Bug Summary

File:llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
Warning:line 198, column 7
1st function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name InstCombineShifts.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/InstCombine -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/llvm/lib/Transforms/InstCombine -I include -I /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-01-19-134126-35450-1 -x c++ /build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp

/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp

1//===- InstCombineShifts.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitShl, visitLShr, and visitAShr functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/Analysis/ConstantFolding.h"
15#include "llvm/Analysis/InstructionSimplify.h"
16#include "llvm/IR/IntrinsicInst.h"
17#include "llvm/IR/PatternMatch.h"
18#include "llvm/Transforms/InstCombine/InstCombiner.h"
19using namespace llvm;
20using namespace PatternMatch;
21
22#define DEBUG_TYPE"instcombine" "instcombine"
23
24bool canTryToConstantAddTwoShiftAmounts(Value *Sh0, Value *ShAmt0, Value *Sh1,
25 Value *ShAmt1) {
26 // We have two shift amounts from two different shifts. The types of those
27 // shift amounts may not match. If that's the case let's bailout now..
28 if (ShAmt0->getType() != ShAmt1->getType())
29 return false;
30
31 // As input, we have the following pattern:
32 // Sh0 (Sh1 X, Q), K
33 // We want to rewrite that as:
34 // Sh x, (Q+K) iff (Q+K) u< bitwidth(x)
35 // While we know that originally (Q+K) would not overflow
36 // (because 2 * (N-1) u<= iN -1), we have looked past extensions of
37 // shift amounts. so it may now overflow in smaller bitwidth.
38 // To ensure that does not happen, we need to ensure that the total maximal
39 // shift amount is still representable in that smaller bit width.
40 unsigned MaximalPossibleTotalShiftAmount =
41 (Sh0->getType()->getScalarSizeInBits() - 1) +
42 (Sh1->getType()->getScalarSizeInBits() - 1);
43 APInt MaximalRepresentableShiftAmount =
44 APInt::getAllOnes(ShAmt0->getType()->getScalarSizeInBits());
45 return MaximalRepresentableShiftAmount.uge(MaximalPossibleTotalShiftAmount);
46}
47
48// Given pattern:
49// (x shiftopcode Q) shiftopcode K
50// we should rewrite it as
51// x shiftopcode (Q+K) iff (Q+K) u< bitwidth(x) and
52//
53// This is valid for any shift, but they must be identical, and we must be
54// careful in case we have (zext(Q)+zext(K)) and look past extensions,
55// (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
56//
57// AnalyzeForSignBitExtraction indicates that we will only analyze whether this
58// pattern has any 2 right-shifts that sum to 1 less than original bit width.
59Value *InstCombinerImpl::reassociateShiftAmtsOfTwoSameDirectionShifts(
60 BinaryOperator *Sh0, const SimplifyQuery &SQ,
61 bool AnalyzeForSignBitExtraction) {
62 // Look for a shift of some instruction, ignore zext of shift amount if any.
63 Instruction *Sh0Op0;
64 Value *ShAmt0;
65 if (!match(Sh0,
66 m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
67 return nullptr;
68
69 // If there is a truncation between the two shifts, we must make note of it
70 // and look through it. The truncation imposes additional constraints on the
71 // transform.
72 Instruction *Sh1;
73 Value *Trunc = nullptr;
74 match(Sh0Op0,
75 m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
76 m_Instruction(Sh1)));
77
78 // Inner shift: (x shiftopcode ShAmt1)
79 // Like with other shift, ignore zext of shift amount if any.
80 Value *X, *ShAmt1;
81 if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
82 return nullptr;
83
84 // Verify that it would be safe to try to add those two shift amounts.
85 if (!canTryToConstantAddTwoShiftAmounts(Sh0, ShAmt0, Sh1, ShAmt1))
86 return nullptr;
87
88 // We are only looking for signbit extraction if we have two right shifts.
89 bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
90 match(Sh1, m_Shr(m_Value(), m_Value()));
91 // ... and if it's not two right-shifts, we know the answer already.
92 if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
93 return nullptr;
94
95 // The shift opcodes must be identical, unless we are just checking whether
96 // this pattern can be interpreted as a sign-bit-extraction.
97 Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
98 bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
99 if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
100 return nullptr;
101
102 // If we saw truncation, we'll need to produce extra instruction,
103 // and for that one of the operands of the shift must be one-use,
104 // unless of course we don't actually plan to produce any instructions here.
105 if (Trunc && !AnalyzeForSignBitExtraction &&
106 !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
107 return nullptr;
108
109 // Can we fold (ShAmt0+ShAmt1) ?
110 auto *NewShAmt = dyn_cast_or_null<Constant>(
111 SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
112 SQ.getWithInstruction(Sh0)));
113 if (!NewShAmt)
114 return nullptr; // Did not simplify.
115 unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
116 unsigned XBitWidth = X->getType()->getScalarSizeInBits();
117 // Is the new shift amount smaller than the bit width of inner/new shift?
118 if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
119 APInt(NewShAmtBitWidth, XBitWidth))))
120 return nullptr; // FIXME: could perform constant-folding.
121
122 // If there was a truncation, and we have a right-shift, we can only fold if
123 // we are left with the original sign bit. Likewise, if we were just checking
124 // that this is a sighbit extraction, this is the place to check it.
125 // FIXME: zero shift amount is also legal here, but we can't *easily* check
126 // more than one predicate so it's not really worth it.
127 if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
128 // If it's not a sign bit extraction, then we're done.
129 if (!match(NewShAmt,
130 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
131 APInt(NewShAmtBitWidth, XBitWidth - 1))))
132 return nullptr;
133 // If it is, and that was the question, return the base value.
134 if (AnalyzeForSignBitExtraction)
135 return X;
136 }
137
138 assert(IdenticalShOpcodes && "Should not get here with different shifts.")(static_cast <bool> (IdenticalShOpcodes && "Should not get here with different shifts."
) ? void (0) : __assert_fail ("IdenticalShOpcodes && \"Should not get here with different shifts.\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 138
, __extension__ __PRETTY_FUNCTION__))
;
139
140 // All good, we can do this fold.
141 NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
142
143 BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
144
145 // The flags can only be propagated if there wasn't a trunc.
146 if (!Trunc) {
147 // If the pattern did not involve trunc, and both of the original shifts
148 // had the same flag set, preserve the flag.
149 if (ShiftOpcode == Instruction::BinaryOps::Shl) {
150 NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
151 Sh1->hasNoUnsignedWrap());
152 NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
153 Sh1->hasNoSignedWrap());
154 } else {
155 NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
156 }
157 }
158
159 Instruction *Ret = NewShift;
160 if (Trunc) {
161 Builder.Insert(NewShift);
162 Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
163 }
164
165 return Ret;
166}
167
168// If we have some pattern that leaves only some low bits set, and then performs
169// left-shift of those bits, if none of the bits that are left after the final
170// shift are modified by the mask, we can omit the mask.
171//
172// There are many variants to this pattern:
173// a) (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
174// b) (x & (~(-1 << MaskShAmt))) << ShiftShAmt
175// c) (x & (-1 l>> MaskShAmt)) << ShiftShAmt
176// d) (x & ((-1 << MaskShAmt) l>> MaskShAmt)) << ShiftShAmt
177// e) ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
178// f) ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
179// All these patterns can be simplified to just:
180// x << ShiftShAmt
181// iff:
182// a,b) (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
183// c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
184static Instruction *
185dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
186 const SimplifyQuery &Q,
187 InstCombiner::BuilderTy &Builder) {
188 assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&(static_cast <bool> (OuterShift->getOpcode() == Instruction
::BinaryOps::Shl && "The input must be 'shl'!") ? void
(0) : __assert_fail ("OuterShift->getOpcode() == Instruction::BinaryOps::Shl && \"The input must be 'shl'!\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 189
, __extension__ __PRETTY_FUNCTION__))
7
Assuming the condition is true
8
'?' condition is true
189 "The input must be 'shl'!")(static_cast <bool> (OuterShift->getOpcode() == Instruction
::BinaryOps::Shl && "The input must be 'shl'!") ? void
(0) : __assert_fail ("OuterShift->getOpcode() == Instruction::BinaryOps::Shl && \"The input must be 'shl'!\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 189
, __extension__ __PRETTY_FUNCTION__))
;
190
191 Value *Masked, *ShiftShAmt;
9
'Masked' declared without an initial value
192 match(OuterShift,
18
Calling 'match<llvm::BinaryOperator, llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>, llvm::PatternMatch::is_shift_op>>'
20
Returning from 'match<llvm::BinaryOperator, llvm::PatternMatch::BinOpPred_match<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>, llvm::PatternMatch::is_shift_op>>'
193 m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
10
Calling 'm_Value'
14
Returning from 'm_Value'
15
Calling 'm_Shift<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>>'
17
Returning from 'm_Shift<llvm::PatternMatch::bind_ty<llvm::Value>, llvm::PatternMatch::match_combine_or<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 39>, llvm::PatternMatch::bind_ty<llvm::Value>>>'
194
195 // *If* there is a truncation between an outer shift and a possibly-mask,
196 // then said truncation *must* be one-use, else we can't perform the fold.
197 Value *Trunc;
198 if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
21
Calling 'm_Value'
25
Returning from 'm_Value'
26
Calling 'm_Trunc<llvm::PatternMatch::bind_ty<llvm::Value>>'
28
Returning from 'm_Trunc<llvm::PatternMatch::bind_ty<llvm::Value>>'
29
Calling 'm_CombineAnd<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 38>, llvm::PatternMatch::bind_ty<llvm::Value>>'
31
Returning from 'm_CombineAnd<llvm::PatternMatch::CastClass_match<llvm::PatternMatch::bind_ty<llvm::Value>, 38>, llvm::PatternMatch::bind_ty<llvm::Value>>'
32
1st function call argument is an uninitialized value
199 !Trunc->hasOneUse())
200 return nullptr;
201
202 Type *NarrowestTy = OuterShift->getType();
203 Type *WidestTy = Masked->getType();
204 bool HadTrunc = WidestTy != NarrowestTy;
205
206 // The mask must be computed in a type twice as wide to ensure
207 // that no bits are lost if the sum-of-shifts is wider than the base type.
208 Type *ExtendedTy = WidestTy->getExtendedType();
209
210 Value *MaskShAmt;
211
212 // ((1 << MaskShAmt) - 1)
213 auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
214 // (~(-1 << maskNbits))
215 auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
216 // (-1 l>> MaskShAmt)
217 auto MaskC = m_LShr(m_AllOnes(), m_Value(MaskShAmt));
218 // ((-1 << MaskShAmt) l>> MaskShAmt)
219 auto MaskD =
220 m_LShr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
221
222 Value *X;
223 Constant *NewMask;
224
225 if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
226 // Peek through an optional zext of the shift amount.
227 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
228
229 // Verify that it would be safe to try to add those two shift amounts.
230 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
231 MaskShAmt))
232 return nullptr;
233
234 // Can we simplify (MaskShAmt+ShiftShAmt) ?
235 auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
236 MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
237 if (!SumOfShAmts)
238 return nullptr; // Did not simplify.
239 // In this pattern SumOfShAmts correlates with the number of low bits
240 // that shall remain in the root value (OuterShift).
241
242 // An extend of an undef value becomes zero because the high bits are never
243 // completely unknown. Replace the `undef` shift amounts with final
244 // shift bitwidth to ensure that the value remains undef when creating the
245 // subsequent shift op.
246 SumOfShAmts = Constant::replaceUndefsWith(
247 SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
248 ExtendedTy->getScalarSizeInBits()));
249 auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
250 // And compute the mask as usual: ~(-1 << (SumOfShAmts))
251 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
252 auto *ExtendedInvertedMask =
253 ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
254 NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
255 } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
256 match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
257 m_Deferred(MaskShAmt)))) {
258 // Peek through an optional zext of the shift amount.
259 match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
260
261 // Verify that it would be safe to try to add those two shift amounts.
262 if (!canTryToConstantAddTwoShiftAmounts(OuterShift, ShiftShAmt, Masked,
263 MaskShAmt))
264 return nullptr;
265
266 // Can we simplify (ShiftShAmt-MaskShAmt) ?
267 auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
268 ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
269 if (!ShAmtsDiff)
270 return nullptr; // Did not simplify.
271 // In this pattern ShAmtsDiff correlates with the number of high bits that
272 // shall be unset in the root value (OuterShift).
273
274 // An extend of an undef value becomes zero because the high bits are never
275 // completely unknown. Replace the `undef` shift amounts with negated
276 // bitwidth of innermost shift to ensure that the value remains undef when
277 // creating the subsequent shift op.
278 unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
279 ShAmtsDiff = Constant::replaceUndefsWith(
280 ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
281 -WidestTyBitWidth));
282 auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
283 ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
284 WidestTyBitWidth,
285 /*isSigned=*/false),
286 ShAmtsDiff),
287 ExtendedTy);
288 // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
289 auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
290 NewMask =
291 ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
292 } else
293 return nullptr; // Don't know anything about this pattern.
294
295 NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
296
297 // Does this mask has any unset bits? If not then we can just not apply it.
298 bool NeedMask = !match(NewMask, m_AllOnes());
299
300 // If we need to apply a mask, there are several more restrictions we have.
301 if (NeedMask) {
302 // The old masking instruction must go away.
303 if (!Masked->hasOneUse())
304 return nullptr;
305 // The original "masking" instruction must not have been`ashr`.
306 if (match(Masked, m_AShr(m_Value(), m_Value())))
307 return nullptr;
308 }
309
310 // If we need to apply truncation, let's do it first, since we can.
311 // We have already ensured that the old truncation will go away.
312 if (HadTrunc)
313 X = Builder.CreateTrunc(X, NarrowestTy);
314
315 // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
316 // We didn't change the Type of this outermost shift, so we can just do it.
317 auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
318 OuterShift->getOperand(1));
319 if (!NeedMask)
320 return NewShift;
321
322 Builder.Insert(NewShift);
323 return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
324}
325
326/// If we have a shift-by-constant of a bitwise logic op that itself has a
327/// shift-by-constant operand with identical opcode, we may be able to convert
328/// that into 2 independent shifts followed by the logic op. This eliminates a
329/// a use of an intermediate value (reduces dependency chain).
330static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
331 InstCombiner::BuilderTy &Builder) {
332 assert(I.isShift() && "Expected a shift as input")(static_cast <bool> (I.isShift() && "Expected a shift as input"
) ? void (0) : __assert_fail ("I.isShift() && \"Expected a shift as input\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 332
, __extension__ __PRETTY_FUNCTION__))
;
333 auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
334 if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
335 return nullptr;
336
337 Constant *C0, *C1;
338 if (!match(I.getOperand(1), m_Constant(C1)))
339 return nullptr;
340
341 Instruction::BinaryOps ShiftOpcode = I.getOpcode();
342 Type *Ty = I.getType();
343
344 // Find a matching one-use shift by constant. The fold is not valid if the sum
345 // of the shift values equals or exceeds bitwidth.
346 // TODO: Remove the one-use check if the other logic operand (Y) is constant.
347 Value *X, *Y;
348 auto matchFirstShift = [&](Value *V) {
349 APInt Threshold(Ty->getScalarSizeInBits(), Ty->getScalarSizeInBits());
350 return match(V, m_BinOp(ShiftOpcode, m_Value(), m_Value())) &&
351 match(V, m_OneUse(m_Shift(m_Value(X), m_Constant(C0)))) &&
352 match(ConstantExpr::getAdd(C0, C1),
353 m_SpecificInt_ICMP(ICmpInst::ICMP_ULT, Threshold));
354 };
355
356 // Logic ops are commutative, so check each operand for a match.
