Bug Summary

File:llvm/lib/CodeGen/InlineSpiller.cpp
Warning:line 491, column 55
The left operand of '==' is a garbage value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name InlineSpiller.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen -I include -I /build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/build-llvm -ferror-limit 19 -fvisibility-inlines-hidden -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-11-08-145619-21771-1 -x c++ /build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp

/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp

1//===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The inline spiller modifies the machine function directly instead of
10// inserting spills and restores in VirtRegMap.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SplitKit.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/None.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/CodeGen/LiveInterval.h"
26#include "llvm/CodeGen/LiveIntervalCalc.h"
27#include "llvm/CodeGen/LiveIntervals.h"
28#include "llvm/CodeGen/LiveRangeEdit.h"
29#include "llvm/CodeGen/LiveStacks.h"
30#include "llvm/CodeGen/MachineBasicBlock.h"
31#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32#include "llvm/CodeGen/MachineDominators.h"
33#include "llvm/CodeGen/MachineFunction.h"
34#include "llvm/CodeGen/MachineFunctionPass.h"
35#include "llvm/CodeGen/MachineInstr.h"
36#include "llvm/CodeGen/MachineInstrBuilder.h"
37#include "llvm/CodeGen/MachineInstrBundle.h"
38#include "llvm/CodeGen/MachineLoopInfo.h"
39#include "llvm/CodeGen/MachineOperand.h"
40#include "llvm/CodeGen/MachineRegisterInfo.h"
41#include "llvm/CodeGen/SlotIndexes.h"
42#include "llvm/CodeGen/Spiller.h"
43#include "llvm/CodeGen/StackMaps.h"
44#include "llvm/CodeGen/TargetInstrInfo.h"
45#include "llvm/CodeGen/TargetOpcodes.h"
46#include "llvm/CodeGen/TargetRegisterInfo.h"
47#include "llvm/CodeGen/TargetSubtargetInfo.h"
48#include "llvm/CodeGen/VirtRegMap.h"
49#include "llvm/Config/llvm-config.h"
50#include "llvm/Support/BlockFrequency.h"
51#include "llvm/Support/BranchProbability.h"
52#include "llvm/Support/CommandLine.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/ErrorHandling.h"
56#include "llvm/Support/raw_ostream.h"
57#include <cassert>
58#include <iterator>
59#include <tuple>
60#include <utility>
61#include <vector>
62
63using namespace llvm;
64
65#define DEBUG_TYPE"regalloc" "regalloc"
66
67STATISTIC(NumSpilledRanges, "Number of spilled live ranges")static llvm::Statistic NumSpilledRanges = {"regalloc", "NumSpilledRanges"
, "Number of spilled live ranges"}
;
68STATISTIC(NumSnippets, "Number of spilled snippets")static llvm::Statistic NumSnippets = {"regalloc", "NumSnippets"
, "Number of spilled snippets"}
;
69STATISTIC(NumSpills, "Number of spills inserted")static llvm::Statistic NumSpills = {"regalloc", "NumSpills", "Number of spills inserted"
}
;
70STATISTIC(NumSpillsRemoved, "Number of spills removed")static llvm::Statistic NumSpillsRemoved = {"regalloc", "NumSpillsRemoved"
, "Number of spills removed"}
;
71STATISTIC(NumReloads, "Number of reloads inserted")static llvm::Statistic NumReloads = {"regalloc", "NumReloads"
, "Number of reloads inserted"}
;
72STATISTIC(NumReloadsRemoved, "Number of reloads removed")static llvm::Statistic NumReloadsRemoved = {"regalloc", "NumReloadsRemoved"
, "Number of reloads removed"}
;
73STATISTIC(NumFolded, "Number of folded stack accesses")static llvm::Statistic NumFolded = {"regalloc", "NumFolded", "Number of folded stack accesses"
}
;
74STATISTIC(NumFoldedLoads, "Number of folded loads")static llvm::Statistic NumFoldedLoads = {"regalloc", "NumFoldedLoads"
, "Number of folded loads"}
;
75STATISTIC(NumRemats, "Number of rematerialized defs for spilling")static llvm::Statistic NumRemats = {"regalloc", "NumRemats", "Number of rematerialized defs for spilling"
}
;
76
77static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
78 cl::desc("Disable inline spill hoisting"));
79static cl::opt<bool>
80RestrictStatepointRemat("restrict-statepoint-remat",
81 cl::init(false), cl::Hidden,
82 cl::desc("Restrict remat for statepoint operands"));
83
84namespace {
85
86class HoistSpillHelper : private LiveRangeEdit::Delegate {
87 MachineFunction &MF;
88 LiveIntervals &LIS;
89 LiveStacks &LSS;
90 AliasAnalysis *AA;
91 MachineDominatorTree &MDT;
92 MachineLoopInfo &Loops;
93 VirtRegMap &VRM;
94 MachineRegisterInfo &MRI;
95 const TargetInstrInfo &TII;
96 const TargetRegisterInfo &TRI;
97 const MachineBlockFrequencyInfo &MBFI;
98
99 InsertPointAnalysis IPA;
100
101 // Map from StackSlot to the LiveInterval of the original register.
102 // Note the LiveInterval of the original register may have been deleted
103 // after it is spilled. We keep a copy here to track the range where
104 // spills can be moved.
105 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
106
107 // Map from pair of (StackSlot and Original VNI) to a set of spills which
108 // have the same stackslot and have equal values defined by Original VNI.
109 // These spills are mergeable and are hoist candiates.
110 using MergeableSpillsMap =
111 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
112 MergeableSpillsMap MergeableSpills;
113
114 /// This is the map from original register to a set containing all its
115 /// siblings. To hoist a spill to another BB, we need to find out a live
116 /// sibling there and use it as the source of the new spill.
117 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
118
119 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
120 MachineBasicBlock &BB, Register &LiveReg);
121
122 void rmRedundantSpills(
123 SmallPtrSet<MachineInstr *, 16> &Spills,
124 SmallVectorImpl<MachineInstr *> &SpillsToRm,
125 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
126
127 void getVisitOrders(
128 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
129 SmallVectorImpl<MachineDomTreeNode *> &Orders,
130 SmallVectorImpl<MachineInstr *> &SpillsToRm,
131 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
132 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
133
134 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
135 SmallPtrSet<MachineInstr *, 16> &Spills,
136 SmallVectorImpl<MachineInstr *> &SpillsToRm,
137 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
138
139public:
140 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
141 VirtRegMap &vrm)
142 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
143 LSS(pass.getAnalysis<LiveStacks>()),
144 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
145 MDT(pass.getAnalysis<MachineDominatorTree>()),
146 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
147 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
148 TRI(*mf.getSubtarget().getRegisterInfo()),
149 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
150 IPA(LIS, mf.getNumBlockIDs()) {}
151
152 void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
153 unsigned Original);
154 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
155 void hoistAllSpills();
156 void LRE_DidCloneVirtReg(Register, Register) override;
157};
158
159class InlineSpiller : public Spiller {
160 MachineFunction &MF;
161 LiveIntervals &LIS;
162 LiveStacks &LSS;
163 AliasAnalysis *AA;
164 MachineDominatorTree &MDT;
165 MachineLoopInfo &Loops;
166 VirtRegMap &VRM;
167 MachineRegisterInfo &MRI;
168 const TargetInstrInfo &TII;
169 const TargetRegisterInfo &TRI;
170 const MachineBlockFrequencyInfo &MBFI;
171
172 // Variables that are valid during spill(), but used by multiple methods.
173 LiveRangeEdit *Edit;
174 LiveInterval *StackInt;
175 int StackSlot;
176 Register Original;
177
178 // All registers to spill to StackSlot, including the main register.
179 SmallVector<Register, 8> RegsToSpill;
180
181 // All COPY instructions to/from snippets.
182 // They are ignored since both operands refer to the same stack slot.
183 SmallPtrSet<MachineInstr*, 8> SnippetCopies;
184
185 // Values that failed to remat at some point.
186 SmallPtrSet<VNInfo*, 8> UsedValues;
187
188 // Dead defs generated during spilling.
189 SmallVector<MachineInstr*, 8> DeadDefs;
190
191 // Object records spills information and does the hoisting.
192 HoistSpillHelper HSpiller;
193
194 // Live range weight calculator.
195 VirtRegAuxInfo &VRAI;
196
197 ~InlineSpiller() override = default;
198
199public:
200 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM,
201 VirtRegAuxInfo &VRAI)
202 : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()),
203 LSS(Pass.getAnalysis<LiveStacks>()),
204 AA(&Pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
205 MDT(Pass.getAnalysis<MachineDominatorTree>()),
206 Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM),
207 MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
208 TRI(*MF.getSubtarget().getRegisterInfo()),
209 MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()),
210 HSpiller(Pass, MF, VRM), VRAI(VRAI) {}
211
212 void spill(LiveRangeEdit &) override;
213 void postOptimization() override;
214
215private:
216 bool isSnippet(const LiveInterval &SnipLI);
217 void collectRegsToSpill();
218
219 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
42
Calling 'is_contained<llvm::SmallVector<llvm::Register, 8> &, llvm::Register>'
45
Returning from 'is_contained<llvm::SmallVector<llvm::Register, 8> &, llvm::Register>'
46
Returning zero, which participates in a condition later
220
221 bool isSibling(Register Reg);
222 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
223 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
224
225 void markValueUsed(LiveInterval*, VNInfo*);
226 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
227 bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
228 void reMaterializeAll();
229
230 bool coalesceStackAccess(MachineInstr *MI, Register Reg);
231 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
232 MachineInstr *LoadMI = nullptr);
233 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
234 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
235
236 void spillAroundUses(Register Reg);
237 void spillAll();
238};
239
240} // end anonymous namespace
241
242Spiller::~Spiller() = default;
243
244void Spiller::anchor() {}
245
246Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass,
247 MachineFunction &MF, VirtRegMap &VRM,
248 VirtRegAuxInfo &VRAI) {
249 return new InlineSpiller(Pass, MF, VRM, VRAI);
250}
251
252//===----------------------------------------------------------------------===//
253// Snippets
254//===----------------------------------------------------------------------===//
255
256// When spilling a virtual register, we also spill any snippets it is connected
257// to. The snippets are small live ranges that only have a single real use,
258// leftovers from live range splitting. Spilling them enables memory operand
259// folding or tightens the live range around the single use.
260//
261// This minimizes register pressure and maximizes the store-to-load distance for
262// spill slots which can be important in tight loops.
263
264/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
265/// otherwise return 0.
266static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
267 if (!MI.isFullCopy())
66
Assuming the condition is false
67
Taking false branch
268 return Register();
269 if (MI.getOperand(0).getReg() == Reg)
68
Calling 'Register::operator=='
71
Returning from 'Register::operator=='
72
Taking false branch
270 return MI.getOperand(1).getReg();
271 if (MI.getOperand(1).getReg() == Reg)
73
Calling 'Register::operator=='
76
Returning from 'Register::operator=='
77
Taking false branch
272 return MI.getOperand(0).getReg();
273 return Register();
274}
275
276static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
277 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
278 const MachineOperand &MO = MI.getOperand(I);
279 if (MO.isReg() && MO.isDef() && Register::isVirtualRegister(MO.getReg()))
280 LIS.getInterval(MO.getReg());
281 }
282}
283
284/// isSnippet - Identify if a live interval is a snippet that should be spilled.
285/// It is assumed that SnipLI is a virtual register with the same original as
286/// Edit->getReg().
287bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
288 Register Reg = Edit->getReg();
289
290 // A snippet is a tiny live range with only a single instruction using it
291 // besides copies to/from Reg or spills/fills. We accept:
292 //
293 // %snip = COPY %Reg / FILL fi#
294 // %snip = USE %snip
295 // %Reg = COPY %snip / SPILL %snip, fi#
296 //
297 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
298 return false;
299
300 MachineInstr *UseMI = nullptr;
301
302 // Check that all uses satisfy our criteria.
303 for (MachineRegisterInfo::reg_instr_nodbg_iterator
304 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()),
305 E = MRI.reg_instr_nodbg_end();
306 RI != E;) {
307 MachineInstr &MI = *RI++;
308
309 // Allow copies to/from Reg.
310 if (isFullCopyOf(MI, Reg))
311 continue;
312
313 // Allow stack slot loads.
314 int FI;
315 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
316 continue;
317
318 // Allow stack slot stores.
319 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
320 continue;
321
322 // Allow a single additional instruction.
323 if (UseMI && &MI != UseMI)
324 return false;
325 UseMI = &MI;
326 }
327 return true;
328}
329
330/// collectRegsToSpill - Collect live range snippets that only have a single
331/// real use.
332void InlineSpiller::collectRegsToSpill() {
333 Register Reg = Edit->getReg();
334
335 // Main register always spills.
336 RegsToSpill.assign(1, Reg);
337 SnippetCopies.clear();
338
339 // Snippets all have the same original, so there can't be any for an original
340 // register.
341 if (Original == Reg)
342 return;
343
344 for (MachineInstr &MI :
345 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
346 Register SnipReg = isFullCopyOf(MI, Reg);
347 if (!isSibling(SnipReg))
348 continue;
349 LiveInterval &SnipLI = LIS.getInterval(SnipReg);
350 if (!isSnippet(SnipLI))
351 continue;
352 SnippetCopies.insert(&MI);
353 if (isRegToSpill(SnipReg))
354 continue;
355 RegsToSpill.push_back(SnipReg);
356 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\talso spill snippet " <<
SnipLI << '\n'; } } while (false)
;
357 ++NumSnippets;
358 }
359}
360
361bool InlineSpiller::isSibling(Register Reg) {
362 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
363}
364
365/// It is beneficial to spill to earlier place in the same BB in case
366/// as follows:
367/// There is an alternative def earlier in the same MBB.
368/// Hoist the spill as far as possible in SpillMBB. This can ease
369/// register pressure:
370///
371/// x = def
372/// y = use x
373/// s = copy x
374///
375/// Hoisting the spill of s to immediately after the def removes the
376/// interference between x and y:
377///
378/// x = def
379/// spill x
380/// y = use killed x
381///
382/// This hoist only helps when the copy kills its source.
383///
384bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
385 MachineInstr &CopyMI) {
386 SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
387#ifndef NDEBUG
388 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
389 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy")(static_cast <bool> (VNI && VNI->def == Idx.
getRegSlot() && "Not defined by copy") ? void (0) : __assert_fail
("VNI && VNI->def == Idx.getRegSlot() && \"Not defined by copy\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 389, __extension__ __PRETTY_FUNCTION__))
;
390#endif
391
392 Register SrcReg = CopyMI.getOperand(1).getReg();
393 LiveInterval &SrcLI = LIS.getInterval(SrcReg);
394 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
395 LiveQueryResult SrcQ = SrcLI.Query(Idx);
396 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
397 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
398 return false;
399
400 // Conservatively extend the stack slot range to the range of the original
401 // value. We may be able to do better with stack slot coloring by being more
402 // careful here.
403 assert(StackInt && "No stack slot assigned yet.")(static_cast <bool> (StackInt && "No stack slot assigned yet."
) ? void (0) : __assert_fail ("StackInt && \"No stack slot assigned yet.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 403, __extension__ __PRETTY_FUNCTION__))
;
404 LiveInterval &OrigLI = LIS.getInterval(Original);
405 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
406 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
407 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tmerged orig valno " <<
OrigVNI->id << ": " << *StackInt << '\n'
; } } while (false)
408 << *StackInt << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tmerged orig valno " <<
OrigVNI->id << ": " << *StackInt << '\n'
; } } while (false)
;
409
410 // We are going to spill SrcVNI immediately after its def, so clear out
411 // any later spills of the same value.
412 eliminateRedundantSpills(SrcLI, SrcVNI);
413
414 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
415 MachineBasicBlock::iterator MII;
416 if (SrcVNI->isPHIDef())
417 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
418 else {
419 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
420 assert(DefMI && "Defining instruction disappeared")(static_cast <bool> (DefMI && "Defining instruction disappeared"
) ? void (0) : __assert_fail ("DefMI && \"Defining instruction disappeared\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 420, __extension__ __PRETTY_FUNCTION__))
;
421 MII = DefMI;
422 ++MII;
423 }
424 MachineInstrSpan MIS(MII, MBB);
425 // Insert spill without kill flag immediately after def.
426 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
427 MRI.getRegClass(SrcReg), &TRI);
428 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
429 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
430 getVDefInterval(MI, LIS);
431 --MII; // Point to store instruction.
432 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\thoisted: " << SrcVNI
->def << '\t' << *MII; } } while (false)
;
433
434 // If there is only 1 store instruction is required for spill, add it
435 // to mergeable list. In X86 AMX, 2 intructions are required to store.
436 // We disable the merge for this case.
437 if (MIS.begin() == MII)
438 HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
439 ++NumSpills;
440 return true;
441}
442
443/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
444/// redundant spills of this value in SLI.reg and sibling copies.
445void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
446 assert(VNI && "Missing value")(static_cast <bool> (VNI && "Missing value") ? void
(0) : __assert_fail ("VNI && \"Missing value\"", "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 446, __extension__ __PRETTY_FUNCTION__))
;
35
Assuming 'VNI' is non-null
36
'?' condition is true
447 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
448 WorkList.push_back(std::make_pair(&SLI, VNI));
449 assert(StackInt && "No stack slot assigned yet.")(static_cast <bool> (StackInt && "No stack slot assigned yet."
) ? void (0) : __assert_fail ("StackInt && \"No stack slot assigned yet.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 449, __extension__ __PRETTY_FUNCTION__))
;
37
Assuming field 'StackInt' is non-null
38
'?' condition is true
450
451 do {
452 LiveInterval *LI;
453 std::tie(LI, VNI) = WorkList.pop_back_val();
454 Register Reg = LI->reg();
455 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Checking redundant spills for "
<< VNI->id << '@' << VNI->def <<
" in " << *LI << '\n'; } } while (false)
39
Assuming 'DebugFlag' is false
40
Loop condition is false. Exiting loop
456 << VNI->def << " in " << *LI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Checking redundant spills for "
<< VNI->id << '@' << VNI->def <<
" in " << *LI << '\n'; } } while (false)
;
457
458 // Regs to spill are taken care of.
459 if (isRegToSpill(Reg))
41
Calling 'InlineSpiller::isRegToSpill'
47
Returning from 'InlineSpiller::isRegToSpill'
48
Taking false branch
460 continue;
461
462 // Add all of VNI's live range to StackInt.
463 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
464 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Merged to stack int: " <<
*StackInt << '\n'; } } while (false)
;
49
Assuming 'DebugFlag' is false
50
Loop condition is false. Exiting loop
465
466 // Find all spills and copies of VNI.
467 for (MachineRegisterInfo::use_instr_nodbg_iterator
51
Loop condition is true. Entering loop body
468 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
469 UI != E; ) {
470 MachineInstr &MI = *UI++;
471 if (!MI.isCopy() && !MI.mayStore())
52
Calling 'MachineInstr::isCopy'
55
Returning from 'MachineInstr::isCopy'
56
Calling 'MachineInstr::mayStore'
60
Returning from 'MachineInstr::mayStore'
61
Assuming the condition is false
62
Taking false branch
472 continue;
473 SlotIndex Idx = LIS.getInstructionIndex(MI);
474 if (LI->getVNInfoAt(Idx) != VNI)
63
Assuming the condition is false
64
Taking false branch
475 continue;
476
477 // Follow sibling copies down the dominator tree.
478 if (Register DstReg = isFullCopyOf(MI, Reg)) {
65
Calling 'isFullCopyOf'
78
Returning from 'isFullCopyOf'
79
Calling 'Register::operator unsigned int'
81
Returning from 'Register::operator unsigned int'
82
Taking false branch
479 if (isSibling(DstReg)) {
480 LiveInterval &DstLI = LIS.getInterval(DstReg);
481 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
482 assert(DstVNI && "Missing defined value")(static_cast <bool> (DstVNI && "Missing defined value"
) ? void (0) : __assert_fail ("DstVNI && \"Missing defined value\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 482, __extension__ __PRETTY_FUNCTION__))
;
483 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot")(static_cast <bool> (DstVNI->def == Idx.getRegSlot()
&& "Wrong copy def slot") ? void (0) : __assert_fail
("DstVNI->def == Idx.getRegSlot() && \"Wrong copy def slot\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 483, __extension__ __PRETTY_FUNCTION__))
;
484 WorkList.push_back(std::make_pair(&DstLI, DstVNI));
485 }
486 continue;
487 }
488
489 // Erase spills.
490 int FI;
83
'FI' declared without an initial value
491 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
84
Calling 'TargetInstrInfo::isStoreToStackSlot'
86
Returning from 'TargetInstrInfo::isStoreToStackSlot'
87
Calling 'Register::operator=='
90
Returning from 'Register::operator=='
91
The left operand of '==' is a garbage value
492 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Redundant spill " << Idx
<< '\t' << MI; } } while (false)
;
493 // eliminateDeadDefs won't normally remove stores, so switch opcode.
494 MI.setDesc(TII.get(TargetOpcode::KILL));
495 DeadDefs.push_back(&MI);
496 ++NumSpillsRemoved;
497 if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
498 --NumSpills;
499 }
500 }
501 } while (!WorkList.empty());
502}
503
504//===----------------------------------------------------------------------===//
505// Rematerialization
506//===----------------------------------------------------------------------===//
507
508/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
509/// instruction cannot be eliminated. See through snippet copies
510void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
511 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
512 WorkList.push_back(std::make_pair(LI, VNI));
513 do {
514 std::tie(LI, VNI) = WorkList.pop_back_val();
515 if (!UsedValues.insert(VNI).second)
516 continue;
517
518 if (VNI->isPHIDef()) {
519 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
520 for (MachineBasicBlock *P : MBB->predecessors()) {
521 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
522 if (PVNI)
523 WorkList.push_back(std::make_pair(LI, PVNI));
524 }
525 continue;
526 }
527
528 // Follow snippet copies.
529 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
530 if (!SnippetCopies.count(MI))
531 continue;
532 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
533 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy")(static_cast <bool> (isRegToSpill(SnipLI.reg()) &&
"Unexpected register in copy") ? void (0) : __assert_fail ("isRegToSpill(SnipLI.reg()) && \"Unexpected register in copy\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 533, __extension__ __PRETTY_FUNCTION__))
;
534 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
535 assert(SnipVNI && "Snippet undefined before copy")(static_cast <bool> (SnipVNI && "Snippet undefined before copy"
) ? void (0) : __assert_fail ("SnipVNI && \"Snippet undefined before copy\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 535, __extension__ __PRETTY_FUNCTION__))
;
536 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
537 } while (!WorkList.empty());
538}
539
540bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
541 MachineInstr &MI) {
542 if (!RestrictStatepointRemat)
543 return true;
544 // Here's a quick explanation of the problem we're trying to handle here:
545 // * There are some pseudo instructions with more vreg uses than there are
546 // physical registers on the machine.
547 // * This is normally handled by spilling the vreg, and folding the reload
548 // into the user instruction. (Thus decreasing the number of used vregs
549 // until the remainder can be assigned to physregs.)
550 // * However, since we may try to spill vregs in any order, we can end up
551 // trying to spill each operand to the instruction, and then rematting it
552 // instead. When that happens, the new live intervals (for the remats) are
553 // expected to be trivially assignable (i.e. RS_Done). However, since we
554 // may have more remats than physregs, we're guaranteed to fail to assign
555 // one.
556 // At the moment, we only handle this for STATEPOINTs since they're the only
557 // pseudo op where we've seen this. If we start seeing other instructions
558 // with the same problem, we need to revisit this.
559 if (MI.getOpcode() != TargetOpcode::STATEPOINT)
560 return true;
561 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
562 // that number of physical registers is enough to cover all fixed arguments.
563 // If it is not true we need to revisit it.
564 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
565 EndIdx = MI.getNumOperands();
566 Idx < EndIdx; ++Idx) {
567 MachineOperand &MO = MI.getOperand(Idx);
568 if (MO.isReg() && MO.getReg() == VReg)
569 return false;
570 }
571 return true;
572}
573
574/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
575bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
576 // Analyze instruction
577 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
578 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
579
580 if (!RI.Reads)
581 return false;
582
583 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
584 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
585
586 if (!ParentVNI) {
587 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tadding <undef> flags: "
; } } while (false)
;
588 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
589 MachineOperand &MO = MI.getOperand(i);
590 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg())
591 MO.setIsUndef();
592 }
593 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << UseIdx << '\t' <<
MI; } } while (false)
;
594 return true;
595 }
596
597 if (SnippetCopies.count(&MI))
598 return false;
599
600 LiveInterval &OrigLI = LIS.getInterval(Original);
601 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
602 LiveRangeEdit::Remat RM(ParentVNI);
603 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
604
605 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
606 markValueUsed(&VirtReg, ParentVNI);
607 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tcannot remat for " <<
UseIdx << '\t' << MI; } } while (false)
;
608 return false;
609 }
610
611 // If the instruction also writes VirtReg.reg, it had better not require the
612 // same register for uses and defs.
613 if (RI.Tied) {
614 markValueUsed(&VirtReg, ParentVNI);
615 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tcannot remat tied reg: " <<
UseIdx << '\t' << MI; } } while (false)
;
616 return false;
617 }
618
619 // Before rematerializing into a register for a single instruction, try to
620 // fold a load into the instruction. That avoids allocating a new register.
621 if (RM.OrigMI->canFoldAsLoad() &&
622 foldMemoryOperand(Ops, RM.OrigMI)) {
623 Edit->markRematerialized(RM.ParentVNI);
624 ++NumFoldedLoads;
625 return true;
626 }
627
628 // If we can't guarantee that we'll be able to actually assign the new vreg,
629 // we can't remat.
630 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
631 markValueUsed(&VirtReg, ParentVNI);
632 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tcannot remat for " <<
UseIdx << '\t' << MI; } } while (false)
;
633 return false;
634 }
635
636 // Allocate a new register for the remat.
637 Register NewVReg = Edit->createFrom(Original);
638
639 // Finally we can rematerialize OrigMI before MI.
640 SlotIndex DefIdx =
641 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
642
643 // We take the DebugLoc from MI, since OrigMI may be attributed to a
644 // different source location.
645 auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
646 NewMI->setDebugLoc(MI.getDebugLoc());
647
648 (void)DefIdx;
649 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tremat: " << DefIdx <<
'\t' << *LIS.getInstructionFromIndex(DefIdx); } } while
(false)
650 << *LIS.getInstructionFromIndex(DefIdx))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tremat: " << DefIdx <<
'\t' << *LIS.getInstructionFromIndex(DefIdx); } } while
(false)
;
651
652 // Replace operands
653 for (const auto &OpPair : Ops) {
654 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
655 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
656 MO.setReg(NewVReg);
657 MO.setIsKill();
658 }
659 }
660 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t " << UseIdx <<
'\t' << MI << '\n'; } } while (false)
;
661
662 ++NumRemats;
663 return true;
664}
665
666/// reMaterializeAll - Try to rematerialize as many uses as possible,
667/// and trim the live ranges after.
668void InlineSpiller::reMaterializeAll() {
669 if (!Edit->anyRematerializable(AA))
670 return;
671
672 UsedValues.clear();
673
674 // Try to remat before all uses of snippets.
675 bool anyRemat = false;
676 for (Register Reg : RegsToSpill) {
677 LiveInterval &LI = LIS.getInterval(Reg);
678 for (MachineRegisterInfo::reg_bundle_iterator
679 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
680 RegI != E; ) {
681 MachineInstr &MI = *RegI++;
682
683 // Debug values are not allowed to affect codegen.
684 if (MI.isDebugValue())
685 continue;
686
687 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "(static_cast <bool> (!MI.isDebugInstr() && "Did not expect to find a use in debug "
"instruction that isn't a DBG_VALUE") ? void (0) : __assert_fail
("!MI.isDebugInstr() && \"Did not expect to find a use in debug \" \"instruction that isn't a DBG_VALUE\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 688, __extension__ __PRETTY_FUNCTION__))
688 "instruction that isn't a DBG_VALUE")(static_cast <bool> (!MI.isDebugInstr() && "Did not expect to find a use in debug "
"instruction that isn't a DBG_VALUE") ? void (0) : __assert_fail
("!MI.isDebugInstr() && \"Did not expect to find a use in debug \" \"instruction that isn't a DBG_VALUE\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 688, __extension__ __PRETTY_FUNCTION__))
;
689
690 anyRemat |= reMaterializeFor(LI, MI);
691 }
692 }
693 if (!anyRemat)
694 return;
695
696 // Remove any values that were completely rematted.
697 for (Register Reg : RegsToSpill) {
698 LiveInterval &LI = LIS.getInterval(Reg);
699 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
700 I != E; ++I) {
701 VNInfo *VNI = *I;
702 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
703 continue;
704 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
705 MI->addRegisterDead(Reg, &TRI);
706 if (!MI->allDefsAreDead())
707 continue;
708 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "All defs dead: " << *MI
; } } while (false)
;
709 DeadDefs.push_back(MI);
710 }
711 }
712
713 // Eliminate dead code after remat. Note that some snippet copies may be
714 // deleted here.
715 if (DeadDefs.empty())
716 return;
717 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Remat created " << DeadDefs
.size() << " dead defs.\n"; } } while (false)
;
718 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
719
720 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
721 // after rematerialization. To remove a VNI for a vreg from its LiveInterval,
722 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
723 // removed, PHI VNI are still left in the LiveInterval.
724 // So to get rid of unused reg, we need to check whether it has non-dbg
725 // reference instead of whether it has non-empty interval.
726 unsigned ResultPos = 0;
727 for (Register Reg : RegsToSpill) {
728 if (MRI.reg_nodbg_empty(Reg)) {
729 Edit->eraseVirtReg(Reg);
730 continue;
731 }
732
733 assert(LIS.hasInterval(Reg) &&(static_cast <bool> (LIS.hasInterval(Reg) && (!
LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
"Empty and not used live-range?!") ? void (0) : __assert_fail
("LIS.hasInterval(Reg) && (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && \"Empty and not used live-range?!\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 735, __extension__ __PRETTY_FUNCTION__))
734 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&(static_cast <bool> (LIS.hasInterval(Reg) && (!
LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
"Empty and not used live-range?!") ? void (0) : __assert_fail
("LIS.hasInterval(Reg) && (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && \"Empty and not used live-range?!\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 735, __extension__ __PRETTY_FUNCTION__))
735 "Empty and not used live-range?!")(static_cast <bool> (LIS.hasInterval(Reg) && (!
LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
"Empty and not used live-range?!") ? void (0) : __assert_fail
("LIS.hasInterval(Reg) && (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && \"Empty and not used live-range?!\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 735, __extension__ __PRETTY_FUNCTION__))
;
736
737 RegsToSpill[ResultPos++] = Reg;
738 }
739 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
740 LLVM_DEBUG(dbgs() << RegsToSpill.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"
; } } while (false)
741 << " registers to spill after remat.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"
; } } while (false)
;
742}
743
744//===----------------------------------------------------------------------===//
745// Spilling
746//===----------------------------------------------------------------------===//
747
748/// If MI is a load or store of StackSlot, it can be removed.
749bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
750 int FI = 0;
751 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
752 bool IsLoad = InstrReg;
753 if (!IsLoad)
754 InstrReg = TII.isStoreToStackSlot(*MI, FI);
755
756 // We have a stack access. Is it the right register and slot?
757 if (InstrReg != Reg || FI != StackSlot)
758 return false;
759
760 if (!IsLoad)
761 HSpiller.rmFromMergeableSpills(*MI, StackSlot);
762
763 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Coalescing stack access: " <<
*MI; } } while (false)
;
764 LIS.RemoveMachineInstrFromMaps(*MI);
765 MI->eraseFromParent();
766
767 if (IsLoad) {
768 ++NumReloadsRemoved;
769 --NumReloads;
770 } else {
771 ++NumSpillsRemoved;
772 --NumSpills;
773 }
774
775 return true;
776}
777
778#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
779LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__))
780// Dump the range of instructions from B to E with their slot indexes.
781static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
782 MachineBasicBlock::iterator E,
783 LiveIntervals const &LIS,
784 const char *const header,
785 Register VReg = Register()) {
786 char NextLine = '\n';
787 char SlotIndent = '\t';
788
789 if (std::next(B) == E) {
790 NextLine = ' ';
791 SlotIndent = ' ';
792 }
793
794 dbgs() << '\t' << header << ": " << NextLine;
795
796 for (MachineBasicBlock::iterator I = B; I != E; ++I) {
797 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
798
799 // If a register was passed in and this instruction has it as a
800 // destination that is marked as an early clobber, print the
801 // early-clobber slot index.
802 if (VReg) {
803 MachineOperand *MO = I->findRegisterDefOperand(VReg);
804 if (MO && MO->isEarlyClobber())
805 Idx = Idx.getRegSlot(true);
806 }
807
808 dbgs() << SlotIndent << Idx << '\t' << *I;
809 }
810}
811#endif
812
813/// foldMemoryOperand - Try folding stack slot references in Ops into their
814/// instructions.
815///
816/// @param Ops Operand indices from AnalyzeVirtRegInBundle().
817/// @param LoadMI Load instruction to use instead of stack slot when non-null.
818/// @return True on success.
819bool InlineSpiller::
820foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
821 MachineInstr *LoadMI) {
822 if (Ops.empty())
823 return false;
824 // Don't attempt folding in bundles.
825 MachineInstr *MI = Ops.front().first;
826 if (Ops.back().first != MI || MI->isBundled())
827 return false;
828
829 bool WasCopy = MI->isCopy();
830 Register ImpReg;
831
832 // TII::foldMemoryOperand will do what we need here for statepoint
833 // (fold load into use and remove corresponding def). We will replace
834 // uses of removed def with loads (spillAroundUses).
835 // For that to work we need to untie def and use to pass it through
836 // foldMemoryOperand and signal foldPatchpoint that it is allowed to
837 // fold them.
838 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
839
840 // Spill subregs if the target allows it.
841 // We always want to spill subregs for stackmap/patchpoint pseudos.
842 bool SpillSubRegs = TII.isSubregFoldable() ||
843 MI->getOpcode() == TargetOpcode::STATEPOINT ||
844 MI->getOpcode() == TargetOpcode::PATCHPOINT ||
845 MI->getOpcode() == TargetOpcode::STACKMAP;
846
847 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
848 // operands.
849 SmallVector<unsigned, 8> FoldOps;
850 for (const auto &OpPair : Ops) {
851 unsigned Idx = OpPair.second;
852 assert(MI == OpPair.first && "Instruction conflict during operand folding")(static_cast <bool> (MI == OpPair.first && "Instruction conflict during operand folding"
) ? void (0) : __assert_fail ("MI == OpPair.first && \"Instruction conflict during operand folding\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 852, __extension__ __PRETTY_FUNCTION__))
;
853 MachineOperand &MO = MI->getOperand(Idx);
854 if (MO.isImplicit()) {
855 ImpReg = MO.getReg();
856 continue;
857 }
858
859 if (!SpillSubRegs && MO.getSubReg())
860 return false;
861 // We cannot fold a load instruction into a def.
862 if (LoadMI && MO.isDef())
863 return false;
864 // Tied use operands should not be passed to foldMemoryOperand.
865 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
866 FoldOps.push_back(Idx);
867 }
868
869 // If we only have implicit uses, we won't be able to fold that.
870 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
871 if (FoldOps.empty())
872 return false;
873
874 MachineInstrSpan MIS(MI, MI->getParent());
875
876 SmallVector<std::pair<unsigned, unsigned> > TiedOps;
877 if (UntieRegs)
878 for (unsigned Idx : FoldOps) {
879 MachineOperand &MO = MI->getOperand(Idx);
880 if (!MO.isTied())
881 continue;
882 unsigned Tied = MI->findTiedOperandIdx(Idx);
883 if (MO.isUse())
884 TiedOps.emplace_back(Tied, Idx);
885 else {
886 assert(MO.isDef() && "Tied to not use and def?")(static_cast <bool> (MO.isDef() && "Tied to not use and def?"
) ? void (0) : __assert_fail ("MO.isDef() && \"Tied to not use and def?\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 886, __extension__ __PRETTY_FUNCTION__))
;
887 TiedOps.emplace_back(Idx, Tied);
888 }
889 MI->untieRegOperand(Idx);
890 }
891
892 MachineInstr *FoldMI =
893 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
894 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
895 if (!FoldMI) {
896 // Re-tie operands.
897 for (auto Tied : TiedOps)
898 MI->tieOperands(Tied.first, Tied.second);
899 return false;
900 }
901
902 // Remove LIS for any dead defs in the original MI not in FoldMI.
903 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
904 if (!MO->isReg())
905 continue;
906 Register Reg = MO->getReg();
907 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
908 continue;
909 }
910 // Skip non-Defs, including undef uses and internal reads.
911 if (MO->isUse())
912 continue;
913 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
914 if (RI.FullyDefined)
915 continue;
916 // FoldMI does not define this physreg. Remove the LI segment.
917 assert(MO->isDead() && "Cannot fold physreg def")(static_cast <bool> (MO->isDead() && "Cannot fold physreg def"
) ? void (0) : __assert_fail ("MO->isDead() && \"Cannot fold physreg def\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 917, __extension__ __PRETTY_FUNCTION__))
;
918 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
919 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
920 }
921
922 int FI;
923 if (TII.isStoreToStackSlot(*MI, FI) &&
924 HSpiller.rmFromMergeableSpills(*MI, FI))
925 --NumSpills;
926 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
927 // Update the call site info.
928 if (MI->isCandidateForCallSiteEntry())
929 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
930
931 // If we've folded a store into an instruction labelled with debug-info,
932 // record a substitution from the old operand to the memory operand. Handle
933 // the simple common case where operand 0 is the one being folded, plus when
934 // the destination operand is also a tied def. More values could be
935 // substituted / preserved with more analysis.
936 if (MI->peekDebugInstrNum() && Ops[0].second == 0) {
937 // Helper lambda.
938 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() {
939 // Substitute old operand zero to the new instructions memory operand.
940 unsigned OldOperandNum = Ops[0].second;
941 unsigned NewNum = FoldMI->getDebugInstrNum();
942 unsigned OldNum = MI->getDebugInstrNum();
943 MF.makeDebugValueSubstitution({OldNum, OldOperandNum},
944 {NewNum, MachineFunction::DebugOperandMemNumber});
945 };
946
947 const MachineOperand &Op0 = MI->getOperand(Ops[0].second);
948 if (Ops.size() == 1 && Op0.isDef()) {
949 MakeSubstitution();
950 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() &&
951 Op0.getReg() == MI->getOperand(1).getReg()) {
952 MakeSubstitution();
953 }
954 } else if (MI->peekDebugInstrNum()) {
955 // This is a debug-labelled instruction, but the operand being folded isn't
956 // at operand zero. Most likely this means it's a load being folded in.
957 // Substitute any register defs from operand zero up to the one being
958 // folded -- past that point, we don't know what the new operand indexes
959 // will be.
960 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second);
961 }
962
963 MI->eraseFromParent();
964
965 // Insert any new instructions other than FoldMI into the LIS maps.
