Exit condition must compare with the trip count"
) ? void (0) : __assert_fail ("CmpI->getOperand(1) == TripCount && \"Exit condition must compare with the trip count\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5478, __extension__
__PRETTY_FUNCTION__))
5478 "Exit condition must compare with the trip count")(static_cast <bool> (CmpI->getOperand(1) == TripCount
&& "Exit condition must compare with the trip count"
) ? void (0) : __assert_fail ("CmpI->getOperand(1) == TripCount && \"Exit condition must compare with the trip count\""
, "llvm/lib/Frontend/OpenMP/OMPIRBuilder.cpp", 5478, __extension__
__PRETTY_FUNCTION__))
;
5479#endif
5480}
5481
5482void CanonicalLoopInfo::invalidate() {
5483 Header = nullptr;
5484 Cond = nullptr;
5485 Latch = nullptr;
5486 Exit = nullptr;
5487}

/build/source/llvm/include/llvm/IR/IRBuilder.h

1//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the IRBuilder class, which is used as a convenient way
10// to create LLVM instructions with a consistent and simplified interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_IRBUILDER_H
15#define LLVM_IR_IRBUILDER_H
16
17#include "llvm-c/Types.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/IR/BasicBlock.h"
23#include "llvm/IR/Constant.h"
24#include "llvm/IR/ConstantFolder.h"
25#include "llvm/IR/Constants.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DebugLoc.h"
28#include "llvm/IR/DerivedTypes.h"
29#include "llvm/IR/FPEnv.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/InstrTypes.h"
33#include "llvm/IR/Instruction.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/Intrinsics.h"
36#include "llvm/IR/LLVMContext.h"
37#include "llvm/IR/Module.h"
38#include "llvm/IR/Operator.h"
39#include "llvm/IR/Type.h"
40#include "llvm/IR/Value.h"
41#include "llvm/IR/ValueHandle.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/CBindingWrapping.h"
44#include "llvm/Support/Casting.h"
45#include <cassert>
46#include <cstdint>
47#include <functional>
48#include <optional>
49#include <utility>
50
51namespace llvm {
52
53class APInt;
54class Use;
55
56/// This provides the default implementation of the IRBuilder
57/// 'InsertHelper' method that is called whenever an instruction is created by
58/// IRBuilder and needs to be inserted.
59///
60/// By default, this inserts the instruction at the insertion point.
61class IRBuilderDefaultInserter {
62public:
63 virtual ~IRBuilderDefaultInserter();
64
65 virtual void InsertHelper(Instruction *I, const Twine &Name,
66 BasicBlock *BB,
67 BasicBlock::iterator InsertPt) const {
68 if (BB)
69 I->insertInto(BB, InsertPt);
70 I->setName(Name);
71 }
72};
73
74/// Provides an 'InsertHelper' that calls a user-provided callback after
75/// performing the default insertion.
76class IRBuilderCallbackInserter : public IRBuilderDefaultInserter {
77 std::function<void(Instruction *)> Callback;
78
79public:
80 ~IRBuilderCallbackInserter() override;
81
82 IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback)
83 : Callback(std::move(Callback)) {}
84
85 void InsertHelper(Instruction *I, const Twine &Name,
86 BasicBlock *BB,
87 BasicBlock::iterator InsertPt) const override {
88 IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
89 Callback(I);
90 }
91};
92
93/// Common base class shared among various IRBuilders.
94class IRBuilderBase {
95 /// Pairs of (metadata kind, MDNode *) that should be added to all newly
96 /// created instructions, like !dbg metadata.
97 SmallVector<std::pair<unsigned, MDNode *>, 2> MetadataToCopy;
98
99 /// Add or update the an entry (Kind, MD) to MetadataToCopy, if \p MD is not
100 /// null. If \p MD is null, remove the entry with \p Kind.
101 void AddOrRemoveMetadataToCopy(unsigned Kind, MDNode *MD) {
102 if (!MD) {
103 erase_if(MetadataToCopy, [Kind](const std::pair<unsigned, MDNode *> &KV) {
104 return KV.first == Kind;
105 });
106 return;
107 }
108
109 for (auto &KV : MetadataToCopy)
110 if (KV.first == Kind) {
111 KV.second = MD;
112 return;
113 }
114
115 MetadataToCopy.emplace_back(Kind, MD);
116 }
117
118protected:
119 BasicBlock *BB;
120 BasicBlock::iterator InsertPt;
121 LLVMContext &Context;
122 const IRBuilderFolder &Folder;
123 const IRBuilderDefaultInserter &Inserter;
124
125 MDNode *DefaultFPMathTag;
126 FastMathFlags FMF;
127
128 bool IsFPConstrained = false;
129 fp::ExceptionBehavior DefaultConstrainedExcept = fp::ebStrict;
130 RoundingMode DefaultConstrainedRounding = RoundingMode::Dynamic;
131
132 ArrayRef<OperandBundleDef> DefaultOperandBundles;
133
134public:
135 IRBuilderBase(LLVMContext &context, const IRBuilderFolder &Folder,
136 const IRBuilderDefaultInserter &Inserter, MDNode *FPMathTag,
137 ArrayRef<OperandBundleDef> OpBundles)
138 : Context(context), Folder(Folder), Inserter(Inserter),
139 DefaultFPMathTag(FPMathTag), DefaultOperandBundles(OpBundles) {
140 ClearInsertionPoint();
141 }
142
143 /// Insert and return the specified instruction.
144 template<typename InstTy>
145 InstTy *Insert(InstTy *I, const Twine &Name = "") const {
146 Inserter.InsertHelper(I, Name, BB, InsertPt);
147 AddMetadataToInst(I);
148 return I;
149 }
150
151 /// No-op overload to handle constants.
152 Constant *Insert(Constant *C, const Twine& = "") const {
153 return C;
154 }
155
156 Value *Insert(Value *V, const Twine &Name = "") const {
157 if (Instruction *I = dyn_cast<Instruction>(V))
158 return Insert(I, Name);
159 assert(isa<Constant>(V))(static_cast <bool> (isa<Constant>(V)) ? void (0)
: __assert_fail ("isa<Constant>(V)", "llvm/include/llvm/IR/IRBuilder.h"
, 159, __extension__ __PRETTY_FUNCTION__))
;
160 return V;
161 }
162
163 //===--------------------------------------------------------------------===//
164 // Builder configuration methods
165 //===--------------------------------------------------------------------===//
166
167 /// Clear the insertion point: created instructions will not be
168 /// inserted into a block.
169 void ClearInsertionPoint() {
170 BB = nullptr;
5
Null pointer value stored to field 'BB'
171 InsertPt = BasicBlock::iterator();
172 }
173
174 BasicBlock *GetInsertBlock() const { return BB; }
175 BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
176 LLVMContext &getContext() const { return Context; }
177
178 /// This specifies that created instructions should be appended to the
179 /// end of the specified block.
180 void SetInsertPoint(BasicBlock *TheBB) {
181 BB = TheBB;
182 InsertPt = BB->end();
183 }
184
185 /// This specifies that created instructions should be inserted before
186 /// the specified instruction.
187 void SetInsertPoint(Instruction *I) {
188 BB = I->getParent();
189 InsertPt = I->getIterator();
190 assert(InsertPt != BB->end() && "Can't read debug loc from end()")(static_cast <bool> (InsertPt != BB->end() &&
"Can't read debug loc from end()") ? void (0) : __assert_fail
("InsertPt != BB->end() && \"Can't read debug loc from end()\""
, "llvm/include/llvm/IR/IRBuilder.h", 190, __extension__ __PRETTY_FUNCTION__
))
;
191 SetCurrentDebugLocation(I->getDebugLoc());
192 }
193
194 /// This specifies that created instructions should be inserted at the
195 /// specified point.
196 void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
197 BB = TheBB;
198 InsertPt = IP;
199 if (IP != TheBB->end())
200 SetCurrentDebugLocation(IP->getDebugLoc());
201 }
202
203 /// This specifies that created instructions should inserted at the beginning
204 /// end of the specified function, but after already existing static alloca
205 /// instructions that are at the start.
206 void SetInsertPointPastAllocas(Function *F) {
207 BB = &F->getEntryBlock();
208 InsertPt = BB->getFirstNonPHIOrDbgOrAlloca();
209 }
210
211 /// Set location information used by debugging information.
212 void SetCurrentDebugLocation(DebugLoc L) {
213 AddOrRemoveMetadataToCopy(LLVMContext::MD_dbg, L.getAsMDNode());
214 }
215
216 /// Collect metadata with IDs \p MetadataKinds from \p Src which should be
217 /// added to all created instructions. Entries present in MedataDataToCopy but
218 /// not on \p Src will be dropped from MetadataToCopy.
219 void CollectMetadataToCopy(Instruction *Src,
220 ArrayRef<unsigned> MetadataKinds) {
221 for (unsigned K : MetadataKinds)
222 AddOrRemoveMetadataToCopy(K, Src->getMetadata(K));
223 }
224
225 /// Get location information used by debugging information.
226 DebugLoc getCurrentDebugLocation() const;
227
228 /// If this builder has a current debug location, set it on the
229 /// specified instruction.
230 void SetInstDebugLocation(Instruction *I) const;
231
232 /// Add all entries in MetadataToCopy to \p I.
233 void AddMetadataToInst(Instruction *I) const {
234 for (const auto &KV : MetadataToCopy)
235 I->setMetadata(KV.first, KV.second);
236 }
237
238 /// Get the return type of the current function that we're emitting
239 /// into.
240 Type *getCurrentFunctionReturnType() const;
241
242 /// InsertPoint - A saved insertion point.
243 class InsertPoint {
244 BasicBlock *Block = nullptr;
245 BasicBlock::iterator Point;
246
247 public:
248 /// Creates a new insertion point which doesn't point to anything.
249 InsertPoint() = default;
250
251 /// Creates a new insertion point at the given location.
252 InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
253 : Block(InsertBlock), Point(InsertPoint) {}
254
255 /// Returns true if this insert point is set.
256 bool isSet() const { return (Block != nullptr); }
257
258 BasicBlock *getBlock() const { return Block; }
259 BasicBlock::iterator getPoint() const { return Point; }
260 };
261
262 /// Returns the current insert point.
263 InsertPoint saveIP() const {
264 return InsertPoint(GetInsertBlock(), GetInsertPoint());
265 }
266
267 /// Returns the current insert point, clearing it in the process.
268 InsertPoint saveAndClearIP() {
269 InsertPoint IP(GetInsertBlock(), GetInsertPoint());
270 ClearInsertionPoint();
271 return IP;
272 }
273
274 /// Sets the current insert point to a previously-saved location.
275 void restoreIP(InsertPoint IP) {
276 if (IP.isSet())
3
Taking false branch
277 SetInsertPoint(IP.getBlock(), IP.getPoint());
278 else
279 ClearInsertionPoint();
4
Calling 'IRBuilderBase::ClearInsertionPoint'
6
Returning from 'IRBuilderBase::ClearInsertionPoint'
280 }
281
282 /// Get the floating point math metadata being used.
283 MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
284
285 /// Get the flags to be applied to created floating point ops
286 FastMathFlags getFastMathFlags() const { return FMF; }
287
288 FastMathFlags &getFastMathFlags() { return FMF; }
289
290 /// Clear the fast-math flags.
291 void clearFastMathFlags() { FMF.clear(); }
292
293 /// Set the floating point math metadata to be used.
294 void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
295
296 /// Set the fast-math flags to be used with generated fp-math operators
297 void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
298
299 /// Enable/Disable use of constrained floating point math. When
300 /// enabled the CreateF<op>() calls instead create constrained
301 /// floating point intrinsic calls. Fast math flags are unaffected
302 /// by this setting.
303 void setIsFPConstrained(bool IsCon) { IsFPConstrained = IsCon; }
304
305 /// Query for the use of constrained floating point math
306 bool getIsFPConstrained() { return IsFPConstrained; }
307
308 /// Set the exception handling to be used with constrained floating point
309 void setDefaultConstrainedExcept(fp::ExceptionBehavior NewExcept) {
310#ifndef NDEBUG
311 std::optional<StringRef> ExceptStr =
312 convertExceptionBehaviorToStr(NewExcept);
313 assert(ExceptStr && "Garbage strict exception behavior!")(static_cast <bool> (ExceptStr && "Garbage strict exception behavior!"
