Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include/llvm/IR/IRBuilder.h
Warning:line 2523, column 23
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name X86LowerAMXType.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/X86 -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Target/X86 -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Target/X86/X86LowerAMXType.cpp

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Target/X86/X86LowerAMXType.cpp

1//===- Target/X86/X86LowerAMXType.cpp - -------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file Pass to transform <256 x i32> load/store
10/// <256 x i32> is bitcasted to x86_amx on X86, and AMX instruction set only
11/// provides simple operation on x86_amx. The basic elementwise operation
12/// is not supported by AMX. Since x86_amx is bitcasted from vector <256 x i32>
13/// and only AMX intrinsics can operate on the type, we need transform
14/// load/store <256 x i32> instruction to AMX load/store. If the bitcast can
15/// not be combined with load/store, we transform the bitcast to amx load/store
16/// and <256 x i32> store/load.
17///
18/// If Front End not use O0 but the Mid/Back end use O0, (e.g. "Clang -O2 -S
19/// -emit-llvm t.c" + "llc t.ll") we should make sure the amx data is volatile,
20/// because that is necessary for AMX fast register allocation. (In Fast
21/// registera allocation, register will be allocated before spill/reload, so
22/// there is no additional register for amx to identify the step in spill.)
23/// The volatileTileData() will handle this case.
24/// e.g.
25/// ----------------------------------------------------------
26/// | def %td = ... |
27/// | ... |
28/// | "use %td" |
29/// ----------------------------------------------------------
30/// will transfer to -->
31/// ----------------------------------------------------------
32/// | def %td = ... |
33/// | call void @llvm.x86.tilestored64.internal(mem, %td) |
34/// | ... |
35/// | %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)|
36/// | "use %td2" |
37/// ----------------------------------------------------------
38//
39//===----------------------------------------------------------------------===//
40//
41#include "X86.h"
42#include "llvm/ADT/PostOrderIterator.h"
43#include "llvm/ADT/SetVector.h"
44#include "llvm/ADT/SmallSet.h"
45#include "llvm/Analysis/OptimizationRemarkEmitter.h"
46#include "llvm/Analysis/TargetLibraryInfo.h"
47#include "llvm/Analysis/TargetTransformInfo.h"
48#include "llvm/CodeGen/Passes.h"
49#include "llvm/CodeGen/TargetPassConfig.h"
50#include "llvm/CodeGen/ValueTypes.h"
51#include "llvm/IR/DataLayout.h"
52#include "llvm/IR/Function.h"
53#include "llvm/IR/IRBuilder.h"
54#include "llvm/IR/Instructions.h"
55#include "llvm/IR/IntrinsicInst.h"
56#include "llvm/IR/IntrinsicsX86.h"
57#include "llvm/IR/PatternMatch.h"
58#include "llvm/InitializePasses.h"
59#include "llvm/Pass.h"
60#include "llvm/Target/TargetMachine.h"
61#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
62#include "llvm/Transforms/Utils/Local.h"
63
64#include <map>
65
66using namespace llvm;
67using namespace PatternMatch;
68
69#define DEBUG_TYPE"lower-amx-type" "lower-amx-type"
70
71static bool isAMXCast(Instruction *II) {
72 return match(II,
73 m_Intrinsic<Intrinsic::x86_cast_vector_to_tile>(m_Value())) ||
74 match(II, m_Intrinsic<Intrinsic::x86_cast_tile_to_vector>(m_Value()));
75}
76
77static bool isAMXInstrinsic(User *I) {
78 auto *II = dyn_cast<IntrinsicInst>(I);
79 if (!II)
80 return false;
81 if (isAMXCast(II))
82 return false;
83 // Check if return type or parameter is x86_amx. If it is x86_amx
84 // the intrinsic must be x86 amx intrinsics.
85 if (II->getType()->isX86_AMXTy())
86 return true;
87 for (Value *V : II->args()) {
88 if (V->getType()->isX86_AMXTy())
89 return true;
90 }
91
92 return false;
93}
94
95static AllocaInst *createAllocaInstAtEntry(IRBuilder<> &Builder, BasicBlock *BB,
96 Type *Ty) {
97 Function &F = *BB->getParent();
98 Module *M = BB->getModule();
99 const DataLayout &DL = M->getDataLayout();
100
101 LLVMContext &Ctx = Builder.getContext();
102 auto AllocaAlignment = DL.getPrefTypeAlign(Type::getX86_AMXTy(Ctx));
103 unsigned AllocaAS = DL.getAllocaAddrSpace();
104 AllocaInst *AllocaRes =
105 new AllocaInst(Ty, AllocaAS, "", &F.getEntryBlock().front());
106 AllocaRes->setAlignment(AllocaAlignment);
107 return AllocaRes;
108}
109
110static Instruction *getFirstNonAllocaInTheEntryBlock(Function &F) {
111 for (Instruction &I : F.getEntryBlock())
112 if (!isa<AllocaInst>(&I))
113 return &I;
114 llvm_unreachable("No terminator in the entry block!")::llvm::llvm_unreachable_internal("No terminator in the entry block!"
, "llvm/lib/Target/X86/X86LowerAMXType.cpp", 114)
;
115}
116
117static std::pair<Value *, Value *> getShape(IntrinsicInst *II, unsigned OpNo) {
118 IRBuilder<> Builder(II);
119 Value *Row = nullptr, *Col = nullptr;
120 switch (II->getIntrinsicID()) {
121 default:
122 llvm_unreachable("Expect amx intrinsics")::llvm::llvm_unreachable_internal("Expect amx intrinsics", "llvm/lib/Target/X86/X86LowerAMXType.cpp"
, 122)
;
123 case Intrinsic::x86_tileloadd64_internal:
124 case Intrinsic::x86_tileloaddt164_internal:
125 case Intrinsic::x86_tilestored64_internal: {
126 Row = II->getArgOperand(0);
127 Col = II->getArgOperand(1);
128 break;
129 }
130 // a * b + c
131 // The shape depends on which operand.
132 case Intrinsic::x86_tdpbssd_internal:
133 case Intrinsic::x86_tdpbsud_internal:
134 case Intrinsic::x86_tdpbusd_internal:
135 case Intrinsic::x86_tdpbuud_internal:
136 case Intrinsic::x86_tdpbf16ps_internal: {
137 switch (OpNo) {
138 case 3:
139 Row = II->getArgOperand(0);
140 Col = II->getArgOperand(1);
141 break;
142 case 4:
143 Row = II->getArgOperand(0);
144 Col = II->getArgOperand(2);
145 break;
146 case 5:
147 if (isa<ConstantInt>(II->getArgOperand(2)))
148 Row = Builder.getInt16(
149 (cast<ConstantInt>(II->getOperand(2))->getSExtValue()) / 4);
150 else if (isa<Instruction>(II->getArgOperand(2))) {
151 // When it is not a const value and it is not a function argument, we
152 // create Row after the definition of II->getOperand(2) instead of
153 // before II. For example, II is %118, we try to getshape for %117:
154 // %117 = call x86_amx @llvm.x86.cast.vector.to.tile.v256i32(<256 x
155 // i32> %115).
156 // %118 = call x86_amx @llvm.x86.tdpbf16ps.internal(i16
157 // %104, i16 %105, i16 %106, x86_amx %110, x86_amx %114, x86_amx
158 // %117).
159 // If we create %row = udiv i16 %106, 4 before %118(aka. II), then its
160 // definition is after its user(new tileload for %117).
161 // So, the best choice is to create %row right after the definition of
162 // %106.
163 Builder.SetInsertPoint(cast<Instruction>(II->getOperand(2)));
164 Row = Builder.CreateUDiv(II->getOperand(2), Builder.getInt16(4));
165 cast<Instruction>(Row)->moveAfter(cast<Instruction>(II->getOperand(2)));
166 } else {
167 // When it is not a const value and it is a function argument, we create
168 // Row at the entry bb.
169 IRBuilder<> NewBuilder(
170 getFirstNonAllocaInTheEntryBlock(*II->getFunction()));
171 Row = NewBuilder.CreateUDiv(II->getOperand(2), NewBuilder.getInt16(4));
172 }
173 Col = II->getArgOperand(1);
174 break;
175 }
176 break;
177 }
178 }
179
180 return std::make_pair(Row, Col);
181}
182
183static std::pair<Value *, Value *> getShape(PHINode *Phi) {
184 Use &U = *(Phi->use_begin());
185 unsigned OpNo = U.getOperandNo();
186 User *V = U.getUser();
187 // TODO We don't traverse all users. To make the algorithm simple, here we
188 // just traverse the first user. If we can find shape, then return the shape,
189 // otherwise just return nullptr and the optimization for undef/zero will be
190 // abandoned.
191 while (V) {
192 if (isAMXCast(dyn_cast<Instruction>(V))) {
193 if (V->use_empty())
194 break;
195 Use &U = *(V->use_begin());
196 OpNo = U.getOperandNo();
197 V = U.getUser();
198 } else if (isAMXInstrinsic(V)) {
199 return getShape(cast<IntrinsicInst>(V), OpNo);
200 } else if (isa<PHINode>(V)) {
201 if (V->use_empty())
202 break;
203 Use &U = *(V->use_begin());
204 V = U.getUser();
205 } else {
206 break;
207 }
208 }
209
210 return std::make_pair(nullptr, nullptr);
211}
212
213namespace {
214class X86LowerAMXType {
215 Function &Func;
216
217 // In AMX intrinsics we let Shape = {Row, Col}, but the
218 // RealCol = Col / ElementSize. We may use the RealCol
219 // as a new Row for other new created AMX intrinsics.
220 std::map<Value *, Value *> Col2Row;
221
222public:
223 X86LowerAMXType(Function &F) : Func(F) {}
224 bool visit();
225 void combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast);
226 void combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST);
227 bool transformBitcast(BitCastInst *Bitcast);
228};
229
230// %src = load <256 x i32>, <256 x i32>* %addr, align 64
231// %2 = bitcast <256 x i32> %src to x86_amx
232// -->
233// %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
234// i8* %addr, i64 %stride64)
235void X86LowerAMXType::combineLoadBitcast(LoadInst *LD, BitCastInst *Bitcast) {
236 Value *Row = nullptr, *Col = nullptr;
237 Use &U = *(Bitcast->use_begin());
238 unsigned OpNo = U.getOperandNo();
239 auto *II = cast<IntrinsicInst>(U.getUser());
240 std::tie(Row, Col) = getShape(II, OpNo);
241 IRBuilder<> Builder(Bitcast);
242 // Use the maximun column as stride.
243 Value *Stride = Builder.getInt64(64);
244 Value *I8Ptr =
245 Builder.CreateBitCast(LD->getOperand(0), Builder.getInt8PtrTy());
246 std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
247
248 Value *NewInst =
249 Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal, None, Args);
250 Bitcast->replaceAllUsesWith(NewInst);
251}
252
253// %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
254// %stride);
255// %13 = bitcast x86_amx %src to <256 x i32>
256// store <256 x i32> %13, <256 x i32>* %addr, align 64
257// -->
258// call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
259// %stride64, %13)
260void X86LowerAMXType::combineBitcastStore(BitCastInst *Bitcast, StoreInst *ST) {
261
262 Value *Tile = Bitcast->getOperand(0);
263 auto *II = cast<IntrinsicInst>(Tile);
264 // Tile is output from AMX intrinsic. The first operand of the
265 // intrinsic is row, the second operand of the intrinsic is column.
266 Value *Row = II->getOperand(0);
267 Value *Col = II->getOperand(1);
268 IRBuilder<> Builder(ST);
269 // Use the maximum column as stride. It must be the same with load
270 // stride.
271 Value *Stride = Builder.getInt64(64);
272 Value *I8Ptr =
273 Builder.CreateBitCast(ST->getOperand(1), Builder.getInt8PtrTy());
274 std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Tile};
275 Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
276 if (Bitcast->hasOneUse())
277 return;
278 // %13 = bitcast x86_amx %src to <256 x i32>
279 // store <256 x i32> %13, <256 x i32>* %addr, align 64
280 // %add = <256 x i32> %13, <256 x i32> %src2
281 // -->
282 // %13 = bitcast x86_amx %src to <256 x i32>
283 // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
284 // %stride64, %13)
285 // %14 = load <256 x i32>, %addr
286 // %add = <256 x i32> %14, <256 x i32> %src2
287 Value *Vec = Builder.CreateLoad(Bitcast->getType(), ST->getOperand(1));
288 Bitcast->replaceAllUsesWith(Vec);
289}
290
291// transform bitcast to <store, load> instructions.
292bool X86LowerAMXType::transformBitcast(BitCastInst *Bitcast) {
293 IRBuilder<> Builder(Bitcast);
294 AllocaInst *AllocaAddr;
295 Value *I8Ptr, *Stride;
296 auto *Src = Bitcast->getOperand(0);
297
298 auto Prepare = [&](Type *MemTy) {
299 AllocaAddr = createAllocaInstAtEntry(Builder, Bitcast->getParent(), MemTy);
300 I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
301 Stride = Builder.getInt64(64);
302 };
303
304 if (Bitcast->getType()->isX86_AMXTy()) {
305 // %2 = bitcast <256 x i32> %src to x86_amx
306 // -->
307 // %addr = alloca <256 x i32>, align 64
308 // store <256 x i32> %src, <256 x i32>* %addr, align 64
309 // %addr2 = bitcast <256 x i32>* to i8*
310 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
311 // i8* %addr2,
312 // i64 64)
313 Use &U = *(Bitcast->use_begin());
314 unsigned OpNo = U.getOperandNo();
315 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
316 if (!II)
317 return false; // May be bitcast from x86amx to <256 x i32>.
318 Prepare(Bitcast->getOperand(0)->getType());
319 Builder.CreateStore(Src, AllocaAddr);
320 // TODO we can pick an constant operand for the shape.
321 Value *Row = nullptr, *Col = nullptr;
322 std::tie(Row, Col) = getShape(II, OpNo);
323 std::array<Value *, 4> Args = {Row, Col, I8Ptr, Stride};
324 Value *NewInst = Builder.CreateIntrinsic(
325 Intrinsic::x86_tileloadd64_internal, None, Args);
326 Bitcast->replaceAllUsesWith(NewInst);
327 } else {
328 // %2 = bitcast x86_amx %src to <256 x i32>
329 // -->
330 // %addr = alloca <256 x i32>, align 64
331 // %addr2 = bitcast <256 x i32>* to i8*
332 // call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col,
333 // i8* %addr2, i64 %stride)
334 // %2 = load <256 x i32>, <256 x i32>* %addr, align 64
335 auto *II = dyn_cast<IntrinsicInst>(Src);
336 if (!II)
337 return false; // May be bitcast from <256 x i32> to x86amx.
338 Prepare(Bitcast->getType());
339 Value *Row = II->getOperand(0);
340 Value *Col = II->getOperand(1);
341 std::array<Value *, 5> Args = {Row, Col, I8Ptr, Stride, Src};
342 Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
343 Value *NewInst = Builder.CreateLoad(Bitcast->getType(), AllocaAddr);
344 Bitcast->replaceAllUsesWith(NewInst);
345 }
346
347 return true;
348}
349
350bool X86LowerAMXType::visit() {
351 SmallVector<Instruction *, 8> DeadInsts;
352 Col2Row.clear();
353
354 for (BasicBlock *BB : post_order(&Func)) {
355 for (Instruction &Inst : llvm::make_early_inc_range(llvm::reverse(*BB))) {
356 auto *Bitcast = dyn_cast<BitCastInst>(&Inst);
357 if (!Bitcast)
358 continue;
359
360 Value *Src = Bitcast->getOperand(0);
361 if (Bitcast->getType()->isX86_AMXTy()) {
362 if (Bitcast->user_empty()) {
363 DeadInsts.push_back(Bitcast);
364 continue;
365 }
366 LoadInst *LD = dyn_cast<LoadInst>(Src);
367 if (!LD) {
368 if (transformBitcast(Bitcast))
369 DeadInsts.push_back(Bitcast);
370 continue;
371 }
372 // If load has mutli-user, duplicate a vector load.
373 // %src = load <256 x i32>, <256 x i32>* %addr, align 64
374 // %2 = bitcast <256 x i32> %src to x86_amx
375 // %add = add <256 x i32> %src, <256 x i32> %src2
376 // -->
377 // %src = load <256 x i32>, <256 x i32>* %addr, align 64
378 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
379 // i8* %addr, i64 %stride64)
380 // %add = add <256 x i32> %src, <256 x i32> %src2
381
382 // If load has one user, the load will be eliminated in DAG ISel.
383 // %src = load <256 x i32>, <256 x i32>* %addr, align 64
384 // %2 = bitcast <256 x i32> %src to x86_amx
385 // -->
386 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 %row, i16 %col,
387 // i8* %addr, i64 %stride64)
388 combineLoadBitcast(LD, Bitcast);
389 DeadInsts.push_back(Bitcast);
390 if (LD->hasOneUse())
391 DeadInsts.push_back(LD);
392 } else if (Src->getType()->isX86_AMXTy()) {
393 if (Bitcast->user_empty()) {
394 DeadInsts.push_back(Bitcast);
395 continue;
396 }
397 StoreInst *ST = nullptr;
398 for (Use &U : Bitcast->uses()) {
399 ST = dyn_cast<StoreInst>(U.getUser());
400 if (ST)
401 break;
402 }
403 if (!ST) {
404 if (transformBitcast(Bitcast))
405 DeadInsts.push_back(Bitcast);
406 continue;
407 }
408 // If bitcast (%13) has one use, combine bitcast and store to amx store.
409 // %src = call x86_amx @llvm.x86.tileloadd64.internal(%row, %col, %addr,
410 // %stride);
411 // %13 = bitcast x86_amx %src to <256 x i32>
412 // store <256 x i32> %13, <256 x i32>* %addr, align 64
413 // -->
414 // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
415 // %stride64, %13)
416 //
417 // If bitcast (%13) has multi-use, transform as below.
