Bug Summary

File:llvm/lib/Transforms/IPO/IROutliner.cpp
Warning:line 1081, column 7
Value stored to 'WrongSize' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name IROutliner.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/IPO -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/IPO -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Transforms/IPO -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/IPO -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Transforms/IPO/IROutliner.cpp
1//===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10// Implementation for the IROutliner which is used by the IROutliner Pass.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/IPO/IROutliner.h"
15#include "llvm/Analysis/IRSimilarityIdentifier.h"
16#include "llvm/Analysis/OptimizationRemarkEmitter.h"
17#include "llvm/Analysis/TargetTransformInfo.h"
18#include "llvm/IR/Attributes.h"
19#include "llvm/IR/DebugInfoMetadata.h"
20#include "llvm/IR/DIBuilder.h"
21#include "llvm/IR/Mangler.h"
22#include "llvm/IR/PassManager.h"
23#include "llvm/InitializePasses.h"
24#include "llvm/Pass.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Transforms/IPO.h"
27#include <map>
28#include <set>
29#include <vector>
30
31#define DEBUG_TYPE"iroutliner" "iroutliner"
32
33using namespace llvm;
34using namespace IRSimilarity;
35
36// Set to true if the user wants the ir outliner to run on linkonceodr linkage
37// functions. This is false by default because the linker can dedupe linkonceodr
38// functions. Since the outliner is confined to a single module (modulo LTO),
39// this is off by default. It should, however, be the default behavior in
40// LTO.
41static cl::opt<bool> EnableLinkOnceODRIROutlining(
42 "enable-linkonceodr-ir-outlining", cl::Hidden,
43 cl::desc("Enable the IR outliner on linkonceodr functions"),
44 cl::init(false));
45
46// This is a debug option to test small pieces of code to ensure that outlining
47// works correctly.
48static cl::opt<bool> NoCostModel(
49 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
50 cl::desc("Debug option to outline greedily, without restriction that "
51 "calculated benefit outweighs cost"));
52
53/// The OutlinableGroup holds all the overarching information for outlining
54/// a set of regions that are structurally similar to one another, such as the
55/// types of the overall function, the output blocks, the sets of stores needed
56/// and a list of the different regions. This information is used in the
57/// deduplication of extracted regions with the same structure.
58struct OutlinableGroup {
59 /// The sections that could be outlined
60 std::vector<OutlinableRegion *> Regions;
61
62 /// The argument types for the function created as the overall function to
63 /// replace the extracted function for each region.
64 std::vector<Type *> ArgumentTypes;
65 /// The FunctionType for the overall function.
66 FunctionType *OutlinedFunctionType = nullptr;
67 /// The Function for the collective overall function.
68 Function *OutlinedFunction = nullptr;
69
70 /// Flag for whether we should not consider this group of OutlinableRegions
71 /// for extraction.
72 bool IgnoreGroup = false;
73
74 /// The return block for the overall function.
75 BasicBlock *EndBB = nullptr;
76
77 /// A set containing the different GVN store sets needed. Each array contains
78 /// a sorted list of the different values that need to be stored into output
79 /// registers.
80 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
81
82 /// Flag for whether the \ref ArgumentTypes have been defined after the
83 /// extraction of the first region.
84 bool InputTypesSet = false;
85
86 /// The number of input values in \ref ArgumentTypes. Anything after this
87 /// index in ArgumentTypes is an output argument.
88 unsigned NumAggregateInputs = 0;
89
90 /// The mapping of the canonical numbering of the values in outlined sections
91 /// to specific arguments.
92 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
93
94 /// The number of instructions that will be outlined by extracting \ref
95 /// Regions.
96 InstructionCost Benefit = 0;
97 /// The number of added instructions needed for the outlining of the \ref
98 /// Regions.
99 InstructionCost Cost = 0;
100
101 /// The argument that needs to be marked with the swifterr attribute. If not
102 /// needed, there is no value.
103 Optional<unsigned> SwiftErrorArgument;
104
105 /// For the \ref Regions, we look at every Value. If it is a constant,
106 /// we check whether it is the same in Region.
107 ///
108 /// \param [in,out] NotSame contains the global value numbers where the
109 /// constant is not always the same, and must be passed in as an argument.
110 void findSameConstants(DenseSet<unsigned> &NotSame);
111
112 /// For the regions, look at each set of GVN stores needed and account for
113 /// each combination. Add an argument to the argument types if there is
114 /// more than one combination.
115 ///
116 /// \param [in] M - The module we are outlining from.
117 void collectGVNStoreSets(Module &M);
118};
119
120/// Move the contents of \p SourceBB to before the last instruction of \p
121/// TargetBB.
122/// \param SourceBB - the BasicBlock to pull Instructions from.
123/// \param TargetBB - the BasicBlock to put Instruction into.
124static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
125 BasicBlock::iterator BBCurr, BBEnd, BBNext;
126 for (BBCurr = SourceBB.begin(), BBEnd = SourceBB.end(); BBCurr != BBEnd;
127 BBCurr = BBNext) {
128 BBNext = std::next(BBCurr);
129 BBCurr->moveBefore(TargetBB, TargetBB.end());
130 }
131}
132
133void OutlinableRegion::splitCandidate() {
134 assert(!CandidateSplit && "Candidate already split!")(static_cast<void> (0));
135
136 Instruction *EndInst = (*Candidate->end()).Inst;
137 assert(EndInst && "Expected an end instruction?")(static_cast<void> (0));
138
139 // We check if the current instruction following the last instruction in the
140 // region is the same as the recorded instruction following the last
141 // instruction. If they do not match, there could be problems in rewriting
142 // the program after outlining, so we ignore it.
143 if (EndInst != Candidate->backInstruction()->getNextNonDebugInstruction())
144 return;
145
146 Instruction *StartInst = (*Candidate->begin()).Inst;
147 assert(StartInst && "Expected a start instruction?")(static_cast<void> (0));
148 StartBB = StartInst->getParent();
149 PrevBB = StartBB;
150
151 // The basic block gets split like so:
152 // block: block:
153 // inst1 inst1
154 // inst2 inst2
155 // region1 br block_to_outline
156 // region2 block_to_outline:
157 // region3 -> region1
158 // region4 region2
159 // inst3 region3
160 // inst4 region4
161 // br block_after_outline
162 // block_after_outline:
163 // inst3
164 // inst4
165
166 std::string OriginalName = PrevBB->getName().str();
167
168 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
169
170 // This is the case for the inner block since we do not have to include
171 // multiple blocks.
172 EndBB = StartBB;
173 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
174
175 CandidateSplit = true;
176}
177
178void OutlinableRegion::reattachCandidate() {
179 assert(CandidateSplit && "Candidate is not split!")(static_cast<void> (0));
180
181 // The basic block gets reattached like so:
182 // block: block:
183 // inst1 inst1
184 // inst2 inst2
185 // br block_to_outline region1
186 // block_to_outline: -> region2
187 // region1 region3
188 // region2 region4
189 // region3 inst3
190 // region4 inst4
191 // br block_after_outline
192 // block_after_outline:
193 // inst3
194 // inst4
195 assert(StartBB != nullptr && "StartBB for Candidate is not defined!")(static_cast<void> (0));
196 assert(FollowBB != nullptr && "StartBB for Candidate is not defined!")(static_cast<void> (0));
197
198 // StartBB should only have one predecessor since we put an unconditional
199 // branch at the end of PrevBB when we split the BasicBlock.
200 PrevBB = StartBB->getSinglePredecessor();
201 assert(PrevBB != nullptr &&(static_cast<void> (0))
202 "No Predecessor for the region start basic block!")(static_cast<void> (0));
203
204 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!")(static_cast<void> (0));
205 assert(EndBB->getTerminator() && "Terminator removed from EndBB!")(static_cast<void> (0));
206 PrevBB->getTerminator()->eraseFromParent();
207 EndBB->getTerminator()->eraseFromParent();
208
209 moveBBContents(*StartBB, *PrevBB);
210
211 BasicBlock *PlacementBB = PrevBB;
212 if (StartBB != EndBB)
213 PlacementBB = EndBB;
214 moveBBContents(*FollowBB, *PlacementBB);
215
216 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
217 PrevBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
218 StartBB->eraseFromParent();
219 FollowBB->eraseFromParent();
220
221 // Make sure to save changes back to the StartBB.
222 StartBB = PrevBB;
223 EndBB = nullptr;
224 PrevBB = nullptr;
225 FollowBB = nullptr;
226
227 CandidateSplit = false;
228}
229
230/// Find whether \p V matches the Constants previously found for the \p GVN.
231///
232/// \param V - The value to check for consistency.
233/// \param GVN - The global value number assigned to \p V.
234/// \param GVNToConstant - The mapping of global value number to Constants.
235/// \returns true if the Value matches the Constant mapped to by V and false if
236/// it \p V is a Constant but does not match.
237/// \returns None if \p V is not a Constant.
238static Optional<bool>
239constantMatches(Value *V, unsigned GVN,
240 DenseMap<unsigned, Constant *> &GVNToConstant) {
241 // See if we have a constants
242 Constant *CST = dyn_cast<Constant>(V);
243 if (!CST)
244 return None;
245
246 // Holds a mapping from a global value number to a Constant.
247 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
248 bool Inserted;
249
250
251 // If we have a constant, try to make a new entry in the GVNToConstant.
252 std::tie(GVNToConstantIt, Inserted) =
253 GVNToConstant.insert(std::make_pair(GVN, CST));
254 // If it was found and is not equal, it is not the same. We do not
255 // handle this case yet, and exit early.
256 if (Inserted || (GVNToConstantIt->second == CST))
257 return true;
258
259 return false;
260}
261
262InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
263 InstructionCost Benefit = 0;
264
265 // Estimate the benefit of outlining a specific sections of the program. We
266 // delegate mostly this task to the TargetTransformInfo so that if the target
267 // has specific changes, we can have a more accurate estimate.
