Bug Summary

File:llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp
Warning:line 556, column 14
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name InstCombineCompares.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/build-llvm/lib/Transforms/InstCombine -I /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine -I /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/build-llvm/lib/Transforms/InstCombine -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-09-28-092409-31635-1 -x c++ /build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp

/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp

1//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitICmp and visitFCmp functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APSInt.h"
15#include "llvm/ADT/SetVector.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/Analysis/ConstantFolding.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/Analysis/TargetLibraryInfo.h"
20#include "llvm/IR/ConstantRange.h"
21#include "llvm/IR/DataLayout.h"
22#include "llvm/IR/GetElementPtrTypeIterator.h"
23#include "llvm/IR/IntrinsicInst.h"
24#include "llvm/IR/PatternMatch.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/KnownBits.h"
27#include "llvm/Transforms/InstCombine/InstCombiner.h"
28
29using namespace llvm;
30using namespace PatternMatch;
31
32#define DEBUG_TYPE"instcombine" "instcombine"
33
34// How many times is a select replaced by one of its operands?
35STATISTIC(NumSel, "Number of select opts")static llvm::Statistic NumSel = {"instcombine", "NumSel", "Number of select opts"
}
;
36
37
38/// Compute Result = In1+In2, returning true if the result overflowed for this
39/// type.
40static bool addWithOverflow(APInt &Result, const APInt &In1,
41 const APInt &In2, bool IsSigned = false) {
42 bool Overflow;
43 if (IsSigned)
44 Result = In1.sadd_ov(In2, Overflow);
45 else
46 Result = In1.uadd_ov(In2, Overflow);
47
48 return Overflow;
49}
50
51/// Compute Result = In1-In2, returning true if the result overflowed for this
52/// type.
53static bool subWithOverflow(APInt &Result, const APInt &In1,
54 const APInt &In2, bool IsSigned = false) {
55 bool Overflow;
56 if (IsSigned)
57 Result = In1.ssub_ov(In2, Overflow);
58 else
59 Result = In1.usub_ov(In2, Overflow);
60
61 return Overflow;
62}
63
64/// Given an icmp instruction, return true if any use of this comparison is a
65/// branch on sign bit comparison.
66static bool hasBranchUse(ICmpInst &I) {
67 for (auto *U : I.users())
68 if (isa<BranchInst>(U))
69 return true;
70 return false;
71}
72
73/// Returns true if the exploded icmp can be expressed as a signed comparison
74/// to zero and updates the predicate accordingly.
75/// The signedness of the comparison is preserved.
76/// TODO: Refactor with decomposeBitTestICmp()?
77static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78 if (!ICmpInst::isSigned(Pred))
79 return false;
80
81 if (C.isNullValue())
82 return ICmpInst::isRelational(Pred);
83
84 if (C.isOneValue()) {
85 if (Pred == ICmpInst::ICMP_SLT) {
86 Pred = ICmpInst::ICMP_SLE;
87 return true;
88 }
89 } else if (C.isAllOnesValue()) {
90 if (Pred == ICmpInst::ICMP_SGT) {
91 Pred = ICmpInst::ICMP_SGE;
92 return true;
93 }
94 }
95
96 return false;
97}
98
99/// Given a signed integer type and a set of known zero and one bits, compute
100/// the maximum and minimum values that could have the specified known zero and
101/// known one bits, returning them in Min/Max.
102/// TODO: Move to method on KnownBits struct?
103static void computeSignedMinMaxValuesFromKnownBits(const KnownBits &Known,
104 APInt &Min, APInt &Max) {
105 assert(Known.getBitWidth() == Min.getBitWidth() &&((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 107, __PRETTY_FUNCTION__))
106 Known.getBitWidth() == Max.getBitWidth() &&((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 107, __PRETTY_FUNCTION__))
107 "KnownZero, KnownOne and Min, Max must have equal bitwidth.")((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 107, __PRETTY_FUNCTION__))
;
108 APInt UnknownBits = ~(Known.Zero|Known.One);
109
110 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
111 // bit if it is unknown.
112 Min = Known.One;
113 Max = Known.One|UnknownBits;
114
115 if (UnknownBits.isNegative()) { // Sign bit is unknown
116 Min.setSignBit();
117 Max.clearSignBit();
118 }
119}
120
121/// Given an unsigned integer type and a set of known zero and one bits, compute
122/// the maximum and minimum values that could have the specified known zero and
123/// known one bits, returning them in Min/Max.
124/// TODO: Move to method on KnownBits struct?
125static void computeUnsignedMinMaxValuesFromKnownBits(const KnownBits &Known,
126 APInt &Min, APInt &Max) {
127 assert(Known.getBitWidth() == Min.getBitWidth() &&((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 129, __PRETTY_FUNCTION__))
128 Known.getBitWidth() == Max.getBitWidth() &&((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 129, __PRETTY_FUNCTION__))
129 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.")((Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth
() == Max.getBitWidth() && "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth."
) ? static_cast<void> (0) : __assert_fail ("Known.getBitWidth() == Min.getBitWidth() && Known.getBitWidth() == Max.getBitWidth() && \"Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 129, __PRETTY_FUNCTION__))
;
130 APInt UnknownBits = ~(Known.Zero|Known.One);
131
132 // The minimum value is when the unknown bits are all zeros.
133 Min = Known.One;
134 // The maximum value is when the unknown bits are all ones.
135 Max = Known.One|UnknownBits;
136}
137
138/// This is called when we see this pattern:
139/// cmp pred (load (gep GV, ...)), cmpcst
140/// where GV is a global variable with a constant initializer. Try to simplify
141/// this into some simple computation that does not need the load. For example
142/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
143///
144/// If AndCst is non-null, then the loaded value is masked with that constant
145/// before doing the comparison. This handles cases like "A[i]&4 == 0".
146Instruction *
147InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
148 GlobalVariable *GV, CmpInst &ICI,
149 ConstantInt *AndCst) {
150 Constant *Init = GV->getInitializer();
151 if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
152 return nullptr;
153
154 uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
155 // Don't blow up on huge arrays.
156 if (ArrayElementCount > MaxArraySizeForCombine)
157 return nullptr;
158
159 // There are many forms of this optimization we can handle, for now, just do
160 // the simple index into a single-dimensional array.
161 //
162 // Require: GEP GV, 0, i {{, constant indices}}
163 if (GEP->getNumOperands() < 3 ||
164 !isa<ConstantInt>(GEP->getOperand(1)) ||
165 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
166 isa<Constant>(GEP->getOperand(2)))
167 return nullptr;
168
169 // Check that indices after the variable are constants and in-range for the
170 // type they index. Collect the indices. This is typically for arrays of
171 // structs.
172 SmallVector<unsigned, 4> LaterIndices;
173
174 Type *EltTy = Init->getType()->getArrayElementType();
175 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
176 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
177 if (!Idx) return nullptr; // Variable index.
178
179 uint64_t IdxVal = Idx->getZExtValue();
180 if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
181
182 if (StructType *STy = dyn_cast<StructType>(EltTy))
183 EltTy = STy->getElementType(IdxVal);
184 else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
185 if (IdxVal >= ATy->getNumElements()) return nullptr;
186 EltTy = ATy->getElementType();
187 } else {
188 return nullptr; // Unknown type.
189 }
190
191 LaterIndices.push_back(IdxVal);
192 }
193
194 enum { Overdefined = -3, Undefined = -2 };
195
196 // Variables for our state machines.
197
198 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
199 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
200 // and 87 is the second (and last) index. FirstTrueElement is -2 when
201 // undefined, otherwise set to the first true element. SecondTrueElement is
202 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
203 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
204
205 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
206 // form "i != 47 & i != 87". Same state transitions as for true elements.
207 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
208
209 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
210 /// define a state machine that triggers for ranges of values that the index
211 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
212 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
213 /// index in the range (inclusive). We use -2 for undefined here because we
214 /// use relative comparisons and don't want 0-1 to match -1.
215 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
216
217 // MagicBitvector - This is a magic bitvector where we set a bit if the
218 // comparison is true for element 'i'. If there are 64 elements or less in
219 // the array, this will fully represent all the comparison results.
220 uint64_t MagicBitvector = 0;
221
222 // Scan the array and see if one of our patterns matches.
223 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
224 for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
225 Constant *Elt = Init->getAggregateElement(i);
226 if (!Elt) return nullptr;
227
228 // If this is indexing an array of structures, get the structure element.
229 if (!LaterIndices.empty())
230 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
231
232 // If the element is masked, handle it.
233 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
234
235 // Find out if the comparison would be true or false for the i'th element.
236 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
237 CompareRHS, DL, &TLI);
238 // If the result is undef for this element, ignore it.
239 if (isa<UndefValue>(C)) {
240 // Extend range state machines to cover this element in case there is an
241 // undef in the middle of the range.
242 if (TrueRangeEnd == (int)i-1)
243 TrueRangeEnd = i;
244 if (FalseRangeEnd == (int)i-1)
245 FalseRangeEnd = i;
246 continue;
247 }
248
249 // If we can't compute the result for any of the elements, we have to give
250 // up evaluating the entire conditional.
251 if (!isa<ConstantInt>(C)) return nullptr;
252
253 // Otherwise, we know if the comparison is true or false for this element,
254 // update our state machines.
255 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
256
257 // State machine for single/double/range index comparison.
258 if (IsTrueForElt) {
259 // Update the TrueElement state machine.
260 if (FirstTrueElement == Undefined)
261 FirstTrueElement = TrueRangeEnd = i; // First true element.
262 else {
263 // Update double-compare state machine.
264 if (SecondTrueElement == Undefined)
265 SecondTrueElement = i;
266 else
267 SecondTrueElement = Overdefined;
268
269 // Update range state machine.
270 if (TrueRangeEnd == (int)i-1)
271 TrueRangeEnd = i;
272 else
273 TrueRangeEnd = Overdefined;
274 }
275 } else {
276 // Update the FalseElement state machine.
277 if (FirstFalseElement == Undefined)
278 FirstFalseElement = FalseRangeEnd = i; // First false element.
279 else {
280 // Update double-compare state machine.
281 if (SecondFalseElement == Undefined)
282 SecondFalseElement = i;
283 else
284 SecondFalseElement = Overdefined;
285
286 // Update range state machine.
287 if (FalseRangeEnd == (int)i-1)
288 FalseRangeEnd = i;
289 else
290 FalseRangeEnd = Overdefined;
291 }
292 }
293
294 // If this element is in range, update our magic bitvector.
295 if (i < 64 && IsTrueForElt)
296 MagicBitvector |= 1ULL << i;
297
298 // If all of our states become overdefined, bail out early. Since the
299 // predicate is expensive, only check it every 8 elements. This is only
300 // really useful for really huge arrays.
301 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
302 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
303 FalseRangeEnd == Overdefined)
304 return nullptr;
305 }
306
307 // Now that we've scanned the entire array, emit our new comparison(s). We
308 // order the state machines in complexity of the generated code.
309 Value *Idx = GEP->getOperand(2);
310
311 // If the index is larger than the pointer size of the target, truncate the
312 // index down like the GEP would do implicitly. We don't have to do this for
313 // an inbounds GEP because the index can't be out of range.
314 if (!GEP->isInBounds()) {
315 Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
316 unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
317 if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
318 Idx = Builder.CreateTrunc(Idx, IntPtrTy);
319 }
320
321 // If the comparison is only true for one or two elements, emit direct
322 // comparisons.
323 if (SecondTrueElement != Overdefined) {
324 // None true -> false.
325 if (FirstTrueElement == Undefined)
326 return replaceInstUsesWith(ICI, Builder.getFalse());
327
328 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
329
330 // True for one element -> 'i == 47'.
331 if (SecondTrueElement == Undefined)
332 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
333
334 // True for two elements -> 'i == 47 | i == 72'.
335 Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
336 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
337 Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
338 return BinaryOperator::CreateOr(C1, C2);
339 }
340
341 // If the comparison is only false for one or two elements, emit direct
342 // comparisons.
343 if (SecondFalseElement != Overdefined) {
344 // None false -> true.
345 if (FirstFalseElement == Undefined)
346 return replaceInstUsesWith(ICI, Builder.getTrue());
347
348 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
349
350 // False for one element -> 'i != 47'.
351 if (SecondFalseElement == Undefined)
352 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
353
354 // False for two elements -> 'i != 47 & i != 72'.
355 Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
356 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
357 Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
358 return BinaryOperator::CreateAnd(C1, C2);
359 }
360
361 // If the comparison can be replaced with a range comparison for the elements
362 // where it is true, emit the range check.
363 if (TrueRangeEnd != Overdefined) {
364 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare")((TrueRangeEnd != FirstTrueElement && "Should emit single compare"
) ? static_cast<void> (0) : __assert_fail ("TrueRangeEnd != FirstTrueElement && \"Should emit single compare\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 364, __PRETTY_FUNCTION__))
;
365
366 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
367 if (FirstTrueElement) {
368 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
369 Idx = Builder.CreateAdd(Idx, Offs);
370 }
371
372 Value *End = ConstantInt::get(Idx->getType(),
373 TrueRangeEnd-FirstTrueElement+1);
374 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
375 }
376
377 // False range check.
378 if (FalseRangeEnd != Overdefined) {
379 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare")((FalseRangeEnd != FirstFalseElement && "Should emit single compare"
) ? static_cast<void> (0) : __assert_fail ("FalseRangeEnd != FirstFalseElement && \"Should emit single compare\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 379, __PRETTY_FUNCTION__))
;
380 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
381 if (FirstFalseElement) {
382 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
383 Idx = Builder.CreateAdd(Idx, Offs);
384 }
385
386 Value *End = ConstantInt::get(Idx->getType(),
387 FalseRangeEnd-FirstFalseElement);
388 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
389 }
390
391 // If a magic bitvector captures the entire comparison state
392 // of this load, replace it with computation that does:
393 // ((magic_cst >> i) & 1) != 0
394 {
395 Type *Ty = nullptr;
396
397 // Look for an appropriate type:
398 // - The type of Idx if the magic fits
399 // - The smallest fitting legal type
400 if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
401 Ty = Idx->getType();
402 else
403 Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
404
405 if (Ty) {
406 Value *V = Builder.CreateIntCast(Idx, Ty, false);
407 V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
408 V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
409 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
410 }
411 }
412
413 return nullptr;
414}
415
416/// Return a value that can be used to compare the *offset* implied by a GEP to
417/// zero. For example, if we have &A[i], we want to return 'i' for
418/// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
419/// are involved. The above expression would also be legal to codegen as
420/// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
421/// This latter form is less amenable to optimization though, and we are allowed
422/// to generate the first by knowing that pointer arithmetic doesn't overflow.
423///
424/// If we can't emit an optimized form for this expression, this returns null.
425///
426static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
427 const DataLayout &DL) {
428 gep_type_iterator GTI = gep_type_begin(GEP);
429
430 // Check to see if this gep only has a single variable index. If so, and if
431 // any constant indices are a multiple of its scale, then we can compute this
432 // in terms of the scale of the variable index. For example, if the GEP
433 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
434 // because the expression will cross zero at the same point.
435 unsigned i, e = GEP->getNumOperands();
436 int64_t Offset = 0;
437 for (i = 1; i != e; ++i, ++GTI) {
438 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
439 // Compute the aggregate offset of constant indices.
440 if (CI->isZero()) continue;
441
442 // Handle a struct index, which adds its field offset to the pointer.
443 if (StructType *STy = GTI.getStructTypeOrNull()) {
444 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
445 } else {
446 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
447 Offset += Size*CI->getSExtValue();
448 }
449 } else {
450 // Found our variable index.
451 break;
452 }
453 }
454
455 // If there are no variable indices, we must have a constant offset, just
456 // evaluate it the general way.
457 if (i == e) return nullptr;
458
459 Value *VariableIdx = GEP->getOperand(i);
460 // Determine the scale factor of the variable element. For example, this is
461 // 4 if the variable index is into an array of i32.
462 uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
463
464 // Verify that there are no other variable indices. If so, emit the hard way.
465 for (++i, ++GTI; i != e; ++i, ++GTI) {
466 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
467 if (!CI) return nullptr;
468
469 // Compute the aggregate offset of constant indices.
470 if (CI->isZero()) continue;
471
472 // Handle a struct index, which adds its field offset to the pointer.
473 if (StructType *STy = GTI.getStructTypeOrNull()) {
474 Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
475 } else {
476 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
477 Offset += Size*CI->getSExtValue();
478 }
479 }
480
481 // Okay, we know we have a single variable index, which must be a
482 // pointer/array/vector index. If there is no offset, life is simple, return
483 // the index.
484 Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
485 unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
486 if (Offset == 0) {
487 // Cast to intptrty in case a truncation occurs. If an extension is needed,
488 // we don't need to bother extending: the extension won't affect where the
489 // computation crosses zero.
490 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
491 VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
492 }
493 return VariableIdx;
494 }
495
496 // Otherwise, there is an index. The computation we will do will be modulo
497 // the pointer size.
498 Offset = SignExtend64(Offset, IntPtrWidth);
499 VariableScale = SignExtend64(VariableScale, IntPtrWidth);
500
501 // To do this transformation, any constant index must be a multiple of the
502 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
503 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
504 // multiple of the variable scale.
505 int64_t NewOffs = Offset / (int64_t)VariableScale;
506 if (Offset != NewOffs*(int64_t)VariableScale)
507 return nullptr;
508
509 // Okay, we can do this evaluation. Start by converting the index to intptr.
510 if (VariableIdx->getType() != IntPtrTy)
511 VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
512 true /*Signed*/);
513 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
514 return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
515}
516
517/// Returns true if we can rewrite Start as a GEP with pointer Base
518/// and some integer offset. The nodes that need to be re-written
519/// for this transformation will be added to Explored.
520static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
521 const DataLayout &DL,
522 SetVector<Value *> &Explored) {
523 SmallVector<Value *, 16> WorkList(1, Start);
524 Explored.insert(Base);
525
526 // The following traversal gives us an order which can be used
527 // when doing the final transformation. Since in the final
528 // transformation we create the PHI replacement instructions first,
529 // we don't have to get them in any particular order.
530 //
531 // However, for other instructions we will have to traverse the
532 // operands of an instruction first, which means that we have to
533 // do a post-order traversal.
534 while (!WorkList.empty()) {
43
Calling 'SmallVectorBase::empty'
46
Returning from 'SmallVectorBase::empty'
47
Loop condition is true. Entering loop body
535 SetVector<PHINode *> PHIs;
536
537 while (!WorkList.empty()) {
48
Calling 'SmallVectorBase::empty'
50
Returning from 'SmallVectorBase::empty'
51
Loop condition is true. Entering loop body
538 if (Explored.size() >= 100)
52
Assuming the condition is false
53
Taking false branch
539 return false;
540
541 Value *V = WorkList.back();
542
543 if (Explored.count(V) != 0) {
54
Assuming the condition is false
55
Taking false branch
544 WorkList.pop_back();
545 continue;
546 }
547
548 if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
56
Assuming 'V' is not a 'IntToPtrInst'
57
Assuming 'V' is not a 'PtrToIntInst'
60
Taking false branch
549 !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
58
Assuming 'V' is not a 'GetElementPtrInst'
59
Assuming 'V' is a 'PHINode'
550 // We've found some value that we can't explore which is different from
551 // the base. Therefore we can't do this transformation.
552 return false;
553
554 if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
61
Assuming 'V' is not a 'IntToPtrInst'
62
Assuming 'V' is a 'PtrToIntInst'
63
Taking true branch
555 auto *CI = dyn_cast<CastInst>(V);
64
Assuming 'V' is not a 'CastInst'
65
'CI' initialized to a null pointer value
556 if (!CI->isNoopCast(DL))
66
Called C++ object pointer is null
557 return false;
558
559 if (Explored.count(CI->getOperand(0)) == 0)
560 WorkList.push_back(CI->getOperand(0));
561 }
562
563 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
564 // We're limiting the GEP to having one index. This will preserve
565 // the original pointer type. We could handle more cases in the
566 // future.
567 if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
568 GEP->getType() != Start->getType())
569 return false;
570
571 if (Explored.count(GEP->getOperand(0)) == 0)
572 WorkList.push_back(GEP->getOperand(0));
573 }
574
575 if (WorkList.back() == V) {
576 WorkList.pop_back();
577 // We've finished visiting this node, mark it as such.
578 Explored.insert(V);
579 }
580
581 if (auto *PN = dyn_cast<PHINode>(V)) {
582 // We cannot transform PHIs on unsplittable basic blocks.
583 if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
584 return false;
585 Explored.insert(PN);
586 PHIs.insert(PN);
587 }
588 }
589
590 // Explore the PHI nodes further.
591 for (auto *PN : PHIs)
592 for (Value *Op : PN->incoming_values())
593 if (Explored.count(Op) == 0)
594 WorkList.push_back(Op);
595 }
596
597 // Make sure that we can do this. Since we can't insert GEPs in a basic
598 // block before a PHI node, we can't easily do this transformation if
599 // we have PHI node users of transformed instructions.
600 for (Value *Val : Explored) {
601 for (Value *Use : Val->uses()) {
602
603 auto *PHI = dyn_cast<PHINode>(Use);
604 auto *Inst = dyn_cast<Instruction>(Val);
605
606 if (Inst == Base || Inst == PHI || !Inst || !PHI ||
607 Explored.count(PHI) == 0)
608 continue;
609
610 if (PHI->getParent() == Inst->getParent())
611 return false;
612 }
613 }
614 return true;
615}
616
617// Sets the appropriate insert point on Builder where we can add
618// a replacement Instruction for V (if that is possible).
619static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
620 bool Before = true) {
621 if (auto *PHI = dyn_cast<PHINode>(V)) {
622 Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
623 return;
624 }
625 if (auto *I = dyn_cast<Instruction>(V)) {
626 if (!Before)
627 I = &*std::next(I->getIterator());
628 Builder.SetInsertPoint(I);
629 return;
630 }
631 if (auto *A = dyn_cast<Argument>(V)) {
632 // Set the insertion point in the entry block.
633 BasicBlock &Entry = A->getParent()->getEntryBlock();
634 Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
635 return;
636 }
637 // Otherwise, this is a constant and we don't need to set a new
638 // insertion point.
639 assert(isa<Constant>(V) && "Setting insertion point for unknown value!")((isa<Constant>(V) && "Setting insertion point for unknown value!"
) ? static_cast<void> (0) : __assert_fail ("isa<Constant>(V) && \"Setting insertion point for unknown value!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 639, __PRETTY_FUNCTION__))
;
640}
641
642/// Returns a re-written value of Start as an indexed GEP using Base as a
643/// pointer.
644static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
645 const DataLayout &DL,
646 SetVector<Value *> &Explored) {
647 // Perform all the substitutions. This is a bit tricky because we can
648 // have cycles in our use-def chains.
649 // 1. Create the PHI nodes without any incoming values.
650 // 2. Create all the other values.
651 // 3. Add the edges for the PHI nodes.
652 // 4. Emit GEPs to get the original pointers.
653 // 5. Remove the original instructions.
654 Type *IndexType = IntegerType::get(
655 Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
656
657 DenseMap<Value *, Value *> NewInsts;
658 NewInsts[Base] = ConstantInt::getNullValue(IndexType);
659
660 // Create the new PHI nodes, without adding any incoming values.
661 for (Value *Val : Explored) {
662 if (Val == Base)
663 continue;
664 // Create empty phi nodes. This avoids cyclic dependencies when creating
665 // the remaining instructions.
666 if (auto *PHI = dyn_cast<PHINode>(Val))
667 NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
668 PHI->getName() + ".idx", PHI);
669 }
670 IRBuilder<> Builder(Base->getContext());
671
672 // Create all the other instructions.
673 for (Value *Val : Explored) {
674
675 if (NewInsts.find(Val) != NewInsts.end())
676 continue;
677
678 if (auto *CI = dyn_cast<CastInst>(Val)) {
679 // Don't get rid of the intermediate variable here; the store can grow
680 // the map which will invalidate the reference to the input value.
681 Value *V = NewInsts[CI->getOperand(0)];
682 NewInsts[CI] = V;
683 continue;
684 }
685 if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
686 Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
687 : GEP->getOperand(1);
688 setInsertionPoint(Builder, GEP);
689 // Indices might need to be sign extended. GEPs will magically do
690 // this, but we need to do it ourselves here.
691 if (Index->getType()->getScalarSizeInBits() !=
692 NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
693 Index = Builder.CreateSExtOrTrunc(
694 Index, NewInsts[GEP->getOperand(0)]->getType(),
695 GEP->getOperand(0)->getName() + ".sext");
696 }
697
698 auto *Op = NewInsts[GEP->getOperand(0)];
699 if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
700 NewInsts[GEP] = Index;
701 else
702 NewInsts[GEP] = Builder.CreateNSWAdd(
703 Op, Index, GEP->getOperand(0)->getName() + ".add");
704 continue;
705 }
706 if (isa<PHINode>(Val))
707 continue;
708
709 llvm_unreachable("Unexpected instruction type")::llvm::llvm_unreachable_internal("Unexpected instruction type"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 709)
;
710 }
711
712 // Add the incoming values to the PHI nodes.
713 for (Value *Val : Explored) {
714 if (Val == Base)
715 continue;
716 // All the instructions have been created, we can now add edges to the
717 // phi nodes.
718 if (auto *PHI = dyn_cast<PHINode>(Val)) {
719 PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
720 for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
721 Value *NewIncoming = PHI->getIncomingValue(I);
722
723 if (NewInsts.find(NewIncoming) != NewInsts.end())
724 NewIncoming = NewInsts[NewIncoming];
725
726 NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
727 }
728 }
729 }
730
731 for (Value *Val : Explored) {
732 if (Val == Base)
733 continue;
734
735 // Depending on the type, for external users we have to emit
736 // a GEP or a GEP + ptrtoint.
737 setInsertionPoint(Builder, Val, false);
738
739 // If required, create an inttoptr instruction for Base.
740 Value *NewBase = Base;
741 if (!Base->getType()->isPointerTy())
742 NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
743 Start->getName() + "to.ptr");
744
745 Value *GEP = Builder.CreateInBoundsGEP(
746 Start->getType()->getPointerElementType(), NewBase,
747 makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
748
749 if (!Val->getType()->isPointerTy()) {
750 Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
751 Val->getName() + ".conv");
752 GEP = Cast;
753 }
754 Val->replaceAllUsesWith(GEP);
755 }
756
757 return NewInsts[Start];
758}
759
760/// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
761/// the input Value as a constant indexed GEP. Returns a pair containing
762/// the GEPs Pointer and Index.
763static std::pair<Value *, Value *>
764getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
765 Type *IndexType = IntegerType::get(V->getContext(),
766 DL.getIndexTypeSizeInBits(V->getType()));
767
768 Constant *Index = ConstantInt::getNullValue(IndexType);
769 while (true) {
770 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
771 // We accept only inbouds GEPs here to exclude the possibility of
772 // overflow.
773 if (!GEP->isInBounds())
774 break;
775 if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
776 GEP->getType() == V->getType()) {
777 V = GEP->getOperand(0);
778 Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
779 Index = ConstantExpr::getAdd(
780 Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
781 continue;
782 }
783 break;
784 }
785 if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
786 if (!CI->isNoopCast(DL))
787 break;
788 V = CI->getOperand(0);
789 continue;
790 }
791 if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
792 if (!CI->isNoopCast(DL))
793 break;
794 V = CI->getOperand(0);
795 continue;
796 }
797 break;
798 }
799 return {V, Index};
800}
801
802/// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
803/// We can look through PHIs, GEPs and casts in order to determine a common base
804/// between GEPLHS and RHS.
805static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
806 ICmpInst::Predicate Cond,
807 const DataLayout &DL) {
808 // FIXME: Support vector of pointers.
809 if (GEPLHS->getType()->isVectorTy())
38
Taking false branch
810 return nullptr;
811
812 if (!GEPLHS->hasAllConstantIndices())
39
Taking false branch
813 return nullptr;
814
815 // Make sure the pointers have the same type.
816 if (GEPLHS->getType() != RHS->getType())
40
Assuming the condition is false
41
Taking false branch
817 return nullptr;
818
819 Value *PtrBase, *Index;
820 std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
821
822 // The set of nodes that will take part in this transformation.
823 SetVector<Value *> Nodes;
824
825 if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
42
Calling 'canRewriteGEPAsOffset'
826 return nullptr;
827
828 // We know we can re-write this as
829 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
830 // Since we've only looked through inbouds GEPs we know that we
831 // can't have overflow on either side. We can therefore re-write
832 // this as:
833 // OFFSET1 cmp OFFSET2
834 Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
835
836 // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
837 // GEP having PtrBase as the pointer base, and has returned in NewRHS the
838 // offset. Since Index is the offset of LHS to the base pointer, we will now
839 // compare the offsets instead of comparing the pointers.
840 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
841}
842
843/// Fold comparisons between a GEP instruction and something else. At this point
844/// we know that the GEP is on the LHS of the comparison.
845Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
846 ICmpInst::Predicate Cond,
847 Instruction &I) {
848 // Don't transform signed compares of GEPs into index compares. Even if the
849 // GEP is inbounds, the final add of the base pointer can have signed overflow
850 // and would change the result of the icmp.
851 // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
852 // the maximum signed value for the pointer type.
853 if (ICmpInst::isSigned(Cond))
29
Assuming the condition is false
30
Taking false branch
854 return nullptr;
855
856 // Look through bitcasts and addrspacecasts. We do not however want to remove
857 // 0 GEPs.
858 if (!isa<GetElementPtrInst>(RHS))
31
Assuming 'RHS' is not a 'GetElementPtrInst'
32
Taking true branch
859 RHS = RHS->stripPointerCasts();
860
861 Value *PtrBase = GEPLHS->getOperand(0);
862 // FIXME: Support vector pointer GEPs.
863 if (PtrBase == RHS && GEPLHS->isInBounds() &&
33
Assuming 'PtrBase' is not equal to 'RHS'
864 !GEPLHS->getType()->isVectorTy()) {
865 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
866 // This transformation (ignoring the base and scales) is valid because we
867 // know pointers can't overflow since the gep is inbounds. See if we can
868 // output an optimized form.
869 Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
870
871 // If not, synthesize the offset the hard way.
872 if (!Offset)
873 Offset = EmitGEPOffset(GEPLHS);
874 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
875 Constant::getNullValue(Offset->getType()));
876 }
877
878 if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
34
Assuming the condition is false
879 isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
880 !NullPointerIsDefined(I.getFunction(),
881 RHS->getType()->getPointerAddressSpace())) {
882 // For most address spaces, an allocation can't be placed at null, but null
883 // itself is treated as a 0 size allocation in the in bounds rules. Thus,
884 // the only valid inbounds address derived from null, is null itself.
885 // Thus, we have four cases to consider:
886 // 1) Base == nullptr, Offset == 0 -> inbounds, null
887 // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
888 // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
889 // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
890 //
891 // (Note if we're indexing a type of size 0, that simply collapses into one
892 // of the buckets above.)
893 //
894 // In general, we're allowed to make values less poison (i.e. remove
895 // sources of full UB), so in this case, we just select between the two
896 // non-poison cases (1 and 4 above).
897 //
898 // For vectors, we apply the same reasoning on a per-lane basis.
899 auto *Base = GEPLHS->getPointerOperand();
900 if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
901 int NumElts = cast<FixedVectorType>(GEPLHS->getType())->getNumElements();
902 Base = Builder.CreateVectorSplat(NumElts, Base);
903 }
904 return new ICmpInst(Cond, Base,
905 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
906 cast<Constant>(RHS), Base->getType()));
907 } else if (GEPOperator *GEPRHS
35.1
'GEPRHS' is null
35.1
'GEPRHS' is null
= dyn_cast<GEPOperator>(RHS)) {
35
Assuming 'RHS' is not a 'GEPOperator'
36
Taking false branch
908 // If the base pointers are different, but the indices are the same, just
909 // compare the base pointer.
910 if (PtrBase != GEPRHS->getOperand(0)) {
911 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
912 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
913 GEPRHS->getOperand(0)->getType();
914 if (IndicesTheSame)
915 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
916 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
917 IndicesTheSame = false;
918 break;
919 }
920
921 // If all indices are the same, just compare the base pointers.