418 // %13 = bitcast x86_amx %src to <256 x i32>
419 // store <256 x i32> %13, <256 x i32>* %addr, align 64
420 // %add = <256 x i32> %13, <256 x i32> %src2
421 // -->
422 // %13 = bitcast x86_amx %src to <256 x i32>
423 // call void @llvm.x86.tilestored64.internal(%row, %col, %addr,
424 // %stride64, %13)
425 // %14 = load <256 x i32>, %addr
426 // %add = <256 x i32> %14, <256 x i32> %src2
427 //
428 combineBitcastStore(Bitcast, ST);
429 // Delete user first.
430 DeadInsts.push_back(ST);
431 DeadInsts.push_back(Bitcast);
432 }
433 }
434 }
435
436 bool C = !DeadInsts.empty();
437
438 for (auto *Inst : DeadInsts)
439 Inst->eraseFromParent();
440
441 return C;
442}
443} // anonymous namespace
444
445static Value *getAllocaPos(BasicBlock *BB) {
446 Module *M = BB->getModule();
447 Function *F = BB->getParent();
448 IRBuilder<> Builder(&F->getEntryBlock().front());
449 const DataLayout &DL = M->getDataLayout();
450 unsigned AllocaAS = DL.getAllocaAddrSpace();
451 Type *V256I32Ty = VectorType::get(Builder.getInt32Ty(), 256, false);
452 AllocaInst *AllocaRes =
453 new AllocaInst(V256I32Ty, AllocaAS, "", &F->getEntryBlock().front());
454 BasicBlock::iterator Iter = AllocaRes->getIterator();
455 ++Iter;
456 Builder.SetInsertPoint(&*Iter);
457 Value *I8Ptr = Builder.CreateBitCast(AllocaRes, Builder.getInt8PtrTy());
458 return I8Ptr;
459}
460
461static Instruction *createTileStore(Instruction *TileDef, Value *Ptr) {
462 assert(TileDef->getType()->isX86_AMXTy() && "Not define tile!")(static_cast <bool> (TileDef->getType()->isX86_AMXTy
() && "Not define tile!") ? void (0) : __assert_fail (
"TileDef->getType()->isX86_AMXTy() && \"Not define tile!\""
, "llvm/lib/Target/X86/X86LowerAMXType.cpp", 462, __extension__
__PRETTY_FUNCTION__))
;
463 auto *II = cast<IntrinsicInst>(TileDef);
464 assert(II && "Not tile intrinsic!")(static_cast <bool> (II && "Not tile intrinsic!"
) ? void (0) : __assert_fail ("II && \"Not tile intrinsic!\""
, "llvm/lib/Target/X86/X86LowerAMXType.cpp", 464, __extension__
__PRETTY_FUNCTION__))
;
465 Value *Row = II->getOperand(0);
466 Value *Col = II->getOperand(1);
467
468 BasicBlock *BB = TileDef->getParent();
469 BasicBlock::iterator Iter = TileDef->getIterator();
470 IRBuilder<> Builder(BB, ++Iter);
471 Value *Stride = Builder.getInt64(64);
472 std::array<Value *, 5> Args = {Row, Col, Ptr, Stride, TileDef};
473
474 Instruction *TileStore =
475 Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
476 return TileStore;
477}
478
479static void replaceWithTileLoad(Use &U, Value *Ptr, bool IsPHI = false) {
480 Value *V = U.get();
481 assert(V->getType()->isX86_AMXTy() && "Not define tile!")(static_cast <bool> (V->getType()->isX86_AMXTy() &&
"Not define tile!") ? void (0) : __assert_fail ("V->getType()->isX86_AMXTy() && \"Not define tile!\""
, "llvm/lib/Target/X86/X86LowerAMXType.cpp", 481, __extension__
__PRETTY_FUNCTION__))
;
14
'?' condition is true
482
483 // Get tile shape.
484 IntrinsicInst *II = nullptr;
485 if (IsPHI
14.1
'IsPHI' is true
14.1
'IsPHI' is true
) {
15
Taking true branch
486 Value *PhiOp = dyn_cast<PHINode>(V)->getIncomingValue(0);
16
Assuming 'V' is a 'PHINode'
487 II = cast<IntrinsicInst>(PhiOp);
17
'PhiOp' is a 'IntrinsicInst'
488 } else {
489 II = cast<IntrinsicInst>(V);
490 }
491 Value *Row = II->getOperand(0);
492 Value *Col = II->getOperand(1);
493
494 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
18
Assuming the object is not a 'Instruction'
19
'UserI' initialized to a null pointer value
495 IRBuilder<> Builder(UserI);
20
Passing null pointer value via 1st parameter 'IP'
21
Calling constructor for 'IRBuilder<llvm::ConstantFolder, llvm::IRBuilderDefaultInserter>'
496 Value *Stride = Builder.getInt64(64);
497 std::array<Value *, 4> Args = {Row, Col, Ptr, Stride};
498
499 Value *TileLoad =
500 Builder.CreateIntrinsic(Intrinsic::x86_tileloadd64_internal, None, Args);
501 UserI->replaceUsesOfWith(V, TileLoad);
502}
503
504static bool isIncomingOfPHI(Instruction *I) {
505 for (Use &U : I->uses()) {
506 User *V = U.getUser();
507 if (isa<PHINode>(V))
508 return true;
509 }
510 return false;
511}
512
513// Let all AMX tile data become volatile data, shorten the life range
514// of each tile register before fast register allocation.
515namespace {
516class X86VolatileTileData {
517 Function &F;
518
519public:
520 X86VolatileTileData(Function &Func) : F(Func) {}
521 Value *updatePhiIncomings(BasicBlock *BB,
522 SmallVector<Instruction *, 2> &Incomings);
523 void replacePhiDefWithLoad(Instruction *PHI, Value *StorePtr);
524 bool volatileTileData();
525 void volatileTilePHI(PHINode *Inst);
526 void volatileTileNonPHI(Instruction *I);
527};
528
529Value *X86VolatileTileData::updatePhiIncomings(
530 BasicBlock *BB, SmallVector<Instruction *, 2> &Incomings) {
531 Value *I8Ptr = getAllocaPos(BB);
532
533 for (auto *I : Incomings) {
534 User *Store = createTileStore(I, I8Ptr);
535
536 // All its uses (except phi) should load from stored mem.
537 for (Use &U : I->uses()) {
538 User *V = U.getUser();
539 if (isa<PHINode>(V) || V == Store)
540 continue;
541 replaceWithTileLoad(U, I8Ptr);
542 }
543 }
544 return I8Ptr;
545}
546
547void X86VolatileTileData::replacePhiDefWithLoad(Instruction *PHI,
548 Value *StorePtr) {
549 for (Use &U : PHI->uses())
550 replaceWithTileLoad(U, StorePtr, true);
13
Calling 'replaceWithTileLoad'
551 PHI->eraseFromParent();
552}
553
554// Smilar with volatileTileNonPHI, this function only handle PHI Nodes
555// and their related AMX intrinsics.
556// 1) PHI Def should change to tileload.
557// 2) PHI Incoming Values should tilestored in just after their def.
558// 3) The mem of these tileload and tilestores should be same.
559// e.g.
560// ------------------------------------------------------
561// bb_dom:
562// ...
563// br i1 %bool.cond, label %if.else, label %if.then
564//
565// if.then:
566// def %t0 = ...
567// ...
568// use %t0
569// ...
570// br label %if.end
571//
572// if.else:
573// def %t1 = ...
574// br label %if.end
575//
576// if.end:
577// %td = phi x86_amx [ %t1, %if.else ], [ %t0, %if.then ]
578// ...
579// use %td
580// ------------------------------------------------------
581// -->
582// ------------------------------------------------------
583// bb_entry:
584// %mem = alloca <256 x i32>, align 1024 *
585// ...
586// bb_dom:
587// ...
588// br i1 %bool.cond, label %if.else, label %if.then
589//
590// if.then:
591// def %t0 = ...
592// call void @llvm.x86.tilestored64.internal(mem, %t0) *
593// ...
594// %t0` = call x86_amx @llvm.x86.tileloadd64.internal(mem)*
595// use %t0` *
596// ...
597// br label %if.end
598//
599// if.else:
600// def %t1 = ...
601// call void @llvm.x86.tilestored64.internal(mem, %t1) *
602// br label %if.end
603//
604// if.end:
605// ...
606// %td = call x86_amx @llvm.x86.tileloadd64.internal(mem) *
607// use %td
608// ------------------------------------------------------
609void X86VolatileTileData::volatileTilePHI(PHINode *PHI) {
610 BasicBlock *BB = PHI->getParent();
611 SmallVector<Instruction *, 2> Incomings;
612
613 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I != E; ++I) {
10
Assuming 'I' is equal to 'E'
11
Loop condition is false. Execution continues on line 620
614 Value *Op = PHI->getIncomingValue(I);
615 Instruction *Inst = dyn_cast<Instruction>(Op);
616 assert(Inst && "We shouldn't fold AMX instrution!")(static_cast <bool> (Inst && "We shouldn't fold AMX instrution!"
) ? void (0) : __assert_fail ("Inst && \"We shouldn't fold AMX instrution!\""
, "llvm/lib/Target/X86/X86LowerAMXType.cpp", 616, __extension__
__PRETTY_FUNCTION__))
;
617 Incomings.push_back(Inst);
618 }
619
620 Value *StorePtr = updatePhiIncomings(BB, Incomings);
621 replacePhiDefWithLoad(PHI, StorePtr);
12
Calling 'X86VolatileTileData::replacePhiDefWithLoad'
622}
623
624// Store the defined tile and load it before use.
625// All its users are not PHI.
626// e.g.
627// ------------------------------------------------------
628// def %td = ...
629// ...
630// "use %td"
631// ------------------------------------------------------
632// -->
633// ------------------------------------------------------
634// def %td = ...
635// call void @llvm.x86.tilestored64.internal(mem, %td)
636// ...
637// %td2 = call x86_amx @llvm.x86.tileloadd64.internal(mem)
638// "use %td2"
639// ------------------------------------------------------
640void X86VolatileTileData::volatileTileNonPHI(Instruction *I) {
641 BasicBlock *BB = I->getParent();
642 Value *I8Ptr = getAllocaPos(BB);
643 User *Store = createTileStore(I, I8Ptr);
644
645 // All its uses should load from stored mem.
646 for (Use &U : I->uses()) {
647 User *V = U.getUser();
648 assert(!isa<PHINode>(V) && "PHI Nodes should be excluded!")(static_cast <bool> (!isa<PHINode>(V) && "PHI Nodes should be excluded!"
) ? void (0) : __assert_fail ("!isa<PHINode>(V) && \"PHI Nodes should be excluded!\""
, "llvm/lib/Target/X86/X86LowerAMXType.cpp", 648, __extension__
__PRETTY_FUNCTION__))
;
649 if (V != Store)
650 replaceWithTileLoad(U, I8Ptr);
651 }
652}
653
654// Volatile Tile Model:
655// 1) All the uses of tile data comes from tileload in time.
656// 2) All the defs of tile data tilestore into mem immediately.
657// For example:
658// --------------------------------------------------------------------------
659// %t1 = call x86_amx @llvm.x86.tileloadd64.internal(m, k, ...) key
660// %t2 = call x86_amx @llvm.x86.tileloadd64.internal(k, n, ...)
661// %t3 = call x86_amx @llvm.x86.tileloadd64.internal(m, n, ...) amx
662// %td = tail call x86_amx @llvm.x86.tdpbssd.internal(m, n, k, t1, t2, t3)
663// call void @llvm.x86.tilestored64.internal(... td) area
664// --------------------------------------------------------------------------
665// 3) No terminator, call or other amx instructions in the key amx area.
666bool X86VolatileTileData::volatileTileData() {
667 bool Changed = false;
668 for (BasicBlock &BB : F) {
669 SmallVector<Instruction *, 2> PHIInsts;
670 SmallVector<Instruction *, 8> AMXDefInsts;
671
672 for (Instruction &I : BB) {
673 if (!I.getType()->isX86_AMXTy())
674 continue;
675 if (isa<PHINode>(&I))
676 PHIInsts.push_back(&I);
677 else
678 AMXDefInsts.push_back(&I);
679 }
680
681 // First we "volatile" the non-phi related amx intrinsics.
682 for (Instruction *I : AMXDefInsts) {
6
Assuming '__begin2' is equal to '__end2'
683 if (isIncomingOfPHI(I))
684 continue;
685 volatileTileNonPHI(I);
686 Changed = true;
687 }
688
689 for (Instruction *I : PHIInsts) {
7
Assuming '__begin2' is not equal to '__end2'
690 volatileTilePHI(dyn_cast<PHINode>(I));
8
Assuming 'I' is a 'PHINode'
9
Calling 'X86VolatileTileData::volatileTilePHI'
691 Changed = true;
692 }
693 }
694 return Changed;
695}
696
697} // anonymous namespace
698
699namespace {
700
701class X86LowerAMXCast {
702 Function &Func;
703
704public:
705 X86LowerAMXCast(Function &F) : Func(F) {}
706 bool combineAMXcast(TargetLibraryInfo *TLI);
707 bool transformAMXCast(IntrinsicInst *AMXCast);
708 bool transformAllAMXCast();
709 bool optimizeAMXCastFromPhi(IntrinsicInst *CI, PHINode *PN,
710 SmallSetVector<Instruction *, 16> &DeadInst);
711};
712
713static bool DCEInstruction(Instruction *I,
714 SmallSetVector<Instruction *, 16> &WorkList,
715 const TargetLibraryInfo *TLI) {
716 if (isInstructionTriviallyDead(I, TLI)) {
717 salvageDebugInfo(*I);
718 salvageKnowledge(I);
719
720 // Null out all of the instruction's operands to see if any operand becomes
721 // dead as we go.
722 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
723 Value *OpV = I->getOperand(i);
724 I->setOperand(i, nullptr);
725
726 if (!OpV->use_empty() || I == OpV)
727 continue;
728
729 // If the operand is an instruction that became dead as we nulled out the
730 // operand, and if it is 'trivially' dead, delete it in a future loop
731 // iteration.
732 if (Instruction *OpI = dyn_cast<Instruction>(OpV)) {
733 if (isInstructionTriviallyDead(OpI, TLI)) {
734 WorkList.insert(OpI);
735 }
736 }
737 }
738 I->eraseFromParent();
739 return true;
740 }
741 return false;
742}
743
744/// This function handles following case
745///
746/// A -> B amxcast
747/// PHI
748/// B -> A amxcast
749///
750/// All the related PHI nodes can be replaced by new PHI nodes with type A.
751/// The uses of \p CI can be changed to the new PHI node corresponding to \p PN.
752bool X86LowerAMXCast::optimizeAMXCastFromPhi(
753 IntrinsicInst *CI, PHINode *PN,
754 SmallSetVector<Instruction *, 16> &DeadInst) {
755 IRBuilder<> Builder(CI);
756 Value *Src = CI->getOperand(0);
757 Type *SrcTy = Src->getType(); // Type B
758 Type *DestTy = CI->getType(); // Type A
759
760 SmallVector<PHINode *, 4> PhiWorklist;
761 SmallSetVector<PHINode *, 4> OldPhiNodes;
762
763 // Find all of the A->B casts and PHI nodes.
764 // We need to inspect all related PHI nodes, but PHIs can be cyclic, so
765 // OldPhiNodes is used to track all known PHI nodes, before adding a new
766 // PHI to PhiWorklist, it is checked against and added to OldPhiNodes first.
767 PhiWorklist.push_back(PN);
768 OldPhiNodes.insert(PN);
769 while (!PhiWorklist.empty()) {
770 auto *OldPN = PhiWorklist.pop_back_val();
771 for (unsigned I = 0; I < OldPN->getNumOperands(); ++I) {
772 Value *IncValue = OldPN->getIncomingValue(I);
773 // TODO: currently, We ignore cases where it is a const. In the future, we
774 // might support const.
775 if (isa<Constant>(IncValue)) {
776 auto *IncConst = dyn_cast<Constant>(IncValue);
777 if (!isa<UndefValue>(IncValue) && !IncConst->isZeroValue())
778 return false;
779 Value *Row = nullptr, *Col = nullptr;
780 std::tie(Row, Col) = getShape(OldPN);
781 // TODO: If it is not constant the Row and Col must domoniate tilezero
782 // that we are going to create.
783 if (!Row || !Col || !isa<Constant>(Row) || !isa<Constant>(Col))
784 return false;
785 // Create tilezero at the end of incoming block.
786 auto *Block = OldPN->getIncomingBlock(I);
787 BasicBlock::iterator Iter = Block->getTerminator()->getIterator();
788 Instruction *NewInst = Builder.CreateIntrinsic(
789 Intrinsic::x86_tilezero_internal, None, {Row, Col});
790 NewInst->moveBefore(&*Iter);
791 NewInst = Builder.CreateIntrinsic(Intrinsic::x86_cast_tile_to_vector,
792 {IncValue->getType()}, {NewInst});
793 NewInst->moveBefore(&*Iter);
794 // Replace InValue with new Value.
795 OldPN->setIncomingValue(I, NewInst);
796 IncValue = NewInst;
797 }
798
799 if (auto *PNode = dyn_cast<PHINode>(IncValue)) {
800 if (OldPhiNodes.insert(PNode))
801 PhiWorklist.push_back(PNode);
802 continue;
803 }
804 Instruction *ACI = dyn_cast<Instruction>(IncValue);
805 if (ACI && isAMXCast(ACI)) {
806 // Verify it's a A->B cast.
807 Type *TyA = ACI->getOperand(0)->getType();
808 Type *TyB = ACI->getType();
809 if (TyA != DestTy || TyB != SrcTy)
810 return false;
811 continue;
812 }
813 return false;
814 }
815 }
816
817 // Check that each user of each old PHI node is something that we can
818 // rewrite, so that all of the old PHI nodes can be cleaned up afterwards.
819 for (auto *OldPN : OldPhiNodes) {
820 for (User *V : OldPN->users()) {
821 Instruction *ACI = dyn_cast<Instruction>(V);
822 if (ACI && isAMXCast(ACI)) {
823 // Verify it's a B->A cast.
