Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
Warning:line 197, column 7
1st function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name InstCombineShifts.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/InstCombine -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/InstCombine -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp

1//===- InstCombineShifts.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitShl, visitLShr, and visitAShr functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/Analysis/InstructionSimplify.h"
15#include "llvm/IR/IntrinsicInst.h"
16#include "llvm/IR/PatternMatch.h"
17#include "llvm/Transforms/InstCombine/InstCombiner.h"
18using namespace llvm;
19using namespace PatternMatch;
20
21#define DEBUG_TYPE"instcombine" "instcombine"
22
23bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
24 Value *ShAmt1) {
25 // We have two shift amounts from two different shifts. The types of those
26 // shift amounts may not match. If that's the case let's bailout now..
27 if (ShAmt0->getType() != ShAmt1->getType())
28 return false;
29
30 // As input, we have the following pattern:
31 // Sh0 (Sh1 X, Q), K
32 // We want to rewrite that as:
33 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
34 // While we know that originally (Q+K) would not overflow
35 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
36 // shift amounts. so it may now overflow in smaller bitwidth.
37 // To ensure that does not happen, we need to ensure that the total maximal
38 // shift amount is still representable in that smaller bit width.
39 unsigned MaximalPossibleTotalShiftAmount =
40 (Sh0->getType()->getScalarSizeInBits() - 1) +
41 (Sh1->getType()->getScalarSizeInBits() - 1);
42 APInt MaximalRepresentableShiftAmount =
43 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits());
44 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
45}
46
47// Given pattern:
48// (x shiftopcode Q) shiftopcode K
49// we should rewrite it as
50// x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
51//
52// This is valid for any shift, but they must be identical, and we must be
53// careful in case we have (zext(Q)+zext(K)) and look past extensions,
54// (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
55//
56// AnalyzeForSignBitExtraction indicates that we will only analyze whether this
57// pattern has any 2 right-shifts that sum to 1 less than original bit width.
58Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
59 BinaryOperator *Sh0, const SimplifyQuery &SQ,
60 bool AnalyzeForSignBitExtraction) {
61 // Look for a shift of some instruction, ignore zext of shift amount if any.
62 Instruction *Sh0Op0;
63 Value *ShAmt0;
64 if (!match(Sh0,
65 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
66 return nullptr;
67
68 // If there is a truncation between the two shifts, we must make note of it
69 // and look through it. The truncation imposes additional constraints on the
70 // transform.
71 Instruction *Sh1;
72 Value *Trunc = nullptr;
73 match(Sh0Op0,
74 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
75 m_Instruction(Sh1)));
76
77 // Inner shift: (x shiftopcode ShAmt1)
78 // Like with other shift, ignore zext of shift amount if any.
79 Value *X, *ShAmt1;
80 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
81 return nullptr;
82
83 // Verify that it would be safe to try to add those two shift amounts.
84 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
85 return nullptr;
86
87 // We are only looking for signbit extraction if we have two right shifts.
88 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
89 match(Sh1, m_Shr(m_Value(), m_Value()));
90 // ... and if it's not two right-shifts, we know the answer already.
91 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
92 return nullptr;
93
94 // The shift opcodes must be identical, unless we are just checking whether
95 // this pattern can be interpreted as a sign-bit-extraction.
96 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
97 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
98 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
99 return nullptr;
100
101 // If we saw truncation, we'll need to produce extra instruction,
102 // and for that one of the operands of the shift must be one-use,
103 // unless of course we don't actually plan to produce any instructions here.
104 if (Trunc && !AnalyzeForSignBitExtraction &&
105 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
106 return nullptr;
107
108 // Can we fold (ShAmt0+ShAmt1) ?
109 auto *NewShAmt = dyn_cast_or_null<Constant>(
110 SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
111 SQ.getWithInstruction(Sh0)));
112 if (!NewShAmt)
113 return nullptr; // Did not simplify.
114 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
115 unsigned XBitWidth = X->getType()->getScalarSizeInBits();
116 // Is the new shift amount smaller than the bit width of inner/new shift?
117 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
118 APInt(NewShAmtBitWidth, XBitWidth))))
119 return nullptr; // FIXME: could perform constant-folding.
120
121 // If there was a truncation, and we have a right-shift, we can only fold if
122 // we are left with the original sign bit. Likewise, if we were just checking
123 // that this is a sighbit extraction, this is the place to check it.
124 // FIXME: zero shift amount is also legal here, but we can't *easily* check
125 // more than one predicate so it's not really worth it.
126 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
127 // If it's not a sign bit extraction, then we're done.
128 if (!match(NewShAmt,
129 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
130 APInt(NewShAmtBitWidth, XBitWidth - 1))))
131 return nullptr;
132 // If it is, and that was the question, return the base value.
133 if (AnalyzeForSignBitExtraction)
134 return X;
135 }
136
137 assert(IdenticalShOpcodes && "Should not get here with different shifts.")(static_cast <bool> (IdenticalShOpcodes && "Should not get here with different shifts."
) ? void (0) : __assert_fail ("IdenticalShOpcodes && \"Should not get here with different shifts.\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 137
, __extension__ __PRETTY_FUNCTION__))
;
138
139 // All good, we can do this fold.
140 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
141
142 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
143
144 // The flags can only be propagated if there wasn't a trunc.
145 if (!Trunc) {
146 // If the pattern did not involve trunc, and both of the original shifts
147 // had the same flag set, preserve the flag.
148 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
149 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
150 Sh1->hasNoUnsignedWrap());
151 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
152 Sh1->hasNoSignedWrap());
153 } else {
154 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
155 }
156 }
157
158 Instruction *Ret = NewShift;
159 if (Trunc) {
160 Builder.Insert(NewShift);
161 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
162 }
163
164 return Ret;
165}
166
167// If we have some pattern that leaves only some low bits set, and then performs
168// left-shift of those bits, if none of the bits that are left after the final
169// shift are modified by the mask, we can omit the mask.
170//
171// There are many variants to this pattern:
172// a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
173// b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
174// c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt
175// d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
176// e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
177// f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
178// All these patterns can be simplified to just:
179// x << ShiftShAmt
180// iff:
181// a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
182// c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
183static Instruction *
184dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
185 const SimplifyQuery &Q,
186 InstCombiner::BuilderTy &Builder) {
187 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&(static_cast <bool> (OuterShift->getOpcode() == Instruction
::BinaryOps::Shl && "The input must be 'shl'!") ? void
(0) : __assert_fail ("OuterShift->getOpcode() == Instruction::BinaryOps::Shl && \"The input must be 'shl'!\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 188
, __extension__ __PRETTY_FUNCTION__))
7
Assuming the condition is true
8
'?' condition is true
188 "The input must be 'shl'!")(static_cast <bool> (OuterShift->getOpcode() == Instruction
::BinaryOps::Shl && "The input must be 'shl'!") ? void
(0) : __assert_fail ("OuterShift->getOpcode() == Instruction::BinaryOps::Shl && \"The input must be 'shl'!\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 188
, __extension__ __PRETTY_FUNCTION__))
;
189
190 Value *Masked, *ShiftShAmt;
9
'Masked' declared without an initial value
191 match(OuterShift,
18
Calling 'match<llvm::BinaryOperator, llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>, llvm::PatternMatch::is_shift_op>>'
20
Returning from 'match<llvm::BinaryOperator, llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>, llvm::PatternMatch::is_shift_op>>'
192 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
10
Calling 'm_Value'
14
Returning from 'm_Value'
15
Calling 'm_Shift<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>>'
17
Returning from 'm_Shift<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>>'
193
194 // *If* there is a truncation between an outer shift and a possibly-mask,
195 // then said truncation *must* be one-use, else we can't perform the fold.
196 Value *Trunc;
197 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
21
Calling 'm_Value'
25
Returning from 'm_Value'
26
Calling 'm_Trunc<llvm::PatternMatch::bind_ty<llvm::Value>>'
28
Returning from 'm_Trunc<llvm::PatternMatch::bind_ty<llvm::Value>>'
29
Calling 'm_CombineAnd<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 38>, llvm::PatternMatch::bind_ty<llvm::Value>>'
31
Returning from 'm_CombineAnd<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 38>, llvm::PatternMatch::bind_ty<llvm::Value>>'
32
1st function call argument is an uninitialized value
198 !Trunc->hasOneUse())
199 return nullptr;
200
201 Type *NarrowestTy = OuterShift->getType();
202 Type *WidestTy = Masked->getType();
203 bool HadTrunc = WidestTy != NarrowestTy;
204
205 // The mask must be computed in a type twice as wide to ensure
206 // that no bits are lost if the sum-of-shifts is wider than the base type.
207 Type *ExtendedTy = WidestTy->getExtendedType();
208
209 Value *MaskShAmt;
210
211 // ((1 << MaskShAmt) - 1)
212 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
213 // (~(-1 << maskNbits))
214 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
215 // (-1 l>> MaskShAmt)
216 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
217 // ((-1 << MaskShAmt) l>> MaskShAmt)
218 auto MaskD =
219 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
220
221 Value *X;
222 Constant *NewMask;
223
224 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
225 // Peek through an optional zext of the shift amount.
226 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
227
228 // Verify that it would be safe to try to add those two shift amounts.
229 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
230 MaskShAmt))
231 return nullptr;
232
233 // Can we simplify (MaskShAmt+ShiftShAmt) ?
234 auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
235 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
236 if (!SumOfShAmts)
237 return nullptr; // Did not simplify.
238 // In this pattern SumOfShAmts correlates with the number of low bits
239 // that shall remain in the root value (OuterShift).
240
241 // An extend of an undef value becomes zero because the high bits are never
242 // completely unknown. Replace the `undef` shift amounts with final
243 // shift bitwidth to ensure that the value remains undef when creating the
244 // subsequent shift op.
245 SumOfShAmts = Constant::replaceUndefsWith(
246 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
247 ExtendedTy->getScalarSizeInBits()));
248 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
249 // And compute the mask as usual: ~(-1 << (SumOfShAmts))
250 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
251 auto *ExtendedInvertedMask =
252 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
253 NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
254 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
255 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
256 m_Deferred(MaskShAmt)))) {
257 // Peek through an optional zext of the shift amount.
258 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
259
260 // Verify that it would be safe to try to add those two shift amounts.
261 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
262 MaskShAmt))
263 return nullptr;
264
265 // Can we simplify (ShiftShAmt-MaskShAmt) ?
266 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
267 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
268 if (!ShAmtsDiff)
269 return nullptr; // Did not simplify.
270 // In this pattern ShAmtsDiff correlates with the number of high bits that
271 // shall be unset in the root value (OuterShift).
272
273 // An extend of an undef value becomes zero because the high bits are never
274 // completely unknown. Replace the `undef` shift amounts with negated
275 // bitwidth of innermost shift to ensure that the value remains undef when
276 // creating the subsequent shift op.
277 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
278 ShAmtsDiff = Constant::replaceUndefsWith(
279 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
280 -WidestTyBitWidth));
281 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
282 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
283 WidestTyBitWidth,
284 /*isSigned=*/false),
285 ShAmtsDiff),
286 ExtendedTy);
287 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
288 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
289 NewMask =
290 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
291 } else
292 return nullptr; // Don't know anything about this pattern.
293
294 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
295
296 // Does this mask has any unset bits? If not then we can just not apply it.
297 bool NeedMask = !match(NewMask, m_AllOnes());
298
299 // If we need to apply a mask, there are several more restrictions we have.
300 if (NeedMask) {
301 // The old masking instruction must go away.
302 if (!Masked->hasOneUse())
303 return nullptr;
304 // The original "masking" instruction must not have been`ashr`.
305 if (match(Masked, m_AShr(m_Value(), m_Value())))
306 return nullptr;
307 }
308
309 // If we need to apply truncation, let's do it first, since we can.
310 // We have already ensured that the old truncation will go away.
311 if (HadTrunc)
312 X = Builder.CreateTrunc(X, NarrowestTy);
313
314 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
315 // We didn't change the Type of this outermost shift, so we can just do it.
316 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
317 OuterShift->getOperand(1));
318 if (!NeedMask)
319 return NewShift;
320
321 Builder.Insert(NewShift);
322 return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
323}
324
325/// If we have a shift-by-constant of a bitwise logic op that itself has a
326/// shift-by-constant operand with identical opcode, we may be able to convert
327/// that into 2 independent shifts followed by the logic op. This eliminates a
328/// a use of an intermediate value (reduces dependency chain).
329static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
330 InstCombiner::BuilderTy &Builder) {
331 assert(I.isShift() && "Expected a shift as input")(static_cast <bool> (I.isShift() && "Expected a shift as input"
) ? void (0) : __assert_fail ("I.isShift() && \"Expected a shift as input\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 331
, __extension__ __PRETTY_FUNCTION__))
;
332 auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
333 if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
334 return nullptr;
335
336 Constant *C0, *C1;
337 if (!match(I.getOperand(1), m_Constant(C1)))
338 return nullptr;
339
340 Instruction::BinaryOps ShiftOpcode = I.getOpcode();
341 Type *Ty = I.getType();
342
343 // Find a matching one-use shift by constant. The fold is not valid if the sum
344 // of the shift values equals or exceeds bitwidth.
345 // TODO: Remove the one-use check if the other logic operand (Y) is constant.
346 Value *X, *Y;
347 auto matchFirstShift = [&](Value *V) {
348 APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits());
349 return match(V, m_BinOp(ShiftOpcode, m_Value(), m_Value())) &&
350 match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) &&
351 match(ConstantExpr::getAdd(C0, C1),
352 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
353 };
354
355 // Logic ops are commutative, so check each operand for a match.
356 if (matchFirstShift(LogicInst->getOperand(0)))
357 Y = LogicInst->getOperand(1);
358 else if (matchFirstShift(LogicInst->getOperand(1)))
359 Y = LogicInst->getOperand(0);
360 else
361 return nullptr;
362
363 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
364 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
365 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
366 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
367 return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
368}
369
370Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
371 if (Instruction *Phi = foldBinopWithPhiOperands(I))
372 return Phi;
373
374 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
375 assert(Op0->getType() == Op1->getType())(static_cast <bool> (Op0->getType() == Op1->getType
()) ? void (0) : __assert_fail ("Op0->getType() == Op1->getType()"
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 375
, __extension__ __PRETTY_FUNCTION__))
;
376
377 // If the shift amount is a one-use `sext`, we can demote it to `zext`.
378 Value *Y;
379 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
380 Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
381 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
382 }
383
384 // See if we can fold away this shift.
385 if (SimplifyDemandedInstructionBits(I))
386 return &I;
387
388 // Try to fold constant and into select arguments.
389 if (isa<Constant>(Op0))
390 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
391 if (Instruction *R = FoldOpIntoSelect(I, SI))
392 return R;
393
394 if (Constant *CUI = dyn_cast<Constant>(Op1))
395 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
396 return Res;
397
398 if (auto *NewShift = cast_or_null<Instruction>(
399 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
400 return NewShift;
401
402 // C0 shift (A add C) -> (C0 shift C) shift A
403 // iff A and C2 are both positive or the add has 'nuw'.