922 Type *BaseType = GEPLHS->getOperand(0)->getType();
923 if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
924 return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
925
926 // If we're comparing GEPs with two base pointers that only differ in type
927 // and both GEPs have only constant indices or just one use, then fold
928 // the compare with the adjusted indices.
929 // FIXME: Support vector of pointers.
930 if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
931 (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
932 (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
933 PtrBase->stripPointerCasts() ==
934 GEPRHS->getOperand(0)->stripPointerCasts() &&
935 !GEPLHS->getType()->isVectorTy()) {
936 Value *LOffset = EmitGEPOffset(GEPLHS);
937 Value *ROffset = EmitGEPOffset(GEPRHS);
938
939 // If we looked through an addrspacecast between different sized address
940 // spaces, the LHS and RHS pointers are different sized
941 // integers. Truncate to the smaller one.
942 Type *LHSIndexTy = LOffset->getType();
943 Type *RHSIndexTy = ROffset->getType();
944 if (LHSIndexTy != RHSIndexTy) {
945 if (LHSIndexTy->getPrimitiveSizeInBits() <
946 RHSIndexTy->getPrimitiveSizeInBits()) {
947 ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
948 } else
949 LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
950 }
951
952 Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
953 LOffset, ROffset);
954 return replaceInstUsesWith(I, Cmp);
955 }
956
957 // Otherwise, the base pointers are different and the indices are
958 // different. Try convert this to an indexed compare by looking through
959 // PHIs/casts.
960 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
961 }
962
963 // If one of the GEPs has all zero indices, recurse.
964 // FIXME: Handle vector of pointers.
965 if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
966 return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
967 ICmpInst::getSwappedPredicate(Cond), I);
968
969 // If the other GEP has all zero indices, recurse.
970 // FIXME: Handle vector of pointers.
971 if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
972 return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
973
974 bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
975 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
976 // If the GEPs only differ by one index, compare it.
977 unsigned NumDifferences = 0; // Keep track of # differences.
978 unsigned DiffOperand = 0; // The operand that differs.
979 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
980 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
981 Type *LHSType = GEPLHS->getOperand(i)->getType();
982 Type *RHSType = GEPRHS->getOperand(i)->getType();
983 // FIXME: Better support for vector of pointers.
984 if (LHSType->getPrimitiveSizeInBits() !=
985 RHSType->getPrimitiveSizeInBits() ||
986 (GEPLHS->getType()->isVectorTy() &&
987 (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
988 // Irreconcilable differences.
989 NumDifferences = 2;
990 break;
991 }
992
993 if (NumDifferences++) break;
994 DiffOperand = i;
995 }
996
997 if (NumDifferences == 0) // SAME GEP?
998 return replaceInstUsesWith(I, // No comparison is needed here.
999 ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
1000
1001 else if (NumDifferences == 1 && GEPsInBounds) {
1002 Value *LHSV = GEPLHS->getOperand(DiffOperand);
1003 Value *RHSV = GEPRHS->getOperand(DiffOperand);
1004 // Make sure we do a signed comparison here.
1005 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
1006 }
1007 }
1008
1009 // Only lower this if the icmp is the only user of the GEP or if we expect
1010 // the result to fold to a constant!
1011 if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
1012 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
1013 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
1014 Value *L = EmitGEPOffset(GEPLHS);
1015 Value *R = EmitGEPOffset(GEPRHS);
1016 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1017 }
1018 }
1019
1020 // Try convert this to an indexed compare by looking through PHIs/casts as a
1021 // last resort.
1022 return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
37
Calling 'transformToIndexedCompare'
1023}
1024
1025Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1026 const AllocaInst *Alloca,
1027 const Value *Other) {
1028 assert(ICI.isEquality() && "Cannot fold non-equality comparison.")((ICI.isEquality() && "Cannot fold non-equality comparison."
) ? static_cast<void> (0) : __assert_fail ("ICI.isEquality() && \"Cannot fold non-equality comparison.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1028, __PRETTY_FUNCTION__))
;
1029
1030 // It would be tempting to fold away comparisons between allocas and any
1031 // pointer not based on that alloca (e.g. an argument). However, even
1032 // though such pointers cannot alias, they can still compare equal.
1033 //
1034 // But LLVM doesn't specify where allocas get their memory, so if the alloca
1035 // doesn't escape we can argue that it's impossible to guess its value, and we
1036 // can therefore act as if any such guesses are wrong.
1037 //
1038 // The code below checks that the alloca doesn't escape, and that it's only
1039 // used in a comparison once (the current instruction). The
1040 // single-comparison-use condition ensures that we're trivially folding all
1041 // comparisons against the alloca consistently, and avoids the risk of
1042 // erroneously folding a comparison of the pointer with itself.
1043
1044 unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1045
1046 SmallVector<const Use *, 32> Worklist;
1047 for (const Use &U : Alloca->uses()) {
1048 if (Worklist.size() >= MaxIter)
1049 return nullptr;
1050 Worklist.push_back(&U);
1051 }
1052
1053 unsigned NumCmps = 0;
1054 while (!Worklist.empty()) {
1055 assert(Worklist.size() <= MaxIter)((Worklist.size() <= MaxIter) ? static_cast<void> (0
) : __assert_fail ("Worklist.size() <= MaxIter", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1055, __PRETTY_FUNCTION__))
;
1056 const Use *U = Worklist.pop_back_val();
1057 const Value *V = U->getUser();
1058 --MaxIter;
1059
1060 if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1061 isa<SelectInst>(V)) {
1062 // Track the uses.
1063 } else if (isa<LoadInst>(V)) {
1064 // Loading from the pointer doesn't escape it.
1065 continue;
1066 } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1067 // Storing *to* the pointer is fine, but storing the pointer escapes it.
1068 if (SI->getValueOperand() == U->get())
1069 return nullptr;
1070 continue;
1071 } else if (isa<ICmpInst>(V)) {
1072 if (NumCmps++)
1073 return nullptr; // Found more than one cmp.
1074 continue;
1075 } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1076 switch (Intrin->getIntrinsicID()) {
1077 // These intrinsics don't escape or compare the pointer. Memset is safe
1078 // because we don't allow ptrtoint. Memcpy and memmove are safe because
1079 // we don't allow stores, so src cannot point to V.
1080 case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1081 case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1082 continue;
1083 default:
1084 return nullptr;
1085 }
1086 } else {
1087 return nullptr;
1088 }
1089 for (const Use &U : V->uses()) {
1090 if (Worklist.size() >= MaxIter)
1091 return nullptr;
1092 Worklist.push_back(&U);
1093 }
1094 }
1095
1096 Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1097 return replaceInstUsesWith(
1098 ICI,
1099 ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1100}
1101
1102/// Fold "icmp pred (X+C), X".
1103Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1104 ICmpInst::Predicate Pred) {
1105 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1106 // so the values can never be equal. Similarly for all other "or equals"
1107 // operators.
1108 assert(!!C && "C should not be zero!")((!!C && "C should not be zero!") ? static_cast<void
> (0) : __assert_fail ("!!C && \"C should not be zero!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1108, __PRETTY_FUNCTION__))
;
1109
1110 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
1111 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
1112 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
1113 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1114 Constant *R = ConstantInt::get(X->getType(),
1115 APInt::getMaxValue(C.getBitWidth()) - C);
1116 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1117 }
1118
1119 // (X+1) >u X --> X <u (0-1) --> X != 255
1120 // (X+2) >u X --> X <u (0-2) --> X <u 254
1121 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
1122 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1123 return new ICmpInst(ICmpInst::ICMP_ULT, X,
1124 ConstantInt::get(X->getType(), -C));
1125
1126 APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1127
1128 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
1129 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
1130 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
1131 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
1132 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
1133 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
1134 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1135 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1136 ConstantInt::get(X->getType(), SMax - C));
1137
1138 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
1139 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
1140 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1141 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1142 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
1143 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
1144
1145 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)((Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) ?
static_cast<void> (0) : __assert_fail ("Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1145, __PRETTY_FUNCTION__))
;
1146 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1147 ConstantInt::get(X->getType(), SMax - (C - 1)));
1148}
1149
1150/// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1151/// (icmp eq/ne A, Log2(AP2/AP1)) ->
1152/// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
1153Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1154 const APInt &AP1,
1155 const APInt &AP2) {
1156 assert(I.isEquality() && "Cannot fold icmp gt/lt")((I.isEquality() && "Cannot fold icmp gt/lt") ? static_cast
<void> (0) : __assert_fail ("I.isEquality() && \"Cannot fold icmp gt/lt\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1156, __PRETTY_FUNCTION__))
;
1157
1158 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1159 if (I.getPredicate() == I.ICMP_NE)
1160 Pred = CmpInst::getInversePredicate(Pred);
1161 return new ICmpInst(Pred, LHS, RHS);
1162 };
1163
1164 // Don't bother doing any work for cases which InstSimplify handles.
1165 if (AP2.isNullValue())
1166 return nullptr;
1167
1168 bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1169 if (IsAShr) {
1170 if (AP2.isAllOnesValue())
1171 return nullptr;
1172 if (AP2.isNegative() != AP1.isNegative())
1173 return nullptr;
1174 if (AP2.sgt(AP1))
1175 return nullptr;
1176 }
1177
1178 if (!AP1)
1179 // 'A' must be large enough to shift out the highest set bit.
1180 return getICmp(I.ICMP_UGT, A,
1181 ConstantInt::get(A->getType(), AP2.logBase2()));
1182
1183 if (AP1 == AP2)
1184 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1185
1186 int Shift;
1187 if (IsAShr && AP1.isNegative())
1188 Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1189 else
1190 Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1191
1192 if (Shift > 0) {
1193 if (IsAShr && AP1 == AP2.ashr(Shift)) {
1194 // There are multiple solutions if we are comparing against -1 and the LHS
1195 // of the ashr is not a power of two.
1196 if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1197 return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1198 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1199 } else if (AP1 == AP2.lshr(Shift)) {
1200 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1201 }
1202 }
1203
1204 // Shifting const2 will never be equal to const1.
1205 // FIXME: This should always be handled by InstSimplify?
1206 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1207 return replaceInstUsesWith(I, TorF);
1208}
1209
1210/// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1211/// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
1212Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1213 const APInt &AP1,
1214 const APInt &AP2) {
1215 assert(I.isEquality() && "Cannot fold icmp gt/lt")((I.isEquality() && "Cannot fold icmp gt/lt") ? static_cast
<void> (0) : __assert_fail ("I.isEquality() && \"Cannot fold icmp gt/lt\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1215, __PRETTY_FUNCTION__))
;
1216
1217 auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1218 if (I.getPredicate() == I.ICMP_NE)
1219 Pred = CmpInst::getInversePredicate(Pred);
1220 return new ICmpInst(Pred, LHS, RHS);
1221 };
1222
1223 // Don't bother doing any work for cases which InstSimplify handles.
1224 if (AP2.isNullValue())
1225 return nullptr;
1226
1227 unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1228
1229 if (!AP1 && AP2TrailingZeros != 0)
1230 return getICmp(
1231 I.ICMP_UGE, A,
1232 ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1233
1234 if (AP1 == AP2)
1235 return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1236
1237 // Get the distance between the lowest bits that are set.
1238 int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1239
1240 if (Shift > 0 && AP2.shl(Shift) == AP1)
1241 return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1242
1243 // Shifting const2 will never be equal to const1.
1244 // FIXME: This should always be handled by InstSimplify?
1245 auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1246 return replaceInstUsesWith(I, TorF);
1247}
1248
1249/// The caller has matched a pattern of the form:
1250/// I = icmp ugt (add (add A, B), CI2), CI1
1251/// If this is of the form:
1252/// sum = a + b
1253/// if (sum+128 >u 255)
1254/// Then replace it with llvm.sadd.with.overflow.i8.
1255///
1256static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1257 ConstantInt *CI2, ConstantInt *CI1,
1258 InstCombinerImpl &IC) {
1259 // The transformation we're trying to do here is to transform this into an
1260 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1261 // with a narrower add, and discard the add-with-constant that is part of the
1262 // range check (if we can't eliminate it, this isn't profitable).
1263
1264 // In order to eliminate the add-with-constant, the compare can be its only
1265 // use.
1266 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1267 if (!AddWithCst->hasOneUse())
1268 return nullptr;
1269
1270 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1271 if (!CI2->getValue().isPowerOf2())
1272 return nullptr;
1273 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1274 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1275 return nullptr;
1276
1277 // The width of the new add formed is 1 more than the bias.
1278 ++NewWidth;
1279
1280 // Check to see that CI1 is an all-ones value with NewWidth bits.
1281 if (CI1->getBitWidth() == NewWidth ||
1282 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1283 return nullptr;
1284
1285 // This is only really a signed overflow check if the inputs have been
1286 // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1287 // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1288 unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1289 if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1290 IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1291 return nullptr;
1292
1293 // In order to replace the original add with a narrower
1294 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1295 // and truncates that discard the high bits of the add. Verify that this is
1296 // the case.
1297 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1298 for (User *U : OrigAdd->users()) {
1299 if (U == AddWithCst)
1300 continue;
1301
1302 // Only accept truncates for now. We would really like a nice recursive
1303 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1304 // chain to see which bits of a value are actually demanded. If the
1305 // original add had another add which was then immediately truncated, we
1306 // could still do the transformation.
1307 TruncInst *TI = dyn_cast<TruncInst>(U);
1308 if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1309 return nullptr;
1310 }
1311
1312 // If the pattern matches, truncate the inputs to the narrower type and
1313 // use the sadd_with_overflow intrinsic to efficiently compute both the
1314 // result and the overflow bit.
1315 Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1316 Function *F = Intrinsic::getDeclaration(
1317 I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1318
1319 InstCombiner::BuilderTy &Builder = IC.Builder;
1320
1321 // Put the new code above the original add, in case there are any uses of the
1322 // add between the add and the compare.
1323 Builder.SetInsertPoint(OrigAdd);
1324
1325 Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1326 Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1327 CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1328 Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1329 Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1330
1331 // The inner add was the result of the narrow add, zero extended to the
1332 // wider type. Replace it with the result computed by the intrinsic.
1333 IC.replaceInstUsesWith(*OrigAdd, ZExt);
1334 IC.eraseInstFromFunction(*OrigAdd);
1335
1336 // The original icmp gets replaced with the overflow value.
1337 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1338}
1339
1340/// If we have:
1341/// icmp eq/ne (urem/srem %x, %y), 0
1342/// iff %y is a power-of-two, we can replace this with a bit test:
1343/// icmp eq/ne (and %x, (add %y, -1)), 0
1344Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1345 // This fold is only valid for equality predicates.
1346 if (!I.isEquality())
1347 return nullptr;
1348 ICmpInst::Predicate Pred;
1349 Value *X, *Y, *Zero;
1350 if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1351 m_CombineAnd(m_Zero(), m_Value(Zero)))))
1352 return nullptr;
1353 if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1354 return nullptr;
1355 // This may increase instruction count, we don't enforce that Y is a constant.
1356 Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1357 Value *Masked = Builder.CreateAnd(X, Mask);
1358 return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1359}
1360
1361/// Fold equality-comparison between zero and any (maybe truncated) right-shift
1362/// by one-less-than-bitwidth into a sign test on the original value.
1363Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1364 Instruction *Val;
1365 ICmpInst::Predicate Pred;
1366 if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1367 return nullptr;
1368
1369 Value *X;
1370 Type *XTy;
1371
1372 Constant *C;
1373 if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1374 XTy = X->getType();
1375 unsigned XBitWidth = XTy->getScalarSizeInBits();
1376 if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1377 APInt(XBitWidth, XBitWidth - 1))))
1378 return nullptr;
1379 } else if (isa<BinaryOperator>(Val) &&
1380 (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1381 cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1382 /*AnalyzeForSignBitExtraction=*/true))) {
1383 XTy = X->getType();
1384 } else
1385 return nullptr;
1386
1387 return ICmpInst::Create(Instruction::ICmp,
1388 Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1389 : ICmpInst::ICMP_SLT,
1390 X, ConstantInt::getNullValue(XTy));
1391}
1392
1393// Handle icmp pred X, 0
1394Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1395 CmpInst::Predicate Pred = Cmp.getPredicate();
1396 if (!match(Cmp.getOperand(1), m_Zero()))
1397 return nullptr;
1398
1399 // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1400 if (Pred == ICmpInst::ICMP_SGT) {
1401 Value *A, *B;
1402 SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1403 if (SPR.Flavor == SPF_SMIN) {
1404 if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1405 return new ICmpInst(Pred, B, Cmp.getOperand(1));
1406 if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1407 return new ICmpInst(Pred, A, Cmp.getOperand(1));
1408 }
1409 }
1410
1411 if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1412 return New;
1413
1414 // Given:
1415 // icmp eq/ne (urem %x, %y), 0
1416 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1417 // icmp eq/ne %x, 0
1418 Value *X, *Y;
1419 if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1420 ICmpInst::isEquality(Pred)) {
1421 KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1422 KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1423 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1424 return new ICmpInst(Pred, X, Cmp.getOperand(1));
1425 }
1426
1427 return nullptr;
1428}
1429
1430/// Fold icmp Pred X, C.
1431/// TODO: This code structure does not make sense. The saturating add fold
1432/// should be moved to some other helper and extended as noted below (it is also
1433/// possible that code has been made unnecessary - do we canonicalize IR to
1434/// overflow/saturating intrinsics or not?).
1435Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1436 // Match the following pattern, which is a common idiom when writing
1437 // overflow-safe integer arithmetic functions. The source performs an addition
1438 // in wider type and explicitly checks for overflow using comparisons against
1439 // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1440 //
1441 // TODO: This could probably be generalized to handle other overflow-safe
1442 // operations if we worked out the formulas to compute the appropriate magic
1443 // constants.
1444 //
1445 // sum = a + b
1446 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
1447 CmpInst::Predicate Pred = Cmp.getPredicate();
1448 Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1449 Value *A, *B;
1450 ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1451 if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1452 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1453 if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1454 return Res;
1455
1456 // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1457 Constant *C = dyn_cast<Constant>(Op1);
1458 if (!C)
1459 return nullptr;
1460
1461 if (auto *Phi = dyn_cast<PHINode>(Op0))
1462 if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1463 Type *Ty = Cmp.getType();
1464 Builder.SetInsertPoint(Phi);
1465 PHINode *NewPhi =
1466 Builder.CreatePHI(Ty, Phi->getNumOperands());
1467 for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1468 auto *Input =
1469 cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1470 auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1471 NewPhi->addIncoming(BoolInput, Predecessor);
1472 }
1473 NewPhi->takeName(&Cmp);
1474 return replaceInstUsesWith(Cmp, NewPhi);
1475 }
1476
1477 return nullptr;
1478}
1479
1480/// Canonicalize icmp instructions based on dominating conditions.
1481Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1482 // This is a cheap/incomplete check for dominance - just match a single
1483 // predecessor with a conditional branch.
1484 BasicBlock *CmpBB = Cmp.getParent();
1485 BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1486 if (!DomBB)
1487 return nullptr;
1488
1489 Value *DomCond;
1490 BasicBlock *TrueBB, *FalseBB;
1491 if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1492 return nullptr;
1493
1494 assert((TrueBB == CmpBB || FalseBB == CmpBB) &&(((TrueBB == CmpBB || FalseBB == CmpBB) && "Predecessor block does not point to successor?"
) ? static_cast<void> (0) : __assert_fail ("(TrueBB == CmpBB || FalseBB == CmpBB) && \"Predecessor block does not point to successor?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1495, __PRETTY_FUNCTION__))
1495 "Predecessor block does not point to successor?")(((TrueBB == CmpBB || FalseBB == CmpBB) && "Predecessor block does not point to successor?"
) ? static_cast<void> (0) : __assert_fail ("(TrueBB == CmpBB || FalseBB == CmpBB) && \"Predecessor block does not point to successor?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1495, __PRETTY_FUNCTION__))
;
1496
1497 // The branch should get simplified. Don't bother simplifying this condition.
1498 if (TrueBB == FalseBB)
1499 return nullptr;
1500
1501 // Try to simplify this compare to T/F based on the dominating condition.
1502 Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1503 if (Imp)
1504 return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1505
1506 CmpInst::Predicate Pred = Cmp.getPredicate();
1507 Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1508 ICmpInst::Predicate DomPred;
1509 const APInt *C, *DomC;
1510 if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1511 match(Y, m_APInt(C))) {
1512 // We have 2 compares of a variable with constants. Calculate the constant
1513 // ranges of those compares to see if we can transform the 2nd compare:
1514 // DomBB:
1515 // DomCond = icmp DomPred X, DomC
1516 // br DomCond, CmpBB, FalseBB
1517 // CmpBB:
1518 // Cmp = icmp Pred X, C
1519 ConstantRange CR = ConstantRange::makeAllowedICmpRegion(Pred, *C);
1520 ConstantRange DominatingCR =
1521 (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1522 : ConstantRange::makeExactICmpRegion(
1523 CmpInst::getInversePredicate(DomPred), *DomC);
1524 ConstantRange Intersection = DominatingCR.intersectWith(CR);
1525 ConstantRange Difference = DominatingCR.difference(CR);
1526 if (Intersection.isEmptySet())
1527 return replaceInstUsesWith(Cmp, Builder.getFalse());
1528 if (Difference.isEmptySet())
1529 return replaceInstUsesWith(Cmp, Builder.getTrue());
1530
1531 // Canonicalizing a sign bit comparison that gets used in a branch,
1532 // pessimizes codegen by generating branch on zero instruction instead
1533 // of a test and branch. So we avoid canonicalizing in such situations
1534 // because test and branch instruction has better branch displacement
1535 // than compare and branch instruction.
1536 bool UnusedBit;
1537 bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1538 if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1539 return nullptr;
1540
1541 if (const APInt *EqC = Intersection.getSingleElement())
1542 return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1543 if (const APInt *NeC = Difference.getSingleElement())
1544 return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1545 }
1546
1547 return nullptr;
1548}
1549
1550/// Fold icmp (trunc X, Y), C.
1551Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1552 TruncInst *Trunc,
1553 const APInt &C) {
1554 ICmpInst::Predicate Pred = Cmp.getPredicate();
1555 Value *X = Trunc->getOperand(0);
1556 if (C.isOneValue() && C.getBitWidth() > 1) {
1557 // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1558 Value *V = nullptr;
1559 if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1560 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1561 ConstantInt::get(V->getType(), 1));
1562 }
1563
1564 if (Cmp.isEquality() && Trunc->hasOneUse()) {
1565 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1566 // of the high bits truncated out of x are known.
1567 unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1568 SrcBits = X->getType()->getScalarSizeInBits();
1569 KnownBits Known = computeKnownBits(X, 0, &Cmp);
1570
1571 // If all the high bits are known, we can do this xform.
1572 if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1573 // Pull in the high bits from known-ones set.
1574 APInt NewRHS = C.zext(SrcBits);
1575 NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1576 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1577 }
1578 }
1579
1580 return nullptr;
1581}
1582
1583/// Fold icmp (xor X, Y), C.
1584Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1585 BinaryOperator *Xor,
1586 const APInt &C) {
1587 Value *X = Xor->getOperand(0);
1588 Value *Y = Xor->getOperand(1);
1589 const APInt *XorC;
1590 if (!match(Y, m_APInt(XorC)))
1591 return nullptr;
1592
1593 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1594 // fold the xor.
1595 ICmpInst::Predicate Pred = Cmp.getPredicate();
1596 bool TrueIfSigned = false;
1597 if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1598
1599 // If the sign bit of the XorCst is not set, there is no change to
1600 // the operation, just stop using the Xor.
1601 if (!XorC->isNegative())
1602 return replaceOperand(Cmp, 0, X);
1603
1604 // Emit the opposite comparison.
1605 if (TrueIfSigned)
1606 return new ICmpInst(ICmpInst::ICMP_SGT, X,
1607 ConstantInt::getAllOnesValue(X->getType()));
1608 else
1609 return new ICmpInst(ICmpInst::ICMP_SLT, X,
1610 ConstantInt::getNullValue(X->getType()));
1611 }
1612
1613 if (Xor->hasOneUse()) {
1614 // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1615 if (!Cmp.isEquality() && XorC->isSignMask()) {
1616 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1617 : Cmp.getSignedPredicate();
1618 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1619 }
1620
1621 // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1622 if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1623 Pred = Cmp.isSigned() ? Cmp.getUnsignedPredicate()
1624 : Cmp.getSignedPredicate();
1625 Pred = Cmp.getSwappedPredicate(Pred);
1626 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1627 }
1628 }
1629
1630 // Mask constant magic can eliminate an 'xor' with unsigned compares.
1631 if (Pred == ICmpInst::ICMP_UGT) {
1632 // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1633 if (*XorC == ~C && (C + 1).isPowerOf2())
1634 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1635 // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1636 if (*XorC == C && (C + 1).isPowerOf2())
1637 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1638 }
1639 if (Pred == ICmpInst::ICMP_ULT) {
1640 // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1641 if (*XorC == -C && C.isPowerOf2())
1642 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1643 ConstantInt::get(X->getType(), ~C));
1644 // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1645 if (*XorC == C && (-C).isPowerOf2())
1646 return new ICmpInst(ICmpInst::ICMP_UGT, X,
1647 ConstantInt::get(X->getType(), ~C));
1648 }
1649 return nullptr;
1650}
1651
1652/// Fold icmp (and (sh X, Y), C2), C1.
1653Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1654 BinaryOperator *And,
1655 const APInt &C1,
1656 const APInt &C2) {
1657 BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1658 if (!Shift || !Shift->isShift())
1659 return nullptr;
1660
1661 // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1662 // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1663 // code produced by the clang front-end, for bitfield access.
1664 // This seemingly simple opportunity to fold away a shift turns out to be
1665 // rather complicated. See PR17827 for details.
1666 unsigned ShiftOpcode = Shift->getOpcode();
1667 bool IsShl = ShiftOpcode == Instruction::Shl;
1668 const APInt *C3;
1669 if (match(Shift->getOperand(1), m_APInt(C3))) {
1670 APInt NewAndCst, NewCmpCst;
1671 bool AnyCmpCstBitsShiftedOut;
1672 if (ShiftOpcode == Instruction::Shl) {
1673 // For a left shift, we can fold if the comparison is not signed. We can
1674 // also fold a signed comparison if the mask value and comparison value
1675 // are not negative. These constraints may not be obvious, but we can
1676 // prove that they are correct using an SMT solver.
1677 if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1678 return nullptr;
1679
1680 NewCmpCst = C1.lshr(*C3);
1681 NewAndCst = C2.lshr(*C3);
1682 AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1683 } else if (ShiftOpcode == Instruction::LShr) {
1684 // For a logical right shift, we can fold if the comparison is not signed.
1685 // We can also fold a signed comparison if the shifted mask value and the
1686 // shifted comparison value are not negative. These constraints may not be
1687 // obvious, but we can prove that they are correct using an SMT solver.
1688 NewCmpCst = C1.shl(*C3);
1689 NewAndCst = C2.shl(*C3);
1690 AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1691 if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1692 return nullptr;
1693 } else {
1694 // For an arithmetic shift, check that both constants don't use (in a
1695 // signed sense) the top bits being shifted out.
1696 assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode")((ShiftOpcode == Instruction::AShr && "Unknown shift opcode"
) ? static_cast<void> (0) : __assert_fail ("ShiftOpcode == Instruction::AShr && \"Unknown shift opcode\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 1696, __PRETTY_FUNCTION__))
;
1697 NewCmpCst = C1.shl(*C3);
1698 NewAndCst = C2.shl(*C3);
1699 AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1700 if (NewAndCst.ashr(*C3) != C2)
1701 return nullptr;
1702 }
1703
1704 if (AnyCmpCstBitsShiftedOut) {
1705 // If we shifted bits out, the fold is not going to work out. As a
1706 // special case, check to see if this means that the result is always
1707 // true or false now.
1708 if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1709 return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1710 if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1711 return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1712 } else {
1713 Value *NewAnd = Builder.CreateAnd(
1714 Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1715 return new ICmpInst(Cmp.getPredicate(),
1716 NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1717 }
1718 }
1719
1720 // Turn ((X >> Y) & C2) == 0 into (X & (C2 << Y)) == 0. The latter is
1721 // preferable because it allows the C2 << Y expression to be hoisted out of a
1722 // loop if Y is invariant and X is not.
1723 if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1724 !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1725 // Compute C2 << Y.
1726 Value *NewShift =
1727 IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1728 : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1729
1730 // Compute X & (C2 << Y).
1731 Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1732 return replaceOperand(Cmp, 0, NewAnd);
1733 }
1734
1735 return nullptr;
1736}
1737
1738/// Fold icmp (and X, C2), C1.
1739Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1740 BinaryOperator *And,
1741 const APInt &C1) {
1742 bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1743
1744 // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1745 // TODO: We canonicalize to the longer form for scalars because we have
1746 // better analysis/folds for icmp, and codegen may be better with icmp.
1747 if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1748 match(And->getOperand(1), m_One()))
1749 return new TruncInst(And->getOperand(0), Cmp.getType());
1750
1751 const APInt *C2;
1752 Value *X;
1753 if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1754 return nullptr;
1755
1756 // Don't perform the following transforms if the AND has multiple uses
1757 if (!And->hasOneUse())
1758 return nullptr;
1759
1760 if (Cmp.isEquality() && C1.isNullValue()) {
1761 // Restrict this fold to single-use 'and' (PR10267).
1762 // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1763 if (C2->isSignMask()) {
1764 Constant *Zero = Constant::getNullValue(X->getType());
1765 auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1766 return new ICmpInst(NewPred, X, Zero);
1767 }
1768
1769 // Restrict this fold only for single-use 'and' (PR10267).
1770 // ((%x & C) == 0) --> %x u< (-C) iff (-C) is power of two.
1771 if ((~(*C2) + 1).isPowerOf2()) {
1772 Constant *NegBOC =
1773 ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1774 auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1775 return new ICmpInst(NewPred, X, NegBOC);
1776 }
1777 }
1778
1779 // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1780 // the input width without changing the value produced, eliminate the cast:
1781 //
1782 // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1783 //
1784 // We can do this transformation if the constants do not have their sign bits
1785 // set or if it is an equality comparison. Extending a relational comparison
1786 // when we're checking the sign bit would not work.
1787 Value *W;
1788 if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1789 (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1790 // TODO: Is this a good transform for vectors? Wider types may reduce
1791 // throughput. Should this transform be limited (even for scalars) by using
1792 // shouldChangeType()?
1793 if (!Cmp.getType()->isVectorTy()) {
1794 Type *WideType = W->getType();
1795 unsigned WideScalarBits = WideType->getScalarSizeInBits();
1796 Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1797 Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1798 Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1799 return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1800 }
1801 }
1802
1803 if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1804 return I;
1805
1806 // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1807 // (icmp pred (and A, (or (shl 1, B), 1), 0))
1808 //
1809 // iff pred isn't signed
1810 if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1811 match(And->getOperand(1), m_One())) {
1812 Constant *One = cast<Constant>(And->getOperand(1));
1813 Value *Or = And->getOperand(0);
1814 Value *A, *B, *LShr;
1815 if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1816 match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1817 unsigned UsesRemoved = 0;
1818 if (And->hasOneUse())
1819 ++UsesRemoved;
1820 if (Or->hasOneUse())
1821 ++UsesRemoved;
1822 if (LShr->hasOneUse())
1823 ++UsesRemoved;
1824
1825 // Compute A & ((1 << B) | 1)
1826 Value *NewOr = nullptr;
1827 if (auto *C = dyn_cast<Constant>(B)) {
1828 if (UsesRemoved >= 1)
1829 NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1830 } else {
1831 if (UsesRemoved >= 3)
1832 NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1833 /*HasNUW=*/true),
1834 One, Or->getName());
1835 }
1836 if (NewOr) {
1837 Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1838 return replaceOperand(Cmp, 0, NewAnd);
1839 }
1840 }
1841 }
1842
1843 return nullptr;
1844}
1845
1846/// Fold icmp (and X, Y), C.