268
269 // However, getInstructionCost delegates the code size calculation for
270 // arithmetic instructions to getArithmeticInstrCost in
271 // include/Analysis/TargetTransformImpl.h, where it always estimates that the
272 // code size for a division and remainder instruction to be equal to 4, and
273 // everything else to 1. This is not an accurate representation of the
274 // division instruction for targets that have a native division instruction.
275 // To be overly conservative, we only add 1 to the number of instructions for
276 // each division instruction.
277 for (IRInstructionData &ID : *Candidate) {
278 Instruction *I = ID.Inst;
279 switch (I->getOpcode()) {
280 case Instruction::FDiv:
281 case Instruction::FRem:
282 case Instruction::SDiv:
283 case Instruction::SRem:
284 case Instruction::UDiv:
285 case Instruction::URem:
286 Benefit += 1;
287 break;
288 default:
289 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
290 break;
291 }
292 }
293
294 return Benefit;
295}
296
297/// Find whether \p Region matches the global value numbering to Constant
298/// mapping found so far.
299///
300/// \param Region - The OutlinableRegion we are checking for constants
301/// \param GVNToConstant - The mapping of global value number to Constants.
302/// \param NotSame - The set of global value numbers that do not have the same
303/// constant in each region.
304/// \returns true if all Constants are the same in every use of a Constant in \p
305/// Region and false if not
306static bool
307collectRegionsConstants(OutlinableRegion &Region,
308 DenseMap<unsigned, Constant *> &GVNToConstant,
309 DenseSet<unsigned> &NotSame) {
310 bool ConstantsTheSame = true;
311
312 IRSimilarityCandidate &C = *Region.Candidate;
313 for (IRInstructionData &ID : C) {
314
315 // Iterate over the operands in an instruction. If the global value number,
316 // assigned by the IRSimilarityCandidate, has been seen before, we check if
317 // the the number has been found to be not the same value in each instance.
318 for (Value *V : ID.OperVals) {
319 Optional<unsigned> GVNOpt = C.getGVN(V);
320 assert(GVNOpt.hasValue() && "Expected a GVN for operand?")(static_cast<void> (0));
321 unsigned GVN = GVNOpt.getValue();
322
323 // Check if this global value has been found to not be the same already.
324 if (NotSame.contains(GVN)) {
325 if (isa<Constant>(V))
326 ConstantsTheSame = false;
327 continue;
328 }
329
330 // If it has been the same so far, we check the value for if the
331 // associated Constant value match the previous instances of the same
332 // global value number. If the global value does not map to a Constant,
333 // it is considered to not be the same value.
334 Optional<bool> ConstantMatches = constantMatches(V, GVN, GVNToConstant);
335 if (ConstantMatches.hasValue()) {
336 if (ConstantMatches.getValue())
337 continue;
338 else
339 ConstantsTheSame = false;
340 }
341
342 // While this value is a register, it might not have been previously,
343 // make sure we don't already have a constant mapped to this global value
344 // number.
345 if (GVNToConstant.find(GVN) != GVNToConstant.end())
346 ConstantsTheSame = false;
347
348 NotSame.insert(GVN);
349 }
350 }
351
352 return ConstantsTheSame;
353}
354
355void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
356 DenseMap<unsigned, Constant *> GVNToConstant;
357
358 for (OutlinableRegion *Region : Regions)
359 collectRegionsConstants(*Region, GVNToConstant, NotSame);
360}
361
362void OutlinableGroup::collectGVNStoreSets(Module &M) {
363 for (OutlinableRegion *OS : Regions)
364 OutputGVNCombinations.insert(OS->GVNStores);
365
366 // We are adding an extracted argument to decide between which output path
367 // to use in the basic block. It is used in a switch statement and only
368 // needs to be an integer.
369 if (OutputGVNCombinations.size() > 1)
370 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
371}
372
373/// Get the subprogram if it exists for one of the outlined regions.
374///
375/// \param [in] Group - The set of regions to find a subprogram for.
376/// \returns the subprogram if it exists, or nullptr.
377static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
378 for (OutlinableRegion *OS : Group.Regions)
379 if (Function *F = OS->Call->getFunction())
380 if (DISubprogram *SP = F->getSubprogram())
381 return SP;
382
383 return nullptr;
384}
385
386Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
387 unsigned FunctionNameSuffix) {
388 assert(!Group.OutlinedFunction && "Function is already defined!")(static_cast<void> (0));
389
390 Group.OutlinedFunctionType = FunctionType::get(
391 Type::getVoidTy(M.getContext()), Group.ArgumentTypes, false);
392
393 // These functions will only be called from within the same module, so
394 // we can set an internal linkage.
395 Group.OutlinedFunction = Function::Create(
396 Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
397 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
398
399 // Transfer the swifterr attribute to the correct function parameter.
400 if (Group.SwiftErrorArgument.hasValue())
401 Group.OutlinedFunction->addParamAttr(Group.SwiftErrorArgument.getValue(),
402 Attribute::SwiftError);
403
404 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
405 Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
406
407 // If there's a DISubprogram associated with this outlined function, then
408 // emit debug info for the outlined function.
409 if (DISubprogram *SP = getSubprogramOrNull(Group)) {
410 Function *F = Group.OutlinedFunction;
411 // We have a DISubprogram. Get its DICompileUnit.
412 DICompileUnit *CU = SP->getUnit();
413 DIBuilder DB(M, true, CU);
414 DIFile *Unit = SP->getFile();
415 Mangler Mg;
416 // Get the mangled name of the function for the linkage name.
417 std::string Dummy;
418 llvm::raw_string_ostream MangledNameStream(Dummy);
419 Mg.getNameWithPrefix(MangledNameStream, F, false);
420
421 DISubprogram *OutlinedSP = DB.createFunction(
422 Unit /* Context */, F->getName(), MangledNameStream.str(),
423 Unit /* File */,
424 0 /* Line 0 is reserved for compiler-generated code. */,
425 DB.createSubroutineType(DB.getOrCreateTypeArray(None)), /* void type */
426 0, /* Line 0 is reserved for compiler-generated code. */
427 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
428 /* Outlined code is optimized code by definition. */
429 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
430
431 // Don't add any new variables to the subprogram.
432 DB.finalizeSubprogram(OutlinedSP);
433
434 // Attach subprogram to the function.
435 F->setSubprogram(OutlinedSP);
436 // We're done with the DIBuilder.
437 DB.finalize();
438 }
439
440 return Group.OutlinedFunction;
441}
442
443/// Move each BasicBlock in \p Old to \p New.
444///
445/// \param [in] Old - The function to move the basic blocks from.
446/// \param [in] New - The function to move the basic blocks to.
447/// \returns the first return block for the function in New.
448static BasicBlock *moveFunctionData(Function &Old, Function &New) {
449 Function::iterator CurrBB, NextBB, FinalBB;
450 BasicBlock *NewEnd = nullptr;
451 for (CurrBB = Old.begin(), FinalBB = Old.end(); CurrBB != FinalBB;
452 CurrBB = NextBB) {
453 NextBB = std::next(CurrBB);
454 CurrBB->removeFromParent();
455 CurrBB->insertInto(&New);
456 Instruction *I = CurrBB->getTerminator();
457 if (isa<ReturnInst>(I))
458 NewEnd = &(*CurrBB);
459
460 std::vector<Instruction *> DebugInsts;
461
462 for (Instruction &Val : *CurrBB) {
463 // We must handle the scoping of called functions differently than
464 // other outlined instructions.
465 if (!isa<CallInst>(&Val)) {
466 // Remove the debug information for outlined functions.
467 Val.setDebugLoc(DebugLoc());
468 continue;
469 }
470
471 // From this point we are only handling call instructions.
472 CallInst *CI = cast<CallInst>(&Val);
473
474 // We add any debug statements here, to be removed after. Since the
475 // instructions originate from many different locations in the program,
476 // it will cause incorrect reporting from a debugger if we keep the
477 // same debug instructions.
478 if (isa<DbgInfoIntrinsic>(CI)) {
479 DebugInsts.push_back(&Val);
480 continue;
481 }
482
483 // Edit the scope of called functions inside of outlined functions.
484 if (DISubprogram *SP = New.getSubprogram()) {
485 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
486 Val.setDebugLoc(DI);
487 }
488 }
489
490 for (Instruction *I : DebugInsts)
491 I->eraseFromParent();
492 }
493
494 assert(NewEnd && "No return instruction for new function?")(static_cast<void> (0));
495 return NewEnd;
496}
497
498/// Find the the constants that will need to be lifted into arguments
499/// as they are not the same in each instance of the region.
500///
501/// \param [in] C - The IRSimilarityCandidate containing the region we are
502/// analyzing.
503/// \param [in] NotSame - The set of global value numbers that do not have a
504/// single Constant across all OutlinableRegions similar to \p C.
505/// \param [out] Inputs - The list containing the global value numbers of the
506/// arguments needed for the region of code.
507static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
508 std::vector<unsigned> &Inputs) {
509 DenseSet<unsigned> Seen;
510 // Iterate over the instructions, and find what constants will need to be
511 // extracted into arguments.
512 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
513 IDIt != EndIDIt; IDIt++) {
514 for (Value *V : (*IDIt).OperVals) {
515 // Since these are stored before any outlining, they will be in the
516 // global value numbering.
517 unsigned GVN = C.getGVN(V).getValue();
518 if (isa<Constant>(V))
519 if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
520 Inputs.push_back(GVN);
521 Seen.insert(GVN);
522 }
523 }
524 }
525}
526
527/// Find the GVN for the inputs that have been found by the CodeExtractor.
528///
529/// \param [in] C - The IRSimilarityCandidate containing the region we are
530/// analyzing.
531/// \param [in] CurrentInputs - The set of inputs found by the
532/// CodeExtractor.