404 Value *A;
405 Constant *C;
406 if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
407 if (cast<BinaryOperator>(Op1)->hasNoUnsignedWrap() ||
408 (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
409 isKnownNonNegative(C, DL, 0, &AC, &I, &DT)))
410 return BinaryOperator::Create(
411 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
412
413 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
414 // Because shifts by negative values (which could occur if A were negative)
415 // are undefined.
416 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
417 match(C, m_Power2())) {
418 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
419 // demand the sign bit (and many others) here??
420 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(I.getType(), 1));
421 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
422 return replaceOperand(I, 1, Rem);
423 }
424
425 if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
426 return Logic;
427
428 return nullptr;
429}
430
431/// Return true if we can simplify two logical (either left or right) shifts
432/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
433static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
434 Instruction *InnerShift,
435 InstCombinerImpl &IC, Instruction *CxtI) {
436 assert(InnerShift->isLogicalShift() && "Unexpected instruction type")(static_cast <bool> (InnerShift->isLogicalShift() &&
"Unexpected instruction type") ? void (0) : __assert_fail ("InnerShift->isLogicalShift() && \"Unexpected instruction type\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 436
, __extension__ __PRETTY_FUNCTION__))
;
437
438 // We need constant scalar or constant splat shifts.
439 const APInt *InnerShiftConst;
440 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
441 return false;
442
443 // Two logical shifts in the same direction:
444 // shl (shl X, C1), C2 --> shl X, C1 + C2
445 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
446 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
447 if (IsInnerShl == IsOuterShl)
448 return true;
449
450 // Equal shift amounts in opposite directions become bitwise 'and':
451 // lshr (shl X, C), C --> and X, C'
452 // shl (lshr X, C), C --> and X, C'
453 if (*InnerShiftConst == OuterShAmt)
454 return true;
455
456 // If the 2nd shift is bigger than the 1st, we can fold:
457 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
458 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
459 // but it isn't profitable unless we know the and'd out bits are already zero.
460 // Also, check that the inner shift is valid (less than the type width) or
461 // we'll crash trying to produce the bit mask for the 'and'.
462 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
463 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
464 unsigned InnerShAmt = InnerShiftConst->getZExtValue();
465 unsigned MaskShift =
466 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
467 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
468 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
469 return true;
470 }
471
472 return false;
473}
474
475/// See if we can compute the specified value, but shifted logically to the left
476/// or right by some number of bits. This should return true if the expression
477/// can be computed for the same cost as the current expression tree. This is
478/// used to eliminate extraneous shifting from things like:
479/// %C = shl i128 %A, 64
480/// %D = shl i128 %B, 96
481/// %E = or i128 %C, %D
482/// %F = lshr i128 %E, 64
483/// where the client will ask if E can be computed shifted right by 64-bits. If
484/// this succeeds, getShiftedValue() will be called to produce the value.
485static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
486 InstCombinerImpl &IC, Instruction *CxtI) {
487 // We can always evaluate constants shifted.
488 if (isa<Constant>(V))
489 return true;
490
491 Instruction *I = dyn_cast<Instruction>(V);
492 if (!I) return false;
493
494 // We can't mutate something that has multiple uses: doing so would
495 // require duplicating the instruction in general, which isn't profitable.
496 if (!I->hasOneUse()) return false;
497
498 switch (I->getOpcode()) {
499 default: return false;
500 case Instruction::And:
501 case Instruction::Or:
502 case Instruction::Xor:
503 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
504 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
505 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
506
507 case Instruction::Shl:
508 case Instruction::LShr:
509 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
510
511 case Instruction::Select: {
512 SelectInst *SI = cast<SelectInst>(I);
513 Value *TrueVal = SI->getTrueValue();
514 Value *FalseVal = SI->getFalseValue();
515 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
516 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
517 }
518 case Instruction::PHI: {
519 // We can change a phi if we can change all operands. Note that we never
520 // get into trouble with cyclic PHIs here because we only consider
521 // instructions with a single use.
522 PHINode *PN = cast<PHINode>(I);
523 for (Value *IncValue : PN->incoming_values())
524 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
525 return false;
526 return true;
527 }
528 }
529}
530
531/// Fold OuterShift (InnerShift X, C1), C2.
532/// See canEvaluateShiftedShift() for the constraints on these instructions.
533static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
534 bool IsOuterShl,
535 InstCombiner::BuilderTy &Builder) {
536 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
537 Type *ShType = InnerShift->getType();
538 unsigned TypeWidth = ShType->getScalarSizeInBits();
539
540 // We only accept shifts-by-a-constant in canEvaluateShifted().
541 const APInt *C1;
542 match(InnerShift->getOperand(1), m_APInt(C1));
543 unsigned InnerShAmt = C1->getZExtValue();
544
545 // Change the shift amount and clear the appropriate IR flags.
546 auto NewInnerShift = [&](unsigned ShAmt) {
547 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
548 if (IsInnerShl) {
549 InnerShift->setHasNoUnsignedWrap(false);
550 InnerShift->setHasNoSignedWrap(false);
551 } else {
552 InnerShift->setIsExact(false);
553 }
554 return InnerShift;
555 };
556
557 // Two logical shifts in the same direction:
558 // shl (shl X, C1), C2 --> shl X, C1 + C2
559 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
560 if (IsInnerShl == IsOuterShl) {
561 // If this is an oversized composite shift, then unsigned shifts get 0.
562 if (InnerShAmt + OuterShAmt >= TypeWidth)
563 return Constant::getNullValue(ShType);
564
565 return NewInnerShift(InnerShAmt + OuterShAmt);
566 }
567
568 // Equal shift amounts in opposite directions become bitwise 'and':
569 // lshr (shl X, C), C --> and X, C'
570 // shl (lshr X, C), C --> and X, C'
571 if (InnerShAmt == OuterShAmt) {
572 APInt Mask = IsInnerShl
573 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
574 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
575 Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
576 ConstantInt::get(ShType, Mask));
577 if (auto *AndI = dyn_cast<Instruction>(And)) {
578 AndI->moveBefore(InnerShift);
579 AndI->takeName(InnerShift);
580 }
581 return And;
582 }
583
584 assert(InnerShAmt > OuterShAmt &&(static_cast <bool> (InnerShAmt > OuterShAmt &&
"Unexpected opposite direction logical shift pair") ? void (
0) : __assert_fail ("InnerShAmt > OuterShAmt && \"Unexpected opposite direction logical shift pair\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 585
, __extension__ __PRETTY_FUNCTION__))
585 "Unexpected opposite direction logical shift pair")(static_cast <bool> (InnerShAmt > OuterShAmt &&
"Unexpected opposite direction logical shift pair") ? void (
0) : __assert_fail ("InnerShAmt > OuterShAmt && \"Unexpected opposite direction logical shift pair\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 585
, __extension__ __PRETTY_FUNCTION__))
;
586
587 // In general, we would need an 'and' for this transform, but
588 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
589 // lshr (shl X, C1), C2 --> shl X, C1 - C2
590 // shl (lshr X, C1), C2 --> lshr X, C1 - C2
591 return NewInnerShift(InnerShAmt - OuterShAmt);
592}
593
594/// When canEvaluateShifted() returns true for an expression, this function
595/// inserts the new computation that produces the shifted value.
596static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
597 InstCombinerImpl &IC, const DataLayout &DL) {
598 // We can always evaluate constants shifted.
599 if (Constant *C = dyn_cast<Constant>(V)) {
600 if (isLeftShift)
601 return IC.Builder.CreateShl(C, NumBits);
602 else
603 return IC.Builder.CreateLShr(C, NumBits);
604 }
605
606 Instruction *I = cast<Instruction>(V);
607 IC.addToWorklist(I);
608
609 switch (I->getOpcode()) {
610 default: llvm_unreachable("Inconsistency with CanEvaluateShifted")::llvm::llvm_unreachable_internal("Inconsistency with CanEvaluateShifted"
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 610
)
;
611 case Instruction::And:
612 case Instruction::Or:
613 case Instruction::Xor:
614 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
615 I->setOperand(
616 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
617 I->setOperand(
618 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
619 return I;
620
621 case Instruction::Shl:
622 case Instruction::LShr:
623 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
624 IC.Builder);
625
626 case Instruction::Select:
627 I->setOperand(
628 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
629 I->setOperand(
630 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
631 return I;
632 case Instruction::PHI: {
633 // We can change a phi if we can change all operands. Note that we never
634 // get into trouble with cyclic PHIs here because we only consider
635 // instructions with a single use.
636 PHINode *PN = cast<PHINode>(I);
637 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
638 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
639 isLeftShift, IC, DL));
640 return PN;
641 }
642 }
643}
644
645// If this is a bitwise operator or add with a constant RHS we might be able
646// to pull it through a shift.
647static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
648 BinaryOperator *BO) {
649 switch (BO->getOpcode()) {
650 default:
651 return false; // Do not perform transform!
652 case Instruction::Add:
653 return Shift.getOpcode() == Instruction::Shl;
654 case Instruction::Or:
655 case Instruction::And:
656 return true;
657 case Instruction::Xor:
658 // Do not change a 'not' of logical shift because that would create a normal
659 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
660 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
661 }
662}
663
664Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *Op1,
665 BinaryOperator &I) {
666 const APInt *Op1C;
667 if (!match(Op1, m_APInt(Op1C)))
668 return nullptr;
669
670 // See if we can propagate this shift into the input, this covers the trivial
671 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
672 bool IsLeftShift = I.getOpcode() == Instruction::Shl;
673 if (I.getOpcode() != Instruction::AShr &&
674 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
675 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: "
<< I << "\n"; } } while (false)
676 dbgs() << "ICE: GetShiftedValue propagating shift through expression"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: "
<< I << "\n"; } } while (false)
677 " to eliminate shift:\n IN: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: "
<< I << "\n"; } } while (false)
678 << *Op0 << "\n SH: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: "
<< I << "\n"; } } while (false)
;
679
680 return replaceInstUsesWith(
681 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
682 }
683
684 // See if we can simplify any instructions used by the instruction whose sole
685 // purpose is to compute bits we don't care about.
686 Type *Ty = I.getType();
687 unsigned TypeBits = Ty->getScalarSizeInBits();
688 assert(!Op1C->uge(TypeBits) &&(static_cast <bool> (!Op1C->uge(TypeBits) &&
"Shift over the type width should have been removed already"
) ? void (0) : __assert_fail ("!Op1C->uge(TypeBits) && \"Shift over the type width should have been removed already\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 689
, __extension__ __PRETTY_FUNCTION__))
689 "Shift over the type width should have been removed already")(static_cast <bool> (!Op1C->uge(TypeBits) &&
"Shift over the type width should have been removed already"
) ? void (0) : __assert_fail ("!Op1C->uge(TypeBits) && \"Shift over the type width should have been removed already\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 689
, __extension__ __PRETTY_FUNCTION__))
;
690 (void)TypeBits;
691
692 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
693 return FoldedShift;
694
695 if (!Op0->hasOneUse())
696 return nullptr;
697
698 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
699 // If the operand is a bitwise operator with a constant RHS, and the
700 // shift is the only use, we can pull it out of the shift.
701 const APInt *Op0C;
702 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
703 if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
704 Constant *NewRHS = ConstantExpr::get(
705 I.getOpcode(), cast<Constant>(Op0BO->getOperand(1)), Op1);
706
707 Value *NewShift =
708 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
709 NewShift->takeName(Op0BO);
710
711 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
712 }
713 }
714 }
715
716 // If we have a select that conditionally executes some binary operator,
717 // see if we can pull it the select and operator through the shift.
718 //
719 // For example, turning:
720 // shl (select C, (add X, C1), X), C2
721 // Into:
722 // Y = shl X, C2
723 // select C, (add Y, C1 << C2), Y
724 Value *Cond;
725 BinaryOperator *TBO;
726 Value *FalseVal;
727 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
728 m_Value(FalseVal)))) {
729 const APInt *C;
730 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
731 match(TBO->getOperand(1), m_APInt(C)) &&
732 canShiftBinOpWithConstantRHS(I, TBO)) {
733 Constant *NewRHS = ConstantExpr::get(
734 I.getOpcode(), cast<Constant>(TBO->getOperand(1)), Op1);
735
736 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
737 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
738 return SelectInst::Create(Cond, NewOp, NewShift);
739 }
740 }
741
742 BinaryOperator *FBO;
743 Value *TrueVal;
744 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
745 m_OneUse(m_BinOp(FBO))))) {
746 const APInt *C;
747 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
748 match(FBO->getOperand(1), m_APInt(C)) &&
749 canShiftBinOpWithConstantRHS(I, FBO)) {
750 Constant *NewRHS = ConstantExpr::get(
751 I.getOpcode(), cast<Constant>(FBO->getOperand(1)), Op1);
752
753 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
754 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
755 return SelectInst::Create(Cond, NewShift, NewOp);
756 }
757 }
758
759 return nullptr;
760}
761
762Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
763 const SimplifyQuery Q = SQ.getWithInstruction(&I);
764
765 if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
1
Assuming 'V' is null
2
Taking false branch
766 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
767 return replaceInstUsesWith(I, V);
768
769 if (Instruction *X = foldVectorBinop(I))
3
Assuming 'X' is null
4
Taking false branch
770 return X;
771
772 if (Instruction *V
4.1
'V' is null
4.1
'V' is null
= commonShiftTransforms(I))
5
Taking false branch
773 return V;
774
775 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
6
Calling 'dropRedundantMaskingOfLeftShiftInput'
776 return V;
777
778 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
779 Type *Ty = I.getType();
780 unsigned BitWidth = Ty->getScalarSizeInBits();
781
782 const APInt *C;
783 if (match(Op1, m_APInt(C))) {
784 unsigned ShAmtC = C->getZExtValue();
785
786 // shl (zext X), C --> zext (shl X, C)
787 // This is only valid if X would have zeros shifted out.
788 Value *X;
789 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
790 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
791 if (ShAmtC < SrcWidth &&
792 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I))
793 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
794 }
795
796 // (X >> C) << C --> X & (-1 << C)
797 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
798 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
799 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
800 }
801
802 const APInt *C1;
803 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
804 C1->ult(BitWidth)) {
805 unsigned ShrAmt = C1->getZExtValue();
806 if (ShrAmt < ShAmtC) {
807 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
808 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
809 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
810 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
811 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
812 return NewShl;
813 }
814 if (ShrAmt > ShAmtC) {
815 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
816 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
817 auto *NewShr = BinaryOperator::Create(
818 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
819 NewShr->setIsExact(true);
820 return NewShr;
821 }
822 }
823
824 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
825 C1->ult(BitWidth)) {
826 unsigned ShrAmt = C1->getZExtValue();
827 if (ShrAmt < ShAmtC) {
828 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
829 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
830 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
831 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
832 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
833 Builder.Insert(NewShl);
834 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
835 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
836 }
837 if (ShrAmt > ShAmtC) {
838 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
839 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
840 auto *OldShr = cast<BinaryOperator>(Op0);
841 auto *NewShr =
842 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
843 NewShr->setIsExact(OldShr->isExact());
844 Builder.Insert(NewShr);
845 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
846 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
847 }
848 }
849
850 // Similar to above, but look through an intermediate trunc instruction.
