Bug Summary

File:build/source/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
Warning:line 865, column 24
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name InstCombineMulDivRem.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/InstCombine -I /build/source/llvm/lib/Transforms/InstCombine -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
1//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
10// srem, urem, frem.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombineInternal.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/ValueTracking.h"
19#include "llvm/IR/BasicBlock.h"
20#include "llvm/IR/Constant.h"
21#include "llvm/IR/Constants.h"
22#include "llvm/IR/InstrTypes.h"
23#include "llvm/IR/Instruction.h"
24#include "llvm/IR/Instructions.h"
25#include "llvm/IR/IntrinsicInst.h"
26#include "llvm/IR/Intrinsics.h"
27#include "llvm/IR/Operator.h"
28#include "llvm/IR/PatternMatch.h"
29#include "llvm/IR/Type.h"
30#include "llvm/IR/Value.h"
31#include "llvm/Support/Casting.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Transforms/InstCombine/InstCombiner.h"
34#include "llvm/Transforms/Utils/BuildLibCalls.h"
35#include <cassert>
36
37#define DEBUG_TYPE"instcombine" "instcombine"
38#include "llvm/Transforms/Utils/InstructionWorklist.h"
39
40using namespace llvm;
41using namespace PatternMatch;
42
43/// The specific integer value is used in a context where it is known to be
44/// non-zero. If this allows us to simplify the computation, do so and return
45/// the new operand, otherwise return null.
46static Value *simplifyValueKnownNonZero(Value *V, InstCombinerImpl &IC,
47 Instruction &CxtI) {
48 // If V has multiple uses, then we would have to do more analysis to determine
49 // if this is safe. For example, the use could be in dynamically unreached
50 // code.
51 if (!V->hasOneUse()) return nullptr;
52
53 bool MadeChange = false;
54
55 // ((1 << A) >>u B) --> (1 << (A-B))
56 // Because V cannot be zero, we know that B is less than A.
57 Value *A = nullptr, *B = nullptr, *One = nullptr;
58 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
59 match(One, m_One())) {
60 A = IC.Builder.CreateSub(A, B);
61 return IC.Builder.CreateShl(One, A);
62 }
63
64 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
65 // inexact. Similarly for <<.
66 BinaryOperator *I = dyn_cast<BinaryOperator>(V);
67 if (I && I->isLogicalShift() &&
68 IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
69 // We know that this is an exact/nuw shift and that the input is a
70 // non-zero context as well.
71 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
72 IC.replaceOperand(*I, 0, V2);
73 MadeChange = true;
74 }
75
76 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
77 I->setIsExact();
78 MadeChange = true;
79 }
80
81 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
82 I->setHasNoUnsignedWrap();
83 MadeChange = true;
84 }
85 }
86
87 // TODO: Lots more we could do here:
88 // If V is a phi node, we can call this on each of its operands.
89 // "select cond, X, 0" can simplify to "X".
90
91 return MadeChange ? V : nullptr;
92}
93
94// TODO: This is a specific form of a much more general pattern.
95// We could detect a select with any binop identity constant, or we
96// could use SimplifyBinOp to see if either arm of the select reduces.
97// But that needs to be done carefully and/or while removing potential
98// reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
99static Value *foldMulSelectToNegate(BinaryOperator &I,
100 InstCombiner::BuilderTy &Builder) {
101 Value *Cond, *OtherOp;
102
103 // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
104 // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
105 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
106 m_Value(OtherOp)))) {
107 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
108 Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
109 return Builder.CreateSelect(Cond, OtherOp, Neg);
110 }
111 // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
112 // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
113 if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
114 m_Value(OtherOp)))) {
115 bool HasAnyNoWrap = I.hasNoSignedWrap() || I.hasNoUnsignedWrap();
116 Value *Neg = Builder.CreateNeg(OtherOp, "", false, HasAnyNoWrap);
117 return Builder.CreateSelect(Cond, Neg, OtherOp);
118 }
119
120 // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
121 // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
122 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
123 m_SpecificFP(-1.0))),
124 m_Value(OtherOp)))) {
125 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
126 Builder.setFastMathFlags(I.getFastMathFlags());
127 return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
128 }
129
130 // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
131 // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
132 if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
133 m_SpecificFP(1.0))),
134 m_Value(OtherOp)))) {
135 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
136 Builder.setFastMathFlags(I.getFastMathFlags());
137 return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
138 }
139
140 return nullptr;
141}
142
143/// Reduce integer multiplication patterns that contain a (+/-1 << Z) factor.
144/// Callers are expected to call this twice to handle commuted patterns.
145static Value *foldMulShl1(BinaryOperator &Mul, bool CommuteOperands,
146 InstCombiner::BuilderTy &Builder) {
147 Value *X = Mul.getOperand(0), *Y = Mul.getOperand(1);
148 if (CommuteOperands)
149 std::swap(X, Y);
150
151 const bool HasNSW = Mul.hasNoSignedWrap();
152 const bool HasNUW = Mul.hasNoUnsignedWrap();
153
154 // X * (1 << Z) --> X << Z
155 Value *Z;
156 if (match(Y, m_Shl(m_One(), m_Value(Z)))) {
157 bool PropagateNSW = HasNSW && cast<ShlOperator>(Y)->hasNoSignedWrap();
158 return Builder.CreateShl(X, Z, Mul.getName(), HasNUW, PropagateNSW);
159 }
160
161 // Similar to above, but an increment of the shifted value becomes an add:
162 // X * ((1 << Z) + 1) --> (X * (1 << Z)) + X --> (X << Z) + X
163 // This increases uses of X, so it may require a freeze, but that is still
164 // expected to be an improvement because it removes the multiply.
165 BinaryOperator *Shift;
166 if (match(Y, m_OneUse(m_Add(m_BinOp(Shift), m_One()))) &&
167 match(Shift, m_OneUse(m_Shl(m_One(), m_Value(Z))))) {
168 bool PropagateNSW = HasNSW && Shift->hasNoSignedWrap();
169 Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
170 Value *Shl = Builder.CreateShl(FrX, Z, "mulshl", HasNUW, PropagateNSW);
171 return Builder.CreateAdd(Shl, FrX, Mul.getName(), HasNUW, PropagateNSW);
172 }
173
174 // Similar to above, but a decrement of the shifted value is disguised as
175 // 'not' and becomes a sub:
176 // X * (~(-1 << Z)) --> X * ((1 << Z) - 1) --> (X << Z) - X
177 // This increases uses of X, so it may require a freeze, but that is still
178 // expected to be an improvement because it removes the multiply.
179 if (match(Y, m_OneUse(m_Not(m_OneUse(m_Shl(m_AllOnes(), m_Value(Z))))))) {
180 Value *FrX = Builder.CreateFreeze(X, X->getName() + ".fr");
181 Value *Shl = Builder.CreateShl(FrX, Z, "mulshl");
182 return Builder.CreateSub(Shl, FrX, Mul.getName());
183 }
184
185 return nullptr;
186}
187
188static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
189 bool AssumeNonZero, bool DoFold);
190
191Instruction *InstCombinerImpl::visitMul(BinaryOperator &I) {
192 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
193 if (Value *V =
194 simplifyMulInst(Op0, Op1, I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
195 SQ.getWithInstruction(&I)))
196 return replaceInstUsesWith(I, V);
197
198 if (SimplifyAssociativeOrCommutative(I))
199 return &I;
200
201 if (Instruction *X = foldVectorBinop(I))
202 return X;
203
204 if (Instruction *Phi = foldBinopWithPhiOperands(I))
205 return Phi;
206
207 if (Value *V = foldUsingDistributiveLaws(I))
208 return replaceInstUsesWith(I, V);
209
210 Type *Ty = I.getType();
211 const unsigned BitWidth = Ty->getScalarSizeInBits();
212 const bool HasNSW = I.hasNoSignedWrap();
213 const bool HasNUW = I.hasNoUnsignedWrap();
214
215 // X * -1 --> 0 - X
216 if (match(Op1, m_AllOnes())) {
217 return HasNSW ? BinaryOperator::CreateNSWNeg(Op0)
218 : BinaryOperator::CreateNeg(Op0);
219 }
220
221 // Also allow combining multiply instructions on vectors.
222 {
223 Value *NewOp;
224 Constant *C1, *C2;
225 const APInt *IVal;
226 if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
227 m_Constant(C1))) &&
228 match(C1, m_APInt(IVal))) {
229 // ((X << C2)*C1) == (X * (C1 << C2))
230 Constant *Shl = ConstantExpr::getShl(C1, C2);
231 BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
232 BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
233 if (HasNUW && Mul->hasNoUnsignedWrap())
234 BO->setHasNoUnsignedWrap();
235 if (HasNSW && Mul->hasNoSignedWrap() && Shl->isNotMinSignedValue())
236 BO->setHasNoSignedWrap();
237 return BO;
238 }
239
240 if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
241 // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
242 if (Constant *NewCst = ConstantExpr::getExactLogBase2(C1)) {
243 BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
244
245 if (HasNUW)
246 Shl->setHasNoUnsignedWrap();
247 if (HasNSW) {
248 const APInt *V;
249 if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
250 Shl->setHasNoSignedWrap();
251 }
252
253 return Shl;
254 }
255 }
256 }
257
258 if (Op0->hasOneUse() && match(Op1, m_NegatedPower2())) {
259 // Interpret X * (-1<<C) as (-X) * (1<<C) and try to sink the negation.
260 // The "* (1<<C)" thus becomes a potential shifting opportunity.
261 if (Value *NegOp0 = Negator::Negate(/*IsNegation*/ true, Op0, *this))
262 return BinaryOperator::CreateMul(
263 NegOp0, ConstantExpr::getNeg(cast<Constant>(Op1)), I.getName());
264
265 // Try to convert multiply of extended operand to narrow negate and shift
266 // for better analysis.
267 // This is valid if the shift amount (trailing zeros in the multiplier
268 // constant) clears more high bits than the bitwidth difference between
269 // source and destination types:
270 // ({z/s}ext X) * (-1<<C) --> (zext (-X)) << C
271 const APInt *NegPow2C;
272 Value *X;
273 if (match(Op0, m_ZExtOrSExt(m_Value(X))) &&
274 match(Op1, m_APIntAllowUndef(NegPow2C))) {
275 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
276 unsigned ShiftAmt = NegPow2C->countr_zero();
277 if (ShiftAmt >= BitWidth - SrcWidth) {
278 Value *N = Builder.CreateNeg(X, X->getName() + ".neg");
279 Value *Z = Builder.CreateZExt(N, Ty, N->getName() + ".z");
280 return BinaryOperator::CreateShl(Z, ConstantInt::get(Ty, ShiftAmt));
281 }
282 }
283 }
284
285 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
286 return FoldedMul;
287
288 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
289 return replaceInstUsesWith(I, FoldedMul);
290
291 // Simplify mul instructions with a constant RHS.