533/// \param [in] OutputMappings - The mapping of values that have been replaced
534/// by a new output value.
535/// \param [out] EndInputNumbers - The global value numbers for the extracted
536/// arguments.
537static void mapInputsToGVNs(IRSimilarityCandidate &C,
538 SetVector<Value *> &CurrentInputs,
539 const DenseMap<Value *, Value *> &OutputMappings,
540 std::vector<unsigned> &EndInputNumbers) {
541 // Get the Global Value Number for each input. We check if the Value has been
542 // replaced by a different value at output, and use the original value before
543 // replacement.
544 for (Value *Input : CurrentInputs) {
545 assert(Input && "Have a nullptr as an input")(static_cast<void> (0));
546 if (OutputMappings.find(Input) != OutputMappings.end())
547 Input = OutputMappings.find(Input)->second;
548 assert(C.getGVN(Input).hasValue() &&(static_cast<void> (0))
549 "Could not find a numbering for the given input")(static_cast<void> (0));
550 EndInputNumbers.push_back(C.getGVN(Input).getValue());
551 }
552}
553
554/// Find the original value for the \p ArgInput values if any one of them was
555/// replaced during a previous extraction.
556///
557/// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
558/// \param [in] OutputMappings - The mapping of values that have been replaced
559/// by a new output value.
560/// \param [out] RemappedArgInputs - The remapped values according to
561/// \p OutputMappings that will be extracted.
562static void
563remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
564 const DenseMap<Value *, Value *> &OutputMappings,
565 SetVector<Value *> &RemappedArgInputs) {
566 // Get the global value number for each input that will be extracted as an
567 // argument by the code extractor, remapping if needed for reloaded values.
568 for (Value *Input : ArgInputs) {
569 if (OutputMappings.find(Input) != OutputMappings.end())
570 Input = OutputMappings.find(Input)->second;
571 RemappedArgInputs.insert(Input);
572 }
573}
574
575/// Find the input GVNs and the output values for a region of Instructions.
576/// Using the code extractor, we collect the inputs to the extracted function.
577///
578/// The \p Region can be identified as needing to be ignored in this function.
579/// It should be checked whether it should be ignored after a call to this
580/// function.
581///
582/// \param [in,out] Region - The region of code to be analyzed.
583/// \param [out] InputGVNs - The global value numbers for the extracted
584/// arguments.
585/// \param [in] NotSame - The global value numbers in the region that do not
586/// have the same constant value in the regions structurally similar to
587/// \p Region.
588/// \param [in] OutputMappings - The mapping of values that have been replaced
589/// by a new output value after extraction.
590/// \param [out] ArgInputs - The values of the inputs to the extracted function.
591/// \param [out] Outputs - The set of values extracted by the CodeExtractor
592/// as outputs.
593static void getCodeExtractorArguments(
594 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
595 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
596 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
597 IRSimilarityCandidate &C = *Region.Candidate;
598
599 // OverallInputs are the inputs to the region found by the CodeExtractor,
600 // SinkCands and HoistCands are used by the CodeExtractor to find sunken
601 // allocas of values whose lifetimes are contained completely within the
602 // outlined region. PremappedInputs are the arguments found by the
603 // CodeExtractor, removing conditions such as sunken allocas, but that
604 // may need to be remapped due to the extracted output values replacing
605 // the original values. We use DummyOutputs for this first run of finding
606 // inputs and outputs since the outputs could change during findAllocas,
607 // the correct set of extracted outputs will be in the final Outputs ValueSet.
608 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
609 DummyOutputs;
610
611 // Use the code extractor to get the inputs and outputs, without sunken
612 // allocas or removing llvm.assumes.
613 CodeExtractor *CE = Region.CE;
614 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
615 assert(Region.StartBB && "Region must have a start BasicBlock!")(static_cast<void> (0));
616 Function *OrigF = Region.StartBB->getParent();
617 CodeExtractorAnalysisCache CEAC(*OrigF);
618 BasicBlock *Dummy = nullptr;
619
620 // The region may be ineligible due to VarArgs in the parent function. In this
621 // case we ignore the region.
622 if (!CE->isEligible()) {
623 Region.IgnoreRegion = true;
624 return;
625 }
626
627 // Find if any values are going to be sunk into the function when extracted
628 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
629 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
630
631 // TODO: Support regions with sunken allocas: values whose lifetimes are
632 // contained completely within the outlined region. These are not guaranteed
633 // to be the same in every region, so we must elevate them all to arguments
634 // when they appear. If these values are not equal, it means there is some
635 // Input in OverallInputs that was removed for ArgInputs.
636 if (OverallInputs.size() != PremappedInputs.size()) {
637 Region.IgnoreRegion = true;
638 return;
639 }
640
641 findConstants(C, NotSame, InputGVNs);
642
643 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
644
645 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
646 ArgInputs);
647
648 // Sort the GVNs, since we now have constants included in the \ref InputGVNs
649 // we need to make sure they are in a deterministic order.
650 stable_sort(InputGVNs);
651}
652
653/// Look over the inputs and map each input argument to an argument in the
654/// overall function for the OutlinableRegions. This creates a way to replace
655/// the arguments of the extracted function with the arguments of the new
656/// overall function.
657///
658/// \param [in,out] Region - The region of code to be analyzed.
659/// \param [in] InputGVNs - The global value numbering of the input values
660/// collected.
661/// \param [in] ArgInputs - The values of the arguments to the extracted
662/// function.
663static void
664findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
665 std::vector<unsigned> &InputGVNs,
666 SetVector<Value *> &ArgInputs) {
667
668 IRSimilarityCandidate &C = *Region.Candidate;
669 OutlinableGroup &Group = *Region.Parent;
670
671 // This counts the argument number in the overall function.
672 unsigned TypeIndex = 0;
673
674 // This counts the argument number in the extracted function.
675 unsigned OriginalIndex = 0;
676
677 // Find the mapping of the extracted arguments to the arguments for the
678 // overall function. Since there may be extra arguments in the overall
679 // function to account for the extracted constants, we have two different
680 // counters as we find extracted arguments, and as we come across overall
681 // arguments.
682
683 // Additionally, in our first pass, for the first extracted function,
684 // we find argument locations for the canonical value numbering. This
685 // numbering overrides any discovered location for the extracted code.
686 for (unsigned InputVal : InputGVNs) {
687 Optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
688 assert(CanonicalNumberOpt.hasValue() && "Canonical number not found?")(static_cast<void> (0));
689 unsigned CanonicalNumber = CanonicalNumberOpt.getValue();
690
691 Optional<Value *> InputOpt = C.fromGVN(InputVal);
692 assert(InputOpt.hasValue() && "Global value number not found?")(static_cast<void> (0));
693 Value *Input = InputOpt.getValue();
694
695 DenseMap<unsigned, unsigned>::iterator AggArgIt =
696 Group.CanonicalNumberToAggArg.find(CanonicalNumber);
697
698 if (!Group.InputTypesSet) {
699 Group.ArgumentTypes.push_back(Input->getType());
700 // If the input value has a swifterr attribute, make sure to mark the
701 // argument in the overall function.
702 if (Input->isSwiftError()) {
703 assert((static_cast<void> (0))
704 !Group.SwiftErrorArgument.hasValue() &&(static_cast<void> (0))
705 "Argument already marked with swifterr for this OutlinableGroup!")(static_cast<void> (0));
706 Group.SwiftErrorArgument = TypeIndex;
707 }
708 }
709
710 // Check if we have a constant. If we do add it to the overall argument
711 // number to Constant map for the region, and continue to the next input.
712 if (Constant *CST = dyn_cast<Constant>(Input)) {
713 if (AggArgIt != Group.CanonicalNumberToAggArg.end())
714 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
715 else {
716 Group.CanonicalNumberToAggArg.insert(
717 std::make_pair(CanonicalNumber, TypeIndex));
718 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
719 }
720 TypeIndex++;
721 continue;
722 }
723
724 // It is not a constant, we create the mapping from extracted argument list
725 // to the overall argument list, using the canonical location, if it exists.
726 assert(ArgInputs.count(Input) && "Input cannot be found!")(static_cast<void> (0));
727
728 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
729 if (OriginalIndex != AggArgIt->second)
730 Region.ChangedArgOrder = true;
731 Region.ExtractedArgToAgg.insert(
732 std::make_pair(OriginalIndex, AggArgIt->second));
733 Region.AggArgToExtracted.insert(
734 std::make_pair(AggArgIt->second, OriginalIndex));
735 } else {
736 Group.CanonicalNumberToAggArg.insert(
737 std::make_pair(CanonicalNumber, TypeIndex));
738 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
739 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
740 }
741 OriginalIndex++;
742 TypeIndex++;
743 }
744
745 // If the function type definitions for the OutlinableGroup holding the region
746 // have not been set, set the length of the inputs here. We should have the
747 // same inputs for all of the different regions contained in the
748 // OutlinableGroup since they are all structurally similar to one another.
749 if (!Group.InputTypesSet) {
750 Group.NumAggregateInputs = TypeIndex;
751 Group.InputTypesSet = true;
752 }
753
754 Region.NumExtractedInputs = OriginalIndex;
755}
756
757/// Create a mapping of the output arguments for the \p Region to the output
758/// arguments of the overall outlined function.
759///
760/// \param [in,out] Region - The region of code to be analyzed.
761/// \param [in] Outputs - The values found by the code extractor.
762static void
763findExtractedOutputToOverallOutputMapping(OutlinableRegion &Region,
764 ArrayRef<Value *> Outputs) {
765 OutlinableGroup &Group = *Region.Parent;
766 IRSimilarityCandidate &C = *Region.Candidate;
767
768 // This counts the argument number in the extracted function.
769 unsigned OriginalIndex = Region.NumExtractedInputs;
770
771 // This counts the argument number in the overall function.