851 BinaryOperator *Shr;
852 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
853 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
854 // The larger shift direction survives through the transform.
855 unsigned ShrAmtC = C1->getZExtValue();
856 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
857 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
858 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
859
860 // If C1 > C:
861 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
862 // If C > C1:
863 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
864 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
865 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
866 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
867 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
868 }
869
870 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
871 unsigned AmtSum = ShAmtC + C1->getZExtValue();
872 // Oversized shifts are simplified to zero in InstSimplify.
873 if (AmtSum < BitWidth)
874 // (X << C1) << C2 --> X << (C1 + C2)
875 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
876 }
877
878 // If we have an opposite shift by the same amount, we may be able to
879 // reorder binops and shifts to eliminate math/logic.
880 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
881 switch (BinOpcode) {
882 default:
883 return false;
884 case Instruction::Add:
885 case Instruction::And:
886 case Instruction::Or:
887 case Instruction::Xor:
888 case Instruction::Sub:
889 // NOTE: Sub is not commutable and the tranforms below may not be valid
890 // when the shift-right is operand 1 (RHS) of the sub.
891 return true;
892 }
893 };
894 BinaryOperator *Op0BO;
895 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
896 isSuitableBinOpcode(Op0BO->getOpcode())) {
897 // Commute so shift-right is on LHS of the binop.
898 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C
899 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C
900 Value *Shr = Op0BO->getOperand(0);
901 Value *Y = Op0BO->getOperand(1);
902 Value *X;
903 const APInt *CC;
904 if (Op0BO->isCommutative() && Y->hasOneUse() &&
905 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
906 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))),
907 m_APInt(CC)))))
908 std::swap(Shr, Y);
909
910 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C)
911 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
912 // Y << C
913 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
914 // (X bop (Y << C))
915 Value *B =
916 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
917 unsigned Op1Val = C->getLimitedValue(BitWidth);
918 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
919 Constant *Mask = ConstantInt::get(Ty, Bits);
920 return BinaryOperator::CreateAnd(B, Mask);
921 }
922
923 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C)
924 if (match(Shr,
925 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))),
926 m_APInt(CC))))) {
927 // Y << C
928 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
929 // X & (CC << C)
930 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
931 X->getName() + ".mask");
932 return BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
933 }
934 }
935
936 // (C1 - X) << C --> (C1 << C) - (X << C)
937 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
938 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
939 Value *NewShift = Builder.CreateShl(X, Op1);
940 return BinaryOperator::CreateSub(NewLHS, NewShift);
941 }
942
943 // If the shifted-out value is known-zero, then this is a NUW shift.
944 if (!I.hasNoUnsignedWrap() &&
945 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0,
946 &I)) {
947 I.setHasNoUnsignedWrap();
948 return &I;
949 }
950
951 // If the shifted-out value is all signbits, then this is a NSW shift.
952 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) {
953 I.setHasNoSignedWrap();
954 return &I;
955 }
956 }
957
958 // Transform (x >> y) << y to x & (-1 << y)
959 // Valid for any type of right-shift.
960 Value *X;
961 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
962 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
963 Value *Mask = Builder.CreateShl(AllOnes, Op1);
964 return BinaryOperator::CreateAnd(Mask, X);
965 }
966
967 Constant *C1;
968 if (match(Op1, m_Constant(C1))) {
969 Constant *C2;
970 Value *X;
971 // (C2 << X) << C1 --> (C2 << C1) << X
972 if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
973 return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
974
975 // (X * C2) << C1 --> X * (C2 << C1)
976 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
977 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
978
979 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
980 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
981 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
982 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
983 }
984 }
985
986 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
987 if (match(Op0, m_One()) &&
988 match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
989 return BinaryOperator::CreateLShr(
990 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
991
992 return nullptr;
993}
994
995Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
996 if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
997 SQ.getWithInstruction(&I)))
998 return replaceInstUsesWith(I, V);
999
1000 if (Instruction *X = foldVectorBinop(I))
1001 return X;
1002
1003 if (Instruction *R = commonShiftTransforms(I))
1004 return R;
1005
1006 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1007 Type *Ty = I.getType();
1008 const APInt *C;
1009 if (match(Op1, m_APInt(C))) {
1010 unsigned ShAmtC = C->getZExtValue();
1011 unsigned BitWidth = Ty->getScalarSizeInBits();
1012 auto *II = dyn_cast<IntrinsicInst>(Op0);
1013 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
1014 (II->getIntrinsicID() == Intrinsic::ctlz ||
1015 II->getIntrinsicID() == Intrinsic::cttz ||
1016 II->getIntrinsicID() == Intrinsic::ctpop)) {
1017 // ctlz.i32(x)>>5 --> zext(x == 0)
1018 // cttz.i32(x)>>5 --> zext(x == 0)
1019 // ctpop.i32(x)>>5 --> zext(x == -1)
1020 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1021 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1022 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1023 return new ZExtInst(Cmp, Ty);
1024 }
1025
1026 Value *X;
1027 const APInt *C1;
1028 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1029 if (C1->ult(ShAmtC)) {
1030 unsigned ShlAmtC = C1->getZExtValue();
1031 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1032 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1033 // (X <<nuw C1) >>u C --> X >>u (C - C1)
1034 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1035 NewLShr->setIsExact(I.isExact());
1036 return NewLShr;
1037 }
1038 if (Op0->hasOneUse()) {
1039 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C)
1040 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1041 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1042 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1043 }
1044 } else if (C1->ugt(ShAmtC)) {
1045 unsigned ShlAmtC = C1->getZExtValue();
1046 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1047 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1048 // (X <<nuw C1) >>u C --> X <<nuw (C1 - C)
1049 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1050 NewShl->setHasNoUnsignedWrap(true);
1051 return NewShl;
1052 }
1053 if (Op0->hasOneUse()) {
1054 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C)
1055 Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1056 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1057 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1058 }
1059 } else {
1060 assert(*C1 == ShAmtC)(static_cast <bool> (*C1 == ShAmtC) ? void (0) : __assert_fail
("*C1 == ShAmtC", "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp"
, 1060, __extension__ __PRETTY_FUNCTION__))
;
1061 // (X << C) >>u C --> X & (-1 >>u C)
1062 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1063 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1064 }
1065 }
1066
1067 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
1068 // TODO: Consolidate with the more general transform that starts from shl
1069 // (the shifts are in the opposite order).
1070 Value *Y;
1071 if (match(Op0,
1072 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))),
1073 m_Value(Y))))) {
1074 Value *NewLshr = Builder.CreateLShr(Y, Op1);
1075 Value *NewAdd = Builder.CreateAdd(NewLshr, X);
1076 unsigned Op1Val = C->getLimitedValue(BitWidth);
1077 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val);
1078 Constant *Mask = ConstantInt::get(Ty, Bits);
1079 return BinaryOperator::CreateAnd(NewAdd, Mask);
1080 }
1081
1082 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1083 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1084 assert(ShAmtC < X->getType()->getScalarSizeInBits() &&(static_cast <bool> (ShAmtC < X->getType()->getScalarSizeInBits
() && "Big shift not simplified to zero?") ? void (0)
: __assert_fail ("ShAmtC < X->getType()->getScalarSizeInBits() && \"Big shift not simplified to zero?\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 1085
, __extension__ __PRETTY_FUNCTION__))
1085 "Big shift not simplified to zero?")(static_cast <bool> (ShAmtC < X->getType()->getScalarSizeInBits
() && "Big shift not simplified to zero?") ? void (0)
: __assert_fail ("ShAmtC < X->getType()->getScalarSizeInBits() && \"Big shift not simplified to zero?\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 1085
, __extension__ __PRETTY_FUNCTION__))
;
1086 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1087 Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
1088 return new ZExtInst(NewLShr, Ty);
1089 }
1090
1091 if (match(Op0, m_SExt(m_Value(X)))) {
1092 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1093 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
1094 if (SrcTyBitWidth == 1) {
1095 auto *NewC = ConstantInt::get(
1096 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1097 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1098 }
1099
1100 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
1101 Op0->hasOneUse()) {
1102 // Are we moving the sign bit to the low bit and widening with high
1103 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1104 if (ShAmtC == BitWidth - 1) {
1105 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1106 return new ZExtInst(NewLShr, Ty);
1107 }
1108
1109 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1110 if (ShAmtC == BitWidth - SrcTyBitWidth) {
1111 // The new shift amount can't be more than the narrow source type.
1112 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1113 Value *AShr = Builder.CreateAShr(X, NewShAmt);
1114 return new ZExtInst(AShr, Ty);
1115 }
1116 }
1117 }
1118
1119 if (ShAmtC == BitWidth - 1) {
1120 // lshr i32 or(X,-X), 31 --> zext (X != 0)
1121 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1122 return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
1123
1124 // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1125 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1126 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1127
1128 // Check if a number is negative and odd:
1129 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
1130 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
1131 Value *Signbit = Builder.CreateLShr(X, ShAmtC);
1132 return BinaryOperator::CreateAnd(Signbit, X);
1133 }
1134 }
1135
1136 // (X >>u C1) >>u C --> X >>u (C1 + C)
1137 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) {
1138 // Oversized shifts are simplified to zero in InstSimplify.
1139 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1140 if (AmtSum < BitWidth)
1141 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1142 }
1143
1144 Instruction *TruncSrc;
1145 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
1146 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
1147 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1148 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1149
1150 // If the combined shift fits in the source width:
1151 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
1152 //
1153 // If the first shift covers the number of bits truncated, then the
1154 // mask instruction is eliminated (and so the use check is relaxed).
1155 if (AmtSum < SrcWidth &&
1156 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
1157 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
1158 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
1159
1160 // If the first shift does not cover the number of bits truncated, then
1161 // we require a mask to get rid of high bits in the result.
1162 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
1163 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1164 }
1165 }
1166
1167 // Look for a "splat" mul pattern - it replicates bits across each half of
1168 // a value, so a right shift is just a mask of the low bits:
1169 // lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
1170 // TODO: Generalize to allow more than just half-width shifts?
1171 const APInt *MulC;
1172 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC))) &&
1173 BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
1174 MulC->logBase2() == ShAmtC)
1175 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
1176
1177 // Try to narrow a bswap:
1178 // (bswap (zext X)) >> C --> zext (bswap X >> C')
1179 // In the case where the shift amount equals the bitwidth difference, the
1180 // shift is eliminated.
1181 if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::bswap>(
1182 m_OneUse(m_ZExt(m_Value(X))))))) {
1183 // TODO: If the shift amount is less than the zext, we could shift left.
1184 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1185 unsigned WidthDiff = BitWidth - SrcWidth;
1186 if (SrcWidth % 16 == 0 && ShAmtC >= WidthDiff) {
1187 Value *NarrowSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1188 Value *NewShift = Builder.CreateLShr(NarrowSwap, ShAmtC - WidthDiff);
1189 return new ZExtInst(NewShift, Ty);
1190 }
1191 }
1192
1193 // If the shifted-out value is known-zero, then this is an exact shift.
1194 if (!I.isExact() &&
1195 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) {
1196 I.setIsExact();
1197 return &I;
1198 }
1199 }
1200
1201 // Transform (x << y) >> y to x & (-1 >> y)
1202 Value *X;
1203 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1204 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1205 Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1206 return BinaryOperator::CreateAnd(Mask, X);
1207 }
1208
1209 return nullptr;
1210}
1211
1212Instruction *
1213InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1214 BinaryOperator &OldAShr) {
1215 assert(OldAShr.getOpcode() == Instruction::AShr &&(static_cast <bool> (OldAShr.getOpcode() == Instruction
::AShr && "Must be called with arithmetic right-shift instruction only."
) ? void (0) : __assert_fail ("OldAShr.getOpcode() == Instruction::AShr && \"Must be called with arithmetic right-shift instruction only.\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 1216
, __extension__ __PRETTY_FUNCTION__))
1216 "Must be called with arithmetic right-shift instruction only.")(static_cast <bool> (OldAShr.getOpcode() == Instruction
::AShr && "Must be called with arithmetic right-shift instruction only."
) ? void (0) : __assert_fail ("OldAShr.getOpcode() == Instruction::AShr && \"Must be called with arithmetic right-shift instruction only.\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 1216
, __extension__ __PRETTY_FUNCTION__))
;
1217
1218 // Check that constant C is a splat of the element-wise bitwidth of V.
1219 auto BitWidthSplat = [](Constant *C, Value *V) {
1220 return match(
1221 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1222 APInt(C->getType()->getScalarSizeInBits(),
1223 V->getType()->getScalarSizeInBits())));
1224 };
1225
1226 // It should look like variable-length sign-extension on the outside:
1227 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1228 Value *NBits;
1229 Instruction *MaybeTrunc;
1230 Constant *C1, *C2;
1231 if (!match(&OldAShr,
1232 m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1233 m_ZExtOrSelf(m_Sub(m_Constant(C1),
1234 m_ZExtOrSelf(m_Value(NBits))))),
1235 m_ZExtOrSelf(m_Sub(m_Constant(C2),
1236 m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1237 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1238 return nullptr;
1239
1240 // There may or may not be a truncation after outer two shifts.
1241 Instruction *HighBitExtract;
1242 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1243 bool HadTrunc = MaybeTrunc != HighBitExtract;
1244
1245 // And finally, the innermost part of the pattern must be a right-shift.
1246 Value *X, *NumLowBitsToSkip;
1247 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1248 return nullptr;
1249
1250 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1251 Constant *C0;
1252 if (!match(NumLowBitsToSkip,
1253 m_ZExtOrSelf(
1254 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1255 !BitWidthSplat(C0, HighBitExtract))
1256 return nullptr;
1257
1258 // Since the NBits is identical for all shifts, if the outermost and
1259 // innermost shifts are identical, then outermost shifts are redundant.
1260 // If we had truncation, do keep it though.
1261 if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1262 return replaceInstUsesWith(OldAShr, MaybeTrunc);
1263
1264 // Else, if there was a truncation, then we need to ensure that one
1265 // instruction will go away.
1266 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1267 return nullptr;
1268
1269 // Finally, bypass two innermost shifts, and perform the outermost shift on
1270 // the operands of the innermost shift.