357 if (matchFirstShift(LogicInst->getOperand(0)))
358 Y = LogicInst->getOperand(1);
359 else if (matchFirstShift(LogicInst->getOperand(1)))
360 Y = LogicInst->getOperand(0);
361 else
362 return nullptr;
363
364 // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
365 Constant *ShiftSumC = ConstantExpr::getAdd(C0, C1);
366 Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
367 Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
368 return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
369}
370
371Instruction *InstCombinerImpl::commonShiftTransforms(BinaryOperator &I) {
372 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
373 assert(Op0->getType() == Op1->getType())(static_cast <bool> (Op0->getType() == Op1->getType
()) ? void (0) : __assert_fail ("Op0->getType() == Op1->getType()"
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 373
, __extension__ __PRETTY_FUNCTION__))
;
374
375 // If the shift amount is a one-use `sext`, we can demote it to `zext`.
376 Value *Y;
377 if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
378 Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
379 return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
380 }
381
382 // See if we can fold away this shift.
383 if (SimplifyDemandedInstructionBits(I))
384 return &I;
385
386 // Try to fold constant and into select arguments.
387 if (isa<Constant>(Op0))
388 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
389 if (Instruction *R = FoldOpIntoSelect(I, SI))
390 return R;
391
392 if (Constant *CUI = dyn_cast<Constant>(Op1))
393 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
394 return Res;
395
396 if (auto *NewShift = cast_or_null<Instruction>(
397 reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
398 return NewShift;
399
400 // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
401 // iff A and C2 are both positive.
402 Value *A;
403 Constant *C;
404 if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
405 if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
406 isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
407 return BinaryOperator::Create(
408 I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
409
410 // X shift (A srem C) -> X shift (A and (C - 1)) iff C is a power of 2.
411 // Because shifts by negative values (which could occur if A were negative)
412 // are undefined.
413 if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Constant(C))) &&
414 match(C, m_Power2())) {
415 // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
416 // demand the sign bit (and many others) here??
417 Constant *Mask = ConstantExpr::getSub(C, ConstantInt::get(I.getType(), 1));
418 Value *Rem = Builder.CreateAnd(A, Mask, Op1->getName());
419 return replaceOperand(I, 1, Rem);
420 }
421
422 if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
423 return Logic;
424
425 return nullptr;
426}
427
428/// Return true if we can simplify two logical (either left or right) shifts
429/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
430static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
431 Instruction *InnerShift,
432 InstCombinerImpl &IC, Instruction *CxtI) {
433 assert(InnerShift->isLogicalShift() && "Unexpected instruction type")(static_cast <bool> (InnerShift->isLogicalShift() &&
"Unexpected instruction type") ? void (0) : __assert_fail ("InnerShift->isLogicalShift() && \"Unexpected instruction type\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 433
, __extension__ __PRETTY_FUNCTION__))
;
434
435 // We need constant scalar or constant splat shifts.
436 const APInt *InnerShiftConst;
437 if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
438 return false;
439
440 // Two logical shifts in the same direction:
441 // shl (shl X, C1), C2 --> shl X, C1 + C2
442 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
443 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
444 if (IsInnerShl == IsOuterShl)
445 return true;
446
447 // Equal shift amounts in opposite directions become bitwise 'and':
448 // lshr (shl X, C), C --> and X, C'
449 // shl (lshr X, C), C --> and X, C'
450 if (*InnerShiftConst == OuterShAmt)
451 return true;
452
453 // If the 2nd shift is bigger than the 1st, we can fold:
454 // lshr (shl X, C1), C2 --> and (shl X, C1 - C2), C3
455 // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
456 // but it isn't profitable unless we know the and'd out bits are already zero.
457 // Also, check that the inner shift is valid (less than the type width) or
458 // we'll crash trying to produce the bit mask for the 'and'.
459 unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
460 if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
461 unsigned InnerShAmt = InnerShiftConst->getZExtValue();
462 unsigned MaskShift =
463 IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
464 APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
465 if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
466 return true;
467 }
468
469 return false;
470}
471
472/// See if we can compute the specified value, but shifted logically to the left
473/// or right by some number of bits. This should return true if the expression
474/// can be computed for the same cost as the current expression tree. This is
475/// used to eliminate extraneous shifting from things like:
476/// %C = shl i128 %A, 64
477/// %D = shl i128 %B, 96
478/// %E = or i128 %C, %D
479/// %F = lshr i128 %E, 64
480/// where the client will ask if E can be computed shifted right by 64-bits. If
481/// this succeeds, getShiftedValue() will be called to produce the value.
482static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
483 InstCombinerImpl &IC, Instruction *CxtI) {
484 // We can always evaluate constants shifted.
485 if (isa<Constant>(V))
486 return true;
487
488 Instruction *I = dyn_cast<Instruction>(V);
489 if (!I) return false;
490
491 // We can't mutate something that has multiple uses: doing so would
492 // require duplicating the instruction in general, which isn't profitable.
493 if (!I->hasOneUse()) return false;
494
495 switch (I->getOpcode()) {
496 default: return false;
497 case Instruction::And:
498 case Instruction::Or:
499 case Instruction::Xor:
500 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
501 return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
502 canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
503
504 case Instruction::Shl:
505 case Instruction::LShr:
506 return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
507
508 case Instruction::Select: {
509 SelectInst *SI = cast<SelectInst>(I);
510 Value *TrueVal = SI->getTrueValue();
511 Value *FalseVal = SI->getFalseValue();
512 return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
513 canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
514 }
515 case Instruction::PHI: {
516 // We can change a phi if we can change all operands. Note that we never
517 // get into trouble with cyclic PHIs here because we only consider
518 // instructions with a single use.
519 PHINode *PN = cast<PHINode>(I);
520 for (Value *IncValue : PN->incoming_values())
521 if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
522 return false;
523 return true;
524 }
525 }
526}
527
528/// Fold OuterShift (InnerShift X, C1), C2.
529/// See canEvaluateShiftedShift() for the constraints on these instructions.
530static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
531 bool IsOuterShl,
532 InstCombiner::BuilderTy &Builder) {
533 bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
534 Type *ShType = InnerShift->getType();
535 unsigned TypeWidth = ShType->getScalarSizeInBits();
536
537 // We only accept shifts-by-a-constant in canEvaluateShifted().
538 const APInt *C1;
539 match(InnerShift->getOperand(1), m_APInt(C1));
540 unsigned InnerShAmt = C1->getZExtValue();
541
542 // Change the shift amount and clear the appropriate IR flags.
543 auto NewInnerShift = [&](unsigned ShAmt) {
544 InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
545 if (IsInnerShl) {
546 InnerShift->setHasNoUnsignedWrap(false);
547 InnerShift->setHasNoSignedWrap(false);
548 } else {
549 InnerShift->setIsExact(false);
550 }
551 return InnerShift;
552 };
553
554 // Two logical shifts in the same direction:
555 // shl (shl X, C1), C2 --> shl X, C1 + C2
556 // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
557 if (IsInnerShl == IsOuterShl) {
558 // If this is an oversized composite shift, then unsigned shifts get 0.
559 if (InnerShAmt + OuterShAmt >= TypeWidth)
560 return Constant::getNullValue(ShType);
561
562 return NewInnerShift(InnerShAmt + OuterShAmt);
563 }
564
565 // Equal shift amounts in opposite directions become bitwise 'and':
566 // lshr (shl X, C), C --> and X, C'
567 // shl (lshr X, C), C --> and X, C'
568 if (InnerShAmt == OuterShAmt) {
569 APInt Mask = IsInnerShl
570 ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
571 : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
572 Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
573 ConstantInt::get(ShType, Mask));
574 if (auto *AndI = dyn_cast<Instruction>(And)) {
575 AndI->moveBefore(InnerShift);
576 AndI->takeName(InnerShift);
577 }
578 return And;
579 }
580
581 assert(InnerShAmt > OuterShAmt &&(static_cast <bool> (InnerShAmt > OuterShAmt &&
"Unexpected opposite direction logical shift pair") ? void (
0) : __assert_fail ("InnerShAmt > OuterShAmt && \"Unexpected opposite direction logical shift pair\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 582
, __extension__ __PRETTY_FUNCTION__))
582 "Unexpected opposite direction logical shift pair")(static_cast <bool> (InnerShAmt > OuterShAmt &&
"Unexpected opposite direction logical shift pair") ? void (
0) : __assert_fail ("InnerShAmt > OuterShAmt && \"Unexpected opposite direction logical shift pair\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 582
, __extension__ __PRETTY_FUNCTION__))
;
583
584 // In general, we would need an 'and' for this transform, but
585 // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
586 // lshr (shl X, C1), C2 --> shl X, C1 - C2
587 // shl (lshr X, C1), C2 --> lshr X, C1 - C2
588 return NewInnerShift(InnerShAmt - OuterShAmt);
589}
590
591/// When canEvaluateShifted() returns true for an expression, this function
592/// inserts the new computation that produces the shifted value.
593static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
594 InstCombinerImpl &IC, const DataLayout &DL) {
595 // We can always evaluate constants shifted.
596 if (Constant *C = dyn_cast<Constant>(V)) {
597 if (isLeftShift)
598 return IC.Builder.CreateShl(C, NumBits);
599 else
600 return IC.Builder.CreateLShr(C, NumBits);
601 }
602
603 Instruction *I = cast<Instruction>(V);
604 IC.addToWorklist(I);
605
606 switch (I->getOpcode()) {
607 default: llvm_unreachable("Inconsistency with CanEvaluateShifted")::llvm::llvm_unreachable_internal("Inconsistency with CanEvaluateShifted"
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 607
)
;
608 case Instruction::And:
609 case Instruction::Or:
610 case Instruction::Xor:
611 // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
612 I->setOperand(
613 0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
614 I->setOperand(
615 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
616 return I;
617
618 case Instruction::Shl:
619 case Instruction::LShr:
620 return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
621 IC.Builder);
622
623 case Instruction::Select:
624 I->setOperand(
625 1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
626 I->setOperand(
627 2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
628 return I;
629 case Instruction::PHI: {
630 // We can change a phi if we can change all operands. Note that we never
631 // get into trouble with cyclic PHIs here because we only consider
632 // instructions with a single use.
633 PHINode *PN = cast<PHINode>(I);
634 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
635 PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
636 isLeftShift, IC, DL));
637 return PN;
638 }
639 }
640}
641
642// If this is a bitwise operator or add with a constant RHS we might be able
643// to pull it through a shift.
644static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
645 BinaryOperator *BO) {
646 switch (BO->getOpcode()) {
647 default:
648 return false; // Do not perform transform!
649 case Instruction::Add:
650 return Shift.getOpcode() == Instruction::Shl;
651 case Instruction::Or:
652 case Instruction::And:
653 return true;
654 case Instruction::Xor:
655 // Do not change a 'not' of logical shift because that would create a normal
656 // 'xor'. The 'not' is likely better for analysis, SCEV, and codegen.
657 return !(Shift.isLogicalShift() && match(BO, m_Not(m_Value())));
658 }
659}
660
661Instruction *InstCombinerImpl::FoldShiftByConstant(Value *Op0, Constant *Op1,
662 BinaryOperator &I) {
663 const APInt *Op1C;
664 if (!match(Op1, m_APInt(Op1C)))
665 return nullptr;
666
667 // See if we can propagate this shift into the input, this covers the trivial
668 // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
669 bool IsLeftShift = I.getOpcode() == Instruction::Shl;
670 if (I.getOpcode() != Instruction::AShr &&
671 canEvaluateShifted(Op0, Op1C->getZExtValue(), IsLeftShift, *this, &I)) {
672 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: "
<< I << "\n"; } } while (false)
673 dbgs() << "ICE: GetShiftedValue propagating shift through expression"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: "
<< I << "\n"; } } while (false)
674 " to eliminate shift:\n IN: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: "
<< I << "\n"; } } while (false)
675 << *Op0 << "\n SH: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("instcombine")) { dbgs() << "ICE: GetShiftedValue propagating shift through expression"
" to eliminate shift:\n IN: " << *Op0 << "\n SH: "
<< I << "\n"; } } while (false)
;
676
677 return replaceInstUsesWith(
678 I, getShiftedValue(Op0, Op1C->getZExtValue(), IsLeftShift, *this, DL));
679 }
680
681 // See if we can simplify any instructions used by the instruction whose sole
682 // purpose is to compute bits we don't care about.
683 Type *Ty = I.getType();
684 unsigned TypeBits = Ty->getScalarSizeInBits();
685 assert(!Op1C->uge(TypeBits) &&(static_cast <bool> (!Op1C->uge(TypeBits) &&
"Shift over the type width should have been removed already"
) ? void (0) : __assert_fail ("!Op1C->uge(TypeBits) && \"Shift over the type width should have been removed already\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 686
, __extension__ __PRETTY_FUNCTION__))
686 "Shift over the type width should have been removed already")(static_cast <bool> (!Op1C->uge(TypeBits) &&
"Shift over the type width should have been removed already"
) ? void (0) : __assert_fail ("!Op1C->uge(TypeBits) && \"Shift over the type width should have been removed already\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 686
, __extension__ __PRETTY_FUNCTION__))
;
687 (void)TypeBits;
688
689 if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
690 return FoldedShift;
691
692 if (!Op0->hasOneUse())
693 return nullptr;
694
695 if (auto *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
696 // If the operand is a bitwise operator with a constant RHS, and the
697 // shift is the only use, we can pull it out of the shift.
698 const APInt *Op0C;
699 if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
700 if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
701 Constant *NewRHS = ConstantExpr::get(
702 I.getOpcode(), cast<Constant>(Op0BO->getOperand(1)), Op1);
703
704 Value *NewShift =
705 Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
706 NewShift->takeName(Op0BO);
707
708 return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS);
709 }
710 }
711 }
712
713 // If we have a select that conditionally executes some binary operator,
714 // see if we can pull it the select and operator through the shift.
715 //
716 // For example, turning:
717 // shl (select C, (add X, C1), X), C2
718 // Into:
719 // Y = shl X, C2
720 // select C, (add Y, C1 << C2), Y
721 Value *Cond;
722 BinaryOperator *TBO;
723 Value *FalseVal;
724 if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
725 m_Value(FalseVal)))) {
726 const APInt *C;
727 if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
728 match(TBO->getOperand(1), m_APInt(C)) &&
729 canShiftBinOpWithConstantRHS(I, TBO)) {
730 Constant *NewRHS = ConstantExpr::get(
731 I.getOpcode(), cast<Constant>(TBO->getOperand(1)), Op1);
732
733 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
734 Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift, NewRHS);
735 return SelectInst::Create(Cond, NewOp, NewShift);
736 }
737 }
738
739 BinaryOperator *FBO;
740 Value *TrueVal;
741 if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
742 m_OneUse(m_BinOp(FBO))))) {
743 const APInt *C;
744 if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
745 match(FBO->getOperand(1), m_APInt(C)) &&
746 canShiftBinOpWithConstantRHS(I, FBO)) {
747 Constant *NewRHS = ConstantExpr::get(
748 I.getOpcode(), cast<Constant>(FBO->getOperand(1)), Op1);
749
750 Value *NewShift = Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
751 Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift, NewRHS);
752 return SelectInst::Create(Cond, NewShift, NewOp);
753 }
754 }
755
756 return nullptr;
757}
758
759Instruction *InstCombinerImpl::visitShl(BinaryOperator &I) {
760 const SimplifyQuery Q = SQ.getWithInstruction(&I);
761
762 if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
1
Assuming 'V' is null
2
Taking false branch
763 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
764 return replaceInstUsesWith(I, V);
765
766 if (Instruction *X = foldVectorBinop(I))
3
Assuming 'X' is null
4
Taking false branch
767 return X;
768
769 if (Instruction *V
4.1
'V' is null
4.1
'V' is null
= commonShiftTransforms(I))
5
Taking false branch
770 return V;
771
772 if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
6
Calling 'dropRedundantMaskingOfLeftShiftInput'
773 return V;
774
775 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
776 Type *Ty = I.getType();
777 unsigned BitWidth = Ty->getScalarSizeInBits();
778
779 const APInt *C;
780 if (match(Op1, m_APInt(C))) {
781 unsigned ShAmtC = C->getZExtValue();
782
783 // shl (zext X), C --> zext (shl X, C)
784 // This is only valid if X would have zeros shifted out.