772 unsigned TypeIndex = Group.NumAggregateInputs;
773 bool TypeFound;
774 DenseSet<unsigned> AggArgsUsed;
775
776 // Iterate over the output types and identify if there is an aggregate pointer
777 // type whose base type matches the current output type. If there is, we mark
778 // that we will use this output register for this value. If not we add another
779 // type to the overall argument type list. We also store the GVNs used for
780 // stores to identify which values will need to be moved into an special
781 // block that holds the stores to the output registers.
782 for (Value *Output : Outputs) {
783 TypeFound = false;
784 // We can do this since it is a result value, and will have a number
785 // that is necessarily the same. BUT if in the future, the instructions
786 // do not have to be in same order, but are functionally the same, we will
787 // have to use a different scheme, as one-to-one correspondence is not
788 // guaranteed.
789 unsigned GlobalValue = C.getGVN(Output).getValue();
790 unsigned ArgumentSize = Group.ArgumentTypes.size();
791
792 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
793 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType()))
794 continue;
795
796 if (AggArgsUsed.contains(Jdx))
797 continue;
798
799 TypeFound = true;
800 AggArgsUsed.insert(Jdx);
801 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
802 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
803 Region.GVNStores.push_back(GlobalValue);
804 break;
805 }
806
807 // We were unable to find an unused type in the output type set that matches
808 // the output, so we add a pointer type to the argument types of the overall
809 // function to handle this output and create a mapping to it.
810 if (!TypeFound) {
811 Group.ArgumentTypes.push_back(PointerType::getUnqual(Output->getType()));
812 AggArgsUsed.insert(Group.ArgumentTypes.size() - 1);
813 Region.ExtractedArgToAgg.insert(
814 std::make_pair(OriginalIndex, Group.ArgumentTypes.size() - 1));
815 Region.AggArgToExtracted.insert(
816 std::make_pair(Group.ArgumentTypes.size() - 1, OriginalIndex));
817 Region.GVNStores.push_back(GlobalValue);
818 }
819
820 stable_sort(Region.GVNStores);
821 OriginalIndex++;
822 TypeIndex++;
823 }
824}
825
826void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
827 DenseSet<unsigned> &NotSame) {
828 std::vector<unsigned> Inputs;
829 SetVector<Value *> ArgInputs, Outputs;
830
831 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
832 Outputs);
833
834 if (Region.IgnoreRegion)
835 return;
836
837 // Map the inputs found by the CodeExtractor to the arguments found for
838 // the overall function.
839 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
840
841 // Map the outputs found by the CodeExtractor to the arguments found for
842 // the overall function.
843 findExtractedOutputToOverallOutputMapping(Region, Outputs.getArrayRef());
844}
845
846/// Replace the extracted function in the Region with a call to the overall
847/// function constructed from the deduplicated similar regions, replacing and
848/// remapping the values passed to the extracted function as arguments to the
849/// new arguments of the overall function.
850///
851/// \param [in] M - The module to outline from.
852/// \param [in] Region - The regions of extracted code to be replaced with a new
853/// function.
854/// \returns a call instruction with the replaced function.
855CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
856 std::vector<Value *> NewCallArgs;
857 DenseMap<unsigned, unsigned>::iterator ArgPair;
858
859 OutlinableGroup &Group = *Region.Parent;
860 CallInst *Call = Region.Call;
861 assert(Call && "Call to replace is nullptr?")(static_cast<void> (0));
862 Function *AggFunc = Group.OutlinedFunction;
863 assert(AggFunc && "Function to replace with is nullptr?")(static_cast<void> (0));
864
865 // If the arguments are the same size, there are not values that need to be
866 // made into an argument, the argument ordering has not been change, or
867 // different output registers to handle. We can simply replace the called
868 // function in this case.
869 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
870 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "do { } while (false)
871 << *AggFunc << " with same number of arguments\n")do { } while (false);
872 Call->setCalledFunction(AggFunc);
873 return Call;
874 }
875
876 // We have a different number of arguments than the new function, so
877 // we need to use our previously mappings off extracted argument to overall
878 // function argument, and constants to overall function argument to create the
879 // new argument list.
880 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
881
882 if (AggArgIdx == AggFunc->arg_size() - 1 &&
883 Group.OutputGVNCombinations.size() > 1) {
884 // If we are on the last argument, and we need to differentiate between
885 // output blocks, add an integer to the argument list to determine
886 // what block to take
887 LLVM_DEBUG(dbgs() << "Set switch block argument to "do { } while (false)
888 << Region.OutputBlockNum << "\n")do { } while (false);
889 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
890 Region.OutputBlockNum));
891 continue;
892 }
893
894 ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
895 if (ArgPair != Region.AggArgToExtracted.end()) {
896 Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
897 // If we found the mapping from the extracted function to the overall
898 // function, we simply add it to the argument list. We use the same
899 // value, it just needs to honor the new order of arguments.
900 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "do { } while (false)
901 << *ArgumentValue << "\n")do { } while (false);
902 NewCallArgs.push_back(ArgumentValue);
903 continue;
904 }
905
906 // If it is a constant, we simply add it to the argument list as a value.
907 if (Region.AggArgToConstant.find(AggArgIdx) !=
908 Region.AggArgToConstant.end()) {
909 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
910 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "do { } while (false)
911 << *CST << "\n")do { } while (false);
912 NewCallArgs.push_back(CST);
913 continue;
914 }
915
916 // Add a nullptr value if the argument is not found in the extracted
917 // function. If we cannot find a value, it means it is not in use
918 // for the region, so we should not pass anything to it.
919 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n")do { } while (false);
920 NewCallArgs.push_back(ConstantPointerNull::get(
921 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
922 }
923
924 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "do { } while (false)
925 << *AggFunc << " with new set of arguments\n")do { } while (false);
926 // Create the new call instruction and erase the old one.
927 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
928 Call);
929
930 // It is possible that the call to the outlined function is either the first
931 // instruction is in the new block, the last instruction, or both. If either
932 // of these is the case, we need to make sure that we replace the instruction
933 // in the IRInstructionData struct with the new call.
934 CallInst *OldCall = Region.Call;
935 if (Region.NewFront->Inst == OldCall)
936 Region.NewFront->Inst = Call;
937 if (Region.NewBack->Inst == OldCall)
938 Region.NewBack->Inst = Call;
939
940 // Transfer any debug information.
941 Call->setDebugLoc(Region.Call->getDebugLoc());
942
943 // Remove the old instruction.
944 OldCall->eraseFromParent();
945 Region.Call = Call;
946
947 // Make sure that the argument in the new function has the SwiftError
948 // argument.
949 if (Group.SwiftErrorArgument.hasValue())
950 Call->addParamAttr(Group.SwiftErrorArgument.getValue(),
951 Attribute::SwiftError);
952
953 return Call;
954}
955
956// Within an extracted function, replace the argument uses of the extracted
957// region with the arguments of the function for an OutlinableGroup.
958//
959/// \param [in] Region - The region of extracted code to be changed.
960/// \param [in,out] OutputBB - The BasicBlock for the output stores for this
961/// region.
962static void replaceArgumentUses(OutlinableRegion &Region,
963 BasicBlock *OutputBB) {
964 OutlinableGroup &Group = *Region.Parent;
965 assert(Region.ExtractedFunction && "Region has no extracted function?")(static_cast<void> (0));
966
967 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
968 ArgIdx++) {
969 assert(Region.ExtractedArgToAgg.find(ArgIdx) !=(static_cast<void> (0))
970 Region.ExtractedArgToAgg.end() &&(static_cast<void> (0))
971 "No mapping from extracted to outlined?")(static_cast<void> (0));
972 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
973 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
974 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
975 // The argument is an input, so we can simply replace it with the overall
976 // argument value
977 if (ArgIdx < Region.NumExtractedInputs) {
978 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "do { } while (false)
979 << *Region.ExtractedFunction << " with " << *AggArgdo { } while (false)
980 << " in function " << *Group.OutlinedFunction << "\n")do { } while (false);
981 Arg->replaceAllUsesWith(AggArg);
982 continue;
983 }
984
985 // If we are replacing an output, we place the store value in its own
986 // block inside the overall function before replacing the use of the output
987 // in the function.
988 assert(Arg->hasOneUse() && "Output argument can only have one use")(static_cast<void> (0));
989 User *InstAsUser = Arg->user_back();
990 assert(InstAsUser && "User is nullptr!")(static_cast<void> (0));
991
992 Instruction *I = cast<Instruction>(InstAsUser);
993 I->setDebugLoc(DebugLoc());
994 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "do { } while (false)
995 << *OutputBB << "\n")do { } while (false);
996
997 I->moveBefore(*OutputBB, OutputBB->end());
998
999 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "do { } while (false)
1000 << *Region.ExtractedFunction << " with " << *AggArgdo { } while (false)
1001 << " in function " << *Group.OutlinedFunction << "\n")do { } while (false);
1002 Arg->replaceAllUsesWith(AggArg);
1003 }
1004}
1005
1006/// Within an extracted function, replace the constants that need to be lifted
1007/// into arguments with the actual argument.
1008///
1009/// \param Region [in] - The region of extracted code to be changed.
1010void replaceConstants(OutlinableRegion &Region) {
1011 OutlinableGroup &Group = *Region.Parent;
1012 // Iterate over the constants that need to be elevated into arguments
1013 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
1014 unsigned AggArgIdx = Const.first;
1015 Function *OutlinedFunction = Group.OutlinedFunction;
1016 assert(OutlinedFunction && "Overall Function is not defined?")(static_cast<void> (0));
1017 Constant *CST = Const.second;
1018 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
1019 // Identify the argument it will be elevated to, and replace instances of
1020 // that constant in the function.
1021
1022 // TODO: If in the future constants do not have one global value number,
1023 // i.e. a constant 1 could be mapped to several values, this check will
1024 // have to be more strict. It cannot be using only replaceUsesWithIf.