1271 Instruction *NewAShr =
1272 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1273 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1274 if (!HadTrunc)
1275 return NewAShr;
1276
1277 Builder.Insert(NewAShr);
1278 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1279}
1280
1281Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
1282 if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1283 SQ.getWithInstruction(&I)))
1284 return replaceInstUsesWith(I, V);
1285
1286 if (Instruction *X = foldVectorBinop(I))
1287 return X;
1288
1289 if (Instruction *R = commonShiftTransforms(I))
1290 return R;
1291
1292 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1293 Type *Ty = I.getType();
1294 unsigned BitWidth = Ty->getScalarSizeInBits();
1295 const APInt *ShAmtAPInt;
1296 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1297 unsigned ShAmt = ShAmtAPInt->getZExtValue();
1298
1299 // If the shift amount equals the difference in width of the destination
1300 // and source scalar types:
1301 // ashr (shl (zext X), C), C --> sext X
1302 Value *X;
1303 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1304 ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1305 return new SExtInst(X, Ty);
1306
1307 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1308 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1309 const APInt *ShOp1;
1310 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1311 ShOp1->ult(BitWidth)) {
1312 unsigned ShlAmt = ShOp1->getZExtValue();
1313 if (ShlAmt < ShAmt) {
1314 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1315 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1316 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1317 NewAShr->setIsExact(I.isExact());
1318 return NewAShr;
1319 }
1320 if (ShlAmt > ShAmt) {
1321 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1322 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1323 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1324 NewShl->setHasNoSignedWrap(true);
1325 return NewShl;
1326 }
1327 }
1328
1329 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1330 ShOp1->ult(BitWidth)) {
1331 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1332 // Oversized arithmetic shifts replicate the sign bit.
1333 AmtSum = std::min(AmtSum, BitWidth - 1);
1334 // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1335 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1336 }
1337
1338 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1339 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1340 // ashr (sext X), C --> sext (ashr X, C')
1341 Type *SrcTy = X->getType();
1342 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1343 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1344 return new SExtInst(NewSh, Ty);
1345 }
1346
1347 if (ShAmt == BitWidth - 1) {
1348 // ashr i32 or(X,-X), 31 --> sext (X != 0)
1349 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1350 return new SExtInst(Builder.CreateIsNotNull(X), Ty);
1351
1352 // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1353 Value *Y;
1354 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1355 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1356 }
1357
1358 // If the shifted-out value is known-zero, then this is an exact shift.
1359 if (!I.isExact() &&
1360 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1361 I.setIsExact();
1362 return &I;
1363 }
1364 }
1365
1366 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
1367 // as the pattern to splat the lowest bit.
1368 // FIXME: iff X is already masked, we don't need the one-use check.
1369 Value *X;
1370 if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) &&
1371 match(Op0, m_OneUse(m_Shl(m_Value(X),
1372 m_SpecificIntAllowUndef(BitWidth - 1))))) {
1373 Constant *Mask = ConstantInt::get(Ty, 1);
1374 // Retain the knowledge about the ignored lanes.
1375 Mask = Constant::mergeUndefsWith(
1376 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
1377 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1378 X = Builder.CreateAnd(X, Mask);
1379 return BinaryOperator::CreateNeg(X);
1380 }
1381
1382 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1383 return R;
1384
1385 // See if we can turn a signed shr into an unsigned shr.
1386 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1387 return BinaryOperator::CreateLShr(Op0, Op1);
1388
1389 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1
1390 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
1391 // Note that we must drop 'exact'-ness of the shift!
1392 // Note that we can't keep undef's in -1 vector constant!
1393 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
1394 return BinaryOperator::CreateNot(NewAShr);
1395 }
1396
1397 return nullptr;
1398}

/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include/llvm/IR/PatternMatch.h

1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InstrTypes.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Value.h"
43#include "llvm/Support/Casting.h"
44#include <cstdint>
45
46namespace llvm {
47namespace PatternMatch {
48
49template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
19
Returning without writing to 'P.L.VR'
51}
52
53template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55}
56
57template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65};
66
67template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69}
70
71template <typename Class> struct class_match {
72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73};
74
75/// Match an arbitrary value and ignore it.
76inline class_match<Value> m_Value() { return class_match<Value>(); }
77
78/// Match an arbitrary unary operation and ignore it.
79inline class_match<UnaryOperator> m_UnOp() {
80 return class_match<UnaryOperator>();
81}
82
83/// Match an arbitrary binary operation and ignore it.
84inline class_match<BinaryOperator> m_BinOp() {
85 return class_match<BinaryOperator>();
86}
87
88/// Matches any compare instruction and ignore it.
89inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90
91struct undef_match {
92 static bool check(const Value *V) {
93 if (isa<UndefValue>(V))
94 return true;
95
96 const auto *CA = dyn_cast<ConstantAggregate>(V);
97 if (!CA)
98 return false;
99
100 SmallPtrSet<const ConstantAggregate *, 8> Seen;
101 SmallVector<const ConstantAggregate *, 8> Worklist;
102
103 // Either UndefValue, PoisonValue, or an aggregate that only contains
104 // these is accepted by matcher.
105 // CheckValue returns false if CA cannot satisfy this constraint.
106 auto CheckValue = [&](const ConstantAggregate *CA) {
107 for (const Value *Op : CA->operand_values()) {
108 if (isa<UndefValue>(Op))
109 continue;
110
111 const auto *CA = dyn_cast<ConstantAggregate>(Op);
112 if (!CA)
113 return false;
114 if (Seen.insert(CA).second)
115 Worklist.emplace_back(CA);
116 }
117
118 return true;
119 };
120
121 if (!CheckValue(CA))
122 return false;
123
124 while (!Worklist.empty()) {
125 if (!CheckValue(Worklist.pop_back_val()))
126 return false;
127 }
128 return true;
129 }
130 template <typename ITy> bool match(ITy *V) { return check(V); }
131};
132
133/// Match an arbitrary undef constant. This matches poison as well.
134/// If this is an aggregate and contains a non-aggregate element that is
135/// neither undef nor poison, the aggregate is not matched.
136inline auto m_Undef() { return undef_match(); }
137
138/// Match an arbitrary poison constant.
139inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
140
141/// Match an arbitrary Constant and ignore it.
142inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
143
144/// Match an arbitrary ConstantInt and ignore it.
145inline class_match<ConstantInt> m_ConstantInt() {
146 return class_match<ConstantInt>();
147}
148
149/// Match an arbitrary ConstantFP and ignore it.
150inline class_match<ConstantFP> m_ConstantFP() {
151 return class_match<ConstantFP>();
152}
153
154/// Match an arbitrary ConstantExpr and ignore it.
155inline class_match<ConstantExpr> m_ConstantExpr() {
156 return class_match<ConstantExpr>();
157}
158
159/// Match an arbitrary basic block value and ignore it.
160inline class_match<BasicBlock> m_BasicBlock() {
161 return class_match<BasicBlock>();
162}
163
164/// Inverting matcher
165template <typename Ty> struct match_unless {
166 Ty M;
167
168 match_unless(const Ty &Matcher) : M(Matcher) {}
169
170 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
171};
172
173/// Match if the inner matcher does *NOT* match.
174template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
175 return match_unless<Ty>(M);
176}
177
178/// Matching combinators
179template <typename LTy, typename RTy> struct match_combine_or {
180 LTy L;
181 RTy R;
182
183 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
184
185 template <typename ITy> bool match(ITy *V) {
186 if (L.match(V))
187 return true;
188 if (R.match(V))
189 return true;
190 return false;
191 }
192};
193
194template <typename LTy, typename RTy> struct match_combine_and {
195 LTy L;
196 RTy R;
197
198 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
199
200 template <typename ITy> bool match(ITy *V) {
201 if (L.match(V))
202 if (R.match(V))
203 return true;
204 return false;
205 }
206};
207
208/// Combine two pattern matchers matching L || R
209template <typename LTy, typename RTy>
210inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
211 return match_combine_or<LTy, RTy>(L, R);
212}
213
214/// Combine two pattern matchers matching L && R
215template <typename LTy, typename RTy>
216inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
217 return match_combine_and<LTy, RTy>(L, R);
30
Returning without writing to 'L.Op.VR'
218}
219
220struct apint_match {
221 const APInt *&Res;
222 bool AllowUndef;
223
224 apint_match(const APInt *&Res, bool AllowUndef)
225 : Res(Res), AllowUndef(AllowUndef) {}
226
227 template <typename ITy> bool match(ITy *V) {
228 if (auto *CI = dyn_cast<ConstantInt>(V)) {
229 Res = &CI->getValue();
230 return true;
231 }
232 if (V->getType()->isVectorTy())
233 if (const auto *C = dyn_cast<Constant>(V))
234 if (auto *CI = dyn_cast_or_null<ConstantInt>(
235 C->getSplatValue(AllowUndef))) {
236 Res = &CI->getValue();
237 return true;
238 }
239 return false;
240 }
241};
242// Either constexpr if or renaming ConstantFP::getValueAPF to
243// ConstantFP::getValue is needed to do it via single template
244// function for both apint/apfloat.
245struct apfloat_match {
246 const APFloat *&Res;
247 bool AllowUndef;
248
249 apfloat_match(const APFloat *&Res, bool AllowUndef)
250 : Res(Res), AllowUndef(AllowUndef) {}
251
252 template <typename ITy> bool match(ITy *V) {
253 if (auto *CI = dyn_cast<ConstantFP>(V)) {
254 Res = &CI->getValueAPF();
255 return true;
256 }
257 if (V->getType()->isVectorTy())
258 if (const auto *C = dyn_cast<Constant>(V))
259 if (auto *CI = dyn_cast_or_null<ConstantFP>(
260 C->getSplatValue(AllowUndef))) {
261 Res = &CI->getValueAPF();
262 return true;
263 }
264 return false;
265 }
266};
267
268/// Match a ConstantInt or splatted ConstantVector, binding the
269/// specified pointer to the contained APInt.
270inline apint_match m_APInt(const APInt *&Res) {
271 // Forbid undefs by default to maintain previous behavior.
272 return apint_match(Res, /* AllowUndef */ false);
273}
274
275/// Match APInt while allowing undefs in splat vector constants.
276inline apint_match m_APIntAllowUndef(const APInt *&Res) {
277 return apint_match(Res, /* AllowUndef */ true);
278}
279
280/// Match APInt while forbidding undefs in splat vector constants.
281inline apint_match m_APIntForbidUndef(const APInt *&Res) {
282 return apint_match(Res, /* AllowUndef */ false);
283}
284
285/// Match a ConstantFP or splatted ConstantVector, binding the
286/// specified pointer to the contained APFloat.
287inline apfloat_match m_APFloat(const APFloat *&Res) {
288 // Forbid undefs by default to maintain previous behavior.
289 return apfloat_match(Res, /* AllowUndef */ false);
290}
291
292/// Match APFloat while allowing undefs in splat vector constants.
293inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
294 return apfloat_match(Res, /* AllowUndef */ true);
295}
296
297/// Match APFloat while forbidding undefs in splat vector constants.
298inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
299 return apfloat_match(Res, /* AllowUndef */ false);
300}
301
302template <int64_t Val> struct constantint_match {
303 template <typename ITy> bool match(ITy *V) {
304 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
305 const APInt &CIV = CI->getValue();
306 if (Val >= 0)
307 return CIV == static_cast<uint64_t>(Val);
308 // If Val is negative, and CI is shorter than it, truncate to the right
309 // number of bits. If it is larger, then we have to sign extend. Just
310 // compare their negated values.
311 return -CIV == -Val;
312 }
313 return false;
314 }
315};
316
317/// Match a ConstantInt with a specific value.
318template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
319 return constantint_match<Val>();
320}
321
322/// This helper class is used to match constant scalars, vector splats,
323/// and fixed width vectors that satisfy a specified predicate.
324/// For fixed width vector constants, undefined elements are ignored.
325template <typename Predicate, typename ConstantVal>
326struct cstval_pred_ty : public Predicate {
327 template <typename ITy> bool match(ITy *V) {
328 if (const auto *CV = dyn_cast<ConstantVal>(V))
329 return this->isValue(CV->getValue());
330 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
331 if (const auto *C = dyn_cast<Constant>(V)) {
332 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
333 return this->isValue(CV->getValue());
334
335 // Number of elements of a scalable vector unknown at compile time
336 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
337 if (!FVTy)
338 return false;
339
340 // Non-splat vector constant: check each element for a match.
341 unsigned NumElts = FVTy->getNumElements();
342 assert(NumElts != 0 && "Constant vector with no elements?")(static_cast <bool> (NumElts != 0 && "Constant vector with no elements?"
) ? void (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "llvm/include/llvm/IR/PatternMatch.h", 342, __extension__ __PRETTY_FUNCTION__
))
;
343 bool HasNonUndefElements = false;
344 for (unsigned i = 0; i != NumElts; ++i) {
345 Constant *Elt = C->getAggregateElement(i);
346 if (!Elt)
347 return false;
348 if (isa<UndefValue>(Elt))
349 continue;
350 auto *CV = dyn_cast<ConstantVal>(Elt);
351 if (!CV || !this->isValue(CV->getValue()))
352 return false;
353 HasNonUndefElements = true;
354 }
355 return HasNonUndefElements;
356 }
357 }
358 return false;
359 }
360};
361
362/// specialization of cstval_pred_ty for ConstantInt
363template <typename Predicate>
364using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
365
366/// specialization of cstval_pred_ty for ConstantFP
367template <typename Predicate>
368using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
369
370/// This helper class is used to match scalar and vector constants that
371/// satisfy a specified predicate, and bind them to an APInt.
372template <typename Predicate> struct api_pred_ty : public Predicate {
373 const APInt *&Res;
374
375 api_pred_ty(const APInt *&R) : Res(R) {}
376
377 template <typename ITy> bool match(ITy *V) {
378 if (const auto *CI = dyn_cast<ConstantInt>(V))
379 if (this->isValue(CI->getValue())) {
380 Res = &CI->getValue();
381 return true;
382 }
383 if (V->getType()->isVectorTy())
384 if (const auto *C = dyn_cast<Constant>(V))
385 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
386 if (this->isValue(CI->getValue())) {
387 Res = &CI->getValue();
388 return true;
389 }
390
391 return false;
392 }
393};
394
395/// This helper class is used to match scalar and vector constants that
396/// satisfy a specified predicate, and bind them to an APFloat.
397/// Undefs are allowed in splat vector constants.
398template <typename Predicate> struct apf_pred_ty : public Predicate {
399 const APFloat *&Res;
400
401 apf_pred_ty(const APFloat *&R) : Res(R) {}
402
403 template <typename ITy> bool match(ITy *V) {
404 if (const auto *CI = dyn_cast<ConstantFP>(V))
405 if (this->isValue(CI->getValue())) {
406 Res = &CI->getValue();
407 return true;
408 }
409 if (V->getType()->isVectorTy())
410 if (const auto *C = dyn_cast<Constant>(V))
411 if (auto *CI = dyn_cast_or_null<ConstantFP>(
412 C->getSplatValue(/* AllowUndef */ true)))
413 if (this->isValue(CI->getValue())) {
414 Res = &CI->getValue();
415 return true;
416 }
417
418 return false;
419 }
420};
421
422///////////////////////////////////////////////////////////////////////////////
423//
424// Encapsulate constant value queries for use in templated predicate matchers.