1847Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1848 BinaryOperator *And,
1849 const APInt &C) {
1850 if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1851 return I;
1852
1853 // TODO: These all require that Y is constant too, so refactor with the above.
1854
1855 // Try to optimize things like "A[i] & 42 == 0" to index computations.
1856 Value *X = And->getOperand(0);
1857 Value *Y = And->getOperand(1);
1858 if (auto *LI = dyn_cast<LoadInst>(X))
1859 if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1860 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1861 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1862 !LI->isVolatile() && isa<ConstantInt>(Y)) {
1863 ConstantInt *C2 = cast<ConstantInt>(Y);
1864 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1865 return Res;
1866 }
1867
1868 if (!Cmp.isEquality())
1869 return nullptr;
1870
1871 // X & -C == -C -> X > u ~C
1872 // X & -C != -C -> X <= u ~C
1873 // iff C is a power of 2
1874 if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1875 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT
1876 : CmpInst::ICMP_ULE;
1877 return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1878 }
1879
1880 // (X & C2) == 0 -> (trunc X) >= 0
1881 // (X & C2) != 0 -> (trunc X) < 0
1882 // iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1883 const APInt *C2;
1884 if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1885 int32_t ExactLogBase2 = C2->exactLogBase2();
1886 if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1887 Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1888 if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1889 NTy = FixedVectorType::get(
1890 NTy, cast<FixedVectorType>(AndVTy)->getNumElements());
1891 Value *Trunc = Builder.CreateTrunc(X, NTy);
1892 auto NewPred = Cmp.getPredicate() == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE
1893 : CmpInst::ICMP_SLT;
1894 return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1895 }
1896 }
1897
1898 return nullptr;
1899}
1900
1901/// Fold icmp (or X, Y), C.
1902Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1903 BinaryOperator *Or,
1904 const APInt &C) {
1905 ICmpInst::Predicate Pred = Cmp.getPredicate();
1906 if (C.isOneValue()) {
1907 // icmp slt signum(V) 1 --> icmp slt V, 1
1908 Value *V = nullptr;
1909 if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1910 return new ICmpInst(ICmpInst::ICMP_SLT, V,
1911 ConstantInt::get(V->getType(), 1));
1912 }
1913
1914 Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1915 const APInt *MaskC;
1916 if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1917 if (*MaskC == C && (C + 1).isPowerOf2()) {
1918 // X | C == C --> X <=u C
1919 // X | C != C --> X >u C
1920 // iff C+1 is a power of 2 (C is a bitmask of the low bits)
1921 Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1922 return new ICmpInst(Pred, OrOp0, OrOp1);
1923 }
1924
1925 // More general: canonicalize 'equality with set bits mask' to
1926 // 'equality with clear bits mask'.
1927 // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1928 // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1929 if (Or->hasOneUse()) {
1930 Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1931 Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1932 return new ICmpInst(Pred, And, NewC);
1933 }
1934 }
1935
1936 if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1937 return nullptr;
1938
1939 Value *P, *Q;
1940 if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1941 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1942 // -> and (icmp eq P, null), (icmp eq Q, null).
1943 Value *CmpP =
1944 Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1945 Value *CmpQ =
1946 Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1947 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1948 return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1949 }
1950
1951 // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1952 // a shorter form that has more potential to be folded even further.
1953 Value *X1, *X2, *X3, *X4;
1954 if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1955 match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1956 // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1957 // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1958 Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1959 Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1960 auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1961 return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1962 }
1963
1964 return nullptr;
1965}
1966
1967/// Fold icmp (mul X, Y), C.
1968Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1969 BinaryOperator *Mul,
1970 const APInt &C) {
1971 const APInt *MulC;
1972 if (!match(Mul->getOperand(1), m_APInt(MulC)))
1973 return nullptr;
1974
1975 // If this is a test of the sign bit and the multiply is sign-preserving with
1976 // a constant operand, use the multiply LHS operand instead.
1977 ICmpInst::Predicate Pred = Cmp.getPredicate();
1978 if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1979 if (MulC->isNegative())
1980 Pred = ICmpInst::getSwappedPredicate(Pred);
1981 return new ICmpInst(Pred, Mul->getOperand(0),
1982 Constant::getNullValue(Mul->getType()));
1983 }
1984
1985 // If the multiply does not wrap, try to divide the compare constant by the
1986 // multiplication factor.
1987 if (Cmp.isEquality() && !MulC->isNullValue()) {
1988 // (mul nsw X, MulC) == C --> X == C /s MulC
1989 if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
1990 Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
1991 return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1992 }
1993 // (mul nuw X, MulC) == C --> X == C /u MulC
1994 if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
1995 Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
1996 return new ICmpInst(Pred, Mul->getOperand(0), NewC);
1997 }
1998 }
1999
2000 return nullptr;
2001}
2002
2003/// Fold icmp (shl 1, Y), C.
2004static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2005 const APInt &C) {
2006 Value *Y;
2007 if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2008 return nullptr;
2009
2010 Type *ShiftType = Shl->getType();
2011 unsigned TypeBits = C.getBitWidth();
2012 bool CIsPowerOf2 = C.isPowerOf2();
2013 ICmpInst::Predicate Pred = Cmp.getPredicate();
2014 if (Cmp.isUnsigned()) {
2015 // (1 << Y) pred C -> Y pred Log2(C)
2016 if (!CIsPowerOf2) {
2017 // (1 << Y) < 30 -> Y <= 4
2018 // (1 << Y) <= 30 -> Y <= 4
2019 // (1 << Y) >= 30 -> Y > 4
2020 // (1 << Y) > 30 -> Y > 4
2021 if (Pred == ICmpInst::ICMP_ULT)
2022 Pred = ICmpInst::ICMP_ULE;
2023 else if (Pred == ICmpInst::ICMP_UGE)
2024 Pred = ICmpInst::ICMP_UGT;
2025 }
2026
2027 // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2028 // (1 << Y) < 2147483648 -> Y < 31 -> Y != 31
2029 unsigned CLog2 = C.logBase2();
2030 if (CLog2 == TypeBits - 1) {
2031 if (Pred == ICmpInst::ICMP_UGE)
2032 Pred = ICmpInst::ICMP_EQ;
2033 else if (Pred == ICmpInst::ICMP_ULT)
2034 Pred = ICmpInst::ICMP_NE;
2035 }
2036 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2037 } else if (Cmp.isSigned()) {
2038 Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2039 if (C.isAllOnesValue()) {
2040 // (1 << Y) <= -1 -> Y == 31
2041 if (Pred == ICmpInst::ICMP_SLE)
2042 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2043
2044 // (1 << Y) > -1 -> Y != 31
2045 if (Pred == ICmpInst::ICMP_SGT)
2046 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2047 } else if (!C) {
2048 // (1 << Y) < 0 -> Y == 31
2049 // (1 << Y) <= 0 -> Y == 31
2050 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2051 return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2052
2053 // (1 << Y) >= 0 -> Y != 31
2054 // (1 << Y) > 0 -> Y != 31
2055 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2056 return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2057 }
2058 } else if (Cmp.isEquality() && CIsPowerOf2) {
2059 return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2060 }
2061
2062 return nullptr;
2063}
2064
2065/// Fold icmp (shl X, Y), C.
2066Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2067 BinaryOperator *Shl,
2068 const APInt &C) {
2069 const APInt *ShiftVal;
2070 if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2071 return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2072
2073 const APInt *ShiftAmt;
2074 if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2075 return foldICmpShlOne(Cmp, Shl, C);
2076
2077 // Check that the shift amount is in range. If not, don't perform undefined
2078 // shifts. When the shift is visited, it will be simplified.
2079 unsigned TypeBits = C.getBitWidth();
2080 if (ShiftAmt->uge(TypeBits))
2081 return nullptr;
2082
2083 ICmpInst::Predicate Pred = Cmp.getPredicate();
2084 Value *X = Shl->getOperand(0);
2085 Type *ShType = Shl->getType();
2086
2087 // NSW guarantees that we are only shifting out sign bits from the high bits,
2088 // so we can ASHR the compare constant without needing a mask and eliminate
2089 // the shift.
2090 if (Shl->hasNoSignedWrap()) {
2091 if (Pred == ICmpInst::ICMP_SGT) {
2092 // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2093 APInt ShiftedC = C.ashr(*ShiftAmt);
2094 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2095 }
2096 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2097 C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2098 APInt ShiftedC = C.ashr(*ShiftAmt);
2099 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2100 }
2101 if (Pred == ICmpInst::ICMP_SLT) {
2102 // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2103 // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2104 // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2105 // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2106 assert(!C.isMinSignedValue() && "Unexpected icmp slt")((!C.isMinSignedValue() && "Unexpected icmp slt") ? static_cast
<void> (0) : __assert_fail ("!C.isMinSignedValue() && \"Unexpected icmp slt\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2106, __PRETTY_FUNCTION__))
;
2107 APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2108 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2109 }
2110 // If this is a signed comparison to 0 and the shift is sign preserving,
2111 // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2112 // do that if we're sure to not continue on in this function.
2113 if (isSignTest(Pred, C))
2114 return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2115 }
2116
2117 // NUW guarantees that we are only shifting out zero bits from the high bits,
2118 // so we can LSHR the compare constant without needing a mask and eliminate
2119 // the shift.
2120 if (Shl->hasNoUnsignedWrap()) {
2121 if (Pred == ICmpInst::ICMP_UGT) {
2122 // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2123 APInt ShiftedC = C.lshr(*ShiftAmt);
2124 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2125 }
2126 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2127 C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2128 APInt ShiftedC = C.lshr(*ShiftAmt);
2129 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2130 }
2131 if (Pred == ICmpInst::ICMP_ULT) {
2132 // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2133 // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2134 // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2135 // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2136 assert(C.ugt(0) && "ult 0 should have been eliminated")((C.ugt(0) && "ult 0 should have been eliminated") ? static_cast
<void> (0) : __assert_fail ("C.ugt(0) && \"ult 0 should have been eliminated\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2136, __PRETTY_FUNCTION__))
;
2137 APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2138 return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2139 }
2140 }
2141
2142 if (Cmp.isEquality() && Shl->hasOneUse()) {
2143 // Strength-reduce the shift into an 'and'.
2144 Constant *Mask = ConstantInt::get(
2145 ShType,
2146 APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2147 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2148 Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2149 return new ICmpInst(Pred, And, LShrC);
2150 }
2151
2152 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2153 bool TrueIfSigned = false;
2154 if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2155 // (X << 31) <s 0 --> (X & 1) != 0
2156 Constant *Mask = ConstantInt::get(
2157 ShType,
2158 APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2159 Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2160 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2161 And, Constant::getNullValue(ShType));
2162 }
2163
2164 // Simplify 'shl' inequality test into 'and' equality test.
2165 if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2166 // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2167 if ((C + 1).isPowerOf2() &&
2168 (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2169 Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2170 return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2171 : ICmpInst::ICMP_NE,
2172 And, Constant::getNullValue(ShType));
2173 }
2174 // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2175 if (C.isPowerOf2() &&
2176 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2177 Value *And =
2178 Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2179 return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2180 : ICmpInst::ICMP_NE,
2181 And, Constant::getNullValue(ShType));
2182 }
2183 }
2184
2185 // Transform (icmp pred iM (shl iM %v, N), C)
2186 // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2187 // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2188 // This enables us to get rid of the shift in favor of a trunc that may be
2189 // free on the target. It has the additional benefit of comparing to a
2190 // smaller constant that may be more target-friendly.
2191 unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2192 if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2193 DL.isLegalInteger(TypeBits - Amt)) {
2194 Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2195 if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2196 TruncTy = FixedVectorType::get(
2197 TruncTy, cast<FixedVectorType>(ShVTy)->getNumElements());
2198 Constant *NewC =
2199 ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2200 return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2201 }
2202
2203 return nullptr;
2204}
2205
2206/// Fold icmp ({al}shr X, Y), C.
2207Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2208 BinaryOperator *Shr,
2209 const APInt &C) {
2210 // An exact shr only shifts out zero bits, so:
2211 // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2212 Value *X = Shr->getOperand(0);
2213 CmpInst::Predicate Pred = Cmp.getPredicate();
2214 if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2215 C.isNullValue())
2216 return new ICmpInst(Pred, X, Cmp.getOperand(1));
2217
2218 const APInt *ShiftVal;
2219 if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2220 return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2221
2222 const APInt *ShiftAmt;
2223 if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2224 return nullptr;
2225
2226 // Check that the shift amount is in range. If not, don't perform undefined
2227 // shifts. When the shift is visited it will be simplified.
2228 unsigned TypeBits = C.getBitWidth();
2229 unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2230 if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2231 return nullptr;
2232
2233 bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2234 bool IsExact = Shr->isExact();
2235 Type *ShrTy = Shr->getType();
2236 // TODO: If we could guarantee that InstSimplify would handle all of the
2237 // constant-value-based preconditions in the folds below, then we could assert
2238 // those conditions rather than checking them. This is difficult because of
2239 // undef/poison (PR34838).
2240 if (IsAShr) {
2241 if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2242 // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2243 // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2244 APInt ShiftedC = C.shl(ShAmtVal);
2245 if (ShiftedC.ashr(ShAmtVal) == C)
2246 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2247 }
2248 if (Pred == CmpInst::ICMP_SGT) {
2249 // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2250 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2251 if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2252 (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2253 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2254 }
2255 } else {
2256 if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2257 // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2258 // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2259 APInt ShiftedC = C.shl(ShAmtVal);
2260 if (ShiftedC.lshr(ShAmtVal) == C)
2261 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2262 }
2263 if (Pred == CmpInst::ICMP_UGT) {
2264 // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2265 APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2266 if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2267 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2268 }
2269 }
2270
2271 if (!Cmp.isEquality())
2272 return nullptr;
2273
2274 // Handle equality comparisons of shift-by-constant.
2275
2276 // If the comparison constant changes with the shift, the comparison cannot
2277 // succeed (bits of the comparison constant cannot match the shifted value).
2278 // This should be known by InstSimplify and already be folded to true/false.
2279 assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||((((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
(!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
"Expected icmp+shr simplify did not occur.") ? static_cast<
void> (0) : __assert_fail ("((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && \"Expected icmp+shr simplify did not occur.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2281, __PRETTY_FUNCTION__))
2280 (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&((((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
(!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
"Expected icmp+shr simplify did not occur.") ? static_cast<
void> (0) : __assert_fail ("((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && \"Expected icmp+shr simplify did not occur.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2281, __PRETTY_FUNCTION__))
2281 "Expected icmp+shr simplify did not occur.")((((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
(!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
"Expected icmp+shr simplify did not occur.") ? static_cast<
void> (0) : __assert_fail ("((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) || (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) && \"Expected icmp+shr simplify did not occur.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2281, __PRETTY_FUNCTION__))
;
2282
2283 // If the bits shifted out are known zero, compare the unshifted value:
2284 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
2285 if (Shr->isExact())
2286 return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2287
2288 if (Shr->hasOneUse()) {
2289 // Canonicalize the shift into an 'and':
2290 // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2291 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2292 Constant *Mask = ConstantInt::get(ShrTy, Val);
2293 Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2294 return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2295 }
2296
2297 return nullptr;
2298}
2299
2300Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2301 BinaryOperator *SRem,
2302 const APInt &C) {
2303 // Match an 'is positive' or 'is negative' comparison of remainder by a
2304 // constant power-of-2 value:
2305 // (X % pow2C) sgt/slt 0
2306 const ICmpInst::Predicate Pred = Cmp.getPredicate();
2307 if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2308 return nullptr;
2309
2310 // TODO: The one-use check is standard because we do not typically want to
2311 // create longer instruction sequences, but this might be a special-case
2312 // because srem is not good for analysis or codegen.
2313 if (!SRem->hasOneUse())
2314 return nullptr;
2315
2316 const APInt *DivisorC;
2317 if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2318 return nullptr;
2319
2320 // Mask off the sign bit and the modulo bits (low-bits).
2321 Type *Ty = SRem->getType();
2322 APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2323 Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2324 Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2325
2326 // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2327 // bit is set. Example:
2328 // (i8 X % 32) s> 0 --> (X & 159) s> 0
2329 if (Pred == ICmpInst::ICMP_SGT)
2330 return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2331
2332 // For 'is negative?' check that the sign-bit is set and at least 1 masked
2333 // bit is set. Example:
2334 // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2335 return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2336}
2337
2338/// Fold icmp (udiv X, Y), C.
2339Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2340 BinaryOperator *UDiv,
2341 const APInt &C) {
2342 const APInt *C2;
2343 if (!match(UDiv->getOperand(0), m_APInt(C2)))
2344 return nullptr;
2345
2346 assert(*C2 != 0 && "udiv 0, X should have been simplified already.")((*C2 != 0 && "udiv 0, X should have been simplified already."
) ? static_cast<void> (0) : __assert_fail ("*C2 != 0 && \"udiv 0, X should have been simplified already.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2346, __PRETTY_FUNCTION__))
;
2347
2348 // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2349 Value *Y = UDiv->getOperand(1);
2350 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2351 assert(!C.isMaxValue() &&((!C.isMaxValue() && "icmp ugt X, UINT_MAX should have been simplified already."
) ? static_cast<void> (0) : __assert_fail ("!C.isMaxValue() && \"icmp ugt X, UINT_MAX should have been simplified already.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2352, __PRETTY_FUNCTION__))
2352 "icmp ugt X, UINT_MAX should have been simplified already.")((!C.isMaxValue() && "icmp ugt X, UINT_MAX should have been simplified already."
) ? static_cast<void> (0) : __assert_fail ("!C.isMaxValue() && \"icmp ugt X, UINT_MAX should have been simplified already.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2352, __PRETTY_FUNCTION__))
;
2353 return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2354 ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2355 }
2356
2357 // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2358 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2359 assert(C != 0 && "icmp ult X, 0 should have been simplified already.")((C != 0 && "icmp ult X, 0 should have been simplified already."
) ? static_cast<void> (0) : __assert_fail ("C != 0 && \"icmp ult X, 0 should have been simplified already.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2359, __PRETTY_FUNCTION__))
;
2360 return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2361 ConstantInt::get(Y->getType(), C2->udiv(C)));
2362 }
2363
2364 return nullptr;
2365}
2366
2367/// Fold icmp ({su}div X, Y), C.
2368Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2369 BinaryOperator *Div,
2370 const APInt &C) {
2371 // Fold: icmp pred ([us]div X, C2), C -> range test
2372 // Fold this div into the comparison, producing a range check.
2373 // Determine, based on the divide type, what the range is being
2374 // checked. If there is an overflow on the low or high side, remember
2375 // it, otherwise compute the range [low, hi) bounding the new value.
2376 // See: InsertRangeTest above for the kinds of replacements possible.
2377 const APInt *C2;
2378 if (!match(Div->getOperand(1), m_APInt(C2)))
2379 return nullptr;
2380
2381 // FIXME: If the operand types don't match the type of the divide
2382 // then don't attempt this transform. The code below doesn't have the
2383 // logic to deal with a signed divide and an unsigned compare (and
2384 // vice versa). This is because (x /s C2) <s C produces different
2385 // results than (x /s C2) <u C or (x /u C2) <s C or even
2386 // (x /u C2) <u C. Simply casting the operands and result won't
2387 // work. :( The if statement below tests that condition and bails
2388 // if it finds it.
2389 bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2390 if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2391 return nullptr;
2392
2393 // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2394 // INT_MIN will also fail if the divisor is 1. Although folds of all these
2395 // division-by-constant cases should be present, we can not assert that they
2396 // have happened before we reach this icmp instruction.
2397 if (C2->isNullValue() || C2->isOneValue() ||
2398 (DivIsSigned && C2->isAllOnesValue()))
2399 return nullptr;
2400
2401 // Compute Prod = C * C2. We are essentially solving an equation of
2402 // form X / C2 = C. We solve for X by multiplying C2 and C.
2403 // By solving for X, we can turn this into a range check instead of computing
2404 // a divide.
2405 APInt Prod = C * *C2;
2406
2407 // Determine if the product overflows by seeing if the product is not equal to
2408 // the divide. Make sure we do the same kind of divide as in the LHS
2409 // instruction that we're folding.
2410 bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2411
2412 ICmpInst::Predicate Pred = Cmp.getPredicate();
2413
2414 // If the division is known to be exact, then there is no remainder from the
2415 // divide, so the covered range size is unit, otherwise it is the divisor.
2416 APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2417
2418 // Figure out the interval that is being checked. For example, a comparison
2419 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2420 // Compute this interval based on the constants involved and the signedness of
2421 // the compare/divide. This computes a half-open interval, keeping track of
2422 // whether either value in the interval overflows. After analysis each
2423 // overflow variable is set to 0 if it's corresponding bound variable is valid
2424 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2425 int LoOverflow = 0, HiOverflow = 0;
2426 APInt LoBound, HiBound;
2427
2428 if (!DivIsSigned) { // udiv
2429 // e.g. X/5 op 3 --> [15, 20)
2430 LoBound = Prod;
2431 HiOverflow = LoOverflow = ProdOV;
2432 if (!HiOverflow) {
2433 // If this is not an exact divide, then many values in the range collapse
2434 // to the same result value.
2435 HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2436 }
2437 } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2438 if (C.isNullValue()) { // (X / pos) op 0
2439 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
2440 LoBound = -(RangeSize - 1);
2441 HiBound = RangeSize;
2442 } else if (C.isStrictlyPositive()) { // (X / pos) op pos
2443 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
2444 HiOverflow = LoOverflow = ProdOV;
2445 if (!HiOverflow)
2446 HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2447 } else { // (X / pos) op neg
2448 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
2449 HiBound = Prod + 1;
2450 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2451 if (!LoOverflow) {
2452 APInt DivNeg = -RangeSize;
2453 LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2454 }
2455 }
2456 } else if (C2->isNegative()) { // Divisor is < 0.
2457 if (Div->isExact())
2458 RangeSize.negate();
2459 if (C.isNullValue()) { // (X / neg) op 0
2460 // e.g. X/-5 op 0 --> [-4, 5)
2461 LoBound = RangeSize + 1;
2462 HiBound = -RangeSize;
2463 if (HiBound == *C2) { // -INTMIN = INTMIN
2464 HiOverflow = 1; // [INTMIN+1, overflow)
2465 HiBound = APInt(); // e.g. X/INTMIN = 0 --> X > INTMIN
2466 }
2467 } else if (C.isStrictlyPositive()) { // (X / neg) op pos
2468 // e.g. X/-5 op 3 --> [-19, -14)
2469 HiBound = Prod + 1;
2470 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2471 if (!LoOverflow)
2472 LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2473 } else { // (X / neg) op neg
2474 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
2475 LoOverflow = HiOverflow = ProdOV;
2476 if (!HiOverflow)
2477 HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2478 }
2479
2480 // Dividing by a negative swaps the condition. LT <-> GT
2481 Pred = ICmpInst::getSwappedPredicate(Pred);
2482 }
2483
2484 Value *X = Div->getOperand(0);
2485 switch (Pred) {
2486 default: llvm_unreachable("Unhandled icmp opcode!")::llvm::llvm_unreachable_internal("Unhandled icmp opcode!", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2486)
;
2487 case ICmpInst::ICMP_EQ:
2488 if (LoOverflow && HiOverflow)
2489 return replaceInstUsesWith(Cmp, Builder.getFalse());
2490 if (HiOverflow)
2491 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2492 ICmpInst::ICMP_UGE, X,
2493 ConstantInt::get(Div->getType(), LoBound));
2494 if (LoOverflow)
2495 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2496 ICmpInst::ICMP_ULT, X,
2497 ConstantInt::get(Div->getType(), HiBound));
2498 return replaceInstUsesWith(
2499 Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2500 case ICmpInst::ICMP_NE:
2501 if (LoOverflow && HiOverflow)
2502 return replaceInstUsesWith(Cmp, Builder.getTrue());
2503 if (HiOverflow)
2504 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2505 ICmpInst::ICMP_ULT, X,
2506 ConstantInt::get(Div->getType(), LoBound));
2507 if (LoOverflow)
2508 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2509 ICmpInst::ICMP_UGE, X,
2510 ConstantInt::get(Div->getType(), HiBound));
2511 return replaceInstUsesWith(Cmp,
2512 insertRangeTest(X, LoBound, HiBound,
2513 DivIsSigned, false));
2514 case ICmpInst::ICMP_ULT:
2515 case ICmpInst::ICMP_SLT:
2516 if (LoOverflow == +1) // Low bound is greater than input range.
2517 return replaceInstUsesWith(Cmp, Builder.getTrue());
2518 if (LoOverflow == -1) // Low bound is less than input range.
2519 return replaceInstUsesWith(Cmp, Builder.getFalse());
2520 return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2521 case ICmpInst::ICMP_UGT:
2522 case ICmpInst::ICMP_SGT:
2523 if (HiOverflow == +1) // High bound greater than input range.
2524 return replaceInstUsesWith(Cmp, Builder.getFalse());
2525 if (HiOverflow == -1) // High bound less than input range.
2526 return replaceInstUsesWith(Cmp, Builder.getTrue());
2527 if (Pred == ICmpInst::ICMP_UGT)
2528 return new ICmpInst(ICmpInst::ICMP_UGE, X,
2529 ConstantInt::get(Div->getType(), HiBound));
2530 return new ICmpInst(ICmpInst::ICMP_SGE, X,
2531 ConstantInt::get(Div->getType(), HiBound));
2532 }
2533
2534 return nullptr;
2535}
2536
2537/// Fold icmp (sub X, Y), C.
2538Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2539 BinaryOperator *Sub,
2540 const APInt &C) {
2541 Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2542 ICmpInst::Predicate Pred = Cmp.getPredicate();
2543 const APInt *C2;
2544 APInt SubResult;
2545
2546 // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2547 if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2548 return new ICmpInst(Cmp.getPredicate(), Y,
2549 ConstantInt::get(Y->getType(), 0));
2550
2551 // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2552 if (match(X, m_APInt(C2)) &&
2553 ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2554 (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2555 !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2556 return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2557 ConstantInt::get(Y->getType(), SubResult));
2558
2559 // The following transforms are only worth it if the only user of the subtract
2560 // is the icmp.
2561 if (!Sub->hasOneUse())
2562 return nullptr;
2563
2564 if (Sub->hasNoSignedWrap()) {
2565 // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2566 if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2567 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2568
2569 // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2570 if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2571 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2572
2573 // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2574 if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2575 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2576
2577 // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2578 if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2579 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2580 }
2581
2582 if (!match(X, m_APInt(C2)))
2583 return nullptr;
2584
2585 // C2 - Y <u C -> (Y | (C - 1)) == C2
2586 // iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2587 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2588 (*C2 & (C - 1)) == (C - 1))
2589 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2590
2591 // C2 - Y >u C -> (Y | C) != C2
2592 // iff C2 & C == C and C + 1 is a power of 2
2593 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2594 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2595
2596 return nullptr;
2597}
2598
2599/// Fold icmp (add X, Y), C.
2600Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2601 BinaryOperator *Add,
2602 const APInt &C) {
2603 Value *Y = Add->getOperand(1);
2604 const APInt *C2;
2605 if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2606 return nullptr;
2607
2608 // Fold icmp pred (add X, C2), C.
2609 Value *X = Add->getOperand(0);
2610 Type *Ty = Add->getType();
2611 CmpInst::Predicate Pred = Cmp.getPredicate();
2612
2613 // If the add does not wrap, we can always adjust the compare by subtracting
2614 // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2615 // are canonicalized to SGT/SLT/UGT/ULT.
2616 if ((Add->hasNoSignedWrap() &&
2617 (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2618 (Add->hasNoUnsignedWrap() &&
2619 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2620 bool Overflow;
2621 APInt NewC =
2622 Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2623 // If there is overflow, the result must be true or false.
2624 // TODO: Can we assert there is no overflow because InstSimplify always
2625 // handles those cases?
2626 if (!Overflow)
2627 // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2628 return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2629 }
2630
2631 auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2632 const APInt &Upper = CR.getUpper();
2633 const APInt &Lower = CR.getLower();
2634 if (Cmp.isSigned()) {
2635 if (Lower.isSignMask())
2636 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2637 if (Upper.isSignMask())
2638 return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2639 } else {
2640 if (Lower.isMinValue())
2641 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2642 if (Upper.isMinValue())
2643 return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2644 }
2645
2646 if (!Add->hasOneUse())
2647 return nullptr;
2648
2649 // X+C <u C2 -> (X & -C2) == C
2650 // iff C & (C2-1) == 0
2651 // C2 is a power of 2
2652 if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2653 return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2654 ConstantExpr::getNeg(cast<Constant>(Y)));
2655
2656 // X+C >u C2 -> (X & ~C2) != C
2657 // iff C & C2 == 0
2658 // C2+1 is a power of 2
2659 if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2660 return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2661 ConstantExpr::getNeg(cast<Constant>(Y)));
2662
2663 return nullptr;
2664}
2665
2666bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2667 Value *&RHS, ConstantInt *&Less,
2668 ConstantInt *&Equal,
2669 ConstantInt *&Greater) {
2670 // TODO: Generalize this to work with other comparison idioms or ensure
2671 // they get canonicalized into this form.
2672
2673 // select i1 (a == b),
2674 // i32 Equal,
2675 // i32 (select i1 (a < b), i32 Less, i32 Greater)
2676 // where Equal, Less and Greater are placeholders for any three constants.
2677 ICmpInst::Predicate PredA;
2678 if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2679 !ICmpInst::isEquality(PredA))
2680 return false;
2681 Value *EqualVal = SI->getTrueValue();
2682 Value *UnequalVal = SI->getFalseValue();
2683 // We still can get non-canonical predicate here, so canonicalize.
2684 if (PredA == ICmpInst::ICMP_NE)
2685 std::swap(EqualVal, UnequalVal);
2686 if (!match(EqualVal, m_ConstantInt(Equal)))
2687 return false;
2688 ICmpInst::Predicate PredB;
2689 Value *LHS2, *RHS2;
2690 if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2691 m_ConstantInt(Less), m_ConstantInt(Greater))))
2692 return false;
2693 // We can get predicate mismatch here, so canonicalize if possible:
2694 // First, ensure that 'LHS' match.
2695 if (LHS2 != LHS) {
2696 // x sgt y <--> y slt x
2697 std::swap(LHS2, RHS2);
2698 PredB = ICmpInst::getSwappedPredicate(PredB);
2699 }
2700 if (LHS2 != LHS)
2701 return false;
2702 // We also need to canonicalize 'RHS'.
2703 if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2704 // x sgt C-1 <--> x sge C <--> not(x slt C)
2705 auto FlippedStrictness =
2706 InstCombiner::getFlippedStrictnessPredicateAndConstant(
2707 PredB, cast<Constant>(RHS2));
2708 if (!FlippedStrictness)
2709 return false;
2710 assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check")((FlippedStrictness->first == ICmpInst::ICMP_SGE &&
"Sanity check") ? static_cast<void> (0) : __assert_fail
("FlippedStrictness->first == ICmpInst::ICMP_SGE && \"Sanity check\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2710, __PRETTY_FUNCTION__))
;
2711 RHS2 = FlippedStrictness->second;
2712 // And kind-of perform the result swap.
2713 std::swap(Less, Greater);
2714 PredB = ICmpInst::ICMP_SLT;
2715 }
2716 return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2717}
2718
2719Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2720 SelectInst *Select,
2721 ConstantInt *C) {
2722
2723 assert(C && "Cmp RHS should be a constant int!")((C && "Cmp RHS should be a constant int!") ? static_cast
<void> (0) : __assert_fail ("C && \"Cmp RHS should be a constant int!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2723, __PRETTY_FUNCTION__))
;
2724 // If we're testing a constant value against the result of a three way
2725 // comparison, the result can be expressed directly in terms of the
2726 // original values being compared. Note: We could possibly be more
2727 // aggressive here and remove the hasOneUse test. The original select is
2728 // really likely to simplify or sink when we remove a test of the result.