966 assert(!MIS.empty() && "Unexpected empty span of instructions!")(static_cast <bool> (!MIS.empty() && "Unexpected empty span of instructions!"
) ? void (0) : __assert_fail ("!MIS.empty() && \"Unexpected empty span of instructions!\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 966, __extension__ __PRETTY_FUNCTION__))
;
967 for (MachineInstr &MI : MIS)
968 if (&MI != FoldMI)
969 LIS.InsertMachineInstrInMaps(MI);
970
971 // TII.foldMemoryOperand may have left some implicit operands on the
972 // instruction. Strip them.
973 if (ImpReg)
974 for (unsigned i = FoldMI->getNumOperands(); i; --i) {
975 MachineOperand &MO = FoldMI->getOperand(i - 1);
976 if (!MO.isReg() || !MO.isImplicit())
977 break;
978 if (MO.getReg() == ImpReg)
979 FoldMI->RemoveOperand(i - 1);
980 }
981
982 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(MIS.begin(
), MIS.end(), LIS, "folded"); } } while (false)
983 "folded"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(MIS.begin(
), MIS.end(), LIS, "folded"); } } while (false)
;
984
985 if (!WasCopy)
986 ++NumFolded;
987 else if (Ops.front().second == 0) {
988 ++NumSpills;
989 // If there is only 1 store instruction is required for spill, add it
990 // to mergeable list. In X86 AMX, 2 intructions are required to store.
991 // We disable the merge for this case.
992 if (std::distance(MIS.begin(), MIS.end()) <= 1)
993 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
994 } else
995 ++NumReloads;
996 return true;
997}
998
999void InlineSpiller::insertReload(Register NewVReg,
1000 SlotIndex Idx,
1001 MachineBasicBlock::iterator MI) {
1002 MachineBasicBlock &MBB = *MI->getParent();
1003
1004 MachineInstrSpan MIS(MI, &MBB);
1005 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1006 MRI.getRegClass(NewVReg), &TRI);
1007
1008 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1009
1010 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(MIS.begin(
), MI, LIS, "reload", NewVReg); } } while (false)
1011 NewVReg))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(MIS.begin(
), MI, LIS, "reload", NewVReg); } } while (false)
;
1012 ++NumReloads;
1013}
1014
1015/// Check if \p Def fully defines a VReg with an undefined value.
1016/// If that's the case, that means the value of VReg is actually
1017/// not relevant.
1018static bool isRealSpill(const MachineInstr &Def) {
1019 if (!Def.isImplicitDef())
1020 return true;
1021 assert(Def.getNumOperands() == 1 &&(static_cast <bool> (Def.getNumOperands() == 1 &&
"Implicit def with more than one definition") ? void (0) : __assert_fail
("Def.getNumOperands() == 1 && \"Implicit def with more than one definition\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1022, __extension__ __PRETTY_FUNCTION__))
1022 "Implicit def with more than one definition")(static_cast <bool> (Def.getNumOperands() == 1 &&
"Implicit def with more than one definition") ? void (0) : __assert_fail
("Def.getNumOperands() == 1 && \"Implicit def with more than one definition\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1022, __extension__ __PRETTY_FUNCTION__))
;
1023 // We can say that the VReg defined by Def is undef, only if it is
1024 // fully defined by Def. Otherwise, some of the lanes may not be
1025 // undef and the value of the VReg matters.
1026 return Def.getOperand(0).getSubReg();
1027}
1028
1029/// insertSpill - Insert a spill of NewVReg after MI.
1030void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
1031 MachineBasicBlock::iterator MI) {
1032 // Spill are not terminators, so inserting spills after terminators will
1033 // violate invariants in MachineVerifier.
1034 assert(!MI->isTerminator() && "Inserting a spill after a terminator")(static_cast <bool> (!MI->isTerminator() && "Inserting a spill after a terminator"
) ? void (0) : __assert_fail ("!MI->isTerminator() && \"Inserting a spill after a terminator\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1034, __extension__ __PRETTY_FUNCTION__))
;
1035 MachineBasicBlock &MBB = *MI->getParent();
1036
1037 MachineInstrSpan MIS(MI, &MBB);
1038 MachineBasicBlock::iterator SpillBefore = std::next(MI);
1039 bool IsRealSpill = isRealSpill(*MI);
1040
1041 if (IsRealSpill)
1042 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1043 MRI.getRegClass(NewVReg), &TRI);
1044 else
1045 // Don't spill undef value.
1046 // Anything works for undef, in particular keeping the memory
1047 // uninitialized is a viable option and it saves code size and
1048 // run time.
1049 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1050 .addReg(NewVReg, getKillRegState(isKill));
1051
1052 MachineBasicBlock::iterator Spill = std::next(MI);
1053 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1054 for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1055 getVDefInterval(MI, LIS);
1056
1057 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(Spill, MIS
.end(), LIS, "spill"); } } while (false)
1058 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(Spill, MIS
.end(), LIS, "spill"); } } while (false)
;
1059 ++NumSpills;
1060 // If there is only 1 store instruction is required for spill, add it
1061 // to mergeable list. In X86 AMX, 2 intructions are required to store.
1062 // We disable the merge for this case.
1063 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1064 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1065}
1066
1067/// spillAroundUses - insert spill code around each use of Reg.
1068void InlineSpiller::spillAroundUses(Register Reg) {
1069 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "spillAroundUses " << printReg
(Reg) << '\n'; } } while (false)
;
19
Assuming 'DebugFlag' is false
20
Loop condition is false. Exiting loop
1070 LiveInterval &OldLI = LIS.getInterval(Reg);
1071
1072 // Iterate over instructions using Reg.
1073 for (MachineRegisterInfo::reg_bundle_iterator
21
Loop condition is true. Entering loop body
1074 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
1075 RegI != E; ) {
1076 MachineInstr *MI = &*(RegI++);
1077
1078 // Debug values are not allowed to affect codegen.
1079 if (MI->isDebugValue()) {
1080 // Modify DBG_VALUE now that the value is in a spill slot.
1081 MachineBasicBlock *MBB = MI->getParent();
1082 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Modifying debug info due to spill:\t"
<< *MI; } } while (false)
;
1083 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot, Reg);
1084 MBB->erase(MI);
1085 continue;
1086 }
1087
1088 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "(static_cast <bool> (!MI->isDebugInstr() && "Did not expect to find a use in debug "
"instruction that isn't a DBG_VALUE") ? void (0) : __assert_fail
("!MI->isDebugInstr() && \"Did not expect to find a use in debug \" \"instruction that isn't a DBG_VALUE\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1089, __extension__ __PRETTY_FUNCTION__))
22
Taking false branch
23
'?' condition is true
1089 "instruction that isn't a DBG_VALUE")(static_cast <bool> (!MI->isDebugInstr() && "Did not expect to find a use in debug "
"instruction that isn't a DBG_VALUE") ? void (0) : __assert_fail
("!MI->isDebugInstr() && \"Did not expect to find a use in debug \" \"instruction that isn't a DBG_VALUE\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1089, __extension__ __PRETTY_FUNCTION__))
;
1090
1091 // Ignore copies to/from snippets. We'll delete them.
1092 if (SnippetCopies.count(MI))
24
Assuming the condition is false
25
Taking false branch
1093 continue;
1094
1095 // Stack slot accesses may coalesce away.
1096 if (coalesceStackAccess(MI, Reg))
26
Taking false branch
1097 continue;
1098
1099 // Analyze instruction.
1100 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1101 VirtRegInfo RI = AnalyzeVirtRegInBundle(*MI, Reg, &Ops);
1102
1103 // Find the slot index where this instruction reads and writes OldLI.
1104 // This is usually the def slot, except for tied early clobbers.
1105 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
1106 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
27
Assuming 'VNI' is null
28
Taking false branch
1107 if (SlotIndex::isSameInstr(Idx, VNI->def))
1108 Idx = VNI->def;
1109
1110 // Check for a sibling copy.
1111 Register SibReg = isFullCopyOf(*MI, Reg);
1112 if (SibReg && isSibling(SibReg)) {
29
Assuming the condition is true
30
Taking true branch
1113 // This may actually be a copy between snippets.
1114 if (isRegToSpill(SibReg)) {
31
Taking false branch
1115 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Found new snippet copy: " <<
*MI; } } while (false)
;
1116 SnippetCopies.insert(MI);
1117 continue;
1118 }
1119 if (RI.Writes) {
32
Assuming field 'Writes' is false
33
Taking false branch
1120 if (hoistSpillInsideBB(OldLI, *MI)) {
1121 // This COPY is now dead, the value is already in the stack slot.
1122 MI->getOperand(0).setIsDead();
1123 DeadDefs.push_back(MI);
1124 continue;
1125 }
1126 } else {
1127 // This is a reload for a sib-reg copy. Drop spills downstream.
1128 LiveInterval &SibLI = LIS.getInterval(SibReg);
1129 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
34
Calling 'InlineSpiller::eliminateRedundantSpills'
1130 // The COPY will fold to a reload below.
1131 }
1132 }
1133
1134 // Attempt to fold memory ops.
1135 if (foldMemoryOperand(Ops))
1136 continue;
1137
1138 // Create a new virtual register for spill/fill.
1139 // FIXME: Infer regclass from instruction alone.
1140 Register NewVReg = Edit->createFrom(Reg);
1141
1142 if (RI.Reads)
1143 insertReload(NewVReg, Idx, MI);
1144
1145 // Rewrite instruction operands.
1146 bool hasLiveDef = false;
1147 for (const auto &OpPair : Ops) {
1148 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1149 MO.setReg(NewVReg);
1150 if (MO.isUse()) {
1151 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1152 MO.setIsKill();
1153 } else {
1154 if (!MO.isDead())
1155 hasLiveDef = true;
1156 }
1157 }
1158 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\trewrite: " << Idx <<
'\t' << *MI << '\n'; } } while (false)
;
1159
1160 // FIXME: Use a second vreg if instruction has no tied ops.
1161 if (RI.Writes)
1162 if (hasLiveDef)
1163 insertSpill(NewVReg, true, MI);
1164 }
1165}
1166
1167/// spillAll - Spill all registers remaining after rematerialization.
1168void InlineSpiller::spillAll() {
1169 // Update LiveStacks now that we are committed to spilling.
1170 if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
9
Assuming field 'StackSlot' is not equal to NO_STACK_SLOT
10
Taking false branch
1171 StackSlot = VRM.assignVirt2StackSlot(Original);
1172 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1173 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1174 } else
1175 StackInt = &LSS.getInterval(StackSlot);
1176
1177 if (Original != Edit->getReg())
1178 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1179
1180 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values")(static_cast <bool> (StackInt->getNumValNums() == 1 &&
"Bad stack interval values") ? void (0) : __assert_fail ("StackInt->getNumValNums() == 1 && \"Bad stack interval values\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1180, __extension__ __PRETTY_FUNCTION__))
;
11
Taking false branch
12
Assuming the condition is true
13
'?' condition is true
1181 for (Register Reg : RegsToSpill)
14
Assuming '__begin1' is equal to '__end1'
1182 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1183 StackInt->getValNumInfo(0));
1184 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Merged spilled regs: " <<
*StackInt << '\n'; } } while (false)
;
15
Assuming 'DebugFlag' is false
16
Loop condition is false. Exiting loop
1185
1186 // Spill around uses of all RegsToSpill.
1187 for (Register Reg : RegsToSpill)
17
Assuming '__begin1' is not equal to '__end1'
1188 spillAroundUses(Reg);
18
Calling 'InlineSpiller::spillAroundUses'
1189
1190 // Hoisted spills may cause dead code.
1191 if (!DeadDefs.empty()) {
1192 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Eliminating " << DeadDefs
.size() << " dead defs\n"; } } while (false)
;
1193 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1194 }
1195
1196 // Finally delete the SnippetCopies.
1197 for (Register Reg : RegsToSpill) {
1198 for (MachineRegisterInfo::reg_instr_iterator
1199 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1200 RI != E; ) {
1201 MachineInstr &MI = *(RI++);
1202 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy")(static_cast <bool> (SnippetCopies.count(&MI) &&
"Remaining use wasn't a snippet copy") ? void (0) : __assert_fail
("SnippetCopies.count(&MI) && \"Remaining use wasn't a snippet copy\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1202, __extension__ __PRETTY_FUNCTION__))
;
1203 // FIXME: Do this with a LiveRangeEdit callback.
1204 LIS.RemoveMachineInstrFromMaps(MI);
1205 MI.eraseFromParent();
1206 }
1207 }
1208
1209 // Delete all spilled registers.
1210 for (Register Reg : RegsToSpill)
1211 Edit->eraseVirtReg(Reg);
1212}
1213
1214void InlineSpiller::spill(LiveRangeEdit &edit) {
1215 ++NumSpilledRanges;
1216 Edit = &edit;
1217 assert(!Register::isStackSlot(edit.getReg()) &&(static_cast <bool> (!Register::isStackSlot(edit.getReg
()) && "Trying to spill a stack slot.") ? void (0) : __assert_fail
("!Register::isStackSlot(edit.getReg()) && \"Trying to spill a stack slot.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1218, __extension__ __PRETTY_FUNCTION__))
1
'?' condition is true
1218 "Trying to spill a stack slot.")(static_cast <bool> (!Register::isStackSlot(edit.getReg
()) && "Trying to spill a stack slot.") ? void (0) : __assert_fail
("!Register::isStackSlot(edit.getReg()) && \"Trying to spill a stack slot.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1218, __extension__ __PRETTY_FUNCTION__))
;
1219 // Share a stack slot among all descendants of Original.
1220 Original = VRM.getOriginal(edit.getReg());
1221 StackSlot = VRM.getStackSlot(Original);
1222 StackInt = nullptr;
1223
1224 LLVM_DEBUG(dbgs() << "Inline spilling "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Inline spilling " << TRI
.getRegClassName(MRI.getRegClass(edit.getReg())) << ':'
<< edit.getParent() << "\nFrom original " <<
printReg(Original) << '\n'; } } while (false)
2
Assuming 'DebugFlag' is false
1225 << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Inline spilling " << TRI
.getRegClassName(MRI.getRegClass(edit.getReg())) << ':'
<< edit.getParent() << "\nFrom original " <<
printReg(Original) << '\n'; } } while (false)
1226 << ':' << edit.getParent() << "\nFrom original "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Inline spilling " << TRI
.getRegClassName(MRI.getRegClass(edit.getReg())) << ':'
<< edit.getParent() << "\nFrom original " <<
printReg(Original) << '\n'; } } while (false)
1227 << printReg(Original) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Inline spilling " << TRI
.getRegClassName(MRI.getRegClass(edit.getReg())) << ':'
<< edit.getParent() << "\nFrom original " <<
printReg(Original) << '\n'; } } while (false)
;
1228 assert(edit.getParent().isSpillable() &&(static_cast <bool> (edit.getParent().isSpillable() &&
"Attempting to spill already spilled value.") ? void (0) : __assert_fail
("edit.getParent().isSpillable() && \"Attempting to spill already spilled value.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1229, __extension__ __PRETTY_FUNCTION__))
3
Loop condition is false. Exiting loop
4
Assuming the condition is true
5
'?' condition is true
1229 "Attempting to spill already spilled value.")(static_cast <bool> (edit.getParent().isSpillable() &&
"Attempting to spill already spilled value.") ? void (0) : __assert_fail
("edit.getParent().isSpillable() && \"Attempting to spill already spilled value.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1229, __extension__ __PRETTY_FUNCTION__))
;
1230 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs")(static_cast <bool> (DeadDefs.empty() && "Previous spill didn't remove dead defs"
) ? void (0) : __assert_fail ("DeadDefs.empty() && \"Previous spill didn't remove dead defs\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1230, __extension__ __PRETTY_FUNCTION__))
;
6
'?' condition is true
1231
1232 collectRegsToSpill();
1233 reMaterializeAll();
1234
1235 // Remat may handle everything.
1236 if (!RegsToSpill.empty())
7
Taking true branch
1237 spillAll();
8
Calling 'InlineSpiller::spillAll'
1238
1239 Edit->calculateRegClassAndHint(MF, VRAI);
1240}
1241
1242/// Optimizations after all the reg selections and spills are done.
1243void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1244
1245/// When a spill is inserted, add the spill to MergeableSpills map.
1246void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1247 unsigned Original) {
1248 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1249 LiveInterval &OrigLI = LIS.getInterval(Original);
1250 // save a copy of LiveInterval in StackSlotToOrigLI because the original
1251 // LiveInterval may be cleared after all its references are spilled.
1252 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1253 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1254 LI->assign(OrigLI, Allocator);
1255 StackSlotToOrigLI[StackSlot] = std::move(LI);
1256 }
1257 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1258 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1259 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1260 MergeableSpills[MIdx].insert(&Spill);
1261}
1262
1263/// When a spill is removed, remove the spill from MergeableSpills map.
1264/// Return true if the spill is removed successfully.
1265bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1266 int StackSlot) {
1267 auto It = StackSlotToOrigLI.find(StackSlot);
1268 if (It == StackSlotToOrigLI.end())
1269 return false;
1270 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1271 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1272 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1273 return MergeableSpills[MIdx].erase(&Spill);
1274}
1275
1276/// Check BB to see if it is a possible target BB to place a hoisted spill,
1277/// i.e., there should be a living sibling of OrigReg at the insert point.
1278bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1279 MachineBasicBlock &BB, Register &LiveReg) {
1280 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1281 // The original def could be after the last insert point in the root block,
1282 // we can't hoist to here.
1283 if (Idx < OrigVNI.def) {
1284 // TODO: We could be better here. If LI is not alive in landing pad
1285 // we could hoist spill after LIP.
1286 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "can't spill in root block - def after LIP\n"
; } } while (false)
;
1287 return false;
1288 }
1289 Register OrigReg = OrigLI.reg();
1290 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1291 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI")(static_cast <bool> (OrigLI.getVNInfoAt(Idx) == &OrigVNI
&& "Unexpected VNI") ? void (0) : __assert_fail ("OrigLI.getVNInfoAt(Idx) == &OrigVNI && \"Unexpected VNI\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1291, __extension__ __PRETTY_FUNCTION__))
;
1292
1293 for (const Register &SibReg : Siblings) {
1294 LiveInterval &LI = LIS.getInterval(SibReg);
1295 VNInfo *VNI = LI.getVNInfoAt(Idx);
1296 if (VNI) {
1297 LiveReg = SibReg;
1298 return true;
1299 }
1300 }
1301 return false;
1302}
1303
1304/// Remove redundant spills in the same BB. Save those redundant spills in
1305/// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1306void HoistSpillHelper::rmRedundantSpills(
1307 SmallPtrSet<MachineInstr *, 16> &Spills,
1308 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1309 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1310 // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1311 // another spill inside. If a BB contains more than one spill, only keep the
1312 // earlier spill with smaller SlotIndex.
1313 for (const auto CurrentSpill : Spills) {
1314 MachineBasicBlock *Block = CurrentSpill->getParent();
1315 MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1316 MachineInstr *PrevSpill = SpillBBToSpill[Node];
1317 if (PrevSpill) {
1318 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1319 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1320 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1321 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1322 SpillsToRm.push_back(SpillToRm);
1323 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1324 } else {
1325 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1326 }
1327 }
1328 for (const auto SpillToRm : SpillsToRm)
1329 Spills.erase(SpillToRm);
1330}
1331
1332/// Starting from \p Root find a top-down traversal order of the dominator
1333/// tree to visit all basic blocks containing the elements of \p Spills.
1334/// Redundant spills will be found and put into \p SpillsToRm at the same
1335/// time. \p SpillBBToSpill will be populated as part of the process and
1336/// maps a basic block to the first store occurring in the basic block.
1337/// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1338void HoistSpillHelper::getVisitOrders(
1339 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1340 SmallVectorImpl<MachineDomTreeNode *> &Orders,
1341 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1342 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1343 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1344 // The set contains all the possible BB nodes to which we may hoist
1345 // original spills.
1346 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1347 // Save the BB nodes on the path from the first BB node containing
1348 // non-redundant spill to the Root node.
1349 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1350 // All the spills to be hoisted must originate from a single def instruction
1351 // to the OrigReg. It means the def instruction should dominate all the spills
1352 // to be hoisted. We choose the BB where the def instruction is located as
1353 // the Root.
1354 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1355 // For every node on the dominator tree with spill, walk up on the dominator
1356 // tree towards the Root node until it is reached. If there is other node
1357 // containing spill in the middle of the path, the previous spill saw will
1358 // be redundant and the node containing it will be removed. All the nodes on
1359 // the path starting from the first node with non-redundant spill to the Root
1360 // node will be added to the WorkSet, which will contain all the possible
1361 // locations where spills may be hoisted to after the loop below is done.
1362 for (const auto Spill : Spills) {
1363 MachineBasicBlock *Block = Spill->getParent();
1364 MachineDomTreeNode *Node = MDT[Block];
1365 MachineInstr *SpillToRm = nullptr;
1366 while (Node != RootIDomNode) {
1367 // If Node dominates Block, and it already contains a spill, the spill in
1368 // Block will be redundant.
1369 if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1370 SpillToRm = SpillBBToSpill[MDT[Block]];
1371 break;
1372 /// If we see the Node already in WorkSet, the path from the Node to
1373 /// the Root node must already be traversed by another spill.
1374 /// Then no need to repeat.
1375 } else if (WorkSet.count(Node)) {
1376 break;
1377 } else {
1378 NodesOnPath.insert(Node);
1379 }
1380 Node = Node->getIDom();
1381 }
1382 if (SpillToRm) {
1383 SpillsToRm.push_back(SpillToRm);
1384 } else {
1385 // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1386 // set the initial status before hoisting start. The value of BBs
1387 // containing original spills is set to 0, in order to descriminate
1388 // with BBs containing hoisted spills which will be inserted to
1389 // SpillsToKeep later during hoisting.
1390 SpillsToKeep[MDT[Block]] = 0;
1391 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1392 }
1393 NodesOnPath.clear();
1394 }
1395
1396 // Sort the nodes in WorkSet in top-down order and save the nodes
1397 // in Orders. Orders will be used for hoisting in runHoistSpills.
1398 unsigned idx = 0;
1399 Orders.push_back(MDT.getBase().getNode(Root));
1400 do {
1401 MachineDomTreeNode *Node = Orders[idx++];
1402 for (MachineDomTreeNode *Child : Node->children()) {
1403 if (WorkSet.count(Child))
1404 Orders.push_back(Child);
1405 }
1406 } while (idx != Orders.size());
1407 assert(Orders.size() == WorkSet.size() &&(static_cast <bool> (Orders.size() == WorkSet.size() &&
"Orders have different size with WorkSet") ? void (0) : __assert_fail
("Orders.size() == WorkSet.size() && \"Orders have different size with WorkSet\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1408, __extension__ __PRETTY_FUNCTION__))
1408 "Orders have different size with WorkSet")(static_cast <bool> (Orders.size() == WorkSet.size() &&
"Orders have different size with WorkSet") ? void (0) : __assert_fail
("Orders.size() == WorkSet.size() && \"Orders have different size with WorkSet\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1408, __extension__ __PRETTY_FUNCTION__))
;
1409
1410#ifndef NDEBUG
1411 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Orders size is " << Orders
.size() << "\n"; } } while (false)
;
1412 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1413 for (; RIt != Orders.rend(); RIt++)
1414 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "BB" << (*RIt)->getBlock
()->getNumber() << ","; } } while (false)
;
1415 LLVM_DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\n"; } } while (false)
;
1416#endif
1417}
1418
1419/// Try to hoist spills according to BB hotness. The spills to removed will
1420/// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1421/// \p SpillsToIns.
1422void HoistSpillHelper::runHoistSpills(
1423 LiveInterval &OrigLI, VNInfo &OrigVNI,
1424 SmallPtrSet<MachineInstr *, 16> &Spills,
1425 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1426 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1427 // Visit order of dominator tree nodes.
1428 SmallVector<MachineDomTreeNode *, 32> Orders;
1429 // SpillsToKeep contains all the nodes where spills are to be inserted
1430 // during hoisting. If the spill to be inserted is an original spill
1431 // (not a hoisted one), the value of the map entry is 0. If the spill
1432 // is a hoisted spill, the value of the map entry is the VReg to be used
1433 // as the source of the spill.
1434 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1435 // Map from BB to the first spill inside of it.
1436 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1437
1438 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1439
1440 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1441 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1442 SpillBBToSpill);
1443
1444 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1445 // nodes set and the cost of all the spills inside those nodes.
1446 // The nodes set are the locations where spills are to be inserted
1447 // in the subtree of current node.
1448 using NodesCostPair =
1449 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1450 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1451
1452 // Iterate Orders set in reverse order, which will be a bottom-up order
1453 // in the dominator tree. Once we visit a dom tree node, we know its
1454 // children have already been visited and the spill locations in the
1455 // subtrees of all the children have been determined.
1456 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1457 for (; RIt != Orders.rend(); RIt++) {
1458 MachineBasicBlock *Block = (*RIt)->getBlock();
1459
1460 // If Block contains an original spill, simply continue.
1461 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1462 SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1463 // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1464 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1465 continue;
1466 }
1467
1468 // Collect spills in subtree of current node (*RIt) to
1469 // SpillsInSubTreeMap[*RIt].first.
1470 for (MachineDomTreeNode *Child : (*RIt)->children()) {
1471 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1472 continue;
1473 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1474 // should be placed before getting the begin and end iterators of
1475 // SpillsInSubTreeMap[Child].first, or else the iterators may be
1476 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1477 // and the map grows and then the original buckets in the map are moved.
1478 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1479 SpillsInSubTreeMap[*RIt].first;
1480 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1481 SubTreeCost += SpillsInSubTreeMap[Child].second;
1482 auto BI = SpillsInSubTreeMap[Child].first.begin();
1483 auto EI = SpillsInSubTreeMap[Child].first.end();
1484 SpillsInSubTree.insert(BI, EI);
1485 SpillsInSubTreeMap.erase(Child);
1486 }
1487
1488 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1489 SpillsInSubTreeMap[*RIt].first;
1490 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1491 // No spills in subtree, simply continue.
1492 if (SpillsInSubTree.empty())
1493 continue;
1494
1495 // Check whether Block is a possible candidate to insert spill.
1496 Register LiveReg;
1497 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1498 continue;
1499
1500 // If there are multiple spills that could be merged, bias a little
1501 // to hoist the spill.
1502 BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1503 ? BranchProbability(9, 10)
1504 : BranchProbability(1, 1);
1505 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1506 // Hoist: Move spills to current Block.
1507 for (const auto SpillBB : SpillsInSubTree) {
1508 // When SpillBB is a BB contains original spill, insert the spill
1509 // to SpillsToRm.
1510 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1511 !SpillsToKeep[SpillBB]) {
1512 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1513 SpillsToRm.push_back(SpillToRm);
1514 }
1515 // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1516 SpillsToKeep.erase(SpillBB);
1517 }
1518 // Current Block is the BB containing the new hoisted spill. Add it to
1519 // SpillsToKeep. LiveReg is the source of the new spill.
1520 SpillsToKeep[*RIt] = LiveReg;
1521 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1522 dbgs() << "spills in BB: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1523 for (const auto Rspill : SpillsInSubTree)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1524 dbgs() << Rspill->getBlock()->getNumber() << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1525 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1526 << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1527 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
;
1528 SpillsInSubTree.clear();
1529 SpillsInSubTree.insert(*RIt);
1530 SubTreeCost = MBFI.getBlockFreq(Block);
1531 }
1532 }
1533 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1534 // save them to SpillsToIns.
1535 for (const auto &Ent : SpillsToKeep) {
1536 if (Ent.second)
1537 SpillsToIns[Ent.first->getBlock()] = Ent.second;
1538 }
1539}
1540
1541/// For spills with equal values, remove redundant spills and hoist those left
1542/// to less hot spots.
1543///
1544/// Spills with equal values will be collected into the same set in
1545/// MergeableSpills when spill is inserted. These equal spills are originated
1546/// from the same defining instruction and are dominated by the instruction.
1547/// Before hoisting all the equal spills, redundant spills inside in the same
1548/// BB are first marked to be deleted. Then starting from the spills left, walk
1549/// up on the dominator tree towards the Root node where the define instruction
1550/// is located, mark the dominated spills to be deleted along the way and
1551/// collect the BB nodes on the path from non-dominated spills to the define
1552/// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1553/// where we are considering to hoist the spills. We iterate the WorkSet in
1554/// bottom-up order, and for each node, we will decide whether to hoist spills
1555/// inside its subtree to that node. In this way, we can get benefit locally
1556/// even if hoisting all the equal spills to one cold place is impossible.
1557void HoistSpillHelper::hoistAllSpills() {
1558 SmallVector<Register, 4> NewVRegs;
1559 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1560
1561 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1562 Register Reg = Register::index2VirtReg(i);
1563 Register Original = VRM.getPreSplitReg(Reg);
1564 if (!MRI.def_empty(Reg))
1565 Virt2SiblingsMap[Original].insert(Reg);
1566 }
1567
1568 // Each entry in MergeableSpills contains a spill set with equal values.
1569 for (auto &Ent : MergeableSpills) {
1570 int Slot = Ent.first.first;
1571 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1572 VNInfo *OrigVNI = Ent.first.second;
1573 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1574 if (Ent.second.empty())
1575 continue;
1576
1577 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
1578 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
1579 << "Equal spills in BB: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
1580 for (const auto spill : EqValSpills)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
1581 dbgs() << spill->getParent()->getNumber() << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
1582 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
1583 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
;
1584
1585 // SpillsToRm is the spill set to be removed from EqValSpills.
1586 SmallVector<MachineInstr *, 16> SpillsToRm;
1587 // SpillsToIns is the spill set to be newly inserted after hoisting.
1588 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1589
1590 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1591
1592 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1593 dbgs() << "Finally inserted spills in BB: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1594 for (const auto &Ispill : SpillsToIns)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1595 dbgs() << Ispill.first->getNumber() << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1596 dbgs() << "\nFinally removed spills in BB: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1597 for (const auto Rspill : SpillsToRm)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1598 dbgs() << Rspill->getParent()->getNumber() << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1599 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1600 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
;
1601
1602 // Stack live range update.
1603 LiveInterval &StackIntvl = LSS.getInterval(Slot);
1604 if (!SpillsToIns.empty() || !SpillsToRm.empty())
1605 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1606 StackIntvl.getValNumInfo(0));
1607
1608 // Insert hoisted spills.
1609 for (auto const &Insert : SpillsToIns) {
1610 MachineBasicBlock *BB = Insert.first;
1611 Register LiveReg = Insert.second;
1612 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1613 MachineInstrSpan MIS(MII, BB);
1614 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1615 MRI.getRegClass(LiveReg), &TRI);
1616 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1617 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1618 getVDefInterval(MI, LIS);
1619 ++NumSpills;
1620 }
1621
1622 // Remove redundant spills or change them to dead instructions.
1623 NumSpills -= SpillsToRm.size();
1624 for (auto const RMEnt : SpillsToRm) {
1625 RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1626 for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1627 MachineOperand &MO = RMEnt->getOperand(i - 1);
1628 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1629 RMEnt->RemoveOperand(i - 1);
1630 }
1631 }
1632 Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1633 }
1634}
1635
1636/// For VirtReg clone, the \p New register should have the same physreg or
1637/// stackslot as the \p old register.
1638void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1639 if (VRM.hasPhys(Old))
1640 VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1641 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1642 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1643 else
1644 llvm_unreachable("VReg should be assigned either physreg or stackslot")::llvm::llvm_unreachable_internal("VReg should be assigned either physreg or stackslot"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/lib/CodeGen/InlineSpiller.cpp"
, 1644)
;
1645 if (VRM.hasShape(Old))
1646 VRM.assignVirt2Shape(New, VRM.getShape(Old));
1647}

/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some templates that are useful if you are working with the
10// STL at all.
11//
12// No library is required when using these functions.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_STLEXTRAS_H
17#define LLVM_ADT_STLEXTRAS_H
18
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/STLForwardCompat.h"
21#include "llvm/ADT/iterator.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Config/abi-breaking.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <algorithm>
26#include <cassert>
27#include <cstddef>
28#include <cstdint>
29#include <cstdlib>
30#include <functional>
31#include <initializer_list>
32#include <iterator>
33#include <limits>
34#include <memory>
35#include <tuple>
36#include <type_traits>
37#include <utility>
38
39#ifdef EXPENSIVE_CHECKS
40#include <random> // for std::mt19937
41#endif
42
43namespace llvm {
44
45// Only used by compiler if both template types are the same. Useful when
46// using SFINAE to test for the existence of member functions.
47template <typename T, T> struct SameType;
48
49namespace detail {
50
51template <typename RangeT>
52using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53
54template <typename RangeT>
55using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
57
58} // end namespace detail
59
60//===----------------------------------------------------------------------===//
61// Extra additions to <type_traits>
62//===----------------------------------------------------------------------===//
63
64template <typename T> struct make_const_ptr {
65 using type =
66 typename std::add_pointer<typename std::add_const<T>::type>::type;
67};
68
69template <typename T> struct make_const_ref {
70 using type = typename std::add_lvalue_reference<
71 typename std::add_const<T>::type>::type;
72};
73
74namespace detail {
75template <typename...> using void_t = void;
76template <class, template <class...> class Op, class... Args> struct detector {
77 using value_t = std::false_type;
78};
79template <template <class...> class Op, class... Args>
80struct detector<void_t<Op<Args...>>, Op, Args...> {
81 using value_t = std::true_type;
82};
83} // end namespace detail
84
85/// Detects if a given trait holds for some set of arguments 'Args'.
86/// For example, the given trait could be used to detect if a given type
87/// has a copy assignment operator:
88/// template<class T>
89/// using has_copy_assign_t = decltype(std::declval<T&>()
90/// = std::declval<const T&>());
91/// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
92template <template <class...> class Op, class... Args>
93using is_detected = typename detail::detector<void, Op, Args...>::value_t;
94
95namespace detail {
96template <typename Callable, typename... Args>
97using is_invocable =
98 decltype(std::declval<Callable &>()(std::declval<Args>()...));
99} // namespace detail
100
101/// Check if a Callable type can be invoked with the given set of arg types.
102template <typename Callable, typename... Args>
103using is_invocable = is_detected<detail::is_invocable, Callable, Args...>;
104
105/// This class provides various trait information about a callable object.
106/// * To access the number of arguments: Traits::num_args
107/// * To access the type of an argument: Traits::arg_t<Index>
108/// * To access the type of the result: Traits::result_t
109template <typename T, bool isClass = std::is_class<T>::value>
110struct function_traits : public function_traits<decltype(&T::operator())> {};
111
112/// Overload for class function types.
113template <typename ClassType, typename ReturnType, typename... Args>
114struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
115 /// The number of arguments to this function.
116 enum { num_args = sizeof...(Args) };
117
118 /// The result type of this function.
119 using result_t = ReturnType;
120
121 /// The type of an argument to this function.
122 template <size_t Index>
123 using arg_t = typename std::tuple_element<Index, std::tuple<Args...>>::type;
124};
125/// Overload for class function types.
126template <typename ClassType, typename ReturnType, typename... Args>
127struct function_traits<ReturnType (ClassType::*)(Args...), false>
128 : function_traits<ReturnType (ClassType::*)(Args...) const> {};
129/// Overload for non-class function types.
130template <typename ReturnType, typename... Args>
131struct function_traits<ReturnType (*)(Args...), false> {
132 /// The number of arguments to this function.
133 enum { num_args = sizeof...(Args) };
134
135 /// The result type of this function.
136 using result_t = ReturnType;
137
138 /// The type of an argument to this function.
139 template <size_t i>
140 using arg_t = typename std::tuple_element<i, std::tuple<Args...>>::type;
141};
142/// Overload for non-class function type references.
143template <typename ReturnType, typename... Args>
144struct function_traits<ReturnType (&)(Args...), false>
145 : public function_traits<ReturnType (*)(Args...)> {};
146
147//===----------------------------------------------------------------------===//
148// Extra additions to <functional>
149//===----------------------------------------------------------------------===//
150
151template <class Ty> struct identity {
152 using argument_type = Ty;
153
154 Ty &operator()(Ty &self) const {
155 return self;
156 }
157 const Ty &operator()(const Ty &self) const {
158 return self;
159 }
160};
161
162/// An efficient, type-erasing, non-owning reference to a callable. This is
163/// intended for use as the type of a function parameter that is not used
164/// after the function in question returns.
165///
166/// This class does not own the callable, so it is not in general safe to store
167/// a function_ref.
168template<typename Fn> class function_ref;
169
170template<typename Ret, typename ...Params>
171class function_ref<Ret(Params...)> {
172 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
173 intptr_t callable;
174
175 template<typename Callable>
176 static Ret callback_fn(intptr_t callable, Params ...params) {
177 return (*reinterpret_cast<Callable*>(callable))(
178 std::forward<Params>(params)...);
179 }
180
181public:
182 function_ref() = default;
183 function_ref(std::nullptr_t) {}
184
185 template <typename Callable>
186 function_ref(
187 Callable &&callable,
188 // This is not the copy-constructor.
189 std::enable_if_t<!std::is_same<remove_cvref_t<Callable>,
190 function_ref>::value> * = nullptr,
191 // Functor must be callable and return a suitable type.
192 std::enable_if_t<std::is_void<Ret>::value ||
193 std::is_convertible<decltype(std::declval<Callable>()(
194 std::declval<Params>()...)),
195 Ret>::value> * = nullptr)
196 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
197 callable(reinterpret_cast<intptr_t>(&callable)) {}
198
199 Ret operator()(Params ...params) const {
200 return callback(callable, std::forward<Params>(params)...);
201 }
202
203 explicit operator bool() const { return callback; }
204};
205
206//===----------------------------------------------------------------------===//
207// Extra additions to <iterator>
208//===----------------------------------------------------------------------===//
209
210namespace adl_detail {
211
212using std::begin;
213
214template <typename ContainerTy>
215decltype(auto) adl_begin(ContainerTy &&container) {
216 return begin(std::forward<ContainerTy>(container));
217}
218
219using std::end;
220
221template <typename ContainerTy>
222decltype(auto) adl_end(ContainerTy &&container) {
223 return end(std::forward<ContainerTy>(container));
224}
225
226using std::swap;
227
228template <typename T>
229void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
230 std::declval<T>()))) {
231 swap(std::forward<T>(lhs), std::forward<T>(rhs));
232}
233
234} // end namespace adl_detail
235
236template <typename ContainerTy>
237decltype(auto) adl_begin(ContainerTy &&container) {
238 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
239}
240
241template <typename ContainerTy>
242decltype(auto) adl_end(ContainerTy &&container) {
243 return adl_detail::adl_end(std::forward<ContainerTy>(container));
244}
245
246template <typename T>
247void adl_swap(T &&lhs, T &&rhs) noexcept(
248 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
249 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
250}
251
252/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
253template <typename T>
254constexpr bool empty(const T &RangeOrContainer) {
255 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
256}
257
258/// Returns true if the given container only contains a single element.