) ? void (0) : __assert_fail ("ExceptStr && \"Garbage strict exception behavior!\""
, "llvm/include/llvm/IR/IRBuilder.h", 313, __extension__ __PRETTY_FUNCTION__
))
;
314#endif
315 DefaultConstrainedExcept = NewExcept;
316 }
317
318 /// Set the rounding mode handling to be used with constrained floating point
319 void setDefaultConstrainedRounding(RoundingMode NewRounding) {
320#ifndef NDEBUG
321 std::optional<StringRef> RoundingStr =
322 convertRoundingModeToStr(NewRounding);
323 assert(RoundingStr && "Garbage strict rounding mode!")(static_cast <bool> (RoundingStr && "Garbage strict rounding mode!"
) ? void (0) : __assert_fail ("RoundingStr && \"Garbage strict rounding mode!\""
, "llvm/include/llvm/IR/IRBuilder.h", 323, __extension__ __PRETTY_FUNCTION__
))
;
324#endif
325 DefaultConstrainedRounding = NewRounding;
326 }
327
328 /// Get the exception handling used with constrained floating point
329 fp::ExceptionBehavior getDefaultConstrainedExcept() {
330 return DefaultConstrainedExcept;
331 }
332
333 /// Get the rounding mode handling used with constrained floating point
334 RoundingMode getDefaultConstrainedRounding() {
335 return DefaultConstrainedRounding;
336 }
337
338 void setConstrainedFPFunctionAttr() {
339 assert(BB && "Must have a basic block to set any function attributes!")(static_cast <bool> (BB && "Must have a basic block to set any function attributes!"
) ? void (0) : __assert_fail ("BB && \"Must have a basic block to set any function attributes!\""
, "llvm/include/llvm/IR/IRBuilder.h", 339, __extension__ __PRETTY_FUNCTION__
))
;
340
341 Function *F = BB->getParent();
342 if (!F->hasFnAttribute(Attribute::StrictFP)) {
343 F->addFnAttr(Attribute::StrictFP);
344 }
345 }
346
347 void setConstrainedFPCallAttr(CallBase *I) {
348 I->addFnAttr(Attribute::StrictFP);
349 }
350
351 void setDefaultOperandBundles(ArrayRef<OperandBundleDef> OpBundles) {
352 DefaultOperandBundles = OpBundles;
353 }
354
355 //===--------------------------------------------------------------------===//
356 // RAII helpers.
357 //===--------------------------------------------------------------------===//
358
359 // RAII object that stores the current insertion point and restores it
360 // when the object is destroyed. This includes the debug location.
361 class InsertPointGuard {
362 IRBuilderBase &Builder;
363 AssertingVH<BasicBlock> Block;
364 BasicBlock::iterator Point;
365 DebugLoc DbgLoc;
366
367 public:
368 InsertPointGuard(IRBuilderBase &B)
369 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
370 DbgLoc(B.getCurrentDebugLocation()) {}
371
372 InsertPointGuard(const InsertPointGuard &) = delete;
373 InsertPointGuard &operator=(const InsertPointGuard &) = delete;
374
375 ~InsertPointGuard() {
376 Builder.restoreIP(InsertPoint(Block, Point));
377 Builder.SetCurrentDebugLocation(DbgLoc);
378 }
379 };
380
381 // RAII object that stores the current fast math settings and restores
382 // them when the object is destroyed.
383 class FastMathFlagGuard {
384 IRBuilderBase &Builder;
385 FastMathFlags FMF;
386 MDNode *FPMathTag;
387 bool IsFPConstrained;
388 fp::ExceptionBehavior DefaultConstrainedExcept;
389 RoundingMode DefaultConstrainedRounding;
390
391 public:
392 FastMathFlagGuard(IRBuilderBase &B)
393 : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag),
394 IsFPConstrained(B.IsFPConstrained),
395 DefaultConstrainedExcept(B.DefaultConstrainedExcept),
396 DefaultConstrainedRounding(B.DefaultConstrainedRounding) {}
397
398 FastMathFlagGuard(const FastMathFlagGuard &) = delete;
399 FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete;
400
401 ~FastMathFlagGuard() {
402 Builder.FMF = FMF;
403 Builder.DefaultFPMathTag = FPMathTag;
404 Builder.IsFPConstrained = IsFPConstrained;
405 Builder.DefaultConstrainedExcept = DefaultConstrainedExcept;
406 Builder.DefaultConstrainedRounding = DefaultConstrainedRounding;
407 }
408 };
409
410 // RAII object that stores the current default operand bundles and restores
411 // them when the object is destroyed.
412 class OperandBundlesGuard {
413 IRBuilderBase &Builder;
414 ArrayRef<OperandBundleDef> DefaultOperandBundles;
415
416 public:
417 OperandBundlesGuard(IRBuilderBase &B)
418 : Builder(B), DefaultOperandBundles(B.DefaultOperandBundles) {}
419
420 OperandBundlesGuard(const OperandBundlesGuard &) = delete;
421 OperandBundlesGuard &operator=(const OperandBundlesGuard &) = delete;
422
423 ~OperandBundlesGuard() {
424 Builder.DefaultOperandBundles = DefaultOperandBundles;
425 }
426 };
427
428
429 //===--------------------------------------------------------------------===//
430 // Miscellaneous creation methods.
431 //===--------------------------------------------------------------------===//
432
433 /// Make a new global variable with initializer type i8*
434 ///
435 /// Make a new global variable with an initializer that has array of i8 type
436 /// filled in with the null terminated string value specified. The new global
437 /// variable will be marked mergable with any others of the same contents. If
438 /// Name is specified, it is the name of the global variable created.
439 ///
440 /// If no module is given via \p M, it is take from the insertion point basic
441 /// block.
442 GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "",
443 unsigned AddressSpace = 0,
444 Module *M = nullptr);
445
446 /// Get a constant value representing either true or false.
447 ConstantInt *getInt1(bool V) {
448 return ConstantInt::get(getInt1Ty(), V);
449 }
450
451 /// Get the constant value for i1 true.
452 ConstantInt *getTrue() {
453 return ConstantInt::getTrue(Context);
454 }
455
456 /// Get the constant value for i1 false.
457 ConstantInt *getFalse() {
458 return ConstantInt::getFalse(Context);
459 }
460
461 /// Get a constant 8-bit value.
462 ConstantInt *getInt8(uint8_t C) {
463 return ConstantInt::get(getInt8Ty(), C);
464 }
465
466 /// Get a constant 16-bit value.
467 ConstantInt *getInt16(uint16_t C) {
468 return ConstantInt::get(getInt16Ty(), C);
469 }
470
471 /// Get a constant 32-bit value.
472 ConstantInt *getInt32(uint32_t C) {
473 return ConstantInt::get(getInt32Ty(), C);
474 }
475
476 /// Get a constant 64-bit value.
477 ConstantInt *getInt64(uint64_t C) {
478 return ConstantInt::get(getInt64Ty(), C);
479 }
480
481 /// Get a constant N-bit value, zero extended or truncated from
482 /// a 64-bit value.
483 ConstantInt *getIntN(unsigned N, uint64_t C) {
484 return ConstantInt::get(getIntNTy(N), C);
485 }
486
487 /// Get a constant integer value.
488 ConstantInt *getInt(const APInt &AI) {
489 return ConstantInt::get(Context, AI);
490 }
491
492 //===--------------------------------------------------------------------===//
493 // Type creation methods
494 //===--------------------------------------------------------------------===//
495
496 /// Fetch the type representing a single bit
497 IntegerType *getInt1Ty() {
498 return Type::getInt1Ty(Context);
499 }
500
501 /// Fetch the type representing an 8-bit integer.
502 IntegerType *getInt8Ty() {
503 return Type::getInt8Ty(Context);
504 }
505
506 /// Fetch the type representing a 16-bit integer.
507 IntegerType *getInt16Ty() {
508 return Type::getInt16Ty(Context);
509 }
510
511 /// Fetch the type representing a 32-bit integer.
512 IntegerType *getInt32Ty() {
513 return Type::getInt32Ty(Context);
514 }
515
516 /// Fetch the type representing a 64-bit integer.
517 IntegerType *getInt64Ty() {
518 return Type::getInt64Ty(Context);
519 }
520
521 /// Fetch the type representing a 128-bit integer.
522 IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); }
523
524 /// Fetch the type representing an N-bit integer.
525 IntegerType *getIntNTy(unsigned N) {
526 return Type::getIntNTy(Context, N);
527 }
528
529 /// Fetch the type representing a 16-bit floating point value.
530 Type *getHalfTy() {
531 return Type::getHalfTy(Context);
532 }
533
534 /// Fetch the type representing a 16-bit brain floating point value.
535 Type *getBFloatTy() {
536 return Type::getBFloatTy(Context);
537 }
538
539 /// Fetch the type representing a 32-bit floating point value.
540 Type *getFloatTy() {
541 return Type::getFloatTy(Context);
542 }
543
544 /// Fetch the type representing a 64-bit floating point value.
545 Type *getDoubleTy() {
546 return Type::getDoubleTy(Context);
547 }
548
549 /// Fetch the type representing void.
550 Type *getVoidTy() {
551 return Type::getVoidTy(Context);
552 }
553
554 /// Fetch the type representing a pointer.
555 PointerType *getPtrTy(unsigned AddrSpace = 0) {
556 return PointerType::get(Context, AddrSpace);
557 }
558
559 /// Fetch the type representing a pointer to an 8-bit integer value.
560 PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
561 return Type::getInt8PtrTy(Context, AddrSpace);
562 }
563
564 /// Fetch the type of an integer with size at least as big as that of a
565 /// pointer in the given address space.
566 IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) {
567 return DL.getIntPtrType(Context, AddrSpace);
568 }
569
570 /// Fetch the type of an integer that should be used to index GEP operations
571 /// within AddressSpace.
572 IntegerType *getIndexTy(const DataLayout &DL, unsigned AddrSpace) {
573 return DL.getIndexType(Context, AddrSpace);
574 }
575
576 //===--------------------------------------------------------------------===//
577 // Intrinsic creation methods
578 //===--------------------------------------------------------------------===//
579
580 /// Create and insert a memset to the specified pointer and the
581 /// specified value.
582 ///
583 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
584 /// specified, it will be added to the instruction. Likewise with alias.scope
585 /// and noalias tags.
586 CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size,
587 MaybeAlign Align, bool isVolatile = false,
588 MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr,
589 MDNode *NoAliasTag = nullptr) {
590 return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
591 TBAATag, ScopeTag, NoAliasTag);
592 }
593
594 CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, MaybeAlign Align,
595 bool isVolatile = false, MDNode *TBAATag = nullptr,
596 MDNode *ScopeTag = nullptr,
597 MDNode *NoAliasTag = nullptr);
598
599 CallInst *CreateMemSetInline(Value *Dst, MaybeAlign DstAlign, Value *Val,
600 Value *Size, bool IsVolatile = false,
601 MDNode *TBAATag = nullptr,
602 MDNode *ScopeTag = nullptr,
603 MDNode *NoAliasTag = nullptr);
604
605 /// Create and insert an element unordered-atomic memset of the region of
606 /// memory starting at the given pointer to the given value.
607 ///
608 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
609 /// specified, it will be added to the instruction. Likewise with alias.scope
610 /// and noalias tags.
611 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
612 uint64_t Size, Align Alignment,
613 uint32_t ElementSize,
614 MDNode *TBAATag = nullptr,
615 MDNode *ScopeTag = nullptr,
616 MDNode *NoAliasTag = nullptr) {
617 return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size),
618 Align(Alignment), ElementSize,
619 TBAATag, ScopeTag, NoAliasTag);
620 }
621
622 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
623 Value *Size, Align Alignment,
624 uint32_t ElementSize,
625 MDNode *TBAATag = nullptr,
626 MDNode *ScopeTag = nullptr,
627 MDNode *NoAliasTag = nullptr);
628
629 /// Create and insert a memcpy between the specified pointers.
630 ///
631 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
632 /// specified, it will be added to the instruction. Likewise with alias.scope
633 /// and noalias tags.