425// This allows checking if constants match using compound predicates and works
426// with vector constants, possibly with relaxed constraints. For example, ignore
427// undef values.
428//
429///////////////////////////////////////////////////////////////////////////////
430
431struct is_any_apint {
432 bool isValue(const APInt &C) { return true; }
433};
434/// Match an integer or vector with any integral constant.
435/// For vectors, this includes constants with undefined elements.
436inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
437 return cst_pred_ty<is_any_apint>();
438}
439
440struct is_all_ones {
441 bool isValue(const APInt &C) { return C.isAllOnes(); }
442};
443/// Match an integer or vector with all bits set.
444/// For vectors, this includes constants with undefined elements.
445inline cst_pred_ty<is_all_ones> m_AllOnes() {
446 return cst_pred_ty<is_all_ones>();
447}
448
449struct is_maxsignedvalue {
450 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
451};
452/// Match an integer or vector with values having all bits except for the high
453/// bit set (0x7f...).
454/// For vectors, this includes constants with undefined elements.
455inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
456 return cst_pred_ty<is_maxsignedvalue>();
457}
458inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
459 return V;
460}
461
462struct is_negative {
463 bool isValue(const APInt &C) { return C.isNegative(); }
464};
465/// Match an integer or vector of negative values.
466/// For vectors, this includes constants with undefined elements.
467inline cst_pred_ty<is_negative> m_Negative() {
468 return cst_pred_ty<is_negative>();
469}
470inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
471 return V;
472}
473
474struct is_nonnegative {
475 bool isValue(const APInt &C) { return C.isNonNegative(); }
476};
477/// Match an integer or vector of non-negative values.
478/// For vectors, this includes constants with undefined elements.
479inline cst_pred_ty<is_nonnegative> m_NonNegative() {
480 return cst_pred_ty<is_nonnegative>();
481}
482inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
483 return V;
484}
485
486struct is_strictlypositive {
487 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
488};
489/// Match an integer or vector of strictly positive values.
490/// For vectors, this includes constants with undefined elements.
491inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
492 return cst_pred_ty<is_strictlypositive>();
493}
494inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
495 return V;
496}
497
498struct is_nonpositive {
499 bool isValue(const APInt &C) { return C.isNonPositive(); }
500};
501/// Match an integer or vector of non-positive values.
502/// For vectors, this includes constants with undefined elements.
503inline cst_pred_ty<is_nonpositive> m_NonPositive() {
504 return cst_pred_ty<is_nonpositive>();
505}
506inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
507
508struct is_one {
509 bool isValue(const APInt &C) { return C.isOne(); }
510};
511/// Match an integer 1 or a vector with all elements equal to 1.
512/// For vectors, this includes constants with undefined elements.
513inline cst_pred_ty<is_one> m_One() {
514 return cst_pred_ty<is_one>();
515}
516
517struct is_zero_int {
518 bool isValue(const APInt &C) { return C.isZero(); }
519};
520/// Match an integer 0 or a vector with all elements equal to 0.
521/// For vectors, this includes constants with undefined elements.
522inline cst_pred_ty<is_zero_int> m_ZeroInt() {
523 return cst_pred_ty<is_zero_int>();
524}
525
526struct is_zero {
527 template <typename ITy> bool match(ITy *V) {
528 auto *C = dyn_cast<Constant>(V);
529 // FIXME: this should be able to do something for scalable vectors
530 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
531 }
532};
533/// Match any null constant or a vector with all elements equal to 0.
534/// For vectors, this includes constants with undefined elements.
535inline is_zero m_Zero() {
536 return is_zero();
537}
538
539struct is_power2 {
540 bool isValue(const APInt &C) { return C.isPowerOf2(); }
541};
542/// Match an integer or vector power-of-2.
543/// For vectors, this includes constants with undefined elements.
544inline cst_pred_ty<is_power2> m_Power2() {
545 return cst_pred_ty<is_power2>();
546}
547inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
548 return V;
549}
550
551struct is_negated_power2 {
552 bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
553};
554/// Match a integer or vector negated power-of-2.
555/// For vectors, this includes constants with undefined elements.
556inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
557 return cst_pred_ty<is_negated_power2>();
558}
559inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
560 return V;
561}
562
563struct is_power2_or_zero {
564 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
565};
566/// Match an integer or vector of 0 or power-of-2 values.
567/// For vectors, this includes constants with undefined elements.
568inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
569 return cst_pred_ty<is_power2_or_zero>();
570}
571inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
572 return V;
573}
574
575struct is_sign_mask {
576 bool isValue(const APInt &C) { return C.isSignMask(); }
577};
578/// Match an integer or vector with only the sign bit(s) set.
579/// For vectors, this includes constants with undefined elements.
580inline cst_pred_ty<is_sign_mask> m_SignMask() {
581 return cst_pred_ty<is_sign_mask>();
582}
583
584struct is_lowbit_mask {
585 bool isValue(const APInt &C) { return C.isMask(); }
586};
587/// Match an integer or vector with only the low bit(s) set.
588/// For vectors, this includes constants with undefined elements.
589inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
590 return cst_pred_ty<is_lowbit_mask>();
591}
592inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) {
593 return V;
594}
595
596struct icmp_pred_with_threshold {
597 ICmpInst::Predicate Pred;
598 const APInt *Thr;
599 bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
600};
601/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
602/// to Threshold. For vectors, this includes constants with undefined elements.
603inline cst_pred_ty<icmp_pred_with_threshold>
604m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
605 cst_pred_ty<icmp_pred_with_threshold> P;
606 P.Pred = Predicate;
607 P.Thr = &Threshold;
608 return P;
609}
610
611struct is_nan {
612 bool isValue(const APFloat &C) { return C.isNaN(); }
613};
614/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
615/// For vectors, this includes constants with undefined elements.
616inline cstfp_pred_ty<is_nan> m_NaN() {
617 return cstfp_pred_ty<is_nan>();
618}
619
620struct is_nonnan {
621 bool isValue(const APFloat &C) { return !C.isNaN(); }
622};
623/// Match a non-NaN FP constant.
624/// For vectors, this includes constants with undefined elements.
625inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
626 return cstfp_pred_ty<is_nonnan>();
627}
628
629struct is_inf {
630 bool isValue(const APFloat &C) { return C.isInfinity(); }
631};
632/// Match a positive or negative infinity FP constant.
633/// For vectors, this includes constants with undefined elements.
634inline cstfp_pred_ty<is_inf> m_Inf() {
635 return cstfp_pred_ty<is_inf>();
636}
637
638struct is_noninf {
639 bool isValue(const APFloat &C) { return !C.isInfinity(); }
640};
641/// Match a non-infinity FP constant, i.e. finite or NaN.
642/// For vectors, this includes constants with undefined elements.
643inline cstfp_pred_ty<is_noninf> m_NonInf() {
644 return cstfp_pred_ty<is_noninf>();
645}
646
647struct is_finite {
648 bool isValue(const APFloat &C) { return C.isFinite(); }
649};
650/// Match a finite FP constant, i.e. not infinity or NaN.
651/// For vectors, this includes constants with undefined elements.
652inline cstfp_pred_ty<is_finite> m_Finite() {
653 return cstfp_pred_ty<is_finite>();
654}
655inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
656
657struct is_finitenonzero {
658 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
659};
660/// Match a finite non-zero FP constant.
661/// For vectors, this includes constants with undefined elements.
662inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
663 return cstfp_pred_ty<is_finitenonzero>();
664}
665inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
666 return V;
667}
668
669struct is_any_zero_fp {
670 bool isValue(const APFloat &C) { return C.isZero(); }
671};
672/// Match a floating-point negative zero or positive zero.
673/// For vectors, this includes constants with undefined elements.
674inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
675 return cstfp_pred_ty<is_any_zero_fp>();
676}
677
678struct is_pos_zero_fp {
679 bool isValue(const APFloat &C) { return C.isPosZero(); }
680};
681/// Match a floating-point positive zero.
682/// For vectors, this includes constants with undefined elements.
683inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
684 return cstfp_pred_ty<is_pos_zero_fp>();
685}
686
687struct is_neg_zero_fp {
688 bool isValue(const APFloat &C) { return C.isNegZero(); }
689};
690/// Match a floating-point negative zero.
691/// For vectors, this includes constants with undefined elements.
692inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
693 return cstfp_pred_ty<is_neg_zero_fp>();
694}
695
696struct is_non_zero_fp {
697 bool isValue(const APFloat &C) { return C.isNonZero(); }
698};
699/// Match a floating-point non-zero.
700/// For vectors, this includes constants with undefined elements.
701inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
702 return cstfp_pred_ty<is_non_zero_fp>();
703}
704
705///////////////////////////////////////////////////////////////////////////////
706
707template <typename Class> struct bind_ty {
708 Class *&VR;
709
710 bind_ty(Class *&V) : VR(V) {}
711
712 template <typename ITy> bool match(ITy *V) {
713 if (auto *CV = dyn_cast<Class>(V)) {
714 VR = CV;
715 return true;
716 }
717 return false;
718 }
719};
720
721/// Match a value, capturing it if we match.
722inline bind_ty<Value> m_Value(Value *&V) { return V; }
11
Calling constructor for 'bind_ty<llvm::Value>'
12
Returning from constructor for 'bind_ty<llvm::Value>'
13
Returning without writing to 'V'
22
Calling constructor for 'bind_ty<llvm::Value>'
23
Returning from constructor for 'bind_ty<llvm::Value>'
24
Returning without writing to 'V'
723inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
724
725/// Match an instruction, capturing it if we match.
726inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
727/// Match a unary operator, capturing it if we match.
728inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
729/// Match a binary operator, capturing it if we match.
730inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
731/// Match a with overflow intrinsic, capturing it if we match.
732inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
733inline bind_ty<const WithOverflowInst>
734m_WithOverflowInst(const WithOverflowInst *&I) {
735 return I;
736}
737
738/// Match a Constant, capturing the value if we match.
739inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
740
741/// Match a ConstantInt, capturing the value if we match.
742inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
743
744/// Match a ConstantFP, capturing the value if we match.
745inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
746
747/// Match a ConstantExpr, capturing the value if we match.
748inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
749
750/// Match a basic block value, capturing it if we match.
751inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
752inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
753 return V;
754}
755
756/// Match an arbitrary immediate Constant and ignore it.
757inline match_combine_and<class_match<Constant>,
758 match_unless<class_match<ConstantExpr>>>
759m_ImmConstant() {
760 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
761}
762
763/// Match an immediate Constant, capturing the value if we match.
764inline match_combine_and<bind_ty<Constant>,
765 match_unless<class_match<ConstantExpr>>>
766m_ImmConstant(Constant *&C) {
767 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
768}
769
770/// Match a specified Value*.
771struct specificval_ty {
772 const Value *Val;
773
774 specificval_ty(const Value *V) : Val(V) {}
775
776 template <typename ITy> bool match(ITy *V) { return V == Val; }
777};
778
779/// Match if we have a specific specified value.
780inline specificval_ty m_Specific(const Value *V) { return V; }
781
782/// Stores a reference to the Value *, not the Value * itself,
783/// thus can be used in commutative matchers.
784template <typename Class> struct deferredval_ty {
785 Class *const &Val;
786
787 deferredval_ty(Class *const &V) : Val(V) {}
788
789 template <typename ITy> bool match(ITy *const V) { return V == Val; }
790};
791
792/// Like m_Specific(), but works if the specific value to match is determined
793/// as part of the same match() expression. For example:
794/// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
795/// bind X before the pattern match starts.
796/// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
797/// whichever value m_Value(X) populated.
798inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
799inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
800 return V;
801}
802
803/// Match a specified floating point value or vector of all elements of
804/// that value.
805struct specific_fpval {
806 double Val;
807
808 specific_fpval(double V) : Val(V) {}
809
810 template <typename ITy> bool match(ITy *V) {
811 if (const auto *CFP = dyn_cast<ConstantFP>(V))
812 return CFP->isExactlyValue(Val);
813 if (V->getType()->isVectorTy())
814 if (const auto *C = dyn_cast<Constant>(V))
815 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
816 return CFP->isExactlyValue(Val);
817 return false;
818 }
819};
820
821/// Match a specific floating point value or vector with all elements
822/// equal to the value.
823inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
824
825/// Match a float 1.0 or vector with all elements equal to 1.0.
826inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
827
828struct bind_const_intval_ty {
829 uint64_t &VR;
830
831 bind_const_intval_ty(uint64_t &V) : VR(V) {}
832
833 template <typename ITy> bool match(ITy *V) {
834 if (const auto *CV = dyn_cast<ConstantInt>(V))
835 if (CV->getValue().ule(UINT64_MAX(18446744073709551615UL))) {
836 VR = CV->getZExtValue();
837 return true;
838 }
839 return false;
840 }
841};
842
843/// Match a specified integer value or vector of all elements of that
844/// value.
845template <bool AllowUndefs>
846struct specific_intval {
847 APInt Val;
848
849 specific_intval(APInt V) : Val(std::move(V)) {}
850
851 template <typename ITy> bool match(ITy *V) {
852 const auto *CI = dyn_cast<ConstantInt>(V);
853 if (!CI && V->getType()->isVectorTy())
854 if (const auto *C = dyn_cast<Constant>(V))
855 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
856
857 return CI && APInt::isSameValue(CI->getValue(), Val);
858 }
859};
860
861/// Match a specific integer value or vector with all elements equal to
862/// the value.
863inline specific_intval<false> m_SpecificInt(APInt V) {
864 return specific_intval<false>(std::move(V));
865}
866
867inline specific_intval<false> m_SpecificInt(uint64_t V) {
868 return m_SpecificInt(APInt(64, V));
869}
870
871inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
872 return specific_intval<true>(std::move(V));
873}
874
875inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
876 return m_SpecificIntAllowUndef(APInt(64, V));
877}
878
879/// Match a ConstantInt and bind to its value. This does not match
880/// ConstantInts wider than 64-bits.
881inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
882
883/// Match a specified basic block value.
884struct specific_bbval {
885 BasicBlock *Val;
886
887 specific_bbval(BasicBlock *Val) : Val(Val) {}
888
889 template <typename ITy> bool match(ITy *V) {
890 const auto *BB = dyn_cast<BasicBlock>(V);
891 return BB && BB == Val;
892 }
893};
894
895/// Match a specific basic block value.
896inline specific_bbval m_SpecificBB(BasicBlock *BB) {
897 return specific_bbval(BB);
898}
899
900/// A commutative-friendly version of m_Specific().
901inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
902 return BB;
903}
904inline deferredval_ty<const BasicBlock>
905m_Deferred(const BasicBlock *const &BB) {
906 return BB;
907}
908
909//===----------------------------------------------------------------------===//
910// Matcher for any binary operator.