824 Type *TyB = ACI->getOperand(0)->getType();
825 Type *TyA = ACI->getType();
826 if (TyA != DestTy || TyB != SrcTy)
827 return false;
828 } else if (auto *PHI = dyn_cast<PHINode>(V)) {
829 // As long as the user is another old PHI node, then even if we don't
830 // rewrite it, the PHI web we're considering won't have any users
831 // outside itself, so it'll be dead.
832 // example:
833 // bb.0:
834 // %0 = amxcast ...
835 // bb.1:
836 // %1 = amxcast ...
837 // bb.2:
838 // %goodphi = phi %0, %1
839 // %3 = amxcast %goodphi
840 // bb.3:
841 // %goodphi2 = phi %0, %goodphi
842 // %4 = amxcast %goodphi2
843 // When optimizeAMXCastFromPhi process %3 and %goodphi, %goodphi2 is
844 // outside the phi-web, so the combination stop When
845 // optimizeAMXCastFromPhi process %4 and %goodphi2, the optimization
846 // will be done.
847 if (OldPhiNodes.count(PHI) == 0)
848 return false;
849 } else
850 return false;
851 }
852 }
853
854 // For each old PHI node, create a corresponding new PHI node with a type A.
855 SmallDenseMap<PHINode *, PHINode *> NewPNodes;
856 for (auto *OldPN : OldPhiNodes) {
857 Builder.SetInsertPoint(OldPN);
858 PHINode *NewPN = Builder.CreatePHI(DestTy, OldPN->getNumOperands());
859 NewPNodes[OldPN] = NewPN;
860 }
861
862 // Fill in the operands of new PHI nodes.
863 for (auto *OldPN : OldPhiNodes) {
864 PHINode *NewPN = NewPNodes[OldPN];
865 for (unsigned j = 0, e = OldPN->getNumOperands(); j != e; ++j) {
866 Value *V = OldPN->getOperand(j);
867 Value *NewV = nullptr;
868 Instruction *ACI = dyn_cast<Instruction>(V);
869 // There should not be a AMXcast from a const.
870 if (ACI && isAMXCast(ACI))
871 NewV = ACI->getOperand(0);
872 else if (auto *PrevPN = dyn_cast<PHINode>(V))
873 NewV = NewPNodes[PrevPN];
874 assert(NewV)(static_cast <bool> (NewV) ? void (0) : __assert_fail (
"NewV", "llvm/lib/Target/X86/X86LowerAMXType.cpp", 874, __extension__
__PRETTY_FUNCTION__))
;
875 NewPN->addIncoming(NewV, OldPN->getIncomingBlock(j));
876 }
877 }
878
879 // Traverse all accumulated PHI nodes and process its users,
880 // which are Stores and BitcCasts. Without this processing
881 // NewPHI nodes could be replicated and could lead to extra
882 // moves generated after DeSSA.
883 // If there is a store with type B, change it to type A.
884
885 // Replace users of BitCast B->A with NewPHI. These will help
886 // later to get rid of a closure formed by OldPHI nodes.
887 for (auto *OldPN : OldPhiNodes) {
888 PHINode *NewPN = NewPNodes[OldPN];
889 for (User *V : make_early_inc_range(OldPN->users())) {
890 Instruction *ACI = dyn_cast<Instruction>(V);
891 if (ACI && isAMXCast(ACI)) {
892 Type *TyB = ACI->getOperand(0)->getType();
893 Type *TyA = ACI->getType();
894 assert(TyA == DestTy && TyB == SrcTy)(static_cast <bool> (TyA == DestTy && TyB == SrcTy
) ? void (0) : __assert_fail ("TyA == DestTy && TyB == SrcTy"
, "llvm/lib/Target/X86/X86LowerAMXType.cpp", 894, __extension__
__PRETTY_FUNCTION__))
;
895 (void)TyA;
896 (void)TyB;
897 ACI->replaceAllUsesWith(NewPN);
898 DeadInst.insert(ACI);
899 } else if (auto *PHI = dyn_cast<PHINode>(V)) {
900 // We don't need to push PHINode into DeadInst since they are operands
901 // of rootPN DCE can safely delete rootPN's operands if rootPN is dead.
902 assert(OldPhiNodes.contains(PHI))(static_cast <bool> (OldPhiNodes.contains(PHI)) ? void (
0) : __assert_fail ("OldPhiNodes.contains(PHI)", "llvm/lib/Target/X86/X86LowerAMXType.cpp"
, 902, __extension__ __PRETTY_FUNCTION__))
;
903 (void)PHI;
904 } else
905 llvm_unreachable("all uses should be handled")::llvm::llvm_unreachable_internal("all uses should be handled"
, "llvm/lib/Target/X86/X86LowerAMXType.cpp", 905)
;
906 }
907 }
908 return true;
909}
910
911bool X86LowerAMXCast::combineAMXcast(TargetLibraryInfo *TLI) {
912 bool Change = false;
913 // Collect tile cast instruction.
914 SmallVector<Instruction *, 8> Vec2TileInsts;
915 SmallVector<Instruction *, 8> Tile2VecInsts;
916 SmallVector<Instruction *, 8> PhiCastWorkList;
917 SmallSetVector<Instruction *, 16> DeadInst;
918 for (BasicBlock &BB : Func) {
919 for (Instruction &I : BB) {
920 Value *Vec;
921 if (match(&I,
922 m_Intrinsic<Intrinsic::x86_cast_vector_to_tile>(m_Value(Vec))))
923 Vec2TileInsts.push_back(&I);
924 else if (match(&I, m_Intrinsic<Intrinsic::x86_cast_tile_to_vector>(
925 m_Value(Vec))))
926 Tile2VecInsts.push_back(&I);
927 }
928 }
929
930 auto Convert = [&](SmallVectorImpl<Instruction *> &Insts, Intrinsic::ID IID) {
931 for (auto *Inst : Insts) {
932 for (User *U : Inst->users()) {
933 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
934 if (!II || II->getIntrinsicID() != IID)
935 continue;
936 // T1 = vec2tile V0
937 // V2 = tile2vec T1
938 // V3 = OP V2
939 // -->
940 // T1 = vec2tile V0
941 // V2 = tile2vec T1
942 // V3 = OP V0
943 II->replaceAllUsesWith(Inst->getOperand(0));
944 Change = true;
945 }
946 }
947 };
948
949 Convert(Vec2TileInsts, Intrinsic::x86_cast_tile_to_vector);
950 Convert(Tile2VecInsts, Intrinsic::x86_cast_vector_to_tile);
951
952 auto EraseInst = [&](SmallVectorImpl<Instruction *> &Insts) {
953 for (auto *Inst : Insts) {
954 if (Inst->use_empty()) {
955 Inst->eraseFromParent();
956 Change = true;
957 }
958 }
959 };
960
961 EraseInst(Vec2TileInsts);
962 EraseInst(Tile2VecInsts);
963
964 // Handle the A->B->A cast, and there is an intervening PHI node.
965 for (BasicBlock &BB : Func) {
966 for (Instruction &I : BB) {
967 if (isAMXCast(&I)) {
968 if (isa<PHINode>(I.getOperand(0)))
969 PhiCastWorkList.push_back(&I);
970 }
971 }
972 }
973 for (auto *I : PhiCastWorkList) {
974 // We skip the dead Amxcast.
975 if (DeadInst.contains(I))
976 continue;
977 PHINode *PN = cast<PHINode>(I->getOperand(0));
978 if (optimizeAMXCastFromPhi(cast<IntrinsicInst>(I), PN, DeadInst)) {
979 DeadInst.insert(PN);
980 Change = true;
981 }
982 }
983
984 // Since we create new phi and merge AMXCast, some old phis and AMXCast might
985 // have no uses. We do some DeadCodeElimination for them.
986 while (!DeadInst.empty()) {
987 Instruction *I = DeadInst.pop_back_val();
988 Change |= DCEInstruction(I, DeadInst, TLI);
989 }
990 return Change;
991}
992
993// There might be remaining AMXcast after combineAMXcast and they should be
994// handled elegantly.
995bool X86LowerAMXCast::transformAMXCast(IntrinsicInst *AMXCast) {
996 IRBuilder<> Builder(AMXCast);
997 AllocaInst *AllocaAddr;
998 Value *I8Ptr, *Stride;
999 auto *Src = AMXCast->getOperand(0);
1000
1001 auto Prepare = [&](Type *MemTy) {
1002 AllocaAddr = createAllocaInstAtEntry(Builder, AMXCast->getParent(), MemTy);
1003 I8Ptr = Builder.CreateBitCast(AllocaAddr, Builder.getInt8PtrTy());
1004 Stride = Builder.getInt64(64);
1005 };
1006
1007 if (AMXCast->getType()->isX86_AMXTy()) {
1008 // %2 = amxcast <225 x i32> %src to x86_amx
1009 // call void @llvm.x86.tilestored64.internal(i16 15, i16 60,
1010 // i8* %addr3, i64 60, x86_amx %2)
1011 // -->
1012 // %addr = alloca <225 x i32>, align 64
1013 // store <225 x i32> %src, <225 x i32>* %addr, align 64
1014 // %addr2 = bitcast <225 x i32>* %addr to i8*
1015 // %2 = call x86_amx @llvm.x86.tileloadd64.internal(i16 15, i16 60,
1016 // i8* %addr2,
1017 // i64 60)
1018 // call void @llvm.x86.tilestored64.internal(i16 15, i16 60,
1019 // i8* %addr3, i64 60, x86_amx %2)
1020 if (AMXCast->use_empty()) {
1021 AMXCast->eraseFromParent();
1022 return true;
1023 }
1024 Use &U = *(AMXCast->use_begin());
1025 unsigned OpNo = U.getOperandNo();
1026 auto *II = dyn_cast<IntrinsicInst>(U.getUser());
1027 if (!II)
1028 return false; // May be bitcast from x86amx to <256 x i32>.
1029 Prepare(AMXCast->getOperand(0)->getType());
1030 Builder.CreateStore(Src, AllocaAddr);
1031 // TODO we can pick an constant operand for the shape.
1032 Value *Row = nullptr, *Col = nullptr;
1033 std::tie(Row, Col) = getShape(II, OpNo);
1034 std::array<Value *, 4> Args = {
1035 Row, Col, I8Ptr, Builder.CreateSExt(Col, Builder.getInt64Ty())};
1036 Value *NewInst = Builder.CreateIntrinsic(
1037 Intrinsic::x86_tileloadd64_internal, None, Args);
1038 AMXCast->replaceAllUsesWith(NewInst);
1039 AMXCast->eraseFromParent();
1040 } else {
1041 // %2 = amxcast x86_amx %src to <225 x i32>
1042 // -->
1043 // %addr = alloca <225 x i32>, align 64
1044 // %addr2 = bitcast <225 x i32>* to i8*
1045 // call void @llvm.x86.tilestored64.internal(i16 %row, i16 %col,
1046 // i8* %addr2, i64 %stride)
1047 // %2 = load <225 x i32>, <225 x i32>* %addr, align 64
1048 auto *II = dyn_cast<IntrinsicInst>(Src);
1049 if (!II)
1050 return false; // May be bitcast from <256 x i32> to x86amx.
1051 Prepare(AMXCast->getType());
1052 Value *Row = II->getOperand(0);
1053 Value *Col = II->getOperand(1);
1054 std::array<Value *, 5> Args = {
1055 Row, Col, I8Ptr, Builder.CreateSExt(Col, Builder.getInt64Ty()), Src};
1056 Builder.CreateIntrinsic(Intrinsic::x86_tilestored64_internal, None, Args);
1057 Value *NewInst = Builder.CreateLoad(AMXCast->getType(), AllocaAddr);
1058 AMXCast->replaceAllUsesWith(NewInst);
1059 AMXCast->eraseFromParent();
1060 }
1061
1062 return true;
1063}
1064
1065bool X86LowerAMXCast::transformAllAMXCast() {
1066 bool Change = false;
1067 // Collect tile cast instruction.
1068 SmallVector<Instruction *, 8> WorkLists;
1069 for (BasicBlock &BB : Func) {
1070 for (Instruction &I : BB) {
1071 if (isAMXCast(&I))
1072 WorkLists.push_back(&I);
1073 }
1074 }
1075
1076 for (auto *Inst : WorkLists) {
1077 Change |= transformAMXCast(cast<IntrinsicInst>(Inst));
1078 }
1079
1080 return Change;
1081}
1082
1083} // anonymous namespace
1084
1085namespace {
1086
1087class X86LowerAMXTypeLegacyPass : public FunctionPass {
1088public:
1089 static char ID;
1090
1091 X86LowerAMXTypeLegacyPass() : FunctionPass(ID) {
1092 initializeX86LowerAMXTypeLegacyPassPass(*PassRegistry::getPassRegistry());
1093 }
1094
1095 bool runOnFunction(Function &F) override {
1096 bool C = false;
1097 TargetMachine *TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
1098 TargetLibraryInfo *TLI =
1099 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1100 X86LowerAMXCast LAC(F);
1101 C |= LAC.combineAMXcast(TLI);
1102 // There might be remaining AMXcast after combineAMXcast and they should be
1103 // handled elegantly.
1104 C |= LAC.transformAllAMXCast();
1105
1106 X86LowerAMXType LAT(F);
1107 C |= LAT.visit();
1108
1109 // Prepare for fast register allocation at O0.
1110 // Todo: May better check the volatile model of AMX code, not just
1111 // by checking Attribute::OptimizeNone and CodeGenOpt::None.
1112 if (TM->getOptLevel() == CodeGenOpt::None) {
1
Assuming the condition is true
2
Taking true branch
1113 // If Front End not use O0 but the Mid/Back end use O0, (e.g.
1114 // "Clang -O2 -S -emit-llvm t.c" + "llc t.ll") we should make
1115 // sure the amx data is volatile, that is nessary for AMX fast
1116 // register allocation.
1117 if (!F.hasFnAttribute(Attribute::OptimizeNone)) {
3
Assuming the condition is true
4
Taking true branch
1118 X86VolatileTileData VTD(F);
1119 C = VTD.volatileTileData() || C;
5
Calling 'X86VolatileTileData::volatileTileData'
1120 }
1121 }
1122
1123 return C;
1124 }
1125
1126 void getAnalysisUsage(AnalysisUsage &AU) const override {
1127 AU.setPreservesCFG();
1128 AU.addRequired<TargetPassConfig>();
1129 AU.addRequired<TargetLibraryInfoWrapperPass>();
1130 }
1131};
1132
1133} // anonymous namespace
1134
1135static const char PassName[] = "Lower AMX type for load/store";
1136char X86LowerAMXTypeLegacyPass::ID = 0;
1137INITIALIZE_PASS_BEGIN(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,static void *initializeX86LowerAMXTypeLegacyPassPassOnce(PassRegistry
&Registry) {
1138 false)static void *initializeX86LowerAMXTypeLegacyPassPassOnce(PassRegistry
&Registry) {
1139INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)initializeTargetPassConfigPass(Registry);
1140INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
1141INITIALIZE_PASS_END(X86LowerAMXTypeLegacyPass, DEBUG_TYPE, PassName, false,PassInfo *PI = new PassInfo( PassName, "lower-amx-type", &
X86LowerAMXTypeLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<X86LowerAMXTypeLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeX86LowerAMXTypeLegacyPassPassFlag
; void llvm::initializeX86LowerAMXTypeLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeX86LowerAMXTypeLegacyPassPassFlag
, initializeX86LowerAMXTypeLegacyPassPassOnce, std::ref(Registry
)); }
1142 false)PassInfo *PI = new PassInfo( PassName, "lower-amx-type", &
X86LowerAMXTypeLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<X86LowerAMXTypeLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeX86LowerAMXTypeLegacyPassPassFlag
; void llvm::initializeX86LowerAMXTypeLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeX86LowerAMXTypeLegacyPassPassFlag
, initializeX86LowerAMXTypeLegacyPassPassOnce, std::ref(Registry
)); }
1143
1144FunctionPass *llvm::createX86LowerAMXTypePass() {
1145 return new X86LowerAMXTypeLegacyPass();
1146}

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include/llvm/IR/IRBuilder.h

1//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the IRBuilder class, which is used as a convenient way
10// to create LLVM instructions with a consistent and simplified interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_IRBUILDER_H
15#define LLVM_IR_IRBUILDER_H
16
17#include "llvm-c/Types.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/IR/BasicBlock.h"
24#include "llvm/IR/Constant.h"
25#include "llvm/IR/ConstantFolder.h"
26#include "llvm/IR/Constants.h"
27#include "llvm/IR/DataLayout.h"
28#include "llvm/IR/DebugLoc.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/FPEnv.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/InstrTypes.h"
34#include "llvm/IR/Instruction.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/Intrinsics.h"
37#include "llvm/IR/LLVMContext.h"
38#include "llvm/IR/Module.h"
39#include "llvm/IR/Operator.h"
40#include "llvm/IR/Type.h"
41#include "llvm/IR/Value.h"
42#include "llvm/IR/ValueHandle.h"
43#include "llvm/Support/AtomicOrdering.h"
44#include "llvm/Support/CBindingWrapping.h"
45#include "llvm/Support/Casting.h"
46#include <cassert>
47#include <cstdint>
48#include <functional>
49#include <utility>
50
51namespace llvm {
52
53class APInt;
54class Use;
55
56/// This provides the default implementation of the IRBuilder
57/// 'InsertHelper' method that is called whenever an instruction is created by
58/// IRBuilder and needs to be inserted.
59///
60/// By default, this inserts the instruction at the insertion point.
61class IRBuilderDefaultInserter {
62public:
63 virtual ~IRBuilderDefaultInserter();
64
65 virtual void InsertHelper(Instruction *I, const Twine &Name,
66 BasicBlock *BB,
67 BasicBlock::iterator InsertPt) const {
68 if (BB) BB->getInstList().insert(InsertPt, I);
69 I->setName(Name);
70 }
71};
72
73/// Provides an 'InsertHelper' that calls a user-provided callback after
74/// performing the default insertion.
75class IRBuilderCallbackInserter : public IRBuilderDefaultInserter {
76 std::function<void(Instruction *)> Callback;
77
78public:
79 ~IRBuilderCallbackInserter() override;
80
81 IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback)
82 : Callback(std::move(Callback)) {}
83
84 void InsertHelper(Instruction *I, const Twine &Name,
85 BasicBlock *BB,
86 BasicBlock::iterator InsertPt) const override {
87 IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
88 Callback(I);
89 }
90};
91
92/// Common base class shared among various IRBuilders.