785 Value *X;
786 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
787 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
788 if (ShAmtC < SrcWidth &&
789 MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmtC), 0, &I))
790 return new ZExtInst(Builder.CreateShl(X, ShAmtC), Ty);
791 }
792
793 // (X >> C) << C --> X & (-1 << C)
794 if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
795 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
796 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
797 }
798
799 const APInt *C1;
800 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(C1)))) &&
801 C1->ult(BitWidth)) {
802 unsigned ShrAmt = C1->getZExtValue();
803 if (ShrAmt < ShAmtC) {
804 // If C1 < C: (X >>?,exact C1) << C --> X << (C - C1)
805 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
806 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
807 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
808 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
809 return NewShl;
810 }
811 if (ShrAmt > ShAmtC) {
812 // If C1 > C: (X >>?exact C1) << C --> X >>?exact (C1 - C)
813 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
814 auto *NewShr = BinaryOperator::Create(
815 cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
816 NewShr->setIsExact(true);
817 return NewShr;
818 }
819 }
820
821 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_APInt(C1)))) &&
822 C1->ult(BitWidth)) {
823 unsigned ShrAmt = C1->getZExtValue();
824 if (ShrAmt < ShAmtC) {
825 // If C1 < C: (X >>? C1) << C --> (X << (C - C1)) & (-1 << C)
826 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShrAmt);
827 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
828 NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
829 NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
830 Builder.Insert(NewShl);
831 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
832 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
833 }
834 if (ShrAmt > ShAmtC) {
835 // If C1 > C: (X >>? C1) << C --> (X >>? (C1 - C)) & (-1 << C)
836 Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmtC);
837 auto *OldShr = cast<BinaryOperator>(Op0);
838 auto *NewShr =
839 BinaryOperator::Create(OldShr->getOpcode(), X, ShiftDiff);
840 NewShr->setIsExact(OldShr->isExact());
841 Builder.Insert(NewShr);
842 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
843 return BinaryOperator::CreateAnd(NewShr, ConstantInt::get(Ty, Mask));
844 }
845 }
846
847 // Similar to above, but look through an intermediate trunc instruction.
848 BinaryOperator *Shr;
849 if (match(Op0, m_OneUse(m_Trunc(m_OneUse(m_BinOp(Shr))))) &&
850 match(Shr, m_Shr(m_Value(X), m_APInt(C1)))) {
851 // The larger shift direction survives through the transform.
852 unsigned ShrAmtC = C1->getZExtValue();
853 unsigned ShDiff = ShrAmtC > ShAmtC ? ShrAmtC - ShAmtC : ShAmtC - ShrAmtC;
854 Constant *ShiftDiffC = ConstantInt::get(X->getType(), ShDiff);
855 auto ShiftOpc = ShrAmtC > ShAmtC ? Shr->getOpcode() : Instruction::Shl;
856
857 // If C1 > C:
858 // (trunc (X >> C1)) << C --> (trunc (X >> (C1 - C))) && (-1 << C)
859 // If C > C1:
860 // (trunc (X >> C1)) << C --> (trunc (X << (C - C1))) && (-1 << C)
861 Value *NewShift = Builder.CreateBinOp(ShiftOpc, X, ShiftDiffC, "sh.diff");
862 Value *Trunc = Builder.CreateTrunc(NewShift, Ty, "tr.sh.diff");
863 APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmtC));
864 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, Mask));
865 }
866
867 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
868 unsigned AmtSum = ShAmtC + C1->getZExtValue();
869 // Oversized shifts are simplified to zero in InstSimplify.
870 if (AmtSum < BitWidth)
871 // (X << C1) << C2 --> X << (C1 + C2)
872 return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
873 }
874
875 // If we have an opposite shift by the same amount, we may be able to
876 // reorder binops and shifts to eliminate math/logic.
877 auto isSuitableBinOpcode = [](Instruction::BinaryOps BinOpcode) {
878 switch (BinOpcode) {
879 default:
880 return false;
881 case Instruction::Add:
882 case Instruction::And:
883 case Instruction::Or:
884 case Instruction::Xor:
885 case Instruction::Sub:
886 // NOTE: Sub is not commutable and the tranforms below may not be valid
887 // when the shift-right is operand 1 (RHS) of the sub.
888 return true;
889 }
890 };
891 BinaryOperator *Op0BO;
892 if (match(Op0, m_OneUse(m_BinOp(Op0BO))) &&
893 isSuitableBinOpcode(Op0BO->getOpcode())) {
894 // Commute so shift-right is on LHS of the binop.
895 // (Y bop (X >> C)) << C -> ((X >> C) bop Y) << C
896 // (Y bop ((X >> C) & CC)) << C -> (((X >> C) & CC) bop Y) << C
897 Value *Shr = Op0BO->getOperand(0);
898 Value *Y = Op0BO->getOperand(1);
899 Value *X;
900 const APInt *CC;
901 if (Op0BO->isCommutative() && Y->hasOneUse() &&
902 (match(Y, m_Shr(m_Value(), m_Specific(Op1))) ||
903 match(Y, m_And(m_OneUse(m_Shr(m_Value(), m_Specific(Op1))),
904 m_APInt(CC)))))
905 std::swap(Shr, Y);
906
907 // ((X >> C) bop Y) << C -> (X bop (Y << C)) & (~0 << C)
908 if (match(Shr, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
909 // Y << C
910 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
911 // (X bop (Y << C))
912 Value *B =
913 Builder.CreateBinOp(Op0BO->getOpcode(), X, YS, Shr->getName());
914 unsigned Op1Val = C->getLimitedValue(BitWidth);
915 APInt Bits = APInt::getHighBitsSet(BitWidth, BitWidth - Op1Val);
916 Constant *Mask = ConstantInt::get(Ty, Bits);
917 return BinaryOperator::CreateAnd(B, Mask);
918 }
919
920 // (((X >> C) & CC) bop Y) << C -> (X & (CC << C)) bop (Y << C)
921 if (match(Shr,
922 m_OneUse(m_And(m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))),
923 m_APInt(CC))))) {
924 // Y << C
925 Value *YS = Builder.CreateShl(Y, Op1, Op0BO->getName());
926 // X & (CC << C)
927 Value *M = Builder.CreateAnd(X, ConstantInt::get(Ty, CC->shl(*C)),
928 X->getName() + ".mask");
929 return BinaryOperator::Create(Op0BO->getOpcode(), M, YS);
930 }
931 }
932
933 // (C1 - X) << C --> (C1 << C) - (X << C)
934 if (match(Op0, m_OneUse(m_Sub(m_APInt(C1), m_Value(X))))) {
935 Constant *NewLHS = ConstantInt::get(Ty, C1->shl(*C));
936 Value *NewShift = Builder.CreateShl(X, Op1);
937 return BinaryOperator::CreateSub(NewLHS, NewShift);
938 }
939
940 // If the shifted-out value is known-zero, then this is a NUW shift.
941 if (!I.hasNoUnsignedWrap() &&
942 MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmtC), 0,
943 &I)) {
944 I.setHasNoUnsignedWrap();
945 return &I;
946 }
947
948 // If the shifted-out value is all signbits, then this is a NSW shift.
949 if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmtC) {
950 I.setHasNoSignedWrap();
951 return &I;
952 }
953 }
954
955 // Transform (x >> y) << y to x & (-1 << y)
956 // Valid for any type of right-shift.
957 Value *X;
958 if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
959 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
960 Value *Mask = Builder.CreateShl(AllOnes, Op1);
961 return BinaryOperator::CreateAnd(Mask, X);
962 }
963
964 Constant *C1;
965 if (match(Op1, m_Constant(C1))) {
966 Constant *C2;
967 Value *X;
968 // (C2 << X) << C1 --> (C2 << C1) << X
969 if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
970 return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
971
972 // (X * C2) << C1 --> X * (C2 << C1)
973 if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
974 return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
975
976 // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
977 if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
978 auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
979 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
980 }
981 }
982
983 // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
984 if (match(Op0, m_One()) &&
985 match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
986 return BinaryOperator::CreateLShr(
987 ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
988
989 return nullptr;
990}
991
992Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
993 if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
994 SQ.getWithInstruction(&I)))
995 return replaceInstUsesWith(I, V);
996
997 if (Instruction *X = foldVectorBinop(I))
998 return X;
999
1000 if (Instruction *R = commonShiftTransforms(I))
1001 return R;
1002
1003 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1004 Type *Ty = I.getType();
1005 const APInt *C;
1006 if (match(Op1, m_APInt(C))) {
1007 unsigned ShAmtC = C->getZExtValue();
1008 unsigned BitWidth = Ty->getScalarSizeInBits();
1009 auto *II = dyn_cast<IntrinsicInst>(Op0);
1010 if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmtC &&
1011 (II->getIntrinsicID() == Intrinsic::ctlz ||
1012 II->getIntrinsicID() == Intrinsic::cttz ||
1013 II->getIntrinsicID() == Intrinsic::ctpop)) {
1014 // ctlz.i32(x)>>5 --> zext(x == 0)
1015 // cttz.i32(x)>>5 --> zext(x == 0)
1016 // ctpop.i32(x)>>5 --> zext(x == -1)
1017 bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1018 Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1019 Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1020 return new ZExtInst(Cmp, Ty);
1021 }
1022
1023 Value *X;
1024 const APInt *C1;
1025 if (match(Op0, m_Shl(m_Value(X), m_APInt(C1))) && C1->ult(BitWidth)) {
1026 if (C1->ult(ShAmtC)) {
1027 unsigned ShlAmtC = C1->getZExtValue();
1028 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmtC - ShlAmtC);
1029 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1030 // (X <<nuw C1) >>u C --> X >>u (C - C1)
1031 auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1032 NewLShr->setIsExact(I.isExact());
1033 return NewLShr;
1034 }
1035 // (X << C1) >>u C --> (X >>u (C - C1)) & (-1 >> C)
1036 Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1037 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1038 return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1039 }
1040 if (C1->ugt(ShAmtC)) {
1041 unsigned ShlAmtC = C1->getZExtValue();
1042 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmtC - ShAmtC);
1043 if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1044 // (X <<nuw C1) >>u C --> X <<nuw (C1 - C)
1045 auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1046 NewShl->setHasNoUnsignedWrap(true);
1047 return NewShl;
1048 }
1049 // (X << C1) >>u C --> X << (C1 - C) & (-1 >> C)
1050 Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1051 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1052 return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1053 }
1054 assert(*C1 == ShAmtC)(static_cast <bool> (*C1 == ShAmtC) ? void (0) : __assert_fail
("*C1 == ShAmtC", "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp"
, 1054, __extension__ __PRETTY_FUNCTION__))
;
1055 // (X << C) >>u C --> X & (-1 >>u C)
1056 APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1057 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1058 }
1059
1060 // ((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)
1061 // TODO: Consolidate with the more general transform that starts from shl
1062 // (the shifts are in the opposite order).
1063 Value *Y;
1064 if (match(Op0,
1065 m_OneUse(m_c_Add(m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))),
1066 m_Value(Y))))) {
1067 Value *NewLshr = Builder.CreateLShr(Y, Op1);
1068 Value *NewAdd = Builder.CreateAdd(NewLshr, X);
1069 unsigned Op1Val = C->getLimitedValue(BitWidth);
1070 APInt Bits = APInt::getLowBitsSet(BitWidth, BitWidth - Op1Val);
1071 Constant *Mask = ConstantInt::get(Ty, Bits);
1072 return BinaryOperator::CreateAnd(NewAdd, Mask);
1073 }
1074
1075 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1076 (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1077 assert(ShAmtC < X->getType()->getScalarSizeInBits() &&(static_cast <bool> (ShAmtC < X->getType()->getScalarSizeInBits
() && "Big shift not simplified to zero?") ? void (0)
: __assert_fail ("ShAmtC < X->getType()->getScalarSizeInBits() && \"Big shift not simplified to zero?\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 1078
, __extension__ __PRETTY_FUNCTION__))
1078 "Big shift not simplified to zero?")(static_cast <bool> (ShAmtC < X->getType()->getScalarSizeInBits
() && "Big shift not simplified to zero?") ? void (0)
: __assert_fail ("ShAmtC < X->getType()->getScalarSizeInBits() && \"Big shift not simplified to zero?\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 1078
, __extension__ __PRETTY_FUNCTION__))
;
1079 // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1080 Value *NewLShr = Builder.CreateLShr(X, ShAmtC);
1081 return new ZExtInst(NewLShr, Ty);
1082 }
1083
1084 if (match(Op0, m_SExt(m_Value(X)))) {
1085 unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1086 // lshr (sext i1 X to iN), C --> select (X, -1 >> C, 0)
1087 if (SrcTyBitWidth == 1) {
1088 auto *NewC = ConstantInt::get(
1089 Ty, APInt::getLowBitsSet(BitWidth, BitWidth - ShAmtC));
1090 return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1091 }
1092
1093 if ((!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType())) &&
1094 Op0->hasOneUse()) {
1095 // Are we moving the sign bit to the low bit and widening with high
1096 // zeros? lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1097 if (ShAmtC == BitWidth - 1) {
1098 Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1099 return new ZExtInst(NewLShr, Ty);
1100 }
1101
1102 // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1103 if (ShAmtC == BitWidth - SrcTyBitWidth) {
1104 // The new shift amount can't be more than the narrow source type.
1105 unsigned NewShAmt = std::min(ShAmtC, SrcTyBitWidth - 1);
1106 Value *AShr = Builder.CreateAShr(X, NewShAmt);
1107 return new ZExtInst(AShr, Ty);
1108 }
1109 }
1110 }
1111
1112 if (ShAmtC == BitWidth - 1) {
1113 // lshr i32 or(X,-X), 31 --> zext (X != 0)
1114 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1115 return new ZExtInst(Builder.CreateIsNotNull(X), Ty);
1116
1117 // lshr i32 (X -nsw Y), 31 --> zext (X < Y)
1118 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1119 return new ZExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1120
1121 // Check if a number is negative and odd:
1122 // lshr i32 (srem X, 2), 31 --> and (X >> 31), X
1123 if (match(Op0, m_OneUse(m_SRem(m_Value(X), m_SpecificInt(2))))) {
1124 Value *Signbit = Builder.CreateLShr(X, ShAmtC);
1125 return BinaryOperator::CreateAnd(Signbit, X);
1126 }
1127 }
1128
1129 // (X >>u C1) >>u C --> X >>u (C1 + C)
1130 if (match(Op0, m_LShr(m_Value(X), m_APInt(C1)))) {
1131 // Oversized shifts are simplified to zero in InstSimplify.
1132 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1133 if (AmtSum < BitWidth)
1134 return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1135 }
1136
1137 Instruction *TruncSrc;
1138 if (match(Op0, m_OneUse(m_Trunc(m_Instruction(TruncSrc)))) &&
1139 match(TruncSrc, m_LShr(m_Value(X), m_APInt(C1)))) {
1140 unsigned SrcWidth = X->getType()->getScalarSizeInBits();
1141 unsigned AmtSum = ShAmtC + C1->getZExtValue();
1142
1143 // If the combined shift fits in the source width:
1144 // (trunc (X >>u C1)) >>u C --> and (trunc (X >>u (C1 + C)), MaskC
1145 //
1146 // If the first shift covers the number of bits truncated, then the
1147 // mask instruction is eliminated (and so the use check is relaxed).
1148 if (AmtSum < SrcWidth &&
1149 (TruncSrc->hasOneUse() || C1->uge(SrcWidth - BitWidth))) {
1150 Value *SumShift = Builder.CreateLShr(X, AmtSum, "sum.shift");
1151 Value *Trunc = Builder.CreateTrunc(SumShift, Ty, I.getName());
1152
1153 // If the first shift does not cover the number of bits truncated, then
1154 // we require a mask to get rid of high bits in the result.