2729 Value *OrigLHS, *OrigRHS;
2730 ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2731 if (Cmp.hasOneUse() &&
2732 matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2733 C3GreaterThan)) {
2734 assert(C1LessThan && C2Equal && C3GreaterThan)((C1LessThan && C2Equal && C3GreaterThan) ? static_cast
<void> (0) : __assert_fail ("C1LessThan && C2Equal && C3GreaterThan"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 2734, __PRETTY_FUNCTION__))
;
2735
2736 bool TrueWhenLessThan =
2737 ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2738 ->isAllOnesValue();
2739 bool TrueWhenEqual =
2740 ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2741 ->isAllOnesValue();
2742 bool TrueWhenGreaterThan =
2743 ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2744 ->isAllOnesValue();
2745
2746 // This generates the new instruction that will replace the original Cmp
2747 // Instruction. Instead of enumerating the various combinations when
2748 // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2749 // false, we rely on chaining of ORs and future passes of InstCombine to
2750 // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2751
2752 // When none of the three constants satisfy the predicate for the RHS (C),
2753 // the entire original Cmp can be simplified to a false.
2754 Value *Cond = Builder.getFalse();
2755 if (TrueWhenLessThan)
2756 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2757 OrigLHS, OrigRHS));
2758 if (TrueWhenEqual)
2759 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2760 OrigLHS, OrigRHS));
2761 if (TrueWhenGreaterThan)
2762 Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2763 OrigLHS, OrigRHS));
2764
2765 return replaceInstUsesWith(Cmp, Cond);
2766 }
2767 return nullptr;
2768}
2769
2770static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2771 InstCombiner::BuilderTy &Builder) {
2772 auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2773 if (!Bitcast)
2774 return nullptr;
2775
2776 ICmpInst::Predicate Pred = Cmp.getPredicate();
2777 Value *Op1 = Cmp.getOperand(1);
2778 Value *BCSrcOp = Bitcast->getOperand(0);
2779
2780 // Make sure the bitcast doesn't change the number of vector elements.
2781 if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2782 Bitcast->getDestTy()->getScalarSizeInBits()) {
2783 // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2784 Value *X;
2785 if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2786 // icmp eq (bitcast (sitofp X)), 0 --> icmp eq X, 0
2787 // icmp ne (bitcast (sitofp X)), 0 --> icmp ne X, 0
2788 // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2789 // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2790 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2791 Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2792 match(Op1, m_Zero()))
2793 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2794
2795 // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2796 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2797 return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2798
2799 // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2800 if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2801 return new ICmpInst(Pred, X,
2802 ConstantInt::getAllOnesValue(X->getType()));
2803 }
2804
2805 // Zero-equality checks are preserved through unsigned floating-point casts:
2806 // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2807 // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2808 if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2809 if (Cmp.isEquality() && match(Op1, m_Zero()))
2810 return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2811
2812 // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2813 // the FP extend/truncate because that cast does not change the sign-bit.
2814 // This is true for all standard IEEE-754 types and the X86 80-bit type.
2815 // The sign-bit is always the most significant bit in those types.
2816 const APInt *C;
2817 bool TrueIfSigned;
2818 if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2819 InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2820 if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2821 match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2822 // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2823 // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2824 Type *XType = X->getType();
2825
2826 // We can't currently handle Power style floating point operations here.
2827 if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2828
2829 Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2830 if (auto *XVTy = dyn_cast<VectorType>(XType))
2831 NewType = FixedVectorType::get(
2832 NewType, cast<FixedVectorType>(XVTy)->getNumElements());
2833 Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2834 if (TrueIfSigned)
2835 return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2836 ConstantInt::getNullValue(NewType));
2837 else
2838 return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2839 ConstantInt::getAllOnesValue(NewType));
2840 }
2841 }
2842 }
2843 }
2844
2845 // Test to see if the operands of the icmp are casted versions of other
2846 // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2847 if (Bitcast->getType()->isPointerTy() &&
2848 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2849 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2850 // so eliminate it as well.
2851 if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2852 Op1 = BC2->getOperand(0);
2853
2854 Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2855 return new ICmpInst(Pred, BCSrcOp, Op1);
2856 }
2857
2858 // Folding: icmp <pred> iN X, C
2859 // where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2860 // and C is a splat of a K-bit pattern
2861 // and SC is a constant vector = <C', C', C', ..., C'>
2862 // Into:
2863 // %E = extractelement <M x iK> %vec, i32 C'
2864 // icmp <pred> iK %E, trunc(C)
2865 const APInt *C;
2866 if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2867 !Bitcast->getType()->isIntegerTy() ||
2868 !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2869 return nullptr;
2870
2871 Value *Vec;
2872 ArrayRef<int> Mask;
2873 if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2874 // Check whether every element of Mask is the same constant
2875 if (is_splat(Mask)) {
2876 auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2877 auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2878 if (C->isSplat(EltTy->getBitWidth())) {
2879 // Fold the icmp based on the value of C
2880 // If C is M copies of an iK sized bit pattern,
2881 // then:
2882 // => %E = extractelement <N x iK> %vec, i32 Elem
2883 // icmp <pred> iK %SplatVal, <pattern>
2884 Value *Elem = Builder.getInt32(Mask[0]);
2885 Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2886 Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2887 return new ICmpInst(Pred, Extract, NewC);
2888 }
2889 }
2890 }
2891 return nullptr;
2892}
2893
2894/// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2895/// where X is some kind of instruction.
2896Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2897 const APInt *C;
2898 if (!match(Cmp.getOperand(1), m_APInt(C)))
2899 return nullptr;
2900
2901 if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2902 switch (BO->getOpcode()) {
2903 case Instruction::Xor:
2904 if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2905 return I;
2906 break;
2907 case Instruction::And:
2908 if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2909 return I;
2910 break;
2911 case Instruction::Or:
2912 if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2913 return I;
2914 break;
2915 case Instruction::Mul:
2916 if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2917 return I;
2918 break;
2919 case Instruction::Shl:
2920 if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2921 return I;
2922 break;
2923 case Instruction::LShr:
2924 case Instruction::AShr:
2925 if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2926 return I;
2927 break;
2928 case Instruction::SRem:
2929 if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2930 return I;
2931 break;
2932 case Instruction::UDiv:
2933 if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2934 return I;
2935 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2936 case Instruction::SDiv:
2937 if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
2938 return I;
2939 break;
2940 case Instruction::Sub:
2941 if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
2942 return I;
2943 break;
2944 case Instruction::Add:
2945 if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
2946 return I;
2947 break;
2948 default:
2949 break;
2950 }
2951 // TODO: These folds could be refactored to be part of the above calls.
2952 if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
2953 return I;
2954 }
2955
2956 // Match against CmpInst LHS being instructions other than binary operators.
2957
2958 if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
2959 // For now, we only support constant integers while folding the
2960 // ICMP(SELECT)) pattern. We can extend this to support vector of integers
2961 // similar to the cases handled by binary ops above.
2962 if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
2963 if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
2964 return I;
2965 }
2966
2967 if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
2968 if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
2969 return I;
2970 }
2971
2972 if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
2973 if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
2974 return I;
2975
2976 return nullptr;
2977}
2978
2979/// Fold an icmp equality instruction with binary operator LHS and constant RHS:
2980/// icmp eq/ne BO, C.
2981Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
2982 ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
2983 // TODO: Some of these folds could work with arbitrary constants, but this
2984 // function is limited to scalar and vector splat constants.
2985 if (!Cmp.isEquality())
2986 return nullptr;
2987
2988 ICmpInst::Predicate Pred = Cmp.getPredicate();
2989 bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
2990 Constant *RHS = cast<Constant>(Cmp.getOperand(1));
2991 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
2992
2993 switch (BO->getOpcode()) {
2994 case Instruction::SRem:
2995 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
2996 if (C.isNullValue() && BO->hasOneUse()) {
2997 const APInt *BOC;
2998 if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
2999 Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3000 return new ICmpInst(Pred, NewRem,
3001 Constant::getNullValue(BO->getType()));
3002 }
3003 }
3004 break;
3005 case Instruction::Add: {
3006 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3007 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3008 if (BO->hasOneUse())
3009 return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3010 } else if (C.isNullValue()) {
3011 // Replace ((add A, B) != 0) with (A != -B) if A or B is
3012 // efficiently invertible, or if the add has just this one use.
3013 if (Value *NegVal = dyn_castNegVal(BOp1))
3014 return new ICmpInst(Pred, BOp0, NegVal);
3015 if (Value *NegVal = dyn_castNegVal(BOp0))
3016 return new ICmpInst(Pred, NegVal, BOp1);
3017 if (BO->hasOneUse()) {
3018 Value *Neg = Builder.CreateNeg(BOp1);
3019 Neg->takeName(BO);
3020 return new ICmpInst(Pred, BOp0, Neg);
3021 }
3022 }
3023 break;
3024 }
3025 case Instruction::Xor:
3026 if (BO->hasOneUse()) {
3027 if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3028 // For the xor case, we can xor two constants together, eliminating
3029 // the explicit xor.
3030 return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3031 } else if (C.isNullValue()) {
3032 // Replace ((xor A, B) != 0) with (A != B)
3033 return new ICmpInst(Pred, BOp0, BOp1);
3034 }
3035 }
3036 break;
3037 case Instruction::Sub:
3038 if (BO->hasOneUse()) {
3039 // Only check for constant LHS here, as constant RHS will be canonicalized
3040 // to add and use the fold above.
3041 if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3042 // Replace ((sub BOC, B) != C) with (B != BOC-C).
3043 return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3044 } else if (C.isNullValue()) {
3045 // Replace ((sub A, B) != 0) with (A != B).
3046 return new ICmpInst(Pred, BOp0, BOp1);
3047 }
3048 }
3049 break;
3050 case Instruction::Or: {
3051 const APInt *BOC;
3052 if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3053 // Comparing if all bits outside of a constant mask are set?
3054 // Replace (X | C) == -1 with (X & ~C) == ~C.
3055 // This removes the -1 constant.
3056 Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3057 Value *And = Builder.CreateAnd(BOp0, NotBOC);
3058 return new ICmpInst(Pred, And, NotBOC);
3059 }
3060 break;
3061 }
3062 case Instruction::And: {
3063 const APInt *BOC;
3064 if (match(BOp1, m_APInt(BOC))) {
3065 // If we have ((X & C) == C), turn it into ((X & C) != 0).
3066 if (C == *BOC && C.isPowerOf2())
3067 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3068 BO, Constant::getNullValue(RHS->getType()));
3069 }
3070 break;
3071 }
3072 case Instruction::UDiv:
3073 if (C.isNullValue()) {
3074 // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3075 auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3076 return new ICmpInst(NewPred, BOp1, BOp0);
3077 }
3078 break;
3079 default:
3080 break;
3081 }
3082 return nullptr;
3083}
3084
3085/// Fold an equality icmp with LLVM intrinsic and constant operand.
3086Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3087 ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3088 Type *Ty = II->getType();
3089 unsigned BitWidth = C.getBitWidth();
3090 switch (II->getIntrinsicID()) {
3091 case Intrinsic::abs:
3092 // abs(A) == 0 -> A == 0
3093 // abs(A) == INT_MIN -> A == INT_MIN
3094 if (C.isNullValue() || C.isMinSignedValue())
3095 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3096 ConstantInt::get(Ty, C));
3097 break;
3098
3099 case Intrinsic::bswap:
3100 // bswap(A) == C -> A == bswap(C)
3101 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3102 ConstantInt::get(Ty, C.byteSwap()));
3103
3104 case Intrinsic::ctlz:
3105 case Intrinsic::cttz: {
3106 // ctz(A) == bitwidth(A) -> A == 0 and likewise for !=
3107 if (C == BitWidth)
3108 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3109 ConstantInt::getNullValue(Ty));
3110
3111 // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3112 // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3113 // Limit to one use to ensure we don't increase instruction count.
3114 unsigned Num = C.getLimitedValue(BitWidth);
3115 if (Num != BitWidth && II->hasOneUse()) {
3116 bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3117 APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3118 : APInt::getHighBitsSet(BitWidth, Num + 1);
3119 APInt Mask2 = IsTrailing
3120 ? APInt::getOneBitSet(BitWidth, Num)
3121 : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3122 return new ICmpInst(Cmp.getPredicate(),
3123 Builder.CreateAnd(II->getArgOperand(0), Mask1),
3124 ConstantInt::get(Ty, Mask2));
3125 }
3126 break;
3127 }
3128
3129 case Intrinsic::ctpop: {
3130 // popcount(A) == 0 -> A == 0 and likewise for !=
3131 // popcount(A) == bitwidth(A) -> A == -1 and likewise for !=
3132 bool IsZero = C.isNullValue();
3133 if (IsZero || C == BitWidth)
3134 return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3135 IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3136
3137 break;
3138 }
3139
3140 case Intrinsic::uadd_sat: {
3141 // uadd.sat(a, b) == 0 -> (a | b) == 0
3142 if (C.isNullValue()) {
3143 Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3144 return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3145 }
3146 break;
3147 }
3148
3149 case Intrinsic::usub_sat: {
3150 // usub.sat(a, b) == 0 -> a <= b
3151 if (C.isNullValue()) {
3152 ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3153 ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3154 return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3155 }
3156 break;
3157 }
3158 default:
3159 break;
3160 }
3161
3162 return nullptr;
3163}
3164
3165/// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
3166Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3167 IntrinsicInst *II,
3168 const APInt &C) {
3169 if (Cmp.isEquality())
3170 return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3171
3172 Type *Ty = II->getType();
3173 unsigned BitWidth = C.getBitWidth();
3174 switch (II->getIntrinsicID()) {
3175 case Intrinsic::ctlz: {
3176 // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3177 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3178 unsigned Num = C.getLimitedValue();
3179 APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3180 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3181 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3182 }
3183
3184 // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3185 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3186 C.uge(1) && C.ule(BitWidth)) {
3187 unsigned Num = C.getLimitedValue();
3188 APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3189 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3190 II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3191 }
3192 break;
3193 }
3194 case Intrinsic::cttz: {
3195 // Limit to one use to ensure we don't increase instruction count.
3196 if (!II->hasOneUse())
3197 return nullptr;
3198
3199 // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3200 if (Cmp.getPredicate() == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3201 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3202 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3203 Builder.CreateAnd(II->getArgOperand(0), Mask),
3204 ConstantInt::getNullValue(Ty));
3205 }
3206
3207 // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3208 if (Cmp.getPredicate() == ICmpInst::ICMP_ULT &&
3209 C.uge(1) && C.ule(BitWidth)) {
3210 APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3211 return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3212 Builder.CreateAnd(II->getArgOperand(0), Mask),
3213 ConstantInt::getNullValue(Ty));
3214 }
3215 break;
3216 }
3217 default:
3218 break;
3219 }
3220
3221 return nullptr;
3222}
3223
3224/// Handle icmp with constant (but not simple integer constant) RHS.
3225Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3226 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3227 Constant *RHSC = dyn_cast<Constant>(Op1);
3228 Instruction *LHSI = dyn_cast<Instruction>(Op0);
3229 if (!RHSC || !LHSI)
3230 return nullptr;
3231
3232 switch (LHSI->getOpcode()) {
3233 case Instruction::GetElementPtr:
3234 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3235 if (RHSC->isNullValue() &&
3236 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3237 return new ICmpInst(
3238 I.getPredicate(), LHSI->getOperand(0),
3239 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3240 break;
3241 case Instruction::PHI:
3242 // Only fold icmp into the PHI if the phi and icmp are in the same
3243 // block. If in the same block, we're encouraging jump threading. If
3244 // not, we are just pessimizing the code by making an i1 phi.
3245 if (LHSI->getParent() == I.getParent())
3246 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3247 return NV;
3248 break;
3249 case Instruction::Select: {
3250 // If either operand of the select is a constant, we can fold the
3251 // comparison into the select arms, which will cause one to be
3252 // constant folded and the select turned into a bitwise or.
3253 Value *Op1 = nullptr, *Op2 = nullptr;
3254 ConstantInt *CI = nullptr;
3255 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
3256 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3257 CI = dyn_cast<ConstantInt>(Op1);
3258 }
3259 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
3260 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3261 CI = dyn_cast<ConstantInt>(Op2);
3262 }
3263
3264 // We only want to perform this transformation if it will not lead to
3265 // additional code. This is true if either both sides of the select
3266 // fold to a constant (in which case the icmp is replaced with a select
3267 // which will usually simplify) or this is the only user of the
3268 // select (in which case we are trading a select+icmp for a simpler
3269 // select+icmp) or all uses of the select can be replaced based on
3270 // dominance information ("Global cases").
3271 bool Transform = false;
3272 if (Op1 && Op2)
3273 Transform = true;
3274 else if (Op1 || Op2) {
3275 // Local case
3276 if (LHSI->hasOneUse())
3277 Transform = true;
3278 // Global cases
3279 else if (CI && !CI->isZero())
3280 // When Op1 is constant try replacing select with second operand.
3281 // Otherwise Op2 is constant and try replacing select with first
3282 // operand.
3283 Transform =
3284 replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3285 }
3286 if (Transform) {
3287 if (!Op1)
3288 Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3289 I.getName());
3290 if (!Op2)
3291 Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3292 I.getName());
3293 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3294 }
3295 break;
3296 }
3297 case Instruction::IntToPtr:
3298 // icmp pred inttoptr(X), null -> icmp pred X, 0
3299 if (RHSC->isNullValue() &&
3300 DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3301 return new ICmpInst(
3302 I.getPredicate(), LHSI->getOperand(0),
3303 Constant::getNullValue(LHSI->getOperand(0)->getType()));
3304 break;
3305
3306 case Instruction::Load:
3307 // Try to optimize things like "A[i] > 4" to index computations.
3308 if (GetElementPtrInst *GEP =
3309 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3310 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3311 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3312 !cast<LoadInst>(LHSI)->isVolatile())
3313 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3314 return Res;
3315 }
3316 break;
3317 }
3318
3319 return nullptr;
3320}
3321
3322/// Some comparisons can be simplified.
3323/// In this case, we are looking for comparisons that look like
3324/// a check for a lossy truncation.
3325/// Folds:
3326/// icmp SrcPred (x & Mask), x to icmp DstPred x, Mask
3327/// Where Mask is some pattern that produces all-ones in low bits:
3328/// (-1 >> y)
3329/// ((-1 << y) >> y) <- non-canonical, has extra uses
3330/// ~(-1 << y)
3331/// ((1 << y) + (-1)) <- non-canonical, has extra uses
3332/// The Mask can be a constant, too.
3333/// For some predicates, the operands are commutative.
3334/// For others, x can only be on a specific side.
3335static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3336 InstCombiner::BuilderTy &Builder) {
3337 ICmpInst::Predicate SrcPred;
3338 Value *X, *M, *Y;
3339 auto m_VariableMask = m_CombineOr(
3340 m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3341 m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3342 m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3343 m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3344 auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3345 if (!match(&I, m_c_ICmp(SrcPred,
3346 m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3347 m_Deferred(X))))
3348 return nullptr;
3349
3350 ICmpInst::Predicate DstPred;
3351 switch (SrcPred) {
3352 case ICmpInst::Predicate::ICMP_EQ:
3353 // x & (-1 >> y) == x -> x u<= (-1 >> y)
3354 DstPred = ICmpInst::Predicate::ICMP_ULE;
3355 break;
3356 case ICmpInst::Predicate::ICMP_NE:
3357 // x & (-1 >> y) != x -> x u> (-1 >> y)
3358 DstPred = ICmpInst::Predicate::ICMP_UGT;
3359 break;
3360 case ICmpInst::Predicate::ICMP_ULT:
3361 // x & (-1 >> y) u< x -> x u> (-1 >> y)
3362 // x u> x & (-1 >> y) -> x u> (-1 >> y)
3363 DstPred = ICmpInst::Predicate::ICMP_UGT;
3364 break;
3365 case ICmpInst::Predicate::ICMP_UGE:
3366 // x & (-1 >> y) u>= x -> x u<= (-1 >> y)
3367 // x u<= x & (-1 >> y) -> x u<= (-1 >> y)
3368 DstPred = ICmpInst::Predicate::ICMP_ULE;
3369 break;
3370 case ICmpInst::Predicate::ICMP_SLT:
3371 // x & (-1 >> y) s< x -> x s> (-1 >> y)
3372 // x s> x & (-1 >> y) -> x s> (-1 >> y)
3373 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3374 return nullptr;
3375 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3376 return nullptr;
3377 DstPred = ICmpInst::Predicate::ICMP_SGT;
3378 break;
3379 case ICmpInst::Predicate::ICMP_SGE:
3380 // x & (-1 >> y) s>= x -> x s<= (-1 >> y)
3381 // x s<= x & (-1 >> y) -> x s<= (-1 >> y)
3382 if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3383 return nullptr;
3384 if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3385 return nullptr;
3386 DstPred = ICmpInst::Predicate::ICMP_SLE;
3387 break;
3388 case ICmpInst::Predicate::ICMP_SGT:
3389 case ICmpInst::Predicate::ICMP_SLE:
3390 return nullptr;
3391 case ICmpInst::Predicate::ICMP_UGT:
3392 case ICmpInst::Predicate::ICMP_ULE:
3393 llvm_unreachable("Instsimplify took care of commut. variant")::llvm::llvm_unreachable_internal("Instsimplify took care of commut. variant"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3393)
;
3394 break;
3395 default:
3396 llvm_unreachable("All possible folds are handled.")::llvm::llvm_unreachable_internal("All possible folds are handled."
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3396)
;
3397 }
3398
3399 // The mask value may be a vector constant that has undefined elements. But it
3400 // may not be safe to propagate those undefs into the new compare, so replace
3401 // those elements by copying an existing, defined, and safe scalar constant.
3402 Type *OpTy = M->getType();
3403 auto *VecC = dyn_cast<Constant>(M);
3404 if (OpTy->isVectorTy() && VecC && VecC->containsUndefElement()) {
3405 auto *OpVTy = cast<FixedVectorType>(OpTy);
3406 Constant *SafeReplacementConstant = nullptr;
3407 for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3408 if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3409 SafeReplacementConstant = VecC->getAggregateElement(i);
3410 break;
3411 }
3412 }
3413 assert(SafeReplacementConstant && "Failed to find undef replacement")((SafeReplacementConstant && "Failed to find undef replacement"
) ? static_cast<void> (0) : __assert_fail ("SafeReplacementConstant && \"Failed to find undef replacement\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3413, __PRETTY_FUNCTION__))
;
3414 M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3415 }
3416
3417 return Builder.CreateICmp(DstPred, X, M);
3418}
3419
3420/// Some comparisons can be simplified.
3421/// In this case, we are looking for comparisons that look like
3422/// a check for a lossy signed truncation.
3423/// Folds: (MaskedBits is a constant.)
3424/// ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3425/// Into:
3426/// (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3427/// Where KeptBits = bitwidth(%x) - MaskedBits
3428static Value *
3429foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3430 InstCombiner::BuilderTy &Builder) {
3431 ICmpInst::Predicate SrcPred;
3432 Value *X;
3433 const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3434 // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3435 if (!match(&I, m_c_ICmp(SrcPred,
3436 m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3437 m_APInt(C1))),
3438 m_Deferred(X))))
3439 return nullptr;
3440
3441 // Potential handling of non-splats: for each element:
3442 // * if both are undef, replace with constant 0.
3443 // Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3444 // * if both are not undef, and are different, bailout.
3445 // * else, only one is undef, then pick the non-undef one.
3446
3447 // The shift amount must be equal.
3448 if (*C0 != *C1)
3449 return nullptr;
3450 const APInt &MaskedBits = *C0;
3451 assert(MaskedBits != 0 && "shift by zero should be folded away already.")((MaskedBits != 0 && "shift by zero should be folded away already."
) ? static_cast<void> (0) : __assert_fail ("MaskedBits != 0 && \"shift by zero should be folded away already.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3451, __PRETTY_FUNCTION__))
;
3452
3453 ICmpInst::Predicate DstPred;
3454 switch (SrcPred) {
3455 case ICmpInst::Predicate::ICMP_EQ:
3456 // ((%x << MaskedBits) a>> MaskedBits) == %x
3457 // =>
3458 // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3459 DstPred = ICmpInst::Predicate::ICMP_ULT;
3460 break;
3461 case ICmpInst::Predicate::ICMP_NE:
3462 // ((%x << MaskedBits) a>> MaskedBits) != %x
3463 // =>
3464 // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3465 DstPred = ICmpInst::Predicate::ICMP_UGE;
3466 break;
3467 // FIXME: are more folds possible?
3468 default:
3469 return nullptr;
3470 }
3471
3472 auto *XType = X->getType();
3473 const unsigned XBitWidth = XType->getScalarSizeInBits();
3474 const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3475 assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched")((BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched"
) ? static_cast<void> (0) : __assert_fail ("BitWidth.ugt(MaskedBits) && \"shifts should leave some bits untouched\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3475, __PRETTY_FUNCTION__))
;
3476
3477 // KeptBits = bitwidth(%x) - MaskedBits
3478 const APInt KeptBits = BitWidth - MaskedBits;
3479 assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable")((KeptBits.ugt(0) && KeptBits.ult(BitWidth) &&
"unreachable") ? static_cast<void> (0) : __assert_fail
("KeptBits.ugt(0) && KeptBits.ult(BitWidth) && \"unreachable\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3479, __PRETTY_FUNCTION__))
;
3480 // ICmpCst = (1 << KeptBits)
3481 const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3482 assert(ICmpCst.isPowerOf2())((ICmpCst.isPowerOf2()) ? static_cast<void> (0) : __assert_fail
("ICmpCst.isPowerOf2()", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3482, __PRETTY_FUNCTION__))
;
3483 // AddCst = (1 << (KeptBits-1))
3484 const APInt AddCst = ICmpCst.lshr(1);
3485 assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2())((AddCst.ult(ICmpCst) && AddCst.isPowerOf2()) ? static_cast
<void> (0) : __assert_fail ("AddCst.ult(ICmpCst) && AddCst.isPowerOf2()"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3485, __PRETTY_FUNCTION__))
;
3486
3487 // T0 = add %x, AddCst
3488 Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3489 // T1 = T0 DstPred ICmpCst
3490 Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3491
3492 return T1;
3493}
3494
3495// Given pattern:
3496// icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3497// we should move shifts to the same hand of 'and', i.e. rewrite as
3498// icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3499// We are only interested in opposite logical shifts here.
3500// One of the shifts can be truncated.
3501// If we can, we want to end up creating 'lshr' shift.
3502static Value *
3503foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3504 InstCombiner::BuilderTy &Builder) {
3505 if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3506 !I.getOperand(0)->hasOneUse())
3507 return nullptr;
3508
3509 auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3510
3511 // Look for an 'and' of two logical shifts, one of which may be truncated.
3512 // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3513 Instruction *XShift, *MaybeTruncation, *YShift;
3514 if (!match(
3515 I.getOperand(0),
3516 m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3517 m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3518 m_AnyLogicalShift, m_Instruction(YShift))),
3519 m_Instruction(MaybeTruncation)))))
3520 return nullptr;
3521
3522 // We potentially looked past 'trunc', but only when matching YShift,
3523 // therefore YShift must have the widest type.
3524 Instruction *WidestShift = YShift;
3525 // Therefore XShift must have the shallowest type.
3526 // Or they both have identical types if there was no truncation.
3527 Instruction *NarrowestShift = XShift;
3528
3529 Type *WidestTy = WidestShift->getType();
3530 Type *NarrowestTy = NarrowestShift->getType();
3531 assert(NarrowestTy == I.getOperand(0)->getType() &&((NarrowestTy == I.getOperand(0)->getType() && "We did not look past any shifts while matching XShift though."
) ? static_cast<void> (0) : __assert_fail ("NarrowestTy == I.getOperand(0)->getType() && \"We did not look past any shifts while matching XShift though.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3532, __PRETTY_FUNCTION__))
3532 "We did not look past any shifts while matching XShift though.")((NarrowestTy == I.getOperand(0)->getType() && "We did not look past any shifts while matching XShift though."
) ? static_cast<void> (0) : __assert_fail ("NarrowestTy == I.getOperand(0)->getType() && \"We did not look past any shifts while matching XShift though.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3532, __PRETTY_FUNCTION__))
;
3533 bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3534
3535 // If YShift is a 'lshr', swap the shifts around.
3536 if (match(YShift, m_LShr(m_Value(), m_Value())))
3537 std::swap(XShift, YShift);
3538
3539 // The shifts must be in opposite directions.
3540 auto XShiftOpcode = XShift->getOpcode();
3541 if (XShiftOpcode == YShift->getOpcode())
3542 return nullptr; // Do not care about same-direction shifts here.
3543
3544 Value *X, *XShAmt, *Y, *YShAmt;
3545 match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3546 match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3547
3548 // If one of the values being shifted is a constant, then we will end with
3549 // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3550 // however, we will need to ensure that we won't increase instruction count.
3551 if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3552 // At least one of the hands of the 'and' should be one-use shift.
3553 if (!match(I.getOperand(0),
3554 m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3555 return nullptr;
3556 if (HadTrunc) {
3557 // Due to the 'trunc', we will need to widen X. For that either the old
3558 // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3559 if (!MaybeTruncation->hasOneUse() &&
3560 !NarrowestShift->getOperand(1)->hasOneUse())
3561 return nullptr;
3562 }
3563 }
3564
3565 // We have two shift amounts from two different shifts. The types of those
3566 // shift amounts may not match. If that's the case let's bailout now.
3567 if (XShAmt->getType() != YShAmt->getType())
3568 return nullptr;
3569
3570 // As input, we have the following pattern:
3571 // icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3572 // We want to rewrite that as:
3573 // icmp eq/ne (and (x shift (Q+K)), y), 0 iff (Q+K) u< bitwidth(x)
3574 // While we know that originally (Q+K) would not overflow
3575 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
3576 // shift amounts. so it may now overflow in smaller bitwidth.
3577 // To ensure that does not happen, we need to ensure that the total maximal
3578 // shift amount is still representable in that smaller bit width.
3579 unsigned MaximalPossibleTotalShiftAmount =
3580 (WidestTy->getScalarSizeInBits() - 1) +
3581 (NarrowestTy->getScalarSizeInBits() - 1);
3582 APInt MaximalRepresentableShiftAmount =
3583 APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3584 if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3585 return nullptr;
3586
3587 // Can we fold (XShAmt+YShAmt) ?
3588 auto *NewShAmt = dyn_cast_or_null<Constant>(
3589 SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3590 /*isNUW=*/false, SQ.getWithInstruction(&I)));
3591 if (!NewShAmt)
3592 return nullptr;
3593 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3594 unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3595
3596 // Is the new shift amount smaller than the bit width?
3597 // FIXME: could also rely on ConstantRange.
3598 if (!match(NewShAmt,
3599 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3600 APInt(WidestBitWidth, WidestBitWidth))))
3601 return nullptr;
3602
3603 // An extra legality check is needed if we had trunc-of-lshr.
3604 if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3605 auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3606 WidestShift]() {
3607 // It isn't obvious whether it's worth it to analyze non-constants here.
3608 // Also, let's basically give up on non-splat cases, pessimizing vectors.
3609 // If *any* of these preconditions matches we can perform the fold.
3610 Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3611 ? NewShAmt->getSplatValue()
3612 : NewShAmt;
3613 // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3614 if (NewShAmtSplat &&
3615 (NewShAmtSplat->isNullValue() ||
3616 NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3617 return true;
3618 // We consider *min* leading zeros so a single outlier
3619 // blocks the transform as opposed to allowing it.
3620 if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3621 KnownBits Known = computeKnownBits(C, SQ.DL);
3622 unsigned MinLeadZero = Known.countMinLeadingZeros();
3623 // If the value being shifted has at most lowest bit set we can fold.
3624 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3625 if (MaxActiveBits <= 1)
3626 return true;
3627 // Precondition: NewShAmt u<= countLeadingZeros(C)
3628 if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3629 return true;
3630 }
3631 if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3632 KnownBits Known = computeKnownBits(C, SQ.DL);
3633 unsigned MinLeadZero = Known.countMinLeadingZeros();
3634 // If the value being shifted has at most lowest bit set we can fold.
