Bug Summary

File:llvm/lib/Transforms/InstCombine/InstCombineInternal.h
Warning:line 411, column 5
Forming reference to null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name InstructionCombining.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/InstCombine -I /build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine -I include -I /build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/build-llvm -ferror-limit 19 -fvisibility-inlines-hidden -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-10-06-204852-24236-1 -x c++ /build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp

/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp

1//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// InstructionCombining - Combine instructions to form fewer, simple
10// instructions. This pass does not modify the CFG. This pass is where
11// algebraic simplification happens.
12//
13// This pass combines things like:
14// %Y = add i32 %X, 1
15// %Z = add i32 %Y, 1
16// into:
17// %Z = add i32 %X, 2
18//
19// This is a simple worklist driven algorithm.
20//
21// This pass guarantees that the following canonicalizations are performed on
22// the program:
23// 1. If a binary operator has a constant operand, it is moved to the RHS
24// 2. Bitwise operators with constant operands are always grouped so that
25// shifts are performed first, then or's, then and's, then xor's.
26// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
27// 4. All cmp instructions on boolean values are replaced with logical ops
28// 5. add X, X is represented as (X*2) => (X << 1)
29// 6. Multiplies with a power-of-two constant argument are transformed into
30// shifts.
31// ... etc.
32//
33//===----------------------------------------------------------------------===//
34
35#include "InstCombineInternal.h"
36#include "llvm-c/Initialization.h"
37#include "llvm-c/Transforms/InstCombine.h"
38#include "llvm/ADT/APInt.h"
39#include "llvm/ADT/ArrayRef.h"
40#include "llvm/ADT/DenseMap.h"
41#include "llvm/ADT/None.h"
42#include "llvm/ADT/SmallPtrSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/TinyPtrVector.h"
46#include "llvm/Analysis/AliasAnalysis.h"
47#include "llvm/Analysis/AssumptionCache.h"
48#include "llvm/Analysis/BasicAliasAnalysis.h"
49#include "llvm/Analysis/BlockFrequencyInfo.h"
50#include "llvm/Analysis/CFG.h"
51#include "llvm/Analysis/ConstantFolding.h"
52#include "llvm/Analysis/EHPersonalities.h"
53#include "llvm/Analysis/GlobalsModRef.h"
54#include "llvm/Analysis/InstructionSimplify.h"
55#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
56#include "llvm/Analysis/LoopInfo.h"
57#include "llvm/Analysis/MemoryBuiltins.h"
58#include "llvm/Analysis/OptimizationRemarkEmitter.h"
59#include "llvm/Analysis/ProfileSummaryInfo.h"
60#include "llvm/Analysis/TargetFolder.h"
61#include "llvm/Analysis/TargetLibraryInfo.h"
62#include "llvm/Analysis/TargetTransformInfo.h"
63#include "llvm/Analysis/ValueTracking.h"
64#include "llvm/Analysis/VectorUtils.h"
65#include "llvm/IR/BasicBlock.h"
66#include "llvm/IR/CFG.h"
67#include "llvm/IR/Constant.h"
68#include "llvm/IR/Constants.h"
69#include "llvm/IR/DIBuilder.h"
70#include "llvm/IR/DataLayout.h"
71#include "llvm/IR/DerivedTypes.h"
72#include "llvm/IR/Dominators.h"
73#include "llvm/IR/Function.h"
74#include "llvm/IR/GetElementPtrTypeIterator.h"
75#include "llvm/IR/IRBuilder.h"
76#include "llvm/IR/InstrTypes.h"
77#include "llvm/IR/Instruction.h"
78#include "llvm/IR/Instructions.h"
79#include "llvm/IR/IntrinsicInst.h"
80#include "llvm/IR/Intrinsics.h"
81#include "llvm/IR/LegacyPassManager.h"
82#include "llvm/IR/Metadata.h"
83#include "llvm/IR/Operator.h"
84#include "llvm/IR/PassManager.h"
85#include "llvm/IR/PatternMatch.h"
86#include "llvm/IR/Type.h"
87#include "llvm/IR/Use.h"
88#include "llvm/IR/User.h"
89#include "llvm/IR/Value.h"
90#include "llvm/IR/ValueHandle.h"
91#include "llvm/InitializePasses.h"
92#include "llvm/Pass.h"
93#include "llvm/Support/CBindingWrapping.h"
94#include "llvm/Support/Casting.h"
95#include "llvm/Support/CommandLine.h"
96#include "llvm/Support/Compiler.h"
97#include "llvm/Support/Debug.h"
98#include "llvm/Support/DebugCounter.h"
99#include "llvm/Support/ErrorHandling.h"
100#include "llvm/Support/KnownBits.h"
101#include "llvm/Support/raw_ostream.h"
102#include "llvm/Transforms/InstCombine/InstCombine.h"
103#include "llvm/Transforms/Utils/Local.h"
104#include <algorithm>
105#include <cassert>
106#include <cstdint>
107#include <memory>
108#include <string>
109#include <utility>
110
111#define DEBUG_TYPE"instcombine" "instcombine"
112#include "llvm/Transforms/Utils/InstructionWorklist.h"
113
114using namespace llvm;
115using namespace llvm::PatternMatch;
116
117STATISTIC(NumWorklistIterations,static llvm::Statistic NumWorklistIterations = {"instcombine"
, "NumWorklistIterations", "Number of instruction combining iterations performed"
}
118 "Number of instruction combining iterations performed")static llvm::Statistic NumWorklistIterations = {"instcombine"
, "NumWorklistIterations", "Number of instruction combining iterations performed"
}
;
119
120STATISTIC(NumCombined , "Number of insts combined")static llvm::Statistic NumCombined = {"instcombine", "NumCombined"
, "Number of insts combined"}
;
121STATISTIC(NumConstProp, "Number of constant folds")static llvm::Statistic NumConstProp = {"instcombine", "NumConstProp"
, "Number of constant folds"}
;
122STATISTIC(NumDeadInst , "Number of dead inst eliminated")static llvm::Statistic NumDeadInst = {"instcombine", "NumDeadInst"
, "Number of dead inst eliminated"}
;
123STATISTIC(NumSunkInst , "Number of instructions sunk")static llvm::Statistic NumSunkInst = {"instcombine", "NumSunkInst"
, "Number of instructions sunk"}
;
124STATISTIC(NumExpand, "Number of expansions")static llvm::Statistic NumExpand = {"instcombine", "NumExpand"
, "Number of expansions"}
;
125STATISTIC(NumFactor , "Number of factorizations")static llvm::Statistic NumFactor = {"instcombine", "NumFactor"
, "Number of factorizations"}
;
126STATISTIC(NumReassoc , "Number of reassociations")static llvm::Statistic NumReassoc = {"instcombine", "NumReassoc"
, "Number of reassociations"}
;
127DEBUG_COUNTER(VisitCounter, "instcombine-visit",static const unsigned VisitCounter = DebugCounter::registerCounter
("instcombine-visit", "Controls which instructions are visited"
)
128 "Controls which instructions are visited")static const unsigned VisitCounter = DebugCounter::registerCounter
("instcombine-visit", "Controls which instructions are visited"
)
;
129
130// FIXME: these limits eventually should be as low as 2.
131static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
132#ifndef NDEBUG
133static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
134#else
135static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
136#endif
137
138static cl::opt<bool>
139EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
140 cl::init(true));
141
142static cl::opt<unsigned> LimitMaxIterations(
143 "instcombine-max-iterations",
144 cl::desc("Limit the maximum number of instruction combining iterations"),
145 cl::init(InstCombineDefaultMaxIterations));
146
147static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
148 "instcombine-infinite-loop-threshold",
149 cl::desc("Number of instruction combining iterations considered an "
150 "infinite loop"),
151 cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
152
153static cl::opt<unsigned>
154MaxArraySize("instcombine-maxarray-size", cl::init(1024),
155 cl::desc("Maximum array size considered when doing a combine"));
156
157// FIXME: Remove this flag when it is no longer necessary to convert
158// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
159// increases variable availability at the cost of accuracy. Variables that
160// cannot be promoted by mem2reg or SROA will be described as living in memory
161// for their entire lifetime. However, passes like DSE and instcombine can
162// delete stores to the alloca, leading to misleading and inaccurate debug
163// information. This flag can be removed when those passes are fixed.
164static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
165 cl::Hidden, cl::init(true));
166
167Optional<Instruction *>
168InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
169 // Handle target specific intrinsics
170 if (II.getCalledFunction()->isTargetIntrinsic()) {
171 return TTI.instCombineIntrinsic(*this, II);
172 }
173 return None;
174}
175
176Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
177 IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
178 bool &KnownBitsComputed) {
179 // Handle target specific intrinsics
180 if (II.getCalledFunction()->isTargetIntrinsic()) {
181 return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
182 KnownBitsComputed);
183 }
184 return None;
185}
186
187Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
188 IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
189 APInt &UndefElts3,
190 std::function<void(Instruction *, unsigned, APInt, APInt &)>
191 SimplifyAndSetOp) {
192 // Handle target specific intrinsics
193 if (II.getCalledFunction()->isTargetIntrinsic()) {
194 return TTI.simplifyDemandedVectorEltsIntrinsic(
195 *this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
196 SimplifyAndSetOp);
197 }
198 return None;
199}
200
201Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
202 return llvm::EmitGEPOffset(&Builder, DL, GEP);
203}
204
205/// Legal integers and common types are considered desirable. This is used to
206/// avoid creating instructions with types that may not be supported well by the
207/// the backend.
208/// NOTE: This treats i8, i16 and i32 specially because they are common
209/// types in frontend languages.
210bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
211 switch (BitWidth) {
212 case 8:
213 case 16:
214 case 32:
215 return true;
216 default:
217 return DL.isLegalInteger(BitWidth);
218 }
219}
220
221/// Return true if it is desirable to convert an integer computation from a
222/// given bit width to a new bit width.
223/// We don't want to convert from a legal to an illegal type or from a smaller
224/// to a larger illegal type. A width of '1' is always treated as a desirable
225/// type because i1 is a fundamental type in IR, and there are many specialized
226/// optimizations for i1 types. Common/desirable widths are equally treated as
227/// legal to convert to, in order to open up more combining opportunities.
228bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
229 unsigned ToWidth) const {
230 bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
231 bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
232
233 // Convert to desirable widths even if they are not legal types.
234 // Only shrink types, to prevent infinite loops.
235 if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
236 return true;
237
238 // If this is a legal integer from type, and the result would be an illegal
239 // type, don't do the transformation.
240 if (FromLegal && !ToLegal)
241 return false;
242
243 // Otherwise, if both are illegal, do not increase the size of the result. We
244 // do allow things like i160 -> i64, but not i64 -> i160.
245 if (!FromLegal && !ToLegal && ToWidth > FromWidth)
246 return false;
247
248 return true;
249}
250
251/// Return true if it is desirable to convert a computation from 'From' to 'To'.
252/// We don't want to convert from a legal to an illegal type or from a smaller
253/// to a larger illegal type. i1 is always treated as a legal type because it is
254/// a fundamental type in IR, and there are many specialized optimizations for
255/// i1 types.
256bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
257 // TODO: This could be extended to allow vectors. Datalayout changes might be
258 // needed to properly support that.
259 if (!From->isIntegerTy() || !To->isIntegerTy())
260 return false;
261
262 unsigned FromWidth = From->getPrimitiveSizeInBits();
263 unsigned ToWidth = To->getPrimitiveSizeInBits();
264 return shouldChangeType(FromWidth, ToWidth);
265}
266
267// Return true, if No Signed Wrap should be maintained for I.
268// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
269// where both B and C should be ConstantInts, results in a constant that does
270// not overflow. This function only handles the Add and Sub opcodes. For
271// all other opcodes, the function conservatively returns false.
272static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
273 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
274 if (!OBO || !OBO->hasNoSignedWrap())
275 return false;
276
277 // We reason about Add and Sub Only.
278 Instruction::BinaryOps Opcode = I.getOpcode();
279 if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
280 return false;
281
282 const APInt *BVal, *CVal;
283 if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
284 return false;
285
286 bool Overflow = false;
287 if (Opcode == Instruction::Add)
288 (void)BVal->sadd_ov(*CVal, Overflow);
289 else
290 (void)BVal->ssub_ov(*CVal, Overflow);
291
292 return !Overflow;
293}
294
295static bool hasNoUnsignedWrap(BinaryOperator &I) {
296 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
297 return OBO && OBO->hasNoUnsignedWrap();
298}
299
300static bool hasNoSignedWrap(BinaryOperator &I) {
301 auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
302 return OBO && OBO->hasNoSignedWrap();
303}
304
305/// Conservatively clears subclassOptionalData after a reassociation or
306/// commutation. We preserve fast-math flags when applicable as they can be
307/// preserved.
308static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
309 FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
310 if (!FPMO) {
311 I.clearSubclassOptionalData();
312 return;
313 }
314
315 FastMathFlags FMF = I.getFastMathFlags();
316 I.clearSubclassOptionalData();
317 I.setFastMathFlags(FMF);
318}
319
320/// Combine constant operands of associative operations either before or after a
321/// cast to eliminate one of the associative operations:
322/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
323/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
324static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
325 InstCombinerImpl &IC) {
326 auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
327 if (!Cast || !Cast->hasOneUse())
328 return false;
329
330 // TODO: Enhance logic for other casts and remove this check.
331 auto CastOpcode = Cast->getOpcode();
332 if (CastOpcode != Instruction::ZExt)
333 return false;
334
335 // TODO: Enhance logic for other BinOps and remove this check.
336 if (!BinOp1->isBitwiseLogicOp())
337 return false;
338
339 auto AssocOpcode = BinOp1->getOpcode();
340 auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
341 if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
342 return false;
343
344 Constant *C1, *C2;
345 if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
346 !match(BinOp2->getOperand(1), m_Constant(C2)))
347 return false;
348
349 // TODO: This assumes a zext cast.
350 // Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
351 // to the destination type might lose bits.
352
353 // Fold the constants together in the destination type:
354 // (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
355 Type *DestTy = C1->getType();
356 Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
357 Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
358 IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
359 IC.replaceOperand(*BinOp1, 1, FoldedC);
360 return true;
361}
362
363// Simplifies IntToPtr/PtrToInt RoundTrip Cast To BitCast.
364// inttoptr ( ptrtoint (x) ) --> x
365Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
366 auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
367 if (IntToPtr && DL.getPointerTypeSizeInBits(IntToPtr->getDestTy()) ==
368 DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
369 auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
370 Type *CastTy = IntToPtr->getDestTy();
371 if (PtrToInt &&
372 CastTy->getPointerAddressSpace() ==
373 PtrToInt->getSrcTy()->getPointerAddressSpace() &&
374 DL.getPointerTypeSizeInBits(PtrToInt->getSrcTy()) ==
375 DL.getTypeSizeInBits(PtrToInt->getDestTy())) {
376 return CastInst::CreateBitOrPointerCast(PtrToInt->getOperand(0), CastTy,
377 "", PtrToInt);
378 }
379 }
380 return nullptr;
381}
382
383/// This performs a few simplifications for operators that are associative or
384/// commutative:
385///
386/// Commutative operators:
387///
388/// 1. Order operands such that they are listed from right (least complex) to
389/// left (most complex). This puts constants before unary operators before
390/// binary operators.
391///
392/// Associative operators:
393///
394/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
395/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
396///
397/// Associative and commutative operators:
398///
399/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
400/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
401/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
402/// if C1 and C2 are constants.
403bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
404 Instruction::BinaryOps Opcode = I.getOpcode();
405 bool Changed = false;
406
407 do {
408 // Order operands such that they are listed from right (least complex) to
409 // left (most complex). This puts constants before unary operators before
410 // binary operators.
411 if (I.isCommutative() && getComplexity(I.getOperand(0)) <
412 getComplexity(I.getOperand(1)))
413 Changed = !I.swapOperands();
414
415 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
416 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
417
418 if (I.isAssociative()) {
419 // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
420 if (Op0 && Op0->getOpcode() == Opcode) {
421 Value *A = Op0->getOperand(0);
422 Value *B = Op0->getOperand(1);
423 Value *C = I.getOperand(1);
424
425 // Does "B op C" simplify?
426 if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
427 // It simplifies to V. Form "A op V".
428 replaceOperand(I, 0, A);
429 replaceOperand(I, 1, V);
430 bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
431 bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
432
433 // Conservatively clear all optional flags since they may not be
434 // preserved by the reassociation. Reset nsw/nuw based on the above
435 // analysis.
436 ClearSubclassDataAfterReassociation(I);
437
438 // Note: this is only valid because SimplifyBinOp doesn't look at
439 // the operands to Op0.
440 if (IsNUW)
441 I.setHasNoUnsignedWrap(true);
442
443 if (IsNSW)
444 I.setHasNoSignedWrap(true);
445
446 Changed = true;
447 ++NumReassoc;
448 continue;
449 }
450 }
451
452 // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
453 if (Op1 && Op1->getOpcode() == Opcode) {
454 Value *A = I.getOperand(0);
455 Value *B = Op1->getOperand(0);
456 Value *C = Op1->getOperand(1);
457
458 // Does "A op B" simplify?
459 if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
460 // It simplifies to V. Form "V op C".
461 replaceOperand(I, 0, V);
462 replaceOperand(I, 1, C);
463 // Conservatively clear the optional flags, since they may not be
464 // preserved by the reassociation.
465 ClearSubclassDataAfterReassociation(I);
466 Changed = true;
467 ++NumReassoc;
468 continue;
469 }
470 }
471 }
472
473 if (I.isAssociative() && I.isCommutative()) {
474 if (simplifyAssocCastAssoc(&I, *this)) {
475 Changed = true;
476 ++NumReassoc;
477 continue;
478 }
479
480 // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
481 if (Op0 && Op0->getOpcode() == Opcode) {
482 Value *A = Op0->getOperand(0);
483 Value *B = Op0->getOperand(1);
484 Value *C = I.getOperand(1);
485
486 // Does "C op A" simplify?
487 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
488 // It simplifies to V. Form "V op B".
489 replaceOperand(I, 0, V);
490 replaceOperand(I, 1, B);
491 // Conservatively clear the optional flags, since they may not be
492 // preserved by the reassociation.
493 ClearSubclassDataAfterReassociation(I);
494 Changed = true;
495 ++NumReassoc;
496 continue;
497 }
498 }
499
500 // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
501 if (Op1 && Op1->getOpcode() == Opcode) {
502 Value *A = I.getOperand(0);
503 Value *B = Op1->getOperand(0);
504 Value *C = Op1->getOperand(1);
505
506 // Does "C op A" simplify?
507 if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
508 // It simplifies to V. Form "B op V".
509 replaceOperand(I, 0, B);
510 replaceOperand(I, 1, V);
511 // Conservatively clear the optional flags, since they may not be
512 // preserved by the reassociation.
513 ClearSubclassDataAfterReassociation(I);
514 Changed = true;
515 ++NumReassoc;
516 continue;
517 }
518 }
519
520 // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
521 // if C1 and C2 are constants.
522 Value *A, *B;
523 Constant *C1, *C2;
524 if (Op0 && Op1 &&
525 Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
526 match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
527 match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
528 bool IsNUW = hasNoUnsignedWrap(I) &&
529 hasNoUnsignedWrap(*Op0) &&
530 hasNoUnsignedWrap(*Op1);
531 BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
532 BinaryOperator::CreateNUW(Opcode, A, B) :
533 BinaryOperator::Create(Opcode, A, B);
534
535 if (isa<FPMathOperator>(NewBO)) {
536 FastMathFlags Flags = I.getFastMathFlags();
537 Flags &= Op0->getFastMathFlags();
538 Flags &= Op1->getFastMathFlags();
539 NewBO->setFastMathFlags(Flags);
540 }
541 InsertNewInstWith(NewBO, I);
542 NewBO->takeName(Op1);
543 replaceOperand(I, 0, NewBO);
544 replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
545 // Conservatively clear the optional flags, since they may not be
546 // preserved by the reassociation.
547 ClearSubclassDataAfterReassociation(I);
548 if (IsNUW)
549 I.setHasNoUnsignedWrap(true);
550
551 Changed = true;
552 continue;
553 }
554 }
555
556 // No further simplifications.
557 return Changed;
558 } while (true);
559}
560
561/// Return whether "X LOp (Y ROp Z)" is always equal to
562/// "(X LOp Y) ROp (X LOp Z)".
563static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
564 Instruction::BinaryOps ROp) {
565 // X & (Y | Z) <--> (X & Y) | (X & Z)
566 // X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
567 if (LOp == Instruction::And)
568 return ROp == Instruction::Or || ROp == Instruction::Xor;
569
570 // X | (Y & Z) <--> (X | Y) & (X | Z)
571 if (LOp == Instruction::Or)
572 return ROp == Instruction::And;
573
574 // X * (Y + Z) <--> (X * Y) + (X * Z)
575 // X * (Y - Z) <--> (X * Y) - (X * Z)
576 if (LOp == Instruction::Mul)
577 return ROp == Instruction::Add || ROp == Instruction::Sub;
578
579 return false;
580}
581
582/// Return whether "(X LOp Y) ROp Z" is always equal to
583/// "(X ROp Z) LOp (Y ROp Z)".
584static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
585 Instruction::BinaryOps ROp) {
586 if (Instruction::isCommutative(ROp))
587 return leftDistributesOverRight(ROp, LOp);
588
589 // (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
590 return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
591
592 // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
593 // but this requires knowing that the addition does not overflow and other
594 // such subtleties.
595}
596
597/// This function returns identity value for given opcode, which can be used to
598/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
599static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
600 if (isa<Constant>(V))
601 return nullptr;
602
603 return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
604}
605
606/// This function predicates factorization using distributive laws. By default,
607/// it just returns the 'Op' inputs. But for special-cases like
608/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
609/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
610/// allow more factorization opportunities.
611static Instruction::BinaryOps
612getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
613 Value *&LHS, Value *&RHS) {
614 assert(Op && "Expected a binary operator")(static_cast <bool> (Op && "Expected a binary operator"
) ? void (0) : __assert_fail ("Op && \"Expected a binary operator\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 614, __extension__ __PRETTY_FUNCTION__))
;
615 LHS = Op->getOperand(0);
616 RHS = Op->getOperand(1);
617 if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
618 Constant *C;
619 if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
620 // X << C --> X * (1 << C)
621 RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
622 return Instruction::Mul;
623 }
624 // TODO: We can add other conversions e.g. shr => div etc.
625 }
626 return Op->getOpcode();
627}
628
629/// This tries to simplify binary operations by factorizing out common terms
630/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
631Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
632 Instruction::BinaryOps InnerOpcode,
633 Value *A, Value *B, Value *C,
634 Value *D) {
635 assert(A && B && C && D && "All values must be provided")(static_cast <bool> (A && B && C &&
D && "All values must be provided") ? void (0) : __assert_fail
("A && B && C && D && \"All values must be provided\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 635, __extension__ __PRETTY_FUNCTION__))
;
636
637 Value *V = nullptr;
638 Value *SimplifiedInst = nullptr;
639 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
640 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
641
642 // Does "X op' Y" always equal "Y op' X"?
643 bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
644
645 // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
646 if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
647 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
648 // commutative case, "(A op' B) op (C op' A)"?
649 if (A == C || (InnerCommutative && A == D)) {
650 if (A != C)
651 std::swap(C, D);
652 // Consider forming "A op' (B op D)".
653 // If "B op D" simplifies then it can be formed with no cost.
654 V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
655 // If "B op D" doesn't simplify then only go on if both of the existing
656 // operations "A op' B" and "C op' D" will be zapped as no longer used.
657 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
658 V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
659 if (V) {
660 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
661 }
662 }
663
664 // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
665 if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
666 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
667 // commutative case, "(A op' B) op (B op' D)"?
668 if (B == D || (InnerCommutative && B == C)) {
669 if (B != D)
670 std::swap(C, D);
671 // Consider forming "(A op C) op' B".
672 // If "A op C" simplifies then it can be formed with no cost.
673 V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
674
675 // If "A op C" doesn't simplify then only go on if both of the existing
676 // operations "A op' B" and "C op' D" will be zapped as no longer used.
677 if (!V && LHS->hasOneUse() && RHS->hasOneUse())
678 V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
679 if (V) {
680 SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
681 }
682 }
683
684 if (SimplifiedInst) {
685 ++NumFactor;
686 SimplifiedInst->takeName(&I);
687
688 // Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
689 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
690 if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
691 bool HasNSW = false;
692 bool HasNUW = false;
693 if (isa<OverflowingBinaryOperator>(&I)) {
694 HasNSW = I.hasNoSignedWrap();
695 HasNUW = I.hasNoUnsignedWrap();
696 }
697
698 if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
699 HasNSW &= LOBO->hasNoSignedWrap();
700 HasNUW &= LOBO->hasNoUnsignedWrap();
701 }
702
703 if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
704 HasNSW &= ROBO->hasNoSignedWrap();
705 HasNUW &= ROBO->hasNoUnsignedWrap();
706 }
707
708 if (TopLevelOpcode == Instruction::Add &&
709 InnerOpcode == Instruction::Mul) {
710 // We can propagate 'nsw' if we know that
711 // %Y = mul nsw i16 %X, C
712 // %Z = add nsw i16 %Y, %X
713 // =>
714 // %Z = mul nsw i16 %X, C+1
715 //
716 // iff C+1 isn't INT_MIN
717 const APInt *CInt;
718 if (match(V, m_APInt(CInt))) {
719 if (!CInt->isMinSignedValue())
720 BO->setHasNoSignedWrap(HasNSW);
721 }
722
723 // nuw can be propagated with any constant or nuw value.
724 BO->setHasNoUnsignedWrap(HasNUW);
725 }
726 }
727 }
728 }
729 return SimplifiedInst;
730}
731
732/// This tries to simplify binary operations which some other binary operation
733/// distributes over either by factorizing out common terms
734/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
735/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
736/// Returns the simplified value, or null if it didn't simplify.
737Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
738 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
739 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
740 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
741 Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
742
743 {
744 // Factorization.
745 Value *A, *B, *C, *D;
746 Instruction::BinaryOps LHSOpcode, RHSOpcode;
747 if (Op0)
748 LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
749 if (Op1)
750 RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
751
752 // The instruction has the form "(A op' B) op (C op' D)". Try to factorize
753 // a common term.
754 if (Op0 && Op1 && LHSOpcode == RHSOpcode)
755 if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
756 return V;
757
758 // The instruction has the form "(A op' B) op (C)". Try to factorize common
759 // term.
760 if (Op0)
761 if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
762 if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
763 return V;
764
765 // The instruction has the form "(B) op (C op' D)". Try to factorize common
766 // term.
767 if (Op1)
768 if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
769 if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
770 return V;
771 }
772
773 // Expansion.
774 if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
775 // The instruction has the form "(A op' B) op C". See if expanding it out
776 // to "(A op C) op' (B op C)" results in simplifications.
777 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
778 Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
779
780 // Disable the use of undef because it's not safe to distribute undef.
781 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
782 Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
783 Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
784
785 // Do "A op C" and "B op C" both simplify?
786 if (L && R) {
787 // They do! Return "L op' R".
788 ++NumExpand;
789 C = Builder.CreateBinOp(InnerOpcode, L, R);
790 C->takeName(&I);
791 return C;
792 }
793
794 // Does "A op C" simplify to the identity value for the inner opcode?
795 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
796 // They do! Return "B op C".
797 ++NumExpand;
798 C = Builder.CreateBinOp(TopLevelOpcode, B, C);
799 C->takeName(&I);
800 return C;
801 }
802
803 // Does "B op C" simplify to the identity value for the inner opcode?
804 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
805 // They do! Return "A op C".
806 ++NumExpand;
807 C = Builder.CreateBinOp(TopLevelOpcode, A, C);
808 C->takeName(&I);
809 return C;
810 }
811 }
812
813 if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
814 // The instruction has the form "A op (B op' C)". See if expanding it out
815 // to "(A op B) op' (A op C)" results in simplifications.
816 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
817 Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
818
819 // Disable the use of undef because it's not safe to distribute undef.
820 auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
821 Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
822 Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
823
824 // Do "A op B" and "A op C" both simplify?
825 if (L && R) {
826 // They do! Return "L op' R".
827 ++NumExpand;
828 A = Builder.CreateBinOp(InnerOpcode, L, R);
829 A->takeName(&I);
830 return A;
831 }
832
833 // Does "A op B" simplify to the identity value for the inner opcode?
834 if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
835 // They do! Return "A op C".
836 ++NumExpand;
837 A = Builder.CreateBinOp(TopLevelOpcode, A, C);
838 A->takeName(&I);
839 return A;
840 }
841
842 // Does "A op C" simplify to the identity value for the inner opcode?
843 if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
844 // They do! Return "A op B".