1155 APInt MaskC = APInt::getAllOnes(BitWidth).lshr(ShAmtC);
1156 return BinaryOperator::CreateAnd(Trunc, ConstantInt::get(Ty, MaskC));
1157 }
1158 }
1159
1160 // Look for a "splat" mul pattern - it replicates bits across each half of
1161 // a value, so a right shift is just a mask of the low bits:
1162 // lshr i32 (mul nuw X, Pow2+1), 16 --> and X, Pow2-1
1163 // TODO: Generalize to allow more than just half-width shifts?
1164 const APInt *MulC;
1165 if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC))) &&
1166 ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
1167 MulC->logBase2() == ShAmtC)
1168 return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
1169
1170 // If the shifted-out value is known-zero, then this is an exact shift.
1171 if (!I.isExact() &&
1172 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmtC), 0, &I)) {
1173 I.setIsExact();
1174 return &I;
1175 }
1176 }
1177
1178 // Transform (x << y) >> y to x & (-1 >> y)
1179 Value *X;
1180 if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1181 Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1182 Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1183 return BinaryOperator::CreateAnd(Mask, X);
1184 }
1185
1186 return nullptr;
1187}
1188
1189Instruction *
1190InstCombinerImpl::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1191 BinaryOperator &OldAShr) {
1192 assert(OldAShr.getOpcode() == Instruction::AShr &&(static_cast <bool> (OldAShr.getOpcode() == Instruction
::AShr && "Must be called with arithmetic right-shift instruction only."
) ? void (0) : __assert_fail ("OldAShr.getOpcode() == Instruction::AShr && \"Must be called with arithmetic right-shift instruction only.\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 1193
, __extension__ __PRETTY_FUNCTION__))
1193 "Must be called with arithmetic right-shift instruction only.")(static_cast <bool> (OldAShr.getOpcode() == Instruction
::AShr && "Must be called with arithmetic right-shift instruction only."
) ? void (0) : __assert_fail ("OldAShr.getOpcode() == Instruction::AShr && \"Must be called with arithmetic right-shift instruction only.\""
, "llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp", 1193
, __extension__ __PRETTY_FUNCTION__))
;
1194
1195 // Check that constant C is a splat of the element-wise bitwidth of V.
1196 auto BitWidthSplat = [](Constant *C, Value *V) {
1197 return match(
1198 C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1199 APInt(C->getType()->getScalarSizeInBits(),
1200 V->getType()->getScalarSizeInBits())));
1201 };
1202
1203 // It should look like variable-length sign-extension on the outside:
1204 // (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1205 Value *NBits;
1206 Instruction *MaybeTrunc;
1207 Constant *C1, *C2;
1208 if (!match(&OldAShr,
1209 m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1210 m_ZExtOrSelf(m_Sub(m_Constant(C1),
1211 m_ZExtOrSelf(m_Value(NBits))))),
1212 m_ZExtOrSelf(m_Sub(m_Constant(C2),
1213 m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1214 !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1215 return nullptr;
1216
1217 // There may or may not be a truncation after outer two shifts.
1218 Instruction *HighBitExtract;
1219 match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1220 bool HadTrunc = MaybeTrunc != HighBitExtract;
1221
1222 // And finally, the innermost part of the pattern must be a right-shift.
1223 Value *X, *NumLowBitsToSkip;
1224 if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1225 return nullptr;
1226
1227 // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1228 Constant *C0;
1229 if (!match(NumLowBitsToSkip,
1230 m_ZExtOrSelf(
1231 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1232 !BitWidthSplat(C0, HighBitExtract))
1233 return nullptr;
1234
1235 // Since the NBits is identical for all shifts, if the outermost and
1236 // innermost shifts are identical, then outermost shifts are redundant.
1237 // If we had truncation, do keep it though.
1238 if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1239 return replaceInstUsesWith(OldAShr, MaybeTrunc);
1240
1241 // Else, if there was a truncation, then we need to ensure that one
1242 // instruction will go away.
1243 if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1244 return nullptr;
1245
1246 // Finally, bypass two innermost shifts, and perform the outermost shift on
1247 // the operands of the innermost shift.
1248 Instruction *NewAShr =
1249 BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1250 NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1251 if (!HadTrunc)
1252 return NewAShr;
1253
1254 Builder.Insert(NewAShr);
1255 return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1256}
1257
1258Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
1259 if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1260 SQ.getWithInstruction(&I)))
1261 return replaceInstUsesWith(I, V);
1262
1263 if (Instruction *X = foldVectorBinop(I))
1264 return X;
1265
1266 if (Instruction *R = commonShiftTransforms(I))
1267 return R;
1268
1269 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1270 Type *Ty = I.getType();
1271 unsigned BitWidth = Ty->getScalarSizeInBits();
1272 const APInt *ShAmtAPInt;
1273 if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1274 unsigned ShAmt = ShAmtAPInt->getZExtValue();
1275
1276 // If the shift amount equals the difference in width of the destination
1277 // and source scalar types:
1278 // ashr (shl (zext X), C), C --> sext X
1279 Value *X;
1280 if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1281 ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1282 return new SExtInst(X, Ty);
1283
1284 // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1285 // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1286 const APInt *ShOp1;
1287 if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1288 ShOp1->ult(BitWidth)) {
1289 unsigned ShlAmt = ShOp1->getZExtValue();
1290 if (ShlAmt < ShAmt) {
1291 // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1292 Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1293 auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1294 NewAShr->setIsExact(I.isExact());
1295 return NewAShr;
1296 }
1297 if (ShlAmt > ShAmt) {
1298 // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1299 Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1300 auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1301 NewShl->setHasNoSignedWrap(true);
1302 return NewShl;
1303 }
1304 }
1305
1306 if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1307 ShOp1->ult(BitWidth)) {
1308 unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1309 // Oversized arithmetic shifts replicate the sign bit.
1310 AmtSum = std::min(AmtSum, BitWidth - 1);
1311 // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1312 return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1313 }
1314
1315 if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1316 (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1317 // ashr (sext X), C --> sext (ashr X, C')
1318 Type *SrcTy = X->getType();
1319 ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1320 Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1321 return new SExtInst(NewSh, Ty);
1322 }
1323
1324 if (ShAmt == BitWidth - 1) {
1325 // ashr i32 or(X,-X), 31 --> sext (X != 0)
1326 if (match(Op0, m_OneUse(m_c_Or(m_Neg(m_Value(X)), m_Deferred(X)))))
1327 return new SExtInst(Builder.CreateIsNotNull(X), Ty);
1328
1329 // ashr i32 (X -nsw Y), 31 --> sext (X < Y)
1330 Value *Y;
1331 if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
1332 return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
1333 }
1334
1335 // If the shifted-out value is known-zero, then this is an exact shift.
1336 if (!I.isExact() &&
1337 MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1338 I.setIsExact();
1339 return &I;
1340 }
1341 }
1342
1343 // Prefer `-(x & 1)` over `(x << (bitwidth(x)-1)) a>> (bitwidth(x)-1)`
1344 // as the pattern to splat the lowest bit.
1345 // FIXME: iff X is already masked, we don't need the one-use check.
1346 Value *X;
1347 if (match(Op1, m_SpecificIntAllowUndef(BitWidth - 1)) &&
1348 match(Op0, m_OneUse(m_Shl(m_Value(X),
1349 m_SpecificIntAllowUndef(BitWidth - 1))))) {
1350 Constant *Mask = ConstantInt::get(Ty, 1);
1351 // Retain the knowledge about the ignored lanes.
1352 Mask = Constant::mergeUndefsWith(
1353 Constant::mergeUndefsWith(Mask, cast<Constant>(Op1)),
1354 cast<Constant>(cast<Instruction>(Op0)->getOperand(1)));
1355 X = Builder.CreateAnd(X, Mask);
1356 return BinaryOperator::CreateNeg(X);
1357 }
1358
1359 if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1360 return R;
1361
1362 // See if we can turn a signed shr into an unsigned shr.
1363 if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1364 return BinaryOperator::CreateLShr(Op0, Op1);
1365
1366 // ashr (xor %x, -1), %y --> xor (ashr %x, %y), -1
1367 if (match(Op0, m_OneUse(m_Not(m_Value(X))))) {
1368 // Note that we must drop 'exact'-ness of the shift!
1369 // Note that we can't keep undef's in -1 vector constant!
1370 auto *NewAShr = Builder.CreateAShr(X, Op1, Op0->getName() + ".not");
1371 return BinaryOperator::CreateNot(NewAShr);
1372 }
1373
1374 return nullptr;
1375}

/build/llvm-toolchain-snapshot-14~++20220119111520+da61cb019eb2/llvm/include/llvm/IR/PatternMatch.h

1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InstrTypes.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Value.h"
43#include "llvm/Support/Casting.h"
44#include <cstdint>
45
46namespace llvm {
47namespace PatternMatch {
48
49template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
19
Returning without writing to 'P.L.VR'
51}
52
53template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55}
56
57template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65};
66
67template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69}
70
71template <typename Class> struct class_match {
72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73};
74
75/// Match an arbitrary value and ignore it.
76inline class_match<Value> m_Value() { return class_match<Value>(); }
77
78/// Match an arbitrary unary operation and ignore it.
79inline class_match<UnaryOperator> m_UnOp() {
80 return class_match<UnaryOperator>();
81}
82
83/// Match an arbitrary binary operation and ignore it.
84inline class_match<BinaryOperator> m_BinOp() {
85 return class_match<BinaryOperator>();
86}
87
88/// Matches any compare instruction and ignore it.
89inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90
91struct undef_match {
92 static bool check(const Value *V) {
93 if (isa<UndefValue>(V))
94 return true;
95
96 const auto *CA = dyn_cast<ConstantAggregate>(V);
97 if (!CA)
98 return false;
99
100 SmallPtrSet<const ConstantAggregate *, 8> Seen;
101 SmallVector<const ConstantAggregate *, 8> Worklist;
102
103 // Either UndefValue, PoisonValue, or an aggregate that only contains
104 // these is accepted by matcher.
105 // CheckValue returns false if CA cannot satisfy this constraint.
106 auto CheckValue = [&](const ConstantAggregate *CA) {
107 for (const Value *Op : CA->operand_values()) {
108 if (isa<UndefValue>(Op))
109 continue;
110
111 const auto *CA = dyn_cast<ConstantAggregate>(Op);
112 if (!CA)
113 return false;
114 if (Seen.insert(CA).second)
115 Worklist.emplace_back(CA);
116 }
117
118 return true;
119 };
120
121 if (!CheckValue(CA))
122 return false;
123
124 while (!Worklist.empty()) {
125 if (!CheckValue(Worklist.pop_back_val()))
126 return false;
127 }
128 return true;
129 }
130 template <typename ITy> bool match(ITy *V) { return check(V); }
131};
132
133/// Match an arbitrary undef constant. This matches poison as well.
134/// If this is an aggregate and contains a non-aggregate element that is
135/// neither undef nor poison, the aggregate is not matched.
136inline auto m_Undef() { return undef_match(); }
137
138/// Match an arbitrary poison constant.
139inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
140
141/// Match an arbitrary Constant and ignore it.
142inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
143
144/// Match an arbitrary ConstantInt and ignore it.
145inline class_match<ConstantInt> m_ConstantInt() {
146 return class_match<ConstantInt>();
147}
148
149/// Match an arbitrary ConstantFP and ignore it.
150inline class_match<ConstantFP> m_ConstantFP() {
151 return class_match<ConstantFP>();
152}
153
154/// Match an arbitrary ConstantExpr and ignore it.
155inline class_match<ConstantExpr> m_ConstantExpr() {
156 return class_match<ConstantExpr>();
157}
158
159/// Match an arbitrary basic block value and ignore it.
160inline class_match<BasicBlock> m_BasicBlock() {
161 return class_match<BasicBlock>();
162}
163
164/// Inverting matcher
165template <typename Ty> struct match_unless {
166 Ty M;
167
168 match_unless(const Ty &Matcher) : M(Matcher) {}
169
170 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
171};
172
173/// Match if the inner matcher does *NOT* match.
174template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
175 return match_unless<Ty>(M);
176}
177
178/// Matching combinators
179template <typename LTy, typename RTy> struct match_combine_or {
180 LTy L;
181 RTy R;
182
183 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
184
185 template <typename ITy> bool match(ITy *V) {
186 if (L.match(V))
187 return true;
188 if (R.match(V))
189 return true;
190 return false;
191 }
192};
193
194template <typename LTy, typename RTy> struct match_combine_and {
195 LTy L;
196 RTy R;
197
198 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
199
200 template <typename ITy> bool match(ITy *V) {
201 if (L.match(V))
202 if (R.match(V))
203 return true;
204 return false;
205 }
206};
207
208/// Combine two pattern matchers matching L || R
209template <typename LTy, typename RTy>
210inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
211 return match_combine_or<LTy, RTy>(L, R);
212}
213
214/// Combine two pattern matchers matching L && R
215template <typename LTy, typename RTy>
216inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
217 return match_combine_and<LTy, RTy>(L, R);
30
Returning without writing to 'L.Op.VR'
218}
219
220struct apint_match {
221 const APInt *&Res;
222 bool AllowUndef;
223
224 apint_match(const APInt *&Res, bool AllowUndef)
225 : Res(Res), AllowUndef(AllowUndef) {}
226
227 template <typename ITy> bool match(ITy *V) {
228 if (auto *CI = dyn_cast<ConstantInt>(V)) {
229 Res = &CI->getValue();
230 return true;
231 }
232 if (V->getType()->isVectorTy())
233 if (const auto *C = dyn_cast<Constant>(V))
234 if (auto *CI = dyn_cast_or_null<ConstantInt>(
235 C->getSplatValue(AllowUndef))) {
236 Res = &CI->getValue();
237 return true;
238 }
239 return false;
240 }
241};
242// Either constexpr if or renaming ConstantFP::getValueAPF to
243// ConstantFP::getValue is needed to do it via single template
244// function for both apint/apfloat.
245struct apfloat_match {
246 const APFloat *&Res;
247 bool AllowUndef;
248
249 apfloat_match(const APFloat *&Res, bool AllowUndef)
250 : Res(Res), AllowUndef(AllowUndef) {}
251
252 template <typename ITy> bool match(ITy *V) {
253 if (auto *CI = dyn_cast<ConstantFP>(V)) {
254 Res = &CI->getValueAPF();
255 return true;
256 }
257 if (V->getType()->isVectorTy())
258 if (const auto *C = dyn_cast<Constant>(V))
259 if (auto *CI = dyn_cast_or_null<ConstantFP>(
260 C->getSplatValue(AllowUndef))) {
261 Res = &CI->getValueAPF();
262 return true;
263 }
264 return false;
265 }
266};
267
268/// Match a ConstantInt or splatted ConstantVector, binding the
269/// specified pointer to the contained APInt.
270inline apint_match m_APInt(const APInt *&Res) {
271 // Forbid undefs by default to maintain previous behavior.
272 return apint_match(Res, /* AllowUndef */ false);
273}
274
275/// Match APInt while allowing undefs in splat vector constants.
276inline apint_match m_APIntAllowUndef(const APInt *&Res) {
277 return apint_match(Res, /* AllowUndef */ true);
278}
279
280/// Match APInt while forbidding undefs in splat vector constants.
281inline apint_match m_APIntForbidUndef(const APInt *&Res) {
282 return apint_match(Res, /* AllowUndef */ false);
283}
284
285/// Match a ConstantFP or splatted ConstantVector, binding the
286/// specified pointer to the contained APFloat.
287inline apfloat_match m_APFloat(const APFloat *&Res) {
288 // Forbid undefs by default to maintain previous behavior.
289 return apfloat_match(Res, /* AllowUndef */ false);
290}
291
292/// Match APFloat while allowing undefs in splat vector constants.
293inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
294 return apfloat_match(Res, /* AllowUndef */ true);
295}
296
297/// Match APFloat while forbidding undefs in splat vector constants.
298inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
299 return apfloat_match(Res, /* AllowUndef */ false);
300}
301
302template <int64_t Val> struct constantint_match {
303 template <typename ITy> bool match(ITy *V) {
304 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
305 const APInt &CIV = CI->getValue();
306 if (Val >= 0)
307 return CIV == static_cast<uint64_t>(Val);
308 // If Val is negative, and CI is shorter than it, truncate to the right
309 // number of bits. If it is larger, then we have to sign extend. Just
310 // compare their negated values.
311 return -CIV == -Val;
312 }
313 return false;
314 }
315};
316
317/// Match a ConstantInt with a specific value.
318template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
319 return constantint_match<Val>();
320}
321
322/// This helper class is used to match constant scalars, vector splats,
323/// and fixed width vectors that satisfy a specified predicate.
324/// For fixed width vector constants, undefined elements are ignored.
325template <typename Predicate, typename ConstantVal>
326struct cstval_pred_ty : public Predicate {
327 template <typename ITy> bool match(ITy *V) {
328 if (const auto *CV = dyn_cast<ConstantVal>(V))
329 return this->isValue(CV->getValue());
330 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
331 if (const auto *C = dyn_cast<Constant>(V)) {
332 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
333 return this->isValue(CV->getValue());
334
335 // Number of elements of a scalable vector unknown at compile time
336 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
337 if (!FVTy)
338 return false;
339
340 // Non-splat vector constant: check each element for a match.
341 unsigned NumElts = FVTy->getNumElements();
342 assert(NumElts != 0 && "Constant vector with no elements?")(static_cast <bool> (NumElts != 0 && "Constant vector with no elements?"
) ? void (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "llvm/include/llvm/IR/PatternMatch.h", 342, __extension__ __PRETTY_FUNCTION__
))
;
343 bool HasNonUndefElements = false;
344 for (unsigned i = 0; i != NumElts; ++i) {
345 Constant *Elt = C->getAggregateElement(i);
346 if (!Elt)
347 return false;
348 if (isa<UndefValue>(Elt))
349 continue;
350 auto *CV = dyn_cast<ConstantVal>(Elt);
351 if (!CV || !this->isValue(CV->getValue()))
352 return false;
353 HasNonUndefElements = true;
354 }
355 return HasNonUndefElements;
356 }
357 }
358 return false;
359 }
360};
361
362/// specialization of cstval_pred_ty for ConstantInt
363template <typename Predicate>
364using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
365
366/// specialization of cstval_pred_ty for ConstantFP
367template <typename Predicate>
368using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
369
370/// This helper class is used to match scalar and vector constants that
371/// satisfy a specified predicate, and bind them to an APInt.
372template <typename Predicate> struct api_pred_ty : public Predicate {
373 const APInt *&Res;
374
375 api_pred_ty(const APInt *&R) : Res(R) {}
376
377 template <typename ITy> bool match(ITy *V) {
378 if (const auto *CI = dyn_cast<ConstantInt>(V))
379 if (this->isValue(CI->getValue())) {
380 Res = &CI->getValue();
381 return true;
382 }
383 if (V->getType()->isVectorTy())
384 if (const auto *C = dyn_cast<Constant>(V))
385 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
386 if (this->isValue(CI->getValue())) {
387 Res = &CI->getValue();
388 return true;
389 }
390
391 return false;
392 }
393};
394
395/// This helper class is used to match scalar and vector constants that
396/// satisfy a specified predicate, and bind them to an APFloat.
397/// Undefs are allowed in splat vector constants.
398template <typename Predicate> struct apf_pred_ty : public Predicate {
399 const APFloat *&Res;
400
401 apf_pred_ty(const APFloat *&R) : Res(R) {}
402
403 template <typename ITy> bool match(ITy *V) {
404 if (const auto *CI = dyn_cast<ConstantFP>(V))
405 if (this->isValue(CI->getValue())) {
406 Res = &CI->getValue();
407 return true;
408 }
409 if (V->getType()->isVectorTy())
410 if (const auto *C = dyn_cast<Constant>(V))
411 if (auto *CI = dyn_cast_or_null<ConstantFP>(
412 C->getSplatValue(/* AllowUndef */ true)))
413 if (this->isValue(CI->getValue())) {
414 Res = &CI->getValue();
415 return true;
416 }
417
418 return false;
419 }
420};
421
422///////////////////////////////////////////////////////////////////////////////
423//
424// Encapsulate constant value queries for use in templated predicate matchers.
425// This allows checking if constants match using compound predicates and works
426// with vector constants, possibly with relaxed constraints. For example, ignore
427// undef values.
428//
429///////////////////////////////////////////////////////////////////////////////
430
431struct is_any_apint {
432 bool isValue(const APInt &C) { return true; }
433};
434/// Match an integer or vector with any integral constant.
435/// For vectors, this includes constants with undefined elements.
436inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
437 return cst_pred_ty<is_any_apint>();
438}
439
440struct is_all_ones {
441 bool isValue(const APInt &C) { return C.isAllOnes(); }
442};
443/// Match an integer or vector with all bits set.
444/// For vectors, this includes constants with undefined elements.
445inline cst_pred_ty<is_all_ones> m_AllOnes() {
446 return cst_pred_ty<is_all_ones>();
447}
448
449struct is_maxsignedvalue {
450 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
451};
452/// Match an integer or vector with values having all bits except for the high
453/// bit set (0x7f...).
454/// For vectors, this includes constants with undefined elements.
455inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
456 return cst_pred_ty<is_maxsignedvalue>();
457}
458inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
459 return V;
460}
461
462struct is_negative {
463 bool isValue(const APInt &C) { return C.isNegative(); }
464};
465/// Match an integer or vector of negative values.
466/// For vectors, this includes constants with undefined elements.
467inline cst_pred_ty<is_negative> m_Negative() {
468 return cst_pred_ty<is_negative>();
469}
470inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
471 return V;
472}
473
474struct is_nonnegative {
475 bool isValue(const APInt &C) { return C.isNonNegative(); }
476};
477/// Match an integer or vector of non-negative values.
478/// For vectors, this includes constants with undefined elements.
479inline cst_pred_ty<is_nonnegative> m_NonNegative() {
480 return cst_pred_ty<is_nonnegative>();
481}
482inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
483 return V;
484}
485
486struct is_strictlypositive {
487 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
488};
489/// Match an integer or vector of strictly positive values.
490/// For vectors, this includes constants with undefined elements.
491inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
492 return cst_pred_ty<is_strictlypositive>();
493}
494inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
495 return V;
496}
497
498struct is_nonpositive {
499 bool isValue(const APInt &C) { return C.isNonPositive(); }
500};
501/// Match an integer or vector of non-positive values.
502/// For vectors, this includes constants with undefined elements.
503inline cst_pred_ty<is_nonpositive> m_NonPositive() {
504 return cst_pred_ty<is_nonpositive>();
505}
506inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
507
508struct is_one {
509 bool isValue(const APInt &C) { return C.isOne(); }
510};
511/// Match an integer 1 or a vector with all elements equal to 1.
512/// For vectors, this includes constants with undefined elements.
513inline cst_pred_ty<is_one> m_One() {
514 return cst_pred_ty<is_one>();
515}
516
517struct is_zero_int {
518 bool isValue(const APInt &C) { return C.isZero(); }
519};
520/// Match an integer 0 or a vector with all elements equal to 0.
521/// For vectors, this includes constants with undefined elements.
522inline cst_pred_ty<is_zero_int> m_ZeroInt() {
523 return cst_pred_ty<is_zero_int>();
524}
525
526struct is_zero {
527 template <typename ITy> bool match(ITy *V) {
528 auto *C = dyn_cast<Constant>(V);
529 // FIXME: this should be able to do something for scalable vectors
530 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
531 }
532};
533/// Match any null constant or a vector with all elements equal to 0.
534/// For vectors, this includes constants with undefined elements.
535inline is_zero m_Zero() {
536 return is_zero();
537}
538
539struct is_power2 {
540 bool isValue(const APInt &C) { return C.isPowerOf2(); }
541};
542/// Match an integer or vector power-of-2.
543/// For vectors, this includes constants with undefined elements.
544inline cst_pred_ty<is_power2> m_Power2() {
545 return cst_pred_ty<is_power2>();
546}
547inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
548 return V;
549}
550
551struct is_negated_power2 {
552 bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
553};
554/// Match a integer or vector negated power-of-2.
555/// For vectors, this includes constants with undefined elements.
556inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
557 return cst_pred_ty<is_negated_power2>();
558}
559inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
560 return V;
561}
562
563struct is_power2_or_zero {
564 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
565};
566/// Match an integer or vector of 0 or power-of-2 values.
567/// For vectors, this includes constants with undefined elements.
568inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
569 return cst_pred_ty<is_power2_or_zero>();
570}
571inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
572 return V;
573}
574
575struct is_sign_mask {
576 bool isValue(const APInt &C) { return C.isSignMask(); }
577};
578/// Match an integer or vector with only the sign bit(s) set.
579/// For vectors, this includes constants with undefined elements.
580inline cst_pred_ty<is_sign_mask> m_SignMask() {
581 return cst_pred_ty<is_sign_mask>();
582}
583
584struct is_lowbit_mask {
585 bool isValue(const APInt &C) { return C.isMask(); }
586};
587/// Match an integer or vector with only the low bit(s) set.
588/// For vectors, this includes constants with undefined elements.
589inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
590 return cst_pred_ty<is_lowbit_mask>();
591}
592inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) {
593 return V;
594}
595
596struct icmp_pred_with_threshold {
597 ICmpInst::Predicate Pred;
598 const APInt *Thr;
599 bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
600};
601/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
602/// to Threshold. For vectors, this includes constants with undefined elements.
603inline cst_pred_ty<icmp_pred_with_threshold>
604m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
605 cst_pred_ty<icmp_pred_with_threshold> P;
606 P.Pred = Predicate;
607 P.Thr = &Threshold;
608 return P;
609}
610
611struct is_nan {
612 bool isValue(const APFloat &C) { return C.isNaN(); }
613};
614/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
615/// For vectors, this includes constants with undefined elements.
616inline cstfp_pred_ty<is_nan> m_NaN() {
617 return cstfp_pred_ty<is_nan>();
618}
619
620struct is_nonnan {
621 bool isValue(const APFloat &C) { return !C.isNaN(); }
622};
623/// Match a non-NaN FP constant.
624/// For vectors, this includes constants with undefined elements.
625inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
626 return cstfp_pred_ty<is_nonnan>();
627}
628
629struct is_inf {
630 bool isValue(const APFloat &C) { return C.isInfinity(); }
631};
632/// Match a positive or negative infinity FP constant.
633/// For vectors, this includes constants with undefined elements.
634inline cstfp_pred_ty<is_inf> m_Inf() {
635 return cstfp_pred_ty<is_inf>();
636}
637
638struct is_noninf {
639 bool isValue(const APFloat &C) { return !C.isInfinity(); }
640};
641/// Match a non-infinity FP constant, i.e. finite or NaN.
642/// For vectors, this includes constants with undefined elements.
643inline cstfp_pred_ty<is_noninf> m_NonInf() {
644 return cstfp_pred_ty<is_noninf>();
645}
646
647struct is_finite {
648 bool isValue(const APFloat &C) { return C.isFinite(); }
649};
650/// Match a finite FP constant, i.e. not infinity or NaN.
651/// For vectors, this includes constants with undefined elements.
652inline cstfp_pred_ty<is_finite> m_Finite() {
653 return cstfp_pred_ty<is_finite>();
654}
655inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
656
657struct is_finitenonzero {
658 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
659};
660/// Match a finite non-zero FP constant.
661/// For vectors, this includes constants with undefined elements.
662inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
663 return cstfp_pred_ty<is_finitenonzero>();
664}
665inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
666 return V;
667}
668
669struct is_any_zero_fp {
670 bool isValue(const APFloat &C) { return C.isZero(); }
671};
672/// Match a floating-point negative zero or positive zero.
673/// For vectors, this includes constants with undefined elements.
674inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
675 return cstfp_pred_ty<is_any_zero_fp>();
676}
677
678struct is_pos_zero_fp {
679 bool isValue(const APFloat &C) { return C.isPosZero(); }
680};
681/// Match a floating-point positive zero.
682/// For vectors, this includes constants with undefined elements.
683inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
684 return cstfp_pred_ty<is_pos_zero_fp>();
685}
686
687struct is_neg_zero_fp {
688 bool isValue(const APFloat &C) { return C.isNegZero(); }
689};
690/// Match a floating-point negative zero.
691/// For vectors, this includes constants with undefined elements.
692inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
693 return cstfp_pred_ty<is_neg_zero_fp>();
694}
695
696struct is_non_zero_fp {
697 bool isValue(const APFloat &C) { return C.isNonZero(); }
698};
699/// Match a floating-point non-zero.
700/// For vectors, this includes constants with undefined elements.
701inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
702 return cstfp_pred_ty<is_non_zero_fp>();
703}
704
705///////////////////////////////////////////////////////////////////////////////
706
707template <typename Class> struct bind_ty {
708 Class *&VR;
709
710 bind_ty(Class *&V) : VR(V) {}
711
712 template <typename ITy> bool match(ITy *V) {
713 if (auto *CV = dyn_cast<Class>(V)) {
714 VR = CV;
715 return true;
716 }
717 return false;
718 }
719};
720
721/// Match a value, capturing it if we match.
722inline bind_ty<Value> m_Value(Value *&V) { return V; }
11
Calling constructor for 'bind_ty<llvm::Value>'
12
Returning from constructor for 'bind_ty<llvm::Value>'
13
Returning without writing to 'V'
22
Calling constructor for 'bind_ty<llvm::Value>'
23
Returning from constructor for 'bind_ty<llvm::Value>'
24
Returning without writing to 'V'
723inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
724
725/// Match an instruction, capturing it if we match.
726inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
727/// Match a unary operator, capturing it if we match.
728inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
729/// Match a binary operator, capturing it if we match.
730inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
731/// Match a with overflow intrinsic, capturing it if we match.
732inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
733inline bind_ty<const WithOverflowInst>
734m_WithOverflowInst(const WithOverflowInst *&I) {
735 return I;
736}
737
738/// Match a Constant, capturing the value if we match.
739inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
740
741/// Match a ConstantInt, capturing the value if we match.
742inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
743
744/// Match a ConstantFP, capturing the value if we match.
745inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
746
747/// Match a ConstantExpr, capturing the value if we match.
748inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
749
750/// Match a basic block value, capturing it if we match.
751inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
752inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
753 return V;
754}
755
756/// Match an arbitrary immediate Constant and ignore it.
757inline match_combine_and<class_match<Constant>,
758 match_unless<class_match<ConstantExpr>>>
759m_ImmConstant() {
760 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
761}
762
763/// Match an immediate Constant, capturing the value if we match.
764inline match_combine_and<bind_ty<Constant>,
765 match_unless<class_match<ConstantExpr>>>
766m_ImmConstant(Constant *&C) {
767 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
768}
769
770/// Match a specified Value*.
771struct specificval_ty {
772 const Value *Val;
773
774 specificval_ty(const Value *V) : Val(V) {}
775
776 template <typename ITy> bool match(ITy *V) { return V == Val; }
777};
778
779/// Match if we have a specific specified value.
780inline specificval_ty m_Specific(const Value *V) { return V; }
781
782/// Stores a reference to the Value *, not the Value * itself,
783/// thus can be used in commutative matchers.
784template <typename Class> struct deferredval_ty {
785 Class *const &Val;
786
787 deferredval_ty(Class *const &V) : Val(V) {}
788
789 template <typename ITy> bool match(ITy *const V) { return V == Val; }
790};
791
792/// Like m_Specific(), but works if the specific value to match is determined
793/// as part of the same match() expression. For example:
794/// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
795/// bind X before the pattern match starts.
796/// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
797/// whichever value m_Value(X) populated.
798inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
799inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
800 return V;
801}
802
803/// Match a specified floating point value or vector of all elements of
804/// that value.
805struct specific_fpval {
806 double Val;
807
808 specific_fpval(double V) : Val(V) {}
809
810 template <typename ITy> bool match(ITy *V) {
811 if (const auto *CFP = dyn_cast<ConstantFP>(V))
812 return CFP->isExactlyValue(Val);
813 if (V->getType()->isVectorTy())
814 if (const auto *C = dyn_cast<Constant>(V))
815 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
816 return CFP->isExactlyValue(Val);
817 return false;
818 }
819};
820
821/// Match a specific floating point value or vector with all elements
822/// equal to the value.
823inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
824
825/// Match a float 1.0 or vector with all elements equal to 1.0.
826inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
827
828struct bind_const_intval_ty {
829 uint64_t &VR;
830
831 bind_const_intval_ty(uint64_t &V) : VR(V) {}
832
833 template <typename ITy> bool match(ITy *V) {
834 if (const auto *CV = dyn_cast<ConstantInt>(V))
835 if (CV->getValue().ule(UINT64_MAX(18446744073709551615UL))) {
836 VR = CV->getZExtValue();
837 return true;
838 }
839 return false;
840 }
841};
842
843/// Match a specified integer value or vector of all elements of that
844/// value.
845template <bool AllowUndefs>
846struct specific_intval {
847 APInt Val;
848
849 specific_intval(APInt V) : Val(std::move(V)) {}
850
851 template <typename ITy> bool match(ITy *V) {
852 const auto *CI = dyn_cast<ConstantInt>(V);
853 if (!CI && V->getType()->isVectorTy())
854 if (const auto *C = dyn_cast<Constant>(V))
855 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
856
857 return CI && APInt::isSameValue(CI->getValue(), Val);
858 }
859};
860
861/// Match a specific integer value or vector with all elements equal to
862/// the value.
863inline specific_intval<false> m_SpecificInt(APInt V) {
864 return specific_intval<false>(std::move(V));
865}
866
867inline specific_intval<false> m_SpecificInt(uint64_t V) {
868 return m_SpecificInt(APInt(64, V));
869}
870
871inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
872 return specific_intval<true>(std::move(V));
873}
874
875inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
876 return m_SpecificIntAllowUndef(APInt(64, V));
877}
878
879/// Match a ConstantInt and bind to its value. This does not match
880/// ConstantInts wider than 64-bits.
881inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
882
883/// Match a specified basic block value.
884struct specific_bbval {
885 BasicBlock *Val;
886
887 specific_bbval(BasicBlock *Val) : Val(Val) {}
888
889 template <typename ITy> bool match(ITy *V) {
890 const auto *BB = dyn_cast<BasicBlock>(V);
891 return BB && BB == Val;
892 }
893};
894
895/// Match a specific basic block value.
896inline specific_bbval m_SpecificBB(BasicBlock *BB) {
897 return specific_bbval(BB);
898}
899
900/// A commutative-friendly version of m_Specific().
901inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
902 return BB;
903}
904inline deferredval_ty<const BasicBlock>
905m_Deferred(const BasicBlock *const &BB) {
906 return BB;
907}
908
909//===----------------------------------------------------------------------===//
910// Matcher for any binary operator.
911//
912template <typename LHS_t, typename RHS_t, bool Commutable = false>
913struct AnyBinaryOp_match {
914 LHS_t L;
915 RHS_t R;
916
917 // The evaluation order is always stable, regardless of Commutability.
918 // The LHS is always matched first.
919 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
920
921 template <typename OpTy> bool match(OpTy *V) {
922 if (auto *I = dyn_cast<BinaryOperator>(V))
923 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
924 (Commutable && L.match(I->getOperand(1)) &&
925 R.match(I->getOperand(0)));
926 return false;
927 }
928};
929
930template <typename LHS, typename RHS>
931inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
932 return AnyBinaryOp_match<LHS, RHS>(L, R);
933}
934
935//===----------------------------------------------------------------------===//
936// Matcher for any unary operator.
937// TODO fuse unary, binary matcher into n-ary matcher
938//
939template <typename OP_t> struct AnyUnaryOp_match {
940 OP_t X;
941
942 AnyUnaryOp_match(const OP_t &X) : X(X) {}
943
944 template <typename OpTy> bool match(OpTy *V) {
945 if (auto *I = dyn_cast<UnaryOperator>(V))
946 return X.match(I->getOperand(0));
947 return false;
948 }
949};
950
951template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
952 return AnyUnaryOp_match<OP_t>(X);
953}
954
955//===----------------------------------------------------------------------===//
956// Matchers for specific binary operators.
957//
958
959template <typename LHS_t, typename RHS_t, unsigned Opcode,
960 bool Commutable = false>
961struct BinaryOp_match {
962 LHS_t L;
963 RHS_t R;
964
965 // The evaluation order is always stable, regardless of Commutability.
966 // The LHS is always matched first.
967 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
968
969 template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
970 if (V->getValueID() == Value::InstructionVal + Opc) {
971 auto *I = cast<BinaryOperator>(V);
972 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
973 (Commutable && L.match(I->getOperand(1)) &&
974 R.match(I->getOperand(0)));
975 }
976 if (auto *CE = dyn_cast<ConstantExpr>(V))
977 return CE->getOpcode() == Opc &&
978 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
979 (Commutable && L.match(CE->getOperand(1)) &&
980 R.match(CE->getOperand(0))));
981 return false;
982 }
983
984 template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
985};
986
987template <typename LHS, typename RHS>
988inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
989 const RHS &R) {
990 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
991}
992
993template <typename LHS, typename RHS>
994inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
995 const RHS &R) {
996 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
997}
998
999template <typename LHS, typename RHS>
1000inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
1001 const RHS &R) {
1002 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
1003}
1004
1005template <typename LHS, typename RHS>
1006inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
1007 const RHS &R) {
1008 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1009}
1010
1011template <typename Op_t> struct FNeg_match {
1012 Op_t X;
1013
1014 FNeg_match(const Op_t &Op) : X(Op) {}
1015 template <typename OpTy> bool match(OpTy *V) {
1016 auto *FPMO = dyn_cast<FPMathOperator>(V);
1017 if (!FPMO) return false;
1018
1019 if (FPMO->getOpcode() == Instruction::FNeg)
1020 return X.match(FPMO->getOperand(0));
1021
1022 if (FPMO->getOpcode() == Instruction::FSub) {
1023 if (FPMO->hasNoSignedZeros()) {
1024 // With 'nsz', any zero goes.
1025 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1026 return false;
1027 } else {
1028 // Without 'nsz', we need fsub -0.0, X exactly.
1029 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1030 return false;
1031 }
1032
1033 return X.match(FPMO->getOperand(1));
1034 }
1035
1036 return false;
1037 }
1038};
1039
1040/// Match 'fneg X' as 'fsub -0.0, X'.
1041template <typename OpTy>
1042inline FNeg_match<OpTy>
1043m_FNeg(const OpTy &X) {
1044 return FNeg_match<OpTy>(X);
1045}
1046
1047/// Match 'fneg X' as 'fsub +-0.0, X'.
1048template <typename RHS>
1049inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1050m_FNegNSZ(const RHS &X) {
1051 return m_FSub(m_AnyZeroFP(), X);
1052}
1053
1054template <typename LHS, typename RHS>
1055inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1056 const RHS &R) {
1057 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1058}
1059
1060template <typename LHS, typename RHS>
1061inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1062 const RHS &R) {
1063 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1064}
1065
1066template <typename LHS, typename RHS>
1067inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1068 const RHS &R) {
1069 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1070}
1071
1072template <typename LHS, typename RHS>
1073inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1074 const RHS &R) {
1075 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1076}
1077
1078template <typename LHS, typename RHS>
1079inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1080 const RHS &R) {
1081 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1082}
1083
1084template <typename LHS, typename RHS>
1085inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1086 const RHS &R) {
1087 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1088}
1089
1090template <typename LHS, typename RHS>
1091inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1092 const RHS &R) {
1093 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1094}
1095
1096template <typename LHS, typename RHS>
1097inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1098 const RHS &R) {
1099 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1100}
1101
1102template <typename LHS, typename RHS>
1103inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1104 const RHS &R) {
1105 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1106}
1107
1108template <typename LHS, typename RHS>
1109inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1110 const RHS &R) {
1111 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1112}
1113
1114template <typename LHS, typename RHS>
1115inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1116 const RHS &R) {
1117 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1118}
1119
1120template <typename LHS, typename RHS>
1121inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1122 const RHS &R) {
1123 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1124}
1125
1126template <typename LHS, typename RHS>
1127inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1128 const RHS &R) {
1129 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1130}
1131
1132template <typename LHS, typename RHS>
1133inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1134 const RHS &R) {
1135 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1136}
1137
1138template <typename LHS_t, typename RHS_t, unsigned Opcode,
1139 unsigned WrapFlags = 0>
1140struct OverflowingBinaryOp_match {
1141 LHS_t L;
1142 RHS_t R;
1143
1144 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1145 : L(LHS), R(RHS) {}
1146
1147 template <typename OpTy> bool match(OpTy *V) {
1148 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1149 if (Op->getOpcode() != Opcode)
1150 return false;
1151 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1152 !Op->hasNoUnsignedWrap())
1153 return false;
1154 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1155 !Op->hasNoSignedWrap())
1156 return false;
1157 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1158 }
1159 return false;
1160 }
1161};
1162
1163template <typename LHS, typename RHS>
1164inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1165 OverflowingBinaryOperator::NoSignedWrap>
1166m_NSWAdd(const LHS &L, const RHS &R) {
1167 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1168 OverflowingBinaryOperator::NoSignedWrap>(
1169 L, R);
1170}
1171template <typename LHS, typename RHS>
1172inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1173 OverflowingBinaryOperator::NoSignedWrap>
1174m_NSWSub(const LHS &L, const RHS &R) {
1175 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1176 OverflowingBinaryOperator::NoSignedWrap>(
1177 L, R);
1178}
1179template <typename LHS, typename RHS>
1180inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1181 OverflowingBinaryOperator::NoSignedWrap>
1182m_NSWMul(const LHS &L, const RHS &R) {
1183 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1184 OverflowingBinaryOperator::NoSignedWrap>(
1185 L, R);
1186}
1187template <typename LHS, typename RHS>
1188inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1189 OverflowingBinaryOperator::NoSignedWrap>
1190m_NSWShl(const LHS &L, const RHS &R) {
1191 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1192 OverflowingBinaryOperator::NoSignedWrap>(
1193 L, R);
1194}
1195
1196template <typename LHS, typename RHS>
1197inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1198 OverflowingBinaryOperator::NoUnsignedWrap>
1199m_NUWAdd(const LHS &L, const RHS &R) {
1200 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1201 OverflowingBinaryOperator::NoUnsignedWrap>(
1202 L, R);
1203}
1204template <typename LHS, typename RHS>
1205inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1206 OverflowingBinaryOperator::NoUnsignedWrap>
1207m_NUWSub(const LHS &L, const RHS &R) {
1208 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1209 OverflowingBinaryOperator::NoUnsignedWrap>(
1210 L, R);
1211}
1212template <typename LHS, typename RHS>
1213inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1214 OverflowingBinaryOperator::NoUnsignedWrap>
1215m_NUWMul(const LHS &L, const RHS &R) {
1216 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1217 OverflowingBinaryOperator::NoUnsignedWrap>(
1218 L, R);
1219}
1220template <typename LHS, typename RHS>
1221inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1222 OverflowingBinaryOperator::NoUnsignedWrap>
1223m_NUWShl(const LHS &L, const RHS &R) {
1224 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1225 OverflowingBinaryOperator::NoUnsignedWrap>(
1226 L, R);
1227}
1228
1229template <typename LHS_t, typename RHS_t, bool Commutable = false>
1230struct SpecificBinaryOp_match
1231 : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1232 unsigned Opcode;
1233
1234 SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
1235 : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1236
1237 template <typename OpTy> bool match(OpTy *V) {
1238 return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
1239 }
1240};
1241
1242/// Matches a specific opcode.
1243template <typename LHS, typename RHS>
1244inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1245 const RHS &R) {
1246 return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1247}
1248
1249//===----------------------------------------------------------------------===//
1250// Class that matches a group of binary opcodes.
1251//
1252template <typename LHS_t, typename RHS_t, typename Predicate>
1253struct BinOpPred_match : Predicate {
1254 LHS_t L;
1255 RHS_t R;
1256
1257 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1258
1259 template <typename OpTy> bool match(OpTy *V) {
1260 if (auto *I = dyn_cast<Instruction>(V))
1261 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1262 R.match(I->getOperand(1));
1263 if (auto *CE = dyn_cast<ConstantExpr>(V))
1264 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1265 R.match(CE->getOperand(1));
1266 return false;
1267 }
1268};
1269
1270struct is_shift_op {
1271 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1272};
1273
1274struct is_right_shift_op {
1275 bool isOpType(unsigned Opcode) {
1276 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1277 }
1278};
1279
1280struct is_logical_shift_op {
1281 bool isOpType(unsigned Opcode) {
1282 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1283 }
1284};
1285
1286struct is_bitwiselogic_op {
1287 bool isOpType(unsigned Opcode) {
1288 return Instruction::isBitwiseLogicOp(Opcode);
1289 }
1290};
1291
1292struct is_idiv_op {
1293 bool isOpType(unsigned Opcode) {
1294 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1295 }
1296};
1297
1298struct is_irem_op {
1299 bool isOpType(unsigned Opcode) {
1300 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1301 }
1302};
1303
1304/// Matches shift operations.
1305template <typename LHS, typename RHS>
1306inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1307 const RHS &R) {
1308 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
16
Returning without writing to 'L.VR'
1309}
1310
1311/// Matches logical shift operations.
1312template <typename LHS, typename RHS>
1313inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1314 const RHS &R) {
1315 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1316}
1317
1318/// Matches logical shift operations.
1319template <typename LHS, typename RHS>
1320inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1321m_LogicalShift(const LHS &L, const RHS &R) {
1322 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1323}
1324
1325/// Matches bitwise logic operations.
1326template <typename LHS, typename RHS>
1327inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1328m_BitwiseLogic(const LHS &L, const RHS &R) {
1329 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1330}
1331
1332/// Matches integer division operations.
1333template <typename LHS, typename RHS>
1334inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1335 const RHS &R) {
1336 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1337}
1338
1339/// Matches integer remainder operations.
1340template <typename LHS, typename RHS>
1341inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1342 const RHS &R) {
1343 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1344}
1345
1346//===----------------------------------------------------------------------===//
1347// Class that matches exact binary ops.
1348//
1349template <typename SubPattern_t> struct Exact_match {
1350 SubPattern_t SubPattern;
1351
1352 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1353
1354 template <typename OpTy> bool match(OpTy *V) {
1355 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1356 return PEO->isExact() && SubPattern.match(V);
1357 return false;
1358 }
1359};
1360
1361template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1362 return SubPattern;
1363}
1364
1365//===----------------------------------------------------------------------===//
1366// Matchers for CmpInst classes
1367//
1368
1369template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1370 bool Commutable = false>
1371struct CmpClass_match {
1372 PredicateTy &Predicate;
1373 LHS_t L;
1374 RHS_t R;
1375
1376 // The evaluation order is always stable, regardless of Commutability.
1377 // The LHS is always matched first.
1378 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1379 : Predicate(Pred), L(LHS), R(RHS) {}
1380
1381 template <typename OpTy> bool match(OpTy *V) {
1382 if (auto *I = dyn_cast<Class>(V)) {
1383 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1384 Predicate = I->getPredicate();
1385 return true;
1386 } else if (Commutable && L.match(I->getOperand(1)) &&
1387 R.match(I->getOperand(0))) {
1388 Predicate = I->getSwappedPredicate();
1389 return true;
1390 }
1391 }
1392 return false;
1393 }
1394};
1395
1396template <typename LHS, typename RHS>
1397inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1398m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1399 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1400}
1401
1402template <typename LHS, typename RHS>
1403inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1404m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1405 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1406}
1407
1408template <typename LHS, typename RHS>
1409inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1410m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1411 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1412}
1413
1414//===----------------------------------------------------------------------===//
1415// Matchers for instructions with a given opcode and number of operands.