3635 unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3636 if (MaxActiveBits <= 1)
3637 return true;
3638 // Precondition: ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3639 if (NewShAmtSplat) {
3640 APInt AdjNewShAmt =
3641 (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3642 if (AdjNewShAmt.ule(MinLeadZero))
3643 return true;
3644 }
3645 }
3646 return false; // Can't tell if it's ok.
3647 };
3648 if (!CanFold())
3649 return nullptr;
3650 }
3651
3652 // All good, we can do this fold.
3653 X = Builder.CreateZExt(X, WidestTy);
3654 Y = Builder.CreateZExt(Y, WidestTy);
3655 // The shift is the same that was for X.
3656 Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3657 ? Builder.CreateLShr(X, NewShAmt)
3658 : Builder.CreateShl(X, NewShAmt);
3659 Value *T1 = Builder.CreateAnd(T0, Y);
3660 return Builder.CreateICmp(I.getPredicate(), T1,
3661 Constant::getNullValue(WidestTy));
3662}
3663
3664/// Fold
3665/// (-1 u/ x) u< y
3666/// ((x * y) u/ x) != y
3667/// to
3668/// @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3669/// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3670/// will mean that we are looking for the opposite answer.
3671Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3672 ICmpInst::Predicate Pred;
3673 Value *X, *Y;
3674 Instruction *Mul;
3675 bool NeedNegation;
3676 // Look for: (-1 u/ x) u</u>= y
3677 if (!I.isEquality() &&
3678 match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3679 m_Value(Y)))) {
3680 Mul = nullptr;
3681
3682 // Are we checking that overflow does not happen, or does happen?
3683 switch (Pred) {
3684 case ICmpInst::Predicate::ICMP_ULT:
3685 NeedNegation = false;
3686 break; // OK
3687 case ICmpInst::Predicate::ICMP_UGE:
3688 NeedNegation = true;
3689 break; // OK
3690 default:
3691 return nullptr; // Wrong predicate.
3692 }
3693 } else // Look for: ((x * y) u/ x) !=/== y
3694 if (I.isEquality() &&
3695 match(&I, m_c_ICmp(Pred, m_Value(Y),
3696 m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3697 m_Value(X)),
3698 m_Instruction(Mul)),
3699 m_Deferred(X)))))) {
3700 NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3701 } else
3702 return nullptr;
3703
3704 BuilderTy::InsertPointGuard Guard(Builder);
3705 // If the pattern included (x * y), we'll want to insert new instructions
3706 // right before that original multiplication so that we can replace it.
3707 bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3708 if (MulHadOtherUses)
3709 Builder.SetInsertPoint(Mul);
3710
3711 Function *F = Intrinsic::getDeclaration(
3712 I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3713 CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3714
3715 // If the multiplication was used elsewhere, to ensure that we don't leave
3716 // "duplicate" instructions, replace uses of that original multiplication
3717 // with the multiplication result from the with.overflow intrinsic.
3718 if (MulHadOtherUses)
3719 replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3720
3721 Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3722 if (NeedNegation) // This technically increases instruction count.
3723 Res = Builder.CreateNot(Res, "umul.not.ov");
3724
3725 // If we replaced the mul, erase it. Do this after all uses of Builder,
3726 // as the mul is used as insertion point.
3727 if (MulHadOtherUses)
3728 eraseInstFromFunction(*Mul);
3729
3730 return Res;
3731}
3732
3733static Instruction *foldICmpXNegX(ICmpInst &I) {
3734 CmpInst::Predicate Pred;
3735 Value *X;
3736 if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3737 return nullptr;
3738
3739 if (ICmpInst::isSigned(Pred))
3740 Pred = ICmpInst::getSwappedPredicate(Pred);
3741 else if (ICmpInst::isUnsigned(Pred))
3742 Pred = ICmpInst::getSignedPredicate(Pred);
3743 // else for equality-comparisons just keep the predicate.
3744
3745 return ICmpInst::Create(Instruction::ICmp, Pred, X,
3746 Constant::getNullValue(X->getType()), I.getName());
3747}
3748
3749/// Try to fold icmp (binop), X or icmp X, (binop).
3750/// TODO: A large part of this logic is duplicated in InstSimplify's
3751/// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3752/// duplication.
3753Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3754 const SimplifyQuery &SQ) {
3755 const SimplifyQuery Q = SQ.getWithInstruction(&I);
3756 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3757
3758 // Special logic for binary operators.
3759 BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3760 BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3761 if (!BO0 && !BO1)
3762 return nullptr;
3763
3764 if (Instruction *NewICmp = foldICmpXNegX(I))
3765 return NewICmp;
3766
3767 const CmpInst::Predicate Pred = I.getPredicate();
3768 Value *X;
3769
3770 // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3771 // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3772 if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3773 (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3774 return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3775 // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3776 if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3777 (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3778 return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3779
3780 bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3781 if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3782 NoOp0WrapProblem =
3783 ICmpInst::isEquality(Pred) ||
3784 (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3785 (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3786 if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3787 NoOp1WrapProblem =
3788 ICmpInst::isEquality(Pred) ||
3789 (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3790 (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3791
3792 // Analyze the case when either Op0 or Op1 is an add instruction.
3793 // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3794 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3795 if (BO0 && BO0->getOpcode() == Instruction::Add) {
3796 A = BO0->getOperand(0);
3797 B = BO0->getOperand(1);
3798 }
3799 if (BO1 && BO1->getOpcode() == Instruction::Add) {
3800 C = BO1->getOperand(0);
3801 D = BO1->getOperand(1);
3802 }
3803
3804 // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3805 // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3806 if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3807 return new ICmpInst(Pred, A == Op1 ? B : A,
3808 Constant::getNullValue(Op1->getType()));
3809
3810 // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3811 // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3812 if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3813 return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3814 C == Op0 ? D : C);
3815
3816 // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3817 if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3818 NoOp1WrapProblem) {
3819 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3820 Value *Y, *Z;
3821 if (A == C) {
3822 // C + B == C + D -> B == D
3823 Y = B;
3824 Z = D;
3825 } else if (A == D) {
3826 // D + B == C + D -> B == C
3827 Y = B;
3828 Z = C;
3829 } else if (B == C) {
3830 // A + C == C + D -> A == D
3831 Y = A;
3832 Z = D;
3833 } else {
3834 assert(B == D)((B == D) ? static_cast<void> (0) : __assert_fail ("B == D"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 3834, __PRETTY_FUNCTION__))
;
3835 // A + D == C + D -> A == C
3836 Y = A;
3837 Z = C;
3838 }
3839 return new ICmpInst(Pred, Y, Z);
3840 }
3841
3842 // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3843 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3844 match(B, m_AllOnes()))
3845 return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3846
3847 // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3848 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3849 match(B, m_AllOnes()))
3850 return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3851
3852 // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3853 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3854 return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3855
3856 // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3857 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3858 return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3859
3860 // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3861 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3862 match(D, m_AllOnes()))
3863 return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3864
3865 // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3866 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3867 match(D, m_AllOnes()))
3868 return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3869
3870 // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3871 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3872 return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3873
3874 // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3875 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3876 return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3877
3878 // TODO: The subtraction-related identities shown below also hold, but
3879 // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3880 // wouldn't happen even if they were implemented.
3881 //
3882 // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3883 // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3884 // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3885 // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3886
3887 // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3888 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3889 return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3890
3891 // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3892 if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3893 return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3894
3895 // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3896 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3897 return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3898
3899 // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3900 if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3901 return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3902
3903 // if C1 has greater magnitude than C2:
3904 // icmp (A + C1), (C + C2) -> icmp (A + C3), C
3905 // s.t. C3 = C1 - C2
3906 //
3907 // if C2 has greater magnitude than C1:
3908 // icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3909 // s.t. C3 = C2 - C1
3910 if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3911 (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3912 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3913 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3914 const APInt &AP1 = C1->getValue();
3915 const APInt &AP2 = C2->getValue();
3916 if (AP1.isNegative() == AP2.isNegative()) {
3917 APInt AP1Abs = C1->getValue().abs();
3918 APInt AP2Abs = C2->getValue().abs();
3919 if (AP1Abs.uge(AP2Abs)) {
3920 ConstantInt *C3 = Builder.getInt(AP1 - AP2);
3921 Value *NewAdd = Builder.CreateNSWAdd(A, C3);
3922 return new ICmpInst(Pred, NewAdd, C);
3923 } else {
3924 ConstantInt *C3 = Builder.getInt(AP2 - AP1);
3925 Value *NewAdd = Builder.CreateNSWAdd(C, C3);
3926 return new ICmpInst(Pred, A, NewAdd);
3927 }
3928 }
3929 }
3930
3931 // Analyze the case when either Op0 or Op1 is a sub instruction.
3932 // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
3933 A = nullptr;
3934 B = nullptr;
3935 C = nullptr;
3936 D = nullptr;
3937 if (BO0 && BO0->getOpcode() == Instruction::Sub) {
3938 A = BO0->getOperand(0);
3939 B = BO0->getOperand(1);
3940 }
3941 if (BO1 && BO1->getOpcode() == Instruction::Sub) {
3942 C = BO1->getOperand(0);
3943 D = BO1->getOperand(1);
3944 }
3945
3946 // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
3947 if (A == Op1 && NoOp0WrapProblem)
3948 return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
3949 // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
3950 if (C == Op0 && NoOp1WrapProblem)
3951 return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
3952
3953 // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
3954 // (A - B) u>/u<= A --> B u>/u<= A
3955 if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3956 return new ICmpInst(Pred, B, A);
3957 // C u</u>= (C - D) --> C u</u>= D
3958 if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3959 return new ICmpInst(Pred, C, D);
3960 // (A - B) u>=/u< A --> B u>/u<= A iff B != 0
3961 if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
3962 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3963 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
3964 // C u<=/u> (C - D) --> C u</u>= D iff B != 0
3965 if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
3966 isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
3967 return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
3968
3969 // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
3970 if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
3971 return new ICmpInst(Pred, A, C);
3972
3973 // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
3974 if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
3975 return new ICmpInst(Pred, D, B);
3976
3977 // icmp (0-X) < cst --> x > -cst
3978 if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
3979 Value *X;
3980 if (match(BO0, m_Neg(m_Value(X))))
3981 if (Constant *RHSC = dyn_cast<Constant>(Op1))
3982 if (RHSC->isNotMinSignedValue())
3983 return new ICmpInst(I.getSwappedPredicate(), X,
3984 ConstantExpr::getNeg(RHSC));
3985 }
3986
3987 {
3988 // Try to remove shared constant multiplier from equality comparison:
3989 // X * C == Y * C (with no overflowing/aliasing) --> X == Y
3990 Value *X, *Y;
3991 const APInt *C;
3992 if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
3993 match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
3994 if (!C->countTrailingZeros() ||
3995 (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
3996 (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
3997 return new ICmpInst(Pred, X, Y);
3998 }
3999
4000 BinaryOperator *SRem = nullptr;
4001 // icmp (srem X, Y), Y
4002 if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4003 SRem = BO0;
4004 // icmp Y, (srem X, Y)
4005 else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4006 Op0 == BO1->getOperand(1))
4007 SRem = BO1;
4008 if (SRem) {
4009 // We don't check hasOneUse to avoid increasing register pressure because
4010 // the value we use is the same value this instruction was already using.
4011 switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4012 default:
4013 break;
4014 case ICmpInst::ICMP_EQ:
4015 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4016 case ICmpInst::ICMP_NE:
4017 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4018 case ICmpInst::ICMP_SGT:
4019 case ICmpInst::ICMP_SGE:
4020 return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4021 Constant::getAllOnesValue(SRem->getType()));
4022 case ICmpInst::ICMP_SLT:
4023 case ICmpInst::ICMP_SLE:
4024 return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4025 Constant::getNullValue(SRem->getType()));
4026 }
4027 }
4028
4029 if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4030 BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4031 switch (BO0->getOpcode()) {
4032 default:
4033 break;
4034 case Instruction::Add:
4035 case Instruction::Sub:
4036 case Instruction::Xor: {
4037 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4038 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4039
4040 const APInt *C;
4041 if (match(BO0->getOperand(1), m_APInt(C))) {
4042 // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4043 if (C->isSignMask()) {
4044 ICmpInst::Predicate NewPred =
4045 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
4046 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4047 }
4048
4049 // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4050 if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4051 ICmpInst::Predicate NewPred =
4052 I.isSigned() ? I.getUnsignedPredicate() : I.getSignedPredicate();
4053 NewPred = I.getSwappedPredicate(NewPred);
4054 return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4055 }
4056 }
4057 break;
4058 }
4059 case Instruction::Mul: {
4060 if (!I.isEquality())
4061 break;
4062
4063 const APInt *C;
4064 if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4065 !C->isOneValue()) {
4066 // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4067 // Mask = -1 >> count-trailing-zeros(C).
4068 if (unsigned TZs = C->countTrailingZeros()) {
4069 Constant *Mask = ConstantInt::get(
4070 BO0->getType(),
4071 APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4072 Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4073 Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4074 return new ICmpInst(Pred, And1, And2);
4075 }
4076 }
4077 break;
4078 }
4079 case Instruction::UDiv:
4080 case Instruction::LShr:
4081 if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4082 break;
4083 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4084
4085 case Instruction::SDiv:
4086 if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4087 break;
4088 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4089
4090 case Instruction::AShr:
4091 if (!BO0->isExact() || !BO1->isExact())
4092 break;
4093 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4094
4095 case Instruction::Shl: {
4096 bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4097 bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4098 if (!NUW && !NSW)
4099 break;
4100 if (!NSW && I.isSigned())
4101 break;
4102 return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4103 }
4104 }
4105 }
4106
4107 if (BO0) {
4108 // Transform A & (L - 1) `ult` L --> L != 0
4109 auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4110 auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4111
4112 if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4113 auto *Zero = Constant::getNullValue(BO0->getType());
4114 return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4115 }
4116 }
4117
4118 if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4119 return replaceInstUsesWith(I, V);
4120
4121 if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4122 return replaceInstUsesWith(I, V);
4123
4124 if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4125 return replaceInstUsesWith(I, V);
4126
4127 if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4128 return replaceInstUsesWith(I, V);
4129
4130 return nullptr;
4131}
4132
4133/// Fold icmp Pred min|max(X, Y), X.
4134static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4135 ICmpInst::Predicate Pred = Cmp.getPredicate();
4136 Value *Op0 = Cmp.getOperand(0);
4137 Value *X = Cmp.getOperand(1);
4138
4139 // Canonicalize minimum or maximum operand to LHS of the icmp.
4140 if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4141 match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4142 match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4143 match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4144 std::swap(Op0, X);
4145 Pred = Cmp.getSwappedPredicate();
4146 }
4147
4148 Value *Y;
4149 if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4150 // smin(X, Y) == X --> X s<= Y
4151 // smin(X, Y) s>= X --> X s<= Y
4152 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4153 return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4154
4155 // smin(X, Y) != X --> X s> Y
4156 // smin(X, Y) s< X --> X s> Y
4157 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4158 return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4159
4160 // These cases should be handled in InstSimplify:
4161 // smin(X, Y) s<= X --> true
4162 // smin(X, Y) s> X --> false
4163 return nullptr;
4164 }
4165
4166 if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4167 // smax(X, Y) == X --> X s>= Y
4168 // smax(X, Y) s<= X --> X s>= Y
4169 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4170 return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4171
4172 // smax(X, Y) != X --> X s< Y
4173 // smax(X, Y) s> X --> X s< Y
4174 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4175 return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4176
4177 // These cases should be handled in InstSimplify:
4178 // smax(X, Y) s>= X --> true
4179 // smax(X, Y) s< X --> false
4180 return nullptr;
4181 }
4182
4183 if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4184 // umin(X, Y) == X --> X u<= Y
4185 // umin(X, Y) u>= X --> X u<= Y
4186 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4187 return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4188
4189 // umin(X, Y) != X --> X u> Y
4190 // umin(X, Y) u< X --> X u> Y
4191 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4192 return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4193
4194 // These cases should be handled in InstSimplify:
4195 // umin(X, Y) u<= X --> true
4196 // umin(X, Y) u> X --> false
4197 return nullptr;
4198 }
4199
4200 if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4201 // umax(X, Y) == X --> X u>= Y
4202 // umax(X, Y) u<= X --> X u>= Y
4203 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4204 return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4205
4206 // umax(X, Y) != X --> X u< Y
4207 // umax(X, Y) u> X --> X u< Y
4208 if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4209 return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4210
4211 // These cases should be handled in InstSimplify:
4212 // umax(X, Y) u>= X --> true
4213 // umax(X, Y) u< X --> false
4214 return nullptr;
4215 }
4216
4217 return nullptr;
4218}
4219
4220Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4221 if (!I.isEquality())
4222 return nullptr;
4223
4224 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4225 const CmpInst::Predicate Pred = I.getPredicate();
4226 Value *A, *B, *C, *D;
4227 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4228 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
4229 Value *OtherVal = A == Op1 ? B : A;
4230 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4231 }
4232
4233 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4234 // A^c1 == C^c2 --> A == C^(c1^c2)
4235 ConstantInt *C1, *C2;
4236 if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4237 Op1->hasOneUse()) {
4238 Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4239 Value *Xor = Builder.CreateXor(C, NC);
4240 return new ICmpInst(Pred, A, Xor);
4241 }
4242
4243 // A^B == A^D -> B == D
4244 if (A == C)
4245 return new ICmpInst(Pred, B, D);
4246 if (A == D)
4247 return new ICmpInst(Pred, B, C);
4248 if (B == C)
4249 return new ICmpInst(Pred, A, D);
4250 if (B == D)
4251 return new ICmpInst(Pred, A, C);
4252 }
4253 }
4254
4255 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4256 // A == (A^B) -> B == 0
4257 Value *OtherVal = A == Op0 ? B : A;
4258 return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4259 }
4260
4261 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4262 if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4263 match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4264 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4265
4266 if (A == C) {
4267 X = B;
4268 Y = D;
4269 Z = A;
4270 } else if (A == D) {
4271 X = B;
4272 Y = C;
4273 Z = A;
4274 } else if (B == C) {
4275 X = A;
4276 Y = D;
4277 Z = B;
4278 } else if (B == D) {
4279 X = A;
4280 Y = C;
4281 Z = B;
4282 }
4283
4284 if (X) { // Build (X^Y) & Z
4285 Op1 = Builder.CreateXor(X, Y);
4286 Op1 = Builder.CreateAnd(Op1, Z);
4287 return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4288 }
4289 }
4290
4291 // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4292 // and (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4293 ConstantInt *Cst1;
4294 if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4295 match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4296 (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4297 match(Op1, m_ZExt(m_Value(A))))) {
4298 APInt Pow2 = Cst1->getValue() + 1;
4299 if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4300 Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4301 return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4302 }
4303
4304 // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4305 // For lshr and ashr pairs.
4306 if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4307 match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4308 (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4309 match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4310 unsigned TypeBits = Cst1->getBitWidth();
4311 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4312 if (ShAmt < TypeBits && ShAmt != 0) {
4313 ICmpInst::Predicate NewPred =
4314 Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4315 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4316 APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4317 return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4318 }
4319 }
4320
4321 // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4322 if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4323 match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4324 unsigned TypeBits = Cst1->getBitWidth();
4325 unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4326 if (ShAmt < TypeBits && ShAmt != 0) {
4327 Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4328 APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4329 Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4330 I.getName() + ".mask");
4331 return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4332 }
4333 }
4334
4335 // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4336 // "icmp (and X, mask), cst"
4337 uint64_t ShAmt = 0;
4338 if (Op0->hasOneUse() &&
4339 match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4340 match(Op1, m_ConstantInt(Cst1)) &&
4341 // Only do this when A has multiple uses. This is most important to do
4342 // when it exposes other optimizations.
4343 !A->hasOneUse()) {
4344 unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4345
4346 if (ShAmt < ASize) {
4347 APInt MaskV =
4348 APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4349 MaskV <<= ShAmt;
4350
4351 APInt CmpV = Cst1->getValue().zext(ASize);
4352 CmpV <<= ShAmt;
4353
4354 Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4355 return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4356 }
4357 }
4358
4359 // If both operands are byte-swapped or bit-reversed, just compare the
4360 // original values.
4361 // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4362 // and handle more intrinsics.
4363 if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4364 (match(Op0, m_BitReverse(m_Value(A))) &&
4365 match(Op1, m_BitReverse(m_Value(B)))))
4366 return new ICmpInst(Pred, A, B);
4367
4368 // Canonicalize checking for a power-of-2-or-zero value:
4369 // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4370 // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4371 if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4372 m_Deferred(A)))) ||
4373 !match(Op1, m_ZeroInt()))
4374 A = nullptr;
4375
4376 // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4377 // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4378 if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4379 A = Op1;
4380 else if (match(Op1,
4381 m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4382 A = Op0;
4383
4384 if (A) {
4385 Type *Ty = A->getType();
4386 CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4387 return Pred == ICmpInst::ICMP_EQ
4388 ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4389 : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4390 }
4391
4392 return nullptr;
4393}
4394
4395static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4396 InstCombiner::BuilderTy &Builder) {
4397 assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0")((isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0"
) ? static_cast<void> (0) : __assert_fail ("isa<CastInst>(ICmp.getOperand(0)) && \"Expected cast for operand 0\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4397, __PRETTY_FUNCTION__))
;
4398 auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4399 Value *X;
4400 if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4401 return nullptr;
4402
4403 bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4404 bool IsSignedCmp = ICmp.isSigned();
4405 if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4406 // If the signedness of the two casts doesn't agree (i.e. one is a sext
4407 // and the other is a zext), then we can't handle this.
4408 // TODO: This is too strict. We can handle some predicates (equality?).
4409 if (CastOp0->getOpcode() != CastOp1->getOpcode())
4410 return nullptr;
4411
4412 // Not an extension from the same type?
4413 Value *Y = CastOp1->getOperand(0);
4414 Type *XTy = X->getType(), *YTy = Y->getType();
4415 if (XTy != YTy) {
4416 // One of the casts must have one use because we are creating a new cast.
4417 if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4418 return nullptr;
4419 // Extend the narrower operand to the type of the wider operand.
4420 if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4421 X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4422 else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4423 Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4424 else
4425 return nullptr;
4426 }
4427
4428 // (zext X) == (zext Y) --> X == Y
4429 // (sext X) == (sext Y) --> X == Y
4430 if (ICmp.isEquality())
4431 return new ICmpInst(ICmp.getPredicate(), X, Y);
4432
4433 // A signed comparison of sign extended values simplifies into a
4434 // signed comparison.
4435 if (IsSignedCmp && IsSignedExt)
4436 return new ICmpInst(ICmp.getPredicate(), X, Y);
4437
4438 // The other three cases all fold into an unsigned comparison.
4439 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4440 }
4441
4442 // Below here, we are only folding a compare with constant.
4443 auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4444 if (!C)
4445 return nullptr;
4446
4447 // Compute the constant that would happen if we truncated to SrcTy then
4448 // re-extended to DestTy.
4449 Type *SrcTy = CastOp0->getSrcTy();
4450 Type *DestTy = CastOp0->getDestTy();
4451 Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4452 Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4453
4454 // If the re-extended constant didn't change...
4455 if (Res2 == C) {
4456 if (ICmp.isEquality())
4457 return new ICmpInst(ICmp.getPredicate(), X, Res1);
4458
4459 // A signed comparison of sign extended values simplifies into a
4460 // signed comparison.
4461 if (IsSignedExt && IsSignedCmp)
4462 return new ICmpInst(ICmp.getPredicate(), X, Res1);
4463
4464 // The other three cases all fold into an unsigned comparison.
4465 return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4466 }
4467
4468 // The re-extended constant changed, partly changed (in the case of a vector),
4469 // or could not be determined to be equal (in the case of a constant
4470 // expression), so the constant cannot be represented in the shorter type.
4471 // All the cases that fold to true or false will have already been handled
4472 // by SimplifyICmpInst, so only deal with the tricky case.
4473 if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4474 return nullptr;
4475
4476 // Is source op positive?
4477 // icmp ult (sext X), C --> icmp sgt X, -1
4478 if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4479 return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4480
4481 // Is source op negative?
4482 // icmp ugt (sext X), C --> icmp slt X, 0
4483 assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!")((ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!"
) ? static_cast<void> (0) : __assert_fail ("ICmp.getPredicate() == ICmpInst::ICMP_UGT && \"ICmp should be folded!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4483, __PRETTY_FUNCTION__))
;
4484 return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4485}
4486
4487/// Handle icmp (cast x), (cast or constant).
4488Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4489 auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4490 if (!CastOp0)
4491 return nullptr;
4492 if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4493 return nullptr;
4494
4495 Value *Op0Src = CastOp0->getOperand(0);
4496 Type *SrcTy = CastOp0->getSrcTy();
4497 Type *DestTy = CastOp0->getDestTy();
4498
4499 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4500 // integer type is the same size as the pointer type.
4501 auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4502 if (isa<VectorType>(SrcTy)) {
4503 SrcTy = cast<VectorType>(SrcTy)->getElementType();
4504 DestTy = cast<VectorType>(DestTy)->getElementType();
4505 }
4506 return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4507 };
4508 if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4509 CompatibleSizes(SrcTy, DestTy)) {
4510 Value *NewOp1 = nullptr;
4511 if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4512 Value *PtrSrc = PtrToIntOp1->getOperand(0);
4513 if (PtrSrc->getType()->getPointerAddressSpace() ==
4514 Op0Src->getType()->getPointerAddressSpace()) {
4515 NewOp1 = PtrToIntOp1->getOperand(0);
4516 // If the pointer types don't match, insert a bitcast.
4517 if (Op0Src->getType() != NewOp1->getType())
4518 NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4519 }
4520 } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4521 NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4522 }
4523
4524 if (NewOp1)
4525 return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4526 }
4527
4528 return foldICmpWithZextOrSext(ICmp, Builder);
4529}
4530
4531static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4532 switch (BinaryOp) {
4533 default:
4534 llvm_unreachable("Unsupported binary op")::llvm::llvm_unreachable_internal("Unsupported binary op", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4534)
;
4535 case Instruction::Add:
4536 case Instruction::Sub:
4537 return match(RHS, m_Zero());
4538 case Instruction::Mul:
4539 return match(RHS, m_One());
4540 }
4541}
4542
4543OverflowResult
4544InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4545 bool IsSigned, Value *LHS, Value *RHS,
4546 Instruction *CxtI) const {
4547 switch (BinaryOp) {
4548 default:
4549 llvm_unreachable("Unsupported binary op")::llvm::llvm_unreachable_internal("Unsupported binary op", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4549)
;
4550 case Instruction::Add:
4551 if (IsSigned)
4552 return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4553 else
4554 return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4555 case Instruction::Sub:
4556 if (IsSigned)
4557 return computeOverflowForSignedSub(LHS, RHS, CxtI);
4558 else
4559 return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4560 case Instruction::Mul:
4561 if (IsSigned)
4562 return computeOverflowForSignedMul(LHS, RHS, CxtI);
4563 else
4564 return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4565 }
4566}
4567
4568bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4569 bool IsSigned, Value *LHS,
4570 Value *RHS, Instruction &OrigI,
4571 Value *&Result,
4572 Constant *&Overflow) {
4573 if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4574 std::swap(LHS, RHS);
4575
4576 // If the overflow check was an add followed by a compare, the insertion point
4577 // may be pointing to the compare. We want to insert the new instructions
4578 // before the add in case there are uses of the add between the add and the
4579 // compare.
4580 Builder.SetInsertPoint(&OrigI);
4581
4582 if (isNeutralValue(BinaryOp, RHS)) {
4583 Result = LHS;
4584 Overflow = Builder.getFalse();
4585 return true;
4586 }
4587
4588 switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4589 case OverflowResult::MayOverflow:
4590 return false;
4591 case OverflowResult::AlwaysOverflowsLow:
4592 case OverflowResult::AlwaysOverflowsHigh:
4593 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4594 Result->takeName(&OrigI);
4595 Overflow = Builder.getTrue();
4596 return true;
4597 case OverflowResult::NeverOverflows:
4598 Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4599 Result->takeName(&OrigI);
4600 Overflow = Builder.getFalse();
4601 if (auto *Inst = dyn_cast<Instruction>(Result)) {
4602 if (IsSigned)
4603 Inst->setHasNoSignedWrap();
4604 else
4605 Inst->setHasNoUnsignedWrap();
4606 }
4607 return true;
4608 }
4609
4610 llvm_unreachable("Unexpected overflow result")::llvm::llvm_unreachable_internal("Unexpected overflow result"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4610)
;
4611}
4612
4613/// Recognize and process idiom involving test for multiplication
4614/// overflow.
4615///
4616/// The caller has matched a pattern of the form:
4617/// I = cmp u (mul(zext A, zext B), V
4618/// The function checks if this is a test for overflow and if so replaces
4619/// multiplication with call to 'mul.with.overflow' intrinsic.
4620///
4621/// \param I Compare instruction.
4622/// \param MulVal Result of 'mult' instruction. It is one of the arguments of
4623/// the compare instruction. Must be of integer type.
4624/// \param OtherVal The other argument of compare instruction.
4625/// \returns Instruction which must replace the compare instruction, NULL if no
4626/// replacement required.
4627static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4628 Value *OtherVal,
4629 InstCombinerImpl &IC) {
4630 // Don't bother doing this transformation for pointers, don't do it for
4631 // vectors.
4632 if (!isa<IntegerType>(MulVal->getType()))
4633 return nullptr;
4634
4635 assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal)((I.getOperand(0) == MulVal || I.getOperand(1) == MulVal) ? static_cast
<void> (0) : __assert_fail ("I.getOperand(0) == MulVal || I.getOperand(1) == MulVal"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4635, __PRETTY_FUNCTION__))
;
4636 assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal)((I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal)
? static_cast<void> (0) : __assert_fail ("I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4636, __PRETTY_FUNCTION__))
;
4637 auto *MulInstr = dyn_cast<Instruction>(MulVal);
4638 if (!MulInstr)
4639 return nullptr;
4640 assert(MulInstr->getOpcode() == Instruction::Mul)((MulInstr->getOpcode() == Instruction::Mul) ? static_cast
<void> (0) : __assert_fail ("MulInstr->getOpcode() == Instruction::Mul"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4640, __PRETTY_FUNCTION__))
;
4641
4642 auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4643 *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4644 assert(LHS->getOpcode() == Instruction::ZExt)((LHS->getOpcode() == Instruction::ZExt) ? static_cast<
void> (0) : __assert_fail ("LHS->getOpcode() == Instruction::ZExt"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4644, __PRETTY_FUNCTION__))
;
4645 assert(RHS->getOpcode() == Instruction::ZExt)((RHS->getOpcode() == Instruction::ZExt) ? static_cast<
void> (0) : __assert_fail ("RHS->getOpcode() == Instruction::ZExt"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4645, __PRETTY_FUNCTION__))
;
4646 Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4647
4648 // Calculate type and width of the result produced by mul.with.overflow.
4649 Type *TyA = A->getType(), *TyB = B->getType();
4650 unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4651 WidthB = TyB->getPrimitiveSizeInBits();
4652 unsigned MulWidth;
4653 Type *MulType;
4654 if (WidthB > WidthA) {
4655 MulWidth = WidthB;
4656 MulType = TyB;
4657 } else {
4658 MulWidth = WidthA;
4659 MulType = TyA;
4660 }
4661
4662 // In order to replace the original mul with a narrower mul.with.overflow,
4663 // all uses must ignore upper bits of the product. The number of used low
4664 // bits must be not greater than the width of mul.with.overflow.
4665 if (MulVal->hasNUsesOrMore(2))
4666 for (User *U : MulVal->users()) {
4667 if (U == &I)
4668 continue;
4669 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4670 // Check if truncation ignores bits above MulWidth.
4671 unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4672 if (TruncWidth > MulWidth)
4673 return nullptr;
4674 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4675 // Check if AND ignores bits above MulWidth.
