Bug Summary

File:llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
Warning:line 672, column 24
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name InstCombineMulDivRem.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/InstCombine -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/InstCombine -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Transforms/InstCombine -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/InstCombine -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp

1//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10// srem, urem, frem.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/ADT/APFloat.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/Analysis/InstructionSimplify.h"
19#include "llvm/IR/BasicBlock.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/InstrTypes.h"
23#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/IntrinsicInst.h"
26#include "llvm/IR/Intrinsics.h"
27#include "llvm/IR/Operator.h"
28#include "llvm/IR/PatternMatch.h"
29#include "llvm/IR/Type.h"
30#include "llvm/IR/Value.h"
31#include "llvm/Support/Casting.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/KnownBits.h"
34#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
35#include "llvm/Transforms/InstCombine/InstCombiner.h"
36#include "llvm/Transforms/Utils/BuildLibCalls.h"
37#include <cassert>
38#include <cstddef>
39#include <cstdint>
40#include <utility>
41
42using namespace llvm;
43using namespace PatternMatch;
44
45#define DEBUG_TYPE"instcombine" "instcombine"
46
47/// The specific integer value is used in a context where it is known to be
48/// non-zero. If this allows us to simplify the computation, do so and return
49/// the new operand, otherwise return null.
50static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
51 Instruction &CxtI) {
52 // If V has multiple uses, then we would have to do more analysis to determine
53 // if this is safe. For example, the use could be in dynamically unreached
54 // code.
55 if (!V->hasOneUse()) return nullptr;
56
57 bool MadeChange = false;
58
59 // ((1 << A) >>u B) --> (1 << (A-B))
60 // Because V cannot be zero, we know that B is less than A.
61 Value *A = nullptr, *B = nullptr, *One = nullptr;
62 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
63 match(One, m_One())) {
64 A = IC.Builder.CreateSub(A, B);
65 return IC.Builder.CreateShl(One, A);
66 }
67
68 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
69 // inexact. Similarly for <<.
70 BinaryOperator *I = dyn_cast<BinaryOperator>(V);
71 if (I && I->isLogicalShift() &&
72 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
73 // We know that this is an exact/nuw shift and that the input is a
74 // non-zero context as well.
75 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
76 IC.replaceOperand(*I, 0, V2);
77 MadeChange = true;
78 }
79
80 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
81 I->setIsExact();
82 MadeChange = true;
83 }
84
85 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
86 I->setHasNoUnsignedWrap();
87 MadeChange = true;
88 }
89 }
90
91 // TODO: Lots more we could do here:
92 // If V is a phi node, we can call this on each of its operands.
93 // "select cond, X, 0" can simplify to "X".
94
95 return MadeChange ? V : nullptr;
96}
97
98// TODO: This is a specific form of a much more general pattern.
99// We could detect a select with any binop identity constant, or we
100// could use SimplifyBinOp to see if either arm of the select reduces.
101// But that needs to be done carefully and/or while removing potential
102// reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
103static Value *foldMulSelectToNegate(BinaryOperator &I,
104 InstCombiner::BuilderTy &Builder) {
105 Value *Cond, *OtherOp;
106
107 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
108 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
109 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
110 m_Value(OtherOp))))
111 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp));
112
113 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
114 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
115 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
116 m_Value(OtherOp))))
117 return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp);
118
119 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
120 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
121 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
122 m_SpecificFP(-1.0))),
123 m_Value(OtherOp)))) {
124 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
125 Builder.setFastMathFlags(I.getFastMathFlags());
126 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
127 }
128
129 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
130 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
131 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
132 m_SpecificFP(1.0))),
133 m_Value(OtherOp)))) {
134 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
135 Builder.setFastMathFlags(I.getFastMathFlags());
136 return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
137 }
138
139 return nullptr;
140}
141
142Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
143 if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
144 SQ.getWithInstruction(&I)))
145 return replaceInstUsesWith(I, V);
146
147 if (SimplifyAssociativeOrCommutative(I))
148 return &I;
149
150 if (Instruction *X = foldVectorBinop(I))
151 return X;
152
153 if (Value *V = SimplifyUsingDistributiveLaws(I))
154 return replaceInstUsesWith(I, V);
155
156 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
157 unsigned BitWidth = I.getType()->getScalarSizeInBits();
158
159 // X * -1 == 0 - X
160 if (match(Op1, m_AllOnes())) {
161 BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
162 if (I.hasNoSignedWrap())
163 BO->setHasNoSignedWrap();
164 return BO;
165 }
166
167 // Also allow combining multiply instructions on vectors.
168 {
169 Value *NewOp;
170 Constant *C1, *C2;
171 const APInt *IVal;
172 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
173 m_Constant(C1))) &&
174 match(C1, m_APInt(IVal))) {
175 // ((X << C2)*C1) == (X * (C1 << C2))
176 Constant *Shl = ConstantExpr::getShl(C1, C2);
177 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
178 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
179 if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
180 BO->setHasNoUnsignedWrap();
181 if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
182 Shl->isNotMinSignedValue())
183 BO->setHasNoSignedWrap();
184 return BO;
185 }
186
187 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
188 // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
189 if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
190 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
191
192 if (I.hasNoUnsignedWrap())
193 Shl->setHasNoUnsignedWrap();
194 if (I.hasNoSignedWrap()) {
195 const APInt *V;
196 if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
197 Shl->setHasNoSignedWrap();
198 }
199
200 return Shl;
201 }
202 }
203 }
204
205 if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
206 // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
207 // The "* (1<<C)" thus becomes a potential shifting opportunity.
208 if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
209 return BinaryOperator::CreateMul(
210 NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
211 }
212
213 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
214 return FoldedMul;
215
216 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
217 return replaceInstUsesWith(I, FoldedMul);
218
219 // Simplify mul instructions with a constant RHS.
220 if (isa<Constant>(Op1)) {
221 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
222 Value *X;
223 Constant *C1;
224 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
225 Value *Mul = Builder.CreateMul(C1, Op1);
226 // Only go forward with the transform if C1*CI simplifies to a tidier
227 // constant.
228 if (!match(Mul, m_Mul(m_Value(), m_Value())))
229 return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
230 }
231 }
232
233 // abs(X) * abs(X) -> X * X
234 // nabs(X) * nabs(X) -> X * X
235 if (Op0 == Op1) {
236 Value *X, *Y;
237 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
238 if (SPF == SPF_ABS || SPF == SPF_NABS)
239 return BinaryOperator::CreateMul(X, X);
240
241 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
242 return BinaryOperator::CreateMul(X, X);
243 }
244
245 // -X * C --> X * -C
246 Value *X, *Y;
247 Constant *Op1C;
248 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
249 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
250
251 // -X * -Y --> X * Y
252 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
253 auto *NewMul = BinaryOperator::CreateMul(X, Y);
254 if (I.hasNoSignedWrap() &&
255 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
256 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
257 NewMul->setHasNoSignedWrap();
258 return NewMul;
259 }
260
261 // -X * Y --> -(X * Y)
262 // X * -Y --> -(X * Y)
263 if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
264 return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
265
266 // (X / Y) * Y = X - (X % Y)
267 // (X / Y) * -Y = (X % Y) - X
268 {
269 Value *Y = Op1;
270 BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
271 if (!Div || (Div->getOpcode() != Instruction::UDiv &&
272 Div->getOpcode() != Instruction::SDiv)) {
273 Y = Op0;
274 Div = dyn_cast<BinaryOperator>(Op1);
275 }
276 Value *Neg = dyn_castNegVal(Y);
277 if (Div && Div->hasOneUse() &&
278 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
279 (Div->getOpcode() == Instruction::UDiv ||
280 Div->getOpcode() == Instruction::SDiv)) {
281 Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
282
283 // If the division is exact, X % Y is zero, so we end up with X or -X.
284 if (Div->isExact()) {
285 if (DivOp1 == Y)
286 return replaceInstUsesWith(I, X);
287 return BinaryOperator::CreateNeg(X);
288 }
289
290 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
291 : Instruction::SRem;
292 Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
293 if (DivOp1 == Y)
294 return BinaryOperator::CreateSub(X, Rem);
295 return BinaryOperator::CreateSub(Rem, X);
296 }
297 }
298
299 /// i1 mul -> i1 and.
300 if (I.getType()->isIntOrIntVectorTy(1))
301 return BinaryOperator::CreateAnd(Op0, Op1);
302
303 // X*(1 << Y) --> X << Y
304 // (1 << Y)*X --> X << Y
305 {
306 Value *Y;
307 BinaryOperator *BO = nullptr;
308 bool ShlNSW = false;
309 if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
310 BO = BinaryOperator::CreateShl(Op1, Y);
311 ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
312 } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
313 BO = BinaryOperator::CreateShl(Op0, Y);
314 ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
315 }
316 if (BO) {
317 if (I.hasNoUnsignedWrap())
318 BO->setHasNoUnsignedWrap();
319 if (I.hasNoSignedWrap() && ShlNSW)
320 BO->setHasNoSignedWrap();
321 return BO;
322 }
323 }
324
325 // (zext bool X) * (zext bool Y) --> zext (and X, Y)
326 // (sext bool X) * (sext bool Y) --> zext (and X, Y)
327 // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
328 if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
329 (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
330 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
331 (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
332 Value *And = Builder.CreateAnd(X, Y, "mulbool");
333 return CastInst::Create(Instruction::ZExt, And, I.getType());
334 }
335 // (sext bool X) * (zext bool Y) --> sext (and X, Y)
336 // (zext bool X) * (sext bool Y) --> sext (and X, Y)
337 // Note: -1 * 1 == 1 * -1 == -1
338 if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
339 (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
340 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
341 (Op0->hasOneUse() || Op1->hasOneUse())) {
342 Value *And = Builder.CreateAnd(X, Y, "mulbool");
343 return CastInst::Create(Instruction::SExt, And, I.getType());
344 }
345
346 // (bool X) * Y --> X ? Y : 0
347 // Y * (bool X) --> X ? Y : 0
348 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
349 return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
350 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
351 return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
352
353 // (lshr X, 31) * Y --> (ashr X, 31) & Y
354 // Y * (lshr X, 31) --> (ashr X, 31) & Y
355 // TODO: We are not checking one-use because the elimination of the multiply
356 // is better for analysis?
357 // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
358 // more similar to what we're doing above.
359 const APInt *C;
360 if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
361 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
362 if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
363 return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
364
365 // ((ashr X, 31) | 1) * X --> abs(X)
366 // X * ((ashr X, 31) | 1) --> abs(X)
367 if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
368 m_SpecificIntAllowUndef(BitWidth - 1)),
369 m_One()),
370 m_Deferred(X)))) {
371 Value *Abs = Builder.CreateBinaryIntrinsic(
372 Intrinsic::abs, X,
373 ConstantInt::getBool(I.getContext(), I.hasNoSignedWrap()));
374 Abs->takeName(&I);
375 return replaceInstUsesWith(I, Abs);
376 }
377
378 if (Instruction *Ext = narrowMathIfNoOverflow(I))
379 return Ext;
380
381 bool Changed = false;
382 if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
383 Changed = true;
384 I.setHasNoSignedWrap(true);
385 }
386
387 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
388 Changed = true;
389 I.setHasNoUnsignedWrap(true);
390 }
391
392 return Changed ? &I : nullptr;
393}
394
395Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
396 BinaryOperator::BinaryOps Opcode = I.getOpcode();
397 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&(static_cast<void> (0))
398 "Expected fmul or fdiv")(static_cast<void> (0));
399
400 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
401 Value *X, *Y;
402
403 // -X * -Y --> X * Y
404 // -X / -Y --> X / Y
405 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
406 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
407
408 // fabs(X) * fabs(X) -> X * X
409 // fabs(X) / fabs(X) -> X / X
410 if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
411 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
412
413 // fabs(X) * fabs(Y) --> fabs(X * Y)
414 // fabs(X) / fabs(Y) --> fabs(X / Y)
415 if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
416 (Op0->hasOneUse() || Op1->hasOneUse())) {
417 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
418 Builder.setFastMathFlags(I.getFastMathFlags());
419 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
420 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
421 Fabs->takeName(&I);
422 return replaceInstUsesWith(I, Fabs);
423 }
424
425 return nullptr;
426}
427
428Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
429 if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
430 I.getFastMathFlags(),
431 SQ.getWithInstruction(&I)))
432 return replaceInstUsesWith(I, V);
433
434 if (SimplifyAssociativeOrCommutative(I))
435 return &I;
436
437 if (Instruction *X = foldVectorBinop(I))
438 return X;
439
440 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
441 return FoldedMul;
442
443 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
444 return replaceInstUsesWith(I, FoldedMul);
445
446 if (Instruction *R = foldFPSignBitOps(I))
447 return R;
448
449 // X * -1.0 --> -X
450 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
451 if (match(Op1, m_SpecificFP(-1.0)))
452 return UnaryOperator::CreateFNegFMF(Op0, &I);
453
454 // -X * C --> X * -C
455 Value *X, *Y;
456 Constant *C;
457 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
458 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
459
460 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
461 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
462 return replaceInstUsesWith(I, V);
463
464 if (I.hasAllowReassoc()) {
465 // Reassociate constant RHS with another constant to form constant
466 // expression.
467 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
468 Constant *C1;
469 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
470 // (C1 / X) * C --> (C * C1) / X
471 Constant *CC1 = ConstantExpr::getFMul(C, C1);
472 if (CC1->isNormalFP())
473 return BinaryOperator::CreateFDivFMF(CC1, X, &I);
474 }
475 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
476 // (X / C1) * C --> X * (C / C1)
477 Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
478 if (CDivC1->isNormalFP())
479 return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
480
481 // If the constant was a denormal, try reassociating differently.
482 // (X / C1) * C --> X / (C1 / C)
483 Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
484 if (Op0->hasOneUse() && C1DivC->isNormalFP())
485 return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
486 }
487
488 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
489 // canonicalized to 'fadd X, C'. Distributing the multiply may allow
490 // further folds and (X * C) + C2 is 'fma'.
491 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
492 // (X + C1) * C --> (X * C) + (C * C1)
493 Constant *CC1 = ConstantExpr::getFMul(C, C1);
494 Value *XC = Builder.CreateFMulFMF(X, C, &I);
495 return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
496 }
497 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
498 // (C1 - X) * C --> (C * C1) - (X * C)
499 Constant *CC1 = ConstantExpr::getFMul(C, C1);
500 Value *XC = Builder.CreateFMulFMF(X, C, &I);
501 return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
502 }
503 }
504
505 Value *Z;
506 if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
507 m_Value(Z)))) {
508 // Sink division: (X / Y) * Z --> (X * Z) / Y
509 Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
510 return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
511 }
512
513 // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
514 // nnan disallows the possibility of returning a number if both operands are
515 // negative (in that case, we should return NaN).
516 if (I.hasNoNaNs() &&
517 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
518 match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
519 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
520 Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
521 return replaceInstUsesWith(I, Sqrt);
522 }
523
524 // The following transforms are done irrespective of the number of uses
525 // for the expression "1.0/sqrt(X)".
526 // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
527 // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
528 // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
529 // has the necessary (reassoc) fast-math-flags.
530 if (I.hasNoSignedZeros() &&
531 match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
532 match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op1 == X)
533 return BinaryOperator::CreateFDivFMF(X, Y, &I);
534 if (I.hasNoSignedZeros() &&
535 match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
536 match(Y, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && Op0 == X)
537 return BinaryOperator::CreateFDivFMF(X, Y, &I);
538
539 // Like the similar transform in instsimplify, this requires 'nsz' because
540 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
541 if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
542 Op0->hasNUses(2)) {
543 // Peek through fdiv to find squaring of square root:
544 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
545 if (match(Op0, m_FDiv(m_Value(X),
546 m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
547 Value *XX = Builder.CreateFMulFMF(X, X, &I);
548 return BinaryOperator::CreateFDivFMF(XX, Y, &I);
549 }
550 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
551 if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
552 m_Value(X)))) {
553 Value *XX = Builder.CreateFMulFMF(X, X, &I);
554 return BinaryOperator::CreateFDivFMF(Y, XX, &I);
555 }
556 }
557
558 if (I.isOnlyUserOfAnyOperand()) {
559 // pow(x, y) * pow(x, z) -> pow(x, y + z)
560 if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
561 match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
562 auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
563 auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
564 return replaceInstUsesWith(I, NewPow);
565 }
566
567 // exp(X) * exp(Y) -> exp(X + Y)
568 if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
569 match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
570 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
571 Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
572 return replaceInstUsesWith(I, Exp);
573 }
574
575 // exp2(X) * exp2(Y) -> exp2(X + Y)
576 if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
577 match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
578 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
579 Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
580 return replaceInstUsesWith(I, Exp2);
581 }
582 }
583
584 // (X*Y) * X => (X*X) * Y where Y != X
585 // The purpose is two-fold:
586 // 1) to form a power expression (of X).
587 // 2) potentially shorten the critical path: After transformation, the
588 // latency of the instruction Y is amortized by the expression of X*X,
589 // and therefore Y is in a "less critical" position compared to what it
590 // was before the transformation.
591 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
592 Op1 != Y) {
593 Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
594 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
595 }
596 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
597 Op0 != Y) {
598 Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
599 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
600 }
601 }
602
603 // log2(X * 0.5) * Y = log2(X) * Y - Y
604 if (I.isFast()) {
605 IntrinsicInst *Log2 = nullptr;
606 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
607 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
608 Log2 = cast<IntrinsicInst>(Op0);
609 Y = Op1;
610 }
611 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
612 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
613 Log2 = cast<IntrinsicInst>(Op1);
614 Y = Op0;
615 }
616 if (Log2) {
617 Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
618 Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
619 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
620 }
621 }
622
623 return nullptr;
624}
625
626/// Fold a divide or remainder with a select instruction divisor when one of the
627/// select operands is zero. In that case, we can use the other select operand
628/// because div/rem by zero is undefined.
629bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
630 SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
631 if (!SI)
9
Assuming 'SI' is non-null
10
Taking false branch
632 return false;
633
634 int NonNullOperand;
635 if (match(SI->getTrueValue(), m_Zero()))
11
Calling 'match<llvm::Value, llvm::PatternMatch::is_zero>'
18
Returning from 'match<llvm::Value, llvm::PatternMatch::is_zero>'
19
Assuming the condition is true
20
Taking true branch
636 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
637 NonNullOperand = 2;
638 else if (match(SI->getFalseValue(), m_Zero()))
639 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
640 NonNullOperand = 1;
641 else
642 return false;
643
644 // Change the div/rem to use 'Y' instead of the select.
645 replaceOperand(I, 1, SI->getOperand(NonNullOperand));
646
647 // Okay, we know we replace the operand of the div/rem with 'Y' with no
648 // problem. However, the select, or the condition of the select may have
649 // multiple uses. Based on our knowledge that the operand must be non-zero,
650 // propagate the known value for the select into other uses of it, and
651 // propagate a known value of the condition into its other users.
652
653 // If the select and condition only have a single use, don't bother with this,
654 // early exit.
655 Value *SelectCond = SI->getCondition();
656 if (SI->use_empty() && SelectCond->hasOneUse())
21
Calling 'Value::use_empty'
24
Returning from 'Value::use_empty'
657 return true;
658
659 // Scan the current block backward, looking for other uses of SI.
660 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
661 Type *CondTy = SelectCond->getType();
662 while (BBI != BBFront) {
25
Calling 'operator!='
28
Returning from 'operator!='
29
Loop condition is true. Entering loop body
37
Calling 'operator!='
40
Returning from 'operator!='
41
Loop condition is true. Entering loop body
663 --BBI;
664 // If we found an instruction that we can't assume will return, so
665 // information from below it cannot be propagated above it.
666 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
30
Assuming the condition is false
31
Taking false branch
42
Assuming the condition is false
43
Taking false branch
667 break;
668
669 // Replace uses of the select or its condition with the known values.