634 CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
635 MaybeAlign SrcAlign, uint64_t Size,
636 bool isVolatile = false, MDNode *TBAATag = nullptr,
637 MDNode *TBAAStructTag = nullptr,
638 MDNode *ScopeTag = nullptr,
639 MDNode *NoAliasTag = nullptr) {
640 return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
641 isVolatile, TBAATag, TBAAStructTag, ScopeTag,
642 NoAliasTag);
643 }
644
645 CallInst *CreateMemTransferInst(
646 Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src,
647 MaybeAlign SrcAlign, Value *Size, bool isVolatile = false,
648 MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
649 MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr);
650
651 CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
652 MaybeAlign SrcAlign, Value *Size,
653 bool isVolatile = false, MDNode *TBAATag = nullptr,
654 MDNode *TBAAStructTag = nullptr,
655 MDNode *ScopeTag = nullptr,
656 MDNode *NoAliasTag = nullptr) {
657 return CreateMemTransferInst(Intrinsic::memcpy, Dst, DstAlign, Src,
658 SrcAlign, Size, isVolatile, TBAATag,
659 TBAAStructTag, ScopeTag, NoAliasTag);
660 }
661
662 CallInst *
663 CreateMemCpyInline(Value *Dst, MaybeAlign DstAlign, Value *Src,
664 MaybeAlign SrcAlign, Value *Size, bool IsVolatile = false,
665 MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
666 MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr);
667
668 /// Create and insert an element unordered-atomic memcpy between the
669 /// specified pointers.
670 ///
671 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively.
672 ///
673 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
674 /// specified, it will be added to the instruction. Likewise with alias.scope
675 /// and noalias tags.
676 CallInst *CreateElementUnorderedAtomicMemCpy(
677 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
678 uint32_t ElementSize, MDNode *TBAATag = nullptr,
679 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
680 MDNode *NoAliasTag = nullptr);
681
682 CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
683 MaybeAlign SrcAlign, uint64_t Size,
684 bool isVolatile = false, MDNode *TBAATag = nullptr,
685 MDNode *ScopeTag = nullptr,
686 MDNode *NoAliasTag = nullptr) {
687 return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
688 isVolatile, TBAATag, ScopeTag, NoAliasTag);
689 }
690
691 CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
692 MaybeAlign SrcAlign, Value *Size,
693 bool isVolatile = false, MDNode *TBAATag = nullptr,
694 MDNode *ScopeTag = nullptr,
695 MDNode *NoAliasTag = nullptr);
696
697 /// \brief Create and insert an element unordered-atomic memmove between the
698 /// specified pointers.
699 ///
700 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers,
701 /// respectively.
702 ///
703 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
704 /// specified, it will be added to the instruction. Likewise with alias.scope
705 /// and noalias tags.
706 CallInst *CreateElementUnorderedAtomicMemMove(
707 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
708 uint32_t ElementSize, MDNode *TBAATag = nullptr,
709 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
710 MDNode *NoAliasTag = nullptr);
711
712private:
713 CallInst *getReductionIntrinsic(Intrinsic::ID ID, Value *Src);
714
715public:
716 /// Create a sequential vector fadd reduction intrinsic of the source vector.
717 /// The first parameter is a scalar accumulator value. An unordered reduction
718 /// can be created by adding the reassoc fast-math flag to the resulting
719 /// sequential reduction.
720 CallInst *CreateFAddReduce(Value *Acc, Value *Src);
721
722 /// Create a sequential vector fmul reduction intrinsic of the source vector.
723 /// The first parameter is a scalar accumulator value. An unordered reduction
724 /// can be created by adding the reassoc fast-math flag to the resulting
725 /// sequential reduction.
726 CallInst *CreateFMulReduce(Value *Acc, Value *Src);
727
728 /// Create a vector int add reduction intrinsic of the source vector.
729 CallInst *CreateAddReduce(Value *Src);
730
731 /// Create a vector int mul reduction intrinsic of the source vector.
732 CallInst *CreateMulReduce(Value *Src);
733
734 /// Create a vector int AND reduction intrinsic of the source vector.
735 CallInst *CreateAndReduce(Value *Src);
736
737 /// Create a vector int OR reduction intrinsic of the source vector.
738 CallInst *CreateOrReduce(Value *Src);
739
740 /// Create a vector int XOR reduction intrinsic of the source vector.
741 CallInst *CreateXorReduce(Value *Src);
742
743 /// Create a vector integer max reduction intrinsic of the source
744 /// vector.
745 CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false);
746
747 /// Create a vector integer min reduction intrinsic of the source
748 /// vector.
749 CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false);
750
751 /// Create a vector float max reduction intrinsic of the source
752 /// vector.
753 CallInst *CreateFPMaxReduce(Value *Src);
754
755 /// Create a vector float min reduction intrinsic of the source
756 /// vector.
757 CallInst *CreateFPMinReduce(Value *Src);
758
759 /// Create a lifetime.start intrinsic.
760 ///
761 /// If the pointer isn't i8* it will be converted.
762 CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
763
764 /// Create a lifetime.end intrinsic.
765 ///
766 /// If the pointer isn't i8* it will be converted.
767 CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
768
769 /// Create a call to invariant.start intrinsic.
770 ///
771 /// If the pointer isn't i8* it will be converted.
772 CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr);
773
774 /// Create a call to llvm.threadlocal.address intrinsic.
775 CallInst *CreateThreadLocalAddress(Value *Ptr);
776
777 /// Create a call to Masked Load intrinsic
778 CallInst *CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, Value *Mask,
779 Value *PassThru = nullptr, const Twine &Name = "");
780
781 /// Create a call to Masked Store intrinsic
782 CallInst *CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment,
783 Value *Mask);
784
785 /// Create a call to Masked Gather intrinsic
786 CallInst *CreateMaskedGather(Type *Ty, Value *Ptrs, Align Alignment,
787 Value *Mask = nullptr, Value *PassThru = nullptr,
788 const Twine &Name = "");
789
790 /// Create a call to Masked Scatter intrinsic
791 CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, Align Alignment,
792 Value *Mask = nullptr);
793
794 /// Create a call to Masked Expand Load intrinsic
795 CallInst *CreateMaskedExpandLoad(Type *Ty, Value *Ptr, Value *Mask = nullptr,
796 Value *PassThru = nullptr,
797 const Twine &Name = "");
798
799 /// Create a call to Masked Compress Store intrinsic
800 CallInst *CreateMaskedCompressStore(Value *Val, Value *Ptr,
801 Value *Mask = nullptr);
802
803 /// Create an assume intrinsic call that allows the optimizer to
804 /// assume that the provided condition will be true.
805 ///
806 /// The optional argument \p OpBundles specifies operand bundles that are
807 /// added to the call instruction.
808 CallInst *
809 CreateAssumption(Value *Cond,
810 ArrayRef<OperandBundleDef> OpBundles = std::nullopt);
811
812 /// Create a llvm.experimental.noalias.scope.decl intrinsic call.
813 Instruction *CreateNoAliasScopeDeclaration(Value *Scope);
814 Instruction *CreateNoAliasScopeDeclaration(MDNode *ScopeTag) {
815 return CreateNoAliasScopeDeclaration(
816 MetadataAsValue::get(Context, ScopeTag));
817 }
818
819 /// Create a call to the experimental.gc.statepoint intrinsic to
820 /// start a new statepoint sequence.
821 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
822 FunctionCallee ActualCallee,
823 ArrayRef<Value *> CallArgs,
824 std::optional<ArrayRef<Value *>> DeoptArgs,
825 ArrayRef<Value *> GCArgs,
826 const Twine &Name = "");
827
828 /// Create a call to the experimental.gc.statepoint intrinsic to
829 /// start a new statepoint sequence.
830 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
831 FunctionCallee ActualCallee, uint32_t Flags,
832 ArrayRef<Value *> CallArgs,
833 std::optional<ArrayRef<Use>> TransitionArgs,
834 std::optional<ArrayRef<Use>> DeoptArgs,
835 ArrayRef<Value *> GCArgs,
836 const Twine &Name = "");
837
838 /// Conveninence function for the common case when CallArgs are filled
839 /// in using ArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be
840 /// .get()'ed to get the Value pointer.
841 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
842 FunctionCallee ActualCallee,
843 ArrayRef<Use> CallArgs,
844 std::optional<ArrayRef<Value *>> DeoptArgs,
845 ArrayRef<Value *> GCArgs,
846 const Twine &Name = "");
847
848 /// Create an invoke to the experimental.gc.statepoint intrinsic to
849 /// start a new statepoint sequence.
850 InvokeInst *
851 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
852 FunctionCallee ActualInvokee, BasicBlock *NormalDest,
853 BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs,
854 std::optional<ArrayRef<Value *>> DeoptArgs,
855 ArrayRef<Value *> GCArgs, const Twine &Name = "");
856
857 /// Create an invoke to the experimental.gc.statepoint intrinsic to
858 /// start a new statepoint sequence.
859 InvokeInst *CreateGCStatepointInvoke(
860 uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
861 BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
862 ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Use>> TransitionArgs,
863 std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
864 const Twine &Name = "");
865
866 // Convenience function for the common case when CallArgs are filled in using
867 // ArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to
868 // get the Value *.
869 InvokeInst *
870 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
871 FunctionCallee ActualInvokee, BasicBlock *NormalDest,
872 BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
873 std::optional<ArrayRef<Value *>> DeoptArgs,
874 ArrayRef<Value *> GCArgs, const Twine &Name = "");
875
876 /// Create a call to the experimental.gc.result intrinsic to extract
877 /// the result from a call wrapped in a statepoint.
878 CallInst *CreateGCResult(Instruction *Statepoint,
879 Type *ResultType,
880 const Twine &Name = "");
881
882 /// Create a call to the experimental.gc.relocate intrinsics to
883 /// project the relocated value of one pointer from the statepoint.
884 CallInst *CreateGCRelocate(Instruction *Statepoint,
885 int BaseOffset,
886 int DerivedOffset,
887 Type *ResultType,
888 const Twine &Name = "");
889
890 /// Create a call to the experimental.gc.pointer.base intrinsic to get the
891 /// base pointer for the specified derived pointer.
892 CallInst *CreateGCGetPointerBase(Value *DerivedPtr, const Twine &Name = "");
893
894 /// Create a call to the experimental.gc.get.pointer.offset intrinsic to get
895 /// the offset of the specified derived pointer from its base.
896 CallInst *CreateGCGetPointerOffset(Value *DerivedPtr, const Twine &Name = "");
897
898 /// Create a call to llvm.vscale, multiplied by \p Scaling. The type of VScale
899 /// will be the same type as that of \p Scaling.
900 Value *CreateVScale(Constant *Scaling, const Twine &Name = "");
901
902 /// Create an expression which evaluates to the number of elements in \p EC
903 /// at runtime.
904 Value *CreateElementCount(Type *DstType, ElementCount EC);
905
906 /// Create an expression which evaluates to the number of units in \p Size
907 /// at runtime. This works for both units of bits and bytes.
908 Value *CreateTypeSize(Type *DstType, TypeSize Size);
909
910 /// Creates a vector of type \p DstType with the linear sequence <0, 1, ...>
911 Value *CreateStepVector(Type *DstType, const Twine &Name = "");
912
913 /// Create a call to intrinsic \p ID with 1 operand which is mangled on its
914 /// type.
915 CallInst *CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
916 Instruction *FMFSource = nullptr,
917 const Twine &Name = "");
918
919 /// Create a call to intrinsic \p ID with 2 operands which is mangled on the
920 /// first type.
921 CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS,
922 Instruction *FMFSource = nullptr,
923 const Twine &Name = "");
924
925 /// Create a call to intrinsic \p ID with \p Args, mangled using \p Types. If
926 /// \p FMFSource is provided, copy fast-math-flags from that instruction to
927 /// the intrinsic.
928 CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Type *> Types,
929 ArrayRef<Value *> Args,
930 Instruction *FMFSource = nullptr,
931 const Twine &Name = "");
932
933 /// Create a call to intrinsic \p ID with \p RetTy and \p Args. If
934 /// \p FMFSource is provided, copy fast-math-flags from that instruction to
935 /// the intrinsic.