93class IRBuilderBase {
94 /// Pairs of (metadata kind, MDNode *) that should be added to all newly
95 /// created instructions, like !dbg metadata.
96 SmallVector<std::pair<unsigned, MDNode *>, 2> MetadataToCopy;
97
98 /// Add or update the an entry (Kind, MD) to MetadataToCopy, if \p MD is not
99 /// null. If \p MD is null, remove the entry with \p Kind.
100 void AddOrRemoveMetadataToCopy(unsigned Kind, MDNode *MD) {
101 if (!MD) {
102 erase_if(MetadataToCopy, [Kind](const std::pair<unsigned, MDNode *> &KV) {
103 return KV.first == Kind;
104 });
105 return;
106 }
107
108 for (auto &KV : MetadataToCopy)
109 if (KV.first == Kind) {
110 KV.second = MD;
111 return;
112 }
113
114 MetadataToCopy.emplace_back(Kind, MD);
115 }
116
117protected:
118 BasicBlock *BB;
119 BasicBlock::iterator InsertPt;
120 LLVMContext &Context;
121 const IRBuilderFolder &Folder;
122 const IRBuilderDefaultInserter &Inserter;
123
124 MDNode *DefaultFPMathTag;
125 FastMathFlags FMF;
126
127 bool IsFPConstrained = false;
128 fp::ExceptionBehavior DefaultConstrainedExcept = fp::ebStrict;
129 RoundingMode DefaultConstrainedRounding = RoundingMode::Dynamic;
130
131 ArrayRef<OperandBundleDef> DefaultOperandBundles;
132
133public:
134 IRBuilderBase(LLVMContext &context, const IRBuilderFolder &Folder,
135 const IRBuilderDefaultInserter &Inserter, MDNode *FPMathTag,
136 ArrayRef<OperandBundleDef> OpBundles)
137 : Context(context), Folder(Folder), Inserter(Inserter),
138 DefaultFPMathTag(FPMathTag), DefaultOperandBundles(OpBundles) {
139 ClearInsertionPoint();
140 }
141
142 /// Insert and return the specified instruction.
143 template<typename InstTy>
144 InstTy *Insert(InstTy *I, const Twine &Name = "") const {
145 Inserter.InsertHelper(I, Name, BB, InsertPt);
146 AddMetadataToInst(I);
147 return I;
148 }
149
150 /// No-op overload to handle constants.
151 Constant *Insert(Constant *C, const Twine& = "") const {
152 return C;
153 }
154
155 Value *Insert(Value *V, const Twine &Name = "") const {
156 if (Instruction *I = dyn_cast<Instruction>(V))
157 return Insert(I, Name);
158 assert(isa<Constant>(V))(static_cast <bool> (isa<Constant>(V)) ? void (0)
: __assert_fail ("isa<Constant>(V)", "llvm/include/llvm/IR/IRBuilder.h"
, 158, __extension__ __PRETTY_FUNCTION__))
;
159 return V;
160 }
161
162 //===--------------------------------------------------------------------===//
163 // Builder configuration methods
164 //===--------------------------------------------------------------------===//
165
166 /// Clear the insertion point: created instructions will not be
167 /// inserted into a block.
168 void ClearInsertionPoint() {
169 BB = nullptr;
170 InsertPt = BasicBlock::iterator();
171 }
172
173 BasicBlock *GetInsertBlock() const { return BB; }
174 BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
175 LLVMContext &getContext() const { return Context; }
176
177 /// This specifies that created instructions should be appended to the
178 /// end of the specified block.
179 void SetInsertPoint(BasicBlock *TheBB) {
180 BB = TheBB;
181 InsertPt = BB->end();
182 }
183
184 /// This specifies that created instructions should be inserted before
185 /// the specified instruction.
186 void SetInsertPoint(Instruction *I) {
187 BB = I->getParent();
188 InsertPt = I->getIterator();
189 assert(InsertPt != BB->end() && "Can't read debug loc from end()")(static_cast <bool> (InsertPt != BB->end() &&
"Can't read debug loc from end()") ? void (0) : __assert_fail
("InsertPt != BB->end() && \"Can't read debug loc from end()\""
, "llvm/include/llvm/IR/IRBuilder.h", 189, __extension__ __PRETTY_FUNCTION__
))
;
190 SetCurrentDebugLocation(I->getDebugLoc());
191 }
192
193 /// This specifies that created instructions should be inserted at the
194 /// specified point.
195 void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
196 BB = TheBB;
197 InsertPt = IP;
198 if (IP != TheBB->end())
199 SetCurrentDebugLocation(IP->getDebugLoc());
200 }
201
202 /// Set location information used by debugging information.
203 void SetCurrentDebugLocation(DebugLoc L) {
204 AddOrRemoveMetadataToCopy(LLVMContext::MD_dbg, L.getAsMDNode());
205 }
206
207 /// Collect metadata with IDs \p MetadataKinds from \p Src which should be
208 /// added to all created instructions. Entries present in MedataDataToCopy but
209 /// not on \p Src will be dropped from MetadataToCopy.
210 void CollectMetadataToCopy(Instruction *Src,
211 ArrayRef<unsigned> MetadataKinds) {
212 for (unsigned K : MetadataKinds)
213 AddOrRemoveMetadataToCopy(K, Src->getMetadata(K));
214 }
215
216 /// Get location information used by debugging information.
217 DebugLoc getCurrentDebugLocation() const;
218
219 /// If this builder has a current debug location, set it on the
220 /// specified instruction.
221 void SetInstDebugLocation(Instruction *I) const;
222
223 /// Add all entries in MetadataToCopy to \p I.
224 void AddMetadataToInst(Instruction *I) const {
225 for (auto &KV : MetadataToCopy)
226 I->setMetadata(KV.first, KV.second);
227 }
228
229 /// Get the return type of the current function that we're emitting
230 /// into.
231 Type *getCurrentFunctionReturnType() const;
232
233 /// InsertPoint - A saved insertion point.
234 class InsertPoint {
235 BasicBlock *Block = nullptr;
236 BasicBlock::iterator Point;
237
238 public:
239 /// Creates a new insertion point which doesn't point to anything.
240 InsertPoint() = default;
241
242 /// Creates a new insertion point at the given location.
243 InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
244 : Block(InsertBlock), Point(InsertPoint) {}
245
246 /// Returns true if this insert point is set.
247 bool isSet() const { return (Block != nullptr); }
248
249 BasicBlock *getBlock() const { return Block; }
250 BasicBlock::iterator getPoint() const { return Point; }
251 };
252
253 /// Returns the current insert point.
254 InsertPoint saveIP() const {
255 return InsertPoint(GetInsertBlock(), GetInsertPoint());
256 }
257
258 /// Returns the current insert point, clearing it in the process.
259 InsertPoint saveAndClearIP() {
260 InsertPoint IP(GetInsertBlock(), GetInsertPoint());
261 ClearInsertionPoint();
262 return IP;
263 }
264
265 /// Sets the current insert point to a previously-saved location.
266 void restoreIP(InsertPoint IP) {
267 if (IP.isSet())
268 SetInsertPoint(IP.getBlock(), IP.getPoint());
269 else
270 ClearInsertionPoint();
271 }
272
273 /// Get the floating point math metadata being used.
274 MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
275
276 /// Get the flags to be applied to created floating point ops
277 FastMathFlags getFastMathFlags() const { return FMF; }
278
279 FastMathFlags &getFastMathFlags() { return FMF; }
280
281 /// Clear the fast-math flags.
282 void clearFastMathFlags() { FMF.clear(); }
283
284 /// Set the floating point math metadata to be used.
285 void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
286
287 /// Set the fast-math flags to be used with generated fp-math operators
288 void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
289
290 /// Enable/Disable use of constrained floating point math. When
291 /// enabled the CreateF<op>() calls instead create constrained
292 /// floating point intrinsic calls. Fast math flags are unaffected
293 /// by this setting.
294 void setIsFPConstrained(bool IsCon) { IsFPConstrained = IsCon; }
295
296 /// Query for the use of constrained floating point math
297 bool getIsFPConstrained() { return IsFPConstrained; }
298
299 /// Set the exception handling to be used with constrained floating point
300 void setDefaultConstrainedExcept(fp::ExceptionBehavior NewExcept) {
301#ifndef NDEBUG
302 Optional<StringRef> ExceptStr = convertExceptionBehaviorToStr(NewExcept);
303 assert(ExceptStr.hasValue() && "Garbage strict exception behavior!")(static_cast <bool> (ExceptStr.hasValue() && "Garbage strict exception behavior!"
) ? void (0) : __assert_fail ("ExceptStr.hasValue() && \"Garbage strict exception behavior!\""
, "llvm/include/llvm/IR/IRBuilder.h", 303, __extension__ __PRETTY_FUNCTION__
))
;
304#endif
305 DefaultConstrainedExcept = NewExcept;
306 }
307
308 /// Set the rounding mode handling to be used with constrained floating point
309 void setDefaultConstrainedRounding(RoundingMode NewRounding) {
310#ifndef NDEBUG
311 Optional<StringRef> RoundingStr = convertRoundingModeToStr(NewRounding);
312 assert(RoundingStr.hasValue() && "Garbage strict rounding mode!")(static_cast <bool> (RoundingStr.hasValue() && "Garbage strict rounding mode!"
) ? void (0) : __assert_fail ("RoundingStr.hasValue() && \"Garbage strict rounding mode!\""
, "llvm/include/llvm/IR/IRBuilder.h", 312, __extension__ __PRETTY_FUNCTION__
))
;
313#endif
314 DefaultConstrainedRounding = NewRounding;
315 }
316
317 /// Get the exception handling used with constrained floating point
318 fp::ExceptionBehavior getDefaultConstrainedExcept() {
319 return DefaultConstrainedExcept;
320 }
321
322 /// Get the rounding mode handling used with constrained floating point
323 RoundingMode getDefaultConstrainedRounding() {
324 return DefaultConstrainedRounding;
325 }
326
327 void setConstrainedFPFunctionAttr() {
328 assert(BB && "Must have a basic block to set any function attributes!")(static_cast <bool> (BB && "Must have a basic block to set any function attributes!"
) ? void (0) : __assert_fail ("BB && \"Must have a basic block to set any function attributes!\""
, "llvm/include/llvm/IR/IRBuilder.h", 328, __extension__ __PRETTY_FUNCTION__
))
;
329
330 Function *F = BB->getParent();
331 if (!F->hasFnAttribute(Attribute::StrictFP)) {
332 F->addFnAttr(Attribute::StrictFP);
333 }
334 }
335
336 void setConstrainedFPCallAttr(CallBase *I) {
337 I->addFnAttr(Attribute::StrictFP);
338 }
339
340 void setDefaultOperandBundles(ArrayRef<OperandBundleDef> OpBundles) {
341 DefaultOperandBundles = OpBundles;
342 }
343
344 //===--------------------------------------------------------------------===//
345 // RAII helpers.
346 //===--------------------------------------------------------------------===//
347
348 // RAII object that stores the current insertion point and restores it
349 // when the object is destroyed. This includes the debug location.
350 class InsertPointGuard {
351 IRBuilderBase &Builder;
352 AssertingVH<BasicBlock> Block;
353 BasicBlock::iterator Point;
354 DebugLoc DbgLoc;
355
356 public:
357 InsertPointGuard(IRBuilderBase &B)
358 : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
359 DbgLoc(B.getCurrentDebugLocation()) {}
360
361 InsertPointGuard(const InsertPointGuard &) = delete;
362 InsertPointGuard &operator=(const InsertPointGuard &) = delete;
363
364 ~InsertPointGuard() {
365 Builder.restoreIP(InsertPoint(Block, Point));
366 Builder.SetCurrentDebugLocation(DbgLoc);
367 }
368 };
369
370 // RAII object that stores the current fast math settings and restores
371 // them when the object is destroyed.
372 class FastMathFlagGuard {
373 IRBuilderBase &Builder;
374 FastMathFlags FMF;
375 MDNode *FPMathTag;
376 bool IsFPConstrained;
377 fp::ExceptionBehavior DefaultConstrainedExcept;
378 RoundingMode DefaultConstrainedRounding;
379
380 public:
381 FastMathFlagGuard(IRBuilderBase &B)
382 : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag),
383 IsFPConstrained(B.IsFPConstrained),
384 DefaultConstrainedExcept(B.DefaultConstrainedExcept),
385 DefaultConstrainedRounding(B.DefaultConstrainedRounding) {}
386
387 FastMathFlagGuard(const FastMathFlagGuard &) = delete;
388 FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete;
389
390 ~FastMathFlagGuard() {
391 Builder.FMF = FMF;
392 Builder.DefaultFPMathTag = FPMathTag;
393 Builder.IsFPConstrained = IsFPConstrained;
394 Builder.DefaultConstrainedExcept = DefaultConstrainedExcept;
395 Builder.DefaultConstrainedRounding = DefaultConstrainedRounding;
396 }
397 };
398
399 // RAII object that stores the current default operand bundles and restores
400 // them when the object is destroyed.
401 class OperandBundlesGuard {
402 IRBuilderBase &Builder;
403 ArrayRef<OperandBundleDef> DefaultOperandBundles;
404
405 public:
406 OperandBundlesGuard(IRBuilderBase &B)
407 : Builder(B), DefaultOperandBundles(B.DefaultOperandBundles) {}
408
409 OperandBundlesGuard(const OperandBundlesGuard &) = delete;
410 OperandBundlesGuard &operator=(const OperandBundlesGuard &) = delete;
411
412 ~OperandBundlesGuard() {
413 Builder.DefaultOperandBundles = DefaultOperandBundles;
414 }
415 };
416
417
418 //===--------------------------------------------------------------------===//
419 // Miscellaneous creation methods.
420 //===--------------------------------------------------------------------===//
421
422 /// Make a new global variable with initializer type i8*
423 ///
424 /// Make a new global variable with an initializer that has array of i8 type
425 /// filled in with the null terminated string value specified. The new global
426 /// variable will be marked mergable with any others of the same contents. If
427 /// Name is specified, it is the name of the global variable created.
428 ///
429 /// If no module is given via \p M, it is take from the insertion point basic
430 /// block.
431 GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "",
432 unsigned AddressSpace = 0,
433 Module *M = nullptr);
434
435 /// Get a constant value representing either true or false.
436 ConstantInt *getInt1(bool V) {
437 return ConstantInt::get(getInt1Ty(), V);
438 }
439
440 /// Get the constant value for i1 true.
441 ConstantInt *getTrue() {
442 return ConstantInt::getTrue(Context);
443 }
444
445 /// Get the constant value for i1 false.
446 ConstantInt *getFalse() {
447 return ConstantInt::getFalse(Context);
448 }
449
450 /// Get a constant 8-bit value.
451 ConstantInt *getInt8(uint8_t C) {
452 return ConstantInt::get(getInt8Ty(), C);
453 }
454
455 /// Get a constant 16-bit value.
456 ConstantInt *getInt16(uint16_t C) {
457 return ConstantInt::get(getInt16Ty(), C);
458 }
459
460 /// Get a constant 32-bit value.
461 ConstantInt *getInt32(uint32_t C) {
462 return ConstantInt::get(getInt32Ty(), C);
463 }
464
465 /// Get a constant 64-bit value.
466 ConstantInt *getInt64(uint64_t C) {
467 return ConstantInt::get(getInt64Ty(), C);
468 }
469
470 /// Get a constant N-bit value, zero extended or truncated from
471 /// a 64-bit value.
472 ConstantInt *getIntN(unsigned N, uint64_t C) {
473 return ConstantInt::get(getIntNTy(N), C);
474 }
475
476 /// Get a constant integer value.
477 ConstantInt *getInt(const APInt &AI) {
478 return ConstantInt::get(Context, AI);
479 }
480
481 //===--------------------------------------------------------------------===//
482 // Type creation methods
483 //===--------------------------------------------------------------------===//
484
485 /// Fetch the type representing a single bit
486 IntegerType *getInt1Ty() {
487 return Type::getInt1Ty(Context);
488 }
489
490 /// Fetch the type representing an 8-bit integer.
491 IntegerType *getInt8Ty() {
492 return Type::getInt8Ty(Context);
493 }
494
495 /// Fetch the type representing a 16-bit integer.
496 IntegerType *getInt16Ty() {
497 return Type::getInt16Ty(Context);
498 }
499
500 /// Fetch the type representing a 32-bit integer.
501 IntegerType *getInt32Ty() {
502 return Type::getInt32Ty(Context);
503 }
504
505 /// Fetch the type representing a 64-bit integer.
506 IntegerType *getInt64Ty() {
507 return Type::getInt64Ty(Context);
508 }
509
510 /// Fetch the type representing a 128-bit integer.
511 IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); }
512
513 /// Fetch the type representing an N-bit integer.
514 IntegerType *getIntNTy(unsigned N) {
515 return Type::getIntNTy(Context, N);
516 }
517
518 /// Fetch the type representing a 16-bit floating point value.
519 Type *getHalfTy() {
520 return Type::getHalfTy(Context);
521 }
522
523 /// Fetch the type representing a 16-bit brain floating point value.
524 Type *getBFloatTy() {
525 return Type::getBFloatTy(Context);
526 }
527
528 /// Fetch the type representing a 32-bit floating point value.
529 Type *getFloatTy() {
530 return Type::getFloatTy(Context);
531 }
532
533 /// Fetch the type representing a 64-bit floating point value.
534 Type *getDoubleTy() {
535 return Type::getDoubleTy(Context);
536 }
537
538 /// Fetch the type representing void.
539 Type *getVoidTy() {
540 return Type::getVoidTy(Context);
541 }
542
543 /// Fetch the type representing a pointer to an 8-bit integer value.
544 PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
545 return Type::getInt8PtrTy(Context, AddrSpace);
546 }
547
548 /// Fetch the type representing a pointer to an integer value.