670 for (Use &Op : BBI->operands()) {
32
Assuming '__begin2' is equal to '__end2'
44
Assuming '__begin2' is not equal to '__end2'
671 if (Op == SI) {
45
Assuming the condition is true
46
Taking true branch
672 replaceUse(Op, SI->getOperand(NonNullOperand));
47
Called C++ object pointer is null
673 Worklist.push(&*BBI);
674 } else if (Op == SelectCond) {
675 replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
676 : ConstantInt::getFalse(CondTy));
677 Worklist.push(&*BBI);
678 }
679 }
680
681 // If we past the instruction, quit looking for it.
682 if (&*BBI == SI)
33
Assuming the condition is true
34
Taking true branch
683 SI = nullptr;
35
Null pointer value stored to 'SI'
684 if (&*BBI == SelectCond)
36
Assuming the condition is false
685 SelectCond = nullptr;
686
687 // If we ran out of things to eliminate, break out of the loop.
688 if (!SelectCond
36.1
'SelectCond' is non-null
36.1
'SelectCond' is non-null
36.1
'SelectCond' is non-null
36.1
'SelectCond' is non-null
&& !SI)
689 break;
690
691 }
692 return true;
693}
694
695/// True if the multiply can not be expressed in an int this size.
696static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
697 bool IsSigned) {
698 bool Overflow;
699 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
700 return Overflow;
701}
702
703/// True if C1 is a multiple of C2. Quotient contains C1/C2.
704static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
705 bool IsSigned) {
706 assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal")(static_cast<void> (0));
707
708 // Bail if we will divide by zero.
709 if (C2.isNullValue())
710 return false;
711
712 // Bail if we would divide INT_MIN by -1.
713 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
714 return false;
715
716 APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
717 if (IsSigned)
718 APInt::sdivrem(C1, C2, Quotient, Remainder);
719 else
720 APInt::udivrem(C1, C2, Quotient, Remainder);
721
722 return Remainder.isMinValue();
723}
724
725/// This function implements the transforms common to both integer division
726/// instructions (udiv and sdiv). It is called by the visitors to those integer
727/// division instructions.
728/// Common integer divide transforms
729Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
730 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
731 bool IsSigned = I.getOpcode() == Instruction::SDiv;
732 Type *Ty = I.getType();
733
734 // The RHS is known non-zero.
735 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
736 return replaceOperand(I, 1, V);
737
738 // Handle cases involving: [su]div X, (select Cond, Y, Z)
739 // This does not apply for fdiv.
740 if (simplifyDivRemOfSelectWithZeroOp(I))
741 return &I;
742
743 const APInt *C2;
744 if (match(Op1, m_APInt(C2))) {
745 Value *X;
746 const APInt *C1;
747
748 // (X / C1) / C2 -> X / (C1*C2)
749 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
750 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
751 APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
752 if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
753 return BinaryOperator::Create(I.getOpcode(), X,
754 ConstantInt::get(Ty, Product));
755 }
756
757 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
758 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
759 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
760
761 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
762 if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
763 auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
764 ConstantInt::get(Ty, Quotient));
765 NewDiv->setIsExact(I.isExact());
766 return NewDiv;
767 }
768
769 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
770 if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
771 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
772 ConstantInt::get(Ty, Quotient));
773 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
774 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
775 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
776 return Mul;
777 }
778 }
779
780 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
781 *C1 != C1->getBitWidth() - 1) ||
782 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
783 APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
784 APInt C1Shifted = APInt::getOneBitSet(
785 C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
786
787 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
788 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
789 auto *BO = BinaryOperator::Create(I.getOpcode(), X,
790 ConstantInt::get(Ty, Quotient));
791 BO->setIsExact(I.isExact());
792 return BO;
793 }
794
795 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
796 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
797 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
798 ConstantInt::get(Ty, Quotient));
799 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
800 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
801 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
802 return Mul;
803 }
804 }
805
806 if (!C2->isNullValue()) // avoid X udiv 0
807 if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
808 return FoldedDiv;
809 }
810
811 if (match(Op0, m_One())) {
812 assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?")(static_cast<void> (0));
813 if (IsSigned) {
814 // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
815 // result is one, if Op1 is -1 then the result is minus one, otherwise
816 // it's zero.
817 Value *Inc = Builder.CreateAdd(Op1, Op0);
818 Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
819 return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
820 } else {
821 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
822 // result is one, otherwise it's zero.
823 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
824 }
825 }
826
827 // See if we can fold away this div instruction.
828 if (SimplifyDemandedInstructionBits(I))
829 return &I;
830
831 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
832 Value *X, *Z;
833 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
834 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
835 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
836 return BinaryOperator::Create(I.getOpcode(), X, Op1);
837
838 // (X << Y) / X -> 1 << Y
839 Value *Y;
840 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
841 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
842 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
843 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
844
845 // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
846 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
847 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
848 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
849 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
850 replaceOperand(I, 0, ConstantInt::get(Ty, 1));
851 replaceOperand(I, 1, Y);
852 return &I;
853 }
854 }
855
856 return nullptr;
857}
858
859static const unsigned MaxDepth = 6;
860
861namespace {
862
863using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
864 const BinaryOperator &I,
865 InstCombinerImpl &IC);
866
867/// Used to maintain state for visitUDivOperand().
868struct UDivFoldAction {
869 /// Informs visitUDiv() how to fold this operand. This can be zero if this
870 /// action joins two actions together.
871 FoldUDivOperandCb FoldAction;
872
873 /// Which operand to fold.
874 Value *OperandToFold;
875
876 union {
877 /// The instruction returned when FoldAction is invoked.
878 Instruction *FoldResult;
879
880 /// Stores the LHS action index if this action joins two actions together.
881 size_t SelectLHSIdx;
882 };
883
884 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
885 : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
886 UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
887 : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
888};
889
890} // end anonymous namespace
891
892// X udiv 2^C -> X >> C
893static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
894 const BinaryOperator &I,
895 InstCombinerImpl &IC) {
896 Constant *C1 = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
897 if (!C1)
898 llvm_unreachable("Failed to constant fold udiv -> logbase2")__builtin_unreachable();
899 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
900 if (I.isExact())
901 LShr->setIsExact();
902 return LShr;
903}
904
905// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
906// X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
907static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
908 InstCombinerImpl &IC) {
909 Value *ShiftLeft;
910 if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
911 ShiftLeft = Op1;
912
913 Constant *CI;
914 Value *N;
915 if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
916 llvm_unreachable("match should never fail here!")__builtin_unreachable();
917 Constant *Log2Base = ConstantExpr::getExactLogBase2(CI);
918 if (!Log2Base)
919 llvm_unreachable("getLogBase2 should never fail here!")__builtin_unreachable();
920 N = IC.Builder.CreateAdd(N, Log2Base);
921 if (Op1 != ShiftLeft)
922 N = IC.Builder.CreateZExt(N, Op1->getType());
923 BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
924 if (I.isExact())
925 LShr->setIsExact();
926 return LShr;
927}
928
929// Recursively visits the possible right hand operands of a udiv
930// instruction, seeing through select instructions, to determine if we can
931// replace the udiv with something simpler. If we find that an operand is not
932// able to simplify the udiv, we abort the entire transformation.
933static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
934 SmallVectorImpl<UDivFoldAction> &Actions,
935 unsigned Depth = 0) {
936 // FIXME: assert that Op1 isn't/doesn't contain undef.
937
938 // Check to see if this is an unsigned division with an exact power of 2,
939 // if so, convert to a right shift.
940 if (match(Op1, m_Power2())) {
941 Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
942 return Actions.size();
943 }
944
945 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
946 if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
947 match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
948 Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
949 return Actions.size();
950 }
951
952 // The remaining tests are all recursive, so bail out if we hit the limit.
953 if (Depth++ == MaxDepth)
954 return 0;
955
956 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
957 // FIXME: missed optimization: if one of the hands of select is/contains
958 // undef, just directly pick the other one.
959 // FIXME: can both hands contain undef?
960 if (size_t LHSIdx =
961 visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
962 if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
963 Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
964 return Actions.size();
965 }
966
967 return 0;
968}
969
970/// If we have zero-extended operands of an unsigned div or rem, we may be able
971/// to narrow the operation (sink the zext below the math).
972static Instruction *narrowUDivURem(BinaryOperator &I,
973 InstCombiner::BuilderTy &Builder) {
974 Instruction::BinaryOps Opcode = I.getOpcode();
975 Value *N = I.getOperand(0);
976 Value *D = I.getOperand(1);
977 Type *Ty = I.getType();
978 Value *X, *Y;
979 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
980 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
981 // udiv (zext X), (zext Y) --> zext (udiv X, Y)
982 // urem (zext X), (zext Y) --> zext (urem X, Y)
983 Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
984 return new ZExtInst(NarrowOp, Ty);
985 }
986
987 Constant *C;
988 if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
989 (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
990 // If the constant is the same in the smaller type, use the narrow version.
991 Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
992 if (ConstantExpr::getZExt(TruncC, Ty) != C)
993 return nullptr;
994
995 // udiv (zext X), C --> zext (udiv X, C')
996 // urem (zext X), C --> zext (urem X, C')
997 // udiv C, (zext X) --> zext (udiv C', X)
998 // urem C, (zext X) --> zext (urem C', X)
999 Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
1000 : Builder.CreateBinOp(Opcode, TruncC, X);
1001 return new ZExtInst(NarrowOp, Ty);
1002 }
1003
1004 return nullptr;
1005}
1006
1007Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
1008 if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
1009 SQ.getWithInstruction(&I)))
1010 return replaceInstUsesWith(I, V);
1011
1012 if (Instruction *X = foldVectorBinop(I))
1013 return X;
1014
1015 // Handle the integer div common cases
1016 if (Instruction *Common = commonIDivTransforms(I))
1017 return Common;
1018
1019 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1020 Value *X;
1021 const APInt *C1, *C2;
1022 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1023 // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1024 bool Overflow;
1025 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1026 if (!Overflow) {
1027 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1028 BinaryOperator *BO = BinaryOperator::CreateUDiv(
1029 X, ConstantInt::get(X->getType(), C2ShlC1));
1030 if (IsExact)
1031 BO->setIsExact();
1032 return BO;
1033 }
1034 }
1035
1036 // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1037 // TODO: Could use isKnownNegative() to handle non-constant values.
1038 Type *Ty = I.getType();
1039 if (match(Op1, m_Negative())) {
1040 Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1041 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1042 }
1043 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1044 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1045 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1046 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1047 }
1048
1049 if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1050 return NarrowDiv;
1051
1052 // If the udiv operands are non-overflowing multiplies with a common operand,
1053 // then eliminate the common factor:
1054 // (A * B) / (A * X) --> B / X (and commuted variants)
1055 // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1056 // TODO: If -reassociation handled this generally, we could remove this.
1057 Value *A, *B;
1058 if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1059 if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1060 match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1061 return BinaryOperator::CreateUDiv(B, X);
1062 if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1063 match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1064 return BinaryOperator::CreateUDiv(A, X);
1065 }
1066
1067 // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
1068 SmallVector<UDivFoldAction, 6> UDivActions;
1069 if (visitUDivOperand(Op0, Op1, I, UDivActions))
1070 for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
1071 FoldUDivOperandCb Action = UDivActions[i].FoldAction;
1072 Value *ActionOp1 = UDivActions[i].OperandToFold;
1073 Instruction *Inst;
1074 if (Action)
1075 Inst = Action(Op0, ActionOp1, I, *this);
1076 else {
1077 // This action joins two actions together. The RHS of this action is
1078 // simply the last action we processed, we saved the LHS action index in
1079 // the joining action.
1080 size_t SelectRHSIdx = i - 1;
1081 Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
1082 size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
1083 Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
1084 Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
1085 SelectLHS, SelectRHS);
1086 }
1087
1088 // If this is the last action to process, return it to the InstCombiner.
1089 // Otherwise, we insert it before the UDiv and record it so that we may
1090 // use it as part of a joining action (i.e., a SelectInst).
1091 if (e - i != 1) {
1092 Inst->insertBefore(&I);
1093 UDivActions[i].FoldResult = Inst;
1094 } else
1095 return Inst;
1096 }
1097
1098 return nullptr;
1099}
1100
1101Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1102 if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
1103 SQ.getWithInstruction(&I)))
1104 return replaceInstUsesWith(I, V);
1105
1106 if (Instruction *X = foldVectorBinop(I))
1107 return X;
1108
1109 // Handle the integer div common cases
1110 if (Instruction *Common = commonIDivTransforms(I))
1111 return Common;
1112
1113 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1114 Type *Ty = I.getType();
1115 Value *X;
1116 // sdiv Op0, -1 --> -Op0
1117 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1118 if (match(Op1, m_AllOnes()) ||
1119 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1120 return BinaryOperator::CreateNeg(Op0);
1121
1122 // X / INT_MIN --> X == INT_MIN
1123 if (match(Op1, m_SignMask()))
1124 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1125
1126 // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
1127 // sdiv exact X, -1<<C --> -(ashr exact X, C)
1128 if (I.isExact() && ((match(Op1, m_Power2()) && match(Op1, m_NonNegative())) ||
1129 match(Op1, m_NegatedPower2()))) {
1130 bool DivisorWasNegative = match(Op1, m_NegatedPower2());
1131 if (DivisorWasNegative)
1132 Op1 = ConstantExpr::getNeg(cast<Constant>(Op1));
1133 auto *AShr = BinaryOperator::CreateExactAShr(
1134 Op0, ConstantExpr::getExactLogBase2(cast<Constant>(Op1)), I.getName());
1135 if (!DivisorWasNegative)
1136 return AShr;
1137 Builder.Insert(AShr);
1138 AShr->setName(I.getName() + ".neg");
1139 return BinaryOperator::CreateNeg(AShr, I.getName());
1140 }
1141
1142 const APInt *Op1C;
1143 if (match(Op1, m_APInt(Op1C))) {
1144 // If the dividend is sign-extended and the constant divisor is small enough
1145 // to fit in the source type, shrink the division to the narrower type:
1146 // (sext X) sdiv C --> sext (X sdiv C)
1147 Value *Op0Src;
1148 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1149 Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
1150
1151 // In the general case, we need to make sure that the dividend is not the
1152 // minimum signed value because dividing that by -1 is UB. But here, we
1153 // know that the -1 divisor case is already handled above.
1154
1155 Constant *NarrowDivisor =
1156 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1157 Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1158 return new SExtInst(NarrowOp, Ty);
1159 }
1160
1161 // -X / C --> X / -C (if the negation doesn't overflow).
1162 // TODO: This could be enhanced to handle arbitrary vector constants by
1163 // checking if all elements are not the min-signed-val.
1164 if (!Op1C->isMinSignedValue() &&
1165 match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1166 Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1167 Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1168 BO->setIsExact(I.isExact());
1169 return BO;
1170 }
1171 }
1172
1173 // -X / Y --> -(X / Y)
1174 Value *Y;
1175 if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1176 return BinaryOperator::CreateNSWNeg(
1177 Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1178
1179 // abs(X) / X --> X > -1 ? 1 : -1
1180 // X / abs(X) --> X > -1 ? 1 : -1
1181 if (match(&I, m_c_BinOp(
1182 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1183 m_Deferred(X)))) {
1184 Constant *NegOne = ConstantInt::getAllOnesValue(Ty);
1185 Value *Cond = Builder.CreateICmpSGT(X, NegOne);
1186 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1), NegOne);
1187 }
1188
1189 // If the sign bits of both operands are zero (i.e. we can prove they are
1190 // unsigned inputs), turn this into a udiv.
1191 APInt Mask(APInt::getSignMask(Ty->getScalarSizeInBits()));
1192 if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
1193 if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
1194 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
1195 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1196 BO->setIsExact(I.isExact());
1197 return BO;
1198 }
1199
1200 if (match(Op1, m_NegatedPower2())) {
1201 // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1202 // -> -(X udiv (1 << C)) -> -(X u>> C)
1203 return BinaryOperator::CreateNeg(Builder.Insert(foldUDivPow2Cst(
1204 Op0, ConstantExpr::getNeg(cast<Constant>(Op1)), I, *this)));
1205 }
1206
1207 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1208 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1209 // Safe because the only negative value (1 << Y) can take on is
1210 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1211 // the sign bit set.
1212 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1213 BO->setIsExact(I.isExact());
1214 return BO;
1215 }
1216 }
1217
1218 return nullptr;
1219}
1220
1221/// Remove negation and try to convert division into multiplication.
1222static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
1223 Constant *C;
1224 if (!match(I.getOperand(1), m_Constant(C)))
1225 return nullptr;
1226
1227 // -X / C --> X / -C
1228 Value *X;
1229 if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1230 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1231
1232 // If the constant divisor has an exact inverse, this is always safe. If not,
1233 // then we can still create a reciprocal if fast-math-flags allow it and the
1234 // constant is a regular number (not zero, infinite, or denormal).
1235 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1236 return nullptr;
1237
1238 // Disallow denormal constants because we don't know what would happen
1239 // on all targets.
1240 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1241 // denorms are flushed?
1242 auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
1243 if (!RecipC->isNormalFP())
1244 return nullptr;
1245
1246 // X / C --> X * (1 / C)
1247 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1248}
1249
1250/// Remove negation and try to reassociate constant math.
1251static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1252 Constant *C;
1253 if (!match(I.getOperand(0), m_Constant(C)))
1254 return nullptr;
1255
1256 // C / -X --> -C / X
1257 Value *X;
1258 if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1259 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1260
1261 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1262 return nullptr;
1263
1264 // Try to reassociate C / X expressions where X includes another constant.
1265 Constant *C2, *NewC = nullptr;
1266 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1267 // C / (X * C2) --> (C / C2) / X
1268 NewC = ConstantExpr::getFDiv(C, C2);
1269 } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1270 // C / (X / C2) --> (C * C2) / X
1271 NewC = ConstantExpr::getFMul(C, C2);
1272 }
1273 // Disallow denormal constants because we don't know what would happen
1274 // on all targets.
1275 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1276 // denorms are flushed?
1277 if (!NewC || !NewC->isNormalFP())
1278 return nullptr;
1279
1280 return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1281}
1282
1283/// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1284static Instruction *foldFDivPowDivisor(BinaryOperator &I,
1285 InstCombiner::BuilderTy &Builder) {
1286 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1287 auto *II = dyn_cast<IntrinsicInst>(Op1);
1288 if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1289 !I.hasAllowReciprocal())
1290 return nullptr;
1291
1292 // Z / pow(X, Y) --> Z * pow(X, -Y)
1293 // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1294 // In the general case, this creates an extra instruction, but fmul allows
1295 // for better canonicalization and optimization than fdiv.
1296 Intrinsic::ID IID = II->getIntrinsicID();
1297 SmallVector<Value *> Args;
1298 switch (IID) {
1299 case Intrinsic::pow:
1300 Args.push_back(II->getArgOperand(0));
1301 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1302 break;
1303 case Intrinsic::powi: {
1304 // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1305 // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1306 // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1307 // non-standard results, so this corner case should be acceptable if the
1308 // code rules out INF values.
1309 if (!I.hasNoInfs())
1310 return nullptr;
1311 Args.push_back(II->getArgOperand(0));
1312 Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1313 Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
1314 Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
1315 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1316 }
1317 case Intrinsic::exp:
1318 case Intrinsic::exp2:
1319 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1320 break;
1321 default:
1322 return nullptr;
1323 }
1324 Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1325 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1326}
1327
1328Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
1329 if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
1330 I.getFastMathFlags(),
1331 SQ.getWithInstruction(&I)))
1332 return replaceInstUsesWith(I, V);
1333
1334 if (Instruction *X = foldVectorBinop(I))
1335 return X;
1336
1337 if (Instruction *R = foldFDivConstantDivisor(I))
1338 return R;
1339
1340 if (Instruction *R = foldFDivConstantDividend(I))
1341 return R;
1342
1343 if (Instruction *R = foldFPSignBitOps(I))
1344 return R;
1345
1346 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1347 if (isa<Constant>(Op0))
1348 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1349 if (Instruction *R = FoldOpIntoSelect(I, SI))
1350 return R;
1351
1352 if (isa<Constant>(Op1))
1353 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1354 if (Instruction *R = FoldOpIntoSelect(I, SI))
1355 return R;
1356
1357 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1358 Value *X, *Y;
1359 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1360 (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1361 // (X / Y) / Z => X / (Y * Z)
1362 Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1363 return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1364 }
1365 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1366 (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1367 // Z / (X / Y) => (Y * Z) / X
1368 Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1369 return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1370 }
1371 // Z / (1.0 / Y) => (Y * Z)
1372 //
1373 // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1374 // m_OneUse check is avoided because even in the case of the multiple uses
1375 // for 1.0/Y, the number of instructions remain the same and a division is
1376 // replaced by a multiplication.