911//
912template <typename LHS_t, typename RHS_t, bool Commutable = false>
913struct AnyBinaryOp_match {
914 LHS_t L;
915 RHS_t R;
916
917 // The evaluation order is always stable, regardless of Commutability.
918 // The LHS is always matched first.
919 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
920
921 template <typename OpTy> bool match(OpTy *V) {
922 if (auto *I = dyn_cast<BinaryOperator>(V))
923 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
924 (Commutable && L.match(I->getOperand(1)) &&
925 R.match(I->getOperand(0)));
926 return false;
927 }
928};
929
930template <typename LHS, typename RHS>
931inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
932 return AnyBinaryOp_match<LHS, RHS>(L, R);
933}
934
935//===----------------------------------------------------------------------===//
936// Matcher for any unary operator.
937// TODO fuse unary, binary matcher into n-ary matcher
938//
939template <typename OP_t> struct AnyUnaryOp_match {
940 OP_t X;
941
942 AnyUnaryOp_match(const OP_t &X) : X(X) {}
943
944 template <typename OpTy> bool match(OpTy *V) {
945 if (auto *I = dyn_cast<UnaryOperator>(V))
946 return X.match(I->getOperand(0));
947 return false;
948 }
949};
950
951template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
952 return AnyUnaryOp_match<OP_t>(X);
953}
954
955//===----------------------------------------------------------------------===//
956// Matchers for specific binary operators.
957//
958
959template <typename LHS_t, typename RHS_t, unsigned Opcode,
960 bool Commutable = false>
961struct BinaryOp_match {
962 LHS_t L;
963 RHS_t R;
964
965 // The evaluation order is always stable, regardless of Commutability.
966 // The LHS is always matched first.
967 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
968
969 template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
970 if (V->getValueID() == Value::InstructionVal + Opc) {
971 auto *I = cast<BinaryOperator>(V);
972 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
973 (Commutable && L.match(I->getOperand(1)) &&
974 R.match(I->getOperand(0)));
975 }
976 if (auto *CE = dyn_cast<ConstantExpr>(V))
977 return CE->getOpcode() == Opc &&
978 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
979 (Commutable && L.match(CE->getOperand(1)) &&
980 R.match(CE->getOperand(0))));
981 return false;
982 }
983
984 template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
985};
986
987template <typename LHS, typename RHS>
988inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
989 const RHS &R) {
990 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
991}
992
993template <typename LHS, typename RHS>
994inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
995 const RHS &R) {
996 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
997}
998
999template <typename LHS, typename RHS>
1000inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
1001 const RHS &R) {
1002 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
1003}
1004
1005template <typename LHS, typename RHS>
1006inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
1007 const RHS &R) {
1008 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1009}
1010
1011template <typename Op_t> struct FNeg_match {
1012 Op_t X;
1013
1014 FNeg_match(const Op_t &Op) : X(Op) {}
1015 template <typename OpTy> bool match(OpTy *V) {
1016 auto *FPMO = dyn_cast<FPMathOperator>(V);
1017 if (!FPMO) return false;
1018
1019 if (FPMO->getOpcode() == Instruction::FNeg)
1020 return X.match(FPMO->getOperand(0));
1021
1022 if (FPMO->getOpcode() == Instruction::FSub) {
1023 if (FPMO->hasNoSignedZeros()) {
1024 // With 'nsz', any zero goes.
1025 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1026 return false;
1027 } else {
1028 // Without 'nsz', we need fsub -0.0, X exactly.
1029 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1030 return false;
1031 }
1032
1033 return X.match(FPMO->getOperand(1));
1034 }
1035
1036 return false;
1037 }
1038};
1039
1040/// Match 'fneg X' as 'fsub -0.0, X'.
1041template <typename OpTy>
1042inline FNeg_match<OpTy>
1043m_FNeg(const OpTy &X) {
1044 return FNeg_match<OpTy>(X);
1045}
1046
1047/// Match 'fneg X' as 'fsub +-0.0, X'.
1048template <typename RHS>
1049inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1050m_FNegNSZ(const RHS &X) {
1051 return m_FSub(m_AnyZeroFP(), X);
1052}
1053
1054template <typename LHS, typename RHS>
1055inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1056 const RHS &R) {
1057 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1058}
1059
1060template <typename LHS, typename RHS>
1061inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1062 const RHS &R) {
1063 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1064}
1065
1066template <typename LHS, typename RHS>
1067inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1068 const RHS &R) {
1069 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1070}
1071
1072template <typename LHS, typename RHS>
1073inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1074 const RHS &R) {
1075 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1076}
1077
1078template <typename LHS, typename RHS>
1079inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1080 const RHS &R) {
1081 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1082}
1083
1084template <typename LHS, typename RHS>
1085inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1086 const RHS &R) {
1087 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1088}
1089
1090template <typename LHS, typename RHS>
1091inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1092 const RHS &R) {
1093 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1094}
1095
1096template <typename LHS, typename RHS>
1097inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1098 const RHS &R) {
1099 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1100}
1101
1102template <typename LHS, typename RHS>
1103inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1104 const RHS &R) {
1105 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1106}
1107
1108template <typename LHS, typename RHS>
1109inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1110 const RHS &R) {
1111 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1112}
1113
1114template <typename LHS, typename RHS>
1115inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1116 const RHS &R) {
1117 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1118}
1119
1120template <typename LHS, typename RHS>
1121inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1122 const RHS &R) {
1123 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1124}
1125
1126template <typename LHS, typename RHS>
1127inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1128 const RHS &R) {
1129 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1130}
1131
1132template <typename LHS, typename RHS>
1133inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1134 const RHS &R) {
1135 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1136}
1137
1138template <typename LHS_t, typename RHS_t, unsigned Opcode,
1139 unsigned WrapFlags = 0>
1140struct OverflowingBinaryOp_match {
1141 LHS_t L;
1142 RHS_t R;
1143
1144 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1145 : L(LHS), R(RHS) {}
1146
1147 template <typename OpTy> bool match(OpTy *V) {
1148 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1149 if (Op->getOpcode() != Opcode)
1150 return false;
1151 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1152 !Op->hasNoUnsignedWrap())
1153 return false;
1154 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1155 !Op->hasNoSignedWrap())
1156 return false;
1157 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1158 }
1159 return false;
1160 }
1161};
1162
1163template <typename LHS, typename RHS>
1164inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1165 OverflowingBinaryOperator::NoSignedWrap>
1166m_NSWAdd(const LHS &L, const RHS &R) {
1167 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1168 OverflowingBinaryOperator::NoSignedWrap>(
1169 L, R);
1170}
1171template <typename LHS, typename RHS>
1172inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1173 OverflowingBinaryOperator::NoSignedWrap>
1174m_NSWSub(const LHS &L, const RHS &R) {
1175 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1176 OverflowingBinaryOperator::NoSignedWrap>(
1177 L, R);
1178}
1179template <typename LHS, typename RHS>
1180inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1181 OverflowingBinaryOperator::NoSignedWrap>
1182m_NSWMul(const LHS &L, const RHS &R) {
1183 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1184 OverflowingBinaryOperator::NoSignedWrap>(
1185 L, R);
1186}
1187template <typename LHS, typename RHS>
1188inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1189 OverflowingBinaryOperator::NoSignedWrap>
1190m_NSWShl(const LHS &L, const RHS &R) {
1191 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1192 OverflowingBinaryOperator::NoSignedWrap>(
1193 L, R);
1194}
1195
1196template <typename LHS, typename RHS>
1197inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1198 OverflowingBinaryOperator::NoUnsignedWrap>
1199m_NUWAdd(const LHS &L, const RHS &R) {
1200 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1201 OverflowingBinaryOperator::NoUnsignedWrap>(
1202 L, R);
1203}
1204template <typename LHS, typename RHS>
1205inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1206 OverflowingBinaryOperator::NoUnsignedWrap>
1207m_NUWSub(const LHS &L, const RHS &R) {
1208 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1209 OverflowingBinaryOperator::NoUnsignedWrap>(
1210 L, R);
1211}
1212template <typename LHS, typename RHS>
1213inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1214 OverflowingBinaryOperator::NoUnsignedWrap>
1215m_NUWMul(const LHS &L, const RHS &R) {
1216 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1217 OverflowingBinaryOperator::NoUnsignedWrap>(
1218 L, R);
1219}
1220template <typename LHS, typename RHS>
1221inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1222 OverflowingBinaryOperator::NoUnsignedWrap>
1223m_NUWShl(const LHS &L, const RHS &R) {
1224 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1225 OverflowingBinaryOperator::NoUnsignedWrap>(
1226 L, R);
1227}
1228
1229template <typename LHS_t, typename RHS_t, bool Commutable = false>
1230struct SpecificBinaryOp_match
1231 : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1232 unsigned Opcode;
1233
1234 SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
1235 : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1236
1237 template <typename OpTy> bool match(OpTy *V) {
1238 return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
1239 }
1240};
1241
1242/// Matches a specific opcode.
1243template <typename LHS, typename RHS>
1244inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1245 const RHS &R) {
1246 return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1247}
1248
1249//===----------------------------------------------------------------------===//
1250// Class that matches a group of binary opcodes.
1251//
1252template <typename LHS_t, typename RHS_t, typename Predicate>
1253struct BinOpPred_match : Predicate {
1254 LHS_t L;
1255 RHS_t R;
1256
1257 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1258
1259 template <typename OpTy> bool match(OpTy *V) {
1260 if (auto *I = dyn_cast<Instruction>(V))
1261 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1262 R.match(I->getOperand(1));
1263 if (auto *CE = dyn_cast<ConstantExpr>(V))
1264 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1265 R.match(CE->getOperand(1));
1266 return false;
1267 }
1268};
1269
1270struct is_shift_op {
1271 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1272};
1273
1274struct is_right_shift_op {
1275 bool isOpType(unsigned Opcode) {
1276 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1277 }
1278};
1279
1280struct is_logical_shift_op {
1281 bool isOpType(unsigned Opcode) {
1282 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1283 }
1284};
1285
1286struct is_bitwiselogic_op {
1287 bool isOpType(unsigned Opcode) {
1288 return Instruction::isBitwiseLogicOp(Opcode);
1289 }
1290};
1291
1292struct is_idiv_op {
1293 bool isOpType(unsigned Opcode) {
1294 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1295 }
1296};
1297
1298struct is_irem_op {
1299 bool isOpType(unsigned Opcode) {
1300 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1301 }
1302};
1303
1304/// Matches shift operations.
1305template <typename LHS, typename RHS>
1306inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1307 const RHS &R) {
1308 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
16
Returning without writing to 'L.VR'
1309}
1310
1311/// Matches logical shift operations.
1312template <typename LHS, typename RHS>
1313inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1314 const RHS &R) {
1315 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1316}
1317
1318/// Matches logical shift operations.
1319template <typename LHS, typename RHS>
1320inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1321m_LogicalShift(const LHS &L, const RHS &R) {
1322 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1323}
1324
1325/// Matches bitwise logic operations.
1326template <typename LHS, typename RHS>
1327inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1328m_BitwiseLogic(const LHS &L, const RHS &R) {
1329 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1330}
1331
1332/// Matches integer division operations.
1333template <typename LHS, typename RHS>
1334inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1335 const RHS &R) {
1336 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1337}
1338
1339/// Matches integer remainder operations.
1340template <typename LHS, typename RHS>
1341inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1342 const RHS &R) {
1343 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1344}
1345
1346//===----------------------------------------------------------------------===//
1347// Class that matches exact binary ops.
1348//
1349template <typename SubPattern_t> struct Exact_match {
1350 SubPattern_t SubPattern;
1351
1352 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1353
1354 template <typename OpTy> bool match(OpTy *V) {
1355 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1356 return PEO->isExact() && SubPattern.match(V);
1357 return false;
1358 }
1359};
1360
1361template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1362 return SubPattern;
1363}
1364
1365//===----------------------------------------------------------------------===//
1366// Matchers for CmpInst classes
1367//
1368
1369template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1370 bool Commutable = false>
1371struct CmpClass_match {
1372 PredicateTy &Predicate;
1373 LHS_t L;
1374 RHS_t R;
1375
1376 // The evaluation order is always stable, regardless of Commutability.
1377 // The LHS is always matched first.
1378 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1379 : Predicate(Pred), L(LHS), R(RHS) {}
1380
1381 template <typename OpTy> bool match(OpTy *V) {
1382 if (auto *I = dyn_cast<Class>(V)) {
1383 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1384 Predicate = I->getPredicate();
1385 return true;
1386 } else if (Commutable && L.match(I->getOperand(1)) &&
1387 R.match(I->getOperand(0))) {
1388 Predicate = I->getSwappedPredicate();
1389 return true;
1390 }
1391 }
1392 return false;
1393 }
1394};
1395
1396template <typename LHS, typename RHS>
1397inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1398m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1399 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1400}
1401
1402template <typename LHS, typename RHS>
1403inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1404m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1405 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1406}
1407
1408template <typename LHS, typename RHS>
1409inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1410m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1411 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1412}
1413
1414//===----------------------------------------------------------------------===//
1415// Matchers for instructions with a given opcode and number of operands.
1416//
1417
1418/// Matches instructions with Opcode and three operands.
1419template <typename T0, unsigned Opcode> struct OneOps_match {
1420 T0 Op1;
1421
1422 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1423
1424 template <typename OpTy> bool match(OpTy *V) {
1425 if (V->getValueID() == Value::InstructionVal + Opcode) {
1426 auto *I = cast<Instruction>(V);
1427 return Op1.match(I->getOperand(0));
1428 }
1429 return false;
1430 }
1431};
1432
1433/// Matches instructions with Opcode and three operands.
1434template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1435 T0 Op1;
1436 T1 Op2;
1437
1438 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1439
1440 template <typename OpTy> bool match(OpTy *V) {
1441 if (V->getValueID() == Value::InstructionVal + Opcode) {
1442 auto *I = cast<Instruction>(V);
1443 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1444 }
1445 return false;
1446 }
1447};
1448
1449/// Matches instructions with Opcode and three operands.
1450template <typename T0, typename T1, typename T2, unsigned Opcode>
1451struct ThreeOps_match {
1452 T0 Op1;
1453 T1 Op2;
1454 T2 Op3;
1455
1456 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1457 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1458
1459 template <typename OpTy> bool match(OpTy *V) {
1460 if (V->getValueID() == Value::InstructionVal + Opcode) {
1461 auto *I = cast<Instruction>(V);
1462 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1463 Op3.match(I->getOperand(2));
1464 }
1465 return false;
1466 }
1467};
1468
1469/// Matches SelectInst.
1470template <typename Cond, typename LHS, typename RHS>
1471inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1472m_Select(const Cond &C, const LHS &L, const RHS &R) {
1473 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1474}
1475
1476/// This matches a select of two constants, e.g.:
1477/// m_SelectCst<-1, 0>(m_Value(V))
1478template <int64_t L, int64_t R, typename Cond>
1479inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1480 Instruction::Select>
1481m_SelectCst(const Cond &C) {
1482 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1483}
1484
1485/// Matches FreezeInst.