292 Constant *MulC;
293 if (match(Op1, m_ImmConstant(MulC))) {
294 // Canonicalize (X+C1)*MulC -> X*MulC+C1*MulC.
295 // Canonicalize (X|C1)*MulC -> X*MulC+C1*MulC.
296 Value *X;
297 Constant *C1;
298 if ((match(Op0, m_OneUse(m_Add(m_Value(X), m_ImmConstant(C1))))) ||
299 (match(Op0, m_OneUse(m_Or(m_Value(X), m_ImmConstant(C1)))) &&
300 haveNoCommonBitsSet(X, C1, DL, &AC, &I, &DT))) {
301 // C1*MulC simplifies to a tidier constant.
302 Value *NewC = Builder.CreateMul(C1, MulC);
303 auto *BOp0 = cast<BinaryOperator>(Op0);
304 bool Op0NUW =
305 (BOp0->getOpcode() == Instruction::Or || BOp0->hasNoUnsignedWrap());
306 Value *NewMul = Builder.CreateMul(X, MulC);
307 auto *BO = BinaryOperator::CreateAdd(NewMul, NewC);
308 if (HasNUW && Op0NUW) {
309 // If NewMulBO is constant we also can set BO to nuw.
310 if (auto *NewMulBO = dyn_cast<BinaryOperator>(NewMul))
311 NewMulBO->setHasNoUnsignedWrap();
312 BO->setHasNoUnsignedWrap();
313 }
314 return BO;
315 }
316 }
317
318 // abs(X) * abs(X) -> X * X
319 // nabs(X) * nabs(X) -> X * X
320 if (Op0 == Op1) {
321 Value *X, *Y;
322 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
323 if (SPF == SPF_ABS || SPF == SPF_NABS)
324 return BinaryOperator::CreateMul(X, X);
325
326 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
327 return BinaryOperator::CreateMul(X, X);
328 }
329
330 // -X * C --> X * -C
331 Value *X, *Y;
332 Constant *Op1C;
333 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
334 return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
335
336 // -X * -Y --> X * Y
337 if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
338 auto *NewMul = BinaryOperator::CreateMul(X, Y);
339 if (HasNSW && cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
340 cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
341 NewMul->setHasNoSignedWrap();
342 return NewMul;
343 }
344
345 // -X * Y --> -(X * Y)
346 // X * -Y --> -(X * Y)
347 if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
348 return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
349
350 // (X / Y) * Y = X - (X % Y)
351 // (X / Y) * -Y = (X % Y) - X
352 {
353 Value *Y = Op1;
354 BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
355 if (!Div || (Div->getOpcode() != Instruction::UDiv &&
356 Div->getOpcode() != Instruction::SDiv)) {
357 Y = Op0;
358 Div = dyn_cast<BinaryOperator>(Op1);
359 }
360 Value *Neg = dyn_castNegVal(Y);
361 if (Div && Div->hasOneUse() &&
362 (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
363 (Div->getOpcode() == Instruction::UDiv ||
364 Div->getOpcode() == Instruction::SDiv)) {
365 Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
366
367 // If the division is exact, X % Y is zero, so we end up with X or -X.
368 if (Div->isExact()) {
369 if (DivOp1 == Y)
370 return replaceInstUsesWith(I, X);
371 return BinaryOperator::CreateNeg(X);
372 }
373
374 auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
375 : Instruction::SRem;
376 // X must be frozen because we are increasing its number of uses.
377 Value *XFreeze = Builder.CreateFreeze(X, X->getName() + ".fr");
378 Value *Rem = Builder.CreateBinOp(RemOpc, XFreeze, DivOp1);
379 if (DivOp1 == Y)
380 return BinaryOperator::CreateSub(XFreeze, Rem);
381 return BinaryOperator::CreateSub(Rem, XFreeze);
382 }
383 }
384
385 // Fold the following two scenarios:
386 // 1) i1 mul -> i1 and.
387 // 2) X * Y --> X & Y, iff X, Y can be only {0,1}.
388 // Note: We could use known bits to generalize this and related patterns with
389 // shifts/truncs
390 if (Ty->isIntOrIntVectorTy(1) ||
391 (match(Op0, m_And(m_Value(), m_One())) &&
392 match(Op1, m_And(m_Value(), m_One()))))
393 return BinaryOperator::CreateAnd(Op0, Op1);
394
395 if (Value *R = foldMulShl1(I, /* CommuteOperands */ false, Builder))
396 return replaceInstUsesWith(I, R);
397 if (Value *R = foldMulShl1(I, /* CommuteOperands */ true, Builder))
398 return replaceInstUsesWith(I, R);
399
400 // (zext bool X) * (zext bool Y) --> zext (and X, Y)
401 // (sext bool X) * (sext bool Y) --> zext (and X, Y)
402 // Note: -1 * -1 == 1 * 1 == 1 (if the extends match, the result is the same)
403 if (((match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
404 (match(Op0, m_SExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
405 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
406 (Op0->hasOneUse() || Op1->hasOneUse() || X == Y)) {
407 Value *And = Builder.CreateAnd(X, Y, "mulbool");
408 return CastInst::Create(Instruction::ZExt, And, Ty);
409 }
410 // (sext bool X) * (zext bool Y) --> sext (and X, Y)
411 // (zext bool X) * (sext bool Y) --> sext (and X, Y)
412 // Note: -1 * 1 == 1 * -1 == -1
413 if (((match(Op0, m_SExt(m_Value(X))) && match(Op1, m_ZExt(m_Value(Y)))) ||
414 (match(Op0, m_ZExt(m_Value(X))) && match(Op1, m_SExt(m_Value(Y))))) &&
415 X->getType()->isIntOrIntVectorTy(1) && X->getType() == Y->getType() &&
416 (Op0->hasOneUse() || Op1->hasOneUse())) {
417 Value *And = Builder.CreateAnd(X, Y, "mulbool");
418 return CastInst::Create(Instruction::SExt, And, Ty);
419 }
420
421 // (zext bool X) * Y --> X ? Y : 0
422 // Y * (zext bool X) --> X ? Y : 0
423 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
424 return SelectInst::Create(X, Op1, ConstantInt::getNullValue(Ty));
425 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
426 return SelectInst::Create(X, Op0, ConstantInt::getNullValue(Ty));
427
428 Constant *ImmC;
429 if (match(Op1, m_ImmConstant(ImmC))) {
430 // (sext bool X) * C --> X ? -C : 0
431 if (match(Op0, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
432 Constant *NegC = ConstantExpr::getNeg(ImmC);
433 return SelectInst::Create(X, NegC, ConstantInt::getNullValue(Ty));
434 }
435
436 // (ashr i32 X, 31) * C --> (X < 0) ? -C : 0
437 const APInt *C;
438 if (match(Op0, m_OneUse(m_AShr(m_Value(X), m_APInt(C)))) &&
439 *C == C->getBitWidth() - 1) {
440 Constant *NegC = ConstantExpr::getNeg(ImmC);
441 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
442 return SelectInst::Create(IsNeg, NegC, ConstantInt::getNullValue(Ty));
443 }
444 }
445
446 // (lshr X, 31) * Y --> (X < 0) ? Y : 0
447 // TODO: We are not checking one-use because the elimination of the multiply
448 // is better for analysis?
449 const APInt *C;
450 if (match(&I, m_c_BinOp(m_LShr(m_Value(X), m_APInt(C)), m_Value(Y))) &&
451 *C == C->getBitWidth() - 1) {
452 Value *IsNeg = Builder.CreateIsNeg(X, "isneg");
453 return SelectInst::Create(IsNeg, Y, ConstantInt::getNullValue(Ty));
454 }
455
456 // (and X, 1) * Y --> (trunc X) ? Y : 0
457 if (match(&I, m_c_BinOp(m_OneUse(m_And(m_Value(X), m_One())), m_Value(Y)))) {
458 Value *Tr = Builder.CreateTrunc(X, CmpInst::makeCmpResultType(Ty));
459 return SelectInst::Create(Tr, Y, ConstantInt::getNullValue(Ty));
460 }
461
462 // ((ashr X, 31) | 1) * X --> abs(X)
463 // X * ((ashr X, 31) | 1) --> abs(X)
464 if (match(&I, m_c_BinOp(m_Or(m_AShr(m_Value(X),
465 m_SpecificIntAllowUndef(BitWidth - 1)),
466 m_One()),
467 m_Deferred(X)))) {
468 Value *Abs = Builder.CreateBinaryIntrinsic(
469 Intrinsic::abs, X, ConstantInt::getBool(I.getContext(), HasNSW));
470 Abs->takeName(&I);
471 return replaceInstUsesWith(I, Abs);
472 }
473
474 if (Instruction *Ext = narrowMathIfNoOverflow(I))
475 return Ext;
476
477 // min(X, Y) * max(X, Y) => X * Y.
478 if (match(&I, m_CombineOr(m_c_Mul(m_SMax(m_Value(X), m_Value(Y)),
479 m_c_SMin(m_Deferred(X), m_Deferred(Y))),
480 m_c_Mul(m_UMax(m_Value(X), m_Value(Y)),
481 m_c_UMin(m_Deferred(X), m_Deferred(Y))))))
482 return BinaryOperator::CreateWithCopiedFlags(Instruction::Mul, X, Y, &I);
483
484 // (mul Op0 Op1):
485 // if Log2(Op0) folds away ->
486 // (shl Op1, Log2(Op0))
487 // if Log2(Op1) folds away ->
488 // (shl Op0, Log2(Op1))
489 if (takeLog2(Builder, Op0, /*Depth*/ 0, /*AssumeNonZero*/ false,
490 /*DoFold*/ false)) {
491 Value *Res = takeLog2(Builder, Op0, /*Depth*/ 0, /*AssumeNonZero*/ false,
492 /*DoFold*/ true);
493 BinaryOperator *Shl = BinaryOperator::CreateShl(Op1, Res);
494 // We can only propegate nuw flag.
495 Shl->setHasNoUnsignedWrap(HasNUW);
496 return Shl;
497 }
498 if (takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ false,
499 /*DoFold*/ false)) {
500 Value *Res = takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ false,
501 /*DoFold*/ true);
502 BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, Res);
503 // We can only propegate nuw flag.