845 ++NumExpand;
846 A = Builder.CreateBinOp(TopLevelOpcode, A, B);
847 A->takeName(&I);
848 return A;
849 }
850 }
851
852 return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
853}
854
855Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
856 Value *LHS,
857 Value *RHS) {
858 Value *A, *B, *C, *D, *E, *F;
859 bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
860 bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
861 if (!LHSIsSelect && !RHSIsSelect)
862 return nullptr;
863
864 FastMathFlags FMF;
865 BuilderTy::FastMathFlagGuard Guard(Builder);
866 if (isa<FPMathOperator>(&I)) {
867 FMF = I.getFastMathFlags();
868 Builder.setFastMathFlags(FMF);
869 }
870
871 Instruction::BinaryOps Opcode = I.getOpcode();
872 SimplifyQuery Q = SQ.getWithInstruction(&I);
873
874 Value *Cond, *True = nullptr, *False = nullptr;
875 if (LHSIsSelect && RHSIsSelect && A == D) {
876 // (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
877 Cond = A;
878 True = SimplifyBinOp(Opcode, B, E, FMF, Q);
879 False = SimplifyBinOp(Opcode, C, F, FMF, Q);
880
881 if (LHS->hasOneUse() && RHS->hasOneUse()) {
882 if (False && !True)
883 True = Builder.CreateBinOp(Opcode, B, E);
884 else if (True && !False)
885 False = Builder.CreateBinOp(Opcode, C, F);
886 }
887 } else if (LHSIsSelect && LHS->hasOneUse()) {
888 // (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
889 Cond = A;
890 True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
891 False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
892 } else if (RHSIsSelect && RHS->hasOneUse()) {
893 // X op (D ? E : F) -> D ? (X op E) : (X op F)
894 Cond = D;
895 True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
896 False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
897 }
898
899 if (!True || !False)
900 return nullptr;
901
902 Value *SI = Builder.CreateSelect(Cond, True, False);
903 SI->takeName(&I);
904 return SI;
905}
906
907/// Freely adapt every user of V as-if V was changed to !V.
908/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
909void InstCombinerImpl::freelyInvertAllUsersOf(Value *I) {
910 for (User *U : I->users()) {
911 switch (cast<Instruction>(U)->getOpcode()) {
912 case Instruction::Select: {
913 auto *SI = cast<SelectInst>(U);
914 SI->swapValues();
915 SI->swapProfMetadata();
916 break;
917 }
918 case Instruction::Br:
919 cast<BranchInst>(U)->swapSuccessors(); // swaps prof metadata too
920 break;
921 case Instruction::Xor:
922 replaceInstUsesWith(cast<Instruction>(*U), I);
923 break;
924 default:
925 llvm_unreachable("Got unexpected user - out of sync with "::llvm::llvm_unreachable_internal("Got unexpected user - out of sync with "
"canFreelyInvertAllUsersOf() ?", "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 926)
926 "canFreelyInvertAllUsersOf() ?")::llvm::llvm_unreachable_internal("Got unexpected user - out of sync with "
"canFreelyInvertAllUsersOf() ?", "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 926)
;
927 }
928 }
929}
930
931/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
932/// constant zero (which is the 'negate' form).
933Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
934 Value *NegV;
935 if (match(V, m_Neg(m_Value(NegV))))
936 return NegV;
937
938 // Constants can be considered to be negated values if they can be folded.
939 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
940 return ConstantExpr::getNeg(C);
941
942 if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
943 if (C->getType()->getElementType()->isIntegerTy())
944 return ConstantExpr::getNeg(C);
945
946 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
947 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
948 Constant *Elt = CV->getAggregateElement(i);
949 if (!Elt)
950 return nullptr;
951
952 if (isa<UndefValue>(Elt))
953 continue;
954
955 if (!isa<ConstantInt>(Elt))
956 return nullptr;
957 }
958 return ConstantExpr::getNeg(CV);
959 }
960
961 // Negate integer vector splats.
962 if (auto *CV = dyn_cast<Constant>(V))
963 if (CV->getType()->isVectorTy() &&
964 CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
965 return ConstantExpr::getNeg(CV);
966
967 return nullptr;
968}
969
970static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
971 InstCombiner::BuilderTy &Builder) {
972 if (auto *Cast = dyn_cast<CastInst>(&I))
973 return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
974
975 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
976 assert(canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) &&(static_cast <bool> (canConstantFoldCallTo(II, cast<
Function>(II->getCalledOperand())) && "Expected constant-foldable intrinsic"
) ? void (0) : __assert_fail ("canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && \"Expected constant-foldable intrinsic\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 977, __extension__ __PRETTY_FUNCTION__))
977 "Expected constant-foldable intrinsic")(static_cast <bool> (canConstantFoldCallTo(II, cast<
Function>(II->getCalledOperand())) && "Expected constant-foldable intrinsic"
) ? void (0) : __assert_fail ("canConstantFoldCallTo(II, cast<Function>(II->getCalledOperand())) && \"Expected constant-foldable intrinsic\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 977, __extension__ __PRETTY_FUNCTION__))
;
978 Intrinsic::ID IID = II->getIntrinsicID();
979 if (II->arg_size() == 1)
980 return Builder.CreateUnaryIntrinsic(IID, SO);
981
982 // This works for real binary ops like min/max (where we always expect the
983 // constant operand to be canonicalized as op1) and unary ops with a bonus
984 // constant argument like ctlz/cttz.
985 // TODO: Handle non-commutative binary intrinsics as below for binops.
986 assert(II->arg_size() == 2 && "Expected binary intrinsic")(static_cast <bool> (II->arg_size() == 2 && "Expected binary intrinsic"
) ? void (0) : __assert_fail ("II->arg_size() == 2 && \"Expected binary intrinsic\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 986, __extension__ __PRETTY_FUNCTION__))
;
987 assert(isa<Constant>(II->getArgOperand(1)) && "Expected constant operand")(static_cast <bool> (isa<Constant>(II->getArgOperand
(1)) && "Expected constant operand") ? void (0) : __assert_fail
("isa<Constant>(II->getArgOperand(1)) && \"Expected constant operand\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 987, __extension__ __PRETTY_FUNCTION__))
;
988 return Builder.CreateBinaryIntrinsic(IID, SO, II->getArgOperand(1));
989 }
990
991 assert(I.isBinaryOp() && "Unexpected opcode for select folding")(static_cast <bool> (I.isBinaryOp() && "Unexpected opcode for select folding"
) ? void (0) : __assert_fail ("I.isBinaryOp() && \"Unexpected opcode for select folding\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 991, __extension__ __PRETTY_FUNCTION__))
;
992
993 // Figure out if the constant is the left or the right argument.
994 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
995 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
996
997 if (auto *SOC = dyn_cast<Constant>(SO)) {
998 if (ConstIsRHS)
999 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1000 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1001 }
1002
1003 Value *Op0 = SO, *Op1 = ConstOperand;
1004 if (!ConstIsRHS)
1005 std::swap(Op0, Op1);
1006
1007 auto *BO = cast<BinaryOperator>(&I);
1008 Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
1009 SO->getName() + ".op");
1010 auto *FPInst = dyn_cast<Instruction>(RI);
1011 if (FPInst && isa<FPMathOperator>(FPInst))
1012 FPInst->copyFastMathFlags(BO);
1013 return RI;
1014}
1015
1016Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
1017 SelectInst *SI) {
1018 // Don't modify shared select instructions.
1019 if (!SI->hasOneUse())
1020 return nullptr;
1021
1022 Value *TV = SI->getTrueValue();
1023 Value *FV = SI->getFalseValue();
1024 if (!(isa<Constant>(TV) || isa<Constant>(FV)))
1025 return nullptr;
1026
1027 // Bool selects with constant operands can be folded to logical ops.
1028 if (SI->getType()->isIntOrIntVectorTy(1))
1029 return nullptr;
1030
1031 // If it's a bitcast involving vectors, make sure it has the same number of
1032 // elements on both sides.
1033 if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
1034 VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
1035 VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
1036
1037 // Verify that either both or neither are vectors.
1038 if ((SrcTy == nullptr) != (DestTy == nullptr))
1039 return nullptr;
1040
1041 // If vectors, verify that they have the same number of elements.
1042 if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
1043 return nullptr;
1044 }
1045
1046 // Test if a CmpInst instruction is used exclusively by a select as
1047 // part of a minimum or maximum operation. If so, refrain from doing
1048 // any other folding. This helps out other analyses which understand
1049 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
1050 // and CodeGen. And in this case, at least one of the comparison
1051 // operands has at least one user besides the compare (the select),
1052 // which would often largely negate the benefit of folding anyway.
1053 if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
1054 if (CI->hasOneUse()) {
1055 Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
1056
1057 // FIXME: This is a hack to avoid infinite looping with min/max patterns.
1058 // We have to ensure that vector constants that only differ with
1059 // undef elements are treated as equivalent.
1060 auto areLooselyEqual = [](Value *A, Value *B) {
1061 if (A == B)
1062 return true;
1063
1064 // Test for vector constants.
1065 Constant *ConstA, *ConstB;
1066 if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
1067 return false;
1068
1069 // TODO: Deal with FP constants?
1070 if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
1071 return false;
1072
1073 // Compare for equality including undefs as equal.
1074 auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
1075 const APInt *C;
1076 return match(Cmp, m_APIntAllowUndef(C)) && C->isOne();
1077 };
1078
1079 if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
1080 (areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
1081 return nullptr;
1082 }
1083 }
1084
1085 Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
1086 Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
1087 return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
1088}
1089
1090static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
1091 InstCombiner::BuilderTy &Builder) {
1092 bool ConstIsRHS = isa<Constant>(I->getOperand(1));
1093 Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
1094
1095 if (auto *InC = dyn_cast<Constant>(InV)) {
1096 if (ConstIsRHS)
1097 return ConstantExpr::get(I->getOpcode(), InC, C);
1098 return ConstantExpr::get(I->getOpcode(), C, InC);
1099 }
1100
1101 Value *Op0 = InV, *Op1 = C;
1102 if (!ConstIsRHS)
1103 std::swap(Op0, Op1);
1104
1105 Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
1106 auto *FPInst = dyn_cast<Instruction>(RI);
1107 if (FPInst && isa<FPMathOperator>(FPInst))
1108 FPInst->copyFastMathFlags(I);
1109 return RI;
1110}
1111
1112Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
1113 unsigned NumPHIValues = PN->getNumIncomingValues();
1114 if (NumPHIValues == 0)
1115 return nullptr;
1116
1117 // We normally only transform phis with a single use. However, if a PHI has
1118 // multiple uses and they are all the same operation, we can fold *all* of the
1119 // uses into the PHI.
1120 if (!PN->hasOneUse()) {
1121 // Walk the use list for the instruction, comparing them to I.
1122 for (User *U : PN->users()) {
1123 Instruction *UI = cast<Instruction>(U);
1124 if (UI != &I && !I.isIdenticalTo(UI))
1125 return nullptr;
1126 }
1127 // Otherwise, we can replace *all* users with the new PHI we form.
1128 }
1129
1130 // Check to see if all of the operands of the PHI are simple constants
1131 // (constantint/constantfp/undef). If there is one non-constant value,
1132 // remember the BB it is in. If there is more than one or if *it* is a PHI,
1133 // bail out. We don't do arbitrary constant expressions here because moving
1134 // their computation can be expensive without a cost model.
1135 BasicBlock *NonConstBB = nullptr;
1136 for (unsigned i = 0; i != NumPHIValues; ++i) {
1137 Value *InVal = PN->getIncomingValue(i);
1138 // If I is a freeze instruction, count undef as a non-constant.
1139 if (match(InVal, m_ImmConstant()) &&
1140 (!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
1141 continue;
1142
1143 if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
1144 if (NonConstBB) return nullptr; // More than one non-const value.
1145
1146 NonConstBB = PN->getIncomingBlock(i);
1147
1148 // If the InVal is an invoke at the end of the pred block, then we can't
1149 // insert a computation after it without breaking the edge.
1150 if (isa<InvokeInst>(InVal))
1151 if (cast<Instruction>(InVal)->getParent() == NonConstBB)
1152 return nullptr;
1153
1154 // If the incoming non-constant value is in I's block, we will remove one
1155 // instruction, but insert another equivalent one, leading to infinite
1156 // instcombine.
1157 if (isPotentiallyReachable(I.getParent(), NonConstBB, nullptr, &DT, LI))
1158 return nullptr;
1159 }
1160
1161 // If there is exactly one non-constant value, we can insert a copy of the
1162 // operation in that block. However, if this is a critical edge, we would be
1163 // inserting the computation on some other paths (e.g. inside a loop). Only
1164 // do this if the pred block is unconditionally branching into the phi block.
1165 // Also, make sure that the pred block is not dead code.
1166 if (NonConstBB != nullptr) {
1167 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1168 if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
1169 return nullptr;
1170 }
1171
1172 // Okay, we can do the transformation: create the new PHI node.
1173 PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
1174 InsertNewInstBefore(NewPN, *PN);
1175 NewPN->takeName(PN);
1176
1177 // If we are going to have to insert a new computation, do so right before the
1178 // predecessor's terminator.
1179 if (NonConstBB)
1180 Builder.SetInsertPoint(NonConstBB->getTerminator());
1181
1182 // Next, add all of the operands to the PHI.
1183 if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
1184 // We only currently try to fold the condition of a select when it is a phi,
1185 // not the true/false values.
1186 Value *TrueV = SI->getTrueValue();
1187 Value *FalseV = SI->getFalseValue();
1188 BasicBlock *PhiTransBB = PN->getParent();
1189 for (unsigned i = 0; i != NumPHIValues; ++i) {
1190 BasicBlock *ThisBB = PN->getIncomingBlock(i);
1191 Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
1192 Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
1193 Value *InV = nullptr;
1194 // Beware of ConstantExpr: it may eventually evaluate to getNullValue,
1195 // even if currently isNullValue gives false.
1196 Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
1197 // For vector constants, we cannot use isNullValue to fold into
1198 // FalseVInPred versus TrueVInPred. When we have individual nonzero
1199 // elements in the vector, we will incorrectly fold InC to
1200 // `TrueVInPred`.
1201 if (InC && isa<ConstantInt>(InC))
1202 InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
1203 else {
1204 // Generate the select in the same block as PN's current incoming block.
1205 // Note: ThisBB need not be the NonConstBB because vector constants
1206 // which are constants by definition are handled here.
1207 // FIXME: This can lead to an increase in IR generation because we might
1208 // generate selects for vector constant phi operand, that could not be
1209 // folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
1210 // non-vector phis, this transformation was always profitable because
1211 // the select would be generated exactly once in the NonConstBB.
1212 Builder.SetInsertPoint(ThisBB->getTerminator());
1213 InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
1214 FalseVInPred, "phi.sel");
1215 }
1216 NewPN->addIncoming(InV, ThisBB);
1217 }
1218 } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
1219 Constant *C = cast<Constant>(I.getOperand(1));
1220 for (unsigned i = 0; i != NumPHIValues; ++i) {
1221 Value *InV = nullptr;
1222 if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1223 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1224 else
1225 InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
1226 C, "phi.cmp");
1227 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1228 }
1229 } else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
1230 for (unsigned i = 0; i != NumPHIValues; ++i) {
1231 Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
1232 Builder);
1233 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1234 }
1235 } else if (isa<FreezeInst>(&I)) {
1236 for (unsigned i = 0; i != NumPHIValues; ++i) {
1237 Value *InV;
1238 if (NonConstBB == PN->getIncomingBlock(i))
1239 InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
1240 else
1241 InV = PN->getIncomingValue(i);
1242 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1243 }
1244 } else {
1245 CastInst *CI = cast<CastInst>(&I);
1246 Type *RetTy = CI->getType();
1247 for (unsigned i = 0; i != NumPHIValues; ++i) {
1248 Value *InV;
1249 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
1250 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1251 else
1252 InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
1253 I.getType(), "phi.cast");
1254 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1255 }
1256 }
1257
1258 for (User *U : make_early_inc_range(PN->users())) {
1259 Instruction *User = cast<Instruction>(U);
1260 if (User == &I) continue;
1261 replaceInstUsesWith(*User, NewPN);
1262 eraseInstFromFunction(*User);
1263 }
1264 return replaceInstUsesWith(I, NewPN);
1265}
1266
1267Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
1268 if (!isa<Constant>(I.getOperand(1)))
1269 return nullptr;
1270
1271 if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
1272 if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
1273 return NewSel;
1274 } else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
1275 if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
1276 return NewPhi;
1277 }
1278 return nullptr;
1279}
1280
1281/// Given a pointer type and a constant offset, determine whether or not there
1282/// is a sequence of GEP indices into the pointed type that will land us at the
1283/// specified offset. If so, fill them into NewIndices and return the resultant
1284/// element type, otherwise return null.
1285Type *
1286InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t IntOffset,
1287 SmallVectorImpl<Value *> &NewIndices) {
1288 Type *Ty = PtrTy->getElementType();
1289 if (!Ty->isSized())
1290 return nullptr;
1291
1292 APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), IntOffset);
1293 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(Ty, Offset);
1294 if (!Offset.isZero())
1295 return nullptr;
1296
1297 for (const APInt &Index : Indices)
1298 NewIndices.push_back(Builder.getInt(Index));
1299 return Ty;
1300}
1301
1302static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
1303 // If this GEP has only 0 indices, it is the same pointer as
1304 // Src. If Src is not a trivial GEP too, don't combine
1305 // the indices.
1306 if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
1307 !Src.hasOneUse())
1308 return false;
1309 return true;
1310}
1311
1312/// Return a value X such that Val = X * Scale, or null if none.
1313/// If the multiplication is known not to overflow, then NoSignedWrap is set.
1314Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
1315 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!")(static_cast <bool> (isa<IntegerType>(Val->getType
()) && "Can only descale integers!") ? void (0) : __assert_fail
("isa<IntegerType>(Val->getType()) && \"Can only descale integers!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1315, __extension__ __PRETTY_FUNCTION__))
;
1316 assert(cast<IntegerType>(Val->getType())->getBitWidth() ==(static_cast <bool> (cast<IntegerType>(Val->getType
())->getBitWidth() == Scale.getBitWidth() && "Scale not compatible with value!"
) ? void (0) : __assert_fail ("cast<IntegerType>(Val->getType())->getBitWidth() == Scale.getBitWidth() && \"Scale not compatible with value!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1317, __extension__ __PRETTY_FUNCTION__))
1317 Scale.getBitWidth() && "Scale not compatible with value!")(static_cast <bool> (cast<IntegerType>(Val->getType
())->getBitWidth() == Scale.getBitWidth() && "Scale not compatible with value!"
) ? void (0) : __assert_fail ("cast<IntegerType>(Val->getType())->getBitWidth() == Scale.getBitWidth() && \"Scale not compatible with value!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1317, __extension__ __PRETTY_FUNCTION__))
;
1318
1319 // If Val is zero or Scale is one then Val = Val * Scale.
1320 if (match(Val, m_Zero()) || Scale == 1) {
1321 NoSignedWrap = true;
1322 return Val;
1323 }
1324
1325 // If Scale is zero then it does not divide Val.
1326 if (Scale.isMinValue())
1327 return nullptr;
1328
1329 // Look through chains of multiplications, searching for a constant that is
1330 // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
1331 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
1332 // a factor of 4 will produce X*(Y*2). The principle of operation is to bore
1333 // down from Val:
1334 //
1335 // Val = M1 * X || Analysis starts here and works down
1336 // M1 = M2 * Y || Doesn't descend into terms with more
1337 // M2 = Z * 4 \/ than one use
1338 //
1339 // Then to modify a term at the bottom:
1340 //
1341 // Val = M1 * X
1342 // M1 = Z * Y || Replaced M2 with Z
1343 //
1344 // Then to work back up correcting nsw flags.
1345
1346 // Op - the term we are currently analyzing. Starts at Val then drills down.
1347 // Replaced with its descaled value before exiting from the drill down loop.
1348 Value *Op = Val;
1349
1350 // Parent - initially null, but after drilling down notes where Op came from.
1351 // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
1352 // 0'th operand of Val.
1353 std::pair<Instruction *, unsigned> Parent;
1354
1355 // Set if the transform requires a descaling at deeper levels that doesn't
1356 // overflow.
1357 bool RequireNoSignedWrap = false;
1358
1359 // Log base 2 of the scale. Negative if not a power of 2.
1360 int32_t logScale = Scale.exactLogBase2();
1361
1362 for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
1363 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1364 // If Op is a constant divisible by Scale then descale to the quotient.
1365 APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
1366 APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
1367 if (!Remainder.isMinValue())
1368 // Not divisible by Scale.
1369 return nullptr;
1370 // Replace with the quotient in the parent.
1371 Op = ConstantInt::get(CI->getType(), Quotient);
1372 NoSignedWrap = true;
1373 break;
1374 }
1375
1376 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
1377 if (BO->getOpcode() == Instruction::Mul) {
1378 // Multiplication.
1379 NoSignedWrap = BO->hasNoSignedWrap();
1380 if (RequireNoSignedWrap && !NoSignedWrap)
1381 return nullptr;
1382
1383 // There are three cases for multiplication: multiplication by exactly
1384 // the scale, multiplication by a constant different to the scale, and
1385 // multiplication by something else.
1386 Value *LHS = BO->getOperand(0);
1387 Value *RHS = BO->getOperand(1);
1388
1389 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1390 // Multiplication by a constant.
1391 if (CI->getValue() == Scale) {
1392 // Multiplication by exactly the scale, replace the multiplication
1393 // by its left-hand side in the parent.
1394 Op = LHS;
1395 break;
1396 }
1397
1398 // Otherwise drill down into the constant.
1399 if (!Op->hasOneUse())
1400 return nullptr;
1401
1402 Parent = std::make_pair(BO, 1);
1403 continue;
1404 }
1405
1406 // Multiplication by something else. Drill down into the left-hand side
1407 // since that's where the reassociate pass puts the good stuff.
1408 if (!Op->hasOneUse())
1409 return nullptr;
1410
1411 Parent = std::make_pair(BO, 0);
1412 continue;
1413 }
1414
1415 if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
1416 isa<ConstantInt>(BO->getOperand(1))) {
1417 // Multiplication by a power of 2.
1418 NoSignedWrap = BO->hasNoSignedWrap();
1419 if (RequireNoSignedWrap && !NoSignedWrap)
1420 return nullptr;
1421
1422 Value *LHS = BO->getOperand(0);
1423 int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
1424 getLimitedValue(Scale.getBitWidth());
1425 // Op = LHS << Amt.
1426
1427 if (Amt == logScale) {
1428 // Multiplication by exactly the scale, replace the multiplication
1429 // by its left-hand side in the parent.
1430 Op = LHS;
1431 break;
1432 }
1433 if (Amt < logScale || !Op->hasOneUse())
1434 return nullptr;
1435
1436 // Multiplication by more than the scale. Reduce the multiplying amount
1437 // by the scale in the parent.
1438 Parent = std::make_pair(BO, 1);
1439 Op = ConstantInt::get(BO->getType(), Amt - logScale);
1440 break;
1441 }
1442 }
1443
1444 if (!Op->hasOneUse())
1445 return nullptr;
1446
1447 if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
1448 if (Cast->getOpcode() == Instruction::SExt) {
1449 // Op is sign-extended from a smaller type, descale in the smaller type.
1450 unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1451 APInt SmallScale = Scale.trunc(SmallSize);
1452 // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
1453 // descale Op as (sext Y) * Scale. In order to have
1454 // sext (Y * SmallScale) = (sext Y) * Scale
1455 // some conditions need to hold however: SmallScale must sign-extend to
1456 // Scale and the multiplication Y * SmallScale should not overflow.
1457 if (SmallScale.sext(Scale.getBitWidth()) != Scale)
1458 // SmallScale does not sign-extend to Scale.
1459 return nullptr;
1460 assert(SmallScale.exactLogBase2() == logScale)(static_cast <bool> (SmallScale.exactLogBase2() == logScale
) ? void (0) : __assert_fail ("SmallScale.exactLogBase2() == logScale"
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1460, __extension__ __PRETTY_FUNCTION__))
;
1461 // Require that Y * SmallScale must not overflow.
1462 RequireNoSignedWrap = true;
1463
1464 // Drill down through the cast.
1465 Parent = std::make_pair(Cast, 0);
1466 Scale = SmallScale;
1467 continue;
1468 }
1469
1470 if (Cast->getOpcode() == Instruction::Trunc) {
1471 // Op is truncated from a larger type, descale in the larger type.
1472 // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
1473 // trunc (Y * sext Scale) = (trunc Y) * Scale
1474 // always holds. However (trunc Y) * Scale may overflow even if
1475 // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
1476 // from this point up in the expression (see later).
1477 if (RequireNoSignedWrap)
1478 return nullptr;
1479
1480 // Drill down through the cast.
1481 unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
1482 Parent = std::make_pair(Cast, 0);
1483 Scale = Scale.sext(LargeSize);
1484 if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
1485 logScale = -1;
1486 assert(Scale.exactLogBase2() == logScale)(static_cast <bool> (Scale.exactLogBase2() == logScale)
? void (0) : __assert_fail ("Scale.exactLogBase2() == logScale"
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1486, __extension__ __PRETTY_FUNCTION__))
;
1487 continue;
1488 }
1489 }
1490
1491 // Unsupported expression, bail out.
1492 return nullptr;
1493 }
1494
1495 // If Op is zero then Val = Op * Scale.
1496 if (match(Op, m_Zero())) {
1497 NoSignedWrap = true;
1498 return Op;
1499 }
1500
1501 // We know that we can successfully descale, so from here on we can safely
1502 // modify the IR. Op holds the descaled version of the deepest term in the
1503 // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
1504 // not to overflow.
1505
1506 if (!Parent.first)
1507 // The expression only had one term.
1508 return Op;
1509
1510 // Rewrite the parent using the descaled version of its operand.
1511 assert(Parent.first->hasOneUse() && "Drilled down when more than one use!")(static_cast <bool> (Parent.first->hasOneUse() &&
"Drilled down when more than one use!") ? void (0) : __assert_fail
("Parent.first->hasOneUse() && \"Drilled down when more than one use!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1511, __extension__ __PRETTY_FUNCTION__))
;
1512 assert(Op != Parent.first->getOperand(Parent.second) &&(static_cast <bool> (Op != Parent.first->getOperand(
Parent.second) && "Descaling was a no-op?") ? void (0
) : __assert_fail ("Op != Parent.first->getOperand(Parent.second) && \"Descaling was a no-op?\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1513, __extension__ __PRETTY_FUNCTION__))
1513 "Descaling was a no-op?")(static_cast <bool> (Op != Parent.first->getOperand(
Parent.second) && "Descaling was a no-op?") ? void (0
) : __assert_fail ("Op != Parent.first->getOperand(Parent.second) && \"Descaling was a no-op?\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1513, __extension__ __PRETTY_FUNCTION__))
;
1514 replaceOperand(*Parent.first, Parent.second, Op);
1515 Worklist.push(Parent.first);
1516
1517 // Now work back up the expression correcting nsw flags. The logic is based
1518 // on the following observation: if X * Y is known not to overflow as a signed
1519 // multiplication, and Y is replaced by a value Z with smaller absolute value,
1520 // then X * Z will not overflow as a signed multiplication either. As we work
1521 // our way up, having NoSignedWrap 'true' means that the descaled value at the
1522 // current level has strictly smaller absolute value than the original.
1523 Instruction *Ancestor = Parent.first;
1524 do {
1525 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
1526 // If the multiplication wasn't nsw then we can't say anything about the
1527 // value of the descaled multiplication, and we have to clear nsw flags
1528 // from this point on up.
1529 bool OpNoSignedWrap = BO->hasNoSignedWrap();
1530 NoSignedWrap &= OpNoSignedWrap;
1531 if (NoSignedWrap != OpNoSignedWrap) {
1532 BO->setHasNoSignedWrap(NoSignedWrap);
1533 Worklist.push(Ancestor);
1534 }
1535 } else if (Ancestor->getOpcode() == Instruction::Trunc) {
1536 // The fact that the descaled input to the trunc has smaller absolute
1537 // value than the original input doesn't tell us anything useful about
1538 // the absolute values of the truncations.
1539 NoSignedWrap = false;
1540 }
1541 assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&(static_cast <bool> ((Ancestor->getOpcode() != Instruction
::SExt || NoSignedWrap) && "Failed to keep proper track of nsw flags while drilling down?"
) ? void (0) : __assert_fail ("(Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && \"Failed to keep proper track of nsw flags while drilling down?\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1542, __extension__ __PRETTY_FUNCTION__))
1542 "Failed to keep proper track of nsw flags while drilling down?")(static_cast <bool> ((Ancestor->getOpcode() != Instruction
::SExt || NoSignedWrap) && "Failed to keep proper track of nsw flags while drilling down?"
) ? void (0) : __assert_fail ("(Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && \"Failed to keep proper track of nsw flags while drilling down?\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1542, __extension__ __PRETTY_FUNCTION__))
;
1543
1544 if (Ancestor == Val)
1545 // Got to the top, all done!
1546 return Val;
1547
1548 // Move up one level in the expression.
1549 assert(Ancestor->hasOneUse() && "Drilled down when more than one use!")(static_cast <bool> (Ancestor->hasOneUse() &&
"Drilled down when more than one use!") ? void (0) : __assert_fail
("Ancestor->hasOneUse() && \"Drilled down when more than one use!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1549, __extension__ __PRETTY_FUNCTION__))
;
1550 Ancestor = Ancestor->user_back();
1551 } while (true);
1552}
1553
1554Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
1555 if (!isa<VectorType>(Inst.getType()))
1556 return nullptr;
1557
1558 BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
1559 Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
1560 assert(cast<VectorType>(LHS->getType())->getElementCount() ==(static_cast <bool> (cast<VectorType>(LHS->getType
())->getElementCount() == cast<VectorType>(Inst.getType
())->getElementCount()) ? void (0) : __assert_fail ("cast<VectorType>(LHS->getType())->getElementCount() == cast<VectorType>(Inst.getType())->getElementCount()"
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1561, __extension__ __PRETTY_FUNCTION__))
1561 cast<VectorType>(Inst.getType())->getElementCount())(static_cast <bool> (cast<VectorType>(LHS->getType
())->getElementCount() == cast<VectorType>(Inst.getType
())->getElementCount()) ? void (0) : __assert_fail ("cast<VectorType>(LHS->getType())->getElementCount() == cast<VectorType>(Inst.getType())->getElementCount()"
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1561, __extension__ __PRETTY_FUNCTION__))
;
1562 assert(cast<VectorType>(RHS->getType())->getElementCount() ==(static_cast <bool> (cast<VectorType>(RHS->getType
())->getElementCount() == cast<VectorType>(Inst.getType
())->getElementCount()) ? void (0) : __assert_fail ("cast<VectorType>(RHS->getType())->getElementCount() == cast<VectorType>(Inst.getType())->getElementCount()"
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1563, __extension__ __PRETTY_FUNCTION__))
1563 cast<VectorType>(Inst.getType())->getElementCount())(static_cast <bool> (cast<VectorType>(RHS->getType
())->getElementCount() == cast<VectorType>(Inst.getType
())->getElementCount()) ? void (0) : __assert_fail ("cast<VectorType>(RHS->getType())->getElementCount() == cast<VectorType>(Inst.getType())->getElementCount()"
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1563, __extension__ __PRETTY_FUNCTION__))
;
1564
1565 // If both operands of the binop are vector concatenations, then perform the
1566 // narrow binop on each pair of the source operands followed by concatenation
1567 // of the results.