1377 if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1378 return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1379 }
1380
1381 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1382 // sin(X) / cos(X) -> tan(X)
1383 // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1384 Value *X;
1385 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1386 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1387 bool IsCot =
1388 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1389 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1390
1391 if ((IsTan || IsCot) &&
1392 hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
1393 IRBuilder<> B(&I);
1394 IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1395 B.setFastMathFlags(I.getFastMathFlags());
1396 AttributeList Attrs =
1397 cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1398 Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1399 LibFunc_tanl, B, Attrs);
1400 if (IsCot)
1401 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1402 return replaceInstUsesWith(I, Res);
1403 }
1404 }
1405
1406 // X / (X * Y) --> 1.0 / Y
1407 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1408 // We can ignore the possibility that X is infinity because INF/INF is NaN.
1409 Value *X, *Y;
1410 if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1411 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1412 replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1413 replaceOperand(I, 1, Y);
1414 return &I;
1415 }
1416
1417 // X / fabs(X) -> copysign(1.0, X)
1418 // fabs(X) / X -> copysign(1.0, X)
1419 if (I.hasNoNaNs() && I.hasNoInfs() &&
1420 (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1421 match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1422 Value *V = Builder.CreateBinaryIntrinsic(
1423 Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1424 return replaceInstUsesWith(I, V);
1425 }
1426
1427 if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
1428 return Mul;
1429
1430 return nullptr;
1431}
1432
1433/// This function implements the transforms common to both integer remainder
1434/// instructions (urem and srem). It is called by the visitors to those integer
1435/// remainder instructions.
1436/// Common integer remainder transforms
1437Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
1438 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1439
1440 // The RHS is known non-zero.
1441 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
6
Assuming 'V' is null
7
Taking false branch
1442 return replaceOperand(I, 1, V);
1443
1444 // Handle cases involving: rem X, (select Cond, Y, Z)
1445 if (simplifyDivRemOfSelectWithZeroOp(I))
8
Calling 'InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp'
1446 return &I;
1447
1448 if (isa<Constant>(Op1)) {
1449 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1450 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1451 if (Instruction *R = FoldOpIntoSelect(I, SI))
1452 return R;
1453 } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1454 const APInt *Op1Int;
1455 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1456 (I.getOpcode() == Instruction::URem ||
1457 !Op1Int->isMinSignedValue())) {
1458 // foldOpIntoPhi will speculate instructions to the end of the PHI's
1459 // predecessor blocks, so do this only if we know the srem or urem
1460 // will not fault.
1461 if (Instruction *NV = foldOpIntoPhi(I, PN))
1462 return NV;
1463 }
1464 }
1465
1466 // See if we can fold away this rem instruction.
1467 if (SimplifyDemandedInstructionBits(I))
1468 return &I;
1469 }
1470 }
1471
1472 return nullptr;
1473}
1474
1475Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
1476 if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
1
Assuming 'V' is null
2
Taking false branch
1477 SQ.getWithInstruction(&I)))
1478 return replaceInstUsesWith(I, V);
1479
1480 if (Instruction *X = foldVectorBinop(I))
3
Assuming 'X' is null
4
Taking false branch
1481 return X;
1482
1483 if (Instruction *common = commonIRemTransforms(I))
5
Calling 'InstCombinerImpl::commonIRemTransforms'
1484 return common;
1485
1486 if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1487 return NarrowRem;
1488
1489 // X urem Y -> X and Y-1, where Y is a power of 2,
1490 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1491 Type *Ty = I.getType();
1492 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1493 // This may increase instruction count, we don't enforce that Y is a
1494 // constant.
1495 Constant *N1 = Constant::getAllOnesValue(Ty);
1496 Value *Add = Builder.CreateAdd(Op1, N1);
1497 return BinaryOperator::CreateAnd(Op0, Add);
1498 }
1499
1500 // 1 urem X -> zext(X != 1)
1501 if (match(Op0, m_One())) {
1502 Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1503 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1504 }
1505
1506 // X urem C -> X < C ? X : X - C, where C >= signbit.
1507 if (match(Op1, m_Negative())) {
1508 Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
1509 Value *Sub = Builder.CreateSub(Op0, Op1);
1510 return SelectInst::Create(Cmp, Op0, Sub);
1511 }
1512
1513 // If the divisor is a sext of a boolean, then the divisor must be max
1514 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1515 // max unsigned value. In that case, the remainder is 0:
1516 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1517 Value *X;
1518 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1519 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1520 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
1521 }
1522
1523 return nullptr;
1524}
1525
1526Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
1527 if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
1528 SQ.getWithInstruction(&I)))
1529 return replaceInstUsesWith(I, V);
1530
1531 if (Instruction *X = foldVectorBinop(I))
1532 return X;
1533
1534 // Handle the integer rem common cases
1535 if (Instruction *Common = commonIRemTransforms(I))
1536 return Common;
1537
1538 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1539 {
1540 const APInt *Y;
1541 // X % -Y -> X % Y
1542 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1543 return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1544 }
1545
1546 // -X srem Y --> -(X srem Y)
1547 Value *X, *Y;
1548 if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1549 return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1550
1551 // If the sign bits of both operands are zero (i.e. we can prove they are
1552 // unsigned inputs), turn this into a urem.
1553 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1554 if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1555 MaskedValueIsZero(Op0, Mask, 0, &I)) {
1556 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1557 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1558 }
1559
1560 // If it's a constant vector, flip any negative values positive.
1561 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1562 Constant *C = cast<Constant>(Op1);
1563 unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
1564
1565 bool hasNegative = false;
1566 bool hasMissing = false;
1567 for (unsigned i = 0; i != VWidth; ++i) {
1568 Constant *Elt = C->getAggregateElement(i);
1569 if (!Elt) {
1570 hasMissing = true;
1571 break;
1572 }
1573
1574 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1575 if (RHS->isNegative())
1576 hasNegative = true;
1577 }
1578
1579 if (hasNegative && !hasMissing) {
1580 SmallVector<Constant *, 16> Elts(VWidth);
1581 for (unsigned i = 0; i != VWidth; ++i) {
1582 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
1583 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
1584 if (RHS->isNegative())
1585 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
1586 }
1587 }
1588
1589 Constant *NewRHSV = ConstantVector::get(Elts);
1590 if (NewRHSV != C) // Don't loop on -MININT
1591 return replaceOperand(I, 1, NewRHSV);
1592 }
1593 }
1594
1595 return nullptr;
1596}
1597
1598Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
1599 if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
1600 I.getFastMathFlags(),
1601 SQ.getWithInstruction(&I)))
1602 return replaceInstUsesWith(I, V);
1603
1604 if (Instruction *X = foldVectorBinop(I))
1605 return X;
1606
1607 return nullptr;
1608}

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include/llvm/IR/PatternMatch.h

1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InstrTypes.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Value.h"
43#include "llvm/Support/Casting.h"
44#include <cstdint>
45
46namespace llvm {
47namespace PatternMatch {
48
49template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
12
Calling 'is_zero::match'
16
Returning from 'is_zero::match'
17
Returning value, which participates in a condition later
51}
52
53template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55}
56
57template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65};
66
67template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69}
70
71template <typename Class> struct class_match {
72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73};
74
75/// Match an arbitrary value and ignore it.
76inline class_match<Value> m_Value() { return class_match<Value>(); }
77
78/// Match an arbitrary unary operation and ignore it.
79inline class_match<UnaryOperator> m_UnOp() {
80 return class_match<UnaryOperator>();
81}
82
83/// Match an arbitrary binary operation and ignore it.
84inline class_match<BinaryOperator> m_BinOp() {
85 return class_match<BinaryOperator>();
86}
87
88/// Matches any compare instruction and ignore it.
89inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90
91struct undef_match {
92 static bool check(const Value *V) {
93 if (isa<UndefValue>(V))
94 return true;
95
96 const auto *CA = dyn_cast<ConstantAggregate>(V);
97 if (!CA)
98 return false;
99
100 SmallPtrSet<const ConstantAggregate *, 8> Seen;
101 SmallVector<const ConstantAggregate *, 8> Worklist;
102
103 // Either UndefValue, PoisonValue, or an aggregate that only contains
104 // these is accepted by matcher.
105 // CheckValue returns false if CA cannot satisfy this constraint.
106 auto CheckValue = [&](const ConstantAggregate *CA) {
107 for (const Value *Op : CA->operand_values()) {
108 if (isa<UndefValue>(Op))
109 continue;
110
111 const auto *CA = dyn_cast<ConstantAggregate>(Op);
112 if (!CA)
113 return false;
114 if (Seen.insert(CA).second)
115 Worklist.emplace_back(CA);
116 }
117
118 return true;
119 };
120
121 if (!CheckValue(CA))
122 return false;
123
124 while (!Worklist.empty()) {
125 if (!CheckValue(Worklist.pop_back_val()))
126 return false;
127 }
128 return true;
129 }
130 template <typename ITy> bool match(ITy *V) { return check(V); }
131};
132
133/// Match an arbitrary undef constant. This matches poison as well.
134/// If this is an aggregate and contains a non-aggregate element that is
135/// neither undef nor poison, the aggregate is not matched.
136inline auto m_Undef() { return undef_match(); }
137
138/// Match an arbitrary poison constant.
139inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
140
141/// Match an arbitrary Constant and ignore it.
142inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
143
144/// Match an arbitrary ConstantInt and ignore it.
145inline class_match<ConstantInt> m_ConstantInt() {
146 return class_match<ConstantInt>();
147}
148
149/// Match an arbitrary ConstantFP and ignore it.
150inline class_match<ConstantFP> m_ConstantFP() {
151 return class_match<ConstantFP>();
152}
153
154/// Match an arbitrary ConstantExpr and ignore it.
155inline class_match<ConstantExpr> m_ConstantExpr() {
156 return class_match<ConstantExpr>();
157}
158
159/// Match an arbitrary basic block value and ignore it.
160inline class_match<BasicBlock> m_BasicBlock() {
161 return class_match<BasicBlock>();
162}
163
164/// Inverting matcher
165template <typename Ty> struct match_unless {
166 Ty M;
167
168 match_unless(const Ty &Matcher) : M(Matcher) {}
169
170 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
171};
172
173/// Match if the inner matcher does *NOT* match.
174template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
175 return match_unless<Ty>(M);
176}
177
178/// Matching combinators
179template <typename LTy, typename RTy> struct match_combine_or {
180 LTy L;
181 RTy R;
182
183 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
184
185 template <typename ITy> bool match(ITy *V) {
186 if (L.match(V))
187 return true;
188 if (R.match(V))
189 return true;
190 return false;
191 }
192};
193
194template <typename LTy, typename RTy> struct match_combine_and {
195 LTy L;
196 RTy R;
197
198 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
199
200 template <typename ITy> bool match(ITy *V) {
201 if (L.match(V))
202 if (R.match(V))
203 return true;
204 return false;
205 }
206};
207
208/// Combine two pattern matchers matching L || R
209template <typename LTy, typename RTy>
210inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
211 return match_combine_or<LTy, RTy>(L, R);
212}
213
214/// Combine two pattern matchers matching L && R
215template <typename LTy, typename RTy>
216inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
217 return match_combine_and<LTy, RTy>(L, R);
218}
219
220struct apint_match {
221 const APInt *&Res;
222 bool AllowUndef;
223
224 apint_match(const APInt *&Res, bool AllowUndef)
225 : Res(Res), AllowUndef(AllowUndef) {}
226
227 template <typename ITy> bool match(ITy *V) {
228 if (auto *CI = dyn_cast<ConstantInt>(V)) {
229 Res = &CI->getValue();
230 return true;
231 }
232 if (V->getType()->isVectorTy())
233 if (const auto *C = dyn_cast<Constant>(V))
234 if (auto *CI = dyn_cast_or_null<ConstantInt>(
235 C->getSplatValue(AllowUndef))) {
236 Res = &CI->getValue();
237 return true;
238 }
239 return false;
240 }
241};
242// Either constexpr if or renaming ConstantFP::getValueAPF to
243// ConstantFP::getValue is needed to do it via single template
244// function for both apint/apfloat.
245struct apfloat_match {
246 const APFloat *&Res;
247 bool AllowUndef;
248
249 apfloat_match(const APFloat *&Res, bool AllowUndef)
250 : Res(Res), AllowUndef(AllowUndef) {}
251
252 template <typename ITy> bool match(ITy *V) {
253 if (auto *CI = dyn_cast<ConstantFP>(V)) {
254 Res = &CI->getValueAPF();
255 return true;
256 }
257 if (V->getType()->isVectorTy())
258 if (const auto *C = dyn_cast<Constant>(V))
259 if (auto *CI = dyn_cast_or_null<ConstantFP>(
260 C->getSplatValue(AllowUndef))) {
261 Res = &CI->getValueAPF();
262 return true;
263 }
264 return false;
265 }
266};
267
268/// Match a ConstantInt or splatted ConstantVector, binding the
269/// specified pointer to the contained APInt.
270inline apint_match m_APInt(const APInt *&Res) {
271 // Forbid undefs by default to maintain previous behavior.
272 return apint_match(Res, /* AllowUndef */ false);
273}
274
275/// Match APInt while allowing undefs in splat vector constants.
276inline apint_match m_APIntAllowUndef(const APInt *&Res) {
277 return apint_match(Res, /* AllowUndef */ true);
278}
279
280/// Match APInt while forbidding undefs in splat vector constants.
281inline apint_match m_APIntForbidUndef(const APInt *&Res) {
282 return apint_match(Res, /* AllowUndef */ false);
283}
284
285/// Match a ConstantFP or splatted ConstantVector, binding the
286/// specified pointer to the contained APFloat.
287inline apfloat_match m_APFloat(const APFloat *&Res) {
288 // Forbid undefs by default to maintain previous behavior.
289 return apfloat_match(Res, /* AllowUndef */ false);
290}
291
292/// Match APFloat while allowing undefs in splat vector constants.
293inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
294 return apfloat_match(Res, /* AllowUndef */ true);
295}
296
297/// Match APFloat while forbidding undefs in splat vector constants.
298inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
299 return apfloat_match(Res, /* AllowUndef */ false);
300}
301
302template <int64_t Val> struct constantint_match {
303 template <typename ITy> bool match(ITy *V) {
304 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
305 const APInt &CIV = CI->getValue();
306 if (Val >= 0)
307 return CIV == static_cast<uint64_t>(Val);
308 // If Val is negative, and CI is shorter than it, truncate to the right
309 // number of bits. If it is larger, then we have to sign extend. Just
310 // compare their negated values.
311 return -CIV == -Val;
312 }
313 return false;
314 }
315};
316
317/// Match a ConstantInt with a specific value.
318template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
319 return constantint_match<Val>();
320}
321
322/// This helper class is used to match constant scalars, vector splats,
323/// and fixed width vectors that satisfy a specified predicate.
324/// For fixed width vector constants, undefined elements are ignored.
325template <typename Predicate, typename ConstantVal>
326struct cstval_pred_ty : public Predicate {
327 template <typename ITy> bool match(ITy *V) {
328 if (const auto *CV = dyn_cast<ConstantVal>(V))
329 return this->isValue(CV->getValue());
330 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
331 if (const auto *C = dyn_cast<Constant>(V)) {
332 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
333 return this->isValue(CV->getValue());
334
335 // Number of elements of a scalable vector unknown at compile time
336 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
337 if (!FVTy)
338 return false;
339
340 // Non-splat vector constant: check each element for a match.
341 unsigned NumElts = FVTy->getNumElements();
342 assert(NumElts != 0 && "Constant vector with no elements?")(static_cast<void> (0));
343 bool HasNonUndefElements = false;
344 for (unsigned i = 0; i != NumElts; ++i) {
345 Constant *Elt = C->getAggregateElement(i);
346 if (!Elt)
347 return false;
348 if (isa<UndefValue>(Elt))
349 continue;
350 auto *CV = dyn_cast<ConstantVal>(Elt);
351 if (!CV || !this->isValue(CV->getValue()))
352 return false;
353 HasNonUndefElements = true;
354 }
355 return HasNonUndefElements;
356 }
357 }
358 return false;
359 }
360};
361
362/// specialization of cstval_pred_ty for ConstantInt
363template <typename Predicate>
364using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
365
366/// specialization of cstval_pred_ty for ConstantFP
367template <typename Predicate>
368using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
369
370/// This helper class is used to match scalar and vector constants that
371/// satisfy a specified predicate, and bind them to an APInt.
372template <typename Predicate> struct api_pred_ty : public Predicate {
373 const APInt *&Res;
374
375 api_pred_ty(const APInt *&R) : Res(R) {}
376
377 template <typename ITy> bool match(ITy *V) {
378 if (const auto *CI = dyn_cast<ConstantInt>(V))
379 if (this->isValue(CI->getValue())) {
380 Res = &CI->getValue();
381 return true;
382 }
383 if (V->getType()->isVectorTy())
384 if (const auto *C = dyn_cast<Constant>(V))
385 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
386 if (this->isValue(CI->getValue())) {
387 Res = &CI->getValue();
388 return true;
389 }
390
391 return false;
392 }
393};
394
395/// This helper class is used to match scalar and vector constants that
396/// satisfy a specified predicate, and bind them to an APFloat.
397/// Undefs are allowed in splat vector constants.
398template <typename Predicate> struct apf_pred_ty : public Predicate {
399 const APFloat *&Res;
400
401 apf_pred_ty(const APFloat *&R) : Res(R) {}
402
403 template <typename ITy> bool match(ITy *V) {
404 if (const auto *CI = dyn_cast<ConstantFP>(V))
405 if (this->isValue(CI->getValue())) {
406 Res = &CI->getValue();
407 return true;
408 }
409 if (V->getType()->isVectorTy())
410 if (const auto *C = dyn_cast<Constant>(V))
411 if (auto *CI = dyn_cast_or_null<ConstantFP>(
412 C->getSplatValue(/* AllowUndef */ true)))
413 if (this->isValue(CI->getValue())) {
414 Res = &CI->getValue();
415 return true;
416 }
417
418 return false;
419 }
420};
421
422///////////////////////////////////////////////////////////////////////////////
423//
424// Encapsulate constant value queries for use in templated predicate matchers.
425// This allows checking if constants match using compound predicates and works
426// with vector constants, possibly with relaxed constraints. For example, ignore
427// undef values.
428//
429///////////////////////////////////////////////////////////////////////////////
430
431struct is_any_apint {
432 bool isValue(const APInt &C) { return true; }
433};
434/// Match an integer or vector with any integral constant.
435/// For vectors, this includes constants with undefined elements.
436inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
437 return cst_pred_ty<is_any_apint>();
438}
439
440struct is_all_ones {
441 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
442};
443/// Match an integer or vector with all bits set.
444/// For vectors, this includes constants with undefined elements.
445inline cst_pred_ty<is_all_ones> m_AllOnes() {
446 return cst_pred_ty<is_all_ones>();
447}
448
449struct is_maxsignedvalue {
450 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
451};
452/// Match an integer or vector with values having all bits except for the high
453/// bit set (0x7f...).
454/// For vectors, this includes constants with undefined elements.
455inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
456 return cst_pred_ty<is_maxsignedvalue>();
457}
458inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
459 return V;
460}
461
462struct is_negative {
463 bool isValue(const APInt &C) { return C.isNegative(); }
464};
465/// Match an integer or vector of negative values.
466/// For vectors, this includes constants with undefined elements.
467inline cst_pred_ty<is_negative> m_Negative() {
468 return cst_pred_ty<is_negative>();
469}
470inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
471 return V;
472}
473
474struct is_nonnegative {
475 bool isValue(const APInt &C) { return C.isNonNegative(); }
476};
477/// Match an integer or vector of non-negative values.
478/// For vectors, this includes constants with undefined elements.
479inline cst_pred_ty<is_nonnegative> m_NonNegative() {
480 return cst_pred_ty<is_nonnegative>();
481}
482inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
483 return V;
484}
485
486struct is_strictlypositive {
487 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
488};
489/// Match an integer or vector of strictly positive values.
490/// For vectors, this includes constants with undefined elements.
491inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
492 return cst_pred_ty<is_strictlypositive>();
493}
494inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
495 return V;
496}
497
498struct is_nonpositive {
499 bool isValue(const APInt &C) { return C.isNonPositive(); }
500};
501/// Match an integer or vector of non-positive values.
502/// For vectors, this includes constants with undefined elements.
503inline cst_pred_ty<is_nonpositive> m_NonPositive() {
504 return cst_pred_ty<is_nonpositive>();
505}
506inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
507
508struct is_one {
509 bool isValue(const APInt &C) { return C.isOneValue(); }
510};
511/// Match an integer 1 or a vector with all elements equal to 1.
512/// For vectors, this includes constants with undefined elements.
513inline cst_pred_ty<is_one> m_One() {
514 return cst_pred_ty<is_one>();
515}
516
517struct is_zero_int {
518 bool isValue(const APInt &C) { return C.isNullValue(); }
519};
520/// Match an integer 0 or a vector with all elements equal to 0.
521/// For vectors, this includes constants with undefined elements.
522inline cst_pred_ty<is_zero_int> m_ZeroInt() {
523 return cst_pred_ty<is_zero_int>();
524}
525
526struct is_zero {
527 template <typename ITy> bool match(ITy *V) {
528 auto *C = dyn_cast<Constant>(V);
13
Assuming 'V' is a 'Constant'
529 // FIXME: this should be able to do something for scalable vectors
530 return C
13.1
'C' is non-null
13.1
'C' is non-null
13.1
'C' is non-null
13.1
'C' is non-null
&& (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C))
;
14
Assuming the condition is false
15
Returning value, which participates in a condition later
531 }
532};
533/// Match any null constant or a vector with all elements equal to 0.
534/// For vectors, this includes constants with undefined elements.
535inline is_zero m_Zero() {
536 return is_zero();
537}
538
539struct is_power2 {
540 bool isValue(const APInt &C) { return C.isPowerOf2(); }
541};
542/// Match an integer or vector power-of-2.
543/// For vectors, this includes constants with undefined elements.
544inline cst_pred_ty<is_power2> m_Power2() {
545 return cst_pred_ty<is_power2>();
546}
547inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
548 return V;
549}
550
551struct is_negated_power2 {
552 bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
553};
554/// Match a integer or vector negated power-of-2.
555/// For vectors, this includes constants with undefined elements.
556inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
557 return cst_pred_ty<is_negated_power2>();
558}
559inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
560 return V;
561}
562
563struct is_power2_or_zero {
564 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
565};
566/// Match an integer or vector of 0 or power-of-2 values.
567/// For vectors, this includes constants with undefined elements.
568inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
569 return cst_pred_ty<is_power2_or_zero>();
570}
571inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
572 return V;
573}
574
575struct is_sign_mask {
576 bool isValue(const APInt &C) { return C.isSignMask(); }
577};
578/// Match an integer or vector with only the sign bit(s) set.
579/// For vectors, this includes constants with undefined elements.
580inline cst_pred_ty<is_sign_mask> m_SignMask() {
581 return cst_pred_ty<is_sign_mask>();
582}
583
584struct is_lowbit_mask {
585 bool isValue(const APInt &C) { return C.isMask(); }
586};
587/// Match an integer or vector with only the low bit(s) set.
588/// For vectors, this includes constants with undefined elements.
589inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
590 return cst_pred_ty<is_lowbit_mask>();
591}
592
593struct icmp_pred_with_threshold {
594 ICmpInst::Predicate Pred;
595 const APInt *Thr;
596 bool isValue(const APInt &C) {
597 switch (Pred) {
598 case ICmpInst::Predicate::ICMP_EQ:
599 return C.eq(*Thr);
600 case ICmpInst::Predicate::ICMP_NE:
601 return C.ne(*Thr);
602 case ICmpInst::Predicate::ICMP_UGT:
603 return C.ugt(*Thr);
604 case ICmpInst::Predicate::ICMP_UGE:
605 return C.uge(*Thr);
606 case ICmpInst::Predicate::ICMP_ULT:
607 return C.ult(*Thr);
608 case ICmpInst::Predicate::ICMP_ULE:
609 return C.ule(*Thr);
610 case ICmpInst::Predicate::ICMP_SGT:
611 return C.sgt(*Thr);
612 case ICmpInst::Predicate::ICMP_SGE:
613 return C.sge(*Thr);
614 case ICmpInst::Predicate::ICMP_SLT:
615 return C.slt(*Thr);
616 case ICmpInst::Predicate::ICMP_SLE:
617 return C.sle(*Thr);
618 default:
619 llvm_unreachable("Unhandled ICmp predicate")__builtin_unreachable();
620 }
621 }
622};
623/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
624/// to Threshold. For vectors, this includes constants with undefined elements.
625inline cst_pred_ty<icmp_pred_with_threshold>
626m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
627 cst_pred_ty<icmp_pred_with_threshold> P;
628 P.Pred = Predicate;
629 P.Thr = &Threshold;
630 return P;
631}
632
633struct is_nan {
634 bool isValue(const APFloat &C) { return C.isNaN(); }
635};
636/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
637/// For vectors, this includes constants with undefined elements.
638inline cstfp_pred_ty<is_nan> m_NaN() {
639 return cstfp_pred_ty<is_nan>();
640}
641
642struct is_nonnan {
643 bool isValue(const APFloat &C) { return !C.isNaN(); }
644};
645/// Match a non-NaN FP constant.
646/// For vectors, this includes constants with undefined elements.
647inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
648 return cstfp_pred_ty<is_nonnan>();
649}
650
651struct is_inf {
652 bool isValue(const APFloat &C) { return C.isInfinity(); }
653};
654/// Match a positive or negative infinity FP constant.
655/// For vectors, this includes constants with undefined elements.
656inline cstfp_pred_ty<is_inf> m_Inf() {
657 return cstfp_pred_ty<is_inf>();
658}
659
660struct is_noninf {
661 bool isValue(const APFloat &C) { return !C.isInfinity(); }
662};
663/// Match a non-infinity FP constant, i.e. finite or NaN.
664/// For vectors, this includes constants with undefined elements.
665inline cstfp_pred_ty<is_noninf> m_NonInf() {
666 return cstfp_pred_ty<is_noninf>();
667}
668
669struct is_finite {
670 bool isValue(const APFloat &C) { return C.isFinite(); }
671};
672/// Match a finite FP constant, i.e. not infinity or NaN.
673/// For vectors, this includes constants with undefined elements.
674inline cstfp_pred_ty<is_finite> m_Finite() {
675 return cstfp_pred_ty<is_finite>();
676}
677inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
678
679struct is_finitenonzero {
680 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
681};
682/// Match a finite non-zero FP constant.
683/// For vectors, this includes constants with undefined elements.
684inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
685 return cstfp_pred_ty<is_finitenonzero>();
686}
687inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
688 return V;
689}
690
691struct is_any_zero_fp {
692 bool isValue(const APFloat &C) { return C.isZero(); }
693};
694/// Match a floating-point negative zero or positive zero.
695/// For vectors, this includes constants with undefined elements.
696inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
697 return cstfp_pred_ty<is_any_zero_fp>();
698}
699
700struct is_pos_zero_fp {
701 bool isValue(const APFloat &C) { return C.isPosZero(); }
702};
703/// Match a floating-point positive zero.
704/// For vectors, this includes constants with undefined elements.
705inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
706 return cstfp_pred_ty<is_pos_zero_fp>();
707}
708
709struct is_neg_zero_fp {
710 bool isValue(const APFloat &C) { return C.isNegZero(); }
711};
712/// Match a floating-point negative zero.
713/// For vectors, this includes constants with undefined elements.
714inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
715 return cstfp_pred_ty<is_neg_zero_fp>();
716}
717
718struct is_non_zero_fp {
719 bool isValue(const APFloat &C) { return C.isNonZero(); }
720};
721/// Match a floating-point non-zero.
722/// For vectors, this includes constants with undefined elements.
723inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
724 return cstfp_pred_ty<is_non_zero_fp>();
725}
726
727///////////////////////////////////////////////////////////////////////////////
728
729template <typename Class> struct bind_ty {
730 Class *&VR;
731
732 bind_ty(Class *&V) : VR(V) {}
733
734 template <typename ITy> bool match(ITy *V) {
735 if (auto *CV = dyn_cast<Class>(V)) {
736 VR = CV;
737 return true;
738 }
739 return false;
740 }
741};
742
743/// Match a value, capturing it if we match.
744inline bind_ty<Value> m_Value(Value *&V) { return V; }
745inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
746
747/// Match an instruction, capturing it if we match.
748inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
749/// Match a unary operator, capturing it if we match.
750inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
751/// Match a binary operator, capturing it if we match.
752inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
753/// Match a with overflow intrinsic, capturing it if we match.
754inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
755inline bind_ty<const WithOverflowInst>
756m_WithOverflowInst(const WithOverflowInst *&I) {
757 return I;
758}
759
760/// Match a Constant, capturing the value if we match.
761inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
762
763/// Match a ConstantInt, capturing the value if we match.
764inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
765
766/// Match a ConstantFP, capturing the value if we match.
767inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
768
769/// Match a ConstantExpr, capturing the value if we match.
770inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
771
772/// Match a basic block value, capturing it if we match.
773inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
774inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
775 return V;
776}
777
778/// Match an arbitrary immediate Constant and ignore it.
779inline match_combine_and<class_match<Constant>,
780 match_unless<class_match<ConstantExpr>>>
781m_ImmConstant() {
782 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
783}
784
785/// Match an immediate Constant, capturing the value if we match.
786inline match_combine_and<bind_ty<Constant>,
787 match_unless<class_match<ConstantExpr>>>
788m_ImmConstant(Constant *&C) {
789 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
790}
791
792/// Match a specified Value*.
793struct specificval_ty {
794 const Value *Val;
795
796 specificval_ty(const Value *V) : Val(V) {}
797
798 template <typename ITy> bool match(ITy *V) { return V == Val; }
799};
800
801/// Match if we have a specific specified value.
802inline specificval_ty m_Specific(const Value *V) { return V; }
803
804/// Stores a reference to the Value *, not the Value * itself,
805/// thus can be used in commutative matchers.
806template <typename Class> struct deferredval_ty {
807 Class *const &Val;
808
809 deferredval_ty(Class *const &V) : Val(V) {}
810
811 template <typename ITy> bool match(ITy *const V) { return V == Val; }
812};
813
814/// Like m_Specific(), but works if the specific value to match is determined
815/// as part of the same match() expression. For example:
816/// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
817/// bind X before the pattern match starts.
818/// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
819/// whichever value m_Value(X) populated.
820inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
821inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
822 return V;
823}
824
825/// Match a specified floating point value or vector of all elements of
826/// that value.
827struct specific_fpval {
828 double Val;
829
830 specific_fpval(double V) : Val(V) {}
831
832 template <typename ITy> bool match(ITy *V) {
833 if (const auto *CFP = dyn_cast<ConstantFP>(V))
834 return CFP->isExactlyValue(Val);
835 if (V->getType()->isVectorTy())
836 if (const auto *C = dyn_cast<Constant>(V))
837 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
838 return CFP->isExactlyValue(Val);
839 return false;
840 }
841};
842
843/// Match a specific floating point value or vector with all elements
844/// equal to the value.
845inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
846
847/// Match a float 1.0 or vector with all elements equal to 1.0.
848inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
849
850struct bind_const_intval_ty {
851 uint64_t &VR;
852
853 bind_const_intval_ty(uint64_t &V) : VR(V) {}
854
855 template <typename ITy> bool match(ITy *V) {
856 if (const auto *CV = dyn_cast<ConstantInt>(V))
857 if (CV->getValue().ule(UINT64_MAX(18446744073709551615UL))) {
858 VR = CV->getZExtValue();
859 return true;
860 }
861 return false;
862 }
863};
864
865/// Match a specified integer value or vector of all elements of that
866/// value.
867template <bool AllowUndefs>
868struct specific_intval {
869 APInt Val;
870
871 specific_intval(APInt V) : Val(std::move(V)) {}
872
873 template <typename ITy> bool match(ITy *V) {
874 const auto *CI = dyn_cast<ConstantInt>(V);
875 if (!CI && V->getType()->isVectorTy())
876 if (const auto *C = dyn_cast<Constant>(V))
877 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
878
879 return CI && APInt::isSameValue(CI->getValue(), Val);
880 }
881};
882
883/// Match a specific integer value or vector with all elements equal to
884/// the value.
885inline specific_intval<false> m_SpecificInt(APInt V) {
886 return specific_intval<false>(std::move(V));
887}
888
889inline specific_intval<false> m_SpecificInt(uint64_t V) {
890 return m_SpecificInt(APInt(64, V));
891}
892
893inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
894 return specific_intval<true>(std::move(V));
895}
896
897inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
898 return m_SpecificIntAllowUndef(APInt(64, V));
899}
900
901/// Match a ConstantInt and bind to its value. This does not match
902/// ConstantInts wider than 64-bits.
903inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
904
905/// Match a specified basic block value.
906struct specific_bbval {
907 BasicBlock *Val;
908
909 specific_bbval(BasicBlock *Val) : Val(Val) {}
910
911 template <typename ITy> bool match(ITy *V) {
912 const auto *BB = dyn_cast<BasicBlock>(V);
913 return BB && BB == Val;
914 }
915};
916
917/// Match a specific basic block value.
918inline specific_bbval m_SpecificBB(BasicBlock *BB) {
919 return specific_bbval(BB);
920}
921
922/// A commutative-friendly version of m_Specific().
923inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
924 return BB;
925}
926inline deferredval_ty<const BasicBlock>
927m_Deferred(const BasicBlock *const &BB) {
928 return BB;
929}
930
931//===----------------------------------------------------------------------===//
932// Matcher for any binary operator.
933//
934template <typename LHS_t, typename RHS_t, bool Commutable = false>
935struct AnyBinaryOp_match {
936 LHS_t L;
937 RHS_t R;
938
939 // The evaluation order is always stable, regardless of Commutability.
940 // The LHS is always matched first.
941 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
942
943 template <typename OpTy> bool match(OpTy *V) {
944 if (auto *I = dyn_cast<BinaryOperator>(V))
945 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
946 (Commutable && L.match(I->getOperand(1)) &&
947 R.match(I->getOperand(0)));
948 return false;
949 }
950};
951
952template <typename LHS, typename RHS>
953inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
954 return AnyBinaryOp_match<LHS, RHS>(L, R);
955}
956
957//===----------------------------------------------------------------------===//
958// Matcher for any unary operator.
959// TODO fuse unary, binary matcher into n-ary matcher
960//
961template <typename OP_t> struct AnyUnaryOp_match {
962 OP_t X;
963
964 AnyUnaryOp_match(const OP_t &X) : X(X) {}
965
966 template <typename OpTy> bool match(OpTy *V) {
967 if (auto *I = dyn_cast<UnaryOperator>(V))
968 return X.match(I->getOperand(0));
969 return false;
970 }
971};
972
973template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
974 return AnyUnaryOp_match<OP_t>(X);
975}
976
977//===----------------------------------------------------------------------===//
978// Matchers for specific binary operators.
979//
980
981template <typename LHS_t, typename RHS_t, unsigned Opcode,
982 bool Commutable = false>
983struct BinaryOp_match {
984 LHS_t L;
985 RHS_t R;
986
987 // The evaluation order is always stable, regardless of Commutability.
988 // The LHS is always matched first.
989 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
990
991 template <typename OpTy> bool match(OpTy *V) {
992 if (V->getValueID() == Value::InstructionVal + Opcode) {
993 auto *I = cast<BinaryOperator>(V);
994 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
995 (Commutable && L.match(I->getOperand(1)) &&
996 R.match(I->getOperand(0)));
997 }
998 if (auto *CE = dyn_cast<ConstantExpr>(V))
999 return CE->getOpcode() == Opcode &&
1000 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
1001 (Commutable && L.match(CE->getOperand(1)) &&
1002 R.match(CE->getOperand(0))));
1003 return false;
1004 }
1005};
1006
1007template <typename LHS, typename RHS>
1008inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
1009 const RHS &R) {
1010 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
1011}
1012
1013template <typename LHS, typename RHS>
1014inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
1015 const RHS &R) {
1016 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
1017}
1018
1019template <typename LHS, typename RHS>
1020inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
1021 const RHS &R) {
1022 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
1023}
1024
1025template <typename LHS, typename RHS>
1026inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
1027 const RHS &R) {
1028 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1029}
1030
1031template <typename Op_t> struct FNeg_match {
1032 Op_t X;
1033
1034 FNeg_match(const Op_t &Op) : X(Op) {}
1035 template <typename OpTy> bool match(OpTy *V) {
1036 auto *FPMO = dyn_cast<FPMathOperator>(V);
1037 if (!FPMO) return false;
1038
1039 if (FPMO->getOpcode() == Instruction::FNeg)
1040 return X.match(FPMO->getOperand(0));
1041
1042 if (FPMO->getOpcode() == Instruction::FSub) {
1043 if (FPMO->hasNoSignedZeros()) {
1044 // With 'nsz', any zero goes.
1045 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1046 return false;
1047 } else {
1048 // Without 'nsz', we need fsub -0.0, X exactly.
1049 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1050 return false;
1051 }
1052
1053 return X.match(FPMO->getOperand(1));
1054 }
1055
1056 return false;
1057 }
1058};
1059
1060/// Match 'fneg X' as 'fsub -0.0, X'.
1061template <typename OpTy>
1062inline FNeg_match<OpTy>
1063m_FNeg(const OpTy &X) {
1064 return FNeg_match<OpTy>(X);
1065}
1066
1067/// Match 'fneg X' as 'fsub +-0.0, X'.