1416//
1417
1418/// Matches instructions with Opcode and three operands.
1419template <typename T0, unsigned Opcode> struct OneOps_match {
1420 T0 Op1;
1421
1422 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1423
1424 template <typename OpTy> bool match(OpTy *V) {
1425 if (V->getValueID() == Value::InstructionVal + Opcode) {
1426 auto *I = cast<Instruction>(V);
1427 return Op1.match(I->getOperand(0));
1428 }
1429 return false;
1430 }
1431};
1432
1433/// Matches instructions with Opcode and three operands.
1434template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1435 T0 Op1;
1436 T1 Op2;
1437
1438 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1439
1440 template <typename OpTy> bool match(OpTy *V) {
1441 if (V->getValueID() == Value::InstructionVal + Opcode) {
1442 auto *I = cast<Instruction>(V);
1443 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1444 }
1445 return false;
1446 }
1447};
1448
1449/// Matches instructions with Opcode and three operands.
1450template <typename T0, typename T1, typename T2, unsigned Opcode>
1451struct ThreeOps_match {
1452 T0 Op1;
1453 T1 Op2;
1454 T2 Op3;
1455
1456 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1457 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1458
1459 template <typename OpTy> bool match(OpTy *V) {
1460 if (V->getValueID() == Value::InstructionVal + Opcode) {
1461 auto *I = cast<Instruction>(V);
1462 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1463 Op3.match(I->getOperand(2));
1464 }
1465 return false;
1466 }
1467};
1468
1469/// Matches SelectInst.
1470template <typename Cond, typename LHS, typename RHS>
1471inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1472m_Select(const Cond &C, const LHS &L, const RHS &R) {
1473 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1474}
1475
1476/// This matches a select of two constants, e.g.:
1477/// m_SelectCst<-1, 0>(m_Value(V))
1478template <int64_t L, int64_t R, typename Cond>
1479inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1480 Instruction::Select>
1481m_SelectCst(const Cond &C) {
1482 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1483}
1484
1485/// Matches FreezeInst.
1486template <typename OpTy>
1487inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1488 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1489}
1490
1491/// Matches InsertElementInst.
1492template <typename Val_t, typename Elt_t, typename Idx_t>
1493inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1494m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1495 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1496 Val, Elt, Idx);
1497}
1498
1499/// Matches ExtractElementInst.
1500template <typename Val_t, typename Idx_t>
1501inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1502m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1503 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1504}
1505
1506/// Matches shuffle.
1507template <typename T0, typename T1, typename T2> struct Shuffle_match {
1508 T0 Op1;
1509 T1 Op2;
1510 T2 Mask;
1511
1512 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1513 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1514
1515 template <typename OpTy> bool match(OpTy *V) {
1516 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1517 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1518 Mask.match(I->getShuffleMask());
1519 }
1520 return false;
1521 }
1522};
1523
1524struct m_Mask {
1525 ArrayRef<int> &MaskRef;
1526 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1527 bool match(ArrayRef<int> Mask) {
1528 MaskRef = Mask;
1529 return true;
1530 }
1531};
1532
1533struct m_ZeroMask {
1534 bool match(ArrayRef<int> Mask) {
1535 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1536 }
1537};
1538
1539struct m_SpecificMask {
1540 ArrayRef<int> &MaskRef;
1541 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1542 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1543};
1544
1545struct m_SplatOrUndefMask {
1546 int &SplatIndex;
1547 m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1548 bool match(ArrayRef<int> Mask) {
1549 auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1550 if (First == Mask.end())
1551 return false;
1552 SplatIndex = *First;
1553 return all_of(Mask,
1554 [First](int Elem) { return Elem == *First || Elem == -1; });
1555 }
1556};
1557
1558/// Matches ShuffleVectorInst independently of mask value.
1559template <typename V1_t, typename V2_t>
1560inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1561m_Shuffle(const V1_t &v1, const V2_t &v2) {
1562 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1563}
1564
1565template <typename V1_t, typename V2_t, typename Mask_t>
1566inline Shuffle_match<V1_t, V2_t, Mask_t>
1567m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1568 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1569}
1570
1571/// Matches LoadInst.
1572template <typename OpTy>
1573inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1574 return OneOps_match<OpTy, Instruction::Load>(Op);
1575}
1576
1577/// Matches StoreInst.
1578template <typename ValueOpTy, typename PointerOpTy>
1579inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1580m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1581 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1582 PointerOp);
1583}
1584
1585//===----------------------------------------------------------------------===//
1586// Matchers for CastInst classes
1587//
1588
1589template <typename Op_t, unsigned Opcode> struct CastClass_match {
1590 Op_t Op;
1591
1592 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1593
1594 template <typename OpTy> bool match(OpTy *V) {
1595 if (auto *O = dyn_cast<Operator>(V))
1596 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1597 return false;
1598 }
1599};
1600
1601/// Matches BitCast.
1602template <typename OpTy>
1603inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1604 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1605}
1606
1607/// Matches PtrToInt.
1608template <typename OpTy>
1609inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1610 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1611}
1612
1613/// Matches IntToPtr.
1614template <typename OpTy>
1615inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1616 return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1617}
1618
1619/// Matches Trunc.
1620template <typename OpTy>
1621inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1622 return CastClass_match<OpTy, Instruction::Trunc>(Op);
27
Returning without writing to 'Op.VR'
1623}
1624
1625template <typename OpTy>
1626inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1627m_TruncOrSelf(const OpTy &Op) {
1628 return m_CombineOr(m_Trunc(Op), Op);
1629}
1630
1631/// Matches SExt.
1632template <typename OpTy>
1633inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1634 return CastClass_match<OpTy, Instruction::SExt>(Op);
1635}
1636
1637/// Matches ZExt.
1638template <typename OpTy>
1639inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1640 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1641}
1642
1643template <typename OpTy>
1644inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1645m_ZExtOrSelf(const OpTy &Op) {
1646 return m_CombineOr(m_ZExt(Op), Op);
1647}
1648
1649template <typename OpTy>
1650inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1651m_SExtOrSelf(const OpTy &Op) {
1652 return m_CombineOr(m_SExt(Op), Op);
1653}
1654
1655template <typename OpTy>
1656inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1657 CastClass_match<OpTy, Instruction::SExt>>
1658m_ZExtOrSExt(const OpTy &Op) {
1659 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1660}
1661
1662template <typename OpTy>
1663inline match_combine_or<
1664 match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1665 CastClass_match<OpTy, Instruction::SExt>>,
1666 OpTy>
1667m_ZExtOrSExtOrSelf(const OpTy &Op) {
1668 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1669}
1670
1671template <typename OpTy>
1672inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1673 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1674}
1675
1676template <typename OpTy>
1677inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1678 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1679}
1680
1681template <typename OpTy>
1682inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1683 return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1684}
1685
1686template <typename OpTy>
1687inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1688 return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1689}
1690
1691template <typename OpTy>
1692inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1693 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1694}
1695
1696template <typename OpTy>
1697inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1698 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1699}
1700
1701//===----------------------------------------------------------------------===//
1702// Matchers for control flow.
1703//
1704
1705struct br_match {
1706 BasicBlock *&Succ;
1707
1708 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1709
1710 template <typename OpTy> bool match(OpTy *V) {
1711 if (auto *BI = dyn_cast<BranchInst>(V))
1712 if (BI->isUnconditional()) {
1713 Succ = BI->getSuccessor(0);
1714 return true;
1715 }
1716 return false;
1717 }
1718};
1719
1720inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1721
1722template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1723struct brc_match {
1724 Cond_t Cond;
1725 TrueBlock_t T;
1726 FalseBlock_t F;
1727
1728 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1729 : Cond(C), T(t), F(f) {}
1730
1731 template <typename OpTy> bool match(OpTy *V) {
1732 if (auto *BI = dyn_cast<BranchInst>(V))
1733 if (BI->isConditional() && Cond.match(BI->getCondition()))
1734 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1735 return false;
1736 }
1737};
1738
1739template <typename Cond_t>
1740inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1741m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1742 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1743 C, m_BasicBlock(T), m_BasicBlock(F));
1744}
1745
1746template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1747inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1748m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1749 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1750}
1751
1752//===----------------------------------------------------------------------===//
1753// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1754//
1755
1756template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1757 bool Commutable = false>
1758struct MaxMin_match {
1759 using PredType = Pred_t;
1760 LHS_t L;
1761 RHS_t R;
1762
1763 // The evaluation order is always stable, regardless of Commutability.
1764 // The LHS is always matched first.
1765 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1766
1767 template <typename OpTy> bool match(OpTy *V) {
1768 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1769 Intrinsic::ID IID = II->getIntrinsicID();
1770 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1771 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1772 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1773 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1774 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1775 return (L.match(LHS) && R.match(RHS)) ||
1776 (Commutable && L.match(RHS) && R.match(LHS));
1777 }
1778 }
1779 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1780 auto *SI = dyn_cast<SelectInst>(V);
1781 if (!SI)
1782 return false;
1783 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1784 if (!Cmp)
1785 return false;
1786 // At this point we have a select conditioned on a comparison. Check that
1787 // it is the values returned by the select that are being compared.
1788 auto *TrueVal = SI->getTrueValue();
1789 auto *FalseVal = SI->getFalseValue();
1790 auto *LHS = Cmp->getOperand(0);
1791 auto *RHS = Cmp->getOperand(1);
1792 if ((TrueVal != LHS || FalseVal != RHS) &&
1793 (TrueVal != RHS || FalseVal != LHS))
1794 return false;
1795 typename CmpInst_t::Predicate Pred =
1796 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1797 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1798 if (!Pred_t::match(Pred))
1799 return false;
1800 // It does! Bind the operands.
1801 return (L.match(LHS) && R.match(RHS)) ||
1802 (Commutable && L.match(RHS) && R.match(LHS));
1803 }
1804};
1805
1806/// Helper class for identifying signed max predicates.
1807struct smax_pred_ty {
1808 static bool match(ICmpInst::Predicate Pred) {
1809 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1810 }
1811};
1812
1813/// Helper class for identifying signed min predicates.
1814struct smin_pred_ty {
1815 static bool match(ICmpInst::Predicate Pred) {
1816 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1817 }
1818};
1819
1820/// Helper class for identifying unsigned max predicates.
1821struct umax_pred_ty {
1822 static bool match(ICmpInst::Predicate Pred) {
1823 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1824 }
1825};
1826
1827/// Helper class for identifying unsigned min predicates.
1828struct umin_pred_ty {
1829 static bool match(ICmpInst::Predicate Pred) {
1830 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1831 }
1832};
1833
1834/// Helper class for identifying ordered max predicates.
1835struct ofmax_pred_ty {
1836 static bool match(FCmpInst::Predicate Pred) {
1837 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1838 }
1839};
1840
1841/// Helper class for identifying ordered min predicates.
1842struct ofmin_pred_ty {
1843 static bool match(FCmpInst::Predicate Pred) {
1844 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1845 }
1846};
1847
1848/// Helper class for identifying unordered max predicates.
1849struct ufmax_pred_ty {
1850 static bool match(FCmpInst::Predicate Pred) {
1851 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1852 }
1853};
1854
1855/// Helper class for identifying unordered min predicates.
1856struct ufmin_pred_ty {
1857 static bool match(FCmpInst::Predicate Pred) {
1858 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1859 }
1860};
1861
1862template <typename LHS, typename RHS>
1863inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1864 const RHS &R) {
1865 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1866}
1867
1868template <typename LHS, typename RHS>
1869inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1870 const RHS &R) {
1871 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1872}
1873
1874template <typename LHS, typename RHS>
1875inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1876 const RHS &R) {
1877 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1878}
1879
1880template <typename LHS, typename RHS>
1881inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1882 const RHS &R) {
1883 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1884}
1885
1886template <typename LHS, typename RHS>
1887inline match_combine_or<
1888 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1889 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1890 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1891 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
1892m_MaxOrMin(const LHS &L, const RHS &R) {
1893 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1894 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1895}
1896
1897/// Match an 'ordered' floating point maximum function.
1898/// Floating point has one special value 'NaN'. Therefore, there is no total
1899/// order. However, if we can ignore the 'NaN' value (for example, because of a
1900/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1901/// semantics. In the presence of 'NaN' we have to preserve the original
1902/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1903///
1904/// max(L, R) iff L and R are not NaN
1905/// m_OrdFMax(L, R) = R iff L or R are NaN
1906template <typename LHS, typename RHS>
1907inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1908 const RHS &R) {
1909 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1910}
1911
1912/// Match an 'ordered' floating point minimum function.
1913/// Floating point has one special value 'NaN'. Therefore, there is no total
1914/// order. However, if we can ignore the 'NaN' value (for example, because of a
1915/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1916/// semantics. In the presence of 'NaN' we have to preserve the original
1917/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1918///
1919/// min(L, R) iff L and R are not NaN
1920/// m_OrdFMin(L, R) = R iff L or R are NaN
1921template <typename LHS, typename RHS>
1922inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1923 const RHS &R) {
1924 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1925}
1926
1927/// Match an 'unordered' floating point maximum function.
1928/// Floating point has one special value 'NaN'. Therefore, there is no total
1929/// order. However, if we can ignore the 'NaN' value (for example, because of a
1930/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1931/// semantics. In the presence of 'NaN' we have to preserve the original
1932/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1933///
1934/// max(L, R) iff L and R are not NaN
1935/// m_UnordFMax(L, R) = L iff L or R are NaN
1936template <typename LHS, typename RHS>
1937inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1938m_UnordFMax(const LHS &L, const RHS &R) {
1939 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1940}
1941
1942/// Match an 'unordered' floating point minimum function.
1943/// Floating point has one special value 'NaN'. Therefore, there is no total
1944/// order. However, if we can ignore the 'NaN' value (for example, because of a
1945/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1946/// semantics. In the presence of 'NaN' we have to preserve the original
1947/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1948///
1949/// min(L, R) iff L and R are not NaN
1950/// m_UnordFMin(L, R) = L iff L or R are NaN
1951template <typename LHS, typename RHS>
1952inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1953m_UnordFMin(const LHS &L, const RHS &R) {
1954 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1955}
1956
1957//===----------------------------------------------------------------------===//
1958// Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1959// Note that S might be matched to other instructions than AddInst.
1960//
1961
1962template <typename LHS_t, typename RHS_t, typename Sum_t>
1963struct UAddWithOverflow_match {
1964 LHS_t L;
1965 RHS_t R;
1966 Sum_t S;
1967
1968 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1969 : L(L), R(R), S(S) {}
1970
1971 template <typename OpTy> bool match(OpTy *V) {
1972 Value *ICmpLHS, *ICmpRHS;
1973 ICmpInst::Predicate Pred;
1974 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1975 return false;
1976
1977 Value *AddLHS, *AddRHS;
1978 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1979
1980 // (a + b) u< a, (a + b) u< b
1981 if (Pred == ICmpInst::ICMP_ULT)
1982 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1983 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1984
1985 // a >u (a + b), b >u (a + b)
1986 if (Pred == ICmpInst::ICMP_UGT)
1987 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1988 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1989
1990 Value *Op1;
1991 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1992 // (a ^ -1) <u b
1993 if (Pred == ICmpInst::ICMP_ULT) {
1994 if (XorExpr.match(ICmpLHS))
1995 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1996 }
1997 // b > u (a ^ -1)
1998 if (Pred == ICmpInst::ICMP_UGT) {
1999 if (XorExpr.match(ICmpRHS))
2000 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
2001 }
2002
2003 // Match special-case for increment-by-1.