1568 Value *L0, *L1, *R0, *R1;
1569 ArrayRef<int> Mask;
1570 if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
1571 match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
1572 LHS->hasOneUse() && RHS->hasOneUse() &&
1573 cast<ShuffleVectorInst>(LHS)->isConcat() &&
1574 cast<ShuffleVectorInst>(RHS)->isConcat()) {
1575 // This transform does not have the speculative execution constraint as
1576 // below because the shuffle is a concatenation. The new binops are
1577 // operating on exactly the same elements as the existing binop.
1578 // TODO: We could ease the mask requirement to allow different undef lanes,
1579 // but that requires an analysis of the binop-with-undef output value.
1580 Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
1581 if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
1582 BO->copyIRFlags(&Inst);
1583 Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
1584 if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
1585 BO->copyIRFlags(&Inst);
1586 return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
1587 }
1588
1589 // It may not be safe to reorder shuffles and things like div, urem, etc.
1590 // because we may trap when executing those ops on unknown vector elements.
1591 // See PR20059.
1592 if (!isSafeToSpeculativelyExecute(&Inst))
1593 return nullptr;
1594
1595 auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
1596 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
1597 if (auto *BO = dyn_cast<BinaryOperator>(XY))
1598 BO->copyIRFlags(&Inst);
1599 return new ShuffleVectorInst(XY, M);
1600 };
1601
1602 // If both arguments of the binary operation are shuffles that use the same
1603 // mask and shuffle within a single vector, move the shuffle after the binop.
1604 Value *V1, *V2;
1605 if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
1606 match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
1607 V1->getType() == V2->getType() &&
1608 (LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
1609 // Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
1610 return createBinOpShuffle(V1, V2, Mask);
1611 }
1612
1613 // If both arguments of a commutative binop are select-shuffles that use the
1614 // same mask with commuted operands, the shuffles are unnecessary.
1615 if (Inst.isCommutative() &&
1616 match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
1617 match(RHS,
1618 m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
1619 auto *LShuf = cast<ShuffleVectorInst>(LHS);
1620 auto *RShuf = cast<ShuffleVectorInst>(RHS);
1621 // TODO: Allow shuffles that contain undefs in the mask?
1622 // That is legal, but it reduces undef knowledge.
1623 // TODO: Allow arbitrary shuffles by shuffling after binop?
1624 // That might be legal, but we have to deal with poison.
1625 if (LShuf->isSelect() &&
1626 !is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
1627 RShuf->isSelect() &&
1628 !is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
1629 // Example:
1630 // LHS = shuffle V1, V2, <0, 5, 6, 3>
1631 // RHS = shuffle V2, V1, <0, 5, 6, 3>
1632 // LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
1633 Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
1634 NewBO->copyIRFlags(&Inst);
1635 return NewBO;
1636 }
1637 }
1638
1639 // If one argument is a shuffle within one vector and the other is a constant,
1640 // try moving the shuffle after the binary operation. This canonicalization
1641 // intends to move shuffles closer to other shuffles and binops closer to
1642 // other binops, so they can be folded. It may also enable demanded elements
1643 // transforms.
1644 Constant *C;
1645 auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
1646 if (InstVTy &&
1647 match(&Inst,
1648 m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
1649 m_ImmConstant(C))) &&
1650 cast<FixedVectorType>(V1->getType())->getNumElements() <=
1651 InstVTy->getNumElements()) {
1652 assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&(static_cast <bool> (InstVTy->getScalarType() == V1->
getType()->getScalarType() && "Shuffle should not change scalar type"
) ? void (0) : __assert_fail ("InstVTy->getScalarType() == V1->getType()->getScalarType() && \"Shuffle should not change scalar type\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1653, __extension__ __PRETTY_FUNCTION__))
1653 "Shuffle should not change scalar type")(static_cast <bool> (InstVTy->getScalarType() == V1->
getType()->getScalarType() && "Shuffle should not change scalar type"
) ? void (0) : __assert_fail ("InstVTy->getScalarType() == V1->getType()->getScalarType() && \"Shuffle should not change scalar type\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1653, __extension__ __PRETTY_FUNCTION__))
;
1654
1655 // Find constant NewC that has property:
1656 // shuffle(NewC, ShMask) = C
1657 // If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
1658 // reorder is not possible. A 1-to-1 mapping is not required. Example:
1659 // ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
1660 bool ConstOp1 = isa<Constant>(RHS);
1661 ArrayRef<int> ShMask = Mask;
1662 unsigned SrcVecNumElts =
1663 cast<FixedVectorType>(V1->getType())->getNumElements();
1664 UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
1665 SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
1666 bool MayChange = true;
1667 unsigned NumElts = InstVTy->getNumElements();
1668 for (unsigned I = 0; I < NumElts; ++I) {
1669 Constant *CElt = C->getAggregateElement(I);
1670 if (ShMask[I] >= 0) {
1671 assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle")(static_cast <bool> (ShMask[I] < (int)NumElts &&
"Not expecting narrowing shuffle") ? void (0) : __assert_fail
("ShMask[I] < (int)NumElts && \"Not expecting narrowing shuffle\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1671, __extension__ __PRETTY_FUNCTION__))
;
1672 Constant *NewCElt = NewVecC[ShMask[I]];
1673 // Bail out if:
1674 // 1. The constant vector contains a constant expression.
1675 // 2. The shuffle needs an element of the constant vector that can't
1676 // be mapped to a new constant vector.
1677 // 3. This is a widening shuffle that copies elements of V1 into the
1678 // extended elements (extending with undef is allowed).
1679 if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
1680 I >= SrcVecNumElts) {
1681 MayChange = false;
1682 break;
1683 }
1684 NewVecC[ShMask[I]] = CElt;
1685 }
1686 // If this is a widening shuffle, we must be able to extend with undef
1687 // elements. If the original binop does not produce an undef in the high
1688 // lanes, then this transform is not safe.
1689 // Similarly for undef lanes due to the shuffle mask, we can only
1690 // transform binops that preserve undef.
1691 // TODO: We could shuffle those non-undef constant values into the
1692 // result by using a constant vector (rather than an undef vector)
1693 // as operand 1 of the new binop, but that might be too aggressive
1694 // for target-independent shuffle creation.
1695 if (I >= SrcVecNumElts || ShMask[I] < 0) {
1696 Constant *MaybeUndef =
1697 ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
1698 : ConstantExpr::get(Opcode, CElt, UndefScalar);
1699 if (!match(MaybeUndef, m_Undef())) {
1700 MayChange = false;
1701 break;
1702 }
1703 }
1704 }
1705 if (MayChange) {
1706 Constant *NewC = ConstantVector::get(NewVecC);
1707 // It may not be safe to execute a binop on a vector with undef elements
1708 // because the entire instruction can be folded to undef or create poison
1709 // that did not exist in the original code.
1710 if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
1711 NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
1712
1713 // Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
1714 // Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
1715 Value *NewLHS = ConstOp1 ? V1 : NewC;
1716 Value *NewRHS = ConstOp1 ? NewC : V1;
1717 return createBinOpShuffle(NewLHS, NewRHS, Mask);
1718 }
1719 }
1720
1721 // Try to reassociate to sink a splat shuffle after a binary operation.
1722 if (Inst.isAssociative() && Inst.isCommutative()) {
1723 // Canonicalize shuffle operand as LHS.
1724 if (isa<ShuffleVectorInst>(RHS))
1725 std::swap(LHS, RHS);
1726
1727 Value *X;
1728 ArrayRef<int> MaskC;
1729 int SplatIndex;
1730 BinaryOperator *BO;
1731 if (!match(LHS,
1732 m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
1733 !match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
1734 X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
1735 BO->getOpcode() != Opcode)
1736 return nullptr;
1737
1738 // FIXME: This may not be safe if the analysis allows undef elements. By
1739 // moving 'Y' before the splat shuffle, we are implicitly assuming
1740 // that it is not undef/poison at the splat index.
1741 Value *Y, *OtherOp;
1742 if (isSplatValue(BO->getOperand(0), SplatIndex)) {
1743 Y = BO->getOperand(0);
1744 OtherOp = BO->getOperand(1);
1745 } else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
1746 Y = BO->getOperand(1);
1747 OtherOp = BO->getOperand(0);
1748 } else {
1749 return nullptr;
1750 }
1751
1752 // X and Y are splatted values, so perform the binary operation on those
1753 // values followed by a splat followed by the 2nd binary operation:
1754 // bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
1755 Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
1756 SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
1757 Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
1758 Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
1759
1760 // Intersect FMF on both new binops. Other (poison-generating) flags are
1761 // dropped to be safe.
1762 if (isa<FPMathOperator>(R)) {
1763 R->copyFastMathFlags(&Inst);
1764 R->andIRFlags(BO);
1765 }
1766 if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
1767 NewInstBO->copyIRFlags(R);
1768 return R;
1769 }
1770
1771 return nullptr;
1772}
1773
1774/// Try to narrow the width of a binop if at least 1 operand is an extend of
1775/// of a value. This requires a potentially expensive known bits check to make
1776/// sure the narrow op does not overflow.
1777Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
1778 // We need at least one extended operand.
1779 Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
1780
1781 // If this is a sub, we swap the operands since we always want an extension
1782 // on the RHS. The LHS can be an extension or a constant.
1783 if (BO.getOpcode() == Instruction::Sub)
1784 std::swap(Op0, Op1);
1785
1786 Value *X;
1787 bool IsSext = match(Op0, m_SExt(m_Value(X)));
1788 if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
1789 return nullptr;
1790
1791 // If both operands are the same extension from the same source type and we
1792 // can eliminate at least one (hasOneUse), this might work.
1793 CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
1794 Value *Y;
1795 if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
1796 cast<Operator>(Op1)->getOpcode() == CastOpc &&
1797 (Op0->hasOneUse() || Op1->hasOneUse()))) {
1798 // If that did not match, see if we have a suitable constant operand.
1799 // Truncating and extending must produce the same constant.
1800 Constant *WideC;
1801 if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
1802 return nullptr;
1803 Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
1804 if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
1805 return nullptr;
1806 Y = NarrowC;
1807 }
1808
1809 // Swap back now that we found our operands.
1810 if (BO.getOpcode() == Instruction::Sub)
1811 std::swap(X, Y);
1812
1813 // Both operands have narrow versions. Last step: the math must not overflow
1814 // in the narrow width.
1815 if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
1816 return nullptr;
1817
1818 // bo (ext X), (ext Y) --> ext (bo X, Y)
1819 // bo (ext X), C --> ext (bo X, C')
1820 Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
1821 if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
1822 if (IsSext)
1823 NewBinOp->setHasNoSignedWrap();
1824 else
1825 NewBinOp->setHasNoUnsignedWrap();
1826 }
1827 return CastInst::Create(CastOpc, NarrowBO, BO.getType());
1828}
1829
1830static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
1831 // At least one GEP must be inbounds.
1832 if (!GEP1.isInBounds() && !GEP2.isInBounds())
1833 return false;
1834
1835 return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
1836 (GEP2.isInBounds() || GEP2.hasAllZeroIndices());
1837}
1838
1839/// Thread a GEP operation with constant indices through the constant true/false
1840/// arms of a select.
1841static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
1842 InstCombiner::BuilderTy &Builder) {
1843 if (!GEP.hasAllConstantIndices())
1844 return nullptr;
1845
1846 Instruction *Sel;
1847 Value *Cond;
1848 Constant *TrueC, *FalseC;
1849 if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
1850 !match(Sel,
1851 m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
1852 return nullptr;
1853
1854 // gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
1855 // Propagate 'inbounds' and metadata from existing instructions.
1856 // Note: using IRBuilder to create the constants for efficiency.
1857 SmallVector<Value *, 4> IndexC(GEP.indices());
1858 bool IsInBounds = GEP.isInBounds();
1859 Type *Ty = GEP.getSourceElementType();
1860 Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, TrueC, IndexC)
1861 : Builder.CreateGEP(Ty, TrueC, IndexC);
1862 Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(Ty, FalseC, IndexC)
1863 : Builder.CreateGEP(Ty, FalseC, IndexC);
1864 return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
1865}
1866
1867Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1868 SmallVector<Value *, 8> Ops(GEP.operands());
1869 Type *GEPType = GEP.getType();
1870 Type *GEPEltType = GEP.getSourceElementType();
1871 bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
1872 if (Value *V = SimplifyGEPInst(GEPEltType, Ops, GEP.isInBounds(),
1873 SQ.getWithInstruction(&GEP)))
1874 return replaceInstUsesWith(GEP, V);
1875
1876 // For vector geps, use the generic demanded vector support.
1877 // Skip if GEP return type is scalable. The number of elements is unknown at
1878 // compile-time.
1879 if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
1880 auto VWidth = GEPFVTy->getNumElements();
1881 APInt UndefElts(VWidth, 0);
1882 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1883 if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
1884 UndefElts)) {
1885 if (V != &GEP)
1886 return replaceInstUsesWith(GEP, V);
1887 return &GEP;
1888 }
1889
1890 // TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
1891 // possible (decide on canonical form for pointer broadcast), 3) exploit
1892 // undef elements to decrease demanded bits
1893 }
1894
1895 Value *PtrOp = GEP.getOperand(0);
1896
1897 // Eliminate unneeded casts for indices, and replace indices which displace
1898 // by multiples of a zero size type with zero.
1899 bool MadeChange = false;
1900
1901 // Index width may not be the same width as pointer width.
1902 // Data layout chooses the right type based on supported integer types.
1903 Type *NewScalarIndexTy =
1904 DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
1905
1906 gep_type_iterator GTI = gep_type_begin(GEP);
1907 for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
1908 ++I, ++GTI) {
1909 // Skip indices into struct types.
1910 if (GTI.isStruct())
1911 continue;
1912
1913 Type *IndexTy = (*I)->getType();
1914 Type *NewIndexType =
1915 IndexTy->isVectorTy()
1916 ? VectorType::get(NewScalarIndexTy,
1917 cast<VectorType>(IndexTy)->getElementCount())
1918 : NewScalarIndexTy;
1919
1920 // If the element type has zero size then any index over it is equivalent
1921 // to an index of zero, so replace it with zero if it is not zero already.
1922 Type *EltTy = GTI.getIndexedType();
1923 if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
1924 if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
1925 *I = Constant::getNullValue(NewIndexType);
1926 MadeChange = true;
1927 }
1928
1929 if (IndexTy != NewIndexType) {
1930 // If we are using a wider index than needed for this platform, shrink
1931 // it to what we need. If narrower, sign-extend it to what we need.
1932 // This explicit cast can make subsequent optimizations more obvious.
1933 *I = Builder.CreateIntCast(*I, NewIndexType, true);
1934 MadeChange = true;
1935 }
1936 }
1937 if (MadeChange)
1938 return &GEP;
1939
1940 // Check to see if the inputs to the PHI node are getelementptr instructions.
1941 if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
1942 auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
1943 if (!Op1)
1944 return nullptr;
1945
1946 // Don't fold a GEP into itself through a PHI node. This can only happen
1947 // through the back-edge of a loop. Folding a GEP into itself means that
1948 // the value of the previous iteration needs to be stored in the meantime,
1949 // thus requiring an additional register variable to be live, but not
1950 // actually achieving anything (the GEP still needs to be executed once per
1951 // loop iteration).
1952 if (Op1 == &GEP)
1953 return nullptr;
1954
1955 int DI = -1;
1956
1957 for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
1958 auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
1959 if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
1960 return nullptr;
1961
1962 // As for Op1 above, don't try to fold a GEP into itself.
1963 if (Op2 == &GEP)
1964 return nullptr;
1965
1966 // Keep track of the type as we walk the GEP.
1967 Type *CurTy = nullptr;
1968
1969 for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
1970 if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
1971 return nullptr;
1972
1973 if (Op1->getOperand(J) != Op2->getOperand(J)) {
1974 if (DI == -1) {
1975 // We have not seen any differences yet in the GEPs feeding the
1976 // PHI yet, so we record this one if it is allowed to be a
1977 // variable.
1978
1979 // The first two arguments can vary for any GEP, the rest have to be
1980 // static for struct slots
1981 if (J > 1) {
1982 assert(CurTy && "No current type?")(static_cast <bool> (CurTy && "No current type?"
) ? void (0) : __assert_fail ("CurTy && \"No current type?\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 1982, __extension__ __PRETTY_FUNCTION__))
;
1983 if (CurTy->isStructTy())
1984 return nullptr;
1985 }
1986
1987 DI = J;
1988 } else {
1989 // The GEP is different by more than one input. While this could be
1990 // extended to support GEPs that vary by more than one variable it
1991 // doesn't make sense since it greatly increases the complexity and
1992 // would result in an R+R+R addressing mode which no backend
1993 // directly supports and would need to be broken into several
1994 // simpler instructions anyway.
1995 return nullptr;
1996 }
1997 }
1998
1999 // Sink down a layer of the type for the next iteration.
2000 if (J > 0) {
2001 if (J == 1) {
2002 CurTy = Op1->getSourceElementType();
2003 } else {
2004 CurTy =
2005 GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
2006 }
2007 }
2008 }
2009 }
2010
2011 // If not all GEPs are identical we'll have to create a new PHI node.
2012 // Check that the old PHI node has only one use so that it will get
2013 // removed.
2014 if (DI != -1 && !PN->hasOneUse())
2015 return nullptr;
2016
2017 auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
2018 if (DI == -1) {
2019 // All the GEPs feeding the PHI are identical. Clone one down into our
2020 // BB so that it can be merged with the current GEP.
2021 } else {
2022 // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
2023 // into the current block so it can be merged, and create a new PHI to
2024 // set that index.
2025 PHINode *NewPN;
2026 {
2027 IRBuilderBase::InsertPointGuard Guard(Builder);
2028 Builder.SetInsertPoint(PN);
2029 NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
2030 PN->getNumOperands());
2031 }
2032
2033 for (auto &I : PN->operands())
2034 NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
2035 PN->getIncomingBlock(I));
2036
2037 NewGEP->setOperand(DI, NewPN);
2038 }
2039
2040 GEP.getParent()->getInstList().insert(
2041 GEP.getParent()->getFirstInsertionPt(), NewGEP);
2042 replaceOperand(GEP, 0, NewGEP);
2043 PtrOp = NewGEP;
2044 }
2045
2046 // Combine Indices - If the source pointer to this getelementptr instruction
2047 // is a getelementptr instruction, combine the indices of the two
2048 // getelementptr instructions into a single instruction.
2049 if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
2050 if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
2051 return nullptr;
2052
2053 if (Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
2054 Src->hasOneUse()) {
2055 Value *GO1 = GEP.getOperand(1);
2056 Value *SO1 = Src->getOperand(1);
2057
2058 if (LI) {
2059 // Try to reassociate loop invariant GEP chains to enable LICM.
2060 if (Loop *L = LI->getLoopFor(GEP.getParent())) {
2061 // Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
2062 // invariant: this breaks the dependence between GEPs and allows LICM
2063 // to hoist the invariant part out of the loop.
2064 if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
2065 // We have to be careful here.
2066 // We have something like:
2067 // %src = getelementptr <ty>, <ty>* %base, <ty> %idx
2068 // %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
2069 // If we just swap idx & idx2 then we could inadvertantly
2070 // change %src from a vector to a scalar, or vice versa.
2071 // Cases:
2072 // 1) %base a scalar & idx a scalar & idx2 a vector
2073 // => Swapping idx & idx2 turns %src into a vector type.
2074 // 2) %base a scalar & idx a vector & idx2 a scalar
2075 // => Swapping idx & idx2 turns %src in a scalar type
2076 // 3) %base, %idx, and %idx2 are scalars
2077 // => %src & %gep are scalars
2078 // => swapping idx & idx2 is safe
2079 // 4) %base a vector
2080 // => %src is a vector
2081 // => swapping idx & idx2 is safe.
2082 auto *SO0 = Src->getOperand(0);
2083 auto *SO0Ty = SO0->getType();
2084 if (!isa<VectorType>(GEPType) || // case 3
2085 isa<VectorType>(SO0Ty)) { // case 4
2086 Src->setOperand(1, GO1);
2087 GEP.setOperand(1, SO1);
2088 return &GEP;
2089 } else {
2090 // Case 1 or 2
2091 // -- have to recreate %src & %gep
2092 // put NewSrc at same location as %src
2093 Builder.SetInsertPoint(cast<Instruction>(PtrOp));
2094 Value *NewSrc =
2095 Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName());
2096 // Propagate 'inbounds' if the new source was not constant-folded.
2097 if (auto *NewSrcGEPI = dyn_cast<GetElementPtrInst>(NewSrc))
2098 NewSrcGEPI->setIsInBounds(Src->isInBounds());
2099 GetElementPtrInst *NewGEP =
2100 GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
2101 NewGEP->setIsInBounds(GEP.isInBounds());
2102 return NewGEP;
2103 }
2104 }
2105 }
2106 }
2107 }
2108
2109 // Note that if our source is a gep chain itself then we wait for that
2110 // chain to be resolved before we perform this transformation. This
2111 // avoids us creating a TON of code in some cases.
2112 if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
2113 if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
2114 return nullptr; // Wait until our source is folded to completion.
2115
2116 SmallVector<Value*, 8> Indices;
2117
2118 // Find out whether the last index in the source GEP is a sequential idx.
2119 bool EndsWithSequential = false;
2120 for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
2121 I != E; ++I)
2122 EndsWithSequential = I.isSequential();
2123
2124 // Can we combine the two pointer arithmetics offsets?
2125 if (EndsWithSequential) {
2126 // Replace: gep (gep %P, long B), long A, ...
2127 // With: T = long A+B; gep %P, T, ...
2128 Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
2129 Value *GO1 = GEP.getOperand(1);
2130
2131 // If they aren't the same type, then the input hasn't been processed
2132 // by the loop above yet (which canonicalizes sequential index types to
2133 // intptr_t). Just avoid transforming this until the input has been
2134 // normalized.
2135 if (SO1->getType() != GO1->getType())
2136 return nullptr;
2137
2138 Value *Sum =
2139 SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
2140 // Only do the combine when we are sure the cost after the
2141 // merge is never more than that before the merge.
2142 if (Sum == nullptr)
2143 return nullptr;
2144
2145 // Update the GEP in place if possible.
2146 if (Src->getNumOperands() == 2) {
2147 GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
2148 replaceOperand(GEP, 0, Src->getOperand(0));
2149 replaceOperand(GEP, 1, Sum);
2150 return &GEP;
2151 }
2152 Indices.append(Src->op_begin()+1, Src->op_end()-1);
2153 Indices.push_back(Sum);
2154 Indices.append(GEP.op_begin()+2, GEP.op_end());
2155 } else if (isa<Constant>(*GEP.idx_begin()) &&
2156 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
2157 Src->getNumOperands() != 1) {
2158 // Otherwise we can do the fold if the first index of the GEP is a zero
2159 Indices.append(Src->op_begin()+1, Src->op_end());
2160 Indices.append(GEP.idx_begin()+1, GEP.idx_end());
2161 }
2162
2163 if (!Indices.empty())
2164 return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
2165 ? GetElementPtrInst::CreateInBounds(
2166 Src->getSourceElementType(), Src->getOperand(0), Indices,
2167 GEP.getName())
2168 : GetElementPtrInst::Create(Src->getSourceElementType(),
2169 Src->getOperand(0), Indices,
2170 GEP.getName());
2171 }
2172
2173 // Skip if GEP source element type is scalable. The type alloc size is unknown
2174 // at compile-time.
2175 if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
2176 unsigned AS = GEP.getPointerAddressSpace();
2177 if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
2178 DL.getIndexSizeInBits(AS)) {
2179 uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2180
2181 bool Matched = false;
2182 uint64_t C;
2183 Value *V = nullptr;
2184 if (TyAllocSize == 1) {
2185 V = GEP.getOperand(1);
2186 Matched = true;
2187 } else if (match(GEP.getOperand(1),
2188 m_AShr(m_Value(V), m_ConstantInt(C)))) {
2189 if (TyAllocSize == 1ULL << C)
2190 Matched = true;
2191 } else if (match(GEP.getOperand(1),
2192 m_SDiv(m_Value(V), m_ConstantInt(C)))) {
2193 if (TyAllocSize == C)
2194 Matched = true;
2195 }
2196
2197 // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y), but
2198 // only if both point to the same underlying object (otherwise provenance
2199 // is not necessarily retained).
2200 Value *Y;
2201 Value *X = GEP.getOperand(0);
2202 if (Matched &&
2203 match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
2204 getUnderlyingObject(X) == getUnderlyingObject(Y))
2205 return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
2206 }
2207 }
2208
2209 // We do not handle pointer-vector geps here.
2210 if (GEPType->isVectorTy())
2211 return nullptr;
2212
2213 // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
2214 Value *StrippedPtr = PtrOp->stripPointerCasts();
2215 PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
2216
2217 if (StrippedPtr != PtrOp) {
2218 bool HasZeroPointerIndex = false;
2219 Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
2220
2221 if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
2222 HasZeroPointerIndex = C->isZero();
2223
2224 // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
2225 // into : GEP [10 x i8]* X, i32 0, ...
2226 //
2227 // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
2228 // into : GEP i8* X, ...
2229 //
2230 // This occurs when the program declares an array extern like "int X[];"
2231 if (HasZeroPointerIndex) {
2232 if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
2233 // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
2234 if (CATy->getElementType() == StrippedPtrEltTy) {
2235 // -> GEP i8* X, ...
2236 SmallVector<Value *, 8> Idx(drop_begin(GEP.indices()));
2237 GetElementPtrInst *Res = GetElementPtrInst::Create(
2238 StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
2239 Res->setIsInBounds(GEP.isInBounds());
2240 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
2241 return Res;
2242 // Insert Res, and create an addrspacecast.
2243 // e.g.,
2244 // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
2245 // ->
2246 // %0 = GEP i8 addrspace(1)* X, ...
2247 // addrspacecast i8 addrspace(1)* %0 to i8*
2248 return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
2249 }
2250
2251 if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
2252 // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
2253 if (CATy->getElementType() == XATy->getElementType()) {
2254 // -> GEP [10 x i8]* X, i32 0, ...
2255 // At this point, we know that the cast source type is a pointer
2256 // to an array of the same type as the destination pointer
2257 // array. Because the array type is never stepped over (there
2258 // is a leading zero) we can fold the cast into this GEP.
2259 if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
2260 GEP.setSourceElementType(XATy);
2261 return replaceOperand(GEP, 0, StrippedPtr);
2262 }
2263 // Cannot replace the base pointer directly because StrippedPtr's
2264 // address space is different. Instead, create a new GEP followed by
2265 // an addrspacecast.
2266 // e.g.,
2267 // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
2268 // i32 0, ...
2269 // ->
2270 // %0 = GEP [10 x i8] addrspace(1)* X, ...
2271 // addrspacecast i8 addrspace(1)* %0 to i8*
2272 SmallVector<Value *, 8> Idx(GEP.indices());
2273 Value *NewGEP =
2274 GEP.isInBounds()
2275 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2276 Idx, GEP.getName())
2277 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2278 GEP.getName());
2279 return new AddrSpaceCastInst(NewGEP, GEPType);
2280 }
2281 }
2282 }
2283 } else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
2284 // Skip if GEP source element type is scalable. The type alloc size is
2285 // unknown at compile-time.
2286 // Transform things like: %t = getelementptr i32*
2287 // bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2
2288 // x i32]* %str, i32 0, i32 %V; bitcast
2289 if (StrippedPtrEltTy->isArrayTy() &&
2290 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
2291 DL.getTypeAllocSize(GEPEltType)) {
2292 Type *IdxType = DL.getIndexType(GEPType);
2293 Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
2294 Value *NewGEP =
2295 GEP.isInBounds()
2296 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2297 GEP.getName())
2298 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
2299 GEP.getName());
2300
2301 // V and GEP are both pointer types --> BitCast
2302 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
2303 }
2304
2305 // Transform things like:
2306 // %V = mul i64 %N, 4
2307 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
2308 // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
2309 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
2310 // Check that changing the type amounts to dividing the index by a scale
2311 // factor.
2312 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2313 uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
2314 if (ResSize && SrcSize % ResSize == 0) {
2315 Value *Idx = GEP.getOperand(1);
2316 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2317 uint64_t Scale = SrcSize / ResSize;
2318
2319 // Earlier transforms ensure that the index has the right type
2320 // according to Data Layout, which considerably simplifies the
2321 // logic by eliminating implicit casts.