504 Shl->setHasNoUnsignedWrap(HasNUW);
505 return Shl;
506 }
507
508 bool Changed = false;
509 if (!HasNSW && willNotOverflowSignedMul(Op0, Op1, I)) {
510 Changed = true;
511 I.setHasNoSignedWrap(true);
512 }
513
514 if (!HasNUW && willNotOverflowUnsignedMul(Op0, Op1, I)) {
515 Changed = true;
516 I.setHasNoUnsignedWrap(true);
517 }
518
519 return Changed ? &I : nullptr;
520}
521
522Instruction *InstCombinerImpl::foldFPSignBitOps(BinaryOperator &I) {
523 BinaryOperator::BinaryOps Opcode = I.getOpcode();
524 assert((Opcode == Instruction::FMul || Opcode == Instruction::FDiv) &&(static_cast <bool> ((Opcode == Instruction::FMul || Opcode
== Instruction::FDiv) && "Expected fmul or fdiv") ? void
(0) : __assert_fail ("(Opcode == Instruction::FMul || Opcode == Instruction::FDiv) && \"Expected fmul or fdiv\""
, "llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp",
525, __extension__ __PRETTY_FUNCTION__))
525 "Expected fmul or fdiv")(static_cast <bool> ((Opcode == Instruction::FMul || Opcode
== Instruction::FDiv) && "Expected fmul or fdiv") ? void
(0) : __assert_fail ("(Opcode == Instruction::FMul || Opcode == Instruction::FDiv) && \"Expected fmul or fdiv\""
, "llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp",
525, __extension__ __PRETTY_FUNCTION__))
;
526
527 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
528 Value *X, *Y;
529
530 // -X * -Y --> X * Y
531 // -X / -Y --> X / Y
532 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
533 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, Y, &I);
534
535 // fabs(X) * fabs(X) -> X * X
536 // fabs(X) / fabs(X) -> X / X
537 if (Op0 == Op1 && match(Op0, m_FAbs(m_Value(X))))
538 return BinaryOperator::CreateWithCopiedFlags(Opcode, X, X, &I);
539
540 // fabs(X) * fabs(Y) --> fabs(X * Y)
541 // fabs(X) / fabs(Y) --> fabs(X / Y)
542 if (match(Op0, m_FAbs(m_Value(X))) && match(Op1, m_FAbs(m_Value(Y))) &&
543 (Op0->hasOneUse() || Op1->hasOneUse())) {
544 IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
545 Builder.setFastMathFlags(I.getFastMathFlags());
546 Value *XY = Builder.CreateBinOp(Opcode, X, Y);
547 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, XY);
548 Fabs->takeName(&I);
549 return replaceInstUsesWith(I, Fabs);
550 }
551
552 return nullptr;
553}
554
555Instruction *InstCombinerImpl::visitFMul(BinaryOperator &I) {
556 if (Value *V = simplifyFMulInst(I.getOperand(0), I.getOperand(1),
557 I.getFastMathFlags(),
558 SQ.getWithInstruction(&I)))
559 return replaceInstUsesWith(I, V);
560
561 if (SimplifyAssociativeOrCommutative(I))
562 return &I;
563
564 if (Instruction *X = foldVectorBinop(I))
565 return X;
566
567 if (Instruction *Phi = foldBinopWithPhiOperands(I))
568 return Phi;
569
570 if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
571 return FoldedMul;
572
573 if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
574 return replaceInstUsesWith(I, FoldedMul);
575
576 if (Instruction *R = foldFPSignBitOps(I))
577 return R;
578
579 // X * -1.0 --> -X
580 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
581 if (match(Op1, m_SpecificFP(-1.0)))
582 return UnaryOperator::CreateFNegFMF(Op0, &I);
583
584 // With no-nans: X * 0.0 --> copysign(0.0, X)
585 if (I.hasNoNaNs() && match(Op1, m_PosZeroFP())) {
586 CallInst *CopySign = Builder.CreateIntrinsic(Intrinsic::copysign,
587 {I.getType()}, {Op1, Op0}, &I);
588 return replaceInstUsesWith(I, CopySign);
589 }
590
591 // -X * C --> X * -C
592 Value *X, *Y;
593 Constant *C;
594 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
595 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
596 return BinaryOperator::CreateFMulFMF(X, NegC, &I);
597
598 // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
599 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
600 return replaceInstUsesWith(I, V);
601
602 if (I.hasAllowReassoc()) {
603 // Reassociate constant RHS with another constant to form constant
604 // expression.
605 if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
606 Constant *C1;
607 if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
608 // (C1 / X) * C --> (C * C1) / X
609 Constant *CC1 =
610 ConstantFoldBinaryOpOperands(Instruction::FMul, C, C1, DL);
611 if (CC1 && CC1->isNormalFP())
612 return BinaryOperator::CreateFDivFMF(CC1, X, &I);
613 }
614 if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
615 // (X / C1) * C --> X * (C / C1)
616 Constant *CDivC1 =
617 ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C1, DL);
618 if (CDivC1 && CDivC1->isNormalFP())
619 return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
620
621 // If the constant was a denormal, try reassociating differently.
622 // (X / C1) * C --> X / (C1 / C)
623 Constant *C1DivC =
624 ConstantFoldBinaryOpOperands(Instruction::FDiv, C1, C, DL);
625 if (C1DivC && Op0->hasOneUse() && C1DivC->isNormalFP())
626 return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
627 }
628
629 // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
630 // canonicalized to 'fadd X, C'. Distributing the multiply may allow
631 // further folds and (X * C) + C2 is 'fma'.
632 if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
633 // (X + C1) * C --> (X * C) + (C * C1)
634 if (Constant *CC1 = ConstantFoldBinaryOpOperands(
635 Instruction::FMul, C, C1, DL)) {
636 Value *XC = Builder.CreateFMulFMF(X, C, &I);
637 return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
638 }
639 }
640 if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
641 // (C1 - X) * C --> (C * C1) - (X * C)
642 if (Constant *CC1 = ConstantFoldBinaryOpOperands(
643 Instruction::FMul, C, C1, DL)) {
644 Value *XC = Builder.CreateFMulFMF(X, C, &I);
645 return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
646 }
647 }
648 }
649
650 Value *Z;
651 if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
652 m_Value(Z)))) {
653 // Sink division: (X / Y) * Z --> (X * Z) / Y
654 Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
655 return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
656 }
657
658 // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
659 // nnan disallows the possibility of returning a number if both operands are
660 // negative (in that case, we should return NaN).
661 if (I.hasNoNaNs() && match(Op0, m_OneUse(m_Sqrt(m_Value(X)))) &&
662 match(Op1, m_OneUse(m_Sqrt(m_Value(Y))))) {
663 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
664 Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
665 return replaceInstUsesWith(I, Sqrt);
666 }
667
668 // The following transforms are done irrespective of the number of uses
669 // for the expression "1.0/sqrt(X)".
670 // 1) 1.0/sqrt(X) * X -> X/sqrt(X)
671 // 2) X * 1.0/sqrt(X) -> X/sqrt(X)
672 // We always expect the backend to reduce X/sqrt(X) to sqrt(X), if it
673 // has the necessary (reassoc) fast-math-flags.
674 if (I.hasNoSignedZeros() &&
675 match(Op0, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
676 match(Y, m_Sqrt(m_Value(X))) && Op1 == X)
677 return BinaryOperator::CreateFDivFMF(X, Y, &I);
678 if (I.hasNoSignedZeros() &&
679 match(Op1, (m_FDiv(m_SpecificFP(1.0), m_Value(Y)))) &&
680 match(Y, m_Sqrt(m_Value(X))) && Op0 == X)
681 return BinaryOperator::CreateFDivFMF(X, Y, &I);
682
683 // Like the similar transform in instsimplify, this requires 'nsz' because
684 // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
685 if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
686 Op0->hasNUses(2)) {
687 // Peek through fdiv to find squaring of square root:
688 // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
689 if (match(Op0, m_FDiv(m_Value(X), m_Sqrt(m_Value(Y))))) {
690 Value *XX = Builder.CreateFMulFMF(X, X, &I);
691 return BinaryOperator::CreateFDivFMF(XX, Y, &I);
692 }
693 // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
694 if (match(Op0, m_FDiv(m_Sqrt(m_Value(Y)), m_Value(X)))) {
695 Value *XX = Builder.CreateFMulFMF(X, X, &I);
696 return BinaryOperator::CreateFDivFMF(Y, XX, &I);
697 }
698 }
699
700 // pow(X, Y) * X --> pow(X, Y+1)
701 // X * pow(X, Y) --> pow(X, Y+1)
702 if (match(&I, m_c_FMul(m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Value(X),
703 m_Value(Y))),
704 m_Deferred(X)))) {
705 Value *Y1 =
706 Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), 1.0), &I);
707 Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, Y1, &I);
708 return replaceInstUsesWith(I, Pow);
709 }
710
711 if (I.isOnlyUserOfAnyOperand()) {
712 // pow(X, Y) * pow(X, Z) -> pow(X, Y + Z)
713 if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
714 match(Op1, m_Intrinsic<Intrinsic::pow>(m_Specific(X), m_Value(Z)))) {
715 auto *YZ = Builder.CreateFAddFMF(Y, Z, &I);
716 auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, X, YZ, &I);
717 return replaceInstUsesWith(I, NewPow);
718 }
719 // pow(X, Y) * pow(Z, Y) -> pow(X * Z, Y)
720 if (match(Op0, m_Intrinsic<Intrinsic::pow>(m_Value(X), m_Value(Y))) &&
721 match(Op1, m_Intrinsic<Intrinsic::pow>(m_Value(Z), m_Specific(Y)))) {
722 auto *XZ = Builder.CreateFMulFMF(X, Z, &I);
723 auto *NewPow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, XZ, Y, &I);
724 return replaceInstUsesWith(I, NewPow);
725 }
726
727 // powi(x, y) * powi(x, z) -> powi(x, y + z)
728 if (match(Op0, m_Intrinsic<Intrinsic::powi>(m_Value(X), m_Value(Y))) &&
729 match(Op1, m_Intrinsic<Intrinsic::powi>(m_Specific(X), m_Value(Z))) &&
730 Y->getType() == Z->getType()) {
731 auto *YZ = Builder.CreateAdd(Y, Z);
732 auto *NewPow = Builder.CreateIntrinsic(
733 Intrinsic::powi, {X->getType(), YZ->getType()}, {X, YZ}, &I);
734 return replaceInstUsesWith(I, NewPow);
735 }
736
737 // exp(X) * exp(Y) -> exp(X + Y)
738 if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
739 match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y)))) {
740 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
741 Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
742 return replaceInstUsesWith(I, Exp);
743 }
744
745 // exp2(X) * exp2(Y) -> exp2(X + Y)
746 if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
747 match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y)))) {
748 Value *XY = Builder.CreateFAddFMF(X, Y, &I);
749 Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
750 return replaceInstUsesWith(I, Exp2);
751 }
752 }
753
754 // (X*Y) * X => (X*X) * Y where Y != X
755 // The purpose is two-fold:
756 // 1) to form a power expression (of X).
757 // 2) potentially shorten the critical path: After transformation, the
758 // latency of the instruction Y is amortized by the expression of X*X,
759 // and therefore Y is in a "less critical" position compared to what it
760 // was before the transformation.