936 CallInst *CreateIntrinsic(Type *RetTy, Intrinsic::ID ID,
937 ArrayRef<Value *> Args,
938 Instruction *FMFSource = nullptr,
939 const Twine &Name = "");
940
941 /// Create call to the minnum intrinsic.
942 CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") {
943 return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, nullptr, Name);
944 }
945
946 /// Create call to the maxnum intrinsic.
947 CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") {
948 return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, nullptr, Name);
949 }
950
951 /// Create call to the minimum intrinsic.
952 CallInst *CreateMinimum(Value *LHS, Value *RHS, const Twine &Name = "") {
953 return CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS, nullptr, Name);
954 }
955
956 /// Create call to the maximum intrinsic.
957 CallInst *CreateMaximum(Value *LHS, Value *RHS, const Twine &Name = "") {
958 return CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS, nullptr, Name);
959 }
960
961 /// Create call to the copysign intrinsic.
962 CallInst *CreateCopySign(Value *LHS, Value *RHS,
963 Instruction *FMFSource = nullptr,
964 const Twine &Name = "") {
965 return CreateBinaryIntrinsic(Intrinsic::copysign, LHS, RHS, FMFSource,
966 Name);
967 }
968
969 /// Create a call to the arithmetic_fence intrinsic.
970 CallInst *CreateArithmeticFence(Value *Val, Type *DstType,
971 const Twine &Name = "") {
972 return CreateIntrinsic(Intrinsic::arithmetic_fence, DstType, Val, nullptr,
973 Name);
974 }
975
976 /// Create a call to the vector.extract intrinsic.
977 CallInst *CreateExtractVector(Type *DstType, Value *SrcVec, Value *Idx,
978 const Twine &Name = "") {
979 return CreateIntrinsic(Intrinsic::vector_extract,
980 {DstType, SrcVec->getType()}, {SrcVec, Idx}, nullptr,
981 Name);
982 }
983
984 /// Create a call to the vector.insert intrinsic.
985 CallInst *CreateInsertVector(Type *DstType, Value *SrcVec, Value *SubVec,
986 Value *Idx, const Twine &Name = "") {
987 return CreateIntrinsic(Intrinsic::vector_insert,
988 {DstType, SubVec->getType()}, {SrcVec, SubVec, Idx},
989 nullptr, Name);
990 }
991
992private:
993 /// Create a call to a masked intrinsic with given Id.
994 CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops,
995 ArrayRef<Type *> OverloadedTypes,
996 const Twine &Name = "");
997
998 Value *getCastedInt8PtrValue(Value *Ptr);
999
1000 //===--------------------------------------------------------------------===//
1001 // Instruction creation methods: Terminators
1002 //===--------------------------------------------------------------------===//
1003
1004private:
1005 /// Helper to add branch weight and unpredictable metadata onto an
1006 /// instruction.
1007 /// \returns The annotated instruction.
1008 template <typename InstTy>
1009 InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) {
1010 if (Weights)
1011 I->setMetadata(LLVMContext::MD_prof, Weights);
1012 if (Unpredictable)
1013 I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable);
1014 return I;
1015 }
1016
1017public:
1018 /// Create a 'ret void' instruction.
1019 ReturnInst *CreateRetVoid() {
1020 return Insert(ReturnInst::Create(Context));
1021 }
1022
1023 /// Create a 'ret <val>' instruction.
1024 ReturnInst *CreateRet(Value *V) {
1025 return Insert(ReturnInst::Create(Context, V));
1026 }
1027
1028 /// Create a sequence of N insertvalue instructions,
1029 /// with one Value from the retVals array each, that build a aggregate
1030 /// return value one value at a time, and a ret instruction to return
1031 /// the resulting aggregate value.
1032 ///
1033 /// This is a convenience function for code that uses aggregate return values
1034 /// as a vehicle for having multiple return values.
1035 ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
1036 Value *V = PoisonValue::get(getCurrentFunctionReturnType());
1037 for (unsigned i = 0; i != N; ++i)
1038 V = CreateInsertValue(V, retVals[i], i, "mrv");
1039 return Insert(ReturnInst::Create(Context, V));
1040 }
1041
1042 /// Create an unconditional 'br label X' instruction.
1043 BranchInst *CreateBr(BasicBlock *Dest) {
1044 return Insert(BranchInst::Create(Dest));
1045 }
1046
1047 /// Create a conditional 'br Cond, TrueDest, FalseDest'
1048 /// instruction.
1049 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
1050 MDNode *BranchWeights = nullptr,
1051 MDNode *Unpredictable = nullptr) {
1052 return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond),
1053 BranchWeights, Unpredictable));
1054 }
1055
1056 /// Create a conditional 'br Cond, TrueDest, FalseDest'
1057 /// instruction. Copy branch meta data if available.
1058 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
1059 Instruction *MDSrc) {
1060 BranchInst *Br = BranchInst::Create(True, False, Cond);
1061 if (MDSrc) {
1062 unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
1063 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
1064 Br->copyMetadata(*MDSrc, WL);
1065 }
1066 return Insert(Br);
1067 }
1068
1069 /// Create a switch instruction with the specified value, default dest,
1070 /// and with a hint for the number of cases that will be added (for efficient
1071 /// allocation).
1072 SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
1073 MDNode *BranchWeights = nullptr,
1074 MDNode *Unpredictable = nullptr) {
1075 return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases),
1076 BranchWeights, Unpredictable));
1077 }
1078
1079 /// Create an indirect branch instruction with the specified address
1080 /// operand, with an optional hint for the number of destinations that will be
1081 /// added (for efficient allocation).
1082 IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
1083 return Insert(IndirectBrInst::Create(Addr, NumDests));
1084 }
1085
1086 /// Create an invoke instruction.
1087 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1088 BasicBlock *NormalDest, BasicBlock *UnwindDest,
1089 ArrayRef<Value *> Args,
1090 ArrayRef<OperandBundleDef> OpBundles,
1091 const Twine &Name = "") {
1092 InvokeInst *II =
1093 InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args, OpBundles);
1094 if (IsFPConstrained)
1095 setConstrainedFPCallAttr(II);
1096 return Insert(II, Name);
1097 }
1098 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1099 BasicBlock *NormalDest, BasicBlock *UnwindDest,
1100 ArrayRef<Value *> Args = std::nullopt,
1101 const Twine &Name = "") {
1102 InvokeInst *II =
1103 InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args);
1104 if (IsFPConstrained)
1105 setConstrainedFPCallAttr(II);
1106 return Insert(II, Name);
1107 }
1108
1109 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1110 BasicBlock *UnwindDest, ArrayRef<Value *> Args,
1111 ArrayRef<OperandBundleDef> OpBundles,
1112 const Twine &Name = "") {
1113 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1114 NormalDest, UnwindDest, Args, OpBundles, Name);
1115 }
1116
1117 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1118 BasicBlock *UnwindDest,
1119 ArrayRef<Value *> Args = std::nullopt,
1120 const Twine &Name = "") {
1121 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1122 NormalDest, UnwindDest, Args, Name);
1123 }
1124
1125 /// \brief Create a callbr instruction.
1126 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1127 BasicBlock *DefaultDest,
1128 ArrayRef<BasicBlock *> IndirectDests,
1129 ArrayRef<Value *> Args = std::nullopt,
1130 const Twine &Name = "") {
1131 return Insert(CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests,
1132 Args), Name);
1133 }
1134 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1135 BasicBlock *DefaultDest,
1136 ArrayRef<BasicBlock *> IndirectDests,
1137 ArrayRef<Value *> Args,
1138 ArrayRef<OperandBundleDef> OpBundles,
1139 const Twine &Name = "") {
1140 return Insert(
1141 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
1142 OpBundles), Name);
1143 }
1144
1145 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1146 ArrayRef<BasicBlock *> IndirectDests,
1147 ArrayRef<Value *> Args = std::nullopt,
1148 const Twine &Name = "") {
1149 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1150 DefaultDest, IndirectDests, Args, Name);
1151 }
1152 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1153 ArrayRef<BasicBlock *> IndirectDests,
1154 ArrayRef<Value *> Args,
1155 ArrayRef<OperandBundleDef> OpBundles,
1156 const Twine &Name = "") {
1157 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1158 DefaultDest, IndirectDests, Args, Name);
1159 }
1160
1161 ResumeInst *CreateResume(Value *Exn) {
1162 return Insert(ResumeInst::Create(Exn));
1163 }
1164
1165 CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad,
1166 BasicBlock *UnwindBB = nullptr) {
1167 return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB));
1168 }
1169
1170 CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB,
1171 unsigned NumHandlers,
1172 const Twine &Name = "") {
1173 return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers),
1174 Name);
1175 }
1176
1177 CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args,
1178 const Twine &Name = "") {
1179 return Insert(CatchPadInst::Create(ParentPad, Args), Name);
1180 }
1181
1182 CleanupPadInst *CreateCleanupPad(Value *ParentPad,
1183 ArrayRef<Value *> Args = std::nullopt,
1184 const Twine &Name = "") {
1185 return Insert(CleanupPadInst::Create(ParentPad, Args), Name);
1186 }
1187
1188 CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) {
1189 return Insert(CatchReturnInst::Create(CatchPad, BB));
1190 }
1191
1192 UnreachableInst *CreateUnreachable() {
1193 return Insert(new UnreachableInst(Context));
1194 }
1195
1196 //===--------------------------------------------------------------------===//
1197 // Instruction creation methods: Binary Operators
1198 //===--------------------------------------------------------------------===//
1199private:
1200 BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
1201 Value *LHS, Value *RHS,
1202 const Twine &Name,
1203 bool HasNUW, bool HasNSW) {
1204 BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
1205 if (HasNUW) BO->setHasNoUnsignedWrap();
1206 if (HasNSW) BO->setHasNoSignedWrap();
1207 return BO;
1208 }
1209
1210 Instruction *setFPAttrs(Instruction *I, MDNode *FPMD,
1211 FastMathFlags FMF) const {
1212 if (!FPMD)
1213 FPMD = DefaultFPMathTag;
1214 if (FPMD)
1215 I->setMetadata(LLVMContext::MD_fpmath, FPMD);
1216 I->setFastMathFlags(FMF);
1217 return I;
1218 }
1219
1220 Value *getConstrainedFPRounding(std::optional<RoundingMode> Rounding) {
1221 RoundingMode UseRounding = DefaultConstrainedRounding;
1222
1223 if (Rounding)
1224 UseRounding = *Rounding;
1225
1226 std::optional<StringRef> RoundingStr =
1227 convertRoundingModeToStr(UseRounding);
1228 assert(RoundingStr && "Garbage strict rounding mode!")(static_cast <bool> (RoundingStr && "Garbage strict rounding mode!"
) ? void (0) : __assert_fail ("RoundingStr && \"Garbage strict rounding mode!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1228, __extension__ __PRETTY_FUNCTION__
))
;
1229 auto *RoundingMDS = MDString::get(Context, *RoundingStr);
1230
1231 return MetadataAsValue::get(Context, RoundingMDS);
1232 }
1233
1234 Value *getConstrainedFPExcept(std::optional<fp::ExceptionBehavior> Except) {
1235 std::optional<StringRef> ExceptStr = convertExceptionBehaviorToStr(
1236 Except.value_or(DefaultConstrainedExcept));
1237 assert(ExceptStr && "Garbage strict exception behavior!")(static_cast <bool> (ExceptStr && "Garbage strict exception behavior!"
) ? void (0) : __assert_fail ("ExceptStr && \"Garbage strict exception behavior!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1237, __extension__ __PRETTY_FUNCTION__
))
;
1238 auto *ExceptMDS = MDString::get(Context, *ExceptStr);
1239
1240 return MetadataAsValue::get(Context, ExceptMDS);
1241 }
1242
1243 Value *getConstrainedFPPredicate(CmpInst::Predicate Predicate) {
1244 assert(CmpInst::isFPPredicate(Predicate) &&(static_cast <bool> (CmpInst::isFPPredicate(Predicate) &&
Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst
::FCMP_TRUE && "Invalid constrained FP comparison predicate!"
) ? void (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1247, __extension__ __PRETTY_FUNCTION__
))
1245 Predicate != CmpInst::FCMP_FALSE &&(static_cast <bool> (CmpInst::isFPPredicate(Predicate) &&
Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst
::FCMP_TRUE && "Invalid constrained FP comparison predicate!"