2322 assert(Idx->getType() == DL.getIndexType(GEPType) &&(static_cast <bool> (Idx->getType() == DL.getIndexType
(GEPType) && "Index type does not match the Data Layout preferences"
) ? void (0) : __assert_fail ("Idx->getType() == DL.getIndexType(GEPType) && \"Index type does not match the Data Layout preferences\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2323, __extension__ __PRETTY_FUNCTION__))
2323 "Index type does not match the Data Layout preferences")(static_cast <bool> (Idx->getType() == DL.getIndexType
(GEPType) && "Index type does not match the Data Layout preferences"
) ? void (0) : __assert_fail ("Idx->getType() == DL.getIndexType(GEPType) && \"Index type does not match the Data Layout preferences\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2323, __extension__ __PRETTY_FUNCTION__))
;
2324
2325 bool NSW;
2326 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2327 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2328 // If the multiplication NewIdx * Scale may overflow then the new
2329 // GEP may not be "inbounds".
2330 Value *NewGEP =
2331 GEP.isInBounds() && NSW
2332 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2333 NewIdx, GEP.getName())
2334 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
2335 GEP.getName());
2336
2337 // The NewGEP must be pointer typed, so must the old one -> BitCast
2338 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2339 GEPType);
2340 }
2341 }
2342 }
2343
2344 // Similarly, transform things like:
2345 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
2346 // (where tmp = 8*tmp2) into:
2347 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
2348 if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
2349 StrippedPtrEltTy->isArrayTy()) {
2350 // Check that changing to the array element type amounts to dividing the
2351 // index by a scale factor.
2352 uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
2353 uint64_t ArrayEltSize =
2354 DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
2355 .getFixedSize();
2356 if (ResSize && ArrayEltSize % ResSize == 0) {
2357 Value *Idx = GEP.getOperand(1);
2358 unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
2359 uint64_t Scale = ArrayEltSize / ResSize;
2360
2361 // Earlier transforms ensure that the index has the right type
2362 // according to the Data Layout, which considerably simplifies
2363 // the logic by eliminating implicit casts.
2364 assert(Idx->getType() == DL.getIndexType(GEPType) &&(static_cast <bool> (Idx->getType() == DL.getIndexType
(GEPType) && "Index type does not match the Data Layout preferences"
) ? void (0) : __assert_fail ("Idx->getType() == DL.getIndexType(GEPType) && \"Index type does not match the Data Layout preferences\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2365, __extension__ __PRETTY_FUNCTION__))
2365 "Index type does not match the Data Layout preferences")(static_cast <bool> (Idx->getType() == DL.getIndexType
(GEPType) && "Index type does not match the Data Layout preferences"
) ? void (0) : __assert_fail ("Idx->getType() == DL.getIndexType(GEPType) && \"Index type does not match the Data Layout preferences\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2365, __extension__ __PRETTY_FUNCTION__))
;
2366
2367 bool NSW;
2368 if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
2369 // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
2370 // If the multiplication NewIdx * Scale may overflow then the new
2371 // GEP may not be "inbounds".
2372 Type *IndTy = DL.getIndexType(GEPType);
2373 Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
2374
2375 Value *NewGEP =
2376 GEP.isInBounds() && NSW
2377 ? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
2378 Off, GEP.getName())
2379 : Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
2380 GEP.getName());
2381 // The NewGEP must be pointer typed, so must the old one -> BitCast
2382 return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
2383 GEPType);
2384 }
2385 }
2386 }
2387 }
2388 }
2389
2390 // addrspacecast between types is canonicalized as a bitcast, then an
2391 // addrspacecast. To take advantage of the below bitcast + struct GEP, look
2392 // through the addrspacecast.
2393 Value *ASCStrippedPtrOp = PtrOp;
2394 if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
2395 // X = bitcast A addrspace(1)* to B addrspace(1)*
2396 // Y = addrspacecast A addrspace(1)* to B addrspace(2)*
2397 // Z = gep Y, <...constant indices...>
2398 // Into an addrspacecasted GEP of the struct.
2399 if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
2400 ASCStrippedPtrOp = BC;
2401 }
2402
2403 if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
2404 Value *SrcOp = BCI->getOperand(0);
2405 PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
2406 Type *SrcEltType = SrcType->getElementType();
2407
2408 // GEP directly using the source operand if this GEP is accessing an element
2409 // of a bitcasted pointer to vector or array of the same dimensions:
2410 // gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
2411 // gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
2412 auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
2413 const DataLayout &DL) {
2414 auto *VecVTy = cast<FixedVectorType>(VecTy);
2415 return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
2416 ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
2417 DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
2418 };
2419 if (GEP.getNumOperands() == 3 &&
2420 ((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
2421 areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
2422 (isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
2423 areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
2424
2425 // Create a new GEP here, as using `setOperand()` followed by
2426 // `setSourceElementType()` won't actually update the type of the
2427 // existing GEP Value. Causing issues if this Value is accessed when
2428 // constructing an AddrSpaceCastInst
2429 Value *NGEP =
2430 GEP.isInBounds()
2431 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
2432 : Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
2433 NGEP->takeName(&GEP);
2434
2435 // Preserve GEP address space to satisfy users
2436 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2437 return new AddrSpaceCastInst(NGEP, GEPType);
2438
2439 return replaceInstUsesWith(GEP, NGEP);
2440 }
2441
2442 // See if we can simplify:
2443 // X = bitcast A* to B*
2444 // Y = gep X, <...constant indices...>
2445 // into a gep of the original struct. This is important for SROA and alias
2446 // analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
2447 unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
2448 APInt Offset(OffsetBits, 0);
2449
2450 // If the bitcast argument is an allocation, The bitcast is for convertion
2451 // to actual type of allocation. Removing such bitcasts, results in having
2452 // GEPs with i8* base and pure byte offsets. That means GEP is not aware of
2453 // struct or array hierarchy.
2454 // By avoiding such GEPs, phi translation and MemoryDependencyAnalysis have
2455 // a better chance to succeed.
2456 if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset) &&
2457 !isAllocationFn(SrcOp, &TLI)) {
2458 // If this GEP instruction doesn't move the pointer, just replace the GEP
2459 // with a bitcast of the real input to the dest type.
2460 if (!Offset) {
2461 // If the bitcast is of an allocation, and the allocation will be
2462 // converted to match the type of the cast, don't touch this.
2463 if (isa<AllocaInst>(SrcOp)) {
2464 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
2465 if (Instruction *I = visitBitCast(*BCI)) {
2466 if (I != BCI) {
2467 I->takeName(BCI);
2468 BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
2469 replaceInstUsesWith(*BCI, I);
2470 }
2471 return &GEP;
2472 }
2473 }
2474
2475 if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
2476 return new AddrSpaceCastInst(SrcOp, GEPType);
2477 return new BitCastInst(SrcOp, GEPType);
2478 }
2479
2480 // Otherwise, if the offset is non-zero, we need to find out if there is a
2481 // field at Offset in 'A's type. If so, we can pull the cast through the
2482 // GEP.
2483 SmallVector<Value*, 8> NewIndices;
2484 if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
2485 Value *NGEP =
2486 GEP.isInBounds()
2487 ? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
2488 : Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
2489
2490 if (NGEP->getType() == GEPType)
2491 return replaceInstUsesWith(GEP, NGEP);
2492 NGEP->takeName(&GEP);
2493
2494 if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
2495 return new AddrSpaceCastInst(NGEP, GEPType);
2496 return new BitCastInst(NGEP, GEPType);
2497 }
2498 }
2499 }
2500
2501 if (!GEP.isInBounds()) {
2502 unsigned IdxWidth =
2503 DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
2504 APInt BasePtrOffset(IdxWidth, 0);
2505 Value *UnderlyingPtrOp =
2506 PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
2507 BasePtrOffset);
2508 if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
2509 if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
2510 BasePtrOffset.isNonNegative()) {
2511 APInt AllocSize(
2512 IdxWidth,
2513 DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
2514 if (BasePtrOffset.ule(AllocSize)) {
2515 return GetElementPtrInst::CreateInBounds(
2516 GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
2517 GEP.getName());
2518 }
2519 }
2520 }
2521 }
2522
2523 if (Instruction *R = foldSelectGEP(GEP, Builder))
2524 return R;
2525
2526 return nullptr;
2527}
2528
2529static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
2530 Instruction *AI) {
2531 if (isa<ConstantPointerNull>(V))
2532 return true;
2533 if (auto *LI = dyn_cast<LoadInst>(V))
2534 return isa<GlobalVariable>(LI->getPointerOperand());
2535 // Two distinct allocations will never be equal.
2536 // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
2537 // through bitcasts of V can cause
2538 // the result statement below to be true, even when AI and V (ex:
2539 // i8* ->i32* ->i8* of AI) are the same allocations.
2540 return isAllocLikeFn(V, TLI) && V != AI;
2541}
2542
2543static bool isAllocSiteRemovable(Instruction *AI,
2544 SmallVectorImpl<WeakTrackingVH> &Users,
2545 const TargetLibraryInfo *TLI) {
2546 SmallVector<Instruction*, 4> Worklist;
2547 Worklist.push_back(AI);
2548
2549 do {
2550 Instruction *PI = Worklist.pop_back_val();
2551 for (User *U : PI->users()) {
2552 Instruction *I = cast<Instruction>(U);
2553 switch (I->getOpcode()) {
2554 default:
2555 // Give up the moment we see something we can't handle.
2556 return false;
2557
2558 case Instruction::AddrSpaceCast:
2559 case Instruction::BitCast:
2560 case Instruction::GetElementPtr:
2561 Users.emplace_back(I);
2562 Worklist.push_back(I);
2563 continue;
2564
2565 case Instruction::ICmp: {
2566 ICmpInst *ICI = cast<ICmpInst>(I);
2567 // We can fold eq/ne comparisons with null to false/true, respectively.
2568 // We also fold comparisons in some conditions provided the alloc has
2569 // not escaped (see isNeverEqualToUnescapedAlloc).
2570 if (!ICI->isEquality())
2571 return false;
2572 unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
2573 if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
2574 return false;
2575 Users.emplace_back(I);
2576 continue;
2577 }
2578
2579 case Instruction::Call:
2580 // Ignore no-op and store intrinsics.
2581 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2582 switch (II->getIntrinsicID()) {
2583 default:
2584 return false;
2585
2586 case Intrinsic::memmove:
2587 case Intrinsic::memcpy:
2588 case Intrinsic::memset: {
2589 MemIntrinsic *MI = cast<MemIntrinsic>(II);
2590 if (MI->isVolatile() || MI->getRawDest() != PI)
2591 return false;
2592 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2593 }
2594 case Intrinsic::assume:
2595 case Intrinsic::invariant_start:
2596 case Intrinsic::invariant_end:
2597 case Intrinsic::lifetime_start:
2598 case Intrinsic::lifetime_end:
2599 case Intrinsic::objectsize:
2600 Users.emplace_back(I);
2601 continue;
2602 case Intrinsic::launder_invariant_group:
2603 case Intrinsic::strip_invariant_group:
2604 Users.emplace_back(I);
2605 Worklist.push_back(I);
2606 continue;
2607 }
2608 }
2609
2610 if (isFreeCall(I, TLI)) {
2611 Users.emplace_back(I);
2612 continue;
2613 }
2614
2615 if (isReallocLikeFn(I, TLI, true)) {
2616 Users.emplace_back(I);
2617 Worklist.push_back(I);
2618 continue;
2619 }
2620
2621 return false;
2622
2623 case Instruction::Store: {
2624 StoreInst *SI = cast<StoreInst>(I);
2625 if (SI->isVolatile() || SI->getPointerOperand() != PI)
2626 return false;
2627 Users.emplace_back(I);
2628 continue;
2629 }
2630 }
2631 llvm_unreachable("missing a return?")::llvm::llvm_unreachable_internal("missing a return?", "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2631)
;
2632 }
2633 } while (!Worklist.empty());
2634 return true;
2635}
2636
2637Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
2638 // If we have a malloc call which is only used in any amount of comparisons to
2639 // null and free calls, delete the calls and replace the comparisons with true
2640 // or false as appropriate.
2641
2642 // This is based on the principle that we can substitute our own allocation
2643 // function (which will never return null) rather than knowledge of the
2644 // specific function being called. In some sense this can change the permitted
2645 // outputs of a program (when we convert a malloc to an alloca, the fact that
2646 // the allocation is now on the stack is potentially visible, for example),
2647 // but we believe in a permissible manner.
2648 SmallVector<WeakTrackingVH, 64> Users;
2649
2650 // If we are removing an alloca with a dbg.declare, insert dbg.value calls
2651 // before each store.
2652 SmallVector<DbgVariableIntrinsic *, 8> DVIs;
2653 std::unique_ptr<DIBuilder> DIB;
2654 if (isa<AllocaInst>(MI)) {
2655 findDbgUsers(DVIs, &MI);
2656 DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
2657 }
2658
2659 if (isAllocSiteRemovable(&MI, Users, &TLI)) {
2660 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2661 // Lowering all @llvm.objectsize calls first because they may
2662 // use a bitcast/GEP of the alloca we are removing.
2663 if (!Users[i])
2664 continue;
2665
2666 Instruction *I = cast<Instruction>(&*Users[i]);
2667
2668 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
2669 if (II->getIntrinsicID() == Intrinsic::objectsize) {
2670 Value *Result =
2671 lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
2672 replaceInstUsesWith(*I, Result);
2673 eraseInstFromFunction(*I);
2674 Users[i] = nullptr; // Skip examining in the next loop.
2675 }
2676 }
2677 }
2678 for (unsigned i = 0, e = Users.size(); i != e; ++i) {
2679 if (!Users[i])
2680 continue;
2681
2682 Instruction *I = cast<Instruction>(&*Users[i]);
2683
2684 if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
2685 replaceInstUsesWith(*C,
2686 ConstantInt::get(Type::getInt1Ty(C->getContext()),
2687 C->isFalseWhenEqual()));
2688 } else if (auto *SI = dyn_cast<StoreInst>(I)) {
2689 for (auto *DVI : DVIs)
2690 if (DVI->isAddressOfVariable())
2691 ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
2692 } else {
2693 // Casts, GEP, or anything else: we're about to delete this instruction,
2694 // so it can not have any valid uses.
2695 replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
2696 }
2697 eraseInstFromFunction(*I);
2698 }
2699
2700 if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
2701 // Replace invoke with a NOP intrinsic to maintain the original CFG
2702 Module *M = II->getModule();
2703 Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
2704 InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
2705 None, "", II->getParent());
2706 }
2707
2708 // Remove debug intrinsics which describe the value contained within the
2709 // alloca. In addition to removing dbg.{declare,addr} which simply point to
2710 // the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
2711 //
2712 // ```
2713 // define void @foo(i32 %0) {
2714 // %a = alloca i32 ; Deleted.
2715 // store i32 %0, i32* %a
2716 // dbg.value(i32 %0, "arg0") ; Not deleted.
2717 // dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
2718 // call void @trivially_inlinable_no_op(i32* %a)
2719 // ret void
2720 // }
2721 // ```
2722 //
2723 // This may not be required if we stop describing the contents of allocas
2724 // using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
2725 // the LowerDbgDeclare utility.
2726 //
2727 // If there is a dead store to `%a` in @trivially_inlinable_no_op, the
2728 // "arg0" dbg.value may be stale after the call. However, failing to remove
2729 // the DW_OP_deref dbg.value causes large gaps in location coverage.
2730 for (auto *DVI : DVIs)
2731 if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
2732 DVI->eraseFromParent();
2733
2734 return eraseInstFromFunction(MI);
2735 }
2736 return nullptr;
2737}
2738
2739/// Move the call to free before a NULL test.
2740///
2741/// Check if this free is accessed after its argument has been test
2742/// against NULL (property 0).
2743/// If yes, it is legal to move this call in its predecessor block.
2744///
2745/// The move is performed only if the block containing the call to free
2746/// will be removed, i.e.:
2747/// 1. it has only one predecessor P, and P has two successors
2748/// 2. it contains the call, noops, and an unconditional branch
2749/// 3. its successor is the same as its predecessor's successor
2750///
2751/// The profitability is out-of concern here and this function should
2752/// be called only if the caller knows this transformation would be
2753/// profitable (e.g., for code size).
2754static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
2755 const DataLayout &DL) {
2756 Value *Op = FI.getArgOperand(0);
2757 BasicBlock *FreeInstrBB = FI.getParent();
2758 BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
2759
2760 // Validate part of constraint #1: Only one predecessor
2761 // FIXME: We can extend the number of predecessor, but in that case, we
2762 // would duplicate the call to free in each predecessor and it may
2763 // not be profitable even for code size.
2764 if (!PredBB)
2765 return nullptr;
2766
2767 // Validate constraint #2: Does this block contains only the call to
2768 // free, noops, and an unconditional branch?
2769 BasicBlock *SuccBB;
2770 Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
2771 if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
2772 return nullptr;
2773
2774 // If there are only 2 instructions in the block, at this point,
2775 // this is the call to free and unconditional.
2776 // If there are more than 2 instructions, check that they are noops
2777 // i.e., they won't hurt the performance of the generated code.
2778 if (FreeInstrBB->size() != 2) {
2779 for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
2780 if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
2781 continue;
2782 auto *Cast = dyn_cast<CastInst>(&Inst);
2783 if (!Cast || !Cast->isNoopCast(DL))
2784 return nullptr;
2785 }
2786 }
2787 // Validate the rest of constraint #1 by matching on the pred branch.
2788 Instruction *TI = PredBB->getTerminator();
2789 BasicBlock *TrueBB, *FalseBB;
2790 ICmpInst::Predicate Pred;
2791 if (!match(TI, m_Br(m_ICmp(Pred,
2792 m_CombineOr(m_Specific(Op),
2793 m_Specific(Op->stripPointerCasts())),
2794 m_Zero()),
2795 TrueBB, FalseBB)))
2796 return nullptr;
2797 if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
2798 return nullptr;
2799
2800 // Validate constraint #3: Ensure the null case just falls through.
2801 if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
2802 return nullptr;
2803 assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&(static_cast <bool> (FreeInstrBB == (Pred == ICmpInst::
ICMP_EQ ? FalseBB : TrueBB) && "Broken CFG: missing edge from predecessor to successor"
) ? void (0) : __assert_fail ("FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && \"Broken CFG: missing edge from predecessor to successor\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2804, __extension__ __PRETTY_FUNCTION__))
2804 "Broken CFG: missing edge from predecessor to successor")(static_cast <bool> (FreeInstrBB == (Pred == ICmpInst::
ICMP_EQ ? FalseBB : TrueBB) && "Broken CFG: missing edge from predecessor to successor"
) ? void (0) : __assert_fail ("FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && \"Broken CFG: missing edge from predecessor to successor\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2804, __extension__ __PRETTY_FUNCTION__))
;
2805
2806 // At this point, we know that everything in FreeInstrBB can be moved
2807 // before TI.
2808 for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
2809 if (&Instr == FreeInstrBBTerminator)
2810 break;
2811 Instr.moveBefore(TI);
2812 }
2813 assert(FreeInstrBB->size() == 1 &&(static_cast <bool> (FreeInstrBB->size() == 1 &&
"Only the branch instruction should remain") ? void (0) : __assert_fail
("FreeInstrBB->size() == 1 && \"Only the branch instruction should remain\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2814, __extension__ __PRETTY_FUNCTION__))
2814 "Only the branch instruction should remain")(static_cast <bool> (FreeInstrBB->size() == 1 &&
"Only the branch instruction should remain") ? void (0) : __assert_fail
("FreeInstrBB->size() == 1 && \"Only the branch instruction should remain\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2814, __extension__ __PRETTY_FUNCTION__))
;
2815 return &FI;
2816}
2817
2818Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
2819 Value *Op = FI.getArgOperand(0);
2820
2821 // free undef -> unreachable.
2822 if (isa<UndefValue>(Op)) {
2823 // Leave a marker since we can't modify the CFG here.
2824 CreateNonTerminatorUnreachable(&FI);
2825 return eraseInstFromFunction(FI);
2826 }
2827
2828 // If we have 'free null' delete the instruction. This can happen in stl code
2829 // when lots of inlining happens.
2830 if (isa<ConstantPointerNull>(Op))
2831 return eraseInstFromFunction(FI);
2832
2833 // If we had free(realloc(...)) with no intervening uses, then eliminate the
2834 // realloc() entirely.
2835 if (CallInst *CI = dyn_cast<CallInst>(Op)) {
2836 if (CI->hasOneUse() && isReallocLikeFn(CI, &TLI, true)) {
2837 return eraseInstFromFunction(
2838 *replaceInstUsesWith(*CI, CI->getOperand(0)));
2839 }
2840 }
2841
2842 // If we optimize for code size, try to move the call to free before the null
2843 // test so that simplify cfg can remove the empty block and dead code
2844 // elimination the branch. I.e., helps to turn something like:
2845 // if (foo) free(foo);
2846 // into
2847 // free(foo);
2848 //
2849 // Note that we can only do this for 'free' and not for any flavor of
2850 // 'operator delete'; there is no 'operator delete' symbol for which we are
2851 // permitted to invent a call, even if we're passing in a null pointer.
2852 if (MinimizeSize) {
2853 LibFunc Func;
2854 if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
2855 if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
2856 return I;
2857 }
2858
2859 return nullptr;
2860}
2861
2862static bool isMustTailCall(Value *V) {
2863 if (auto *CI = dyn_cast<CallInst>(V))
2864 return CI->isMustTailCall();
2865 return false;
2866}
2867
2868Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
2869 if (RI.getNumOperands() == 0) // ret void
2870 return nullptr;
2871
2872 Value *ResultOp = RI.getOperand(0);
2873 Type *VTy = ResultOp->getType();
2874 if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
2875 return nullptr;
2876
2877 // Don't replace result of musttail calls.
2878 if (isMustTailCall(ResultOp))
2879 return nullptr;
2880
2881 // There might be assume intrinsics dominating this return that completely
2882 // determine the value. If so, constant fold it.
2883 KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
2884 if (Known.isConstant())
2885 return replaceOperand(RI, 0,
2886 Constant::getIntegerValue(VTy, Known.getConstant()));
2887
2888 return nullptr;
2889}
2890
2891// WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
2892Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
2893 // Try to remove the previous instruction if it must lead to unreachable.
2894 // This includes instructions like stores and "llvm.assume" that may not get
2895 // removed by simple dead code elimination.
2896 while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
2897 // While we theoretically can erase EH, that would result in a block that
2898 // used to start with an EH no longer starting with EH, which is invalid.
2899 // To make it valid, we'd need to fixup predecessors to no longer refer to
2900 // this block, but that changes CFG, which is not allowed in InstCombine.
2901 if (Prev->isEHPad())
2902 return nullptr; // Can not drop any more instructions. We're done here.
2903
2904 if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
2905 return nullptr; // Can not drop any more instructions. We're done here.
2906 // Otherwise, this instruction can be freely erased,
2907 // even if it is not side-effect free.
2908
2909 // A value may still have uses before we process it here (for example, in
2910 // another unreachable block), so convert those to poison.
2911 replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
2912 eraseInstFromFunction(*Prev);
2913 }
2914 assert(I.getParent()->sizeWithoutDebug() == 1 && "The block is now empty.")(static_cast <bool> (I.getParent()->sizeWithoutDebug
() == 1 && "The block is now empty.") ? void (0) : __assert_fail
("I.getParent()->sizeWithoutDebug() == 1 && \"The block is now empty.\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2914, __extension__ __PRETTY_FUNCTION__))
;
2915 // FIXME: recurse into unconditional predecessors?
2916 return nullptr;
2917}
2918
2919Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
2920 assert(BI.isUnconditional() && "Only for unconditional branches.")(static_cast <bool> (BI.isUnconditional() && "Only for unconditional branches."
) ? void (0) : __assert_fail ("BI.isUnconditional() && \"Only for unconditional branches.\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2920, __extension__ __PRETTY_FUNCTION__))
;
2921
2922 // If this store is the second-to-last instruction in the basic block
2923 // (excluding debug info and bitcasts of pointers) and if the block ends with
2924 // an unconditional branch, try to move the store to the successor block.
2925
2926 auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
2927 auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
2928 return isa<DbgInfoIntrinsic>(BBI) ||
2929 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
2930 };
2931
2932 BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
2933 do {
2934 if (BBI != FirstInstr)
2935 --BBI;
2936 } while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
2937
2938 return dyn_cast<StoreInst>(BBI);
2939 };
2940
2941 if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
2942 if (mergeStoreIntoSuccessor(*SI))
2943 return &BI;
2944
2945 return nullptr;
2946}
2947
2948Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
2949 if (BI.isUnconditional())
2950 return visitUnconditionalBranchInst(BI);
2951
2952 // Change br (not X), label True, label False to: br X, label False, True
2953 Value *X = nullptr;
2954 if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
2955 !isa<Constant>(X)) {
2956 // Swap Destinations and condition...
2957 BI.swapSuccessors();
2958 return replaceOperand(BI, 0, X);
2959 }
2960
2961 // If the condition is irrelevant, remove the use so that other
2962 // transforms on the condition become more effective.
2963 if (!isa<ConstantInt>(BI.getCondition()) &&
2964 BI.getSuccessor(0) == BI.getSuccessor(1))
2965 return replaceOperand(
2966 BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
2967
2968 // Canonicalize, for example, fcmp_one -> fcmp_oeq.
2969 CmpInst::Predicate Pred;
2970 if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
2971 m_BasicBlock(), m_BasicBlock())) &&
2972 !isCanonicalPredicate(Pred)) {
2973 // Swap destinations and condition.
2974 CmpInst *Cond = cast<CmpInst>(BI.getCondition());
2975 Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2976 BI.swapSuccessors();
2977 Worklist.push(Cond);
2978 return &BI;
2979 }
2980
2981 return nullptr;
2982}
2983
2984Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
2985 Value *Cond = SI.getCondition();
2986 Value *Op0;
2987 ConstantInt *AddRHS;
2988 if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
2989 // Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
2990 for (auto Case : SI.cases()) {
2991 Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
2992 assert(isa<ConstantInt>(NewCase) &&(static_cast <bool> (isa<ConstantInt>(NewCase) &&
"Result of expression should be constant") ? void (0) : __assert_fail
("isa<ConstantInt>(NewCase) && \"Result of expression should be constant\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2993, __extension__ __PRETTY_FUNCTION__))
2993 "Result of expression should be constant")(static_cast <bool> (isa<ConstantInt>(NewCase) &&
"Result of expression should be constant") ? void (0) : __assert_fail
("isa<ConstantInt>(NewCase) && \"Result of expression should be constant\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 2993, __extension__ __PRETTY_FUNCTION__))
;
2994 Case.setValue(cast<ConstantInt>(NewCase));
2995 }
2996 return replaceOperand(SI, 0, Op0);
2997 }
2998
2999 KnownBits Known = computeKnownBits(Cond, 0, &SI);
3000 unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
3001 unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
3002
3003 // Compute the number of leading bits we can ignore.
3004 // TODO: A better way to determine this would use ComputeNumSignBits().
3005 for (auto &C : SI.cases()) {
3006 LeadingKnownZeros = std::min(
3007 LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
3008 LeadingKnownOnes = std::min(
3009 LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
3010 }
3011
3012 unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
3013
3014 // Shrink the condition operand if the new type is smaller than the old type.
3015 // But do not shrink to a non-standard type, because backend can't generate
3016 // good code for that yet.
3017 // TODO: We can make it aggressive again after fixing PR39569.
3018 if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
3019 shouldChangeType(Known.getBitWidth(), NewWidth)) {
3020 IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
3021 Builder.SetInsertPoint(&SI);
3022 Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
3023
3024 for (auto Case : SI.cases()) {
3025 APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
3026 Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
3027 }
3028 return replaceOperand(SI, 0, NewCond);
3029 }
3030
3031 return nullptr;
3032}
3033
3034Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
3035 Value *Agg = EV.getAggregateOperand();
3036
3037 if (!EV.hasIndices())
3038 return replaceInstUsesWith(EV, Agg);
3039
3040 if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
3041 SQ.getWithInstruction(&EV)))
3042 return replaceInstUsesWith(EV, V);
3043
3044 if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
3045 // We're extracting from an insertvalue instruction, compare the indices
3046 const unsigned *exti, *exte, *insi, *inse;
3047 for (exti = EV.idx_begin(), insi = IV->idx_begin(),
3048 exte = EV.idx_end(), inse = IV->idx_end();
3049 exti != exte && insi != inse;
3050 ++exti, ++insi) {
3051 if (*insi != *exti)
3052 // The insert and extract both reference distinctly different elements.
3053 // This means the extract is not influenced by the insert, and we can
3054 // replace the aggregate operand of the extract with the aggregate
3055 // operand of the insert. i.e., replace
3056 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3057 // %E = extractvalue { i32, { i32 } } %I, 0
3058 // with
3059 // %E = extractvalue { i32, { i32 } } %A, 0
3060 return ExtractValueInst::Create(IV->getAggregateOperand(),
3061 EV.getIndices());
3062 }
3063 if (exti == exte && insi == inse)
3064 // Both iterators are at the end: Index lists are identical. Replace
3065 // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3066 // %C = extractvalue { i32, { i32 } } %B, 1, 0
3067 // with "i32 42"
3068 return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
3069 if (exti == exte) {
3070 // The extract list is a prefix of the insert list. i.e. replace
3071 // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
3072 // %E = extractvalue { i32, { i32 } } %I, 1
3073 // with
3074 // %X = extractvalue { i32, { i32 } } %A, 1
3075 // %E = insertvalue { i32 } %X, i32 42, 0
3076 // by switching the order of the insert and extract (though the
3077 // insertvalue should be left in, since it may have other uses).