761 if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
762 Op1 != Y) {
763 Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
764 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
765 }
766 if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
767 Op0 != Y) {
768 Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
769 return BinaryOperator::CreateFMulFMF(XX, Y, &I);
770 }
771 }
772
773 // log2(X * 0.5) * Y = log2(X) * Y - Y
774 if (I.isFast()) {
775 IntrinsicInst *Log2 = nullptr;
776 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
777 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
778 Log2 = cast<IntrinsicInst>(Op0);
779 Y = Op1;
780 }
781 if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
782 m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
783 Log2 = cast<IntrinsicInst>(Op1);
784 Y = Op0;
785 }
786 if (Log2) {
787 Value *Log2 = Builder.CreateUnaryIntrinsic(Intrinsic::log2, X, &I);
788 Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
789 return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
790 }
791 }
792
793 // Simplify FMUL recurrences starting with 0.0 to 0.0 if nnan and nsz are set.
794 // Given a phi node with entry value as 0 and it used in fmul operation,
795 // we can replace fmul with 0 safely and eleminate loop operation.
796 PHINode *PN = nullptr;
797 Value *Start = nullptr, *Step = nullptr;
798 if (matchSimpleRecurrence(&I, PN, Start, Step) && I.hasNoNaNs() &&
799 I.hasNoSignedZeros() && match(Start, m_Zero()))
800 return replaceInstUsesWith(I, Start);
801
802 // minimun(X, Y) * maximum(X, Y) => X * Y.
803 if (match(&I,
804 m_c_FMul(m_Intrinsic<Intrinsic::maximum>(m_Value(X), m_Value(Y)),
805 m_c_Intrinsic<Intrinsic::minimum>(m_Deferred(X),
806 m_Deferred(Y))))) {
807 BinaryOperator *Result = BinaryOperator::CreateFMulFMF(X, Y, &I);
808 // We cannot preserve ninf if nnan flag is not set.
809 // If X is NaN and Y is Inf then in original program we had NaN * NaN,
810 // while in optimized version NaN * Inf and this is a poison with ninf flag.
811 if (!Result->hasNoNaNs())
812 Result->setHasNoInfs(false);
813 return Result;
814 }
815
816 return nullptr;
817}
818
819/// Fold a divide or remainder with a select instruction divisor when one of the
820/// select operands is zero. In that case, we can use the other select operand
821/// because div/rem by zero is undefined.
822bool InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
823 SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
824 if (!SI)
7
Assuming 'SI' is non-null
8
Taking false branch
825 return false;
826
827 int NonNullOperand;
828 if (match(SI->getTrueValue(), m_Zero()))
9
Assuming the condition is true
10
Taking true branch
829 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
830 NonNullOperand = 2;
831 else if (match(SI->getFalseValue(), m_Zero()))
832 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
833 NonNullOperand = 1;
834 else
835 return false;
836
837 // Change the div/rem to use 'Y' instead of the select.
838 replaceOperand(I, 1, SI->getOperand(NonNullOperand));
839
840 // Okay, we know we replace the operand of the div/rem with 'Y' with no
841 // problem. However, the select, or the condition of the select may have
842 // multiple uses. Based on our knowledge that the operand must be non-zero,
843 // propagate the known value for the select into other uses of it, and
844 // propagate a known value of the condition into its other users.
845
846 // If the select and condition only have a single use, don't bother with this,
847 // early exit.
848 Value *SelectCond = SI->getCondition();
849 if (SI->use_empty() && SelectCond->hasOneUse())
850 return true;
851
852 // Scan the current block backward, looking for other uses of SI.
853 BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
854 Type *CondTy = SelectCond->getType();
855 while (BBI != BBFront) {
11
Loop condition is true. Entering loop body
19
Loop condition is true. Entering loop body
856 --BBI;
857 // If we found an instruction that we can't assume will return, so
858 // information from below it cannot be propagated above it.
859 if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
12
Assuming the condition is false
13
Taking false branch
20
Assuming the condition is false
21
Taking false branch
860 break;
861
862 // Replace uses of the select or its condition with the known values.
863 for (Use &Op : BBI->operands()) {
14
Assuming '__begin2' is equal to '__end2'
22
Assuming '__begin2' is not equal to '__end2'
864 if (Op == SI) {
23
Assuming the condition is true
24
Taking true branch
865 replaceUse(Op, SI->getOperand(NonNullOperand));
25
Called C++ object pointer is null
866 Worklist.push(&*BBI);
867 } else if (Op == SelectCond) {
868 replaceUse(Op, NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
869 : ConstantInt::getFalse(CondTy));
870 Worklist.push(&*BBI);
871 }
872 }
873
874 // If we past the instruction, quit looking for it.
875 if (&*BBI == SI)
15
Assuming the condition is true
16
Taking true branch
876 SI = nullptr;
17
Null pointer value stored to 'SI'
877 if (&*BBI == SelectCond)
18
Assuming the condition is false
878 SelectCond = nullptr;
879
880 // If we ran out of things to eliminate, break out of the loop.
881 if (!SelectCond
18.1
'SelectCond' is non-null
&& !SI)
882 break;
883
884 }
885 return true;
886}
887
888/// True if the multiply can not be expressed in an int this size.
889static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
890 bool IsSigned) {
891 bool Overflow;
892 Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
893 return Overflow;
894}
895
896/// True if C1 is a multiple of C2. Quotient contains C1/C2.
897static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
898 bool IsSigned) {
899 assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal")(static_cast <bool> (C1.getBitWidth() == C2.getBitWidth
() && "Constant widths not equal") ? void (0) : __assert_fail
("C1.getBitWidth() == C2.getBitWidth() && \"Constant widths not equal\""
, "llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp",
899, __extension__ __PRETTY_FUNCTION__))
;
900
901 // Bail if we will divide by zero.
902 if (C2.isZero())
903 return false;
904
905 // Bail if we would divide INT_MIN by -1.
906 if (IsSigned && C1.isMinSignedValue() && C2.isAllOnes())
907 return false;
908
909 APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
910 if (IsSigned)
911 APInt::sdivrem(C1, C2, Quotient, Remainder);
912 else
913 APInt::udivrem(C1, C2, Quotient, Remainder);
914
915 return Remainder.isMinValue();
916}
917
918static Instruction *foldIDivShl(BinaryOperator &I,
919 InstCombiner::BuilderTy &Builder) {
920 assert((I.getOpcode() == Instruction::SDiv ||(static_cast <bool> ((I.getOpcode() == Instruction::SDiv
|| I.getOpcode() == Instruction::UDiv) && "Expected integer divide"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::UDiv) && \"Expected integer divide\""
, "llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp",
922, __extension__ __PRETTY_FUNCTION__))
921 I.getOpcode() == Instruction::UDiv) &&(static_cast <bool> ((I.getOpcode() == Instruction::SDiv
|| I.getOpcode() == Instruction::UDiv) && "Expected integer divide"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::UDiv) && \"Expected integer divide\""
, "llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp",
922, __extension__ __PRETTY_FUNCTION__))
922 "Expected integer divide")(static_cast <bool> ((I.getOpcode() == Instruction::SDiv
|| I.getOpcode() == Instruction::UDiv) && "Expected integer divide"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::UDiv) && \"Expected integer divide\""
, "llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp",
922, __extension__ __PRETTY_FUNCTION__))
;
923
924 bool IsSigned = I.getOpcode() == Instruction::SDiv;
925 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
926 Type *Ty = I.getType();
927
928 Instruction *Ret = nullptr;
929 Value *X, *Y, *Z;
930
931 // With appropriate no-wrap constraints, remove a common factor in the
932 // dividend and divisor that is disguised as a left-shifted value.
933 if (match(Op1, m_Shl(m_Value(X), m_Value(Z))) &&
934 match(Op0, m_c_Mul(m_Specific(X), m_Value(Y)))) {
935 // Both operands must have the matching no-wrap for this kind of division.
936 auto *Mul = cast<OverflowingBinaryOperator>(Op0);
937 auto *Shl = cast<OverflowingBinaryOperator>(Op1);
938 bool HasNUW = Mul->hasNoUnsignedWrap() && Shl->hasNoUnsignedWrap();
939 bool HasNSW = Mul->hasNoSignedWrap() && Shl->hasNoSignedWrap();
940
941 // (X * Y) u/ (X << Z) --> Y u>> Z
942 if (!IsSigned && HasNUW)
943 Ret = BinaryOperator::CreateLShr(Y, Z);
944
945 // (X * Y) s/ (X << Z) --> Y s/ (1 << Z)
946 if (IsSigned && HasNSW && (Op0->hasOneUse() || Op1->hasOneUse())) {
947 Value *Shl = Builder.CreateShl(ConstantInt::get(Ty, 1), Z);
948 Ret = BinaryOperator::CreateSDiv(Y, Shl);
949 }
950 }
951
952 // With appropriate no-wrap constraints, remove a common factor in the
953 // dividend and divisor that is disguised as a left-shift amount.
954 if (match(Op0, m_Shl(m_Value(X), m_Value(Z))) &&
955 match(Op1, m_Shl(m_Value(Y), m_Specific(Z)))) {
956 auto *Shl0 = cast<OverflowingBinaryOperator>(Op0);
957 auto *Shl1 = cast<OverflowingBinaryOperator>(Op1);
958
959 // For unsigned div, we need 'nuw' on both shifts or
960 // 'nsw' on both shifts + 'nuw' on the dividend.
961 // (X << Z) / (Y << Z) --> X / Y
962 if (!IsSigned &&
963 ((Shl0->hasNoUnsignedWrap() && Shl1->hasNoUnsignedWrap()) ||
964 (Shl0->hasNoUnsignedWrap() && Shl0->hasNoSignedWrap() &&
965 Shl1->hasNoSignedWrap())))
966 Ret = BinaryOperator::CreateUDiv(X, Y);
967
968 // For signed div, we need 'nsw' on both shifts + 'nuw' on the divisor.
969 // (X << Z) / (Y << Z) --> X / Y
970 if (IsSigned && Shl0->hasNoSignedWrap() && Shl1->hasNoSignedWrap() &&
971 Shl1->hasNoUnsignedWrap())
972 Ret = BinaryOperator::CreateSDiv(X, Y);
973 }
974
975 if (!Ret)
976 return nullptr;
977
978 Ret->setIsExact(I.isExact());
979 return Ret;
980}
981
982/// This function implements the transforms common to both integer division
983/// instructions (udiv and sdiv). It is called by the visitors to those integer
984/// division instructions.
985/// Common integer divide transforms
986Instruction *InstCombinerImpl::commonIDivTransforms(BinaryOperator &I) {
987 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1
Assuming 'Phi' is null
2
Taking false branch
988 return Phi;
989
990 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
991 bool IsSigned = I.getOpcode() == Instruction::SDiv;
3
Assuming the condition is false
992 Type *Ty = I.getType();
993
994 // The RHS is known non-zero.
995 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
4
Assuming 'V' is null
5
Taking false branch
996 return replaceOperand(I, 1, V);
997
998 // Handle cases involving: [su]div X, (select Cond, Y, Z)
999 // This does not apply for fdiv.