) ? void (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1247, __extension__ __PRETTY_FUNCTION__
))
1246 Predicate != CmpInst::FCMP_TRUE &&(static_cast <bool> (CmpInst::isFPPredicate(Predicate) &&
Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst
::FCMP_TRUE && "Invalid constrained FP comparison predicate!"
) ? void (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1247, __extension__ __PRETTY_FUNCTION__
))
1247 "Invalid constrained FP comparison predicate!")(static_cast <bool> (CmpInst::isFPPredicate(Predicate) &&
Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst
::FCMP_TRUE && "Invalid constrained FP comparison predicate!"
) ? void (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1247, __extension__ __PRETTY_FUNCTION__
))
;
1248
1249 StringRef PredicateStr = CmpInst::getPredicateName(Predicate);
1250 auto *PredicateMDS = MDString::get(Context, PredicateStr);
1251
1252 return MetadataAsValue::get(Context, PredicateMDS);
1253 }
1254
1255public:
1256 Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
1257 bool HasNUW = false, bool HasNSW = false) {
1258 if (Value *V =
1259 Folder.FoldNoWrapBinOp(Instruction::Add, LHS, RHS, HasNUW, HasNSW))
1260 return V;
1261 return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name, HasNUW,
1262 HasNSW);
1263 }
1264
1265 Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1266 return CreateAdd(LHS, RHS, Name, false, true);
1267 }
1268
1269 Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1270 return CreateAdd(LHS, RHS, Name, true, false);
1271 }
1272
1273 Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
1274 bool HasNUW = false, bool HasNSW = false) {
1275 if (Value *V =
1276 Folder.FoldNoWrapBinOp(Instruction::Sub, LHS, RHS, HasNUW, HasNSW))
1277 return V;
1278 return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name, HasNUW,
1279 HasNSW);
1280 }
1281
1282 Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1283 return CreateSub(LHS, RHS, Name, false, true);
1284 }
1285
1286 Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1287 return CreateSub(LHS, RHS, Name, true, false);
1288 }
1289
1290 Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
1291 bool HasNUW = false, bool HasNSW = false) {
1292 if (Value *V =
1293 Folder.FoldNoWrapBinOp(Instruction::Mul, LHS, RHS, HasNUW, HasNSW))
1294 return V;
1295 return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name, HasNUW,
1296 HasNSW);
1297 }
1298
1299 Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1300 return CreateMul(LHS, RHS, Name, false, true);
1301 }
1302
1303 Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1304 return CreateMul(LHS, RHS, Name, true, false);
1305 }
1306
1307 Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1308 bool isExact = false) {
1309 if (Value *V = Folder.FoldExactBinOp(Instruction::UDiv, LHS, RHS, isExact))
1310 return V;
1311 if (!isExact)
1312 return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
1313 return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
1314 }
1315
1316 Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1317 return CreateUDiv(LHS, RHS, Name, true);
1318 }
1319
1320 Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1321 bool isExact = false) {
1322 if (Value *V = Folder.FoldExactBinOp(Instruction::SDiv, LHS, RHS, isExact))
1323 return V;
1324 if (!isExact)
1325 return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
1326 return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
1327 }
1328
1329 Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1330 return CreateSDiv(LHS, RHS, Name, true);
1331 }
1332
1333 Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
1334 if (Value *V = Folder.FoldBinOp(Instruction::URem, LHS, RHS))
1335 return V;
1336 return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
1337 }
1338
1339 Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
1340 if (Value *V = Folder.FoldBinOp(Instruction::SRem, LHS, RHS))
1341 return V;
1342 return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
1343 }
1344
1345 Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
1346 bool HasNUW = false, bool HasNSW = false) {
1347 if (Value *V =
1348 Folder.FoldNoWrapBinOp(Instruction::Shl, LHS, RHS, HasNUW, HasNSW))
1349 return V;
1350 return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
1351 HasNUW, HasNSW);
1352 }
1353
1354 Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
1355 bool HasNUW = false, bool HasNSW = false) {
1356 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1357 HasNUW, HasNSW);
1358 }
1359
1360 Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
1361 bool HasNUW = false, bool HasNSW = false) {
1362 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1363 HasNUW, HasNSW);
1364 }
1365
1366 Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
1367 bool isExact = false) {
1368 if (Value *V = Folder.FoldExactBinOp(Instruction::LShr, LHS, RHS, isExact))
1369 return V;
1370 if (!isExact)
1371 return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
1372 return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
1373 }
1374
1375 Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1376 bool isExact = false) {
1377 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1378 }
1379
1380 Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1381 bool isExact = false) {
1382 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1383 }
1384
1385 Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
1386 bool isExact = false) {
1387 if (Value *V = Folder.FoldExactBinOp(Instruction::AShr, LHS, RHS, isExact))
1388 return V;
1389 if (!isExact)
1390 return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
1391 return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
1392 }
1393
1394 Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1395 bool isExact = false) {
1396 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1397 }
1398
1399 Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1400 bool isExact = false) {
1401 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1402 }
1403
1404 Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
1405 if (auto *V = Folder.FoldBinOp(Instruction::And, LHS, RHS))
1406 return V;
1407 return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
1408 }
1409
1410 Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1411 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1412 }
1413
1414 Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1415 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1416 }
1417
1418 Value *CreateAnd(ArrayRef<Value*> Ops) {
1419 assert(!Ops.empty())(static_cast <bool> (!Ops.empty()) ? void (0) : __assert_fail
("!Ops.empty()", "llvm/include/llvm/IR/IRBuilder.h", 1419, __extension__
__PRETTY_FUNCTION__))
;
1420 Value *Accum = Ops[0];
1421 for (unsigned i = 1; i < Ops.size(); i++)
1422 Accum = CreateAnd(Accum, Ops[i]);
1423 return Accum;
1424 }
1425
1426 Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
1427 if (auto *V = Folder.FoldBinOp(Instruction::Or, LHS, RHS))
1428 return V;
1429 return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
1430 }
1431
1432 Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1433 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1434 }
1435
1436 Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1437 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1438 }
1439
1440 Value *CreateOr(ArrayRef<Value*> Ops) {
1441 assert(!Ops.empty())(static_cast <bool> (!Ops.empty()) ? void (0) : __assert_fail
("!Ops.empty()", "llvm/include/llvm/IR/IRBuilder.h", 1441, __extension__
__PRETTY_FUNCTION__))
;
1442 Value *Accum = Ops[0];
1443 for (unsigned i = 1; i < Ops.size(); i++)
1444 Accum = CreateOr(Accum, Ops[i]);
1445 return Accum;
1446 }
1447
1448 Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
1449 if (Value *V = Folder.FoldBinOp(Instruction::Xor, LHS, RHS))
1450 return V;
1451 return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
1452 }
1453
1454 Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1455 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1456 }
1457
1458 Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1459 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1460 }
1461
1462 Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "",
1463 MDNode *FPMD = nullptr) {
1464 if (IsFPConstrained)
1465 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1466 L, R, nullptr, Name, FPMD);
1467
1468 if (Value *V = Folder.FoldBinOpFMF(Instruction::FAdd, L, R, FMF))
1469 return V;
1470 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF);
1471 return Insert(I, Name);
1472 }
1473
1474 /// Copy fast-math-flags from an instruction rather than using the builder's
1475 /// default FMF.
1476 Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource,
1477 const Twine &Name = "") {
1478 if (IsFPConstrained)
1479 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1480 L, R, FMFSource, Name);
1481
1482 FastMathFlags FMF = FMFSource->getFastMathFlags();
1483 if (Value *V = Folder.FoldBinOpFMF(Instruction::FAdd, L, R, FMF))
1484 return V;
1485 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr, FMF);
1486 return Insert(I, Name);
1487 }
1488
1489 Value *CreateFSub(Value *L, Value *R, const Twine &Name = "",
1490 MDNode *FPMD = nullptr) {
1491 if (IsFPConstrained)
1492 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1493 L, R, nullptr, Name, FPMD);
1494
1495 if (Value *V = Folder.FoldBinOpFMF(Instruction::FSub, L, R, FMF))
1496 return V;
1497 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF);
1498 return Insert(I, Name);
1499 }
1500
1501 /// Copy fast-math-flags from an instruction rather than using the builder's
1502 /// default FMF.
1503 Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource,
1504 const Twine &Name = "") {
1505 if (IsFPConstrained)
1506 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1507 L, R, FMFSource, Name);
1508
1509 FastMathFlags FMF = FMFSource->getFastMathFlags();
1510 if (Value *V = Folder.FoldBinOpFMF(Instruction::FSub, L, R, FMF))
1511 return V;
1512 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr, FMF);
1513 return Insert(I, Name);
1514 }
1515
1516 Value *CreateFMul(Value *L, Value *R, const Twine &Name = "",
1517 MDNode *FPMD = nullptr) {
1518 if (IsFPConstrained)
1519 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1520 L, R, nullptr, Name, FPMD);
1521
1522 if (Value *V = Folder.FoldBinOpFMF(Instruction::FMul, L, R, FMF))
1523 return V;
1524 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF);
1525 return Insert(I, Name);
1526 }
1527
1528 /// Copy fast-math-flags from an instruction rather than using the builder's
1529 /// default FMF.
1530 Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource,
1531 const Twine &Name = "") {
1532 if (IsFPConstrained)
1533 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1534 L, R, FMFSource, Name);
1535
1536 FastMathFlags FMF = FMFSource->getFastMathFlags();
1537 if (Value *V = Folder.FoldBinOpFMF(Instruction::FMul, L, R, FMF))
1538 return V;
1539 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr, FMF);
1540 return Insert(I, Name);
1541 }
1542
1543 Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "",
1544 MDNode *FPMD = nullptr) {
1545 if (IsFPConstrained)
1546 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1547 L, R, nullptr, Name, FPMD);
1548
1549 if (Value *V = Folder.FoldBinOpFMF(Instruction::FDiv, L, R, FMF))
1550 return V;
1551 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF);
1552 return Insert(I, Name);
1553 }
1554
1555 /// Copy fast-math-flags from an instruction rather than using the builder's
1556 /// default FMF.
1557 Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource,
1558 const Twine &Name = "") {
1559 if (IsFPConstrained)
1560 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1561 L, R, FMFSource, Name);
1562
1563 FastMathFlags FMF = FMFSource->getFastMathFlags();
1564 if (Value *V = Folder.FoldBinOpFMF(Instruction::FDiv, L, R, FMF))
1565 return V;
1566 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr, FMF);
1567 return Insert(I, Name);
1568 }
1569
1570 Value *CreateFRem(Value *L, Value *R, const Twine &Name = "",
1571 MDNode *FPMD = nullptr) {
1572 if (IsFPConstrained)
1573 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1574 L, R, nullptr, Name, FPMD);
1575
1576 if (Value *V = Folder.FoldBinOpFMF(Instruction::FRem, L, R, FMF)) return V;
1577 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF);
1578 return Insert(I, Name);
1579 }
1580
1581 /// Copy fast-math-flags from an instruction rather than using the builder's
1582 /// default FMF.