549 IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) {
550 return DL.getIntPtrType(Context, AddrSpace);
551 }
552
553 //===--------------------------------------------------------------------===//
554 // Intrinsic creation methods
555 //===--------------------------------------------------------------------===//
556
557 /// Create and insert a memset to the specified pointer and the
558 /// specified value.
559 ///
560 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
561 /// specified, it will be added to the instruction. Likewise with alias.scope
562 /// and noalias tags.
563 CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size,
564 MaybeAlign Align, bool isVolatile = false,
565 MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr,
566 MDNode *NoAliasTag = nullptr) {
567 return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
568 TBAATag, ScopeTag, NoAliasTag);
569 }
570
571 CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, MaybeAlign Align,
572 bool isVolatile = false, MDNode *TBAATag = nullptr,
573 MDNode *ScopeTag = nullptr,
574 MDNode *NoAliasTag = nullptr);
575
576 /// Create and insert an element unordered-atomic memset of the region of
577 /// memory starting at the given pointer to the given value.
578 ///
579 /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
580 /// specified, it will be added to the instruction. Likewise with alias.scope
581 /// and noalias tags.
582 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
583 uint64_t Size, Align Alignment,
584 uint32_t ElementSize,
585 MDNode *TBAATag = nullptr,
586 MDNode *ScopeTag = nullptr,
587 MDNode *NoAliasTag = nullptr) {
588 return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size),
589 Align(Alignment), ElementSize,
590 TBAATag, ScopeTag, NoAliasTag);
591 }
592
593 CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
594 Value *Size, Align Alignment,
595 uint32_t ElementSize,
596 MDNode *TBAATag = nullptr,
597 MDNode *ScopeTag = nullptr,
598 MDNode *NoAliasTag = nullptr);
599
600 /// Create and insert a memcpy between the specified pointers.
601 ///
602 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
603 /// specified, it will be added to the instruction. Likewise with alias.scope
604 /// and noalias tags.
605 CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
606 MaybeAlign SrcAlign, uint64_t Size,
607 bool isVolatile = false, MDNode *TBAATag = nullptr,
608 MDNode *TBAAStructTag = nullptr,
609 MDNode *ScopeTag = nullptr,
610 MDNode *NoAliasTag = nullptr) {
611 return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
612 isVolatile, TBAATag, TBAAStructTag, ScopeTag,
613 NoAliasTag);
614 }
615
616 CallInst *CreateMemTransferInst(
617 Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src,
618 MaybeAlign SrcAlign, Value *Size, bool isVolatile = false,
619 MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
620 MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr);
621
622 CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
623 MaybeAlign SrcAlign, Value *Size,
624 bool isVolatile = false, MDNode *TBAATag = nullptr,
625 MDNode *TBAAStructTag = nullptr,
626 MDNode *ScopeTag = nullptr,
627 MDNode *NoAliasTag = nullptr) {
628 return CreateMemTransferInst(Intrinsic::memcpy, Dst, DstAlign, Src,
629 SrcAlign, Size, isVolatile, TBAATag,
630 TBAAStructTag, ScopeTag, NoAliasTag);
631 }
632
633 CallInst *
634 CreateMemCpyInline(Value *Dst, MaybeAlign DstAlign, Value *Src,
635 MaybeAlign SrcAlign, Value *Size, bool IsVolatile = false,
636 MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
637 MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr);
638
639 /// Create and insert an element unordered-atomic memcpy between the
640 /// specified pointers.
641 ///
642 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively.
643 ///
644 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
645 /// specified, it will be added to the instruction. Likewise with alias.scope
646 /// and noalias tags.
647 CallInst *CreateElementUnorderedAtomicMemCpy(
648 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
649 uint32_t ElementSize, MDNode *TBAATag = nullptr,
650 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
651 MDNode *NoAliasTag = nullptr);
652
653 CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
654 MaybeAlign SrcAlign, uint64_t Size,
655 bool isVolatile = false, MDNode *TBAATag = nullptr,
656 MDNode *ScopeTag = nullptr,
657 MDNode *NoAliasTag = nullptr) {
658 return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
659 isVolatile, TBAATag, ScopeTag, NoAliasTag);
660 }
661
662 CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
663 MaybeAlign SrcAlign, Value *Size,
664 bool isVolatile = false, MDNode *TBAATag = nullptr,
665 MDNode *ScopeTag = nullptr,
666 MDNode *NoAliasTag = nullptr);
667
668 /// \brief Create and insert an element unordered-atomic memmove between the
669 /// specified pointers.
670 ///
671 /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers,
672 /// respectively.
673 ///
674 /// If the pointers aren't i8*, they will be converted. If a TBAA tag is
675 /// specified, it will be added to the instruction. Likewise with alias.scope
676 /// and noalias tags.
677 CallInst *CreateElementUnorderedAtomicMemMove(
678 Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
679 uint32_t ElementSize, MDNode *TBAATag = nullptr,
680 MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
681 MDNode *NoAliasTag = nullptr);
682
683 /// Create a sequential vector fadd reduction intrinsic of the source vector.
684 /// The first parameter is a scalar accumulator value. An unordered reduction
685 /// can be created by adding the reassoc fast-math flag to the resulting
686 /// sequential reduction.
687 CallInst *CreateFAddReduce(Value *Acc, Value *Src);
688
689 /// Create a sequential vector fmul reduction intrinsic of the source vector.
690 /// The first parameter is a scalar accumulator value. An unordered reduction
691 /// can be created by adding the reassoc fast-math flag to the resulting
692 /// sequential reduction.
693 CallInst *CreateFMulReduce(Value *Acc, Value *Src);
694
695 /// Create a vector int add reduction intrinsic of the source vector.
696 CallInst *CreateAddReduce(Value *Src);
697
698 /// Create a vector int mul reduction intrinsic of the source vector.
699 CallInst *CreateMulReduce(Value *Src);
700
701 /// Create a vector int AND reduction intrinsic of the source vector.
702 CallInst *CreateAndReduce(Value *Src);
703
704 /// Create a vector int OR reduction intrinsic of the source vector.
705 CallInst *CreateOrReduce(Value *Src);
706
707 /// Create a vector int XOR reduction intrinsic of the source vector.
708 CallInst *CreateXorReduce(Value *Src);
709
710 /// Create a vector integer max reduction intrinsic of the source
711 /// vector.
712 CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false);
713
714 /// Create a vector integer min reduction intrinsic of the source
715 /// vector.
716 CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false);
717
718 /// Create a vector float max reduction intrinsic of the source
719 /// vector.
720 CallInst *CreateFPMaxReduce(Value *Src);
721
722 /// Create a vector float min reduction intrinsic of the source
723 /// vector.
724 CallInst *CreateFPMinReduce(Value *Src);
725
726 /// Create a lifetime.start intrinsic.
727 ///
728 /// If the pointer isn't i8* it will be converted.
729 CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
730
731 /// Create a lifetime.end intrinsic.
732 ///
733 /// If the pointer isn't i8* it will be converted.
734 CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
735
736 /// Create a call to invariant.start intrinsic.
737 ///
738 /// If the pointer isn't i8* it will be converted.
739 CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr);
740
741 /// Create a call to Masked Load intrinsic
742 CallInst *CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, Value *Mask,
743 Value *PassThru = nullptr, const Twine &Name = "");
744
745 /// Create a call to Masked Store intrinsic
746 CallInst *CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment,
747 Value *Mask);
748
749 /// Create a call to Masked Gather intrinsic
750 CallInst *CreateMaskedGather(Type *Ty, Value *Ptrs, Align Alignment,
751 Value *Mask = nullptr, Value *PassThru = nullptr,
752 const Twine &Name = "");
753
754 /// Create a call to Masked Scatter intrinsic
755 CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, Align Alignment,
756 Value *Mask = nullptr);
757
758 /// Create an assume intrinsic call that allows the optimizer to
759 /// assume that the provided condition will be true.
760 ///
761 /// The optional argument \p OpBundles specifies operand bundles that are
762 /// added to the call instruction.
763 CallInst *CreateAssumption(Value *Cond,
764 ArrayRef<OperandBundleDef> OpBundles = llvm::None);
765
766 /// Create a llvm.experimental.noalias.scope.decl intrinsic call.
767 Instruction *CreateNoAliasScopeDeclaration(Value *Scope);
768 Instruction *CreateNoAliasScopeDeclaration(MDNode *ScopeTag) {
769 return CreateNoAliasScopeDeclaration(
770 MetadataAsValue::get(Context, ScopeTag));
771 }
772
773 /// Create a call to the experimental.gc.statepoint intrinsic to
774 /// start a new statepoint sequence.
775 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
776 FunctionCallee ActualCallee,
777 ArrayRef<Value *> CallArgs,
778 Optional<ArrayRef<Value *>> DeoptArgs,
779 ArrayRef<Value *> GCArgs,
780 const Twine &Name = "");
781
782 /// Create a call to the experimental.gc.statepoint intrinsic to
783 /// start a new statepoint sequence.
784 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
785 FunctionCallee ActualCallee, uint32_t Flags,
786 ArrayRef<Value *> CallArgs,
787 Optional<ArrayRef<Use>> TransitionArgs,
788 Optional<ArrayRef<Use>> DeoptArgs,
789 ArrayRef<Value *> GCArgs,
790 const Twine &Name = "");
791
792 /// Conveninence function for the common case when CallArgs are filled
793 /// in using makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be
794 /// .get()'ed to get the Value pointer.
795 CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
796 FunctionCallee ActualCallee,
797 ArrayRef<Use> CallArgs,
798 Optional<ArrayRef<Value *>> DeoptArgs,
799 ArrayRef<Value *> GCArgs,
800 const Twine &Name = "");
801
802 /// Create an invoke to the experimental.gc.statepoint intrinsic to
803 /// start a new statepoint sequence.
804 InvokeInst *
805 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
806 FunctionCallee ActualInvokee, BasicBlock *NormalDest,
807 BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs,
808 Optional<ArrayRef<Value *>> DeoptArgs,
809 ArrayRef<Value *> GCArgs, const Twine &Name = "");
810
811 /// Create an invoke to the experimental.gc.statepoint intrinsic to
812 /// start a new statepoint sequence.
813 InvokeInst *CreateGCStatepointInvoke(
814 uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
815 BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
816 ArrayRef<Value *> InvokeArgs, Optional<ArrayRef<Use>> TransitionArgs,
817 Optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
818 const Twine &Name = "");
819
820 // Convenience function for the common case when CallArgs are filled in using
821 // makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to
822 // get the Value *.
823 InvokeInst *
824 CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
825 FunctionCallee ActualInvokee, BasicBlock *NormalDest,
826 BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
827 Optional<ArrayRef<Value *>> DeoptArgs,
828 ArrayRef<Value *> GCArgs, const Twine &Name = "");
829
830 /// Create a call to the experimental.gc.result intrinsic to extract
831 /// the result from a call wrapped in a statepoint.
832 CallInst *CreateGCResult(Instruction *Statepoint,
833 Type *ResultType,
834 const Twine &Name = "");
835
836 /// Create a call to the experimental.gc.relocate intrinsics to
837 /// project the relocated value of one pointer from the statepoint.
838 CallInst *CreateGCRelocate(Instruction *Statepoint,
839 int BaseOffset,
840 int DerivedOffset,
841 Type *ResultType,
842 const Twine &Name = "");
843
844 /// Create a call to the experimental.gc.pointer.base intrinsic to get the
845 /// base pointer for the specified derived pointer.
846 CallInst *CreateGCGetPointerBase(Value *DerivedPtr, const Twine &Name = "");
847
848 /// Create a call to the experimental.gc.get.pointer.offset intrinsic to get
849 /// the offset of the specified derived pointer from its base.
850 CallInst *CreateGCGetPointerOffset(Value *DerivedPtr, const Twine &Name = "");
851
852 /// Create a call to llvm.vscale, multiplied by \p Scaling. The type of VScale
853 /// will be the same type as that of \p Scaling.
854 Value *CreateVScale(Constant *Scaling, const Twine &Name = "");
855
856 /// Creates a vector of type \p DstType with the linear sequence <0, 1, ...>
857 Value *CreateStepVector(Type *DstType, const Twine &Name = "");
858
859 /// Create a call to intrinsic \p ID with 1 operand which is mangled on its
860 /// type.
861 CallInst *CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
862 Instruction *FMFSource = nullptr,
863 const Twine &Name = "");
864
865 /// Create a call to intrinsic \p ID with 2 operands which is mangled on the
866 /// first type.
867 CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS,
868 Instruction *FMFSource = nullptr,
869 const Twine &Name = "");
870
871 /// Create a call to intrinsic \p ID with \p args, mangled using \p Types. If
872 /// \p FMFSource is provided, copy fast-math-flags from that instruction to
873 /// the intrinsic.
874 CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Type *> Types,
875 ArrayRef<Value *> Args,
876 Instruction *FMFSource = nullptr,
877 const Twine &Name = "");
878
879 /// Create call to the minnum intrinsic.
880 CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") {
881 return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, nullptr, Name);
882 }
883
884 /// Create call to the maxnum intrinsic.
885 CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") {
886 return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, nullptr, Name);
887 }
888
889 /// Create call to the minimum intrinsic.
890 CallInst *CreateMinimum(Value *LHS, Value *RHS, const Twine &Name = "") {
891 return CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS, nullptr, Name);
892 }
893
894 /// Create call to the maximum intrinsic.
895 CallInst *CreateMaximum(Value *LHS, Value *RHS, const Twine &Name = "") {
896 return CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS, nullptr, Name);
897 }
898
899 /// Create a call to the arithmetic_fence intrinsic.
900 CallInst *CreateArithmeticFence(Value *Val, Type *DstType,
901 const Twine &Name = "") {
902 return CreateIntrinsic(Intrinsic::arithmetic_fence, DstType, Val, nullptr,
903 Name);
904 }
905
906 /// Create a call to the experimental.vector.extract intrinsic.
907 CallInst *CreateExtractVector(Type *DstType, Value *SrcVec, Value *Idx,
908 const Twine &Name = "") {
909 return CreateIntrinsic(Intrinsic::experimental_vector_extract,
910 {DstType, SrcVec->getType()}, {SrcVec, Idx}, nullptr,
911 Name);
912 }
913
914 /// Create a call to the experimental.vector.insert intrinsic.
915 CallInst *CreateInsertVector(Type *DstType, Value *SrcVec, Value *SubVec,
916 Value *Idx, const Twine &Name = "") {
917 return CreateIntrinsic(Intrinsic::experimental_vector_insert,
918 {DstType, SubVec->getType()}, {SrcVec, SubVec, Idx},
919 nullptr, Name);
920 }
921
922private:
923 /// Create a call to a masked intrinsic with given Id.
924 CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops,
925 ArrayRef<Type *> OverloadedTypes,
926 const Twine &Name = "");
927
928 Value *getCastedInt8PtrValue(Value *Ptr);
929
930 //===--------------------------------------------------------------------===//
931 // Instruction creation methods: Terminators
932 //===--------------------------------------------------------------------===//
933
934private:
935 /// Helper to add branch weight and unpredictable metadata onto an
936 /// instruction.
937 /// \returns The annotated instruction.
938 template <typename InstTy>
939 InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) {
940 if (Weights)
941 I->setMetadata(LLVMContext::MD_prof, Weights);
942 if (Unpredictable)
943 I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable);
944 return I;
945 }
946
947public:
948 /// Create a 'ret void' instruction.
949 ReturnInst *CreateRetVoid() {
950 return Insert(ReturnInst::Create(Context));
951 }
952
953 /// Create a 'ret <val>' instruction.
954 ReturnInst *CreateRet(Value *V) {
955 return Insert(ReturnInst::Create(Context, V));
956 }
957
958 /// Create a sequence of N insertvalue instructions,
959 /// with one Value from the retVals array each, that build a aggregate
960 /// return value one value at a time, and a ret instruction to return
961 /// the resulting aggregate value.
962 ///
963 /// This is a convenience function for code that uses aggregate return values
964 /// as a vehicle for having multiple return values.
965 ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
966 Value *V = UndefValue::get(getCurrentFunctionReturnType());
967 for (unsigned i = 0; i != N; ++i)
968 V = CreateInsertValue(V, retVals[i], i, "mrv");
969 return Insert(ReturnInst::Create(Context, V));
970 }
971
972 /// Create an unconditional 'br label X' instruction.
973 BranchInst *CreateBr(BasicBlock *Dest) {
974 return Insert(BranchInst::Create(Dest));
975 }
976
977 /// Create a conditional 'br Cond, TrueDest, FalseDest'
978 /// instruction.
979 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
980 MDNode *BranchWeights = nullptr,
981 MDNode *Unpredictable = nullptr) {
982 return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond),
983 BranchWeights, Unpredictable));
984 }
985
986 /// Create a conditional 'br Cond, TrueDest, FalseDest'
987 /// instruction. Copy branch meta data if available.
988 BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
989 Instruction *MDSrc) {
990 BranchInst *Br = BranchInst::Create(True, False, Cond);
991 if (MDSrc) {
992 unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
993 LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
994 Br->copyMetadata(*MDSrc, makeArrayRef(&WL[0], 4));
995 }
996 return Insert(Br);
997 }
998
999 /// Create a switch instruction with the specified value, default dest,
1000 /// and with a hint for the number of cases that will be added (for efficient
1001 /// allocation).
1002 SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
1003 MDNode *BranchWeights = nullptr,
1004 MDNode *Unpredictable = nullptr) {
1005 return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases),
1006 BranchWeights, Unpredictable));
1007 }
1008
1009 /// Create an indirect branch instruction with the specified address
1010 /// operand, with an optional hint for the number of destinations that will be
1011 /// added (for efficient allocation).
1012 IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
1013 return Insert(IndirectBrInst::Create(Addr, NumDests));
1014 }
1015
1016 /// Create an invoke instruction.