1000 if (simplifyDivRemOfSelectWithZeroOp(I))
6
Calling 'InstCombinerImpl::simplifyDivRemOfSelectWithZeroOp'
1001 return &I;
1002
1003 // If the divisor is a select-of-constants, try to constant fold all div ops:
1004 // C / (select Cond, TrueC, FalseC) --> select Cond, (C / TrueC), (C / FalseC)
1005 // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
1006 if (match(Op0, m_ImmConstant()) &&
1007 match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
1008 if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
1009 /*FoldWithMultiUse*/ true))
1010 return R;
1011 }
1012
1013 const APInt *C2;
1014 if (match(Op1, m_APInt(C2))) {
1015 Value *X;
1016 const APInt *C1;
1017
1018 // (X / C1) / C2 -> X / (C1*C2)
1019 if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
1020 (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
1021 APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
1022 if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
1023 return BinaryOperator::Create(I.getOpcode(), X,
1024 ConstantInt::get(Ty, Product));
1025 }
1026
1027 APInt Quotient(C2->getBitWidth(), /*val=*/0ULL, IsSigned);
1028 if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
1029 (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
1030
1031 // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
1032 if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
1033 auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
1034 ConstantInt::get(Ty, Quotient));
1035 NewDiv->setIsExact(I.isExact());
1036 return NewDiv;
1037 }
1038
1039 // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
1040 if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
1041 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
1042 ConstantInt::get(Ty, Quotient));
1043 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1044 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1045 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1046 return Mul;
1047 }
1048 }
1049
1050 if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
1051 C1->ult(C1->getBitWidth() - 1)) ||
1052 (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))) &&
1053 C1->ult(C1->getBitWidth()))) {
1054 APInt C1Shifted = APInt::getOneBitSet(
1055 C1->getBitWidth(), static_cast<unsigned>(C1->getZExtValue()));
1056
1057 // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
1058 if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
1059 auto *BO = BinaryOperator::Create(I.getOpcode(), X,
1060 ConstantInt::get(Ty, Quotient));
1061 BO->setIsExact(I.isExact());
1062 return BO;
1063 }
1064
1065 // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
1066 if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
1067 auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
1068 ConstantInt::get(Ty, Quotient));
1069 auto *OBO = cast<OverflowingBinaryOperator>(Op0);
1070 Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
1071 Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
1072 return Mul;
1073 }
1074 }
1075
1076 // Distribute div over add to eliminate a matching div/mul pair:
1077 // ((X * C2) + C1) / C2 --> X + C1/C2
1078 // We need a multiple of the divisor for a signed add constant, but
1079 // unsigned is fine with any constant pair.
1080 if (IsSigned &&
1081 match(Op0, m_NSWAdd(m_NSWMul(m_Value(X), m_SpecificInt(*C2)),
1082 m_APInt(C1))) &&
1083 isMultiple(*C1, *C2, Quotient, IsSigned)) {
1084 return BinaryOperator::CreateNSWAdd(X, ConstantInt::get(Ty, Quotient));
1085 }
1086 if (!IsSigned &&
1087 match(Op0, m_NUWAdd(m_NUWMul(m_Value(X), m_SpecificInt(*C2)),
1088 m_APInt(C1)))) {
1089 return BinaryOperator::CreateNUWAdd(X,
1090 ConstantInt::get(Ty, C1->udiv(*C2)));
1091 }
1092
1093 if (!C2->isZero()) // avoid X udiv 0
1094 if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
1095 return FoldedDiv;
1096 }
1097
1098 if (match(Op0, m_One())) {
1099 assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?")(static_cast <bool> (!Ty->isIntOrIntVectorTy(1) &&
"i1 divide not removed?") ? void (0) : __assert_fail ("!Ty->isIntOrIntVectorTy(1) && \"i1 divide not removed?\""
, "llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp",
1099, __extension__ __PRETTY_FUNCTION__))
;
1100 if (IsSigned) {
1101 // 1 / 0 --> undef ; 1 / 1 --> 1 ; 1 / -1 --> -1 ; 1 / anything else --> 0
1102 // (Op1 + 1) u< 3 ? Op1 : 0
1103 // Op1 must be frozen because we are increasing its number of uses.
1104 Value *F1 = Builder.CreateFreeze(Op1, Op1->getName() + ".fr");
1105 Value *Inc = Builder.CreateAdd(F1, Op0);
1106 Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
1107 return SelectInst::Create(Cmp, F1, ConstantInt::get(Ty, 0));
1108 } else {
1109 // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
1110 // result is one, otherwise it's zero.
1111 return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
1112 }
1113 }
1114
1115 // See if we can fold away this div instruction.
1116 if (SimplifyDemandedInstructionBits(I))
1117 return &I;
1118
1119 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
1120 Value *X, *Z;
1121 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
1122 if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
1123 (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
1124 return BinaryOperator::Create(I.getOpcode(), X, Op1);
1125
1126 // (X << Y) / X -> 1 << Y
1127 Value *Y;
1128 if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
1129 return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
1130 if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
1131 return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
1132
1133 // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
1134 if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
1135 bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
1136 bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
1137 if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
1138 replaceOperand(I, 0, ConstantInt::get(Ty, 1));
1139 replaceOperand(I, 1, Y);
1140 return &I;
1141 }
1142 }
1143
1144 // (X << Z) / (X * Y) -> (1 << Z) / Y
1145 // TODO: Handle sdiv.
1146 if (!IsSigned && Op1->hasOneUse() &&
1147 match(Op0, m_NUWShl(m_Value(X), m_Value(Z))) &&
1148 match(Op1, m_c_Mul(m_Specific(X), m_Value(Y))))
1149 if (cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap()) {
1150 Instruction *NewDiv = BinaryOperator::CreateUDiv(
1151 Builder.CreateShl(ConstantInt::get(Ty, 1), Z, "", /*NUW*/ true), Y);
1152 NewDiv->setIsExact(I.isExact());
1153 return NewDiv;
1154 }
1155
1156 if (Instruction *R = foldIDivShl(I, Builder))
1157 return R;
1158
1159 // With the appropriate no-wrap constraint, remove a multiply by the divisor
1160 // after peeking through another divide:
1161 // ((Op1 * X) / Y) / Op1 --> X / Y
1162 if (match(Op0, m_BinOp(I.getOpcode(), m_c_Mul(m_Specific(Op1), m_Value(X)),
1163 m_Value(Y)))) {
1164 auto *InnerDiv = cast<PossiblyExactOperator>(Op0);
1165 auto *Mul = cast<OverflowingBinaryOperator>(InnerDiv->getOperand(0));
1166 Instruction *NewDiv = nullptr;
1167 if (!IsSigned && Mul->hasNoUnsignedWrap())
1168 NewDiv = BinaryOperator::CreateUDiv(X, Y);
1169 else if (IsSigned && Mul->hasNoSignedWrap())
1170 NewDiv = BinaryOperator::CreateSDiv(X, Y);
1171
1172 // Exact propagates only if both of the original divides are exact.
1173 if (NewDiv) {
1174 NewDiv->setIsExact(I.isExact() && InnerDiv->isExact());
1175 return NewDiv;
1176 }
1177 }
1178
1179 return nullptr;
1180}
1181
1182static const unsigned MaxDepth = 6;
1183
1184// Take the exact integer log2 of the value. If DoFold is true, create the
1185// actual instructions, otherwise return a non-null dummy value. Return nullptr
1186// on failure.
1187static Value *takeLog2(IRBuilderBase &Builder, Value *Op, unsigned Depth,
1188 bool AssumeNonZero, bool DoFold) {
1189 auto IfFold = [DoFold](function_ref<Value *()> Fn) {
1190 if (!DoFold)
1191 return reinterpret_cast<Value *>(-1);
1192 return Fn();
1193 };
1194
1195 // FIXME: assert that Op1 isn't/doesn't contain undef.
1196
1197 // log2(2^C) -> C
1198 if (match(Op, m_Power2()))
1199 return IfFold([&]() {
1200 Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op));
1201 if (!C)
1202 llvm_unreachable("Failed to constant fold udiv -> logbase2")::llvm::llvm_unreachable_internal("Failed to constant fold udiv -> logbase2"
, "llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp",
1202)
;
1203 return C;
1204 });
1205
1206 // The remaining tests are all recursive, so bail out if we hit the limit.
1207 if (Depth++ == MaxDepth)
1208 return nullptr;
1209
1210 // log2(zext X) -> zext log2(X)
1211 // FIXME: Require one use?
1212 Value *X, *Y;
1213 if (match(Op, m_ZExt(m_Value(X))))
1214 if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold))
1215 return IfFold([&]() { return Builder.CreateZExt(LogX, Op->getType()); });
1216
1217 // log2(X << Y) -> log2(X) + Y
1218 // FIXME: Require one use unless X is 1?
1219 if (match(Op, m_Shl(m_Value(X), m_Value(Y)))) {
1220 auto *BO = cast<OverflowingBinaryOperator>(Op);
1221 // nuw will be set if the `shl` is trivially non-zero.
1222 if (AssumeNonZero || BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap())
1223 if (Value *LogX = takeLog2(Builder, X, Depth, AssumeNonZero, DoFold))
1224 return IfFold([&]() { return Builder.CreateAdd(LogX, Y); });
1225 }
1226
1227 // log2(Cond ? X : Y) -> Cond ? log2(X) : log2(Y)
1228 // FIXME: missed optimization: if one of the hands of select is/contains
1229 // undef, just directly pick the other one.
1230 // FIXME: can both hands contain undef?
1231 // FIXME: Require one use?
1232 if (SelectInst *SI = dyn_cast<SelectInst>(Op))
1233 if (Value *LogX = takeLog2(Builder, SI->getOperand(1), Depth,
1234 AssumeNonZero, DoFold))
1235 if (Value *LogY = takeLog2(Builder, SI->getOperand(2), Depth,
1236 AssumeNonZero, DoFold))
1237 return IfFold([&]() {
1238 return Builder.CreateSelect(SI->getOperand(0), LogX, LogY);
1239 });
1240
1241 // log2(umin(X, Y)) -> umin(log2(X), log2(Y))
1242 // log2(umax(X, Y)) -> umax(log2(X), log2(Y))
1243 auto *MinMax = dyn_cast<MinMaxIntrinsic>(Op);
1244 if (MinMax && MinMax->hasOneUse() && !MinMax->isSigned()) {
1245 // Use AssumeNonZero as false here. Otherwise we can hit case where
1246 // log2(umax(X, Y)) != umax(log2(X), log2(Y)) (because overflow).