4676 if (BO->getOpcode() != Instruction::And)
4677 return nullptr;
4678 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4679 const APInt &CVal = CI->getValue();
4680 if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4681 return nullptr;
4682 } else {
4683 // In this case we could have the operand of the binary operation
4684 // being defined in another block, and performing the replacement
4685 // could break the dominance relation.
4686 return nullptr;
4687 }
4688 } else {
4689 // Other uses prohibit this transformation.
4690 return nullptr;
4691 }
4692 }
4693
4694 // Recognize patterns
4695 switch (I.getPredicate()) {
4696 case ICmpInst::ICMP_EQ:
4697 case ICmpInst::ICMP_NE:
4698 // Recognize pattern:
4699 // mulval = mul(zext A, zext B)
4700 // cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4701 ConstantInt *CI;
4702 Value *ValToMask;
4703 if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4704 if (ValToMask != MulVal)
4705 return nullptr;
4706 const APInt &CVal = CI->getValue() + 1;
4707 if (CVal.isPowerOf2()) {
4708 unsigned MaskWidth = CVal.logBase2();
4709 if (MaskWidth == MulWidth)
4710 break; // Recognized
4711 }
4712 }
4713 return nullptr;
4714
4715 case ICmpInst::ICMP_UGT:
4716 // Recognize pattern:
4717 // mulval = mul(zext A, zext B)
4718 // cmp ugt mulval, max
4719 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4720 APInt MaxVal = APInt::getMaxValue(MulWidth);
4721 MaxVal = MaxVal.zext(CI->getBitWidth());
4722 if (MaxVal.eq(CI->getValue()))
4723 break; // Recognized
4724 }
4725 return nullptr;
4726
4727 case ICmpInst::ICMP_UGE:
4728 // Recognize pattern:
4729 // mulval = mul(zext A, zext B)
4730 // cmp uge mulval, max+1
4731 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4732 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4733 if (MaxVal.eq(CI->getValue()))
4734 break; // Recognized
4735 }
4736 return nullptr;
4737
4738 case ICmpInst::ICMP_ULE:
4739 // Recognize pattern:
4740 // mulval = mul(zext A, zext B)
4741 // cmp ule mulval, max
4742 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4743 APInt MaxVal = APInt::getMaxValue(MulWidth);
4744 MaxVal = MaxVal.zext(CI->getBitWidth());
4745 if (MaxVal.eq(CI->getValue()))
4746 break; // Recognized
4747 }
4748 return nullptr;
4749
4750 case ICmpInst::ICMP_ULT:
4751 // Recognize pattern:
4752 // mulval = mul(zext A, zext B)
4753 // cmp ule mulval, max + 1
4754 if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4755 APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4756 if (MaxVal.eq(CI->getValue()))
4757 break; // Recognized
4758 }
4759 return nullptr;
4760
4761 default:
4762 return nullptr;
4763 }
4764
4765 InstCombiner::BuilderTy &Builder = IC.Builder;
4766 Builder.SetInsertPoint(MulInstr);
4767
4768 // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4769 Value *MulA = A, *MulB = B;
4770 if (WidthA < MulWidth)
4771 MulA = Builder.CreateZExt(A, MulType);
4772 if (WidthB < MulWidth)
4773 MulB = Builder.CreateZExt(B, MulType);
4774 Function *F = Intrinsic::getDeclaration(
4775 I.getModule(), Intrinsic::umul_with_overflow, MulType);
4776 CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4777 IC.addToWorklist(MulInstr);
4778
4779 // If there are uses of mul result other than the comparison, we know that
4780 // they are truncation or binary AND. Change them to use result of
4781 // mul.with.overflow and adjust properly mask/size.
4782 if (MulVal->hasNUsesOrMore(2)) {
4783 Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4784 for (auto UI = MulVal->user_begin(), UE = MulVal->user_end(); UI != UE;) {
4785 User *U = *UI++;
4786 if (U == &I || U == OtherVal)
4787 continue;
4788 if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4789 if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4790 IC.replaceInstUsesWith(*TI, Mul);
4791 else
4792 TI->setOperand(0, Mul);
4793 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4794 assert(BO->getOpcode() == Instruction::And)((BO->getOpcode() == Instruction::And) ? static_cast<void
> (0) : __assert_fail ("BO->getOpcode() == Instruction::And"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4794, __PRETTY_FUNCTION__))
;
4795 // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4796 ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4797 APInt ShortMask = CI->getValue().trunc(MulWidth);
4798 Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4799 Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4800 IC.replaceInstUsesWith(*BO, Zext);
4801 } else {
4802 llvm_unreachable("Unexpected Binary operation")::llvm::llvm_unreachable_internal("Unexpected Binary operation"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4802)
;
4803 }
4804 IC.addToWorklist(cast<Instruction>(U));
4805 }
4806 }
4807 if (isa<Instruction>(OtherVal))
4808 IC.addToWorklist(cast<Instruction>(OtherVal));
4809
4810 // The original icmp gets replaced with the overflow value, maybe inverted
4811 // depending on predicate.
4812 bool Inverse = false;
4813 switch (I.getPredicate()) {
4814 case ICmpInst::ICMP_NE:
4815 break;
4816 case ICmpInst::ICMP_EQ:
4817 Inverse = true;
4818 break;
4819 case ICmpInst::ICMP_UGT:
4820 case ICmpInst::ICMP_UGE:
4821 if (I.getOperand(0) == MulVal)
4822 break;
4823 Inverse = true;
4824 break;
4825 case ICmpInst::ICMP_ULT:
4826 case ICmpInst::ICMP_ULE:
4827 if (I.getOperand(1) == MulVal)
4828 break;
4829 Inverse = true;
4830 break;
4831 default:
4832 llvm_unreachable("Unexpected predicate")::llvm::llvm_unreachable_internal("Unexpected predicate", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4832)
;
4833 }
4834 if (Inverse) {
4835 Value *Res = Builder.CreateExtractValue(Call, 1);
4836 return BinaryOperator::CreateNot(Res);
4837 }
4838
4839 return ExtractValueInst::Create(Call, 1);
4840}
4841
4842/// When performing a comparison against a constant, it is possible that not all
4843/// the bits in the LHS are demanded. This helper method computes the mask that
4844/// IS demanded.
4845static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4846 const APInt *RHS;
4847 if (!match(I.getOperand(1), m_APInt(RHS)))
4848 return APInt::getAllOnesValue(BitWidth);
4849
4850 // If this is a normal comparison, it demands all bits. If it is a sign bit
4851 // comparison, it only demands the sign bit.
4852 bool UnusedBit;
4853 if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4854 return APInt::getSignMask(BitWidth);
4855
4856 switch (I.getPredicate()) {
4857 // For a UGT comparison, we don't care about any bits that
4858 // correspond to the trailing ones of the comparand. The value of these
4859 // bits doesn't impact the outcome of the comparison, because any value
4860 // greater than the RHS must differ in a bit higher than these due to carry.
4861 case ICmpInst::ICMP_UGT:
4862 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4863
4864 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4865 // Any value less than the RHS must differ in a higher bit because of carries.
4866 case ICmpInst::ICMP_ULT:
4867 return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4868
4869 default:
4870 return APInt::getAllOnesValue(BitWidth);
4871 }
4872}
4873
4874/// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4875/// should be swapped.
4876/// The decision is based on how many times these two operands are reused
4877/// as subtract operands and their positions in those instructions.
4878/// The rationale is that several architectures use the same instruction for
4879/// both subtract and cmp. Thus, it is better if the order of those operands
4880/// match.
4881/// \return true if Op0 and Op1 should be swapped.
4882static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4883 // Filter out pointer values as those cannot appear directly in subtract.
4884 // FIXME: we may want to go through inttoptrs or bitcasts.
4885 if (Op0->getType()->isPointerTy())
4886 return false;
4887 // If a subtract already has the same operands as a compare, swapping would be
4888 // bad. If a subtract has the same operands as a compare but in reverse order,
4889 // then swapping is good.
4890 int GoodToSwap = 0;
4891 for (const User *U : Op0->users()) {
4892 if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4893 GoodToSwap++;
4894 else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4895 GoodToSwap--;
4896 }
4897 return GoodToSwap > 0;
4898}
4899
4900/// Check that one use is in the same block as the definition and all
4901/// other uses are in blocks dominated by a given block.
4902///
4903/// \param DI Definition
4904/// \param UI Use
4905/// \param DB Block that must dominate all uses of \p DI outside
4906/// the parent block
4907/// \return true when \p UI is the only use of \p DI in the parent block
4908/// and all other uses of \p DI are in blocks dominated by \p DB.
4909///
4910bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
4911 const Instruction *UI,
4912 const BasicBlock *DB) const {
4913 assert(DI && UI && "Instruction not defined\n")((DI && UI && "Instruction not defined\n") ? static_cast
<void> (0) : __assert_fail ("DI && UI && \"Instruction not defined\\n\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4913, __PRETTY_FUNCTION__))
;
4914 // Ignore incomplete definitions.
4915 if (!DI->getParent())
4916 return false;
4917 // DI and UI must be in the same block.
4918 if (DI->getParent() != UI->getParent())
4919 return false;
4920 // Protect from self-referencing blocks.
4921 if (DI->getParent() == DB)
4922 return false;
4923 for (const User *U : DI->users()) {
4924 auto *Usr = cast<Instruction>(U);
4925 if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
4926 return false;
4927 }
4928 return true;
4929}
4930
4931/// Return true when the instruction sequence within a block is select-cmp-br.
4932static bool isChainSelectCmpBranch(const SelectInst *SI) {
4933 const BasicBlock *BB = SI->getParent();
4934 if (!BB)
4935 return false;
4936 auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
4937 if (!BI || BI->getNumSuccessors() != 2)
4938 return false;
4939 auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
4940 if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
4941 return false;
4942 return true;
4943}
4944
4945/// True when a select result is replaced by one of its operands
4946/// in select-icmp sequence. This will eventually result in the elimination
4947/// of the select.
4948///
4949/// \param SI Select instruction
4950/// \param Icmp Compare instruction
4951/// \param SIOpd Operand that replaces the select
4952///
4953/// Notes:
4954/// - The replacement is global and requires dominator information
4955/// - The caller is responsible for the actual replacement
4956///
4957/// Example:
4958///
4959/// entry:
4960/// %4 = select i1 %3, %C* %0, %C* null
4961/// %5 = icmp eq %C* %4, null
4962/// br i1 %5, label %9, label %7
4963/// ...
4964/// ; <label>:7 ; preds = %entry
4965/// %8 = getelementptr inbounds %C* %4, i64 0, i32 0
4966/// ...
4967///
4968/// can be transformed to
4969///
4970/// %5 = icmp eq %C* %0, null
4971/// %6 = select i1 %3, i1 %5, i1 true
4972/// br i1 %6, label %9, label %7
4973/// ...
4974/// ; <label>:7 ; preds = %entry
4975/// %8 = getelementptr inbounds %C* %0, i64 0, i32 0 // replace by %0!
4976///
4977/// Similar when the first operand of the select is a constant or/and
4978/// the compare is for not equal rather than equal.
4979///
4980/// NOTE: The function is only called when the select and compare constants
4981/// are equal, the optimization can work only for EQ predicates. This is not a
4982/// major restriction since a NE compare should be 'normalized' to an equal
4983/// compare, which usually happens in the combiner and test case
4984/// select-cmp-br.ll checks for it.
4985bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
4986 const ICmpInst *Icmp,
4987 const unsigned SIOpd) {
4988 assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!")(((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!"
) ? static_cast<void> (0) : __assert_fail ("(SIOpd == 1 || SIOpd == 2) && \"Invalid select operand!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 4988, __PRETTY_FUNCTION__))
;
4989 if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
4990 BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
4991 // The check for the single predecessor is not the best that can be
4992 // done. But it protects efficiently against cases like when SI's
4993 // home block has two successors, Succ and Succ1, and Succ1 predecessor
4994 // of Succ. Then SI can't be replaced by SIOpd because the use that gets
4995 // replaced can be reached on either path. So the uniqueness check
4996 // guarantees that the path all uses of SI (outside SI's parent) are on
4997 // is disjoint from all other paths out of SI. But that information
4998 // is more expensive to compute, and the trade-off here is in favor
4999 // of compile-time. It should also be noticed that we check for a single
5000 // predecessor and not only uniqueness. This to handle the situation when
5001 // Succ and Succ1 points to the same basic block.
5002 if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5003 NumSel++;
5004 SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5005 return true;
5006 }
5007 }
5008 return false;
5009}
5010
5011/// Try to fold the comparison based on range information we can get by checking
5012/// whether bits are known to be zero or one in the inputs.
5013Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5014 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5015 Type *Ty = Op0->getType();
5016 ICmpInst::Predicate Pred = I.getPredicate();
5017
5018 // Get scalar or pointer size.
5019 unsigned BitWidth = Ty->isIntOrIntVectorTy()
5020 ? Ty->getScalarSizeInBits()
5021 : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5022
5023 if (!BitWidth)
5024 return nullptr;
5025
5026 KnownBits Op0Known(BitWidth);
5027 KnownBits Op1Known(BitWidth);
5028
5029 if (SimplifyDemandedBits(&I, 0,
5030 getDemandedBitsLHSMask(I, BitWidth),
5031 Op0Known, 0))
5032 return &I;
5033
5034 if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
5035 Op1Known, 0))
5036 return &I;
5037
5038 // Given the known and unknown bits, compute a range that the LHS could be
5039 // in. Compute the Min, Max and RHS values based on the known bits. For the
5040 // EQ and NE we use unsigned values.
5041 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5042 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5043 if (I.isSigned()) {
5044 computeSignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
5045 computeSignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
5046 } else {
5047 computeUnsignedMinMaxValuesFromKnownBits(Op0Known, Op0Min, Op0Max);
5048 computeUnsignedMinMaxValuesFromKnownBits(Op1Known, Op1Min, Op1Max);
5049 }
5050
5051 // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5052 // out that the LHS or RHS is a constant. Constant fold this now, so that
5053 // code below can assume that Min != Max.
5054 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5055 return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5056 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5057 return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5058
5059 // Based on the range information we know about the LHS, see if we can
5060 // simplify this comparison. For example, (x&4) < 8 is always true.
5061 switch (Pred) {
5062 default:
5063 llvm_unreachable("Unknown icmp opcode!")::llvm::llvm_unreachable_internal("Unknown icmp opcode!", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5063)
;
5064 case ICmpInst::ICMP_EQ:
5065 case ICmpInst::ICMP_NE: {
5066 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max)) {
5067 return Pred == CmpInst::ICMP_EQ
5068 ? replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()))
5069 : replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5070 }
5071
5072 // If all bits are known zero except for one, then we know at most one bit
5073 // is set. If the comparison is against zero, then this is a check to see if
5074 // *that* bit is set.
5075 APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5076 if (Op1Known.isZero()) {
5077 // If the LHS is an AND with the same constant, look through it.
5078 Value *LHS = nullptr;
5079 const APInt *LHSC;
5080 if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5081 *LHSC != Op0KnownZeroInverted)
5082 LHS = Op0;
5083
5084 Value *X;
5085 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5086 APInt ValToCheck = Op0KnownZeroInverted;
5087 Type *XTy = X->getType();
5088 if (ValToCheck.isPowerOf2()) {
5089 // ((1 << X) & 8) == 0 -> X != 3
5090 // ((1 << X) & 8) != 0 -> X == 3
5091 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5092 auto NewPred = ICmpInst::getInversePredicate(Pred);
5093 return new ICmpInst(NewPred, X, CmpC);
5094 } else if ((++ValToCheck).isPowerOf2()) {
5095 // ((1 << X) & 7) == 0 -> X >= 3
5096 // ((1 << X) & 7) != 0 -> X < 3
5097 auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5098 auto NewPred =
5099 Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5100 return new ICmpInst(NewPred, X, CmpC);
5101 }
5102 }
5103
5104 // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5105 const APInt *CI;
5106 if (Op0KnownZeroInverted.isOneValue() &&
5107 match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5108 // ((8 >>u X) & 1) == 0 -> X != 3
5109 // ((8 >>u X) & 1) != 0 -> X == 3
5110 unsigned CmpVal = CI->countTrailingZeros();
5111 auto NewPred = ICmpInst::getInversePredicate(Pred);
5112 return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5113 }
5114 }
5115 break;
5116 }
5117 case ICmpInst::ICMP_ULT: {
5118 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5119 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5120 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5121 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5122 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5123 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5124
5125 const APInt *CmpC;
5126 if (match(Op1, m_APInt(CmpC))) {
5127 // A <u C -> A == C-1 if min(A)+1 == C
5128 if (*CmpC == Op0Min + 1)
5129 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5130 ConstantInt::get(Op1->getType(), *CmpC - 1));
5131 // X <u C --> X == 0, if the number of zero bits in the bottom of X
5132 // exceeds the log2 of C.
5133 if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5134 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5135 Constant::getNullValue(Op1->getType()));
5136 }
5137 break;
5138 }
5139 case ICmpInst::ICMP_UGT: {
5140 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5141 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5142 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5143 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5144 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5145 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5146
5147 const APInt *CmpC;
5148 if (match(Op1, m_APInt(CmpC))) {
5149 // A >u C -> A == C+1 if max(a)-1 == C
5150 if (*CmpC == Op0Max - 1)
5151 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5152 ConstantInt::get(Op1->getType(), *CmpC + 1));
5153 // X >u C --> X != 0, if the number of zero bits in the bottom of X
5154 // exceeds the log2 of C.
5155 if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5156 return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5157 Constant::getNullValue(Op1->getType()));
5158 }
5159 break;
5160 }
5161 case ICmpInst::ICMP_SLT: {
5162 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5163 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5164 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5165 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5166 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5167 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5168 const APInt *CmpC;
5169 if (match(Op1, m_APInt(CmpC))) {
5170 if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5171 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5172 ConstantInt::get(Op1->getType(), *CmpC - 1));
5173 }
5174 break;
5175 }
5176 case ICmpInst::ICMP_SGT: {
5177 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5178 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5179 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5180 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5181 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5182 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5183 const APInt *CmpC;
5184 if (match(Op1, m_APInt(CmpC))) {
5185 if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5186 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5187 ConstantInt::get(Op1->getType(), *CmpC + 1));
5188 }
5189 break;
5190 }
5191 case ICmpInst::ICMP_SGE:
5192 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!")((!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ConstantInt>(Op1) && \"ICMP_SGE with ConstantInt not folded!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5192, __PRETTY_FUNCTION__))
;
5193 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5194 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5195 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5196 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5197 if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5198 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5199 break;
5200 case ICmpInst::ICMP_SLE:
5201 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!")((!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ConstantInt>(Op1) && \"ICMP_SLE with ConstantInt not folded!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5201, __PRETTY_FUNCTION__))
;
5202 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5203 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5204 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5205 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5206 if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5207 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5208 break;
5209 case ICmpInst::ICMP_UGE:
5210 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!")((!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ConstantInt>(Op1) && \"ICMP_UGE with ConstantInt not folded!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5210, __PRETTY_FUNCTION__))
;
5211 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5212 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5213 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5214 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5215 if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5216 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5217 break;
5218 case ICmpInst::ICMP_ULE:
5219 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!")((!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ConstantInt>(Op1) && \"ICMP_ULE with ConstantInt not folded!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5219, __PRETTY_FUNCTION__))
;
5220 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5221 return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5222 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5223 return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5224 if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5225 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5226 break;
5227 }
5228
5229 // Turn a signed comparison into an unsigned one if both operands are known to
5230 // have the same sign.
5231 if (I.isSigned() &&
5232 ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5233 (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5234 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5235
5236 return nullptr;
5237}
5238
5239llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
5240InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5241 Constant *C) {
5242 assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&((ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate
(Pred) && "Only for relational integer predicates.") ?
static_cast<void> (0) : __assert_fail ("ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && \"Only for relational integer predicates.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5243, __PRETTY_FUNCTION__))
5243 "Only for relational integer predicates.")((ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate
(Pred) && "Only for relational integer predicates.") ?
static_cast<void> (0) : __assert_fail ("ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) && \"Only for relational integer predicates.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5243, __PRETTY_FUNCTION__))
;
5244
5245 Type *Type = C->getType();
5246 bool IsSigned = ICmpInst::isSigned(Pred);
5247
5248 CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5249 bool WillIncrement =
5250 UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5251
5252 // Check if the constant operand can be safely incremented/decremented
5253 // without overflowing/underflowing.
5254 auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5255 return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5256 };
5257
5258 Constant *SafeReplacementConstant = nullptr;
5259 if (auto *CI = dyn_cast<ConstantInt>(C)) {
5260 // Bail out if the constant can't be safely incremented/decremented.
5261 if (!ConstantIsOk(CI))
5262 return llvm::None;
5263 } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5264 unsigned NumElts = FVTy->getNumElements();
5265 for (unsigned i = 0; i != NumElts; ++i) {
5266 Constant *Elt = C->getAggregateElement(i);
5267 if (!Elt)
5268 return llvm::None;
5269
5270 if (isa<UndefValue>(Elt))
5271 continue;
5272
5273 // Bail out if we can't determine if this constant is min/max or if we
5274 // know that this constant is min/max.
5275 auto *CI = dyn_cast<ConstantInt>(Elt);
5276 if (!CI || !ConstantIsOk(CI))
5277 return llvm::None;
5278
5279 if (!SafeReplacementConstant)
5280 SafeReplacementConstant = CI;
5281 }
5282 } else {
5283 // ConstantExpr?
5284 return llvm::None;
5285 }
5286
5287 // It may not be safe to change a compare predicate in the presence of
5288 // undefined elements, so replace those elements with the first safe constant
5289 // that we found.
5290 if (C->containsUndefElement()) {
5291 assert(SafeReplacementConstant && "Replacement constant not set")((SafeReplacementConstant && "Replacement constant not set"
) ? static_cast<void> (0) : __assert_fail ("SafeReplacementConstant && \"Replacement constant not set\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5291, __PRETTY_FUNCTION__))
;
5292 C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5293 }
5294
5295 CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5296
5297 // Increment or decrement the constant.
5298 Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5299 Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5300
5301 return std::make_pair(NewPred, NewC);
5302}
5303
5304/// If we have an icmp le or icmp ge instruction with a constant operand, turn
5305/// it into the appropriate icmp lt or icmp gt instruction. This transform
5306/// allows them to be folded in visitICmpInst.
5307static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5308 ICmpInst::Predicate Pred = I.getPredicate();
5309 if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5310 InstCombiner::isCanonicalPredicate(Pred))
5311 return nullptr;
5312
5313 Value *Op0 = I.getOperand(0);
5314 Value *Op1 = I.getOperand(1);
5315 auto *Op1C = dyn_cast<Constant>(Op1);
5316 if (!Op1C)
5317 return nullptr;
5318
5319 auto FlippedStrictness =
5320 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5321 if (!FlippedStrictness)
5322 return nullptr;
5323
5324 return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5325}
5326
5327/// If we have a comparison with a non-canonical predicate, if we can update
5328/// all the users, invert the predicate and adjust all the users.
5329CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5330 // Is the predicate already canonical?
5331 CmpInst::Predicate Pred = I.getPredicate();
5332 if (InstCombiner::isCanonicalPredicate(Pred))
5333 return nullptr;
5334
5335 // Can all users be adjusted to predicate inversion?
5336 if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5337 return nullptr;
5338
5339 // Ok, we can canonicalize comparison!
5340 // Let's first invert the comparison's predicate.
5341 I.setPredicate(CmpInst::getInversePredicate(Pred));
5342 I.setName(I.getName() + ".not");
5343
5344 // And now let's adjust every user.
5345 for (User *U : I.users()) {
5346 switch (cast<Instruction>(U)->getOpcode()) {
5347 case Instruction::Select: {
5348 auto *SI = cast<SelectInst>(U);
5349 SI->swapValues();
5350 SI->swapProfMetadata();
5351 break;
5352 }
5353 case Instruction::Br:
5354 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
5355 break;
5356 case Instruction::Xor:
5357 replaceInstUsesWith(cast<Instruction>(*U), &I);
5358 break;
5359 default:
5360 llvm_unreachable("Got unexpected user - out of sync with "::llvm::llvm_unreachable_internal("Got unexpected user - out of sync with "
"canFreelyInvertAllUsersOf() ?", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5361)
5361 "canFreelyInvertAllUsersOf() ?")::llvm::llvm_unreachable_internal("Got unexpected user - out of sync with "
"canFreelyInvertAllUsersOf() ?", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5361)
;
5362 }
5363 }
5364
5365 return &I;
5366}
5367
5368/// Integer compare with boolean values can always be turned into bitwise ops.
5369static Instruction *canonicalizeICmpBool(ICmpInst &I,
5370 InstCombiner::BuilderTy &Builder) {
5371 Value *A = I.getOperand(0), *B = I.getOperand(1);
5372 assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only")((A->getType()->isIntOrIntVectorTy(1) && "Bools only"
) ? static_cast<void> (0) : __assert_fail ("A->getType()->isIntOrIntVectorTy(1) && \"Bools only\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5372, __PRETTY_FUNCTION__))
;
5373
5374 // A boolean compared to true/false can be simplified to Op0/true/false in
5375 // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5376 // Cases not handled by InstSimplify are always 'not' of Op0.
5377 if (match(B, m_Zero())) {
5378 switch (I.getPredicate()) {
5379 case CmpInst::ICMP_EQ: // A == 0 -> !A
5380 case CmpInst::ICMP_ULE: // A <=u 0 -> !A
5381 case CmpInst::ICMP_SGE: // A >=s 0 -> !A
5382 return BinaryOperator::CreateNot(A);
5383 default:
5384 llvm_unreachable("ICmp i1 X, C not simplified as expected.")::llvm::llvm_unreachable_internal("ICmp i1 X, C not simplified as expected."
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5384)
;
5385 }
5386 } else if (match(B, m_One())) {
5387 switch (I.getPredicate()) {
5388 case CmpInst::ICMP_NE: // A != 1 -> !A
5389 case CmpInst::ICMP_ULT: // A <u 1 -> !A
5390 case CmpInst::ICMP_SGT: // A >s -1 -> !A
5391 return BinaryOperator::CreateNot(A);
5392 default:
5393 llvm_unreachable("ICmp i1 X, C not simplified as expected.")::llvm::llvm_unreachable_internal("ICmp i1 X, C not simplified as expected."
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5393)
;
5394 }
5395 }
5396
5397 switch (I.getPredicate()) {
5398 default:
5399 llvm_unreachable("Invalid icmp instruction!")::llvm::llvm_unreachable_internal("Invalid icmp instruction!"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5399)
;
5400 case ICmpInst::ICMP_EQ:
5401 // icmp eq i1 A, B -> ~(A ^ B)
5402 return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5403
5404 case ICmpInst::ICMP_NE:
5405 // icmp ne i1 A, B -> A ^ B
5406 return BinaryOperator::CreateXor(A, B);
5407
5408 case ICmpInst::ICMP_UGT:
5409 // icmp ugt -> icmp ult
5410 std::swap(A, B);
5411 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5412 case ICmpInst::ICMP_ULT:
5413 // icmp ult i1 A, B -> ~A & B
5414 return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5415
5416 case ICmpInst::ICMP_SGT:
5417 // icmp sgt -> icmp slt
5418 std::swap(A, B);
5419 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5420 case ICmpInst::ICMP_SLT:
5421 // icmp slt i1 A, B -> A & ~B
5422 return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5423
5424 case ICmpInst::ICMP_UGE:
5425 // icmp uge -> icmp ule
5426 std::swap(A, B);
5427 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5428 case ICmpInst::ICMP_ULE:
5429 // icmp ule i1 A, B -> ~A | B
5430 return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5431
5432 case ICmpInst::ICMP_SGE:
5433 // icmp sge -> icmp sle
5434 std::swap(A, B);
5435 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5436 case ICmpInst::ICMP_SLE:
5437 // icmp sle i1 A, B -> A | ~B
5438 return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5439 }
5440}
5441
5442// Transform pattern like:
5443// (1 << Y) u<= X or ~(-1 << Y) u< X or ((1 << Y)+(-1)) u< X
5444// (1 << Y) u> X or ~(-1 << Y) u>= X or ((1 << Y)+(-1)) u>= X
5445// Into:
5446// (X l>> Y) != 0
5447// (X l>> Y) == 0
5448static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5449 InstCombiner::BuilderTy &Builder) {
5450 ICmpInst::Predicate Pred, NewPred;
5451 Value *X, *Y;
5452 if (match(&Cmp,
5453 m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5454 switch (Pred) {
5455 case ICmpInst::ICMP_ULE:
5456 NewPred = ICmpInst::ICMP_NE;
5457 break;
5458 case ICmpInst::ICMP_UGT:
5459 NewPred = ICmpInst::ICMP_EQ;
5460 break;
5461 default:
5462 return nullptr;
5463 }
5464 } else if (match(&Cmp, m_c_ICmp(Pred,
5465 m_OneUse(m_CombineOr(
5466 m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5467 m_Add(m_Shl(m_One(), m_Value(Y)),
5468 m_AllOnes()))),
5469 m_Value(X)))) {
5470 // The variant with 'add' is not canonical, (the variant with 'not' is)
5471 // we only get it because it has extra uses, and can't be canonicalized,
5472
5473 switch (Pred) {
5474 case ICmpInst::ICMP_ULT:
5475 NewPred = ICmpInst::ICMP_NE;
5476 break;
5477 case ICmpInst::ICMP_UGE:
5478 NewPred = ICmpInst::ICMP_EQ;
5479 break;
5480 default:
5481 return nullptr;
5482 }
5483 } else
5484 return nullptr;
5485
5486 Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5487 Constant *Zero = Constant::getNullValue(NewX->getType());
5488 return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5489}
5490
5491static Instruction *foldVectorCmp(CmpInst &Cmp,
5492 InstCombiner::BuilderTy &Builder) {
5493 const CmpInst::Predicate Pred = Cmp.getPredicate();
5494 Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5495 Value *V1, *V2;
5496 ArrayRef<int> M;
5497 if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5498 return nullptr;
5499
5500 // If both arguments of the cmp are shuffles that use the same mask and
5501 // shuffle within a single vector, move the shuffle after the cmp:
5502 // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5503 Type *V1Ty = V1->getType();
5504 if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5505 V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5506 Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5507 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5508 }
5509
5510 // Try to canonicalize compare with splatted operand and splat constant.
5511 // TODO: We could generalize this for more than splats. See/use the code in
5512 // InstCombiner::foldVectorBinop().
5513 Constant *C;
5514 if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5515 return nullptr;
5516
5517 // Length-changing splats are ok, so adjust the constants as needed:
5518 // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5519 Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5520 int MaskSplatIndex;
5521 if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5522 // We allow undefs in matching, but this transform removes those for safety.
5523 // Demanded elements analysis should be able to recover some/all of that.
5524 C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5525 ScalarC);
5526 SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5527 Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5528 return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5529 NewM);
5530 }
5531
5532 return nullptr;
5533}
5534
5535// extract(uadd.with.overflow(A, B), 0) ult A
5536// -> extract(uadd.with.overflow(A, B), 1)
5537static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5538 CmpInst::Predicate Pred = I.getPredicate();
5539 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5540
5541 Value *UAddOv;
5542 Value *A, *B;
5543 auto UAddOvResultPat = m_ExtractValue<0>(
5544 m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5545 if (match(Op0, UAddOvResultPat) &&
5546 ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5547 (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5548 (match(A, m_One()) || match(B, m_One()))) ||
5549 (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5550 (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5551 // extract(uadd.with.overflow(A, B), 0) < A
5552 // extract(uadd.with.overflow(A, 1), 0) == 0
5553 // extract(uadd.with.overflow(A, -1), 0) != -1
5554 UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5555 else if (match(Op1, UAddOvResultPat) &&
5556 Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5557 // A > extract(uadd.with.overflow(A, B), 0)
5558 UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5559 else
5560 return nullptr;
5561
5562 return ExtractValueInst::Create(UAddOv, 1);
5563}
5564
5565Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5566 bool Changed = false;
5567 const SimplifyQuery Q = SQ.getWithInstruction(&I);
5568 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5569 unsigned Op0Cplxity = getComplexity(Op0);
5570 unsigned Op1Cplxity = getComplexity(Op1);
5571
5572 /// Orders the operands of the compare so that they are listed from most
5573 /// complex to least complex. This puts constants before unary operators,
5574 /// before binary operators.