1017 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1018 BasicBlock *NormalDest, BasicBlock *UnwindDest,
1019 ArrayRef<Value *> Args,
1020 ArrayRef<OperandBundleDef> OpBundles,
1021 const Twine &Name = "") {
1022 InvokeInst *II =
1023 InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args, OpBundles);
1024 if (IsFPConstrained)
1025 setConstrainedFPCallAttr(II);
1026 return Insert(II, Name);
1027 }
1028 InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1029 BasicBlock *NormalDest, BasicBlock *UnwindDest,
1030 ArrayRef<Value *> Args = None,
1031 const Twine &Name = "") {
1032 InvokeInst *II =
1033 InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args);
1034 if (IsFPConstrained)
1035 setConstrainedFPCallAttr(II);
1036 return Insert(II, Name);
1037 }
1038
1039 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1040 BasicBlock *UnwindDest, ArrayRef<Value *> Args,
1041 ArrayRef<OperandBundleDef> OpBundles,
1042 const Twine &Name = "") {
1043 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1044 NormalDest, UnwindDest, Args, OpBundles, Name);
1045 }
1046
1047 InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1048 BasicBlock *UnwindDest,
1049 ArrayRef<Value *> Args = None,
1050 const Twine &Name = "") {
1051 return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1052 NormalDest, UnwindDest, Args, Name);
1053 }
1054
1055 /// \brief Create a callbr instruction.
1056 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1057 BasicBlock *DefaultDest,
1058 ArrayRef<BasicBlock *> IndirectDests,
1059 ArrayRef<Value *> Args = None,
1060 const Twine &Name = "") {
1061 return Insert(CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests,
1062 Args), Name);
1063 }
1064 CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1065 BasicBlock *DefaultDest,
1066 ArrayRef<BasicBlock *> IndirectDests,
1067 ArrayRef<Value *> Args,
1068 ArrayRef<OperandBundleDef> OpBundles,
1069 const Twine &Name = "") {
1070 return Insert(
1071 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
1072 OpBundles), Name);
1073 }
1074
1075 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1076 ArrayRef<BasicBlock *> IndirectDests,
1077 ArrayRef<Value *> Args = None,
1078 const Twine &Name = "") {
1079 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1080 DefaultDest, IndirectDests, Args, Name);
1081 }
1082 CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1083 ArrayRef<BasicBlock *> IndirectDests,
1084 ArrayRef<Value *> Args,
1085 ArrayRef<OperandBundleDef> OpBundles,
1086 const Twine &Name = "") {
1087 return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1088 DefaultDest, IndirectDests, Args, Name);
1089 }
1090
1091 ResumeInst *CreateResume(Value *Exn) {
1092 return Insert(ResumeInst::Create(Exn));
1093 }
1094
1095 CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad,
1096 BasicBlock *UnwindBB = nullptr) {
1097 return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB));
1098 }
1099
1100 CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB,
1101 unsigned NumHandlers,
1102 const Twine &Name = "") {
1103 return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers),
1104 Name);
1105 }
1106
1107 CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args,
1108 const Twine &Name = "") {
1109 return Insert(CatchPadInst::Create(ParentPad, Args), Name);
1110 }
1111
1112 CleanupPadInst *CreateCleanupPad(Value *ParentPad,
1113 ArrayRef<Value *> Args = None,
1114 const Twine &Name = "") {
1115 return Insert(CleanupPadInst::Create(ParentPad, Args), Name);
1116 }
1117
1118 CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) {
1119 return Insert(CatchReturnInst::Create(CatchPad, BB));
1120 }
1121
1122 UnreachableInst *CreateUnreachable() {
1123 return Insert(new UnreachableInst(Context));
1124 }
1125
1126 //===--------------------------------------------------------------------===//
1127 // Instruction creation methods: Binary Operators
1128 //===--------------------------------------------------------------------===//
1129private:
1130 BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
1131 Value *LHS, Value *RHS,
1132 const Twine &Name,
1133 bool HasNUW, bool HasNSW) {
1134 BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
1135 if (HasNUW) BO->setHasNoUnsignedWrap();
1136 if (HasNSW) BO->setHasNoSignedWrap();
1137 return BO;
1138 }
1139
1140 Instruction *setFPAttrs(Instruction *I, MDNode *FPMD,
1141 FastMathFlags FMF) const {
1142 if (!FPMD)
1143 FPMD = DefaultFPMathTag;
1144 if (FPMD)
1145 I->setMetadata(LLVMContext::MD_fpmath, FPMD);
1146 I->setFastMathFlags(FMF);
1147 return I;
1148 }
1149
1150 Value *foldConstant(Instruction::BinaryOps Opc, Value *L,
1151 Value *R, const Twine &Name) const {
1152 auto *LC = dyn_cast<Constant>(L);
1153 auto *RC = dyn_cast<Constant>(R);
1154 return (LC && RC) ? Insert(Folder.CreateBinOp(Opc, LC, RC), Name) : nullptr;
1155 }
1156
1157 Value *getConstrainedFPRounding(Optional<RoundingMode> Rounding) {
1158 RoundingMode UseRounding = DefaultConstrainedRounding;
1159
1160 if (Rounding.hasValue())
1161 UseRounding = Rounding.getValue();
1162
1163 Optional<StringRef> RoundingStr = convertRoundingModeToStr(UseRounding);
1164 assert(RoundingStr.hasValue() && "Garbage strict rounding mode!")(static_cast <bool> (RoundingStr.hasValue() && "Garbage strict rounding mode!"
) ? void (0) : __assert_fail ("RoundingStr.hasValue() && \"Garbage strict rounding mode!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1164, __extension__ __PRETTY_FUNCTION__
))
;
1165 auto *RoundingMDS = MDString::get(Context, RoundingStr.getValue());
1166
1167 return MetadataAsValue::get(Context, RoundingMDS);
1168 }
1169
1170 Value *getConstrainedFPExcept(Optional<fp::ExceptionBehavior> Except) {
1171 fp::ExceptionBehavior UseExcept = DefaultConstrainedExcept;
1172
1173 if (Except.hasValue())
1174 UseExcept = Except.getValue();
1175
1176 Optional<StringRef> ExceptStr = convertExceptionBehaviorToStr(UseExcept);
1177 assert(ExceptStr.hasValue() && "Garbage strict exception behavior!")(static_cast <bool> (ExceptStr.hasValue() && "Garbage strict exception behavior!"
) ? void (0) : __assert_fail ("ExceptStr.hasValue() && \"Garbage strict exception behavior!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1177, __extension__ __PRETTY_FUNCTION__
))
;
1178 auto *ExceptMDS = MDString::get(Context, ExceptStr.getValue());
1179
1180 return MetadataAsValue::get(Context, ExceptMDS);
1181 }
1182
1183 Value *getConstrainedFPPredicate(CmpInst::Predicate Predicate) {
1184 assert(CmpInst::isFPPredicate(Predicate) &&(static_cast <bool> (CmpInst::isFPPredicate(Predicate) &&
Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst
::FCMP_TRUE && "Invalid constrained FP comparison predicate!"
) ? void (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1187, __extension__ __PRETTY_FUNCTION__
))
1185 Predicate != CmpInst::FCMP_FALSE &&(static_cast <bool> (CmpInst::isFPPredicate(Predicate) &&
Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst
::FCMP_TRUE && "Invalid constrained FP comparison predicate!"
) ? void (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1187, __extension__ __PRETTY_FUNCTION__
))
1186 Predicate != CmpInst::FCMP_TRUE &&(static_cast <bool> (CmpInst::isFPPredicate(Predicate) &&
Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst
::FCMP_TRUE && "Invalid constrained FP comparison predicate!"
) ? void (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1187, __extension__ __PRETTY_FUNCTION__
))
1187 "Invalid constrained FP comparison predicate!")(static_cast <bool> (CmpInst::isFPPredicate(Predicate) &&
Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst
::FCMP_TRUE && "Invalid constrained FP comparison predicate!"
) ? void (0) : __assert_fail ("CmpInst::isFPPredicate(Predicate) && Predicate != CmpInst::FCMP_FALSE && Predicate != CmpInst::FCMP_TRUE && \"Invalid constrained FP comparison predicate!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1187, __extension__ __PRETTY_FUNCTION__
))
;
1188
1189 StringRef PredicateStr = CmpInst::getPredicateName(Predicate);
1190 auto *PredicateMDS = MDString::get(Context, PredicateStr);
1191
1192 return MetadataAsValue::get(Context, PredicateMDS);
1193 }
1194
1195public:
1196 Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
1197 bool HasNUW = false, bool HasNSW = false) {
1198 if (auto *V = Folder.FoldAdd(LHS, RHS, HasNUW, HasNSW))
1199 return V;
1200 return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name,
1201 HasNUW, HasNSW);
1202 }
1203
1204 Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1205 return CreateAdd(LHS, RHS, Name, false, true);
1206 }
1207
1208 Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1209 return CreateAdd(LHS, RHS, Name, true, false);
1210 }
1211
1212 Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
1213 bool HasNUW = false, bool HasNSW = false) {
1214 if (auto *LC = dyn_cast<Constant>(LHS))
1215 if (auto *RC = dyn_cast<Constant>(RHS))
1216 return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name);
1217 return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name,
1218 HasNUW, HasNSW);
1219 }
1220
1221 Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1222 return CreateSub(LHS, RHS, Name, false, true);
1223 }
1224
1225 Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1226 return CreateSub(LHS, RHS, Name, true, false);
1227 }
1228
1229 Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
1230 bool HasNUW = false, bool HasNSW = false) {
1231 if (auto *LC = dyn_cast<Constant>(LHS))
1232 if (auto *RC = dyn_cast<Constant>(RHS))
1233 return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name);
1234 return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name,
1235 HasNUW, HasNSW);
1236 }
1237
1238 Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1239 return CreateMul(LHS, RHS, Name, false, true);
1240 }
1241
1242 Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1243 return CreateMul(LHS, RHS, Name, true, false);
1244 }
1245
1246 Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1247 bool isExact = false) {
1248 if (auto *LC = dyn_cast<Constant>(LHS))
1249 if (auto *RC = dyn_cast<Constant>(RHS))
1250 return Insert(Folder.CreateUDiv(LC, RC, isExact), Name);
1251 if (!isExact)
1252 return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
1253 return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
1254 }
1255
1256 Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1257 return CreateUDiv(LHS, RHS, Name, true);
1258 }
1259
1260 Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1261 bool isExact = false) {
1262 if (auto *LC = dyn_cast<Constant>(LHS))
1263 if (auto *RC = dyn_cast<Constant>(RHS))
1264 return Insert(Folder.CreateSDiv(LC, RC, isExact), Name);
1265 if (!isExact)
1266 return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
1267 return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
1268 }
1269
1270 Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1271 return CreateSDiv(LHS, RHS, Name, true);
1272 }
1273
1274 Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
1275 if (Value *V = foldConstant(Instruction::URem, LHS, RHS, Name)) return V;
1276 return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
1277 }
1278
1279 Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
1280 if (Value *V = foldConstant(Instruction::SRem, LHS, RHS, Name)) return V;
1281 return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
1282 }
1283
1284 Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
1285 bool HasNUW = false, bool HasNSW = false) {
1286 if (auto *LC = dyn_cast<Constant>(LHS))
1287 if (auto *RC = dyn_cast<Constant>(RHS))
1288 return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name);
1289 return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
1290 HasNUW, HasNSW);
1291 }
1292
1293 Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
1294 bool HasNUW = false, bool HasNSW = false) {
1295 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1296 HasNUW, HasNSW);
1297 }
1298
1299 Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
1300 bool HasNUW = false, bool HasNSW = false) {
1301 return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1302 HasNUW, HasNSW);
1303 }
1304
1305 Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
1306 bool isExact = false) {
1307 if (auto *LC = dyn_cast<Constant>(LHS))
1308 if (auto *RC = dyn_cast<Constant>(RHS))
1309 return Insert(Folder.CreateLShr(LC, RC, isExact), Name);
1310 if (!isExact)
1311 return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
1312 return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
1313 }
1314
1315 Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1316 bool isExact = false) {
1317 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1318 }
1319
1320 Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1321 bool isExact = false) {
1322 return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1323 }
1324
1325 Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
1326 bool isExact = false) {
1327 if (auto *LC = dyn_cast<Constant>(LHS))
1328 if (auto *RC = dyn_cast<Constant>(RHS))
1329 return Insert(Folder.CreateAShr(LC, RC, isExact), Name);
1330 if (!isExact)
1331 return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
1332 return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
1333 }
1334
1335 Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1336 bool isExact = false) {
1337 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1338 }
1339
1340 Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1341 bool isExact = false) {
1342 return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1343 }
1344
1345 Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
1346 if (auto *V = Folder.FoldAnd(LHS, RHS))
1347 return V;
1348 return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
1349 }
1350
1351 Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1352 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1353 }
1354
1355 Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1356 return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1357 }
1358
1359 Value *CreateAnd(ArrayRef<Value*> Ops) {
1360 assert(!Ops.empty())(static_cast <bool> (!Ops.empty()) ? void (0) : __assert_fail
("!Ops.empty()", "llvm/include/llvm/IR/IRBuilder.h", 1360, __extension__
__PRETTY_FUNCTION__))
;
1361 Value *Accum = Ops[0];
1362 for (unsigned i = 1; i < Ops.size(); i++)
1363 Accum = CreateAnd(Accum, Ops[i]);
1364 return Accum;
1365 }
1366
1367 Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
1368 if (auto *V = Folder.FoldOr(LHS, RHS))
1369 return V;
1370 return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
1371 }
1372
1373 Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1374 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1375 }
1376
1377 Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1378 return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1379 }
1380
1381 Value *CreateOr(ArrayRef<Value*> Ops) {
1382 assert(!Ops.empty())(static_cast <bool> (!Ops.empty()) ? void (0) : __assert_fail
("!Ops.empty()", "llvm/include/llvm/IR/IRBuilder.h", 1382, __extension__
__PRETTY_FUNCTION__))
;
1383 Value *Accum = Ops[0];
1384 for (unsigned i = 1; i < Ops.size(); i++)
1385 Accum = CreateOr(Accum, Ops[i]);
1386 return Accum;
1387 }
1388
1389 Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
1390 if (Value *V = foldConstant(Instruction::Xor, LHS, RHS, Name)) return V;
1391 return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
1392 }
1393
1394 Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1395 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1396 }
1397
1398 Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1399 return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1400 }
1401
1402 Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "",
1403 MDNode *FPMD = nullptr) {
1404 if (IsFPConstrained)
1405 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1406 L, R, nullptr, Name, FPMD);
1407
1408 if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
1409 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF);
1410 return Insert(I, Name);
1411 }
1412
1413 /// Copy fast-math-flags from an instruction rather than using the builder's
1414 /// default FMF.
1415 Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource,
1416 const Twine &Name = "") {
1417 if (IsFPConstrained)
1418 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1419 L, R, FMFSource, Name);
1420
1421 if (Value *V = foldConstant(Instruction::FAdd, L, R, Name)) return V;
1422 Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr,
1423 FMFSource->getFastMathFlags());
1424 return Insert(I, Name);
1425 }
1426
1427 Value *CreateFSub(Value *L, Value *R, const Twine &Name = "",
1428 MDNode *FPMD = nullptr) {
1429 if (IsFPConstrained)
1430 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1431 L, R, nullptr, Name, FPMD);
1432
1433 if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
1434 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF);
1435 return Insert(I, Name);
1436 }
1437
1438 /// Copy fast-math-flags from an instruction rather than using the builder's
1439 /// default FMF.
1440 Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource,
1441 const Twine &Name = "") {
1442 if (IsFPConstrained)
1443 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1444 L, R, FMFSource, Name);
1445
1446 if (Value *V = foldConstant(Instruction::FSub, L, R, Name)) return V;
1447 Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr,
1448 FMFSource->getFastMathFlags());
1449 return Insert(I, Name);
1450 }
1451
1452 Value *CreateFMul(Value *L, Value *R, const Twine &Name = "",
1453 MDNode *FPMD = nullptr) {
1454 if (IsFPConstrained)
1455 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1456 L, R, nullptr, Name, FPMD);
1457
1458 if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
1459 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF);
1460 return Insert(I, Name);
1461 }
1462
1463 /// Copy fast-math-flags from an instruction rather than using the builder's
1464 /// default FMF.
1465 Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource,
1466 const Twine &Name = "") {
1467 if (IsFPConstrained)
1468 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1469 L, R, FMFSource, Name);
1470
1471 if (Value *V = foldConstant(Instruction::FMul, L, R, Name)) return V;
1472 Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr,
1473 FMFSource->getFastMathFlags());
1474 return Insert(I, Name);
1475 }
1476
1477 Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "",
1478 MDNode *FPMD = nullptr) {
1479 if (IsFPConstrained)
1480 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1481 L, R, nullptr, Name, FPMD);
1482
1483 if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
1484 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF);
1485 return Insert(I, Name);
1486 }
1487
1488 /// Copy fast-math-flags from an instruction rather than using the builder's
1489 /// default FMF.
1490 Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource,
1491 const Twine &Name = "") {
1492 if (IsFPConstrained)
1493 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1494 L, R, FMFSource, Name);
1495
1496 if (Value *V = foldConstant(Instruction::FDiv, L, R, Name)) return V;
1497 Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr,
1498 FMFSource->getFastMathFlags());
1499 return Insert(I, Name);
1500 }
1501
1502 Value *CreateFRem(Value *L, Value *R, const Twine &Name = "",
1503 MDNode *FPMD = nullptr) {
1504 if (IsFPConstrained)
1505 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1506 L, R, nullptr, Name, FPMD);
1507
1508 if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
1509 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF);
1510 return Insert(I, Name);
1511 }
1512
1513 /// Copy fast-math-flags from an instruction rather than using the builder's
1514 /// default FMF.