1068template <typename RHS>
1069inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1070m_FNegNSZ(const RHS &X) {
1071 return m_FSub(m_AnyZeroFP(), X);
1072}
1073
1074template <typename LHS, typename RHS>
1075inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1076 const RHS &R) {
1077 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1078}
1079
1080template <typename LHS, typename RHS>
1081inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1082 const RHS &R) {
1083 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1084}
1085
1086template <typename LHS, typename RHS>
1087inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1088 const RHS &R) {
1089 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1090}
1091
1092template <typename LHS, typename RHS>
1093inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1094 const RHS &R) {
1095 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1096}
1097
1098template <typename LHS, typename RHS>
1099inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1100 const RHS &R) {
1101 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1102}
1103
1104template <typename LHS, typename RHS>
1105inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1106 const RHS &R) {
1107 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1108}
1109
1110template <typename LHS, typename RHS>
1111inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1112 const RHS &R) {
1113 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1114}
1115
1116template <typename LHS, typename RHS>
1117inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1118 const RHS &R) {
1119 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1120}
1121
1122template <typename LHS, typename RHS>
1123inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1124 const RHS &R) {
1125 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1126}
1127
1128template <typename LHS, typename RHS>
1129inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1130 const RHS &R) {
1131 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1132}
1133
1134template <typename LHS, typename RHS>
1135inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1136 const RHS &R) {
1137 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1138}
1139
1140template <typename LHS, typename RHS>
1141inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1142 const RHS &R) {
1143 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1144}
1145
1146template <typename LHS, typename RHS>
1147inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1148 const RHS &R) {
1149 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1150}
1151
1152template <typename LHS, typename RHS>
1153inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1154 const RHS &R) {
1155 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1156}
1157
1158template <typename LHS_t, typename RHS_t, unsigned Opcode,
1159 unsigned WrapFlags = 0>
1160struct OverflowingBinaryOp_match {
1161 LHS_t L;
1162 RHS_t R;
1163
1164 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1165 : L(LHS), R(RHS) {}
1166
1167 template <typename OpTy> bool match(OpTy *V) {
1168 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1169 if (Op->getOpcode() != Opcode)
1170 return false;
1171 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1172 !Op->hasNoUnsignedWrap())
1173 return false;
1174 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1175 !Op->hasNoSignedWrap())
1176 return false;
1177 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1178 }
1179 return false;
1180 }
1181};
1182
1183template <typename LHS, typename RHS>
1184inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1185 OverflowingBinaryOperator::NoSignedWrap>
1186m_NSWAdd(const LHS &L, const RHS &R) {
1187 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1188 OverflowingBinaryOperator::NoSignedWrap>(
1189 L, R);
1190}
1191template <typename LHS, typename RHS>
1192inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1193 OverflowingBinaryOperator::NoSignedWrap>
1194m_NSWSub(const LHS &L, const RHS &R) {
1195 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1196 OverflowingBinaryOperator::NoSignedWrap>(
1197 L, R);
1198}
1199template <typename LHS, typename RHS>
1200inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1201 OverflowingBinaryOperator::NoSignedWrap>
1202m_NSWMul(const LHS &L, const RHS &R) {
1203 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1204 OverflowingBinaryOperator::NoSignedWrap>(
1205 L, R);
1206}
1207template <typename LHS, typename RHS>
1208inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1209 OverflowingBinaryOperator::NoSignedWrap>
1210m_NSWShl(const LHS &L, const RHS &R) {
1211 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1212 OverflowingBinaryOperator::NoSignedWrap>(
1213 L, R);
1214}
1215
1216template <typename LHS, typename RHS>
1217inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1218 OverflowingBinaryOperator::NoUnsignedWrap>
1219m_NUWAdd(const LHS &L, const RHS &R) {
1220 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1221 OverflowingBinaryOperator::NoUnsignedWrap>(
1222 L, R);
1223}
1224template <typename LHS, typename RHS>
1225inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1226 OverflowingBinaryOperator::NoUnsignedWrap>
1227m_NUWSub(const LHS &L, const RHS &R) {
1228 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1229 OverflowingBinaryOperator::NoUnsignedWrap>(
1230 L, R);
1231}
1232template <typename LHS, typename RHS>
1233inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1234 OverflowingBinaryOperator::NoUnsignedWrap>
1235m_NUWMul(const LHS &L, const RHS &R) {
1236 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1237 OverflowingBinaryOperator::NoUnsignedWrap>(
1238 L, R);
1239}
1240template <typename LHS, typename RHS>
1241inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1242 OverflowingBinaryOperator::NoUnsignedWrap>
1243m_NUWShl(const LHS &L, const RHS &R) {
1244 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1245 OverflowingBinaryOperator::NoUnsignedWrap>(
1246 L, R);
1247}
1248
1249//===----------------------------------------------------------------------===//
1250// Class that matches a group of binary opcodes.
1251//
1252template <typename LHS_t, typename RHS_t, typename Predicate>
1253struct BinOpPred_match : Predicate {
1254 LHS_t L;
1255 RHS_t R;
1256
1257 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1258
1259 template <typename OpTy> bool match(OpTy *V) {
1260 if (auto *I = dyn_cast<Instruction>(V))
1261 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1262 R.match(I->getOperand(1));
1263 if (auto *CE = dyn_cast<ConstantExpr>(V))
1264 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1265 R.match(CE->getOperand(1));
1266 return false;
1267 }
1268};
1269
1270struct is_shift_op {
1271 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1272};
1273
1274struct is_right_shift_op {
1275 bool isOpType(unsigned Opcode) {
1276 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1277 }
1278};
1279
1280struct is_logical_shift_op {
1281 bool isOpType(unsigned Opcode) {
1282 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1283 }
1284};
1285
1286struct is_bitwiselogic_op {
1287 bool isOpType(unsigned Opcode) {
1288 return Instruction::isBitwiseLogicOp(Opcode);
1289 }
1290};
1291
1292struct is_idiv_op {
1293 bool isOpType(unsigned Opcode) {
1294 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1295 }
1296};
1297
1298struct is_irem_op {
1299 bool isOpType(unsigned Opcode) {
1300 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1301 }
1302};
1303
1304/// Matches shift operations.
1305template <typename LHS, typename RHS>
1306inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1307 const RHS &R) {
1308 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1309}
1310
1311/// Matches logical shift operations.
1312template <typename LHS, typename RHS>
1313inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1314 const RHS &R) {
1315 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1316}
1317
1318/// Matches logical shift operations.
1319template <typename LHS, typename RHS>
1320inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1321m_LogicalShift(const LHS &L, const RHS &R) {
1322 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1323}
1324
1325/// Matches bitwise logic operations.
1326template <typename LHS, typename RHS>
1327inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1328m_BitwiseLogic(const LHS &L, const RHS &R) {
1329 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1330}
1331
1332/// Matches integer division operations.
1333template <typename LHS, typename RHS>
1334inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1335 const RHS &R) {
1336 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1337}
1338
1339/// Matches integer remainder operations.
1340template <typename LHS, typename RHS>
1341inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1342 const RHS &R) {
1343 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1344}
1345
1346//===----------------------------------------------------------------------===//
1347// Class that matches exact binary ops.
1348//
1349template <typename SubPattern_t> struct Exact_match {
1350 SubPattern_t SubPattern;
1351
1352 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1353
1354 template <typename OpTy> bool match(OpTy *V) {
1355 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1356 return PEO->isExact() && SubPattern.match(V);
1357 return false;
1358 }
1359};
1360
1361template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1362 return SubPattern;
1363}
1364
1365//===----------------------------------------------------------------------===//
1366// Matchers for CmpInst classes
1367//
1368
1369template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1370 bool Commutable = false>
1371struct CmpClass_match {
1372 PredicateTy &Predicate;
1373 LHS_t L;
1374 RHS_t R;
1375
1376 // The evaluation order is always stable, regardless of Commutability.
1377 // The LHS is always matched first.
1378 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1379 : Predicate(Pred), L(LHS), R(RHS) {}
1380
1381 template <typename OpTy> bool match(OpTy *V) {
1382 if (auto *I = dyn_cast<Class>(V)) {
1383 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1384 Predicate = I->getPredicate();
1385 return true;
1386 } else if (Commutable && L.match(I->getOperand(1)) &&
1387 R.match(I->getOperand(0))) {
1388 Predicate = I->getSwappedPredicate();
1389 return true;
1390 }
1391 }
1392 return false;
1393 }
1394};
1395
1396template <typename LHS, typename RHS>
1397inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1398m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1399 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1400}
1401
1402template <typename LHS, typename RHS>
1403inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1404m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1405 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1406}
1407
1408template <typename LHS, typename RHS>
1409inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1410m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1411 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1412}
1413
1414//===----------------------------------------------------------------------===//
1415// Matchers for instructions with a given opcode and number of operands.
1416//
1417
1418/// Matches instructions with Opcode and three operands.
1419template <typename T0, unsigned Opcode> struct OneOps_match {
1420 T0 Op1;
1421
1422 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1423
1424 template <typename OpTy> bool match(OpTy *V) {
1425 if (V->getValueID() == Value::InstructionVal + Opcode) {
1426 auto *I = cast<Instruction>(V);
1427 return Op1.match(I->getOperand(0));
1428 }
1429 return false;
1430 }
1431};
1432
1433/// Matches instructions with Opcode and three operands.
1434template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1435 T0 Op1;
1436 T1 Op2;
1437
1438 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1439
1440 template <typename OpTy> bool match(OpTy *V) {
1441 if (V->getValueID() == Value::InstructionVal + Opcode) {
1442 auto *I = cast<Instruction>(V);
1443 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1444 }
1445 return false;
1446 }
1447};
1448
1449/// Matches instructions with Opcode and three operands.
1450template <typename T0, typename T1, typename T2, unsigned Opcode>
1451struct ThreeOps_match {
1452 T0 Op1;
1453 T1 Op2;
1454 T2 Op3;
1455
1456 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1457 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1458
1459 template <typename OpTy> bool match(OpTy *V) {
1460 if (V->getValueID() == Value::InstructionVal + Opcode) {
1461 auto *I = cast<Instruction>(V);
1462 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1463 Op3.match(I->getOperand(2));
1464 }
1465 return false;
1466 }
1467};
1468
1469/// Matches SelectInst.
1470template <typename Cond, typename LHS, typename RHS>
1471inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1472m_Select(const Cond &C, const LHS &L, const RHS &R) {
1473 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1474}
1475
1476/// This matches a select of two constants, e.g.:
1477/// m_SelectCst<-1, 0>(m_Value(V))
1478template <int64_t L, int64_t R, typename Cond>
1479inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1480 Instruction::Select>
1481m_SelectCst(const Cond &C) {
1482 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1483}
1484
1485/// Matches FreezeInst.
1486template <typename OpTy>
1487inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1488 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1489}
1490
1491/// Matches InsertElementInst.
1492template <typename Val_t, typename Elt_t, typename Idx_t>
1493inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1494m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1495 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1496 Val, Elt, Idx);
1497}
1498
1499/// Matches ExtractElementInst.
1500template <typename Val_t, typename Idx_t>
1501inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1502m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1503 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1504}
1505
1506/// Matches shuffle.
1507template <typename T0, typename T1, typename T2> struct Shuffle_match {
1508 T0 Op1;
1509 T1 Op2;
1510 T2 Mask;
1511
1512 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1513 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1514
1515 template <typename OpTy> bool match(OpTy *V) {
1516 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1517 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1518 Mask.match(I->getShuffleMask());
1519 }
1520 return false;
1521 }
1522};
1523
1524struct m_Mask {
1525 ArrayRef<int> &MaskRef;
1526 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1527 bool match(ArrayRef<int> Mask) {
1528 MaskRef = Mask;
1529 return true;
1530 }
1531};
1532
1533struct m_ZeroMask {
1534 bool match(ArrayRef<int> Mask) {
1535 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1536 }
1537};
1538
1539struct m_SpecificMask {
1540 ArrayRef<int> &MaskRef;
1541 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1542 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1543};
1544
1545struct m_SplatOrUndefMask {
1546 int &SplatIndex;
1547 m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1548 bool match(ArrayRef<int> Mask) {
1549 auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1550 if (First == Mask.end())
1551 return false;
1552 SplatIndex = *First;
1553 return all_of(Mask,
1554 [First](int Elem) { return Elem == *First || Elem == -1; });
1555 }
1556};
1557
1558/// Matches ShuffleVectorInst independently of mask value.
1559template <typename V1_t, typename V2_t>
1560inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1561m_Shuffle(const V1_t &v1, const V2_t &v2) {
1562 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1563}
1564
1565template <typename V1_t, typename V2_t, typename Mask_t>
1566inline Shuffle_match<V1_t, V2_t, Mask_t>
1567m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1568 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1569}
1570
1571/// Matches LoadInst.
1572template <typename OpTy>
1573inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1574 return OneOps_match<OpTy, Instruction::Load>(Op);
1575}
1576
1577/// Matches StoreInst.
1578template <typename ValueOpTy, typename PointerOpTy>
1579inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1580m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1581 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1582 PointerOp);
1583}
1584
1585//===----------------------------------------------------------------------===//
1586// Matchers for CastInst classes
1587//
1588
1589template <typename Op_t, unsigned Opcode> struct CastClass_match {
1590 Op_t Op;
1591
1592 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1593
1594 template <typename OpTy> bool match(OpTy *V) {
1595 if (auto *O = dyn_cast<Operator>(V))
1596 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1597 return false;
1598 }
1599};
1600
1601/// Matches BitCast.
1602template <typename OpTy>
1603inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1604 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1605}
1606
1607/// Matches PtrToInt.
1608template <typename OpTy>
1609inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1610 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1611}
1612
1613/// Matches IntToPtr.
1614template <typename OpTy>
1615inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1616 return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1617}
1618
1619/// Matches Trunc.
1620template <typename OpTy>
1621inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1622 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1623}
1624
1625template <typename OpTy>
1626inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1627m_TruncOrSelf(const OpTy &Op) {
1628 return m_CombineOr(m_Trunc(Op), Op);
1629}
1630
1631/// Matches SExt.
1632template <typename OpTy>
1633inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1634 return CastClass_match<OpTy, Instruction::SExt>(Op);
1635}
1636
1637/// Matches ZExt.
1638template <typename OpTy>
1639inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1640 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1641}
1642
1643template <typename OpTy>
1644inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1645m_ZExtOrSelf(const OpTy &Op) {
1646 return m_CombineOr(m_ZExt(Op), Op);
1647}
1648
1649template <typename OpTy>
1650inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1651m_SExtOrSelf(const OpTy &Op) {
1652 return m_CombineOr(m_SExt(Op), Op);
1653}
1654
1655template <typename OpTy>
1656inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1657 CastClass_match<OpTy, Instruction::SExt>>
1658m_ZExtOrSExt(const OpTy &Op) {
1659 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1660}
1661
1662template <typename OpTy>
1663inline match_combine_or<
1664 match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1665 CastClass_match<OpTy, Instruction::SExt>>,
1666 OpTy>
1667m_ZExtOrSExtOrSelf(const OpTy &Op) {
1668 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1669}
1670
1671template <typename OpTy>
1672inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1673 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1674}
1675
1676template <typename OpTy>
1677inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1678 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1679}
1680
1681template <typename OpTy>
1682inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1683 return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1684}
1685
1686template <typename OpTy>
1687inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1688 return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1689}
1690
1691template <typename OpTy>
1692inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1693 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1694}
1695
1696template <typename OpTy>
1697inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1698 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1699}
1700
1701//===----------------------------------------------------------------------===//
1702// Matchers for control flow.
1703//
1704
1705struct br_match {
1706 BasicBlock *&Succ;
1707
1708 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1709
1710 template <typename OpTy> bool match(OpTy *V) {
1711 if (auto *BI = dyn_cast<BranchInst>(V))
1712 if (BI->isUnconditional()) {
1713 Succ = BI->getSuccessor(0);
1714 return true;
1715 }
1716 return false;
1717 }
1718};
1719
1720inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1721
1722template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1723struct brc_match {
1724 Cond_t Cond;
1725 TrueBlock_t T;
1726 FalseBlock_t F;
1727
1728 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1729 : Cond(C), T(t), F(f) {}
1730
1731 template <typename OpTy> bool match(OpTy *V) {
1732 if (auto *BI = dyn_cast<BranchInst>(V))
1733 if (BI->isConditional() && Cond.match(BI->getCondition()))
1734 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1735 return false;
1736 }
1737};
1738
1739template <typename Cond_t>
1740inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1741m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1742 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1743 C, m_BasicBlock(T), m_BasicBlock(F));
1744}
1745
1746template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1747inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1748m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1749 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1750}
1751
1752//===----------------------------------------------------------------------===//
1753// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1754//
1755
1756template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1757 bool Commutable = false>
1758struct MaxMin_match {
1759 using PredType = Pred_t;
1760 LHS_t L;
1761 RHS_t R;
1762
1763 // The evaluation order is always stable, regardless of Commutability.
1764 // The LHS is always matched first.
1765 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1766
1767 template <typename OpTy> bool match(OpTy *V) {
1768 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1769 Intrinsic::ID IID = II->getIntrinsicID();
1770 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1771 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1772 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1773 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1774 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1775 return (L.match(LHS) && R.match(RHS)) ||
1776 (Commutable && L.match(RHS) && R.match(LHS));
1777 }
1778 }
1779 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1780 auto *SI = dyn_cast<SelectInst>(V);
1781 if (!SI)
1782 return false;
1783 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1784 if (!Cmp)
1785 return false;
1786 // At this point we have a select conditioned on a comparison. Check that
1787 // it is the values returned by the select that are being compared.
1788 auto *TrueVal = SI->getTrueValue();
1789 auto *FalseVal = SI->getFalseValue();
1790 auto *LHS = Cmp->getOperand(0);
1791 auto *RHS = Cmp->getOperand(1);
1792 if ((TrueVal != LHS || FalseVal != RHS) &&
1793 (TrueVal != RHS || FalseVal != LHS))
1794 return false;
1795 typename CmpInst_t::Predicate Pred =
1796 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1797 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1798 if (!Pred_t::match(Pred))
1799 return false;
1800 // It does! Bind the operands.
1801 return (L.match(LHS) && R.match(RHS)) ||
1802 (Commutable && L.match(RHS) && R.match(LHS));
1803 }
1804};
1805
1806/// Helper class for identifying signed max predicates.
1807struct smax_pred_ty {
1808 static bool match(ICmpInst::Predicate Pred) {
1809 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1810 }
1811};
1812
1813/// Helper class for identifying signed min predicates.
1814struct smin_pred_ty {
1815 static bool match(ICmpInst::Predicate Pred) {
1816 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1817 }
1818};
1819
1820/// Helper class for identifying unsigned max predicates.
1821struct umax_pred_ty {
1822 static bool match(ICmpInst::Predicate Pred) {
1823 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1824 }
1825};
1826
1827/// Helper class for identifying unsigned min predicates.
1828struct umin_pred_ty {
1829 static bool match(ICmpInst::Predicate Pred) {
1830 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1831 }
1832};
1833
1834/// Helper class for identifying ordered max predicates.
1835struct ofmax_pred_ty {
1836 static bool match(FCmpInst::Predicate Pred) {
1837 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1838 }
1839};
1840
1841/// Helper class for identifying ordered min predicates.
1842struct ofmin_pred_ty {
1843 static bool match(FCmpInst::Predicate Pred) {
1844 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1845 }
1846};
1847
1848/// Helper class for identifying unordered max predicates.
1849struct ufmax_pred_ty {
1850 static bool match(FCmpInst::Predicate Pred) {
1851 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1852 }
1853};
1854
1855/// Helper class for identifying unordered min predicates.
1856struct ufmin_pred_ty {
1857 static bool match(FCmpInst::Predicate Pred) {
1858 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1859 }
1860};
1861
1862template <typename LHS, typename RHS>
1863inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1864 const RHS &R) {
1865 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1866}
1867
1868template <typename LHS, typename RHS>
1869inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1870 const RHS &R) {
1871 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1872}
1873
1874template <typename LHS, typename RHS>
1875inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1876 const RHS &R) {
1877 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1878}
1879
1880template <typename LHS, typename RHS>
1881inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1882 const RHS &R) {
1883 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1884}
1885
1886template <typename LHS, typename RHS>
1887inline match_combine_or<
1888 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1889 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1890 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1891 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
1892m_MaxOrMin(const LHS &L, const RHS &R) {
1893 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1894 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1895}
1896
1897/// Match an 'ordered' floating point maximum function.
1898/// Floating point has one special value 'NaN'. Therefore, there is no total
1899/// order. However, if we can ignore the 'NaN' value (for example, because of a
1900/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1901/// semantics. In the presence of 'NaN' we have to preserve the original
1902/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1903///
1904/// max(L, R) iff L and R are not NaN
1905/// m_OrdFMax(L, R) = R iff L or R are NaN
1906template <typename LHS, typename RHS>
1907inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1908 const RHS &R) {
1909 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1910}
1911
1912/// Match an 'ordered' floating point minimum function.