5575 if (Op0Cplxity
0.1
'Op0Cplxity' is < 'Op1Cplxity'
0.1
'Op0Cplxity' is < 'Op1Cplxity'
< Op1Cplxity ||
5576 (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5577 I.swapOperands();
5578 std::swap(Op0, Op1);
5579 Changed = true;
5580 }
5581
5582 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
1
Assuming 'V' is null
2
Taking false branch
5583 return replaceInstUsesWith(I, V);
5584
5585 // Comparing -val or val with non-zero is the same as just comparing val
5586 // ie, abs(val) != 0 -> val != 0
5587 if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
3
Assuming the condition is false
4
Taking false branch
5588 Value *Cond, *SelectTrue, *SelectFalse;
5589 if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5590 m_Value(SelectFalse)))) {
5591 if (Value *V = dyn_castNegVal(SelectTrue)) {
5592 if (V == SelectFalse)
5593 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5594 }
5595 else if (Value *V = dyn_castNegVal(SelectFalse)) {
5596 if (V == SelectTrue)
5597 return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5598 }
5599 }
5600 }
5601
5602 if (Op0->getType()->isIntOrIntVectorTy(1))
5
Assuming the condition is false
6
Taking false branch
5603 if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5604 return Res;
5605
5606 if (Instruction *Res
6.1
'Res' is null
6.1
'Res' is null
= canonicalizeCmpWithConstant(I))
7
Taking false branch
5607 return Res;
5608
5609 if (Instruction *Res
7.1
'Res' is null
7.1
'Res' is null
= canonicalizeICmpPredicate(I))
8
Taking false branch
5610 return Res;
5611
5612 if (Instruction *Res
8.1
'Res' is null
8.1
'Res' is null
= foldICmpWithConstant(I))
9
Taking false branch
5613 return Res;
5614
5615 if (Instruction *Res
9.1
'Res' is null
9.1
'Res' is null
= foldICmpWithDominatingICmp(I))
10
Taking false branch
5616 return Res;
5617
5618 if (Instruction *Res = foldICmpBinOp(I, Q))
11
Assuming 'Res' is null
12
Taking false branch
5619 return Res;
5620
5621 if (Instruction *Res = foldICmpUsingKnownBits(I))
13
Assuming 'Res' is null
14
Taking false branch
5622 return Res;
5623
5624 // Test if the ICmpInst instruction is used exclusively by a select as
5625 // part of a minimum or maximum operation. If so, refrain from doing
5626 // any other folding. This helps out other analyses which understand
5627 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5628 // and CodeGen. And in this case, at least one of the comparison
5629 // operands has at least one user besides the compare (the select),
5630 // which would often largely negate the benefit of folding anyway.
5631 //
5632 // Do the same for the other patterns recognized by matchSelectPattern.
5633 if (I.hasOneUse())
15
Assuming the condition is false
16
Taking false branch
5634 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5635 Value *A, *B;
5636 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5637 if (SPR.Flavor != SPF_UNKNOWN)
5638 return nullptr;
5639 }
5640
5641 // Do this after checking for min/max to prevent infinite looping.
5642 if (Instruction *Res
16.1
'Res' is null
16.1
'Res' is null
= foldICmpWithZero(I))
17
Taking false branch
5643 return Res;
5644
5645 // FIXME: We only do this after checking for min/max to prevent infinite
5646 // looping caused by a reverse canonicalization of these patterns for min/max.
5647 // FIXME: The organization of folds is a mess. These would naturally go into
5648 // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5649 // down here after the min/max restriction.
5650 ICmpInst::Predicate Pred = I.getPredicate();
5651 const APInt *C;
5652 if (match(Op1, m_APInt(C))) {
18
Taking true branch
5653 // For i32: x >u 2147483647 -> x <s 0 -> true if sign bit set
5654 if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
19
Assuming 'Pred' is not equal to ICMP_UGT
5655 Constant *Zero = Constant::getNullValue(Op0->getType());
5656 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5657 }
5658
5659 // For i32: x <u 2147483648 -> x >s -1 -> true if sign bit clear
5660 if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
20
Assuming 'Pred' is not equal to ICMP_ULT
5661 Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5662 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5663 }
5664 }
5665
5666 if (Instruction *Res
20.1
'Res' is null
20.1
'Res' is null
= foldICmpInstWithConstant(I))
21
Taking false branch
5667 return Res;
5668
5669 // Try to match comparison as a sign bit test. Intentionally do this after
5670 // foldICmpInstWithConstant() to potentially let other folds to happen first.
5671 if (Instruction *New
21.1
'New' is null
21.1
'New' is null
= foldSignBitTest(I))
22
Taking false branch
5672 return New;
5673
5674 if (Instruction *Res
22.1
'Res' is null
22.1
'Res' is null
= foldICmpInstWithConstantNotInt(I))
23
Taking false branch
5675 return Res;
5676
5677 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5678 if (GEPOperator *GEP
24.1
'GEP' is null
24.1
'GEP' is null
= dyn_cast<GEPOperator>(Op0))
24
Assuming 'Op0' is not a 'GEPOperator'
25
Taking false branch
5679 if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5680 return NI;
5681 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
26
Assuming 'GEP' is non-null
27
Taking true branch
5682 if (Instruction *NI = foldGEPICmp(GEP, Op0,
28
Calling 'InstCombinerImpl::foldGEPICmp'
5683 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5684 return NI;
5685
5686 // Try to optimize equality comparisons against alloca-based pointers.
5687 if (Op0->getType()->isPointerTy() && I.isEquality()) {
5688 assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?")((Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?"
) ? static_cast<void> (0) : __assert_fail ("Op1->getType()->isPointerTy() && \"Comparing pointer with non-pointer?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5688, __PRETTY_FUNCTION__))
;
5689 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5690 if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5691 return New;
5692 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5693 if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5694 return New;
5695 }
5696
5697 if (Instruction *Res = foldICmpBitCast(I, Builder))
5698 return Res;
5699
5700 // TODO: Hoist this above the min/max bailout.
5701 if (Instruction *R = foldICmpWithCastOp(I))
5702 return R;
5703
5704 if (Instruction *Res = foldICmpWithMinMax(I))
5705 return Res;
5706
5707 {
5708 Value *A, *B;
5709 // Transform (A & ~B) == 0 --> (A & B) != 0
5710 // and (A & ~B) != 0 --> (A & B) == 0
5711 // if A is a power of 2.
5712 if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5713 match(Op1, m_Zero()) &&
5714 isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5715 return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5716 Op1);
5717
5718 // ~X < ~Y --> Y < X
5719 // ~X < C --> X > ~C
5720 if (match(Op0, m_Not(m_Value(A)))) {
5721 if (match(Op1, m_Not(m_Value(B))))
5722 return new ICmpInst(I.getPredicate(), B, A);
5723
5724 const APInt *C;
5725 if (match(Op1, m_APInt(C)))
5726 return new ICmpInst(I.getSwappedPredicate(), A,
5727 ConstantInt::get(Op1->getType(), ~(*C)));
5728 }
5729
5730 Instruction *AddI = nullptr;
5731 if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5732 m_Instruction(AddI))) &&
5733 isa<IntegerType>(A->getType())) {
5734 Value *Result;
5735 Constant *Overflow;
5736 // m_UAddWithOverflow can match patterns that do not include an explicit
5737 // "add" instruction, so check the opcode of the matched op.
5738 if (AddI->getOpcode() == Instruction::Add &&
5739 OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5740 Result, Overflow)) {
5741 replaceInstUsesWith(*AddI, Result);
5742 eraseInstFromFunction(*AddI);
5743 return replaceInstUsesWith(I, Overflow);
5744 }
5745 }
5746
5747 // (zext a) * (zext b) --> llvm.umul.with.overflow.
5748 if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5749 if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5750 return R;
5751 }
5752 if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5753 if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5754 return R;
5755 }
5756 }
5757
5758 if (Instruction *Res = foldICmpEquality(I))
5759 return Res;
5760
5761 if (Instruction *Res = foldICmpOfUAddOv(I))
5762 return Res;
5763
5764 // The 'cmpxchg' instruction returns an aggregate containing the old value and
5765 // an i1 which indicates whether or not we successfully did the swap.
5766 //
5767 // Replace comparisons between the old value and the expected value with the
5768 // indicator that 'cmpxchg' returns.
5769 //
5770 // N.B. This transform is only valid when the 'cmpxchg' is not permitted to
5771 // spuriously fail. In those cases, the old value may equal the expected
5772 // value but it is possible for the swap to not occur.
5773 if (I.getPredicate() == ICmpInst::ICMP_EQ)
5774 if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5775 if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5776 if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5777 !ACXI->isWeak())
5778 return ExtractValueInst::Create(ACXI, 1);
5779
5780 {
5781 Value *X;
5782 const APInt *C;
5783 // icmp X+Cst, X
5784 if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5785 return foldICmpAddOpConst(X, *C, I.getPredicate());
5786
5787 // icmp X, X+Cst
5788 if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5789 return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5790 }
5791
5792 if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5793 return Res;
5794
5795 if (I.getType()->isVectorTy())
5796 if (Instruction *Res = foldVectorCmp(I, Builder))
5797 return Res;
5798
5799 return Changed ? &I : nullptr;
5800}
5801
5802/// Fold fcmp ([us]itofp x, cst) if possible.
5803Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
5804 Instruction *LHSI,
5805 Constant *RHSC) {
5806 if (!isa<ConstantFP>(RHSC)) return nullptr;
5807 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5808
5809 // Get the width of the mantissa. We don't want to hack on conversions that
5810 // might lose information from the integer, e.g. "i64 -> float"
5811 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5812 if (MantissaWidth == -1) return nullptr; // Unknown.
5813
5814 IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5815
5816 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5817
5818 if (I.isEquality()) {
5819 FCmpInst::Predicate P = I.getPredicate();
5820 bool IsExact = false;
5821 APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5822 RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5823
5824 // If the floating point constant isn't an integer value, we know if we will
5825 // ever compare equal / not equal to it.
5826 if (!IsExact) {
5827 // TODO: Can never be -0.0 and other non-representable values
5828 APFloat RHSRoundInt(RHS);
5829 RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5830 if (RHS != RHSRoundInt) {
5831 if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5832 return replaceInstUsesWith(I, Builder.getFalse());
5833
5834 assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE)((P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE) ? static_cast
<void> (0) : __assert_fail ("P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5834, __PRETTY_FUNCTION__))
;
5835 return replaceInstUsesWith(I, Builder.getTrue());
5836 }
5837 }
5838
5839 // TODO: If the constant is exactly representable, is it always OK to do
5840 // equality compares as integer?
5841 }
5842
5843 // Check to see that the input is converted from an integer type that is small
5844 // enough that preserves all bits. TODO: check here for "known" sign bits.
5845 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5846 unsigned InputSize = IntTy->getScalarSizeInBits();
5847
5848 // Following test does NOT adjust InputSize downwards for signed inputs,
5849 // because the most negative value still requires all the mantissa bits
5850 // to distinguish it from one less than that value.
5851 if ((int)InputSize > MantissaWidth) {
5852 // Conversion would lose accuracy. Check if loss can impact comparison.
5853 int Exp = ilogb(RHS);
5854 if (Exp == APFloat::IEK_Inf) {
5855 int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5856 if (MaxExponent < (int)InputSize - !LHSUnsigned)
5857 // Conversion could create infinity.
5858 return nullptr;
5859 } else {
5860 // Note that if RHS is zero or NaN, then Exp is negative
5861 // and first condition is trivially false.
5862 if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5863 // Conversion could affect comparison.
5864 return nullptr;
5865 }
5866 }
5867
5868 // Otherwise, we can potentially simplify the comparison. We know that it
5869 // will always come through as an integer value and we know the constant is
5870 // not a NAN (it would have been previously simplified).
5871 assert(!RHS.isNaN() && "NaN comparison not already folded!")((!RHS.isNaN() && "NaN comparison not already folded!"
) ? static_cast<void> (0) : __assert_fail ("!RHS.isNaN() && \"NaN comparison not already folded!\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5871, __PRETTY_FUNCTION__))
;
5872
5873 ICmpInst::Predicate Pred;
5874 switch (I.getPredicate()) {
5875 default: llvm_unreachable("Unexpected predicate!")::llvm::llvm_unreachable_internal("Unexpected predicate!", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5875)
;
5876 case FCmpInst::FCMP_UEQ:
5877 case FCmpInst::FCMP_OEQ:
5878 Pred = ICmpInst::ICMP_EQ;
5879 break;
5880 case FCmpInst::FCMP_UGT:
5881 case FCmpInst::FCMP_OGT:
5882 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5883 break;
5884 case FCmpInst::FCMP_UGE:
5885 case FCmpInst::FCMP_OGE:
5886 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
5887 break;
5888 case FCmpInst::FCMP_ULT:
5889 case FCmpInst::FCMP_OLT:
5890 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
5891 break;
5892 case FCmpInst::FCMP_ULE:
5893 case FCmpInst::FCMP_OLE:
5894 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
5895 break;
5896 case FCmpInst::FCMP_UNE:
5897 case FCmpInst::FCMP_ONE:
5898 Pred = ICmpInst::ICMP_NE;
5899 break;
5900 case FCmpInst::FCMP_ORD:
5901 return replaceInstUsesWith(I, Builder.getTrue());
5902 case FCmpInst::FCMP_UNO:
5903 return replaceInstUsesWith(I, Builder.getFalse());
5904 }
5905
5906 // Now we know that the APFloat is a normal number, zero or inf.
5907
5908 // See if the FP constant is too large for the integer. For example,
5909 // comparing an i8 to 300.0.
5910 unsigned IntWidth = IntTy->getScalarSizeInBits();
5911
5912 if (!LHSUnsigned) {
5913 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
5914 // and large values.
5915 APFloat SMax(RHS.getSemantics());
5916 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
5917 APFloat::rmNearestTiesToEven);
5918 if (SMax < RHS) { // smax < 13123.0
5919 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
5920 Pred == ICmpInst::ICMP_SLE)
5921 return replaceInstUsesWith(I, Builder.getTrue());
5922 return replaceInstUsesWith(I, Builder.getFalse());
5923 }
5924 } else {
5925 // If the RHS value is > UnsignedMax, fold the comparison. This handles
5926 // +INF and large values.
5927 APFloat UMax(RHS.getSemantics());
5928 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
5929 APFloat::rmNearestTiesToEven);
5930 if (UMax < RHS) { // umax < 13123.0
5931 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
5932 Pred == ICmpInst::ICMP_ULE)
5933 return replaceInstUsesWith(I, Builder.getTrue());
5934 return replaceInstUsesWith(I, Builder.getFalse());
5935 }
5936 }
5937
5938 if (!LHSUnsigned) {
5939 // See if the RHS value is < SignedMin.
5940 APFloat SMin(RHS.getSemantics());
5941 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
5942 APFloat::rmNearestTiesToEven);
5943 if (SMin > RHS) { // smin > 12312.0
5944 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
5945 Pred == ICmpInst::ICMP_SGE)
5946 return replaceInstUsesWith(I, Builder.getTrue());
5947 return replaceInstUsesWith(I, Builder.getFalse());
5948 }
5949 } else {
5950 // See if the RHS value is < UnsignedMin.
5951 APFloat UMin(RHS.getSemantics());
5952 UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
5953 APFloat::rmNearestTiesToEven);
5954 if (UMin > RHS) { // umin > 12312.0
5955 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
5956 Pred == ICmpInst::ICMP_UGE)
5957 return replaceInstUsesWith(I, Builder.getTrue());
5958 return replaceInstUsesWith(I, Builder.getFalse());
5959 }
5960 }
5961
5962 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
5963 // [0, UMAX], but it may still be fractional. See if it is fractional by
5964 // casting the FP value to the integer value and back, checking for equality.
5965 // Don't do this for zero, because -0.0 is not fractional.
5966 Constant *RHSInt = LHSUnsigned
5967 ? ConstantExpr::getFPToUI(RHSC, IntTy)
5968 : ConstantExpr::getFPToSI(RHSC, IntTy);
5969 if (!RHS.isZero()) {
5970 bool Equal = LHSUnsigned
5971 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
5972 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
5973 if (!Equal) {
5974 // If we had a comparison against a fractional value, we have to adjust
5975 // the compare predicate and sometimes the value. RHSC is rounded towards
5976 // zero at this point.
5977 switch (Pred) {
5978 default: llvm_unreachable("Unexpected integer comparison!")::llvm::llvm_unreachable_internal("Unexpected integer comparison!"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 5978)
;
5979 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
5980 return replaceInstUsesWith(I, Builder.getTrue());
5981 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
5982 return replaceInstUsesWith(I, Builder.getFalse());
5983 case ICmpInst::ICMP_ULE:
5984 // (float)int <= 4.4 --> int <= 4
5985 // (float)int <= -4.4 --> false
5986 if (RHS.isNegative())
5987 return replaceInstUsesWith(I, Builder.getFalse());
5988 break;
5989 case ICmpInst::ICMP_SLE:
5990 // (float)int <= 4.4 --> int <= 4
5991 // (float)int <= -4.4 --> int < -4
5992 if (RHS.isNegative())
5993 Pred = ICmpInst::ICMP_SLT;
5994 break;
5995 case ICmpInst::ICMP_ULT:
5996 // (float)int < -4.4 --> false
5997 // (float)int < 4.4 --> int <= 4
5998 if (RHS.isNegative())
5999 return replaceInstUsesWith(I, Builder.getFalse());
6000 Pred = ICmpInst::ICMP_ULE;
6001 break;
6002 case ICmpInst::ICMP_SLT:
6003 // (float)int < -4.4 --> int < -4
6004 // (float)int < 4.4 --> int <= 4
6005 if (!RHS.isNegative())
6006 Pred = ICmpInst::ICMP_SLE;
6007 break;
6008 case ICmpInst::ICMP_UGT:
6009 // (float)int > 4.4 --> int > 4
6010 // (float)int > -4.4 --> true
6011 if (RHS.isNegative())
6012 return replaceInstUsesWith(I, Builder.getTrue());
6013 break;
6014 case ICmpInst::ICMP_SGT:
6015 // (float)int > 4.4 --> int > 4
6016 // (float)int > -4.4 --> int >= -4
6017 if (RHS.isNegative())
6018 Pred = ICmpInst::ICMP_SGE;
6019 break;
6020 case ICmpInst::ICMP_UGE:
6021 // (float)int >= -4.4 --> true
6022 // (float)int >= 4.4 --> int > 4
6023 if (RHS.isNegative())
6024 return replaceInstUsesWith(I, Builder.getTrue());
6025 Pred = ICmpInst::ICMP_UGT;
6026 break;
6027 case ICmpInst::ICMP_SGE:
6028 // (float)int >= -4.4 --> int >= -4
6029 // (float)int >= 4.4 --> int > 4
6030 if (!RHS.isNegative())
6031 Pred = ICmpInst::ICMP_SGT;
6032 break;
6033 }
6034 }
6035 }
6036
6037 // Lower this FP comparison into an appropriate integer version of the
6038 // comparison.
6039 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6040}
6041
6042/// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
6043static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6044 Constant *RHSC) {
6045 // When C is not 0.0 and infinities are not allowed:
6046 // (C / X) < 0.0 is a sign-bit test of X
6047 // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6048 // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6049 //
6050 // Proof:
6051 // Multiply (C / X) < 0.0 by X * X / C.
6052 // - X is non zero, if it is the flag 'ninf' is violated.
6053 // - C defines the sign of X * X * C. Thus it also defines whether to swap
6054 // the predicate. C is also non zero by definition.
6055 //
6056 // Thus X * X / C is non zero and the transformation is valid. [qed]
6057
6058 FCmpInst::Predicate Pred = I.getPredicate();
6059
6060 // Check that predicates are valid.
6061 if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6062 (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6063 return nullptr;
6064
6065 // Check that RHS operand is zero.
6066 if (!match(RHSC, m_AnyZeroFP()))
6067 return nullptr;
6068
6069 // Check fastmath flags ('ninf').
6070 if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6071 return nullptr;
6072
6073 // Check the properties of the dividend. It must not be zero to avoid a
6074 // division by zero (see Proof).
6075 const APFloat *C;
6076 if (!match(LHSI->getOperand(0), m_APFloat(C)))
6077 return nullptr;
6078
6079 if (C->isZero())
6080 return nullptr;
6081
6082 // Get swapped predicate if necessary.
6083 if (C->isNegative())
6084 Pred = I.getSwappedPredicate();
6085
6086 return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6087}
6088
6089/// Optimize fabs(X) compared with zero.
6090static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6091 Value *X;
6092 if (!match(I.getOperand(0), m_Intrinsic<Intrinsic::fabs>(m_Value(X))) ||
6093 !match(I.getOperand(1), m_PosZeroFP()))
6094 return nullptr;
6095
6096 auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6097 I->setPredicate(P);
6098 return IC.replaceOperand(*I, 0, X);
6099 };
6100
6101 switch (I.getPredicate()) {
6102 case FCmpInst::FCMP_UGE:
6103 case FCmpInst::FCMP_OLT:
6104 // fabs(X) >= 0.0 --> true
6105 // fabs(X) < 0.0 --> false
6106 llvm_unreachable("fcmp should have simplified")::llvm::llvm_unreachable_internal("fcmp should have simplified"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 6106)
;
6107
6108 case FCmpInst::FCMP_OGT:
6109 // fabs(X) > 0.0 --> X != 0.0
6110 return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6111
6112 case FCmpInst::FCMP_UGT:
6113 // fabs(X) u> 0.0 --> X u!= 0.0
6114 return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6115
6116 case FCmpInst::FCMP_OLE:
6117 // fabs(X) <= 0.0 --> X == 0.0
6118 return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6119
6120 case FCmpInst::FCMP_ULE:
6121 // fabs(X) u<= 0.0 --> X u== 0.0
6122 return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6123
6124 case FCmpInst::FCMP_OGE:
6125 // fabs(X) >= 0.0 --> !isnan(X)
6126 assert(!I.hasNoNaNs() && "fcmp should have simplified")((!I.hasNoNaNs() && "fcmp should have simplified") ? static_cast
<void> (0) : __assert_fail ("!I.hasNoNaNs() && \"fcmp should have simplified\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 6126, __PRETTY_FUNCTION__))
;
6127 return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6128
6129 case FCmpInst::FCMP_ULT:
6130 // fabs(X) u< 0.0 --> isnan(X)
6131 assert(!I.hasNoNaNs() && "fcmp should have simplified")((!I.hasNoNaNs() && "fcmp should have simplified") ? static_cast
<void> (0) : __assert_fail ("!I.hasNoNaNs() && \"fcmp should have simplified\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 6131, __PRETTY_FUNCTION__))
;
6132 return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6133
6134 case FCmpInst::FCMP_OEQ:
6135 case FCmpInst::FCMP_UEQ:
6136 case FCmpInst::FCMP_ONE:
6137 case FCmpInst::FCMP_UNE:
6138 case FCmpInst::FCMP_ORD:
6139 case FCmpInst::FCMP_UNO:
6140 // Look through the fabs() because it doesn't change anything but the sign.
6141 // fabs(X) == 0.0 --> X == 0.0,
6142 // fabs(X) != 0.0 --> X != 0.0
6143 // isnan(fabs(X)) --> isnan(X)
6144 // !isnan(fabs(X) --> !isnan(X)
6145 return replacePredAndOp0(&I, I.getPredicate(), X);
6146
6147 default:
6148 return nullptr;
6149 }
6150}
6151
6152Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6153 bool Changed = false;
6154
6155 /// Orders the operands of the compare so that they are listed from most
6156 /// complex to least complex. This puts constants before unary operators,
6157 /// before binary operators.
6158 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6159 I.swapOperands();
6160 Changed = true;
6161 }
6162
6163 const CmpInst::Predicate Pred = I.getPredicate();
6164 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6165 if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6166 SQ.getWithInstruction(&I)))
6167 return replaceInstUsesWith(I, V);
6168
6169 // Simplify 'fcmp pred X, X'
6170 Type *OpType = Op0->getType();
6171 assert(OpType == Op1->getType() && "fcmp with different-typed operands?")((OpType == Op1->getType() && "fcmp with different-typed operands?"
) ? static_cast<void> (0) : __assert_fail ("OpType == Op1->getType() && \"fcmp with different-typed operands?\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/lib/Transforms/InstCombine/InstCombineCompares.cpp"
, 6171, __PRETTY_FUNCTION__))
;
6172 if (Op0 == Op1) {
6173 switch (Pred) {
6174 default: break;
6175 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
6176 case FCmpInst::FCMP_ULT: // True if unordered or less than
6177 case FCmpInst::FCMP_UGT: // True if unordered or greater than
6178 case FCmpInst::FCMP_UNE: // True if unordered or not equal
6179 // Canonicalize these to be 'fcmp uno %X, 0.0'.
6180 I.setPredicate(FCmpInst::FCMP_UNO);
6181 I.setOperand(1, Constant::getNullValue(OpType));
6182 return &I;
6183
6184 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
6185 case FCmpInst::FCMP_OEQ: // True if ordered and equal
6186 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
6187 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
6188 // Canonicalize these to be 'fcmp ord %X, 0.0'.
6189 I.setPredicate(FCmpInst::FCMP_ORD);
6190 I.setOperand(1, Constant::getNullValue(OpType));
6191 return &I;
6192 }
6193 }
6194
6195 // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6196 // then canonicalize the operand to 0.0.
6197 if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6198 if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6199 return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6200
6201 if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6202 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6203 }
6204
6205 // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6206 Value *X, *Y;
6207 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6208 return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6209
6210 // Test if the FCmpInst instruction is used exclusively by a select as
6211 // part of a minimum or maximum operation. If so, refrain from doing
6212 // any other folding. This helps out other analyses which understand
6213 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6214 // and CodeGen. And in this case, at least one of the comparison
6215 // operands has at least one user besides the compare (the select),
6216 // which would often largely negate the benefit of folding anyway.
6217 if (I.hasOneUse())
6218 if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6219 Value *A, *B;
6220 SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6221 if (SPR.Flavor != SPF_UNKNOWN)
6222 return nullptr;
6223 }
6224
6225 // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6226 // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6227 if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6228 return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6229
6230 // Handle fcmp with instruction LHS and constant RHS.
6231 Instruction *LHSI;
6232 Constant *RHSC;
6233 if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6234 switch (LHSI->getOpcode()) {
6235 case Instruction::PHI:
6236 // Only fold fcmp into the PHI if the phi and fcmp are in the same
6237 // block. If in the same block, we're encouraging jump threading. If
6238 // not, we are just pessimizing the code by making an i1 phi.
6239 if (LHSI->getParent() == I.getParent())
6240 if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6241 return NV;
6242 break;
6243 case Instruction::SIToFP:
6244 case Instruction::UIToFP:
6245 if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6246 return NV;
6247 break;
6248 case Instruction::FDiv:
6249 if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6250 return NV;
6251 break;
6252 case Instruction::Load:
6253 if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6254 if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6255 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6256 !cast<LoadInst>(LHSI)->isVolatile())
6257 if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6258 return Res;
6259 break;
6260 }
6261 }
6262
6263 if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6264 return R;
6265
6266 if (match(Op0, m_FNeg(m_Value(X)))) {
6267 // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6268 Constant *C;
6269 if (match(Op1, m_Constant(C))) {
6270 Constant *NegC = ConstantExpr::getFNeg(C);
6271 return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6272 }
6273 }
6274
6275 if (match(Op0, m_FPExt(m_Value(X)))) {
6276 // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6277 if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6278 return new FCmpInst(Pred, X, Y, "", &I);
6279
6280 // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6281 const APFloat *C;
6282 if (match(Op1, m_APFloat(C))) {
6283 const fltSemantics &FPSem =
6284 X->getType()->getScalarType()->getFltSemantics();
6285 bool Lossy;
6286 APFloat TruncC = *C;
6287 TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6288
6289 // Avoid lossy conversions and denormals.
6290 // Zero is a special case that's OK to convert.
6291 APFloat Fabs = TruncC;
6292 Fabs.clearSign();
6293 if (!Lossy &&
6294 (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6295 Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6296 return new FCmpInst(Pred, X, NewC, "", &I);
6297 }
6298 }
6299 }
6300
6301 if (I.getType()->isVectorTy())
6302 if (Instruction *Res = foldVectorCmp(I, Builder))
6303 return Res;
6304
6305 return Changed ? &I : nullptr;
6306}

/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h

1//===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the SmallVector class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_ADT_SMALLVECTOR_H
14#define LLVM_ADT_SMALLVECTOR_H
15
16#include "llvm/ADT/iterator_range.h"
17#include "llvm/Support/AlignOf.h"
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Support/MemAlloc.h"
22#include "llvm/Support/type_traits.h"
23#include <algorithm>
24#include <cassert>
25#include <cstddef>
26#include <cstdlib>
27#include <cstring>
28#include <initializer_list>
29#include <iterator>
30#include <limits>
31#include <memory>
32#include <new>
33#include <type_traits>
34#include <utility>
35
36namespace llvm {
37
38/// This is all the stuff common to all SmallVectors.
39///
40/// The template parameter specifies the type which should be used to hold the
41/// Size and Capacity of the SmallVector, so it can be adjusted.
42/// Using 32 bit size is desirable to shrink the size of the SmallVector.
43/// Using 64 bit size is desirable for cases like SmallVector<char>, where a
44/// 32 bit size would limit the vector to ~4GB. SmallVectors are used for
45/// buffering bitcode output - which can exceed 4GB.
46template <class Size_T> class SmallVectorBase {
47protected:
48 void *BeginX;
49 Size_T Size = 0, Capacity;
50
51 /// The maximum value of the Size_T used.
52 static constexpr size_t SizeTypeMax() {
53 return std::numeric_limits<Size_T>::max();
54 }
55
56 SmallVectorBase() = delete;
57 SmallVectorBase(void *FirstEl, size_t TotalCapacity)
58 : BeginX(FirstEl), Capacity(TotalCapacity) {}
59
60 /// This is an implementation of the grow() method which only works
61 /// on POD-like data types and is out of line to reduce code duplication.
62 /// This function will report a fatal error if it cannot increase capacity.
63 void grow_pod(void *FirstEl, size_t MinSize, size_t TSize);
64
65 /// Report that MinSize doesn't fit into this vector's size type. Throws
66 /// std::length_error or calls report_fatal_error.
67 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) static void report_size_overflow(size_t MinSize);
68 /// Report that this vector is already at maximum capacity. Throws
69 /// std::length_error or calls report_fatal_error.
70 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) static void report_at_maximum_capacity();
71
72public:
73 size_t size() const { return Size; }
74 size_t capacity() const { return Capacity; }
75
76 LLVM_NODISCARD[[clang::warn_unused_result]] bool empty() const { return !Size
48.1
Field 'Size' is not equal to 0, which participates in a condition later
48.1
Field 'Size' is not equal to 0, which participates in a condition later
; }
44
Assuming field 'Size' is not equal to 0, which participates in a condition later
45
Returning zero, which participates in a condition later
49
Returning zero, which participates in a condition later
77
78 /// Set the array size to \p N, which the current array must have enough
79 /// capacity for.
80 ///
81 /// This does not construct or destroy any elements in the vector.
82 ///
83 /// Clients can use this in conjunction with capacity() to write past the end
84 /// of the buffer when they know that more elements are available, and only
85 /// update the size later. This avoids the cost of value initializing elements
86 /// which will only be overwritten.
87 void set_size(size_t N) {
88 assert(N <= capacity())((N <= capacity()) ? static_cast<void> (0) : __assert_fail
("N <= capacity()", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 88, __PRETTY_FUNCTION__))
;
89 Size = N;
90 }
91};
92
93template <class T>
94using SmallVectorSizeType =
95 typename std::conditional<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t,
96 uint32_t>::type;
97
98/// Figure out the offset of the first element.
