Bug Summary

File:lib/ProfileData/InstrProfReader.cpp
Warning:line 717, column 7
Potential leak of memory pointed to by field '_M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name InstrProfReader.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/ProfileData -I /build/llvm-toolchain-snapshot-7~svn329677/lib/ProfileData -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/ProfileData -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/lib/ProfileData/InstrProfReader.cpp

/build/llvm-toolchain-snapshot-7~svn329677/lib/ProfileData/InstrProfReader.cpp

1//===- InstrProfReader.cpp - Instrumented profiling reader ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains support for reading profiling data for clang's
11// instrumentation based PGO and coverage.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ProfileData/InstrProfReader.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/IR/ProfileSummary.h"
20#include "llvm/ProfileData/InstrProf.h"
21#include "llvm/ProfileData/ProfileCommon.h"
22#include "llvm/Support/Endian.h"
23#include "llvm/Support/Error.h"
24#include "llvm/Support/ErrorOr.h"
25#include "llvm/Support/MemoryBuffer.h"
26#include "llvm/Support/SwapByteOrder.h"
27#include <algorithm>
28#include <cctype>
29#include <cstddef>
30#include <cstdint>
31#include <limits>
32#include <memory>
33#include <system_error>
34#include <utility>
35#include <vector>
36
37using namespace llvm;
38
39static Expected<std::unique_ptr<MemoryBuffer>>
40setupMemoryBuffer(const Twine &Path) {
41 ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
42 MemoryBuffer::getFileOrSTDIN(Path);
43 if (std::error_code EC = BufferOrErr.getError())
44 return errorCodeToError(EC);
45 return std::move(BufferOrErr.get());
46}
47
48static Error initializeReader(InstrProfReader &Reader) {
49 return Reader.readHeader();
50}
51
52Expected<std::unique_ptr<InstrProfReader>>
53InstrProfReader::create(const Twine &Path) {
54 // Set up the buffer to read.
55 auto BufferOrError = setupMemoryBuffer(Path);
56 if (Error E = BufferOrError.takeError())
57 return std::move(E);
58 return InstrProfReader::create(std::move(BufferOrError.get()));
59}
60
61Expected<std::unique_ptr<InstrProfReader>>
62InstrProfReader::create(std::unique_ptr<MemoryBuffer> Buffer) {
63 // Sanity check the buffer.
64 if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<unsigned>::max())
65 return make_error<InstrProfError>(instrprof_error::too_large);
66
67 if (Buffer->getBufferSize() == 0)
68 return make_error<InstrProfError>(instrprof_error::empty_raw_profile);
69
70 std::unique_ptr<InstrProfReader> Result;
71 // Create the reader.
72 if (IndexedInstrProfReader::hasFormat(*Buffer))
73 Result.reset(new IndexedInstrProfReader(std::move(Buffer)));
74 else if (RawInstrProfReader64::hasFormat(*Buffer))
75 Result.reset(new RawInstrProfReader64(std::move(Buffer)));
76 else if (RawInstrProfReader32::hasFormat(*Buffer))
77 Result.reset(new RawInstrProfReader32(std::move(Buffer)));
78 else if (TextInstrProfReader::hasFormat(*Buffer))
79 Result.reset(new TextInstrProfReader(std::move(Buffer)));
80 else
81 return make_error<InstrProfError>(instrprof_error::unrecognized_format);
82
83 // Initialize the reader and return the result.
84 if (Error E = initializeReader(*Result))
85 return std::move(E);
86
87 return std::move(Result);
88}
89
90Expected<std::unique_ptr<IndexedInstrProfReader>>
91IndexedInstrProfReader::create(const Twine &Path) {
92 // Set up the buffer to read.
93 auto BufferOrError = setupMemoryBuffer(Path);
94 if (Error E = BufferOrError.takeError())
95 return std::move(E);
96 return IndexedInstrProfReader::create(std::move(BufferOrError.get()));
97}
98
99Expected<std::unique_ptr<IndexedInstrProfReader>>
100IndexedInstrProfReader::create(std::unique_ptr<MemoryBuffer> Buffer) {
101 // Sanity check the buffer.
102 if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<unsigned>::max())
103 return make_error<InstrProfError>(instrprof_error::too_large);
104
105 // Create the reader.
106 if (!IndexedInstrProfReader::hasFormat(*Buffer))
107 return make_error<InstrProfError>(instrprof_error::bad_magic);
108 auto Result = llvm::make_unique<IndexedInstrProfReader>(std::move(Buffer));
109
110 // Initialize the reader and return the result.
111 if (Error E = initializeReader(*Result))
112 return std::move(E);
113
114 return std::move(Result);
115}
116
117void InstrProfIterator::Increment() {
118 if (auto E = Reader->readNextRecord(Record)) {
119 // Handle errors in the reader.
120 InstrProfError::take(std::move(E));
121 *this = InstrProfIterator();
122 }
123}
124
125bool TextInstrProfReader::hasFormat(const MemoryBuffer &Buffer) {
126 // Verify that this really looks like plain ASCII text by checking a
127 // 'reasonable' number of characters (up to profile magic size).
128 size_t count = std::min(Buffer.getBufferSize(), sizeof(uint64_t));
129 StringRef buffer = Buffer.getBufferStart();
130 return count == 0 ||
131 std::all_of(buffer.begin(), buffer.begin() + count,
132 [](char c) { return ::isprint(c) || ::isspace(c); });
133}
134
135// Read the profile variant flag from the header: ":FE" means this is a FE
136// generated profile. ":IR" means this is an IR level profile. Other strings
137// with a leading ':' will be reported an error format.
138Error TextInstrProfReader::readHeader() {
139 Symtab.reset(new InstrProfSymtab());
140 bool IsIRInstr = false;
141 if (!Line->startswith(":")) {
142 IsIRLevelProfile = false;
143 return success();
144 }
145 StringRef Str = (Line)->substr(1);
146 if (Str.equals_lower("ir"))
147 IsIRInstr = true;
148 else if (Str.equals_lower("fe"))
149 IsIRInstr = false;
150 else
151 return error(instrprof_error::bad_header);
152
153 ++Line;
154 IsIRLevelProfile = IsIRInstr;
155 return success();
156}
157
158Error
159TextInstrProfReader::readValueProfileData(InstrProfRecord &Record) {
160
161#define CHECK_LINE_END(Line) \
162 if (Line.is_at_end()) \
163 return error(instrprof_error::truncated);
164#define READ_NUM(Str, Dst) \
165 if ((Str).getAsInteger(10, (Dst))) \
166 return error(instrprof_error::malformed);
167#define VP_READ_ADVANCE(Val) \
168 CHECK_LINE_END(Line); \
169 uint32_t Val; \
170 READ_NUM((*Line), (Val)); \
171 Line++;
172
173 if (Line.is_at_end())
174 return success();
175
176 uint32_t NumValueKinds;
177 if (Line->getAsInteger(10, NumValueKinds)) {
178 // No value profile data
179 return success();
180 }
181 if (NumValueKinds == 0 || NumValueKinds > IPVK_Last + 1)
182 return error(instrprof_error::malformed);
183 Line++;
184
185 for (uint32_t VK = 0; VK < NumValueKinds; VK++) {
186 VP_READ_ADVANCE(ValueKind);
187 if (ValueKind > IPVK_Last)
188 return error(instrprof_error::malformed);
189 VP_READ_ADVANCE(NumValueSites);
190 if (!NumValueSites)
191 continue;
192
193 Record.reserveSites(VK, NumValueSites);
194 for (uint32_t S = 0; S < NumValueSites; S++) {
195 VP_READ_ADVANCE(NumValueData);
196
197 std::vector<InstrProfValueData> CurrentValues;
198 for (uint32_t V = 0; V < NumValueData; V++) {
199 CHECK_LINE_END(Line);
200 std::pair<StringRef, StringRef> VD = Line->rsplit(':');
201 uint64_t TakenCount, Value;
202 if (ValueKind == IPVK_IndirectCallTarget) {
203 if (InstrProfSymtab::isExternalSymbol(VD.first)) {
204 Value = 0;
205 } else {
206 if (Error E = Symtab->addFuncName(VD.first))
207 return E;
208 Value = IndexedInstrProf::ComputeHash(VD.first);
209 }
210 } else {
211 READ_NUM(VD.first, Value);
212 }
213 READ_NUM(VD.second, TakenCount);
214 CurrentValues.push_back({Value, TakenCount});
215 Line++;
216 }
217 Record.addValueData(ValueKind, S, CurrentValues.data(), NumValueData,
218 nullptr);
219 }
220 }
221 return success();
222
223#undef CHECK_LINE_END
224#undef READ_NUM
225#undef VP_READ_ADVANCE
226}
227
228Error TextInstrProfReader::readNextRecord(NamedInstrProfRecord &Record) {
229 // Skip empty lines and comments.
230 while (!Line.is_at_end() && (Line->empty() || Line->startswith("#")))
231 ++Line;
232 // If we hit EOF while looking for a name, we're done.
233 if (Line.is_at_end()) {
234 return error(instrprof_error::eof);
235 }
236
237 // Read the function name.
238 Record.Name = *Line++;
239 if (Error E = Symtab->addFuncName(Record.Name))
240 return error(std::move(E));
241
242 // Read the function hash.
243 if (Line.is_at_end())
244 return error(instrprof_error::truncated);
245 if ((Line++)->getAsInteger(0, Record.Hash))
246 return error(instrprof_error::malformed);
247
248 // Read the number of counters.