259template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
260 auto B = std::begin(C), E = std::end(C);
261 return B != E && std::next(B) == E;
262}
263
264/// Return a range covering \p RangeOrContainer with the first N elements
265/// excluded.
266template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
267 return make_range(std::next(adl_begin(RangeOrContainer), N),
268 adl_end(RangeOrContainer));
269}
270
271// mapped_iterator - This is a simple iterator adapter that causes a function to
272// be applied whenever operator* is invoked on the iterator.
273
274template <typename ItTy, typename FuncTy,
275 typename ReferenceTy =
276 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
277class mapped_iterator
278 : public iterator_adaptor_base<
279 mapped_iterator<ItTy, FuncTy>, ItTy,
280 typename std::iterator_traits<ItTy>::iterator_category,
281 std::remove_reference_t<ReferenceTy>,
282 typename std::iterator_traits<ItTy>::difference_type,
283 std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
284public:
285 mapped_iterator(ItTy U, FuncTy F)
286 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
287
288 ItTy getCurrent() { return this->I; }
289
290 const FuncTy &getFunction() const { return F; }
291
292 ReferenceTy operator*() const { return F(*this->I); }
293
294private:
295 FuncTy F;
296};
297
298// map_iterator - Provide a convenient way to create mapped_iterators, just like
299// make_pair is useful for creating pairs...
300template <class ItTy, class FuncTy>
301inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
302 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
303}
304
305template <class ContainerTy, class FuncTy>
306auto map_range(ContainerTy &&C, FuncTy F) {
307 return make_range(map_iterator(C.begin(), F), map_iterator(C.end(), F));
308}
309
310/// Helper to determine if type T has a member called rbegin().
311template <typename Ty> class has_rbegin_impl {
312 using yes = char[1];
313 using no = char[2];
314
315 template <typename Inner>
316 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
317
318 template <typename>
319 static no& test(...);
320
321public:
322 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
323};
324
325/// Metafunction to determine if T& or T has a member called rbegin().
326template <typename Ty>
327struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
328};
329
330// Returns an iterator_range over the given container which iterates in reverse.
331// Note that the container must have rbegin()/rend() methods for this to work.
332template <typename ContainerTy>
333auto reverse(ContainerTy &&C,
334 std::enable_if_t<has_rbegin<ContainerTy>::value> * = nullptr) {
335 return make_range(C.rbegin(), C.rend());
336}
337
338// Returns a std::reverse_iterator wrapped around the given iterator.
339template <typename IteratorTy>
340std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
341 return std::reverse_iterator<IteratorTy>(It);
342}
343
344// Returns an iterator_range over the given container which iterates in reverse.
345// Note that the container must have begin()/end() methods which return
346// bidirectional iterators for this to work.
347template <typename ContainerTy>
348auto reverse(ContainerTy &&C,
349 std::enable_if_t<!has_rbegin<ContainerTy>::value> * = nullptr) {
350 return make_range(llvm::make_reverse_iterator(std::end(C)),
351 llvm::make_reverse_iterator(std::begin(C)));
352}
353
354/// An iterator adaptor that filters the elements of given inner iterators.
355///
356/// The predicate parameter should be a callable object that accepts the wrapped
357/// iterator's reference type and returns a bool. When incrementing or
358/// decrementing the iterator, it will call the predicate on each element and
359/// skip any where it returns false.
360///
361/// \code
362/// int A[] = { 1, 2, 3, 4 };
363/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
364/// // R contains { 1, 3 }.
365/// \endcode
366///
367/// Note: filter_iterator_base implements support for forward iteration.
368/// filter_iterator_impl exists to provide support for bidirectional iteration,
369/// conditional on whether the wrapped iterator supports it.
370template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
371class filter_iterator_base
372 : public iterator_adaptor_base<
373 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
374 WrappedIteratorT,
375 typename std::common_type<
376 IterTag, typename std::iterator_traits<
377 WrappedIteratorT>::iterator_category>::type> {
378 using BaseT = iterator_adaptor_base<
379 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
380 WrappedIteratorT,
381 typename std::common_type<
382 IterTag, typename std::iterator_traits<
383 WrappedIteratorT>::iterator_category>::type>;
384
385protected:
386 WrappedIteratorT End;
387 PredicateT Pred;
388
389 void findNextValid() {
390 while (this->I != End && !Pred(*this->I))
391 BaseT::operator++();
392 }
393
394 // Construct the iterator. The begin iterator needs to know where the end
395 // is, so that it can properly stop when it gets there. The end iterator only
396 // needs the predicate to support bidirectional iteration.
397 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
398 PredicateT Pred)
399 : BaseT(Begin), End(End), Pred(Pred) {
400 findNextValid();
401 }
402
403public:
404 using BaseT::operator++;
405
406 filter_iterator_base &operator++() {
407 BaseT::operator++();
408 findNextValid();
409 return *this;
410 }
411};
412
413/// Specialization of filter_iterator_base for forward iteration only.
414template <typename WrappedIteratorT, typename PredicateT,
415 typename IterTag = std::forward_iterator_tag>
416class filter_iterator_impl
417 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
418 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
419
420public:
421 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
422 PredicateT Pred)
423 : BaseT(Begin, End, Pred) {}
424};
425
426/// Specialization of filter_iterator_base for bidirectional iteration.
427template <typename WrappedIteratorT, typename PredicateT>
428class filter_iterator_impl<WrappedIteratorT, PredicateT,
429 std::bidirectional_iterator_tag>
430 : public filter_iterator_base<WrappedIteratorT, PredicateT,
431 std::bidirectional_iterator_tag> {
432 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
433 std::bidirectional_iterator_tag>;
434 void findPrevValid() {
435 while (!this->Pred(*this->I))
436 BaseT::operator--();
437 }
438
439public:
440 using BaseT::operator--;
441
442 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
443 PredicateT Pred)
444 : BaseT(Begin, End, Pred) {}
445
446 filter_iterator_impl &operator--() {
447 BaseT::operator--();
448 findPrevValid();
449 return *this;
450 }
451};
452
453namespace detail {
454
455template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
456 using type = std::forward_iterator_tag;
457};
458
459template <> struct fwd_or_bidi_tag_impl<true> {
460 using type = std::bidirectional_iterator_tag;
461};
462
463/// Helper which sets its type member to forward_iterator_tag if the category
464/// of \p IterT does not derive from bidirectional_iterator_tag, and to
465/// bidirectional_iterator_tag otherwise.
466template <typename IterT> struct fwd_or_bidi_tag {
467 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
468 std::bidirectional_iterator_tag,
469 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
470};
471
472} // namespace detail
473
474/// Defines filter_iterator to a suitable specialization of
475/// filter_iterator_impl, based on the underlying iterator's category.
476template <typename WrappedIteratorT, typename PredicateT>
477using filter_iterator = filter_iterator_impl<
478 WrappedIteratorT, PredicateT,
479 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
480
481/// Convenience function that takes a range of elements and a predicate,
482/// and return a new filter_iterator range.
483///
484/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
485/// lifetime of that temporary is not kept by the returned range object, and the
486/// temporary is going to be dropped on the floor after the make_iterator_range
487/// full expression that contains this function call.
488template <typename RangeT, typename PredicateT>
489iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
490make_filter_range(RangeT &&Range, PredicateT Pred) {
491 using FilterIteratorT =
492 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
493 return make_range(
494 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
495 std::end(std::forward<RangeT>(Range)), Pred),
496 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
497 std::end(std::forward<RangeT>(Range)), Pred));
498}
499
500/// A pseudo-iterator adaptor that is designed to implement "early increment"
501/// style loops.
502///
503/// This is *not a normal iterator* and should almost never be used directly. It
504/// is intended primarily to be used with range based for loops and some range
505/// algorithms.
506///
507/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
508/// somewhere between them. The constraints of these iterators are:
509///
510/// - On construction or after being incremented, it is comparable and
511/// dereferencable. It is *not* incrementable.
512/// - After being dereferenced, it is neither comparable nor dereferencable, it
513/// is only incrementable.
514///
515/// This means you can only dereference the iterator once, and you can only
516/// increment it once between dereferences.
517template <typename WrappedIteratorT>
518class early_inc_iterator_impl
519 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
520 WrappedIteratorT, std::input_iterator_tag> {
521 using BaseT =
522 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
523 WrappedIteratorT, std::input_iterator_tag>;
524
525 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
526
527protected:
528#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
529 bool IsEarlyIncremented = false;
530#endif
531
532public:
533 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
534
535 using BaseT::operator*;
536 decltype(*std::declval<WrappedIteratorT>()) operator*() {
537#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
538 assert(!IsEarlyIncremented && "Cannot dereference twice!")(static_cast <bool> (!IsEarlyIncremented && "Cannot dereference twice!"
) ? void (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 538, __extension__ __PRETTY_FUNCTION__))
;
539 IsEarlyIncremented = true;
540#endif
541 return *(this->I)++;
542 }
543
544 using BaseT::operator++;
545 early_inc_iterator_impl &operator++() {
546#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
547 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")(static_cast <bool> (IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? void (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 547, __extension__ __PRETTY_FUNCTION__))
;
548 IsEarlyIncremented = false;
549#endif
550 return *this;
551 }
552
553 friend bool operator==(const early_inc_iterator_impl &LHS,
554 const early_inc_iterator_impl &RHS) {
555#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
556 assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!")(static_cast <bool> (!LHS.IsEarlyIncremented &&
"Cannot compare after dereferencing!") ? void (0) : __assert_fail
("!LHS.IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 556, __extension__ __PRETTY_FUNCTION__))
;
557#endif
558 return (const BaseT &)LHS == (const BaseT &)RHS;
559 }
560};
561
562/// Make a range that does early increment to allow mutation of the underlying
563/// range without disrupting iteration.
564///
565/// The underlying iterator will be incremented immediately after it is
566/// dereferenced, allowing deletion of the current node or insertion of nodes to
567/// not disrupt iteration provided they do not invalidate the *next* iterator --
568/// the current iterator can be invalidated.
569///
570/// This requires a very exact pattern of use that is only really suitable to
571/// range based for loops and other range algorithms that explicitly guarantee
572/// to dereference exactly once each element, and to increment exactly once each
573/// element.
574template <typename RangeT>
575iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
576make_early_inc_range(RangeT &&Range) {
577 using EarlyIncIteratorT =
578 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
579 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
580 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
581}
582
583// forward declarations required by zip_shortest/zip_first/zip_longest
584template <typename R, typename UnaryPredicate>
585bool all_of(R &&range, UnaryPredicate P);
586template <typename R, typename UnaryPredicate>
587bool any_of(R &&range, UnaryPredicate P);
588
589namespace detail {
590
591using std::declval;
592
593// We have to alias this since inlining the actual type at the usage site
594// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
595template<typename... Iters> struct ZipTupleType {
596 using type = std::tuple<decltype(*declval<Iters>())...>;
597};
598
599template <typename ZipType, typename... Iters>
600using zip_traits = iterator_facade_base<
601 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
602 typename std::iterator_traits<
603 Iters>::iterator_category...>::type,
604 // ^ TODO: Implement random access methods.
605 typename ZipTupleType<Iters...>::type,
606 typename std::iterator_traits<typename std::tuple_element<
607 0, std::tuple<Iters...>>::type>::difference_type,
608 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
609 // inner iterators have the same difference_type. It would fail if, for
610 // instance, the second field's difference_type were non-numeric while the
611 // first is.
612 typename ZipTupleType<Iters...>::type *,
613 typename ZipTupleType<Iters...>::type>;
614
615template <typename ZipType, typename... Iters>
616struct zip_common : public zip_traits<ZipType, Iters...> {
617 using Base = zip_traits<ZipType, Iters...>;
618 using value_type = typename Base::value_type;
619
620 std::tuple<Iters...> iterators;
621
622protected:
623 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
624 return value_type(*std::get<Ns>(iterators)...);
625 }
626
627 template <size_t... Ns>
628 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
629 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
630 }
631
632 template <size_t... Ns>
633 decltype(iterators) tup_dec(std::index_sequence<Ns...>) const {
634 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
635 }
636
637 template <size_t... Ns>
638 bool test_all_equals(const zip_common &other,
639 std::index_sequence<Ns...>) const {
640 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) ==
641 std::get<Ns>(other.iterators)...},
642 identity<bool>{});
643 }
644
645public:
646 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
647
648 value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
649
650 const value_type operator*() const {
651 return deref(std::index_sequence_for<Iters...>{});
652 }
653
654 ZipType &operator++() {
655 iterators = tup_inc(std::index_sequence_for<Iters...>{});
656 return *reinterpret_cast<ZipType *>(this);
657 }
658
659 ZipType &operator--() {
660 static_assert(Base::IsBidirectional,
661 "All inner iterators must be at least bidirectional.");
662 iterators = tup_dec(std::index_sequence_for<Iters...>{});
663 return *reinterpret_cast<ZipType *>(this);
664 }
665
666 /// Return true if all the iterator are matching `other`'s iterators.
667 bool all_equals(zip_common &other) {
668 return test_all_equals(other, std::index_sequence_for<Iters...>{});
669 }
670};
671
672template <typename... Iters>
673struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
674 using Base = zip_common<zip_first<Iters...>, Iters...>;
675
676 bool operator==(const zip_first<Iters...> &other) const {
677 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
678 }
679
680 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
681};
682
683template <typename... Iters>
684class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
685 template <size_t... Ns>
686 bool test(const zip_shortest<Iters...> &other,
687 std::index_sequence<Ns...>) const {
688 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
689 std::get<Ns>(other.iterators)...},
690 identity<bool>{});
691 }
692
693public:
694 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
695
696 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
697
698 bool operator==(const zip_shortest<Iters...> &other) const {
699 return !test(other, std::index_sequence_for<Iters...>{});
700 }
701};
702
703template <template <typename...> class ItType, typename... Args> class zippy {
704public:
705 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
706 using iterator_category = typename iterator::iterator_category;
707 using value_type = typename iterator::value_type;
708 using difference_type = typename iterator::difference_type;
709 using pointer = typename iterator::pointer;
710 using reference = typename iterator::reference;
711
712private:
713 std::tuple<Args...> ts;
714
715 template <size_t... Ns>
716 iterator begin_impl(std::index_sequence<Ns...>) const {
717 return iterator(std::begin(std::get<Ns>(ts))...);
718 }
719 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
720 return iterator(std::end(std::get<Ns>(ts))...);
721 }
722
723public:
724 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
725
726 iterator begin() const {
727 return begin_impl(std::index_sequence_for<Args...>{});
728 }
729 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
730};
731
732} // end namespace detail
733
734/// zip iterator for two or more iteratable types.
735template <typename T, typename U, typename... Args>
736detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
737 Args &&... args) {
738 return detail::zippy<detail::zip_shortest, T, U, Args...>(
739 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
740}
741
742/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
743/// be the shortest.
744template <typename T, typename U, typename... Args>
745detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
746 Args &&... args) {
747 return detail::zippy<detail::zip_first, T, U, Args...>(
748 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
749}
750
751namespace detail {
752template <typename Iter>
753Iter next_or_end(const Iter &I, const Iter &End) {
754 if (I == End)
755 return End;
756 return std::next(I);
757}
758
759template <typename Iter>
760auto deref_or_none(const Iter &I, const Iter &End) -> llvm::Optional<
761 std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
762 if (I == End)
763 return None;
764 return *I;
765}
766
767template <typename Iter> struct ZipLongestItemType {
768 using type =
769 llvm::Optional<typename std::remove_const<typename std::remove_reference<
770 decltype(*std::declval<Iter>())>::type>::type>;
771};
772
773template <typename... Iters> struct ZipLongestTupleType {
774 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
775};
776
777template <typename... Iters>
778class zip_longest_iterator
779 : public iterator_facade_base<
780 zip_longest_iterator<Iters...>,
781 typename std::common_type<
782 std::forward_iterator_tag,
783 typename std::iterator_traits<Iters>::iterator_category...>::type,
784 typename ZipLongestTupleType<Iters...>::type,
785 typename std::iterator_traits<typename std::tuple_element<
786 0, std::tuple<Iters...>>::type>::difference_type,
787 typename ZipLongestTupleType<Iters...>::type *,
788 typename ZipLongestTupleType<Iters...>::type> {
789public:
790 using value_type = typename ZipLongestTupleType<Iters...>::type;
791
792private:
793 std::tuple<Iters...> iterators;
794 std::tuple<Iters...> end_iterators;
795
796 template <size_t... Ns>
797 bool test(const zip_longest_iterator<Iters...> &other,
798 std::index_sequence<Ns...>) const {
799 return llvm::any_of(
800 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
801 std::get<Ns>(other.iterators)...},
802 identity<bool>{});
803 }
804
805 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
806 return value_type(
807 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
808 }
809
810 template <size_t... Ns>
811 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
812 return std::tuple<Iters...>(
813 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
814 }
815
816public:
817 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
818 : iterators(std::forward<Iters>(ts.first)...),
819 end_iterators(std::forward<Iters>(ts.second)...) {}
820
821 value_type operator*() { return deref(std::index_sequence_for<Iters...>{}); }
822
823 value_type operator*() const {
824 return deref(std::index_sequence_for<Iters...>{});
825 }
826
827 zip_longest_iterator<Iters...> &operator++() {
828 iterators = tup_inc(std::index_sequence_for<Iters...>{});
829 return *this;
830 }
831
832 bool operator==(const zip_longest_iterator<Iters...> &other) const {
833 return !test(other, std::index_sequence_for<Iters...>{});
834 }
835};
836
837template <typename... Args> class zip_longest_range {
838public:
839 using iterator =
840 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
841 using iterator_category = typename iterator::iterator_category;
842 using value_type = typename iterator::value_type;
843 using difference_type = typename iterator::difference_type;
844 using pointer = typename iterator::pointer;
845 using reference = typename iterator::reference;
846
847private:
848 std::tuple<Args...> ts;
849
850 template <size_t... Ns>
851 iterator begin_impl(std::index_sequence<Ns...>) const {
852 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
853 adl_end(std::get<Ns>(ts)))...);
854 }
855
856 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
857 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
858 adl_end(std::get<Ns>(ts)))...);
859 }
860
861public:
862 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
863
864 iterator begin() const {
865 return begin_impl(std::index_sequence_for<Args...>{});
866 }
867 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
868};
869} // namespace detail
870
871/// Iterate over two or more iterators at the same time. Iteration continues
872/// until all iterators reach the end. The llvm::Optional only contains a value
873/// if the iterator has not reached the end.
874template <typename T, typename U, typename... Args>
875detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
876 Args &&... args) {
877 return detail::zip_longest_range<T, U, Args...>(
878 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
879}
880
881/// Iterator wrapper that concatenates sequences together.
882///
883/// This can concatenate different iterators, even with different types, into
884/// a single iterator provided the value types of all the concatenated
885/// iterators expose `reference` and `pointer` types that can be converted to
886/// `ValueT &` and `ValueT *` respectively. It doesn't support more
887/// interesting/customized pointer or reference types.
888///
889/// Currently this only supports forward or higher iterator categories as
890/// inputs and always exposes a forward iterator interface.
891template <typename ValueT, typename... IterTs>
892class concat_iterator
893 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
894 std::forward_iterator_tag, ValueT> {
895 using BaseT = typename concat_iterator::iterator_facade_base;
896
897 /// We store both the current and end iterators for each concatenated
898 /// sequence in a tuple of pairs.
899 ///
900 /// Note that something like iterator_range seems nice at first here, but the
901 /// range properties are of little benefit and end up getting in the way
902 /// because we need to do mutation on the current iterators.
903 std::tuple<IterTs...> Begins;
904 std::tuple<IterTs...> Ends;
905
906 /// Attempts to increment a specific iterator.
907 ///
908 /// Returns true if it was able to increment the iterator. Returns false if
909 /// the iterator is already at the end iterator.
910 template <size_t Index> bool incrementHelper() {
911 auto &Begin = std::get<Index>(Begins);
912 auto &End = std::get<Index>(Ends);
913 if (Begin == End)
914 return false;
915
916 ++Begin;
917 return true;
918 }
919
920 /// Increments the first non-end iterator.
921 ///
922 /// It is an error to call this with all iterators at the end.
923 template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
924 // Build a sequence of functions to increment each iterator if possible.
925 bool (concat_iterator::*IncrementHelperFns[])() = {
926 &concat_iterator::incrementHelper<Ns>...};
927
928 // Loop over them, and stop as soon as we succeed at incrementing one.
929 for (auto &IncrementHelperFn : IncrementHelperFns)
930 if ((this->*IncrementHelperFn)())
931 return;
932
933 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 933)
;
934 }
935
936 /// Returns null if the specified iterator is at the end. Otherwise,
937 /// dereferences the iterator and returns the address of the resulting
938 /// reference.
939 template <size_t Index> ValueT *getHelper() const {
940 auto &Begin = std::get<Index>(Begins);
941 auto &End = std::get<Index>(Ends);
942 if (Begin == End)
943 return nullptr;
944
945 return &*Begin;
946 }
947
948 /// Finds the first non-end iterator, dereferences, and returns the resulting
949 /// reference.
950 ///
951 /// It is an error to call this with all iterators at the end.
952 template <size_t... Ns> ValueT &get(std::index_sequence<Ns...>) const {
953 // Build a sequence of functions to get from iterator if possible.
954 ValueT *(concat_iterator::*GetHelperFns[])() const = {
955 &concat_iterator::getHelper<Ns>...};
956
957 // Loop over them, and return the first result we find.
958 for (auto &GetHelperFn : GetHelperFns)
959 if (ValueT *P = (this->*GetHelperFn)())
960 return *P;
961
962 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 962)
;
963 }
964
965public:
966 /// Constructs an iterator from a sequence of ranges.
967 ///
968 /// We need the full range to know how to switch between each of the
969 /// iterators.
970 template <typename... RangeTs>
971 explicit concat_iterator(RangeTs &&... Ranges)
972 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
973
974 using BaseT::operator++;
975
976 concat_iterator &operator++() {
977 increment(std::index_sequence_for<IterTs...>());
978 return *this;
979 }
980
981 ValueT &operator*() const {
982 return get(std::index_sequence_for<IterTs...>());
983 }
984
985 bool operator==(const concat_iterator &RHS) const {
986 return Begins == RHS.Begins && Ends == RHS.Ends;
987 }
988};
989
990namespace detail {
991
992/// Helper to store a sequence of ranges being concatenated and access them.
993///
994/// This is designed to facilitate providing actual storage when temporaries
995/// are passed into the constructor such that we can use it as part of range
996/// based for loops.
997template <typename ValueT, typename... RangeTs> class concat_range {
998public:
999 using iterator =
1000 concat_iterator<ValueT,
1001 decltype(std::begin(std::declval<RangeTs &>()))...>;
1002
1003private:
1004 std::tuple<RangeTs...> Ranges;
1005
1006 template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
1007 return iterator(std::get<Ns>(Ranges)...);
1008 }
1009 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
1010 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1011 std::end(std::get<Ns>(Ranges)))...);
1012 }
1013
1014public:
1015 concat_range(RangeTs &&... Ranges)
1016 : Ranges(std::forward<RangeTs>(Ranges)...) {}
1017
1018 iterator begin() { return begin_impl(std::index_sequence_for<RangeTs...>{}); }
1019 iterator end() { return end_impl(std::index_sequence_for<RangeTs...>{}); }
1020};
1021
1022} // end namespace detail
1023
1024/// Concatenated range across two or more ranges.
1025///
1026/// The desired value type must be explicitly specified.
1027template <typename ValueT, typename... RangeTs>
1028detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
1029 static_assert(sizeof...(RangeTs) > 1,
1030 "Need more than one range to concatenate!");
1031 return detail::concat_range<ValueT, RangeTs...>(
1032 std::forward<RangeTs>(Ranges)...);
1033}
1034
1035/// A utility class used to implement an iterator that contains some base object
1036/// and an index. The iterator moves the index but keeps the base constant.
1037template <typename DerivedT, typename BaseT, typename T,
1038 typename PointerT = T *, typename ReferenceT = T &>
1039class indexed_accessor_iterator
1040 : public llvm::iterator_facade_base<DerivedT,
1041 std::random_access_iterator_tag, T,
1042 std::ptrdiff_t, PointerT, ReferenceT> {
1043public:
1044 ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
1045 assert(base == rhs.base && "incompatible iterators")(static_cast <bool> (base == rhs.base && "incompatible iterators"
) ? void (0) : __assert_fail ("base == rhs.base && \"incompatible iterators\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 1045, __extension__ __PRETTY_FUNCTION__))
;
1046 return index - rhs.index;
1047 }
1048 bool operator==(const indexed_accessor_iterator &rhs) const {
1049 return base == rhs.base && index == rhs.index;
1050 }
1051 bool operator<(const indexed_accessor_iterator &rhs) const {
1052 assert(base == rhs.base && "incompatible iterators")(static_cast <bool> (base == rhs.base && "incompatible iterators"
) ? void (0) : __assert_fail ("base == rhs.base && \"incompatible iterators\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 1052, __extension__ __PRETTY_FUNCTION__))
;
1053 return index < rhs.index;
1054 }
1055
1056 DerivedT &operator+=(ptrdiff_t offset) {
1057 this->index += offset;
1058 return static_cast<DerivedT &>(*this);
1059 }
1060 DerivedT &operator-=(ptrdiff_t offset) {
1061 this->index -= offset;
1062 return static_cast<DerivedT &>(*this);
1063 }
1064
1065 /// Returns the current index of the iterator.
1066 ptrdiff_t getIndex() const { return index; }
1067
1068 /// Returns the current base of the iterator.
1069 const BaseT &getBase() const { return base; }
1070
1071protected:
1072 indexed_accessor_iterator(BaseT base, ptrdiff_t index)
1073 : base(base), index(index) {}
1074 BaseT base;
1075 ptrdiff_t index;
1076};
1077
1078namespace detail {
1079/// The class represents the base of a range of indexed_accessor_iterators. It
1080/// provides support for many different range functionalities, e.g.
1081/// drop_front/slice/etc.. Derived range classes must implement the following
1082/// static methods:
1083/// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
1084/// - Dereference an iterator pointing to the base object at the given
1085/// index.
1086/// * BaseT offset_base(const BaseT &base, ptrdiff_t index)
1087/// - Return a new base that is offset from the provide base by 'index'
1088/// elements.
1089template <typename DerivedT, typename BaseT, typename T,
1090 typename PointerT = T *, typename ReferenceT = T &>
1091class indexed_accessor_range_base {
1092public:
1093 using RangeBaseT =
1094 indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, ReferenceT>;
1095
1096 /// An iterator element of this range.
1097 class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
1098 PointerT, ReferenceT> {
1099 public:
1100 // Index into this iterator, invoking a static method on the derived type.
1101 ReferenceT operator*() const {
1102 return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
1103 }
1104
1105 private:
1106 iterator(BaseT owner, ptrdiff_t curIndex)
1107 : indexed_accessor_iterator<iterator, BaseT, T, PointerT, ReferenceT>(
1108 owner, curIndex) {}
1109
1110 /// Allow access to the constructor.
1111 friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1112 ReferenceT>;
1113 };
1114
1115 indexed_accessor_range_base(iterator begin, iterator end)
1116 : base(offset_base(begin.getBase(), begin.getIndex())),
1117 count(end.getIndex() - begin.getIndex()) {}
1118 indexed_accessor_range_base(const iterator_range<iterator> &range)
1119 : indexed_accessor_range_base(range.begin(), range.end()) {}
1120 indexed_accessor_range_base(BaseT base, ptrdiff_t count)
1121 : base(base), count(count) {}
1122
1123 iterator begin() const { return iterator(base, 0); }
1124 iterator end() const { return iterator(base, count); }
1125 ReferenceT operator[](size_t Index) const {
1126 assert(Index < size() && "invalid index for value range")(static_cast <bool> (Index < size() && "invalid index for value range"
) ? void (0) : __assert_fail ("Index < size() && \"invalid index for value range\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 1126, __extension__ __PRETTY_FUNCTION__))
;
1127 return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
1128 }
1129 ReferenceT front() const {
1130 assert(!empty() && "expected non-empty range")(static_cast <bool> (!empty() && "expected non-empty range"
) ? void (0) : __assert_fail ("!empty() && \"expected non-empty range\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 1130, __extension__ __PRETTY_FUNCTION__))
;
1131 return (*this)[0];
1132 }
1133 ReferenceT back() const {
1134 assert(!empty() && "expected non-empty range")(static_cast <bool> (!empty() && "expected non-empty range"
) ? void (0) : __assert_fail ("!empty() && \"expected non-empty range\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 1134, __extension__ __PRETTY_FUNCTION__))
;
1135 return (*this)[size() - 1];
1136 }
1137
1138 /// Compare this range with another.
1139 template <typename OtherT> bool operator==(const OtherT &other) const {
1140 return size() ==
1141 static_cast<size_t>(std::distance(other.begin(), other.end())) &&
1142 std::equal(begin(), end(), other.begin());
1143 }
1144 template <typename OtherT> bool operator!=(const OtherT &other) const {
1145 return !(*this == other);
1146 }
1147
1148 /// Return the size of this range.
1149 size_t size() const { return count; }
1150
1151 /// Return if the range is empty.
1152 bool empty() const { return size() == 0; }
1153
1154 /// Drop the first N elements, and keep M elements.
1155 DerivedT slice(size_t n, size_t m) const {
1156 assert(n + m <= size() && "invalid size specifiers")(static_cast <bool> (n + m <= size() && "invalid size specifiers"
) ? void (0) : __assert_fail ("n + m <= size() && \"invalid size specifiers\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 1156, __extension__ __PRETTY_FUNCTION__))
;
1157 return DerivedT(offset_base(base, n), m);
1158 }
1159
1160 /// Drop the first n elements.
1161 DerivedT drop_front(size_t n = 1) const {
1162 assert(size() >= n && "Dropping more elements than exist")(static_cast <bool> (size() >= n && "Dropping more elements than exist"
) ? void (0) : __assert_fail ("size() >= n && \"Dropping more elements than exist\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 1162, __extension__ __PRETTY_FUNCTION__))
;
1163 return slice(n, size() - n);
1164 }
1165 /// Drop the last n elements.
1166 DerivedT drop_back(size_t n = 1) const {
1167 assert(size() >= n && "Dropping more elements than exist")(static_cast <bool> (size() >= n && "Dropping more elements than exist"
) ? void (0) : __assert_fail ("size() >= n && \"Dropping more elements than exist\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 1167, __extension__ __PRETTY_FUNCTION__))
;
1168 return DerivedT(base, size() - n);
1169 }
1170
1171 /// Take the first n elements.
1172 DerivedT take_front(size_t n = 1) const {
1173 return n < size() ? drop_back(size() - n)
1174 : static_cast<const DerivedT &>(*this);
1175 }
1176
1177 /// Take the last n elements.
1178 DerivedT take_back(size_t n = 1) const {
1179 return n < size() ? drop_front(size() - n)
1180 : static_cast<const DerivedT &>(*this);
1181 }
1182
1183 /// Allow conversion to any type accepting an iterator_range.
1184 template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
1185 RangeT, iterator_range<iterator>>::value>>
1186 operator RangeT() const {
1187 return RangeT(iterator_range<iterator>(*this));
1188 }
1189
1190 /// Returns the base of this range.
1191 const BaseT &getBase() const { return base; }
1192
1193private:
1194 /// Offset the given base by the given amount.
1195 static BaseT offset_base(const BaseT &base, size_t n) {
1196 return n == 0 ? base : DerivedT::offset_base(base, n);
1197 }
1198
1199protected:
1200 indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
1201 indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
1202 indexed_accessor_range_base &
1203 operator=(const indexed_accessor_range_base &) = default;
1204
1205 /// The base that owns the provided range of values.
1206 BaseT base;
1207 /// The size from the owning range.
1208 ptrdiff_t count;
1209};
1210} // end namespace detail
1211
1212/// This class provides an implementation of a range of
1213/// indexed_accessor_iterators where the base is not indexable. Ranges with
1214/// bases that are offsetable should derive from indexed_accessor_range_base
1215/// instead. Derived range classes are expected to implement the following
1216/// static method:
1217/// * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
1218/// - Dereference an iterator pointing to a parent base at the given index.
1219template <typename DerivedT, typename BaseT, typename T,
1220 typename PointerT = T *, typename ReferenceT = T &>
1221class indexed_accessor_range
1222 : public detail::indexed_accessor_range_base<
1223 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
1224public:
1225 indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
1226 : detail::indexed_accessor_range_base<
1227 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
1228 std::make_pair(base, startIndex), count) {}
1229 using detail::indexed_accessor_range_base<
1230 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
1231 ReferenceT>::indexed_accessor_range_base;
1232
1233 /// Returns the current base of the range.
1234 const BaseT &getBase() const { return this->base.first; }
1235
1236 /// Returns the current start index of the range.
1237 ptrdiff_t getStartIndex() const { return this->base.second; }
1238
1239 /// See `detail::indexed_accessor_range_base` for details.
1240 static std::pair<BaseT, ptrdiff_t>
1241 offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
1242 // We encode the internal base as a pair of the derived base and a start
1243 // index into the derived base.
1244 return std::make_pair(base.first, base.second + index);
1245 }
1246 /// See `detail::indexed_accessor_range_base` for details.
1247 static ReferenceT
1248 dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
1249 ptrdiff_t index) {
1250 return DerivedT::dereference(base.first, base.second + index);
1251 }
1252};
1253
1254namespace detail {
1255/// Return a reference to the first or second member of a reference. Otherwise,
1256/// return a copy of the member of a temporary.
1257///
1258/// When passing a range whose iterators return values instead of references,
1259/// the reference must be dropped from `decltype((elt.first))`, which will
1260/// always be a reference, to avoid returning a reference to a temporary.
1261template <typename EltTy, typename FirstTy> class first_or_second_type {
1262public:
1263 using type =
1264 typename std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
1265 std::remove_reference_t<FirstTy>>;
1266};
1267} // end namespace detail
1268
1269/// Given a container of pairs, return a range over the first elements.
1270template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
1271 using EltTy = decltype((*std::begin(c)));
1272 return llvm::map_range(std::forward<ContainerTy>(c),
1273 [](EltTy elt) -> typename detail::first_or_second_type<
1274 EltTy, decltype((elt.first))>::type {
1275 return elt.first;
1276 });
1277}
1278
1279/// Given a container of pairs, return a range over the second elements.
1280template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
1281 using EltTy = decltype((*std::begin(c)));
1282 return llvm::map_range(
1283 std::forward<ContainerTy>(c),
1284 [](EltTy elt) ->
1285 typename detail::first_or_second_type<EltTy,
1286 decltype((elt.second))>::type {
1287 return elt.second;
1288 });
1289}
1290
1291//===----------------------------------------------------------------------===//
1292// Extra additions to <utility>
1293//===----------------------------------------------------------------------===//
1294
1295/// Function object to check whether the first component of a std::pair
1296/// compares less than the first component of another std::pair.
1297struct less_first {
1298 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1299 return std::less<>()(lhs.first, rhs.first);
1300 }
1301};
1302
1303/// Function object to check whether the second component of a std::pair
1304/// compares less than the second component of another std::pair.
1305struct less_second {
1306 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1307 return std::less<>()(lhs.second, rhs.second);
1308 }
1309};
1310
1311/// \brief Function object to apply a binary function to the first component of
1312/// a std::pair.
1313template<typename FuncTy>
1314struct on_first {
1315 FuncTy func;
1316
1317 template <typename T>
1318 decltype(auto) operator()(const T &lhs, const T &rhs) const {
1319 return func(lhs.first, rhs.first);
1320 }
1321};
1322
1323/// Utility type to build an inheritance chain that makes it easy to rank
1324/// overload candidates.
1325template <int N> struct rank : rank<N - 1> {};
1326template <> struct rank<0> {};
1327
1328/// traits class for checking whether type T is one of any of the given
1329/// types in the variadic list.
1330template <typename T, typename... Ts>
1331using is_one_of = disjunction<std::is_same<T, Ts>...>;
1332
1333/// traits class for checking whether type T is a base class for all
1334/// the given types in the variadic list.
1335template <typename T, typename... Ts>
1336using are_base_of = conjunction<std::is_base_of<T, Ts>...>;
1337
1338namespace detail {
1339template <typename... Ts> struct Visitor;
1340
1341template <typename HeadT, typename... TailTs>
1342struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
1343 explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
1344 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
1345 Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
1346 using remove_cvref_t<HeadT>::operator();
1347 using Visitor<TailTs...>::operator();
1348};
1349
1350template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
1351 explicit constexpr Visitor(HeadT &&Head)
1352 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
1353 using remove_cvref_t<HeadT>::operator();
1354};
1355} // namespace detail
1356
1357/// Returns an opaquely-typed Callable object whose operator() overload set is
1358/// the sum of the operator() overload sets of each CallableT in CallableTs.
1359///
1360/// The type of the returned object derives from each CallableT in CallableTs.
1361/// The returned object is constructed by invoking the appropriate copy or move
1362/// constructor of each CallableT, as selected by overload resolution on the
1363/// corresponding argument to makeVisitor.
1364///
1365/// Example:
1366///
1367/// \code
1368/// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
1369/// [](int i) { return "int"; },
1370/// [](std::string s) { return "str"; });
1371/// auto a = visitor(42); // `a` is now "int".
1372/// auto b = visitor("foo"); // `b` is now "str".
1373/// auto c = visitor(3.14f); // `c` is now "unhandled type".
1374/// \endcode
1375///
1376/// Example of making a visitor with a lambda which captures a move-only type:
1377///
1378/// \code
1379/// std::unique_ptr<FooHandler> FH = /* ... */;
1380/// auto visitor = makeVisitor(
1381/// [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
1382/// [](int i) { return i; },
1383/// [](std::string s) { return atoi(s); });
1384/// \endcode
1385template <typename... CallableTs>
1386constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
1387 return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
1388}
1389
1390//===----------------------------------------------------------------------===//
1391// Extra additions for arrays
1392//===----------------------------------------------------------------------===//
1393
1394// We have a copy here so that LLVM behaves the same when using different
1395// standard libraries.
1396template <class Iterator, class RNG>
1397void shuffle(Iterator first, Iterator last, RNG &&g) {
1398 // It would be better to use a std::uniform_int_distribution,
1399 // but that would be stdlib dependent.
1400 typedef
1401 typename std::iterator_traits<Iterator>::difference_type difference_type;
1402 for (auto size = last - first; size > 1; ++first, (void)--size) {
1403 difference_type offset = g() % size;
1404 // Avoid self-assignment due to incorrect assertions in libstdc++
1405 // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
1406 if (offset != difference_type(0))
1407 std::iter_swap(first, first + offset);
1408 }
1409}
1410
1411/// Find the length of an array.
1412template <class T, std::size_t N>
1413constexpr inline size_t array_lengthof(T (&)[N]) {
1414 return N;
1415}
1416
1417/// Adapt std::less<T> for array_pod_sort.
1418template<typename T>
1419inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1420 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1421 *reinterpret_cast<const T*>(P2)))
1422 return -1;
1423 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1424 *reinterpret_cast<const T*>(P1)))
1425 return 1;
1426 return 0;
1427}
1428
1429/// get_array_pod_sort_comparator - This is an internal helper function used to
1430/// get type deduction of T right.