1025
1026 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CSTdo { } while (false)
1027 << " in function " << *OutlinedFunction << " with "do { } while (false)
1028 << *Arg << "\n")do { } while (false);
1029 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
1030 if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1031 return I->getFunction() == OutlinedFunction;
1032 return false;
1033 });
1034 }
1035}
1036
1037/// For the given function, find all the nondebug or lifetime instructions,
1038/// and return them as a vector. Exclude any blocks in \p ExludeBlocks.
1039///
1040/// \param [in] F - The function we collect the instructions from.
1041/// \param [in] ExcludeBlocks - BasicBlocks to ignore.
1042/// \returns the list of instructions extracted.
1043static std::vector<Instruction *>
1044collectRelevantInstructions(Function &F,
1045 DenseSet<BasicBlock *> &ExcludeBlocks) {
1046 std::vector<Instruction *> RelevantInstructions;
1047
1048 for (BasicBlock &BB : F) {
1049 if (ExcludeBlocks.contains(&BB))
1050 continue;
1051
1052 for (Instruction &Inst : BB) {
1053 if (Inst.isLifetimeStartOrEnd())
1054 continue;
1055 if (isa<DbgInfoIntrinsic>(Inst))
1056 continue;
1057
1058 RelevantInstructions.push_back(&Inst);
1059 }
1060 }
1061
1062 return RelevantInstructions;
1063}
1064
1065/// It is possible that there is a basic block that already performs the same
1066/// stores. This returns a duplicate block, if it exists
1067///
1068/// \param OutputBB [in] the block we are looking for a duplicate of.
1069/// \param OutputStoreBBs [in] The existing output blocks.
1070/// \returns an optional value with the number output block if there is a match.
1071Optional<unsigned>
1072findDuplicateOutputBlock(BasicBlock *OutputBB,
1073 ArrayRef<BasicBlock *> OutputStoreBBs) {
1074
1075 bool WrongInst = false;
1076 bool WrongSize = false;
1077 unsigned MatchingNum = 0;
1078 for (BasicBlock *CompBB : OutputStoreBBs) {
1079 WrongInst = false;
1080 if (CompBB->size() - 1 != OutputBB->size()) {
1081 WrongSize = true;
Value stored to 'WrongSize' is never read
1082 MatchingNum++;
1083 continue;
1084 }
1085
1086 WrongSize = false;
1087 BasicBlock::iterator NIt = OutputBB->begin();
1088 for (Instruction &I : *CompBB) {
1089 if (isa<BranchInst>(&I))
1090 continue;
1091
1092 if (!I.isIdenticalTo(&(*NIt))) {
1093 WrongInst = true;
1094 break;
1095 }
1096
1097 NIt++;
1098 }
1099 if (!WrongInst && !WrongSize)
1100 return MatchingNum;
1101
1102 MatchingNum++;
1103 }
1104
1105 return None;
1106}
1107
1108/// For the outlined section, move needed the StoreInsts for the output
1109/// registers into their own block. Then, determine if there is a duplicate
1110/// output block already created.
1111///
1112/// \param [in] OG - The OutlinableGroup of regions to be outlined.
1113/// \param [in] Region - The OutlinableRegion that is being analyzed.
1114/// \param [in,out] OutputBB - the block that stores for this region will be
1115/// placed in.
1116/// \param [in] EndBB - the final block of the extracted function.
1117/// \param [in] OutputMappings - OutputMappings the mapping of values that have
1118/// been replaced by a new output value.
1119/// \param [in,out] OutputStoreBBs - The existing output blocks.
1120static void
1121alignOutputBlockWithAggFunc(OutlinableGroup &OG, OutlinableRegion &Region,
1122 BasicBlock *OutputBB, BasicBlock *EndBB,
1123 const DenseMap<Value *, Value *> &OutputMappings,
1124 std::vector<BasicBlock *> &OutputStoreBBs) {
1125 DenseSet<unsigned> ValuesToFind(Region.GVNStores.begin(),
1126 Region.GVNStores.end());
1127
1128 // We iterate over the instructions in the extracted function, and find the
1129 // global value number of the instructions. If we find a value that should
1130 // be contained in a store, we replace the uses of the value with the value
1131 // from the overall function, so that the store is storing the correct
1132 // value from the overall function.
1133 DenseSet<BasicBlock *> ExcludeBBs(OutputStoreBBs.begin(),
1134 OutputStoreBBs.end());
1135 ExcludeBBs.insert(OutputBB);
1136 std::vector<Instruction *> ExtractedFunctionInsts =
1137 collectRelevantInstructions(*(Region.ExtractedFunction), ExcludeBBs);
1138 std::vector<Instruction *> OverallFunctionInsts =
1139 collectRelevantInstructions(*OG.OutlinedFunction, ExcludeBBs);
1140
1141 assert(ExtractedFunctionInsts.size() == OverallFunctionInsts.size() &&(static_cast<void> (0))
1142 "Number of relevant instructions not equal!")(static_cast<void> (0));
1143
1144 unsigned NumInstructions = ExtractedFunctionInsts.size();
1145 for (unsigned Idx = 0; Idx < NumInstructions; Idx++) {
1146 Value *V = ExtractedFunctionInsts[Idx];
1147
1148 if (OutputMappings.find(V) != OutputMappings.end())
1149 V = OutputMappings.find(V)->second;
1150 Optional<unsigned> GVN = Region.Candidate->getGVN(V);
1151
1152 // If we have found one of the stored values for output, replace the value
1153 // with the corresponding one from the overall function.
1154 if (GVN.hasValue() && ValuesToFind.erase(GVN.getValue())) {
1155 V->replaceAllUsesWith(OverallFunctionInsts[Idx]);
1156 if (ValuesToFind.size() == 0)
1157 break;
1158 }
1159
1160 if (ValuesToFind.size() == 0)
1161 break;
1162 }
1163
1164 assert(ValuesToFind.size() == 0 && "Not all store values were handled!")(static_cast<void> (0));
1165
1166 // If the size of the block is 0, then there are no stores, and we do not
1167 // need to save this block.
1168 if (OutputBB->size() == 0) {
1169 Region.OutputBlockNum = -1;
1170 OutputBB->eraseFromParent();
1171 return;
1172 }
1173
1174 // Determine is there is a duplicate block.
1175 Optional<unsigned> MatchingBB =
1176 findDuplicateOutputBlock(OutputBB, OutputStoreBBs);
1177
1178 // If there is, we remove the new output block. If it does not,
1179 // we add it to our list of output blocks.
1180 if (MatchingBB.hasValue()) {
1181 LLVM_DEBUG(dbgs() << "Set output block for region in function"do { } while (false)
1182 << Region.ExtractedFunction << " to "do { } while (false)
1183 << MatchingBB.getValue())do { } while (false);
1184
1185 Region.OutputBlockNum = MatchingBB.getValue();
1186 OutputBB->eraseFromParent();
1187 return;
1188 }
1189
1190 Region.OutputBlockNum = OutputStoreBBs.size();
1191
1192 LLVM_DEBUG(dbgs() << "Create output block for region in"do { } while (false)
1193 << Region.ExtractedFunction << " to "do { } while (false)
1194 << *OutputBB)do { } while (false);
1195 OutputStoreBBs.push_back(OutputBB);
1196 BranchInst::Create(EndBB, OutputBB);
1197}
1198
1199/// Create the switch statement for outlined function to differentiate between
1200/// all the output blocks.
1201///
1202/// For the outlined section, determine if an outlined block already exists that
1203/// matches the needed stores for the extracted section.
1204/// \param [in] M - The module we are outlining from.
1205/// \param [in] OG - The group of regions to be outlined.
1206/// \param [in] EndBB - The final block of the extracted function.
1207/// \param [in,out] OutputStoreBBs - The existing output blocks.
1208void createSwitchStatement(Module &M, OutlinableGroup &OG, BasicBlock *EndBB,
1209 ArrayRef<BasicBlock *> OutputStoreBBs) {
1210 // We only need the switch statement if there is more than one store
1211 // combination.
1212 if (OG.OutputGVNCombinations.size() > 1) {
1213 Function *AggFunc = OG.OutlinedFunction;
1214 // Create a final block
1215 BasicBlock *ReturnBlock =
1216 BasicBlock::Create(M.getContext(), "final_block", AggFunc);
1217 Instruction *Term = EndBB->getTerminator();
1218 Term->moveBefore(*ReturnBlock, ReturnBlock->end());
1219 // Put the switch statement in the old end basic block for the function with
1220 // a fall through to the new return block
1221 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "do { } while (false)
1222 << OutputStoreBBs.size() << "\n")do { } while (false);
1223 SwitchInst *SwitchI =
1224 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
1225 ReturnBlock, OutputStoreBBs.size(), EndBB);
1226
1227 unsigned Idx = 0;
1228 for (BasicBlock *BB : OutputStoreBBs) {
1229 SwitchI->addCase(ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx),
1230 BB);
1231 Term = BB->getTerminator();
1232 Term->setSuccessor(0, ReturnBlock);
1233 Idx++;
1234 }
1235 return;
1236 }
1237
1238 // If there needs to be stores, move them from the output block to the end
1239 // block to save on branching instructions.
1240 if (OutputStoreBBs.size() == 1) {
1241 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "do { } while (false)
1242 << *OG.OutlinedFunction << "\n")do { } while (false);
1243 BasicBlock *OutputBlock = OutputStoreBBs[0];
1244 Instruction *Term = OutputBlock->getTerminator();
1245 Term->eraseFromParent();
1246 Term = EndBB->getTerminator();
1247 moveBBContents(*OutputBlock, *EndBB);
1248 Term->moveBefore(*EndBB, EndBB->end());
1249 OutputBlock->eraseFromParent();
1250 }
1251}
1252
1253/// Fill the new function that will serve as the replacement function for all of
1254/// the extracted regions of a certain structure from the first region in the
1255/// list of regions. Replace this first region's extracted function with the
1256/// new overall function.