1913/// Floating point has one special value 'NaN'. Therefore, there is no total
1914/// order. However, if we can ignore the 'NaN' value (for example, because of a
1915/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1916/// semantics. In the presence of 'NaN' we have to preserve the original
1917/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1918///
1919/// min(L, R) iff L and R are not NaN
1920/// m_OrdFMin(L, R) = R iff L or R are NaN
1921template <typename LHS, typename RHS>
1922inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1923 const RHS &R) {
1924 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1925}
1926
1927/// Match an 'unordered' floating point maximum function.
1928/// Floating point has one special value 'NaN'. Therefore, there is no total
1929/// order. However, if we can ignore the 'NaN' value (for example, because of a
1930/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1931/// semantics. In the presence of 'NaN' we have to preserve the original
1932/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1933///
1934/// max(L, R) iff L and R are not NaN
1935/// m_UnordFMax(L, R) = L iff L or R are NaN
1936template <typename LHS, typename RHS>
1937inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1938m_UnordFMax(const LHS &L, const RHS &R) {
1939 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1940}
1941
1942/// Match an 'unordered' floating point minimum function.
1943/// Floating point has one special value 'NaN'. Therefore, there is no total
1944/// order. However, if we can ignore the 'NaN' value (for example, because of a
1945/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1946/// semantics. In the presence of 'NaN' we have to preserve the original
1947/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1948///
1949/// min(L, R) iff L and R are not NaN
1950/// m_UnordFMin(L, R) = L iff L or R are NaN
1951template <typename LHS, typename RHS>
1952inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1953m_UnordFMin(const LHS &L, const RHS &R) {
1954 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1955}
1956
1957//===----------------------------------------------------------------------===//
1958// Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1959// Note that S might be matched to other instructions than AddInst.
1960//
1961
1962template <typename LHS_t, typename RHS_t, typename Sum_t>
1963struct UAddWithOverflow_match {
1964 LHS_t L;
1965 RHS_t R;
1966 Sum_t S;
1967
1968 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1969 : L(L), R(R), S(S) {}
1970
1971 template <typename OpTy> bool match(OpTy *V) {
1972 Value *ICmpLHS, *ICmpRHS;
1973 ICmpInst::Predicate Pred;
1974 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1975 return false;
1976
1977 Value *AddLHS, *AddRHS;
1978 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1979
1980 // (a + b) u< a, (a + b) u< b
1981 if (Pred == ICmpInst::ICMP_ULT)
1982 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1983 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1984
1985 // a >u (a + b), b >u (a + b)
1986 if (Pred == ICmpInst::ICMP_UGT)
1987 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1988 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1989
1990 Value *Op1;
1991 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1992 // (a ^ -1) <u b
1993 if (Pred == ICmpInst::ICMP_ULT) {
1994 if (XorExpr.match(ICmpLHS))
1995 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1996 }
1997 // b > u (a ^ -1)
1998 if (Pred == ICmpInst::ICMP_UGT) {
1999 if (XorExpr.match(ICmpRHS))
2000 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
2001 }
2002
2003 // Match special-case for increment-by-1.
2004 if (Pred == ICmpInst::ICMP_EQ) {
2005 // (a + 1) == 0
2006 // (1 + a) == 0
2007 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
2008 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2009 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2010 // 0 == (a + 1)
2011 // 0 == (1 + a)
2012 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2013 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2014 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2015 }
2016
2017 return false;
2018 }
2019};
2020
2021/// Match an icmp instruction checking for unsigned overflow on addition.
2022///
2023/// S is matched to the addition whose result is being checked for overflow, and
2024/// L and R are matched to the LHS and RHS of S.
2025template <typename LHS_t, typename RHS_t, typename Sum_t>
2026UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
2027m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2028 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2029}
2030
2031template <typename Opnd_t> struct Argument_match {
2032 unsigned OpI;
2033 Opnd_t Val;
2034
2035 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2036
2037 template <typename OpTy> bool match(OpTy *V) {
2038 // FIXME: Should likely be switched to use `CallBase`.
2039 if (const auto *CI = dyn_cast<CallInst>(V))
2040 return Val.match(CI->getArgOperand(OpI));
2041 return false;
2042 }
2043};
2044
2045/// Match an argument.
2046template <unsigned OpI, typename Opnd_t>
2047inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2048 return Argument_match<Opnd_t>(OpI, Op);
2049}
2050
2051/// Intrinsic matchers.
2052struct IntrinsicID_match {
2053 unsigned ID;
2054
2055 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2056
2057 template <typename OpTy> bool match(OpTy *V) {
2058 if (const auto *CI = dyn_cast<CallInst>(V))
2059 if (const auto *F = CI->getCalledFunction())
2060 return F->getIntrinsicID() == ID;
2061 return false;
2062 }
2063};
2064
2065/// Intrinsic matches are combinations of ID matchers, and argument
2066/// matchers. Higher arity matcher are defined recursively in terms of and-ing
2067/// them with lower arity matchers. Here's some convenient typedefs for up to
2068/// several arguments, and more can be added as needed
2069template <typename T0 = void, typename T1 = void, typename T2 = void,
2070 typename T3 = void, typename T4 = void, typename T5 = void,
2071 typename T6 = void, typename T7 = void, typename T8 = void,
2072 typename T9 = void, typename T10 = void>
2073struct m_Intrinsic_Ty;
2074template <typename T0> struct m_Intrinsic_Ty<T0> {
2075 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2076};
2077template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2078 using Ty =
2079 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2080};
2081template <typename T0, typename T1, typename T2>
2082struct m_Intrinsic_Ty<T0, T1, T2> {
2083 using Ty =
2084 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2085 Argument_match<T2>>;
2086};
2087template <typename T0, typename T1, typename T2, typename T3>
2088struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2089 using Ty =
2090 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2091 Argument_match<T3>>;
2092};
2093
2094template <typename T0, typename T1, typename T2, typename T3, typename T4>
2095struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2096 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2097 Argument_match<T4>>;
2098};
2099
2100template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
2101struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2102 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2103 Argument_match<T5>>;
2104};
2105
2106/// Match intrinsic calls like this:
2107/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2108template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2109 return IntrinsicID_match(IntrID);
2110}
2111
2112/// Matches MaskedLoad Intrinsic.
2113template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2114inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2115m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2116 const Opnd3 &Op3) {
2117 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2118}
2119
2120template <Intrinsic::ID IntrID, typename T0>
2121inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2122 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2123}
2124
2125template <Intrinsic::ID IntrID, typename T0, typename T1>
2126inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2127 const T1 &Op1) {
2128 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2129}
2130
2131template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2132inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2133m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2134 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2135}
2136
2137template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2138 typename T3>
2139inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2140m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2141 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2142}
2143
2144template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2145 typename T3, typename T4>
2146inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2147m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2148 const T4 &Op4) {
2149 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2150 m_Argument<4>(Op4));
2151}
2152
2153template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2154 typename T3, typename T4, typename T5>
2155inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2156m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2157 const T4 &Op4, const T5 &Op5) {
2158 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2159 m_Argument<5>(Op5));
2160}
2161
2162// Helper intrinsic matching specializations.
2163template <typename Opnd0>
2164inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2165 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2166}
2167
2168template <typename Opnd0>
2169inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2170 return m_Intrinsic<Intrinsic::bswap>(Op0);
2171}
2172
2173template <typename Opnd0>
2174inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2175 return m_Intrinsic<Intrinsic::fabs>(Op0);
2176}
2177
2178template <typename Opnd0>
2179inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2180 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2181}
2182
2183template <typename Opnd0, typename Opnd1>
2184inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2185 const Opnd1 &Op1) {
2186 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2187}
2188
2189template <typename Opnd0, typename Opnd1>
2190inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2191 const Opnd1 &Op1) {
2192 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2193}
2194
2195template <typename Opnd0, typename Opnd1, typename Opnd2>
2196inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2197m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2198 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2199}
2200
2201template <typename Opnd0, typename Opnd1, typename Opnd2>
2202inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2203m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2204 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2205}
2206
2207//===----------------------------------------------------------------------===//
2208// Matchers for two-operands operators with the operators in either order
2209//
2210
2211/// Matches a BinaryOperator with LHS and RHS in either order.
2212template <typename LHS, typename RHS>
2213inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2214 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2215}
2216
2217/// Matches an ICmp with a predicate over LHS and RHS in either order.
2218/// Swaps the predicate if operands are commuted.
2219template <typename LHS, typename RHS>
2220inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2221m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2222 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2223 R);
2224}
2225
2226/// Matches a Add with LHS and RHS in either order.
2227template <typename LHS, typename RHS>
2228inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2229 const RHS &R) {
2230 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2231}
2232
2233/// Matches a Mul with LHS and RHS in either order.
2234template <typename LHS, typename RHS>
2235inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2236 const RHS &R) {
2237 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2238}
2239
2240/// Matches an And with LHS and RHS in either order.
2241template <typename LHS, typename RHS>
2242inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2243 const RHS &R) {
2244 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2245}
2246
2247/// Matches an Or with LHS and RHS in either order.
2248template <typename LHS, typename RHS>
2249inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2250 const RHS &R) {
2251 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2252}
2253
2254/// Matches an Xor with LHS and RHS in either order.
2255template <typename LHS, typename RHS>
2256inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2257 const RHS &R) {
2258 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2259}
2260
2261/// Matches a 'Neg' as 'sub 0, V'.
2262template <typename ValTy>
2263inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2264m_Neg(const ValTy &V) {
2265 return m_Sub(m_ZeroInt(), V);
2266}
2267
2268/// Matches a 'Neg' as 'sub nsw 0, V'.
2269template <typename ValTy>
2270inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2271 Instruction::Sub,
2272 OverflowingBinaryOperator::NoSignedWrap>
2273m_NSWNeg(const ValTy &V) {
2274 return m_NSWSub(m_ZeroInt(), V);
2275}
2276
2277/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2278template <typename ValTy>
2279inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
2280m_Not(const ValTy &V) {
2281 return m_c_Xor(V, m_AllOnes());
2282}
2283
2284/// Matches an SMin with LHS and RHS in either order.
2285template <typename LHS, typename RHS>
2286inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2287m_c_SMin(const LHS &L, const RHS &R) {
2288 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2289}
2290/// Matches an SMax with LHS and RHS in either order.
2291template <typename LHS, typename RHS>
2292inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2293m_c_SMax(const LHS &L, const RHS &R) {
2294 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2295}
2296/// Matches a UMin with LHS and RHS in either order.
2297template <typename LHS, typename RHS>
2298inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2299m_c_UMin(const LHS &L, const RHS &R) {
2300 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2301}
2302/// Matches a UMax with LHS and RHS in either order.
2303template <typename LHS, typename RHS>
2304inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2305m_c_UMax(const LHS &L, const RHS &R) {
2306 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2307}
2308
2309template <typename LHS, typename RHS>
2310inline match_combine_or<
2311 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2312 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2313 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2314 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2315m_c_MaxOrMin(const LHS &L, const RHS &R) {
2316 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2317 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2318}
2319
2320/// Matches FAdd with LHS and RHS in either order.
2321template <typename LHS, typename RHS>
2322inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2323m_c_FAdd(const LHS &L, const RHS &R) {
2324 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2325}
2326
2327/// Matches FMul with LHS and RHS in either order.
2328template <typename LHS, typename RHS>
2329inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2330m_c_FMul(const LHS &L, const RHS &R) {
2331 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2332}
2333
2334template <typename Opnd_t> struct Signum_match {
2335 Opnd_t Val;
2336 Signum_match(const Opnd_t &V) : Val(V) {}
2337
2338 template <typename OpTy> bool match(OpTy *V) {
2339 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2340 if (TypeSize == 0)
2341 return false;
2342
2343 unsigned ShiftWidth = TypeSize - 1;
2344 Value *OpL = nullptr, *OpR = nullptr;
2345
2346 // This is the representation of signum we match:
2347 //
2348 // signum(x) == (x >> 63) | (-x >>u 63)
2349 //
2350 // An i1 value is its own signum, so it's correct to match
2351 //
2352 // signum(x) == (x >> 0) | (-x >>u 0)
2353 //
2354 // for i1 values.
2355
2356 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2357 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2358 auto Signum = m_Or(LHS, RHS);
2359
2360 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2361 }
2362};
2363
2364/// Matches a signum pattern.
2365///
2366/// signum(x) =
2367/// x > 0 -> 1
2368/// x == 0 -> 0
2369/// x < 0 -> -1
2370template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2371 return Signum_match<Val_t>(V);
2372}
2373
2374template <int Ind, typename Opnd_t> struct ExtractValue_match {
2375 Opnd_t Val;
2376 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2377
2378 template <typename OpTy> bool match(OpTy *V) {
2379 if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2380 // If Ind is -1, don't inspect indices
2381 if (Ind != -1 &&
2382 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2383 return false;
2384 return Val.match(I->getAggregateOperand());
2385 }
2386 return false;
2387 }
2388};
2389
2390/// Match a single index ExtractValue instruction.
2391/// For example m_ExtractValue<1>(...)
2392template <int Ind, typename Val_t>
2393inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2394 return ExtractValue_match<Ind, Val_t>(V);
2395}
2396
2397/// Match an ExtractValue instruction with any index.
2398/// For example m_ExtractValue(...)
2399template <typename Val_t>
2400inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2401 return ExtractValue_match<-1, Val_t>(V);
2402}
2403
2404/// Matcher for a single index InsertValue instruction.
2405template <int Ind, typename T0, typename T1> struct InsertValue_match {
2406 T0 Op0;
2407 T1 Op1;
2408
2409 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2410
2411 template <typename OpTy> bool match(OpTy *V) {
2412 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2413 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2414 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2415 }
2416 return false;
2417 }
2418};
2419
2420/// Matches a single index InsertValue instruction.
2421template <int Ind, typename Val_t, typename Elt_t>
2422inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2423 const Elt_t &Elt) {
2424 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2425}
2426
2427/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2428/// the constant expression
2429/// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2430/// under the right conditions determined by DataLayout.
2431struct VScaleVal_match {
2432 const DataLayout &DL;
2433 VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2434
2435 template <typename ITy> bool match(ITy *V) {
2436 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2437 return true;
2438
2439 Value *Ptr;
2440 if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2441 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2442 auto *DerefTy = GEP->getSourceElementType();
2443 if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) &&
2444 m_Zero().match(GEP->getPointerOperand()) &&
2445 m_SpecificInt(1).match(GEP->idx_begin()->get()) &&
2446 DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
2447 return true;
2448 }
2449 }
2450
2451 return false;
2452 }
2453};
2454
2455inline VScaleVal_match m_VScale(const DataLayout &DL) {
2456 return VScaleVal_match(DL);
2457}
2458
2459template <typename LHS, typename RHS, unsigned Opcode>
2460struct LogicalOp_match {
2461 LHS L;
2462 RHS R;
2463
2464 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2465
2466 template <typename T> bool match(T *V) {
2467 if (auto *I = dyn_cast<Instruction>(V)) {
2468 if (!I->getType()->isIntOrIntVectorTy(1))
2469 return false;
2470
2471 if (I->getOpcode() == Opcode && L.match(I->getOperand(0)) &&
2472 R.match(I->getOperand(1)))
2473 return true;
2474
2475 if (auto *SI = dyn_cast<SelectInst>(I)) {
2476 if (Opcode == Instruction::And) {
2477 if (const auto *C = dyn_cast<Constant>(SI->getFalseValue()))
2478 if (C->isNullValue() && L.match(SI->getCondition()) &&
2479 R.match(SI->getTrueValue()))
2480 return true;
2481 } else {
2482 assert(Opcode == Instruction::Or)(static_cast<void> (0));
2483 if (const auto *C = dyn_cast<Constant>(SI->getTrueValue()))
2484 if (C->isOneValue() && L.match(SI->getCondition()) &&
2485 R.match(SI->getFalseValue()))
2486 return true;
2487 }
2488 }
2489 }
2490
2491 return false;
2492 }
2493};
2494
2495/// Matches L && R either in the form of L & R or L ? R : false.
2496/// Note that the latter form is poison-blocking.
2497template <typename LHS, typename RHS>
2498inline LogicalOp_match<LHS, RHS, Instruction::And>
2499m_LogicalAnd(const LHS &L, const RHS &R) {
2500 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2501}
2502
2503/// Matches L && R where L and R are arbitrary values.
2504inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2505
2506/// Matches L || R either in the form of L | R or L ? true : R.
2507/// Note that the latter form is poison-blocking.
2508template <typename LHS, typename RHS>
2509inline LogicalOp_match<LHS, RHS, Instruction::Or>
2510m_LogicalOr(const LHS &L, const RHS &R) {
2511 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2512}
2513
2514/// Matches L || R where L and R are arbitrary values.
2515inline auto m_LogicalOr() {
2516 return m_LogicalOr(m_Value(), m_Value());
2517}
2518
2519} // end namespace PatternMatch
2520} // end namespace llvm
2521
2522#endif // LLVM_IR_PATTERNMATCH_H

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include/llvm/IR/Value.h

1//===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file declares the Value class.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_IR_VALUE_H
14#define LLVM_IR_VALUE_H
15
16#include "llvm-c/Types.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/iterator_range.h"
20#include "llvm/IR/Use.h"
21#include "llvm/Support/Alignment.h"
22#include "llvm/Support/CBindingWrapping.h"
23#include "llvm/Support/Casting.h"
24#include <cassert>
25#include <iterator>
26#include <memory>
27
28namespace llvm {
29
30class APInt;
31class Argument;
32class BasicBlock;
33class Constant;
34class ConstantData;
35class ConstantAggregate;
36class DataLayout;
37class Function;
38class GlobalAlias;
39class GlobalIFunc;
40class GlobalIndirectSymbol;
41class GlobalObject;
42class GlobalValue;
43class GlobalVariable;
44class InlineAsm;
45class Instruction;
46class LLVMContext;
47class MDNode;
48class Module;
49class ModuleSlotTracker;
50class raw_ostream;
51template<typename ValueTy> class StringMapEntry;
52class Twine;
53class Type;
54class User;
55
56using ValueName = StringMapEntry<Value *>;
57
58//===----------------------------------------------------------------------===//
59// Value Class
60//===----------------------------------------------------------------------===//
61
62/// LLVM Value Representation
63///
64/// This is a very important LLVM class. It is the base class of all values
65/// computed by a program that may be used as operands to other values. Value is
66/// the super class of other important classes such as Instruction and Function.
67/// All Values have a Type. Type is not a subclass of Value. Some values can
68/// have a name and they belong to some Module. Setting the name on the Value
69/// automatically updates the module's symbol table.
70///
71/// Every value has a "use list" that keeps track of which other Values are
72/// using this Value. A Value can also have an arbitrary number of ValueHandle
73/// objects that watch it and listen to RAUW and Destroy events. See
74/// llvm/IR/ValueHandle.h for details.
75class Value {
76 Type *VTy;
77 Use *UseList;
78
79 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
80 friend class ValueHandleBase;
81
82 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
83 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
84
85protected:
86 /// Hold subclass data that can be dropped.
87 ///
88 /// This member is similar to SubclassData, however it is for holding
89 /// information which may be used to aid optimization, but which may be
90 /// cleared to zero without affecting conservative interpretation.
91 unsigned char SubclassOptionalData : 7;
92
93private:
94 /// Hold arbitrary subclass data.
95 ///
96 /// This member is defined by this class, but is not used for anything.
97 /// Subclasses can use it to hold whatever state they find useful. This
98 /// field is initialized to zero by the ctor.
99 unsigned short SubclassData;
100
101protected:
102 /// The number of operands in the subclass.
103 ///
104 /// This member is defined by this class, but not used for anything.
105 /// Subclasses can use it to store their number of operands, if they have
106 /// any.
107 ///
108 /// This is stored here to save space in User on 64-bit hosts. Since most
109 /// instances of Value have operands, 32-bit hosts aren't significantly
110 /// affected.
111 ///
112 /// Note, this should *NOT* be used directly by any class other than User.
113 /// User uses this value to find the Use list.
114 enum : unsigned { NumUserOperandsBits = 27 };
115 unsigned NumUserOperands : NumUserOperandsBits;
116
117 // Use the same type as the bitfield above so that MSVC will pack them.