1431template<typename T>
1432inline int (*get_array_pod_sort_comparator(const T &))
1433 (const void*, const void*) {
1434 return array_pod_sort_comparator<T>;
1435}
1436
1437#ifdef EXPENSIVE_CHECKS
1438namespace detail {
1439
1440inline unsigned presortShuffleEntropy() {
1441 static unsigned Result(std::random_device{}());
1442 return Result;
1443}
1444
1445template <class IteratorTy>
1446inline void presortShuffle(IteratorTy Start, IteratorTy End) {
1447 std::mt19937 Generator(presortShuffleEntropy());
1448 llvm::shuffle(Start, End, Generator);
1449}
1450
1451} // end namespace detail
1452#endif
1453
1454/// array_pod_sort - This sorts an array with the specified start and end
1455/// extent. This is just like std::sort, except that it calls qsort instead of
1456/// using an inlined template. qsort is slightly slower than std::sort, but
1457/// most sorts are not performance critical in LLVM and std::sort has to be
1458/// template instantiated for each type, leading to significant measured code
1459/// bloat. This function should generally be used instead of std::sort where
1460/// possible.
1461///
1462/// This function assumes that you have simple POD-like types that can be
1463/// compared with std::less and can be moved with memcpy. If this isn't true,
1464/// you should use std::sort.
1465///
1466/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1467/// default to std::less.
1468template<class IteratorTy>
1469inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1470 // Don't inefficiently call qsort with one element or trigger undefined
1471 // behavior with an empty sequence.
1472 auto NElts = End - Start;
1473 if (NElts <= 1) return;
1474#ifdef EXPENSIVE_CHECKS
1475 detail::presortShuffle<IteratorTy>(Start, End);
1476#endif
1477 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1478}
1479
1480template <class IteratorTy>
1481inline void array_pod_sort(
1482 IteratorTy Start, IteratorTy End,
1483 int (*Compare)(
1484 const typename std::iterator_traits<IteratorTy>::value_type *,
1485 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1486 // Don't inefficiently call qsort with one element or trigger undefined
1487 // behavior with an empty sequence.
1488 auto NElts = End - Start;
1489 if (NElts <= 1) return;
1490#ifdef EXPENSIVE_CHECKS
1491 detail::presortShuffle<IteratorTy>(Start, End);
1492#endif
1493 qsort(&*Start, NElts, sizeof(*Start),
1494 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1495}
1496
1497namespace detail {
1498template <typename T>
1499// We can use qsort if the iterator type is a pointer and the underlying value
1500// is trivially copyable.
1501using sort_trivially_copyable = conjunction<
1502 std::is_pointer<T>,
1503 std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
1504} // namespace detail
1505
1506// Provide wrappers to std::sort which shuffle the elements before sorting
1507// to help uncover non-deterministic behavior (PR35135).
1508template <typename IteratorTy,
1509 std::enable_if_t<!detail::sort_trivially_copyable<IteratorTy>::value,
1510 int> = 0>
1511inline void sort(IteratorTy Start, IteratorTy End) {
1512#ifdef EXPENSIVE_CHECKS
1513 detail::presortShuffle<IteratorTy>(Start, End);
1514#endif
1515 std::sort(Start, End);
1516}
1517
1518// Forward trivially copyable types to array_pod_sort. This avoids a large
1519// amount of code bloat for a minor performance hit.
1520template <typename IteratorTy,
1521 std::enable_if_t<detail::sort_trivially_copyable<IteratorTy>::value,
1522 int> = 0>
1523inline void sort(IteratorTy Start, IteratorTy End) {
1524 array_pod_sort(Start, End);
1525}
1526
1527template <typename Container> inline void sort(Container &&C) {
1528 llvm::sort(adl_begin(C), adl_end(C));
1529}
1530
1531template <typename IteratorTy, typename Compare>
1532inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1533#ifdef EXPENSIVE_CHECKS
1534 detail::presortShuffle<IteratorTy>(Start, End);
1535#endif
1536 std::sort(Start, End, Comp);
1537}
1538
1539template <typename Container, typename Compare>
1540inline void sort(Container &&C, Compare Comp) {
1541 llvm::sort(adl_begin(C), adl_end(C), Comp);
1542}
1543
1544//===----------------------------------------------------------------------===//
1545// Extra additions to <algorithm>
1546//===----------------------------------------------------------------------===//
1547
1548/// Get the size of a range. This is a wrapper function around std::distance
1549/// which is only enabled when the operation is O(1).
1550template <typename R>
1551auto size(R &&Range,
1552 std::enable_if_t<
1553 std::is_base_of<std::random_access_iterator_tag,
1554 typename std::iterator_traits<decltype(
1555 Range.begin())>::iterator_category>::value,
1556 void> * = nullptr) {
1557 return std::distance(Range.begin(), Range.end());
1558}
1559
1560/// Provide wrappers to std::for_each which take ranges instead of having to
1561/// pass begin/end explicitly.
1562template <typename R, typename UnaryFunction>
1563UnaryFunction for_each(R &&Range, UnaryFunction F) {
1564 return std::for_each(adl_begin(Range), adl_end(Range), F);
1565}
1566
1567/// Provide wrappers to std::all_of which take ranges instead of having to pass
1568/// begin/end explicitly.
1569template <typename R, typename UnaryPredicate>
1570bool all_of(R &&Range, UnaryPredicate P) {
1571 return std::all_of(adl_begin(Range), adl_end(Range), P);
1572}
1573
1574/// Provide wrappers to std::any_of which take ranges instead of having to pass
1575/// begin/end explicitly.
1576template <typename R, typename UnaryPredicate>
1577bool any_of(R &&Range, UnaryPredicate P) {
1578 return std::any_of(adl_begin(Range), adl_end(Range), P);
1579}
1580
1581/// Provide wrappers to std::none_of which take ranges instead of having to pass
1582/// begin/end explicitly.
1583template <typename R, typename UnaryPredicate>
1584bool none_of(R &&Range, UnaryPredicate P) {
1585 return std::none_of(adl_begin(Range), adl_end(Range), P);
1586}
1587
1588/// Provide wrappers to std::find which take ranges instead of having to pass
1589/// begin/end explicitly.
1590template <typename R, typename T> auto find(R &&Range, const T &Val) {
1591 return std::find(adl_begin(Range), adl_end(Range), Val);
1592}
1593
1594/// Provide wrappers to std::find_if which take ranges instead of having to pass
1595/// begin/end explicitly.
1596template <typename R, typename UnaryPredicate>
1597auto find_if(R &&Range, UnaryPredicate P) {
1598 return std::find_if(adl_begin(Range), adl_end(Range), P);
1599}
1600
1601template <typename R, typename UnaryPredicate>
1602auto find_if_not(R &&Range, UnaryPredicate P) {
1603 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1604}
1605
1606/// Provide wrappers to std::remove_if which take ranges instead of having to
1607/// pass begin/end explicitly.
1608template <typename R, typename UnaryPredicate>
1609auto remove_if(R &&Range, UnaryPredicate P) {
1610 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1611}
1612
1613/// Provide wrappers to std::copy_if which take ranges instead of having to
1614/// pass begin/end explicitly.
1615template <typename R, typename OutputIt, typename UnaryPredicate>
1616OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1617 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1618}
1619
1620template <typename R, typename OutputIt>
1621OutputIt copy(R &&Range, OutputIt Out) {
1622 return std::copy(adl_begin(Range), adl_end(Range), Out);
1623}
1624
1625/// Provide wrappers to std::move which take ranges instead of having to
1626/// pass begin/end explicitly.
1627template <typename R, typename OutputIt>
1628OutputIt move(R &&Range, OutputIt Out) {
1629 return std::move(adl_begin(Range), adl_end(Range), Out);
1630}
1631
1632/// Wrapper function around std::find to detect if an element exists
1633/// in a container.
1634template <typename R, typename E>
1635bool is_contained(R &&Range, const E &Element) {
1636 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
43
Assuming the condition is false
44
Returning zero, which participates in a condition later
1637}
1638
1639/// Wrapper function around std::is_sorted to check if elements in a range \p R
1640/// are sorted with respect to a comparator \p C.
1641template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
1642 return std::is_sorted(adl_begin(Range), adl_end(Range), C);
1643}
1644
1645/// Wrapper function around std::is_sorted to check if elements in a range \p R
1646/// are sorted in non-descending order.
1647template <typename R> bool is_sorted(R &&Range) {
1648 return std::is_sorted(adl_begin(Range), adl_end(Range));
1649}
1650
1651/// Wrapper function around std::count to count the number of times an element
1652/// \p Element occurs in the given range \p Range.
1653template <typename R, typename E> auto count(R &&Range, const E &Element) {
1654 return std::count(adl_begin(Range), adl_end(Range), Element);
1655}
1656
1657/// Wrapper function around std::count_if to count the number of times an
1658/// element satisfying a given predicate occurs in a range.
1659template <typename R, typename UnaryPredicate>
1660auto count_if(R &&Range, UnaryPredicate P) {
1661 return std::count_if(adl_begin(Range), adl_end(Range), P);
1662}
1663
1664/// Wrapper function around std::transform to apply a function to a range and
1665/// store the result elsewhere.
1666template <typename R, typename OutputIt, typename UnaryFunction>
1667OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
1668 return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
1669}
1670
1671/// Provide wrappers to std::partition which take ranges instead of having to
1672/// pass begin/end explicitly.
1673template <typename R, typename UnaryPredicate>
1674auto partition(R &&Range, UnaryPredicate P) {
1675 return std::partition(adl_begin(Range), adl_end(Range), P);
1676}
1677
1678/// Provide wrappers to std::lower_bound which take ranges instead of having to
1679/// pass begin/end explicitly.
1680template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
1681 return std::lower_bound(adl_begin(Range), adl_end(Range),
1682 std::forward<T>(Value));
1683}
1684
1685template <typename R, typename T, typename Compare>
1686auto lower_bound(R &&Range, T &&Value, Compare C) {
1687 return std::lower_bound(adl_begin(Range), adl_end(Range),
1688 std::forward<T>(Value), C);
1689}
1690
1691/// Provide wrappers to std::upper_bound which take ranges instead of having to
1692/// pass begin/end explicitly.
1693template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
1694 return std::upper_bound(adl_begin(Range), adl_end(Range),
1695 std::forward<T>(Value));
1696}
1697
1698template <typename R, typename T, typename Compare>
1699auto upper_bound(R &&Range, T &&Value, Compare C) {
1700 return std::upper_bound(adl_begin(Range), adl_end(Range),
1701 std::forward<T>(Value), C);
1702}
1703
1704template <typename R>
1705void stable_sort(R &&Range) {
1706 std::stable_sort(adl_begin(Range), adl_end(Range));
1707}
1708
1709template <typename R, typename Compare>
1710void stable_sort(R &&Range, Compare C) {
1711 std::stable_sort(adl_begin(Range), adl_end(Range), C);
1712}
1713
1714/// Binary search for the first iterator in a range where a predicate is false.
1715/// Requires that C is always true below some limit, and always false above it.
1716template <typename R, typename Predicate,
1717 typename Val = decltype(*adl_begin(std::declval<R>()))>
1718auto partition_point(R &&Range, Predicate P) {
1719 return std::partition_point(adl_begin(Range), adl_end(Range), P);
1720}
1721
1722template<typename Range, typename Predicate>
1723auto unique(Range &&R, Predicate P) {
1724 return std::unique(adl_begin(R), adl_end(R), P);
1725}
1726
1727/// Wrapper function around std::equal to detect if pair-wise elements between
1728/// two ranges are the same.
1729template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
1730 return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
1731 adl_end(RRange));
1732}
1733
1734/// Wrapper function around std::equal to detect if all elements
1735/// in a container are same.
1736template <typename R>
1737bool is_splat(R &&Range) {
1738 size_t range_size = size(Range);
1739 return range_size != 0 && (range_size == 1 ||
1740 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1741}
1742
1743/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1744/// `erase_if` which is equivalent to:
1745///
1746/// C.erase(remove_if(C, pred), C.end());
1747///
1748/// This version works for any container with an erase method call accepting
1749/// two iterators.
1750template <typename Container, typename UnaryPredicate>
1751void erase_if(Container &C, UnaryPredicate P) {
1752 C.erase(remove_if(C, P), C.end());
1753}
1754
1755/// Wrapper function to remove a value from a container:
1756///
1757/// C.erase(remove(C.begin(), C.end(), V), C.end());
1758template <typename Container, typename ValueType>
1759void erase_value(Container &C, ValueType V) {
1760 C.erase(std::remove(C.begin(), C.end(), V), C.end());
1761}
1762
1763/// Wrapper function to append a range to a container.
1764///
1765/// C.insert(C.end(), R.begin(), R.end());
1766template <typename Container, typename Range>
1767inline void append_range(Container &C, Range &&R) {
1768 C.insert(C.end(), R.begin(), R.end());
1769}
1770
1771/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1772/// the range [ValIt, ValEnd) (which is not from the same container).
1773template<typename Container, typename RandomAccessIterator>
1774void replace(Container &Cont, typename Container::iterator ContIt,
1775 typename Container::iterator ContEnd, RandomAccessIterator ValIt,
1776 RandomAccessIterator ValEnd) {
1777 while (true) {
1778 if (ValIt == ValEnd) {
1779 Cont.erase(ContIt, ContEnd);
1780 return;
1781 } else if (ContIt == ContEnd) {
1782 Cont.insert(ContIt, ValIt, ValEnd);
1783 return;
1784 }
1785 *ContIt++ = *ValIt++;
1786 }
1787}
1788
1789/// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
1790/// the range R.
1791template<typename Container, typename Range = std::initializer_list<
1792 typename Container::value_type>>
1793void replace(Container &Cont, typename Container::iterator ContIt,
1794 typename Container::iterator ContEnd, Range R) {
1795 replace(Cont, ContIt, ContEnd, R.begin(), R.end());
1796}
1797
1798/// An STL-style algorithm similar to std::for_each that applies a second
1799/// functor between every pair of elements.
1800///
1801/// This provides the control flow logic to, for example, print a
1802/// comma-separated list:
1803/// \code
1804/// interleave(names.begin(), names.end(),
1805/// [&](StringRef name) { os << name; },
1806/// [&] { os << ", "; });
1807/// \endcode
1808template <typename ForwardIterator, typename UnaryFunctor,
1809 typename NullaryFunctor,
1810 typename = typename std::enable_if<
1811 !std::is_constructible<StringRef, UnaryFunctor>::value &&
1812 !std::is_constructible<StringRef, NullaryFunctor>::value>::type>
1813inline void interleave(ForwardIterator begin, ForwardIterator end,
1814 UnaryFunctor each_fn, NullaryFunctor between_fn) {
1815 if (begin == end)
1816 return;
1817 each_fn(*begin);
1818 ++begin;
1819 for (; begin != end; ++begin) {
1820 between_fn();
1821 each_fn(*begin);
1822 }
1823}
1824
1825template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
1826 typename = typename std::enable_if<
1827 !std::is_constructible<StringRef, UnaryFunctor>::value &&
1828 !std::is_constructible<StringRef, NullaryFunctor>::value>::type>
1829inline void interleave(const Container &c, UnaryFunctor each_fn,
1830 NullaryFunctor between_fn) {
1831 interleave(c.begin(), c.end(), each_fn, between_fn);
1832}
1833
1834/// Overload of interleave for the common case of string separator.
1835template <typename Container, typename UnaryFunctor, typename StreamT,
1836 typename T = detail::ValueOfRange<Container>>
1837inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
1838 const StringRef &separator) {
1839 interleave(c.begin(), c.end(), each_fn, [&] { os << separator; });
1840}
1841template <typename Container, typename StreamT,
1842 typename T = detail::ValueOfRange<Container>>
1843inline void interleave(const Container &c, StreamT &os,
1844 const StringRef &separator) {
1845 interleave(
1846 c, os, [&](const T &a) { os << a; }, separator);
1847}
1848
1849template <typename Container, typename UnaryFunctor, typename StreamT,
1850 typename T = detail::ValueOfRange<Container>>
1851inline void interleaveComma(const Container &c, StreamT &os,
1852 UnaryFunctor each_fn) {
1853 interleave(c, os, each_fn, ", ");
1854}
1855template <typename Container, typename StreamT,
1856 typename T = detail::ValueOfRange<Container>>
1857inline void interleaveComma(const Container &c, StreamT &os) {
1858 interleaveComma(c, os, [&](const T &a) { os << a; });
1859}
1860
1861//===----------------------------------------------------------------------===//
1862// Extra additions to <memory>
1863//===----------------------------------------------------------------------===//
1864
1865struct FreeDeleter {
1866 void operator()(void* v) {
1867 ::free(v);
1868 }
1869};
1870
1871template<typename First, typename Second>
1872struct pair_hash {
1873 size_t operator()(const std::pair<First, Second> &P) const {
1874 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1875 }
1876};
1877
1878/// Binary functor that adapts to any other binary functor after dereferencing
1879/// operands.
1880template <typename T> struct deref {
1881 T func;
1882
1883 // Could be further improved to cope with non-derivable functors and
1884 // non-binary functors (should be a variadic template member function
1885 // operator()).
1886 template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
1887 assert(lhs)(static_cast <bool> (lhs) ? void (0) : __assert_fail ("lhs"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 1887, __extension__ __PRETTY_FUNCTION__))
;
1888 assert(rhs)(static_cast <bool> (rhs) ? void (0) : __assert_fail ("rhs"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 1888, __extension__ __PRETTY_FUNCTION__))
;
1889 return func(*lhs, *rhs);
1890 }
1891};
1892
1893namespace detail {
1894
1895template <typename R> class enumerator_iter;
1896
1897template <typename R> struct result_pair {
1898 using value_reference =
1899 typename std::iterator_traits<IterOfRange<R>>::reference;
1900
1901 friend class enumerator_iter<R>;
1902
1903 result_pair() = default;
1904 result_pair(std::size_t Index, IterOfRange<R> Iter)
1905 : Index(Index), Iter(Iter) {}
1906
1907 result_pair(const result_pair<R> &Other)
1908 : Index(Other.Index), Iter(Other.Iter) {}
1909 result_pair &operator=(const result_pair &Other) {
1910 Index = Other.Index;
1911 Iter = Other.Iter;
1912 return *this;
1913 }
1914
1915 std::size_t index() const { return Index; }
1916 const value_reference value() const { return *Iter; }
1917 value_reference value() { return *Iter; }
1918
1919private:
1920 std::size_t Index = std::numeric_limits<std::size_t>::max();
1921 IterOfRange<R> Iter;
1922};
1923
1924template <typename R>
1925class enumerator_iter
1926 : public iterator_facade_base<
1927 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1928 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1929 typename std::iterator_traits<IterOfRange<R>>::pointer,
1930 typename std::iterator_traits<IterOfRange<R>>::reference> {
1931 using result_type = result_pair<R>;
1932
1933public:
1934 explicit enumerator_iter(IterOfRange<R> EndIter)
1935 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1936
1937 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1938 : Result(Index, Iter) {}
1939
1940 result_type &operator*() { return Result; }
1941 const result_type &operator*() const { return Result; }
1942
1943 enumerator_iter &operator++() {
1944 assert(Result.Index != std::numeric_limits<size_t>::max())(static_cast <bool> (Result.Index != std::numeric_limits
<size_t>::max()) ? void (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 1944, __extension__ __PRETTY_FUNCTION__))
;
1945 ++Result.Iter;
1946 ++Result.Index;
1947 return *this;
1948 }
1949
1950 bool operator==(const enumerator_iter &RHS) const {
1951 // Don't compare indices here, only iterators. It's possible for an end
1952 // iterator to have different indices depending on whether it was created
1953 // by calling std::end() versus incrementing a valid iterator.
1954 return Result.Iter == RHS.Result.Iter;
1955 }
1956
1957 enumerator_iter(const enumerator_iter &Other) : Result(Other.Result) {}
1958 enumerator_iter &operator=(const enumerator_iter &Other) {
1959 Result = Other.Result;
1960 return *this;
1961 }
1962
1963private:
1964 result_type Result;
1965};
1966
1967template <typename R> class enumerator {
1968public:
1969 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1970
1971 enumerator_iter<R> begin() {
1972 return enumerator_iter<R>(0, std::begin(TheRange));
1973 }
1974
1975 enumerator_iter<R> end() {
1976 return enumerator_iter<R>(std::end(TheRange));
1977 }
1978
1979private:
1980 R TheRange;
1981};
1982
1983} // end namespace detail
1984
1985/// Given an input range, returns a new range whose values are are pair (A,B)
1986/// such that A is the 0-based index of the item in the sequence, and B is
1987/// the value from the original sequence. Example:
1988///
1989/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1990/// for (auto X : enumerate(Items)) {
1991/// printf("Item %d - %c\n", X.index(), X.value());
1992/// }
1993///
1994/// Output:
1995/// Item 0 - A
1996/// Item 1 - B
1997/// Item 2 - C
1998/// Item 3 - D
1999///
2000template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
2001 return detail::enumerator<R>(std::forward<R>(TheRange));
2002}
2003
2004namespace detail {
2005
2006template <typename F, typename Tuple, std::size_t... I>
2007decltype(auto) apply_tuple_impl(F &&f, Tuple &&t, std::index_sequence<I...>) {
2008 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
2009}
2010
2011} // end namespace detail
2012
2013/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
2014/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
2015/// return the result.
2016template <typename F, typename Tuple>
2017decltype(auto) apply_tuple(F &&f, Tuple &&t) {
2018 using Indices = std::make_index_sequence<
2019 std::tuple_size<typename std::decay<Tuple>::type>::value>;
2020
2021 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
2022 Indices{});
2023}
2024
2025namespace detail {
2026
2027template <typename Predicate, typename... Args>
2028bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
2029 auto z = zip(args...);
2030 auto it = z.begin();
2031 auto end = z.end();
2032 while (it != end) {
2033 if (!apply_tuple([&](auto &&...args) { return P(args...); }, *it))
2034 return false;
2035 ++it;
2036 }
2037 return it.all_equals(end);
2038}
2039
2040// Just an adaptor to switch the order of argument and have the predicate before
2041// the zipped inputs.
2042template <typename... ArgsThenPredicate, size_t... InputIndexes>
2043bool all_of_zip_predicate_last(
2044 std::tuple<ArgsThenPredicate...> argsThenPredicate,
2045 std::index_sequence<InputIndexes...>) {
2046 auto constexpr OutputIndex =
2047 std::tuple_size<decltype(argsThenPredicate)>::value - 1;
2048 return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
2049 std::get<InputIndexes>(argsThenPredicate)...);
2050}
2051
2052} // end namespace detail
2053
2054/// Compare two zipped ranges using the provided predicate (as last argument).
2055/// Return true if all elements satisfy the predicate and false otherwise.
2056// Return false if the zipped iterator aren't all at end (size mismatch).
2057template <typename... ArgsAndPredicate>
2058bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
2059 return detail::all_of_zip_predicate_last(
2060 std::forward_as_tuple(argsAndPredicate...),
2061 std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
2062}
2063
2064/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
2065/// time. Not meant for use with random-access iterators.
2066/// Can optionally take a predicate to filter lazily some items.
2067template <typename IterTy,
2068 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2069bool hasNItems(
2070 IterTy &&Begin, IterTy &&End, unsigned N,
2071 Pred &&ShouldBeCounted =
2072 [](const decltype(*std::declval<IterTy>()) &) { return true; },
2073 std::enable_if_t<
2074 !std::is_base_of<std::random_access_iterator_tag,
2075 typename std::iterator_traits<std::remove_reference_t<
2076 decltype(Begin)>>::iterator_category>::value,
2077 void> * = nullptr) {
2078 for (; N; ++Begin) {
2079 if (Begin == End)
2080 return false; // Too few.
2081 N -= ShouldBeCounted(*Begin);
2082 }
2083 for (; Begin != End; ++Begin)
2084 if (ShouldBeCounted(*Begin))
2085 return false; // Too many.
2086 return true;
2087}
2088
2089/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
2090/// time. Not meant for use with random-access iterators.
2091/// Can optionally take a predicate to lazily filter some items.
2092template <typename IterTy,
2093 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2094bool hasNItemsOrMore(
2095 IterTy &&Begin, IterTy &&End, unsigned N,
2096 Pred &&ShouldBeCounted =
2097 [](const decltype(*std::declval<IterTy>()) &) { return true; },
2098 std::enable_if_t<
2099 !std::is_base_of<std::random_access_iterator_tag,
2100 typename std::iterator_traits<std::remove_reference_t<
2101 decltype(Begin)>>::iterator_category>::value,
2102 void> * = nullptr) {
2103 for (; N; ++Begin) {
2104 if (Begin == End)
2105 return false; // Too few.
2106 N -= ShouldBeCounted(*Begin);
2107 }
2108 return true;
2109}
2110
2111/// Returns true if the sequence [Begin, End) has N or less items. Can
2112/// optionally take a predicate to lazily filter some items.
2113template <typename IterTy,
2114 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2115bool hasNItemsOrLess(
2116 IterTy &&Begin, IterTy &&End, unsigned N,
2117 Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
2118 return true;
2119 }) {
2120 assert(N != std::numeric_limits<unsigned>::max())(static_cast <bool> (N != std::numeric_limits<unsigned
>::max()) ? void (0) : __assert_fail ("N != std::numeric_limits<unsigned>::max()"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/ADT/STLExtras.h"
, 2120, __extension__ __PRETTY_FUNCTION__))
;
2121 return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
2122}
2123
2124/// Returns true if the given container has exactly N items
2125template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
2126 return hasNItems(std::begin(C), std::end(C), N);
2127}
2128
2129/// Returns true if the given container has N or more items
2130template <typename ContainerTy>
2131bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
2132 return hasNItemsOrMore(std::begin(C), std::end(C), N);
2133}
2134
2135/// Returns true if the given container has N or less items
2136template <typename ContainerTy>
2137bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
2138 return hasNItemsOrLess(std::begin(C), std::end(C), N);
2139}
2140
2141/// Returns a raw pointer that represents the same address as the argument.
2142///
2143/// This implementation can be removed once we move to C++20 where it's defined
2144/// as std::to_address().
2145///
2146/// The std::pointer_traits<>::to_address(p) variations of these overloads has
2147/// not been implemented.
2148template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
2149template <class T> constexpr T *to_address(T *P) { return P; }
2150
2151} // end namespace llvm
2152
2153#endif // LLVM_ADT_STLEXTRAS_H

/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h

1//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the MachineInstr class, which is the
10// basic representation for all target dependent machine instructions used by
11// the back end.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_MACHINEINSTR_H
16#define LLVM_CODEGEN_MACHINEINSTR_H
17
18#include "llvm/ADT/DenseMapInfo.h"
19#include "llvm/ADT/PointerSumType.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/ilist.h"
22#include "llvm/ADT/ilist_node.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineOperand.h"
26#include "llvm/CodeGen/TargetOpcodes.h"
27#include "llvm/IR/DebugLoc.h"
28#include "llvm/IR/InlineAsm.h"
29#include "llvm/IR/PseudoProbe.h"
30#include "llvm/MC/MCInstrDesc.h"
31#include "llvm/MC/MCSymbol.h"
32#include "llvm/Support/ArrayRecycler.h"
33#include "llvm/Support/TrailingObjects.h"
34#include <algorithm>
35#include <cassert>
36#include <cstdint>
37#include <utility>
38
39namespace llvm {
40
41class AAResults;
42template <typename T> class ArrayRef;
43class DIExpression;
44class DILocalVariable;
45class MachineBasicBlock;
46class MachineFunction;
47class MachineRegisterInfo;
48class ModuleSlotTracker;
49class raw_ostream;
50template <typename T> class SmallVectorImpl;
51class SmallBitVector;
52class StringRef;
53class TargetInstrInfo;
54class TargetRegisterClass;
55class TargetRegisterInfo;
56
57//===----------------------------------------------------------------------===//
58/// Representation of each machine instruction.
59///
60/// This class isn't a POD type, but it must have a trivial destructor. When a
61/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
62/// without having their destructor called.
63///
64class MachineInstr
65 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
66 ilist_sentinel_tracking<true>> {
67public:
68 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
69
70 /// Flags to specify different kinds of comments to output in
71 /// assembly code. These flags carry semantic information not
72 /// otherwise easily derivable from the IR text.
73 ///
74 enum CommentFlag {
75 ReloadReuse = 0x1, // higher bits are reserved for target dep comments.
76 NoSchedComment = 0x2,
77 TAsmComments = 0x4 // Target Asm comments should start from this value.
78 };
79
80 enum MIFlag {
81 NoFlags = 0,
82 FrameSetup = 1 << 0, // Instruction is used as a part of
83 // function frame setup code.
84 FrameDestroy = 1 << 1, // Instruction is used as a part of
85 // function frame destruction code.
86 BundledPred = 1 << 2, // Instruction has bundled predecessors.
87 BundledSucc = 1 << 3, // Instruction has bundled successors.
88 FmNoNans = 1 << 4, // Instruction does not support Fast
89 // math nan values.
90 FmNoInfs = 1 << 5, // Instruction does not support Fast
91 // math infinity values.
92 FmNsz = 1 << 6, // Instruction is not required to retain
93 // signed zero values.
94 FmArcp = 1 << 7, // Instruction supports Fast math
95 // reciprocal approximations.
96 FmContract = 1 << 8, // Instruction supports Fast math
97 // contraction operations like fma.
98 FmAfn = 1 << 9, // Instruction may map to Fast math
99 // instrinsic approximation.
100 FmReassoc = 1 << 10, // Instruction supports Fast math
101 // reassociation of operand order.
102 NoUWrap = 1 << 11, // Instruction supports binary operator
103 // no unsigned wrap.
104 NoSWrap = 1 << 12, // Instruction supports binary operator
105 // no signed wrap.
106 IsExact = 1 << 13, // Instruction supports division is
107 // known to be exact.
108 NoFPExcept = 1 << 14, // Instruction does not raise
109 // floatint-point exceptions.
110 NoMerge = 1 << 15, // Passes that drop source location info
111 // (e.g. branch folding) should skip
112 // this instruction.
113 };
114
115private:
116 const MCInstrDesc *MCID; // Instruction descriptor.
117 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
118
119 // Operands are allocated by an ArrayRecycler.
120 MachineOperand *Operands = nullptr; // Pointer to the first operand.
121 unsigned NumOperands = 0; // Number of operands on instruction.
122
123 uint16_t Flags = 0; // Various bits of additional
124 // information about machine
125 // instruction.
126
127 uint8_t AsmPrinterFlags = 0; // Various bits of information used by
128 // the AsmPrinter to emit helpful
129 // comments. This is *not* semantic
130 // information. Do not use this for
131 // anything other than to convey comment
132 // information to AsmPrinter.
133
134 // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
135 // to properly pack.
136 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
137 OperandCapacity CapOperands; // Capacity of the Operands array.
138
139 /// Internal implementation detail class that provides out-of-line storage for
140 /// extra info used by the machine instruction when this info cannot be stored
141 /// in-line within the instruction itself.
142 ///
143 /// This has to be defined eagerly due to the implementation constraints of
144 /// `PointerSumType` where it is used.
145 class ExtraInfo final
146 : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> {
147 public:
148 static ExtraInfo *create(BumpPtrAllocator &Allocator,
149 ArrayRef<MachineMemOperand *> MMOs,
150 MCSymbol *PreInstrSymbol = nullptr,
151 MCSymbol *PostInstrSymbol = nullptr,
152 MDNode *HeapAllocMarker = nullptr) {
153 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
154 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
155 bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
156 auto *Result = new (Allocator.Allocate(
157 totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>(
158 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
159 HasHeapAllocMarker),
160 alignof(ExtraInfo)))
161 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
162 HasHeapAllocMarker);
163
164 // Copy the actual data into the trailing objects.
165 std::copy(MMOs.begin(), MMOs.end(),
166 Result->getTrailingObjects<MachineMemOperand *>());
167
168 if (HasPreInstrSymbol)
169 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
170 if (HasPostInstrSymbol)
171 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
172 PostInstrSymbol;
173 if (HasHeapAllocMarker)
174 Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
175
176 return Result;
177 }
178
179 ArrayRef<MachineMemOperand *> getMMOs() const {
180 return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
181 }
182
183 MCSymbol *getPreInstrSymbol() const {
184 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
185 }
186
187 MCSymbol *getPostInstrSymbol() const {
188 return HasPostInstrSymbol
189 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
190 : nullptr;
191 }
192
193 MDNode *getHeapAllocMarker() const {
194 return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
195 }
196
197 private:
198 friend TrailingObjects;
199
200 // Description of the extra info, used to interpret the actual optional
201 // data appended.
202 //
203 // Note that this is not terribly space optimized. This leaves a great deal
204 // of flexibility to fit more in here later.
205 const int NumMMOs;
206 const bool HasPreInstrSymbol;
207 const bool HasPostInstrSymbol;
208 const bool HasHeapAllocMarker;
209
210 // Implement the `TrailingObjects` internal API.
211 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
212 return NumMMOs;
213 }
214 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
215 return HasPreInstrSymbol + HasPostInstrSymbol;
216 }
217 size_t numTrailingObjects(OverloadToken<MDNode *>) const {
218 return HasHeapAllocMarker;
219 }
220
221 // Just a boring constructor to allow us to initialize the sizes. Always use
222 // the `create` routine above.
223 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
224 bool HasHeapAllocMarker)
225 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
226 HasPostInstrSymbol(HasPostInstrSymbol),
227 HasHeapAllocMarker(HasHeapAllocMarker) {}
228 };
229
230 /// Enumeration of the kinds of inline extra info available. It is important
231 /// that the `MachineMemOperand` inline kind has a tag value of zero to make
232 /// it accessible as an `ArrayRef`.
233 enum ExtraInfoInlineKinds {
234 EIIK_MMO = 0,
235 EIIK_PreInstrSymbol,
236 EIIK_PostInstrSymbol,
237 EIIK_OutOfLine
238 };
239
240 // We store extra information about the instruction here. The common case is
241 // expected to be nothing or a single pointer (typically a MMO or a symbol).
242 // We work to optimize this common case by storing it inline here rather than
243 // requiring a separate allocation, but we fall back to an allocation when
244 // multiple pointers are needed.
245 PointerSumType<ExtraInfoInlineKinds,
246 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
247 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
248 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
249 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
250 Info;
251
252 DebugLoc debugLoc; // Source line information.
253
254 /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
255 /// defined by this instruction.
256 unsigned DebugInstrNum;
257
258 // Intrusive list support
259 friend struct ilist_traits<MachineInstr>;
260 friend struct ilist_callback_traits<MachineBasicBlock>;
261 void setParent(MachineBasicBlock *P) { Parent = P; }
262
263 /// This constructor creates a copy of the given
264 /// MachineInstr in the given MachineFunction.
265 MachineInstr(MachineFunction &, const MachineInstr &);
266
267 /// This constructor create a MachineInstr and add the implicit operands.
268 /// It reserves space for number of operands specified by
269 /// MCInstrDesc. An explicit DebugLoc is supplied.
270 MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
271 bool NoImp = false);
272
273 // MachineInstrs are pool-allocated and owned by MachineFunction.
274 friend class MachineFunction;
275
276 void
277 dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
278 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
279
280public:
281 MachineInstr(const MachineInstr &) = delete;
282 MachineInstr &operator=(const MachineInstr &) = delete;
283 // Use MachineFunction::DeleteMachineInstr() instead.
284 ~MachineInstr() = delete;
285
286 const MachineBasicBlock* getParent() const { return Parent; }
287 MachineBasicBlock* getParent() { return Parent; }
288
289 /// Move the instruction before \p MovePos.
290 void moveBefore(MachineInstr *MovePos);
291
292 /// Return the function that contains the basic block that this instruction
293 /// belongs to.
294 ///
295 /// Note: this is undefined behaviour if the instruction does not have a
296 /// parent.
297 const MachineFunction *getMF() const;
298 MachineFunction *getMF() {
299 return const_cast<MachineFunction *>(
300 static_cast<const MachineInstr *>(this)->getMF());
301 }
302
303 /// Return the asm printer flags bitvector.
304 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
305
306 /// Clear the AsmPrinter bitvector.
307 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
308
309 /// Return whether an AsmPrinter flag is set.
310 bool getAsmPrinterFlag(CommentFlag Flag) const {
311 return AsmPrinterFlags & Flag;
312 }
313
314 /// Set a flag for the AsmPrinter.
315 void setAsmPrinterFlag(uint8_t Flag) {
316 AsmPrinterFlags |= Flag;
317 }
318
319 /// Clear specific AsmPrinter flags.
320 void clearAsmPrinterFlag(CommentFlag Flag) {
321 AsmPrinterFlags &= ~Flag;
322 }
323
324 /// Return the MI flags bitvector.
325 uint16_t getFlags() const {
326 return Flags;
327 }
328
329 /// Return whether an MI flag is set.
330 bool getFlag(MIFlag Flag) const {
331 return Flags & Flag;
332 }
333
334 /// Set a MI flag.
335 void setFlag(MIFlag Flag) {
336 Flags |= (uint16_t)Flag;
337 }
338
339 void setFlags(unsigned flags) {
340 // Filter out the automatically maintained flags.
341 unsigned Mask = BundledPred | BundledSucc;
342 Flags = (Flags & Mask) | (flags & ~Mask);
343 }
344
345 /// clearFlag - Clear a MI flag.
346 void clearFlag(MIFlag Flag) {
347 Flags &= ~((uint16_t)Flag);
348 }
349
350 /// Return true if MI is in a bundle (but not the first MI in a bundle).
351 ///
352 /// A bundle looks like this before it's finalized:
353 /// ----------------
354 /// | MI |
355 /// ----------------
356 /// |
357 /// ----------------
358 /// | MI * |
359 /// ----------------
360 /// |
361 /// ----------------
362 /// | MI * |
363 /// ----------------
364 /// In this case, the first MI starts a bundle but is not inside a bundle, the
365 /// next 2 MIs are considered "inside" the bundle.
366 ///
367 /// After a bundle is finalized, it looks like this:
368 /// ----------------
369 /// | Bundle |
370 /// ----------------
371 /// |
372 /// ----------------
373 /// | MI * |
374 /// ----------------
375 /// |
376 /// ----------------
377 /// | MI * |
378 /// ----------------
379 /// |
380 /// ----------------
381 /// | MI * |
382 /// ----------------
383 /// The first instruction has the special opcode "BUNDLE". It's not "inside"
384 /// a bundle, but the next three MIs are.
385 bool isInsideBundle() const {
386 return getFlag(BundledPred);
387 }
388
389 /// Return true if this instruction part of a bundle. This is true
390 /// if either itself or its following instruction is marked "InsideBundle".
391 bool isBundled() const {
392 return isBundledWithPred() || isBundledWithSucc();
393 }
394
395 /// Return true if this instruction is part of a bundle, and it is not the
396 /// first instruction in the bundle.
397 bool isBundledWithPred() const { return getFlag(BundledPred); }
398
399 /// Return true if this instruction is part of a bundle, and it is not the
400 /// last instruction in the bundle.