1257///
1258/// \param [in] M - The module we are outlining from.
1259/// \param [in] CurrentGroup - The group of regions to be outlined.
1260/// \param [in,out] OutputStoreBBs - The output blocks for each different
1261/// set of stores needed for the different functions.
1262/// \param [in,out] FuncsToRemove - Extracted functions to erase from module
1263/// once outlining is complete.
1264static void fillOverallFunction(Module &M, OutlinableGroup &CurrentGroup,
1265 std::vector<BasicBlock *> &OutputStoreBBs,
1266 std::vector<Function *> &FuncsToRemove) {
1267 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
1268
1269 // Move first extracted function's instructions into new function.
1270 LLVM_DEBUG(dbgs() << "Move instructions from "do { } while (false)
1271 << *CurrentOS->ExtractedFunction << " to instruction "do { } while (false)
1272 << *CurrentGroup.OutlinedFunction << "\n")do { } while (false);
1273
1274 CurrentGroup.EndBB = moveFunctionData(*CurrentOS->ExtractedFunction,
1275 *CurrentGroup.OutlinedFunction);
1276
1277 // Transfer the attributes from the function to the new function.
1278 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
1279 CurrentGroup.OutlinedFunction->addFnAttr(A);
1280
1281 // Create an output block for the first extracted function.
1282 BasicBlock *NewBB = BasicBlock::Create(
1283 M.getContext(), Twine("output_block_") + Twine(static_cast<unsigned>(0)),
1284 CurrentGroup.OutlinedFunction);
1285 CurrentOS->OutputBlockNum = 0;
1286
1287 replaceArgumentUses(*CurrentOS, NewBB);
1288 replaceConstants(*CurrentOS);
1289
1290 // If the new basic block has no new stores, we can erase it from the module.
1291 // It it does, we create a branch instruction to the last basic block from the
1292 // new one.
1293 if (NewBB->size() == 0) {
1294 CurrentOS->OutputBlockNum = -1;
1295 NewBB->eraseFromParent();
1296 } else {
1297 BranchInst::Create(CurrentGroup.EndBB, NewBB);
1298 OutputStoreBBs.push_back(NewBB);
1299 }
1300
1301 // Replace the call to the extracted function with the outlined function.
1302 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
1303
1304 // We only delete the extracted functions at the end since we may need to
1305 // reference instructions contained in them for mapping purposes.
1306 FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
1307}
1308
1309void IROutliner::deduplicateExtractedSections(
1310 Module &M, OutlinableGroup &CurrentGroup,
1311 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
1312 createFunction(M, CurrentGroup, OutlinedFunctionNum);
1313
1314 std::vector<BasicBlock *> OutputStoreBBs;
1315
1316 OutlinableRegion *CurrentOS;
1317
1318 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove);
1319
1320 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
1321 CurrentOS = CurrentGroup.Regions[Idx];
1322 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
1323 *CurrentOS->ExtractedFunction);
1324
1325 // Create a new BasicBlock to hold the needed store instructions.
1326 BasicBlock *NewBB = BasicBlock::Create(
1327 M.getContext(), "output_block_" + std::to_string(Idx),
1328 CurrentGroup.OutlinedFunction);
1329 replaceArgumentUses(*CurrentOS, NewBB);
1330
1331 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBB,
1332 CurrentGroup.EndBB, OutputMappings,
1333 OutputStoreBBs);
1334
1335 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
1336 FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
1337 }
1338
1339 // Create a switch statement to handle the different output schemes.
1340 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBB, OutputStoreBBs);
1341
1342 OutlinedFunctionNum++;
1343}
1344
1345bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
1346 const OutlinableRegion &Region) {
1347 IRSimilarityCandidate *IRSC = Region.Candidate;
1348 unsigned StartIdx = IRSC->getStartIdx();
1349 unsigned EndIdx = IRSC->getEndIdx();
1350
1351 // A check to make sure that we are not about to attempt to outline something
1352 // that has already been outlined.
1353 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
1354 if (Outlined.contains(Idx))
1355 return false;
1356
1357 // We check if the recorded instruction matches the actual next instruction,
1358 // if it does not, we fix it in the InstructionDataList.
1359 Instruction *RealEndInstruction =
1360 Region.Candidate->backInstruction()->getNextNonDebugInstruction();
1361
1362 assert(RealEndInstruction && "Next instruction is a nullptr?")(static_cast<void> (0));
1363 if (Region.Candidate->end()->Inst != RealEndInstruction) {
1364 IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
1365 Instruction *NewEndInst = RealEndInstruction;
1366 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
1367 IRInstructionData(*NewEndInst, InstructionClassifier.visit(*NewEndInst),
1368 *IDL);
1369
1370 // Insert the first IRInstructionData of the new region after the
1371 // last IRInstructionData of the IRSimilarityCandidate.
1372 IDL->insert(Region.Candidate->end(), *NewEndIRID);
1373 }
1374
1375 return none_of(*IRSC, [this](IRInstructionData &ID) {
1376 // We check if there is a discrepancy between the InstructionDataList
1377 // and the actual next instruction in the module. If there is, it means
1378 // that an extra instruction was added, likely by the CodeExtractor.
1379
1380 // Since we do not have any similarity data about this particular
1381 // instruction, we cannot confidently outline it, and must discard this
1382 // candidate.
1383 if (std::next(ID.getIterator())->Inst !=
1384 ID.Inst->getNextNonDebugInstruction())
1385 return true;
1386 return !InstructionClassifier.visit(ID.Inst);
1387 });
1388}
1389
1390void IROutliner::pruneIncompatibleRegions(
1391 std::vector<IRSimilarityCandidate> &CandidateVec,
1392 OutlinableGroup &CurrentGroup) {
1393 bool PreviouslyOutlined;
1394
1395 // Sort from beginning to end, so the IRSimilarityCandidates are in order.
1396 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
1397 const IRSimilarityCandidate &RHS) {
1398 return LHS.getStartIdx() < RHS.getStartIdx();
1399 });
1400
1401 unsigned CurrentEndIdx = 0;
1402 for (IRSimilarityCandidate &IRSC : CandidateVec) {
1403 PreviouslyOutlined = false;
1404 unsigned StartIdx = IRSC.getStartIdx();
1405 unsigned EndIdx = IRSC.getEndIdx();
1406
1407 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
1408 if (Outlined.contains(Idx)) {
1409 PreviouslyOutlined = true;
1410 break;
1411 }
1412
1413 if (PreviouslyOutlined)
1414 continue;
1415
1416 // TODO: If in the future we can outline across BasicBlocks, we will need to
1417 // check all BasicBlocks contained in the region.
1418 if (IRSC.getStartBB()->hasAddressTaken())
1419 continue;
1420
1421 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
1422 !OutlineFromLinkODRs)
1423 continue;
1424
1425 // Greedily prune out any regions that will overlap with already chosen
1426 // regions.
1427 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
1428 continue;
1429
1430 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
1431 // We check if there is a discrepancy between the InstructionDataList
1432 // and the actual next instruction in the module. If there is, it means
1433 // that an extra instruction was added, likely by the CodeExtractor.
1434
1435 // Since we do not have any similarity data about this particular
1436 // instruction, we cannot confidently outline it, and must discard this
1437 // candidate.
1438 if (std::next(ID.getIterator())->Inst !=
1439 ID.Inst->getNextNonDebugInstruction())
1440 return true;
1441 return !this->InstructionClassifier.visit(ID.Inst);
1442 });
1443
1444 if (BadInst)
1445 continue;
1446
1447 OutlinableRegion *OS = new (RegionAllocator.Allocate())
1448 OutlinableRegion(IRSC, CurrentGroup);
1449 CurrentGroup.Regions.push_back(OS);
1450
1451 CurrentEndIdx = EndIdx;
1452 }
1453}
1454
1455InstructionCost
1456IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
1457 InstructionCost RegionBenefit = 0;
1458 for (OutlinableRegion *Region : CurrentGroup.Regions) {
1459 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
1460 // We add the number of instructions in the region to the benefit as an
1461 // estimate as to how much will be removed.
1462 RegionBenefit += Region->getBenefit(TTI);
1463 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefitdo { } while (false)
1464 << " saved instructions to overfall benefit.\n")do { } while (false);
1465 }
1466
1467 return RegionBenefit;
1468}
1469
1470InstructionCost
1471IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
1472 InstructionCost OverallCost = 0;
1473 for (OutlinableRegion *Region : CurrentGroup.Regions) {
1474 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
1475
1476 // Each output incurs a load after the call, so we add that to the cost.
1477 for (unsigned OutputGVN : Region->GVNStores) {
1478 Optional<Value *> OV = Region->Candidate->fromGVN(OutputGVN);
1479 assert(OV.hasValue() && "Could not find value for GVN?")(static_cast<void> (0));
1480 Value *V = OV.getValue();
1481 InstructionCost LoadCost =
1482 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
1483 TargetTransformInfo::TCK_CodeSize);
1484
1485 LLVM_DEBUG(dbgs() << "Adding: " << LoadCostdo { } while (false)
1486 << " instructions to cost for output of type "do { } while (false)
1487 << *V->getType() << "\n")do { } while (false);
1488 OverallCost += LoadCost;
1489 }
1490 }
1491
1492 return OverallCost;
1493}
1494
1495/// Find the extra instructions needed to handle any output values for the
1496/// region.
1497///
1498/// \param [in] M - The Module to outline from.
1499/// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
1500/// \param [in] TTI - The TargetTransformInfo used to collect information for
1501/// new instruction costs.
1502/// \returns the additional cost to handle the outputs.