3078 Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
3079 EV.getIndices());
3080 return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
3081 makeArrayRef(insi, inse));
3082 }
3083 if (insi == inse)
3084 // The insert list is a prefix of the extract list
3085 // We can simply remove the common indices from the extract and make it
3086 // operate on the inserted value instead of the insertvalue result.
3087 // i.e., replace
3088 // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
3089 // %E = extractvalue { i32, { i32 } } %I, 1, 0
3090 // with
3091 // %E extractvalue { i32 } { i32 42 }, 0
3092 return ExtractValueInst::Create(IV->getInsertedValueOperand(),
3093 makeArrayRef(exti, exte));
3094 }
3095 if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
3096 // We're extracting from an overflow intrinsic, see if we're the only user,
3097 // which allows us to simplify multiple result intrinsics to simpler
3098 // things that just get one value.
3099 if (WO->hasOneUse()) {
3100 // Check if we're grabbing only the result of a 'with overflow' intrinsic
3101 // and replace it with a traditional binary instruction.
3102 if (*EV.idx_begin() == 0) {
3103 Instruction::BinaryOps BinOp = WO->getBinaryOp();
3104 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
3105 // Replace the old instruction's uses with poison.
3106 replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
3107 eraseInstFromFunction(*WO);
3108 return BinaryOperator::Create(BinOp, LHS, RHS);
3109 }
3110
3111 assert(*EV.idx_begin() == 1 &&(static_cast <bool> (*EV.idx_begin() == 1 && "unexpected extract index for overflow inst"
) ? void (0) : __assert_fail ("*EV.idx_begin() == 1 && \"unexpected extract index for overflow inst\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3112, __extension__ __PRETTY_FUNCTION__))
3112 "unexpected extract index for overflow inst")(static_cast <bool> (*EV.idx_begin() == 1 && "unexpected extract index for overflow inst"
) ? void (0) : __assert_fail ("*EV.idx_begin() == 1 && \"unexpected extract index for overflow inst\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3112, __extension__ __PRETTY_FUNCTION__))
;
3113
3114 // If only the overflow result is used, and the right hand side is a
3115 // constant (or constant splat), we can remove the intrinsic by directly
3116 // checking for overflow.
3117 const APInt *C;
3118 if (match(WO->getRHS(), m_APInt(C))) {
3119 // Compute the no-wrap range [X,Y) for LHS given RHS=C, then
3120 // check for the inverted range using range offset trick (i.e.
3121 // use a subtract to shift the range to bottom of either the
3122 // signed or unsigned domain and then use a single compare to
3123 // check range membership).
3124 ConstantRange NWR =
3125 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
3126 WO->getNoWrapKind());
3127 APInt Min = WO->isSigned() ? NWR.getSignedMin() : NWR.getUnsignedMin();
3128 NWR = NWR.subtract(Min);
3129
3130 CmpInst::Predicate Pred;
3131 APInt NewRHSC;
3132 if (NWR.getEquivalentICmp(Pred, NewRHSC)) {
3133 auto *OpTy = WO->getRHS()->getType();
3134 auto *NewLHS = Builder.CreateSub(WO->getLHS(),
3135 ConstantInt::get(OpTy, Min));
3136 return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
3137 ConstantInt::get(OpTy, NewRHSC));
3138 }
3139 }
3140 }
3141 }
3142 if (LoadInst *L = dyn_cast<LoadInst>(Agg))
3143 // If the (non-volatile) load only has one use, we can rewrite this to a
3144 // load from a GEP. This reduces the size of the load. If a load is used
3145 // only by extractvalue instructions then this either must have been
3146 // optimized before, or it is a struct with padding, in which case we
3147 // don't want to do the transformation as it loses padding knowledge.
3148 if (L->isSimple() && L->hasOneUse()) {
3149 // extractvalue has integer indices, getelementptr has Value*s. Convert.
3150 SmallVector<Value*, 4> Indices;
3151 // Prefix an i32 0 since we need the first element.
3152 Indices.push_back(Builder.getInt32(0));
3153 for (unsigned Idx : EV.indices())
3154 Indices.push_back(Builder.getInt32(Idx));
3155
3156 // We need to insert these at the location of the old load, not at that of
3157 // the extractvalue.
3158 Builder.SetInsertPoint(L);
3159 Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
3160 L->getPointerOperand(), Indices);
3161 Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
3162 // Whatever aliasing information we had for the orignal load must also
3163 // hold for the smaller load, so propagate the annotations.
3164 NL->setAAMetadata(L->getAAMetadata());
3165 // Returning the load directly will cause the main loop to insert it in
3166 // the wrong spot, so use replaceInstUsesWith().
3167 return replaceInstUsesWith(EV, NL);
3168 }
3169 // We could simplify extracts from other values. Note that nested extracts may
3170 // already be simplified implicitly by the above: extract (extract (insert) )
3171 // will be translated into extract ( insert ( extract ) ) first and then just
3172 // the value inserted, if appropriate. Similarly for extracts from single-use
3173 // loads: extract (extract (load)) will be translated to extract (load (gep))
3174 // and if again single-use then via load (gep (gep)) to load (gep).
3175 // However, double extracts from e.g. function arguments or return values
3176 // aren't handled yet.
3177 return nullptr;
3178}
3179
3180/// Return 'true' if the given typeinfo will match anything.
3181static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
3182 switch (Personality) {
3183 case EHPersonality::GNU_C:
3184 case EHPersonality::GNU_C_SjLj:
3185 case EHPersonality::Rust:
3186 // The GCC C EH and Rust personality only exists to support cleanups, so
3187 // it's not clear what the semantics of catch clauses are.
3188 return false;
3189 case EHPersonality::Unknown:
3190 return false;
3191 case EHPersonality::GNU_Ada:
3192 // While __gnat_all_others_value will match any Ada exception, it doesn't
3193 // match foreign exceptions (or didn't, before gcc-4.7).
3194 return false;
3195 case EHPersonality::GNU_CXX:
3196 case EHPersonality::GNU_CXX_SjLj:
3197 case EHPersonality::GNU_ObjC:
3198 case EHPersonality::MSVC_X86SEH:
3199 case EHPersonality::MSVC_TableSEH:
3200 case EHPersonality::MSVC_CXX:
3201 case EHPersonality::CoreCLR:
3202 case EHPersonality::Wasm_CXX:
3203 case EHPersonality::XL_CXX:
3204 return TypeInfo->isNullValue();
3205 }
3206 llvm_unreachable("invalid enum")::llvm::llvm_unreachable_internal("invalid enum", "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3206)
;
3207}
3208
3209static bool shorter_filter(const Value *LHS, const Value *RHS) {
3210 return
3211 cast<ArrayType>(LHS->getType())->getNumElements()
3212 <
3213 cast<ArrayType>(RHS->getType())->getNumElements();
3214}
3215
3216Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
3217 // The logic here should be correct for any real-world personality function.
3218 // However if that turns out not to be true, the offending logic can always
3219 // be conditioned on the personality function, like the catch-all logic is.
3220 EHPersonality Personality =
3221 classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
3222
3223 // Simplify the list of clauses, eg by removing repeated catch clauses
3224 // (these are often created by inlining).
3225 bool MakeNewInstruction = false; // If true, recreate using the following:
3226 SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
3227 bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
3228
3229 SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
3230 for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
3231 bool isLastClause = i + 1 == e;
3232 if (LI.isCatch(i)) {
3233 // A catch clause.
3234 Constant *CatchClause = LI.getClause(i);
3235 Constant *TypeInfo = CatchClause->stripPointerCasts();
3236
3237 // If we already saw this clause, there is no point in having a second
3238 // copy of it.
3239 if (AlreadyCaught.insert(TypeInfo).second) {
3240 // This catch clause was not already seen.
3241 NewClauses.push_back(CatchClause);
3242 } else {
3243 // Repeated catch clause - drop the redundant copy.
3244 MakeNewInstruction = true;
3245 }
3246
3247 // If this is a catch-all then there is no point in keeping any following
3248 // clauses or marking the landingpad as having a cleanup.
3249 if (isCatchAll(Personality, TypeInfo)) {
3250 if (!isLastClause)
3251 MakeNewInstruction = true;
3252 CleanupFlag = false;
3253 break;
3254 }
3255 } else {
3256 // A filter clause. If any of the filter elements were already caught
3257 // then they can be dropped from the filter. It is tempting to try to
3258 // exploit the filter further by saying that any typeinfo that does not
3259 // occur in the filter can't be caught later (and thus can be dropped).
3260 // However this would be wrong, since typeinfos can match without being
3261 // equal (for example if one represents a C++ class, and the other some
3262 // class derived from it).
3263 assert(LI.isFilter(i) && "Unsupported landingpad clause!")(static_cast <bool> (LI.isFilter(i) && "Unsupported landingpad clause!"
) ? void (0) : __assert_fail ("LI.isFilter(i) && \"Unsupported landingpad clause!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3263, __extension__ __PRETTY_FUNCTION__))
;
3264 Constant *FilterClause = LI.getClause(i);
3265 ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
3266 unsigned NumTypeInfos = FilterType->getNumElements();
3267
3268 // An empty filter catches everything, so there is no point in keeping any
3269 // following clauses or marking the landingpad as having a cleanup. By
3270 // dealing with this case here the following code is made a bit simpler.
3271 if (!NumTypeInfos) {
3272 NewClauses.push_back(FilterClause);
3273 if (!isLastClause)
3274 MakeNewInstruction = true;
3275 CleanupFlag = false;
3276 break;
3277 }
3278
3279 bool MakeNewFilter = false; // If true, make a new filter.
3280 SmallVector<Constant *, 16> NewFilterElts; // New elements.
3281 if (isa<ConstantAggregateZero>(FilterClause)) {
3282 // Not an empty filter - it contains at least one null typeinfo.
3283 assert(NumTypeInfos > 0 && "Should have handled empty filter already!")(static_cast <bool> (NumTypeInfos > 0 && "Should have handled empty filter already!"
) ? void (0) : __assert_fail ("NumTypeInfos > 0 && \"Should have handled empty filter already!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3283, __extension__ __PRETTY_FUNCTION__))
;
3284 Constant *TypeInfo =
3285 Constant::getNullValue(FilterType->getElementType());
3286 // If this typeinfo is a catch-all then the filter can never match.
3287 if (isCatchAll(Personality, TypeInfo)) {
3288 // Throw the filter away.
3289 MakeNewInstruction = true;
3290 continue;
3291 }
3292
3293 // There is no point in having multiple copies of this typeinfo, so
3294 // discard all but the first copy if there is more than one.
3295 NewFilterElts.push_back(TypeInfo);
3296 if (NumTypeInfos > 1)
3297 MakeNewFilter = true;
3298 } else {
3299 ConstantArray *Filter = cast<ConstantArray>(FilterClause);
3300 SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
3301 NewFilterElts.reserve(NumTypeInfos);
3302
3303 // Remove any filter elements that were already caught or that already
3304 // occurred in the filter. While there, see if any of the elements are
3305 // catch-alls. If so, the filter can be discarded.
3306 bool SawCatchAll = false;
3307 for (unsigned j = 0; j != NumTypeInfos; ++j) {
3308 Constant *Elt = Filter->getOperand(j);
3309 Constant *TypeInfo = Elt->stripPointerCasts();
3310 if (isCatchAll(Personality, TypeInfo)) {
3311 // This element is a catch-all. Bail out, noting this fact.
3312 SawCatchAll = true;
3313 break;
3314 }
3315
3316 // Even if we've seen a type in a catch clause, we don't want to
3317 // remove it from the filter. An unexpected type handler may be
3318 // set up for a call site which throws an exception of the same
3319 // type caught. In order for the exception thrown by the unexpected
3320 // handler to propagate correctly, the filter must be correctly
3321 // described for the call site.
3322 //
3323 // Example:
3324 //
3325 // void unexpected() { throw 1;}
3326 // void foo() throw (int) {
3327 // std::set_unexpected(unexpected);
3328 // try {
3329 // throw 2.0;
3330 // } catch (int i) {}
3331 // }
3332
3333 // There is no point in having multiple copies of the same typeinfo in
3334 // a filter, so only add it if we didn't already.
3335 if (SeenInFilter.insert(TypeInfo).second)
3336 NewFilterElts.push_back(cast<Constant>(Elt));
3337 }
3338 // A filter containing a catch-all cannot match anything by definition.
3339 if (SawCatchAll) {
3340 // Throw the filter away.
3341 MakeNewInstruction = true;
3342 continue;
3343 }
3344
3345 // If we dropped something from the filter, make a new one.
3346 if (NewFilterElts.size() < NumTypeInfos)
3347 MakeNewFilter = true;
3348 }
3349 if (MakeNewFilter) {
3350 FilterType = ArrayType::get(FilterType->getElementType(),
3351 NewFilterElts.size());
3352 FilterClause = ConstantArray::get(FilterType, NewFilterElts);
3353 MakeNewInstruction = true;
3354 }
3355
3356 NewClauses.push_back(FilterClause);
3357
3358 // If the new filter is empty then it will catch everything so there is
3359 // no point in keeping any following clauses or marking the landingpad
3360 // as having a cleanup. The case of the original filter being empty was
3361 // already handled above.
3362 if (MakeNewFilter && !NewFilterElts.size()) {
3363 assert(MakeNewInstruction && "New filter but not a new instruction!")(static_cast <bool> (MakeNewInstruction && "New filter but not a new instruction!"
) ? void (0) : __assert_fail ("MakeNewInstruction && \"New filter but not a new instruction!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3363, __extension__ __PRETTY_FUNCTION__))
;
3364 CleanupFlag = false;
3365 break;
3366 }
3367 }
3368 }
3369
3370 // If several filters occur in a row then reorder them so that the shortest
3371 // filters come first (those with the smallest number of elements). This is
3372 // advantageous because shorter filters are more likely to match, speeding up
3373 // unwinding, but mostly because it increases the effectiveness of the other
3374 // filter optimizations below.
3375 for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
3376 unsigned j;
3377 // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
3378 for (j = i; j != e; ++j)
3379 if (!isa<ArrayType>(NewClauses[j]->getType()))
3380 break;
3381
3382 // Check whether the filters are already sorted by length. We need to know
3383 // if sorting them is actually going to do anything so that we only make a
3384 // new landingpad instruction if it does.
3385 for (unsigned k = i; k + 1 < j; ++k)
3386 if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
3387 // Not sorted, so sort the filters now. Doing an unstable sort would be
3388 // correct too but reordering filters pointlessly might confuse users.
3389 std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
3390 shorter_filter);
3391 MakeNewInstruction = true;
3392 break;
3393 }
3394
3395 // Look for the next batch of filters.
3396 i = j + 1;
3397 }
3398
3399 // If typeinfos matched if and only if equal, then the elements of a filter L
3400 // that occurs later than a filter F could be replaced by the intersection of
3401 // the elements of F and L. In reality two typeinfos can match without being
3402 // equal (for example if one represents a C++ class, and the other some class
3403 // derived from it) so it would be wrong to perform this transform in general.
3404 // However the transform is correct and useful if F is a subset of L. In that
3405 // case L can be replaced by F, and thus removed altogether since repeating a
3406 // filter is pointless. So here we look at all pairs of filters F and L where
3407 // L follows F in the list of clauses, and remove L if every element of F is
3408 // an element of L. This can occur when inlining C++ functions with exception
3409 // specifications.
3410 for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
3411 // Examine each filter in turn.
3412 Value *Filter = NewClauses[i];
3413 ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
3414 if (!FTy)
3415 // Not a filter - skip it.
3416 continue;
3417 unsigned FElts = FTy->getNumElements();
3418 // Examine each filter following this one. Doing this backwards means that
3419 // we don't have to worry about filters disappearing under us when removed.
3420 for (unsigned j = NewClauses.size() - 1; j != i; --j) {
3421 Value *LFilter = NewClauses[j];
3422 ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
3423 if (!LTy)
3424 // Not a filter - skip it.
3425 continue;
3426 // If Filter is a subset of LFilter, i.e. every element of Filter is also
3427 // an element of LFilter, then discard LFilter.
3428 SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
3429 // If Filter is empty then it is a subset of LFilter.
3430 if (!FElts) {
3431 // Discard LFilter.
3432 NewClauses.erase(J);
3433 MakeNewInstruction = true;
3434 // Move on to the next filter.
3435 continue;
3436 }
3437 unsigned LElts = LTy->getNumElements();
3438 // If Filter is longer than LFilter then it cannot be a subset of it.
3439 if (FElts > LElts)
3440 // Move on to the next filter.
3441 continue;
3442 // At this point we know that LFilter has at least one element.
3443 if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
3444 // Filter is a subset of LFilter iff Filter contains only zeros (as we
3445 // already know that Filter is not longer than LFilter).
3446 if (isa<ConstantAggregateZero>(Filter)) {
3447 assert(FElts <= LElts && "Should have handled this case earlier!")(static_cast <bool> (FElts <= LElts && "Should have handled this case earlier!"
) ? void (0) : __assert_fail ("FElts <= LElts && \"Should have handled this case earlier!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3447, __extension__ __PRETTY_FUNCTION__))
;
3448 // Discard LFilter.
3449 NewClauses.erase(J);
3450 MakeNewInstruction = true;
3451 }
3452 // Move on to the next filter.
3453 continue;
3454 }
3455 ConstantArray *LArray = cast<ConstantArray>(LFilter);
3456 if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
3457 // Since Filter is non-empty and contains only zeros, it is a subset of
3458 // LFilter iff LFilter contains a zero.
3459 assert(FElts > 0 && "Should have eliminated the empty filter earlier!")(static_cast <bool> (FElts > 0 && "Should have eliminated the empty filter earlier!"
) ? void (0) : __assert_fail ("FElts > 0 && \"Should have eliminated the empty filter earlier!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3459, __extension__ __PRETTY_FUNCTION__))
;
3460 for (unsigned l = 0; l != LElts; ++l)
3461 if (LArray->getOperand(l)->isNullValue()) {
3462 // LFilter contains a zero - discard it.
3463 NewClauses.erase(J);
3464 MakeNewInstruction = true;
3465 break;
3466 }
3467 // Move on to the next filter.
3468 continue;
3469 }
3470 // At this point we know that both filters are ConstantArrays. Loop over
3471 // operands to see whether every element of Filter is also an element of
3472 // LFilter. Since filters tend to be short this is probably faster than
3473 // using a method that scales nicely.
3474 ConstantArray *FArray = cast<ConstantArray>(Filter);
3475 bool AllFound = true;
3476 for (unsigned f = 0; f != FElts; ++f) {
3477 Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
3478 AllFound = false;
3479 for (unsigned l = 0; l != LElts; ++l) {
3480 Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
3481 if (LTypeInfo == FTypeInfo) {
3482 AllFound = true;
3483 break;
3484 }
3485 }
3486 if (!AllFound)
3487 break;
3488 }
3489 if (AllFound) {
3490 // Discard LFilter.
3491 NewClauses.erase(J);
3492 MakeNewInstruction = true;
3493 }
3494 // Move on to the next filter.
3495 }
3496 }
3497
3498 // If we changed any of the clauses, replace the old landingpad instruction
3499 // with a new one.
3500 if (MakeNewInstruction) {
3501 LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
3502 NewClauses.size());
3503 for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
3504 NLI->addClause(NewClauses[i]);
3505 // A landing pad with no clauses must have the cleanup flag set. It is
3506 // theoretically possible, though highly unlikely, that we eliminated all
3507 // clauses. If so, force the cleanup flag to true.
3508 if (NewClauses.empty())
3509 CleanupFlag = true;
3510 NLI->setCleanup(CleanupFlag);
3511 return NLI;
3512 }
3513
3514 // Even if none of the clauses changed, we may nonetheless have understood
3515 // that the cleanup flag is pointless. Clear it if so.
3516 if (LI.isCleanup() != CleanupFlag) {
3517 assert(!CleanupFlag && "Adding a cleanup, not removing one?!")(static_cast <bool> (!CleanupFlag && "Adding a cleanup, not removing one?!"
) ? void (0) : __assert_fail ("!CleanupFlag && \"Adding a cleanup, not removing one?!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3517, __extension__ __PRETTY_FUNCTION__))
;
3518 LI.setCleanup(CleanupFlag);
3519 return &LI;
3520 }
3521
3522 return nullptr;
3523}
3524
3525Value *
3526InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
3527 // Try to push freeze through instructions that propagate but don't produce
3528 // poison as far as possible. If an operand of freeze follows three
3529 // conditions 1) one-use, 2) does not produce poison, and 3) has all but one
3530 // guaranteed-non-poison operands then push the freeze through to the one
3531 // operand that is not guaranteed non-poison. The actual transform is as
3532 // follows.
3533 // Op1 = ... ; Op1 can be posion
3534 // Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
3535 // ; single guaranteed-non-poison operands
3536 // ... = Freeze(Op0)
3537 // =>
3538 // Op1 = ...
3539 // Op1.fr = Freeze(Op1)
3540 // ... = Inst(Op1.fr, NonPoisonOps...)
3541 auto *OrigOp = OrigFI.getOperand(0);
3542 auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
3543
3544 // While we could change the other users of OrigOp to use freeze(OrigOp), that
3545 // potentially reduces their optimization potential, so let's only do this iff
3546 // the OrigOp is only used by the freeze.
3547 if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp) ||
6
Assuming 'OrigOpInst' is null
3548 canCreateUndefOrPoison(dyn_cast<Operator>(OrigOp)))
3549 return nullptr;
7
Returning null pointer, which participates in a condition later
3550
3551 // If operand is guaranteed not to be poison, there is no need to add freeze
3552 // to the operand. So we first find the operand that is not guaranteed to be
3553 // poison.
3554 Use *MaybePoisonOperand = nullptr;
3555 for (Use &U : OrigOpInst->operands()) {
3556 if (isGuaranteedNotToBeUndefOrPoison(U.get()))
3557 continue;
3558 if (!MaybePoisonOperand)
3559 MaybePoisonOperand = &U;
3560 else
3561 return nullptr;
3562 }
3563
3564 // If all operands are guaranteed to be non-poison, we can drop freeze.
3565 if (!MaybePoisonOperand)
3566 return OrigOp;
3567
3568 auto *FrozenMaybePoisonOperand = new FreezeInst(
3569 MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
3570
3571 replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
3572 FrozenMaybePoisonOperand->insertBefore(OrigOpInst);
3573 return OrigOp;
3574}
3575
3576bool InstCombinerImpl::freezeDominatedUses(FreezeInst &FI) {
3577 Value *Op = FI.getOperand(0);
3578
3579 if (isa<Constant>(Op))
3580 return false;
3581
3582 bool Changed = false;
3583 Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
3584 bool Dominates = DT.dominates(&FI, U);
3585 Changed |= Dominates;
3586 return Dominates;
3587 });
3588
3589 return Changed;
3590}
3591
3592Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
3593 Value *Op0 = I.getOperand(0);
3594
3595 if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
1
Assuming 'V' is null
2
Taking false branch
3596 return replaceInstUsesWith(I, V);
3597
3598 // freeze (phi const, x) --> phi const, (freeze x)
3599 if (auto *PN = dyn_cast<PHINode>(Op0)) {
3
Assuming 'PN' is null
4
Taking false branch
3600 if (Instruction *NV = foldOpIntoPhi(I, PN))
3601 return NV;
3602 }
3603
3604 if (Value *NI
8.1
'NI' is null
8.1
'NI' is null
8.1
'NI' is null
= pushFreezeToPreventPoisonFromPropagating(I))
5
Calling 'InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating'
8
Returning from 'InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating'
9
Taking false branch
3605 return replaceInstUsesWith(I, NI);
3606
3607 if (match(Op0, m_Undef())) {
10
Assuming the condition is true
11
Taking true branch
3608 // If I is freeze(undef), see its uses and fold it to the best constant.
3609 // - or: pick -1
3610 // - select's condition: pick the value that leads to choosing a constant
3611 // - other ops: pick 0
3612 Constant *BestValue = nullptr;
12
'BestValue' initialized to a null pointer value
3613 Constant *NullValue = Constant::getNullValue(I.getType());
3614 for (const auto *U : I.users()) {
3615 Constant *C = NullValue;
3616
3617 if (match(U, m_Or(m_Value(), m_Value())))
3618 C = Constant::getAllOnesValue(I.getType());
3619 else if (const auto *SI = dyn_cast<SelectInst>(U)) {
3620 if (SI->getCondition() == &I) {
3621 APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
3622 C = Constant::getIntegerValue(I.getType(), CondVal);
3623 }
3624 }
3625
3626 if (!BestValue)
3627 BestValue = C;
3628 else if (BestValue != C)
3629 BestValue = NullValue;
3630 }
3631
3632 return replaceInstUsesWith(I, BestValue);
13
Passing null pointer value via 2nd parameter 'V'
14
Calling 'InstCombinerImpl::replaceInstUsesWith'
3633 }
3634
3635 // Replace all dominated uses of Op to freeze(Op).
3636 if (freezeDominatedUses(I))
3637 return &I;
3638
3639 return nullptr;
3640}
3641
3642/// Try to move the specified instruction from its current block into the
3643/// beginning of DestBlock, which can only happen if it's safe to move the
3644/// instruction past all of the instructions between it and the end of its
3645/// block.
3646static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
3647 assert(I->getUniqueUndroppableUser() && "Invariants didn't hold!")(static_cast <bool> (I->getUniqueUndroppableUser() &&
"Invariants didn't hold!") ? void (0) : __assert_fail ("I->getUniqueUndroppableUser() && \"Invariants didn't hold!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3647, __extension__ __PRETTY_FUNCTION__))
;
3648 BasicBlock *SrcBlock = I->getParent();
3649
3650 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
3651 if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
3652 I->isTerminator())
3653 return false;
3654
3655 // Do not sink static or dynamic alloca instructions. Static allocas must
3656 // remain in the entry block, and dynamic allocas must not be sunk in between
3657 // a stacksave / stackrestore pair, which would incorrectly shorten its
3658 // lifetime.
3659 if (isa<AllocaInst>(I))
3660 return false;
3661
3662 // Do not sink into catchswitch blocks.
3663 if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
3664 return false;
3665
3666 // Do not sink convergent call instructions.
3667 if (auto *CI = dyn_cast<CallInst>(I)) {
3668 if (CI->isConvergent())
3669 return false;
3670 }
3671 // We can only sink load instructions if there is nothing between the load and
3672 // the end of block that could change the value.
3673 if (I->mayReadFromMemory()) {
3674 // We don't want to do any sophisticated alias analysis, so we only check
3675 // the instructions after I in I's parent block if we try to sink to its
3676 // successor block.
3677 if (DestBlock->getUniquePredecessor() != I->getParent())
3678 return false;
3679 for (BasicBlock::iterator Scan = I->getIterator(),
3680 E = I->getParent()->end();
3681 Scan != E; ++Scan)
3682 if (Scan->mayWriteToMemory())
3683 return false;
3684 }
3685
3686 I->dropDroppableUses([DestBlock](const Use *U) {
3687 if (auto *I = dyn_cast<Instruction>(U->getUser()))
3688 return I->getParent() != DestBlock;
3689 return true;
3690 });
3691 /// FIXME: We could remove droppable uses that are not dominated by
3692 /// the new position.
3693
3694 BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
3695 I->moveBefore(&*InsertPos);
3696 ++NumSunkInst;
3697
3698 // Also sink all related debug uses from the source basic block. Otherwise we
3699 // get debug use before the def. Attempt to salvage debug uses first, to
3700 // maximise the range variables have location for. If we cannot salvage, then
3701 // mark the location undef: we know it was supposed to receive a new location
3702 // here, but that computation has been sunk.
3703 SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
3704 findDbgUsers(DbgUsers, I);
3705 // Process the sinking DbgUsers in reverse order, as we only want to clone the
3706 // last appearing debug intrinsic for each given variable.
3707 SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
3708 for (DbgVariableIntrinsic *DVI : DbgUsers)
3709 if (DVI->getParent() == SrcBlock)
3710 DbgUsersToSink.push_back(DVI);
3711 llvm::sort(DbgUsersToSink,
3712 [](auto *A, auto *B) { return B->comesBefore(A); });
3713
3714 SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
3715 SmallSet<DebugVariable, 4> SunkVariables;
3716 for (auto User : DbgUsersToSink) {
3717 // A dbg.declare instruction should not be cloned, since there can only be
3718 // one per variable fragment. It should be left in the original place
3719 // because the sunk instruction is not an alloca (otherwise we could not be
3720 // here).
3721 if (isa<DbgDeclareInst>(User))
3722 continue;
3723
3724 DebugVariable DbgUserVariable =
3725 DebugVariable(User->getVariable(), User->getExpression(),
3726 User->getDebugLoc()->getInlinedAt());
3727
3728 if (!SunkVariables.insert(DbgUserVariable).second)
3729 continue;
3730
3731 DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
3732 if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
3733 DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
3734 LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "CLONE: " << *DIIClones
.back() << '\n'; } } while (false)
;
3735 }
3736
3737 // Perform salvaging without the clones, then sink the clones.
3738 if (!DIIClones.empty()) {
3739 salvageDebugInfoForDbgValues(*I, DbgUsers);
3740 // The clones are in reverse order of original appearance, reverse again to
3741 // maintain the original order.