401 bool isBundledWithSucc() const { return getFlag(BundledSucc); }
402
403 /// Bundle this instruction with its predecessor. This can be an unbundled
404 /// instruction, or it can be the first instruction in a bundle.
405 void bundleWithPred();
406
407 /// Bundle this instruction with its successor. This can be an unbundled
408 /// instruction, or it can be the last instruction in a bundle.
409 void bundleWithSucc();
410
411 /// Break bundle above this instruction.
412 void unbundleFromPred();
413
414 /// Break bundle below this instruction.
415 void unbundleFromSucc();
416
417 /// Returns the debug location id of this MachineInstr.
418 const DebugLoc &getDebugLoc() const { return debugLoc; }
419
420 /// Return the operand containing the offset to be used if this DBG_VALUE
421 /// instruction is indirect; will be an invalid register if this value is
422 /// not indirect, and an immediate with value 0 otherwise.
423 const MachineOperand &getDebugOffset() const {
424 assert(isNonListDebugValue() && "not a DBG_VALUE")(static_cast <bool> (isNonListDebugValue() && "not a DBG_VALUE"
) ? void (0) : __assert_fail ("isNonListDebugValue() && \"not a DBG_VALUE\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 424, __extension__ __PRETTY_FUNCTION__))
;
425 return getOperand(1);
426 }
427 MachineOperand &getDebugOffset() {
428 assert(isNonListDebugValue() && "not a DBG_VALUE")(static_cast <bool> (isNonListDebugValue() && "not a DBG_VALUE"
) ? void (0) : __assert_fail ("isNonListDebugValue() && \"not a DBG_VALUE\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 428, __extension__ __PRETTY_FUNCTION__))
;
429 return getOperand(1);
430 }
431
432 /// Return the operand for the debug variable referenced by
433 /// this DBG_VALUE instruction.
434 const MachineOperand &getDebugVariableOp() const;
435 MachineOperand &getDebugVariableOp();
436
437 /// Return the debug variable referenced by
438 /// this DBG_VALUE instruction.
439 const DILocalVariable *getDebugVariable() const;
440
441 /// Return the operand for the complex address expression referenced by
442 /// this DBG_VALUE instruction.
443 const MachineOperand &getDebugExpressionOp() const;
444 MachineOperand &getDebugExpressionOp();
445
446 /// Return the complex address expression referenced by
447 /// this DBG_VALUE instruction.
448 const DIExpression *getDebugExpression() const;
449
450 /// Return the debug label referenced by
451 /// this DBG_LABEL instruction.
452 const DILabel *getDebugLabel() const;
453
454 /// Fetch the instruction number of this MachineInstr. If it does not have
455 /// one already, a new and unique number will be assigned.
456 unsigned getDebugInstrNum();
457
458 /// Fetch instruction number of this MachineInstr -- but before it's inserted
459 /// into \p MF. Needed for transformations that create an instruction but
460 /// don't immediately insert them.
461 unsigned getDebugInstrNum(MachineFunction &MF);
462
463 /// Examine the instruction number of this MachineInstr. May be zero if
464 /// it hasn't been assigned a number yet.
465 unsigned peekDebugInstrNum() const { return DebugInstrNum; }
466
467 /// Set instruction number of this MachineInstr. Avoid using unless you're
468 /// deserializing this information.
469 void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
470
471 /// Drop any variable location debugging information associated with this
472 /// instruction. Use when an instruction is modified in such a way that it no
473 /// longer defines the value it used to. Variable locations using that value
474 /// will be dropped.
475 void dropDebugNumber() { DebugInstrNum = 0; }
476
477 /// Emit an error referring to the source location of this instruction.
478 /// This should only be used for inline assembly that is somehow
479 /// impossible to compile. Other errors should have been handled much
480 /// earlier.
481 ///
482 /// If this method returns, the caller should try to recover from the error.
483 void emitError(StringRef Msg) const;
484
485 /// Returns the target instruction descriptor of this MachineInstr.
486 const MCInstrDesc &getDesc() const { return *MCID; }
487
488 /// Returns the opcode of this MachineInstr.
489 unsigned getOpcode() const { return MCID->Opcode; }
490
491 /// Retuns the total number of operands.
492 unsigned getNumOperands() const { return NumOperands; }
493
494 /// Returns the total number of operands which are debug locations.
495 unsigned getNumDebugOperands() const {
496 return std::distance(debug_operands().begin(), debug_operands().end());
497 }
498
499 const MachineOperand& getOperand(unsigned i) const {
500 assert(i < getNumOperands() && "getOperand() out of range!")(static_cast <bool> (i < getNumOperands() &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i < getNumOperands() && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 500, __extension__ __PRETTY_FUNCTION__))
;
501 return Operands[i];
502 }
503 MachineOperand& getOperand(unsigned i) {
504 assert(i < getNumOperands() && "getOperand() out of range!")(static_cast <bool> (i < getNumOperands() &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i < getNumOperands() && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 504, __extension__ __PRETTY_FUNCTION__))
;
505 return Operands[i];
506 }
507
508 MachineOperand &getDebugOperand(unsigned Index) {
509 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!")(static_cast <bool> (Index < getNumDebugOperands() &&
"getDebugOperand() out of range!") ? void (0) : __assert_fail
("Index < getNumDebugOperands() && \"getDebugOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 509, __extension__ __PRETTY_FUNCTION__))
;
510 return *(debug_operands().begin() + Index);
511 }
512 const MachineOperand &getDebugOperand(unsigned Index) const {
513 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!")(static_cast <bool> (Index < getNumDebugOperands() &&
"getDebugOperand() out of range!") ? void (0) : __assert_fail
("Index < getNumDebugOperands() && \"getDebugOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 513, __extension__ __PRETTY_FUNCTION__))
;
514 return *(debug_operands().begin() + Index);
515 }
516
517 SmallSet<Register, 4> getUsedDebugRegs() const {
518 assert(isDebugValue() && "not a DBG_VALUE*")(static_cast <bool> (isDebugValue() && "not a DBG_VALUE*"
) ? void (0) : __assert_fail ("isDebugValue() && \"not a DBG_VALUE*\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 518, __extension__ __PRETTY_FUNCTION__))
;
519 SmallSet<Register, 4> UsedRegs;
520 for (const auto &MO : debug_operands())
521 if (MO.isReg() && MO.getReg())
522 UsedRegs.insert(MO.getReg());
523 return UsedRegs;
524 }
525
526 /// Returns whether this debug value has at least one debug operand with the
527 /// register \p Reg.
528 bool hasDebugOperandForReg(Register Reg) const {
529 return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
530 return Op.isReg() && Op.getReg() == Reg;
531 });
532 }
533
534 /// Returns a range of all of the operands that correspond to a debug use of
535 /// \p Reg.
536 template <typename Operand, typename Instruction>
537 static iterator_range<
538 filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
539 getDebugOperandsForReg(Instruction *MI, Register Reg) {
540 std::function<bool(Operand & Op)> OpUsesReg(
541 [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
542 return make_filter_range(MI->debug_operands(), OpUsesReg);
543 }
544 iterator_range<filter_iterator<const MachineOperand *,
545 std::function<bool(const MachineOperand &Op)>>>
546 getDebugOperandsForReg(Register Reg) const {
547 return MachineInstr::getDebugOperandsForReg<const MachineOperand,
548 const MachineInstr>(this, Reg);
549 }
550 iterator_range<filter_iterator<MachineOperand *,
551 std::function<bool(MachineOperand &Op)>>>
552 getDebugOperandsForReg(Register Reg) {
553 return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
554 this, Reg);
555 }
556
557 bool isDebugOperand(const MachineOperand *Op) const {
558 return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
559 }
560
561 unsigned getDebugOperandIndex(const MachineOperand *Op) const {
562 assert(isDebugOperand(Op) && "Expected a debug operand.")(static_cast <bool> (isDebugOperand(Op) && "Expected a debug operand."
) ? void (0) : __assert_fail ("isDebugOperand(Op) && \"Expected a debug operand.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 562, __extension__ __PRETTY_FUNCTION__))
;
563 return std::distance(adl_begin(debug_operands()), Op);
564 }
565
566 /// Returns the total number of definitions.
567 unsigned getNumDefs() const {
568 return getNumExplicitDefs() + MCID->getNumImplicitDefs();
569 }
570
571 /// Returns true if the instruction has implicit definition.
572 bool hasImplicitDef() const {
573 for (unsigned I = getNumExplicitOperands(), E = getNumOperands();
574 I != E; ++I) {
575 const MachineOperand &MO = getOperand(I);
576 if (MO.isDef() && MO.isImplicit())
577 return true;
578 }
579 return false;
580 }
581
582 /// Returns the implicit operands number.
583 unsigned getNumImplicitOperands() const {
584 return getNumOperands() - getNumExplicitOperands();
585 }
586
587 /// Return true if operand \p OpIdx is a subregister index.
588 bool isOperandSubregIdx(unsigned OpIdx) const {
589 assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&(static_cast <bool> (getOperand(OpIdx).getType() == MachineOperand
::MO_Immediate && "Expected MO_Immediate operand type."
) ? void (0) : __assert_fail ("getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && \"Expected MO_Immediate operand type.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 590, __extension__ __PRETTY_FUNCTION__))
590 "Expected MO_Immediate operand type.")(static_cast <bool> (getOperand(OpIdx).getType() == MachineOperand
::MO_Immediate && "Expected MO_Immediate operand type."
) ? void (0) : __assert_fail ("getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && \"Expected MO_Immediate operand type.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 590, __extension__ __PRETTY_FUNCTION__))
;
591 if (isExtractSubreg() && OpIdx == 2)
592 return true;
593 if (isInsertSubreg() && OpIdx == 3)
594 return true;
595 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
596 return true;
597 if (isSubregToReg() && OpIdx == 3)
598 return true;
599 return false;
600 }
601
602 /// Returns the number of non-implicit operands.
603 unsigned getNumExplicitOperands() const;
604
605 /// Returns the number of non-implicit definitions.
606 unsigned getNumExplicitDefs() const;
607
608 /// iterator/begin/end - Iterate over all operands of a machine instruction.
609 using mop_iterator = MachineOperand *;
610 using const_mop_iterator = const MachineOperand *;
611
612 mop_iterator operands_begin() { return Operands; }
613 mop_iterator operands_end() { return Operands + NumOperands; }
614
615 const_mop_iterator operands_begin() const { return Operands; }
616 const_mop_iterator operands_end() const { return Operands + NumOperands; }
617
618 iterator_range<mop_iterator> operands() {
619 return make_range(operands_begin(), operands_end());
620 }
621 iterator_range<const_mop_iterator> operands() const {
622 return make_range(operands_begin(), operands_end());
623 }
624 iterator_range<mop_iterator> explicit_operands() {
625 return make_range(operands_begin(),
626 operands_begin() + getNumExplicitOperands());
627 }
628 iterator_range<const_mop_iterator> explicit_operands() const {
629 return make_range(operands_begin(),
630 operands_begin() + getNumExplicitOperands());
631 }
632 iterator_range<mop_iterator> implicit_operands() {
633 return make_range(explicit_operands().end(), operands_end());
634 }
635 iterator_range<const_mop_iterator> implicit_operands() const {
636 return make_range(explicit_operands().end(), operands_end());
637 }
638 /// Returns a range over all operands that are used to determine the variable
639 /// location for this DBG_VALUE instruction.
640 iterator_range<mop_iterator> debug_operands() {
641 assert(isDebugValue() && "Must be a debug value instruction.")(static_cast <bool> (isDebugValue() && "Must be a debug value instruction."
) ? void (0) : __assert_fail ("isDebugValue() && \"Must be a debug value instruction.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 641, __extension__ __PRETTY_FUNCTION__))
;
642 return isDebugValueList()
643 ? make_range(operands_begin() + 2, operands_end())
644 : make_range(operands_begin(), operands_begin() + 1);
645 }
646 /// \copydoc debug_operands()
647 iterator_range<const_mop_iterator> debug_operands() const {
648 assert(isDebugValue() && "Must be a debug value instruction.")(static_cast <bool> (isDebugValue() && "Must be a debug value instruction."
) ? void (0) : __assert_fail ("isDebugValue() && \"Must be a debug value instruction.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 648, __extension__ __PRETTY_FUNCTION__))
;
649 return isDebugValueList()
650 ? make_range(operands_begin() + 2, operands_end())
651 : make_range(operands_begin(), operands_begin() + 1);
652 }
653 /// Returns a range over all explicit operands that are register definitions.
654 /// Implicit definition are not included!
655 iterator_range<mop_iterator> defs() {
656 return make_range(operands_begin(),
657 operands_begin() + getNumExplicitDefs());
658 }
659 /// \copydoc defs()
660 iterator_range<const_mop_iterator> defs() const {
661 return make_range(operands_begin(),
662 operands_begin() + getNumExplicitDefs());
663 }
664 /// Returns a range that includes all operands that are register uses.
665 /// This may include unrelated operands which are not register uses.
666 iterator_range<mop_iterator> uses() {
667 return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
668 }
669 /// \copydoc uses()
670 iterator_range<const_mop_iterator> uses() const {
671 return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
672 }
673 iterator_range<mop_iterator> explicit_uses() {
674 return make_range(operands_begin() + getNumExplicitDefs(),
675 operands_begin() + getNumExplicitOperands());
676 }
677 iterator_range<const_mop_iterator> explicit_uses() const {
678 return make_range(operands_begin() + getNumExplicitDefs(),
679 operands_begin() + getNumExplicitOperands());
680 }
681
682 /// Returns the number of the operand iterator \p I points to.
683 unsigned getOperandNo(const_mop_iterator I) const {
684 return I - operands_begin();
685 }
686
687 /// Access to memory operands of the instruction. If there are none, that does
688 /// not imply anything about whether the function accesses memory. Instead,
689 /// the caller must behave conservatively.
690 ArrayRef<MachineMemOperand *> memoperands() const {
691 if (!Info)
692 return {};
693
694 if (Info.is<EIIK_MMO>())
695 return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
696
697 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
698 return EI->getMMOs();
699
700 return {};
701 }
702
703 /// Access to memory operands of the instruction.
704 ///
705 /// If `memoperands_begin() == memoperands_end()`, that does not imply
706 /// anything about whether the function accesses memory. Instead, the caller
707 /// must behave conservatively.
708 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
709
710 /// Access to memory operands of the instruction.
711 ///
712 /// If `memoperands_begin() == memoperands_end()`, that does not imply
713 /// anything about whether the function accesses memory. Instead, the caller
714 /// must behave conservatively.
715 mmo_iterator memoperands_end() const { return memoperands().end(); }
716
717 /// Return true if we don't have any memory operands which described the
718 /// memory access done by this instruction. If this is true, calling code
719 /// must be conservative.
720 bool memoperands_empty() const { return memoperands().empty(); }
721
722 /// Return true if this instruction has exactly one MachineMemOperand.
723 bool hasOneMemOperand() const { return memoperands().size() == 1; }
724
725 /// Return the number of memory operands.
726 unsigned getNumMemOperands() const { return memoperands().size(); }
727
728 /// Helper to extract a pre-instruction symbol if one has been added.
729 MCSymbol *getPreInstrSymbol() const {
730 if (!Info)
731 return nullptr;
732 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
733 return S;
734 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
735 return EI->getPreInstrSymbol();
736
737 return nullptr;
738 }
739
740 /// Helper to extract a post-instruction symbol if one has been added.
741 MCSymbol *getPostInstrSymbol() const {
742 if (!Info)
743 return nullptr;
744 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
745 return S;
746 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
747 return EI->getPostInstrSymbol();
748
749 return nullptr;
750 }
751
752 /// Helper to extract a heap alloc marker if one has been added.
753 MDNode *getHeapAllocMarker() const {
754 if (!Info)
755 return nullptr;
756 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
757 return EI->getHeapAllocMarker();
758
759 return nullptr;
760 }
761
762 /// API for querying MachineInstr properties. They are the same as MCInstrDesc
763 /// queries but they are bundle aware.
764
765 enum QueryType {
766 IgnoreBundle, // Ignore bundles
767 AnyInBundle, // Return true if any instruction in bundle has property
768 AllInBundle // Return true if all instructions in bundle have property
769 };
770
771 /// Return true if the instruction (or in the case of a bundle,
772 /// the instructions inside the bundle) has the specified property.
773 /// The first argument is the property being queried.
774 /// The second argument indicates whether the query should look inside
775 /// instruction bundles.
776 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
777 assert(MCFlag < 64 &&(static_cast <bool> (MCFlag < 64 && "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."
) ? void (0) : __assert_fail ("MCFlag < 64 && \"MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 778, __extension__ __PRETTY_FUNCTION__))
778 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.")(static_cast <bool> (MCFlag < 64 && "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."
) ? void (0) : __assert_fail ("MCFlag < 64 && \"MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 778, __extension__ __PRETTY_FUNCTION__))
;
779 // Inline the fast path for unbundled or bundle-internal instructions.
780 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
781 return getDesc().getFlags() & (1ULL << MCFlag);
782
783 // If this is the first instruction in a bundle, take the slow path.
784 return hasPropertyInBundle(1ULL << MCFlag, Type);
785 }
786
787 /// Return true if this is an instruction that should go through the usual
788 /// legalization steps.
789 bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
790 return hasProperty(MCID::PreISelOpcode, Type);
791 }
792
793 /// Return true if this instruction can have a variable number of operands.
794 /// In this case, the variable operands will be after the normal
795 /// operands but before the implicit definitions and uses (if any are
796 /// present).
797 bool isVariadic(QueryType Type = IgnoreBundle) const {
798 return hasProperty(MCID::Variadic, Type);
799 }
800
801 /// Set if this instruction has an optional definition, e.g.
802 /// ARM instructions which can set condition code if 's' bit is set.
803 bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
804 return hasProperty(MCID::HasOptionalDef, Type);
805 }
806
807 /// Return true if this is a pseudo instruction that doesn't
808 /// correspond to a real machine instruction.
809 bool isPseudo(QueryType Type = IgnoreBundle) const {
810 return hasProperty(MCID::Pseudo, Type);
811 }
812
813 bool isReturn(QueryType Type = AnyInBundle) const {
814 return hasProperty(MCID::Return, Type);
815 }
816
817 /// Return true if this is an instruction that marks the end of an EH scope,
818 /// i.e., a catchpad or a cleanuppad instruction.
819 bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
820 return hasProperty(MCID::EHScopeReturn, Type);
821 }
822
823 bool isCall(QueryType Type = AnyInBundle) const {
824 return hasProperty(MCID::Call, Type);
825 }
826
827 /// Return true if this is a call instruction that may have an associated
828 /// call site entry in the debug info.
829 bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
830 /// Return true if copying, moving, or erasing this instruction requires
831 /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
832 /// \ref eraseCallSiteInfo).
833 bool shouldUpdateCallSiteInfo() const;
834
835 /// Returns true if the specified instruction stops control flow
836 /// from executing the instruction immediately following it. Examples include
837 /// unconditional branches and return instructions.
838 bool isBarrier(QueryType Type = AnyInBundle) const {
839 return hasProperty(MCID::Barrier, Type);
840 }
841
842 /// Returns true if this instruction part of the terminator for a basic block.
843 /// Typically this is things like return and branch instructions.
844 ///
845 /// Various passes use this to insert code into the bottom of a basic block,
846 /// but before control flow occurs.
847 bool isTerminator(QueryType Type = AnyInBundle) const {
848 return hasProperty(MCID::Terminator, Type);
849 }
850
851 /// Returns true if this is a conditional, unconditional, or indirect branch.
852 /// Predicates below can be used to discriminate between
853 /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
854 /// get more information.
855 bool isBranch(QueryType Type = AnyInBundle) const {
856 return hasProperty(MCID::Branch, Type);
857 }
858
859 /// Return true if this is an indirect branch, such as a
860 /// branch through a register.
861 bool isIndirectBranch(QueryType Type = AnyInBundle) const {
862 return hasProperty(MCID::IndirectBranch, Type);
863 }
864
865 /// Return true if this is a branch which may fall
866 /// through to the next instruction or may transfer control flow to some other
867 /// block. The TargetInstrInfo::analyzeBranch method can be used to get more
868 /// information about this branch.
869 bool isConditionalBranch(QueryType Type = AnyInBundle) const {
870 return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
871 }
872
873 /// Return true if this is a branch which always
874 /// transfers control flow to some other block. The
875 /// TargetInstrInfo::analyzeBranch method can be used to get more information
876 /// about this branch.
877 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
878 return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
879 }
880
881 /// Return true if this instruction has a predicate operand that
882 /// controls execution. It may be set to 'always', or may be set to other
883 /// values. There are various methods in TargetInstrInfo that can be used to
884 /// control and modify the predicate in this instruction.
885 bool isPredicable(QueryType Type = AllInBundle) const {
886 // If it's a bundle than all bundled instructions must be predicable for this
887 // to return true.
888 return hasProperty(MCID::Predicable, Type);
889 }
890
891 /// Return true if this instruction is a comparison.
892 bool isCompare(QueryType Type = IgnoreBundle) const {
893 return hasProperty(MCID::Compare, Type);
894 }
895
896 /// Return true if this instruction is a move immediate
897 /// (including conditional moves) instruction.
898 bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
899 return hasProperty(MCID::MoveImm, Type);
900 }
901
902 /// Return true if this instruction is a register move.
903 /// (including moving values from subreg to reg)
904 bool isMoveReg(QueryType Type = IgnoreBundle) const {
905 return hasProperty(MCID::MoveReg, Type);
906 }
907
908 /// Return true if this instruction is a bitcast instruction.
909 bool isBitcast(QueryType Type = IgnoreBundle) const {
910 return hasProperty(MCID::Bitcast, Type);
911 }
912
913 /// Return true if this instruction is a select instruction.
914 bool isSelect(QueryType Type = IgnoreBundle) const {
915 return hasProperty(MCID::Select, Type);
916 }
917
918 /// Return true if this instruction cannot be safely duplicated.
919 /// For example, if the instruction has a unique labels attached
920 /// to it, duplicating it would cause multiple definition errors.
921 bool isNotDuplicable(QueryType Type = AnyInBundle) const {
922 return hasProperty(MCID::NotDuplicable, Type);
923 }
924
925 /// Return true if this instruction is convergent.
926 /// Convergent instructions can not be made control-dependent on any
927 /// additional values.
928 bool isConvergent(QueryType Type = AnyInBundle) const {
929 if (isInlineAsm()) {
930 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
931 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
932 return true;
933 }
934 return hasProperty(MCID::Convergent, Type);
935 }
936
937 /// Returns true if the specified instruction has a delay slot
938 /// which must be filled by the code generator.
939 bool hasDelaySlot(QueryType Type = AnyInBundle) const {
940 return hasProperty(MCID::DelaySlot, Type);
941 }
942
943 /// Return true for instructions that can be folded as
944 /// memory operands in other instructions. The most common use for this
945 /// is instructions that are simple loads from memory that don't modify
946 /// the loaded value in any way, but it can also be used for instructions
947 /// that can be expressed as constant-pool loads, such as V_SETALLONES
948 /// on x86, to allow them to be folded when it is beneficial.
949 /// This should only be set on instructions that return a value in their
950 /// only virtual register definition.
951 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
952 return hasProperty(MCID::FoldableAsLoad, Type);
953 }
954
955 /// Return true if this instruction behaves
956 /// the same way as the generic REG_SEQUENCE instructions.
957 /// E.g., on ARM,
958 /// dX VMOVDRR rY, rZ
959 /// is equivalent to
960 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
961 ///
962 /// Note that for the optimizers to be able to take advantage of
963 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
964 /// override accordingly.
965 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
966 return hasProperty(MCID::RegSequence, Type);
967 }
968
969 /// Return true if this instruction behaves
970 /// the same way as the generic EXTRACT_SUBREG instructions.
971 /// E.g., on ARM,
972 /// rX, rY VMOVRRD dZ
973 /// is equivalent to two EXTRACT_SUBREG:
974 /// rX = EXTRACT_SUBREG dZ, ssub_0
975 /// rY = EXTRACT_SUBREG dZ, ssub_1
976 ///
977 /// Note that for the optimizers to be able to take advantage of
978 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
979 /// override accordingly.
980 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
981 return hasProperty(MCID::ExtractSubreg, Type);
982 }
983
984 /// Return true if this instruction behaves
985 /// the same way as the generic INSERT_SUBREG instructions.
986 /// E.g., on ARM,
987 /// dX = VSETLNi32 dY, rZ, Imm
988 /// is equivalent to a INSERT_SUBREG:
989 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
990 ///
991 /// Note that for the optimizers to be able to take advantage of
992 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
993 /// override accordingly.
994 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
995 return hasProperty(MCID::InsertSubreg, Type);
996 }
997
998 //===--------------------------------------------------------------------===//
999 // Side Effect Analysis
1000 //===--------------------------------------------------------------------===//
1001
1002 /// Return true if this instruction could possibly read memory.
1003 /// Instructions with this flag set are not necessarily simple load
1004 /// instructions, they may load a value and modify it, for example.
1005 bool mayLoad(QueryType Type = AnyInBundle) const {
1006 if (isInlineAsm()) {
1007 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1008 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1009 return true;
1010 }
1011 return hasProperty(MCID::MayLoad, Type);
1012 }
1013
1014 /// Return true if this instruction could possibly modify memory.
1015 /// Instructions with this flag set are not necessarily simple store
1016 /// instructions, they may store a modified value based on their operands, or
1017 /// may not actually modify anything, for example.
1018 bool mayStore(QueryType Type = AnyInBundle) const {
1019 if (isInlineAsm()) {
57
Assuming the condition is false
58
Taking false branch
1020 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1021 if (ExtraInfo & InlineAsm::Extra_MayStore)
1022 return true;
1023 }
1024 return hasProperty(MCID::MayStore, Type);
59
Returning value, which participates in a condition later
1025 }
1026
1027 /// Return true if this instruction could possibly read or modify memory.
1028 bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
1029 return mayLoad(Type) || mayStore(Type);
1030 }
1031
1032 /// Return true if this instruction could possibly raise a floating-point
1033 /// exception. This is the case if the instruction is a floating-point
1034 /// instruction that can in principle raise an exception, as indicated
1035 /// by the MCID::MayRaiseFPException property, *and* at the same time,
1036 /// the instruction is used in a context where we expect floating-point
1037 /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
1038 bool mayRaiseFPException() const {
1039 return hasProperty(MCID::MayRaiseFPException) &&
1040 !getFlag(MachineInstr::MIFlag::NoFPExcept);
1041 }
1042
1043 //===--------------------------------------------------------------------===//
1044 // Flags that indicate whether an instruction can be modified by a method.
1045 //===--------------------------------------------------------------------===//
1046
1047 /// Return true if this may be a 2- or 3-address
1048 /// instruction (of the form "X = op Y, Z, ..."), which produces the same
1049 /// result if Y and Z are exchanged. If this flag is set, then the
1050 /// TargetInstrInfo::commuteInstruction method may be used to hack on the
1051 /// instruction.
1052 ///
1053 /// Note that this flag may be set on instructions that are only commutable
1054 /// sometimes. In these cases, the call to commuteInstruction will fail.
1055 /// Also note that some instructions require non-trivial modification to
1056 /// commute them.
1057 bool isCommutable(QueryType Type = IgnoreBundle) const {
1058 return hasProperty(MCID::Commutable, Type);
1059 }
1060
1061 /// Return true if this is a 2-address instruction
1062 /// which can be changed into a 3-address instruction if needed. Doing this
1063 /// transformation can be profitable in the register allocator, because it
1064 /// means that the instruction can use a 2-address form if possible, but
1065 /// degrade into a less efficient form if the source and dest register cannot
1066 /// be assigned to the same register. For example, this allows the x86
1067 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
1068 /// is the same speed as the shift but has bigger code size.
1069 ///
1070 /// If this returns true, then the target must implement the
1071 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
1072 /// is allowed to fail if the transformation isn't valid for this specific
1073 /// instruction (e.g. shl reg, 4 on x86).
1074 ///
1075 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
1076 return hasProperty(MCID::ConvertibleTo3Addr, Type);
1077 }
1078
1079 /// Return true if this instruction requires
1080 /// custom insertion support when the DAG scheduler is inserting it into a
1081 /// machine basic block. If this is true for the instruction, it basically
1082 /// means that it is a pseudo instruction used at SelectionDAG time that is
1083 /// expanded out into magic code by the target when MachineInstrs are formed.
1084 ///
1085 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
1086 /// is used to insert this into the MachineBasicBlock.
1087 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
1088 return hasProperty(MCID::UsesCustomInserter, Type);
1089 }
1090
1091 /// Return true if this instruction requires *adjustment*
1092 /// after instruction selection by calling a target hook. For example, this
1093 /// can be used to fill in ARM 's' optional operand depending on whether
1094 /// the conditional flag register is used.
1095 bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
1096 return hasProperty(MCID::HasPostISelHook, Type);
1097 }
1098
1099 /// Returns true if this instruction is a candidate for remat.
1100 /// This flag is deprecated, please don't use it anymore. If this
1101 /// flag is set, the isReallyTriviallyReMaterializable() method is called to
1102 /// verify the instruction is really rematable.
1103 bool isRematerializable(QueryType Type = AllInBundle) const {
1104 // It's only possible to re-mat a bundle if all bundled instructions are
1105 // re-materializable.
1106 return hasProperty(MCID::Rematerializable, Type);
1107 }
1108
1109 /// Returns true if this instruction has the same cost (or less) than a move
1110 /// instruction. This is useful during certain types of optimizations
1111 /// (e.g., remat during two-address conversion or machine licm)
1112 /// where we would like to remat or hoist the instruction, but not if it costs
1113 /// more than moving the instruction into the appropriate register. Note, we
1114 /// are not marking copies from and to the same register class with this flag.
1115 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
1116 // Only returns true for a bundle if all bundled instructions are cheap.
1117 return hasProperty(MCID::CheapAsAMove, Type);
1118 }
1119
1120 /// Returns true if this instruction source operands
1121 /// have special register allocation requirements that are not captured by the
1122 /// operand register classes. e.g. ARM::STRD's two source registers must be an
1123 /// even / odd pair, ARM::STM registers have to be in ascending order.
1124 /// Post-register allocation passes should not attempt to change allocations
1125 /// for sources of instructions with this flag.
1126 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
1127 return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
1128 }
1129
1130 /// Returns true if this instruction def operands
1131 /// have special register allocation requirements that are not captured by the
1132 /// operand register classes. e.g. ARM::LDRD's two def registers must be an
1133 /// even / odd pair, ARM::LDM registers have to be in ascending order.
1134 /// Post-register allocation passes should not attempt to change allocations
1135 /// for definitions of instructions with this flag.
1136 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
1137 return hasProperty(MCID::ExtraDefRegAllocReq, Type);
1138 }
1139
1140 enum MICheckType {
1141 CheckDefs, // Check all operands for equality
1142 CheckKillDead, // Check all operands including kill / dead markers
1143 IgnoreDefs, // Ignore all definitions
1144 IgnoreVRegDefs // Ignore virtual register definitions
1145 };
1146
1147 /// Return true if this instruction is identical to \p Other.
1148 /// Two instructions are identical if they have the same opcode and all their
1149 /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1150 /// Note that this means liveness related flags (dead, undef, kill) do not
1151 /// affect the notion of identical.
1152 bool isIdenticalTo(const MachineInstr &Other,
1153 MICheckType Check = CheckDefs) const;
1154
1155 /// Unlink 'this' from the containing basic block, and return it without
1156 /// deleting it.
1157 ///
1158 /// This function can not be used on bundled instructions, use
1159 /// removeFromBundle() to remove individual instructions from a bundle.
1160 MachineInstr *removeFromParent();
1161
1162 /// Unlink this instruction from its basic block and return it without
1163 /// deleting it.
1164 ///
1165 /// If the instruction is part of a bundle, the other instructions in the
1166 /// bundle remain bundled.
1167 MachineInstr *removeFromBundle();
1168
1169 /// Unlink 'this' from the containing basic block and delete it.
1170 ///
1171 /// If this instruction is the header of a bundle, the whole bundle is erased.
1172 /// This function can not be used for instructions inside a bundle, use
1173 /// eraseFromBundle() to erase individual bundled instructions.
1174 void eraseFromParent();
1175
1176 /// Unlink 'this' from the containing basic block and delete it.
1177 ///
1178 /// For all definitions mark their uses in DBG_VALUE nodes
1179 /// as undefined. Otherwise like eraseFromParent().
1180 void eraseFromParentAndMarkDBGValuesForRemoval();
1181
1182 /// Unlink 'this' form its basic block and delete it.
1183 ///
1184 /// If the instruction is part of a bundle, the other instructions in the
1185 /// bundle remain bundled.
1186 void eraseFromBundle();
1187
1188 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1189 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1190 bool isAnnotationLabel() const {
1191 return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1192 }
1193
1194 /// Returns true if the MachineInstr represents a label.
1195 bool isLabel() const {
1196 return isEHLabel() || isGCLabel() || isAnnotationLabel();
1197 }
1198
1199 bool isCFIInstruction() const {
1200 return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1201 }
1202
1203 bool isPseudoProbe() const {
1204 return getOpcode() == TargetOpcode::PSEUDO_PROBE;
1205 }
1206
1207 // True if the instruction represents a position in the function.
1208 bool isPosition() const { return isLabel() || isCFIInstruction(); }
1209
1210 bool isNonListDebugValue() const {
1211 return getOpcode() == TargetOpcode::DBG_VALUE;
1212 }
1213 bool isDebugValueList() const {
1214 return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
1215 }
1216 bool isDebugValue() const {
1217 return isNonListDebugValue() || isDebugValueList();
1218 }
1219 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1220 bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
1221 bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
1222 bool isDebugInstr() const {
1223 return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
1224 }
1225 bool isDebugOrPseudoInstr() const {
1226 return isDebugInstr() || isPseudoProbe();
1227 }
1228
1229 bool isDebugOffsetImm() const {
1230 return isNonListDebugValue() && getDebugOffset().isImm();
1231 }
1232
1233 /// A DBG_VALUE is indirect iff the location operand is a register and
1234 /// the offset operand is an immediate.
1235 bool isIndirectDebugValue() const {
1236 return isDebugOffsetImm() && getDebugOperand(0).isReg();
1237 }
1238
1239 /// A DBG_VALUE is an entry value iff its debug expression contains the
1240 /// DW_OP_LLVM_entry_value operation.
1241 bool isDebugEntryValue() const;
1242
1243 /// Return true if the instruction is a debug value which describes a part of
1244 /// a variable as unavailable.
1245 bool isUndefDebugValue() const {
1246 if (!isDebugValue())
1247 return false;
1248 // If any $noreg locations are given, this DV is undef.
1249 for (const MachineOperand &Op : debug_operands())
1250 if (Op.isReg() && !Op.getReg().isValid())
1251 return true;
1252 return false;
1253 }
1254
1255 bool isPHI() const {
1256 return getOpcode() == TargetOpcode::PHI ||
1257 getOpcode() == TargetOpcode::G_PHI;
1258 }
1259 bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1260 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1261 bool isInlineAsm() const {
1262 return getOpcode() == TargetOpcode::INLINEASM ||
1263 getOpcode() == TargetOpcode::INLINEASM_BR;
1264 }
1265
1266 /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
1267 /// specific, be attached to a generic MachineInstr.
1268 bool isMSInlineAsm() const {
1269 return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1270 }
1271
1272 bool isStackAligningInlineAsm() const;
1273 InlineAsm::AsmDialect getInlineAsmDialect() const;
1274
1275 bool isInsertSubreg() const {
1276 return getOpcode() == TargetOpcode::INSERT_SUBREG;
1277 }
1278
1279 bool isSubregToReg() const {
1280 return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1281 }
1282
1283 bool isRegSequence() const {
1284 return getOpcode() == TargetOpcode::REG_SEQUENCE;
1285 }
1286
1287 bool isBundle() const {
1288 return getOpcode() == TargetOpcode::BUNDLE;
1289 }
1290
1291 bool isCopy() const {
1292 return getOpcode() == TargetOpcode::COPY;
53
Assuming the condition is false
54
Returning zero, which participates in a condition later
1293 }
1294
1295 bool isFullCopy() const {
1296 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1297 }
1298
1299 bool isExtractSubreg() const {
1300 return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1301 }
1302
1303 /// Return true if the instruction behaves like a copy.
1304 /// This does not include native copy instructions.
1305 bool isCopyLike() const {
1306 return isCopy() || isSubregToReg();
1307 }
1308
1309 /// Return true is the instruction is an identity copy.
1310 bool isIdentityCopy() const {
1311 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1312 getOperand(0).getSubReg() == getOperand(1).getSubReg();
1313 }
1314
1315 /// Return true if this instruction doesn't produce any output in the form of
1316 /// executable instructions.
1317 bool isMetaInstruction() const {
1318 switch (getOpcode()) {
1319 default:
1320 return false;
1321 case TargetOpcode::IMPLICIT_DEF:
1322 case TargetOpcode::KILL:
1323 case TargetOpcode::CFI_INSTRUCTION:
1324 case TargetOpcode::EH_LABEL:
1325 case TargetOpcode::GC_LABEL:
1326 case TargetOpcode::DBG_VALUE:
1327 case TargetOpcode::DBG_VALUE_LIST:
1328 case TargetOpcode::DBG_INSTR_REF:
1329 case TargetOpcode::DBG_PHI:
1330 case TargetOpcode::DBG_LABEL:
1331 case TargetOpcode::LIFETIME_START:
1332 case TargetOpcode::LIFETIME_END:
1333 case TargetOpcode::PSEUDO_PROBE:
1334 case TargetOpcode::ARITH_FENCE:
1335 return true;
1336 }
1337 }
1338
1339 /// Return true if this is a transient instruction that is either very likely
1340 /// to be eliminated during register allocation (such as copy-like
1341 /// instructions), or if this instruction doesn't have an execution-time cost.
1342 bool isTransient() const {
1343 switch (getOpcode()) {
1344 default:
1345 return isMetaInstruction();
1346 // Copy-like instructions are usually eliminated during register allocation.
1347 case TargetOpcode::PHI:
1348 case TargetOpcode::G_PHI:
1349 case TargetOpcode::COPY:
1350 case TargetOpcode::INSERT_SUBREG:
1351 case TargetOpcode::SUBREG_TO_REG:
1352 case TargetOpcode::REG_SEQUENCE:
1353 return true;
1354 }
1355 }
1356
1357 /// Return the number of instructions inside the MI bundle, excluding the
1358 /// bundle header.
1359 ///
1360 /// This is the number of instructions that MachineBasicBlock::iterator
1361 /// skips, 0 for unbundled instructions.
1362 unsigned getBundleSize() const;
1363
1364 /// Return true if the MachineInstr reads the specified register.
1365 /// If TargetRegisterInfo is passed, then it also checks if there
1366 /// is a read of a super-register.
1367 /// This does not count partial redefines of virtual registers as reads:
1368 /// %reg1024:6 = OP.
1369 bool readsRegister(Register Reg,
1370 const TargetRegisterInfo *TRI = nullptr) const {
1371 return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1372 }
1373
1374 /// Return true if the MachineInstr reads the specified virtual register.
1375 /// Take into account that a partial define is a
1376 /// read-modify-write operation.
1377 bool readsVirtualRegister(Register Reg) const {
1378 return readsWritesVirtualRegister(Reg).first;
1379 }
1380
1381 /// Return a pair of bools (reads, writes) indicating if this instruction
1382 /// reads or writes Reg. This also considers partial defines.
1383 /// If Ops is not null, all operand indices for Reg are added.
1384 std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1385 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1386
1387 /// Return true if the MachineInstr kills the specified register.
1388 /// If TargetRegisterInfo is passed, then it also checks if there is
1389 /// a kill of a super-register.
1390 bool killsRegister(Register Reg,
1391 const TargetRegisterInfo *TRI = nullptr) const {
1392 return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1393 }
1394
1395 /// Return true if the MachineInstr fully defines the specified register.
1396 /// If TargetRegisterInfo is passed, then it also checks
1397 /// if there is a def of a super-register.
1398 /// NOTE: It's ignoring subreg indices on virtual registers.
1399 bool definesRegister(Register Reg,
1400 const TargetRegisterInfo *TRI = nullptr) const {
1401 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1402 }
1403
1404 /// Return true if the MachineInstr modifies (fully define or partially
1405 /// define) the specified register.
1406 /// NOTE: It's ignoring subreg indices on virtual registers.
1407 bool modifiesRegister(Register Reg,
1408 const TargetRegisterInfo *TRI = nullptr) const {
1409 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1410 }
1411
1412 /// Returns true if the register is dead in this machine instruction.
1413 /// If TargetRegisterInfo is passed, then it also checks
1414 /// if there is a dead def of a super-register.
1415 bool registerDefIsDead(Register Reg,
1416 const TargetRegisterInfo *TRI = nullptr) const {
1417 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1418 }
1419
1420 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1421 /// the given register (not considering sub/super-registers).
1422 bool hasRegisterImplicitUseOperand(Register Reg) const;
1423
1424 /// Returns the operand index that is a use of the specific register or -1
1425 /// if it is not found. It further tightens the search criteria to a use
1426 /// that kills the register if isKill is true.
1427 int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
1428 const TargetRegisterInfo *TRI = nullptr) const;
1429
1430 /// Wrapper for findRegisterUseOperandIdx, it returns
1431 /// a pointer to the MachineOperand rather than an index.
1432 MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
1433 const TargetRegisterInfo *TRI = nullptr) {
1434 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1435 return (Idx == -1) ? nullptr : &getOperand(Idx);
1436 }
1437
1438 const MachineOperand *findRegisterUseOperand(
1439 Register Reg, bool isKill = false,
1440 const TargetRegisterInfo *TRI = nullptr) const {
1441 return const_cast<MachineInstr *>(this)->
1442 findRegisterUseOperand(Reg, isKill, TRI);
1443 }
1444
1445 /// Returns the operand index that is a def of the specified register or
1446 /// -1 if it is not found. If isDead is true, defs that are not dead are
1447 /// skipped. If Overlap is true, then it also looks for defs that merely
1448 /// overlap the specified register. If TargetRegisterInfo is non-null,
1449 /// then it also checks if there is a def of a super-register.
1450 /// This may also return a register mask operand when Overlap is true.
1451 int findRegisterDefOperandIdx(Register Reg,
1452 bool isDead = false, bool Overlap = false,
1453 const TargetRegisterInfo *TRI = nullptr) const;
1454
1455 /// Wrapper for findRegisterDefOperandIdx, it returns
1456 /// a pointer to the MachineOperand rather than an index.
1457 MachineOperand *
1458 findRegisterDefOperand(Register Reg, bool isDead = false,
1459 bool Overlap = false,
1460 const TargetRegisterInfo *TRI = nullptr) {
1461 int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1462 return (Idx == -1) ? nullptr : &getOperand(Idx);
1463 }
1464
1465 const MachineOperand *
1466 findRegisterDefOperand(Register Reg, bool isDead = false,
1467 bool Overlap = false,
1468 const TargetRegisterInfo *TRI = nullptr) const {
1469 return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1470 Reg, isDead, Overlap, TRI);
1471 }
1472
1473 /// Find the index of the first operand in the
1474 /// operand list that is used to represent the predicate. It returns -1 if
1475 /// none is found.
1476 int findFirstPredOperandIdx() const;
1477
1478 /// Find the index of the flag word operand that
1479 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
1480 /// getOperand(OpIdx) does not belong to an inline asm operand group.
1481 ///
1482 /// If GroupNo is not NULL, it will receive the number of the operand group
1483 /// containing OpIdx.
1484 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1485
1486 /// Compute the static register class constraint for operand OpIdx.
1487 /// For normal instructions, this is derived from the MCInstrDesc.
1488 /// For inline assembly it is derived from the flag words.
1489 ///
1490 /// Returns NULL if the static register class constraint cannot be
1491 /// determined.
1492 const TargetRegisterClass*
1493 getRegClassConstraint(unsigned OpIdx,
1494 const TargetInstrInfo *TII,
1495 const TargetRegisterInfo *TRI) const;
1496
1497 /// Applies the constraints (def/use) implied by this MI on \p Reg to
1498 /// the given \p CurRC.
1499 /// If \p ExploreBundle is set and MI is part of a bundle, all the
1500 /// instructions inside the bundle will be taken into account. In other words,
1501 /// this method accumulates all the constraints of the operand of this MI and
1502 /// the related bundle if MI is a bundle or inside a bundle.
1503 ///
1504 /// Returns the register class that satisfies both \p CurRC and the
1505 /// constraints set by MI. Returns NULL if such a register class does not
1506 /// exist.
1507 ///
1508 /// \pre CurRC must not be NULL.
1509 const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1510 Register Reg, const TargetRegisterClass *CurRC,
1511 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1512 bool ExploreBundle = false) const;
1513
1514 /// Applies the constraints (def/use) implied by the \p OpIdx operand
1515 /// to the given \p CurRC.
1516 ///
1517 /// Returns the register class that satisfies both \p CurRC and the
1518 /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1519 /// does not exist.
1520 ///
1521 /// \pre CurRC must not be NULL.
1522 /// \pre The operand at \p OpIdx must be a register.
1523 const TargetRegisterClass *
1524 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1525 const TargetInstrInfo *TII,
1526 const TargetRegisterInfo *TRI) const;
1527
1528 /// Add a tie between the register operands at DefIdx and UseIdx.
1529 /// The tie will cause the register allocator to ensure that the two
1530 /// operands are assigned the same physical register.
1531 ///
1532 /// Tied operands are managed automatically for explicit operands in the
1533 /// MCInstrDesc. This method is for exceptional cases like inline asm.
1534 void tieOperands(unsigned DefIdx, unsigned UseIdx);
1535
1536 /// Given the index of a tied register operand, find the
1537 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1538 /// index of the tied operand which must exist.
1539 unsigned findTiedOperandIdx(unsigned OpIdx) const;
1540
1541 /// Given the index of a register def operand,
1542 /// check if the register def is tied to a source operand, due to either
1543 /// two-address elimination or inline assembly constraints. Returns the
1544 /// first tied use operand index by reference if UseOpIdx is not null.
1545 bool isRegTiedToUseOperand(unsigned DefOpIdx,
1546 unsigned *UseOpIdx = nullptr) const {
1547 const MachineOperand &MO = getOperand(DefOpIdx);
1548 if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1549 return false;
1550 if (UseOpIdx)
1551 *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1552 return true;
1553 }
1554
1555 /// Return true if the use operand of the specified index is tied to a def
1556 /// operand. It also returns the def operand index by reference if DefOpIdx
1557 /// is not null.
1558 bool isRegTiedToDefOperand(unsigned UseOpIdx,
1559 unsigned *DefOpIdx = nullptr) const {
1560 const MachineOperand &MO = getOperand(UseOpIdx);
1561 if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1562 return false;
1563 if (DefOpIdx)
1564 *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1565 return true;
1566 }
1567
1568 /// Clears kill flags on all operands.
1569 void clearKillInfo();
1570
1571 /// Replace all occurrences of FromReg with ToReg:SubIdx,
1572 /// properly composing subreg indices where necessary.
1573 void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1574 const TargetRegisterInfo &RegInfo);
1575
1576 /// We have determined MI kills a register. Look for the
1577 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1578 /// add a implicit operand if it's not found. Returns true if the operand
1579 /// exists / is added.
1580 bool addRegisterKilled(Register IncomingReg,
1581 const TargetRegisterInfo *RegInfo,
1582 bool AddIfNotFound = false);
1583
1584 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
1585 /// all aliasing registers.
1586 void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1587
1588 /// We have determined MI defined a register without a use.
1589 /// Look for the operand that defines it and mark it as IsDead. If
1590 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1591 /// true if the operand exists / is added.
1592 bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1593 bool AddIfNotFound = false);
1594
1595 /// Clear all dead flags on operands defining register @p Reg.
1596 void clearRegisterDeads(Register Reg);
1597
1598 /// Mark all subregister defs of register @p Reg with the undef flag.
1599 /// This function is used when we determined to have a subregister def in an
1600 /// otherwise undefined super register.
1601 void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1602
1603 /// We have determined MI defines a register. Make sure there is an operand
1604 /// defining Reg.
1605 void addRegisterDefined(Register Reg,
1606 const TargetRegisterInfo *RegInfo = nullptr);
1607
1608 /// Mark every physreg used by this instruction as
1609 /// dead except those in the UsedRegs list.
1610 ///
1611 /// On instructions with register mask operands, also add implicit-def
1612 /// operands for all registers in UsedRegs.
1613 void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1614 const TargetRegisterInfo &TRI);
1615
1616 /// Return true if it is safe to move this instruction. If
1617 /// SawStore is set to true, it means that there is a store (or call) between
1618 /// the instruction's location and its intended destination.
1619 bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1620
1621 /// Returns true if this instruction's memory access aliases the memory
1622 /// access of Other.
1623 //
1624 /// Assumes any physical registers used to compute addresses
1625 /// have the same value for both instructions. Returns false if neither
1626 /// instruction writes to memory.
1627 ///
1628 /// @param AA Optional alias analysis, used to compare memory operands.
1629 /// @param Other MachineInstr to check aliasing against.
1630 /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1631 bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1632
1633 /// Return true if this instruction may have an ordered
1634 /// or volatile memory reference, or if the information describing the memory
1635 /// reference is not available. Return false if it is known to have no
1636 /// ordered or volatile memory references.
1637 bool hasOrderedMemoryRef() const;
1638
1639 /// Return true if this load instruction never traps and points to a memory
1640 /// location whose value doesn't change during the execution of this function.
1641 ///
1642 /// Examples include loading a value from the constant pool or from the
1643 /// argument area of a function (if it does not change). If the instruction
1644 /// does multiple loads, this returns true only if all of the loads are
1645 /// dereferenceable and invariant.
1646 bool isDereferenceableInvariantLoad(AAResults *AA) const;
1647
1648 /// If the specified instruction is a PHI that always merges together the
1649 /// same virtual register, return the register, otherwise return 0.
1650 unsigned isConstantValuePHI() const;
1651
1652 /// Return true if this instruction has side effects that are not modeled
1653 /// by mayLoad / mayStore, etc.
1654 /// For all instructions, the property is encoded in MCInstrDesc::Flags
1655 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1656 /// INLINEASM instruction, in which case the side effect property is encoded
1657 /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1658 ///
1659 bool hasUnmodeledSideEffects() const;
1660
1661 /// Returns true if it is illegal to fold a load across this instruction.
1662 bool isLoadFoldBarrier() const;
1663
1664 /// Return true if all the defs of this instruction are dead.
1665 bool allDefsAreDead() const;
1666
1667 /// Return a valid size if the instruction is a spill instruction.
1668 Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1669
1670 /// Return a valid size if the instruction is a folded spill instruction.
1671 Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1672
1673 /// Return a valid size if the instruction is a restore instruction.
1674 Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1675
1676 /// Return a valid size if the instruction is a folded restore instruction.
1677 Optional<unsigned>
1678 getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1679
1680 /// Copy implicit register operands from specified
1681 /// instruction to this instruction.
1682 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1683
1684 /// Debugging support
1685 /// @{
1686 /// Determine the generic type to be printed (if needed) on uses and defs.
1687 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1688 const MachineRegisterInfo &MRI) const;
1689
1690 /// Return true when an instruction has tied register that can't be determined
1691 /// by the instruction's descriptor. This is useful for MIR printing, to
1692 /// determine whether we need to print the ties or not.
1693 bool hasComplexRegisterTies() const;
1694
1695 /// Print this MI to \p OS.
1696 /// Don't print information that can be inferred from other instructions if
1697 /// \p IsStandalone is false. It is usually true when only a fragment of the
1698 /// function is printed.
1699 /// Only print the defs and the opcode if \p SkipOpers is true.
1700 /// Otherwise, also print operands if \p SkipDebugLoc is true.
1701 /// Otherwise, also print the debug loc, with a terminating newline.
1702 /// \p TII is used to print the opcode name. If it's not present, but the
1703 /// MI is in a function, the opcode will be printed using the function's TII.
1704 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1705 bool SkipDebugLoc = false, bool AddNewLine = true,
1706 const TargetInstrInfo *TII = nullptr) const;
1707 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1708 bool SkipOpers = false, bool SkipDebugLoc = false,
1709 bool AddNewLine = true,
1710 const TargetInstrInfo *TII = nullptr) const;
1711 void dump() const;
1712 /// Print on dbgs() the current instruction and the instructions defining its
1713 /// operands and so on until we reach \p MaxDepth.
1714 void dumpr(const MachineRegisterInfo &MRI,
1715 unsigned MaxDepth = UINT_MAX(2147483647 *2U +1U)) const;
1716 /// @}
1717
1718 //===--------------------------------------------------------------------===//
1719 // Accessors used to build up machine instructions.
1720
1721 /// Add the specified operand to the instruction. If it is an implicit
1722 /// operand, it is added to the end of the operand list. If it is an
1723 /// explicit operand it is added at the end of the explicit operand list
1724 /// (before the first implicit operand).
1725 ///
1726 /// MF must be the machine function that was used to allocate this
1727 /// instruction.
1728 ///
1729 /// MachineInstrBuilder provides a more convenient interface for creating
1730 /// instructions and adding operands.
1731 void addOperand(MachineFunction &MF, const MachineOperand &Op);
1732
1733 /// Add an operand without providing an MF reference. This only works for
1734 /// instructions that are inserted in a basic block.
1735 ///
1736 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1737 /// preferred.
1738 void addOperand(const MachineOperand &Op);
1739
1740 /// Replace the instruction descriptor (thus opcode) of
1741 /// the current instruction with a new one.
1742 void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1743
1744 /// Replace current source information with new such.
1745 /// Avoid using this, the constructor argument is preferable.
1746 void setDebugLoc(DebugLoc dl) {
1747 debugLoc = std::move(dl);
1748 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor")(static_cast <bool> (debugLoc.hasTrivialDestructor() &&
"Expected trivial destructor") ? void (0) : __assert_fail ("debugLoc.hasTrivialDestructor() && \"Expected trivial destructor\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 1748, __extension__ __PRETTY_FUNCTION__))
;
1749 }
1750
1751 /// Erase an operand from an instruction, leaving it with one
1752 /// fewer operand than it started with.
1753 void RemoveOperand(unsigned OpNo);
1754
1755 /// Clear this MachineInstr's memory reference descriptor list. This resets
1756 /// the memrefs to their most conservative state. This should be used only
1757 /// as a last resort since it greatly pessimizes our knowledge of the memory
1758 /// access performed by the instruction.
1759 void dropMemRefs(MachineFunction &MF);
1760
1761 /// Assign this MachineInstr's memory reference descriptor list.
1762 ///
1763 /// Unlike other methods, this *will* allocate them into a new array
1764 /// associated with the provided `MachineFunction`.
1765 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1766
1767 /// Add a MachineMemOperand to the machine instruction.
1768 /// This function should be used only occasionally. The setMemRefs function
1769 /// is the primary method for setting up a MachineInstr's MemRefs list.
1770 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1771
1772 /// Clone another MachineInstr's memory reference descriptor list and replace
1773 /// ours with it.
1774 ///
1775 /// Note that `*this` may be the incoming MI!
1776 ///
1777 /// Prefer this API whenever possible as it can avoid allocations in common
1778 /// cases.
1779 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1780
1781 /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1782 /// list and replace ours with it.
1783 ///
1784 /// Note that `*this` may be one of the incoming MIs!
1785 ///
1786 /// Prefer this API whenever possible as it can avoid allocations in common
1787 /// cases.
1788 void cloneMergedMemRefs(MachineFunction &MF,
1789 ArrayRef<const MachineInstr *> MIs);
1790
1791 /// Set a symbol that will be emitted just prior to the instruction itself.
1792 ///
1793 /// Setting this to a null pointer will remove any such symbol.
1794 ///
1795 /// FIXME: This is not fully implemented yet.
1796 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1797
1798 /// Set a symbol that will be emitted just after the instruction itself.
1799 ///
1800 /// Setting this to a null pointer will remove any such symbol.
1801 ///
1802 /// FIXME: This is not fully implemented yet.
1803 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1804
1805 /// Clone another MachineInstr's pre- and post- instruction symbols and
1806 /// replace ours with it.
1807 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1808
1809 /// Set a marker on instructions that denotes where we should create and emit
1810 /// heap alloc site labels. This waits until after instruction selection and
1811 /// optimizations to create the label, so it should still work if the
1812 /// instruction is removed or duplicated.
1813 void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
1814
1815 /// Return the MIFlags which represent both MachineInstrs. This
1816 /// should be used when merging two MachineInstrs into one. This routine does
1817 /// not modify the MIFlags of this MachineInstr.
1818 uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1819
1820 static uint16_t copyFlagsFromInstruction(const Instruction &I);
1821
1822 /// Copy all flags to MachineInst MIFlags
1823 void copyIRFlags(const Instruction &I);
1824
1825 /// Break any tie involving OpIdx.
1826 void untieRegOperand(unsigned OpIdx) {
1827 MachineOperand &MO = getOperand(OpIdx);
1828 if (MO.isReg() && MO.isTied()) {
1829 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1830 MO.TiedTo = 0;
1831 }
1832 }
1833
1834 /// Add all implicit def and use operands to this instruction.
1835 void addImplicitDefUseOperands(MachineFunction &MF);
1836
1837 /// Scan instructions immediately following MI and collect any matching
1838 /// DBG_VALUEs.
1839 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1840
1841 /// Find all DBG_VALUEs that point to the register def in this instruction
1842 /// and point them to \p Reg instead.
1843 void changeDebugValuesDefReg(Register Reg);
1844
1845 /// Returns the Intrinsic::ID for this instruction.
1846 /// \pre Must have an intrinsic ID operand.
1847 unsigned getIntrinsicID() const {
1848 return getOperand(getNumExplicitDefs()).getIntrinsicID();
1849 }
1850
1851 /// Sets all register debug operands in this debug value instruction to be
1852 /// undef.
1853 void setDebugValueUndef() {
1854 assert(isDebugValue() && "Must be a debug value instruction.")(static_cast <bool> (isDebugValue() && "Must be a debug value instruction."
) ? void (0) : __assert_fail ("isDebugValue() && \"Must be a debug value instruction.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/MachineInstr.h"
, 1854, __extension__ __PRETTY_FUNCTION__))
;
1855 for (MachineOperand &MO : debug_operands()) {
1856 if (MO.isReg()) {
1857 MO.setReg(0);
1858 MO.setSubReg(0);
1859 }
1860 }
1861 }
1862
1863private:
1864 /// If this instruction is embedded into a MachineFunction, return the
1865 /// MachineRegisterInfo object for the current function, otherwise
1866 /// return null.
1867 MachineRegisterInfo *getRegInfo();
1868
1869 /// Unlink all of the register operands in this instruction from their
1870 /// respective use lists. This requires that the operands already be on their
1871 /// use lists.
1872 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1873
1874 /// Add all of the register operands in this instruction from their
1875 /// respective use lists. This requires that the operands not be on their
1876 /// use lists yet.
1877 void AddRegOperandsToUseLists(MachineRegisterInfo&);
1878
1879 /// Slow path for hasProperty when we're dealing with a bundle.
1880 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1881
1882 /// Implements the logic of getRegClassConstraintEffectForVReg for the
1883 /// this MI and the given operand index \p OpIdx.
1884 /// If the related operand does not constrained Reg, this returns CurRC.
1885 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1886 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1887 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1888
1889 /// Stores extra instruction information inline or allocates as ExtraInfo
1890 /// based on the number of pointers.
1891 void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
1892 MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
1893 MDNode *HeapAllocMarker);
1894};
1895
1896/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1897/// instruction rather than by pointer value.
1898/// The hashing and equality testing functions ignore definitions so this is
1899/// useful for CSE, etc.
1900struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1901 static inline MachineInstr *getEmptyKey() {
1902 return nullptr;
1903 }
1904
1905 static inline MachineInstr *getTombstoneKey() {
1906 return reinterpret_cast<MachineInstr*>(-1);
1907 }
1908
1909 static unsigned getHashValue(const MachineInstr* const &MI);
1910
1911 static bool isEqual(const MachineInstr* const &LHS,
1912 const MachineInstr* const &RHS) {
1913 if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1914 LHS == getEmptyKey() || LHS == getTombstoneKey())
1915 return LHS == RHS;
1916 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1917 }
1918};
1919
1920//===----------------------------------------------------------------------===//
1921// Debugging Support
1922
1923inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1924 MI.print(OS);
1925 return OS;
1926}
1927
1928} // end namespace llvm
1929
1930#endif // LLVM_CODEGEN_MACHINEINSTR_H

/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/Register.h

1//===-- llvm/CodeGen/Register.h ---------------------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_CODEGEN_REGISTER_H
10#define LLVM_CODEGEN_REGISTER_H
11
12#include "llvm/MC/MCRegister.h"
13#include <cassert>
14
15namespace llvm {
16
17/// Wrapper class representing virtual and physical registers. Should be passed
18/// by value.
19class Register {
20 unsigned Reg;
21
22public:
23 constexpr Register(unsigned Val = 0): Reg(Val) {}
24 constexpr Register(MCRegister Val): Reg(Val) {}
25
26 // Register numbers can represent physical registers, virtual registers, and
27 // sometimes stack slots. The unsigned values are divided into these ranges:
28 //
29 // 0 Not a register, can be used as a sentinel.
30 // [1;2^30) Physical registers assigned by TableGen.
31 // [2^30;2^31) Stack slots. (Rarely used.)
32 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
33 //
34 // Further sentinels can be allocated from the small negative integers.
35 // DenseMapInfo<unsigned> uses -1u and -2u.
36 static_assert(std::numeric_limits<decltype(Reg)>::max() >= 0xFFFFFFFF,
37 "Reg isn't large enough to hold full range.");
38
39 /// isStackSlot - Sometimes it is useful the be able to store a non-negative
40 /// frame index in a variable that normally holds a register. isStackSlot()
41 /// returns true if Reg is in the range used for stack slots.
42 ///
43 /// FIXME: remove in favor of member.
44 static bool isStackSlot(unsigned Reg) {
45 return MCRegister::isStackSlot(Reg);
46 }
47
48 /// Return true if this is a stack slot.
49 bool isStack() const { return MCRegister::isStackSlot(Reg); }
50
51 /// Compute the frame index from a register value representing a stack slot.
52 static int stackSlot2Index(Register Reg) {
53 assert(Reg.isStack() && "Not a stack slot")(static_cast <bool> (Reg.isStack() && "Not a stack slot"
) ? void (0) : __assert_fail ("Reg.isStack() && \"Not a stack slot\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/Register.h"
, 53, __extension__ __PRETTY_FUNCTION__))
;
54 return int(Reg - MCRegister::FirstStackSlot);
55 }
56
57 /// Convert a non-negative frame index to a stack slot register value.
58 static Register index2StackSlot(int FI) {
59 assert(FI >= 0 && "Cannot hold a negative frame index.")(static_cast <bool> (FI >= 0 && "Cannot hold a negative frame index."
) ? void (0) : __assert_fail ("FI >= 0 && \"Cannot hold a negative frame index.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/Register.h"
, 59, __extension__ __PRETTY_FUNCTION__))
;
60 return Register(FI + MCRegister::FirstStackSlot);
61 }
62
63 /// Return true if the specified register number is in
64 /// the physical register namespace.
65 static bool isPhysicalRegister(unsigned Reg) {
66 return MCRegister::isPhysicalRegister(Reg);
67 }
68
69 /// Return true if the specified register number is in
70 /// the virtual register namespace.
71 static bool isVirtualRegister(unsigned Reg) {
72 return Reg & MCRegister::VirtualRegFlag && !isStackSlot(Reg);
73 }
74
75 /// Convert a virtual register number to a 0-based index.
76 /// The first virtual register in a function will get the index 0.
77 static unsigned virtReg2Index(Register Reg) {
78 assert(isVirtualRegister(Reg) && "Not a virtual register")(static_cast <bool> (isVirtualRegister(Reg) && "Not a virtual register"
) ? void (0) : __assert_fail ("isVirtualRegister(Reg) && \"Not a virtual register\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/Register.h"
, 78, __extension__ __PRETTY_FUNCTION__))
;
79 return Reg & ~MCRegister::VirtualRegFlag;
80 }
81
82 /// Convert a 0-based index to a virtual register number.
83 /// This is the inverse operation of VirtReg2IndexFunctor below.
84 static Register index2VirtReg(unsigned Index) {
85 assert(Index < (1u << 31) && "Index too large for virtual register range.")(static_cast <bool> (Index < (1u << 31) &&
"Index too large for virtual register range.") ? void (0) : __assert_fail
("Index < (1u << 31) && \"Index too large for virtual register range.\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/Register.h"
, 85, __extension__ __PRETTY_FUNCTION__))
;
86 return Index | MCRegister::VirtualRegFlag;
87 }
88
89 /// Return true if the specified register number is in the virtual register
90 /// namespace.
91 bool isVirtual() const {
92 return isVirtualRegister(Reg);
93 }
94
95 /// Return true if the specified register number is in the physical register
96 /// namespace.
97 bool isPhysical() const {
98 return isPhysicalRegister(Reg);
99 }
100
101 /// Convert a virtual register number to a 0-based index. The first virtual
102 /// register in a function will get the index 0.
103 unsigned virtRegIndex() const {
104 return virtReg2Index(Reg);
105 }
106
107 constexpr operator unsigned() const {
108 return Reg;
80
Returning zero, which participates in a condition later
109 }
110
111 unsigned id() const { return Reg; }
112
113 operator MCRegister() const {
114 return MCRegister(Reg);
115 }
116
117 /// Utility to check-convert this value to a MCRegister. The caller is
118 /// expected to have already validated that this Register is, indeed,
119 /// physical.
120 MCRegister asMCReg() const {
121 assert(Reg == MCRegister::NoRegister ||(static_cast <bool> (Reg == MCRegister::NoRegister || MCRegister
::isPhysicalRegister(Reg)) ? void (0) : __assert_fail ("Reg == MCRegister::NoRegister || MCRegister::isPhysicalRegister(Reg)"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/Register.h"
, 122, __extension__ __PRETTY_FUNCTION__))
122 MCRegister::isPhysicalRegister(Reg))(static_cast <bool> (Reg == MCRegister::NoRegister || MCRegister
::isPhysicalRegister(Reg)) ? void (0) : __assert_fail ("Reg == MCRegister::NoRegister || MCRegister::isPhysicalRegister(Reg)"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/Register.h"
, 122, __extension__ __PRETTY_FUNCTION__))
;
123 return MCRegister(Reg);
124 }
125
126 bool isValid() const { return Reg != MCRegister::NoRegister; }
127
128 /// Comparisons between register objects
129 bool operator==(const Register &Other) const { return Reg == Other.Reg; }
69
Assuming 'Reg' is not equal to 'Other.Reg'
70
Returning zero, which participates in a condition later
74
Assuming 'Reg' is not equal to 'Other.Reg'
75
Returning zero, which participates in a condition later
130 bool operator!=(const Register &Other) const { return Reg != Other.Reg; }
131 bool operator==(const MCRegister &Other) const { return Reg == Other.id(); }
132 bool operator!=(const MCRegister &Other) const { return Reg != Other.id(); }
133
134 /// Comparisons against register constants. E.g.
135 /// * R == AArch64::WZR
136 /// * R == 0
137 /// * R == VirtRegMap::NO_PHYS_REG
138 bool operator==(unsigned Other) const { return Reg == Other; }
88
Assuming 'Other' is equal to field 'Reg'
89
Returning the value 1, which participates in a condition later
139 bool operator!=(unsigned Other) const { return Reg != Other; }
140 bool operator==(int Other) const { return Reg == unsigned(Other); }
141 bool operator!=(int Other) const { return Reg != unsigned(Other); }
142 // MSVC requires that we explicitly declare these two as well.
143 bool operator==(MCPhysReg Other) const { return Reg == unsigned(Other); }
144 bool operator!=(MCPhysReg Other) const { return Reg != unsigned(Other); }
145};
146
147// Provide DenseMapInfo for Register
148template<> struct DenseMapInfo<Register> {
149 static inline unsigned getEmptyKey() {
150 return DenseMapInfo<unsigned>::getEmptyKey();
151 }
152 static inline unsigned getTombstoneKey() {
153 return DenseMapInfo<unsigned>::getTombstoneKey();
154 }
155 static unsigned getHashValue(const Register &Val) {
156 return DenseMapInfo<unsigned>::getHashValue(Val.id());
157 }
158 static bool isEqual(const Register &LHS, const Register &RHS) {
159 return DenseMapInfo<unsigned>::isEqual(LHS.id(), RHS.id());
160 }
161};
162
163}
164
165#endif // LLVM_CODEGEN_REGISTER_H

/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h

1//===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the target machine instruction set to the code generator.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_TARGETINSTRINFO_H
14#define LLVM_CODEGEN_TARGETINSTRINFO_H
15
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DenseMapInfo.h"
19#include "llvm/ADT/None.h"
20#include "llvm/CodeGen/MIRFormatter.h"
21#include "llvm/CodeGen/MachineBasicBlock.h"
22#include "llvm/CodeGen/MachineCombinerPattern.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/MachineOperand.h"
27#include "llvm/CodeGen/MachineOutliner.h"
28#include "llvm/CodeGen/RegisterClassInfo.h"
29#include "llvm/CodeGen/VirtRegMap.h"
30#include "llvm/MC/MCInstrInfo.h"
31#include "llvm/Support/BranchProbability.h"
32#include "llvm/Support/ErrorHandling.h"
33#include <cassert>
34#include <cstddef>
35#include <cstdint>
36#include <utility>
37#include <vector>
38
39namespace llvm {
40
41class AAResults;
42class DFAPacketizer;
43class InstrItineraryData;
44class LiveIntervals;
45class LiveVariables;
46class MachineLoop;
47class MachineMemOperand;
48class MachineRegisterInfo;
49class MCAsmInfo;
50class MCInst;
51struct MCSchedModel;
52class Module;
53class ScheduleDAG;
54class ScheduleDAGMI;
55class ScheduleHazardRecognizer;
56class SDNode;
57class SelectionDAG;
58class RegScavenger;
59class TargetRegisterClass;
60class TargetRegisterInfo;
61class TargetSchedModel;
62class TargetSubtargetInfo;
63
64template <class T> class SmallVectorImpl;
65
66using ParamLoadedValue = std::pair<MachineOperand, DIExpression*>;
67
68struct DestSourcePair {
69 const MachineOperand *Destination;
70 const MachineOperand *Source;
71
72 DestSourcePair(const MachineOperand &Dest, const MachineOperand &Src)
73 : Destination(&Dest), Source(&Src) {}
74};
75
76/// Used to describe a register and immediate addition.
77struct RegImmPair {
78 Register Reg;
79 int64_t Imm;
80
81 RegImmPair(Register Reg, int64_t Imm) : Reg(Reg), Imm(Imm) {}
82};
83
84/// Used to describe addressing mode similar to ExtAddrMode in CodeGenPrepare.
85/// It holds the register values, the scale value and the displacement.
86struct ExtAddrMode {
87 Register BaseReg;
88 Register ScaledReg;
89 int64_t Scale;
90 int64_t Displacement;
91};
92
93//---------------------------------------------------------------------------
94///
95/// TargetInstrInfo - Interface to description of machine instruction set
96///
97class TargetInstrInfo : public MCInstrInfo {
98public:
99 TargetInstrInfo(unsigned CFSetupOpcode = ~0u, unsigned CFDestroyOpcode = ~0u,
100 unsigned CatchRetOpcode = ~0u, unsigned ReturnOpcode = ~0u)
101 : CallFrameSetupOpcode(CFSetupOpcode),
102 CallFrameDestroyOpcode(CFDestroyOpcode), CatchRetOpcode(CatchRetOpcode),
103 ReturnOpcode(ReturnOpcode) {}
104 TargetInstrInfo(const TargetInstrInfo &) = delete;
105 TargetInstrInfo &operator=(const TargetInstrInfo &) = delete;
106 virtual ~TargetInstrInfo();
107
108 static bool isGenericOpcode(unsigned Opc) {
109 return Opc <= TargetOpcode::GENERIC_OP_END;
110 }
111
112 /// Given a machine instruction descriptor, returns the register
113 /// class constraint for OpNum, or NULL.
114 virtual
115 const TargetRegisterClass *getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
116 const TargetRegisterInfo *TRI,
117 const MachineFunction &MF) const;
118
119 /// Return true if the instruction is trivially rematerializable, meaning it
120 /// has no side effects and requires no operands that aren't always available.
121 /// This means the only allowed uses are constants and unallocatable physical
122 /// registers so that the instructions result is independent of the place
123 /// in the function.
124 bool isTriviallyReMaterializable(const MachineInstr &MI,
125 AAResults *AA = nullptr) const {
126 return MI.getOpcode() == TargetOpcode::IMPLICIT_DEF ||
127 (MI.getDesc().isRematerializable() &&
128 (isReallyTriviallyReMaterializable(MI, AA) ||
129 isReallyTriviallyReMaterializableGeneric(MI, AA)));
130 }
131
132 /// Given \p MO is a PhysReg use return if it can be ignored for the purpose
133 /// of instruction rematerialization.
134 virtual bool isIgnorableUse(const MachineOperand &MO) const {
135 return false;
136 }
137
138protected:
139 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
140 /// set, this hook lets the target specify whether the instruction is actually
141 /// trivially rematerializable, taking into consideration its operands. This
142 /// predicate must return false if the instruction has any side effects other
143 /// than producing a value, or if it requres any address registers that are
144 /// not always available.
145 /// Requirements must be check as stated in isTriviallyReMaterializable() .
146 virtual bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
147 AAResults *AA) const {
148 return false;
149 }
150
151 /// This method commutes the operands of the given machine instruction MI.
152 /// The operands to be commuted are specified by their indices OpIdx1 and
153 /// OpIdx2.
154 ///
155 /// If a target has any instructions that are commutable but require
156 /// converting to different instructions or making non-trivial changes
157 /// to commute them, this method can be overloaded to do that.
158 /// The default implementation simply swaps the commutable operands.
159 ///
160 /// If NewMI is false, MI is modified in place and returned; otherwise, a
161 /// new machine instruction is created and returned.
162 ///
163 /// Do not call this method for a non-commutable instruction.
164 /// Even though the instruction is commutable, the method may still
165 /// fail to commute the operands, null pointer is returned in such cases.
166 virtual MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
167 unsigned OpIdx1,
168 unsigned OpIdx2) const;
169
170 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
171 /// operand indices to (ResultIdx1, ResultIdx2).
172 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
173 /// predefined to some indices or be undefined (designated by the special
174 /// value 'CommuteAnyOperandIndex').
175 /// The predefined result indices cannot be re-defined.
176 /// The function returns true iff after the result pair redefinition
177 /// the fixed result pair is equal to or equivalent to the source pair of
178 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
179 /// the pairs (x,y) and (y,x) are equivalent.
180 static bool fixCommutedOpIndices(unsigned &ResultIdx1, unsigned &ResultIdx2,
181 unsigned CommutableOpIdx1,
182 unsigned CommutableOpIdx2);
183
184private:
185 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
186 /// set and the target hook isReallyTriviallyReMaterializable returns false,
187 /// this function does target-independent tests to determine if the
188 /// instruction is really trivially rematerializable.
189 bool isReallyTriviallyReMaterializableGeneric(const MachineInstr &MI,
190 AAResults *AA) const;
191
192public:
193 /// These methods return the opcode of the frame setup/destroy instructions
194 /// if they exist (-1 otherwise). Some targets use pseudo instructions in
195 /// order to abstract away the difference between operating with a frame
196 /// pointer and operating without, through the use of these two instructions.
197 ///
198 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode; }
199 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode; }
200
201 /// Returns true if the argument is a frame pseudo instruction.
202 bool isFrameInstr(const MachineInstr &I) const {
203 return I.getOpcode() == getCallFrameSetupOpcode() ||
204 I.getOpcode() == getCallFrameDestroyOpcode();
205 }
206
207 /// Returns true if the argument is a frame setup pseudo instruction.
208 bool isFrameSetup(const MachineInstr &I) const {
209 return I.getOpcode() == getCallFrameSetupOpcode();
210 }
211
212 /// Returns size of the frame associated with the given frame instruction.
213 /// For frame setup instruction this is frame that is set up space set up
214 /// after the instruction. For frame destroy instruction this is the frame
215 /// freed by the caller.
216 /// Note, in some cases a call frame (or a part of it) may be prepared prior
217 /// to the frame setup instruction. It occurs in the calls that involve
218 /// inalloca arguments. This function reports only the size of the frame part
219 /// that is set up between the frame setup and destroy pseudo instructions.
220 int64_t getFrameSize(const MachineInstr &I) const {
221 assert(isFrameInstr(I) && "Not a frame instruction")(static_cast <bool> (isFrameInstr(I) && "Not a frame instruction"
) ? void (0) : __assert_fail ("isFrameInstr(I) && \"Not a frame instruction\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 221, __extension__ __PRETTY_FUNCTION__))
;
222 assert(I.getOperand(0).getImm() >= 0)(static_cast <bool> (I.getOperand(0).getImm() >= 0) ?
void (0) : __assert_fail ("I.getOperand(0).getImm() >= 0"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 222, __extension__ __PRETTY_FUNCTION__))
;
223 return I.getOperand(0).getImm();
224 }
225
226 /// Returns the total frame size, which is made up of the space set up inside
227 /// the pair of frame start-stop instructions and the space that is set up
228 /// prior to the pair.
229 int64_t getFrameTotalSize(const MachineInstr &I) const {
230 if (isFrameSetup(I)) {
231 assert(I.getOperand(1).getImm() >= 0 &&(static_cast <bool> (I.getOperand(1).getImm() >= 0 &&
"Frame size must not be negative") ? void (0) : __assert_fail
("I.getOperand(1).getImm() >= 0 && \"Frame size must not be negative\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 232, __extension__ __PRETTY_FUNCTION__))
232 "Frame size must not be negative")(static_cast <bool> (I.getOperand(1).getImm() >= 0 &&
"Frame size must not be negative") ? void (0) : __assert_fail
("I.getOperand(1).getImm() >= 0 && \"Frame size must not be negative\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 232, __extension__ __PRETTY_FUNCTION__))
;
233 return getFrameSize(I) + I.getOperand(1).getImm();
234 }
235 return getFrameSize(I);
236 }
237
238 unsigned getCatchReturnOpcode() const { return CatchRetOpcode; }
239 unsigned getReturnOpcode() const { return ReturnOpcode; }
240
241 /// Returns the actual stack pointer adjustment made by an instruction
242 /// as part of a call sequence. By default, only call frame setup/destroy
243 /// instructions adjust the stack, but targets may want to override this
244 /// to enable more fine-grained adjustment, or adjust by a different value.
245 virtual int getSPAdjust(const MachineInstr &MI) const;
246
247 /// Return true if the instruction is a "coalescable" extension instruction.
248 /// That is, it's like a copy where it's legal for the source to overlap the
249 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
250 /// expected the pre-extension value is available as a subreg of the result
251 /// register. This also returns the sub-register index in SubIdx.
252 virtual bool isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg,
253 Register &DstReg, unsigned &SubIdx) const {
254 return false;
255 }
256
257 /// If the specified machine instruction is a direct
258 /// load from a stack slot, return the virtual or physical register number of
259 /// the destination along with the FrameIndex of the loaded stack slot. If
260 /// not, return 0. This predicate must return 0 if the instruction has
261 /// any side effects other than loading from the stack slot.
262 virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
263 int &FrameIndex) const {
264 return 0;
265 }
266
267 /// Optional extension of isLoadFromStackSlot that returns the number of
268 /// bytes loaded from the stack. This must be implemented if a backend
269 /// supports partial stack slot spills/loads to further disambiguate
270 /// what the load does.
271 virtual unsigned isLoadFromStackSlot(const MachineInstr &MI,
272 int &FrameIndex,
273 unsigned &MemBytes) const {
274 MemBytes = 0;
275 return isLoadFromStackSlot(MI, FrameIndex);
276 }
277
278 /// Check for post-frame ptr elimination stack locations as well.
279 /// This uses a heuristic so it isn't reliable for correctness.
280 virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr &MI,
281 int &FrameIndex) const {
282 return 0;
283 }
284
285 /// If the specified machine instruction has a load from a stack slot,
286 /// return true along with the FrameIndices of the loaded stack slot and the
287 /// machine mem operands containing the reference.
288 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
289 /// any instructions that loads from the stack. This is just a hint, as some
290 /// cases may be missed.
291 virtual bool hasLoadFromStackSlot(
292 const MachineInstr &MI,
293 SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
294
295 /// If the specified machine instruction is a direct
296 /// store to a stack slot, return the virtual or physical register number of
297 /// the source reg along with the FrameIndex of the loaded stack slot. If
298 /// not, return 0. This predicate must return 0 if the instruction has
299 /// any side effects other than storing to the stack slot.
300 virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
301 int &FrameIndex) const {
302 return 0;
85
Returning without writing to 'FrameIndex'
303 }
304
305 /// Optional extension of isStoreToStackSlot that returns the number of
306 /// bytes stored to the stack. This must be implemented if a backend
307 /// supports partial stack slot spills/loads to further disambiguate
308 /// what the store does.
309 virtual unsigned isStoreToStackSlot(const MachineInstr &MI,
310 int &FrameIndex,
311 unsigned &MemBytes) const {
312 MemBytes = 0;
313 return isStoreToStackSlot(MI, FrameIndex);
314 }
315
316 /// Check for post-frame ptr elimination stack locations as well.
317 /// This uses a heuristic, so it isn't reliable for correctness.
318 virtual unsigned isStoreToStackSlotPostFE(const MachineInstr &MI,
319 int &FrameIndex) const {
320 return 0;
321 }
322
323 /// If the specified machine instruction has a store to a stack slot,
324 /// return true along with the FrameIndices of the loaded stack slot and the
325 /// machine mem operands containing the reference.
326 /// If not, return false. Unlike isStoreToStackSlot,
327 /// this returns true for any instructions that stores to the
328 /// stack. This is just a hint, as some cases may be missed.
329 virtual bool hasStoreToStackSlot(
330 const MachineInstr &MI,
331 SmallVectorImpl<const MachineMemOperand *> &Accesses) const;
332
333 /// Return true if the specified machine instruction
334 /// is a copy of one stack slot to another and has no other effect.
335 /// Provide the identity of the two frame indices.
336 virtual bool isStackSlotCopy(const MachineInstr &MI, int &DestFrameIndex,
337 int &SrcFrameIndex) const {
338 return false;
339 }
340
341 /// Compute the size in bytes and offset within a stack slot of a spilled
342 /// register or subregister.
343 ///
344 /// \param [out] Size in bytes of the spilled value.
345 /// \param [out] Offset in bytes within the stack slot.
346 /// \returns true if both Size and Offset are successfully computed.
347 ///
348 /// Not all subregisters have computable spill slots. For example,
349 /// subregisters registers may not be byte-sized, and a pair of discontiguous
350 /// subregisters has no single offset.
351 ///
352 /// Targets with nontrivial bigendian implementations may need to override
353 /// this, particularly to support spilled vector registers.
354 virtual bool getStackSlotRange(const TargetRegisterClass *RC, unsigned SubIdx,
355 unsigned &Size, unsigned &Offset,
356 const MachineFunction &MF) const;
357
358 /// Return true if the given instruction is terminator that is unspillable,
359 /// according to isUnspillableTerminatorImpl.
360 bool isUnspillableTerminator(const MachineInstr *MI) const {
361 return MI->isTerminator() && isUnspillableTerminatorImpl(MI);
362 }
363
364 /// Returns the size in bytes of the specified MachineInstr, or ~0U
365 /// when this function is not implemented by a target.
366 virtual unsigned getInstSizeInBytes(const MachineInstr &MI) const {
367 return ~0U;
368 }
369
370 /// Return true if the instruction is as cheap as a move instruction.
371 ///
372 /// Targets for different archs need to override this, and different
373 /// micro-architectures can also be finely tuned inside.
374 virtual bool isAsCheapAsAMove(const MachineInstr &MI) const {
375 return MI.isAsCheapAsAMove();
376 }
377
378 /// Return true if the instruction should be sunk by MachineSink.
379 ///
380 /// MachineSink determines on its own whether the instruction is safe to sink;
381 /// this gives the target a hook to override the default behavior with regards
382 /// to which instructions should be sunk.
383 virtual bool shouldSink(const MachineInstr &MI) const { return true; }
384
385 /// Re-issue the specified 'original' instruction at the
386 /// specific location targeting a new destination register.
387 /// The register in Orig->getOperand(0).getReg() will be substituted by
388 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
389 /// SubIdx.
390 virtual void reMaterialize(MachineBasicBlock &MBB,
391 MachineBasicBlock::iterator MI, Register DestReg,
392 unsigned SubIdx, const MachineInstr &Orig,
393 const TargetRegisterInfo &TRI) const;
394
395 /// Clones instruction or the whole instruction bundle \p Orig and
396 /// insert into \p MBB before \p InsertBefore. The target may update operands
397 /// that are required to be unique.
398 ///
399 /// \p Orig must not return true for MachineInstr::isNotDuplicable().
400 virtual MachineInstr &duplicate(MachineBasicBlock &MBB,
401 MachineBasicBlock::iterator InsertBefore,
402 const MachineInstr &Orig) const;
403
404 /// This method must be implemented by targets that
405 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
406 /// may be able to convert a two-address instruction into one or more true
407 /// three-address instructions on demand. This allows the X86 target (for
408 /// example) to convert ADD and SHL instructions into LEA instructions if they
409 /// would require register copies due to two-addressness.
410 ///
411 /// This method returns a null pointer if the transformation cannot be
412 /// performed, otherwise it returns the last new instruction.
413 ///
414 virtual MachineInstr *convertToThreeAddress(MachineInstr &MI,
415 LiveVariables *LV) const {
416 return nullptr;
417 }
418
419 // This constant can be used as an input value of operand index passed to
420 // the method findCommutedOpIndices() to tell the method that the
421 // corresponding operand index is not pre-defined and that the method
422 // can pick any commutable operand.
423 static const unsigned CommuteAnyOperandIndex = ~0U;
424
425 /// This method commutes the operands of the given machine instruction MI.
426 ///
427 /// The operands to be commuted are specified by their indices OpIdx1 and
428 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
429 /// 'CommuteAnyOperandIndex', which means that the method is free to choose
430 /// any arbitrarily chosen commutable operand. If both arguments are set to
431 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
432 /// operands; then commutes them if such operands could be found.
433 ///
434 /// If NewMI is false, MI is modified in place and returned; otherwise, a
435 /// new machine instruction is created and returned.
436 ///
437 /// Do not call this method for a non-commutable instruction or
438 /// for non-commuable operands.
439 /// Even though the instruction is commutable, the method may still
440 /// fail to commute the operands, null pointer is returned in such cases.
441 MachineInstr *
442 commuteInstruction(MachineInstr &MI, bool NewMI = false,
443 unsigned OpIdx1 = CommuteAnyOperandIndex,
444 unsigned OpIdx2 = CommuteAnyOperandIndex) const;
445
446 /// Returns true iff the routine could find two commutable operands in the
447 /// given machine instruction.
448 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
449 /// If any of the INPUT values is set to the special value
450 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
451 /// operand, then returns its index in the corresponding argument.
452 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
453 /// looks for 2 commutable operands.
454 /// If INPUT values refer to some operands of MI, then the method simply
455 /// returns true if the corresponding operands are commutable and returns
456 /// false otherwise.
457 ///
458 /// For example, calling this method this way:
459 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
460 /// findCommutedOpIndices(MI, Op1, Op2);
461 /// can be interpreted as a query asking to find an operand that would be
462 /// commutable with the operand#1.
463 virtual bool findCommutedOpIndices(const MachineInstr &MI,
464 unsigned &SrcOpIdx1,
465 unsigned &SrcOpIdx2) const;
466
467 /// Returns true if the target has a preference on the operands order of
468 /// the given machine instruction. And specify if \p Commute is required to
469 /// get the desired operands order.
470 virtual bool hasCommutePreference(MachineInstr &MI, bool &Commute) const {
471 return false;
472 }
473
474 /// A pair composed of a register and a sub-register index.
475 /// Used to give some type checking when modeling Reg:SubReg.
476 struct RegSubRegPair {
477 Register Reg;
478 unsigned SubReg;
479
480 RegSubRegPair(Register Reg = Register(), unsigned SubReg = 0)
481 : Reg(Reg), SubReg(SubReg) {}
482
483 bool operator==(const RegSubRegPair& P) const {
484 return Reg == P.Reg && SubReg == P.SubReg;
485 }
486 bool operator!=(const RegSubRegPair& P) const {
487 return !(*this == P);
488 }
489 };
490
491 /// A pair composed of a pair of a register and a sub-register index,
492 /// and another sub-register index.
493 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
494 struct RegSubRegPairAndIdx : RegSubRegPair {
495 unsigned SubIdx;
496
497 RegSubRegPairAndIdx(Register Reg = Register(), unsigned SubReg = 0,
498 unsigned SubIdx = 0)
499 : RegSubRegPair(Reg, SubReg), SubIdx(SubIdx) {}
500 };
501
502 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
503 /// and \p DefIdx.
504 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
505 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
506 /// flag are not added to this list.
507 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
508 /// two elements:
509 /// - %1:sub1, sub0
510 /// - %2<:0>, sub1
511 ///
512 /// \returns true if it is possible to build such an input sequence
513 /// with the pair \p MI, \p DefIdx. False otherwise.
514 ///
515 /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
516 ///
517 /// \note The generic implementation does not provide any support for
518 /// MI.isRegSequenceLike(). In other words, one has to override
519 /// getRegSequenceLikeInputs for target specific instructions.
520 bool
521 getRegSequenceInputs(const MachineInstr &MI, unsigned DefIdx,
522 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const;
523
524 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
525 /// and \p DefIdx.
526 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
527 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
528 /// - %1:sub1, sub0
529 ///
530 /// \returns true if it is possible to build such an input sequence
531 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
532 /// False otherwise.
533 ///
534 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
535 ///
536 /// \note The generic implementation does not provide any support for
537 /// MI.isExtractSubregLike(). In other words, one has to override
538 /// getExtractSubregLikeInputs for target specific instructions.
539 bool getExtractSubregInputs(const MachineInstr &MI, unsigned DefIdx,
540 RegSubRegPairAndIdx &InputReg) const;
541
542 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
543 /// and \p DefIdx.
544 /// \p [out] BaseReg and \p [out] InsertedReg contain
545 /// the equivalent inputs of INSERT_SUBREG.
546 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
547 /// - BaseReg: %0:sub0
548 /// - InsertedReg: %1:sub1, sub3
549 ///
550 /// \returns true if it is possible to build such an input sequence
551 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
552 /// False otherwise.
553 ///
554 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
555 ///
556 /// \note The generic implementation does not provide any support for
557 /// MI.isInsertSubregLike(). In other words, one has to override
558 /// getInsertSubregLikeInputs for target specific instructions.
559 bool getInsertSubregInputs(const MachineInstr &MI, unsigned DefIdx,
560 RegSubRegPair &BaseReg,
561 RegSubRegPairAndIdx &InsertedReg) const;
562
563 /// Return true if two machine instructions would produce identical values.
564 /// By default, this is only true when the two instructions
565 /// are deemed identical except for defs. If this function is called when the
566 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
567 /// aggressive checks.
568 virtual bool produceSameValue(const MachineInstr &MI0,
569 const MachineInstr &MI1,
570 const MachineRegisterInfo *MRI = nullptr) const;
571
572 /// \returns true if a branch from an instruction with opcode \p BranchOpc
573 /// bytes is capable of jumping to a position \p BrOffset bytes away.
574 virtual bool isBranchOffsetInRange(unsigned BranchOpc,
575 int64_t BrOffset) const {
576 llvm_unreachable("target did not implement")::llvm::llvm_unreachable_internal("target did not implement",
"/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 576)
;
577 }
578
579 /// \returns The block that branch instruction \p MI jumps to.
580 virtual MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const {
581 llvm_unreachable("target did not implement")::llvm::llvm_unreachable_internal("target did not implement",
"/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 581)
;
582 }
583
584 /// Insert an unconditional indirect branch at the end of \p MBB to \p
585 /// NewDestBB. Optionally, insert the clobbered register restoring in \p
586 /// RestoreBB. \p BrOffset indicates the offset of \p NewDestBB relative to
587 /// the offset of the position to insert the new branch.
588 virtual void insertIndirectBranch(MachineBasicBlock &MBB,
589 MachineBasicBlock &NewDestBB,
590 MachineBasicBlock &RestoreBB,
591 const DebugLoc &DL, int64_t BrOffset = 0,
592 RegScavenger *RS = nullptr) const {
593 llvm_unreachable("target did not implement")::llvm::llvm_unreachable_internal("target did not implement",
"/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 593)
;
594 }
595
596 /// Analyze the branching code at the end of MBB, returning
597 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
598 /// implemented for a target). Upon success, this returns false and returns
599 /// with the following information in various cases:
600 ///
601 /// 1. If this block ends with no branches (it just falls through to its succ)
602 /// just return false, leaving TBB/FBB null.
603 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
604 /// the destination block.
605 /// 3. If this block ends with a conditional branch and it falls through to a
606 /// successor block, it sets TBB to be the branch destination block and a
607 /// list of operands that evaluate the condition. These operands can be
608 /// passed to other TargetInstrInfo methods to create new branches.
609 /// 4. If this block ends with a conditional branch followed by an
610 /// unconditional branch, it returns the 'true' destination in TBB, the
611 /// 'false' destination in FBB, and a list of operands that evaluate the
612 /// condition. These operands can be passed to other TargetInstrInfo
613 /// methods to create new branches.
614 ///
615 /// Note that removeBranch and insertBranch must be implemented to support
616 /// cases where this method returns success.
617 ///
618 /// If AllowModify is true, then this routine is allowed to modify the basic
619 /// block (e.g. delete instructions after the unconditional branch).
620 ///
621 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
622 /// before calling this function.
623 virtual bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
624 MachineBasicBlock *&FBB,
625 SmallVectorImpl<MachineOperand> &Cond,
626 bool AllowModify = false) const {
627 return true;
628 }
629
630 /// Represents a predicate at the MachineFunction level. The control flow a
631 /// MachineBranchPredicate represents is:
632 ///
633 /// Reg = LHS `Predicate` RHS == ConditionDef
634 /// if Reg then goto TrueDest else goto FalseDest
635 ///
636 struct MachineBranchPredicate {
637 enum ComparePredicate {
638 PRED_EQ, // True if two values are equal
639 PRED_NE, // True if two values are not equal
640 PRED_INVALID // Sentinel value
641 };
642
643 ComparePredicate Predicate = PRED_INVALID;
644 MachineOperand LHS = MachineOperand::CreateImm(0);
645 MachineOperand RHS = MachineOperand::CreateImm(0);
646 MachineBasicBlock *TrueDest = nullptr;
647 MachineBasicBlock *FalseDest = nullptr;
648 MachineInstr *ConditionDef = nullptr;
649
650 /// SingleUseCondition is true if ConditionDef is dead except for the
651 /// branch(es) at the end of the basic block.
652 ///
653 bool SingleUseCondition = false;
654
655 explicit MachineBranchPredicate() = default;
656 };
657
658 /// Analyze the branching code at the end of MBB and parse it into the
659 /// MachineBranchPredicate structure if possible. Returns false on success
660 /// and true on failure.
661 ///
662 /// If AllowModify is true, then this routine is allowed to modify the basic
663 /// block (e.g. delete instructions after the unconditional branch).
664 ///
665 virtual bool analyzeBranchPredicate(MachineBasicBlock &MBB,
666 MachineBranchPredicate &MBP,
667 bool AllowModify = false) const {
668 return true;
669 }
670
671 /// Remove the branching code at the end of the specific MBB.
672 /// This is only invoked in cases where analyzeBranch returns success. It
673 /// returns the number of instructions that were removed.
674 /// If \p BytesRemoved is non-null, report the change in code size from the
675 /// removed instructions.
676 virtual unsigned removeBranch(MachineBasicBlock &MBB,
677 int *BytesRemoved = nullptr) const {
678 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!")::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::removeBranch!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 678)
;
679 }
680
681 /// Insert branch code into the end of the specified MachineBasicBlock. The
682 /// operands to this method are the same as those returned by analyzeBranch.
683 /// This is only invoked in cases where analyzeBranch returns success. It
684 /// returns the number of instructions inserted. If \p BytesAdded is non-null,
685 /// report the change in code size from the added instructions.
686 ///
687 /// It is also invoked by tail merging to add unconditional branches in
688 /// cases where analyzeBranch doesn't apply because there was no original
689 /// branch to analyze. At least this much must be implemented, else tail
690 /// merging needs to be disabled.
691 ///
692 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
693 /// before calling this function.
694 virtual unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
695 MachineBasicBlock *FBB,
696 ArrayRef<MachineOperand> Cond,
697 const DebugLoc &DL,
698 int *BytesAdded = nullptr) const {
699 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!")::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::insertBranch!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 699)
;
700 }
701
702 unsigned insertUnconditionalBranch(MachineBasicBlock &MBB,
703 MachineBasicBlock *DestBB,
704 const DebugLoc &DL,
705 int *BytesAdded = nullptr) const {
706 return insertBranch(MBB, DestBB, nullptr, ArrayRef<MachineOperand>(), DL,
707 BytesAdded);
708 }
709
710 /// Object returned by analyzeLoopForPipelining. Allows software pipelining
711 /// implementations to query attributes of the loop being pipelined and to
712 /// apply target-specific updates to the loop once pipelining is complete.
713 class PipelinerLoopInfo {
714 public:
715 virtual ~PipelinerLoopInfo();
716 /// Return true if the given instruction should not be pipelined and should
717 /// be ignored. An example could be a loop comparison, or induction variable
718 /// update with no users being pipelined.
719 virtual bool shouldIgnoreForPipelining(const MachineInstr *MI) const = 0;
720
721 /// Create a condition to determine if the trip count of the loop is greater
722 /// than TC.
723 ///
724 /// If the trip count is statically known to be greater than TC, return
725 /// true. If the trip count is statically known to be not greater than TC,
726 /// return false. Otherwise return nullopt and fill out Cond with the test
727 /// condition.
728 virtual Optional<bool>
729 createTripCountGreaterCondition(int TC, MachineBasicBlock &MBB,
730 SmallVectorImpl<MachineOperand> &Cond) = 0;
731
732 /// Modify the loop such that the trip count is
733 /// OriginalTC + TripCountAdjust.
734 virtual void adjustTripCount(int TripCountAdjust) = 0;
735
736 /// Called when the loop's preheader has been modified to NewPreheader.
737 virtual void setPreheader(MachineBasicBlock *NewPreheader) = 0;
738
739 /// Called when the loop is being removed. Any instructions in the preheader
740 /// should be removed.
741 ///
742 /// Once this function is called, no other functions on this object are
743 /// valid; the loop has been removed.
744 virtual void disposed() = 0;
745 };
746
747 /// Analyze loop L, which must be a single-basic-block loop, and if the
748 /// conditions can be understood enough produce a PipelinerLoopInfo object.
749 virtual std::unique_ptr<PipelinerLoopInfo>
750 analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
751 return nullptr;
752 }
753
754 /// Analyze the loop code, return true if it cannot be understood. Upon
755 /// success, this function returns false and returns information about the
756 /// induction variable and compare instruction used at the end.
757 virtual bool analyzeLoop(MachineLoop &L, MachineInstr *&IndVarInst,
758 MachineInstr *&CmpInst) const {
759 return true;
760 }
761
762 /// Generate code to reduce the loop iteration by one and check if the loop
763 /// is finished. Return the value/register of the new loop count. We need
764 /// this function when peeling off one or more iterations of a loop. This
765 /// function assumes the nth iteration is peeled first.
766 virtual unsigned reduceLoopCount(MachineBasicBlock &MBB,
767 MachineBasicBlock &PreHeader,
768 MachineInstr *IndVar, MachineInstr &Cmp,
769 SmallVectorImpl<MachineOperand> &Cond,
770 SmallVectorImpl<MachineInstr *> &PrevInsts,
771 unsigned Iter, unsigned MaxIter) const {
772 llvm_unreachable("Target didn't implement ReduceLoopCount")::llvm::llvm_unreachable_internal("Target didn't implement ReduceLoopCount"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 772)
;
773 }
774
775 /// Delete the instruction OldInst and everything after it, replacing it with
776 /// an unconditional branch to NewDest. This is used by the tail merging pass.
777 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
778 MachineBasicBlock *NewDest) const;
779
780 /// Return true if it's legal to split the given basic
781 /// block at the specified instruction (i.e. instruction would be the start
782 /// of a new basic block).
783 virtual bool isLegalToSplitMBBAt(MachineBasicBlock &MBB,
784 MachineBasicBlock::iterator MBBI) const {
785 return true;
786 }
787
788 /// Return true if it's profitable to predicate
789 /// instructions with accumulated instruction latency of "NumCycles"
790 /// of the specified basic block, where the probability of the instructions
791 /// being executed is given by Probability, and Confidence is a measure
792 /// of our confidence that it will be properly predicted.
793 virtual bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
794 unsigned ExtraPredCycles,
795 BranchProbability Probability) const {
796 return false;
797 }
798
799 /// Second variant of isProfitableToIfCvt. This one
800 /// checks for the case where two basic blocks from true and false path
801 /// of a if-then-else (diamond) are predicated on mutually exclusive
802 /// predicates, where the probability of the true path being taken is given
803 /// by Probability, and Confidence is a measure of our confidence that it
804 /// will be properly predicted.
805 virtual bool isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumTCycles,
806 unsigned ExtraTCycles,
807 MachineBasicBlock &FMBB, unsigned NumFCycles,
808 unsigned ExtraFCycles,
809 BranchProbability Probability) const {
810 return false;
811 }
812
813 /// Return true if it's profitable for if-converter to duplicate instructions
814 /// of specified accumulated instruction latencies in the specified MBB to
815 /// enable if-conversion.
816 /// The probability of the instructions being executed is given by
817 /// Probability, and Confidence is a measure of our confidence that it
818 /// will be properly predicted.
819 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
820 unsigned NumCycles,
821 BranchProbability Probability) const {
822 return false;
823 }
824
825 /// Return the increase in code size needed to predicate a contiguous run of
826 /// NumInsts instructions.
827 virtual unsigned extraSizeToPredicateInstructions(const MachineFunction &MF,
828 unsigned NumInsts) const {
829 return 0;
830 }
831
832 /// Return an estimate for the code size reduction (in bytes) which will be
833 /// caused by removing the given branch instruction during if-conversion.
834 virtual unsigned predictBranchSizeForIfCvt(MachineInstr &MI) const {
835 return getInstSizeInBytes(MI);
836 }
837
838 /// Return true if it's profitable to unpredicate
839 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
840 /// exclusive predicates.
841 /// e.g.
842 /// subeq r0, r1, #1
843 /// addne r0, r1, #1
844 /// =>
845 /// sub r0, r1, #1
846 /// addne r0, r1, #1
847 ///
848 /// This may be profitable is conditional instructions are always executed.
849 virtual bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
850 MachineBasicBlock &FMBB) const {
851 return false;
852 }
853
854 /// Return true if it is possible to insert a select
855 /// instruction that chooses between TrueReg and FalseReg based on the
856 /// condition code in Cond.
857 ///
858 /// When successful, also return the latency in cycles from TrueReg,
859 /// FalseReg, and Cond to the destination register. In most cases, a select
860 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
861 ///
862 /// Some x86 implementations have 2-cycle cmov instructions.
863 ///
864 /// @param MBB Block where select instruction would be inserted.
865 /// @param Cond Condition returned by analyzeBranch.
866 /// @param DstReg Virtual dest register that the result should write to.
867 /// @param TrueReg Virtual register to select when Cond is true.
868 /// @param FalseReg Virtual register to select when Cond is false.
869 /// @param CondCycles Latency from Cond+Branch to select output.
870 /// @param TrueCycles Latency from TrueReg to select output.
871 /// @param FalseCycles Latency from FalseReg to select output.
872 virtual bool canInsertSelect(const MachineBasicBlock &MBB,
873 ArrayRef<MachineOperand> Cond, Register DstReg,
874 Register TrueReg, Register FalseReg,
875 int &CondCycles, int &TrueCycles,
876 int &FalseCycles) const {
877 return false;
878 }
879
880 /// Insert a select instruction into MBB before I that will copy TrueReg to
881 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
882 ///
883 /// This function can only be called after canInsertSelect() returned true.
884 /// The condition in Cond comes from analyzeBranch, and it can be assumed
885 /// that the same flags or registers required by Cond are available at the
886 /// insertion point.
887 ///
888 /// @param MBB Block where select instruction should be inserted.
889 /// @param I Insertion point.
890 /// @param DL Source location for debugging.
891 /// @param DstReg Virtual register to be defined by select instruction.
892 /// @param Cond Condition as computed by analyzeBranch.
893 /// @param TrueReg Virtual register to copy when Cond is true.
894 /// @param FalseReg Virtual register to copy when Cons is false.
895 virtual void insertSelect(MachineBasicBlock &MBB,
896 MachineBasicBlock::iterator I, const DebugLoc &DL,
897 Register DstReg, ArrayRef<MachineOperand> Cond,
898 Register TrueReg, Register FalseReg) const {
899 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!")::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::insertSelect!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 899)
;
900 }
901
902 /// Analyze the given select instruction, returning true if
903 /// it cannot be understood. It is assumed that MI->isSelect() is true.
904 ///
905 /// When successful, return the controlling condition and the operands that
906 /// determine the true and false result values.
907 ///
908 /// Result = SELECT Cond, TrueOp, FalseOp
909 ///
910 /// Some targets can optimize select instructions, for example by predicating
911 /// the instruction defining one of the operands. Such targets should set
912 /// Optimizable.
913 ///
914 /// @param MI Select instruction to analyze.
915 /// @param Cond Condition controlling the select.
916 /// @param TrueOp Operand number of the value selected when Cond is true.
917 /// @param FalseOp Operand number of the value selected when Cond is false.
918 /// @param Optimizable Returned as true if MI is optimizable.
919 /// @returns False on success.
920 virtual bool analyzeSelect(const MachineInstr &MI,
921 SmallVectorImpl<MachineOperand> &Cond,
922 unsigned &TrueOp, unsigned &FalseOp,
923 bool &Optimizable) const {
924 assert(MI.getDesc().isSelect() && "MI must be a select instruction")(static_cast <bool> (MI.getDesc().isSelect() &&
"MI must be a select instruction") ? void (0) : __assert_fail
("MI.getDesc().isSelect() && \"MI must be a select instruction\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 924, __extension__ __PRETTY_FUNCTION__))
;
925 return true;
926 }
927
928 /// Given a select instruction that was understood by
929 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
930 /// merging it with one of its operands. Returns NULL on failure.
931 ///
932 /// When successful, returns the new select instruction. The client is
933 /// responsible for deleting MI.
934 ///
935 /// If both sides of the select can be optimized, PreferFalse is used to pick
936 /// a side.
937 ///
938 /// @param MI Optimizable select instruction.
939 /// @param NewMIs Set that record all MIs in the basic block up to \p
940 /// MI. Has to be updated with any newly created MI or deleted ones.
941 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
942 /// @returns Optimized instruction or NULL.
943 virtual MachineInstr *optimizeSelect(MachineInstr &MI,
944 SmallPtrSetImpl<MachineInstr *> &NewMIs,
945 bool PreferFalse = false) const {
946 // This function must be implemented if Optimizable is ever set.
947 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!")::llvm::llvm_unreachable_internal("Target must implement TargetInstrInfo::optimizeSelect!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 947)
;
948 }
949
950 /// Emit instructions to copy a pair of physical registers.
951 ///
952 /// This function should support copies within any legal register class as
953 /// well as any cross-class copies created during instruction selection.
954 ///
955 /// The source and destination registers may overlap, which may require a
956 /// careful implementation when multiple copy instructions are required for
957 /// large registers. See for example the ARM target.
958 virtual void copyPhysReg(MachineBasicBlock &MBB,
959 MachineBasicBlock::iterator MI, const DebugLoc &DL,
960 MCRegister DestReg, MCRegister SrcReg,
961 bool KillSrc) const {
962 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!")::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::copyPhysReg!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 962)
;
963 }
964
965 /// Allow targets to tell MachineVerifier whether a specific register
966 /// MachineOperand can be used as part of PC-relative addressing.
967 /// PC-relative addressing modes in many CISC architectures contain
968 /// (non-PC) registers as offsets or scaling values, which inherently
969 /// tags the corresponding MachineOperand with OPERAND_PCREL.
970 ///
971 /// @param MO The MachineOperand in question. MO.isReg() should always
972 /// be true.
973 /// @return Whether this operand is allowed to be used PC-relatively.
974 virtual bool isPCRelRegisterOperandLegal(const MachineOperand &MO) const {
975 return false;
976 }
977
978protected:
979 /// Target-dependent implementation for IsCopyInstr.
980 /// If the specific machine instruction is a instruction that moves/copies
981 /// value from one register to another register return destination and source
982 /// registers as machine operands.
983 virtual Optional<DestSourcePair>
984 isCopyInstrImpl(const MachineInstr &MI) const {
985 return None;
986 }
987
988 /// Return true if the given terminator MI is not expected to spill. This
989 /// sets the live interval as not spillable and adjusts phi node lowering to
990 /// not introduce copies after the terminator. Use with care, these are
991 /// currently used for hardware loop intrinsics in very controlled situations,
992 /// created prior to registry allocation in loops that only have single phi
993 /// users for the terminators value. They may run out of registers if not used
994 /// carefully.
995 virtual bool isUnspillableTerminatorImpl(const MachineInstr *MI) const {
996 return false;
997 }
998
999public:
1000 /// If the specific machine instruction is a instruction that moves/copies
1001 /// value from one register to another register return destination and source
1002 /// registers as machine operands.
1003 /// For COPY-instruction the method naturally returns destination and source
1004 /// registers as machine operands, for all other instructions the method calls
1005 /// target-dependent implementation.
1006 Optional<DestSourcePair> isCopyInstr(const MachineInstr &MI) const {
1007 if (MI.isCopy()) {
1008 return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
1009 }
1010 return isCopyInstrImpl(MI);
1011 }
1012
1013 /// If the specific machine instruction is an instruction that adds an
1014 /// immediate value and a physical register, and stores the result in
1015 /// the given physical register \c Reg, return a pair of the source
1016 /// register and the offset which has been added.
1017 virtual Optional<RegImmPair> isAddImmediate(const MachineInstr &MI,
1018 Register Reg) const {
1019 return None;
1020 }
1021
1022 /// Returns true if MI is an instruction that defines Reg to have a constant
1023 /// value and the value is recorded in ImmVal. The ImmVal is a result that
1024 /// should be interpreted as modulo size of Reg.
1025 virtual bool getConstValDefinedInReg(const MachineInstr &MI,
1026 const Register Reg,
1027 int64_t &ImmVal) const {
1028 return false;
1029 }
1030
1031 /// Store the specified register of the given register class to the specified
1032 /// stack frame index. The store instruction is to be added to the given
1033 /// machine basic block before the specified machine instruction. If isKill
1034 /// is true, the register operand is the last use and must be marked kill.
1035 virtual void storeRegToStackSlot(MachineBasicBlock &MBB,
1036 MachineBasicBlock::iterator MI,
1037 Register SrcReg, bool isKill, int FrameIndex,
1038 const TargetRegisterClass *RC,
1039 const TargetRegisterInfo *TRI) const {
1040 llvm_unreachable("Target didn't implement "::llvm::llvm_unreachable_internal("Target didn't implement " "TargetInstrInfo::storeRegToStackSlot!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1041)
1041 "TargetInstrInfo::storeRegToStackSlot!")::llvm::llvm_unreachable_internal("Target didn't implement " "TargetInstrInfo::storeRegToStackSlot!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1041)
;
1042 }
1043
1044 /// Load the specified register of the given register class from the specified
1045 /// stack frame index. The load instruction is to be added to the given
1046 /// machine basic block before the specified machine instruction.
1047 virtual void loadRegFromStackSlot(MachineBasicBlock &MBB,
1048 MachineBasicBlock::iterator MI,
1049 Register DestReg, int FrameIndex,
1050 const TargetRegisterClass *RC,
1051 const TargetRegisterInfo *TRI) const {
1052 llvm_unreachable("Target didn't implement "::llvm::llvm_unreachable_internal("Target didn't implement " "TargetInstrInfo::loadRegFromStackSlot!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1053)
1053 "TargetInstrInfo::loadRegFromStackSlot!")::llvm::llvm_unreachable_internal("Target didn't implement " "TargetInstrInfo::loadRegFromStackSlot!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1053)
;
1054 }
1055
1056 /// This function is called for all pseudo instructions
1057 /// that remain after register allocation. Many pseudo instructions are
1058 /// created to help register allocation. This is the place to convert them
1059 /// into real instructions. The target can edit MI in place, or it can insert
1060 /// new instructions and erase MI. The function should return true if
1061 /// anything was changed.
1062 virtual bool expandPostRAPseudo(MachineInstr &MI) const { return false; }
1063
1064 /// Check whether the target can fold a load that feeds a subreg operand
1065 /// (or a subreg operand that feeds a store).
1066 /// For example, X86 may want to return true if it can fold
1067 /// movl (%esp), %eax
1068 /// subb, %al, ...
1069 /// Into:
1070 /// subb (%esp), ...
1071 ///
1072 /// Ideally, we'd like the target implementation of foldMemoryOperand() to
1073 /// reject subregs - but since this behavior used to be enforced in the
1074 /// target-independent code, moving this responsibility to the targets
1075 /// has the potential of causing nasty silent breakage in out-of-tree targets.
1076 virtual bool isSubregFoldable() const { return false; }
1077
1078 /// For a patchpoint, stackmap, or statepoint intrinsic, return the range of
1079 /// operands which can't be folded into stack references. Operands outside
1080 /// of the range are most likely foldable but it is not guaranteed.
1081 /// These instructions are unique in that stack references for some operands
1082 /// have the same execution cost (e.g. none) as the unfolded register forms.
1083 /// The ranged return is guaranteed to include all operands which can't be
1084 /// folded at zero cost.
1085 virtual std::pair<unsigned, unsigned>
1086 getPatchpointUnfoldableRange(const MachineInstr &MI) const;
1087
1088 /// Attempt to fold a load or store of the specified stack
1089 /// slot into the specified machine instruction for the specified operand(s).
1090 /// If this is possible, a new instruction is returned with the specified
1091 /// operand folded, otherwise NULL is returned.
1092 /// The new instruction is inserted before MI, and the client is responsible
1093 /// for removing the old instruction.
1094 /// If VRM is passed, the assigned physregs can be inspected by target to
1095 /// decide on using an opcode (note that those assignments can still change).
1096 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1097 int FI,
1098 LiveIntervals *LIS = nullptr,
1099 VirtRegMap *VRM = nullptr) const;
1100
1101 /// Same as the previous version except it allows folding of any load and
1102 /// store from / to any address, not just from a specific stack slot.
1103 MachineInstr *foldMemoryOperand(MachineInstr &MI, ArrayRef<unsigned> Ops,
1104 MachineInstr &LoadMI,
1105 LiveIntervals *LIS = nullptr) const;
1106
1107 /// Return true when there is potentially a faster code sequence
1108 /// for an instruction chain ending in \p Root. All potential patterns are
1109 /// returned in the \p Pattern vector. Pattern should be sorted in priority
1110 /// order since the pattern evaluator stops checking as soon as it finds a
1111 /// faster sequence.
1112 /// \param Root - Instruction that could be combined with one of its operands
1113 /// \param Patterns - Vector of possible combination patterns
1114 virtual bool
1115 getMachineCombinerPatterns(MachineInstr &Root,
1116 SmallVectorImpl<MachineCombinerPattern> &Patterns,
1117 bool DoRegPressureReduce) const;
1118
1119 /// Return true if target supports reassociation of instructions in machine
1120 /// combiner pass to reduce register pressure for a given BB.
1121 virtual bool
1122 shouldReduceRegisterPressure(MachineBasicBlock *MBB,
1123 RegisterClassInfo *RegClassInfo) const {
1124 return false;
1125 }
1126
1127 /// Fix up the placeholder we may add in genAlternativeCodeSequence().
1128 virtual void
1129 finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
1130 SmallVectorImpl<MachineInstr *> &InsInstrs) const {}
1131
1132 /// Return true when a code sequence can improve throughput. It
1133 /// should be called only for instructions in loops.
1134 /// \param Pattern - combiner pattern
1135 virtual bool isThroughputPattern(MachineCombinerPattern Pattern) const;
1136
1137 /// Return true if the input \P Inst is part of a chain of dependent ops
1138 /// that are suitable for reassociation, otherwise return false.