1247 if (Value *LogX = takeLog2(Builder, MinMax->getLHS(), Depth,
1248 /*AssumeNonZero*/ false, DoFold))
1249 if (Value *LogY = takeLog2(Builder, MinMax->getRHS(), Depth,
1250 /*AssumeNonZero*/ false, DoFold))
1251 return IfFold([&]() {
1252 return Builder.CreateBinaryIntrinsic(MinMax->getIntrinsicID(), LogX,
1253 LogY);
1254 });
1255 }
1256
1257 return nullptr;
1258}
1259
1260/// If we have zero-extended operands of an unsigned div or rem, we may be able
1261/// to narrow the operation (sink the zext below the math).
1262static Instruction *narrowUDivURem(BinaryOperator &I,
1263 InstCombiner::BuilderTy &Builder) {
1264 Instruction::BinaryOps Opcode = I.getOpcode();
1265 Value *N = I.getOperand(0);
1266 Value *D = I.getOperand(1);
1267 Type *Ty = I.getType();
1268 Value *X, *Y;
1269 if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
1270 X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
1271 // udiv (zext X), (zext Y) --> zext (udiv X, Y)
1272 // urem (zext X), (zext Y) --> zext (urem X, Y)
1273 Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
1274 return new ZExtInst(NarrowOp, Ty);
1275 }
1276
1277 Constant *C;
1278 if (isa<Instruction>(N) && match(N, m_OneUse(m_ZExt(m_Value(X)))) &&
1279 match(D, m_Constant(C))) {
1280 // If the constant is the same in the smaller type, use the narrow version.
1281 Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
1282 if (ConstantExpr::getZExt(TruncC, Ty) != C)
1283 return nullptr;
1284
1285 // udiv (zext X), C --> zext (udiv X, C')
1286 // urem (zext X), C --> zext (urem X, C')
1287 return new ZExtInst(Builder.CreateBinOp(Opcode, X, TruncC), Ty);
1288 }
1289 if (isa<Instruction>(D) && match(D, m_OneUse(m_ZExt(m_Value(X)))) &&
1290 match(N, m_Constant(C))) {
1291 // If the constant is the same in the smaller type, use the narrow version.
1292 Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
1293 if (ConstantExpr::getZExt(TruncC, Ty) != C)
1294 return nullptr;
1295
1296 // udiv C, (zext X) --> zext (udiv C', X)
1297 // urem C, (zext X) --> zext (urem C', X)
1298 return new ZExtInst(Builder.CreateBinOp(Opcode, TruncC, X), Ty);
1299 }
1300
1301 return nullptr;
1302}
1303
1304Instruction *InstCombinerImpl::visitUDiv(BinaryOperator &I) {
1305 if (Value *V = simplifyUDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1306 SQ.getWithInstruction(&I)))
1307 return replaceInstUsesWith(I, V);
1308
1309 if (Instruction *X = foldVectorBinop(I))
1310 return X;
1311
1312 // Handle the integer div common cases
1313 if (Instruction *Common = commonIDivTransforms(I))
1314 return Common;
1315
1316 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1317 Value *X;
1318 const APInt *C1, *C2;
1319 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
1320 // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
1321 bool Overflow;
1322 APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
1323 if (!Overflow) {
1324 bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
1325 BinaryOperator *BO = BinaryOperator::CreateUDiv(
1326 X, ConstantInt::get(X->getType(), C2ShlC1));
1327 if (IsExact)
1328 BO->setIsExact();
1329 return BO;
1330 }
1331 }
1332
1333 // Op0 / C where C is large (negative) --> zext (Op0 >= C)
1334 // TODO: Could use isKnownNegative() to handle non-constant values.
1335 Type *Ty = I.getType();
1336 if (match(Op1, m_Negative())) {
1337 Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
1338 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1339 }
1340 // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
1341 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1342 Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
1343 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1344 }
1345
1346 if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
1347 return NarrowDiv;
1348
1349 // If the udiv operands are non-overflowing multiplies with a common operand,
1350 // then eliminate the common factor:
1351 // (A * B) / (A * X) --> B / X (and commuted variants)
1352 // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
1353 // TODO: If -reassociation handled this generally, we could remove this.
1354 Value *A, *B;
1355 if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
1356 if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
1357 match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
1358 return BinaryOperator::CreateUDiv(B, X);
1359 if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
1360 match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
1361 return BinaryOperator::CreateUDiv(A, X);
1362 }
1363
1364 // Look through a right-shift to find the common factor:
1365 // ((Op1 *nuw A) >> B) / Op1 --> A >> B
1366 if (match(Op0, m_LShr(m_NUWMul(m_Specific(Op1), m_Value(A)), m_Value(B))) ||
1367 match(Op0, m_LShr(m_NUWMul(m_Value(A), m_Specific(Op1)), m_Value(B)))) {
1368 Instruction *Lshr = BinaryOperator::CreateLShr(A, B);
1369 if (I.isExact() && cast<PossiblyExactOperator>(Op0)->isExact())
1370 Lshr->setIsExact();
1371 return Lshr;
1372 }
1373
1374 // Op1 udiv Op2 -> Op1 lshr log2(Op2), if log2() folds away.
1375 if (takeLog2(Builder, Op1, /*Depth*/ 0, /*AssumeNonZero*/ true,
1376 /*DoFold*/ false)) {
1377 Value *Res = takeLog2(Builder, Op1, /*Depth*/ 0,
1378 /*AssumeNonZero*/ true, /*DoFold*/ true);
1379 return replaceInstUsesWith(
1380 I, Builder.CreateLShr(Op0, Res, I.getName(), I.isExact()));
1381 }
1382
1383 return nullptr;
1384}
1385
1386Instruction *InstCombinerImpl::visitSDiv(BinaryOperator &I) {
1387 if (Value *V = simplifySDivInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1388 SQ.getWithInstruction(&I)))
1389 return replaceInstUsesWith(I, V);
1390
1391 if (Instruction *X = foldVectorBinop(I))
1392 return X;
1393
1394 // Handle the integer div common cases
1395 if (Instruction *Common = commonIDivTransforms(I))
1396 return Common;
1397
1398 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1399 Type *Ty = I.getType();
1400 Value *X;
1401 // sdiv Op0, -1 --> -Op0
1402 // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
1403 if (match(Op1, m_AllOnes()) ||
1404 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1405 return BinaryOperator::CreateNeg(Op0);
1406
1407 // X / INT_MIN --> X == INT_MIN
1408 if (match(Op1, m_SignMask()))
1409 return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), Ty);
1410
1411 if (I.isExact()) {
1412 // sdiv exact X, 1<<C --> ashr exact X, C iff 1<<C is non-negative
1413 if (match(Op1, m_Power2()) && match(Op1, m_NonNegative())) {
1414 Constant *C = ConstantExpr::getExactLogBase2(cast<Constant>(Op1));
1415 return BinaryOperator::CreateExactAShr(Op0, C);
1416 }
1417
1418 // sdiv exact X, (1<<ShAmt) --> ashr exact X, ShAmt (if shl is non-negative)
1419 Value *ShAmt;
1420 if (match(Op1, m_NSWShl(m_One(), m_Value(ShAmt))))
1421 return BinaryOperator::CreateExactAShr(Op0, ShAmt);
1422
1423 // sdiv exact X, -1<<C --> -(ashr exact X, C)
1424 if (match(Op1, m_NegatedPower2())) {
1425 Constant *NegPow2C = ConstantExpr::getNeg(cast<Constant>(Op1));
1426 Constant *C = ConstantExpr::getExactLogBase2(NegPow2C);
1427 Value *Ashr = Builder.CreateAShr(Op0, C, I.getName() + ".neg", true);
1428 return BinaryOperator::CreateNeg(Ashr);
1429 }
1430 }
1431
1432 const APInt *Op1C;
1433 if (match(Op1, m_APInt(Op1C))) {
1434 // If the dividend is sign-extended and the constant divisor is small enough
1435 // to fit in the source type, shrink the division to the narrower type:
1436 // (sext X) sdiv C --> sext (X sdiv C)
1437 Value *Op0Src;
1438 if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
1439 Op0Src->getType()->getScalarSizeInBits() >=
1440 Op1C->getSignificantBits()) {
1441
1442 // In the general case, we need to make sure that the dividend is not the
1443 // minimum signed value because dividing that by -1 is UB. But here, we
1444 // know that the -1 divisor case is already handled above.
1445
1446 Constant *NarrowDivisor =
1447 ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
1448 Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
1449 return new SExtInst(NarrowOp, Ty);
1450 }
1451
1452 // -X / C --> X / -C (if the negation doesn't overflow).
1453 // TODO: This could be enhanced to handle arbitrary vector constants by
1454 // checking if all elements are not the min-signed-val.
1455 if (!Op1C->isMinSignedValue() &&
1456 match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
1457 Constant *NegC = ConstantInt::get(Ty, -(*Op1C));
1458 Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
1459 BO->setIsExact(I.isExact());
1460 return BO;
1461 }
1462 }
1463
1464 // -X / Y --> -(X / Y)
1465 Value *Y;
1466 if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1467 return BinaryOperator::CreateNSWNeg(
1468 Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
1469
1470 // abs(X) / X --> X > -1 ? 1 : -1
1471 // X / abs(X) --> X > -1 ? 1 : -1
1472 if (match(&I, m_c_BinOp(
1473 m_OneUse(m_Intrinsic<Intrinsic::abs>(m_Value(X), m_One())),
1474 m_Deferred(X)))) {
1475 Value *Cond = Builder.CreateIsNotNeg(X);
1476 return SelectInst::Create(Cond, ConstantInt::get(Ty, 1),
1477 ConstantInt::getAllOnesValue(Ty));
1478 }
1479
1480 KnownBits KnownDividend = computeKnownBits(Op0, 0, &I);
1481 if (!I.isExact() &&
1482 (match(Op1, m_Power2(Op1C)) || match(Op1, m_NegatedPower2(Op1C))) &&
1483 KnownDividend.countMinTrailingZeros() >= Op1C->countr_zero()) {
1484 I.setIsExact();
1485 return &I;
1486 }
1487
1488 if (KnownDividend.isNonNegative()) {
1489 // If both operands are unsigned, turn this into a udiv.
1490 if (isKnownNonNegative(Op1, DL, 0, &AC, &I, &DT)) {
1491 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1492 BO->setIsExact(I.isExact());
1493 return BO;
1494 }
1495
1496 if (match(Op1, m_NegatedPower2())) {
1497 // X sdiv (-(1 << C)) -> -(X sdiv (1 << C)) ->
1498 // -> -(X udiv (1 << C)) -> -(X u>> C)
1499 Constant *CNegLog2 = ConstantExpr::getExactLogBase2(
1500 ConstantExpr::getNeg(cast<Constant>(Op1)));
1501 Value *Shr = Builder.CreateLShr(Op0, CNegLog2, I.getName(), I.isExact());
1502 return BinaryOperator::CreateNeg(Shr);
1503 }
1504
1505 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1506 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
1507 // Safe because the only negative value (1 << Y) can take on is
1508 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
1509 // the sign bit set.