118 unsigned IsUsedByMD : 1;
119 unsigned HasName : 1;
120 unsigned HasMetadata : 1; // Has metadata attached to this?
121 unsigned HasHungOffUses : 1;
122 unsigned HasDescriptor : 1;
123
124private:
125 template <typename UseT> // UseT == 'Use' or 'const Use'
126 class use_iterator_impl {
127 friend class Value;
128
129 UseT *U;
130
131 explicit use_iterator_impl(UseT *u) : U(u) {}
132
133 public:
134 using iterator_category = std::forward_iterator_tag;
135 using value_type = UseT *;
136 using difference_type = std::ptrdiff_t;
137 using pointer = value_type *;
138 using reference = value_type &;
139
140 use_iterator_impl() : U() {}
141
142 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
143 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
144
145 use_iterator_impl &operator++() { // Preincrement
146 assert(U && "Cannot increment end iterator!")(static_cast<void> (0));
147 U = U->getNext();
148 return *this;
149 }
150
151 use_iterator_impl operator++(int) { // Postincrement
152 auto tmp = *this;
153 ++*this;
154 return tmp;
155 }
156
157 UseT &operator*() const {
158 assert(U && "Cannot dereference end iterator!")(static_cast<void> (0));
159 return *U;
160 }
161
162 UseT *operator->() const { return &operator*(); }
163
164 operator use_iterator_impl<const UseT>() const {
165 return use_iterator_impl<const UseT>(U);
166 }
167 };
168
169 template <typename UserTy> // UserTy == 'User' or 'const User'
170 class user_iterator_impl {
171 use_iterator_impl<Use> UI;
172 explicit user_iterator_impl(Use *U) : UI(U) {}
173 friend class Value;
174
175 public:
176 using iterator_category = std::forward_iterator_tag;
177 using value_type = UserTy *;
178 using difference_type = std::ptrdiff_t;
179 using pointer = value_type *;
180 using reference = value_type &;
181
182 user_iterator_impl() = default;
183
184 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
185 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
186
187 /// Returns true if this iterator is equal to user_end() on the value.
188 bool atEnd() const { return *this == user_iterator_impl(); }
189
190 user_iterator_impl &operator++() { // Preincrement
191 ++UI;
192 return *this;
193 }
194
195 user_iterator_impl operator++(int) { // Postincrement
196 auto tmp = *this;
197 ++*this;
198 return tmp;
199 }
200
201 // Retrieve a pointer to the current User.
202 UserTy *operator*() const {
203 return UI->getUser();
204 }
205
206 UserTy *operator->() const { return operator*(); }
207
208 operator user_iterator_impl<const UserTy>() const {
209 return user_iterator_impl<const UserTy>(*UI);
210 }
211
212 Use &getUse() const { return *UI; }
213 };
214
215protected:
216 Value(Type *Ty, unsigned scid);
217
218 /// Value's destructor should be virtual by design, but that would require
219 /// that Value and all of its subclasses have a vtable that effectively
220 /// duplicates the information in the value ID. As a size optimization, the
221 /// destructor has been protected, and the caller should manually call
222 /// deleteValue.
223 ~Value(); // Use deleteValue() to delete a generic Value.
224
225public:
226 Value(const Value &) = delete;
227 Value &operator=(const Value &) = delete;
228
229 /// Delete a pointer to a generic Value.
230 void deleteValue();
231
232 /// Support for debugging, callable in GDB: V->dump()
233 void dump() const;
234
235 /// Implement operator<< on Value.
236 /// @{
237 void print(raw_ostream &O, bool IsForDebug = false) const;
238 void print(raw_ostream &O, ModuleSlotTracker &MST,
239 bool IsForDebug = false) const;
240 /// @}
241
242 /// Print the name of this Value out to the specified raw_ostream.
243 ///
244 /// This is useful when you just want to print 'int %reg126', not the
245 /// instruction that generated it. If you specify a Module for context, then
246 /// even constanst get pretty-printed; for example, the type of a null
247 /// pointer is printed symbolically.
248 /// @{
249 void printAsOperand(raw_ostream &O, bool PrintType = true,
250 const Module *M = nullptr) const;
251 void printAsOperand(raw_ostream &O, bool PrintType,
252 ModuleSlotTracker &MST) const;
253 /// @}
254
255 /// All values are typed, get the type of this value.
256 Type *getType() const { return VTy; }
257
258 /// All values hold a context through their type.
259 LLVMContext &getContext() const;
260
261 // All values can potentially be named.
262 bool hasName() const { return HasName; }
263 ValueName *getValueName() const;
264 void setValueName(ValueName *VN);
265
266private:
267 void destroyValueName();
268 enum class ReplaceMetadataUses { No, Yes };
269 void doRAUW(Value *New, ReplaceMetadataUses);
270 void setNameImpl(const Twine &Name);
271
272public:
273 /// Return a constant reference to the value's name.
274 ///
275 /// This guaranteed to return the same reference as long as the value is not
276 /// modified. If the value has a name, this does a hashtable lookup, so it's
277 /// not free.
278 StringRef getName() const;
279
280 /// Change the name of the value.
281 ///
282 /// Choose a new unique name if the provided name is taken.
283 ///
284 /// \param Name The new name; or "" if the value's name should be removed.
285 void setName(const Twine &Name);
286
287 /// Transfer the name from V to this value.
288 ///
289 /// After taking V's name, sets V's name to empty.
290 ///
291 /// \note It is an error to call V->takeName(V).
292 void takeName(Value *V);
293
294#ifndef NDEBUG1
295 std::string getNameOrAsOperand() const;
296#endif
297
298 /// Change all uses of this to point to a new Value.
299 ///
300 /// Go through the uses list for this definition and make each use point to
301 /// "V" instead of "this". After this completes, 'this's use list is
302 /// guaranteed to be empty.
303 void replaceAllUsesWith(Value *V);
304
305 /// Change non-metadata uses of this to point to a new Value.
306 ///
307 /// Go through the uses list for this definition and make each use point to
308 /// "V" instead of "this". This function skips metadata entries in the list.
309 void replaceNonMetadataUsesWith(Value *V);
310
311 /// Go through the uses list for this definition and make each use point
312 /// to "V" if the callback ShouldReplace returns true for the given Use.
313 /// Unlike replaceAllUsesWith() this function does not support basic block
314 /// values.
315 void replaceUsesWithIf(Value *New,
316 llvm::function_ref<bool(Use &U)> ShouldReplace);
317
318 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
319 /// make each use point to "V" instead of "this" when the use is outside the
320 /// block. 'This's use list is expected to have at least one element.
321 /// Unlike replaceAllUsesWith() this function does not support basic block
322 /// values.
323 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
324
325 //----------------------------------------------------------------------
326 // Methods for handling the chain of uses of this Value.
327 //
328 // Materializing a function can introduce new uses, so these methods come in
329 // two variants:
330 // The methods that start with materialized_ check the uses that are
331 // currently known given which functions are materialized. Be very careful
332 // when using them since you might not get all uses.
333 // The methods that don't start with materialized_ assert that modules is
334 // fully materialized.
335 void assertModuleIsMaterializedImpl() const;
336 // This indirection exists so we can keep assertModuleIsMaterializedImpl()
337 // around in release builds of Value.cpp to be linked with other code built
338 // in debug mode. But this avoids calling it in any of the release built code.
339 void assertModuleIsMaterialized() const {
340#ifndef NDEBUG1
341 assertModuleIsMaterializedImpl();
342#endif
343 }
344
345 bool use_empty() const {
346 assertModuleIsMaterialized();
347 return UseList == nullptr;
22
Assuming the condition is false
23
Returning zero, which participates in a condition later
348 }
349
350 bool materialized_use_empty() const {
351 return UseList == nullptr;
352 }
353
354 using use_iterator = use_iterator_impl<Use>;
355 using const_use_iterator = use_iterator_impl<const Use>;
356
357 use_iterator materialized_use_begin() { return use_iterator(UseList); }
358 const_use_iterator materialized_use_begin() const {
359 return const_use_iterator(UseList);
360 }
361 use_iterator use_begin() {
362 assertModuleIsMaterialized();
363 return materialized_use_begin();
364 }
365 const_use_iterator use_begin() const {
366 assertModuleIsMaterialized();
367 return materialized_use_begin();
368 }
369 use_iterator use_end() { return use_iterator(); }
370 const_use_iterator use_end() const { return const_use_iterator(); }
371 iterator_range<use_iterator> materialized_uses() {
372 return make_range(materialized_use_begin(), use_end());
373 }
374 iterator_range<const_use_iterator> materialized_uses() const {
375 return make_range(materialized_use_begin(), use_end());
376 }
377 iterator_range<use_iterator> uses() {
378 assertModuleIsMaterialized();
379 return materialized_uses();
380 }
381 iterator_range<const_use_iterator> uses() const {
382 assertModuleIsMaterialized();
383 return materialized_uses();
384 }
385
386 bool user_empty() const {
387 assertModuleIsMaterialized();
388 return UseList == nullptr;
389 }
390
391 using user_iterator = user_iterator_impl<User>;
392 using const_user_iterator = user_iterator_impl<const User>;
393
394 user_iterator materialized_user_begin() { return user_iterator(UseList); }
395 const_user_iterator materialized_user_begin() const {
396 return const_user_iterator(UseList);
397 }
398 user_iterator user_begin() {
399 assertModuleIsMaterialized();
400 return materialized_user_begin();
401 }
402 const_user_iterator user_begin() const {
403 assertModuleIsMaterialized();
404 return materialized_user_begin();
405 }
406 user_iterator user_end() { return user_iterator(); }
407 const_user_iterator user_end() const { return const_user_iterator(); }
408 User *user_back() {
409 assertModuleIsMaterialized();
410 return *materialized_user_begin();
411 }
412 const User *user_back() const {
413 assertModuleIsMaterialized();
414 return *materialized_user_begin();
415 }
416 iterator_range<user_iterator> materialized_users() {
417 return make_range(materialized_user_begin(), user_end());
418 }
419 iterator_range<const_user_iterator> materialized_users() const {
420 return make_range(materialized_user_begin(), user_end());
421 }
422 iterator_range<user_iterator> users() {
423 assertModuleIsMaterialized();
424 return materialized_users();
425 }
426 iterator_range<const_user_iterator> users() const {
427 assertModuleIsMaterialized();
428 return materialized_users();
429 }
430
431 /// Return true if there is exactly one use of this value.
432 ///
433 /// This is specialized because it is a common request and does not require
434 /// traversing the whole use list.
435 bool hasOneUse() const { return hasSingleElement(uses()); }
436
437 /// Return true if this Value has exactly N uses.
438 bool hasNUses(unsigned N) const;
439
440 /// Return true if this value has N uses or more.
441 ///
442 /// This is logically equivalent to getNumUses() >= N.
443 bool hasNUsesOrMore(unsigned N) const;
444
445 /// Return true if there is exactly one user of this value.
446 ///
447 /// Note that this is not the same as "has one use". If a value has one use,
448 /// then there certainly is a single user. But if value has several uses,
449 /// it is possible that all uses are in a single user, or not.
450 ///
451 /// This check is potentially costly, since it requires traversing,
452 /// in the worst case, the whole use list of a value.
453 bool hasOneUser() const;
454
455 /// Return true if there is exactly one use of this value that cannot be
456 /// dropped.
457 ///
458 /// This is specialized because it is a common request and does not require
459 /// traversing the whole use list.
460 Use *getSingleUndroppableUse();
461 const Use *getSingleUndroppableUse() const {
462 return const_cast<Value *>(this)->getSingleUndroppableUse();
463 }
464
465 /// Return true if there this value.
466 ///
467 /// This is specialized because it is a common request and does not require
468 /// traversing the whole use list.
469 bool hasNUndroppableUses(unsigned N) const;
470
471 /// Return true if this value has N uses or more.
472 ///
473 /// This is logically equivalent to getNumUses() >= N.
474 bool hasNUndroppableUsesOrMore(unsigned N) const;
475
476 /// Remove every uses that can safely be removed.
477 ///
478 /// This will remove for example uses in llvm.assume.
479 /// This should be used when performing want to perform a tranformation but
480 /// some Droppable uses pervent it.
481 /// This function optionally takes a filter to only remove some droppable
482 /// uses.
483 void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop =
484 [](const Use *) { return true; });
485
486 /// Remove every use of this value in \p User that can safely be removed.
487 void dropDroppableUsesIn(User &Usr);
488
489 /// Remove the droppable use \p U.
490 static void dropDroppableUse(Use &U);
491
492 /// Check if this value is used in the specified basic block.
493 bool isUsedInBasicBlock(const BasicBlock *BB) const;
494
495 /// This method computes the number of uses of this Value.
496 ///
497 /// This is a linear time operation. Use hasOneUse, hasNUses, or
498 /// hasNUsesOrMore to check for specific values.
499 unsigned getNumUses() const;
500
501 /// This method should only be used by the Use class.
502 void addUse(Use &U) { U.addToList(&UseList); }
503
504 /// Concrete subclass of this.
505 ///
506 /// An enumeration for keeping track of the concrete subclass of Value that
507 /// is actually instantiated. Values of this enumeration are kept in the
508 /// Value classes SubclassID field. They are used for concrete type
509 /// identification.
510 enum ValueTy {
511#define HANDLE_VALUE(Name) Name##Val,
512#include "llvm/IR/Value.def"
513
514 // Markers:
515#define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
516#include "llvm/IR/Value.def"
517 };
518
519 /// Return an ID for the concrete type of this object.
520 ///
521 /// This is used to implement the classof checks. This should not be used
522 /// for any other purpose, as the values may change as LLVM evolves. Also,
523 /// note that for instructions, the Instruction's opcode is added to
524 /// InstructionVal. So this means three things:
525 /// # there is no value with code InstructionVal (no opcode==0).
526 /// # there are more possible values for the value type than in ValueTy enum.
527 /// # the InstructionVal enumerator must be the highest valued enumerator in
528 /// the ValueTy enum.
529 unsigned getValueID() const {
530 return SubclassID;
531 }
532
533 /// Return the raw optional flags value contained in this value.
534 ///
535 /// This should only be used when testing two Values for equivalence.
536 unsigned getRawSubclassOptionalData() const {
537 return SubclassOptionalData;
538 }
539
540 /// Clear the optional flags contained in this value.
541 void clearSubclassOptionalData() {
542 SubclassOptionalData = 0;
543 }
544
545 /// Check the optional flags for equality.
546 bool hasSameSubclassOptionalData(const Value *V) const {
547 return SubclassOptionalData == V->SubclassOptionalData;
548 }
549
550 /// Return true if there is a value handle associated with this value.
551 bool hasValueHandle() const { return HasValueHandle; }
552
553 /// Return true if there is metadata referencing this value.
554 bool isUsedByMetadata() const { return IsUsedByMD; }
555
556 // Return true if this value is only transitively referenced by metadata.
557 bool isTransitiveUsedByMetadataOnly() const;
558
559protected:
560 /// Get the current metadata attachments for the given kind, if any.
561 ///
562 /// These functions require that the value have at most a single attachment
563 /// of the given kind, and return \c nullptr if such an attachment is missing.
564 /// @{
565 MDNode *getMetadata(unsigned KindID) const;
566 MDNode *getMetadata(StringRef Kind) const;
567 /// @}
568
569 /// Appends all attachments with the given ID to \c MDs in insertion order.
570 /// If the Value has no attachments with the given ID, or if ID is invalid,
571 /// leaves MDs unchanged.
572 /// @{
573 void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const;
574 void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const;
575 /// @}
576
577 /// Appends all metadata attached to this value to \c MDs, sorting by
578 /// KindID. The first element of each pair returned is the KindID, the second
579 /// element is the metadata value. Attachments with the same ID appear in
580 /// insertion order.
581 void
582 getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const;
583
584 /// Return true if this value has any metadata attached to it.
585 bool hasMetadata() const { return (bool)HasMetadata; }
586
587 /// Return true if this value has the given type of metadata attached.
588 /// @{
589 bool hasMetadata(unsigned KindID) const {
590 return getMetadata(KindID) != nullptr;
591 }
592 bool hasMetadata(StringRef Kind) const {
593 return getMetadata(Kind) != nullptr;
594 }
595 /// @}
596
597 /// Set a particular kind of metadata attachment.
598 ///
599 /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or
600 /// replacing it if it already exists.
601 /// @{
602 void setMetadata(unsigned KindID, MDNode *Node);
603 void setMetadata(StringRef Kind, MDNode *Node);
604 /// @}
605
606 /// Add a metadata attachment.
607 /// @{
608 void addMetadata(unsigned KindID, MDNode &MD);
609 void addMetadata(StringRef Kind, MDNode &MD);
610 /// @}
611
612 /// Erase all metadata attachments with the given kind.
613 ///
614 /// \returns true if any metadata was removed.
615 bool eraseMetadata(unsigned KindID);
616
617 /// Erase all metadata attached to this Value.
618 void clearMetadata();
619
620public:
621 /// Return true if this value is a swifterror value.
622 ///
623 /// swifterror values can be either a function argument or an alloca with a
624 /// swifterror attribute.
625 bool isSwiftError() const;
626
627 /// Strip off pointer casts, all-zero GEPs and address space casts.
628 ///
629 /// Returns the original uncasted value. If this is called on a non-pointer
630 /// value, it returns 'this'.
631 const Value *stripPointerCasts() const;
632 Value *stripPointerCasts() {
633 return const_cast<Value *>(
634 static_cast<const Value *>(this)->stripPointerCasts());
635 }
636
637 /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
638 ///
639 /// Returns the original uncasted value. If this is called on a non-pointer
640 /// value, it returns 'this'.
641 const Value *stripPointerCastsAndAliases() const;
642 Value *stripPointerCastsAndAliases() {
643 return const_cast<Value *>(
644 static_cast<const Value *>(this)->stripPointerCastsAndAliases());
645 }
646
647 /// Strip off pointer casts, all-zero GEPs and address space casts
648 /// but ensures the representation of the result stays the same.
649 ///
650 /// Returns the original uncasted value with the same representation. If this
651 /// is called on a non-pointer value, it returns 'this'.
652 const Value *stripPointerCastsSameRepresentation() const;
653 Value *stripPointerCastsSameRepresentation() {
654 return const_cast<Value *>(static_cast<const Value *>(this)
655 ->stripPointerCastsSameRepresentation());
656 }
657
658 /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and
659 /// invariant group info.
660 ///
661 /// Returns the original uncasted value. If this is called on a non-pointer
662 /// value, it returns 'this'. This function should be used only in
663 /// Alias analysis.
664 const Value *stripPointerCastsForAliasAnalysis() const;
665 Value *stripPointerCastsForAliasAnalysis() {
666 return const_cast<Value *>(static_cast<const Value *>(this)
667 ->stripPointerCastsForAliasAnalysis());
668 }
669
670 /// Strip off pointer casts and all-constant inbounds GEPs.
671 ///
672 /// Returns the original pointer value. If this is called on a non-pointer
673 /// value, it returns 'this'.
674 const Value *stripInBoundsConstantOffsets() const;
675 Value *stripInBoundsConstantOffsets() {
676 return const_cast<Value *>(
677 static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
678 }
679
680 /// Accumulate the constant offset this value has compared to a base pointer.
681 /// Only 'getelementptr' instructions (GEPs) are accumulated but other
682 /// instructions, e.g., casts, are stripped away as well.
683 /// The accumulated constant offset is added to \p Offset and the base
684 /// pointer is returned.
685 ///
686 /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
687 /// the address space of 'this' pointer value, e.g., use
688 /// DataLayout::getIndexTypeSizeInBits(Ty).
689 ///
690 /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and
691 /// accumulated even if the GEP is not "inbounds".
692 ///
693 /// If \p ExternalAnalysis is provided it will be used to calculate a offset
694 /// when a operand of GEP is not constant.