3742 for (auto &DIIClone : llvm::reverse(DIIClones)) {
3743 DIIClone->insertBefore(&*InsertPos);
3744 LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "SINK: " << *DIIClone
<< '\n'; } } while (false)
;
3745 }
3746 }
3747
3748 return true;
3749}
3750
3751bool InstCombinerImpl::run() {
3752 while (!Worklist.isEmpty()) {
3753 // Walk deferred instructions in reverse order, and push them to the
3754 // worklist, which means they'll end up popped from the worklist in-order.
3755 while (Instruction *I = Worklist.popDeferred()) {
3756 // Check to see if we can DCE the instruction. We do this already here to
3757 // reduce the number of uses and thus allow other folds to trigger.
3758 // Note that eraseInstFromFunction() may push additional instructions on
3759 // the deferred worklist, so this will DCE whole instruction chains.
3760 if (isInstructionTriviallyDead(I, &TLI)) {
3761 eraseInstFromFunction(*I);
3762 ++NumDeadInst;
3763 continue;
3764 }
3765
3766 Worklist.push(I);
3767 }
3768
3769 Instruction *I = Worklist.removeOne();
3770 if (I == nullptr) continue; // skip null values.
3771
3772 // Check to see if we can DCE the instruction.
3773 if (isInstructionTriviallyDead(I, &TLI)) {
3774 eraseInstFromFunction(*I);
3775 ++NumDeadInst;
3776 continue;
3777 }
3778
3779 if (!DebugCounter::shouldExecute(VisitCounter))
3780 continue;
3781
3782 // Instruction isn't dead, see if we can constant propagate it.
3783 if (!I->use_empty() &&
3784 (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
3785 if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
3786 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: ConstFold to: " <<
*C << " from: " << *I << '\n'; } } while (
false)
3787 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: ConstFold to: " <<
*C << " from: " << *I << '\n'; } } while (
false)
;
3788
3789 // Add operands to the worklist.
3790 replaceInstUsesWith(*I, C);
3791 ++NumConstProp;
3792 if (isInstructionTriviallyDead(I, &TLI))
3793 eraseInstFromFunction(*I);
3794 MadeIRChange = true;
3795 continue;
3796 }
3797 }
3798
3799 // See if we can trivially sink this instruction to its user if we can
3800 // prove that the successor is not executed more frequently than our block.
3801 // Return the UserBlock if successful.
3802 auto getOptionalSinkBlockForInst =
3803 [this](Instruction *I) -> Optional<BasicBlock *> {
3804 if (!EnableCodeSinking)
3805 return None;
3806 auto *UserInst = cast_or_null<Instruction>(I->getUniqueUndroppableUser());
3807 if (!UserInst)
3808 return None;
3809
3810 BasicBlock *BB = I->getParent();
3811 BasicBlock *UserParent = nullptr;
3812
3813 // Special handling for Phi nodes - get the block the use occurs in.
3814 if (PHINode *PN = dyn_cast<PHINode>(UserInst)) {
3815 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
3816 if (PN->getIncomingValue(i) == I) {
3817 // Bail out if we have uses in different blocks. We don't do any
3818 // sophisticated analysis (i.e finding NearestCommonDominator of these
3819 // use blocks).
3820 if (UserParent && UserParent != PN->getIncomingBlock(i))
3821 return None;
3822 UserParent = PN->getIncomingBlock(i);
3823 }
3824 }
3825 assert(UserParent && "expected to find user block!")(static_cast <bool> (UserParent && "expected to find user block!"
) ? void (0) : __assert_fail ("UserParent && \"expected to find user block!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3825, __extension__ __PRETTY_FUNCTION__))
;
3826 } else
3827 UserParent = UserInst->getParent();
3828
3829 // Try sinking to another block. If that block is unreachable, then do
3830 // not bother. SimplifyCFG should handle it.
3831 if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
3832 return None;
3833
3834 auto *Term = UserParent->getTerminator();
3835 // See if the user is one of our successors that has only one
3836 // predecessor, so that we don't have to split the critical edge.
3837 // Another option where we can sink is a block that ends with a
3838 // terminator that does not pass control to other block (such as
3839 // return or unreachable). In this case:
3840 // - I dominates the User (by SSA form);
3841 // - the User will be executed at most once.
3842 // So sinking I down to User is always profitable or neutral.
3843 if (UserParent->getUniquePredecessor() == BB ||
3844 (isa<ReturnInst>(Term) || isa<UnreachableInst>(Term))) {
3845 assert(DT.dominates(BB, UserParent) && "Dominance relation broken?")(static_cast <bool> (DT.dominates(BB, UserParent) &&
"Dominance relation broken?") ? void (0) : __assert_fail ("DT.dominates(BB, UserParent) && \"Dominance relation broken?\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3845, __extension__ __PRETTY_FUNCTION__))
;
3846 return UserParent;
3847 }
3848 return None;
3849 };
3850
3851 auto OptBB = getOptionalSinkBlockForInst(I);
3852 if (OptBB) {
3853 auto *UserParent = *OptBB;
3854 // Okay, the CFG is simple enough, try to sink this instruction.
3855 if (TryToSinkInstruction(I, UserParent)) {
3856 LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: Sink: " << *I <<
'\n'; } } while (false)
;
3857 MadeIRChange = true;
3858 // We'll add uses of the sunk instruction below, but since
3859 // sinking can expose opportunities for it's *operands* add
3860 // them to the worklist
3861 for (Use &U : I->operands())
3862 if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
3863 Worklist.push(OpI);
3864 }
3865 }
3866
3867 // Now that we have an instruction, try combining it to simplify it.
3868 Builder.SetInsertPoint(I);
3869 Builder.CollectMetadataToCopy(
3870 I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3871
3872#ifndef NDEBUG
3873 std::string OrigI;
3874#endif
3875 LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { raw_string_ostream SS(OrigI); I->print(
SS); OrigI = SS.str();; } } while (false)
;
3876 LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: Visiting: " << OrigI
<< '\n'; } } while (false)
;
3877
3878 if (Instruction *Result = visit(*I)) {
3879 ++NumCombined;
3880 // Should we replace the old instruction with a new one?
3881 if (Result != I) {
3882 LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: Old = " << *I <<
'\n' << " New = " << *Result << '\n'; }
} while (false)
3883 << " New = " << *Result << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: Old = " << *I <<
'\n' << " New = " << *Result << '\n'; }
} while (false)
;
3884
3885 Result->copyMetadata(*I,
3886 {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
3887 // Everything uses the new instruction now.
3888 I->replaceAllUsesWith(Result);
3889
3890 // Move the name to the new instruction first.
3891 Result->takeName(I);
3892
3893 // Insert the new instruction into the basic block...
3894 BasicBlock *InstParent = I->getParent();
3895 BasicBlock::iterator InsertPos = I->getIterator();
3896
3897 // Are we replace a PHI with something that isn't a PHI, or vice versa?
3898 if (isa<PHINode>(Result) != isa<PHINode>(I)) {
3899 // We need to fix up the insertion point.
3900 if (isa<PHINode>(I)) // PHI -> Non-PHI
3901 InsertPos = InstParent->getFirstInsertionPt();
3902 else // Non-PHI -> PHI
3903 InsertPos = InstParent->getFirstNonPHI()->getIterator();
3904 }
3905
3906 InstParent->getInstList().insert(InsertPos, Result);
3907
3908 // Push the new instruction and any users onto the worklist.
3909 Worklist.pushUsersToWorkList(*Result);
3910 Worklist.push(Result);
3911
3912 eraseInstFromFunction(*I);
3913 } else {
3914 LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: Mod = " << OrigI
<< '\n' << " New = " << *I << '\n'
; } } while (false)
3915 << " New = " << *I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: Mod = " << OrigI
<< '\n' << " New = " << *I << '\n'
; } } while (false)
;
3916
3917 // If the instruction was modified, it's possible that it is now dead.
3918 // if so, remove it.
3919 if (isInstructionTriviallyDead(I, &TLI)) {
3920 eraseInstFromFunction(*I);
3921 } else {
3922 Worklist.pushUsersToWorkList(*I);
3923 Worklist.push(I);
3924 }
3925 }
3926 MadeIRChange = true;
3927 }
3928 }
3929
3930 Worklist.zap();
3931 return MadeIRChange;
3932}
3933
3934// Track the scopes used by !alias.scope and !noalias. In a function, a
3935// @llvm.experimental.noalias.scope.decl is only useful if that scope is used
3936// by both sets. If not, the declaration of the scope can be safely omitted.
3937// The MDNode of the scope can be omitted as well for the instructions that are
3938// part of this function. We do not do that at this point, as this might become
3939// too time consuming to do.
3940class AliasScopeTracker {
3941 SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
3942 SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
3943
3944public:
3945 void analyse(Instruction *I) {
3946 // This seems to be faster than checking 'mayReadOrWriteMemory()'.
3947 if (!I->hasMetadataOtherThanDebugLoc())
3948 return;
3949
3950 auto Track = [](Metadata *ScopeList, auto &Container) {
3951 const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
3952 if (!MDScopeList || !Container.insert(MDScopeList).second)
3953 return;
3954 for (auto &MDOperand : MDScopeList->operands())
3955 if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
3956 Container.insert(MDScope);
3957 };
3958
3959 Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
3960 Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
3961 }
3962
3963 bool isNoAliasScopeDeclDead(Instruction *Inst) {
3964 NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
3965 if (!Decl)
3966 return false;
3967
3968 assert(Decl->use_empty() &&(static_cast <bool> (Decl->use_empty() && "llvm.experimental.noalias.scope.decl in use ?"
) ? void (0) : __assert_fail ("Decl->use_empty() && \"llvm.experimental.noalias.scope.decl in use ?\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3969, __extension__ __PRETTY_FUNCTION__))
3969 "llvm.experimental.noalias.scope.decl in use ?")(static_cast <bool> (Decl->use_empty() && "llvm.experimental.noalias.scope.decl in use ?"
) ? void (0) : __assert_fail ("Decl->use_empty() && \"llvm.experimental.noalias.scope.decl in use ?\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3969, __extension__ __PRETTY_FUNCTION__))
;
3970 const MDNode *MDSL = Decl->getScopeList();
3971 assert(MDSL->getNumOperands() == 1 &&(static_cast <bool> (MDSL->getNumOperands() == 1 &&
"llvm.experimental.noalias.scope should refer to a single scope"
) ? void (0) : __assert_fail ("MDSL->getNumOperands() == 1 && \"llvm.experimental.noalias.scope should refer to a single scope\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3972, __extension__ __PRETTY_FUNCTION__))
3972 "llvm.experimental.noalias.scope should refer to a single scope")(static_cast <bool> (MDSL->getNumOperands() == 1 &&
"llvm.experimental.noalias.scope should refer to a single scope"
) ? void (0) : __assert_fail ("MDSL->getNumOperands() == 1 && \"llvm.experimental.noalias.scope should refer to a single scope\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstructionCombining.cpp"
, 3972, __extension__ __PRETTY_FUNCTION__))
;
3973 auto &MDOperand = MDSL->getOperand(0);
3974 if (auto *MD = dyn_cast<MDNode>(MDOperand))
3975 return !UsedAliasScopesAndLists.contains(MD) ||
3976 !UsedNoAliasScopesAndLists.contains(MD);
3977
3978 // Not an MDNode ? throw away.
3979 return true;
3980 }
3981};
3982
3983/// Populate the IC worklist from a function, by walking it in depth-first
3984/// order and adding all reachable code to the worklist.
3985///
3986/// This has a couple of tricks to make the code faster and more powerful. In
3987/// particular, we constant fold and DCE instructions as we go, to avoid adding
3988/// them to the worklist (this significantly speeds up instcombine on code where
3989/// many instructions are dead or constant). Additionally, if we find a branch
3990/// whose condition is a known constant, we only visit the reachable successors.
3991static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
3992 const TargetLibraryInfo *TLI,
3993 InstructionWorklist &ICWorklist) {
3994 bool MadeIRChange = false;
3995 SmallPtrSet<BasicBlock *, 32> Visited;
3996 SmallVector<BasicBlock*, 256> Worklist;
3997 Worklist.push_back(&F.front());
3998
3999 SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
4000 DenseMap<Constant *, Constant *> FoldedConstants;
4001 AliasScopeTracker SeenAliasScopes;
4002
4003 do {
4004 BasicBlock *BB = Worklist.pop_back_val();
4005
4006 // We have now visited this block! If we've already been here, ignore it.
4007 if (!Visited.insert(BB).second)
4008 continue;
4009
4010 for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
4011 // ConstantProp instruction if trivially constant.
4012 if (!Inst.use_empty() &&
4013 (Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
4014 if (Constant *C = ConstantFoldInstruction(&Inst, DL, TLI)) {
4015 LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Instdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: ConstFold to: " <<
*C << " from: " << Inst << '\n'; } } while
(false)
4016 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: ConstFold to: " <<
*C << " from: " << Inst << '\n'; } } while
(false)
;
4017 Inst.replaceAllUsesWith(C);
4018 ++NumConstProp;
4019 if (isInstructionTriviallyDead(&Inst, TLI))
4020 Inst.eraseFromParent();
4021 MadeIRChange = true;
4022 continue;
4023 }
4024
4025 // See if we can constant fold its operands.
4026 for (Use &U : Inst.operands()) {
4027 if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
4028 continue;
4029
4030 auto *C = cast<Constant>(U);
4031 Constant *&FoldRes = FoldedConstants[C];
4032 if (!FoldRes)
4033 FoldRes = ConstantFoldConstant(C, DL, TLI);
4034
4035 if (FoldRes != C) {
4036 LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Instdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: ConstFold operand of: "
<< Inst << "\n Old = " << *C << "\n New = "
<< *FoldRes << '\n'; } } while (false)
4037 << "\n Old = " << *Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: ConstFold operand of: "
<< Inst << "\n Old = " << *C << "\n New = "
<< *FoldRes << '\n'; } } while (false)
4038 << "\n New = " << *FoldRes << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: ConstFold operand of: "
<< Inst << "\n Old = " << *C << "\n New = "
<< *FoldRes << '\n'; } } while (false)
;
4039 U = FoldRes;
4040 MadeIRChange = true;
4041 }
4042 }
4043
4044 // Skip processing debug and pseudo intrinsics in InstCombine. Processing
4045 // these call instructions consumes non-trivial amount of time and
4046 // provides no value for the optimization.
4047 if (!Inst.isDebugOrPseudoInst()) {
4048 InstrsForInstructionWorklist.push_back(&Inst);
4049 SeenAliasScopes.analyse(&Inst);
4050 }
4051 }
4052
4053 // Recursively visit successors. If this is a branch or switch on a
4054 // constant, only visit the reachable successor.
4055 Instruction *TI = BB->getTerminator();
4056 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
4057 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
4058 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
4059 BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
4060 Worklist.push_back(ReachableBB);
4061 continue;
4062 }
4063 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
4064 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
4065 Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
4066 continue;
4067 }
4068 }
4069
4070 append_range(Worklist, successors(TI));
4071 } while (!Worklist.empty());
4072
4073 // Remove instructions inside unreachable blocks. This prevents the
4074 // instcombine code from having to deal with some bad special cases, and
4075 // reduces use counts of instructions.
4076 for (BasicBlock &BB : F) {
4077 if (Visited.count(&BB))
4078 continue;
4079
4080 unsigned NumDeadInstInBB;
4081 unsigned NumDeadDbgInstInBB;
4082 std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
4083 removeAllNonTerminatorAndEHPadInstructions(&BB);
4084
4085 MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
4086 NumDeadInst += NumDeadInstInBB;
4087 }
4088
4089 // Once we've found all of the instructions to add to instcombine's worklist,
4090 // add them in reverse order. This way instcombine will visit from the top
4091 // of the function down. This jives well with the way that it adds all uses
4092 // of instructions to the worklist after doing a transformation, thus avoiding
4093 // some N^2 behavior in pathological cases.
4094 ICWorklist.reserve(InstrsForInstructionWorklist.size());
4095 for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
4096 // DCE instruction if trivially dead. As we iterate in reverse program
4097 // order here, we will clean up whole chains of dead instructions.
4098 if (isInstructionTriviallyDead(Inst, TLI) ||
4099 SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
4100 ++NumDeadInst;
4101 LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: DCE: " << *Inst
<< '\n'; } } while (false)
;
4102 salvageDebugInfo(*Inst);
4103 Inst->eraseFromParent();
4104 MadeIRChange = true;
4105 continue;
4106 }
4107
4108 ICWorklist.push(Inst);
4109 }
4110
4111 return MadeIRChange;
4112}
4113
4114static bool combineInstructionsOverFunction(
4115 Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
4116 AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
4117 DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
4118 ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
4119 auto &DL = F.getParent()->getDataLayout();
4120 MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
4121
4122 /// Builder - This is an IRBuilder that automatically inserts new
4123 /// instructions into the worklist when they are created.
4124 IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
4125 F.getContext(), TargetFolder(DL),
4126 IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
4127 Worklist.add(I);
4128 if (auto *Assume = dyn_cast<AssumeInst>(I))
4129 AC.registerAssumption(Assume);
4130 }));
4131
4132 // Lower dbg.declare intrinsics otherwise their value may be clobbered
4133 // by instcombiner.
4134 bool MadeIRChange = false;
4135 if (ShouldLowerDbgDeclare)
4136 MadeIRChange = LowerDbgDeclare(F);
4137
4138 // Iterate while there is work to do.
4139 unsigned Iteration = 0;
4140 while (true) {
4141 ++NumWorklistIterations;
4142 ++Iteration;
4143
4144 if (Iteration > InfiniteLoopDetectionThreshold) {
4145 report_fatal_error(
4146 "Instruction Combining seems stuck in an infinite loop after " +
4147 Twine(InfiniteLoopDetectionThreshold) + " iterations.");
4148 }
4149
4150 if (Iteration > MaxIterations) {
4151 LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterationsdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "\n\n[IC] Iteration limit #"
<< MaxIterations << " on " << F.getName() <<
" reached; stopping before reaching a fixpoint\n"; } } while
(false)
4152 << " on " << F.getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "\n\n[IC] Iteration limit #"
<< MaxIterations << " on " << F.getName() <<
" reached; stopping before reaching a fixpoint\n"; } } while
(false)
4153 << " reached; stopping before reaching a fixpoint\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "\n\n[IC] Iteration limit #"
<< MaxIterations << " on " << F.getName() <<
" reached; stopping before reaching a fixpoint\n"; } } while
(false)
;
4154 break;
4155 }
4156
4157 LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "\n\nINSTCOMBINE ITERATION #"
<< Iteration << " on " << F.getName() <<
"\n"; } } while (false)
4158 << F.getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "\n\nINSTCOMBINE ITERATION #"
<< Iteration << " on " << F.getName() <<
"\n"; } } while (false)
;
4159
4160 MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
4161
4162 InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
4163 ORE, BFI, PSI, DL, LI);
4164 IC.MaxArraySizeForCombine = MaxArraySize;
4165
4166 if (!IC.run())
4167 break;
4168
4169 MadeIRChange = true;
4170 }
4171
4172 return MadeIRChange;
4173}
4174
4175InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
4176
4177InstCombinePass::InstCombinePass(unsigned MaxIterations)
4178 : MaxIterations(MaxIterations) {}
4179
4180PreservedAnalyses InstCombinePass::run(Function &F,
4181 FunctionAnalysisManager &AM) {
4182 auto &AC = AM.getResult<AssumptionAnalysis>(F);
4183 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4184 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4185 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4186 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
4187
4188 auto *LI = AM.getCachedResult<LoopAnalysis>(F);
4189
4190 auto *AA = &AM.getResult<AAManager>(F);
4191 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
4192 ProfileSummaryInfo *PSI =
4193 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
4194 auto *BFI = (PSI && PSI->hasProfileSummary()) ?
4195 &AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
4196
4197 if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4198 BFI, PSI, MaxIterations, LI))
4199 // No changes, all analyses are preserved.
4200 return PreservedAnalyses::all();
4201
4202 // Mark all the analyses that instcombine updates as preserved.
4203 PreservedAnalyses PA;
4204 PA.preserveSet<CFGAnalyses>();
4205 return PA;
4206}
4207
4208void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
4209 AU.setPreservesCFG();
4210 AU.addRequired<AAResultsWrapperPass>();
4211 AU.addRequired<AssumptionCacheTracker>();
4212 AU.addRequired<TargetLibraryInfoWrapperPass>();
4213 AU.addRequired<TargetTransformInfoWrapperPass>();
4214 AU.addRequired<DominatorTreeWrapperPass>();
4215 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4216 AU.addPreserved<DominatorTreeWrapperPass>();
4217 AU.addPreserved<AAResultsWrapperPass>();
4218 AU.addPreserved<BasicAAWrapperPass>();
4219 AU.addPreserved<GlobalsAAWrapperPass>();
4220 AU.addRequired<ProfileSummaryInfoWrapperPass>();
4221 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
4222}
4223
4224bool InstructionCombiningPass::runOnFunction(Function &F) {
4225 if (skipFunction(F))
4226 return false;
4227
4228 // Required analyses.
4229 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4230 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4231 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
4232 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4233 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4234 auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4235
4236 // Optional analyses.
4237 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
4238 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
4239 ProfileSummaryInfo *PSI =
4240 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
4241 BlockFrequencyInfo *BFI =
4242 (PSI && PSI->hasProfileSummary()) ?
4243 &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
4244 nullptr;
4245
4246 return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
4247 BFI, PSI, MaxIterations, LI);
4248}
4249
4250char InstructionCombiningPass::ID = 0;
4251
4252InstructionCombiningPass::InstructionCombiningPass()
4253 : FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
4254 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4255}
4256
4257InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
4258 : FunctionPass(ID), MaxIterations(MaxIterations) {
4259 initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
4260}
4261
4262INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",static void *initializeInstructionCombiningPassPassOnce(PassRegistry
&Registry) {
4263 "Combine redundant instructions", false, false)static void *initializeInstructionCombiningPassPassOnce(PassRegistry
&Registry) {
4264INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
4265INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
4266INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
4267INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
4268INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
4269INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)initializeGlobalsAAWrapperPassPass(Registry);
4270INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
4271INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)initializeLazyBlockFrequencyInfoPassPass(Registry);
4272INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)initializeProfileSummaryInfoWrapperPassPass(Registry);
4273INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",PassInfo *PI = new PassInfo( "Combine redundant instructions"
, "instcombine", &InstructionCombiningPass::ID, PassInfo::
NormalCtor_t(callDefaultCtor<InstructionCombiningPass>)
, false, false); Registry.registerPass(*PI, true); return PI;
} static llvm::once_flag InitializeInstructionCombiningPassPassFlag
; void llvm::initializeInstructionCombiningPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeInstructionCombiningPassPassFlag
, initializeInstructionCombiningPassPassOnce, std::ref(Registry
)); }
4274 "Combine redundant instructions", false, false)PassInfo *PI = new PassInfo( "Combine redundant instructions"
, "instcombine", &InstructionCombiningPass::ID, PassInfo::
NormalCtor_t(callDefaultCtor<InstructionCombiningPass>)
, false, false); Registry.registerPass(*PI, true); return PI;
} static llvm::once_flag InitializeInstructionCombiningPassPassFlag
; void llvm::initializeInstructionCombiningPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeInstructionCombiningPassPassFlag
, initializeInstructionCombiningPassPassOnce, std::ref(Registry
)); }
4275
4276// Initialization Routines
4277void llvm::initializeInstCombine(PassRegistry &Registry) {
4278 initializeInstructionCombiningPassPass(Registry);
4279}
4280
4281void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
4282 initializeInstructionCombiningPassPass(*unwrap(R));
4283}
4284
4285FunctionPass *llvm::createInstructionCombiningPass() {
4286 return new InstructionCombiningPass();
4287}
4288
4289FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
4290 return new InstructionCombiningPass(MaxIterations);
4291}
4292
4293void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
4294 unwrap(PM)->add(createInstructionCombiningPass());
4295}

/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstCombineInternal.h

1//===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10///
11/// This file provides internal interfaces used to implement the InstCombine.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16#define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
17
18#include "llvm/ADT/Statistic.h"
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/Analysis/TargetFolder.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/IR/IRBuilder.h"
23#include "llvm/IR/InstVisitor.h"
24#include "llvm/IR/PatternMatch.h"
25#include "llvm/IR/Value.h"
26#include "llvm/Support/Debug.h"
27#include "llvm/Support/KnownBits.h"
28#include "llvm/Transforms/InstCombine/InstCombiner.h"
29#include "llvm/Transforms/Utils/Local.h"
30#include <cassert>
31
32#define DEBUG_TYPE"instcombine" "instcombine"
33#include "llvm/Transforms/Utils/InstructionWorklist.h"
34
35using namespace llvm::PatternMatch;
36
37// As a default, let's assume that we want to be aggressive,
38// and attempt to traverse with no limits in attempt to sink negation.
39static constexpr unsigned NegatorDefaultMaxDepth = ~0U;
40
41// Let's guesstimate that most often we will end up visiting/producing
42// fairly small number of new instructions.
43static constexpr unsigned NegatorMaxNodesSSO = 16;
44
45namespace llvm {
46
47class AAResults;
48class APInt;
49class AssumptionCache;
50class BlockFrequencyInfo;
51class DataLayout;
52class DominatorTree;
53class GEPOperator;
54class GlobalVariable;
55class LoopInfo;
56class OptimizationRemarkEmitter;
57class ProfileSummaryInfo;
58class TargetLibraryInfo;
59class User;
60
61class LLVM_LIBRARY_VISIBILITY__attribute__ ((visibility("hidden"))) InstCombinerImpl final
62 : public InstCombiner,
63 public InstVisitor<InstCombinerImpl, Instruction *> {
64public:
65 InstCombinerImpl(InstructionWorklist &Worklist, BuilderTy &Builder,
66 bool MinimizeSize, AAResults *AA, AssumptionCache &AC,
67 TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
68 DominatorTree &DT, OptimizationRemarkEmitter &ORE,
69 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
70 const DataLayout &DL, LoopInfo *LI)
71 : InstCombiner(Worklist, Builder, MinimizeSize, AA, AC, TLI, TTI, DT, ORE,
72 BFI, PSI, DL, LI) {}
73
74 virtual ~InstCombinerImpl() {}
75
76 /// Run the combiner over the entire worklist until it is empty.
77 ///
78 /// \returns true if the IR is changed.
79 bool run();
80
81 // Visitation implementation - Implement instruction combining for different
82 // instruction types. The semantics are as follows:
83 // Return Value:
84 // null - No change was made
85 // I - Change was made, I is still valid, I may be dead though
86 // otherwise - Change was made, replace I with returned instruction
87 //
88 Instruction *visitFNeg(UnaryOperator &I);
89 Instruction *visitAdd(BinaryOperator &I);
90 Instruction *visitFAdd(BinaryOperator &I);
91 Value *OptimizePointerDifference(
92 Value *LHS, Value *RHS, Type *Ty, bool isNUW);
93 Instruction *visitSub(BinaryOperator &I);
94 Instruction *visitFSub(BinaryOperator &I);
95 Instruction *visitMul(BinaryOperator &I);
96 Instruction *visitFMul(BinaryOperator &I);
97 Instruction *visitURem(BinaryOperator &I);
98 Instruction *visitSRem(BinaryOperator &I);
99 Instruction *visitFRem(BinaryOperator &I);
100 bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
101 Instruction *commonIRemTransforms(BinaryOperator &I);
102 Instruction *commonIDivTransforms(BinaryOperator &I);
103 Instruction *visitUDiv(BinaryOperator &I);
104 Instruction *visitSDiv(BinaryOperator &I);
105 Instruction *visitFDiv(BinaryOperator &I);
106 Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
107 Instruction *visitAnd(BinaryOperator &I);
108 Instruction *visitOr(BinaryOperator &I);
109 bool sinkNotIntoOtherHandOfAndOrOr(BinaryOperator &I);
110 Instruction *visitXor(BinaryOperator &I);
111 Instruction *visitShl(BinaryOperator &I);
112 Value *reassociateShiftAmtsOfTwoSameDirectionShifts(
113 BinaryOperator *Sh0, const SimplifyQuery &SQ,
114 bool AnalyzeForSignBitExtraction = false);
115 Instruction *canonicalizeCondSignextOfHighBitExtractToSignextHighBitExtract(
116 BinaryOperator &I);
117 Instruction *foldVariableSignZeroExtensionOfVariableHighBitExtract(
118 BinaryOperator &OldAShr);
119 Instruction *visitAShr(BinaryOperator &I);
120 Instruction *visitLShr(BinaryOperator &I);
121 Instruction *commonShiftTransforms(BinaryOperator &I);
122 Instruction *visitFCmpInst(FCmpInst &I);
123 CmpInst *canonicalizeICmpPredicate(CmpInst &I);
124 Instruction *visitICmpInst(ICmpInst &I);
125 Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
126 BinaryOperator &I);
127 Instruction *commonCastTransforms(CastInst &CI);
128 Instruction *commonPointerCastTransforms(CastInst &CI);
129 Instruction *visitTrunc(TruncInst &CI);
130 Instruction *visitZExt(ZExtInst &CI);
131 Instruction *visitSExt(SExtInst &CI);
132 Instruction *visitFPTrunc(FPTruncInst &CI);
133 Instruction *visitFPExt(CastInst &CI);
134 Instruction *visitFPToUI(FPToUIInst &FI);
135 Instruction *visitFPToSI(FPToSIInst &FI);
136 Instruction *visitUIToFP(CastInst &CI);
137 Instruction *visitSIToFP(CastInst &CI);
138 Instruction *visitPtrToInt(PtrToIntInst &CI);
139 Instruction *visitIntToPtr(IntToPtrInst &CI);
140 Instruction *visitBitCast(BitCastInst &CI);
141 Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
142 Instruction *foldItoFPtoI(CastInst &FI);
143 Instruction *visitSelectInst(SelectInst &SI);
144 Instruction *visitCallInst(CallInst &CI);
145 Instruction *visitInvokeInst(InvokeInst &II);
146 Instruction *visitCallBrInst(CallBrInst &CBI);
147
148 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
149 Instruction *visitPHINode(PHINode &PN);
150 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
151 Instruction *visitAllocaInst(AllocaInst &AI);
152 Instruction *visitAllocSite(Instruction &FI);
153 Instruction *visitFree(CallInst &FI);
154 Instruction *visitLoadInst(LoadInst &LI);
155 Instruction *visitStoreInst(StoreInst &SI);
156 Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
157 Instruction *visitUnconditionalBranchInst(BranchInst &BI);
158 Instruction *visitBranchInst(BranchInst &BI);
159 Instruction *visitFenceInst(FenceInst &FI);
160 Instruction *visitSwitchInst(SwitchInst &SI);
161 Instruction *visitReturnInst(ReturnInst &RI);
162 Instruction *visitUnreachableInst(UnreachableInst &I);
163 Instruction *
164 foldAggregateConstructionIntoAggregateReuse(InsertValueInst &OrigIVI);
165 Instruction *visitInsertValueInst(InsertValueInst &IV);
166 Instruction *visitInsertElementInst(InsertElementInst &IE);
167 Instruction *visitExtractElementInst(ExtractElementInst &EI);
168 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
169 Instruction *visitExtractValueInst(ExtractValueInst &EV);
170 Instruction *visitLandingPadInst(LandingPadInst &LI);
171 Instruction *visitVAEndInst(VAEndInst &I);
172 Value *pushFreezeToPreventPoisonFromPropagating(FreezeInst &FI);
173 bool freezeDominatedUses(FreezeInst &FI);
174 Instruction *visitFreeze(FreezeInst &I);
175
176 /// Specify what to return for unhandled instructions.