1583 Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource,
1584 const Twine &Name = "") {
1585 if (IsFPConstrained)
1586 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1587 L, R, FMFSource, Name);
1588
1589 FastMathFlags FMF = FMFSource->getFastMathFlags();
1590 if (Value *V = Folder.FoldBinOpFMF(Instruction::FRem, L, R, FMF)) return V;
1591 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr, FMF);
1592 return Insert(I, Name);
1593 }
1594
1595 Value *CreateBinOp(Instruction::BinaryOps Opc,
1596 Value *LHS, Value *RHS, const Twine &Name = "",
1597 MDNode *FPMathTag = nullptr) {
1598 if (Value *V = Folder.FoldBinOp(Opc, LHS, RHS)) return V;
1599 Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
1600 if (isa<FPMathOperator>(BinOp))
1601 setFPAttrs(BinOp, FPMathTag, FMF);
1602 return Insert(BinOp, Name);
1603 }
1604
1605 Value *CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name = "") {
1606 assert(Cond2->getType()->isIntOrIntVectorTy(1))(static_cast <bool> (Cond2->getType()->isIntOrIntVectorTy
(1)) ? void (0) : __assert_fail ("Cond2->getType()->isIntOrIntVectorTy(1)"
, "llvm/include/llvm/IR/IRBuilder.h", 1606, __extension__ __PRETTY_FUNCTION__
))
;
1607 return CreateSelect(Cond1, Cond2,
1608 ConstantInt::getNullValue(Cond2->getType()), Name);
1609 }
1610
1611 Value *CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name = "") {
1612 assert(Cond2->getType()->isIntOrIntVectorTy(1))(static_cast <bool> (Cond2->getType()->isIntOrIntVectorTy
(1)) ? void (0) : __assert_fail ("Cond2->getType()->isIntOrIntVectorTy(1)"
, "llvm/include/llvm/IR/IRBuilder.h", 1612, __extension__ __PRETTY_FUNCTION__
))
;
1613 return CreateSelect(Cond1, ConstantInt::getAllOnesValue(Cond2->getType()),
1614 Cond2, Name);
1615 }
1616
1617 Value *CreateLogicalOp(Instruction::BinaryOps Opc, Value *Cond1, Value *Cond2,
1618 const Twine &Name = "") {
1619 switch (Opc) {
1620 case Instruction::And:
1621 return CreateLogicalAnd(Cond1, Cond2, Name);
1622 case Instruction::Or:
1623 return CreateLogicalOr(Cond1, Cond2, Name);
1624 default:
1625 break;
1626 }
1627 llvm_unreachable("Not a logical operation.")::llvm::llvm_unreachable_internal("Not a logical operation.",
"llvm/include/llvm/IR/IRBuilder.h", 1627)
;
1628 }
1629
1630 // NOTE: this is sequential, non-commutative, ordered reduction!
1631 Value *CreateLogicalOr(ArrayRef<Value *> Ops) {
1632 assert(!Ops.empty())(static_cast <bool> (!Ops.empty()) ? void (0) : __assert_fail
("!Ops.empty()", "llvm/include/llvm/IR/IRBuilder.h", 1632, __extension__
__PRETTY_FUNCTION__))
;
1633 Value *Accum = Ops[0];
1634 for (unsigned i = 1; i < Ops.size(); i++)
1635 Accum = CreateLogicalOr(Accum, Ops[i]);
1636 return Accum;
1637 }
1638
1639 CallInst *CreateConstrainedFPBinOp(
1640 Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource = nullptr,
1641 const Twine &Name = "", MDNode *FPMathTag = nullptr,
1642 std::optional<RoundingMode> Rounding = std::nullopt,
1643 std::optional<fp::ExceptionBehavior> Except = std::nullopt);
1644
1645 Value *CreateNeg(Value *V, const Twine &Name = "", bool HasNUW = false,
1646 bool HasNSW = false) {
1647 return CreateSub(Constant::getNullValue(V->getType()), V, Name, HasNUW,
1648 HasNSW);
1649 }
1650
1651 Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
1652 return CreateNeg(V, Name, false, true);
1653 }
1654
1655 Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
1656 return CreateNeg(V, Name, true, false);
1657 }
1658
1659 Value *CreateFNeg(Value *V, const Twine &Name = "",
1660 MDNode *FPMathTag = nullptr) {
1661 if (Value *Res = Folder.FoldUnOpFMF(Instruction::FNeg, V, FMF))
1662 return Res;
1663 return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), FPMathTag, FMF),
1664 Name);
1665 }
1666
1667 /// Copy fast-math-flags from an instruction rather than using the builder's
1668 /// default FMF.
1669 Value *CreateFNegFMF(Value *V, Instruction *FMFSource,
1670 const Twine &Name = "") {
1671 FastMathFlags FMF = FMFSource->getFastMathFlags();
1672 if (Value *Res = Folder.FoldUnOpFMF(Instruction::FNeg, V, FMF))
1673 return Res;
1674 return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), nullptr, FMF),
1675 Name);
1676 }
1677
1678 Value *CreateNot(Value *V, const Twine &Name = "") {
1679 return CreateXor(V, Constant::getAllOnesValue(V->getType()), Name);
1680 }
1681
1682 Value *CreateUnOp(Instruction::UnaryOps Opc,
1683 Value *V, const Twine &Name = "",
1684 MDNode *FPMathTag = nullptr) {
1685 if (Value *Res = Folder.FoldUnOpFMF(Opc, V, FMF))
1686 return Res;
1687 Instruction *UnOp = UnaryOperator::Create(Opc, V);
1688 if (isa<FPMathOperator>(UnOp))
1689 setFPAttrs(UnOp, FPMathTag, FMF);
1690 return Insert(UnOp, Name);
1691 }
1692
1693 /// Create either a UnaryOperator or BinaryOperator depending on \p Opc.
1694 /// Correct number of operands must be passed accordingly.
1695 Value *CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
1696 const Twine &Name = "", MDNode *FPMathTag = nullptr);
1697
1698 //===--------------------------------------------------------------------===//
1699 // Instruction creation methods: Memory Instructions
1700 //===--------------------------------------------------------------------===//
1701
1702 AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace,
1703 Value *ArraySize = nullptr, const Twine &Name = "") {
1704 const DataLayout &DL = BB->getModule()->getDataLayout();
1705 Align AllocaAlign = DL.getPrefTypeAlign(Ty);
1706 return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
1707 }
1708
1709 AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
1710 const Twine &Name = "") {
1711 const DataLayout &DL = BB->getModule()->getDataLayout();
9
Called C++ object pointer is null
1712 Align AllocaAlign = DL.getPrefTypeAlign(Ty);
1713 unsigned AddrSpace = DL.getAllocaAddrSpace();
1714 return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
1715 }
1716
1717 /// Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of
1718 /// converting the string to 'bool' for the isVolatile parameter.
1719 LoadInst *CreateLoad(Type *Ty, Value *Ptr, const char *Name) {
1720 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
1721 }
1722
1723 LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") {
1724 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
1725 }
1726
1727 LoadInst *CreateLoad(Type *Ty, Value *Ptr, bool isVolatile,
1728 const Twine &Name = "") {
1729 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), isVolatile, Name);
1730 }
1731
1732 StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
1733 return CreateAlignedStore(Val, Ptr, MaybeAlign(), isVolatile);
1734 }
1735
1736 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1737 const char *Name) {
1738 return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
1739 }
1740
1741 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1742 const Twine &Name = "") {
1743 return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
1744 }
1745
1746 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1747 bool isVolatile, const Twine &Name = "") {
1748 if (!Align) {
1749 const DataLayout &DL = BB->getModule()->getDataLayout();
1750 Align = DL.getABITypeAlign(Ty);
1751 }
1752 return Insert(new LoadInst(Ty, Ptr, Twine(), isVolatile, *Align), Name);
1753 }
1754
1755 StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align,
1756 bool isVolatile = false) {
1757 if (!Align) {
1758 const DataLayout &DL = BB->getModule()->getDataLayout();
1759 Align = DL.getABITypeAlign(Val->getType());
1760 }
1761 return Insert(new StoreInst(Val, Ptr, isVolatile, *Align));
1762 }
1763 FenceInst *CreateFence(AtomicOrdering Ordering,
1764 SyncScope::ID SSID = SyncScope::System,
1765 const Twine &Name = "") {
1766 return Insert(new FenceInst(Context, Ordering, SSID), Name);
1767 }
1768
1769 AtomicCmpXchgInst *
1770 CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New, MaybeAlign Align,
1771 AtomicOrdering SuccessOrdering,
1772 AtomicOrdering FailureOrdering,
1773 SyncScope::ID SSID = SyncScope::System) {
1774 if (!Align) {
1775 const DataLayout &DL = BB->getModule()->getDataLayout();
1776 Align = llvm::Align(DL.getTypeStoreSize(New->getType()));
1777 }
1778
1779 return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, *Align, SuccessOrdering,
1780 FailureOrdering, SSID));
1781 }
1782
1783 AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr,
1784 Value *Val, MaybeAlign Align,
1785 AtomicOrdering Ordering,
1786 SyncScope::ID SSID = SyncScope::System) {
1787 if (!Align) {
1788 const DataLayout &DL = BB->getModule()->getDataLayout();
1789 Align = llvm::Align(DL.getTypeStoreSize(Val->getType()));
1790 }
1791
1792 return Insert(new AtomicRMWInst(Op, Ptr, Val, *Align, Ordering, SSID));
1793 }
1794
1795 Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1796 const Twine &Name = "", bool IsInBounds = false) {
1797 if (auto *V = Folder.FoldGEP(Ty, Ptr, IdxList, IsInBounds))
1798 return V;
1799 return Insert(IsInBounds
1800 ? GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList)
1801 : GetElementPtrInst::Create(Ty, Ptr, IdxList),
1802 Name);
1803 }
1804
1805 Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1806 const Twine &Name = "") {
1807 return CreateGEP(Ty, Ptr, IdxList, Name, /* IsInBounds */ true);
1808 }
1809
1810 Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1811 const Twine &Name = "") {
1812 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1813
1814 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/false))
1815 return V;
1816
1817 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1818 }
1819
1820 Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1821 const Twine &Name = "") {
1822 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1823
1824 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/true))
1825 return V;
1826
1827 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1828 }
1829
1830 Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1,
1831 const Twine &Name = "") {
1832 Value *Idxs[] = {
1833 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1834 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1835 };
1836
1837 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/false))
1838 return V;
1839
1840 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
1841 }
1842
1843 Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0,
1844 unsigned Idx1, const Twine &Name = "") {
1845 Value *Idxs[] = {
1846 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1847 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1848 };
1849
1850 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/true))
1851 return V;
1852
1853 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1854 }
1855
1856 Value *CreateConstGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1857 const Twine &Name = "") {
1858 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1859
1860 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/false))
1861 return V;
1862
1863 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1864 }
1865
1866 Value *CreateConstInBoundsGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1867 const Twine &Name = "") {
1868 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1869
1870 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/true))
1871 return V;
1872
1873 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1874 }
1875
1876 Value *CreateConstGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, uint64_t Idx1,
1877 const Twine &Name = "") {
1878 Value *Idxs[] = {
1879 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1880 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1881 };
1882
1883 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/false))
1884 return V;
1885
1886 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
1887 }
1888
1889 Value *CreateConstInBoundsGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1890 uint64_t Idx1, const Twine &Name = "") {
1891 Value *Idxs[] = {
1892 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1893 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1894 };
1895
1896 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/true))
1897 return V;
1898
1899 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1900 }
1901
1902 Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx,
1903 const Twine &Name = "") {
1904 return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name);
1905 }
1906
1907 /// Same as CreateGlobalString, but return a pointer with "i8*" type
1908 /// instead of a pointer to array of i8.
1909 ///
1910 /// If no module is given via \p M, it is take from the insertion point basic
1911 /// block.
1912 Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "",
1913 unsigned AddressSpace = 0,
1914 Module *M = nullptr) {
1915 GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace, M);
1916 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1917 Constant *Indices[] = {Zero, Zero};
1918 return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV,
1919 Indices);
1920 }
1921
1922 //===--------------------------------------------------------------------===//
1923 // Instruction creation methods: Cast/Conversion Operators
1924 //===--------------------------------------------------------------------===//
1925
1926 Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
1927 return CreateCast(Instruction::Trunc, V, DestTy, Name);
1928 }
1929
1930 Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
1931 return CreateCast(Instruction::ZExt, V, DestTy, Name);
1932 }
1933
1934 Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
1935 return CreateCast(Instruction::SExt, V, DestTy, Name);
1936 }
1937
1938 /// Create a ZExt or Trunc from the integer value V to DestTy. Return
1939 /// the value untouched if the type of V is already DestTy.
1940 Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
1941 const Twine &Name = "") {
1942 assert(V->getType()->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1944, __extension__ __PRETTY_FUNCTION__
))
1943 DestTy->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1944, __extension__ __PRETTY_FUNCTION__
))
1944 "Can only zero extend/truncate integers!")(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1944, __extension__ __PRETTY_FUNCTION__
))
;
1945 Type *VTy = V->getType();
1946 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
1947 return CreateZExt(V, DestTy, Name);
1948 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1949 return CreateTrunc(V, DestTy, Name);
1950 return V;
1951 }
1952
1953 /// Create a SExt or Trunc from the integer value V to DestTy. Return
1954 /// the value untouched if the type of V is already DestTy.