1515 Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource,
1516 const Twine &Name = "") {
1517 if (IsFPConstrained)
1518 return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1519 L, R, FMFSource, Name);
1520
1521 if (Value *V = foldConstant(Instruction::FRem, L, R, Name)) return V;
1522 Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr,
1523 FMFSource->getFastMathFlags());
1524 return Insert(I, Name);
1525 }
1526
1527 Value *CreateBinOp(Instruction::BinaryOps Opc,
1528 Value *LHS, Value *RHS, const Twine &Name = "",
1529 MDNode *FPMathTag = nullptr) {
1530 if (Value *V = foldConstant(Opc, LHS, RHS, Name)) return V;
1531 Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
1532 if (isa<FPMathOperator>(BinOp))
1533 setFPAttrs(BinOp, FPMathTag, FMF);
1534 return Insert(BinOp, Name);
1535 }
1536
1537 Value *CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name = "") {
1538 assert(Cond2->getType()->isIntOrIntVectorTy(1))(static_cast <bool> (Cond2->getType()->isIntOrIntVectorTy
(1)) ? void (0) : __assert_fail ("Cond2->getType()->isIntOrIntVectorTy(1)"
, "llvm/include/llvm/IR/IRBuilder.h", 1538, __extension__ __PRETTY_FUNCTION__
))
;
1539 return CreateSelect(Cond1, Cond2,
1540 ConstantInt::getNullValue(Cond2->getType()), Name);
1541 }
1542
1543 Value *CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name = "") {
1544 assert(Cond2->getType()->isIntOrIntVectorTy(1))(static_cast <bool> (Cond2->getType()->isIntOrIntVectorTy
(1)) ? void (0) : __assert_fail ("Cond2->getType()->isIntOrIntVectorTy(1)"
, "llvm/include/llvm/IR/IRBuilder.h", 1544, __extension__ __PRETTY_FUNCTION__
))
;
1545 return CreateSelect(Cond1, ConstantInt::getAllOnesValue(Cond2->getType()),
1546 Cond2, Name);
1547 }
1548
1549 // NOTE: this is sequential, non-commutative, ordered reduction!
1550 Value *CreateLogicalOr(ArrayRef<Value *> Ops) {
1551 assert(!Ops.empty())(static_cast <bool> (!Ops.empty()) ? void (0) : __assert_fail
("!Ops.empty()", "llvm/include/llvm/IR/IRBuilder.h", 1551, __extension__
__PRETTY_FUNCTION__))
;
1552 Value *Accum = Ops[0];
1553 for (unsigned i = 1; i < Ops.size(); i++)
1554 Accum = CreateLogicalOr(Accum, Ops[i]);
1555 return Accum;
1556 }
1557
1558 CallInst *CreateConstrainedFPBinOp(
1559 Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource = nullptr,
1560 const Twine &Name = "", MDNode *FPMathTag = nullptr,
1561 Optional<RoundingMode> Rounding = None,
1562 Optional<fp::ExceptionBehavior> Except = None);
1563
1564 Value *CreateNeg(Value *V, const Twine &Name = "",
1565 bool HasNUW = false, bool HasNSW = false) {
1566 if (auto *VC = dyn_cast<Constant>(V))
1567 return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name);
1568 BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name);
1569 if (HasNUW) BO->setHasNoUnsignedWrap();
1570 if (HasNSW) BO->setHasNoSignedWrap();
1571 return BO;
1572 }
1573
1574 Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
1575 return CreateNeg(V, Name, false, true);
1576 }
1577
1578 Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
1579 return CreateNeg(V, Name, true, false);
1580 }
1581
1582 Value *CreateFNeg(Value *V, const Twine &Name = "",
1583 MDNode *FPMathTag = nullptr) {
1584 if (auto *VC = dyn_cast<Constant>(V))
1585 return Insert(Folder.CreateFNeg(VC), Name);
1586 return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), FPMathTag, FMF),
1587 Name);
1588 }
1589
1590 /// Copy fast-math-flags from an instruction rather than using the builder's
1591 /// default FMF.
1592 Value *CreateFNegFMF(Value *V, Instruction *FMFSource,
1593 const Twine &Name = "") {
1594 if (auto *VC = dyn_cast<Constant>(V))
1595 return Insert(Folder.CreateFNeg(VC), Name);
1596 return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), nullptr,
1597 FMFSource->getFastMathFlags()),
1598 Name);
1599 }
1600
1601 Value *CreateNot(Value *V, const Twine &Name = "") {
1602 if (auto *VC = dyn_cast<Constant>(V))
1603 return Insert(Folder.CreateNot(VC), Name);
1604 return Insert(BinaryOperator::CreateNot(V), Name);
1605 }
1606
1607 Value *CreateUnOp(Instruction::UnaryOps Opc,
1608 Value *V, const Twine &Name = "",
1609 MDNode *FPMathTag = nullptr) {
1610 if (auto *VC = dyn_cast<Constant>(V))
1611 return Insert(Folder.CreateUnOp(Opc, VC), Name);
1612 Instruction *UnOp = UnaryOperator::Create(Opc, V);
1613 if (isa<FPMathOperator>(UnOp))
1614 setFPAttrs(UnOp, FPMathTag, FMF);
1615 return Insert(UnOp, Name);
1616 }
1617
1618 /// Create either a UnaryOperator or BinaryOperator depending on \p Opc.
1619 /// Correct number of operands must be passed accordingly.
1620 Value *CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
1621 const Twine &Name = "", MDNode *FPMathTag = nullptr);
1622
1623 //===--------------------------------------------------------------------===//
1624 // Instruction creation methods: Memory Instructions
1625 //===--------------------------------------------------------------------===//
1626
1627 AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace,
1628 Value *ArraySize = nullptr, const Twine &Name = "") {
1629 const DataLayout &DL = BB->getModule()->getDataLayout();
1630 Align AllocaAlign = DL.getPrefTypeAlign(Ty);
1631 return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
1632 }
1633
1634 AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
1635 const Twine &Name = "") {
1636 const DataLayout &DL = BB->getModule()->getDataLayout();
1637 Align AllocaAlign = DL.getPrefTypeAlign(Ty);
1638 unsigned AddrSpace = DL.getAllocaAddrSpace();
1639 return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
1640 }
1641
1642 /// Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of
1643 /// converting the string to 'bool' for the isVolatile parameter.
1644 LoadInst *CreateLoad(Type *Ty, Value *Ptr, const char *Name) {
1645 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
1646 }
1647
1648 LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") {
1649 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
1650 }
1651
1652 LoadInst *CreateLoad(Type *Ty, Value *Ptr, bool isVolatile,
1653 const Twine &Name = "") {
1654 return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), isVolatile, Name);
1655 }
1656
1657 StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
1658 return CreateAlignedStore(Val, Ptr, MaybeAlign(), isVolatile);
1659 }
1660
1661 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1662 const char *Name) {
1663 return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
1664 }
1665
1666 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1667 const Twine &Name = "") {
1668 return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
1669 }
1670
1671 LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1672 bool isVolatile, const Twine &Name = "") {
1673 if (!Align) {
1674 const DataLayout &DL = BB->getModule()->getDataLayout();
1675 Align = DL.getABITypeAlign(Ty);
1676 }
1677 return Insert(new LoadInst(Ty, Ptr, Twine(), isVolatile, *Align), Name);
1678 }
1679
1680 StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align,
1681 bool isVolatile = false) {
1682 if (!Align) {
1683 const DataLayout &DL = BB->getModule()->getDataLayout();
1684 Align = DL.getABITypeAlign(Val->getType());
1685 }
1686 return Insert(new StoreInst(Val, Ptr, isVolatile, *Align));
1687 }
1688 FenceInst *CreateFence(AtomicOrdering Ordering,
1689 SyncScope::ID SSID = SyncScope::System,
1690 const Twine &Name = "") {
1691 return Insert(new FenceInst(Context, Ordering, SSID), Name);
1692 }
1693
1694 AtomicCmpXchgInst *
1695 CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New, MaybeAlign Align,
1696 AtomicOrdering SuccessOrdering,
1697 AtomicOrdering FailureOrdering,
1698 SyncScope::ID SSID = SyncScope::System) {
1699 if (!Align) {
1700 const DataLayout &DL = BB->getModule()->getDataLayout();
1701 Align = llvm::Align(DL.getTypeStoreSize(New->getType()));
1702 }
1703
1704 return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, *Align, SuccessOrdering,
1705 FailureOrdering, SSID));
1706 }
1707
1708 AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr,
1709 Value *Val, MaybeAlign Align,
1710 AtomicOrdering Ordering,
1711 SyncScope::ID SSID = SyncScope::System) {
1712 if (!Align) {
1713 const DataLayout &DL = BB->getModule()->getDataLayout();
1714 Align = llvm::Align(DL.getTypeStoreSize(Val->getType()));
1715 }
1716
1717 return Insert(new AtomicRMWInst(Op, Ptr, Val, *Align, Ordering, SSID));
1718 }
1719
1720 Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1721 const Twine &Name = "") {
1722 if (auto *V = Folder.FoldGEP(Ty, Ptr, IdxList, /*IsInBounds=*/false))
1723 return V;
1724 return Insert(GetElementPtrInst::Create(Ty, Ptr, IdxList), Name);
1725 }
1726
1727 Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1728 const Twine &Name = "") {
1729 if (auto *V = Folder.FoldGEP(Ty, Ptr, IdxList, /*IsInBounds=*/true))
1730 return V;
1731 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList), Name);
1732 }
1733
1734 Value *CreateGEP(Type *Ty, Value *Ptr, Value *Idx, const Twine &Name = "") {
1735 if (auto *V = Folder.FoldGEP(Ty, Ptr, {Idx}, /*IsInBounds=*/false))
1736 return V;
1737 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1738 }
1739
1740 Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, Value *Idx,
1741 const Twine &Name = "") {
1742 if (auto *V = Folder.FoldGEP(Ty, Ptr, {Idx}, /*IsInBounds=*/true))
1743 return V;
1744 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1745 }
1746
1747 Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1748 const Twine &Name = "") {
1749 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1750
1751 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/false))
1752 return V;
1753
1754 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1755 }
1756
1757 Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1758 const Twine &Name = "") {
1759 Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1760
1761 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/true))
1762 return V;
1763
1764 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1765 }
1766
1767 Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1,
1768 const Twine &Name = "") {
1769 Value *Idxs[] = {
1770 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1771 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1772 };
1773
1774 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/false))
1775 return V;
1776
1777 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
1778 }
1779
1780 Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0,
1781 unsigned Idx1, const Twine &Name = "") {
1782 Value *Idxs[] = {
1783 ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1784 ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1785 };
1786
1787 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/true))
1788 return V;
1789
1790 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1791 }
1792
1793 Value *CreateConstGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1794 const Twine &Name = "") {
1795 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1796
1797 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/false))
1798 return V;
1799
1800 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1801 }
1802
1803 Value *CreateConstInBoundsGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1804 const Twine &Name = "") {
1805 Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1806
1807 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/true))
1808 return V;
1809
1810 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1811 }
1812
1813 Value *CreateConstGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, uint64_t Idx1,
1814 const Twine &Name = "") {
1815 Value *Idxs[] = {
1816 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1817 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1818 };
1819
1820 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/false))
1821 return V;
1822
1823 return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
1824 }
1825
1826 Value *CreateConstInBoundsGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1827 uint64_t Idx1, const Twine &Name = "") {
1828 Value *Idxs[] = {
1829 ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1830 ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1831 };
1832
1833 if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/true))
1834 return V;
1835
1836 return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1837 }
1838
1839 Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx,
1840 const Twine &Name = "") {
1841 return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name);
1842 }
1843
1844 /// Same as CreateGlobalString, but return a pointer with "i8*" type
1845 /// instead of a pointer to array of i8.
1846 ///
1847 /// If no module is given via \p M, it is take from the insertion point basic
1848 /// block.
1849 Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "",
1850 unsigned AddressSpace = 0,
1851 Module *M = nullptr) {
1852 GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace, M);
1853 Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1854 Constant *Indices[] = {Zero, Zero};
1855 return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV,
1856 Indices);
1857 }
1858
1859 //===--------------------------------------------------------------------===//
1860 // Instruction creation methods: Cast/Conversion Operators
1861 //===--------------------------------------------------------------------===//
1862
1863 Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
1864 return CreateCast(Instruction::Trunc, V, DestTy, Name);
1865 }
1866
1867 Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
1868 return CreateCast(Instruction::ZExt, V, DestTy, Name);
1869 }
1870
1871 Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
1872 return CreateCast(Instruction::SExt, V, DestTy, Name);
1873 }
1874
1875 /// Create a ZExt or Trunc from the integer value V to DestTy. Return
1876 /// the value untouched if the type of V is already DestTy.
1877 Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
1878 const Twine &Name = "") {
1879 assert(V->getType()->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1881, __extension__ __PRETTY_FUNCTION__
))
1880 DestTy->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1881, __extension__ __PRETTY_FUNCTION__
))
1881 "Can only zero extend/truncate integers!")(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only zero extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only zero extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1881, __extension__ __PRETTY_FUNCTION__
))
;
1882 Type *VTy = V->getType();
1883 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
1884 return CreateZExt(V, DestTy, Name);
1885 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1886 return CreateTrunc(V, DestTy, Name);
1887 return V;
1888 }
1889
1890 /// Create a SExt or Trunc from the integer value V to DestTy. Return
1891 /// the value untouched if the type of V is already DestTy.
1892 Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
1893 const Twine &Name = "") {
1894 assert(V->getType()->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1896, __extension__ __PRETTY_FUNCTION__
))
1895 DestTy->isIntOrIntVectorTy() &&(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1896, __extension__ __PRETTY_FUNCTION__
))
1896 "Can only sign extend/truncate integers!")(static_cast <bool> (V->getType()->isIntOrIntVectorTy
() && DestTy->isIntOrIntVectorTy() && "Can only sign extend/truncate integers!"
) ? void (0) : __assert_fail ("V->getType()->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy() && \"Can only sign extend/truncate integers!\""
, "llvm/include/llvm/IR/IRBuilder.h", 1896, __extension__ __PRETTY_FUNCTION__
))
;
1897 Type *VTy = V->getType();
1898 if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
1899 return CreateSExt(V, DestTy, Name);
1900 if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1901 return CreateTrunc(V, DestTy, Name);
1902 return V;
1903 }
1904
1905 Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = "") {
1906 if (IsFPConstrained)
1907 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptoui,
1908 V, DestTy, nullptr, Name);
1909 return CreateCast(Instruction::FPToUI, V, DestTy, Name);
1910 }
1911
1912 Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = "") {
1913 if (IsFPConstrained)
1914 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptosi,
1915 V, DestTy, nullptr, Name);
1916 return CreateCast(Instruction::FPToSI, V, DestTy, Name);
1917 }
1918
1919 Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
1920 if (IsFPConstrained)
1921 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_uitofp,
1922 V, DestTy, nullptr, Name);
1923 return CreateCast(Instruction::UIToFP, V, DestTy, Name);
1924 }
1925
1926 Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
1927 if (IsFPConstrained)
1928 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_sitofp,
1929 V, DestTy, nullptr, Name);
1930 return CreateCast(Instruction::SIToFP, V, DestTy, Name);
1931 }
1932
1933 Value *CreateFPTrunc(Value *V, Type *DestTy,
1934 const Twine &Name = "") {
1935 if (IsFPConstrained)
1936 return CreateConstrainedFPCast(
1937 Intrinsic::experimental_constrained_fptrunc, V, DestTy, nullptr,
1938 Name);
1939 return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
1940 }
1941
1942 Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
1943 if (IsFPConstrained)
1944 return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fpext,
1945 V, DestTy, nullptr, Name);
1946 return CreateCast(Instruction::FPExt, V, DestTy, Name);
1947 }
1948
1949 Value *CreatePtrToInt(Value *V, Type *DestTy,
1950 const Twine &Name = "") {
1951 return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
1952 }
1953
1954 Value *CreateIntToPtr(Value *V, Type *DestTy,
1955 const Twine &Name = "") {
1956 return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
1957 }
1958
1959 Value *CreateBitCast(Value *V, Type *DestTy,
1960 const Twine &Name = "") {
1961 return CreateCast(Instruction::BitCast, V, DestTy, Name);
1962 }
1963
1964 Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
1965 const Twine &Name = "") {
1966 return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
1967 }
1968
1969 Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
1970 const Twine &Name = "") {
1971 if (V->getType() == DestTy)
1972 return V;
1973 if (auto *VC = dyn_cast<Constant>(V))
1974 return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
1975 return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
1976 }
1977
1978 Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
1979 const Twine &Name = "") {
1980 if (V->getType() == DestTy)
1981 return V;
1982 if (auto *VC = dyn_cast<Constant>(V))
1983 return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
1984 return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
1985 }
1986
1987 Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
1988 const Twine &Name = "") {
1989 if (V->getType() == DestTy)
1990 return V;
1991 if (auto *VC = dyn_cast<Constant>(V))
1992 return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
1993 return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
1994 }
1995
1996 Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
1997 const Twine &Name = "") {
1998 if (V->getType() == DestTy)
1999 return V;
2000 if (auto *VC = dyn_cast<Constant>(V))
2001 return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
2002 return Insert(CastInst::Create(Op, V, DestTy), Name);
2003 }
2004
2005 Value *CreatePointerCast(Value *V, Type *DestTy,
2006 const Twine &Name = "") {
2007 if (V->getType() == DestTy)
2008 return V;
2009 if (auto *VC = dyn_cast<Constant>(V))
2010 return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
2011 return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
2012 }
2013
2014 Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
2015 const Twine &Name = "") {
2016 if (V->getType() == DestTy)
2017 return V;
2018
2019 if (auto *VC = dyn_cast<Constant>(V)) {
2020 return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
2021 Name);
2022 }
2023
2024 return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
2025 Name);
2026 }
2027
2028 Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
2029 const Twine &Name = "") {
2030 if (V->getType() == DestTy)
2031 return V;
2032 if (auto *VC = dyn_cast<Constant>(V))
2033 return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
2034 return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
2035 }
2036
2037 Value *CreateBitOrPointerCast(Value *V, Type *DestTy,
2038 const Twine &Name = "") {
2039 if (V->getType() == DestTy)
2040 return V;
2041 if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy())
2042 return CreatePtrToInt(V, DestTy, Name);
2043 if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy())
2044 return CreateIntToPtr(V, DestTy, Name);
2045
2046 return CreateBitCast(V, DestTy, Name);
2047 }
2048
2049 Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
2050 if (V->getType() == DestTy)
2051 return V;
2052 if (auto *VC = dyn_cast<Constant>(V))
2053 return Insert(Folder.CreateFPCast(VC, DestTy), Name);
2054 return Insert(CastInst::CreateFPCast(V, DestTy), Name);
2055 }
2056
2057 CallInst *CreateConstrainedFPCast(
2058 Intrinsic::ID ID, Value *V, Type *DestTy,
2059 Instruction *FMFSource = nullptr, const Twine &Name = "",
2060 MDNode *FPMathTag = nullptr,
2061 Optional<RoundingMode> Rounding = None,
2062 Optional<fp::ExceptionBehavior> Except = None);
2063
2064 // Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
2065 // compile time error, instead of converting the string to bool for the
2066 // isSigned parameter.