249 uint64_t NumCounters;
250 if (Line.is_at_end())
251 return error(instrprof_error::truncated);
252 if ((Line++)->getAsInteger(10, NumCounters))
253 return error(instrprof_error::malformed);
254 if (NumCounters == 0)
255 return error(instrprof_error::malformed);
256
257 // Read each counter and fill our internal storage with the values.
258 Record.Clear();
259 Record.Counts.reserve(NumCounters);
260 for (uint64_t I = 0; I < NumCounters; ++I) {
261 if (Line.is_at_end())
262 return error(instrprof_error::truncated);
263 uint64_t Count;
264 if ((Line++)->getAsInteger(10, Count))
265 return error(instrprof_error::malformed);
266 Record.Counts.push_back(Count);
267 }
268
269 // Check if value profile data exists and read it if so.
270 if (Error E = readValueProfileData(Record))
271 return error(std::move(E));
272
273 return success();
274}
275
276template <class IntPtrT>
277bool RawInstrProfReader<IntPtrT>::hasFormat(const MemoryBuffer &DataBuffer) {
278 if (DataBuffer.getBufferSize() < sizeof(uint64_t))
279 return false;
280 uint64_t Magic =
281 *reinterpret_cast<const uint64_t *>(DataBuffer.getBufferStart());
282 return RawInstrProf::getMagic<IntPtrT>() == Magic ||
283 sys::getSwappedBytes(RawInstrProf::getMagic<IntPtrT>()) == Magic;
284}
285
286template <class IntPtrT>
287Error RawInstrProfReader<IntPtrT>::readHeader() {
288 if (!hasFormat(*DataBuffer))
289 return error(instrprof_error::bad_magic);
290 if (DataBuffer->getBufferSize() < sizeof(RawInstrProf::Header))
291 return error(instrprof_error::bad_header);
292 auto *Header = reinterpret_cast<const RawInstrProf::Header *>(
293 DataBuffer->getBufferStart());
294 ShouldSwapBytes = Header->Magic != RawInstrProf::getMagic<IntPtrT>();
295 return readHeader(*Header);
296}
297
298template <class IntPtrT>
299Error RawInstrProfReader<IntPtrT>::readNextHeader(const char *CurrentPos) {
300 const char *End = DataBuffer->getBufferEnd();
301 // Skip zero padding between profiles.
302 while (CurrentPos != End && *CurrentPos == 0)
303 ++CurrentPos;
304 // If there's nothing left, we're done.
305 if (CurrentPos == End)
306 return make_error<InstrProfError>(instrprof_error::eof);
307 // If there isn't enough space for another header, this is probably just
308 // garbage at the end of the file.
309 if (CurrentPos + sizeof(RawInstrProf::Header) > End)
310 return make_error<InstrProfError>(instrprof_error::malformed);
311 // The writer ensures each profile is padded to start at an aligned address.
312 if (reinterpret_cast<size_t>(CurrentPos) % alignof(uint64_t))
313 return make_error<InstrProfError>(instrprof_error::malformed);
314 // The magic should have the same byte order as in the previous header.
315 uint64_t Magic = *reinterpret_cast<const uint64_t *>(CurrentPos);
316 if (Magic != swap(RawInstrProf::getMagic<IntPtrT>()))
317 return make_error<InstrProfError>(instrprof_error::bad_magic);
318
319 // There's another profile to read, so we need to process the header.
320 auto *Header = reinterpret_cast<const RawInstrProf::Header *>(CurrentPos);
321 return readHeader(*Header);
322}
323
324template <class IntPtrT>
325Error RawInstrProfReader<IntPtrT>::createSymtab(InstrProfSymtab &Symtab) {
326 if (Error E = Symtab.create(StringRef(NamesStart, NamesSize)))
327 return error(std::move(E));
328 for (const RawInstrProf::ProfileData<IntPtrT> *I = Data; I != DataEnd; ++I) {
329 const IntPtrT FPtr = swap(I->FunctionPointer);
330 if (!FPtr)
331 continue;
332 Symtab.mapAddress(FPtr, I->NameRef);
333 }
334 return success();
335}
336
337template <class IntPtrT>
338Error RawInstrProfReader<IntPtrT>::readHeader(
339 const RawInstrProf::Header &Header) {
340 Version = swap(Header.Version);
341 if (GET_VERSION(Version)((Version) & ~0xff00000000000000ULL) != RawInstrProf::Version)
342 return error(instrprof_error::unsupported_version);
343
344 CountersDelta = swap(Header.CountersDelta);
345 NamesDelta = swap(Header.NamesDelta);
346 auto DataSize = swap(Header.DataSize);
347 auto CountersSize = swap(Header.CountersSize);
348 NamesSize = swap(Header.NamesSize);
349 ValueKindLast = swap(Header.ValueKindLast);
350
351 auto DataSizeInBytes = DataSize * sizeof(RawInstrProf::ProfileData<IntPtrT>);
352 auto PaddingSize = getNumPaddingBytes(NamesSize);
353
354 ptrdiff_t DataOffset = sizeof(RawInstrProf::Header);
355 ptrdiff_t CountersOffset = DataOffset + DataSizeInBytes;
356 ptrdiff_t NamesOffset = CountersOffset + sizeof(uint64_t) * CountersSize;
357 ptrdiff_t ValueDataOffset = NamesOffset + NamesSize + PaddingSize;
358
359 auto *Start = reinterpret_cast<const char *>(&Header);
360 if (Start + ValueDataOffset > DataBuffer->getBufferEnd())
361 return error(instrprof_error::bad_header);
362
363 Data = reinterpret_cast<const RawInstrProf::ProfileData<IntPtrT> *>(
364 Start + DataOffset);
365 DataEnd = Data + DataSize;
366 CountersStart = reinterpret_cast<const uint64_t *>(Start + CountersOffset);
367 NamesStart = Start + NamesOffset;
368 ValueDataStart = reinterpret_cast<const uint8_t *>(Start + ValueDataOffset);
369
370 std::unique_ptr<InstrProfSymtab> NewSymtab = make_unique<InstrProfSymtab>();
371 if (Error E = createSymtab(*NewSymtab.get()))
372 return E;
373
374 Symtab = std::move(NewSymtab);
375 return success();
376}
377
378template <class IntPtrT>
379Error RawInstrProfReader<IntPtrT>::readName(NamedInstrProfRecord &Record) {
380 Record.Name = getName(Data->NameRef);
381 return success();
382}
383
384template <class IntPtrT>
385Error RawInstrProfReader<IntPtrT>::readFuncHash(NamedInstrProfRecord &Record) {
386 Record.Hash = swap(Data->FuncHash);
387 return success();
388}
389
390template <class IntPtrT>
391Error RawInstrProfReader<IntPtrT>::readRawCounts(
392 InstrProfRecord &Record) {
393 uint32_t NumCounters = swap(Data->NumCounters);
394 IntPtrT CounterPtr = Data->CounterPtr;
395 if (NumCounters == 0)
396 return error(instrprof_error::malformed);
397
398 auto RawCounts = makeArrayRef(getCounter(CounterPtr), NumCounters);
399 auto *NamesStartAsCounter = reinterpret_cast<const uint64_t *>(NamesStart);
400
401 // Check bounds.
402 if (RawCounts.data() < CountersStart ||
403 RawCounts.data() + RawCounts.size() > NamesStartAsCounter)
404 return error(instrprof_error::malformed);
405
406 if (ShouldSwapBytes) {
407 Record.Counts.clear();
408 Record.Counts.reserve(RawCounts.size());
409 for (uint64_t Count : RawCounts)
410 Record.Counts.push_back(swap(Count));
411 } else
412 Record.Counts = RawCounts;
413
414 return success();
415}
416
417template <class IntPtrT>
418Error RawInstrProfReader<IntPtrT>::readValueProfilingData(
419 InstrProfRecord &Record) {
420 Record.clearValueData();
421 CurValueDataSize = 0;
422 // Need to match the logic in value profile dumper code in compiler-rt:
423 uint32_t NumValueKinds = 0;
424 for (uint32_t I = 0; I < IPVK_Last + 1; I++)
425 NumValueKinds += (Data->NumValueSites[I] != 0);
426
427 if (!NumValueKinds)
428 return success();
429
430 Expected<std::unique_ptr<ValueProfData>> VDataPtrOrErr =
431 ValueProfData::getValueProfData(
432 ValueDataStart, (const unsigned char *)DataBuffer->getBufferEnd(),
433 getDataEndianness());
434
435 if (Error E = VDataPtrOrErr.takeError())
436 return E;
437
438 // Note that besides deserialization, this also performs the conversion for
439 // indirect call targets. The function pointers from the raw profile are
440 // remapped into function name hashes.
441 VDataPtrOrErr.get()->deserializeTo(Record, Symtab.get());
442 CurValueDataSize = VDataPtrOrErr.get()->getSize();
443 return success();
444}
445
446template <class IntPtrT>
447Error RawInstrProfReader<IntPtrT>::readNextRecord(NamedInstrProfRecord &Record) {
448 if (atEnd())
449 // At this point, ValueDataStart field points to the next header.
450 if (Error E = readNextHeader(getNextHeaderPos()))
451 return E;
452
453 // Read name ad set it in Record.
454 if (Error E = readName(Record))
455 return E;
456
457 // Read FuncHash and set it in Record.
458 if (Error E = readFuncHash(Record))
459 return E;
460
461 // Read raw counts and set Record.
462 if (Error E = readRawCounts(Record))
463 return E;
464
465 // Read value data and set Record.
466 if (Error E = readValueProfilingData(Record))
467 return E;
468
469 // Iterate.