1955 Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
1956 const Twine &Name = "") {
1957 assert(V->getType()->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1959, __extension__ __PRETTY_FUNCTION__
))
1958 DestTy->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1959, __extension__ __PRETTY_FUNCTION__
))
1959 "Can only sign extend/truncate integers!")(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1959, __extension__ __PRETTY_FUNCTION__
))
;
1960 Type *VTy = V->getType();
1961 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
1962 return CreateSExt(V, DestTy, Name);
1963 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1964 return CreateTrunc(V, DestTy, Name);
1965 return V;
1966 }
1967
1968 Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = "") {
1969 if (IsFPConstrained)
1970 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptoui,
1971 V, DestTy, nullptr, Name);
1972 return CreateCast(Instruction::FPToUI, V, DestTy, Name);
1973 }
1974
1975 Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = "") {
1976 if (IsFPConstrained)
1977 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptosi,
1978 V, DestTy, nullptr, Name);
1979 return CreateCast(Instruction::FPToSI, V, DestTy, Name);
1980 }
1981
1982 Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
1983 if (IsFPConstrained)
1984 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_uitofp,
1985 V, DestTy, nullptr, Name);
1986 return CreateCast(Instruction::UIToFP, V, DestTy, Name);
1987 }
1988
1989 Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
1990 if (IsFPConstrained)
1991 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_sitofp,
1992 V, DestTy, nullptr, Name);
1993 return CreateCast(Instruction::SIToFP, V, DestTy, Name);
1994 }
1995
1996 Value *CreateFPTrunc(Value *V, Type *DestTy,
1997 const Twine &Name = "") {
1998 if (IsFPConstrained)
1999 return CreateConstrainedFPCast(
2000 Intrinsic::experimental_constrained_fptrunc, V, DestTy, nullptr,
2001 Name);
2002 return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
2003 }
2004
2005 Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
2006 if (IsFPConstrained)
2007 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fpext,
2008 V, DestTy, nullptr, Name);
2009 return CreateCast(Instruction::FPExt, V, DestTy, Name);
2010 }
2011
2012 Value *CreatePtrToInt(Value *V, Type *DestTy,
2013 const Twine &Name = "") {
2014 return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
2015 }
2016
2017 Value *CreateIntToPtr(Value *V, Type *DestTy,
2018 const Twine &Name = "") {
2019 return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
2020 }
2021
2022 Value *CreateBitCast(Value *V, Type *DestTy,
2023 const Twine &Name = "") {
2024 return CreateCast(Instruction::BitCast, V, DestTy, Name);
2025 }
2026
2027 Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
2028 const Twine &Name = "") {
2029 return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
2030 }
2031
2032 Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
2033 const Twine &Name = "") {
2034 if (V->getType() == DestTy)
2035 return V;
2036 if (auto *VC = dyn_cast<Constant>(V))
2037 return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
2038 return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
2039 }
2040
2041 Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
2042 const Twine &Name = "") {
2043 if (V->getType() == DestTy)
2044 return V;
2045 if (auto *VC = dyn_cast<Constant>(V))
2046 return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
2047 return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
2048 }
2049
2050 Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
2051 const Twine &Name = "") {
2052 if (V->getType() == DestTy)
2053 return V;
2054 if (auto *VC = dyn_cast<Constant>(V))
2055 return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
2056 return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
2057 }
2058
2059 Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
2060 const Twine &Name = "") {
2061 if (V->getType() == DestTy)
2062 return V;
2063 if (auto *VC = dyn_cast<Constant>(V))
2064 return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
2065 return Insert(CastInst::Create(Op, V, DestTy), Name);
2066 }
2067
2068 Value *CreatePointerCast(Value *V, Type *DestTy,
2069 const Twine &Name = "") {
2070 if (V->getType() == DestTy)
2071 return V;
2072 if (auto *VC = dyn_cast<Constant>(V))
2073 return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
2074 return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
2075 }
2076
2077 Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
2078 const Twine &Name = "") {
2079 if (V->getType() == DestTy)
2080 return V;
2081
2082 if (auto *VC = dyn_cast<Constant>(V)) {
2083 return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
2084 Name);
2085 }
2086
2087 return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
2088 Name);
2089 }
2090
2091 Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
2092 const Twine &Name = "") {
2093 if (V->getType() == DestTy)
2094 return V;
2095 if (auto *VC = dyn_cast<Constant>(V))
2096 return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
2097 return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
2098 }
2099
2100 Value *CreateBitOrPointerCast(Value *V, Type *DestTy,
2101 const Twine &Name = "") {
2102 if (V->getType() == DestTy)
2103 return V;
2104 if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy())
2105 return CreatePtrToInt(V, DestTy, Name);
2106 if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy())
2107 return CreateIntToPtr(V, DestTy, Name);
2108
2109 return CreateBitCast(V, DestTy, Name);
2110 }
2111
2112 Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
2113 if (V->getType() == DestTy)
2114 return V;
2115 if (auto *VC = dyn_cast<Constant>(V))
2116 return Insert(Folder.CreateFPCast(VC, DestTy), Name);
2117 return Insert(CastInst::CreateFPCast(V, DestTy), Name);
2118 }
2119
2120 CallInst *CreateConstrainedFPCast(
2121 Intrinsic::ID ID, Value *V, Type *DestTy,
2122 Instruction *FMFSource = nullptr, const Twine &Name = "",
2123 MDNode *FPMathTag = nullptr,
2124 std::optional<RoundingMode> Rounding = std::nullopt,
2125 std::optional<fp::ExceptionBehavior> Except = std::nullopt);
2126
2127 // Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
2128 // compile time error, instead of converting the string to bool for the
2129 // isSigned parameter.
2130 Value *CreateIntCast(Value *, Type *, const char *) = delete;
2131
2132 //===--------------------------------------------------------------------===//
2133 // Instruction creation methods: Compare Instructions
2134 //===--------------------------------------------------------------------===//
2135
2136 Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
2137 return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
2138 }
2139
2140 Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
2141 return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
2142 }
2143
2144 Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2145 return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
2146 }
2147
2148 Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2149 return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
2150 }
2151
2152 Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
2153 return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
2154 }
2155
2156 Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
2157 return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
2158 }
2159
2160 Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2161 return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
2162 }
2163
2164 Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2165 return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
2166 }
2167
2168 Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
2169 return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
2170 }
2171
2172 Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
2173 return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
2174 }
2175
2176 Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2177 MDNode *FPMathTag = nullptr) {
2178 return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag);
2179 }
2180
2181 Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "",
2182 MDNode *FPMathTag = nullptr) {
2183 return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag);
2184 }
2185
2186 Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "",
2187 MDNode *FPMathTag = nullptr) {
2188 return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag);
2189 }
2190
2191 Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "",
2192 MDNode *FPMathTag = nullptr) {
2193 return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag);
2194 }
2195
2196 Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "",
2197 MDNode *FPMathTag = nullptr) {
2198 return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag);
2199 }
2200
2201 Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "",
2202 MDNode *FPMathTag = nullptr) {
2203 return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag);
2204 }
2205
2206 Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "",
2207 MDNode *FPMathTag = nullptr) {
2208 return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag);
2209 }
2210
2211 Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "",
2212 MDNode *FPMathTag = nullptr) {
2213 return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag);
2214 }
2215
2216 Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2217 MDNode *FPMathTag = nullptr) {
2218 return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag);
2219 }
2220
2221 Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "",
2222 MDNode *FPMathTag = nullptr) {
2223 return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag);
2224 }
2225
2226 Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "",
2227 MDNode *FPMathTag = nullptr) {
2228 return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag);
2229 }
2230
2231 Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "",
2232 MDNode *FPMathTag = nullptr) {
2233 return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag);
2234 }
2235
2236 Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "",
2237 MDNode *FPMathTag = nullptr) {
2238 return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag);
2239 }
2240
2241 Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "",
2242 MDNode *FPMathTag = nullptr) {
2243 return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag);
2244 }
2245
2246 Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2247 const Twine &Name = "") {
2248 if (auto *V = Folder.FoldICmp(P, LHS, RHS))
2249 return V;
2250 return Insert(new ICmpInst(P, LHS, RHS), Name);
2251 }
2252
2253 // Create a quiet floating-point comparison (i.e. one that raises an FP
2254 // exception only in the case where an input is a signaling NaN).
2255 // Note that this differs from CreateFCmpS only if IsFPConstrained is true.
2256 Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2257 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2258 return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, false);
2259 }
2260
2261 Value *CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2262 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2263 return CmpInst::isFPPredicate(Pred)
2264 ? CreateFCmp(Pred, LHS, RHS, Name, FPMathTag)
2265 : CreateICmp(Pred, LHS, RHS, Name);
2266 }
2267
2268 // Create a signaling floating-point comparison (i.e. one that raises an FP
2269 // exception whenever an input is any NaN, signaling or quiet).
2270 // Note that this differs from CreateFCmp only if IsFPConstrained is true.
2271 Value *CreateFCmpS(CmpInst::Predicate P, Value *LHS, Value *RHS,
2272 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2273 return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, true);
2274 }
2275
2276private:
2277 // Helper routine to create either a signaling or a quiet FP comparison.
2278 Value *CreateFCmpHelper(CmpInst::Predicate P, Value *LHS, Value *RHS,
2279 const Twine &Name, MDNode *FPMathTag,
2280 bool IsSignaling);
2281
2282public:
2283 CallInst *CreateConstrainedFPCmp(
2284 Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
2285 const Twine &Name = "",
2286 std::optional<fp::ExceptionBehavior> Except = std::nullopt);
2287
2288 //===--------------------------------------------------------------------===//
2289 // Instruction creation methods: Other Instructions
2290 //===--------------------------------------------------------------------===//
2291
2292 PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
2293 const Twine &Name = "") {
2294 PHINode *Phi = PHINode::Create(Ty, NumReservedValues);
2295 if (isa<FPMathOperator>(Phi))
2296 setFPAttrs(Phi, nullptr /* MDNode* */, FMF);
2297 return Insert(Phi, Name);
2298 }
2299
2300private:
2301 CallInst *createCallHelper(Function *Callee, ArrayRef<Value *> Ops,
2302 const Twine &Name = "",
2303 Instruction *FMFSource = nullptr,
2304 ArrayRef<OperandBundleDef> OpBundles = {});
2305
2306public:
2307 CallInst *CreateCall(FunctionType *FTy, Value *Callee,
2308 ArrayRef<Value *> Args = std::nullopt,
2309 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2310 CallInst *CI = CallInst::Create(FTy, Callee, Args, DefaultOperandBundles);
2311 if (IsFPConstrained)
2312 setConstrainedFPCallAttr(CI);
2313 if (isa<FPMathOperator>(CI))
2314 setFPAttrs(CI, FPMathTag, FMF);
2315 return Insert(CI, Name);
2316 }
2317
2318 CallInst *CreateCall(FunctionType *FTy, Value *Callee, ArrayRef<Value *> Args,
2319 ArrayRef<OperandBundleDef> OpBundles,
2320 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2321 CallInst *CI = CallInst::Create(FTy, Callee, Args, OpBundles);
2322 if (IsFPConstrained)
2323 setConstrainedFPCallAttr(CI);
2324 if (isa<FPMathOperator>(CI))
2325 setFPAttrs(CI, FPMathTag, FMF);
2326 return Insert(CI, Name);
2327 }
2328
2329 CallInst *CreateCall(FunctionCallee Callee,
2330 ArrayRef<Value *> Args = std::nullopt,
2331 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2332 return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args, Name,
2333 FPMathTag);
2334 }
2335
2336 CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args,
2337 ArrayRef<OperandBundleDef> OpBundles,
2338 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2339 return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args,
2340 OpBundles, Name, FPMathTag);
2341 }
2342
2343 CallInst *CreateConstrainedFPCall(
2344 Function *Callee, ArrayRef<Value *> Args, const Twine &Name = "",
2345 std::optional<RoundingMode> Rounding = std::nullopt,
2346 std::optional<fp::ExceptionBehavior> Except = std::nullopt);
2347
2348 Value *CreateSelect(Value *C, Value *True, Value *False,
2349 const Twine &Name = "", Instruction *MDFrom = nullptr);
2350
2351 VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
2352 return Insert(new VAArgInst(List, Ty), Name);
2353 }
2354
2355 Value *CreateExtractElement(Value *Vec, Value *Idx,
2356 const Twine &Name = "") {
2357 if (Value *V = Folder.FoldExtractElement(Vec, Idx))
2358 return V;
2359 return Insert(ExtractElementInst::Create(Vec, Idx), Name);
2360 }
2361
2362 Value *CreateExtractElement(Value *Vec, uint64_t Idx,
2363 const Twine &Name = "") {
2364 return CreateExtractElement(Vec, getInt64(Idx), Name);
2365 }
2366
2367 Value *CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx,
2368 const Twine &Name = "") {
2369 return CreateInsertElement(PoisonValue::get(VecTy), NewElt, Idx, Name);
2370 }
2371
2372 Value *CreateInsertElement(Type *VecTy, Value *NewElt, uint64_t Idx,
2373 const Twine &Name = "") {
2374 return CreateInsertElement(PoisonValue::get(VecTy), NewElt, Idx, Name);
2375 }
2376
2377 Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
2378 const Twine &Name = "") {
2379 if (Value *V = Folder.FoldInsertElement(Vec, NewElt, Idx))
2380 return V;
2381 return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
2382 }
2383
2384 Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx,
2385 const Twine &Name = "") {
2386 return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name);
2387 }
2388
2389 Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
2390 const Twine &Name = "") {
2391 SmallVector<int, 16> IntMask;
2392 ShuffleVectorInst::getShuffleMask(cast<Constant>(Mask), IntMask);
2393 return CreateShuffleVector(V1, V2, IntMask, Name);
2394 }
2395
2396 /// See class ShuffleVectorInst for a description of the mask representation.