1510 auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
1511 BO->setIsExact(I.isExact());
1512 return BO;
1513 }
1514 }
1515
1516 return nullptr;
1517}
1518
1519/// Remove negation and try to convert division into multiplication.
1520Instruction *InstCombinerImpl::foldFDivConstantDivisor(BinaryOperator &I) {
1521 Constant *C;
1522 if (!match(I.getOperand(1), m_Constant(C)))
1523 return nullptr;
1524
1525 // -X / C --> X / -C
1526 Value *X;
1527 const DataLayout &DL = I.getModule()->getDataLayout();
1528 if (match(I.getOperand(0), m_FNeg(m_Value(X))))
1529 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1530 return BinaryOperator::CreateFDivFMF(X, NegC, &I);
1531
1532 // nnan X / +0.0 -> copysign(inf, X)
1533 if (I.hasNoNaNs() && match(I.getOperand(1), m_Zero())) {
1534 IRBuilder<> B(&I);
1535 // TODO: nnan nsz X / -0.0 -> copysign(inf, X)
1536 CallInst *CopySign = B.CreateIntrinsic(
1537 Intrinsic::copysign, {C->getType()},
1538 {ConstantFP::getInfinity(I.getType()), I.getOperand(0)}, &I);
1539 CopySign->takeName(&I);
1540 return replaceInstUsesWith(I, CopySign);
1541 }
1542
1543 // If the constant divisor has an exact inverse, this is always safe. If not,
1544 // then we can still create a reciprocal if fast-math-flags allow it and the
1545 // constant is a regular number (not zero, infinite, or denormal).
1546 if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
1547 return nullptr;
1548
1549 // Disallow denormal constants because we don't know what would happen
1550 // on all targets.
1551 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1552 // denorms are flushed?
1553 auto *RecipC = ConstantFoldBinaryOpOperands(
1554 Instruction::FDiv, ConstantFP::get(I.getType(), 1.0), C, DL);
1555 if (!RecipC || !RecipC->isNormalFP())
1556 return nullptr;
1557
1558 // X / C --> X * (1 / C)
1559 return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
1560}
1561
1562/// Remove negation and try to reassociate constant math.
1563static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
1564 Constant *C;
1565 if (!match(I.getOperand(0), m_Constant(C)))
1566 return nullptr;
1567
1568 // C / -X --> -C / X
1569 Value *X;
1570 const DataLayout &DL = I.getModule()->getDataLayout();
1571 if (match(I.getOperand(1), m_FNeg(m_Value(X))))
1572 if (Constant *NegC = ConstantFoldUnaryOpOperand(Instruction::FNeg, C, DL))
1573 return BinaryOperator::CreateFDivFMF(NegC, X, &I);
1574
1575 if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
1576 return nullptr;
1577
1578 // Try to reassociate C / X expressions where X includes another constant.
1579 Constant *C2, *NewC = nullptr;
1580 if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
1581 // C / (X * C2) --> (C / C2) / X
1582 NewC = ConstantFoldBinaryOpOperands(Instruction::FDiv, C, C2, DL);
1583 } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
1584 // C / (X / C2) --> (C * C2) / X
1585 NewC = ConstantFoldBinaryOpOperands(Instruction::FMul, C, C2, DL);
1586 }
1587 // Disallow denormal constants because we don't know what would happen
1588 // on all targets.
1589 // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
1590 // denorms are flushed?
1591 if (!NewC || !NewC->isNormalFP())
1592 return nullptr;
1593
1594 return BinaryOperator::CreateFDivFMF(NewC, X, &I);
1595}
1596
1597/// Negate the exponent of pow/exp to fold division-by-pow() into multiply.
1598static Instruction *foldFDivPowDivisor(BinaryOperator &I,
1599 InstCombiner::BuilderTy &Builder) {
1600 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1601 auto *II = dyn_cast<IntrinsicInst>(Op1);
1602 if (!II || !II->hasOneUse() || !I.hasAllowReassoc() ||
1603 !I.hasAllowReciprocal())
1604 return nullptr;
1605
1606 // Z / pow(X, Y) --> Z * pow(X, -Y)
1607 // Z / exp{2}(Y) --> Z * exp{2}(-Y)
1608 // In the general case, this creates an extra instruction, but fmul allows
1609 // for better canonicalization and optimization than fdiv.
1610 Intrinsic::ID IID = II->getIntrinsicID();
1611 SmallVector<Value *> Args;
1612 switch (IID) {
1613 case Intrinsic::pow:
1614 Args.push_back(II->getArgOperand(0));
1615 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(1), &I));
1616 break;
1617 case Intrinsic::powi: {
1618 // Require 'ninf' assuming that makes powi(X, -INT_MIN) acceptable.
1619 // That is, X ** (huge negative number) is 0.0, ~1.0, or INF and so
1620 // dividing by that is INF, ~1.0, or 0.0. Code that uses powi allows
1621 // non-standard results, so this corner case should be acceptable if the
1622 // code rules out INF values.
1623 if (!I.hasNoInfs())
1624 return nullptr;
1625 Args.push_back(II->getArgOperand(0));
1626 Args.push_back(Builder.CreateNeg(II->getArgOperand(1)));
1627 Type *Tys[] = {I.getType(), II->getArgOperand(1)->getType()};
1628 Value *Pow = Builder.CreateIntrinsic(IID, Tys, Args, &I);
1629 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1630 }
1631 case Intrinsic::exp:
1632 case Intrinsic::exp2:
1633 Args.push_back(Builder.CreateFNegFMF(II->getArgOperand(0), &I));
1634 break;
1635 default:
1636 return nullptr;
1637 }
1638 Value *Pow = Builder.CreateIntrinsic(IID, I.getType(), Args, &I);
1639 return BinaryOperator::CreateFMulFMF(Op0, Pow, &I);
1640}
1641
1642Instruction *InstCombinerImpl::visitFDiv(BinaryOperator &I) {
1643 Module *M = I.getModule();
1644
1645 if (Value *V = simplifyFDivInst(I.getOperand(0), I.getOperand(1),
1646 I.getFastMathFlags(),
1647 SQ.getWithInstruction(&I)))
1648 return replaceInstUsesWith(I, V);
1649
1650 if (Instruction *X = foldVectorBinop(I))
1651 return X;
1652
1653 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1654 return Phi;
1655
1656 if (Instruction *R = foldFDivConstantDivisor(I))
1657 return R;
1658
1659 if (Instruction *R = foldFDivConstantDividend(I))
1660 return R;
1661
1662 if (Instruction *R = foldFPSignBitOps(I))
1663 return R;
1664
1665 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1666 if (isa<Constant>(Op0))
1667 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1668 if (Instruction *R = FoldOpIntoSelect(I, SI))
1669 return R;
1670
1671 if (isa<Constant>(Op1))
1672 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1673 if (Instruction *R = FoldOpIntoSelect(I, SI))
1674 return R;
1675
1676 if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
1677 Value *X, *Y;
1678 if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1679 (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
1680 // (X / Y) / Z => X / (Y * Z)
1681 Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
1682 return BinaryOperator::CreateFDivFMF(X, YZ, &I);
1683 }
1684 if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
1685 (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
1686 // Z / (X / Y) => (Y * Z) / X
1687 Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
1688 return BinaryOperator::CreateFDivFMF(YZ, X, &I);
1689 }
1690 // Z / (1.0 / Y) => (Y * Z)
1691 //
1692 // This is a special case of Z / (X / Y) => (Y * Z) / X, with X = 1.0. The
1693 // m_OneUse check is avoided because even in the case of the multiple uses
1694 // for 1.0/Y, the number of instructions remain the same and a division is
1695 // replaced by a multiplication.
1696 if (match(Op1, m_FDiv(m_SpecificFP(1.0), m_Value(Y))))
1697 return BinaryOperator::CreateFMulFMF(Y, Op0, &I);
1698 }
1699
1700 if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
1701 // sin(X) / cos(X) -> tan(X)
1702 // cos(X) / sin(X) -> 1/tan(X) (cotangent)
1703 Value *X;
1704 bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
1705 match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
1706 bool IsCot =
1707 !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
1708 match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
1709
1710 if ((IsTan || IsCot) && hasFloatFn(M, &TLI, I.getType(), LibFunc_tan,
1711 LibFunc_tanf, LibFunc_tanl)) {
1712 IRBuilder<> B(&I);
1713 IRBuilder<>::FastMathFlagGuard FMFGuard(B);
1714 B.setFastMathFlags(I.getFastMathFlags());
1715 AttributeList Attrs =
1716 cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
1717 Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
1718 LibFunc_tanl, B, Attrs);
1719 if (IsCot)
1720 Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
1721 return replaceInstUsesWith(I, Res);
1722 }
1723 }
1724
1725 // X / (X * Y) --> 1.0 / Y
1726 // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
1727 // We can ignore the possibility that X is infinity because INF/INF is NaN.
1728 Value *X, *Y;
1729 if (I.hasNoNaNs() && I.hasAllowReassoc() &&
1730 match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
1731 replaceOperand(I, 0, ConstantFP::get(I.getType(), 1.0));
1732 replaceOperand(I, 1, Y);
1733 return &I;
1734 }
1735
1736 // X / fabs(X) -> copysign(1.0, X)
1737 // fabs(X) / X -> copysign(1.0, X)
1738 if (I.hasNoNaNs() && I.hasNoInfs() &&
1739 (match(&I, m_FDiv(m_Value(X), m_FAbs(m_Deferred(X)))) ||
1740 match(&I, m_FDiv(m_FAbs(m_Value(X)), m_Deferred(X))))) {
1741 Value *V = Builder.CreateBinaryIntrinsic(
1742 Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
1743 return replaceInstUsesWith(I, V);
1744 }
1745
1746 if (Instruction *Mul = foldFDivPowDivisor(I, Builder))
1747 return Mul;
1748
1749 // pow(X, Y) / X --> pow(X, Y-1)
1750 if (I.hasAllowReassoc() &&
1751 match(Op0, m_OneUse(m_Intrinsic<Intrinsic::pow>(m_Specific(Op1),
1752 m_Value(Y))))) {
1753 Value *Y1 =
1754 Builder.CreateFAddFMF(Y, ConstantFP::get(I.getType(), -1.0), &I);
1755 Value *Pow = Builder.CreateBinaryIntrinsic(Intrinsic::pow, Op1, Y1, &I);
1756 return replaceInstUsesWith(I, Pow);
1757 }
1758
1759 return nullptr;
1760}
1761
1762// Variety of transform for (urem/srem (mul/shl X, Y), (mul/shl X, Z))
1763static Instruction *simplifyIRemMulShl(BinaryOperator &I,
1764 InstCombinerImpl &IC) {
1765 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1), *X;
1766 const APInt *Y, *Z;
1767 if (!(match(Op0, m_Mul(m_Value(X), m_APInt(Y))) &&
1768 match(Op1, m_c_Mul(m_Specific(X), m_APInt(Z)))) &&
1769 !(match(Op0, m_Mul(m_APInt(Y), m_Value(X))) &&
1770 match(Op1, m_c_Mul(m_Specific(X), m_APInt(Z)))))
1771 return nullptr;
1772
1773 bool IsSRem = I.getOpcode() == Instruction::SRem;
1774
1775 OverflowingBinaryOperator *BO0 = cast<OverflowingBinaryOperator>(Op0);
1776 // TODO: We may be able to deduce more about nsw/nuw of BO0/BO1 based on Y >=
1777 // Z or Z >= Y.