1503static InstructionCost findCostForOutputBlocks(Module &M,
1504 OutlinableGroup &CurrentGroup,
1505 TargetTransformInfo &TTI) {
1506 InstructionCost OutputCost = 0;
1507
1508 for (const ArrayRef<unsigned> &OutputUse :
1509 CurrentGroup.OutputGVNCombinations) {
1510 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
1511 for (unsigned GVN : OutputUse) {
1512 Optional<Value *> OV = Candidate.fromGVN(GVN);
1513 assert(OV.hasValue() && "Could not find value for GVN?")(static_cast<void> (0));
1514 Value *V = OV.getValue();
1515 InstructionCost StoreCost =
1516 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
1517 TargetTransformInfo::TCK_CodeSize);
1518
1519 // An instruction cost is added for each store set that needs to occur for
1520 // various output combinations inside the function, plus a branch to
1521 // return to the exit block.
1522 LLVM_DEBUG(dbgs() << "Adding: " << StoreCostdo { } while (false)
1523 << " instructions to cost for output of type "do { } while (false)
1524 << *V->getType() << "\n")do { } while (false);
1525 OutputCost += StoreCost;
1526 }
1527
1528 InstructionCost BranchCost =
1529 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
1530 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"do { } while (false)
1531 << " a branch instruction\n")do { } while (false);
1532 OutputCost += BranchCost;
1533 }
1534
1535 // If there is more than one output scheme, we must have a comparison and
1536 // branch for each different item in the switch statement.
1537 if (CurrentGroup.OutputGVNCombinations.size() > 1) {
1538 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
1539 Instruction::ICmp, Type::getInt32Ty(M.getContext()),
1540 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
1541 TargetTransformInfo::TCK_CodeSize);
1542 InstructionCost BranchCost =
1543 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
1544
1545 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
1546 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
1547
1548 LLVM_DEBUG(dbgs() << "Adding: " << TotalCostdo { } while (false)
1549 << " instructions for each switch case for each different"do { } while (false)
1550 << " output path in a function\n")do { } while (false);
1551 OutputCost += TotalCost;
1552 }
1553
1554 return OutputCost;
1555}
1556
1557void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
1558 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
1559 CurrentGroup.Benefit += RegionBenefit;
1560 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n")do { } while (false);
1561
1562 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
1563 CurrentGroup.Cost += OutputReloadCost;
1564 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n")do { } while (false);
1565
1566 InstructionCost AverageRegionBenefit =
1567 RegionBenefit / CurrentGroup.Regions.size();
1568 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
1569 unsigned NumRegions = CurrentGroup.Regions.size();
1570 TargetTransformInfo &TTI =
1571 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
1572
1573 // We add one region to the cost once, to account for the instructions added
1574 // inside of the newly created function.
1575 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefitdo { } while (false)
1576 << " instructions to cost for body of new function.\n")do { } while (false);
1577 CurrentGroup.Cost += AverageRegionBenefit;
1578 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n")do { } while (false);
1579
1580 // For each argument, we must add an instruction for loading the argument
1581 // out of the register and into a value inside of the newly outlined function.
1582 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNumdo { } while (false)
1583 << " instructions to cost for each argument in the new"do { } while (false)
1584 << " function.\n")do { } while (false);
1585 CurrentGroup.Cost +=
1586 OverallArgumentNum * TargetTransformInfo::TCC_Basic;
1587 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n")do { } while (false);
1588
1589 // Each argument needs to either be loaded into a register or onto the stack.
1590 // Some arguments will only be loaded into the stack once the argument
1591 // registers are filled.
1592 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNumdo { } while (false)
1593 << " instructions to cost for each argument in the new"do { } while (false)
1594 << " function " << NumRegions << " times for the "do { } while (false)
1595 << "needed argument handling at the call site.\n")do { } while (false);
1596 CurrentGroup.Cost +=
1597 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
1598 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n")do { } while (false);
1599
1600 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
1601 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n")do { } while (false);
1602}
1603
1604void IROutliner::updateOutputMapping(OutlinableRegion &Region,
1605 ArrayRef<Value *> Outputs,
1606 LoadInst *LI) {
1607 // For and load instructions following the call
1608 Value *Operand = LI->getPointerOperand();
1609 Optional<unsigned> OutputIdx = None;
1610 // Find if the operand it is an output register.
1611 for (unsigned ArgIdx = Region.NumExtractedInputs;
1612 ArgIdx < Region.Call->arg_size(); ArgIdx++) {
1613 if (Operand == Region.Call->getArgOperand(ArgIdx)) {
1614 OutputIdx = ArgIdx - Region.NumExtractedInputs;
1615 break;
1616 }
1617 }
1618
1619 // If we found an output register, place a mapping of the new value
1620 // to the original in the mapping.
1621 if (!OutputIdx.hasValue())
1622 return;
1623
1624 if (OutputMappings.find(Outputs[OutputIdx.getValue()]) ==
1625 OutputMappings.end()) {
1626 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "do { } while (false)
1627 << *Outputs[OutputIdx.getValue()] << "\n")do { } while (false);
1628 OutputMappings.insert(std::make_pair(LI, Outputs[OutputIdx.getValue()]));
1629 } else {
1630 Value *Orig = OutputMappings.find(Outputs[OutputIdx.getValue()])->second;
1631 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "do { } while (false)
1632 << *Outputs[OutputIdx.getValue()] << "\n")do { } while (false);
1633 OutputMappings.insert(std::make_pair(LI, Orig));
1634 }
1635}
1636
1637bool IROutliner::extractSection(OutlinableRegion &Region) {
1638 SetVector<Value *> ArgInputs, Outputs, SinkCands;
1639 Region.CE->findInputsOutputs(ArgInputs, Outputs, SinkCands);
1640
1641 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!")(static_cast<void> (0));
1642 assert(Region.FollowBB && "FollowBB for the OutlinableRegion is nullptr!")(static_cast<void> (0));
1643 Function *OrigF = Region.StartBB->getParent();
1644 CodeExtractorAnalysisCache CEAC(*OrigF);
1645 Region.ExtractedFunction = Region.CE->extractCodeRegion(CEAC);
1646
1647 // If the extraction was successful, find the BasicBlock, and reassign the
1648 // OutlinableRegion blocks
1649 if (!Region.ExtractedFunction) {
1650 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBBdo { } while (false)
1651 << "\n")do { } while (false);
1652 Region.reattachCandidate();
1653 return false;
1654 }
1655
1656 BasicBlock *RewrittenBB = Region.FollowBB->getSinglePredecessor();
1657 Region.StartBB = RewrittenBB;
1658 Region.EndBB = RewrittenBB;
1659
1660 // The sequences of outlinable regions has now changed. We must fix the
1661 // IRInstructionDataList for consistency. Although they may not be illegal
1662 // instructions, they should not be compared with anything else as they
1663 // should not be outlined in this round. So marking these as illegal is
1664 // allowed.
1665 IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
1666 Instruction *BeginRewritten = &*RewrittenBB->begin();
1667 Instruction *EndRewritten = &*RewrittenBB->begin();
1668 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
1669 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
1670 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
1671 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
1672
1673 // Insert the first IRInstructionData of the new region in front of the
1674 // first IRInstructionData of the IRSimilarityCandidate.
1675 IDL->insert(Region.Candidate->begin(), *Region.NewFront);
1676 // Insert the first IRInstructionData of the new region after the
1677 // last IRInstructionData of the IRSimilarityCandidate.
1678 IDL->insert(Region.Candidate->end(), *Region.NewBack);
1679 // Remove the IRInstructionData from the IRSimilarityCandidate.
1680 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
1681
1682 assert(RewrittenBB != nullptr &&(static_cast<void> (0))
1683 "Could not find a predecessor after extraction!")(static_cast<void> (0));
1684
1685 // Iterate over the new set of instructions to find the new call
1686 // instruction.
1687 for (Instruction &I : *RewrittenBB)
1688 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1689 if (Region.ExtractedFunction == CI->getCalledFunction())
1690 Region.Call = CI;
1691 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
1692 updateOutputMapping(Region, Outputs.getArrayRef(), LI);
1693 Region.reattachCandidate();
1694 return true;
1695}
1696
1697unsigned IROutliner::doOutline(Module &M) {
1698 // Find the possible similarity sections.
1699 IRSimilarityIdentifier &Identifier = getIRSI(M);
1700 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
1701
1702 // Sort them by size of extracted sections
1703 unsigned OutlinedFunctionNum = 0;
1704 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
1705 // to sort them by the potential number of instructions to be outlined
1706 if (SimilarityCandidates.size() > 1)
1707 llvm::stable_sort(SimilarityCandidates,
1708 [](const std::vector<IRSimilarityCandidate> &LHS,
1709 const std::vector<IRSimilarityCandidate> &RHS) {
1710 return LHS[0].getLength() * LHS.size() >
1711 RHS[0].getLength() * RHS.size();
1712 });
1713 // Creating OutlinableGroups for each SimilarityCandidate to be used in
1714 // each of the following for loops to avoid making an allocator.
1715 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
1716
1717 DenseSet<unsigned> NotSame;
1718 std::vector<OutlinableGroup *> NegativeCostGroups;
1719 std::vector<OutlinableRegion *> OutlinedRegions;
1720 // Iterate over the possible sets of similarity.
1721 unsigned PotentialGroupIdx = 0;
1722 for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
1723 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
1724
1725 // Remove entries that were previously outlined
1726 pruneIncompatibleRegions(CandidateVec, CurrentGroup);
1727
1728 // We pruned the number of regions to 0 to 1, meaning that it's not worth
1729 // trying to outlined since there is no compatible similar instance of this
1730 // code.
1731 if (CurrentGroup.Regions.size() < 2)
1732 continue;
1733
1734 // Determine if there are any values that are the same constant throughout
1735 // each section in the set.
1736 NotSame.clear();
1737 CurrentGroup.findSameConstants(NotSame);
1738
1739 if (CurrentGroup.IgnoreGroup)
1740 continue;
1741
1742 // Create a CodeExtractor for each outlinable region. Identify inputs and
1743 // outputs for each section using the code extractor and create the argument
1744 // types for the Aggregate Outlining Function.