2397 Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask,
2398 const Twine &Name = "") {
2399 if (Value *V = Folder.FoldShuffleVector(V1, V2, Mask))
2400 return V;
2401 return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
2402 }
2403
2404 /// Create a unary shuffle. The second vector operand of the IR instruction
2405 /// is poison.
2406 Value *CreateShuffleVector(Value *V, ArrayRef<int> Mask,
2407 const Twine &Name = "") {
2408 return CreateShuffleVector(V, PoisonValue::get(V->getType()), Mask, Name);
2409 }
2410
2411 Value *CreateExtractValue(Value *Agg, ArrayRef<unsigned> Idxs,
2412 const Twine &Name = "") {
2413 if (auto *V = Folder.FoldExtractValue(Agg, Idxs))
2414 return V;
2415 return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
2416 }
2417
2418 Value *CreateInsertValue(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2419 const Twine &Name = "") {
2420 if (auto *V = Folder.FoldInsertValue(Agg, Val, Idxs))
2421 return V;
2422 return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
2423 }
2424
2425 LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses,
2426 const Twine &Name = "") {
2427 return Insert(LandingPadInst::Create(Ty, NumClauses), Name);
2428 }
2429
2430 Value *CreateFreeze(Value *V, const Twine &Name = "") {
2431 return Insert(new FreezeInst(V), Name);
2432 }
2433
2434 //===--------------------------------------------------------------------===//
2435 // Utility creation methods
2436 //===--------------------------------------------------------------------===//
2437
2438 /// Return a boolean value testing if \p Arg == 0.
2439 Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
2440 return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()), Name);
2441 }
2442
2443 /// Return a boolean value testing if \p Arg != 0.
2444 Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
2445 return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()), Name);
2446 }
2447
2448 /// Return a boolean value testing if \p Arg < 0.
2449 Value *CreateIsNeg(Value *Arg, const Twine &Name = "") {
2450 return CreateICmpSLT(Arg, ConstantInt::getNullValue(Arg->getType()), Name);
2451 }
2452
2453 /// Return a boolean value testing if \p Arg > -1.
2454 Value *CreateIsNotNeg(Value *Arg, const Twine &Name = "") {
2455 return CreateICmpSGT(Arg, ConstantInt::getAllOnesValue(Arg->getType()),
2456 Name);
2457 }
2458
2459 /// Return the i64 difference between two pointer values, dividing out
2460 /// the size of the pointed-to objects.
2461 ///
2462 /// This is intended to implement C-style pointer subtraction. As such, the
2463 /// pointers must be appropriately aligned for their element types and
2464 /// pointing into the same object.
2465 Value *CreatePtrDiff(Type *ElemTy, Value *LHS, Value *RHS,
2466 const Twine &Name = "");
2467
2468 /// Create a launder.invariant.group intrinsic call. If Ptr type is
2469 /// different from pointer to i8, it's casted to pointer to i8 in the same
2470 /// address space before call and casted back to Ptr type after call.
2471 Value *CreateLaunderInvariantGroup(Value *Ptr);
2472
2473 /// \brief Create a strip.invariant.group intrinsic call. If Ptr type is
2474 /// different from pointer to i8, it's casted to pointer to i8 in the same
2475 /// address space before call and casted back to Ptr type after call.
2476 Value *CreateStripInvariantGroup(Value *Ptr);
2477
2478 /// Return a vector value that contains the vector V reversed
2479 Value *CreateVectorReverse(Value *V, const Twine &Name = "");
2480
2481 /// Return a vector splice intrinsic if using scalable vectors, otherwise
2482 /// return a shufflevector. If the immediate is positive, a vector is
2483 /// extracted from concat(V1, V2), starting at Imm. If the immediate
2484 /// is negative, we extract -Imm elements from V1 and the remaining
2485 /// elements from V2. Imm is a signed integer in the range
2486 /// -VL <= Imm < VL (where VL is the runtime vector length of the
2487 /// source/result vector)
2488 Value *CreateVectorSplice(Value *V1, Value *V2, int64_t Imm,
2489 const Twine &Name = "");
2490
2491 /// Return a vector value that contains \arg V broadcasted to \p
2492 /// NumElts elements.
2493 Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "");
2494
2495 /// Return a vector value that contains \arg V broadcasted to \p
2496 /// EC elements.
2497 Value *CreateVectorSplat(ElementCount EC, Value *V, const Twine &Name = "");
2498
2499 /// Return a value that has been extracted from a larger integer type.
2500 Value *CreateExtractInteger(const DataLayout &DL, Value *From,
2501 IntegerType *ExtractedTy, uint64_t Offset,
2502 const Twine &Name);
2503
2504 Value *CreatePreserveArrayAccessIndex(Type *ElTy, Value *Base,
2505 unsigned Dimension, unsigned LastIndex,
2506 MDNode *DbgInfo);
2507
2508 Value *CreatePreserveUnionAccessIndex(Value *Base, unsigned FieldIndex,
2509 MDNode *DbgInfo);
2510
2511 Value *CreatePreserveStructAccessIndex(Type *ElTy, Value *Base,
2512 unsigned Index, unsigned FieldIndex,
2513 MDNode *DbgInfo);
2514
2515private:
2516 /// Helper function that creates an assume intrinsic call that
2517 /// represents an alignment assumption on the provided pointer \p PtrValue
2518 /// with offset \p OffsetValue and alignment value \p AlignValue.
2519 CallInst *CreateAlignmentAssumptionHelper(const DataLayout &DL,
2520 Value *PtrValue, Value *AlignValue,
2521 Value *OffsetValue);
2522
2523public:
2524 /// Create an assume intrinsic call that represents an alignment
2525 /// assumption on the provided pointer.
2526 ///
2527 /// An optional offset can be provided, and if it is provided, the offset
2528 /// must be subtracted from the provided pointer to get the pointer with the
2529 /// specified alignment.
2530 CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2531 unsigned Alignment,
2532 Value *OffsetValue = nullptr);
2533
2534 /// Create an assume intrinsic call that represents an alignment
2535 /// assumption on the provided pointer.
2536 ///
2537 /// An optional offset can be provided, and if it is provided, the offset
2538 /// must be subtracted from the provided pointer to get the pointer with the
2539 /// specified alignment.
2540 ///
2541 /// This overload handles the condition where the Alignment is dependent
2542 /// on an existing value rather than a static value.
2543 CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2544 Value *Alignment,
2545 Value *OffsetValue = nullptr);
2546};
2547
2548/// This provides a uniform API for creating instructions and inserting
2549/// them into a basic block: either at the end of a BasicBlock, or at a specific
2550/// iterator location in a block.
2551///
2552/// Note that the builder does not expose the full generality of LLVM
2553/// instructions. For access to extra instruction properties, use the mutators
2554/// (e.g. setVolatile) on the instructions after they have been
2555/// created. Convenience state exists to specify fast-math flags and fp-math
2556/// tags.
2557///
2558/// The first template argument specifies a class to use for creating constants.
2559/// This defaults to creating minimally folded constants. The second template
2560/// argument allows clients to specify custom insertion hooks that are called on
2561/// every newly created insertion.
2562template <typename FolderTy = ConstantFolder,
2563 typename InserterTy = IRBuilderDefaultInserter>
2564class IRBuilder : public IRBuilderBase {
2565private:
2566 FolderTy Folder;
2567 InserterTy Inserter;
2568
2569public:
2570 IRBuilder(LLVMContext &C, FolderTy Folder, InserterTy Inserter = InserterTy(),
2571 MDNode *FPMathTag = nullptr,
2572 ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2573 : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles),
2574 Folder(Folder), Inserter(Inserter) {}
2575
2576 explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr,
2577 ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2578 : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles) {}
2579
2580 explicit IRBuilder(BasicBlock *TheBB, FolderTy Folder,
2581 MDNode *FPMathTag = nullptr,
2582 ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2583 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2584 FPMathTag, OpBundles),
2585 Folder(Folder) {
2586 SetInsertPoint(TheBB);
2587 }
2588
2589 explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr,
2590 ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2591 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2592 FPMathTag, OpBundles) {
2593 SetInsertPoint(TheBB);
2594 }
2595
2596 explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr,
2597 ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2598 : IRBuilderBase(IP->getContext(), this->Folder, this->Inserter, FPMathTag,
2599 OpBundles) {
2600 SetInsertPoint(IP);
2601 }
2602
2603 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, FolderTy Folder,
2604 MDNode *FPMathTag = nullptr,
2605 ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2606 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2607 FPMathTag, OpBundles),
2608 Folder(Folder) {
2609 SetInsertPoint(TheBB, IP);
2610 }
2611
2612 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
2613 MDNode *FPMathTag = nullptr,
2614 ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2615 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2616 FPMathTag, OpBundles) {
2617 SetInsertPoint(TheBB, IP);
2618 }
2619
2620 /// Avoid copying the full IRBuilder. Prefer using InsertPointGuard
2621 /// or FastMathFlagGuard instead.
2622 IRBuilder(const IRBuilder &) = delete;
2623
2624 InserterTy &getInserter() { return Inserter; }
2625};
2626
2627template <typename FolderTy, typename InserterTy>
2628IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *,
2629 ArrayRef<OperandBundleDef>) -> IRBuilder<FolderTy, InserterTy>;
2630IRBuilder(LLVMContext &, MDNode *, ArrayRef<OperandBundleDef>) -> IRBuilder<>;
2631template <typename FolderTy>
2632IRBuilder(BasicBlock *, FolderTy, MDNode *, ArrayRef<OperandBundleDef>)
2633 -> IRBuilder<FolderTy>;
2634IRBuilder(BasicBlock *, MDNode *, ArrayRef<OperandBundleDef>) -> IRBuilder<>;
2635IRBuilder(Instruction *, MDNode *, ArrayRef<OperandBundleDef>) -> IRBuilder<>;
2636template <typename FolderTy>
2637IRBuilder(BasicBlock *, BasicBlock::iterator, FolderTy, MDNode *,
2638 ArrayRef<OperandBundleDef>) -> IRBuilder<FolderTy>;
2639IRBuilder(BasicBlock *, BasicBlock::iterator, MDNode *,
2640 ArrayRef<OperandBundleDef>) -> IRBuilder<>;
2641
2642
2643// Create wrappers for C Binding types (see CBindingWrapping.h).
2644DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)inline IRBuilder<> *unwrap(LLVMBuilderRef P) { return reinterpret_cast
<IRBuilder<>*>(P); } inline LLVMBuilderRef wrap(const
IRBuilder<> *P) { return reinterpret_cast<LLVMBuilderRef
>(const_cast<IRBuilder<>*>(P)); }
2645
2646} // end namespace llvm
2647
2648#endif // LLVM_IR_IRBUILDER_H