1778 bool BO0HasNSW = BO0->hasNoSignedWrap();
1779 bool BO0HasNUW = BO0->hasNoUnsignedWrap();
1780 bool BO0NoWrap = IsSRem ? BO0HasNSW : BO0HasNUW;
1781
1782 APInt RemYZ = IsSRem ? Y->srem(*Z) : Y->urem(*Z);
1783 // (rem (mul nuw/nsw X, Y), (mul X, Z))
1784 // if (rem Y, Z) == 0
1785 // -> 0
1786 if (RemYZ.isZero() && BO0NoWrap)
1787 return IC.replaceInstUsesWith(I, ConstantInt::getNullValue(I.getType()));
1788
1789 OverflowingBinaryOperator *BO1 = cast<OverflowingBinaryOperator>(Op1);
1790 bool BO1HasNSW = BO1->hasNoSignedWrap();
1791 bool BO1HasNUW = BO1->hasNoUnsignedWrap();
1792 bool BO1NoWrap = IsSRem ? BO1HasNSW : BO1HasNUW;
1793 // (rem (mul X, Y), (mul nuw/nsw X, Z))
1794 // if (rem Y, Z) == Y
1795 // -> (mul nuw/nsw X, Y)
1796 if (RemYZ == *Y && BO1NoWrap) {
1797 BinaryOperator *BO =
1798 BinaryOperator::CreateMul(X, ConstantInt::get(I.getType(), *Y));
1799 // Copy any overflow flags from Op0.
1800 BO->setHasNoSignedWrap(IsSRem || BO0HasNSW);
1801 BO->setHasNoUnsignedWrap(!IsSRem || BO0HasNUW);
1802 return BO;
1803 }
1804
1805 // (rem (mul nuw/nsw X, Y), (mul {nsw} X, Z))
1806 // if Y >= Z
1807 // -> (mul {nuw} nsw X, (rem Y, Z))
1808 if (Y->uge(*Z) && (IsSRem ? (BO0HasNSW && BO1HasNSW) : BO0HasNUW)) {
1809 BinaryOperator *BO =
1810 BinaryOperator::CreateMul(X, ConstantInt::get(I.getType(), RemYZ));
1811 BO->setHasNoSignedWrap();
1812 BO->setHasNoUnsignedWrap(BO0HasNUW);
1813 return BO;
1814 }
1815
1816 return nullptr;
1817}
1818
1819/// This function implements the transforms common to both integer remainder
1820/// instructions (urem and srem). It is called by the visitors to those integer
1821/// remainder instructions.
1822/// Common integer remainder transforms
1823Instruction *InstCombinerImpl::commonIRemTransforms(BinaryOperator &I) {
1824 if (Instruction *Phi = foldBinopWithPhiOperands(I))
1825 return Phi;
1826
1827 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1828
1829 // The RHS is known non-zero.
1830 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I))
1831 return replaceOperand(I, 1, V);
1832
1833 // Handle cases involving: rem X, (select Cond, Y, Z)
1834 if (simplifyDivRemOfSelectWithZeroOp(I))
1835 return &I;
1836
1837 // If the divisor is a select-of-constants, try to constant fold all rem ops:
1838 // C % (select Cond, TrueC, FalseC) --> select Cond, (C % TrueC), (C % FalseC)
1839 // TODO: Adapt simplifyDivRemOfSelectWithZeroOp to allow this and other folds.
1840 if (match(Op0, m_ImmConstant()) &&
1841 match(Op1, m_Select(m_Value(), m_ImmConstant(), m_ImmConstant()))) {
1842 if (Instruction *R = FoldOpIntoSelect(I, cast<SelectInst>(Op1),
1843 /*FoldWithMultiUse*/ true))
1844 return R;
1845 }
1846
1847 if (isa<Constant>(Op1)) {
1848 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
1849 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
1850 if (Instruction *R = FoldOpIntoSelect(I, SI))
1851 return R;
1852 } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
1853 const APInt *Op1Int;
1854 if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
1855 (I.getOpcode() == Instruction::URem ||
1856 !Op1Int->isMinSignedValue())) {
1857 // foldOpIntoPhi will speculate instructions to the end of the PHI's
1858 // predecessor blocks, so do this only if we know the srem or urem
1859 // will not fault.
1860 if (Instruction *NV = foldOpIntoPhi(I, PN))
1861 return NV;
1862 }
1863 }
1864
1865 // See if we can fold away this rem instruction.
1866 if (SimplifyDemandedInstructionBits(I))
1867 return &I;
1868 }
1869 }
1870
1871 if (Instruction *R = simplifyIRemMulShl(I, *this))
1872 return R;
1873
1874 return nullptr;
1875}
1876
1877Instruction *InstCombinerImpl::visitURem(BinaryOperator &I) {
1878 if (Value *V = simplifyURemInst(I.getOperand(0), I.getOperand(1),
1879 SQ.getWithInstruction(&I)))
1880 return replaceInstUsesWith(I, V);
1881
1882 if (Instruction *X = foldVectorBinop(I))
1883 return X;
1884
1885 if (Instruction *common = commonIRemTransforms(I))
1886 return common;
1887
1888 if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
1889 return NarrowRem;
1890
1891 // X urem Y -> X and Y-1, where Y is a power of 2,
1892 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1893 Type *Ty = I.getType();
1894 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
1895 // This may increase instruction count, we don't enforce that Y is a
1896 // constant.
1897 Constant *N1 = Constant::getAllOnesValue(Ty);
1898 Value *Add = Builder.CreateAdd(Op1, N1);
1899 return BinaryOperator::CreateAnd(Op0, Add);
1900 }
1901
1902 // 1 urem X -> zext(X != 1)
1903 if (match(Op0, m_One())) {
1904 Value *Cmp = Builder.CreateICmpNE(Op1, ConstantInt::get(Ty, 1));
1905 return CastInst::CreateZExtOrBitCast(Cmp, Ty);
1906 }
1907
1908 // Op0 urem C -> Op0 < C ? Op0 : Op0 - C, where C >= signbit.
1909 // Op0 must be frozen because we are increasing its number of uses.
1910 if (match(Op1, m_Negative())) {
1911 Value *F0 = Builder.CreateFreeze(Op0, Op0->getName() + ".fr");
1912 Value *Cmp = Builder.CreateICmpULT(F0, Op1);
1913 Value *Sub = Builder.CreateSub(F0, Op1);
1914 return SelectInst::Create(Cmp, F0, Sub);
1915 }
1916
1917 // If the divisor is a sext of a boolean, then the divisor must be max
1918 // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
1919 // max unsigned value. In that case, the remainder is 0:
1920 // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
1921 Value *X;
1922 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1923 Value *FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
1924 Value *Cmp =
1925 Builder.CreateICmpEQ(FrozenOp0, ConstantInt::getAllOnesValue(Ty));
1926 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
1927 }
1928
1929 // For "(X + 1) % Op1" and if (X u< Op1) => (X + 1) == Op1 ? 0 : X + 1 .
1930 if (match(Op0, m_Add(m_Value(X), m_One()))) {
1931 Value *Val =
1932 simplifyICmpInst(ICmpInst::ICMP_ULT, X, Op1, SQ.getWithInstruction(&I));
1933 if (Val && match(Val, m_One())) {
1934 Value *FrozenOp0 = Builder.CreateFreeze(Op0, Op0->getName() + ".frozen");
1935 Value *Cmp = Builder.CreateICmpEQ(FrozenOp0, Op1);
1936 return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), FrozenOp0);
1937 }
1938 }
1939
1940 return nullptr;
1941}
1942
1943Instruction *InstCombinerImpl::visitSRem(BinaryOperator &I) {
1944 if (Value *V = simplifySRemInst(I.getOperand(0), I.getOperand(1),
1945 SQ.getWithInstruction(&I)))
1946 return replaceInstUsesWith(I, V);
1947
1948 if (Instruction *X = foldVectorBinop(I))
1949 return X;
1950
1951 // Handle the integer rem common cases
1952 if (Instruction *Common = commonIRemTransforms(I))
1953 return Common;
1954
1955 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1956 {
1957 const APInt *Y;
1958 // X % -Y -> X % Y
1959 if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue())
1960 return replaceOperand(I, 1, ConstantInt::get(I.getType(), -*Y));
1961 }
1962
1963 // -X srem Y --> -(X srem Y)
1964 Value *X, *Y;
1965 if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
1966 return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
1967
1968 // If the sign bits of both operands are zero (i.e. we can prove they are
1969 // unsigned inputs), turn this into a urem.
1970 APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
1971 if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
1972 MaskedValueIsZero(Op0, Mask, 0, &I)) {
1973 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
1974 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
1975 }
1976
1977 // If it's a constant vector, flip any negative values positive.
1978 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
1979 Constant *C = cast<Constant>(Op1);
1980 unsigned VWidth = cast<FixedVectorType>(C->getType())->getNumElements();
1981
1982 bool hasNegative = false;
1983 bool hasMissing = false;
1984 for (unsigned i = 0; i != VWidth; ++i) {
1985 Constant *Elt = C->getAggregateElement(i);
1986 if (!Elt) {
1987 hasMissing = true;
1988 break;
1989 }
1990
1991 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
1992 if (RHS->isNegative())
1993 hasNegative = true;
1994 }
1995
1996 if (hasNegative && !hasMissing) {
1997 SmallVector<Constant *, 16> Elts(VWidth);
1998 for (unsigned i = 0; i != VWidth; ++i) {
1999 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
2000 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
2001 if (RHS->isNegative())
2002 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
2003 }
2004 }
2005
2006 Constant *NewRHSV = ConstantVector::get(Elts);
2007 if (NewRHSV != C) // Don't loop on -MININT
2008 return replaceOperand(I, 1, NewRHSV);
2009 }
2010 }
2011
2012 return nullptr;
2013}
2014
2015Instruction *InstCombinerImpl::visitFRem(BinaryOperator &I) {
2016 if (Value *V = simplifyFRemInst(I.getOperand(0), I.getOperand(1),
2017 I.getFastMathFlags(),
2018 SQ.getWithInstruction(&I)))
2019 return replaceInstUsesWith(I, V);
2020
2021 if (Instruction *X = foldVectorBinop(I))
2022 return X;
2023
2024 if (Instruction *Phi = foldBinopWithPhiOperands(I))
2025 return Phi;
2026
2027 return nullptr;
2028}