1486template <typename OpTy>
1487inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1488 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1489}
1490
1491/// Matches InsertElementInst.
1492template <typename Val_t, typename Elt_t, typename Idx_t>
1493inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1494m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1495 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1496 Val, Elt, Idx);
1497}
1498
1499/// Matches ExtractElementInst.
1500template <typename Val_t, typename Idx_t>
1501inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1502m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1503 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1504}
1505
1506/// Matches shuffle.
1507template <typename T0, typename T1, typename T2> struct Shuffle_match {
1508 T0 Op1;
1509 T1 Op2;
1510 T2 Mask;
1511
1512 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1513 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1514
1515 template <typename OpTy> bool match(OpTy *V) {
1516 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1517 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1518 Mask.match(I->getShuffleMask());
1519 }
1520 return false;
1521 }
1522};
1523
1524struct m_Mask {
1525 ArrayRef<int> &MaskRef;
1526 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1527 bool match(ArrayRef<int> Mask) {
1528 MaskRef = Mask;
1529 return true;
1530 }
1531};
1532
1533struct m_ZeroMask {
1534 bool match(ArrayRef<int> Mask) {
1535 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1536 }
1537};
1538
1539struct m_SpecificMask {
1540 ArrayRef<int> &MaskRef;
1541 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1542 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1543};
1544
1545struct m_SplatOrUndefMask {
1546 int &SplatIndex;
1547 m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1548 bool match(ArrayRef<int> Mask) {
1549 auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1550 if (First == Mask.end())
1551 return false;
1552 SplatIndex = *First;
1553 return all_of(Mask,
1554 [First](int Elem) { return Elem == *First || Elem == -1; });
1555 }
1556};
1557
1558/// Matches ShuffleVectorInst independently of mask value.
1559template <typename V1_t, typename V2_t>
1560inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1561m_Shuffle(const V1_t &v1, const V2_t &v2) {
1562 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1563}
1564
1565template <typename V1_t, typename V2_t, typename Mask_t>
1566inline Shuffle_match<V1_t, V2_t, Mask_t>
1567m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1568 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1569}
1570
1571/// Matches LoadInst.
1572template <typename OpTy>
1573inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1574 return OneOps_match<OpTy, Instruction::Load>(Op);
1575}
1576
1577/// Matches StoreInst.
1578template <typename ValueOpTy, typename PointerOpTy>
1579inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1580m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1581 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1582 PointerOp);
1583}
1584
1585//===----------------------------------------------------------------------===//
1586// Matchers for CastInst classes
1587//
1588
1589template <typename Op_t, unsigned Opcode> struct CastClass_match {
1590 Op_t Op;
1591
1592 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1593
1594 template <typename OpTy> bool match(OpTy *V) {
1595 if (auto *O = dyn_cast<Operator>(V))
1596 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1597 return false;
1598 }
1599};
1600
1601/// Matches BitCast.
1602template <typename OpTy>
1603inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1604 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1605}
1606
1607/// Matches PtrToInt.
1608template <typename OpTy>
1609inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1610 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1611}
1612
1613/// Matches IntToPtr.
1614template <typename OpTy>
1615inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1616 return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1617}
1618
1619/// Matches Trunc.
1620template <typename OpTy>
1621inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1622 return CastClass_match<OpTy, Instruction::Trunc>(Op);
27
Returning without writing to 'Op.VR'
1623}
1624
1625template <typename OpTy>
1626inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1627m_TruncOrSelf(const OpTy &Op) {
1628 return m_CombineOr(m_Trunc(Op), Op);
1629}
1630
1631/// Matches SExt.
1632template <typename OpTy>
1633inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1634 return CastClass_match<OpTy, Instruction::SExt>(Op);
1635}
1636
1637/// Matches ZExt.
1638template <typename OpTy>
1639inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1640 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1641}
1642
1643template <typename OpTy>
1644inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1645m_ZExtOrSelf(const OpTy &Op) {
1646 return m_CombineOr(m_ZExt(Op), Op);
1647}
1648
1649template <typename OpTy>
1650inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1651m_SExtOrSelf(const OpTy &Op) {
1652 return m_CombineOr(m_SExt(Op), Op);
1653}
1654
1655template <typename OpTy>
1656inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1657 CastClass_match<OpTy, Instruction::SExt>>
1658m_ZExtOrSExt(const OpTy &Op) {
1659 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1660}
1661
1662template <typename OpTy>
1663inline match_combine_or<
1664 match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1665 CastClass_match<OpTy, Instruction::SExt>>,
1666 OpTy>
1667m_ZExtOrSExtOrSelf(const OpTy &Op) {
1668 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1669}
1670
1671template <typename OpTy>
1672inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1673 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1674}
1675
1676template <typename OpTy>
1677inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1678 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1679}
1680
1681template <typename OpTy>
1682inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1683 return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1684}
1685
1686template <typename OpTy>
1687inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1688 return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1689}
1690
1691template <typename OpTy>
1692inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1693 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1694}
1695
1696template <typename OpTy>
1697inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1698 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1699}
1700
1701//===----------------------------------------------------------------------===//
1702// Matchers for control flow.
1703//
1704
1705struct br_match {
1706 BasicBlock *&Succ;
1707
1708 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1709
1710 template <typename OpTy> bool match(OpTy *V) {
1711 if (auto *BI = dyn_cast<BranchInst>(V))
1712 if (BI->isUnconditional()) {
1713 Succ = BI->getSuccessor(0);
1714 return true;
1715 }
1716 return false;
1717 }
1718};
1719
1720inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1721
1722template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1723struct brc_match {
1724 Cond_t Cond;
1725 TrueBlock_t T;
1726 FalseBlock_t F;
1727
1728 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1729 : Cond(C), T(t), F(f) {}
1730
1731 template <typename OpTy> bool match(OpTy *V) {
1732 if (auto *BI = dyn_cast<BranchInst>(V))
1733 if (BI->isConditional() && Cond.match(BI->getCondition()))
1734 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1735 return false;
1736 }
1737};
1738
1739template <typename Cond_t>
1740inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1741m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1742 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1743 C, m_BasicBlock(T), m_BasicBlock(F));
1744}
1745
1746template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1747inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1748m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1749 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1750}
1751
1752//===----------------------------------------------------------------------===//
1753// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1754//
1755
1756template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1757 bool Commutable = false>
1758struct MaxMin_match {
1759 using PredType = Pred_t;
1760 LHS_t L;
1761 RHS_t R;
1762
1763 // The evaluation order is always stable, regardless of Commutability.
1764 // The LHS is always matched first.
1765 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1766
1767 template <typename OpTy> bool match(OpTy *V) {
1768 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1769 Intrinsic::ID IID = II->getIntrinsicID();
1770 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1771 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1772 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1773 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1774 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1775 return (L.match(LHS) && R.match(RHS)) ||
1776 (Commutable && L.match(RHS) && R.match(LHS));
1777 }
1778 }
1779 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1780 auto *SI = dyn_cast<SelectInst>(V);
1781 if (!SI)
1782 return false;
1783 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1784 if (!Cmp)
1785 return false;
1786 // At this point we have a select conditioned on a comparison. Check that
1787 // it is the values returned by the select that are being compared.
1788 auto *TrueVal = SI->getTrueValue();
1789 auto *FalseVal = SI->getFalseValue();
1790 auto *LHS = Cmp->getOperand(0);
1791 auto *RHS = Cmp->getOperand(1);
1792 if ((TrueVal != LHS || FalseVal != RHS) &&
1793 (TrueVal != RHS || FalseVal != LHS))
1794 return false;
1795 typename CmpInst_t::Predicate Pred =
1796 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1797 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1798 if (!Pred_t::match(Pred))
1799 return false;
1800 // It does! Bind the operands.
1801 return (L.match(LHS) && R.match(RHS)) ||
1802 (Commutable && L.match(RHS) && R.match(LHS));
1803 }
1804};
1805
1806/// Helper class for identifying signed max predicates.
1807struct smax_pred_ty {
1808 static bool match(ICmpInst::Predicate Pred) {
1809 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1810 }
1811};
1812
1813/// Helper class for identifying signed min predicates.
1814struct smin_pred_ty {
1815 static bool match(ICmpInst::Predicate Pred) {
1816 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1817 }
1818};
1819
1820/// Helper class for identifying unsigned max predicates.
1821struct umax_pred_ty {
1822 static bool match(ICmpInst::Predicate Pred) {
1823 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1824 }
1825};
1826
1827/// Helper class for identifying unsigned min predicates.
1828struct umin_pred_ty {
1829 static bool match(ICmpInst::Predicate Pred) {
1830 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1831 }
1832};
1833
1834/// Helper class for identifying ordered max predicates.
1835struct ofmax_pred_ty {
1836 static bool match(FCmpInst::Predicate Pred) {
1837 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1838 }
1839};
1840
1841/// Helper class for identifying ordered min predicates.
1842struct ofmin_pred_ty {
1843 static bool match(FCmpInst::Predicate Pred) {
1844 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1845 }
1846};
1847
1848/// Helper class for identifying unordered max predicates.
1849struct ufmax_pred_ty {
1850 static bool match(FCmpInst::Predicate Pred) {
1851 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1852 }
1853};
1854
1855/// Helper class for identifying unordered min predicates.
1856struct ufmin_pred_ty {
1857 static bool match(FCmpInst::Predicate Pred) {
1858 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1859 }
1860};
1861
1862template <typename LHS, typename RHS>
1863inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1864 const RHS &R) {
1865 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1866}
1867
1868template <typename LHS, typename RHS>
1869inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1870 const RHS &R) {
1871 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1872}
1873
1874template <typename LHS, typename RHS>
1875inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1876 const RHS &R) {
1877 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1878}
1879
1880template <typename LHS, typename RHS>
1881inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1882 const RHS &R) {
1883 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1884}
1885
1886template <typename LHS, typename RHS>
1887inline match_combine_or<
1888 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1889 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1890 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1891 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
1892m_MaxOrMin(const LHS &L, const RHS &R) {
1893 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1894 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1895}
1896
1897/// Match an 'ordered' floating point maximum function.
1898/// Floating point has one special value 'NaN'. Therefore, there is no total
1899/// order. However, if we can ignore the 'NaN' value (for example, because of a
1900/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1901/// semantics. In the presence of 'NaN' we have to preserve the original
1902/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1903///
1904/// max(L, R) iff L and R are not NaN
1905/// m_OrdFMax(L, R) = R iff L or R are NaN
1906template <typename LHS, typename RHS>
1907inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1908 const RHS &R) {
1909 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1910}
1911
1912/// Match an 'ordered' floating point minimum function.
1913/// Floating point has one special value 'NaN'. Therefore, there is no total
1914/// order. However, if we can ignore the 'NaN' value (for example, because of a
1915/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1916/// semantics. In the presence of 'NaN' we have to preserve the original
1917/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1918///
1919/// min(L, R) iff L and R are not NaN
1920/// m_OrdFMin(L, R) = R iff L or R are NaN
1921template <typename LHS, typename RHS>
1922inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1923 const RHS &R) {
1924 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1925}
1926
1927/// Match an 'unordered' floating point maximum function.
1928/// Floating point has one special value 'NaN'. Therefore, there is no total
1929/// order. However, if we can ignore the 'NaN' value (for example, because of a
1930/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1931/// semantics. In the presence of 'NaN' we have to preserve the original
1932/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1933///
1934/// max(L, R) iff L and R are not NaN
1935/// m_UnordFMax(L, R) = L iff L or R are NaN
1936template <typename LHS, typename RHS>
1937inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1938m_UnordFMax(const LHS &L, const RHS &R) {
1939 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1940}
1941
1942/// Match an 'unordered' floating point minimum function.
1943/// Floating point has one special value 'NaN'. Therefore, there is no total
1944/// order. However, if we can ignore the 'NaN' value (for example, because of a
1945/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1946/// semantics. In the presence of 'NaN' we have to preserve the original
1947/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1948///
1949/// min(L, R) iff L and R are not NaN
1950/// m_UnordFMin(L, R) = L iff L or R are NaN
1951template <typename LHS, typename RHS>
1952inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1953m_UnordFMin(const LHS &L, const RHS &R) {
1954 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1955}
1956
1957//===----------------------------------------------------------------------===//
1958// Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1959// Note that S might be matched to other instructions than AddInst.
1960//
1961
1962template <typename LHS_t, typename RHS_t, typename Sum_t>
1963struct UAddWithOverflow_match {
1964 LHS_t L;
1965 RHS_t R;
1966 Sum_t S;
1967
1968 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1969 : L(L), R(R), S(S) {}
1970
1971 template <typename OpTy> bool match(OpTy *V) {
1972 Value *ICmpLHS, *ICmpRHS;
1973 ICmpInst::Predicate Pred;
1974 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1975 return false;
1976
1977 Value *AddLHS, *AddRHS;
1978 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1979
1980 // (a + b) u< a, (a + b) u< b
1981 if (Pred == ICmpInst::ICMP_ULT)
1982 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1983 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1984
1985 // a >u (a + b), b >u (a + b)
1986 if (Pred == ICmpInst::ICMP_UGT)
1987 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1988 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1989
1990 Value *Op1;
1991 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1992 // (a ^ -1) <u b
1993 if (Pred == ICmpInst::ICMP_ULT) {
1994 if (XorExpr.match(ICmpLHS))
1995 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1996 }
1997 // b > u (a ^ -1)
1998 if (Pred == ICmpInst::ICMP_UGT) {
1999 if (XorExpr.match(ICmpRHS))
2000 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
2001 }
2002
2003 // Match special-case for increment-by-1.
2004 if (Pred == ICmpInst::ICMP_EQ) {
2005 // (a + 1) == 0
2006 // (1 + a) == 0
2007 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
2008 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2009 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2010 // 0 == (a + 1)
2011 // 0 == (1 + a)
2012 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2013 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2014 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2015 }
2016
2017 return false;
2018 }
2019};
2020
2021/// Match an icmp instruction checking for unsigned overflow on addition.
2022///
2023/// S is matched to the addition whose result is being checked for overflow, and
2024/// L and R are matched to the LHS and RHS of S.
2025template <typename LHS_t, typename RHS_t, typename Sum_t>
2026UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
2027m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2028 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2029}
2030
2031template <typename Opnd_t> struct Argument_match {
2032 unsigned OpI;
2033 Opnd_t Val;
2034
2035 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2036
2037 template <typename OpTy> bool match(OpTy *V) {
2038 // FIXME: Should likely be switched to use `CallBase`.
2039 if (const auto *CI = dyn_cast<CallInst>(V))
2040 return Val.match(CI->getArgOperand(OpI));
2041 return false;
2042 }
2043};
2044
2045/// Match an argument.