2004 if (Pred == ICmpInst::ICMP_EQ) {
2005 // (a + 1) == 0
2006 // (1 + a) == 0
2007 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
2008 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2009 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2010 // 0 == (a + 1)
2011 // 0 == (1 + a)
2012 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2013 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2014 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2015 }
2016
2017 return false;
2018 }
2019};
2020
2021/// Match an icmp instruction checking for unsigned overflow on addition.
2022///
2023/// S is matched to the addition whose result is being checked for overflow, and
2024/// L and R are matched to the LHS and RHS of S.
2025template <typename LHS_t, typename RHS_t, typename Sum_t>
2026UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
2027m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2028 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2029}
2030
2031template <typename Opnd_t> struct Argument_match {
2032 unsigned OpI;
2033 Opnd_t Val;
2034
2035 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2036
2037 template <typename OpTy> bool match(OpTy *V) {
2038 // FIXME: Should likely be switched to use `CallBase`.
2039 if (const auto *CI = dyn_cast<CallInst>(V))
2040 return Val.match(CI->getArgOperand(OpI));
2041 return false;
2042 }
2043};
2044
2045/// Match an argument.
2046template <unsigned OpI, typename Opnd_t>
2047inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2048 return Argument_match<Opnd_t>(OpI, Op);
2049}
2050
2051/// Intrinsic matchers.
2052struct IntrinsicID_match {
2053 unsigned ID;
2054
2055 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2056
2057 template <typename OpTy> bool match(OpTy *V) {
2058 if (const auto *CI = dyn_cast<CallInst>(V))
2059 if (const auto *F = CI->getCalledFunction())
2060 return F->getIntrinsicID() == ID;
2061 return false;
2062 }
2063};
2064
2065/// Intrinsic matches are combinations of ID matchers, and argument
2066/// matchers. Higher arity matcher are defined recursively in terms of and-ing
2067/// them with lower arity matchers. Here's some convenient typedefs for up to
2068/// several arguments, and more can be added as needed
2069template <typename T0 = void, typename T1 = void, typename T2 = void,
2070 typename T3 = void, typename T4 = void, typename T5 = void,
2071 typename T6 = void, typename T7 = void, typename T8 = void,
2072 typename T9 = void, typename T10 = void>
2073struct m_Intrinsic_Ty;
2074template <typename T0> struct m_Intrinsic_Ty<T0> {
2075 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2076};
2077template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2078 using Ty =
2079 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2080};
2081template <typename T0, typename T1, typename T2>
2082struct m_Intrinsic_Ty<T0, T1, T2> {
2083 using Ty =
2084 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2085 Argument_match<T2>>;
2086};
2087template <typename T0, typename T1, typename T2, typename T3>
2088struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2089 using Ty =
2090 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2091 Argument_match<T3>>;
2092};
2093
2094template <typename T0, typename T1, typename T2, typename T3, typename T4>
2095struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2096 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2097 Argument_match<T4>>;
2098};
2099
2100template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
2101struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2102 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2103 Argument_match<T5>>;
2104};
2105
2106/// Match intrinsic calls like this:
2107/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2108template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2109 return IntrinsicID_match(IntrID);
2110}
2111
2112/// Matches MaskedLoad Intrinsic.
2113template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2114inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2115m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2116 const Opnd3 &Op3) {
2117 return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2118}
2119
2120template <Intrinsic::ID IntrID, typename T0>
2121inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2122 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2123}
2124
2125template <Intrinsic::ID IntrID, typename T0, typename T1>
2126inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2127 const T1 &Op1) {
2128 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2129}
2130
2131template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2132inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2133m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2134 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2135}
2136
2137template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2138 typename T3>
2139inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2140m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2141 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2142}
2143
2144template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2145 typename T3, typename T4>
2146inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2147m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2148 const T4 &Op4) {
2149 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2150 m_Argument<4>(Op4));
2151}
2152
2153template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2154 typename T3, typename T4, typename T5>
2155inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2156m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2157 const T4 &Op4, const T5 &Op5) {
2158 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2159 m_Argument<5>(Op5));
2160}
2161
2162// Helper intrinsic matching specializations.
2163template <typename Opnd0>
2164inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2165 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2166}
2167
2168template <typename Opnd0>
2169inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2170 return m_Intrinsic<Intrinsic::bswap>(Op0);
2171}
2172
2173template <typename Opnd0>
2174inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2175 return m_Intrinsic<Intrinsic::fabs>(Op0);
2176}
2177
2178template <typename Opnd0>
2179inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2180 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2181}
2182
2183template <typename Opnd0, typename Opnd1>
2184inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2185 const Opnd1 &Op1) {
2186 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2187}
2188
2189template <typename Opnd0, typename Opnd1>
2190inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2191 const Opnd1 &Op1) {
2192 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2193}
2194
2195template <typename Opnd0, typename Opnd1, typename Opnd2>
2196inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2197m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2198 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2199}
2200
2201template <typename Opnd0, typename Opnd1, typename Opnd2>
2202inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2203m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2204 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2205}
2206
2207//===----------------------------------------------------------------------===//
2208// Matchers for two-operands operators with the operators in either order
2209//
2210
2211/// Matches a BinaryOperator with LHS and RHS in either order.
2212template <typename LHS, typename RHS>
2213inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2214 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2215}
2216
2217/// Matches an ICmp with a predicate over LHS and RHS in either order.
2218/// Swaps the predicate if operands are commuted.
2219template <typename LHS, typename RHS>
2220inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2221m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2222 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2223 R);
2224}
2225
2226/// Matches a specific opcode with LHS and RHS in either order.
2227template <typename LHS, typename RHS>
2228inline SpecificBinaryOp_match<LHS, RHS, true>
2229m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2230 return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2231}
2232
2233/// Matches a Add with LHS and RHS in either order.
2234template <typename LHS, typename RHS>
2235inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2236 const RHS &R) {
2237 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2238}
2239
2240/// Matches a Mul with LHS and RHS in either order.
2241template <typename LHS, typename RHS>
2242inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2243 const RHS &R) {
2244 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2245}
2246
2247/// Matches an And with LHS and RHS in either order.
2248template <typename LHS, typename RHS>
2249inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2250 const RHS &R) {
2251 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2252}
2253
2254/// Matches an Or with LHS and RHS in either order.
2255template <typename LHS, typename RHS>
2256inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2257 const RHS &R) {
2258 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2259}
2260
2261/// Matches an Xor with LHS and RHS in either order.
2262template <typename LHS, typename RHS>
2263inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2264 const RHS &R) {
2265 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2266}
2267
2268/// Matches a 'Neg' as 'sub 0, V'.
2269template <typename ValTy>
2270inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2271m_Neg(const ValTy &V) {
2272 return m_Sub(m_ZeroInt(), V);
2273}
2274
2275/// Matches a 'Neg' as 'sub nsw 0, V'.
2276template <typename ValTy>
2277inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2278 Instruction::Sub,
2279 OverflowingBinaryOperator::NoSignedWrap>
2280m_NSWNeg(const ValTy &V) {
2281 return m_NSWSub(m_ZeroInt(), V);
2282}
2283
2284/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2285template <typename ValTy>
2286inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
2287m_Not(const ValTy &V) {
2288 return m_c_Xor(V, m_AllOnes());
2289}
2290
2291template <typename ValTy> struct NotForbidUndef_match {
2292 ValTy Val;
2293 NotForbidUndef_match(const ValTy &V) : Val(V) {}
2294
2295 template <typename OpTy> bool match(OpTy *V) {
2296 // We do not use m_c_Xor because that could match an arbitrary APInt that is
2297 // not -1 as C and then fail to match the other operand if it is -1.
2298 // This code should still work even when both operands are constants.
2299 Value *X;
2300 const APInt *C;
2301 if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes())
2302 return Val.match(X);
2303 if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes())
2304 return Val.match(X);
2305 return false;
2306 }
2307};
2308
2309/// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the
2310/// constant value must be composed of only -1 scalar elements.
2311template <typename ValTy>
2312inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) {
2313 return NotForbidUndef_match<ValTy>(V);
2314}
2315
2316/// Matches an SMin with LHS and RHS in either order.
2317template <typename LHS, typename RHS>
2318inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2319m_c_SMin(const LHS &L, const RHS &R) {
2320 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2321}
2322/// Matches an SMax with LHS and RHS in either order.
2323template <typename LHS, typename RHS>
2324inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2325m_c_SMax(const LHS &L, const RHS &R) {
2326 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2327}
2328/// Matches a UMin with LHS and RHS in either order.
2329template <typename LHS, typename RHS>
2330inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2331m_c_UMin(const LHS &L, const RHS &R) {
2332 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2333}
2334/// Matches a UMax with LHS and RHS in either order.
2335template <typename LHS, typename RHS>
2336inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2337m_c_UMax(const LHS &L, const RHS &R) {
2338 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2339}
2340
2341template <typename LHS, typename RHS>
2342inline match_combine_or<
2343 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2344 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2345 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2346 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2347m_c_MaxOrMin(const LHS &L, const RHS &R) {
2348 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2349 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2350}
2351
2352/// Matches FAdd with LHS and RHS in either order.
2353template <typename LHS, typename RHS>
2354inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2355m_c_FAdd(const LHS &L, const RHS &R) {
2356 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2357}
2358
2359/// Matches FMul with LHS and RHS in either order.
2360template <typename LHS, typename RHS>
2361inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2362m_c_FMul(const LHS &L, const RHS &R) {
2363 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2364}
2365
2366template <typename Opnd_t> struct Signum_match {
2367 Opnd_t Val;
2368 Signum_match(const Opnd_t &V) : Val(V) {}
2369
2370 template <typename OpTy> bool match(OpTy *V) {
2371 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2372 if (TypeSize == 0)
2373 return false;
2374
2375 unsigned ShiftWidth = TypeSize - 1;
2376 Value *OpL = nullptr, *OpR = nullptr;
2377
2378 // This is the representation of signum we match:
2379 //
2380 // signum(x) == (x >> 63) | (-x >>u 63)
2381 //
2382 // An i1 value is its own signum, so it's correct to match
2383 //
2384 // signum(x) == (x >> 0) | (-x >>u 0)
2385 //
2386 // for i1 values.
2387
2388 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2389 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2390 auto Signum = m_Or(LHS, RHS);
2391
2392 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2393 }
2394};
2395
2396/// Matches a signum pattern.
2397///
2398/// signum(x) =
2399/// x > 0 -> 1
2400/// x == 0 -> 0
2401/// x < 0 -> -1
2402template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2403 return Signum_match<Val_t>(V);
2404}
2405
2406template <int Ind, typename Opnd_t> struct ExtractValue_match {
2407 Opnd_t Val;
2408 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2409
2410 template <typename OpTy> bool match(OpTy *V) {
2411 if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2412 // If Ind is -1, don't inspect indices
2413 if (Ind != -1 &&
2414 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2415 return false;
2416 return Val.match(I->getAggregateOperand());
2417 }
2418 return false;
2419 }
2420};
2421
2422/// Match a single index ExtractValue instruction.
2423/// For example m_ExtractValue<1>(...)
2424template <int Ind, typename Val_t>
2425inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2426 return ExtractValue_match<Ind, Val_t>(V);
2427}
2428
2429/// Match an ExtractValue instruction with any index.
2430/// For example m_ExtractValue(...)
2431template <typename Val_t>
2432inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2433 return ExtractValue_match<-1, Val_t>(V);
2434}
2435
2436/// Matcher for a single index InsertValue instruction.
2437template <int Ind, typename T0, typename T1> struct InsertValue_match {
2438 T0 Op0;
2439 T1 Op1;
2440
2441 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2442
2443 template <typename OpTy> bool match(OpTy *V) {
2444 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2445 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2446 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2447 }
2448 return false;
2449 }
2450};
2451
2452/// Matches a single index InsertValue instruction.
2453template <int Ind, typename Val_t, typename Elt_t>
2454inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2455 const Elt_t &Elt) {
2456 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2457}
2458
2459/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2460/// the constant expression
2461/// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2462/// under the right conditions determined by DataLayout.
2463struct VScaleVal_match {
2464 const DataLayout &DL;
2465 VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2466
2467 template <typename ITy> bool match(ITy *V) {
2468 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2469 return true;
2470
2471 Value *Ptr;
2472 if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2473 if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2474 auto *DerefTy = GEP->getSourceElementType();
2475 if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) &&
2476 m_Zero().match(GEP->getPointerOperand()) &&
2477 m_SpecificInt(1).match(GEP->idx_begin()->get()) &&
2478 DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
2479 return true;
2480 }
2481 }
2482
2483 return false;
2484 }
2485};
2486
2487inline VScaleVal_match m_VScale(const DataLayout &DL) {
2488 return VScaleVal_match(DL);
2489}
2490
2491template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
2492struct LogicalOp_match {
2493 LHS L;
2494 RHS R;
2495
2496 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2497
2498 template <typename T> bool match(T *V) {
2499 auto *I = dyn_cast<Instruction>(V);
2500 if (!I || !I->getType()->isIntOrIntVectorTy(1))
2501 return false;
2502
2503 if (I->getOpcode() == Opcode) {
2504 auto *Op0 = I->getOperand(0);
2505 auto *Op1 = I->getOperand(1);
2506 return (L.match(Op0) && R.match(Op1)) ||
2507 (Commutable && L.match(Op1) && R.match(Op0));
2508 }
2509
2510 if (auto *Select = dyn_cast<SelectInst>(I)) {
2511 auto *Cond = Select->getCondition();
2512 auto *TVal = Select->getTrueValue();
2513 auto *FVal = Select->getFalseValue();
2514 if (Opcode == Instruction::And) {
2515 auto *C = dyn_cast<Constant>(FVal);
2516 if (C && C->isNullValue())
2517 return (L.match(Cond) && R.match(TVal)) ||
2518 (Commutable && L.match(TVal) && R.match(Cond));
2519 } else {
2520 assert(Opcode == Instruction::Or)(static_cast <bool> (Opcode == Instruction::Or) ? void (
0) : __assert_fail ("Opcode == Instruction::Or", "llvm/include/llvm/IR/PatternMatch.h"
, 2520, __extension__ __PRETTY_FUNCTION__))
;
2521 auto *C = dyn_cast<Constant>(TVal);
2522 if (C && C->isOneValue())
2523 return (L.match(Cond) && R.match(FVal)) ||
2524 (Commutable && L.match(FVal) && R.match(Cond));
2525 }
2526 }
2527
2528 return false;
2529 }
2530};
2531
2532/// Matches L && R either in the form of L & R or L ? R : false.
2533/// Note that the latter form is poison-blocking.
2534template <typename LHS, typename RHS>
2535inline LogicalOp_match<LHS, RHS, Instruction::And>
2536m_LogicalAnd(const LHS &L, const RHS &R) {
2537 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2538}
2539
2540/// Matches L && R where L and R are arbitrary values.
2541inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2542
2543/// Matches L && R with LHS and RHS in either order.
2544template <typename LHS, typename RHS>
2545inline LogicalOp_match<LHS, RHS, Instruction::And, true>
2546m_c_LogicalAnd(const LHS &L, const RHS &R) {
2547 return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
2548}
2549
2550/// Matches L || R either in the form of L | R or L ? true : R.
2551/// Note that the latter form is poison-blocking.
2552template <typename LHS, typename RHS>
2553inline LogicalOp_match<LHS, RHS, Instruction::Or>
2554m_LogicalOr(const LHS &L, const RHS &R) {
2555 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2556}
2557
2558/// Matches L || R where L and R are arbitrary values.
2559inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
2560
2561/// Matches L || R with LHS and RHS in either order.
2562template <typename LHS, typename RHS>
2563inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
2564m_c_LogicalOr(const LHS &L, const RHS &R) {
2565 return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2566}
2567
2568} // end namespace PatternMatch
2569} // end namespace llvm
2570
2571#endif // LLVM_IR_PATTERNMATCH_H