177 Instruction *visitInstruction(Instruction &I) { return nullptr; }
178
179 /// True when DB dominates all uses of DI except UI.
180 /// UI must be in the same block as DI.
181 /// The routine checks that the DI parent and DB are different.
182 bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
183 const BasicBlock *DB) const;
184
185 /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
186 bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
187 const unsigned SIOpd);
188
189 LoadInst *combineLoadToNewType(LoadInst &LI, Type *NewTy,
190 const Twine &Suffix = "");
191
192private:
193 void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI);
194 bool isDesirableIntType(unsigned BitWidth) const;
195 bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
196 bool shouldChangeType(Type *From, Type *To) const;
197 Value *dyn_castNegVal(Value *V) const;
198 Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
199 SmallVectorImpl<Value *> &NewIndices);
200
201 /// Classify whether a cast is worth optimizing.
202 ///
203 /// This is a helper to decide whether the simplification of
204 /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
205 ///
206 /// \param CI The cast we are interested in.
207 ///
208 /// \return true if this cast actually results in any code being generated and
209 /// if it cannot already be eliminated by some other transformation.
210 bool shouldOptimizeCast(CastInst *CI);
211
212 /// Try to optimize a sequence of instructions checking if an operation
213 /// on LHS and RHS overflows.
214 ///
215 /// If this overflow check is done via one of the overflow check intrinsics,
216 /// then CtxI has to be the call instruction calling that intrinsic. If this
217 /// overflow check is done by arithmetic followed by a compare, then CtxI has
218 /// to be the arithmetic instruction.
219 ///
220 /// If a simplification is possible, stores the simplified result of the
221 /// operation in OperationResult and result of the overflow check in
222 /// OverflowResult, and return true. If no simplification is possible,
223 /// returns false.
224 bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
225 Value *LHS, Value *RHS,
226 Instruction &CtxI, Value *&OperationResult,
227 Constant *&OverflowResult);
228
229 Instruction *visitCallBase(CallBase &Call);
230 Instruction *tryOptimizeCall(CallInst *CI);
231 bool transformConstExprCastCall(CallBase &Call);
232 Instruction *transformCallThroughTrampoline(CallBase &Call,
233 IntrinsicInst &Tramp);
234
235 Value *simplifyMaskedLoad(IntrinsicInst &II);
236 Instruction *simplifyMaskedStore(IntrinsicInst &II);
237 Instruction *simplifyMaskedGather(IntrinsicInst &II);
238 Instruction *simplifyMaskedScatter(IntrinsicInst &II);
239
240 /// Transform (zext icmp) to bitwise / integer operations in order to
241 /// eliminate it.
242 ///
243 /// \param ICI The icmp of the (zext icmp) pair we are interested in.
244 /// \parem CI The zext of the (zext icmp) pair we are interested in.
245 ///
246 /// \return null if the transformation cannot be performed. If the
247 /// transformation can be performed the new instruction that replaces the
248 /// (zext icmp) pair will be returned.
249 Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI);
250
251 Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
252
253 bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
254 const Instruction &CxtI) const {
255 return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
256 OverflowResult::NeverOverflows;
257 }
258
259 bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
260 const Instruction &CxtI) const {
261 return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
262 OverflowResult::NeverOverflows;
263 }
264
265 bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
266 const Instruction &CxtI, bool IsSigned) const {
267 return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
268 : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
269 }
270
271 bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
272 const Instruction &CxtI) const {
273 return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
274 OverflowResult::NeverOverflows;
275 }
276
277 bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
278 const Instruction &CxtI) const {
279 return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
280 OverflowResult::NeverOverflows;
281 }
282
283 bool willNotOverflowSub(const Value *LHS, const Value *RHS,
284 const Instruction &CxtI, bool IsSigned) const {
285 return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
286 : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
287 }
288
289 bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
290 const Instruction &CxtI) const {
291 return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
292 OverflowResult::NeverOverflows;
293 }
294
295 bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
296 const Instruction &CxtI) const {
297 return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
298 OverflowResult::NeverOverflows;
299 }
300
301 bool willNotOverflowMul(const Value *LHS, const Value *RHS,
302 const Instruction &CxtI, bool IsSigned) const {
303 return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
304 : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
305 }
306
307 bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
308 const Value *RHS, const Instruction &CxtI,
309 bool IsSigned) const {
310 switch (Opcode) {
311 case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
312 case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
313 case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
314 default: llvm_unreachable("Unexpected opcode for overflow query")::llvm::llvm_unreachable_internal("Unexpected opcode for overflow query"
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstCombineInternal.h"
, 314)
;
315 }
316 }
317
318 Value *EmitGEPOffset(User *GEP);
319 Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
320 Instruction *foldBitcastExtElt(ExtractElementInst &ExtElt);
321 Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
322 Instruction *narrowBinOp(TruncInst &Trunc);
323 Instruction *narrowMaskedBinOp(BinaryOperator &And);
324 Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
325 Instruction *narrowFunnelShift(TruncInst &Trunc);
326 Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
327 Instruction *matchSAddSubSat(Instruction &MinMax1);
328 Instruction *foldNot(BinaryOperator &I);
329
330 void freelyInvertAllUsersOf(Value *V);
331
332 /// Determine if a pair of casts can be replaced by a single cast.
333 ///
334 /// \param CI1 The first of a pair of casts.
335 /// \param CI2 The second of a pair of casts.
336 ///
337 /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
338 /// Instruction::CastOps value for a cast that can replace the pair, casting
339 /// CI1->getSrcTy() to CI2->getDstTy().
340 ///
341 /// \see CastInst::isEliminableCastPair
342 Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
343 const CastInst *CI2);
344 Value *simplifyIntToPtrRoundTripCast(Value *Val);
345
346 Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &And);
347 Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Or);
348 Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &Xor);
349
350 Value *foldEqOfParts(ICmpInst *Cmp0, ICmpInst *Cmp1, bool IsAnd);
351
352 /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
353 /// NOTE: Unlike most of instcombine, this returns a Value which should
354 /// already be inserted into the function.
355 Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
356
357 Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
358 Instruction *CxtI, bool IsAnd,
359 bool IsLogical = false);
360 Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
361 Value *getSelectCondition(Value *A, Value *B);
362
363 Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
364 Instruction *foldFPSignBitOps(BinaryOperator &I);
365
366 // Optimize one of these forms:
367 // and i1 Op, SI / select i1 Op, i1 SI, i1 false (if IsAnd = true)
368 // or i1 Op, SI / select i1 Op, i1 true, i1 SI (if IsAnd = false)
369 // into simplier select instruction using isImpliedCondition.
370 Instruction *foldAndOrOfSelectUsingImpliedCond(Value *Op, SelectInst &SI,
371 bool IsAnd);
372
373public:
374 /// Inserts an instruction \p New before instruction \p Old
375 ///
376 /// Also adds the new instruction to the worklist and returns \p New so that
377 /// it is suitable for use as the return from the visitation patterns.
378 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
379 assert(New && !New->getParent() &&(static_cast <bool> (New && !New->getParent(
) && "New instruction already inserted into a basic block!"
) ? void (0) : __assert_fail ("New && !New->getParent() && \"New instruction already inserted into a basic block!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstCombineInternal.h"
, 380, __extension__ __PRETTY_FUNCTION__))
380 "New instruction already inserted into a basic block!")(static_cast <bool> (New && !New->getParent(
) && "New instruction already inserted into a basic block!"
) ? void (0) : __assert_fail ("New && !New->getParent() && \"New instruction already inserted into a basic block!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstCombineInternal.h"
, 380, __extension__ __PRETTY_FUNCTION__))
;
381 BasicBlock *BB = Old.getParent();
382 BB->getInstList().insert(Old.getIterator(), New); // Insert inst
383 Worklist.add(New);
384 return New;
385 }
386
387 /// Same as InsertNewInstBefore, but also sets the debug loc.
388 Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
389 New->setDebugLoc(Old.getDebugLoc());
390 return InsertNewInstBefore(New, Old);
391 }
392
393 /// A combiner-aware RAUW-like routine.
394 ///
395 /// This method is to be used when an instruction is found to be dead,
396 /// replaceable with another preexisting expression. Here we add all uses of
397 /// I to the worklist, replace all uses of I with the new value, then return
398 /// I, so that the inst combiner will know that I was modified.
399 Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
400 // If there are no uses to replace, then we return nullptr to indicate that
401 // no changes were made to the program.
402 if (I.use_empty()) return nullptr;
15
Calling 'Value::use_empty'
18
Returning from 'Value::use_empty'
19
Taking false branch
403
404 Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist.
405
406 // If we are replacing the instruction with itself, this must be in a
407 // segment of unreachable code, so just clobber the instruction.
408 if (&I == V)
409 V = UndefValue::get(I.getType());
410
411 LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: Replacing " << I
<< "\n" << " with " << *V << '\n'
; } } while (false)
20
Taking false branch
21
Assuming 'DebugFlag' is true
22
Assuming the condition is true
23
Taking true branch
24
Forming reference to null pointer
412 << " with " << *V << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: Replacing " << I
<< "\n" << " with " << *V << '\n'
; } } while (false)
;
413
414 I.replaceAllUsesWith(V);
415 MadeIRChange = true;
416 return &I;
417 }
418
419 /// Replace operand of instruction and add old operand to the worklist.
420 Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) {
421 Worklist.addValue(I.getOperand(OpNum));
422 I.setOperand(OpNum, V);
423 return &I;
424 }
425
426 /// Replace use and add the previously used value to the worklist.
427 void replaceUse(Use &U, Value *NewValue) {
428 Worklist.addValue(U);
429 U = NewValue;
430 }
431
432 /// Create and insert the idiom we use to indicate a block is unreachable
433 /// without having to rewrite the CFG from within InstCombine.
434 void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
435 auto &Ctx = InsertAt->getContext();
436 new StoreInst(ConstantInt::getTrue(Ctx),
437 UndefValue::get(Type::getInt1PtrTy(Ctx)),
438 InsertAt);
439 }
440
441
442 /// Combiner aware instruction erasure.
443 ///
444 /// When dealing with an instruction that has side effects or produces a void
445 /// value, we can't rely on DCE to delete the instruction. Instead, visit
446 /// methods should return the value returned by this function.
447 Instruction *eraseInstFromFunction(Instruction &I) override {
448 LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "IC: ERASE " << I <<
'\n'; } } while (false)
;
449 assert(I.use_empty() && "Cannot erase instruction that is used!")(static_cast <bool> (I.use_empty() && "Cannot erase instruction that is used!"
) ? void (0) : __assert_fail ("I.use_empty() && \"Cannot erase instruction that is used!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/lib/Transforms/InstCombine/InstCombineInternal.h"
, 449, __extension__ __PRETTY_FUNCTION__))
;
450 salvageDebugInfo(I);
451
452 // Make sure that we reprocess all operands now that we reduced their
453 // use counts.
454 for (Use &Operand : I.operands())
455 if (auto *Inst = dyn_cast<Instruction>(Operand))
456 Worklist.add(Inst);
457
458 Worklist.remove(&I);
459 I.eraseFromParent();
460 MadeIRChange = true;
461 return nullptr; // Don't do anything with FI
462 }
463
464 void computeKnownBits(const Value *V, KnownBits &Known,
465 unsigned Depth, const Instruction *CxtI) const {
466 llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
467 }
468
469 KnownBits computeKnownBits(const Value *V, unsigned Depth,
470 const Instruction *CxtI) const {
471 return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
472 }
473
474 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
475 unsigned Depth = 0,
476 const Instruction *CxtI = nullptr) {
477 return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
478 }
479
480 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
481 const Instruction *CxtI = nullptr) const {
482 return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
483 }
484
485 unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
486 const Instruction *CxtI = nullptr) const {
487 return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
488 }
489
490 OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
491 const Value *RHS,
492 const Instruction *CxtI) const {
493 return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
494 }
495
496 OverflowResult computeOverflowForSignedMul(const Value *LHS,
497 const Value *RHS,
498 const Instruction *CxtI) const {
499 return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
500 }
501
502 OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
503 const Value *RHS,
504 const Instruction *CxtI) const {
505 return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
506 }
507
508 OverflowResult computeOverflowForSignedAdd(const Value *LHS,
509 const Value *RHS,
510 const Instruction *CxtI) const {
511 return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
512 }
513
514 OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
515 const Value *RHS,
516 const Instruction *CxtI) const {
517 return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
518 }
519
520 OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
521 const Instruction *CxtI) const {
522 return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
523 }
524
525 OverflowResult computeOverflow(
526 Instruction::BinaryOps BinaryOp, bool IsSigned,
527 Value *LHS, Value *RHS, Instruction *CxtI) const;
528
529 /// Performs a few simplifications for operators which are associative
530 /// or commutative.
531 bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
532
533 /// Tries to simplify binary operations which some other binary
534 /// operation distributes over.
535 ///
536 /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
537 /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
538 /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
539 /// value, or null if it didn't simplify.
540 Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
541
542 /// Tries to simplify add operations using the definition of remainder.
543 ///
544 /// The definition of remainder is X % C = X - (X / C ) * C. The add
545 /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
546 /// X % (C0 * C1)
547 Value *SimplifyAddWithRemainder(BinaryOperator &I);
548
549 // Binary Op helper for select operations where the expression can be
550 // efficiently reorganized.
551 Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
552 Value *RHS);
553
554 /// This tries to simplify binary operations by factorizing out common terms
555 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
556 Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
557 Value *, Value *, Value *);
558
559 /// Match a select chain which produces one of three values based on whether
560 /// the LHS is less than, equal to, or greater than RHS respectively.
561 /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
562 /// Equal and Greater values are saved in the matching process and returned to
563 /// the caller.
564 bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
565 ConstantInt *&Less, ConstantInt *&Equal,
566 ConstantInt *&Greater);
567
568 /// Attempts to replace V with a simpler value based on the demanded
569 /// bits.
570 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
571 unsigned Depth, Instruction *CxtI);
572 bool SimplifyDemandedBits(Instruction *I, unsigned Op,
573 const APInt &DemandedMask, KnownBits &Known,
574 unsigned Depth = 0) override;
575
576 /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
577 /// bits. It also tries to handle simplifications that can be done based on
578 /// DemandedMask, but without modifying the Instruction.
579 Value *SimplifyMultipleUseDemandedBits(Instruction *I,
580 const APInt &DemandedMask,
581 KnownBits &Known,
582 unsigned Depth, Instruction *CxtI);
583
584 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
585 /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
586 Value *simplifyShrShlDemandedBits(
587 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
588 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
589
590 /// Tries to simplify operands to an integer instruction based on its
591 /// demanded bits.
592 bool SimplifyDemandedInstructionBits(Instruction &Inst);
593
594 virtual Value *
595 SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts,
596 unsigned Depth = 0,
597 bool AllowMultipleUsers = false) override;
598
599 /// Canonicalize the position of binops relative to shufflevector.
600 Instruction *foldVectorBinop(BinaryOperator &Inst);
601 Instruction *foldVectorSelect(SelectInst &Sel);
602
603 /// Given a binary operator, cast instruction, or select which has a PHI node
604 /// as operand #0, see if we can fold the instruction into the PHI (which is
605 /// only possible if all operands to the PHI are constants).
606 Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
607
608 /// Given an instruction with a select as one operand and a constant as the
609 /// other operand, try to fold the binary operator into the select arguments.
610 /// This also works for Cast instructions, which obviously do not have a
611 /// second operand.
612 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
613
614 /// This is a convenience wrapper function for the above two functions.
615 Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
616
617 Instruction *foldAddWithConstant(BinaryOperator &Add);
618
619 /// Try to rotate an operation below a PHI node, using PHI nodes for
620 /// its operands.
621 Instruction *foldPHIArgOpIntoPHI(PHINode &PN);
622 Instruction *foldPHIArgBinOpIntoPHI(PHINode &PN);
623 Instruction *foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN);
624 Instruction *foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN);
625 Instruction *foldPHIArgGEPIntoPHI(PHINode &PN);
626 Instruction *foldPHIArgLoadIntoPHI(PHINode &PN);
627 Instruction *foldPHIArgZextsIntoPHI(PHINode &PN);
628 Instruction *foldPHIArgIntToPtrToPHI(PHINode &PN);
629
630 /// If an integer typed PHI has only one use which is an IntToPtr operation,
631 /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
632 /// insert a new pointer typed PHI and replace the original one.
633 Instruction *foldIntegerTypedPHI(PHINode &PN);
634
635 /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
636 /// folded operation.
637 void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
638
639 Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
640 ICmpInst::Predicate Cond, Instruction &I);
641 Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
642 const Value *Other);
643 Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
644 GlobalVariable *GV, CmpInst &ICI,
645 ConstantInt *AndCst = nullptr);
646 Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
647 Constant *RHSC);
648 Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
649 ICmpInst::Predicate Pred);
650 Instruction *foldICmpWithCastOp(ICmpInst &ICI);
651
652 Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
653 Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
654 Instruction *foldICmpWithConstant(ICmpInst &Cmp);
655 Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
656 Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
657 Instruction *foldICmpBinOp(ICmpInst &Cmp, const SimplifyQuery &SQ);
658 Instruction *foldICmpEquality(ICmpInst &Cmp);
659 Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
660 Instruction *foldSignBitTest(ICmpInst &I);
661 Instruction *foldICmpWithZero(ICmpInst &Cmp);
662
663 Value *foldMultiplicationOverflowCheck(ICmpInst &Cmp);
664
665 Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
666 ConstantInt *C);
667 Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
668 const APInt &C);
669 Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
670 const APInt &C);
671 Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
672 const APInt &C);
673 Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
674 const APInt &C);
675 Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
676 const APInt &C);
677 Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
678 const APInt &C);
679 Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
680 const APInt &C);
681 Instruction *foldICmpSRemConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
682 const APInt &C);
683 Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
684 const APInt &C);
685 Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
686 const APInt &C);
687 Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
688 const APInt &C);
689 Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
690 const APInt &C);
691 Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
692 const APInt &C1);
693 Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
694 const APInt &C1, const APInt &C2);
695 Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
696 const APInt &C2);
697 Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
698 const APInt &C2);
699
700 Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
701 BinaryOperator *BO,
702 const APInt &C);
703 Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
704 const APInt &C);
705 Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
706 const APInt &C);
707 Instruction *foldICmpBitCast(ICmpInst &Cmp);
708
709 // Helpers of visitSelectInst().
710 Instruction *foldSelectExtConst(SelectInst &Sel);
711 Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
712 Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
713 Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
714 Value *A, Value *B, Instruction &Outer,
715 SelectPatternFlavor SPF2, Value *C);
716 Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
717 Instruction *foldSelectValueEquivalence(SelectInst &SI, ICmpInst &ICI);
718
719 Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
720 bool isSigned, bool Inside);
721 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
722 bool mergeStoreIntoSuccessor(StoreInst &SI);
723
724 /// Given an initial instruction, check to see if it is the root of a
725 /// bswap/bitreverse idiom. If so, return the equivalent bswap/bitreverse
726 /// intrinsic.
727 Instruction *matchBSwapOrBitReverse(Instruction &I, bool MatchBSwaps,
728 bool MatchBitReversals);
729
730 Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
731 Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
732
733 Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
734
735 /// Returns a value X such that Val = X * Scale, or null if none.
736 ///
737 /// If the multiplication is known not to overflow then NoSignedWrap is set.
738 Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
739};
740
741class Negator final {
742 /// Top-to-bottom, def-to-use negated instruction tree we produced.
743 SmallVector<Instruction *, NegatorMaxNodesSSO> NewInstructions;
744
745 using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
746 BuilderTy Builder;
747
748 const DataLayout &DL;
749 AssumptionCache &AC;
750 const DominatorTree &DT;
751
752 const bool IsTrulyNegation;
753
754 SmallDenseMap<Value *, Value *> NegationsCache;
755
756 Negator(LLVMContext &C, const DataLayout &DL, AssumptionCache &AC,
757 const DominatorTree &DT, bool IsTrulyNegation);
758
759#if LLVM_ENABLE_STATS1
760 unsigned NumValuesVisitedInThisNegator = 0;
761 ~Negator();
762#endif
763
764 using Result = std::pair<ArrayRef<Instruction *> /*NewInstructions*/,
765 Value * /*NegatedRoot*/>;
766
767 std::array<Value *, 2> getSortedOperandsOfBinOp(Instruction *I);
768
769 LLVM_NODISCARD[[clang::warn_unused_result]] Value *visitImpl(Value *V, unsigned Depth);
770
771 LLVM_NODISCARD[[clang::warn_unused_result]] Value *negate(Value *V, unsigned Depth);
772
773 /// Recurse depth-first and attempt to sink the negation.
774 /// FIXME: use worklist?
775 LLVM_NODISCARD[[clang::warn_unused_result]] Optional<Result> run(Value *Root);
776
777 Negator(const Negator &) = delete;
778 Negator(Negator &&) = delete;
779 Negator &operator=(const Negator &) = delete;
780 Negator &operator=(Negator &&) = delete;
781
782public:
783 /// Attempt to negate \p Root. Retuns nullptr if negation can't be performed,
784 /// otherwise returns negated value.
785 LLVM_NODISCARD[[clang::warn_unused_result]] static Value *Negate(bool LHSIsZero, Value *Root,
786 InstCombinerImpl &IC);
787};
788
789} // end namespace llvm
790
791#undef DEBUG_TYPE"instcombine"
792
793#endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H

/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/include/llvm/IR/Value.h

1//===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the Value class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_IR_VALUE_H
14#define LLVM_IR_VALUE_H
15
16#include "llvm-c/Types.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/iterator_range.h"
20#include "llvm/IR/Use.h"
21#include "llvm/Support/Alignment.h"
22#include "llvm/Support/CBindingWrapping.h"
23#include "llvm/Support/Casting.h"
24#include <cassert>
25#include <iterator>
26#include <memory>
27
28namespace llvm {
29
30class APInt;
31class Argument;
32class BasicBlock;
33class Constant;
34class ConstantData;
35class ConstantAggregate;
36class DataLayout;
37class Function;
38class GlobalAlias;
39class GlobalIFunc;
40class GlobalIndirectSymbol;
41class GlobalObject;
42class GlobalValue;
43class GlobalVariable;
44class InlineAsm;
45class Instruction;
46class LLVMContext;
47class MDNode;
48class Module;
49class ModuleSlotTracker;
50class raw_ostream;
51template<typename ValueTy> class StringMapEntry;
52class Twine;
53class Type;
54class User;
55
56using ValueName = StringMapEntry<Value *>;
57
58//===----------------------------------------------------------------------===//
59// Value Class
60//===----------------------------------------------------------------------===//
61
62/// LLVM Value Representation
63///
64/// This is a very important LLVM class. It is the base class of all values
65/// computed by a program that may be used as operands to other values. Value is
66/// the super class of other important classes such as Instruction and Function.
67/// All Values have a Type. Type is not a subclass of Value. Some values can
68/// have a name and they belong to some Module. Setting the name on the Value
69/// automatically updates the module's symbol table.
70///
71/// Every value has a "use list" that keeps track of which other Values are
72/// using this Value. A Value can also have an arbitrary number of ValueHandle
73/// objects that watch it and listen to RAUW and Destroy events. See
74/// llvm/IR/ValueHandle.h for details.
75class Value {
76 Type *VTy;
77 Use *UseList;
78
79 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
80 friend class ValueHandleBase;
81
82 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
83 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
84
85protected:
86 /// Hold subclass data that can be dropped.
87 ///
88 /// This member is similar to SubclassData, however it is for holding
89 /// information which may be used to aid optimization, but which may be
90 /// cleared to zero without affecting conservative interpretation.
91 unsigned char SubclassOptionalData : 7;
92
93private:
94 /// Hold arbitrary subclass data.
95 ///
96 /// This member is defined by this class, but is not used for anything.
97 /// Subclasses can use it to hold whatever state they find useful. This
98 /// field is initialized to zero by the ctor.
99 unsigned short SubclassData;
100
101protected:
102 /// The number of operands in the subclass.
103 ///
104 /// This member is defined by this class, but not used for anything.
105 /// Subclasses can use it to store their number of operands, if they have
106 /// any.
107 ///
108 /// This is stored here to save space in User on 64-bit hosts. Since most
109 /// instances of Value have operands, 32-bit hosts aren't significantly
110 /// affected.
111 ///
112 /// Note, this should *NOT* be used directly by any class other than User.
113 /// User uses this value to find the Use list.
114 enum : unsigned { NumUserOperandsBits = 27 };
115 unsigned NumUserOperands : NumUserOperandsBits;
116
117 // Use the same type as the bitfield above so that MSVC will pack them.
118 unsigned IsUsedByMD : 1;
119 unsigned HasName : 1;
120 unsigned HasMetadata : 1; // Has metadata attached to this?
121 unsigned HasHungOffUses : 1;
122 unsigned HasDescriptor : 1;
123
124private:
125 template <typename UseT> // UseT == 'Use' or 'const Use'
126 class use_iterator_impl {
127 friend class Value;
128
129 UseT *U;
130
131 explicit use_iterator_impl(UseT *u) : U(u) {}
132
133 public:
134 using iterator_category = std::forward_iterator_tag;
135 using value_type = UseT *;
136 using difference_type = std::ptrdiff_t;
137 using pointer = value_type *;
138 using reference = value_type &;
139
140 use_iterator_impl() : U() {}
141
142 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
143 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
144
145 use_iterator_impl &operator++() { // Preincrement
146 assert(U && "Cannot increment end iterator!")(static_cast <bool> (U && "Cannot increment end iterator!"
) ? void (0) : __assert_fail ("U && \"Cannot increment end iterator!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/include/llvm/IR/Value.h"
, 146, __extension__ __PRETTY_FUNCTION__))
;
147 U = U->getNext();
148 return *this;
149 }
150
151 use_iterator_impl operator++(int) { // Postincrement
152 auto tmp = *this;
153 ++*this;
154 return tmp;
155 }
156
157 UseT &operator*() const {
158 assert(U && "Cannot dereference end iterator!")(static_cast <bool> (U && "Cannot dereference end iterator!"
) ? void (0) : __assert_fail ("U && \"Cannot dereference end iterator!\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/include/llvm/IR/Value.h"
, 158, __extension__ __PRETTY_FUNCTION__))
;
159 return *U;
160 }
161
162 UseT *operator->() const { return &operator*(); }
163
164 operator use_iterator_impl<const UseT>() const {
165 return use_iterator_impl<const UseT>(U);
166 }
167 };
168
169 template <typename UserTy> // UserTy == 'User' or 'const User'
170 class user_iterator_impl {
171 use_iterator_impl<Use> UI;
172 explicit user_iterator_impl(Use *U) : UI(U) {}
173 friend class Value;
174
175 public:
176 using iterator_category = std::forward_iterator_tag;
177 using value_type = UserTy *;
178 using difference_type = std::ptrdiff_t;
179 using pointer = value_type *;
180 using reference = value_type &;
181
182 user_iterator_impl() = default;
183
184 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
185 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
186
187 /// Returns true if this iterator is equal to user_end() on the value.
188 bool atEnd() const { return *this == user_iterator_impl(); }
189
190 user_iterator_impl &operator++() { // Preincrement
191 ++UI;
192 return *this;
193 }
194
195 user_iterator_impl operator++(int) { // Postincrement
196 auto tmp = *this;
197 ++*this;
198 return tmp;
199 }
200
201 // Retrieve a pointer to the current User.
202 UserTy *operator*() const {
203 return UI->getUser();
204 }
205
206 UserTy *operator->() const { return operator*(); }
207
208 operator user_iterator_impl<const UserTy>() const {
209 return user_iterator_impl<const UserTy>(*UI);
210 }
211
212 Use &getUse() const { return *UI; }
213 };
214
215protected:
216 Value(Type *Ty, unsigned scid);
217
218 /// Value's destructor should be virtual by design, but that would require
219 /// that Value and all of its subclasses have a vtable that effectively
220 /// duplicates the information in the value ID. As a size optimization, the
221 /// destructor has been protected, and the caller should manually call
222 /// deleteValue.