2046template <unsigned OpI, typename Opnd_t>
2047inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2048 return Argument_match<Opnd_t>(OpI, Op);
2049}
2050
2051/// Intrinsic matchers.
2052struct IntrinsicID_match {
2053 unsigned ID;
2054
2055 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2056
2057 template <typename OpTy> bool match(OpTy *V) {
2058 if (const auto *CI = dyn_cast<CallInst>(V))
2059 if (const auto *F = CI->getCalledFunction())
2060 return F->getIntrinsicID() == ID;
2061 return false;
2062 }
2063};
2064
2065/// Intrinsic matches are combinations of ID matchers, and argument
2066/// matchers. Higher arity matcher are defined recursively in terms of and-ing
2067/// them with lower arity matchers. Here's some convenient typedefs for up to
2068/// several arguments, and more can be added as needed
2069template <typename T0 = void, typename T1 = void, typename T2 = void,
2070 typename T3 = void, typename T4 = void, typename T5 = void,
2071 typename T6 = void, typename T7 = void, typename T8 = void,
2072 typename T9 = void, typename T10 = void>
2073struct m_Intrinsic_Ty;
2074template <typename T0> struct m_Intrinsic_Ty<T0> {
2075 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2076};
2077template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2078 using Ty =
2079 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2080};
2081template <typename T0, typename T1, typename T2>
2082struct m_Intrinsic_Ty<T0, T1, T2> {
2083 using Ty =
2084 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2085 Argument_match<T2>>;
2086};
2087template <typename T0, typename T1, typename T2, typename T3>
2088struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2089 using Ty =
2090 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2091 Argument_match<T3>>;
2092};
2093
2094template <typename T0, typename T1, typename T2, typename T3, typename T4>
2095struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2096 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2097 Argument_match<T4>>;
2098};
2099
2100template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
2101struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2102 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2103 Argument_match<T5>>;
2104};
2105
2106/// Match intrinsic calls like this:
2107/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2108template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2109 return IntrinsicID_match(IntrID);
2110}
2111
2112/// Matches MaskedLoad Intrinsic.
2113template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2114inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2115m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2116 const Opnd3 &Op3) {
2117 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2118}
2119
2120/// Matches MaskedGather Intrinsic.
2121template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2122inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2123m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2124 const Opnd3 &Op3) {
2125 return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
2126}
2127
2128template <Intrinsic::ID IntrID, typename T0>
2129inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2130 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2131}
2132
2133template <Intrinsic::ID IntrID, typename T0, typename T1>
2134inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2135 const T1 &Op1) {
2136 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2137}
2138
2139template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2140inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2141m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2142 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2143}
2144
2145template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2146 typename T3>
2147inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2148m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2149 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2150}
2151
2152template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2153 typename T3, typename T4>
2154inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2155m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2156 const T4 &Op4) {
2157 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2158 m_Argument<4>(Op4));
2159}
2160
2161template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2162 typename T3, typename T4, typename T5>
2163inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2164m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2165 const T4 &Op4, const T5 &Op5) {
2166 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2167 m_Argument<5>(Op5));
2168}
2169
2170// Helper intrinsic matching specializations.
2171template <typename Opnd0>
2172inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2173 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2174}
2175
2176template <typename Opnd0>
2177inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2178 return m_Intrinsic<Intrinsic::bswap>(Op0);
2179}
2180
2181template <typename Opnd0>
2182inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2183 return m_Intrinsic<Intrinsic::fabs>(Op0);
2184}
2185
2186template <typename Opnd0>
2187inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2188 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2189}
2190
2191template <typename Opnd0, typename Opnd1>
2192inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2193 const Opnd1 &Op1) {
2194 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2195}
2196
2197template <typename Opnd0, typename Opnd1>
2198inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2199 const Opnd1 &Op1) {
2200 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2201}
2202
2203template <typename Opnd0, typename Opnd1, typename Opnd2>
2204inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2205m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2206 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2207}
2208
2209template <typename Opnd0, typename Opnd1, typename Opnd2>
2210inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2211m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2212 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2213}
2214
2215//===----------------------------------------------------------------------===//
2216// Matchers for two-operands operators with the operators in either order
2217//
2218
2219/// Matches a BinaryOperator with LHS and RHS in either order.
2220template <typename LHS, typename RHS>
2221inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2222 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2223}
2224
2225/// Matches an ICmp with a predicate over LHS and RHS in either order.
2226/// Swaps the predicate if operands are commuted.
2227template <typename LHS, typename RHS>
2228inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2229m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2230 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2231 R);
2232}
2233
2234/// Matches a specific opcode with LHS and RHS in either order.
2235template <typename LHS, typename RHS>
2236inline SpecificBinaryOp_match<LHS, RHS, true>
2237m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2238 return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2239}
2240
2241/// Matches a Add with LHS and RHS in either order.
2242template <typename LHS, typename RHS>
2243inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2244 const RHS &R) {
2245 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2246}
2247
2248/// Matches a Mul with LHS and RHS in either order.
2249template <typename LHS, typename RHS>
2250inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2251 const RHS &R) {
2252 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2253}
2254
2255/// Matches an And with LHS and RHS in either order.
2256template <typename LHS, typename RHS>
2257inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2258 const RHS &R) {
2259 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2260}
2261
2262/// Matches an Or with LHS and RHS in either order.
2263template <typename LHS, typename RHS>
2264inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2265 const RHS &R) {
2266 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2267}
2268
2269/// Matches an Xor with LHS and RHS in either order.
2270template <typename LHS, typename RHS>
2271inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2272 const RHS &R) {
2273 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2274}
2275
2276/// Matches a 'Neg' as 'sub 0, V'.
2277template <typename ValTy>
2278inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2279m_Neg(const ValTy &V) {
2280 return m_Sub(m_ZeroInt(), V);
2281}
2282
2283/// Matches a 'Neg' as 'sub nsw 0, V'.
2284template <typename ValTy>
2285inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2286 Instruction::Sub,
2287 OverflowingBinaryOperator::NoSignedWrap>
2288m_NSWNeg(const ValTy &V) {
2289 return m_NSWSub(m_ZeroInt(), V);
2290}
2291
2292/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2293template <typename ValTy>
2294inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
2295m_Not(const ValTy &V) {
2296 return m_c_Xor(V, m_AllOnes());
2297}
2298
2299template <typename ValTy> struct NotForbidUndef_match {
2300 ValTy Val;
2301 NotForbidUndef_match(const ValTy &V) : Val(V) {}
2302
2303 template <typename OpTy> bool match(OpTy *V) {
2304 // We do not use m_c_Xor because that could match an arbitrary APInt that is
2305 // not -1 as C and then fail to match the other operand if it is -1.
2306 // This code should still work even when both operands are constants.
2307 Value *X;
2308 const APInt *C;
2309 if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes())
2310 return Val.match(X);
2311 if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes())
2312 return Val.match(X);
2313 return false;
2314 }
2315};
2316
2317/// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the
2318/// constant value must be composed of only -1 scalar elements.
2319template <typename ValTy>
2320inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) {
2321 return NotForbidUndef_match<ValTy>(V);
2322}
2323
2324/// Matches an SMin with LHS and RHS in either order.
2325template <typename LHS, typename RHS>
2326inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2327m_c_SMin(const LHS &L, const RHS &R) {
2328 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2329}
2330/// Matches an SMax with LHS and RHS in either order.
2331template <typename LHS, typename RHS>
2332inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2333m_c_SMax(const LHS &L, const RHS &R) {
2334 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2335}
2336/// Matches a UMin with LHS and RHS in either order.
2337template <typename LHS, typename RHS>
2338inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2339m_c_UMin(const LHS &L, const RHS &R) {
2340 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2341}
2342/// Matches a UMax with LHS and RHS in either order.
2343template <typename LHS, typename RHS>
2344inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2345m_c_UMax(const LHS &L, const RHS &R) {
2346 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2347}
2348
2349template <typename LHS, typename RHS>
2350inline match_combine_or<
2351 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2352 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2353 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2354 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2355m_c_MaxOrMin(const LHS &L, const RHS &R) {
2356 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2357 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2358}
2359
2360/// Matches FAdd with LHS and RHS in either order.
2361template <typename LHS, typename RHS>
2362inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2363m_c_FAdd(const LHS &L, const RHS &R) {
2364 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2365}
2366
2367/// Matches FMul with LHS and RHS in either order.
2368template <typename LHS, typename RHS>
2369inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2370m_c_FMul(const LHS &L, const RHS &R) {
2371 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2372}
2373
2374template <typename Opnd_t> struct Signum_match {
2375 Opnd_t Val;
2376 Signum_match(const Opnd_t &V) : Val(V) {}
2377
2378 template <typename OpTy> bool match(OpTy *V) {
2379 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2380 if (TypeSize == 0)
2381 return false;
2382
2383 unsigned ShiftWidth = TypeSize - 1;
2384 Value *OpL = nullptr, *OpR = nullptr;
2385
2386 // This is the representation of signum we match:
2387 //
2388 // signum(x) == (x >> 63) | (-x >>u 63)
2389 //
2390 // An i1 value is its own signum, so it's correct to match
2391 //
2392 // signum(x) == (x >> 0) | (-x >>u 0)
2393 //
2394 // for i1 values.
2395
2396 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2397 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2398 auto Signum = m_Or(LHS, RHS);
2399
2400 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2401 }
2402};
2403
2404/// Matches a signum pattern.
2405///
2406/// signum(x) =
2407/// x > 0 -> 1
2408/// x == 0 -> 0
2409/// x < 0 -> -1
2410template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2411 return Signum_match<Val_t>(V);
2412}
2413
2414template <int Ind, typename Opnd_t> struct ExtractValue_match {
2415 Opnd_t Val;
2416 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2417
2418 template <typename OpTy> bool match(OpTy *V) {
2419 if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2420 // If Ind is -1, don't inspect indices
2421 if (Ind != -1 &&
2422 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2423 return false;
2424 return Val.match(I->getAggregateOperand());
2425 }
2426 return false;
2427 }
2428};
2429
2430/// Match a single index ExtractValue instruction.
2431/// For example m_ExtractValue<1>(...)
2432template <int Ind, typename Val_t>
2433inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2434 return ExtractValue_match<Ind, Val_t>(V);
2435}
2436
2437/// Match an ExtractValue instruction with any index.
2438/// For example m_ExtractValue(...)
2439template <typename Val_t>
2440inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2441 return ExtractValue_match<-1, Val_t>(V);
2442}
2443
2444/// Matcher for a single index InsertValue instruction.
2445template <int Ind, typename T0, typename T1> struct InsertValue_match {
2446 T0 Op0;
2447 T1 Op1;
2448
2449 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2450
2451 template <typename OpTy> bool match(OpTy *V) {
2452 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2453 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2454 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2455 }
2456 return false;
2457 }
2458};
2459
2460/// Matches a single index InsertValue instruction.
2461template <int Ind, typename Val_t, typename Elt_t>
2462inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2463 const Elt_t &Elt) {
2464 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2465}
2466
2467/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2468/// the constant expression
2469/// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2470/// under the right conditions determined by DataLayout.
2471struct VScaleVal_match {
2472 const DataLayout &DL;
2473 VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2474
2475 template <typename ITy> bool match(ITy *V) {
2476 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2477 return true;
2478
2479 Value *Ptr;
2480 if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2481 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2482 auto *DerefTy = GEP->getSourceElementType();
2483 if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) &&
2484 m_Zero().match(GEP->getPointerOperand()) &&
2485 m_SpecificInt(1).match(GEP->idx_begin()->get()) &&
2486 DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
2487 return true;
2488 }
2489 }
2490
2491 return false;
2492 }
2493};
2494
2495inline VScaleVal_match m_VScale(const DataLayout &DL) {
2496 return VScaleVal_match(DL);
2497}
2498
2499template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
2500struct LogicalOp_match {
2501 LHS L;
2502 RHS R;
2503
2504 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2505
2506 template <typename T> bool match(T *V) {
2507 auto *I = dyn_cast<Instruction>(V);
2508 if (!I || !I->getType()->isIntOrIntVectorTy(1))
2509 return false;
2510
2511 if (I->getOpcode() == Opcode) {
2512 auto *Op0 = I->getOperand(0);
2513 auto *Op1 = I->getOperand(1);
2514 return (L.match(Op0) && R.match(Op1)) ||
2515 (Commutable && L.match(Op1) && R.match(Op0));
2516 }
2517
2518 if (auto *Select = dyn_cast<SelectInst>(I)) {
2519 auto *Cond = Select->getCondition();
2520 auto *TVal = Select->getTrueValue();
2521 auto *FVal = Select->getFalseValue();
2522 if (Opcode == Instruction::And) {
2523 auto *C = dyn_cast<Constant>(FVal);
2524 if (C && C->isNullValue())
2525 return (L.match(Cond) && R.match(TVal)) ||
2526 (Commutable && L.match(TVal) && R.match(Cond));
2527 } else {
2528 assert(Opcode == Instruction::Or)(static_cast <bool> (Opcode == Instruction::Or) ? void (
0) : __assert_fail ("Opcode == Instruction::Or", "llvm/include/llvm/IR/PatternMatch.h"
, 2528, __extension__ __PRETTY_FUNCTION__))
;
2529 auto *C = dyn_cast<Constant>(TVal);
2530 if (C && C->isOneValue())
2531 return (L.match(Cond) && R.match(FVal)) ||
2532 (Commutable && L.match(FVal) && R.match(Cond));
2533 }
2534 }
2535
2536 return false;
2537 }
2538};
2539
2540/// Matches L && R either in the form of L & R or L ? R : false.
2541/// Note that the latter form is poison-blocking.
2542template <typename LHS, typename RHS>
2543inline LogicalOp_match<LHS, RHS, Instruction::And>
2544m_LogicalAnd(const LHS &L, const RHS &R) {
2545 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2546}
2547
2548/// Matches L && R where L and R are arbitrary values.
2549inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2550
2551/// Matches L && R with LHS and RHS in either order.
2552template <typename LHS, typename RHS>
2553inline LogicalOp_match<LHS, RHS, Instruction::And, true>
2554m_c_LogicalAnd(const LHS &L, const RHS &R) {
2555 return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
2556}
2557
2558/// Matches L || R either in the form of L | R or L ? true : R.
2559/// Note that the latter form is poison-blocking.
2560template <typename LHS, typename RHS>
2561inline LogicalOp_match<LHS, RHS, Instruction::Or>
2562m_LogicalOr(const LHS &L, const RHS &R) {
2563 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2564}
2565
2566/// Matches L || R where L and R are arbitrary values.
2567inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
2568
2569/// Matches L || R with LHS and RHS in either order.
2570template <typename LHS, typename RHS>
2571inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
2572m_c_LogicalOr(const LHS &L, const RHS &R) {
2573 return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2574}
2575
2576} // end namespace PatternMatch
2577} // end namespace llvm
2578
2579#endif // LLVM_IR_PATTERNMATCH_H