470 advanceData();
471 return success();
472}
473
474namespace llvm {
475
476template class RawInstrProfReader<uint32_t>;
477template class RawInstrProfReader<uint64_t>;
478
479} // end namespace llvm
480
481InstrProfLookupTrait::hash_value_type
482InstrProfLookupTrait::ComputeHash(StringRef K) {
483 return IndexedInstrProf::ComputeHash(HashType, K);
484}
485
486using data_type = InstrProfLookupTrait::data_type;
487using offset_type = InstrProfLookupTrait::offset_type;
488
489bool InstrProfLookupTrait::readValueProfilingData(
490 const unsigned char *&D, const unsigned char *const End) {
491 Expected<std::unique_ptr<ValueProfData>> VDataPtrOrErr =
492 ValueProfData::getValueProfData(D, End, ValueProfDataEndianness);
493
494 if (VDataPtrOrErr.takeError())
495 return false;
496
497 VDataPtrOrErr.get()->deserializeTo(DataBuffer.back(), nullptr);
498 D += VDataPtrOrErr.get()->TotalSize;
499
500 return true;
501}
502
503data_type InstrProfLookupTrait::ReadData(StringRef K, const unsigned char *D,
504 offset_type N) {
505 using namespace support;
506
507 // Check if the data is corrupt. If so, don't try to read it.
508 if (N % sizeof(uint64_t))
509 return data_type();
510
511 DataBuffer.clear();
512 std::vector<uint64_t> CounterBuffer;
513
514 const unsigned char *End = D + N;
515 while (D < End) {
516 // Read hash.
517 if (D + sizeof(uint64_t) >= End)
518 return data_type();
519 uint64_t Hash = endian::readNext<uint64_t, little, unaligned>(D);
520
521 // Initialize number of counters for GET_VERSION(FormatVersion) == 1.
522 uint64_t CountsSize = N / sizeof(uint64_t) - 1;
523 // If format version is different then read the number of counters.
524 if (GET_VERSION(FormatVersion)((FormatVersion) & ~0xff00000000000000ULL) != IndexedInstrProf::ProfVersion::Version1) {
525 if (D + sizeof(uint64_t) > End)
526 return data_type();
527 CountsSize = endian::readNext<uint64_t, little, unaligned>(D);
528 }
529 // Read counter values.
530 if (D + CountsSize * sizeof(uint64_t) > End)
531 return data_type();
532
533 CounterBuffer.clear();
534 CounterBuffer.reserve(CountsSize);
535 for (uint64_t J = 0; J < CountsSize; ++J)
536 CounterBuffer.push_back(endian::readNext<uint64_t, little, unaligned>(D));
537
538 DataBuffer.emplace_back(K, Hash, std::move(CounterBuffer));
539
540 // Read value profiling data.
541 if (GET_VERSION(FormatVersion)((FormatVersion) & ~0xff00000000000000ULL) > IndexedInstrProf::ProfVersion::Version2 &&
542 !readValueProfilingData(D, End)) {
543 DataBuffer.clear();
544 return data_type();
545 }
546 }
547 return DataBuffer;
548}
549
550template <typename HashTableImpl>
551Error InstrProfReaderIndex<HashTableImpl>::getRecords(
552 StringRef FuncName, ArrayRef<NamedInstrProfRecord> &Data) {
553 auto Iter = HashTable->find(FuncName);
554 if (Iter == HashTable->end())
555 return make_error<InstrProfError>(instrprof_error::unknown_function);
556
557 Data = (*Iter);
558 if (Data.empty())
559 return make_error<InstrProfError>(instrprof_error::malformed);
560
561 return Error::success();
562}
563
564template <typename HashTableImpl>
565Error InstrProfReaderIndex<HashTableImpl>::getRecords(
566 ArrayRef<NamedInstrProfRecord> &Data) {
567 if (atEnd())
568 return make_error<InstrProfError>(instrprof_error::eof);
569
570 Data = *RecordIterator;
571
572 if (Data.empty())
573 return make_error<InstrProfError>(instrprof_error::malformed);
574
575 return Error::success();
576}
577
578template <typename HashTableImpl>
579InstrProfReaderIndex<HashTableImpl>::InstrProfReaderIndex(
580 const unsigned char *Buckets, const unsigned char *const Payload,
581 const unsigned char *const Base, IndexedInstrProf::HashT HashType,
582 uint64_t Version) {
583 FormatVersion = Version;
584 HashTable.reset(HashTableImpl::Create(
585 Buckets, Payload, Base,
586 typename HashTableImpl::InfoType(HashType, Version)));
587 RecordIterator = HashTable->data_begin();
588}
589
590bool IndexedInstrProfReader::hasFormat(const MemoryBuffer &DataBuffer) {
591 using namespace support;
592
593 if (DataBuffer.getBufferSize() < 8)
594 return false;
595 uint64_t Magic =
596 endian::read<uint64_t, little, aligned>(DataBuffer.getBufferStart());
597 // Verify that it's magical.
598 return Magic == IndexedInstrProf::Magic;
599}
600
601const unsigned char *
602IndexedInstrProfReader::readSummary(IndexedInstrProf::ProfVersion Version,
603 const unsigned char *Cur) {
604 using namespace IndexedInstrProf;
605 using namespace support;
606
607 if (Version >= IndexedInstrProf::Version4) {
608 const IndexedInstrProf::Summary *SummaryInLE =
609 reinterpret_cast<const IndexedInstrProf::Summary *>(Cur);
610 uint64_t NFields =
611 endian::byte_swap<uint64_t, little>(SummaryInLE->NumSummaryFields);
612 uint64_t NEntries =
613 endian::byte_swap<uint64_t, little>(SummaryInLE->NumCutoffEntries);
614 uint32_t SummarySize =
615 IndexedInstrProf::Summary::getSize(NFields, NEntries);
616 std::unique_ptr<IndexedInstrProf::Summary> SummaryData =
617 IndexedInstrProf::allocSummary(SummarySize);
618
619 const uint64_t *Src = reinterpret_cast<const uint64_t *>(SummaryInLE);
620 uint64_t *Dst = reinterpret_cast<uint64_t *>(SummaryData.get());
621 for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
622 Dst[I] = endian::byte_swap<uint64_t, little>(Src[I]);
623
624 SummaryEntryVector DetailedSummary;
625 for (unsigned I = 0; I < SummaryData->NumCutoffEntries; I++) {
626 const IndexedInstrProf::Summary::Entry &Ent = SummaryData->getEntry(I);
627 DetailedSummary.emplace_back((uint32_t)Ent.Cutoff, Ent.MinBlockCount,
628 Ent.NumBlocks);
629 }
630 // initialize InstrProfSummary using the SummaryData from disk.
631 this->Summary = llvm::make_unique<ProfileSummary>(
632 ProfileSummary::PSK_Instr, DetailedSummary,
633 SummaryData->get(Summary::TotalBlockCount),
634 SummaryData->get(Summary::MaxBlockCount),
635 SummaryData->get(Summary::MaxInternalBlockCount),
636 SummaryData->get(Summary::MaxFunctionCount),
637 SummaryData->get(Summary::TotalNumBlocks),
638 SummaryData->get(Summary::TotalNumFunctions));
639 return Cur + SummarySize;
640 } else {
641 // For older version of profile data, we need to compute on the fly:
642 using namespace IndexedInstrProf;
643
644 InstrProfSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
645 // FIXME: This only computes an empty summary. Need to call addRecord for
646 // all NamedInstrProfRecords to get the correct summary.
647 this->Summary = Builder.getSummary();
648 return Cur;
649 }
650}
651
652Error IndexedInstrProfReader::readHeader() {
653 using namespace support;
654
655 const unsigned char *Start =
656 (const unsigned char *)DataBuffer->getBufferStart();
657 const unsigned char *Cur = Start;
658 if ((const unsigned char *)DataBuffer->getBufferEnd() - Cur < 24)
659 return error(instrprof_error::truncated);
660
661 auto *Header = reinterpret_cast<const IndexedInstrProf::Header *>(Cur);
662 Cur += sizeof(IndexedInstrProf::Header);
663
664 // Check the magic number.
665 uint64_t Magic = endian::byte_swap<uint64_t, little>(Header->Magic);
666 if (Magic != IndexedInstrProf::Magic)
667 return error(instrprof_error::bad_magic);
668
669 // Read the version.
670 uint64_t FormatVersion = endian::byte_swap<uint64_t, little>(Header->Version);
671 if (GET_VERSION(FormatVersion)((FormatVersion) & ~0xff00000000000000ULL) >
672 IndexedInstrProf::ProfVersion::CurrentVersion)
673 return error(instrprof_error::unsupported_version);
674
675 Cur = readSummary((IndexedInstrProf::ProfVersion)FormatVersion, Cur);
676
677 // Read the hash type and start offset.
678 IndexedInstrProf::HashT HashType = static_cast<IndexedInstrProf::HashT>(
679 endian::byte_swap<uint64_t, little>(Header->HashType));
680 if (HashType > IndexedInstrProf::HashT::Last)
681 return error(instrprof_error::unsupported_hash_type);
682
683 uint64_t HashOffset = endian::byte_swap<uint64_t, little>(Header->HashOffset);
684
685 // The rest of the file is an on disk hash table.
686 InstrProfReaderIndexBase *IndexPtr = nullptr;
687 IndexPtr = new InstrProfReaderIndex<OnDiskHashTableImplV3>(
688 Start + HashOffset, Cur, Start, HashType, FormatVersion);
689 Index.reset(IndexPtr);
690 return success();
691}
692
693InstrProfSymtab &IndexedInstrProfReader::getSymtab() {
694 if (Symtab.get())
695 return *Symtab.get();
696
697 std::unique_ptr<InstrProfSymtab> NewSymtab = make_unique<InstrProfSymtab>();
698 if (Error E = Index->populateSymtab(*NewSymtab.get())) {
699 consumeError(error(InstrProfError::take(std::move(E))));
700 }
701
702 Symtab = std::move(NewSymtab);
703 return *Symtab.get();
704}
705
706Expected<InstrProfRecord>
707IndexedInstrProfReader::getInstrProfRecord(StringRef FuncName,
708 uint64_t FuncHash) {
709 ArrayRef<NamedInstrProfRecord> Data;
710 Error Err = Index->getRecords(FuncName, Data);
711 if (Err)
2
Taking false branch
712 return std::move(Err);
713 // Found it. Look for counters with the right hash.
714 for (unsigned I = 0, E = Data.size(); I < E; ++I) {
3
Assuming 'I' is < 'E'
4
Loop condition is true. Entering loop body
715 // Check for a match and fill the vector if there is one.
716 if (Data[I].Hash == FuncHash) {
5
Taking true branch
717 return std::move(Data[I]);
6
Calling constructor for 'Expected'
13
Returning from constructor for 'Expected'
14
Potential leak of memory pointed to by field '_M_head_impl'
718 }
719 }
720 return error(instrprof_error::hash_mismatch);
721}
722
723Error IndexedInstrProfReader::getFunctionCounts(StringRef FuncName,
724 uint64_t FuncHash,
725 std::vector<uint64_t> &Counts) {
726 Expected<InstrProfRecord> Record = getInstrProfRecord(FuncName, FuncHash);
1
Calling 'IndexedInstrProfReader::getInstrProfRecord'
727 if (Error E = Record.takeError())
728 return error(std::move(E));
729
730 Counts = Record.get().Counts;
731 return success();
732}
733
734Error IndexedInstrProfReader::readNextRecord(NamedInstrProfRecord &Record) {
735 ArrayRef<NamedInstrProfRecord> Data;
736
737 Error E = Index->getRecords(Data);
738 if (E)
739 return error(std::move(E));
740
741 Record = Data[RecordIndex++];
742 if (RecordIndex >= Data.size()) {
743 Index->advanceToNextKey();
744 RecordIndex = 0;
745 }
746 return success();
747}

/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an API used to report recoverable errors.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_ERROR_H
15#define LLVM_SUPPORT_ERROR_H
16
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Config/abi-breaking.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/ErrorOr.h"
27#include "llvm/Support/raw_ostream.h"
28#include <algorithm>
29#include <cassert>
30#include <cstdint>
31#include <cstdlib>
32#include <functional>
33#include <memory>
34#include <new>
35#include <string>
36#include <system_error>
37#include <type_traits>
38#include <utility>
39#include <vector>
40
41namespace llvm {
42
43class ErrorSuccess;
44
45/// Base class for error info classes. Do not extend this directly: Extend
46/// the ErrorInfo template subclass instead.
47class ErrorInfoBase {
48public:
49 virtual ~ErrorInfoBase() = default;
50
51 /// Print an error message to an output stream.
52 virtual void log(raw_ostream &OS) const = 0;
53
54 /// Return the error message as a string.
55 virtual std::string message() const {
56 std::string Msg;
57 raw_string_ostream OS(Msg);
58 log(OS);
59 return OS.str();
60 }
61
62 /// Convert this error to a std::error_code.
63 ///
64 /// This is a temporary crutch to enable interaction with code still
65 /// using std::error_code. It will be removed in the future.
66 virtual std::error_code convertToErrorCode() const = 0;
67
68 // Returns the class ID for this type.
69 static const void *classID() { return &ID; }
70
71 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
72 virtual const void *dynamicClassID() const = 0;
73
74 // Check whether this instance is a subclass of the class identified by
75 // ClassID.
76 virtual bool isA(const void *const ClassID) const {
77 return ClassID == classID();
78 }
79
80 // Check whether this instance is a subclass of ErrorInfoT.
81 template <typename ErrorInfoT> bool isA() const {
82 return isA(ErrorInfoT::classID());
83 }
84
85private:
86 virtual void anchor();
87
88 static char ID;
89};
90
91/// Lightweight error class with error context and mandatory checking.
92///
93/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
94/// are represented by setting the pointer to a ErrorInfoBase subclass
95/// instance containing information describing the failure. Success is
96/// represented by a null pointer value.
97///
98/// Instances of Error also contains a 'Checked' flag, which must be set
99/// before the destructor is called, otherwise the destructor will trigger a
100/// runtime error. This enforces at runtime the requirement that all Error
101/// instances be checked or returned to the caller.
102///
103/// There are two ways to set the checked flag, depending on what state the
104/// Error instance is in. For Error instances indicating success, it
105/// is sufficient to invoke the boolean conversion operator. E.g.:
106///
107/// @code{.cpp}
108/// Error foo(<...>);
109///
110/// if (auto E = foo(<...>))
111/// return E; // <- Return E if it is in the error state.
112/// // We have verified that E was in the success state. It can now be safely
113/// // destroyed.
114/// @endcode
115///
116/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
117/// without testing the return value will raise a runtime error, even if foo
118/// returns success.
119///
120/// For Error instances representing failure, you must use either the
121/// handleErrors or handleAllErrors function with a typed handler. E.g.:
122///
123/// @code{.cpp}
124/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
125/// // Custom error info.
126/// };
127///
128/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
129///
130/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
131/// auto NewE =
132/// handleErrors(E,
133/// [](const MyErrorInfo &M) {
134/// // Deal with the error.
135/// },
136/// [](std::unique_ptr<OtherError> M) -> Error {
137/// if (canHandle(*M)) {
138/// // handle error.
139/// return Error::success();
140/// }
141/// // Couldn't handle this error instance. Pass it up the stack.
142/// return Error(std::move(M));
143/// );
144/// // Note - we must check or return NewE in case any of the handlers
145/// // returned a new error.
146/// @endcode
147///
148/// The handleAllErrors function is identical to handleErrors, except
149/// that it has a void return type, and requires all errors to be handled and
150/// no new errors be returned. It prevents errors (assuming they can all be
151/// handled) from having to be bubbled all the way to the top-level.
152///
153/// *All* Error instances must be checked before destruction, even if
154/// they're moved-assigned or constructed from Success values that have already
155/// been checked. This enforces checking through all levels of the call stack.
156class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
157 // ErrorList needs to be able to yank ErrorInfoBase pointers out of this
158 // class to add to the error list.
159 friend class ErrorList;
160
161 // handleErrors needs to be able to set the Checked flag.
162 template <typename... HandlerTs>
163 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
164
165 // Expected<T> needs to be able to steal the payload when constructed from an
166 // error.
167 template <typename T> friend class Expected;
168
169protected:
170 /// Create a success value. Prefer using 'Error::success()' for readability
171 Error() {
172 setPtr(nullptr);
173 setChecked(false);
174 }
175
176public:
177 /// Create a success value.
178 static ErrorSuccess success();
179
180 // Errors are not copy-constructable.
181 Error(const Error &Other) = delete;
182
183 /// Move-construct an error value. The newly constructed error is considered
184 /// unchecked, even if the source error had been checked. The original error
185 /// becomes a checked Success value, regardless of its original state.
186 Error(Error &&Other) {
187 setChecked(true);
188 *this = std::move(Other);
189 }
190
191 /// Create an error value. Prefer using the 'make_error' function, but
192 /// this constructor can be useful when "re-throwing" errors from handlers.
193 Error(std::unique_ptr<ErrorInfoBase> Payload) {
194 setPtr(Payload.release());
195 setChecked(false);
196 }
197
198 // Errors are not copy-assignable.
199 Error &operator=(const Error &Other) = delete;
200
201 /// Move-assign an error value. The current error must represent success, you
202 /// you cannot overwrite an unhandled error. The current error is then
203 /// considered unchecked. The source error becomes a checked success value,
204 /// regardless of its original state.
205 Error &operator=(Error &&Other) {
206 // Don't allow overwriting of unchecked values.
207 assertIsChecked();
208 setPtr(Other.getPtr());
209
210 // This Error is unchecked, even if the source error was checked.
211 setChecked(false);
212
213 // Null out Other's payload and set its checked bit.
214 Other.setPtr(nullptr);
215 Other.setChecked(true);
216
217 return *this;
218 }
219
220 /// Destroy a Error. Fails with a call to abort() if the error is
221 /// unchecked.
222 ~Error() {
223 assertIsChecked();
224 delete getPtr();
225 }
226
227 /// Bool conversion. Returns true if this Error is in a failure state,
228 /// and false if it is in an accept state. If the error is in a Success state
229 /// it will be considered checked.
230 explicit operator bool() {
231 setChecked(getPtr() == nullptr);
232 return getPtr() != nullptr;
233 }
234
235 /// Check whether one error is a subclass of another.
236 template <typename ErrT> bool isA() const {
237 return getPtr() && getPtr()->isA(ErrT::classID());
238 }
239
240 /// Returns the dynamic class id of this error, or null if this is a success
241 /// value.
242 const void* dynamicClassID() const {
243 if (!getPtr())
244 return nullptr;
245 return getPtr()->dynamicClassID();
246 }
247
248private:
249#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
250 // assertIsChecked() happens very frequently, but under normal circumstances
251 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
252 // of debug prints can cause the function to be too large for inlining. So
253 // it's important that we define this function out of line so that it can't be
254 // inlined.
255 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
256 void fatalUncheckedError() const;
257#endif
258
259 void assertIsChecked() {
260#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
261 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
262 fatalUncheckedError();
263#endif
264 }
265
266 ErrorInfoBase *getPtr() const {
267 return reinterpret_cast<ErrorInfoBase*>(
268 reinterpret_cast<uintptr_t>(Payload) &
269 ~static_cast<uintptr_t>(0x1));
270 }
271
272 void setPtr(ErrorInfoBase *EI) {
273#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
274 Payload = reinterpret_cast<ErrorInfoBase*>(
275 (reinterpret_cast<uintptr_t>(EI) &
276 ~static_cast<uintptr_t>(0x1)) |
277 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
278#else
279 Payload = EI;
280#endif
281 }
282
283 bool getChecked() const {
284#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
285 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
286#else
287 return true;
288#endif
289 }
290
291 void setChecked(bool V) {
292 Payload = reinterpret_cast<ErrorInfoBase*>(
293 (reinterpret_cast<uintptr_t>(Payload) &
294 ~static_cast<uintptr_t>(0x1)) |
295 (V ? 0 : 1));
296 }
297
298 std::unique_ptr<ErrorInfoBase> takePayload() {
299 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
300 setPtr(nullptr);
301 setChecked(true);
302 return Tmp;
303 }
304
305 ErrorInfoBase *Payload = nullptr;
306};
307
308/// Subclass of Error for the sole purpose of identifying the success path in
309/// the type system. This allows to catch invalid conversion to Expected<T> at
310/// compile time.
311class ErrorSuccess : public Error {};
312
313inline ErrorSuccess Error::success() { return ErrorSuccess(); }
314
315/// Make a Error instance representing failure using the given error info
316/// type.
317template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
318 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
319}
320
321/// Base class for user error types. Users should declare their error types
322/// like:
323///
324/// class MyError : public ErrorInfo<MyError> {
325/// ....
326/// };
327///
328/// This class provides an implementation of the ErrorInfoBase::kind
329/// method, which is used by the Error RTTI system.
330template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
331class ErrorInfo : public ParentErrT {
332public:
333 static const void *classID() { return &ThisErrT::ID; }
334
335 const void *dynamicClassID() const override { return &ThisErrT::ID; }
336
337 bool isA(const void *const ClassID) const override {
338 return ClassID == classID() || ParentErrT::isA(ClassID);
339 }
340};
341
342/// Special ErrorInfo subclass representing a list of ErrorInfos.
343/// Instances of this class are constructed by joinError.
344class ErrorList final : public ErrorInfo<ErrorList> {
345 // handleErrors needs to be able to iterate the payload list of an
346 // ErrorList.
347 template <typename... HandlerTs>
348 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
349
350 // joinErrors is implemented in terms of join.
351 friend Error joinErrors(Error, Error);
352
353public:
354 void log(raw_ostream &OS) const override {
355 OS << "Multiple errors:\n";
356 for (auto &ErrPayload : Payloads) {
357 ErrPayload->log(OS);
358 OS << "\n";
359 }
360 }
361
362 std::error_code convertToErrorCode() const override;
363
364 // Used by ErrorInfo::classID.
365 static char ID;
366
367private:
368 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
369 std::unique_ptr<ErrorInfoBase> Payload2) {
370 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&(static_cast <bool> (!Payload1->isA<ErrorList>
() && !Payload2->isA<ErrorList>() &&
"ErrorList constructor payloads should be singleton errors")
? void (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 371, __extension__ __PRETTY_FUNCTION__))
371 "ErrorList constructor payloads should be singleton errors")(static_cast <bool> (!Payload1->isA<ErrorList>
() && !Payload2->isA<ErrorList>() &&
"ErrorList constructor payloads should be singleton errors")
? void (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 371, __extension__ __PRETTY_FUNCTION__))
;
372 Payloads.push_back(std::move(Payload1));
373 Payloads.push_back(std::move(Payload2));
374 }
375
376 static Error join(Error E1, Error E2) {
377 if (!E1)
378 return E2;
379 if (!E2)
380 return E1;
381 if (E1.isA<ErrorList>()) {
382 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
383 if (E2.isA<ErrorList>()) {
384 auto E2Payload = E2.takePayload();
385 auto &E2List = static_cast<ErrorList &>(*E2Payload);
386 for (auto &Payload : E2List.Payloads)
387 E1List.Payloads.push_back(std::move(Payload));
388 } else
389 E1List.Payloads.push_back(E2.takePayload());
390
391 return E1;
392 }
393 if (E2.isA<ErrorList>()) {
394 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
395 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
396 return E2;
397 }
398 return Error(std::unique_ptr<ErrorList>(
399 new ErrorList(E1.takePayload(), E2.takePayload())));
400 }
401
402 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
403};
404
405/// Concatenate errors. The resulting Error is unchecked, and contains the
406/// ErrorInfo(s), if any, contained in E1, followed by the
407/// ErrorInfo(s), if any, contained in E2.
408inline Error joinErrors(Error E1, Error E2) {
409 return ErrorList::join(std::move(E1), std::move(E2));
410}
411
412/// Tagged union holding either a T or a Error.
413///
414/// This class parallels ErrorOr, but replaces error_code with Error. Since
415/// Error cannot be copied, this class replaces getError() with
416/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
417/// error class type.
418template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
419 template <class T1> friend class ExpectedAsOutParameter;
420 template <class OtherT> friend class Expected;
421
422 static const bool isRef = std::is_reference<T>::value;
423
424 using wrap = ReferenceStorage<typename std::remove_reference<T>::type>;
425
426 using error_type = std::unique_ptr<ErrorInfoBase>;
427
428public:
429 using storage_type = typename std::conditional<isRef, wrap, T>::type;
430 using value_type = T;
431
432private:
433 using reference = typename std::remove_reference<T>::type &;
434 using const_reference = const typename std::remove_reference<T>::type &;
435 using pointer = typename std::remove_reference<T>::type *;
436 using const_pointer = const typename std::remove_reference<T>::type *;
437
438public:
439 /// Create an Expected<T> error value from the given Error.
440 Expected(Error Err)
441 : HasError(true)
442#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
443 // Expected is unchecked upon construction in Debug builds.
444 , Unchecked(true)
445#endif
446 {
447 assert(Err && "Cannot create Expected<T> from Error success value.")(static_cast <bool> (Err && "Cannot create Expected<T> from Error success value."
) ? void (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 447, __extension__ __PRETTY_FUNCTION__))
;
448 new (getErrorStorage()) error_type(Err.takePayload());
449 }
450
451 /// Forbid to convert from Error::success() implicitly, this avoids having
452 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
453 /// but triggers the assertion above.
454 Expected(ErrorSuccess) = delete;
455
456 /// Create an Expected<T> success value from the given OtherT value, which
457 /// must be convertible to T.
458 template <typename OtherT>
459 Expected(OtherT &&Val,
460 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
461 * = nullptr)
462 : HasError(false)
463#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
464 // Expected is unchecked upon construction in Debug builds.
465 , Unchecked(true)
466#endif
467 {
468 new (getStorage()) storage_type(std::forward<OtherT>(Val));
7
Calling copy constructor for 'InstrProfRecord'
12
Returning from copy constructor for 'InstrProfRecord'
469 }
470
471 /// Move construct an Expected<T> value.
472 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
473
474 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
475 /// must be convertible to T.
476 template <class OtherT>
477 Expected(Expected<OtherT> &&Other,
478 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
479 * = nullptr) {
480 moveConstruct(std::move(Other));
481 }
482
483 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
484 /// isn't convertible to T.
485 template <class OtherT>
486 explicit Expected(
487 Expected<OtherT> &&Other,
488 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
489 nullptr) {
490 moveConstruct(std::move(Other));
491 }
492
493 /// Move-assign from another Expected<T>.
494 Expected &operator=(Expected &&Other) {
495 moveAssign(std::move(Other));
496 return *this;
497 }
498
499 /// Destroy an Expected<T>.
500 ~Expected() {
501 assertIsChecked();
502 if (!HasError)
503 getStorage()->~storage_type();
504 else
505 getErrorStorage()->~error_type();
506 }
507
508 /// \brief Return false if there is an error.
509 explicit operator bool() {
510#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
511 Unchecked = HasError;
512#endif
513 return !HasError;
514 }
515
516 /// \brief Returns a reference to the stored T value.
517 reference get() {
518 assertIsChecked();
519 return *getStorage();
520 }
521
522 /// \brief Returns a const reference to the stored T value.
523 const_reference get() const {
524 assertIsChecked();
525 return const_cast<Expected<T> *>(this)->get();
526 }
527
528 /// \brief Check that this Expected<T> is an error of type ErrT.
529 template <typename ErrT> bool errorIsA() const {
530 return HasError && (*getErrorStorage())->template isA<ErrT>();
531 }
532
533 /// \brief Take ownership of the stored error.
534 /// After calling this the Expected<T> is in an indeterminate state that can
535 /// only be safely destructed. No further calls (beside the destructor) should
536 /// be made on the Expected<T> vaule.
537 Error takeError() {
538#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
539 Unchecked = false;
540#endif
541 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
542 }
543
544 /// \brief Returns a pointer to the stored T value.
545 pointer operator->() {
546 assertIsChecked();
547 return toPointer(getStorage());
548 }
549
550 /// \brief Returns a const pointer to the stored T value.
551 const_pointer operator->() const {
552 assertIsChecked();
553 return toPointer(getStorage());
554 }
555
556 /// \brief Returns a reference to the stored T value.
557 reference operator*() {
558 assertIsChecked();
559 return *getStorage();
560 }
561
562 /// \brief Returns a const reference to the stored T value.
563 const_reference operator*() const {
564 assertIsChecked();
565 return *getStorage();
566 }
567
568private:
569 template <class T1>
570 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
571 return &a == &b;
572 }
573
574 template <class T1, class T2>
575 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
576 return false;
577 }
578
579 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
580 HasError = Other.HasError;
581#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
582 Unchecked = true;
583 Other.Unchecked = false;
584#endif
585
586 if (!HasError)
587 new (getStorage()) storage_type(std::move(*Other.getStorage()));
588 else
589 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
590 }
591
592 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
593 assertIsChecked();
594
595 if (compareThisIfSameType(*this, Other))
596 return;
597
598 this->~Expected();
599 new (this) Expected(std::move(Other));
600 }
601
602 pointer toPointer(pointer Val) { return Val; }
603
604 const_pointer toPointer(const_pointer Val) const { return Val; }
605
606 pointer toPointer(wrap *Val) { return &Val->get(); }
607
608 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
609
610 storage_type *getStorage() {
611 assert(!HasError && "Cannot get value when an error exists!")(static_cast <bool> (!HasError && "Cannot get value when an error exists!"
) ? void (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 611, __extension__ __PRETTY_FUNCTION__))
;
612 return reinterpret_cast<storage_type *>(TStorage.buffer);
613 }
614
615 const storage_type *getStorage() const {
616 assert(!HasError && "Cannot get value when an error exists!")(static_cast <bool> (!HasError && "Cannot get value when an error exists!"
) ? void (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 616, __extension__ __PRETTY_FUNCTION__))
;
617 return reinterpret_cast<const storage_type *>(TStorage.buffer);
618 }
619
620 error_type *getErrorStorage() {
621 assert(HasError && "Cannot get error when a value exists!")(static_cast <bool> (HasError && "Cannot get error when a value exists!"
) ? void (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 621, __extension__ __PRETTY_FUNCTION__))
;
622 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
623 }
624
625 const error_type *getErrorStorage() const {
626 assert(HasError && "Cannot get error when a value exists!")(static_cast <bool> (HasError && "Cannot get error when a value exists!"
) ? void (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 626, __extension__ __PRETTY_FUNCTION__))
;
627 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
628 }
629
630 // Used by ExpectedAsOutParameter to reset the checked flag.
631 void setUnchecked() {
632#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
633 Unchecked = true;
634#endif
635 }
636
637#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
638 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
639 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
640 void fatalUncheckedExpected() const {
641 dbgs() << "Expected<T> must be checked before access or destruction.\n";
642 if (HasError) {
643 dbgs() << "Unchecked Expected<T> contained error:\n";
644 (*getErrorStorage())->log(dbgs());
645 } else
646 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
647 "values in success mode must still be checked prior to being "
648 "destroyed).\n";
649 abort();
650 }
651#endif
652
653 void assertIsChecked() {
654#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
655 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
656 fatalUncheckedExpected();
657#endif
658 }
659
660 union {
661 AlignedCharArrayUnion<storage_type> TStorage;
662 AlignedCharArrayUnion<error_type> ErrorStorage;
663 };
664 bool HasError : 1;
665#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
666 bool Unchecked : 1;
667#endif
668};
669
670/// Report a serious error, calling any installed error handler. See
671/// ErrorHandling.h.
672LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
673 bool gen_crash_diag = true);
674
675/// Report a fatal error if Err is a failure value.
676///
677/// This function can be used to wrap calls to fallible functions ONLY when it
678/// is known that the Error will always be a success value. E.g.
679///
680/// @code{.cpp}
681/// // foo only attempts the fallible operation if DoFallibleOperation is
682/// // true. If DoFallibleOperation is false then foo always returns
683/// // Error::success().
684/// Error foo(bool DoFallibleOperation);
685///
686/// cantFail(foo(false));
687/// @endcode
688inline void cantFail(Error Err, const char *Msg = nullptr) {
689 if (Err) {
690 if (!Msg)
691 Msg = "Failure value returned from cantFail wrapped call";
692 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 692)
;
693 }
694}
695
696/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
697/// returns the contained value.
698///
699/// This function can be used to wrap calls to fallible functions ONLY when it
700/// is known that the Error will always be a success value. E.g.
701///
702/// @code{.cpp}
703/// // foo only attempts the fallible operation if DoFallibleOperation is
704/// // true. If DoFallibleOperation is false then foo always returns an int.
705/// Expected<int> foo(bool DoFallibleOperation);
706///
707/// int X = cantFail(foo(false));
708/// @endcode
709template <typename T>
710T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
711 if (ValOrErr)
712 return std::move(*ValOrErr);
713 else {
714 if (!Msg)
715 Msg = "Failure value returned from cantFail wrapped call";
716 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 716)
;
717 }
718}
719
720/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
721/// returns the contained reference.
722///
723/// This function can be used to wrap calls to fallible functions ONLY when it
724/// is known that the Error will always be a success value. E.g.
725///
726/// @code{.cpp}
727/// // foo only attempts the fallible operation if DoFallibleOperation is
728/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
729/// Expected<Bar&> foo(bool DoFallibleOperation);
730///
731/// Bar &X = cantFail(foo(false));
732/// @endcode
733template <typename T>
734T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
735 if (ValOrErr)
736 return *ValOrErr;
737 else {
738 if (!Msg)
739 Msg = "Failure value returned from cantFail wrapped call";
740 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 740)
;
741 }
742}
743
744/// Helper for testing applicability of, and applying, handlers for
745/// ErrorInfo types.
746template <typename HandlerT>
747class ErrorHandlerTraits
748 : public ErrorHandlerTraits<decltype(
749 &std::remove_reference<HandlerT>::type::operator())> {};
750
751// Specialization functions of the form 'Error (const ErrT&)'.
752template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
753public:
754 static bool appliesTo(const ErrorInfoBase &E) {
755 return E.template isA<ErrT>();
756 }
757
758 template <typename HandlerT>
759 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
760 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 760, __extension__ __PRETTY_FUNCTION__))
;
761 return H(static_cast<ErrT &>(*E));
762 }
763};
764
765// Specialization functions of the form 'void (const ErrT&)'.
766template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
767public:
768 static bool appliesTo(const ErrorInfoBase &E) {
769 return E.template isA<ErrT>();
770 }
771
772 template <typename HandlerT>
773 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
774 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 774, __extension__ __PRETTY_FUNCTION__))
;
775 H(static_cast<ErrT &>(*E));
776 return Error::success();
777 }
778};
779
780/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
781template <typename ErrT>
782class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
783public:
784 static bool appliesTo(const ErrorInfoBase &E) {
785 return E.template isA<ErrT>();
786 }
787
788 template <typename HandlerT>
789 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
790 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 790, __extension__ __PRETTY_FUNCTION__))
;
791 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
792 return H(std::move(SubE));
793 }
794};
795
796/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
797template <typename ErrT>
798class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
799public:
800 static bool appliesTo(const ErrorInfoBase &E) {
801 return E.template isA<ErrT>();
802 }
803
804 template <typename HandlerT>
805 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
806 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/Support/Error.h"
, 806, __extension__ __PRETTY_FUNCTION__))
;
807 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
808 H(std::move(SubE));
809 return Error::success();
810 }
811};
812
813// Specialization for member functions of the form 'RetT (const ErrT&)'.
814template <typename C, typename RetT, typename ErrT>
815class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
816 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
817
818// Specialization for member functions of the form 'RetT (const ErrT&) const'.
819template <typename C, typename RetT, typename ErrT>
820class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
821 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
822
823// Specialization for member functions of the form 'RetT (const ErrT&)'.
824template <typename C, typename RetT, typename ErrT>
825class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
826 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
827
828// Specialization for member functions of the form 'RetT (const ErrT&) const'.
829template <typename C, typename RetT, typename ErrT>
830class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
831 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
832
833/// Specialization for member functions of the form
834/// 'RetT (std::unique_ptr<ErrT>)'.
835template <typename C, typename RetT, typename ErrT>
836class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
837 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
838
839/// Specialization for member functions of the form
840/// 'RetT (std::unique_ptr<ErrT>) const'.
841template <typename C, typename RetT, typename ErrT>
842class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
843 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
844
845inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
846 return Error(std::move(Payload));
847}
848
849template <typename HandlerT, typename... HandlerTs>
850Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
851 HandlerT &&Handler, HandlerTs &&... Handlers) {
852 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
853 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
854 std::move(Payload));
855 return handleErrorImpl(std::move(Payload),
856 std::forward<HandlerTs>(Handlers)...);
857}
858
859/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
860/// unhandled errors (or Errors returned by handlers) are re-concatenated and
861/// returned.
862/// Because this function returns an error, its result must also be checked
863/// or returned. If you intend to handle all errors use handleAllErrors
864/// (which returns void, and will abort() on unhandled errors) instead.
865template <typename... HandlerTs>
866Error handleErrors(Error E, HandlerTs &&... Hs) {
867 if (!E)
868 return Error::success();
869
870 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
871
872 if (Payload->isA<ErrorList>()) {
873 ErrorList &List = static_cast<ErrorList &>(*Payload);
874 Error R;
875 for (auto &P : List.Payloads)
876 R = ErrorList::join(
877 std::move(R),
878 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
879 return R;
880 }
881
882 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
883}
884
885/// Behaves the same as handleErrors, except that by contract all errors
886/// *must* be handled by the given handlers (i.e. there must be no remaining
887/// errors after running the handlers, or llvm_unreachable is called).
888template <typename... HandlerTs>
889void handleAllErrors(Error E, HandlerTs &&... Handlers) {
890 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
891}
892
893/// Check that E is a non-error, then drop it.
894/// If E is an error, llvm_unreachable will be called.
895inline void handleAllErrors(Error E) {
896 cantFail(std::move(E));
897}
898
899/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
900///
901/// If the incoming value is a success value it is returned unmodified. If it
902/// is a failure value then it the contained error is passed to handleErrors.
903/// If handleErrors is able to handle the error then the RecoveryPath functor
904/// is called to supply the final result. If handleErrors is not able to
905/// handle all errors then the unhandled errors are returned.
906///
907/// This utility enables the follow pattern:
908///
909/// @code{.cpp}
910/// enum FooStrategy { Aggressive, Conservative };
911/// Expected<Foo> foo(FooStrategy S);
912///
913/// auto ResultOrErr =
914/// handleExpected(
915/// foo(Aggressive),
916/// []() { return foo(Conservative); },
917/// [](AggressiveStrategyError&) {
918/// // Implicitly conusme this - we'll recover by using a conservative
919/// // strategy.
920/// });
921///
922/// @endcode
923template <typename T, typename RecoveryFtor, typename... HandlerTs>
924Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
925 HandlerTs &&... Handlers) {
926 if (ValOrErr)
927 return ValOrErr;
928
929 if (auto Err = handleErrors(ValOrErr.takeError(),
930 std::forward<HandlerTs>(Handlers)...))
931 return std::move(Err);
932
933 return RecoveryPath();
934}
935
936/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
937/// will be printed before the first one is logged. A newline will be printed
938/// after each error.
939///
940/// This is useful in the base level of your program to allow clean termination
941/// (allowing clean deallocation of resources, etc.), while reporting error
942/// information to the user.
943void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner);
944
945/// Write all error messages (if any) in E to a string. The newline character
946/// is used to separate error messages.
947inline std::string toString(Error E) {
948 SmallVector<std::string, 2> Errors;
949 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
950 Errors.push_back(EI.message());
951 });
952 return join(Errors.begin(), Errors.end(), "\n");
953}
954
955/// Consume a Error without doing anything. This method should be used
956/// only where an error can be considered a reasonable and expected return
957/// value.
958///
959/// Uses of this method are potentially indicative of design problems: If it's
960/// legitimate to do nothing while processing an "error", the error-producer
961/// might be more clearly refactored to return an Optional<T>.
962inline void consumeError(Error Err) {
963 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
964}
965
966/// Helper for converting an Error to a bool.
967///
968/// This method returns true if Err is in an error state, or false if it is
969/// in a success state. Puts Err in a checked state in both cases (unlike
970/// Error::operator bool(), which only does this for success states).
971inline bool errorToBool(Error Err) {
972 bool IsError = static_cast<bool>(Err);
973 if (IsError)
974 consumeError(std::move(Err));
975 return IsError;
976}
977
978/// Helper for Errors used as out-parameters.
979///
980/// This helper is for use with the Error-as-out-parameter idiom, where an error
981/// is passed to a function or method by reference, rather than being returned.
982/// In such cases it is helpful to set the checked bit on entry to the function
983/// so that the error can be written to (unchecked Errors abort on assignment)
984/// and clear the checked bit on exit so that clients cannot accidentally forget
985/// to check the result. This helper performs these actions automatically using
986/// RAII:
987///
988/// @code{.cpp}
989/// Result foo(Error &Err) {
990/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
991/// // <body of foo>
992/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
993/// }
994/// @endcode
995///
996/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
997/// used with optional Errors (Error pointers that are allowed to be null). If
998/// ErrorAsOutParameter took an Error reference, an instance would have to be
999/// created inside every condition that verified that Error was non-null. By
1000/// taking an Error pointer we can just create one instance at the top of the
1001/// function.
1002class ErrorAsOutParameter {
1003public:
1004 ErrorAsOutParameter(Error *Err) : Err(Err) {
1005 // Raise the checked bit if Err is success.
1006 if (Err)
1007 (void)!!*Err;
1008 }
1009
1010 ~ErrorAsOutParameter() {
1011 // Clear the checked bit.
1012 if (Err && !*Err)
1013 *Err = Error::success();
1014 }
1015
1016private:
1017 Error *Err;
1018};
1019
1020/// Helper for Expected<T>s used as out-parameters.
1021///
1022/// See ErrorAsOutParameter.
1023template <typename T>
1024class ExpectedAsOutParameter {
1025public:
1026 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1027 : ValOrErr(ValOrErr) {
1028 if (ValOrErr)
1029 (void)!!*ValOrErr;
1030 }
1031
1032 ~ExpectedAsOutParameter() {
1033 if (ValOrErr)
1034 ValOrErr->setUnchecked();
1035 }
1036
1037private:
1038 Expected<T> *ValOrErr;
1039};
1040
1041/// This class wraps a std::error_code in a Error.
1042///
1043/// This is useful if you're writing an interface that returns a Error
1044/// (or Expected) and you want to call code that still returns
1045/// std::error_codes.
1046class ECError : public ErrorInfo<ECError> {
1047 friend Error errorCodeToError(std::error_code);
1048
1049public:
1050 void setErrorCode(std::error_code EC) { this->EC = EC; }
1051 std::error_code convertToErrorCode() const override { return EC; }
1052 void log(raw_ostream &OS) const override { OS << EC.message(); }
1053
1054 // Used by ErrorInfo::classID.
1055 static char ID;
1056
1057protected:
1058 ECError() = default;
1059 ECError(std::error_code EC) : EC(EC) {}
1060
1061 std::error_code EC;
1062};
1063
1064/// The value returned by this function can be returned from convertToErrorCode
1065/// for Error values where no sensible translation to std::error_code exists.
1066/// It should only be used in this situation, and should never be used where a
1067/// sensible conversion to std::error_code is available, as attempts to convert
1068/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1069///error to try to convert such a value).
1070std::error_code inconvertibleErrorCode();
1071
1072/// Helper for converting an std::error_code to a Error.
1073Error errorCodeToError(std::error_code EC);
1074
1075/// Helper for converting an ECError to a std::error_code.
1076///
1077/// This method requires that Err be Error() or an ECError, otherwise it
1078/// will trigger a call to abort().
1079std::error_code errorToErrorCode(Error Err);
1080
1081/// Convert an ErrorOr<T> to an Expected<T>.
1082template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1083 if (auto EC = EO.getError())
1084 return errorCodeToError(EC);
1085 return std::move(*EO);
1086}
1087
1088/// Convert an Expected<T> to an ErrorOr<T>.
1089template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1090 if (auto Err = E.takeError())
1091 return errorToErrorCode(std::move(Err));
1092 return std::move(*E);
1093}
1094
1095/// This class wraps a string in an Error.
1096///
1097/// StringError is useful in cases where the client is not expected to be able
1098/// to consume the specific error message programmatically (for example, if the
1099/// error message is to be presented to the user).
1100class StringError : public ErrorInfo<StringError> {
1101public:
1102 static char ID;
1103
1104 StringError(const Twine &S, std::error_code EC);
1105
1106 void log(raw_ostream &OS) const override;
1107 std::error_code convertToErrorCode() const override;
1108
1109 const std::string &getMessage() const { return Msg; }
1110
1111private:
1112 std::string Msg;
1113 std::error_code EC;
1114};
1115
1116/// Helper for check-and-exit error handling.
1117///
1118/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1119///
1120class ExitOnError {
1121public:
1122 /// Create an error on exit helper.
1123 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1124 : Banner(std::move(Banner)),
1125 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1126
1127 /// Set the banner string for any errors caught by operator().
1128 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1129
1130 /// Set the exit-code mapper function.
1131 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1132 this->GetExitCode = std::move(GetExitCode);
1133 }
1134
1135 /// Check Err. If it's in a failure state log the error(s) and exit.
1136 void operator()(Error Err) const { checkError(std::move(Err)); }
1137
1138 /// Check E. If it's in a success state then return the contained value. If
1139 /// it's in a failure state log the error(s) and exit.
1140 template <typename T> T operator()(Expected<T> &&E) const {
1141 checkError(E.takeError());
1142 return std::move(*E);
1143 }
1144
1145 /// Check E. If it's in a success state then return the contained reference. If
1146 /// it's in a failure state log the error(s) and exit.
1147 template <typename T> T& operator()(Expected<T&> &&E) const {
1148 checkError(E.takeError());
1149 return *E;
1150 }
1151
1152private:
1153 void checkError(Error Err) const {
1154 if (Err) {
1155 int ExitCode = GetExitCode(Err);
1156 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1157 exit(ExitCode);
1158 }
1159 }
1160
1161 std::string Banner;
1162 std::function<int(const Error &)> GetExitCode;
1163};
1164
1165} // end namespace llvm
1166
1167#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ProfileData/InstrProf.h

1//===- InstrProf.h - Instrumented profiling format support ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Instrumentation-based profiling data is generated by instrumented
11// binaries through library functions in compiler-rt, and read by the clang
12// frontend to feed PGO.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_PROFILEDATA_INSTRPROF_H
17#define LLVM_PROFILEDATA_INSTRPROF_H
18
19#include "llvm/ADT/ArrayRef.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/StringSet.h"
23#include "llvm/ADT/Triple.h"
24#include "llvm/IR/GlobalValue.h"
25#include "llvm/IR/ProfileSummary.h"
26#include "llvm/ProfileData/InstrProfData.inc"
27#include "llvm/Support/Compiler.h"
28#include "llvm/Support/Endian.h"
29#include "llvm/Support/Error.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/Host.h"
32#include "llvm/Support/MD5.h"
33#include "llvm/Support/MathExtras.h"
34#include "llvm/Support/raw_ostream.h"
35#include <algorithm>
36#include <cassert>
37#include <cstddef>
38#include <cstdint>
39#include <cstring>
40#include <list>
41#include <memory>
42#include <string>
43#include <system_error>
44#include <utility>
45#include <vector>
46
47namespace llvm {
48
49class Function;
50class GlobalVariable;
51struct InstrProfRecord;
52class InstrProfSymtab;
53class Instruction;
54class MDNode;
55class Module;
56
57enum InstrProfSectKind {
58#define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) Kind,
59#include "llvm/ProfileData/InstrProfData.inc"
60};
61
62/// Return the name of the profile section corresponding to \p IPSK.
63///
64/// The name of the section depends on the object format type \p OF. If
65/// \p AddSegmentInfo is true, a segment prefix and additional linker hints may
66/// be added to the section name (this is the default).
67std::string getInstrProfSectionName(InstrProfSectKind IPSK,
68 Triple::ObjectFormatType OF,
69 bool AddSegmentInfo = true);
70
71/// Return the name profile runtime entry point to do value profiling
72/// for a given site.
73inline StringRef getInstrProfValueProfFuncName() {
74 return INSTR_PROF_VALUE_PROF_FUNC_STR"__llvm_profile_instrument_target";
75}
76
77/// Return the name profile runtime entry point to do value range profiling.
78inline StringRef getInstrProfValueRangeProfFuncName() {
79 return INSTR_PROF_VALUE_RANGE_PROF_FUNC_STR"__llvm_profile_instrument_range";
80}
81
82/// Return the name prefix of variables containing instrumented function names.
83inline StringRef getInstrProfNameVarPrefix() { return "__profn_"; }
84
85/// Return the name prefix of variables containing per-function control data.
86inline StringRef getInstrProfDataVarPrefix() { return "__profd_"; }
87
88/// Return the name prefix of profile counter variables.
89inline StringRef getInstrProfCountersVarPrefix() { return "__profc_"; }
90
91/// Return the name prefix of value profile variables.
92inline StringRef getInstrProfValuesVarPrefix() { return "__profvp_"; }
93
94/// Return the name of value profile node array variables:
95inline StringRef getInstrProfVNodesVarName() { return "__llvm_prf_vnodes"; }
96
97/// Return the name prefix of the COMDAT group for instrumentation variables
98/// associated with a COMDAT function.
99inline StringRef getInstrProfComdatPrefix() { return "__profv_"; }
100
101/// Return the name of the variable holding the strings (possibly compressed)
102/// of all function's PGO names.
103inline StringRef getInstrProfNamesVarName() {
104 return "__llvm_prf_nm";
105}
106
107/// Return the name of a covarage mapping variable (internal linkage)
108/// for each instrumented source module. Such variables are allocated
109/// in the __llvm_covmap section.
110inline StringRef getCoverageMappingVarName() {
111 return "__llvm_coverage_mapping";
112}
113
114/// Return the name of the internal variable recording the array
115/// of PGO name vars referenced by the coverage mapping. The owning
116/// functions of those names are not emitted by FE (e.g, unused inline
117/// functions.)
118inline StringRef getCoverageUnusedNamesVarName() {
119 return "__llvm_coverage_names";
120}
121
122/// Return the name of function that registers all the per-function control
123/// data at program startup time by calling __llvm_register_function. This
124/// function has internal linkage and is called by __llvm_profile_init
125/// runtime method. This function is not generated for these platforms:
126/// Darwin, Linux, and FreeBSD.
127inline StringRef getInstrProfRegFuncsName() {
128 return "__llvm_profile_register_functions";
129}
130
131/// Return the name of the runtime interface that registers per-function control
132/// data for one instrumented function.
133inline StringRef getInstrProfRegFuncName() {
134 return "__llvm_profile_register_function";
135}
136
137/// Return the name of the runtime interface that registers the PGO name strings.
138inline StringRef getInstrProfNamesRegFuncName() {
139 return "__llvm_profile_register_names_function";
140}
141
142/// Return the name of the runtime initialization method that is generated by
143/// the compiler. The function calls __llvm_profile_register_functions and
144/// __llvm_profile_override_default_filename functions if needed. This function
145/// has internal linkage and invoked at startup time via init_array.
146inline StringRef getInstrProfInitFuncName() { return "__llvm_profile_init"; }
147
148/// Return the name of the hook variable defined in profile runtime library.
149/// A reference to the variable causes the linker to link in the runtime
150/// initialization module (which defines the hook variable).
151inline StringRef getInstrProfRuntimeHookVarName() {
152 return INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_RUNTIME_VAR)"__llvm_profile_runtime";
153}
154
155/// Return the name of the compiler generated function that references the
156/// runtime hook variable. The function is a weak global.
157inline StringRef getInstrProfRuntimeHookVarUseFuncName() {
158 return "__llvm_profile_runtime_user";
159}
160
161/// Return the marker used to separate PGO names during serialization.
162inline StringRef getInstrProfNameSeparator() { return "\01"; }
163
164/// Return the modified name for function \c F suitable to be
165/// used the key for profile lookup. Variable \c InLTO indicates if this
166/// is called in LTO optimization passes.
167std::string getPGOFuncName(const Function &F, bool InLTO = false,
168 uint64_t Version = INSTR_PROF_INDEX_VERSION5);
169
170/// Return the modified name for a function suitable to be
171/// used the key for profile lookup. The function's original
172/// name is \c RawFuncName and has linkage of type \c Linkage.
173/// The function is defined in module \c FileName.
174std::string getPGOFuncName(StringRef RawFuncName,
175 GlobalValue::LinkageTypes Linkage,
176 StringRef FileName,
177 uint64_t Version = INSTR_PROF_INDEX_VERSION5);
178
179/// Return the name of the global variable used to store a function
180/// name in PGO instrumentation. \c FuncName is the name of the function
181/// returned by the \c getPGOFuncName call.
182std::string getPGOFuncNameVarName(StringRef FuncName,
183 GlobalValue::LinkageTypes Linkage);
184
185/// Create and return the global variable for function name used in PGO
186/// instrumentation. \c FuncName is the name of the function returned
187/// by \c getPGOFuncName call.
188GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName);
189
190/// Create and return the global variable for function name used in PGO
191/// instrumentation. /// \c FuncName is the name of the function
192/// returned by \c getPGOFuncName call, \c M is the owning module,
193/// and \c Linkage is the linkage of the instrumented function.
194GlobalVariable *createPGOFuncNameVar(Module &M,
195 GlobalValue::LinkageTypes Linkage,
196 StringRef PGOFuncName);
197
198/// Return the initializer in string of the PGO name var \c NameVar.
199StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar);
200
201/// Given a PGO function name, remove the filename prefix and return
202/// the original (static) function name.
203StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName,
204 StringRef FileName = "<unknown>");
205
206/// Given a vector of strings (function PGO names) \c NameStrs, the
207/// method generates a combined string \c Result thatis ready to be
208/// serialized. The \c Result string is comprised of three fields:
209/// The first field is the legnth of the uncompressed strings, and the
210/// the second field is the length of the zlib-compressed string.
211/// Both fields are encoded in ULEB128. If \c doCompress is false, the
212/// third field is the uncompressed strings; otherwise it is the
213/// compressed string. When the string compression is off, the
214/// second field will have value zero.
215Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
216 bool doCompression, std::string &Result);
217
218/// Produce \c Result string with the same format described above. The input
219/// is vector of PGO function name variables that are referenced.
220Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
221 std::string &Result, bool doCompression = true);
222
223/// \c NameStrings is a string composed of one of more sub-strings encoded in
224/// the format described above. The substrings are separated by 0 or more zero
225/// bytes. This method decodes the string and populates the \c Symtab.
226Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab);
227
228/// Check if INSTR_PROF_RAW_VERSION_VAR is defined. This global is only being
229/// set in IR PGO compilation.
230bool isIRPGOFlagSet(const Module *M);
231
232/// Check if we can safely rename this Comdat function. Instances of the same
233/// comdat function may have different control flows thus can not share the
234/// same counter variable.
235bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken = false);
236
237enum InstrProfValueKind : uint32_t {
238#define VALUE_PROF_KIND(Enumerator, Value) Enumerator = Value,
239#include "llvm/ProfileData/InstrProfData.inc"
240};
241
242/// Get the value profile data for value site \p SiteIdx from \p InstrProfR
243/// and annotate the instruction \p Inst with the value profile meta data.
244/// Annotate up to \p MaxMDCount (default 3) number of records per value site.
245void annotateValueSite(Module &M, Instruction &Inst,
246 const InstrProfRecord &InstrProfR,
247 InstrProfValueKind ValueKind, uint32_t SiteIndx,
248 uint32_t MaxMDCount = 3);
249
250/// Same as the above interface but using an ArrayRef, as well as \p Sum.
251void annotateValueSite(Module &M, Instruction &Inst,
252 ArrayRef<InstrProfValueData> VDs, uint64_t Sum,
253 InstrProfValueKind ValueKind, uint32_t MaxMDCount);
254
255/// Extract the value profile data from \p Inst which is annotated with
256/// value profile meta data. