Bug Summary

File:build/source/llvm/lib/CodeGen/InlineSpiller.cpp
Warning:line 1381, column 14
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name InlineSpiller.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I lib/CodeGen -I /build/source/llvm/lib/CodeGen -I include -I /build/source/llvm/include -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1675721604 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-02-07-030702-17298-1 -x c++ /build/source/llvm/lib/CodeGen/InlineSpiller.cpp

/build/source/llvm/lib/CodeGen/InlineSpiller.cpp

1//===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The inline spiller modifies the machine function directly instead of
10// inserting spills and restores in VirtRegMap.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SplitKit.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/MapVector.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SetVector.h"
20#include "llvm/ADT/SmallPtrSet.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/LiveInterval.h"
25#include "llvm/CodeGen/LiveIntervals.h"
26#include "llvm/CodeGen/LiveRangeEdit.h"
27#include "llvm/CodeGen/LiveStacks.h"
28#include "llvm/CodeGen/MachineBasicBlock.h"
29#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
30#include "llvm/CodeGen/MachineDominators.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineFunctionPass.h"
33#include "llvm/CodeGen/MachineInstr.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineInstrBundle.h"
36#include "llvm/CodeGen/MachineLoopInfo.h"
37#include "llvm/CodeGen/MachineOperand.h"
38#include "llvm/CodeGen/MachineRegisterInfo.h"
39#include "llvm/CodeGen/SlotIndexes.h"
40#include "llvm/CodeGen/Spiller.h"
41#include "llvm/CodeGen/StackMaps.h"
42#include "llvm/CodeGen/TargetInstrInfo.h"
43#include "llvm/CodeGen/TargetOpcodes.h"
44#include "llvm/CodeGen/TargetRegisterInfo.h"
45#include "llvm/CodeGen/TargetSubtargetInfo.h"
46#include "llvm/CodeGen/VirtRegMap.h"
47#include "llvm/Config/llvm-config.h"
48#include "llvm/Support/BlockFrequency.h"
49#include "llvm/Support/BranchProbability.h"
50#include "llvm/Support/CommandLine.h"
51#include "llvm/Support/Compiler.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/Support/ErrorHandling.h"
54#include "llvm/Support/raw_ostream.h"
55#include <cassert>
56#include <iterator>
57#include <tuple>
58#include <utility>
59#include <vector>
60
61using namespace llvm;
62
63#define DEBUG_TYPE"regalloc" "regalloc"
64
65STATISTIC(NumSpilledRanges, "Number of spilled live ranges")static llvm::Statistic NumSpilledRanges = {"regalloc", "NumSpilledRanges"
, "Number of spilled live ranges"}
;
66STATISTIC(NumSnippets, "Number of spilled snippets")static llvm::Statistic NumSnippets = {"regalloc", "NumSnippets"
, "Number of spilled snippets"}
;
67STATISTIC(NumSpills, "Number of spills inserted")static llvm::Statistic NumSpills = {"regalloc", "NumSpills", "Number of spills inserted"
}
;
68STATISTIC(NumSpillsRemoved, "Number of spills removed")static llvm::Statistic NumSpillsRemoved = {"regalloc", "NumSpillsRemoved"
, "Number of spills removed"}
;
69STATISTIC(NumReloads, "Number of reloads inserted")static llvm::Statistic NumReloads = {"regalloc", "NumReloads"
, "Number of reloads inserted"}
;
70STATISTIC(NumReloadsRemoved, "Number of reloads removed")static llvm::Statistic NumReloadsRemoved = {"regalloc", "NumReloadsRemoved"
, "Number of reloads removed"}
;
71STATISTIC(NumFolded, "Number of folded stack accesses")static llvm::Statistic NumFolded = {"regalloc", "NumFolded", "Number of folded stack accesses"
}
;
72STATISTIC(NumFoldedLoads, "Number of folded loads")static llvm::Statistic NumFoldedLoads = {"regalloc", "NumFoldedLoads"
, "Number of folded loads"}
;
73STATISTIC(NumRemats, "Number of rematerialized defs for spilling")static llvm::Statistic NumRemats = {"regalloc", "NumRemats", "Number of rematerialized defs for spilling"
}
;
74
75static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
76 cl::desc("Disable inline spill hoisting"));
77static cl::opt<bool>
78RestrictStatepointRemat("restrict-statepoint-remat",
79 cl::init(false), cl::Hidden,
80 cl::desc("Restrict remat for statepoint operands"));
81
82namespace {
83
84class HoistSpillHelper : private LiveRangeEdit::Delegate {
85 MachineFunction &MF;
86 LiveIntervals &LIS;
87 LiveStacks &LSS;
88 MachineDominatorTree &MDT;
89 MachineLoopInfo &Loops;
90 VirtRegMap &VRM;
91 MachineRegisterInfo &MRI;
92 const TargetInstrInfo &TII;
93 const TargetRegisterInfo &TRI;
94 const MachineBlockFrequencyInfo &MBFI;
95
96 InsertPointAnalysis IPA;
97
98 // Map from StackSlot to the LiveInterval of the original register.
99 // Note the LiveInterval of the original register may have been deleted
100 // after it is spilled. We keep a copy here to track the range where
101 // spills can be moved.
102 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
103
104 // Map from pair of (StackSlot and Original VNI) to a set of spills which
105 // have the same stackslot and have equal values defined by Original VNI.
106 // These spills are mergeable and are hoist candidates.
107 using MergeableSpillsMap =
108 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
109 MergeableSpillsMap MergeableSpills;
110
111 /// This is the map from original register to a set containing all its
112 /// siblings. To hoist a spill to another BB, we need to find out a live
113 /// sibling there and use it as the source of the new spill.
114 DenseMap<Register, SmallSetVector<Register, 16>> Virt2SiblingsMap;
115
116 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
117 MachineBasicBlock &BB, Register &LiveReg);
118
119 void rmRedundantSpills(
120 SmallPtrSet<MachineInstr *, 16> &Spills,
121 SmallVectorImpl<MachineInstr *> &SpillsToRm,
122 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
123
124 void getVisitOrders(
125 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
126 SmallVectorImpl<MachineDomTreeNode *> &Orders,
127 SmallVectorImpl<MachineInstr *> &SpillsToRm,
128 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
129 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
130
131 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
132 SmallPtrSet<MachineInstr *, 16> &Spills,
133 SmallVectorImpl<MachineInstr *> &SpillsToRm,
134 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
135
136public:
137 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
138 VirtRegMap &vrm)
139 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
140 LSS(pass.getAnalysis<LiveStacks>()),
141 MDT(pass.getAnalysis<MachineDominatorTree>()),
142 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
143 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
144 TRI(*mf.getSubtarget().getRegisterInfo()),
145 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
146 IPA(LIS, mf.getNumBlockIDs()) {}
147
148 void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
149 unsigned Original);
150 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
151 void hoistAllSpills();
152 void LRE_DidCloneVirtReg(Register, Register) override;
153};
154
155class InlineSpiller : public Spiller {
156 MachineFunction &MF;
157 LiveIntervals &LIS;
158 LiveStacks &LSS;
159 MachineDominatorTree &MDT;
160 MachineLoopInfo &Loops;
161 VirtRegMap &VRM;
162 MachineRegisterInfo &MRI;
163 const TargetInstrInfo &TII;
164 const TargetRegisterInfo &TRI;
165 const MachineBlockFrequencyInfo &MBFI;
166
167 // Variables that are valid during spill(), but used by multiple methods.
168 LiveRangeEdit *Edit;
169 LiveInterval *StackInt;
170 int StackSlot;
171 Register Original;
172
173 // All registers to spill to StackSlot, including the main register.
174 SmallVector<Register, 8> RegsToSpill;
175
176 // All COPY instructions to/from snippets.
177 // They are ignored since both operands refer to the same stack slot.
178 SmallPtrSet<MachineInstr*, 8> SnippetCopies;
179
180 // Values that failed to remat at some point.
181 SmallPtrSet<VNInfo*, 8> UsedValues;
182
183 // Dead defs generated during spilling.
184 SmallVector<MachineInstr*, 8> DeadDefs;
185
186 // Object records spills information and does the hoisting.
187 HoistSpillHelper HSpiller;
188
189 // Live range weight calculator.
190 VirtRegAuxInfo &VRAI;
191
192 ~InlineSpiller() override = default;
193
194public:
195 InlineSpiller(MachineFunctionPass &Pass, MachineFunction &MF, VirtRegMap &VRM,
196 VirtRegAuxInfo &VRAI)
197 : MF(MF), LIS(Pass.getAnalysis<LiveIntervals>()),
198 LSS(Pass.getAnalysis<LiveStacks>()),
199 MDT(Pass.getAnalysis<MachineDominatorTree>()),
200 Loops(Pass.getAnalysis<MachineLoopInfo>()), VRM(VRM),
201 MRI(MF.getRegInfo()), TII(*MF.getSubtarget().getInstrInfo()),
202 TRI(*MF.getSubtarget().getRegisterInfo()),
203 MBFI(Pass.getAnalysis<MachineBlockFrequencyInfo>()),
204 HSpiller(Pass, MF, VRM), VRAI(VRAI) {}
205
206 void spill(LiveRangeEdit &) override;
207 void postOptimization() override;
208
209private:
210 bool isSnippet(const LiveInterval &SnipLI);
211 void collectRegsToSpill();
212
213 bool isRegToSpill(Register Reg) { return is_contained(RegsToSpill, Reg); }
214
215 bool isSibling(Register Reg);
216 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
217 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
218
219 void markValueUsed(LiveInterval*, VNInfo*);
220 bool canGuaranteeAssignmentAfterRemat(Register VReg, MachineInstr &MI);
221 bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
222 void reMaterializeAll();
223
224 bool coalesceStackAccess(MachineInstr *MI, Register Reg);
225 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
226 MachineInstr *LoadMI = nullptr);
227 void insertReload(Register VReg, SlotIndex, MachineBasicBlock::iterator MI);
228 void insertSpill(Register VReg, bool isKill, MachineBasicBlock::iterator MI);
229
230 void spillAroundUses(Register Reg);
231 void spillAll();
232};
233
234} // end anonymous namespace
235
236Spiller::~Spiller() = default;
237
238void Spiller::anchor() {}
239
240Spiller *llvm::createInlineSpiller(MachineFunctionPass &Pass,
241 MachineFunction &MF, VirtRegMap &VRM,
242 VirtRegAuxInfo &VRAI) {
243 return new InlineSpiller(Pass, MF, VRM, VRAI);
244}
245
246//===----------------------------------------------------------------------===//
247// Snippets
248//===----------------------------------------------------------------------===//
249
250// When spilling a virtual register, we also spill any snippets it is connected
251// to. The snippets are small live ranges that only have a single real use,
252// leftovers from live range splitting. Spilling them enables memory operand
253// folding or tightens the live range around the single use.
254//
255// This minimizes register pressure and maximizes the store-to-load distance for
256// spill slots which can be important in tight loops.
257
258/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
259/// otherwise return 0.
260static Register isFullCopyOf(const MachineInstr &MI, Register Reg) {
261 if (!MI.isFullCopy())
262 return Register();
263 if (MI.getOperand(0).getReg() == Reg)
264 return MI.getOperand(1).getReg();
265 if (MI.getOperand(1).getReg() == Reg)
266 return MI.getOperand(0).getReg();
267 return Register();
268}
269
270static void getVDefInterval(const MachineInstr &MI, LiveIntervals &LIS) {
271 for (const MachineOperand &MO : MI.operands())
272 if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual())
273 LIS.getInterval(MO.getReg());
274}
275
276/// isSnippet - Identify if a live interval is a snippet that should be spilled.
277/// It is assumed that SnipLI is a virtual register with the same original as
278/// Edit->getReg().
279bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
280 Register Reg = Edit->getReg();
281
282 // A snippet is a tiny live range with only a single instruction using it
283 // besides copies to/from Reg or spills/fills.
284 // Exception is done for statepoint instructions which will fold fills
285 // into their operands.
286 // We accept:
287 //
288 // %snip = COPY %Reg / FILL fi#
289 // %snip = USE %snip
290 // %snip = STATEPOINT %snip in var arg area
291 // %Reg = COPY %snip / SPILL %snip, fi#
292 //
293 if (!LIS.intervalIsInOneMBB(SnipLI))
294 return false;
295
296 // Number of defs should not exceed 2 not accounting defs coming from
297 // statepoint instructions.
298 unsigned NumValNums = SnipLI.getNumValNums();
299 for (auto *VNI : SnipLI.vnis()) {
300 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
301 if (MI->getOpcode() == TargetOpcode::STATEPOINT)
302 --NumValNums;
303 }
304 if (NumValNums > 2)
305 return false;
306
307 MachineInstr *UseMI = nullptr;
308
309 // Check that all uses satisfy our criteria.
310 for (MachineRegisterInfo::reg_instr_nodbg_iterator
311 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg()),
312 E = MRI.reg_instr_nodbg_end();
313 RI != E;) {
314 MachineInstr &MI = *RI++;
315
316 // Allow copies to/from Reg.
317 if (isFullCopyOf(MI, Reg))
318 continue;
319
320 // Allow stack slot loads.
321 int FI;
322 if (SnipLI.reg() == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
323 continue;
324
325 // Allow stack slot stores.
326 if (SnipLI.reg() == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
327 continue;
328
329 if (StatepointOpers::isFoldableReg(&MI, SnipLI.reg()))
330 continue;
331
332 // Allow a single additional instruction.
333 if (UseMI && &MI != UseMI)
334 return false;
335 UseMI = &MI;
336 }
337 return true;
338}
339
340/// collectRegsToSpill - Collect live range snippets that only have a single
341/// real use.
342void InlineSpiller::collectRegsToSpill() {
343 Register Reg = Edit->getReg();
344
345 // Main register always spills.
346 RegsToSpill.assign(1, Reg);
347 SnippetCopies.clear();
348
349 // Snippets all have the same original, so there can't be any for an original
350 // register.
351 if (Original == Reg)
352 return;
353
354 for (MachineInstr &MI :
355 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
356 Register SnipReg = isFullCopyOf(MI, Reg);
357 if (!isSibling(SnipReg))
358 continue;
359 LiveInterval &SnipLI = LIS.getInterval(SnipReg);
360 if (!isSnippet(SnipLI))
361 continue;
362 SnippetCopies.insert(&MI);
363 if (isRegToSpill(SnipReg))
364 continue;
365 RegsToSpill.push_back(SnipReg);
366 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\talso spill snippet " <<
SnipLI << '\n'; } } while (false)
;
367 ++NumSnippets;
368 }
369}
370
371bool InlineSpiller::isSibling(Register Reg) {
372 return Reg.isVirtual() && VRM.getOriginal(Reg) == Original;
373}
374
375/// It is beneficial to spill to earlier place in the same BB in case
376/// as follows:
377/// There is an alternative def earlier in the same MBB.
378/// Hoist the spill as far as possible in SpillMBB. This can ease
379/// register pressure:
380///
381/// x = def
382/// y = use x
383/// s = copy x
384///
385/// Hoisting the spill of s to immediately after the def removes the
386/// interference between x and y:
387///
388/// x = def
389/// spill x
390/// y = use killed x
391///
392/// This hoist only helps when the copy kills its source.
393///
394bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
395 MachineInstr &CopyMI) {
396 SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
397#ifndef NDEBUG
398 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
399 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy")(static_cast <bool> (VNI && VNI->def == Idx.
getRegSlot() && "Not defined by copy") ? void (0) : __assert_fail
("VNI && VNI->def == Idx.getRegSlot() && \"Not defined by copy\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 399, __extension__ __PRETTY_FUNCTION__
))
;
400#endif
401
402 Register SrcReg = CopyMI.getOperand(1).getReg();
403 LiveInterval &SrcLI = LIS.getInterval(SrcReg);
404 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
405 LiveQueryResult SrcQ = SrcLI.Query(Idx);
406 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
407 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
408 return false;
409
410 // Conservatively extend the stack slot range to the range of the original
411 // value. We may be able to do better with stack slot coloring by being more
412 // careful here.
413 assert(StackInt && "No stack slot assigned yet.")(static_cast <bool> (StackInt && "No stack slot assigned yet."
) ? void (0) : __assert_fail ("StackInt && \"No stack slot assigned yet.\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 413, __extension__ __PRETTY_FUNCTION__
))
;
414 LiveInterval &OrigLI = LIS.getInterval(Original);
415 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
416 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
417 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tmerged orig valno " <<
OrigVNI->id << ": " << *StackInt << '\n'
; } } while (false)
418 << *StackInt << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tmerged orig valno " <<
OrigVNI->id << ": " << *StackInt << '\n'
; } } while (false)
;
419
420 // We are going to spill SrcVNI immediately after its def, so clear out
421 // any later spills of the same value.
422 eliminateRedundantSpills(SrcLI, SrcVNI);
423
424 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
425 MachineBasicBlock::iterator MII;
426 if (SrcVNI->isPHIDef())
427 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
428 else {
429 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
430 assert(DefMI && "Defining instruction disappeared")(static_cast <bool> (DefMI && "Defining instruction disappeared"
) ? void (0) : __assert_fail ("DefMI && \"Defining instruction disappeared\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 430, __extension__ __PRETTY_FUNCTION__
))
;
431 MII = DefMI;
432 ++MII;
433 }
434 MachineInstrSpan MIS(MII, MBB);
435 // Insert spill without kill flag immediately after def.
436 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
437 MRI.getRegClass(SrcReg), &TRI, Register());
438 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
439 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
440 getVDefInterval(MI, LIS);
441 --MII; // Point to store instruction.
442 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\thoisted: " << SrcVNI
->def << '\t' << *MII; } } while (false)
;
443
444 // If there is only 1 store instruction is required for spill, add it
445 // to mergeable list. In X86 AMX, 2 intructions are required to store.
446 // We disable the merge for this case.
447 if (MIS.begin() == MII)
448 HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
449 ++NumSpills;
450 return true;
451}
452
453/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
454/// redundant spills of this value in SLI.reg and sibling copies.
455void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
456 assert(VNI && "Missing value")(static_cast <bool> (VNI && "Missing value") ? void
(0) : __assert_fail ("VNI && \"Missing value\"", "llvm/lib/CodeGen/InlineSpiller.cpp"
, 456, __extension__ __PRETTY_FUNCTION__))
;
457 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
458 WorkList.push_back(std::make_pair(&SLI, VNI));
459 assert(StackInt && "No stack slot assigned yet.")(static_cast <bool> (StackInt && "No stack slot assigned yet."
) ? void (0) : __assert_fail ("StackInt && \"No stack slot assigned yet.\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 459, __extension__ __PRETTY_FUNCTION__
))
;
460
461 do {
462 LiveInterval *LI;
463 std::tie(LI, VNI) = WorkList.pop_back_val();
464 Register Reg = LI->reg();
465 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Checking redundant spills for "
<< VNI->id << '@' << VNI->def <<
" in " << *LI << '\n'; } } while (false)
466 << VNI->def << " in " << *LI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Checking redundant spills for "
<< VNI->id << '@' << VNI->def <<
" in " << *LI << '\n'; } } while (false)
;
467
468 // Regs to spill are taken care of.
469 if (isRegToSpill(Reg))
470 continue;
471
472 // Add all of VNI's live range to StackInt.
473 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
474 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Merged to stack int: " <<
*StackInt << '\n'; } } while (false)
;
475
476 // Find all spills and copies of VNI.
477 for (MachineInstr &MI :
478 llvm::make_early_inc_range(MRI.use_nodbg_instructions(Reg))) {
479 if (!MI.isCopy() && !MI.mayStore())
480 continue;
481 SlotIndex Idx = LIS.getInstructionIndex(MI);
482 if (LI->getVNInfoAt(Idx) != VNI)
483 continue;
484
485 // Follow sibling copies down the dominator tree.
486 if (Register DstReg = isFullCopyOf(MI, Reg)) {
487 if (isSibling(DstReg)) {
488 LiveInterval &DstLI = LIS.getInterval(DstReg);
489 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
490 assert(DstVNI && "Missing defined value")(static_cast <bool> (DstVNI && "Missing defined value"
) ? void (0) : __assert_fail ("DstVNI && \"Missing defined value\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 490, __extension__ __PRETTY_FUNCTION__
))
;
491 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot")(static_cast <bool> (DstVNI->def == Idx.getRegSlot()
&& "Wrong copy def slot") ? void (0) : __assert_fail
("DstVNI->def == Idx.getRegSlot() && \"Wrong copy def slot\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 491, __extension__ __PRETTY_FUNCTION__
))
;
492 WorkList.push_back(std::make_pair(&DstLI, DstVNI));
493 }
494 continue;
495 }
496
497 // Erase spills.
498 int FI;
499 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
500 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Redundant spill " << Idx
<< '\t' << MI; } } while (false)
;
501 // eliminateDeadDefs won't normally remove stores, so switch opcode.
502 MI.setDesc(TII.get(TargetOpcode::KILL));
503 DeadDefs.push_back(&MI);
504 ++NumSpillsRemoved;
505 if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
506 --NumSpills;
507 }
508 }
509 } while (!WorkList.empty());
510}
511
512//===----------------------------------------------------------------------===//
513// Rematerialization
514//===----------------------------------------------------------------------===//
515
516/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
517/// instruction cannot be eliminated. See through snippet copies
518void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
519 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
520 WorkList.push_back(std::make_pair(LI, VNI));
521 do {
522 std::tie(LI, VNI) = WorkList.pop_back_val();
523 if (!UsedValues.insert(VNI).second)
524 continue;
525
526 if (VNI->isPHIDef()) {
527 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
528 for (MachineBasicBlock *P : MBB->predecessors()) {
529 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
530 if (PVNI)
531 WorkList.push_back(std::make_pair(LI, PVNI));
532 }
533 continue;
534 }
535
536 // Follow snippet copies.
537 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
538 if (!SnippetCopies.count(MI))
539 continue;
540 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
541 assert(isRegToSpill(SnipLI.reg()) && "Unexpected register in copy")(static_cast <bool> (isRegToSpill(SnipLI.reg()) &&
"Unexpected register in copy") ? void (0) : __assert_fail ("isRegToSpill(SnipLI.reg()) && \"Unexpected register in copy\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 541, __extension__ __PRETTY_FUNCTION__
))
;
542 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
543 assert(SnipVNI && "Snippet undefined before copy")(static_cast <bool> (SnipVNI && "Snippet undefined before copy"
) ? void (0) : __assert_fail ("SnipVNI && \"Snippet undefined before copy\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 543, __extension__ __PRETTY_FUNCTION__
))
;
544 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
545 } while (!WorkList.empty());
546}
547
548bool InlineSpiller::canGuaranteeAssignmentAfterRemat(Register VReg,
549 MachineInstr &MI) {
550 if (!RestrictStatepointRemat)
551 return true;
552 // Here's a quick explanation of the problem we're trying to handle here:
553 // * There are some pseudo instructions with more vreg uses than there are
554 // physical registers on the machine.
555 // * This is normally handled by spilling the vreg, and folding the reload
556 // into the user instruction. (Thus decreasing the number of used vregs
557 // until the remainder can be assigned to physregs.)
558 // * However, since we may try to spill vregs in any order, we can end up
559 // trying to spill each operand to the instruction, and then rematting it
560 // instead. When that happens, the new live intervals (for the remats) are
561 // expected to be trivially assignable (i.e. RS_Done). However, since we
562 // may have more remats than physregs, we're guaranteed to fail to assign
563 // one.
564 // At the moment, we only handle this for STATEPOINTs since they're the only
565 // pseudo op where we've seen this. If we start seeing other instructions
566 // with the same problem, we need to revisit this.
567 if (MI.getOpcode() != TargetOpcode::STATEPOINT)
568 return true;
569 // For STATEPOINTs we allow re-materialization for fixed arguments only hoping
570 // that number of physical registers is enough to cover all fixed arguments.
571 // If it is not true we need to revisit it.
572 for (unsigned Idx = StatepointOpers(&MI).getVarIdx(),
573 EndIdx = MI.getNumOperands();
574 Idx < EndIdx; ++Idx) {
575 MachineOperand &MO = MI.getOperand(Idx);
576 if (MO.isReg() && MO.getReg() == VReg)
577 return false;
578 }
579 return true;
580}
581
582/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
583bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
584 // Analyze instruction
585 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
586 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, VirtReg.reg(), &Ops);
587
588 if (!RI.Reads)
589 return false;
590
591 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
592 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
593
594 if (!ParentVNI) {
595 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tadding <undef> flags: "
; } } while (false)
;
596 for (MachineOperand &MO : MI.operands())
597 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg())
598 MO.setIsUndef();
599 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << UseIdx << '\t' <<
MI; } } while (false)
;
600 return true;
601 }
602
603 if (SnippetCopies.count(&MI))
604 return false;
605
606 LiveInterval &OrigLI = LIS.getInterval(Original);
607 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
608 LiveRangeEdit::Remat RM(ParentVNI);
609 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
610
611 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
612 markValueUsed(&VirtReg, ParentVNI);
613 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tcannot remat for " <<
UseIdx << '\t' << MI; } } while (false)
;
614 return false;
615 }
616
617 // If the instruction also writes VirtReg.reg, it had better not require the
618 // same register for uses and defs.
619 if (RI.Tied) {
620 markValueUsed(&VirtReg, ParentVNI);
621 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tcannot remat tied reg: " <<
UseIdx << '\t' << MI; } } while (false)
;
622 return false;
623 }
624
625 // Before rematerializing into a register for a single instruction, try to
626 // fold a load into the instruction. That avoids allocating a new register.
627 if (RM.OrigMI->canFoldAsLoad() &&
628 foldMemoryOperand(Ops, RM.OrigMI)) {
629 Edit->markRematerialized(RM.ParentVNI);
630 ++NumFoldedLoads;
631 return true;
632 }
633
634 // If we can't guarantee that we'll be able to actually assign the new vreg,
635 // we can't remat.
636 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg(), MI)) {
637 markValueUsed(&VirtReg, ParentVNI);
638 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tcannot remat for " <<
UseIdx << '\t' << MI; } } while (false)
;
639 return false;
640 }
641
642 // Allocate a new register for the remat.
643 Register NewVReg = Edit->createFrom(Original);
644
645 // Finally we can rematerialize OrigMI before MI.
646 SlotIndex DefIdx =
647 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
648
649 // We take the DebugLoc from MI, since OrigMI may be attributed to a
650 // different source location.
651 auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
652 NewMI->setDebugLoc(MI.getDebugLoc());
653
654 (void)DefIdx;
655 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tremat: " << DefIdx <<
'\t' << *LIS.getInstructionFromIndex(DefIdx); } } while
(false)
656 << *LIS.getInstructionFromIndex(DefIdx))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\tremat: " << DefIdx <<
'\t' << *LIS.getInstructionFromIndex(DefIdx); } } while
(false)
;
657
658 // Replace operands
659 for (const auto &OpPair : Ops) {
660 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
661 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg()) {
662 MO.setReg(NewVReg);
663 MO.setIsKill();
664 }
665 }
666 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\t " << UseIdx <<
'\t' << MI << '\n'; } } while (false)
;
667
668 ++NumRemats;
669 return true;
670}
671
672/// reMaterializeAll - Try to rematerialize as many uses as possible,
673/// and trim the live ranges after.
674void InlineSpiller::reMaterializeAll() {
675 if (!Edit->anyRematerializable())
676 return;
677
678 UsedValues.clear();
679
680 // Try to remat before all uses of snippets.
681 bool anyRemat = false;
682 for (Register Reg : RegsToSpill) {
683 LiveInterval &LI = LIS.getInterval(Reg);
684 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
685 // Debug values are not allowed to affect codegen.
686 if (MI.isDebugValue())
687 continue;
688
689 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "(static_cast <bool> (!MI.isDebugInstr() && "Did not expect to find a use in debug "
"instruction that isn't a DBG_VALUE") ? void (0) : __assert_fail
("!MI.isDebugInstr() && \"Did not expect to find a use in debug \" \"instruction that isn't a DBG_VALUE\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 690, __extension__ __PRETTY_FUNCTION__
))
690 "instruction that isn't a DBG_VALUE")(static_cast <bool> (!MI.isDebugInstr() && "Did not expect to find a use in debug "
"instruction that isn't a DBG_VALUE") ? void (0) : __assert_fail
("!MI.isDebugInstr() && \"Did not expect to find a use in debug \" \"instruction that isn't a DBG_VALUE\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 690, __extension__ __PRETTY_FUNCTION__
))
;
691
692 anyRemat |= reMaterializeFor(LI, MI);
693 }
694 }
695 if (!anyRemat)
696 return;
697
698 // Remove any values that were completely rematted.
699 for (Register Reg : RegsToSpill) {
700 LiveInterval &LI = LIS.getInterval(Reg);
701 for (VNInfo *VNI : LI.vnis()) {
702 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
703 continue;
704 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
705 MI->addRegisterDead(Reg, &TRI);
706 if (!MI->allDefsAreDead())
707 continue;
708 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "All defs dead: " << *MI
; } } while (false)
;
709 DeadDefs.push_back(MI);
710 }
711 }
712
713 // Eliminate dead code after remat. Note that some snippet copies may be
714 // deleted here.
715 if (DeadDefs.empty())
716 return;
717 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Remat created " << DeadDefs
.size() << " dead defs.\n"; } } while (false)
;
718 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
719
720 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
721 // after rematerialization. To remove a VNI for a vreg from its LiveInterval,
722 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
723 // removed, PHI VNI are still left in the LiveInterval.
724 // So to get rid of unused reg, we need to check whether it has non-dbg
725 // reference instead of whether it has non-empty interval.
726 unsigned ResultPos = 0;
727 for (Register Reg : RegsToSpill) {
728 if (MRI.reg_nodbg_empty(Reg)) {
729 Edit->eraseVirtReg(Reg);
730 continue;
731 }
732
733 assert(LIS.hasInterval(Reg) &&(static_cast <bool> (LIS.hasInterval(Reg) && (!
LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
"Empty and not used live-range?!") ? void (0) : __assert_fail
("LIS.hasInterval(Reg) && (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && \"Empty and not used live-range?!\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 735, __extension__ __PRETTY_FUNCTION__
))
734 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&(static_cast <bool> (LIS.hasInterval(Reg) && (!
LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
"Empty and not used live-range?!") ? void (0) : __assert_fail
("LIS.hasInterval(Reg) && (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && \"Empty and not used live-range?!\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 735, __extension__ __PRETTY_FUNCTION__
))
735 "Empty and not used live-range?!")(static_cast <bool> (LIS.hasInterval(Reg) && (!
LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
"Empty and not used live-range?!") ? void (0) : __assert_fail
("LIS.hasInterval(Reg) && (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) && \"Empty and not used live-range?!\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 735, __extension__ __PRETTY_FUNCTION__
))
;
736
737 RegsToSpill[ResultPos++] = Reg;
738 }
739 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
740 LLVM_DEBUG(dbgs() << RegsToSpill.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"
; } } while (false)
741 << " registers to spill after remat.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << RegsToSpill.size() << " registers to spill after remat.\n"
; } } while (false)
;
742}
743
744//===----------------------------------------------------------------------===//
745// Spilling
746//===----------------------------------------------------------------------===//
747
748/// If MI is a load or store of StackSlot, it can be removed.
749bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, Register Reg) {
750 int FI = 0;
751 Register InstrReg = TII.isLoadFromStackSlot(*MI, FI);
752 bool IsLoad = InstrReg;
753 if (!IsLoad)
754 InstrReg = TII.isStoreToStackSlot(*MI, FI);
755
756 // We have a stack access. Is it the right register and slot?
757 if (InstrReg != Reg || FI != StackSlot)
758 return false;
759
760 if (!IsLoad)
761 HSpiller.rmFromMergeableSpills(*MI, StackSlot);
762
763 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Coalescing stack access: " <<
*MI; } } while (false)
;
764 LIS.RemoveMachineInstrFromMaps(*MI);
765 MI->eraseFromParent();
766
767 if (IsLoad) {
768 ++NumReloadsRemoved;
769 --NumReloads;
770 } else {
771 ++NumSpillsRemoved;
772 --NumSpills;
773 }
774
775 return true;
776}
777
778#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
779LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__))
780// Dump the range of instructions from B to E with their slot indexes.
781static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
782 MachineBasicBlock::iterator E,
783 LiveIntervals const &LIS,
784 const char *const header,
785 Register VReg = Register()) {
786 char NextLine = '\n';
787 char SlotIndent = '\t';
788
789 if (std::next(B) == E) {
790 NextLine = ' ';
791 SlotIndent = ' ';
792 }
793
794 dbgs() << '\t' << header << ": " << NextLine;
795
796 for (MachineBasicBlock::iterator I = B; I != E; ++I) {
797 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
798
799 // If a register was passed in and this instruction has it as a
800 // destination that is marked as an early clobber, print the
801 // early-clobber slot index.
802 if (VReg) {
803 MachineOperand *MO = I->findRegisterDefOperand(VReg);
804 if (MO && MO->isEarlyClobber())
805 Idx = Idx.getRegSlot(true);
806 }
807
808 dbgs() << SlotIndent << Idx << '\t' << *I;
809 }
810}
811#endif
812
813/// foldMemoryOperand - Try folding stack slot references in Ops into their
814/// instructions.
815///
816/// @param Ops Operand indices from AnalyzeVirtRegInBundle().
817/// @param LoadMI Load instruction to use instead of stack slot when non-null.
818/// @return True on success.
819bool InlineSpiller::
820foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
821 MachineInstr *LoadMI) {
822 if (Ops.empty())
823 return false;
824 // Don't attempt folding in bundles.
825 MachineInstr *MI = Ops.front().first;
826 if (Ops.back().first != MI || MI->isBundled())
827 return false;
828
829 bool WasCopy = MI->isCopy();
830 Register ImpReg;
831
832 // TII::foldMemoryOperand will do what we need here for statepoint
833 // (fold load into use and remove corresponding def). We will replace
834 // uses of removed def with loads (spillAroundUses).
835 // For that to work we need to untie def and use to pass it through
836 // foldMemoryOperand and signal foldPatchpoint that it is allowed to
837 // fold them.
838 bool UntieRegs = MI->getOpcode() == TargetOpcode::STATEPOINT;
839
840 // Spill subregs if the target allows it.
841 // We always want to spill subregs for stackmap/patchpoint pseudos.
842 bool SpillSubRegs = TII.isSubregFoldable() ||
843 MI->getOpcode() == TargetOpcode::STATEPOINT ||
844 MI->getOpcode() == TargetOpcode::PATCHPOINT ||
845 MI->getOpcode() == TargetOpcode::STACKMAP;
846
847 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
848 // operands.
849 SmallVector<unsigned, 8> FoldOps;
850 for (const auto &OpPair : Ops) {
851 unsigned Idx = OpPair.second;
852 assert(MI == OpPair.first && "Instruction conflict during operand folding")(static_cast <bool> (MI == OpPair.first && "Instruction conflict during operand folding"
) ? void (0) : __assert_fail ("MI == OpPair.first && \"Instruction conflict during operand folding\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 852, __extension__ __PRETTY_FUNCTION__
))
;
853 MachineOperand &MO = MI->getOperand(Idx);
854
855 // No point restoring an undef read, and we'll produce an invalid live
856 // interval.
857 // TODO: Is this really the correct way to handle undef tied uses?
858 if (MO.isUse() && !MO.readsReg() && !MO.isTied())
859 continue;
860
861 if (MO.isImplicit()) {
862 ImpReg = MO.getReg();
863 continue;
864 }
865
866 if (!SpillSubRegs && MO.getSubReg())
867 return false;
868 // We cannot fold a load instruction into a def.
869 if (LoadMI && MO.isDef())
870 return false;
871 // Tied use operands should not be passed to foldMemoryOperand.
872 if (UntieRegs || !MI->isRegTiedToDefOperand(Idx))
873 FoldOps.push_back(Idx);
874 }
875
876 // If we only have implicit uses, we won't be able to fold that.
877 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
878 if (FoldOps.empty())
879 return false;
880
881 MachineInstrSpan MIS(MI, MI->getParent());
882
883 SmallVector<std::pair<unsigned, unsigned> > TiedOps;
884 if (UntieRegs)
885 for (unsigned Idx : FoldOps) {
886 MachineOperand &MO = MI->getOperand(Idx);
887 if (!MO.isTied())
888 continue;
889 unsigned Tied = MI->findTiedOperandIdx(Idx);
890 if (MO.isUse())
891 TiedOps.emplace_back(Tied, Idx);
892 else {
893 assert(MO.isDef() && "Tied to not use and def?")(static_cast <bool> (MO.isDef() && "Tied to not use and def?"
) ? void (0) : __assert_fail ("MO.isDef() && \"Tied to not use and def?\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 893, __extension__ __PRETTY_FUNCTION__
))
;
894 TiedOps.emplace_back(Idx, Tied);
895 }
896 MI->untieRegOperand(Idx);
897 }
898
899 MachineInstr *FoldMI =
900 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
901 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
902 if (!FoldMI) {
903 // Re-tie operands.
904 for (auto Tied : TiedOps)
905 MI->tieOperands(Tied.first, Tied.second);
906 return false;
907 }
908
909 // Remove LIS for any dead defs in the original MI not in FoldMI.
910 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
911 if (!MO->isReg())
912 continue;
913 Register Reg = MO->getReg();
914 if (!Reg || Reg.isVirtual() || MRI.isReserved(Reg)) {
915 continue;
916 }
917 // Skip non-Defs, including undef uses and internal reads.
918 if (MO->isUse())
919 continue;
920 PhysRegInfo RI = AnalyzePhysRegInBundle(*FoldMI, Reg, &TRI);
921 if (RI.FullyDefined)
922 continue;
923 // FoldMI does not define this physreg. Remove the LI segment.
924 assert(MO->isDead() && "Cannot fold physreg def")(static_cast <bool> (MO->isDead() && "Cannot fold physreg def"
) ? void (0) : __assert_fail ("MO->isDead() && \"Cannot fold physreg def\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 924, __extension__ __PRETTY_FUNCTION__
))
;
925 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
926 LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
927 }
928
929 int FI;
930 if (TII.isStoreToStackSlot(*MI, FI) &&
931 HSpiller.rmFromMergeableSpills(*MI, FI))
932 --NumSpills;
933 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
934 // Update the call site info.
935 if (MI->isCandidateForCallSiteEntry())
936 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
937
938 // If we've folded a store into an instruction labelled with debug-info,
939 // record a substitution from the old operand to the memory operand. Handle
940 // the simple common case where operand 0 is the one being folded, plus when
941 // the destination operand is also a tied def. More values could be
942 // substituted / preserved with more analysis.
943 if (MI->peekDebugInstrNum() && Ops[0].second == 0) {
944 // Helper lambda.
945 auto MakeSubstitution = [this,FoldMI,MI,&Ops]() {
946 // Substitute old operand zero to the new instructions memory operand.
947 unsigned OldOperandNum = Ops[0].second;
948 unsigned NewNum = FoldMI->getDebugInstrNum();
949 unsigned OldNum = MI->getDebugInstrNum();
950 MF.makeDebugValueSubstitution({OldNum, OldOperandNum},
951 {NewNum, MachineFunction::DebugOperandMemNumber});
952 };
953
954 const MachineOperand &Op0 = MI->getOperand(Ops[0].second);
955 if (Ops.size() == 1 && Op0.isDef()) {
956 MakeSubstitution();
957 } else if (Ops.size() == 2 && Op0.isDef() && MI->getOperand(1).isTied() &&
958 Op0.getReg() == MI->getOperand(1).getReg()) {
959 MakeSubstitution();
960 }
961 } else if (MI->peekDebugInstrNum()) {
962 // This is a debug-labelled instruction, but the operand being folded isn't
963 // at operand zero. Most likely this means it's a load being folded in.
964 // Substitute any register defs from operand zero up to the one being
965 // folded -- past that point, we don't know what the new operand indexes
966 // will be.
967 MF.substituteDebugValuesForInst(*MI, *FoldMI, Ops[0].second);
968 }
969
970 MI->eraseFromParent();
971
972 // Insert any new instructions other than FoldMI into the LIS maps.
973 assert(!MIS.empty() && "Unexpected empty span of instructions!")(static_cast <bool> (!MIS.empty() && "Unexpected empty span of instructions!"
) ? void (0) : __assert_fail ("!MIS.empty() && \"Unexpected empty span of instructions!\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 973, __extension__ __PRETTY_FUNCTION__
))
;
974 for (MachineInstr &MI : MIS)
975 if (&MI != FoldMI)
976 LIS.InsertMachineInstrInMaps(MI);
977
978 // TII.foldMemoryOperand may have left some implicit operands on the
979 // instruction. Strip them.
980 if (ImpReg)
981 for (unsigned i = FoldMI->getNumOperands(); i; --i) {
982 MachineOperand &MO = FoldMI->getOperand(i - 1);
983 if (!MO.isReg() || !MO.isImplicit())
984 break;
985 if (MO.getReg() == ImpReg)
986 FoldMI->removeOperand(i - 1);
987 }
988
989 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(MIS.begin(
), MIS.end(), LIS, "folded"); } } while (false)
990 "folded"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(MIS.begin(
), MIS.end(), LIS, "folded"); } } while (false)
;
991
992 if (!WasCopy)
993 ++NumFolded;
994 else if (Ops.front().second == 0) {
995 ++NumSpills;
996 // If there is only 1 store instruction is required for spill, add it
997 // to mergeable list. In X86 AMX, 2 intructions are required to store.
998 // We disable the merge for this case.
999 if (std::distance(MIS.begin(), MIS.end()) <= 1)
1000 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
1001 } else
1002 ++NumReloads;
1003 return true;
1004}
1005
1006void InlineSpiller::insertReload(Register NewVReg,
1007 SlotIndex Idx,
1008 MachineBasicBlock::iterator MI) {
1009 MachineBasicBlock &MBB = *MI->getParent();
1010
1011 MachineInstrSpan MIS(MI, &MBB);
1012 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
1013 MRI.getRegClass(NewVReg), &TRI, Register());
1014
1015 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
1016
1017 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(MIS.begin(
), MI, LIS, "reload", NewVReg); } } while (false)
1018 NewVReg))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(MIS.begin(
), MI, LIS, "reload", NewVReg); } } while (false)
;
1019 ++NumReloads;
1020}
1021
1022/// Check if \p Def fully defines a VReg with an undefined value.
1023/// If that's the case, that means the value of VReg is actually
1024/// not relevant.
1025static bool isRealSpill(const MachineInstr &Def) {
1026 if (!Def.isImplicitDef())
1027 return true;
1028 assert(Def.getNumOperands() == 1 &&(static_cast <bool> (Def.getNumOperands() == 1 &&
"Implicit def with more than one definition") ? void (0) : __assert_fail
("Def.getNumOperands() == 1 && \"Implicit def with more than one definition\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1029, __extension__ __PRETTY_FUNCTION__
))
1029 "Implicit def with more than one definition")(static_cast <bool> (Def.getNumOperands() == 1 &&
"Implicit def with more than one definition") ? void (0) : __assert_fail
("Def.getNumOperands() == 1 && \"Implicit def with more than one definition\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1029, __extension__ __PRETTY_FUNCTION__
))
;
1030 // We can say that the VReg defined by Def is undef, only if it is
1031 // fully defined by Def. Otherwise, some of the lanes may not be
1032 // undef and the value of the VReg matters.
1033 return Def.getOperand(0).getSubReg();
1034}
1035
1036/// insertSpill - Insert a spill of NewVReg after MI.
1037void InlineSpiller::insertSpill(Register NewVReg, bool isKill,
1038 MachineBasicBlock::iterator MI) {
1039 // Spill are not terminators, so inserting spills after terminators will
1040 // violate invariants in MachineVerifier.
1041 assert(!MI->isTerminator() && "Inserting a spill after a terminator")(static_cast <bool> (!MI->isTerminator() && "Inserting a spill after a terminator"
) ? void (0) : __assert_fail ("!MI->isTerminator() && \"Inserting a spill after a terminator\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1041, __extension__ __PRETTY_FUNCTION__
))
;
1042 MachineBasicBlock &MBB = *MI->getParent();
1043
1044 MachineInstrSpan MIS(MI, &MBB);
1045 MachineBasicBlock::iterator SpillBefore = std::next(MI);
1046 bool IsRealSpill = isRealSpill(*MI);
1047
1048 if (IsRealSpill)
1049 TII.storeRegToStackSlot(MBB, SpillBefore, NewVReg, isKill, StackSlot,
1050 MRI.getRegClass(NewVReg), &TRI, Register());
1051 else
1052 // Don't spill undef value.
1053 // Anything works for undef, in particular keeping the memory
1054 // uninitialized is a viable option and it saves code size and
1055 // run time.
1056 BuildMI(MBB, SpillBefore, MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
1057 .addReg(NewVReg, getKillRegState(isKill));
1058
1059 MachineBasicBlock::iterator Spill = std::next(MI);
1060 LIS.InsertMachineInstrRangeInMaps(Spill, MIS.end());
1061 for (const MachineInstr &MI : make_range(Spill, MIS.end()))
1062 getVDefInterval(MI, LIS);
1063
1064 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(Spill, MIS
.end(), LIS, "spill"); } } while (false)
1065 dumpMachineInstrRangeWithSlotIndex(Spill, MIS.end(), LIS, "spill"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dumpMachineInstrRangeWithSlotIndex(Spill, MIS
.end(), LIS, "spill"); } } while (false)
;
1066 ++NumSpills;
1067 // If there is only 1 store instruction is required for spill, add it
1068 // to mergeable list. In X86 AMX, 2 intructions are required to store.
1069 // We disable the merge for this case.
1070 if (IsRealSpill && std::distance(Spill, MIS.end()) <= 1)
1071 HSpiller.addToMergeableSpills(*Spill, StackSlot, Original);
1072}
1073
1074/// spillAroundUses - insert spill code around each use of Reg.
1075void InlineSpiller::spillAroundUses(Register Reg) {
1076 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "spillAroundUses " << printReg
(Reg) << '\n'; } } while (false)
;
1077 LiveInterval &OldLI = LIS.getInterval(Reg);
1078
1079 // Iterate over instructions using Reg.
1080 for (MachineInstr &MI : llvm::make_early_inc_range(MRI.reg_bundles(Reg))) {
1081 // Debug values are not allowed to affect codegen.
1082 if (MI.isDebugValue()) {
1083 // Modify DBG_VALUE now that the value is in a spill slot.
1084 MachineBasicBlock *MBB = MI.getParent();
1085 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Modifying debug info due to spill:\t"
<< MI; } } while (false)
;
1086 buildDbgValueForSpill(*MBB, &MI, MI, StackSlot, Reg);
1087 MBB->erase(MI);
1088 continue;
1089 }
1090
1091 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "(static_cast <bool> (!MI.isDebugInstr() && "Did not expect to find a use in debug "
"instruction that isn't a DBG_VALUE") ? void (0) : __assert_fail
("!MI.isDebugInstr() && \"Did not expect to find a use in debug \" \"instruction that isn't a DBG_VALUE\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1092, __extension__ __PRETTY_FUNCTION__
))
1092 "instruction that isn't a DBG_VALUE")(static_cast <bool> (!MI.isDebugInstr() && "Did not expect to find a use in debug "
"instruction that isn't a DBG_VALUE") ? void (0) : __assert_fail
("!MI.isDebugInstr() && \"Did not expect to find a use in debug \" \"instruction that isn't a DBG_VALUE\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1092, __extension__ __PRETTY_FUNCTION__
))
;
1093
1094 // Ignore copies to/from snippets. We'll delete them.
1095 if (SnippetCopies.count(&MI))
1096 continue;
1097
1098 // Stack slot accesses may coalesce away.
1099 if (coalesceStackAccess(&MI, Reg))
1100 continue;
1101
1102 // Analyze instruction.
1103 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
1104 VirtRegInfo RI = AnalyzeVirtRegInBundle(MI, Reg, &Ops);
1105
1106 // Find the slot index where this instruction reads and writes OldLI.
1107 // This is usually the def slot, except for tied early clobbers.
1108 SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1109 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1110 if (SlotIndex::isSameInstr(Idx, VNI->def))
1111 Idx = VNI->def;
1112
1113 // Check for a sibling copy.
1114 Register SibReg = isFullCopyOf(MI, Reg);
1115 if (SibReg && isSibling(SibReg)) {
1116 // This may actually be a copy between snippets.
1117 if (isRegToSpill(SibReg)) {
1118 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Found new snippet copy: " <<
MI; } } while (false)
;
1119 SnippetCopies.insert(&MI);
1120 continue;
1121 }
1122 if (RI.Writes) {
1123 if (hoistSpillInsideBB(OldLI, MI)) {
1124 // This COPY is now dead, the value is already in the stack slot.
1125 MI.getOperand(0).setIsDead();
1126 DeadDefs.push_back(&MI);
1127 continue;
1128 }
1129 } else {
1130 // This is a reload for a sib-reg copy. Drop spills downstream.
1131 LiveInterval &SibLI = LIS.getInterval(SibReg);
1132 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1133 // The COPY will fold to a reload below.
1134 }
1135 }
1136
1137 // Attempt to fold memory ops.
1138 if (foldMemoryOperand(Ops))
1139 continue;
1140
1141 // Create a new virtual register for spill/fill.
1142 // FIXME: Infer regclass from instruction alone.
1143 Register NewVReg = Edit->createFrom(Reg);
1144
1145 if (RI.Reads)
1146 insertReload(NewVReg, Idx, &MI);
1147
1148 // Rewrite instruction operands.
1149 bool hasLiveDef = false;
1150 for (const auto &OpPair : Ops) {
1151 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1152 MO.setReg(NewVReg);
1153 if (MO.isUse()) {
1154 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1155 MO.setIsKill();
1156 } else {
1157 if (!MO.isDead())
1158 hasLiveDef = true;
1159 }
1160 }
1161 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << MI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\trewrite: " << Idx <<
'\t' << MI << '\n'; } } while (false)
;
1162
1163 // FIXME: Use a second vreg if instruction has no tied ops.
1164 if (RI.Writes)
1165 if (hasLiveDef)
1166 insertSpill(NewVReg, true, &MI);
1167 }
1168}
1169
1170/// spillAll - Spill all registers remaining after rematerialization.
1171void InlineSpiller::spillAll() {
1172 // Update LiveStacks now that we are committed to spilling.
1173 if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1174 StackSlot = VRM.assignVirt2StackSlot(Original);
1175 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1176 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1177 } else
1178 StackInt = &LSS.getInterval(StackSlot);
1179
1180 if (Original != Edit->getReg())
1181 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1182
1183 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values")(static_cast <bool> (StackInt->getNumValNums() == 1 &&
"Bad stack interval values") ? void (0) : __assert_fail ("StackInt->getNumValNums() == 1 && \"Bad stack interval values\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1183, __extension__ __PRETTY_FUNCTION__
))
;
1184 for (Register Reg : RegsToSpill)
1185 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1186 StackInt->getValNumInfo(0));
1187 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Merged spilled regs: " <<
*StackInt << '\n'; } } while (false)
;
1188
1189 // Spill around uses of all RegsToSpill.
1190 for (Register Reg : RegsToSpill)
1191 spillAroundUses(Reg);
1192
1193 // Hoisted spills may cause dead code.
1194 if (!DeadDefs.empty()) {
1195 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Eliminating " << DeadDefs
.size() << " dead defs\n"; } } while (false)
;
1196 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill);
1197 }
1198
1199 // Finally delete the SnippetCopies.
1200 for (Register Reg : RegsToSpill) {
1201 for (MachineInstr &MI :
1202 llvm::make_early_inc_range(MRI.reg_instructions(Reg))) {
1203 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy")(static_cast <bool> (SnippetCopies.count(&MI) &&
"Remaining use wasn't a snippet copy") ? void (0) : __assert_fail
("SnippetCopies.count(&MI) && \"Remaining use wasn't a snippet copy\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1203, __extension__ __PRETTY_FUNCTION__
))
;
1204 // FIXME: Do this with a LiveRangeEdit callback.
1205 LIS.RemoveMachineInstrFromMaps(MI);
1206 MI.eraseFromParent();
1207 }
1208 }
1209
1210 // Delete all spilled registers.
1211 for (Register Reg : RegsToSpill)
1212 Edit->eraseVirtReg(Reg);
1213}
1214
1215void InlineSpiller::spill(LiveRangeEdit &edit) {
1216 ++NumSpilledRanges;
1217 Edit = &edit;
1218 assert(!Register::isStackSlot(edit.getReg()) &&(static_cast <bool> (!Register::isStackSlot(edit.getReg
()) && "Trying to spill a stack slot.") ? void (0) : __assert_fail
("!Register::isStackSlot(edit.getReg()) && \"Trying to spill a stack slot.\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1219, __extension__ __PRETTY_FUNCTION__
))
1219 "Trying to spill a stack slot.")(static_cast <bool> (!Register::isStackSlot(edit.getReg
()) && "Trying to spill a stack slot.") ? void (0) : __assert_fail
("!Register::isStackSlot(edit.getReg()) && \"Trying to spill a stack slot.\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1219, __extension__ __PRETTY_FUNCTION__
))
;
1220 // Share a stack slot among all descendants of Original.
1221 Original = VRM.getOriginal(edit.getReg());
1222 StackSlot = VRM.getStackSlot(Original);
1223 StackInt = nullptr;
1224
1225 LLVM_DEBUG(dbgs() << "Inline spilling "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Inline spilling " << TRI
.getRegClassName(MRI.getRegClass(edit.getReg())) << ':'
<< edit.getParent() << "\nFrom original " <<
printReg(Original) << '\n'; } } while (false)
1226 << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Inline spilling " << TRI
.getRegClassName(MRI.getRegClass(edit.getReg())) << ':'
<< edit.getParent() << "\nFrom original " <<
printReg(Original) << '\n'; } } while (false)
1227 << ':' << edit.getParent() << "\nFrom original "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Inline spilling " << TRI
.getRegClassName(MRI.getRegClass(edit.getReg())) << ':'
<< edit.getParent() << "\nFrom original " <<
printReg(Original) << '\n'; } } while (false)
1228 << printReg(Original) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Inline spilling " << TRI
.getRegClassName(MRI.getRegClass(edit.getReg())) << ':'
<< edit.getParent() << "\nFrom original " <<
printReg(Original) << '\n'; } } while (false)
;
1229 assert(edit.getParent().isSpillable() &&(static_cast <bool> (edit.getParent().isSpillable() &&
"Attempting to spill already spilled value.") ? void (0) : __assert_fail
("edit.getParent().isSpillable() && \"Attempting to spill already spilled value.\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1230, __extension__ __PRETTY_FUNCTION__
))
1230 "Attempting to spill already spilled value.")(static_cast <bool> (edit.getParent().isSpillable() &&
"Attempting to spill already spilled value.") ? void (0) : __assert_fail
("edit.getParent().isSpillable() && \"Attempting to spill already spilled value.\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1230, __extension__ __PRETTY_FUNCTION__
))
;
1231 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs")(static_cast <bool> (DeadDefs.empty() && "Previous spill didn't remove dead defs"
) ? void (0) : __assert_fail ("DeadDefs.empty() && \"Previous spill didn't remove dead defs\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1231, __extension__ __PRETTY_FUNCTION__
))
;
1232
1233 collectRegsToSpill();
1234 reMaterializeAll();
1235
1236 // Remat may handle everything.
1237 if (!RegsToSpill.empty())
1238 spillAll();
1239
1240 Edit->calculateRegClassAndHint(MF, VRAI);
1241}
1242
1243/// Optimizations after all the reg selections and spills are done.
1244void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1
Calling 'HoistSpillHelper::hoistAllSpills'
1245
1246/// When a spill is inserted, add the spill to MergeableSpills map.
1247void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1248 unsigned Original) {
1249 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1250 LiveInterval &OrigLI = LIS.getInterval(Original);
1251 // save a copy of LiveInterval in StackSlotToOrigLI because the original
1252 // LiveInterval may be cleared after all its references are spilled.
1253 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1254 auto LI = std::make_unique<LiveInterval>(OrigLI.reg(), OrigLI.weight());
1255 LI->assign(OrigLI, Allocator);
1256 StackSlotToOrigLI[StackSlot] = std::move(LI);
1257 }
1258 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1259 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1260 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1261 MergeableSpills[MIdx].insert(&Spill);
1262}
1263
1264/// When a spill is removed, remove the spill from MergeableSpills map.
1265/// Return true if the spill is removed successfully.
1266bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1267 int StackSlot) {
1268 auto It = StackSlotToOrigLI.find(StackSlot);
1269 if (It == StackSlotToOrigLI.end())
1270 return false;
1271 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1272 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1273 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1274 return MergeableSpills[MIdx].erase(&Spill);
1275}
1276
1277/// Check BB to see if it is a possible target BB to place a hoisted spill,
1278/// i.e., there should be a living sibling of OrigReg at the insert point.
1279bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1280 MachineBasicBlock &BB, Register &LiveReg) {
1281 SlotIndex Idx = IPA.getLastInsertPoint(OrigLI, BB);
1282 // The original def could be after the last insert point in the root block,
1283 // we can't hoist to here.
1284 if (Idx < OrigVNI.def) {
1285 // TODO: We could be better here. If LI is not alive in landing pad
1286 // we could hoist spill after LIP.
1287 LLVM_DEBUG(dbgs() << "can't spill in root block - def after LIP\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "can't spill in root block - def after LIP\n"
; } } while (false)
;
1288 return false;
1289 }
1290 Register OrigReg = OrigLI.reg();
1291 SmallSetVector<Register, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1292 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI")(static_cast <bool> (OrigLI.getVNInfoAt(Idx) == &OrigVNI
&& "Unexpected VNI") ? void (0) : __assert_fail ("OrigLI.getVNInfoAt(Idx) == &OrigVNI && \"Unexpected VNI\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1292, __extension__ __PRETTY_FUNCTION__
))
;
1293
1294 for (const Register &SibReg : Siblings) {
1295 LiveInterval &LI = LIS.getInterval(SibReg);
1296 VNInfo *VNI = LI.getVNInfoAt(Idx);
1297 if (VNI) {
1298 LiveReg = SibReg;
1299 return true;
1300 }
1301 }
1302 return false;
1303}
1304
1305/// Remove redundant spills in the same BB. Save those redundant spills in
1306/// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1307void HoistSpillHelper::rmRedundantSpills(
1308 SmallPtrSet<MachineInstr *, 16> &Spills,
1309 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1310 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1311 // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1312 // another spill inside. If a BB contains more than one spill, only keep the
1313 // earlier spill with smaller SlotIndex.
1314 for (auto *const CurrentSpill : Spills) {
1315 MachineBasicBlock *Block = CurrentSpill->getParent();
1316 MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1317 MachineInstr *PrevSpill = SpillBBToSpill[Node];
1318 if (PrevSpill) {
1319 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1320 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1321 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1322 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1323 SpillsToRm.push_back(SpillToRm);
1324 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1325 } else {
1326 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1327 }
1328 }
1329 for (auto *const SpillToRm : SpillsToRm)
1330 Spills.erase(SpillToRm);
1331}
1332
1333/// Starting from \p Root find a top-down traversal order of the dominator
1334/// tree to visit all basic blocks containing the elements of \p Spills.
1335/// Redundant spills will be found and put into \p SpillsToRm at the same
1336/// time. \p SpillBBToSpill will be populated as part of the process and
1337/// maps a basic block to the first store occurring in the basic block.
1338/// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1339void HoistSpillHelper::getVisitOrders(
1340 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1341 SmallVectorImpl<MachineDomTreeNode *> &Orders,
1342 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1343 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1344 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1345 // The set contains all the possible BB nodes to which we may hoist
1346 // original spills.
1347 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1348 // Save the BB nodes on the path from the first BB node containing
1349 // non-redundant spill to the Root node.
1350 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1351 // All the spills to be hoisted must originate from a single def instruction
1352 // to the OrigReg. It means the def instruction should dominate all the spills
1353 // to be hoisted. We choose the BB where the def instruction is located as
1354 // the Root.
1355 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1356 // For every node on the dominator tree with spill, walk up on the dominator
1357 // tree towards the Root node until it is reached. If there is other node
1358 // containing spill in the middle of the path, the previous spill saw will
1359 // be redundant and the node containing it will be removed. All the nodes on
1360 // the path starting from the first node with non-redundant spill to the Root
1361 // node will be added to the WorkSet, which will contain all the possible
1362 // locations where spills may be hoisted to after the loop below is done.
1363 for (auto *const Spill : Spills) {
1364 MachineBasicBlock *Block = Spill->getParent();
1365 MachineDomTreeNode *Node = MDT[Block];
9
Calling 'MachineDominatorTree::operator[]'
15
Returning from 'MachineDominatorTree::operator[]'
16
'Node' initialized here
1366 MachineInstr *SpillToRm = nullptr;
1367 while (Node != RootIDomNode) {
17
Assuming 'Node' is not equal to 'RootIDomNode'
1368 // If Node dominates Block, and it already contains a spill, the spill in
1369 // Block will be redundant.
1370 if (Node != MDT[Block] && SpillBBToSpill[Node]) {
18
Assuming the condition is false
19
Assuming pointer value is null
1371 SpillToRm = SpillBBToSpill[MDT[Block]];
1372 break;
1373 /// If we see the Node already in WorkSet, the path from the Node to
1374 /// the Root node must already be traversed by another spill.
1375 /// Then no need to repeat.
1376 } else if (WorkSet.count(Node)) {
20
Assuming the condition is false
21
Taking false branch
1377 break;
1378 } else {
1379 NodesOnPath.insert(Node);
1380 }
1381 Node = Node->getIDom();
22
Called C++ object pointer is null
1382 }
1383 if (SpillToRm) {
1384 SpillsToRm.push_back(SpillToRm);
1385 } else {
1386 // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1387 // set the initial status before hoisting start. The value of BBs
1388 // containing original spills is set to 0, in order to descriminate
1389 // with BBs containing hoisted spills which will be inserted to
1390 // SpillsToKeep later during hoisting.
1391 SpillsToKeep[MDT[Block]] = 0;
1392 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1393 }
1394 NodesOnPath.clear();
1395 }
1396
1397 // Sort the nodes in WorkSet in top-down order and save the nodes
1398 // in Orders. Orders will be used for hoisting in runHoistSpills.
1399 unsigned idx = 0;
1400 Orders.push_back(MDT.getBase().getNode(Root));
1401 do {
1402 MachineDomTreeNode *Node = Orders[idx++];
1403 for (MachineDomTreeNode *Child : Node->children()) {
1404 if (WorkSet.count(Child))
1405 Orders.push_back(Child);
1406 }
1407 } while (idx != Orders.size());
1408 assert(Orders.size() == WorkSet.size() &&(static_cast <bool> (Orders.size() == WorkSet.size() &&
"Orders have different size with WorkSet") ? void (0) : __assert_fail
("Orders.size() == WorkSet.size() && \"Orders have different size with WorkSet\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1409, __extension__ __PRETTY_FUNCTION__
))
1409 "Orders have different size with WorkSet")(static_cast <bool> (Orders.size() == WorkSet.size() &&
"Orders have different size with WorkSet") ? void (0) : __assert_fail
("Orders.size() == WorkSet.size() && \"Orders have different size with WorkSet\""
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1409, __extension__ __PRETTY_FUNCTION__
))
;
1410
1411#ifndef NDEBUG
1412 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "Orders size is " << Orders
.size() << "\n"; } } while (false)
;
1413 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1414 for (; RIt != Orders.rend(); RIt++)
1415 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "BB" << (*RIt)->getBlock
()->getNumber() << ","; } } while (false)
;
1416 LLVM_DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { dbgs() << "\n"; } } while (false)
;
1417#endif
1418}
1419
1420/// Try to hoist spills according to BB hotness. The spills to removed will
1421/// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1422/// \p SpillsToIns.
1423void HoistSpillHelper::runHoistSpills(
1424 LiveInterval &OrigLI, VNInfo &OrigVNI,
1425 SmallPtrSet<MachineInstr *, 16> &Spills,
1426 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1427 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1428 // Visit order of dominator tree nodes.
1429 SmallVector<MachineDomTreeNode *, 32> Orders;
1430 // SpillsToKeep contains all the nodes where spills are to be inserted
1431 // during hoisting. If the spill to be inserted is an original spill
1432 // (not a hoisted one), the value of the map entry is 0. If the spill
1433 // is a hoisted spill, the value of the map entry is the VReg to be used
1434 // as the source of the spill.
1435 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1436 // Map from BB to the first spill inside of it.
1437 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1438
1439 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1440
1441 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1442 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
8
Calling 'HoistSpillHelper::getVisitOrders'
1443 SpillBBToSpill);
1444
1445 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1446 // nodes set and the cost of all the spills inside those nodes.
1447 // The nodes set are the locations where spills are to be inserted
1448 // in the subtree of current node.
1449 using NodesCostPair =
1450 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1451 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1452
1453 // Iterate Orders set in reverse order, which will be a bottom-up order
1454 // in the dominator tree. Once we visit a dom tree node, we know its
1455 // children have already been visited and the spill locations in the
1456 // subtrees of all the children have been determined.
1457 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1458 for (; RIt != Orders.rend(); RIt++) {
1459 MachineBasicBlock *Block = (*RIt)->getBlock();
1460
1461 // If Block contains an original spill, simply continue.
1462 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1463 SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1464 // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1465 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1466 continue;
1467 }
1468
1469 // Collect spills in subtree of current node (*RIt) to
1470 // SpillsInSubTreeMap[*RIt].first.
1471 for (MachineDomTreeNode *Child : (*RIt)->children()) {
1472 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1473 continue;
1474 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1475 // should be placed before getting the begin and end iterators of
1476 // SpillsInSubTreeMap[Child].first, or else the iterators may be
1477 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1478 // and the map grows and then the original buckets in the map are moved.
1479 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1480 SpillsInSubTreeMap[*RIt].first;
1481 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1482 SubTreeCost += SpillsInSubTreeMap[Child].second;
1483 auto BI = SpillsInSubTreeMap[Child].first.begin();
1484 auto EI = SpillsInSubTreeMap[Child].first.end();
1485 SpillsInSubTree.insert(BI, EI);
1486 SpillsInSubTreeMap.erase(Child);
1487 }
1488
1489 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1490 SpillsInSubTreeMap[*RIt].first;
1491 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1492 // No spills in subtree, simply continue.
1493 if (SpillsInSubTree.empty())
1494 continue;
1495
1496 // Check whether Block is a possible candidate to insert spill.
1497 Register LiveReg;
1498 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1499 continue;
1500
1501 // If there are multiple spills that could be merged, bias a little
1502 // to hoist the spill.
1503 BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1504 ? BranchProbability(9, 10)
1505 : BranchProbability(1, 1);
1506 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1507 // Hoist: Move spills to current Block.
1508 for (auto *const SpillBB : SpillsInSubTree) {
1509 // When SpillBB is a BB contains original spill, insert the spill
1510 // to SpillsToRm.
1511 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1512 !SpillsToKeep[SpillBB]) {
1513 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1514 SpillsToRm.push_back(SpillToRm);
1515 }
1516 // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1517 SpillsToKeep.erase(SpillBB);
1518 }
1519 // Current Block is the BB containing the new hoisted spill. Add it to
1520 // SpillsToKeep. LiveReg is the source of the new spill.
1521 SpillsToKeep[*RIt] = LiveReg;
1522 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1523 dbgs() << "spills in BB: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1524 for (const auto Rspill : SpillsInSubTree)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1525 dbgs() << Rspill->getBlock()->getNumber() << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1526 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1527 << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
1528 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "spills in BB: "; for (const
auto Rspill : SpillsInSubTree) dbgs() << Rspill->getBlock
()->getNumber() << " "; dbgs() << "were promoted to BB"
<< (*RIt)->getBlock()->getNumber() << "\n"
; }; } } while (false)
;
1529 SpillsInSubTree.clear();
1530 SpillsInSubTree.insert(*RIt);
1531 SubTreeCost = MBFI.getBlockFreq(Block);
1532 }
1533 }
1534 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1535 // save them to SpillsToIns.
1536 for (const auto &Ent : SpillsToKeep) {
1537 if (Ent.second)
1538 SpillsToIns[Ent.first->getBlock()] = Ent.second;
1539 }
1540}
1541
1542/// For spills with equal values, remove redundant spills and hoist those left
1543/// to less hot spots.
1544///
1545/// Spills with equal values will be collected into the same set in
1546/// MergeableSpills when spill is inserted. These equal spills are originated
1547/// from the same defining instruction and are dominated by the instruction.
1548/// Before hoisting all the equal spills, redundant spills inside in the same
1549/// BB are first marked to be deleted. Then starting from the spills left, walk
1550/// up on the dominator tree towards the Root node where the define instruction
1551/// is located, mark the dominated spills to be deleted along the way and
1552/// collect the BB nodes on the path from non-dominated spills to the define
1553/// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1554/// where we are considering to hoist the spills. We iterate the WorkSet in
1555/// bottom-up order, and for each node, we will decide whether to hoist spills
1556/// inside its subtree to that node. In this way, we can get benefit locally
1557/// even if hoisting all the equal spills to one cold place is impossible.
1558void HoistSpillHelper::hoistAllSpills() {
1559 SmallVector<Register, 4> NewVRegs;
1560 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1561
1562 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
2
Assuming 'i' is equal to 'e'
3
Loop condition is false. Execution continues on line 1570
1563 Register Reg = Register::index2VirtReg(i);
1564 Register Original = VRM.getPreSplitReg(Reg);
1565 if (!MRI.def_empty(Reg))
1566 Virt2SiblingsMap[Original].insert(Reg);
1567 }
1568
1569 // Each entry in MergeableSpills contains a spill set with equal values.
1570 for (auto &Ent : MergeableSpills) {
1571 int Slot = Ent.first.first;
1572 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1573 VNInfo *OrigVNI = Ent.first.second;
1574 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1575 if (Ent.second.empty())
1576 continue;
1577
1578 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
4
Taking false branch
5
Assuming 'DebugFlag' is false
6
Loop condition is false. Exiting loop
1579 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
1580 << "Equal spills in BB: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
1581 for (const auto spill : EqValSpills)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
1582 dbgs() << spill->getParent()->getNumber() << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
1583 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
1584 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "\nFor Slot" << Slot <<
" and VN" << OrigVNI->id << ":\n" << "Equal spills in BB: "
; for (const auto spill : EqValSpills) dbgs() << spill->
getParent()->getNumber() << " "; dbgs() << "\n"
; }; } } while (false)
;
1585
1586 // SpillsToRm is the spill set to be removed from EqValSpills.
1587 SmallVector<MachineInstr *, 16> SpillsToRm;
1588 // SpillsToIns is the spill set to be newly inserted after hoisting.
1589 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1590
1591 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
7
Calling 'HoistSpillHelper::runHoistSpills'
1592
1593 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1594 dbgs() << "Finally inserted spills in BB: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1595 for (const auto &Ispill : SpillsToIns)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1596 dbgs() << Ispill.first->getNumber() << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1597 dbgs() << "\nFinally removed spills in BB: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1598 for (const auto Rspill : SpillsToRm)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1599 dbgs() << Rspill->getParent()->getNumber() << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1600 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
1601 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("regalloc")) { { dbgs() << "Finally inserted spills in BB: "
; for (const auto &Ispill : SpillsToIns) dbgs() << Ispill
.first->getNumber() << " "; dbgs() << "\nFinally removed spills in BB: "
; for (const auto Rspill : SpillsToRm) dbgs() << Rspill
->getParent()->getNumber() << " "; dbgs() <<
"\n"; }; } } while (false)
;
1602
1603 // Stack live range update.
1604 LiveInterval &StackIntvl = LSS.getInterval(Slot);
1605 if (!SpillsToIns.empty() || !SpillsToRm.empty())
1606 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1607 StackIntvl.getValNumInfo(0));
1608
1609 // Insert hoisted spills.
1610 for (auto const &Insert : SpillsToIns) {
1611 MachineBasicBlock *BB = Insert.first;
1612 Register LiveReg = Insert.second;
1613 MachineBasicBlock::iterator MII = IPA.getLastInsertPointIter(OrigLI, *BB);
1614 MachineInstrSpan MIS(MII, BB);
1615 TII.storeRegToStackSlot(*BB, MII, LiveReg, false, Slot,
1616 MRI.getRegClass(LiveReg), &TRI, Register());
1617 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MII);
1618 for (const MachineInstr &MI : make_range(MIS.begin(), MII))
1619 getVDefInterval(MI, LIS);
1620 ++NumSpills;
1621 }
1622
1623 // Remove redundant spills or change them to dead instructions.
1624 NumSpills -= SpillsToRm.size();
1625 for (auto *const RMEnt : SpillsToRm) {
1626 RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1627 for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1628 MachineOperand &MO = RMEnt->getOperand(i - 1);
1629 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1630 RMEnt->removeOperand(i - 1);
1631 }
1632 }
1633 Edit.eliminateDeadDefs(SpillsToRm, std::nullopt);
1634 }
1635}
1636
1637/// For VirtReg clone, the \p New register should have the same physreg or
1638/// stackslot as the \p old register.
1639void HoistSpillHelper::LRE_DidCloneVirtReg(Register New, Register Old) {
1640 if (VRM.hasPhys(Old))
1641 VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1642 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1643 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1644 else
1645 llvm_unreachable("VReg should be assigned either physreg or stackslot")::llvm::llvm_unreachable_internal("VReg should be assigned either physreg or stackslot"
, "llvm/lib/CodeGen/InlineSpiller.cpp", 1645)
;
1646 if (VRM.hasShape(Old))
1647 VRM.assignVirt2Shape(New, VRM.getShape(Old));
1648}

/build/source/llvm/include/llvm/CodeGen/MachineDominators.h

1//==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines classes mirroring those in llvm/Analysis/Dominators.h,
10// but for target-specific code rather than target-independent IR.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
15#define LLVM_CODEGEN_MACHINEDOMINATORS_H
16
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineFunctionPass.h"
21#include "llvm/CodeGen/MachineInstr.h"
22#include "llvm/CodeGen/MachineInstrBundleIterator.h"
23#include "llvm/Support/GenericDomTree.h"
24#include "llvm/Support/GenericDomTreeConstruction.h"
25#include <cassert>
26#include <memory>
27
28namespace llvm {
29class AnalysisUsage;
30class MachineFunction;
31class Module;
32class raw_ostream;
33
34template <>
35inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
36 MachineBasicBlock *MBB) {
37 this->Roots.push_back(MBB);
38}
39
40extern template class DomTreeNodeBase<MachineBasicBlock>;
41extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
42extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
43
44using MachineDomTree = DomTreeBase<MachineBasicBlock>;
45using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
46
47//===-------------------------------------
48/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
49/// compute a normal dominator tree.
50///
51class MachineDominatorTree : public MachineFunctionPass {
52 /// Helper structure used to hold all the basic blocks
53 /// involved in the split of a critical edge.
54 struct CriticalEdge {
55 MachineBasicBlock *FromBB;
56 MachineBasicBlock *ToBB;
57 MachineBasicBlock *NewBB;
58 };
59
60 /// Pile up all the critical edges to be split.
61 /// The splitting of a critical edge is local and thus, it is possible
62 /// to apply several of those changes at the same time.
63 mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
64
65 /// Remember all the basic blocks that are inserted during
66 /// edge splitting.
67 /// Invariant: NewBBs == all the basic blocks contained in the NewBB
68 /// field of all the elements of CriticalEdgesToSplit.
69 /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
70 /// such as BB == elt.NewBB.
71 mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
72
73 /// The DominatorTreeBase that is used to compute a normal dominator tree.
74 std::unique_ptr<MachineDomTree> DT;
75
76 /// Apply all the recorded critical edges to the DT.
77 /// This updates the underlying DT information in a way that uses
78 /// the fast query path of DT as much as possible.
79 ///
80 /// \post CriticalEdgesToSplit.empty().
81 void applySplitCriticalEdges() const;
82
83public:
84 static char ID; // Pass ID, replacement for typeid
85
86 MachineDominatorTree();
87 explicit MachineDominatorTree(MachineFunction &MF) : MachineFunctionPass(ID) {
88 calculate(MF);
89 }
90
91 MachineDomTree &getBase() {
92 if (!DT)
93 DT.reset(new MachineDomTree());
94 applySplitCriticalEdges();
95 return *DT;
96 }
97
98 void getAnalysisUsage(AnalysisUsage &AU) const override;
99
100 MachineBasicBlock *getRoot() const {
101 applySplitCriticalEdges();
102 return DT->getRoot();
103 }
104
105 MachineDomTreeNode *getRootNode() const {
106 applySplitCriticalEdges();
107 return DT->getRootNode();
108 }
109
110 bool runOnMachineFunction(MachineFunction &F) override;
111
112 void calculate(MachineFunction &F);
113
114 bool dominates(const MachineDomTreeNode *A,
115 const MachineDomTreeNode *B) const {
116 applySplitCriticalEdges();
117 return DT->dominates(A, B);
118 }
119
120 void getDescendants(MachineBasicBlock *A,
121 SmallVectorImpl<MachineBasicBlock *> &Result) {
122 applySplitCriticalEdges();
123 DT->getDescendants(A, Result);
124 }
125
126 bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const {
127 applySplitCriticalEdges();
128 return DT->dominates(A, B);
129 }
130
131 // dominates - Return true if A dominates B. This performs the
132 // special checks necessary if A and B are in the same basic block.
133 bool dominates(const MachineInstr *A, const MachineInstr *B) const {
134 applySplitCriticalEdges();
135 const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
136 if (BBA != BBB) return DT->dominates(BBA, BBB);
137
138 // Loop through the basic block until we find A or B.
139 MachineBasicBlock::const_iterator I = BBA->begin();
140 for (; &*I != A && &*I != B; ++I)
141 /*empty*/ ;
142
143 return &*I == A;
144 }
145
146 bool properlyDominates(const MachineDomTreeNode *A,
147 const MachineDomTreeNode *B) const {
148 applySplitCriticalEdges();
149 return DT->properlyDominates(A, B);
150 }
151
152 bool properlyDominates(const MachineBasicBlock *A,
153 const MachineBasicBlock *B) const {
154 applySplitCriticalEdges();
155 return DT->properlyDominates(A, B);
156 }
157
158 /// findNearestCommonDominator - Find nearest common dominator basic block
159 /// for basic block A and B. If there is no such block then return NULL.
160 MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
161 MachineBasicBlock *B) {
162 applySplitCriticalEdges();
163 return DT->findNearestCommonDominator(A, B);
164 }
165
166 MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
167 applySplitCriticalEdges();
168 return DT->getNode(BB);
10
Calling 'DominatorTreeBase::getNode'
13
Returning from 'DominatorTreeBase::getNode'
14
Returning pointer
169 }
170
171 /// getNode - return the (Post)DominatorTree node for the specified basic
172 /// block. This is the same as using operator[] on this class.
173 ///
174 MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
175 applySplitCriticalEdges();
176 return DT->getNode(BB);
177 }
178
179 /// addNewBlock - Add a new node to the dominator tree information. This
180 /// creates a new node as a child of DomBB dominator node,linking it into
181 /// the children list of the immediate dominator.
182 MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
183 MachineBasicBlock *DomBB) {
184 applySplitCriticalEdges();
185 return DT->addNewBlock(BB, DomBB);
186 }
187
188 /// changeImmediateDominator - This method is used to update the dominator
189 /// tree information when a node's immediate dominator changes.
190 ///
191 void changeImmediateDominator(MachineBasicBlock *N,
192 MachineBasicBlock *NewIDom) {
193 applySplitCriticalEdges();
194 DT->changeImmediateDominator(N, NewIDom);
195 }
196
197 void changeImmediateDominator(MachineDomTreeNode *N,
198 MachineDomTreeNode *NewIDom) {
199 applySplitCriticalEdges();
200 DT->changeImmediateDominator(N, NewIDom);
201 }
202
203 /// eraseNode - Removes a node from the dominator tree. Block must not
204 /// dominate any other blocks. Removes node from its immediate dominator's
205 /// children list. Deletes dominator node associated with basic block BB.
206 void eraseNode(MachineBasicBlock *BB) {
207 applySplitCriticalEdges();
208 DT->eraseNode(BB);
209 }
210
211 /// splitBlock - BB is split and now it has one successor. Update dominator
212 /// tree to reflect this change.
213 void splitBlock(MachineBasicBlock* NewBB) {
214 applySplitCriticalEdges();
215 DT->splitBlock(NewBB);
216 }
217
218 /// isReachableFromEntry - Return true if A is dominated by the entry
219 /// block of the function containing it.
220 bool isReachableFromEntry(const MachineBasicBlock *A) {
221 applySplitCriticalEdges();
222 return DT->isReachableFromEntry(A);
223 }
224
225 void releaseMemory() override;
226
227 void verifyAnalysis() const override;
228
229 void print(raw_ostream &OS, const Module*) const override;
230
231 /// Record that the critical edge (FromBB, ToBB) has been
232 /// split with NewBB.
233 /// This is best to use this method instead of directly update the
234 /// underlying information, because this helps mitigating the
235 /// number of time the DT information is invalidated.
236 ///
237 /// \note Do not use this method with regular edges.
238 ///
239 /// \note To benefit from the compile time improvement incurred by this
240 /// method, the users of this method have to limit the queries to the DT
241 /// interface between two edges splitting. In other words, they have to
242 /// pack the splitting of critical edges as much as possible.
243 void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
244 MachineBasicBlock *ToBB,
245 MachineBasicBlock *NewBB) {
246 bool Inserted = NewBBs.insert(NewBB).second;
247 (void)Inserted;
248 assert(Inserted &&(static_cast <bool> (Inserted && "A basic block inserted via edge splitting cannot appear twice"
) ? void (0) : __assert_fail ("Inserted && \"A basic block inserted via edge splitting cannot appear twice\""
, "llvm/include/llvm/CodeGen/MachineDominators.h", 249, __extension__
__PRETTY_FUNCTION__))
249 "A basic block inserted via edge splitting cannot appear twice")(static_cast <bool> (Inserted && "A basic block inserted via edge splitting cannot appear twice"
) ? void (0) : __assert_fail ("Inserted && \"A basic block inserted via edge splitting cannot appear twice\""
, "llvm/include/llvm/CodeGen/MachineDominators.h", 249, __extension__
__PRETTY_FUNCTION__))
;
250 CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
251 }
252};
253
254//===-------------------------------------
255/// DominatorTree GraphTraits specialization so the DominatorTree can be
256/// iterable by generic graph iterators.
257///
258
259template <class Node, class ChildIterator>
260struct MachineDomTreeGraphTraitsBase {
261 using NodeRef = Node *;
262 using ChildIteratorType = ChildIterator;
263
264 static NodeRef getEntryNode(NodeRef N) { return N; }
265 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
266 static ChildIteratorType child_end(NodeRef N) { return N->end(); }
267};
268
269template <class T> struct GraphTraits;
270
271template <>
272struct GraphTraits<MachineDomTreeNode *>
273 : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
274 MachineDomTreeNode::const_iterator> {
275};
276
277template <>
278struct GraphTraits<const MachineDomTreeNode *>
279 : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
280 MachineDomTreeNode::const_iterator> {
281};
282
283template <> struct GraphTraits<MachineDominatorTree*>
284 : public GraphTraits<MachineDomTreeNode *> {
285 static NodeRef getEntryNode(MachineDominatorTree *DT) {
286 return DT->getRootNode();
287 }
288};
289
290} // end namespace llvm
291
292#endif // LLVM_CODEGEN_MACHINEDOMINATORS_H

/build/source/llvm/include/llvm/Support/GenericDomTree.h

1//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file defines a set of templates that efficiently compute a dominator
11/// tree over a generic graph. This is used typically in LLVM for fast
12/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
13/// graph types.
14///
15/// Unlike ADT/* graph algorithms, generic dominator tree has more requirements
16/// on the graph's NodeRef. The NodeRef should be a pointer and,
17/// either NodeRef->getParent() must return the parent node that is also a
18/// pointer or DomTreeNodeTraits needs to be specialized.
19///
20/// FIXME: Maybe GenericDomTree needs a TreeTraits, instead of GraphTraits.
21///
22//===----------------------------------------------------------------------===//
23
24#ifndef LLVM_SUPPORT_GENERICDOMTREE_H
25#define LLVM_SUPPORT_GENERICDOMTREE_H
26
27#include "llvm/ADT/DenseMap.h"
28#include "llvm/ADT/GraphTraits.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SmallPtrSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/Support/CFGDiff.h"
33#include "llvm/Support/CFGUpdate.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cassert>
37#include <cstddef>
38#include <iterator>
39#include <memory>
40#include <type_traits>
41#include <utility>
42
43namespace llvm {
44
45template <typename NodeT, bool IsPostDom>
46class DominatorTreeBase;
47
48namespace DomTreeBuilder {
49template <typename DomTreeT>
50struct SemiNCAInfo;
51} // namespace DomTreeBuilder
52
53/// Base class for the actual dominator tree node.
54template <class NodeT> class DomTreeNodeBase {
55 friend class PostDominatorTree;
56 friend class DominatorTreeBase<NodeT, false>;
57 friend class DominatorTreeBase<NodeT, true>;
58 friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, false>>;
59 friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase<NodeT, true>>;
60
61 NodeT *TheBB;
62 DomTreeNodeBase *IDom;
63 unsigned Level;
64 SmallVector<DomTreeNodeBase *, 4> Children;
65 mutable unsigned DFSNumIn = ~0;
66 mutable unsigned DFSNumOut = ~0;
67
68 public:
69 DomTreeNodeBase(NodeT *BB, DomTreeNodeBase *iDom)
70 : TheBB(BB), IDom(iDom), Level(IDom ? IDom->Level + 1 : 0) {}
71
72 using iterator = typename SmallVector<DomTreeNodeBase *, 4>::iterator;
73 using const_iterator =
74 typename SmallVector<DomTreeNodeBase *, 4>::const_iterator;
75
76 iterator begin() { return Children.begin(); }
77 iterator end() { return Children.end(); }
78 const_iterator begin() const { return Children.begin(); }
79 const_iterator end() const { return Children.end(); }
80
81 DomTreeNodeBase *const &back() const { return Children.back(); }
82 DomTreeNodeBase *&back() { return Children.back(); }
83
84 iterator_range<iterator> children() { return make_range(begin(), end()); }
85 iterator_range<const_iterator> children() const {
86 return make_range(begin(), end());
87 }
88
89 NodeT *getBlock() const { return TheBB; }
90 DomTreeNodeBase *getIDom() const { return IDom; }
91 unsigned getLevel() const { return Level; }
92
93 std::unique_ptr<DomTreeNodeBase> addChild(
94 std::unique_ptr<DomTreeNodeBase> C) {
95 Children.push_back(C.get());
96 return C;
97 }
98
99 bool isLeaf() const { return Children.empty(); }
100 size_t getNumChildren() const { return Children.size(); }
101
102 void clearAllChildren() { Children.clear(); }
103
104 bool compare(const DomTreeNodeBase *Other) const {
105 if (getNumChildren() != Other->getNumChildren())
106 return true;
107
108 if (Level != Other->Level) return true;
109
110 SmallPtrSet<const NodeT *, 4> OtherChildren;
111 for (const DomTreeNodeBase *I : *Other) {
112 const NodeT *Nd = I->getBlock();
113 OtherChildren.insert(Nd);
114 }
115
116 for (const DomTreeNodeBase *I : *this) {
117 const NodeT *N = I->getBlock();
118 if (OtherChildren.count(N) == 0)
119 return true;
120 }
121 return false;
122 }
123
124 void setIDom(DomTreeNodeBase *NewIDom) {
125 assert(IDom && "No immediate dominator?")(static_cast <bool> (IDom && "No immediate dominator?"
) ? void (0) : __assert_fail ("IDom && \"No immediate dominator?\""
, "llvm/include/llvm/Support/GenericDomTree.h", 125, __extension__
__PRETTY_FUNCTION__))
;
126 if (IDom == NewIDom) return;
127
128 auto I = find(IDom->Children, this);
129 assert(I != IDom->Children.end() &&(static_cast <bool> (I != IDom->Children.end() &&
"Not in immediate dominator children set!") ? void (0) : __assert_fail
("I != IDom->Children.end() && \"Not in immediate dominator children set!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 130, __extension__
__PRETTY_FUNCTION__))
130 "Not in immediate dominator children set!")(static_cast <bool> (I != IDom->Children.end() &&
"Not in immediate dominator children set!") ? void (0) : __assert_fail
("I != IDom->Children.end() && \"Not in immediate dominator children set!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 130, __extension__
__PRETTY_FUNCTION__))
;
131 // I am no longer your child...
132 IDom->Children.erase(I);
133
134 // Switch to new dominator
135 IDom = NewIDom;
136 IDom->Children.push_back(this);
137
138 UpdateLevel();
139 }
140
141 /// getDFSNumIn/getDFSNumOut - These return the DFS visitation order for nodes
142 /// in the dominator tree. They are only guaranteed valid if
143 /// updateDFSNumbers() has been called.
144 unsigned getDFSNumIn() const { return DFSNumIn; }
145 unsigned getDFSNumOut() const { return DFSNumOut; }
146
147private:
148 // Return true if this node is dominated by other. Use this only if DFS info
149 // is valid.
150 bool DominatedBy(const DomTreeNodeBase *other) const {
151 return this->DFSNumIn >= other->DFSNumIn &&
152 this->DFSNumOut <= other->DFSNumOut;
153 }
154
155 void UpdateLevel() {
156 assert(IDom)(static_cast <bool> (IDom) ? void (0) : __assert_fail (
"IDom", "llvm/include/llvm/Support/GenericDomTree.h", 156, __extension__
__PRETTY_FUNCTION__))
;
157 if (Level == IDom->Level + 1) return;
158
159 SmallVector<DomTreeNodeBase *, 64> WorkStack = {this};
160
161 while (!WorkStack.empty()) {
162 DomTreeNodeBase *Current = WorkStack.pop_back_val();
163 Current->Level = Current->IDom->Level + 1;
164
165 for (DomTreeNodeBase *C : *Current) {
166 assert(C->IDom)(static_cast <bool> (C->IDom) ? void (0) : __assert_fail
("C->IDom", "llvm/include/llvm/Support/GenericDomTree.h",
166, __extension__ __PRETTY_FUNCTION__))
;
167 if (C->Level != C->IDom->Level + 1) WorkStack.push_back(C);
168 }
169 }
170 }
171};
172
173template <class NodeT>
174raw_ostream &operator<<(raw_ostream &O, const DomTreeNodeBase<NodeT> *Node) {
175 if (Node->getBlock())
176 Node->getBlock()->printAsOperand(O, false);
177 else
178 O << " <<exit node>>";
179
180 O << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "} ["
181 << Node->getLevel() << "]\n";
182
183 return O;
184}
185
186template <class NodeT>
187void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &O,
188 unsigned Lev) {
189 O.indent(2 * Lev) << "[" << Lev << "] " << N;
190 for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
191 E = N->end();
192 I != E; ++I)
193 PrintDomTree<NodeT>(*I, O, Lev + 1);
194}
195
196namespace DomTreeBuilder {
197// The routines below are provided in a separate header but referenced here.
198template <typename DomTreeT>
199void Calculate(DomTreeT &DT);
200
201template <typename DomTreeT>
202void CalculateWithUpdates(DomTreeT &DT,
203 ArrayRef<typename DomTreeT::UpdateType> Updates);
204
205template <typename DomTreeT>
206void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
207 typename DomTreeT::NodePtr To);
208
209template <typename DomTreeT>
210void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
211 typename DomTreeT::NodePtr To);
212
213template <typename DomTreeT>
214void ApplyUpdates(DomTreeT &DT,
215 GraphDiff<typename DomTreeT::NodePtr,
216 DomTreeT::IsPostDominator> &PreViewCFG,
217 GraphDiff<typename DomTreeT::NodePtr,
218 DomTreeT::IsPostDominator> *PostViewCFG);
219
220template <typename DomTreeT>
221bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL);
222} // namespace DomTreeBuilder
223
224/// Default DomTreeNode traits for NodeT. The default implementation assume a
225/// Function-like NodeT. Can be specialized to support different node types.
226template <typename NodeT> struct DomTreeNodeTraits {
227 using NodeType = NodeT;
228 using NodePtr = NodeT *;
229 using ParentPtr = decltype(std::declval<NodePtr>()->getParent());
230 static_assert(std::is_pointer<ParentPtr>::value,
231 "Currently NodeT's parent must be a pointer type");
232 using ParentType = std::remove_pointer_t<ParentPtr>;
233
234 static NodeT *getEntryNode(ParentPtr Parent) { return &Parent->front(); }
235 static ParentPtr getParent(NodePtr BB) { return BB->getParent(); }
236};
237
238/// Core dominator tree base class.
239///
240/// This class is a generic template over graph nodes. It is instantiated for
241/// various graphs in the LLVM IR or in the code generator.
242template <typename NodeT, bool IsPostDom>
243class DominatorTreeBase {
244 public:
245 static_assert(std::is_pointer<typename GraphTraits<NodeT *>::NodeRef>::value,
246 "Currently DominatorTreeBase supports only pointer nodes");
247 using NodeTrait = DomTreeNodeTraits<NodeT>;
248 using NodeType = typename NodeTrait::NodeType;
249 using NodePtr = typename NodeTrait::NodePtr;
250 using ParentPtr = typename NodeTrait::ParentPtr;
251 static_assert(std::is_pointer<ParentPtr>::value,
252 "Currently NodeT's parent must be a pointer type");
253 using ParentType = std::remove_pointer_t<ParentPtr>;
254 static constexpr bool IsPostDominator = IsPostDom;
255
256 using UpdateType = cfg::Update<NodePtr>;
257 using UpdateKind = cfg::UpdateKind;
258 static constexpr UpdateKind Insert = UpdateKind::Insert;
259 static constexpr UpdateKind Delete = UpdateKind::Delete;
260
261 enum class VerificationLevel { Fast, Basic, Full };
262
263protected:
264 // Dominators always have a single root, postdominators can have more.
265 SmallVector<NodeT *, IsPostDom ? 4 : 1> Roots;
266
267 using DomTreeNodeMapType =
268 DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>;
269 DomTreeNodeMapType DomTreeNodes;
270 DomTreeNodeBase<NodeT> *RootNode = nullptr;
271 ParentPtr Parent = nullptr;
272
273 mutable bool DFSInfoValid = false;
274 mutable unsigned int SlowQueries = 0;
275
276 friend struct DomTreeBuilder::SemiNCAInfo<DominatorTreeBase>;
277
278 public:
279 DominatorTreeBase() = default;
280
281 DominatorTreeBase(DominatorTreeBase &&Arg)
282 : Roots(std::move(Arg.Roots)),
283 DomTreeNodes(std::move(Arg.DomTreeNodes)),
284 RootNode(Arg.RootNode),
285 Parent(Arg.Parent),
286 DFSInfoValid(Arg.DFSInfoValid),
287 SlowQueries(Arg.SlowQueries) {
288 Arg.wipe();
289 }
290
291 DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
292 Roots = std::move(RHS.Roots);
293 DomTreeNodes = std::move(RHS.DomTreeNodes);
294 RootNode = RHS.RootNode;
295 Parent = RHS.Parent;
296 DFSInfoValid = RHS.DFSInfoValid;
297 SlowQueries = RHS.SlowQueries;
298 RHS.wipe();
299 return *this;
300 }
301
302 DominatorTreeBase(const DominatorTreeBase &) = delete;
303 DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
304
305 /// Iteration over roots.
306 ///
307 /// This may include multiple blocks if we are computing post dominators.
308 /// For forward dominators, this will always be a single block (the entry
309 /// block).
310 using root_iterator = typename SmallVectorImpl<NodeT *>::iterator;
311 using const_root_iterator = typename SmallVectorImpl<NodeT *>::const_iterator;
312
313 root_iterator root_begin() { return Roots.begin(); }
314 const_root_iterator root_begin() const { return Roots.begin(); }
315 root_iterator root_end() { return Roots.end(); }
316 const_root_iterator root_end() const { return Roots.end(); }
317
318 size_t root_size() const { return Roots.size(); }
319
320 iterator_range<root_iterator> roots() {
321 return make_range(root_begin(), root_end());
322 }
323 iterator_range<const_root_iterator> roots() const {
324 return make_range(root_begin(), root_end());
325 }
326
327 /// isPostDominator - Returns true if analysis based of postdoms
328 ///
329 bool isPostDominator() const { return IsPostDominator; }
330
331 /// compare - Return false if the other dominator tree base matches this
332 /// dominator tree base. Otherwise return true.
333 bool compare(const DominatorTreeBase &Other) const {
334 if (Parent != Other.Parent) return true;
335
336 if (Roots.size() != Other.Roots.size())
337 return true;
338
339 if (!std::is_permutation(Roots.begin(), Roots.end(), Other.Roots.begin()))
340 return true;
341
342 const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
343 if (DomTreeNodes.size() != OtherDomTreeNodes.size())
344 return true;
345
346 for (const auto &DomTreeNode : DomTreeNodes) {
347 NodeT *BB = DomTreeNode.first;
348 typename DomTreeNodeMapType::const_iterator OI =
349 OtherDomTreeNodes.find(BB);
350 if (OI == OtherDomTreeNodes.end())
351 return true;
352
353 DomTreeNodeBase<NodeT> &MyNd = *DomTreeNode.second;
354 DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
355
356 if (MyNd.compare(&OtherNd))
357 return true;
358 }
359
360 return false;
361 }
362
363 /// getNode - return the (Post)DominatorTree node for the specified basic
364 /// block. This is the same as using operator[] on this class. The result
365 /// may (but is not required to) be null for a forward (backwards)
366 /// statically unreachable block.
367 DomTreeNodeBase<NodeT> *getNode(const NodeT *BB) const {
368 auto I = DomTreeNodes.find(BB);
369 if (I != DomTreeNodes.end())
11
Taking true branch
370 return I->second.get();
12
Returning pointer
371 return nullptr;
372 }
373
374 /// See getNode.
375 DomTreeNodeBase<NodeT> *operator[](const NodeT *BB) const {
376 return getNode(BB);
377 }
378
379 /// getRootNode - This returns the entry node for the CFG of the function. If
380 /// this tree represents the post-dominance relations for a function, however,
381 /// this root may be a node with the block == NULL. This is the case when
382 /// there are multiple exit nodes from a particular function. Consumers of
383 /// post-dominance information must be capable of dealing with this
384 /// possibility.
385 ///
386 DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
387 const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
388
389 /// Get all nodes dominated by R, including R itself.
390 void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
391 Result.clear();
392 const DomTreeNodeBase<NodeT> *RN = getNode(R);
393 if (!RN)
394 return; // If R is unreachable, it will not be present in the DOM tree.
395 SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
396 WL.push_back(RN);
397
398 while (!WL.empty()) {
399 const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
400 Result.push_back(N->getBlock());
401 WL.append(N->begin(), N->end());
402 }
403 }
404
405 /// properlyDominates - Returns true iff A dominates B and A != B.
406 /// Note that this is not a constant time operation!
407 ///
408 bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
409 const DomTreeNodeBase<NodeT> *B) const {
410 if (!A || !B)
411 return false;
412 if (A == B)
413 return false;
414 return dominates(A, B);
415 }
416
417 bool properlyDominates(const NodeT *A, const NodeT *B) const;
418
419 /// isReachableFromEntry - Return true if A is dominated by the entry
420 /// block of the function containing it.
421 bool isReachableFromEntry(const NodeT *A) const {
422 assert(!this->isPostDominator() &&(static_cast <bool> (!this->isPostDominator() &&
"This is not implemented for post dominators") ? void (0) : __assert_fail
("!this->isPostDominator() && \"This is not implemented for post dominators\""
, "llvm/include/llvm/Support/GenericDomTree.h", 423, __extension__
__PRETTY_FUNCTION__))
423 "This is not implemented for post dominators")(static_cast <bool> (!this->isPostDominator() &&
"This is not implemented for post dominators") ? void (0) : __assert_fail
("!this->isPostDominator() && \"This is not implemented for post dominators\""
, "llvm/include/llvm/Support/GenericDomTree.h", 423, __extension__
__PRETTY_FUNCTION__))
;
424 return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
425 }
426
427 bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
428
429 /// dominates - Returns true iff A dominates B. Note that this is not a
430 /// constant time operation!
431 ///
432 bool dominates(const DomTreeNodeBase<NodeT> *A,
433 const DomTreeNodeBase<NodeT> *B) const {
434 // A node trivially dominates itself.
435 if (B == A)
436 return true;
437
438 // An unreachable node is dominated by anything.
439 if (!isReachableFromEntry(B))
440 return true;
441
442 // And dominates nothing.
443 if (!isReachableFromEntry(A))
444 return false;
445
446 if (B->getIDom() == A) return true;
447
448 if (A->getIDom() == B) return false;
449
450 // A can only dominate B if it is higher in the tree.
451 if (A->getLevel() >= B->getLevel()) return false;
452
453 // Compare the result of the tree walk and the dfs numbers, if expensive
454 // checks are enabled.
455#ifdef EXPENSIVE_CHECKS
456 assert((!DFSInfoValid ||(static_cast <bool> ((!DFSInfoValid || (dominatedBySlowTreeWalk
(A, B) == B->DominatedBy(A))) && "Tree walk disagrees with dfs numbers!"
) ? void (0) : __assert_fail ("(!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && \"Tree walk disagrees with dfs numbers!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 458, __extension__
__PRETTY_FUNCTION__))
457 (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&(static_cast <bool> ((!DFSInfoValid || (dominatedBySlowTreeWalk
(A, B) == B->DominatedBy(A))) && "Tree walk disagrees with dfs numbers!"
) ? void (0) : __assert_fail ("(!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && \"Tree walk disagrees with dfs numbers!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 458, __extension__
__PRETTY_FUNCTION__))
458 "Tree walk disagrees with dfs numbers!")(static_cast <bool> ((!DFSInfoValid || (dominatedBySlowTreeWalk
(A, B) == B->DominatedBy(A))) && "Tree walk disagrees with dfs numbers!"
) ? void (0) : __assert_fail ("(!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && \"Tree walk disagrees with dfs numbers!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 458, __extension__
__PRETTY_FUNCTION__))
;
459#endif
460
461 if (DFSInfoValid)
462 return B->DominatedBy(A);
463
464 // If we end up with too many slow queries, just update the
465 // DFS numbers on the theory that we are going to keep querying.
466 SlowQueries++;
467 if (SlowQueries > 32) {
468 updateDFSNumbers();
469 return B->DominatedBy(A);
470 }
471
472 return dominatedBySlowTreeWalk(A, B);
473 }
474
475 bool dominates(const NodeT *A, const NodeT *B) const;
476
477 NodeT *getRoot() const {
478 assert(this->Roots.size() == 1 && "Should always have entry node!")(static_cast <bool> (this->Roots.size() == 1 &&
"Should always have entry node!") ? void (0) : __assert_fail
("this->Roots.size() == 1 && \"Should always have entry node!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 478, __extension__
__PRETTY_FUNCTION__))
;
479 return this->Roots[0];
480 }
481
482 /// Find nearest common dominator basic block for basic block A and B. A and B
483 /// must have tree nodes.
484 NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) const {
485 assert(A && B && "Pointers are not valid")(static_cast <bool> (A && B && "Pointers are not valid"
) ? void (0) : __assert_fail ("A && B && \"Pointers are not valid\""
, "llvm/include/llvm/Support/GenericDomTree.h", 485, __extension__
__PRETTY_FUNCTION__))
;
486 assert(NodeTrait::getParent(A) == NodeTrait::getParent(B) &&(static_cast <bool> (NodeTrait::getParent(A) == NodeTrait
::getParent(B) && "Two blocks are not in same function"
) ? void (0) : __assert_fail ("NodeTrait::getParent(A) == NodeTrait::getParent(B) && \"Two blocks are not in same function\""
, "llvm/include/llvm/Support/GenericDomTree.h", 487, __extension__
__PRETTY_FUNCTION__))
487 "Two blocks are not in same function")(static_cast <bool> (NodeTrait::getParent(A) == NodeTrait
::getParent(B) && "Two blocks are not in same function"
) ? void (0) : __assert_fail ("NodeTrait::getParent(A) == NodeTrait::getParent(B) && \"Two blocks are not in same function\""
, "llvm/include/llvm/Support/GenericDomTree.h", 487, __extension__
__PRETTY_FUNCTION__))
;
488
489 // If either A or B is a entry block then it is nearest common dominator
490 // (for forward-dominators).
491 if (!isPostDominator()) {
492 NodeT &Entry =
493 *DomTreeNodeTraits<NodeT>::getEntryNode(NodeTrait::getParent(A));
494 if (A == &Entry || B == &Entry)
495 return &Entry;
496 }
497
498 DomTreeNodeBase<NodeT> *NodeA = getNode(A);
499 DomTreeNodeBase<NodeT> *NodeB = getNode(B);
500 assert(NodeA && "A must be in the tree")(static_cast <bool> (NodeA && "A must be in the tree"
) ? void (0) : __assert_fail ("NodeA && \"A must be in the tree\""
, "llvm/include/llvm/Support/GenericDomTree.h", 500, __extension__
__PRETTY_FUNCTION__))
;
501 assert(NodeB && "B must be in the tree")(static_cast <bool> (NodeB && "B must be in the tree"
) ? void (0) : __assert_fail ("NodeB && \"B must be in the tree\""
, "llvm/include/llvm/Support/GenericDomTree.h", 501, __extension__
__PRETTY_FUNCTION__))
;
502
503 // Use level information to go up the tree until the levels match. Then
504 // continue going up til we arrive at the same node.
505 while (NodeA != NodeB) {
506 if (NodeA->getLevel() < NodeB->getLevel()) std::swap(NodeA, NodeB);
507
508 NodeA = NodeA->IDom;
509 }
510
511 return NodeA->getBlock();
512 }
513
514 const NodeT *findNearestCommonDominator(const NodeT *A,
515 const NodeT *B) const {
516 // Cast away the const qualifiers here. This is ok since
517 // const is re-introduced on the return type.
518 return findNearestCommonDominator(const_cast<NodeT *>(A),
519 const_cast<NodeT *>(B));
520 }
521
522 bool isVirtualRoot(const DomTreeNodeBase<NodeT> *A) const {
523 return isPostDominator() && !A->getBlock();
524 }
525
526 //===--------------------------------------------------------------------===//
527 // API to update (Post)DominatorTree information based on modifications to
528 // the CFG...
529
530 /// Inform the dominator tree about a sequence of CFG edge insertions and
531 /// deletions and perform a batch update on the tree.
532 ///
533 /// This function should be used when there were multiple CFG updates after
534 /// the last dominator tree update. It takes care of performing the updates
535 /// in sync with the CFG and optimizes away the redundant operations that
536 /// cancel each other.
537 /// The functions expects the sequence of updates to be balanced. Eg.:
538 /// - {{Insert, A, B}, {Delete, A, B}, {Insert, A, B}} is fine, because
539 /// logically it results in a single insertions.
540 /// - {{Insert, A, B}, {Insert, A, B}} is invalid, because it doesn't make
541 /// sense to insert the same edge twice.
542 ///
543 /// What's more, the functions assumes that it's safe to ask every node in the
544 /// CFG about its children and inverse children. This implies that deletions
545 /// of CFG edges must not delete the CFG nodes before calling this function.
546 ///
547 /// The applyUpdates function can reorder the updates and remove redundant
548 /// ones internally (as long as it is done in a deterministic fashion). The
549 /// batch updater is also able to detect sequences of zero and exactly one
550 /// update -- it's optimized to do less work in these cases.
551 ///
552 /// Note that for postdominators it automatically takes care of applying
553 /// updates on reverse edges internally (so there's no need to swap the
554 /// From and To pointers when constructing DominatorTree::UpdateType).
555 /// The type of updates is the same for DomTreeBase<T> and PostDomTreeBase<T>
556 /// with the same template parameter T.
557 ///
558 /// \param Updates An ordered sequence of updates to perform. The current CFG
559 /// and the reverse of these updates provides the pre-view of the CFG.
560 ///
561 void applyUpdates(ArrayRef<UpdateType> Updates) {
562 GraphDiff<NodePtr, IsPostDominator> PreViewCFG(
563 Updates, /*ReverseApplyUpdates=*/true);
564 DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, nullptr);
565 }
566
567 /// \param Updates An ordered sequence of updates to perform. The current CFG
568 /// and the reverse of these updates provides the pre-view of the CFG.
569 /// \param PostViewUpdates An ordered sequence of update to perform in order
570 /// to obtain a post-view of the CFG. The DT will be updated assuming the
571 /// obtained PostViewCFG is the desired end state.
572 void applyUpdates(ArrayRef<UpdateType> Updates,
573 ArrayRef<UpdateType> PostViewUpdates) {
574 if (Updates.empty()) {
575 GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates);
576 DomTreeBuilder::ApplyUpdates(*this, PostViewCFG, &PostViewCFG);
577 } else {
578 // PreViewCFG needs to merge Updates and PostViewCFG. The updates in
579 // Updates need to be reversed, and match the direction in PostViewCFG.
580 // The PostViewCFG is created with updates reversed (equivalent to changes
581 // made to the CFG), so the PreViewCFG needs all the updates reverse
582 // applied.
583 SmallVector<UpdateType> AllUpdates(Updates.begin(), Updates.end());
584 append_range(AllUpdates, PostViewUpdates);
585 GraphDiff<NodePtr, IsPostDom> PreViewCFG(AllUpdates,
586 /*ReverseApplyUpdates=*/true);
587 GraphDiff<NodePtr, IsPostDom> PostViewCFG(PostViewUpdates);
588 DomTreeBuilder::ApplyUpdates(*this, PreViewCFG, &PostViewCFG);
589 }
590 }
591
592 /// Inform the dominator tree about a CFG edge insertion and update the tree.
593 ///
594 /// This function has to be called just before or just after making the update
595 /// on the actual CFG. There cannot be any other updates that the dominator
596 /// tree doesn't know about.
597 ///
598 /// Note that for postdominators it automatically takes care of inserting
599 /// a reverse edge internally (so there's no need to swap the parameters).
600 ///
601 void insertEdge(NodeT *From, NodeT *To) {
602 assert(From)(static_cast <bool> (From) ? void (0) : __assert_fail (
"From", "llvm/include/llvm/Support/GenericDomTree.h", 602, __extension__
__PRETTY_FUNCTION__))
;
603 assert(To)(static_cast <bool> (To) ? void (0) : __assert_fail ("To"
, "llvm/include/llvm/Support/GenericDomTree.h", 603, __extension__
__PRETTY_FUNCTION__))
;
604 assert(NodeTrait::getParent(From) == Parent)(static_cast <bool> (NodeTrait::getParent(From) == Parent
) ? void (0) : __assert_fail ("NodeTrait::getParent(From) == Parent"
, "llvm/include/llvm/Support/GenericDomTree.h", 604, __extension__
__PRETTY_FUNCTION__))
;
605 assert(NodeTrait::getParent(To) == Parent)(static_cast <bool> (NodeTrait::getParent(To) == Parent
) ? void (0) : __assert_fail ("NodeTrait::getParent(To) == Parent"
, "llvm/include/llvm/Support/GenericDomTree.h", 605, __extension__
__PRETTY_FUNCTION__))
;
606 DomTreeBuilder::InsertEdge(*this, From, To);
607 }
608
609 /// Inform the dominator tree about a CFG edge deletion and update the tree.
610 ///
611 /// This function has to be called just after making the update on the actual
612 /// CFG. An internal functions checks if the edge doesn't exist in the CFG in
613 /// DEBUG mode. There cannot be any other updates that the
614 /// dominator tree doesn't know about.
615 ///
616 /// Note that for postdominators it automatically takes care of deleting
617 /// a reverse edge internally (so there's no need to swap the parameters).
618 ///
619 void deleteEdge(NodeT *From, NodeT *To) {
620 assert(From)(static_cast <bool> (From) ? void (0) : __assert_fail (
"From", "llvm/include/llvm/Support/GenericDomTree.h", 620, __extension__
__PRETTY_FUNCTION__))
;
621 assert(To)(static_cast <bool> (To) ? void (0) : __assert_fail ("To"
, "llvm/include/llvm/Support/GenericDomTree.h", 621, __extension__
__PRETTY_FUNCTION__))
;
622 assert(NodeTrait::getParent(From) == Parent)(static_cast <bool> (NodeTrait::getParent(From) == Parent
) ? void (0) : __assert_fail ("NodeTrait::getParent(From) == Parent"
, "llvm/include/llvm/Support/GenericDomTree.h", 622, __extension__
__PRETTY_FUNCTION__))
;
623 assert(NodeTrait::getParent(To) == Parent)(static_cast <bool> (NodeTrait::getParent(To) == Parent
) ? void (0) : __assert_fail ("NodeTrait::getParent(To) == Parent"
, "llvm/include/llvm/Support/GenericDomTree.h", 623, __extension__
__PRETTY_FUNCTION__))
;
624 DomTreeBuilder::DeleteEdge(*this, From, To);
625 }
626
627 /// Add a new node to the dominator tree information.
628 ///
629 /// This creates a new node as a child of DomBB dominator node, linking it
630 /// into the children list of the immediate dominator.
631 ///
632 /// \param BB New node in CFG.
633 /// \param DomBB CFG node that is dominator for BB.
634 /// \returns New dominator tree node that represents new CFG node.
635 ///
636 DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
637 assert(getNode(BB) == nullptr && "Block already in dominator tree!")(static_cast <bool> (getNode(BB) == nullptr && "Block already in dominator tree!"
) ? void (0) : __assert_fail ("getNode(BB) == nullptr && \"Block already in dominator tree!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 637, __extension__
__PRETTY_FUNCTION__))
;
638 DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
639 assert(IDomNode && "Not immediate dominator specified for block!")(static_cast <bool> (IDomNode && "Not immediate dominator specified for block!"
) ? void (0) : __assert_fail ("IDomNode && \"Not immediate dominator specified for block!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 639, __extension__
__PRETTY_FUNCTION__))
;
640 DFSInfoValid = false;
641 return createChild(BB, IDomNode);
642 }
643
644 /// Add a new node to the forward dominator tree and make it a new root.
645 ///
646 /// \param BB New node in CFG.
647 /// \returns New dominator tree node that represents new CFG node.
648 ///
649 DomTreeNodeBase<NodeT> *setNewRoot(NodeT *BB) {
650 assert(getNode(BB) == nullptr && "Block already in dominator tree!")(static_cast <bool> (getNode(BB) == nullptr && "Block already in dominator tree!"
) ? void (0) : __assert_fail ("getNode(BB) == nullptr && \"Block already in dominator tree!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 650, __extension__
__PRETTY_FUNCTION__))
;
651 assert(!this->isPostDominator() &&(static_cast <bool> (!this->isPostDominator() &&
"Cannot change root of post-dominator tree") ? void (0) : __assert_fail
("!this->isPostDominator() && \"Cannot change root of post-dominator tree\""
, "llvm/include/llvm/Support/GenericDomTree.h", 652, __extension__
__PRETTY_FUNCTION__))
652 "Cannot change root of post-dominator tree")(static_cast <bool> (!this->isPostDominator() &&
"Cannot change root of post-dominator tree") ? void (0) : __assert_fail
("!this->isPostDominator() && \"Cannot change root of post-dominator tree\""
, "llvm/include/llvm/Support/GenericDomTree.h", 652, __extension__
__PRETTY_FUNCTION__))
;
653 DFSInfoValid = false;
654 DomTreeNodeBase<NodeT> *NewNode = createNode(BB);
655 if (Roots.empty()) {
656 addRoot(BB);
657 } else {
658 assert(Roots.size() == 1)(static_cast <bool> (Roots.size() == 1) ? void (0) : __assert_fail
("Roots.size() == 1", "llvm/include/llvm/Support/GenericDomTree.h"
, 658, __extension__ __PRETTY_FUNCTION__))
;
659 NodeT *OldRoot = Roots.front();
660 auto &OldNode = DomTreeNodes[OldRoot];
661 OldNode = NewNode->addChild(std::move(DomTreeNodes[OldRoot]));
662 OldNode->IDom = NewNode;
663 OldNode->UpdateLevel();
664 Roots[0] = BB;
665 }
666 return RootNode = NewNode;
667 }
668
669 /// changeImmediateDominator - This method is used to update the dominator
670 /// tree information when a node's immediate dominator changes.
671 ///
672 void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
673 DomTreeNodeBase<NodeT> *NewIDom) {
674 assert(N && NewIDom && "Cannot change null node pointers!")(static_cast <bool> (N && NewIDom && "Cannot change null node pointers!"
) ? void (0) : __assert_fail ("N && NewIDom && \"Cannot change null node pointers!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 674, __extension__
__PRETTY_FUNCTION__))
;
675 DFSInfoValid = false;
676 N->setIDom(NewIDom);
677 }
678
679 void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
680 changeImmediateDominator(getNode(BB), getNode(NewBB));
681 }
682
683 /// eraseNode - Removes a node from the dominator tree. Block must not
684 /// dominate any other blocks. Removes node from its immediate dominator's
685 /// children list. Deletes dominator node associated with basic block BB.
686 void eraseNode(NodeT *BB) {
687 DomTreeNodeBase<NodeT> *Node = getNode(BB);
688 assert(Node && "Removing node that isn't in dominator tree.")(static_cast <bool> (Node && "Removing node that isn't in dominator tree."
) ? void (0) : __assert_fail ("Node && \"Removing node that isn't in dominator tree.\""
, "llvm/include/llvm/Support/GenericDomTree.h", 688, __extension__
__PRETTY_FUNCTION__))
;
689 assert(Node->isLeaf() && "Node is not a leaf node.")(static_cast <bool> (Node->isLeaf() && "Node is not a leaf node."
) ? void (0) : __assert_fail ("Node->isLeaf() && \"Node is not a leaf node.\""
, "llvm/include/llvm/Support/GenericDomTree.h", 689, __extension__
__PRETTY_FUNCTION__))
;
690
691 DFSInfoValid = false;
692
693 // Remove node from immediate dominator's children list.
694 DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
695 if (IDom) {
696 const auto I = find(IDom->Children, Node);
697 assert(I != IDom->Children.end() &&(static_cast <bool> (I != IDom->Children.end() &&
"Not in immediate dominator children set!") ? void (0) : __assert_fail
("I != IDom->Children.end() && \"Not in immediate dominator children set!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 698, __extension__
__PRETTY_FUNCTION__))
698 "Not in immediate dominator children set!")(static_cast <bool> (I != IDom->Children.end() &&
"Not in immediate dominator children set!") ? void (0) : __assert_fail
("I != IDom->Children.end() && \"Not in immediate dominator children set!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 698, __extension__
__PRETTY_FUNCTION__))
;
699 // I am no longer your child...
700 IDom->Children.erase(I);
701 }
702
703 DomTreeNodes.erase(BB);
704
705 if (!IsPostDom) return;
706
707 // Remember to update PostDominatorTree roots.
708 auto RIt = llvm::find(Roots, BB);
709 if (RIt != Roots.end()) {
710 std::swap(*RIt, Roots.back());
711 Roots.pop_back();
712 }
713 }
714
715 /// splitBlock - BB is split and now it has one successor. Update dominator
716 /// tree to reflect this change.
717 void splitBlock(NodeT *NewBB) {
718 if (IsPostDominator)
719 Split<Inverse<NodeT *>>(NewBB);
720 else
721 Split<NodeT *>(NewBB);
722 }
723
724 /// print - Convert to human readable form
725 ///
726 void print(raw_ostream &O) const {
727 O << "=============================--------------------------------\n";
728 if (IsPostDominator)
729 O << "Inorder PostDominator Tree: ";
730 else
731 O << "Inorder Dominator Tree: ";
732 if (!DFSInfoValid)
733 O << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
734 O << "\n";
735
736 // The postdom tree can have a null root if there are no returns.
737 if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), O, 1);
738 O << "Roots: ";
739 for (const NodePtr Block : Roots) {
740 Block->printAsOperand(O, false);
741 O << " ";
742 }
743 O << "\n";
744 }
745
746public:
747 /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
748 /// dominator tree in dfs order.
749 void updateDFSNumbers() const {
750 if (DFSInfoValid) {
751 SlowQueries = 0;
752 return;
753 }
754
755 SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
756 typename DomTreeNodeBase<NodeT>::const_iterator>,
757 32> WorkStack;
758
759 const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
760 assert((!Parent || ThisRoot) && "Empty constructed DomTree")(static_cast <bool> ((!Parent || ThisRoot) && "Empty constructed DomTree"
) ? void (0) : __assert_fail ("(!Parent || ThisRoot) && \"Empty constructed DomTree\""
, "llvm/include/llvm/Support/GenericDomTree.h", 760, __extension__
__PRETTY_FUNCTION__))
;
761 if (!ThisRoot)
762 return;
763
764 // Both dominators and postdominators have a single root node. In the case
765 // case of PostDominatorTree, this node is a virtual root.
766 WorkStack.push_back({ThisRoot, ThisRoot->begin()});
767
768 unsigned DFSNum = 0;
769 ThisRoot->DFSNumIn = DFSNum++;
770
771 while (!WorkStack.empty()) {
772 const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
773 const auto ChildIt = WorkStack.back().second;
774
775 // If we visited all of the children of this node, "recurse" back up the
776 // stack setting the DFOutNum.
777 if (ChildIt == Node->end()) {
778 Node->DFSNumOut = DFSNum++;
779 WorkStack.pop_back();
780 } else {
781 // Otherwise, recursively visit this child.
782 const DomTreeNodeBase<NodeT> *Child = *ChildIt;
783 ++WorkStack.back().second;
784
785 WorkStack.push_back({Child, Child->begin()});
786 Child->DFSNumIn = DFSNum++;
787 }
788 }
789
790 SlowQueries = 0;
791 DFSInfoValid = true;
792 }
793
794 /// recalculate - compute a dominator tree for the given function
795 void recalculate(ParentType &Func) {
796 Parent = &Func;
797 DomTreeBuilder::Calculate(*this);
798 }
799
800 void recalculate(ParentType &Func, ArrayRef<UpdateType> Updates) {
801 Parent = &Func;
802 DomTreeBuilder::CalculateWithUpdates(*this, Updates);
803 }
804
805 /// verify - checks if the tree is correct. There are 3 level of verification:
806 /// - Full -- verifies if the tree is correct by making sure all the
807 /// properties (including the parent and the sibling property)
808 /// hold.
809 /// Takes O(N^3) time.
810 ///
811 /// - Basic -- checks if the tree is correct, but compares it to a freshly
812 /// constructed tree instead of checking the sibling property.
813 /// Takes O(N^2) time.
814 ///
815 /// - Fast -- checks basic tree structure and compares it with a freshly
816 /// constructed tree.
817 /// Takes O(N^2) time worst case, but is faster in practise (same
818 /// as tree construction).
819 bool verify(VerificationLevel VL = VerificationLevel::Full) const {
820 return DomTreeBuilder::Verify(*this, VL);
821 }
822
823 void reset() {
824 DomTreeNodes.clear();
825 Roots.clear();
826 RootNode = nullptr;
827 Parent = nullptr;
828 DFSInfoValid = false;
829 SlowQueries = 0;
830 }
831
832protected:
833 void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
834
835 DomTreeNodeBase<NodeT> *createChild(NodeT *BB, DomTreeNodeBase<NodeT> *IDom) {
836 return (DomTreeNodes[BB] = IDom->addChild(
837 std::make_unique<DomTreeNodeBase<NodeT>>(BB, IDom)))
838 .get();
839 }
840
841 DomTreeNodeBase<NodeT> *createNode(NodeT *BB) {
842 return (DomTreeNodes[BB] =
843 std::make_unique<DomTreeNodeBase<NodeT>>(BB, nullptr))
844 .get();
845 }
846
847 // NewBB is split and now it has one successor. Update dominator tree to
848 // reflect this change.
849 template <class N>
850 void Split(typename GraphTraits<N>::NodeRef NewBB) {
851 using GraphT = GraphTraits<N>;
852 using NodeRef = typename GraphT::NodeRef;
853 assert(std::distance(GraphT::child_begin(NewBB),(static_cast <bool> (std::distance(GraphT::child_begin(
NewBB), GraphT::child_end(NewBB)) == 1 && "NewBB should have a single successor!"
) ? void (0) : __assert_fail ("std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 && \"NewBB should have a single successor!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 855, __extension__
__PRETTY_FUNCTION__))
854 GraphT::child_end(NewBB)) == 1 &&(static_cast <bool> (std::distance(GraphT::child_begin(
NewBB), GraphT::child_end(NewBB)) == 1 && "NewBB should have a single successor!"
) ? void (0) : __assert_fail ("std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 && \"NewBB should have a single successor!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 855, __extension__
__PRETTY_FUNCTION__))
855 "NewBB should have a single successor!")(static_cast <bool> (std::distance(GraphT::child_begin(
NewBB), GraphT::child_end(NewBB)) == 1 && "NewBB should have a single successor!"
) ? void (0) : __assert_fail ("std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 && \"NewBB should have a single successor!\""
, "llvm/include/llvm/Support/GenericDomTree.h", 855, __extension__
__PRETTY_FUNCTION__))
;
856 NodeRef NewBBSucc = *GraphT::child_begin(NewBB);
857
858 SmallVector<NodeRef, 4> PredBlocks(children<Inverse<N>>(NewBB));
859
860 assert(!PredBlocks.empty() && "No predblocks?")(static_cast <bool> (!PredBlocks.empty() && "No predblocks?"
) ? void (0) : __assert_fail ("!PredBlocks.empty() && \"No predblocks?\""
, "llvm/include/llvm/Support/GenericDomTree.h", 860, __extension__
__PRETTY_FUNCTION__))
;
861
862 bool NewBBDominatesNewBBSucc = true;
863 for (auto *Pred : children<Inverse<N>>(NewBBSucc)) {
864 if (Pred != NewBB && !dominates(NewBBSucc, Pred) &&
865 isReachableFromEntry(Pred)) {
866 NewBBDominatesNewBBSucc = false;
867 break;
868 }
869 }
870
871 // Find NewBB's immediate dominator and create new dominator tree node for
872 // NewBB.
873 NodeT *NewBBIDom = nullptr;
874 unsigned i = 0;
875 for (i = 0; i < PredBlocks.size(); ++i)
876 if (isReachableFromEntry(PredBlocks[i])) {
877 NewBBIDom = PredBlocks[i];
878 break;
879 }
880
881 // It's possible that none of the predecessors of NewBB are reachable;
882 // in that case, NewBB itself is unreachable, so nothing needs to be
883 // changed.
884 if (!NewBBIDom) return;
885
886 for (i = i + 1; i < PredBlocks.size(); ++i) {
887 if (isReachableFromEntry(PredBlocks[i]))
888 NewBBIDom = findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
889 }
890
891 // Create the new dominator tree node... and set the idom of NewBB.
892 DomTreeNodeBase<NodeT> *NewBBNode = addNewBlock(NewBB, NewBBIDom);
893
894 // If NewBB strictly dominates other blocks, then it is now the immediate
895 // dominator of NewBBSucc. Update the dominator tree as appropriate.
896 if (NewBBDominatesNewBBSucc) {
897 DomTreeNodeBase<NodeT> *NewBBSuccNode = getNode(NewBBSucc);
898 changeImmediateDominator(NewBBSuccNode, NewBBNode);
899 }
900 }
901
902 private:
903 bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
904 const DomTreeNodeBase<NodeT> *B) const {
905 assert(A != B)(static_cast <bool> (A != B) ? void (0) : __assert_fail
("A != B", "llvm/include/llvm/Support/GenericDomTree.h", 905
, __extension__ __PRETTY_FUNCTION__))
;
906 assert(isReachableFromEntry(B))(static_cast <bool> (isReachableFromEntry(B)) ? void (0
) : __assert_fail ("isReachableFromEntry(B)", "llvm/include/llvm/Support/GenericDomTree.h"
, 906, __extension__ __PRETTY_FUNCTION__))
;
907 assert(isReachableFromEntry(A))(static_cast <bool> (isReachableFromEntry(A)) ? void (0
) : __assert_fail ("isReachableFromEntry(A)", "llvm/include/llvm/Support/GenericDomTree.h"
, 907, __extension__ __PRETTY_FUNCTION__))
;
908
909 const unsigned ALevel = A->getLevel();
910 const DomTreeNodeBase<NodeT> *IDom;
911
912 // Don't walk nodes above A's subtree. When we reach A's level, we must
913 // either find A or be in some other subtree not dominated by A.
914 while ((IDom = B->getIDom()) != nullptr && IDom->getLevel() >= ALevel)
915 B = IDom; // Walk up the tree
916
917 return B == A;
918 }
919
920 /// Wipe this tree's state without releasing any resources.
921 ///
922 /// This is essentially a post-move helper only. It leaves the object in an
923 /// assignable and destroyable state, but otherwise invalid.
924 void wipe() {
925 DomTreeNodes.clear();
926 RootNode = nullptr;
927 Parent = nullptr;
928 }
929};
930
931template <typename T>
932using DomTreeBase = DominatorTreeBase<T, false>;
933
934template <typename T>
935using PostDomTreeBase = DominatorTreeBase<T, true>;
936
937// These two functions are declared out of line as a workaround for building
938// with old (< r147295) versions of clang because of pr11642.
939template <typename NodeT, bool IsPostDom>
940bool DominatorTreeBase<NodeT, IsPostDom>::dominates(const NodeT *A,
941 const NodeT *B) const {
942 if (A == B)
943 return true;
944
945 // Cast away the const qualifiers here. This is ok since
946 // this function doesn't actually return the values returned
947 // from getNode.
948 return dominates(getNode(const_cast<NodeT *>(A)),
949 getNode(const_cast<NodeT *>(B)));
950}
951template <typename NodeT, bool IsPostDom>
952bool DominatorTreeBase<NodeT, IsPostDom>::properlyDominates(
953 const NodeT *A, const NodeT *B) const {
954 if (A == B)
955 return false;
956
957 // Cast away the const qualifiers here. This is ok since
958 // this function doesn't actually return the values returned
959 // from getNode.
960 return dominates(getNode(const_cast<NodeT *>(A)),
961 getNode(const_cast<NodeT *>(B)));
962}
963
964} // end namespace llvm
965
966#endif // LLVM_SUPPORT_GENERICDOMTREE_H