99template <class T, typename = void> struct SmallVectorAlignmentAndSize {
100 AlignedCharArrayUnion<SmallVectorBase<SmallVectorSizeType<T>>> Base;
101 AlignedCharArrayUnion<T> FirstEl;
102};
103
104/// This is the part of SmallVectorTemplateBase which does not depend on whether
105/// the type T is a POD. The extra dummy template argument is used by ArrayRef
106/// to avoid unnecessarily requiring T to be complete.
107template <typename T, typename = void>
108class SmallVectorTemplateCommon
109 : public SmallVectorBase<SmallVectorSizeType<T>> {
110 using Base = SmallVectorBase<SmallVectorSizeType<T>>;
111
112 /// Find the address of the first element. For this pointer math to be valid
113 /// with small-size of 0 for T with lots of alignment, it's important that
114 /// SmallVectorStorage is properly-aligned even for small-size of 0.
115 void *getFirstEl() const {
116 return const_cast<void *>(reinterpret_cast<const void *>(
117 reinterpret_cast<const char *>(this) +
118 offsetof(SmallVectorAlignmentAndSize<T>, FirstEl)__builtin_offsetof(SmallVectorAlignmentAndSize<T>, FirstEl
)
));
119 }
120 // Space after 'FirstEl' is clobbered, do not add any instance vars after it.
121
122protected:
123 SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {}
124
125 void grow_pod(size_t MinSize, size_t TSize) {
126 Base::grow_pod(getFirstEl(), MinSize, TSize);
127 }
128
129 /// Return true if this is a smallvector which has not had dynamic
130 /// memory allocated for it.
131 bool isSmall() const { return this->BeginX == getFirstEl(); }
132
133 /// Put this vector in a state of being small.
134 void resetToSmall() {
135 this->BeginX = getFirstEl();
136 this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect.
137 }
138
139public:
140 using size_type = size_t;
141 using difference_type = ptrdiff_t;
142 using value_type = T;
143 using iterator = T *;
144 using const_iterator = const T *;
145
146 using const_reverse_iterator = std::reverse_iterator<const_iterator>;
147 using reverse_iterator = std::reverse_iterator<iterator>;
148
149 using reference = T &;
150 using const_reference = const T &;
151 using pointer = T *;
152 using const_pointer = const T *;
153
154 using Base::capacity;
155 using Base::empty;
156 using Base::size;
157
158 // forward iterator creation methods.
159 iterator begin() { return (iterator)this->BeginX; }
160 const_iterator begin() const { return (const_iterator)this->BeginX; }
161 iterator end() { return begin() + size(); }
162 const_iterator end() const { return begin() + size(); }
163
164 // reverse iterator creation methods.
165 reverse_iterator rbegin() { return reverse_iterator(end()); }
166 const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); }
167 reverse_iterator rend() { return reverse_iterator(begin()); }
168 const_reverse_iterator rend() const { return const_reverse_iterator(begin());}
169
170 size_type size_in_bytes() const { return size() * sizeof(T); }
171 size_type max_size() const {
172 return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T));
173 }
174
175 size_t capacity_in_bytes() const { return capacity() * sizeof(T); }
176
177 /// Return a pointer to the vector's buffer, even if empty().
178 pointer data() { return pointer(begin()); }
179 /// Return a pointer to the vector's buffer, even if empty().
180 const_pointer data() const { return const_pointer(begin()); }
181
182 reference operator[](size_type idx) {
183 assert(idx < size())((idx < size()) ? static_cast<void> (0) : __assert_fail
("idx < size()", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 183, __PRETTY_FUNCTION__))
;
184 return begin()[idx];
185 }
186 const_reference operator[](size_type idx) const {
187 assert(idx < size())((idx < size()) ? static_cast<void> (0) : __assert_fail
("idx < size()", "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 187, __PRETTY_FUNCTION__))
;
188 return begin()[idx];
189 }
190
191 reference front() {
192 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 192, __PRETTY_FUNCTION__))
;
193 return begin()[0];
194 }
195 const_reference front() const {
196 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 196, __PRETTY_FUNCTION__))
;
197 return begin()[0];
198 }
199
200 reference back() {
201 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 201, __PRETTY_FUNCTION__))
;
202 return end()[-1];
203 }
204 const_reference back() const {
205 assert(!empty())((!empty()) ? static_cast<void> (0) : __assert_fail ("!empty()"
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 205, __PRETTY_FUNCTION__))
;
206 return end()[-1];
207 }
208};
209
210/// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put
211/// method implementations that are designed to work with non-trivial T's.
212///
213/// We approximate is_trivially_copyable with trivial move/copy construction and
214/// trivial destruction. While the standard doesn't specify that you're allowed
215/// copy these types with memcpy, there is no way for the type to observe this.
216/// This catches the important case of std::pair<POD, POD>, which is not
217/// trivially assignable.
218template <typename T, bool = (is_trivially_copy_constructible<T>::value) &&
219 (is_trivially_move_constructible<T>::value) &&
220 std::is_trivially_destructible<T>::value>
221class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> {
222protected:
223 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
224
225 static void destroy_range(T *S, T *E) {
226 while (S != E) {
227 --E;
228 E->~T();
229 }
230 }
231
232 /// Move the range [I, E) into the uninitialized memory starting with "Dest",
233 /// constructing elements as needed.
234 template<typename It1, typename It2>
235 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
236 std::uninitialized_copy(std::make_move_iterator(I),
237 std::make_move_iterator(E), Dest);
238 }
239
240 /// Copy the range [I, E) onto the uninitialized memory starting with "Dest",
241 /// constructing elements as needed.
242 template<typename It1, typename It2>
243 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
244 std::uninitialized_copy(I, E, Dest);
245 }
246
247 /// Grow the allocated memory (without initializing new elements), doubling
248 /// the size of the allocated memory. Guarantees space for at least one more
249 /// element, or MinSize more elements if specified.
250 void grow(size_t MinSize = 0);
251
252public:
253 void push_back(const T &Elt) {
254 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
255 this->grow();
256 ::new ((void*) this->end()) T(Elt);
257 this->set_size(this->size() + 1);
258 }
259
260 void push_back(T &&Elt) {
261 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
262 this->grow();
263 ::new ((void*) this->end()) T(::std::move(Elt));
264 this->set_size(this->size() + 1);
265 }
266
267 void pop_back() {
268 this->set_size(this->size() - 1);
269 this->end()->~T();
270 }
271};
272
273// Define this out-of-line to dissuade the C++ compiler from inlining it.
274template <typename T, bool TriviallyCopyable>
275void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) {
276 // Ensure we can fit the new capacity.
277 // This is only going to be applicable when the capacity is 32 bit.
278 if (MinSize > this->SizeTypeMax())
279 this->report_size_overflow(MinSize);
280
281 // Ensure we can meet the guarantee of space for at least one more element.
282 // The above check alone will not catch the case where grow is called with a
283 // default MinSize of 0, but the current capacity cannot be increased.
284 // This is only going to be applicable when the capacity is 32 bit.
285 if (this->capacity() == this->SizeTypeMax())
286 this->report_at_maximum_capacity();
287
288 // Always grow, even from zero.
289 size_t NewCapacity = size_t(NextPowerOf2(this->capacity() + 2));
290 NewCapacity = std::min(std::max(NewCapacity, MinSize), this->SizeTypeMax());
291 T *NewElts = static_cast<T*>(llvm::safe_malloc(NewCapacity*sizeof(T)));
292
293 // Move the elements over.
294 this->uninitialized_move(this->begin(), this->end(), NewElts);
295
296 // Destroy the original elements.
297 destroy_range(this->begin(), this->end());
298
299 // If this wasn't grown from the inline copy, deallocate the old space.
300 if (!this->isSmall())
301 free(this->begin());
302
303 this->BeginX = NewElts;
304 this->Capacity = NewCapacity;
305}
306
307/// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put
308/// method implementations that are designed to work with trivially copyable
309/// T's. This allows using memcpy in place of copy/move construction and
310/// skipping destruction.
311template <typename T>
312class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> {
313protected:
314 SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {}
315
316 // No need to do a destroy loop for POD's.
317 static void destroy_range(T *, T *) {}
318
319 /// Move the range [I, E) onto the uninitialized memory
320 /// starting with "Dest", constructing elements into it as needed.
321 template<typename It1, typename It2>
322 static void uninitialized_move(It1 I, It1 E, It2 Dest) {
323 // Just do a copy.
324 uninitialized_copy(I, E, Dest);
325 }
326
327 /// Copy the range [I, E) onto the uninitialized memory
328 /// starting with "Dest", constructing elements into it as needed.
329 template<typename It1, typename It2>
330 static void uninitialized_copy(It1 I, It1 E, It2 Dest) {
331 // Arbitrary iterator types; just use the basic implementation.
332 std::uninitialized_copy(I, E, Dest);
333 }
334
335 /// Copy the range [I, E) onto the uninitialized memory
336 /// starting with "Dest", constructing elements into it as needed.
337 template <typename T1, typename T2>
338 static void uninitialized_copy(
339 T1 *I, T1 *E, T2 *Dest,
340 std::enable_if_t<std::is_same<typename std::remove_const<T1>::type,
341 T2>::value> * = nullptr) {
342 // Use memcpy for PODs iterated by pointers (which includes SmallVector
343 // iterators): std::uninitialized_copy optimizes to memmove, but we can
344 // use memcpy here. Note that I and E are iterators and thus might be
345 // invalid for memcpy if they are equal.
346 if (I != E)
347 memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T));
348 }
349
350 /// Double the size of the allocated memory, guaranteeing space for at
351 /// least one more element or MinSize if specified.
352 void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); }
353
354public:
355 void push_back(const T &Elt) {
356 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
357 this->grow();
358 memcpy(reinterpret_cast<void *>(this->end()), &Elt, sizeof(T));
359 this->set_size(this->size() + 1);
360 }
361
362 void pop_back() { this->set_size(this->size() - 1); }
363};
364
365/// This class consists of common code factored out of the SmallVector class to
366/// reduce code duplication based on the SmallVector 'N' template parameter.
367template <typename T>
368class SmallVectorImpl : public SmallVectorTemplateBase<T> {
369 using SuperClass = SmallVectorTemplateBase<T>;
370
371public:
372 using iterator = typename SuperClass::iterator;
373 using const_iterator = typename SuperClass::const_iterator;
374 using reference = typename SuperClass::reference;
375 using size_type = typename SuperClass::size_type;
376
377protected:
378 // Default ctor - Initialize to empty.
379 explicit SmallVectorImpl(unsigned N)
380 : SmallVectorTemplateBase<T>(N) {}
381
382public:
383 SmallVectorImpl(const SmallVectorImpl &) = delete;
384
385 ~SmallVectorImpl() {
386 // Subclass has already destructed this vector's elements.
387 // If this wasn't grown from the inline copy, deallocate the old space.
388 if (!this->isSmall())
389 free(this->begin());
390 }
391
392 void clear() {
393 this->destroy_range(this->begin(), this->end());
394 this->Size = 0;
395 }
396
397 void resize(size_type N) {
398 if (N < this->size()) {
399 this->destroy_range(this->begin()+N, this->end());
400 this->set_size(N);
401 } else if (N > this->size()) {
402 if (this->capacity() < N)
403 this->grow(N);
404 for (auto I = this->end(), E = this->begin() + N; I != E; ++I)
405 new (&*I) T();
406 this->set_size(N);
407 }
408 }
409
410 void resize(size_type N, const T &NV) {
411 if (N < this->size()) {
412 this->destroy_range(this->begin()+N, this->end());
413 this->set_size(N);
414 } else if (N > this->size()) {
415 if (this->capacity() < N)
416 this->grow(N);
417 std::uninitialized_fill(this->end(), this->begin()+N, NV);
418 this->set_size(N);
419 }
420 }
421
422 void reserve(size_type N) {
423 if (this->capacity() < N)
424 this->grow(N);
425 }
426
427 LLVM_NODISCARD[[clang::warn_unused_result]] T pop_back_val() {
428 T Result = ::std::move(this->back());
429 this->pop_back();
430 return Result;
431 }
432
433 void swap(SmallVectorImpl &RHS);
434
435 /// Add the specified range to the end of the SmallVector.
436 template <typename in_iter,
437 typename = std::enable_if_t<std::is_convertible<
438 typename std::iterator_traits<in_iter>::iterator_category,
439 std::input_iterator_tag>::value>>
440 void append(in_iter in_start, in_iter in_end) {
441 size_type NumInputs = std::distance(in_start, in_end);
442 if (NumInputs > this->capacity() - this->size())
443 this->grow(this->size()+NumInputs);
444
445 this->uninitialized_copy(in_start, in_end, this->end());
446 this->set_size(this->size() + NumInputs);
447 }
448
449 /// Append \p NumInputs copies of \p Elt to the end.
450 void append(size_type NumInputs, const T &Elt) {
451 if (NumInputs > this->capacity() - this->size())
452 this->grow(this->size()+NumInputs);
453
454 std::uninitialized_fill_n(this->end(), NumInputs, Elt);
455 this->set_size(this->size() + NumInputs);
456 }
457
458 void append(std::initializer_list<T> IL) {
459 append(IL.begin(), IL.end());
460 }
461
462 // FIXME: Consider assigning over existing elements, rather than clearing &
463 // re-initializing them - for all assign(...) variants.
464
465 void assign(size_type NumElts, const T &Elt) {
466 clear();
467 if (this->capacity() < NumElts)
468 this->grow(NumElts);
469 this->set_size(NumElts);
470 std::uninitialized_fill(this->begin(), this->end(), Elt);
471 }
472
473 template <typename in_iter,
474 typename = std::enable_if_t<std::is_convertible<
475 typename std::iterator_traits<in_iter>::iterator_category,
476 std::input_iterator_tag>::value>>
477 void assign(in_iter in_start, in_iter in_end) {
478 clear();
479 append(in_start, in_end);
480 }
481
482 void assign(std::initializer_list<T> IL) {
483 clear();
484 append(IL);
485 }
486
487 iterator erase(const_iterator CI) {
488 // Just cast away constness because this is a non-const member function.
489 iterator I = const_cast<iterator>(CI);
490
491 assert(I >= this->begin() && "Iterator to erase is out of bounds.")((I >= this->begin() && "Iterator to erase is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Iterator to erase is out of bounds.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 491, __PRETTY_FUNCTION__))
;
492 assert(I < this->end() && "Erasing at past-the-end iterator.")((I < this->end() && "Erasing at past-the-end iterator."
) ? static_cast<void> (0) : __assert_fail ("I < this->end() && \"Erasing at past-the-end iterator.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 492, __PRETTY_FUNCTION__))
;
493
494 iterator N = I;
495 // Shift all elts down one.
496 std::move(I+1, this->end(), I);
497 // Drop the last elt.
498 this->pop_back();
499 return(N);
500 }
501
502 iterator erase(const_iterator CS, const_iterator CE) {
503 // Just cast away constness because this is a non-const member function.
504 iterator S = const_cast<iterator>(CS);
505 iterator E = const_cast<iterator>(CE);
506
507 assert(S >= this->begin() && "Range to erase is out of bounds.")((S >= this->begin() && "Range to erase is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("S >= this->begin() && \"Range to erase is out of bounds.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 507, __PRETTY_FUNCTION__))
;
508 assert(S <= E && "Trying to erase invalid range.")((S <= E && "Trying to erase invalid range.") ? static_cast
<void> (0) : __assert_fail ("S <= E && \"Trying to erase invalid range.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 508, __PRETTY_FUNCTION__))
;
509 assert(E <= this->end() && "Trying to erase past the end.")((E <= this->end() && "Trying to erase past the end."
) ? static_cast<void> (0) : __assert_fail ("E <= this->end() && \"Trying to erase past the end.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 509, __PRETTY_FUNCTION__))
;
510
511 iterator N = S;
512 // Shift all elts down.
513 iterator I = std::move(E, this->end(), S);
514 // Drop the last elts.
515 this->destroy_range(I, this->end());
516 this->set_size(I - this->begin());
517 return(N);
518 }
519
520 iterator insert(iterator I, T &&Elt) {
521 if (I == this->end()) { // Important special case for empty vector.
522 this->push_back(::std::move(Elt));
523 return this->end()-1;
524 }
525
526 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 526, __PRETTY_FUNCTION__))
;
527 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 527, __PRETTY_FUNCTION__))
;
528
529 if (this->size() >= this->capacity()) {
530 size_t EltNo = I-this->begin();
531 this->grow();
532 I = this->begin()+EltNo;
533 }
534
535 ::new ((void*) this->end()) T(::std::move(this->back()));
536 // Push everything else over.
537 std::move_backward(I, this->end()-1, this->end());
538 this->set_size(this->size() + 1);
539
540 // If we just moved the element we're inserting, be sure to update
541 // the reference.
542 T *EltPtr = &Elt;
543 if (I <= EltPtr && EltPtr < this->end())
544 ++EltPtr;
545
546 *I = ::std::move(*EltPtr);
547 return I;
548 }
549
550 iterator insert(iterator I, const T &Elt) {
551 if (I == this->end()) { // Important special case for empty vector.
552 this->push_back(Elt);
553 return this->end()-1;
554 }
555
556 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 556, __PRETTY_FUNCTION__))
;
557 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 557, __PRETTY_FUNCTION__))
;
558
559 if (this->size() >= this->capacity()) {
560 size_t EltNo = I-this->begin();
561 this->grow();
562 I = this->begin()+EltNo;
563 }
564 ::new ((void*) this->end()) T(std::move(this->back()));
565 // Push everything else over.
566 std::move_backward(I, this->end()-1, this->end());
567 this->set_size(this->size() + 1);
568
569 // If we just moved the element we're inserting, be sure to update
570 // the reference.
571 const T *EltPtr = &Elt;
572 if (I <= EltPtr && EltPtr < this->end())
573 ++EltPtr;
574
575 *I = *EltPtr;
576 return I;
577 }
578
579 iterator insert(iterator I, size_type NumToInsert, const T &Elt) {
580 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
581 size_t InsertElt = I - this->begin();
582
583 if (I == this->end()) { // Important special case for empty vector.
584 append(NumToInsert, Elt);
585 return this->begin()+InsertElt;
586 }
587
588 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 588, __PRETTY_FUNCTION__))
;
589 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 589, __PRETTY_FUNCTION__))
;
590
591 // Ensure there is enough space.
592 reserve(this->size() + NumToInsert);
593
594 // Uninvalidate the iterator.
595 I = this->begin()+InsertElt;
596
597 // If there are more elements between the insertion point and the end of the
598 // range than there are being inserted, we can use a simple approach to
599 // insertion. Since we already reserved space, we know that this won't
600 // reallocate the vector.
601 if (size_t(this->end()-I) >= NumToInsert) {
602 T *OldEnd = this->end();
603 append(std::move_iterator<iterator>(this->end() - NumToInsert),
604 std::move_iterator<iterator>(this->end()));
605
606 // Copy the existing elements that get replaced.
607 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
608
609 std::fill_n(I, NumToInsert, Elt);
610 return I;
611 }
612
613 // Otherwise, we're inserting more elements than exist already, and we're
614 // not inserting at the end.
615
616 // Move over the elements that we're about to overwrite.
617 T *OldEnd = this->end();
618 this->set_size(this->size() + NumToInsert);
619 size_t NumOverwritten = OldEnd-I;
620 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
621
622 // Replace the overwritten part.
623 std::fill_n(I, NumOverwritten, Elt);
624
625 // Insert the non-overwritten middle part.
626 std::uninitialized_fill_n(OldEnd, NumToInsert-NumOverwritten, Elt);
627 return I;
628 }
629
630 template <typename ItTy,
631 typename = std::enable_if_t<std::is_convertible<
632 typename std::iterator_traits<ItTy>::iterator_category,
633 std::input_iterator_tag>::value>>
634 iterator insert(iterator I, ItTy From, ItTy To) {
635 // Convert iterator to elt# to avoid invalidating iterator when we reserve()
636 size_t InsertElt = I - this->begin();
637
638 if (I == this->end()) { // Important special case for empty vector.
639 append(From, To);
640 return this->begin()+InsertElt;
641 }
642
643 assert(I >= this->begin() && "Insertion iterator is out of bounds.")((I >= this->begin() && "Insertion iterator is out of bounds."
) ? static_cast<void> (0) : __assert_fail ("I >= this->begin() && \"Insertion iterator is out of bounds.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 643, __PRETTY_FUNCTION__))
;
644 assert(I <= this->end() && "Inserting past the end of the vector.")((I <= this->end() && "Inserting past the end of the vector."
) ? static_cast<void> (0) : __assert_fail ("I <= this->end() && \"Inserting past the end of the vector.\""
, "/build/llvm-toolchain-snapshot-12~++20200927111121+5811d723998/llvm/include/llvm/ADT/SmallVector.h"
, 644, __PRETTY_FUNCTION__))
;
645
646 size_t NumToInsert = std::distance(From, To);
647
648 // Ensure there is enough space.
649 reserve(this->size() + NumToInsert);
650
651 // Uninvalidate the iterator.
652 I = this->begin()+InsertElt;
653
654 // If there are more elements between the insertion point and the end of the
655 // range than there are being inserted, we can use a simple approach to
656 // insertion. Since we already reserved space, we know that this won't
657 // reallocate the vector.
658 if (size_t(this->end()-I) >= NumToInsert) {
659 T *OldEnd = this->end();
660 append(std::move_iterator<iterator>(this->end() - NumToInsert),
661 std::move_iterator<iterator>(this->end()));
662
663 // Copy the existing elements that get replaced.
664 std::move_backward(I, OldEnd-NumToInsert, OldEnd);
665
666 std::copy(From, To, I);
667 return I;
668 }
669
670 // Otherwise, we're inserting more elements than exist already, and we're
671 // not inserting at the end.
672
673 // Move over the elements that we're about to overwrite.
674 T *OldEnd = this->end();
675 this->set_size(this->size() + NumToInsert);
676 size_t NumOverwritten = OldEnd-I;
677 this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten);
678
679 // Replace the overwritten part.
680 for (T *J = I; NumOverwritten > 0; --NumOverwritten) {
681 *J = *From;
682 ++J; ++From;
683 }
684
685 // Insert the non-overwritten middle part.
686 this->uninitialized_copy(From, To, OldEnd);
687 return I;
688 }
689
690 void insert(iterator I, std::initializer_list<T> IL) {
691 insert(I, IL.begin(), IL.end());
692 }
693
694 template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) {
695 if (LLVM_UNLIKELY(this->size() >= this->capacity())__builtin_expect((bool)(this->size() >= this->capacity
()), false)
)
696 this->grow();
697 ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...);
698 this->set_size(this->size() + 1);
699 return this->back();
700 }
701
702 SmallVectorImpl &operator=(const SmallVectorImpl &RHS);
703
704 SmallVectorImpl &operator=(SmallVectorImpl &&RHS);
705
706 bool operator==(const SmallVectorImpl &RHS) const {
707 if (this->size() != RHS.size()) return false;
708 return std::equal(this->begin(), this->end(), RHS.begin());
709 }
710 bool operator!=(const SmallVectorImpl &RHS) const {
711 return !(*this == RHS);
712 }
713
714 bool operator<(const SmallVectorImpl &RHS) const {
715 return std::lexicographical_compare(this->begin(), this->end(),
716 RHS.begin(), RHS.end());
717 }
718};
719
720template <typename T>
721void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) {
722 if (this == &RHS) return;
723
724 // We can only avoid copying elements if neither vector is small.
725 if (!this->isSmall() && !RHS.isSmall()) {
726 std::swap(this->BeginX, RHS.BeginX);
727 std::swap(this->Size, RHS.Size);
728 std::swap(this->Capacity, RHS.Capacity);
729 return;
730 }
731 if (RHS.size() > this->capacity())
732 this->grow(RHS.size());
733 if (this->size() > RHS.capacity())
734 RHS.grow(this->size());
735
736 // Swap the shared elements.
737 size_t NumShared = this->size();
738 if (NumShared > RHS.size()) NumShared = RHS.size();
739 for (size_type i = 0; i != NumShared; ++i)
740 std::swap((*this)[i], RHS[i]);
741
742 // Copy over the extra elts.
743 if (this->size() > RHS.size()) {
744 size_t EltDiff = this->size() - RHS.size();
745 this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end());
746 RHS.set_size(RHS.size() + EltDiff);
747 this->destroy_range(this->begin()+NumShared, this->end());
748 this->set_size(NumShared);
749 } else if (RHS.size() > this->size()) {
750 size_t EltDiff = RHS.size() - this->size();
751 this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end());
752 this->set_size(this->size() + EltDiff);
753 this->destroy_range(RHS.begin()+NumShared, RHS.end());
754 RHS.set_size(NumShared);
755 }
756}
757
758template <typename T>
759SmallVectorImpl<T> &SmallVectorImpl<T>::
760 operator=(const SmallVectorImpl<T> &RHS) {
761 // Avoid self-assignment.
762 if (this == &RHS) return *this;
763
764 // If we already have sufficient space, assign the common elements, then
765 // destroy any excess.
766 size_t RHSSize = RHS.size();
767 size_t CurSize = this->size();
768 if (CurSize >= RHSSize) {
769 // Assign common elements.
770 iterator NewEnd;
771 if (RHSSize)
772 NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin());
773 else
774 NewEnd = this->begin();
775
776 // Destroy excess elements.
777 this->destroy_range(NewEnd, this->end());
778
779 // Trim.
780 this->set_size(RHSSize);
781 return *this;
782 }
783
784 // If we have to grow to have enough elements, destroy the current elements.
785 // This allows us to avoid copying them during the grow.
786 // FIXME: don't do this if they're efficiently moveable.
787 if (this->capacity() < RHSSize) {
788 // Destroy current elements.
789 this->destroy_range(this->begin(), this->end());
790 this->set_size(0);
791 CurSize = 0;
792 this->grow(RHSSize);
793 } else if (CurSize) {
794 // Otherwise, use assignment for the already-constructed elements.
795 std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin());
796 }
797
798 // Copy construct the new elements in place.
799 this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(),
800 this->begin()+CurSize);
801
802 // Set end.
803 this->set_size(RHSSize);
804 return *this;
805}
806
807template <typename T>
808SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) {
809 // Avoid self-assignment.
810 if (this == &RHS) return *this;
811
812 // If the RHS isn't small, clear this vector and then steal its buffer.
813 if (!RHS.isSmall()) {
814 this->destroy_range(this->begin(), this->end());
815 if (!this->isSmall()) free(this->begin());
816 this->BeginX = RHS.BeginX;
817 this->Size = RHS.Size;
818 this->Capacity = RHS.Capacity;
819 RHS.resetToSmall();
820 return *this;
821 }
822
823 // If we already have sufficient space, assign the common elements, then
824 // destroy any excess.
825 size_t RHSSize = RHS.size();
826 size_t CurSize = this->size();
827 if (CurSize >= RHSSize) {
828 // Assign common elements.
829 iterator NewEnd = this->begin();
830 if (RHSSize)
831 NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd);
832
833 // Destroy excess elements and trim the bounds.
834 this->destroy_range(NewEnd, this->end());
835 this->set_size(RHSSize);
836
837 // Clear the RHS.
838 RHS.clear();
839
840 return *this;
841 }
842
843 // If we have to grow to have enough elements, destroy the current elements.
844 // This allows us to avoid copying them during the grow.
845 // FIXME: this may not actually make any sense if we can efficiently move
846 // elements.
847 if (this->capacity() < RHSSize) {
848 // Destroy current elements.
849 this->destroy_range(this->begin(), this->end());
850 this->set_size(0);
851 CurSize = 0;
852 this->grow(RHSSize);
853 } else if (CurSize) {
854 // Otherwise, use assignment for the already-constructed elements.
855 std::move(RHS.begin(), RHS.begin()+CurSize, this->begin());
856 }
857
858 // Move-construct the new elements in place.
859 this->uninitialized_move(RHS.begin()+CurSize, RHS.end(),
860 this->begin()+CurSize);
861
862 // Set end.
863 this->set_size(RHSSize);
864
865 RHS.clear();
866 return *this;
867}
868
869/// Storage for the SmallVector elements. This is specialized for the N=0 case
870/// to avoid allocating unnecessary storage.
871template <typename T, unsigned N>
872struct SmallVectorStorage {
873 AlignedCharArrayUnion<T> InlineElts[N];
874};
875
876/// We need the storage to be properly aligned even for small-size of 0 so that
877/// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is
878/// well-defined.
879template <typename T> struct alignas(alignof(T)) SmallVectorStorage<T, 0> {};
880
881/// This is a 'vector' (really, a variable-sized array), optimized
882/// for the case when the array is small. It contains some number of elements
883/// in-place, which allows it to avoid heap allocation when the actual number of
884/// elements is below that threshold. This allows normal "small" cases to be
885/// fast without losing generality for large inputs.
886///
887/// Note that this does not attempt to be exception safe.
888///
889template <typename T, unsigned N>
890class LLVM_GSL_OWNER[[gsl::Owner]] SmallVector : public SmallVectorImpl<T>,
891 SmallVectorStorage<T, N> {
892public:
893 SmallVector() : SmallVectorImpl<T>(N) {}
894
895 ~SmallVector() {
896 // Destroy the constructed elements in the vector.
897 this->destroy_range(this->begin(), this->end());
898 }
899
900 explicit SmallVector(size_t Size, const T &Value = T())
901 : SmallVectorImpl<T>(N) {
902 this->assign(Size, Value);
903 }
904
905 template <typename ItTy,
906 typename = std::enable_if_t<std::is_convertible<
907 typename std::iterator_traits<ItTy>::iterator_category,
908 std::input_iterator_tag>::value>>
909 SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
910 this->append(S, E);
911 }
912
913 template <typename RangeTy>
914 explicit SmallVector(const iterator_range<RangeTy> &R)
915 : SmallVectorImpl<T>(N) {
916 this->append(R.begin(), R.end());
917 }
918
919 SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) {
920 this->assign(IL);
921 }
922
923 SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
924 if (!RHS.empty())
925 SmallVectorImpl<T>::operator=(RHS);
926 }
927
928 const SmallVector &operator=(const SmallVector &RHS) {
929 SmallVectorImpl<T>::operator=(RHS);
930 return *this;
931 }
932
933 SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) {
934 if (!RHS.empty())
935 SmallVectorImpl<T>::operator=(::std::move(RHS));
936 }
937
938 SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) {
939 if (!RHS.empty())
940 SmallVectorImpl<T>::operator=(::std::move(RHS));
941 }
942
943 const SmallVector &operator=(SmallVector &&RHS) {
944 SmallVectorImpl<T>::operator=(::std::move(RHS));
945 return *this;
946 }
947
948 const SmallVector &operator=(SmallVectorImpl<T> &&RHS) {
949 SmallVectorImpl<T>::operator=(::std::move(RHS));
950 return *this;
951 }
952
953 const SmallVector &operator=(std::initializer_list<T> IL) {
954 this->assign(IL);
955 return *this;
956 }
957};
958
959template <typename T, unsigned N>
960inline size_t capacity_in_bytes(const SmallVector<T, N> &X) {
961 return X.capacity_in_bytes();
962}
963
964/// Given a range of type R, iterate the entire range and return a
965/// SmallVector with elements of the vector. This is useful, for example,
966/// when you want to iterate a range and then sort the results.
967template <unsigned Size, typename R>
968SmallVector<typename std::remove_const<typename std::remove_reference<
969 decltype(*std::begin(std::declval<R &>()))>::type>::type,
970 Size>
971to_vector(R &&Range) {
972 return {std::begin(Range), std::end(Range)};
973}
974
975} // end namespace llvm
976
977namespace std {
978
979 /// Implement std::swap in terms of SmallVector swap.
980 template<typename T>
981 inline void
982 swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) {
983 LHS.swap(RHS);
984 }
985
986 /// Implement std::swap in terms of SmallVector swap.
987 template<typename T, unsigned N>
988 inline void
989 swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) {
990 LHS.swap(RHS);
991 }
992
993} // end namespace std
994
995#endif // LLVM_ADT_SMALLVECTOR_H