223 ~Value(); // Use deleteValue() to delete a generic Value.
224
225public:
226 Value(const Value &) = delete;
227 Value &operator=(const Value &) = delete;
228
229 /// Delete a pointer to a generic Value.
230 void deleteValue();
231
232 /// Support for debugging, callable in GDB: V->dump()
233 void dump() const;
234
235 /// Implement operator<< on Value.
236 /// @{
237 void print(raw_ostream &O, bool IsForDebug = false) const;
238 void print(raw_ostream &O, ModuleSlotTracker &MST,
239 bool IsForDebug = false) const;
240 /// @}
241
242 /// Print the name of this Value out to the specified raw_ostream.
243 ///
244 /// This is useful when you just want to print 'int %reg126', not the
245 /// instruction that generated it. If you specify a Module for context, then
246 /// even constanst get pretty-printed; for example, the type of a null
247 /// pointer is printed symbolically.
248 /// @{
249 void printAsOperand(raw_ostream &O, bool PrintType = true,
250 const Module *M = nullptr) const;
251 void printAsOperand(raw_ostream &O, bool PrintType,
252 ModuleSlotTracker &MST) const;
253 /// @}
254
255 /// All values are typed, get the type of this value.
256 Type *getType() const { return VTy; }
257
258 /// All values hold a context through their type.
259 LLVMContext &getContext() const;
260
261 // All values can potentially be named.
262 bool hasName() const { return HasName; }
263 ValueName *getValueName() const;
264 void setValueName(ValueName *VN);
265
266private:
267 void destroyValueName();
268 enum class ReplaceMetadataUses { No, Yes };
269 void doRAUW(Value *New, ReplaceMetadataUses);
270 void setNameImpl(const Twine &Name);
271
272public:
273 /// Return a constant reference to the value's name.
274 ///
275 /// This guaranteed to return the same reference as long as the value is not
276 /// modified. If the value has a name, this does a hashtable lookup, so it's
277 /// not free.
278 StringRef getName() const;
279
280 /// Change the name of the value.
281 ///
282 /// Choose a new unique name if the provided name is taken.
283 ///
284 /// \param Name The new name; or "" if the value's name should be removed.
285 void setName(const Twine &Name);
286
287 /// Transfer the name from V to this value.
288 ///
289 /// After taking V's name, sets V's name to empty.
290 ///
291 /// \note It is an error to call V->takeName(V).
292 void takeName(Value *V);
293
294#ifndef NDEBUG
295 std::string getNameOrAsOperand() const;
296#endif
297
298 /// Change all uses of this to point to a new Value.
299 ///
300 /// Go through the uses list for this definition and make each use point to
301 /// "V" instead of "this". After this completes, 'this's use list is
302 /// guaranteed to be empty.
303 void replaceAllUsesWith(Value *V);
304
305 /// Change non-metadata uses of this to point to a new Value.
306 ///
307 /// Go through the uses list for this definition and make each use point to
308 /// "V" instead of "this". This function skips metadata entries in the list.
309 void replaceNonMetadataUsesWith(Value *V);
310
311 /// Go through the uses list for this definition and make each use point
312 /// to "V" if the callback ShouldReplace returns true for the given Use.
313 /// Unlike replaceAllUsesWith() this function does not support basic block
314 /// values.
315 void replaceUsesWithIf(Value *New,
316 llvm::function_ref<bool(Use &U)> ShouldReplace);
317
318 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
319 /// make each use point to "V" instead of "this" when the use is outside the
320 /// block. 'This's use list is expected to have at least one element.
321 /// Unlike replaceAllUsesWith() this function does not support basic block
322 /// values.
323 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
324
325 //----------------------------------------------------------------------
326 // Methods for handling the chain of uses of this Value.
327 //
328 // Materializing a function can introduce new uses, so these methods come in
329 // two variants:
330 // The methods that start with materialized_ check the uses that are
331 // currently known given which functions are materialized. Be very careful
332 // when using them since you might not get all uses.
333 // The methods that don't start with materialized_ assert that modules is
334 // fully materialized.
335 void assertModuleIsMaterializedImpl() const;
336 // This indirection exists so we can keep assertModuleIsMaterializedImpl()
337 // around in release builds of Value.cpp to be linked with other code built
338 // in debug mode. But this avoids calling it in any of the release built code.
339 void assertModuleIsMaterialized() const {
340#ifndef NDEBUG
341 assertModuleIsMaterializedImpl();
342#endif
343 }
344
345 bool use_empty() const {
346 assertModuleIsMaterialized();
347 return UseList == nullptr;
16
Assuming the condition is false
17
Returning zero, which participates in a condition later
348 }
349
350 bool materialized_use_empty() const {
351 return UseList == nullptr;
352 }
353
354 using use_iterator = use_iterator_impl<Use>;
355 using const_use_iterator = use_iterator_impl<const Use>;
356
357 use_iterator materialized_use_begin() { return use_iterator(UseList); }
358 const_use_iterator materialized_use_begin() const {
359 return const_use_iterator(UseList);
360 }
361 use_iterator use_begin() {
362 assertModuleIsMaterialized();
363 return materialized_use_begin();
364 }
365 const_use_iterator use_begin() const {
366 assertModuleIsMaterialized();
367 return materialized_use_begin();
368 }
369 use_iterator use_end() { return use_iterator(); }
370 const_use_iterator use_end() const { return const_use_iterator(); }
371 iterator_range<use_iterator> materialized_uses() {
372 return make_range(materialized_use_begin(), use_end());
373 }
374 iterator_range<const_use_iterator> materialized_uses() const {
375 return make_range(materialized_use_begin(), use_end());
376 }
377 iterator_range<use_iterator> uses() {
378 assertModuleIsMaterialized();
379 return materialized_uses();
380 }
381 iterator_range<const_use_iterator> uses() const {
382 assertModuleIsMaterialized();
383 return materialized_uses();
384 }
385
386 bool user_empty() const {
387 assertModuleIsMaterialized();
388 return UseList == nullptr;
389 }
390
391 using user_iterator = user_iterator_impl<User>;
392 using const_user_iterator = user_iterator_impl<const User>;
393
394 user_iterator materialized_user_begin() { return user_iterator(UseList); }
395 const_user_iterator materialized_user_begin() const {
396 return const_user_iterator(UseList);
397 }
398 user_iterator user_begin() {
399 assertModuleIsMaterialized();
400 return materialized_user_begin();
401 }
402 const_user_iterator user_begin() const {
403 assertModuleIsMaterialized();
404 return materialized_user_begin();
405 }
406 user_iterator user_end() { return user_iterator(); }
407 const_user_iterator user_end() const { return const_user_iterator(); }
408 User *user_back() {
409 assertModuleIsMaterialized();
410 return *materialized_user_begin();
411 }
412 const User *user_back() const {
413 assertModuleIsMaterialized();
414 return *materialized_user_begin();
415 }
416 iterator_range<user_iterator> materialized_users() {
417 return make_range(materialized_user_begin(), user_end());
418 }
419 iterator_range<const_user_iterator> materialized_users() const {
420 return make_range(materialized_user_begin(), user_end());
421 }
422 iterator_range<user_iterator> users() {
423 assertModuleIsMaterialized();
424 return materialized_users();
425 }
426 iterator_range<const_user_iterator> users() const {
427 assertModuleIsMaterialized();
428 return materialized_users();
429 }
430
431 /// Return true if there is exactly one use of this value.
432 ///
433 /// This is specialized because it is a common request and does not require
434 /// traversing the whole use list.
435 bool hasOneUse() const { return hasSingleElement(uses()); }
436
437 /// Return true if this Value has exactly N uses.
438 bool hasNUses(unsigned N) const;
439
440 /// Return true if this value has N uses or more.
441 ///
442 /// This is logically equivalent to getNumUses() >= N.
443 bool hasNUsesOrMore(unsigned N) const;
444
445 /// Return true if there is exactly one user of this value.
446 ///
447 /// Note that this is not the same as "has one use". If a value has one use,
448 /// then there certainly is a single user. But if value has several uses,
449 /// it is possible that all uses are in a single user, or not.
450 ///
451 /// This check is potentially costly, since it requires traversing,
452 /// in the worst case, the whole use list of a value.
453 bool hasOneUser() const;
454
455 /// Return true if there is exactly one use of this value that cannot be
456 /// dropped.
457 Use *getSingleUndroppableUse();
458 const Use *getSingleUndroppableUse() const {
459 return const_cast<Value *>(this)->getSingleUndroppableUse();
460 }
461
462 /// Return true if there is exactly one unique user of this value that cannot be
463 /// dropped (that user can have multiple uses of this value).
464 User *getUniqueUndroppableUser();
465 const User *getUniqueUndroppableUser() const {
466 return const_cast<Value *>(this)->getUniqueUndroppableUser();
467 }
468
469 /// Return true if there this value.
470 ///
471 /// This is specialized because it is a common request and does not require
472 /// traversing the whole use list.
473 bool hasNUndroppableUses(unsigned N) const;
474
475 /// Return true if this value has N uses or more.
476 ///
477 /// This is logically equivalent to getNumUses() >= N.
478 bool hasNUndroppableUsesOrMore(unsigned N) const;
479
480 /// Remove every uses that can safely be removed.
481 ///
482 /// This will remove for example uses in llvm.assume.
483 /// This should be used when performing want to perform a tranformation but
484 /// some Droppable uses pervent it.
485 /// This function optionally takes a filter to only remove some droppable
486 /// uses.
487 void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop =
488 [](const Use *) { return true; });
489
490 /// Remove every use of this value in \p User that can safely be removed.
491 void dropDroppableUsesIn(User &Usr);
492
493 /// Remove the droppable use \p U.
494 static void dropDroppableUse(Use &U);
495
496 /// Check if this value is used in the specified basic block.
497 bool isUsedInBasicBlock(const BasicBlock *BB) const;
498
499 /// This method computes the number of uses of this Value.
500 ///
501 /// This is a linear time operation. Use hasOneUse, hasNUses, or
502 /// hasNUsesOrMore to check for specific values.
503 unsigned getNumUses() const;
504
505 /// This method should only be used by the Use class.
506 void addUse(Use &U) { U.addToList(&UseList); }
507
508 /// Concrete subclass of this.
509 ///
510 /// An enumeration for keeping track of the concrete subclass of Value that
511 /// is actually instantiated. Values of this enumeration are kept in the
512 /// Value classes SubclassID field. They are used for concrete type
513 /// identification.
514 enum ValueTy {
515#define HANDLE_VALUE(Name) Name##Val,
516#include "llvm/IR/Value.def"
517
518 // Markers:
519#define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
520#include "llvm/IR/Value.def"
521 };
522
523 /// Return an ID for the concrete type of this object.
524 ///
525 /// This is used to implement the classof checks. This should not be used
526 /// for any other purpose, as the values may change as LLVM evolves. Also,
527 /// note that for instructions, the Instruction's opcode is added to
528 /// InstructionVal. So this means three things:
529 /// # there is no value with code InstructionVal (no opcode==0).
530 /// # there are more possible values for the value type than in ValueTy enum.
531 /// # the InstructionVal enumerator must be the highest valued enumerator in
532 /// the ValueTy enum.
533 unsigned getValueID() const {
534 return SubclassID;
535 }
536
537 /// Return the raw optional flags value contained in this value.
538 ///
539 /// This should only be used when testing two Values for equivalence.
540 unsigned getRawSubclassOptionalData() const {
541 return SubclassOptionalData;
542 }
543
544 /// Clear the optional flags contained in this value.
545 void clearSubclassOptionalData() {
546 SubclassOptionalData = 0;
547 }
548
549 /// Check the optional flags for equality.
550 bool hasSameSubclassOptionalData(const Value *V) const {
551 return SubclassOptionalData == V->SubclassOptionalData;
552 }
553
554 /// Return true if there is a value handle associated with this value.
555 bool hasValueHandle() const { return HasValueHandle; }
556
557 /// Return true if there is metadata referencing this value.
558 bool isUsedByMetadata() const { return IsUsedByMD; }
559
560 // Return true if this value is only transitively referenced by metadata.
561 bool isTransitiveUsedByMetadataOnly() const;
562
563protected:
564 /// Get the current metadata attachments for the given kind, if any.
565 ///
566 /// These functions require that the value have at most a single attachment
567 /// of the given kind, and return \c nullptr if such an attachment is missing.
568 /// @{
569 MDNode *getMetadata(unsigned KindID) const;
570 MDNode *getMetadata(StringRef Kind) const;
571 /// @}
572
573 /// Appends all attachments with the given ID to \c MDs in insertion order.
574 /// If the Value has no attachments with the given ID, or if ID is invalid,
575 /// leaves MDs unchanged.
576 /// @{
577 void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const;
578 void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const;
579 /// @}
580
581 /// Appends all metadata attached to this value to \c MDs, sorting by
582 /// KindID. The first element of each pair returned is the KindID, the second
583 /// element is the metadata value. Attachments with the same ID appear in
584 /// insertion order.
585 void
586 getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const;
587
588 /// Return true if this value has any metadata attached to it.
589 bool hasMetadata() const { return (bool)HasMetadata; }
590
591 /// Return true if this value has the given type of metadata attached.
592 /// @{
593 bool hasMetadata(unsigned KindID) const {
594 return getMetadata(KindID) != nullptr;
595 }
596 bool hasMetadata(StringRef Kind) const {
597 return getMetadata(Kind) != nullptr;
598 }
599 /// @}
600
601 /// Set a particular kind of metadata attachment.
602 ///
603 /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or
604 /// replacing it if it already exists.
605 /// @{
606 void setMetadata(unsigned KindID, MDNode *Node);
607 void setMetadata(StringRef Kind, MDNode *Node);
608 /// @}
609
610 /// Add a metadata attachment.
611 /// @{
612 void addMetadata(unsigned KindID, MDNode &MD);
613 void addMetadata(StringRef Kind, MDNode &MD);
614 /// @}
615
616 /// Erase all metadata attachments with the given kind.
617 ///
618 /// \returns true if any metadata was removed.
619 bool eraseMetadata(unsigned KindID);
620
621 /// Erase all metadata attached to this Value.
622 void clearMetadata();
623
624public:
625 /// Return true if this value is a swifterror value.
626 ///
627 /// swifterror values can be either a function argument or an alloca with a
628 /// swifterror attribute.
629 bool isSwiftError() const;
630
631 /// Strip off pointer casts, all-zero GEPs and address space casts.
632 ///
633 /// Returns the original uncasted value. If this is called on a non-pointer
634 /// value, it returns 'this'.
635 const Value *stripPointerCasts() const;
636 Value *stripPointerCasts() {
637 return const_cast<Value *>(
638 static_cast<const Value *>(this)->stripPointerCasts());
639 }
640
641 /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
642 ///
643 /// Returns the original uncasted value. If this is called on a non-pointer
644 /// value, it returns 'this'.
645 const Value *stripPointerCastsAndAliases() const;
646 Value *stripPointerCastsAndAliases() {
647 return const_cast<Value *>(
648 static_cast<const Value *>(this)->stripPointerCastsAndAliases());
649 }
650
651 /// Strip off pointer casts, all-zero GEPs and address space casts
652 /// but ensures the representation of the result stays the same.
653 ///
654 /// Returns the original uncasted value with the same representation. If this
655 /// is called on a non-pointer value, it returns 'this'.
656 const Value *stripPointerCastsSameRepresentation() const;
657 Value *stripPointerCastsSameRepresentation() {
658 return const_cast<Value *>(static_cast<const Value *>(this)
659 ->stripPointerCastsSameRepresentation());
660 }
661
662 /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and
663 /// invariant group info.
664 ///
665 /// Returns the original uncasted value. If this is called on a non-pointer
666 /// value, it returns 'this'. This function should be used only in
667 /// Alias analysis.
668 const Value *stripPointerCastsForAliasAnalysis() const;
669 Value *stripPointerCastsForAliasAnalysis() {
670 return const_cast<Value *>(static_cast<const Value *>(this)
671 ->stripPointerCastsForAliasAnalysis());
672 }
673
674 /// Strip off pointer casts and all-constant inbounds GEPs.
675 ///
676 /// Returns the original pointer value. If this is called on a non-pointer
677 /// value, it returns 'this'.
678 const Value *stripInBoundsConstantOffsets() const;
679 Value *stripInBoundsConstantOffsets() {
680 return const_cast<Value *>(
681 static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
682 }
683
684 /// Accumulate the constant offset this value has compared to a base pointer.
685 /// Only 'getelementptr' instructions (GEPs) are accumulated but other
686 /// instructions, e.g., casts, are stripped away as well.
687 /// The accumulated constant offset is added to \p Offset and the base
688 /// pointer is returned.
689 ///
690 /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
691 /// the address space of 'this' pointer value, e.g., use
692 /// DataLayout::getIndexTypeSizeInBits(Ty).
693 ///
694 /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and
695 /// accumulated even if the GEP is not "inbounds".
696 ///
697 /// If \p ExternalAnalysis is provided it will be used to calculate a offset
698 /// when a operand of GEP is not constant.
699 /// For example, for a value \p ExternalAnalysis might try to calculate a
700 /// lower bound. If \p ExternalAnalysis is successful, it should return true.
701 ///
702 /// If this is called on a non-pointer value, it returns 'this' and the
703 /// \p Offset is not modified.
704 ///
705 /// Note that this function will never return a nullptr. It will also never
706 /// manipulate the \p Offset in a way that would not match the difference
707 /// between the underlying value and the returned one. Thus, if no constant
708 /// offset was found, the returned value is the underlying one and \p Offset
709 /// is unchanged.
710 const Value *stripAndAccumulateConstantOffsets(
711 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
712 function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis =
713 nullptr) const;
714 Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
715 bool AllowNonInbounds) {
716 return const_cast<Value *>(
717 static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
718 DL, Offset, AllowNonInbounds));
719 }
720
721 /// This is a wrapper around stripAndAccumulateConstantOffsets with the
722 /// in-bounds requirement set to false.
723 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
724 APInt &Offset) const {
725 return stripAndAccumulateConstantOffsets(DL, Offset,
726 /* AllowNonInbounds */ false);
727 }
728 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
729 APInt &Offset) {
730 return stripAndAccumulateConstantOffsets(DL, Offset,
731 /* AllowNonInbounds */ false);
732 }
733
734 /// Strip off pointer casts and inbounds GEPs.
735 ///
736 /// Returns the original pointer value. If this is called on a non-pointer
737 /// value, it returns 'this'.
738 const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
739 [](const Value *) {}) const;
740 inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
741 [](const Value *) {}) {
742 return const_cast<Value *>(
743 static_cast<const Value *>(this)->stripInBoundsOffsets(Func));
744 }
745
746 /// Return true if the memory object referred to by V can by freed in the
747 /// scope for which the SSA value defining the allocation is statically
748 /// defined. E.g. deallocation after the static scope of a value does not
749 /// count, but a deallocation before that does.
750 bool canBeFreed() const;
751
752 /// Returns the number of bytes known to be dereferenceable for the
753 /// pointer value.
754 ///
755 /// If CanBeNull is set by this function the pointer can either be null or be
756 /// dereferenceable up to the returned number of bytes.
757 ///
758 /// IF CanBeFreed is true, the pointer is known to be dereferenceable at
759 /// point of definition only. Caller must prove that allocation is not
760 /// deallocated between point of definition and use.
761 uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
762 bool &CanBeNull,
763 bool &CanBeFreed) const;
764
765 /// Returns an alignment of the pointer value.
766 ///
767 /// Returns an alignment which is either specified explicitly, e.g. via
768 /// align attribute of a function argument, or guaranteed by DataLayout.
769 Align getPointerAlignment(const DataLayout &DL) const;
770
771 /// Translate PHI node to its predecessor from the given basic block.
772 ///
773 /// If this value is a PHI node with CurBB as its parent, return the value in
774 /// the PHI node corresponding to PredBB. If not, return ourself. This is
775 /// useful if you want to know the value something has in a predecessor
776 /// block.
777 const Value *DoPHITranslation(const BasicBlock *CurBB,
778 const BasicBlock *PredBB) const;
779 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
780 return const_cast<Value *>(
781 static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
782 }
783
784 /// The maximum alignment for instructions.
785 ///
786 /// This is the greatest alignment value supported by load, store, and alloca
787 /// instructions, and global values.
788 static constexpr unsigned MaxAlignmentExponent = 30;
789 static constexpr unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
790
791 /// Mutate the type of this Value to be of the specified type.
792 ///
793 /// Note that this is an extremely dangerous operation which can create
794 /// completely invalid IR very easily. It is strongly recommended that you
795 /// recreate IR objects with the right types instead of mutating them in
796 /// place.
797 void mutateType(Type *Ty) {
798 VTy = Ty;
799 }
800
801 /// Sort the use-list.
802 ///
803 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
804 /// expected to compare two \a Use references.
805 template <class Compare> void sortUseList(Compare Cmp);
806
807 /// Reverse the use-list.
808 void reverseUseList();
809
810private:
811 /// Merge two lists together.
812 ///
813 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
814 /// "equal" items from L before items from R.
815 ///
816 /// \return the first element in the list.
817 ///
818 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
819 template <class Compare>
820 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
821 Use *Merged;
822 Use **Next = &Merged;
823
824 while (true) {
825 if (!L) {
826 *Next = R;
827 break;
828 }
829 if (!R) {
830 *Next = L;
831 break;
832 }
833 if (Cmp(*R, *L)) {
834 *Next = R;
835 Next = &R->Next;
836 R = R->Next;
837 } else {
838 *Next = L;
839 Next = &L->Next;
840 L = L->Next;
841 }
842 }
843
844 return Merged;
845 }
846
847protected:
848 unsigned short getSubclassDataFromValue() const { return SubclassData; }
849 void setValueSubclassData(unsigned short D) { SubclassData = D; }
850};
851
852struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
853
854/// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
855/// Those don't work because Value and Instruction's destructors are protected,
856/// aren't virtual, and won't destroy the complete object.
857using unique_value = std::unique_ptr<Value, ValueDeleter>;
858
859inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
860 V.print(OS);
861 return OS;
862}
863
864void Use::set(Value *V) {
865 if (Val) removeFromList();
866 Val = V;
867 if (V) V->addUse(*this);
868}
869
870Value *Use::operator=(Value *RHS) {
871 set(RHS);
872 return RHS;
873}
874
875const Use &Use::operator=(const Use &RHS) {
876 set(RHS.Val);
877 return *this;
878}
879
880template <class Compare> void Value::sortUseList(Compare Cmp) {
881 if (!UseList || !UseList->Next)
882 // No need to sort 0 or 1 uses.
883 return;
884
885 // Note: this function completely ignores Prev pointers until the end when
886 // they're fixed en masse.
887
888 // Create a binomial vector of sorted lists, visiting uses one at a time and
889 // merging lists as necessary.
890 const unsigned MaxSlots = 32;
891 Use *Slots[MaxSlots];
892
893 // Collect the first use, turning it into a single-item list.
894 Use *Next = UseList->Next;
895 UseList->Next = nullptr;
896 unsigned NumSlots = 1;
897 Slots[0] = UseList;
898
899 // Collect all but the last use.
900 while (Next->Next) {
901 Use *Current = Next;
902 Next = Current->Next;
903
904 // Turn Current into a single-item list.
905 Current->Next = nullptr;
906
907 // Save Current in the first available slot, merging on collisions.
908 unsigned I;
909 for (I = 0; I < NumSlots; ++I) {
910 if (!Slots[I])
911 break;
912
913 // Merge two lists, doubling the size of Current and emptying slot I.
914 //
915 // Since the uses in Slots[I] originally preceded those in Current, send
916 // Slots[I] in as the left parameter to maintain a stable sort.
917 Current = mergeUseLists(Slots[I], Current, Cmp);
918 Slots[I] = nullptr;
919 }
920 // Check if this is a new slot.
921 if (I == NumSlots) {
922 ++NumSlots;
923 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32")(static_cast <bool> (NumSlots <= MaxSlots &&
"Use list bigger than 2^32") ? void (0) : __assert_fail ("NumSlots <= MaxSlots && \"Use list bigger than 2^32\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/include/llvm/IR/Value.h"
, 923, __extension__ __PRETTY_FUNCTION__))
;
924 }
925
926 // Found an open slot.
927 Slots[I] = Current;
928 }
929
930 // Merge all the lists together.
931 assert(Next && "Expected one more Use")(static_cast <bool> (Next && "Expected one more Use"
) ? void (0) : __assert_fail ("Next && \"Expected one more Use\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/include/llvm/IR/Value.h"
, 931, __extension__ __PRETTY_FUNCTION__))
;
932 assert(!Next->Next && "Expected only one Use")(static_cast <bool> (!Next->Next && "Expected only one Use"
) ? void (0) : __assert_fail ("!Next->Next && \"Expected only one Use\""
, "/build/llvm-toolchain-snapshot-14~++20211006100657+62d67d9e7c9c/llvm/include/llvm/IR/Value.h"
, 932, __extension__ __PRETTY_FUNCTION__))
;
933 UseList = Next;
934 for (unsigned I = 0; I < NumSlots; ++I)
935 if (Slots[I])
936 // Since the uses in Slots[I] originally preceded those in UseList, send
937 // Slots[I] in as the left parameter to maintain a stable sort.
938 UseList = mergeUseLists(Slots[I], UseList, Cmp);
939
940 // Fix the Prev pointers.
941 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
942 I->Prev = Prev;
943 Prev = &I->Next;
944 }
945}
946
947// isa - Provide some specializations of isa so that we don't have to include
948// the subtype header files to test to see if the value is a subclass...
949//
950template <> struct isa_impl<Constant, Value> {
951 static inline bool doit(const Value &Val) {
952 static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
953 return Val.getValueID() <= Value::ConstantLastVal;
954 }
955};
956
957template <> struct isa_impl<ConstantData, Value> {
958 static inline bool doit(const Value &Val) {
959 return Val.getValueID() >= Value::ConstantDataFirstVal &&
960 Val.getValueID() <= Value::ConstantDataLastVal;
961 }
962};
963
964template <> struct isa_impl<ConstantAggregate, Value> {
965 static inline bool doit(const Value &Val) {
966 return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
967 Val.getValueID() <= Value::ConstantAggregateLastVal;
968 }
969};
970
971template <> struct isa_impl<Argument, Value> {
972 static inline bool doit (const Value &Val) {
973 return Val.getValueID() == Value::ArgumentVal;
974 }
975};
976
977template <> struct isa_impl<InlineAsm, Value> {
978 static inline bool doit(const Value &Val) {
979 return Val.getValueID() == Value::InlineAsmVal;
980 }
981};
982
983template <> struct isa_impl<Instruction, Value> {
984 static inline bool doit(const Value &Val) {
985 return Val.getValueID() >= Value::InstructionVal;
986 }
987};
988
989template <> struct isa_impl<BasicBlock, Value> {
990 static inline bool doit(const Value &Val) {
991 return Val.getValueID() == Value::BasicBlockVal;
992 }
993};
994
995template <> struct isa_impl<Function, Value> {
996 static inline bool doit(const Value &Val) {
997 return Val.getValueID() == Value::FunctionVal;
998 }
999};
1000
1001template <> struct isa_impl<GlobalVariable, Value> {
1002 static inline bool doit(const Value &Val) {
1003 return Val.getValueID() == Value::GlobalVariableVal;
1004 }
1005};
1006
1007template <> struct isa_impl<GlobalAlias, Value> {
1008 static inline bool doit(const Value &Val) {
1009 return Val.getValueID() == Value::GlobalAliasVal;
1010 }
1011};
1012
1013template <> struct isa_impl<GlobalIFunc, Value> {
1014 static inline bool doit(const Value &Val) {
1015 return Val.getValueID() == Value::GlobalIFuncVal;
1016 }
1017};
1018
1019template <> struct isa_impl<GlobalIndirectSymbol, Value> {
1020 static inline bool doit(const Value &Val) {
1021 return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
1022 }
1023};
1024
1025template <> struct isa_impl<GlobalValue, Value> {
1026 static inline bool doit(const Value &Val) {
1027 return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
1028 }
1029};
1030
1031template <> struct isa_impl<GlobalObject, Value> {
1032 static inline bool doit(const Value &Val) {
1033 return isa<GlobalVariable>(Val) || isa<Function>(Val);
1034 }
1035};
1036
1037// Create wrappers for C Binding types (see CBindingWrapping.h).
1038DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)inline Value *unwrap(LLVMValueRef P) { return reinterpret_cast
<Value*>(P); } inline LLVMValueRef wrap(const Value *P)
{ return reinterpret_cast<LLVMValueRef>(const_cast<
Value*>(P)); } template<typename T> inline T *unwrap
(LLVMValueRef P) { return cast<T>(unwrap(P)); }
1039
1040// Specialized opaque value conversions.
1041inline Value **unwrap(LLVMValueRef *Vals) {
1042 return reinterpret_cast<Value**>(Vals);
1043}
1044
1045template<typename T>
1046inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
1047#ifndef NDEBUG
1048 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
1049 unwrap<T>(*I); // For side effect of calling assert on invalid usage.
1050#endif
1051 (void)Length;
1052 return reinterpret_cast<T**>(Vals);
1053}
1054
1055inline LLVMValueRef *wrap(const Value **Vals) {
1056 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
1057}
1058
1059} // end namespace llvm
1060
1061#endif // LLVM_IR_VALUE_H