1139 /// If the instruction's operands must be commuted to have a previous
1140 /// instruction of the same type define the first source operand, \P Commuted
1141 /// will be set to true.
1142 bool isReassociationCandidate(const MachineInstr &Inst, bool &Commuted) const;
1143
1144 /// Return true when \P Inst is both associative and commutative.
1145 virtual bool isAssociativeAndCommutative(const MachineInstr &Inst) const {
1146 return false;
1147 }
1148
1149 /// Return true when \P Inst has reassociable operands in the same \P MBB.
1150 virtual bool hasReassociableOperands(const MachineInstr &Inst,
1151 const MachineBasicBlock *MBB) const;
1152
1153 /// Return true when \P Inst has reassociable sibling.
1154 bool hasReassociableSibling(const MachineInstr &Inst, bool &Commuted) const;
1155
1156 /// When getMachineCombinerPatterns() finds patterns, this function generates
1157 /// the instructions that could replace the original code sequence. The client
1158 /// has to decide whether the actual replacement is beneficial or not.
1159 /// \param Root - Instruction that could be combined with one of its operands
1160 /// \param Pattern - Combination pattern for Root
1161 /// \param InsInstrs - Vector of new instructions that implement P
1162 /// \param DelInstrs - Old instructions, including Root, that could be
1163 /// replaced by InsInstr
1164 /// \param InstIdxForVirtReg - map of virtual register to instruction in
1165 /// InsInstr that defines it
1166 virtual void genAlternativeCodeSequence(
1167 MachineInstr &Root, MachineCombinerPattern Pattern,
1168 SmallVectorImpl<MachineInstr *> &InsInstrs,
1169 SmallVectorImpl<MachineInstr *> &DelInstrs,
1170 DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const;
1171
1172 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
1173 /// reduce critical path length.
1174 void reassociateOps(MachineInstr &Root, MachineInstr &Prev,
1175 MachineCombinerPattern Pattern,
1176 SmallVectorImpl<MachineInstr *> &InsInstrs,
1177 SmallVectorImpl<MachineInstr *> &DelInstrs,
1178 DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
1179
1180 /// The limit on resource length extension we accept in MachineCombiner Pass.
1181 virtual int getExtendResourceLenLimit() const { return 0; }
1182
1183 /// This is an architecture-specific helper function of reassociateOps.
1184 /// Set special operand attributes for new instructions after reassociation.
1185 virtual void setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2,
1186 MachineInstr &NewMI1,
1187 MachineInstr &NewMI2) const {}
1188
1189 virtual void setSpecialOperandAttr(MachineInstr &MI, uint16_t Flags) const {}
1190
1191 /// Return true when a target supports MachineCombiner.
1192 virtual bool useMachineCombiner() const { return false; }
1193
1194 /// Return true if the given SDNode can be copied during scheduling
1195 /// even if it has glue.
1196 virtual bool canCopyGluedNodeDuringSchedule(SDNode *N) const { return false; }
1197
1198protected:
1199 /// Target-dependent implementation for foldMemoryOperand.
1200 /// Target-independent code in foldMemoryOperand will
1201 /// take care of adding a MachineMemOperand to the newly created instruction.
1202 /// The instruction and any auxiliary instructions necessary will be inserted
1203 /// at InsertPt.
1204 virtual MachineInstr *
1205 foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
1206 ArrayRef<unsigned> Ops,
1207 MachineBasicBlock::iterator InsertPt, int FrameIndex,
1208 LiveIntervals *LIS = nullptr,
1209 VirtRegMap *VRM = nullptr) const {
1210 return nullptr;
1211 }
1212
1213 /// Target-dependent implementation for foldMemoryOperand.
1214 /// Target-independent code in foldMemoryOperand will
1215 /// take care of adding a MachineMemOperand to the newly created instruction.
1216 /// The instruction and any auxiliary instructions necessary will be inserted
1217 /// at InsertPt.
1218 virtual MachineInstr *foldMemoryOperandImpl(
1219 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1220 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1221 LiveIntervals *LIS = nullptr) const {
1222 return nullptr;
1223 }
1224
1225 /// Target-dependent implementation of getRegSequenceInputs.
1226 ///
1227 /// \returns true if it is possible to build the equivalent
1228 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1229 ///
1230 /// \pre MI.isRegSequenceLike().
1231 ///
1232 /// \see TargetInstrInfo::getRegSequenceInputs.
1233 virtual bool getRegSequenceLikeInputs(
1234 const MachineInstr &MI, unsigned DefIdx,
1235 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1236 return false;
1237 }
1238
1239 /// Target-dependent implementation of getExtractSubregInputs.
1240 ///
1241 /// \returns true if it is possible to build the equivalent
1242 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1243 ///
1244 /// \pre MI.isExtractSubregLike().
1245 ///
1246 /// \see TargetInstrInfo::getExtractSubregInputs.
1247 virtual bool getExtractSubregLikeInputs(const MachineInstr &MI,
1248 unsigned DefIdx,
1249 RegSubRegPairAndIdx &InputReg) const {
1250 return false;
1251 }
1252
1253 /// Target-dependent implementation of getInsertSubregInputs.
1254 ///
1255 /// \returns true if it is possible to build the equivalent
1256 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1257 ///
1258 /// \pre MI.isInsertSubregLike().
1259 ///
1260 /// \see TargetInstrInfo::getInsertSubregInputs.
1261 virtual bool
1262 getInsertSubregLikeInputs(const MachineInstr &MI, unsigned DefIdx,
1263 RegSubRegPair &BaseReg,
1264 RegSubRegPairAndIdx &InsertedReg) const {
1265 return false;
1266 }
1267
1268public:
1269 /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
1270 /// (e.g. stack) the target returns the corresponding address space.
1271 virtual unsigned
1272 getAddressSpaceForPseudoSourceKind(unsigned Kind) const {
1273 return 0;
1274 }
1275
1276 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1277 /// a store or a load and a store into two or more instruction. If this is
1278 /// possible, returns true as well as the new instructions by reference.
1279 virtual bool
1280 unfoldMemoryOperand(MachineFunction &MF, MachineInstr &MI, unsigned Reg,
1281 bool UnfoldLoad, bool UnfoldStore,
1282 SmallVectorImpl<MachineInstr *> &NewMIs) const {
1283 return false;
1284 }
1285
1286 virtual bool unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
1287 SmallVectorImpl<SDNode *> &NewNodes) const {
1288 return false;
1289 }
1290
1291 /// Returns the opcode of the would be new
1292 /// instruction after load / store are unfolded from an instruction of the
1293 /// specified opcode. It returns zero if the specified unfolding is not
1294 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1295 /// index of the operand which will hold the register holding the loaded
1296 /// value.
1297 virtual unsigned
1298 getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore,
1299 unsigned *LoadRegIndex = nullptr) const {
1300 return 0;
1301 }
1302
1303 /// This is used by the pre-regalloc scheduler to determine if two loads are
1304 /// loading from the same base address. It should only return true if the base
1305 /// pointers are the same and the only differences between the two addresses
1306 /// are the offset. It also returns the offsets by reference.
1307 virtual bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1308 int64_t &Offset1,
1309 int64_t &Offset2) const {
1310 return false;
1311 }
1312
1313 /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1314 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1315 /// On some targets if two loads are loading from
1316 /// addresses in the same cache line, it's better if they are scheduled
1317 /// together. This function takes two integers that represent the load offsets
1318 /// from the common base address. It returns true if it decides it's desirable
1319 /// to schedule the two loads together. "NumLoads" is the number of loads that
1320 /// have already been scheduled after Load1.
1321 virtual bool shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1322 int64_t Offset1, int64_t Offset2,
1323 unsigned NumLoads) const {
1324 return false;
1325 }
1326
1327 /// Get the base operand and byte offset of an instruction that reads/writes
1328 /// memory. This is a convenience function for callers that are only prepared
1329 /// to handle a single base operand.
1330 bool getMemOperandWithOffset(const MachineInstr &MI,
1331 const MachineOperand *&BaseOp, int64_t &Offset,
1332 bool &OffsetIsScalable,
1333 const TargetRegisterInfo *TRI) const;
1334
1335 /// Get zero or more base operands and the byte offset of an instruction that
1336 /// reads/writes memory. Note that there may be zero base operands if the
1337 /// instruction accesses a constant address.
1338 /// It returns false if MI does not read/write memory.
1339 /// It returns false if base operands and offset could not be determined.
1340 /// It is not guaranteed to always recognize base operands and offsets in all
1341 /// cases.
1342 virtual bool getMemOperandsWithOffsetWidth(
1343 const MachineInstr &MI, SmallVectorImpl<const MachineOperand *> &BaseOps,
1344 int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
1345 const TargetRegisterInfo *TRI) const {
1346 return false;
1347 }
1348
1349 /// Return true if the instruction contains a base register and offset. If
1350 /// true, the function also sets the operand position in the instruction
1351 /// for the base register and offset.
1352 virtual bool getBaseAndOffsetPosition(const MachineInstr &MI,
1353 unsigned &BasePos,
1354 unsigned &OffsetPos) const {
1355 return false;
1356 }
1357
1358 /// Target dependent implementation to get the values constituting the address
1359 /// MachineInstr that is accessing memory. These values are returned as a
1360 /// struct ExtAddrMode which contains all relevant information to make up the
1361 /// address.
1362 virtual Optional<ExtAddrMode>
1363 getAddrModeFromMemoryOp(const MachineInstr &MemI,
1364 const TargetRegisterInfo *TRI) const {
1365 return None;
1366 }
1367
1368 /// Returns true if MI's Def is NullValueReg, and the MI
1369 /// does not change the Zero value. i.e. cases such as rax = shr rax, X where
1370 /// NullValueReg = rax. Note that if the NullValueReg is non-zero, this
1371 /// function can return true even if becomes zero. Specifically cases such as
1372 /// NullValueReg = shl NullValueReg, 63.
1373 virtual bool preservesZeroValueInReg(const MachineInstr *MI,
1374 const Register NullValueReg,
1375 const TargetRegisterInfo *TRI) const {
1376 return false;
1377 }
1378
1379 /// If the instruction is an increment of a constant value, return the amount.
1380 virtual bool getIncrementValue(const MachineInstr &MI, int &Value) const {
1381 return false;
1382 }
1383
1384 /// Returns true if the two given memory operations should be scheduled
1385 /// adjacent. Note that you have to add:
1386 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1387 /// or
1388 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1389 /// to TargetPassConfig::createMachineScheduler() to have an effect.
1390 ///
1391 /// \p BaseOps1 and \p BaseOps2 are memory operands of two memory operations.
1392 /// \p NumLoads is the number of loads that will be in the cluster if this
1393 /// hook returns true.
1394 /// \p NumBytes is the number of bytes that will be loaded from all the
1395 /// clustered loads if this hook returns true.
1396 virtual bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
1397 ArrayRef<const MachineOperand *> BaseOps2,
1398 unsigned NumLoads, unsigned NumBytes) const {
1399 llvm_unreachable("target did not implement shouldClusterMemOps()")::llvm::llvm_unreachable_internal("target did not implement shouldClusterMemOps()"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1399)
;
1400 }
1401
1402 /// Reverses the branch condition of the specified condition list,
1403 /// returning false on success and true if it cannot be reversed.
1404 virtual bool
1405 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
1406 return true;
1407 }
1408
1409 /// Insert a noop into the instruction stream at the specified point.
1410 virtual void insertNoop(MachineBasicBlock &MBB,
1411 MachineBasicBlock::iterator MI) const;
1412
1413 /// Insert noops into the instruction stream at the specified point.
1414 virtual void insertNoops(MachineBasicBlock &MBB,
1415 MachineBasicBlock::iterator MI,
1416 unsigned Quantity) const;
1417
1418 /// Return the noop instruction to use for a noop.
1419 virtual MCInst getNop() const;
1420
1421 /// Return true for post-incremented instructions.
1422 virtual bool isPostIncrement(const MachineInstr &MI) const { return false; }
1423
1424 /// Returns true if the instruction is already predicated.
1425 virtual bool isPredicated(const MachineInstr &MI) const { return false; }
1426
1427 // Returns a MIRPrinter comment for this machine operand.
1428 virtual std::string
1429 createMIROperandComment(const MachineInstr &MI, const MachineOperand &Op,
1430 unsigned OpIdx, const TargetRegisterInfo *TRI) const;
1431
1432 /// Returns true if the instruction is a
1433 /// terminator instruction that has not been predicated.
1434 bool isUnpredicatedTerminator(const MachineInstr &MI) const;
1435
1436 /// Returns true if MI is an unconditional tail call.
1437 virtual bool isUnconditionalTailCall(const MachineInstr &MI) const {
1438 return false;
1439 }
1440
1441 /// Returns true if the tail call can be made conditional on BranchCond.
1442 virtual bool canMakeTailCallConditional(SmallVectorImpl<MachineOperand> &Cond,
1443 const MachineInstr &TailCall) const {
1444 return false;
1445 }
1446
1447 /// Replace the conditional branch in MBB with a conditional tail call.
1448 virtual void replaceBranchWithTailCall(MachineBasicBlock &MBB,
1449 SmallVectorImpl<MachineOperand> &Cond,
1450 const MachineInstr &TailCall) const {
1451 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!")::llvm::llvm_unreachable_internal("Target didn't implement replaceBranchWithTailCall!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1451)
;
1452 }
1453
1454 /// Convert the instruction into a predicated instruction.
1455 /// It returns true if the operation was successful.
1456 virtual bool PredicateInstruction(MachineInstr &MI,
1457 ArrayRef<MachineOperand> Pred) const;
1458
1459 /// Returns true if the first specified predicate
1460 /// subsumes the second, e.g. GE subsumes GT.
1461 virtual bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
1462 ArrayRef<MachineOperand> Pred2) const {
1463 return false;
1464 }
1465
1466 /// If the specified instruction defines any predicate
1467 /// or condition code register(s) used for predication, returns true as well
1468 /// as the definition predicate(s) by reference.
1469 /// SkipDead should be set to false at any point that dead
1470 /// predicate instructions should be considered as being defined.
1471 /// A dead predicate instruction is one that is guaranteed to be removed
1472 /// after a call to PredicateInstruction.
1473 virtual bool ClobbersPredicate(MachineInstr &MI,
1474 std::vector<MachineOperand> &Pred,
1475 bool SkipDead) const {
1476 return false;
1477 }
1478
1479 /// Return true if the specified instruction can be predicated.
1480 /// By default, this returns true for every instruction with a
1481 /// PredicateOperand.
1482 virtual bool isPredicable(const MachineInstr &MI) const {
1483 return MI.getDesc().isPredicable();
1484 }
1485
1486 /// Return true if it's safe to move a machine
1487 /// instruction that defines the specified register class.
1488 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
1489 return true;
1490 }
1491
1492 /// Test if the given instruction should be considered a scheduling boundary.
1493 /// This primarily includes labels and terminators.
1494 virtual bool isSchedulingBoundary(const MachineInstr &MI,
1495 const MachineBasicBlock *MBB,
1496 const MachineFunction &MF) const;
1497
1498 /// Measure the specified inline asm to determine an approximation of its
1499 /// length.
1500 virtual unsigned getInlineAsmLength(
1501 const char *Str, const MCAsmInfo &MAI,
1502 const TargetSubtargetInfo *STI = nullptr) const;
1503
1504 /// Allocate and return a hazard recognizer to use for this target when
1505 /// scheduling the machine instructions before register allocation.
1506 virtual ScheduleHazardRecognizer *
1507 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
1508 const ScheduleDAG *DAG) const;
1509
1510 /// Allocate and return a hazard recognizer to use for this target when
1511 /// scheduling the machine instructions before register allocation.
1512 virtual ScheduleHazardRecognizer *
1513 CreateTargetMIHazardRecognizer(const InstrItineraryData *,
1514 const ScheduleDAGMI *DAG) const;
1515
1516 /// Allocate and return a hazard recognizer to use for this target when
1517 /// scheduling the machine instructions after register allocation.
1518 virtual ScheduleHazardRecognizer *
1519 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *,
1520 const ScheduleDAG *DAG) const;
1521
1522 /// Allocate and return a hazard recognizer to use for by non-scheduling
1523 /// passes.
1524 virtual ScheduleHazardRecognizer *
1525 CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
1526 return nullptr;
1527 }
1528
1529 /// Provide a global flag for disabling the PreRA hazard recognizer that
1530 /// targets may choose to honor.
1531 bool usePreRAHazardRecognizer() const;
1532
1533 /// For a comparison instruction, return the source registers
1534 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1535 /// compares against in CmpValue. Return true if the comparison instruction
1536 /// can be analyzed.
1537 virtual bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
1538 Register &SrcReg2, int64_t &Mask,
1539 int64_t &Value) const {
1540 return false;
1541 }
1542
1543 /// See if the comparison instruction can be converted
1544 /// into something more efficient. E.g., on ARM most instructions can set the
1545 /// flags register, obviating the need for a separate CMP.
1546 virtual bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
1547 Register SrcReg2, int64_t Mask,
1548 int64_t Value,
1549 const MachineRegisterInfo *MRI) const {
1550 return false;
1551 }
1552 virtual bool optimizeCondBranch(MachineInstr &MI) const { return false; }
1553
1554 /// Try to remove the load by folding it to a register operand at the use.
1555 /// We fold the load instructions if and only if the
1556 /// def and use are in the same BB. We only look at one load and see
1557 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1558 /// defined by the load we are trying to fold. DefMI returns the machine
1559 /// instruction that defines FoldAsLoadDefReg, and the function returns
1560 /// the machine instruction generated due to folding.
1561 virtual MachineInstr *optimizeLoadInstr(MachineInstr &MI,
1562 const MachineRegisterInfo *MRI,
1563 Register &FoldAsLoadDefReg,
1564 MachineInstr *&DefMI) const {
1565 return nullptr;
1566 }
1567
1568 /// 'Reg' is known to be defined by a move immediate instruction,
1569 /// try to fold the immediate into the use instruction.
1570 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1571 /// then the caller may assume that DefMI has been erased from its parent
1572 /// block. The caller may assume that it will not be erased by this
1573 /// function otherwise.
1574 virtual bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
1575 Register Reg, MachineRegisterInfo *MRI) const {
1576 return false;
1577 }
1578
1579 /// Return the number of u-operations the given machine
1580 /// instruction will be decoded to on the target cpu. The itinerary's
1581 /// IssueWidth is the number of microops that can be dispatched each
1582 /// cycle. An instruction with zero microops takes no dispatch resources.
1583 virtual unsigned getNumMicroOps(const InstrItineraryData *ItinData,
1584 const MachineInstr &MI) const;
1585
1586 /// Return true for pseudo instructions that don't consume any
1587 /// machine resources in their current form. These are common cases that the
1588 /// scheduler should consider free, rather than conservatively handling them
1589 /// as instructions with no itinerary.
1590 bool isZeroCost(unsigned Opcode) const {
1591 return Opcode <= TargetOpcode::COPY;
1592 }
1593
1594 virtual int getOperandLatency(const InstrItineraryData *ItinData,
1595 SDNode *DefNode, unsigned DefIdx,
1596 SDNode *UseNode, unsigned UseIdx) const;
1597
1598 /// Compute and return the use operand latency of a given pair of def and use.
1599 /// In most cases, the static scheduling itinerary was enough to determine the
1600 /// operand latency. But it may not be possible for instructions with variable
1601 /// number of defs / uses.
1602 ///
1603 /// This is a raw interface to the itinerary that may be directly overridden
1604 /// by a target. Use computeOperandLatency to get the best estimate of
1605 /// latency.
1606 virtual int getOperandLatency(const InstrItineraryData *ItinData,
1607 const MachineInstr &DefMI, unsigned DefIdx,
1608 const MachineInstr &UseMI,
1609 unsigned UseIdx) const;
1610
1611 /// Compute the instruction latency of a given instruction.
1612 /// If the instruction has higher cost when predicated, it's returned via
1613 /// PredCost.
1614 virtual unsigned getInstrLatency(const InstrItineraryData *ItinData,
1615 const MachineInstr &MI,
1616 unsigned *PredCost = nullptr) const;
1617
1618 virtual unsigned getPredicationCost(const MachineInstr &MI) const;
1619
1620 virtual int getInstrLatency(const InstrItineraryData *ItinData,
1621 SDNode *Node) const;
1622
1623 /// Return the default expected latency for a def based on its opcode.
1624 unsigned defaultDefLatency(const MCSchedModel &SchedModel,
1625 const MachineInstr &DefMI) const;
1626
1627 /// Return true if this opcode has high latency to its result.
1628 virtual bool isHighLatencyDef(int opc) const { return false; }
1629
1630 /// Compute operand latency between a def of 'Reg'
1631 /// and a use in the current loop. Return true if the target considered
1632 /// it 'high'. This is used by optimization passes such as machine LICM to
1633 /// determine whether it makes sense to hoist an instruction out even in a
1634 /// high register pressure situation.
1635 virtual bool hasHighOperandLatency(const TargetSchedModel &SchedModel,
1636 const MachineRegisterInfo *MRI,
1637 const MachineInstr &DefMI, unsigned DefIdx,
1638 const MachineInstr &UseMI,
1639 unsigned UseIdx) const {
1640 return false;
1641 }
1642
1643 /// Compute operand latency of a def of 'Reg'. Return true
1644 /// if the target considered it 'low'.
1645 virtual bool hasLowDefLatency(const TargetSchedModel &SchedModel,
1646 const MachineInstr &DefMI,
1647 unsigned DefIdx) const;
1648
1649 /// Perform target-specific instruction verification.
1650 virtual bool verifyInstruction(const MachineInstr &MI,
1651 StringRef &ErrInfo) const {
1652 return true;
1653 }
1654
1655 /// Return the current execution domain and bit mask of
1656 /// possible domains for instruction.
1657 ///
1658 /// Some micro-architectures have multiple execution domains, and multiple
1659 /// opcodes that perform the same operation in different domains. For
1660 /// example, the x86 architecture provides the por, orps, and orpd
1661 /// instructions that all do the same thing. There is a latency penalty if a
1662 /// register is written in one domain and read in another.
1663 ///
1664 /// This function returns a pair (domain, mask) containing the execution
1665 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1666 /// function can be used to change the opcode to one of the domains in the
1667 /// bit mask. Instructions whose execution domain can't be changed should
1668 /// return a 0 mask.
1669 ///
1670 /// The execution domain numbers don't have any special meaning except domain
1671 /// 0 is used for instructions that are not associated with any interesting
1672 /// execution domain.
1673 ///
1674 virtual std::pair<uint16_t, uint16_t>
1675 getExecutionDomain(const MachineInstr &MI) const {
1676 return std::make_pair(0, 0);
1677 }
1678
1679 /// Change the opcode of MI to execute in Domain.
1680 ///
1681 /// The bit (1 << Domain) must be set in the mask returned from
1682 /// getExecutionDomain(MI).
1683 virtual void setExecutionDomain(MachineInstr &MI, unsigned Domain) const {}
1684
1685 /// Returns the preferred minimum clearance
1686 /// before an instruction with an unwanted partial register update.
1687 ///
1688 /// Some instructions only write part of a register, and implicitly need to
1689 /// read the other parts of the register. This may cause unwanted stalls
1690 /// preventing otherwise unrelated instructions from executing in parallel in
1691 /// an out-of-order CPU.
1692 ///
1693 /// For example, the x86 instruction cvtsi2ss writes its result to bits
1694 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1695 /// the instruction needs to wait for the old value of the register to become
1696 /// available:
1697 ///
1698 /// addps %xmm1, %xmm0
1699 /// movaps %xmm0, (%rax)
1700 /// cvtsi2ss %rbx, %xmm0
1701 ///
1702 /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1703 /// instruction before it can issue, even though the high bits of %xmm0
1704 /// probably aren't needed.
1705 ///
1706 /// This hook returns the preferred clearance before MI, measured in
1707 /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1708 /// instructions before MI. It should only return a positive value for
1709 /// unwanted dependencies. If the old bits of the defined register have
1710 /// useful values, or if MI is determined to otherwise read the dependency,
1711 /// the hook should return 0.
1712 ///
1713 /// The unwanted dependency may be handled by:
1714 ///
1715 /// 1. Allocating the same register for an MI def and use. That makes the
1716 /// unwanted dependency identical to a required dependency.
1717 ///
1718 /// 2. Allocating a register for the def that has no defs in the previous N
1719 /// instructions.
1720 ///
1721 /// 3. Calling breakPartialRegDependency() with the same arguments. This
1722 /// allows the target to insert a dependency breaking instruction.
1723 ///
1724 virtual unsigned
1725 getPartialRegUpdateClearance(const MachineInstr &MI, unsigned OpNum,
1726 const TargetRegisterInfo *TRI) const {
1727 // The default implementation returns 0 for no partial register dependency.
1728 return 0;
1729 }
1730
1731 /// Return the minimum clearance before an instruction that reads an
1732 /// unused register.
1733 ///
1734 /// For example, AVX instructions may copy part of a register operand into
1735 /// the unused high bits of the destination register.
1736 ///
1737 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1738 ///
1739 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1740 /// false dependence on any previous write to %xmm0.
1741 ///
1742 /// This hook works similarly to getPartialRegUpdateClearance, except that it
1743 /// does not take an operand index. Instead sets \p OpNum to the index of the
1744 /// unused register.
1745 virtual unsigned getUndefRegClearance(const MachineInstr &MI, unsigned OpNum,
1746 const TargetRegisterInfo *TRI) const {
1747 // The default implementation returns 0 for no undef register dependency.
1748 return 0;
1749 }
1750
1751 /// Insert a dependency-breaking instruction
1752 /// before MI to eliminate an unwanted dependency on OpNum.
1753 ///
1754 /// If it wasn't possible to avoid a def in the last N instructions before MI
1755 /// (see getPartialRegUpdateClearance), this hook will be called to break the
1756 /// unwanted dependency.
1757 ///
1758 /// On x86, an xorps instruction can be used as a dependency breaker:
1759 ///
1760 /// addps %xmm1, %xmm0
1761 /// movaps %xmm0, (%rax)
1762 /// xorps %xmm0, %xmm0
1763 /// cvtsi2ss %rbx, %xmm0
1764 ///
1765 /// An <imp-kill> operand should be added to MI if an instruction was
1766 /// inserted. This ties the instructions together in the post-ra scheduler.
1767 ///
1768 virtual void breakPartialRegDependency(MachineInstr &MI, unsigned OpNum,
1769 const TargetRegisterInfo *TRI) const {}
1770
1771 /// Create machine specific model for scheduling.
1772 virtual DFAPacketizer *
1773 CreateTargetScheduleState(const TargetSubtargetInfo &) const {
1774 return nullptr;
1775 }
1776
1777 /// Sometimes, it is possible for the target
1778 /// to tell, even without aliasing information, that two MIs access different
1779 /// memory addresses. This function returns true if two MIs access different
1780 /// memory addresses and false otherwise.
1781 ///
1782 /// Assumes any physical registers used to compute addresses have the same
1783 /// value for both instructions. (This is the most useful assumption for
1784 /// post-RA scheduling.)
1785 ///
1786 /// See also MachineInstr::mayAlias, which is implemented on top of this
1787 /// function.
1788 virtual bool
1789 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1790 const MachineInstr &MIb) const {
1791 assert(MIa.mayLoadOrStore() &&(static_cast <bool> (MIa.mayLoadOrStore() && "MIa must load from or modify a memory location"
) ? void (0) : __assert_fail ("MIa.mayLoadOrStore() && \"MIa must load from or modify a memory location\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1792, __extension__ __PRETTY_FUNCTION__))
1792 "MIa must load from or modify a memory location")(static_cast <bool> (MIa.mayLoadOrStore() && "MIa must load from or modify a memory location"
) ? void (0) : __assert_fail ("MIa.mayLoadOrStore() && \"MIa must load from or modify a memory location\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1792, __extension__ __PRETTY_FUNCTION__))
;
1793 assert(MIb.mayLoadOrStore() &&(static_cast <bool> (MIb.mayLoadOrStore() && "MIb must load from or modify a memory location"
) ? void (0) : __assert_fail ("MIb.mayLoadOrStore() && \"MIb must load from or modify a memory location\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1794, __extension__ __PRETTY_FUNCTION__))
1794 "MIb must load from or modify a memory location")(static_cast <bool> (MIb.mayLoadOrStore() && "MIb must load from or modify a memory location"
) ? void (0) : __assert_fail ("MIb.mayLoadOrStore() && \"MIb must load from or modify a memory location\""
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1794, __extension__ __PRETTY_FUNCTION__))
;
1795 return false;
1796 }
1797
1798 /// Return the value to use for the MachineCSE's LookAheadLimit,
1799 /// which is a heuristic used for CSE'ing phys reg defs.
1800 virtual unsigned getMachineCSELookAheadLimit() const {
1801 // The default lookahead is small to prevent unprofitable quadratic
1802 // behavior.
1803 return 5;
1804 }
1805
1806 /// Return the maximal number of alias checks on memory operands. For
1807 /// instructions with more than one memory operands, the alias check on a
1808 /// single MachineInstr pair has quadratic overhead and results in
1809 /// unacceptable performance in the worst case. The limit here is to clamp
1810 /// that maximal checks performed. Usually, that's the product of memory
1811 /// operand numbers from that pair of MachineInstr to be checked. For
1812 /// instance, with two MachineInstrs with 4 and 5 memory operands
1813 /// correspondingly, a total of 20 checks are required. With this limit set to
1814 /// 16, their alias check is skipped. We choose to limit the product instead
1815 /// of the individual instruction as targets may have special MachineInstrs
1816 /// with a considerably high number of memory operands, such as `ldm` in ARM.
1817 /// Setting this limit per MachineInstr would result in either too high
1818 /// overhead or too rigid restriction.
1819 virtual unsigned getMemOperandAACheckLimit() const { return 16; }
1820
1821 /// Return an array that contains the ids of the target indices (used for the
1822 /// TargetIndex machine operand) and their names.
1823 ///
1824 /// MIR Serialization is able to serialize only the target indices that are
1825 /// defined by this method.
1826 virtual ArrayRef<std::pair<int, const char *>>
1827 getSerializableTargetIndices() const {
1828 return None;
1829 }
1830
1831 /// Decompose the machine operand's target flags into two values - the direct
1832 /// target flag value and any of bit flags that are applied.
1833 virtual std::pair<unsigned, unsigned>
1834 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1835 return std::make_pair(0u, 0u);
1836 }
1837
1838 /// Return an array that contains the direct target flag values and their
1839 /// names.
1840 ///
1841 /// MIR Serialization is able to serialize only the target flags that are
1842 /// defined by this method.
1843 virtual ArrayRef<std::pair<unsigned, const char *>>
1844 getSerializableDirectMachineOperandTargetFlags() const {
1845 return None;
1846 }
1847
1848 /// Return an array that contains the bitmask target flag values and their
1849 /// names.
1850 ///
1851 /// MIR Serialization is able to serialize only the target flags that are
1852 /// defined by this method.
1853 virtual ArrayRef<std::pair<unsigned, const char *>>
1854 getSerializableBitmaskMachineOperandTargetFlags() const {
1855 return None;
1856 }
1857
1858 /// Return an array that contains the MMO target flag values and their
1859 /// names.
1860 ///
1861 /// MIR Serialization is able to serialize only the MMO target flags that are
1862 /// defined by this method.
1863 virtual ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
1864 getSerializableMachineMemOperandTargetFlags() const {
1865 return None;
1866 }
1867
1868 /// Determines whether \p Inst is a tail call instruction. Override this
1869 /// method on targets that do not properly set MCID::Return and MCID::Call on
1870 /// tail call instructions."
1871 virtual bool isTailCall(const MachineInstr &Inst) const {
1872 return Inst.isReturn() && Inst.isCall();
1873 }
1874
1875 /// True if the instruction is bound to the top of its basic block and no
1876 /// other instructions shall be inserted before it. This can be implemented
1877 /// to prevent register allocator to insert spills before such instructions.
1878 virtual bool isBasicBlockPrologue(const MachineInstr &MI) const {
1879 return false;
1880 }
1881
1882 /// During PHI eleimination lets target to make necessary checks and
1883 /// insert the copy to the PHI destination register in a target specific
1884 /// manner.
1885 virtual MachineInstr *createPHIDestinationCopy(
1886 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
1887 const DebugLoc &DL, Register Src, Register Dst) const {
1888 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1889 .addReg(Src);
1890 }
1891
1892 /// During PHI eleimination lets target to make necessary checks and
1893 /// insert the copy to the PHI destination register in a target specific
1894 /// manner.
1895 virtual MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
1896 MachineBasicBlock::iterator InsPt,
1897 const DebugLoc &DL, Register Src,
1898 unsigned SrcSubReg,
1899 Register Dst) const {
1900 return BuildMI(MBB, InsPt, DL, get(TargetOpcode::COPY), Dst)
1901 .addReg(Src, 0, SrcSubReg);
1902 }
1903
1904 /// Returns a \p outliner::OutlinedFunction struct containing target-specific
1905 /// information for a set of outlining candidates.
1906 virtual outliner::OutlinedFunction getOutliningCandidateInfo(
1907 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
1908 llvm_unreachable(::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1909)
1909 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!")::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1909)
;
1910 }
1911
1912 /// Returns how or if \p MI should be outlined.
1913 virtual outliner::InstrType
1914 getOutliningType(MachineBasicBlock::iterator &MIT, unsigned Flags) const {
1915 llvm_unreachable(::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::getOutliningType!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1916)
1916 "Target didn't implement TargetInstrInfo::getOutliningType!")::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::getOutliningType!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1916)
;
1917 }
1918
1919 /// Optional target hook that returns true if \p MBB is safe to outline from,
1920 /// and returns any target-specific information in \p Flags.
1921 virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
1922 unsigned &Flags) const {
1923 return true;
1924 }
1925
1926 /// Insert a custom frame for outlined functions.
1927 virtual void buildOutlinedFrame(MachineBasicBlock &MBB, MachineFunction &MF,
1928 const outliner::OutlinedFunction &OF) const {
1929 llvm_unreachable(::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::buildOutlinedFrame!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1930)
1930 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!")::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::buildOutlinedFrame!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1930)
;
1931 }
1932
1933 /// Insert a call to an outlined function into the program.
1934 /// Returns an iterator to the spot where we inserted the call. This must be
1935 /// implemented by the target.
1936 virtual MachineBasicBlock::iterator
1937 insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
1938 MachineBasicBlock::iterator &It, MachineFunction &MF,
1939 const outliner::Candidate &C) const {
1940 llvm_unreachable(::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::insertOutlinedCall!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1941)
1941 "Target didn't implement TargetInstrInfo::insertOutlinedCall!")::llvm::llvm_unreachable_internal("Target didn't implement TargetInstrInfo::insertOutlinedCall!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1941)
;
1942 }
1943
1944 /// Return true if the function can safely be outlined from.
1945 /// A function \p MF is considered safe for outlining if an outlined function
1946 /// produced from instructions in F will produce a program which produces the
1947 /// same output for any set of given inputs.
1948 virtual bool isFunctionSafeToOutlineFrom(MachineFunction &MF,
1949 bool OutlineFromLinkOnceODRs) const {
1950 llvm_unreachable("Target didn't implement "::llvm::llvm_unreachable_internal("Target didn't implement " "TargetInstrInfo::isFunctionSafeToOutlineFrom!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1951)
1951 "TargetInstrInfo::isFunctionSafeToOutlineFrom!")::llvm::llvm_unreachable_internal("Target didn't implement " "TargetInstrInfo::isFunctionSafeToOutlineFrom!"
, "/build/llvm-toolchain-snapshot-14~++20211108111423+c2b91eef275d/llvm/include/llvm/CodeGen/TargetInstrInfo.h"
, 1951)
;
1952 }
1953
1954 /// Return true if the function should be outlined from by default.
1955 virtual bool shouldOutlineFromFunctionByDefault(MachineFunction &MF) const {
1956 return false;
1957 }
1958
1959 /// Produce the expression describing the \p MI loading a value into
1960 /// the physical register \p Reg. This hook should only be used with
1961 /// \p MIs belonging to VReg-less functions.
1962 virtual Optional<ParamLoadedValue> describeLoadedValue(const MachineInstr &MI,
1963 Register Reg) const;
1964
1965 /// Given the generic extension instruction \p ExtMI, returns true if this
1966 /// extension is a likely candidate for being folded into an another
1967 /// instruction.
1968 virtual bool isExtendLikelyToBeFolded(MachineInstr &ExtMI,
1969 MachineRegisterInfo &MRI) const {
1970 return false;
1971 }
1972
1973 /// Return MIR formatter to format/parse MIR operands. Target can override
1974 /// this virtual function and return target specific MIR formatter.
1975 virtual const MIRFormatter *getMIRFormatter() const {
1976 if (!Formatter.get())
1977 Formatter = std::make_unique<MIRFormatter>();
1978 return Formatter.get();
1979 }
1980
1981 /// Returns the target-specific default value for tail duplication.
1982 /// This value will be used if the tail-dup-placement-threshold argument is
1983 /// not provided.
1984 virtual unsigned getTailDuplicateSize(CodeGenOpt::Level OptLevel) const {
1985 return OptLevel >= CodeGenOpt::Aggressive ? 4 : 2;
1986 }
1987
1988 /// Returns the callee operand from the given \p MI.
1989 virtual const MachineOperand &getCalleeOperand(const MachineInstr &MI) const {
1990 return MI.getOperand(0);
1991 }
1992
1993private:
1994 mutable std::unique_ptr<MIRFormatter> Formatter;
1995 unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
1996 unsigned CatchRetOpcode;
1997 unsigned ReturnOpcode;
1998};
1999
2000/// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
2001template <> struct DenseMapInfo<TargetInstrInfo::RegSubRegPair> {
2002 using RegInfo = DenseMapInfo<unsigned>;
2003
2004 static inline TargetInstrInfo::RegSubRegPair getEmptyKey() {
2005 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
2006 RegInfo::getEmptyKey());
2007 }
2008
2009 static inline TargetInstrInfo::RegSubRegPair getTombstoneKey() {
2010 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
2011 RegInfo::getTombstoneKey());
2012 }
2013
2014 /// Reuse getHashValue implementation from
2015 /// std::pair<unsigned, unsigned>.
2016 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair &Val) {
2017 std::pair<unsigned, unsigned> PairVal = std::make_pair(Val.Reg, Val.SubReg);
2018 return DenseMapInfo<std::pair<unsigned, unsigned>>::getHashValue(PairVal);
2019 }
2020
2021 static bool isEqual(const TargetInstrInfo::RegSubRegPair &LHS,
2022 const TargetInstrInfo::RegSubRegPair &RHS) {
2023 return RegInfo::isEqual(LHS.Reg, RHS.Reg) &&
2024 RegInfo::isEqual(LHS.SubReg, RHS.SubReg);
2025 }
2026};
2027
2028} // end namespace llvm
2029
2030#endif // LLVM_CODEGEN_TARGETINSTRINFO_H