695 /// For example, for a value \p ExternalAnalysis might try to calculate a
696 /// lower bound. If \p ExternalAnalysis is successful, it should return true.
697 ///
698 /// If this is called on a non-pointer value, it returns 'this' and the
699 /// \p Offset is not modified.
700 ///
701 /// Note that this function will never return a nullptr. It will also never
702 /// manipulate the \p Offset in a way that would not match the difference
703 /// between the underlying value and the returned one. Thus, if no constant
704 /// offset was found, the returned value is the underlying one and \p Offset
705 /// is unchanged.
706 const Value *stripAndAccumulateConstantOffsets(
707 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
708 function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis =
709 nullptr) const;
710 Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
711 bool AllowNonInbounds) {
712 return const_cast<Value *>(
713 static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
714 DL, Offset, AllowNonInbounds));
715 }
716
717 /// This is a wrapper around stripAndAccumulateConstantOffsets with the
718 /// in-bounds requirement set to false.
719 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
720 APInt &Offset) const {
721 return stripAndAccumulateConstantOffsets(DL, Offset,
722 /* AllowNonInbounds */ false);
723 }
724 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
725 APInt &Offset) {
726 return stripAndAccumulateConstantOffsets(DL, Offset,
727 /* AllowNonInbounds */ false);
728 }
729
730 /// Strip off pointer casts and inbounds GEPs.
731 ///
732 /// Returns the original pointer value. If this is called on a non-pointer
733 /// value, it returns 'this'.
734 const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
735 [](const Value *) {}) const;
736 inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
737 [](const Value *) {}) {
738 return const_cast<Value *>(
739 static_cast<const Value *>(this)->stripInBoundsOffsets(Func));
740 }
741
742 /// Return true if the memory object referred to by V can by freed in the
743 /// scope for which the SSA value defining the allocation is statically
744 /// defined. E.g. deallocation after the static scope of a value does not
745 /// count, but a deallocation before that does.
746 bool canBeFreed() const;
747
748 /// Returns the number of bytes known to be dereferenceable for the
749 /// pointer value.
750 ///
751 /// If CanBeNull is set by this function the pointer can either be null or be
752 /// dereferenceable up to the returned number of bytes.
753 ///
754 /// IF CanBeFreed is true, the pointer is known to be dereferenceable at
755 /// point of definition only. Caller must prove that allocation is not
756 /// deallocated between point of definition and use.
757 uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
758 bool &CanBeNull,
759 bool &CanBeFreed) const;
760
761 /// Returns an alignment of the pointer value.
762 ///
763 /// Returns an alignment which is either specified explicitly, e.g. via
764 /// align attribute of a function argument, or guaranteed by DataLayout.
765 Align getPointerAlignment(const DataLayout &DL) const;
766
767 /// Translate PHI node to its predecessor from the given basic block.
768 ///
769 /// If this value is a PHI node with CurBB as its parent, return the value in
770 /// the PHI node corresponding to PredBB. If not, return ourself. This is
771 /// useful if you want to know the value something has in a predecessor
772 /// block.
773 const Value *DoPHITranslation(const BasicBlock *CurBB,
774 const BasicBlock *PredBB) const;
775 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
776 return const_cast<Value *>(
777 static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
778 }
779
780 /// The maximum alignment for instructions.
781 ///
782 /// This is the greatest alignment value supported by load, store, and alloca
783 /// instructions, and global values.
784 static constexpr unsigned MaxAlignmentExponent = 30;
785 static constexpr unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
786
787 /// Mutate the type of this Value to be of the specified type.
788 ///
789 /// Note that this is an extremely dangerous operation which can create
790 /// completely invalid IR very easily. It is strongly recommended that you
791 /// recreate IR objects with the right types instead of mutating them in
792 /// place.
793 void mutateType(Type *Ty) {
794 VTy = Ty;
795 }
796
797 /// Sort the use-list.
798 ///
799 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
800 /// expected to compare two \a Use references.
801 template <class Compare> void sortUseList(Compare Cmp);
802
803 /// Reverse the use-list.
804 void reverseUseList();
805
806private:
807 /// Merge two lists together.
808 ///
809 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
810 /// "equal" items from L before items from R.
811 ///
812 /// \return the first element in the list.
813 ///
814 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
815 template <class Compare>
816 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
817 Use *Merged;
818 Use **Next = &Merged;
819
820 while (true) {
821 if (!L) {
822 *Next = R;
823 break;
824 }
825 if (!R) {
826 *Next = L;
827 break;
828 }
829 if (Cmp(*R, *L)) {
830 *Next = R;
831 Next = &R->Next;
832 R = R->Next;
833 } else {
834 *Next = L;
835 Next = &L->Next;
836 L = L->Next;
837 }
838 }
839
840 return Merged;
841 }
842
843protected:
844 unsigned short getSubclassDataFromValue() const { return SubclassData; }
845 void setValueSubclassData(unsigned short D) { SubclassData = D; }
846};
847
848struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
849
850/// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
851/// Those don't work because Value and Instruction's destructors are protected,
852/// aren't virtual, and won't destroy the complete object.
853using unique_value = std::unique_ptr<Value, ValueDeleter>;
854
855inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
856 V.print(OS);
857 return OS;
858}
859
860void Use::set(Value *V) {
861 if (Val) removeFromList();
862 Val = V;
863 if (V) V->addUse(*this);
864}
865
866Value *Use::operator=(Value *RHS) {
867 set(RHS);
868 return RHS;
869}
870
871const Use &Use::operator=(const Use &RHS) {
872 set(RHS.Val);
873 return *this;
874}
875
876template <class Compare> void Value::sortUseList(Compare Cmp) {
877 if (!UseList || !UseList->Next)
878 // No need to sort 0 or 1 uses.
879 return;
880
881 // Note: this function completely ignores Prev pointers until the end when
882 // they're fixed en masse.
883
884 // Create a binomial vector of sorted lists, visiting uses one at a time and
885 // merging lists as necessary.
886 const unsigned MaxSlots = 32;
887 Use *Slots[MaxSlots];
888
889 // Collect the first use, turning it into a single-item list.
890 Use *Next = UseList->Next;
891 UseList->Next = nullptr;
892 unsigned NumSlots = 1;
893 Slots[0] = UseList;
894
895 // Collect all but the last use.
896 while (Next->Next) {
897 Use *Current = Next;
898 Next = Current->Next;
899
900 // Turn Current into a single-item list.
901 Current->Next = nullptr;
902
903 // Save Current in the first available slot, merging on collisions.
904 unsigned I;
905 for (I = 0; I < NumSlots; ++I) {
906 if (!Slots[I])
907 break;
908
909 // Merge two lists, doubling the size of Current and emptying slot I.
910 //
911 // Since the uses in Slots[I] originally preceded those in Current, send
912 // Slots[I] in as the left parameter to maintain a stable sort.
913 Current = mergeUseLists(Slots[I], Current, Cmp);
914 Slots[I] = nullptr;
915 }
916 // Check if this is a new slot.
917 if (I == NumSlots) {
918 ++NumSlots;
919 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32")(static_cast<void> (0));
920 }
921
922 // Found an open slot.
923 Slots[I] = Current;
924 }
925
926 // Merge all the lists together.
927 assert(Next && "Expected one more Use")(static_cast<void> (0));
928 assert(!Next->Next && "Expected only one Use")(static_cast<void> (0));
929 UseList = Next;
930 for (unsigned I = 0; I < NumSlots; ++I)
931 if (Slots[I])
932 // Since the uses in Slots[I] originally preceded those in UseList, send
933 // Slots[I] in as the left parameter to maintain a stable sort.
934 UseList = mergeUseLists(Slots[I], UseList, Cmp);
935
936 // Fix the Prev pointers.
937 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
938 I->Prev = Prev;
939 Prev = &I->Next;
940 }
941}
942
943// isa - Provide some specializations of isa so that we don't have to include
944// the subtype header files to test to see if the value is a subclass...
945//
946template <> struct isa_impl<Constant, Value> {
947 static inline bool doit(const Value &Val) {
948 static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
949 return Val.getValueID() <= Value::ConstantLastVal;
950 }
951};
952
953template <> struct isa_impl<ConstantData, Value> {
954 static inline bool doit(const Value &Val) {
955 return Val.getValueID() >= Value::ConstantDataFirstVal &&
956 Val.getValueID() <= Value::ConstantDataLastVal;
957 }
958};
959
960template <> struct isa_impl<ConstantAggregate, Value> {
961 static inline bool doit(const Value &Val) {
962 return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
963 Val.getValueID() <= Value::ConstantAggregateLastVal;
964 }
965};
966
967template <> struct isa_impl<Argument, Value> {
968 static inline bool doit (const Value &Val) {
969 return Val.getValueID() == Value::ArgumentVal;
970 }
971};
972
973template <> struct isa_impl<InlineAsm, Value> {
974 static inline bool doit(const Value &Val) {
975 return Val.getValueID() == Value::InlineAsmVal;
976 }
977};
978
979template <> struct isa_impl<Instruction, Value> {
980 static inline bool doit(const Value &Val) {
981 return Val.getValueID() >= Value::InstructionVal;
982 }
983};
984
985template <> struct isa_impl<BasicBlock, Value> {
986 static inline bool doit(const Value &Val) {
987 return Val.getValueID() == Value::BasicBlockVal;
988 }
989};
990
991template <> struct isa_impl<Function, Value> {
992 static inline bool doit(const Value &Val) {
993 return Val.getValueID() == Value::FunctionVal;
994 }
995};
996
997template <> struct isa_impl<GlobalVariable, Value> {
998 static inline bool doit(const Value &Val) {
999 return Val.getValueID() == Value::GlobalVariableVal;
1000 }
1001};
1002
1003template <> struct isa_impl<GlobalAlias, Value> {
1004 static inline bool doit(const Value &Val) {
1005 return Val.getValueID() == Value::GlobalAliasVal;
1006 }
1007};
1008
1009template <> struct isa_impl<GlobalIFunc, Value> {
1010 static inline bool doit(const Value &Val) {
1011 return Val.getValueID() == Value::GlobalIFuncVal;
1012 }
1013};
1014
1015template <> struct isa_impl<GlobalIndirectSymbol, Value> {
1016 static inline bool doit(const Value &Val) {
1017 return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
1018 }
1019};
1020
1021template <> struct isa_impl<GlobalValue, Value> {
1022 static inline bool doit(const Value &Val) {
1023 return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
1024 }
1025};
1026
1027template <> struct isa_impl<GlobalObject, Value> {
1028 static inline bool doit(const Value &Val) {
1029 return isa<GlobalVariable>(Val) || isa<Function>(Val);
1030 }
1031};
1032
1033// Create wrappers for C Binding types (see CBindingWrapping.h).
1034DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)inline Value *unwrap(LLVMValueRef P) { return reinterpret_cast
<Value*>(P); } inline LLVMValueRef wrap(const Value *P)
{ return reinterpret_cast<LLVMValueRef>(const_cast<
Value*>(P)); } template<typename T> inline T *unwrap
(LLVMValueRef P) { return cast<T>(unwrap(P)); }
1035
1036// Specialized opaque value conversions.
1037inline Value **unwrap(LLVMValueRef *Vals) {
1038 return reinterpret_cast<Value**>(Vals);
1039}
1040
1041template<typename T>
1042inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
1043#ifndef NDEBUG1
1044 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
1045 unwrap<T>(*I); // For side effect of calling assert on invalid usage.
1046#endif
1047 (void)Length;
1048 return reinterpret_cast<T**>(Vals);
1049}
1050
1051inline LLVMValueRef *wrap(const Value **Vals) {
1052 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
1053}
1054
1055} // end namespace llvm
1056
1057#endif // LLVM_IR_VALUE_H

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include/llvm/ADT/ilist_iterator.h

1//===- llvm/ADT/ilist_iterator.h - Intrusive List Iterator ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_ADT_ILIST_ITERATOR_H
10#define LLVM_ADT_ILIST_ITERATOR_H
11
12#include "llvm/ADT/ilist_node.h"
13#include <cassert>
14#include <cstddef>
15#include <iterator>
16#include <type_traits>
17
18namespace llvm {
19
20namespace ilist_detail {
21
22/// Find const-correct node types.
23template <class OptionsT, bool IsConst> struct IteratorTraits;
24template <class OptionsT> struct IteratorTraits<OptionsT, false> {
25 using value_type = typename OptionsT::value_type;
26 using pointer = typename OptionsT::pointer;
27 using reference = typename OptionsT::reference;
28 using node_pointer = ilist_node_impl<OptionsT> *;
29 using node_reference = ilist_node_impl<OptionsT> &;
30};
31template <class OptionsT> struct IteratorTraits<OptionsT, true> {
32 using value_type = const typename OptionsT::value_type;
33 using pointer = typename OptionsT::const_pointer;
34 using reference = typename OptionsT::const_reference;
35 using node_pointer = const ilist_node_impl<OptionsT> *;
36 using node_reference = const ilist_node_impl<OptionsT> &;
37};
38
39template <bool IsReverse> struct IteratorHelper;
40template <> struct IteratorHelper<false> : ilist_detail::NodeAccess {
41 using Access = ilist_detail::NodeAccess;
42
43 template <class T> static void increment(T *&I) { I = Access::getNext(*I); }
44 template <class T> static void decrement(T *&I) { I = Access::getPrev(*I); }
45};
46template <> struct IteratorHelper<true> : ilist_detail::NodeAccess {
47 using Access = ilist_detail::NodeAccess;
48
49 template <class T> static void increment(T *&I) { I = Access::getPrev(*I); }
50 template <class T> static void decrement(T *&I) { I = Access::getNext(*I); }
51};
52
53} // end namespace ilist_detail
54
55/// Iterator for intrusive lists based on ilist_node.
56template <class OptionsT, bool IsReverse, bool IsConst>
57class ilist_iterator : ilist_detail::SpecificNodeAccess<OptionsT> {
58 friend ilist_iterator<OptionsT, IsReverse, !IsConst>;
59 friend ilist_iterator<OptionsT, !IsReverse, IsConst>;
60 friend ilist_iterator<OptionsT, !IsReverse, !IsConst>;
61
62 using Traits = ilist_detail::IteratorTraits<OptionsT, IsConst>;
63 using Access = ilist_detail::SpecificNodeAccess<OptionsT>;
64
65public:
66 using value_type = typename Traits::value_type;
67 using pointer = typename Traits::pointer;
68 using reference = typename Traits::reference;
69 using difference_type = ptrdiff_t;
70 using iterator_category = std::bidirectional_iterator_tag;
71 using const_pointer = typename OptionsT::const_pointer;
72 using const_reference = typename OptionsT::const_reference;
73
74private:
75 using node_pointer = typename Traits::node_pointer;
76 using node_reference = typename Traits::node_reference;
77
78 node_pointer NodePtr = nullptr;
79
80public:
81 /// Create from an ilist_node.
82 explicit ilist_iterator(node_reference N) : NodePtr(&N) {}
83
84 explicit ilist_iterator(pointer NP) : NodePtr(Access::getNodePtr(NP)) {}
85 explicit ilist_iterator(reference NR) : NodePtr(Access::getNodePtr(&NR)) {}
86 ilist_iterator() = default;
87
88 // This is templated so that we can allow constructing a const iterator from
89 // a nonconst iterator...
90 template <bool RHSIsConst>
91 ilist_iterator(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS,
92 std::enable_if_t<IsConst || !RHSIsConst, void *> = nullptr)
93 : NodePtr(RHS.NodePtr) {}
94
95 // This is templated so that we can allow assigning to a const iterator from
96 // a nonconst iterator...
97 template <bool RHSIsConst>
98 std::enable_if_t<IsConst || !RHSIsConst, ilist_iterator &>
99 operator=(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS) {
100 NodePtr = RHS.NodePtr;
101 return *this;
102 }
103
104 /// Explicit conversion between forward/reverse iterators.
105 ///
106 /// Translate between forward and reverse iterators without changing range
107 /// boundaries. The resulting iterator will dereference (and have a handle)
108 /// to the previous node, which is somewhat unexpected; but converting the
109 /// two endpoints in a range will give the same range in reverse.
110 ///
111 /// This matches std::reverse_iterator conversions.
112 explicit ilist_iterator(
113 const ilist_iterator<OptionsT, !IsReverse, IsConst> &RHS)
114 : ilist_iterator(++RHS.getReverse()) {}
115
116 /// Get a reverse iterator to the same node.
117 ///
118 /// Gives a reverse iterator that will dereference (and have a handle) to the
119 /// same node. Converting the endpoint iterators in a range will give a
120 /// different range; for range operations, use the explicit conversions.
121 ilist_iterator<OptionsT, !IsReverse, IsConst> getReverse() const {
122 if (NodePtr)
123 return ilist_iterator<OptionsT, !IsReverse, IsConst>(*NodePtr);
124 return ilist_iterator<OptionsT, !IsReverse, IsConst>();
125 }
126
127 /// Const-cast.
128 ilist_iterator<OptionsT, IsReverse, false> getNonConst() const {
129 if (NodePtr)
130 return ilist_iterator<OptionsT, IsReverse, false>(
131 const_cast<typename ilist_iterator<OptionsT, IsReverse,
132 false>::node_reference>(*NodePtr));
133 return ilist_iterator<OptionsT, IsReverse, false>();
134 }
135
136 // Accessors...
137 reference operator*() const {
138 assert(!NodePtr->isKnownSentinel())(static_cast<void> (0));
139 return *Access::getValuePtr(NodePtr);
140 }
141 pointer operator->() const { return &operator*(); }
142
143 // Comparison operators
144 friend bool operator==(const ilist_iterator &LHS, const ilist_iterator &RHS) {
145 return LHS.NodePtr == RHS.NodePtr;
146 }
147 friend bool operator!=(const ilist_iterator &LHS, const ilist_iterator &RHS) {
148 return LHS.NodePtr != RHS.NodePtr;
26
Assuming 'LHS.NodePtr' is not equal to 'RHS.NodePtr'
27
Returning the value 1, which participates in a condition later
38
Assuming 'LHS.NodePtr' is not equal to 'RHS.NodePtr'
39
Returning the value 1, which participates in a condition later
149 }
150
151 // Increment and decrement operators...
152 ilist_iterator &operator--() {
153 NodePtr = IsReverse ? NodePtr->getNext() : NodePtr->getPrev();
154 return *this;
155 }
156 ilist_iterator &operator++() {
157 NodePtr = IsReverse ? NodePtr->getPrev() : NodePtr->getNext();
158 return *this;
159 }
160 ilist_iterator operator--(int) {
161 ilist_iterator tmp = *this;
162 --*this;
163 return tmp;
164 }
165 ilist_iterator operator++(int) {
166 ilist_iterator tmp = *this;
167 ++*this;
168 return tmp;
169 }
170
171 /// Get the underlying ilist_node.
172 node_pointer getNodePtr() const { return static_cast<node_pointer>(NodePtr); }
173
174 /// Check for end. Only valid if ilist_sentinel_tracking<true>.
175 bool isEnd() const { return NodePtr ? NodePtr->isSentinel() : false; }
176};
177
178template <typename From> struct simplify_type;
179
180/// Allow ilist_iterators to convert into pointers to a node automatically when
181/// used by the dyn_cast, cast, isa mechanisms...
182///
183/// FIXME: remove this, since there is no implicit conversion to NodeTy.
184template <class OptionsT, bool IsConst>
185struct simplify_type<ilist_iterator<OptionsT, false, IsConst>> {
186 using iterator = ilist_iterator<OptionsT, false, IsConst>;
187 using SimpleType = typename iterator::pointer;
188
189 static SimpleType getSimplifiedValue(const iterator &Node) { return &*Node; }
190};
191template <class OptionsT, bool IsConst>
192struct simplify_type<const ilist_iterator<OptionsT, false, IsConst>>
193 : simplify_type<ilist_iterator<OptionsT, false, IsConst>> {};
194
195} // end namespace llvm
196
197#endif // LLVM_ADT_ILIST_ITERATOR_H