2067 Value *CreateIntCast(Value *, Type *, const char *) = delete;
2068
2069 //===--------------------------------------------------------------------===//
2070 // Instruction creation methods: Compare Instructions
2071 //===--------------------------------------------------------------------===//
2072
2073 Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
2074 return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
2075 }
2076
2077 Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
2078 return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
2079 }
2080
2081 Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2082 return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
2083 }
2084
2085 Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2086 return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
2087 }
2088
2089 Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
2090 return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
2091 }
2092
2093 Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
2094 return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
2095 }
2096
2097 Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2098 return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
2099 }
2100
2101 Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2102 return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
2103 }
2104
2105 Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
2106 return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
2107 }
2108
2109 Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
2110 return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
2111 }
2112
2113 Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2114 MDNode *FPMathTag = nullptr) {
2115 return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag);
2116 }
2117
2118 Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "",
2119 MDNode *FPMathTag = nullptr) {
2120 return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag);
2121 }
2122
2123 Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "",
2124 MDNode *FPMathTag = nullptr) {
2125 return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag);
2126 }
2127
2128 Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "",
2129 MDNode *FPMathTag = nullptr) {
2130 return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag);
2131 }
2132
2133 Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "",
2134 MDNode *FPMathTag = nullptr) {
2135 return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag);
2136 }
2137
2138 Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "",
2139 MDNode *FPMathTag = nullptr) {
2140 return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag);
2141 }
2142
2143 Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "",
2144 MDNode *FPMathTag = nullptr) {
2145 return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag);
2146 }
2147
2148 Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "",
2149 MDNode *FPMathTag = nullptr) {
2150 return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag);
2151 }
2152
2153 Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2154 MDNode *FPMathTag = nullptr) {
2155 return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag);
2156 }
2157
2158 Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "",
2159 MDNode *FPMathTag = nullptr) {
2160 return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag);
2161 }
2162
2163 Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "",
2164 MDNode *FPMathTag = nullptr) {
2165 return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag);
2166 }
2167
2168 Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "",
2169 MDNode *FPMathTag = nullptr) {
2170 return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag);
2171 }
2172
2173 Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "",
2174 MDNode *FPMathTag = nullptr) {
2175 return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag);
2176 }
2177
2178 Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "",
2179 MDNode *FPMathTag = nullptr) {
2180 return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag);
2181 }
2182
2183 Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2184 const Twine &Name = "") {
2185 if (auto *V = Folder.FoldICmp(P, LHS, RHS))
2186 return V;
2187 return Insert(new ICmpInst(P, LHS, RHS), Name);
2188 }
2189
2190 // Create a quiet floating-point comparison (i.e. one that raises an FP
2191 // exception only in the case where an input is a signaling NaN).
2192 // Note that this differs from CreateFCmpS only if IsFPConstrained is true.
2193 Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2194 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2195 return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, false);
2196 }
2197
2198 Value *CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2199 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2200 return CmpInst::isFPPredicate(Pred)
2201 ? CreateFCmp(Pred, LHS, RHS, Name, FPMathTag)
2202 : CreateICmp(Pred, LHS, RHS, Name);
2203 }
2204
2205 // Create a signaling floating-point comparison (i.e. one that raises an FP
2206 // exception whenever an input is any NaN, signaling or quiet).
2207 // Note that this differs from CreateFCmp only if IsFPConstrained is true.
2208 Value *CreateFCmpS(CmpInst::Predicate P, Value *LHS, Value *RHS,
2209 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2210 return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, true);
2211 }
2212
2213private:
2214 // Helper routine to create either a signaling or a quiet FP comparison.
2215 Value *CreateFCmpHelper(CmpInst::Predicate P, Value *LHS, Value *RHS,
2216 const Twine &Name, MDNode *FPMathTag,
2217 bool IsSignaling);
2218
2219public:
2220 CallInst *CreateConstrainedFPCmp(
2221 Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
2222 const Twine &Name = "", Optional<fp::ExceptionBehavior> Except = None);
2223
2224 //===--------------------------------------------------------------------===//
2225 // Instruction creation methods: Other Instructions
2226 //===--------------------------------------------------------------------===//
2227
2228 PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
2229 const Twine &Name = "") {
2230 PHINode *Phi = PHINode::Create(Ty, NumReservedValues);
2231 if (isa<FPMathOperator>(Phi))
2232 setFPAttrs(Phi, nullptr /* MDNode* */, FMF);
2233 return Insert(Phi, Name);
2234 }
2235
2236 CallInst *CreateCall(FunctionType *FTy, Value *Callee,
2237 ArrayRef<Value *> Args = None, const Twine &Name = "",
2238 MDNode *FPMathTag = nullptr) {
2239 CallInst *CI = CallInst::Create(FTy, Callee, Args, DefaultOperandBundles);
2240 if (IsFPConstrained)
2241 setConstrainedFPCallAttr(CI);
2242 if (isa<FPMathOperator>(CI))
2243 setFPAttrs(CI, FPMathTag, FMF);
2244 return Insert(CI, Name);
2245 }
2246
2247 CallInst *CreateCall(FunctionType *FTy, Value *Callee, ArrayRef<Value *> Args,
2248 ArrayRef<OperandBundleDef> OpBundles,
2249 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2250 CallInst *CI = CallInst::Create(FTy, Callee, Args, OpBundles);
2251 if (IsFPConstrained)
2252 setConstrainedFPCallAttr(CI);
2253 if (isa<FPMathOperator>(CI))
2254 setFPAttrs(CI, FPMathTag, FMF);
2255 return Insert(CI, Name);
2256 }
2257
2258 CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args = None,
2259 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2260 return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args, Name,
2261 FPMathTag);
2262 }
2263
2264 CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args,
2265 ArrayRef<OperandBundleDef> OpBundles,
2266 const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2267 return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args,
2268 OpBundles, Name, FPMathTag);
2269 }
2270
2271 CallInst *CreateConstrainedFPCall(
2272 Function *Callee, ArrayRef<Value *> Args, const Twine &Name = "",
2273 Optional<RoundingMode> Rounding = None,
2274 Optional<fp::ExceptionBehavior> Except = None);
2275
2276 Value *CreateSelect(Value *C, Value *True, Value *False,
2277 const Twine &Name = "", Instruction *MDFrom = nullptr);
2278
2279 VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
2280 return Insert(new VAArgInst(List, Ty), Name);
2281 }
2282
2283 Value *CreateExtractElement(Value *Vec, Value *Idx,
2284 const Twine &Name = "") {
2285 if (auto *VC = dyn_cast<Constant>(Vec))
2286 if (auto *IC = dyn_cast<Constant>(Idx))
2287 return Insert(Folder.CreateExtractElement(VC, IC), Name);
2288 return Insert(ExtractElementInst::Create(Vec, Idx), Name);
2289 }
2290
2291 Value *CreateExtractElement(Value *Vec, uint64_t Idx,
2292 const Twine &Name = "") {
2293 return CreateExtractElement(Vec, getInt64(Idx), Name);
2294 }
2295
2296 Value *CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx,
2297 const Twine &Name = "") {
2298 return CreateInsertElement(PoisonValue::get(VecTy), NewElt, Idx, Name);
2299 }
2300
2301 Value *CreateInsertElement(Type *VecTy, Value *NewElt, uint64_t Idx,
2302 const Twine &Name = "") {
2303 return CreateInsertElement(PoisonValue::get(VecTy), NewElt, Idx, Name);
2304 }
2305
2306 Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
2307 const Twine &Name = "") {
2308 if (auto *VC = dyn_cast<Constant>(Vec))
2309 if (auto *NC = dyn_cast<Constant>(NewElt))
2310 if (auto *IC = dyn_cast<Constant>(Idx))
2311 return Insert(Folder.CreateInsertElement(VC, NC, IC), Name);
2312 return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
2313 }
2314
2315 Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx,
2316 const Twine &Name = "") {
2317 return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name);
2318 }
2319
2320 Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
2321 const Twine &Name = "") {
2322 SmallVector<int, 16> IntMask;
2323 ShuffleVectorInst::getShuffleMask(cast<Constant>(Mask), IntMask);
2324 return CreateShuffleVector(V1, V2, IntMask, Name);
2325 }
2326
2327 /// See class ShuffleVectorInst for a description of the mask representation.
2328 Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask,
2329 const Twine &Name = "") {
2330 if (auto *V1C = dyn_cast<Constant>(V1))
2331 if (auto *V2C = dyn_cast<Constant>(V2))
2332 return Insert(Folder.CreateShuffleVector(V1C, V2C, Mask), Name);
2333 return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
2334 }
2335
2336 /// Create a unary shuffle. The second vector operand of the IR instruction
2337 /// is poison.
2338 Value *CreateShuffleVector(Value *V, ArrayRef<int> Mask,
2339 const Twine &Name = "") {
2340 return CreateShuffleVector(V, PoisonValue::get(V->getType()), Mask, Name);
2341 }
2342
2343 Value *CreateExtractValue(Value *Agg,
2344 ArrayRef<unsigned> Idxs,
2345 const Twine &Name = "") {
2346 if (auto *AggC = dyn_cast<Constant>(Agg))
2347 return Insert(Folder.CreateExtractValue(AggC, Idxs), Name);
2348 return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
2349 }
2350
2351 Value *CreateInsertValue(Value *Agg, Value *Val,
2352 ArrayRef<unsigned> Idxs,
2353 const Twine &Name = "") {
2354 if (auto *AggC = dyn_cast<Constant>(Agg))
2355 if (auto *ValC = dyn_cast<Constant>(Val))
2356 return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name);
2357 return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
2358 }
2359
2360 LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses,
2361 const Twine &Name = "") {
2362 return Insert(LandingPadInst::Create(Ty, NumClauses), Name);
2363 }
2364
2365 Value *CreateFreeze(Value *V, const Twine &Name = "") {
2366 return Insert(new FreezeInst(V), Name);
2367 }
2368
2369 //===--------------------------------------------------------------------===//
2370 // Utility creation methods
2371 //===--------------------------------------------------------------------===//
2372
2373 /// Return an i1 value testing if \p Arg is null.
2374 Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
2375 return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()),
2376 Name);
2377 }
2378
2379 /// Return an i1 value testing if \p Arg is not null.
2380 Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
2381 return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()),
2382 Name);
2383 }
2384
2385 /// Return the i64 difference between two pointer values, dividing out
2386 /// the size of the pointed-to objects.
2387 ///
2388 /// This is intended to implement C-style pointer subtraction. As such, the
2389 /// pointers must be appropriately aligned for their element types and
2390 /// pointing into the same object.
2391 Value *CreatePtrDiff(Type *ElemTy, Value *LHS, Value *RHS,
2392 const Twine &Name = "");
2393
2394 /// Create a launder.invariant.group intrinsic call. If Ptr type is
2395 /// different from pointer to i8, it's casted to pointer to i8 in the same
2396 /// address space before call and casted back to Ptr type after call.
2397 Value *CreateLaunderInvariantGroup(Value *Ptr);
2398
2399 /// \brief Create a strip.invariant.group intrinsic call. If Ptr type is
2400 /// different from pointer to i8, it's casted to pointer to i8 in the same
2401 /// address space before call and casted back to Ptr type after call.
2402 Value *CreateStripInvariantGroup(Value *Ptr);
2403
2404 /// Return a vector value that contains the vector V reversed
2405 Value *CreateVectorReverse(Value *V, const Twine &Name = "");
2406
2407 /// Return a vector splice intrinsic if using scalable vectors, otherwise
2408 /// return a shufflevector. If the immediate is positive, a vector is
2409 /// extracted from concat(V1, V2), starting at Imm. If the immediate
2410 /// is negative, we extract -Imm elements from V1 and the remaining
2411 /// elements from V2. Imm is a signed integer in the range
2412 /// -VL <= Imm < VL (where VL is the runtime vector length of the
2413 /// source/result vector)
2414 Value *CreateVectorSplice(Value *V1, Value *V2, int64_t Imm,
2415 const Twine &Name = "");
2416
2417 /// Return a vector value that contains \arg V broadcasted to \p
2418 /// NumElts elements.
2419 Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "");
2420
2421 /// Return a vector value that contains \arg V broadcasted to \p
2422 /// EC elements.
2423 Value *CreateVectorSplat(ElementCount EC, Value *V, const Twine &Name = "");
2424
2425 /// Return a value that has been extracted from a larger integer type.
2426 Value *CreateExtractInteger(const DataLayout &DL, Value *From,
2427 IntegerType *ExtractedTy, uint64_t Offset,
2428 const Twine &Name);
2429
2430 Value *CreatePreserveArrayAccessIndex(Type *ElTy, Value *Base,
2431 unsigned Dimension, unsigned LastIndex,
2432 MDNode *DbgInfo);
2433
2434 Value *CreatePreserveUnionAccessIndex(Value *Base, unsigned FieldIndex,
2435 MDNode *DbgInfo);
2436
2437 Value *CreatePreserveStructAccessIndex(Type *ElTy, Value *Base,
2438 unsigned Index, unsigned FieldIndex,
2439 MDNode *DbgInfo);
2440
2441private:
2442 /// Helper function that creates an assume intrinsic call that
2443 /// represents an alignment assumption on the provided pointer \p PtrValue
2444 /// with offset \p OffsetValue and alignment value \p AlignValue.
2445 CallInst *CreateAlignmentAssumptionHelper(const DataLayout &DL,
2446 Value *PtrValue, Value *AlignValue,
2447 Value *OffsetValue);
2448
2449public:
2450 /// Create an assume intrinsic call that represents an alignment
2451 /// assumption on the provided pointer.
2452 ///
2453 /// An optional offset can be provided, and if it is provided, the offset
2454 /// must be subtracted from the provided pointer to get the pointer with the
2455 /// specified alignment.
2456 CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2457 unsigned Alignment,
2458 Value *OffsetValue = nullptr);
2459
2460 /// Create an assume intrinsic call that represents an alignment
2461 /// assumption on the provided pointer.
2462 ///
2463 /// An optional offset can be provided, and if it is provided, the offset
2464 /// must be subtracted from the provided pointer to get the pointer with the
2465 /// specified alignment.
2466 ///
2467 /// This overload handles the condition where the Alignment is dependent
2468 /// on an existing value rather than a static value.
2469 CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2470 Value *Alignment,
2471 Value *OffsetValue = nullptr);
2472};
2473
2474/// This provides a uniform API for creating instructions and inserting
2475/// them into a basic block: either at the end of a BasicBlock, or at a specific
2476/// iterator location in a block.
2477///
2478/// Note that the builder does not expose the full generality of LLVM
2479/// instructions. For access to extra instruction properties, use the mutators
2480/// (e.g. setVolatile) on the instructions after they have been
2481/// created. Convenience state exists to specify fast-math flags and fp-math
2482/// tags.
2483///
2484/// The first template argument specifies a class to use for creating constants.
2485/// This defaults to creating minimally folded constants. The second template
2486/// argument allows clients to specify custom insertion hooks that are called on
2487/// every newly created insertion.
2488template <typename FolderTy = ConstantFolder,
2489 typename InserterTy = IRBuilderDefaultInserter>
2490class IRBuilder : public IRBuilderBase {
2491private:
2492 FolderTy Folder;
2493 InserterTy Inserter;
2494
2495public:
2496 IRBuilder(LLVMContext &C, FolderTy Folder, InserterTy Inserter = InserterTy(),
2497 MDNode *FPMathTag = nullptr,
2498 ArrayRef<OperandBundleDef> OpBundles = None)
2499 : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles),
2500 Folder(Folder), Inserter(Inserter) {}
2501
2502 explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr,
2503 ArrayRef<OperandBundleDef> OpBundles = None)
2504 : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles) {}
2505
2506 explicit IRBuilder(BasicBlock *TheBB, FolderTy Folder,
2507 MDNode *FPMathTag = nullptr,
2508 ArrayRef<OperandBundleDef> OpBundles = None)
2509 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2510 FPMathTag, OpBundles), Folder(Folder) {
2511 SetInsertPoint(TheBB);
2512 }
2513
2514 explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr,
2515 ArrayRef<OperandBundleDef> OpBundles = None)
2516 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2517 FPMathTag, OpBundles) {
2518 SetInsertPoint(TheBB);
2519 }
2520
2521 explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr,
2522 ArrayRef<OperandBundleDef> OpBundles = None)
2523 : IRBuilderBase(IP->getContext(), this->Folder, this->Inserter,
22
Called C++ object pointer is null
2524 FPMathTag, OpBundles) {
2525 SetInsertPoint(IP);
2526 }
2527
2528 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, FolderTy Folder,
2529 MDNode *FPMathTag = nullptr,
2530 ArrayRef<OperandBundleDef> OpBundles = None)
2531 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2532 FPMathTag, OpBundles), Folder(Folder) {
2533 SetInsertPoint(TheBB, IP);
2534 }
2535
2536 IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
2537 MDNode *FPMathTag = nullptr,
2538 ArrayRef<OperandBundleDef> OpBundles = None)
2539 : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2540 FPMathTag, OpBundles) {
2541 SetInsertPoint(TheBB, IP);
2542 }
2543
2544 /// Avoid copying the full IRBuilder. Prefer using InsertPointGuard
2545 /// or FastMathFlagGuard instead.
2546 IRBuilder(const IRBuilder &) = delete;
2547
2548 InserterTy &getInserter() { return Inserter; }
2549};
2550
2551// Create wrappers for C Binding types (see CBindingWrapping.h).
2552DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)inline IRBuilder<> *unwrap(LLVMBuilderRef P) { return reinterpret_cast
<IRBuilder<>*>(P); } inline LLVMBuilderRef wrap(const
IRBuilder<> *P) { return reinterpret_cast<LLVMBuilderRef
>(const_cast<IRBuilder<>*>(P)); }
2553
2554} // end namespace llvm
2555
2556#endif // LLVM_IR_IRBUILDER_H