1745 OutlinedRegions.clear();
1746 for (OutlinableRegion *OS : CurrentGroup.Regions) {
1747 // Break the outlinable region out of its parent BasicBlock into its own
1748 // BasicBlocks (see function implementation).
1749 OS->splitCandidate();
1750
1751 // There's a chance that when the region is split, extra instructions are
1752 // added to the region. This makes the region no longer viable
1753 // to be split, so we ignore it for outlining.
1754 if (!OS->CandidateSplit)
1755 continue;
1756
1757 std::vector<BasicBlock *> BE = {OS->StartBB};
1758 OS->CE = new (ExtractorAllocator.Allocate())
1759 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
1760 false, "outlined");
1761 findAddInputsOutputs(M, *OS, NotSame);
1762 if (!OS->IgnoreRegion)
1763 OutlinedRegions.push_back(OS);
1764
1765 // We recombine the blocks together now that we have gathered all the
1766 // needed information.
1767 OS->reattachCandidate();
1768 }
1769
1770 CurrentGroup.Regions = std::move(OutlinedRegions);
1771
1772 if (CurrentGroup.Regions.empty())
1773 continue;
1774
1775 CurrentGroup.collectGVNStoreSets(M);
1776
1777 if (CostModel)
1778 findCostBenefit(M, CurrentGroup);
1779
1780 // If we are adhering to the cost model, skip those groups where the cost
1781 // outweighs the benefits.
1782 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
1783 OptimizationRemarkEmitter &ORE =
1784 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
1785 ORE.emit([&]() {
1786 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
1787 OptimizationRemarkMissed R(DEBUG_TYPE"iroutliner", "WouldNotDecreaseSize",
1788 C->frontInstruction());
1789 R << "did not outline "
1790 << ore::NV(std::to_string(CurrentGroup.Regions.size()))
1791 << " regions due to estimated increase of "
1792 << ore::NV("InstructionIncrease",
1793 CurrentGroup.Cost - CurrentGroup.Benefit)
1794 << " instructions at locations ";
1795 interleave(
1796 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
1797 [&R](OutlinableRegion *Region) {
1798 R << ore::NV(
1799 "DebugLoc",
1800 Region->Candidate->frontInstruction()->getDebugLoc());
1801 },
1802 [&R]() { R << " "; });
1803 return R;
1804 });
1805 continue;
1806 }
1807
1808 NegativeCostGroups.push_back(&CurrentGroup);
1809 }
1810
1811 ExtractorAllocator.DestroyAll();
1812
1813 if (NegativeCostGroups.size() > 1)
1814 stable_sort(NegativeCostGroups,
1815 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
1816 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
1817 });
1818
1819 std::vector<Function *> FuncsToRemove;
1820 for (OutlinableGroup *CG : NegativeCostGroups) {
1821 OutlinableGroup &CurrentGroup = *CG;
1822
1823 OutlinedRegions.clear();
1824 for (OutlinableRegion *Region : CurrentGroup.Regions) {
1825 // We check whether our region is compatible with what has already been
1826 // outlined, and whether we need to ignore this item.
1827 if (!isCompatibleWithAlreadyOutlinedCode(*Region))
1828 continue;
1829 OutlinedRegions.push_back(Region);
1830 }
1831
1832 if (OutlinedRegions.size() < 2)
1833 continue;
1834
1835 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
1836 // we are still outlining enough regions to make up for the added cost.
1837 CurrentGroup.Regions = std::move(OutlinedRegions);
1838 if (CostModel) {
1839 CurrentGroup.Benefit = 0;
1840 CurrentGroup.Cost = 0;
1841 findCostBenefit(M, CurrentGroup);
1842 if (CurrentGroup.Cost >= CurrentGroup.Benefit)
1843 continue;
1844 }
1845 OutlinedRegions.clear();
1846 for (OutlinableRegion *Region : CurrentGroup.Regions) {
1847 Region->splitCandidate();
1848 if (!Region->CandidateSplit)
1849 continue;
1850 OutlinedRegions.push_back(Region);
1851 }
1852
1853 CurrentGroup.Regions = std::move(OutlinedRegions);
1854 if (CurrentGroup.Regions.size() < 2) {
1855 for (OutlinableRegion *R : CurrentGroup.Regions)
1856 R->reattachCandidate();
1857 continue;
1858 }
1859
1860 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Costdo { } while (false)
1861 << " and benefit " << CurrentGroup.Benefit << "\n")do { } while (false);
1862
1863 // Create functions out of all the sections, and mark them as outlined.
1864 OutlinedRegions.clear();
1865 for (OutlinableRegion *OS : CurrentGroup.Regions) {
1866 SmallVector<BasicBlock *> BE = {OS->StartBB};
1867 OS->CE = new (ExtractorAllocator.Allocate())
1868 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
1869 false, "outlined");
1870 bool FunctionOutlined = extractSection(*OS);
1871 if (FunctionOutlined) {
1872 unsigned StartIdx = OS->Candidate->getStartIdx();
1873 unsigned EndIdx = OS->Candidate->getEndIdx();
1874 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
1875 Outlined.insert(Idx);
1876
1877 OutlinedRegions.push_back(OS);
1878 }
1879 }
1880
1881 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()do { } while (false)
1882 << " with benefit " << CurrentGroup.Benefitdo { } while (false)
1883 << " and cost " << CurrentGroup.Cost << "\n")do { } while (false);
1884
1885 CurrentGroup.Regions = std::move(OutlinedRegions);
1886
1887 if (CurrentGroup.Regions.empty())
1888 continue;
1889
1890 OptimizationRemarkEmitter &ORE =
1891 getORE(*CurrentGroup.Regions[0]->Call->getFunction());
1892 ORE.emit([&]() {
1893 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
1894 OptimizationRemark R(DEBUG_TYPE"iroutliner", "Outlined", C->front()->Inst);
1895 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
1896 << " regions with decrease of "
1897 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
1898 << " instructions at locations ";
1899 interleave(
1900 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
1901 [&R](OutlinableRegion *Region) {
1902 R << ore::NV("DebugLoc",
1903 Region->Candidate->frontInstruction()->getDebugLoc());
1904 },
1905 [&R]() { R << " "; });
1906 return R;
1907 });
1908
1909 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
1910 OutlinedFunctionNum);
1911 }
1912
1913 for (Function *F : FuncsToRemove)
1914 F->eraseFromParent();
1915
1916 return OutlinedFunctionNum;
1917}
1918
1919bool IROutliner::run(Module &M) {
1920 CostModel = !NoCostModel;
1921 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
1922
1923 return doOutline(M) > 0;
1924}
1925
1926// Pass Manager Boilerplate
1927class IROutlinerLegacyPass : public ModulePass {
1928public:
1929 static char ID;
1930 IROutlinerLegacyPass() : ModulePass(ID) {
1931 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry());
1932 }
1933
1934 void getAnalysisUsage(AnalysisUsage &AU) const override {
1935 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1936 AU.addRequired<TargetTransformInfoWrapperPass>();
1937 AU.addRequired<IRSimilarityIdentifierWrapperPass>();
1938 }
1939
1940 bool runOnModule(Module &M) override;
1941};
1942
1943bool IROutlinerLegacyPass::runOnModule(Module &M) {
1944 if (skipModule(M))
1945 return false;
1946
1947 std::unique_ptr<OptimizationRemarkEmitter> ORE;
1948 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & {
1949 ORE.reset(new OptimizationRemarkEmitter(&F));
1950 return *ORE.get();
1951 };
1952
1953 auto GTTI = [this](Function &F) -> TargetTransformInfo & {
1954 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1955 };
1956
1957 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & {
1958 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI();
1959 };
1960
1961 return IROutliner(GTTI, GIRSI, GORE).run(M);
1962}
1963
1964PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
1965 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1966
1967 std::function<TargetTransformInfo &(Function &)> GTTI =
1968 [&FAM](Function &F) -> TargetTransformInfo & {
1969 return FAM.getResult<TargetIRAnalysis>(F);
1970 };
1971
1972 std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
1973 [&AM](Module &M) -> IRSimilarityIdentifier & {
1974 return AM.getResult<IRSimilarityAnalysis>(M);
1975 };
1976
1977 std::unique_ptr<OptimizationRemarkEmitter> ORE;
1978 std::function<OptimizationRemarkEmitter &(Function &)> GORE =
1979 [&ORE](Function &F) -> OptimizationRemarkEmitter & {
1980 ORE.reset(new OptimizationRemarkEmitter(&F));
1981 return *ORE.get();
1982 };
1983
1984 if (IROutliner(GTTI, GIRSI, GORE).run(M))
1985 return PreservedAnalyses::none();
1986 return PreservedAnalyses::all();
1987}
1988
1989char IROutlinerLegacyPass::ID = 0;
1990INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,static void *initializeIROutlinerLegacyPassPassOnce(PassRegistry
&Registry) {
1991 false)static void *initializeIROutlinerLegacyPassPassOnce(PassRegistry
&Registry) {
1992INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)initializeIRSimilarityIdentifierWrapperPassPass(Registry);
1993INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
1994INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
1995INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,PassInfo *PI = new PassInfo( "IR Outliner", "iroutliner", &
IROutlinerLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<IROutlinerLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeIROutlinerLegacyPassPassFlag
; void llvm::initializeIROutlinerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeIROutlinerLegacyPassPassFlag
, initializeIROutlinerLegacyPassPassOnce, std::ref(Registry))
; }
1996 false)PassInfo *PI = new PassInfo( "IR Outliner", "iroutliner", &
IROutlinerLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<IROutlinerLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeIROutlinerLegacyPassPassFlag
; void llvm::initializeIROutlinerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeIROutlinerLegacyPassPassFlag
, initializeIROutlinerLegacyPassPassOnce, std::ref(Registry))
; }
1997
1998ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }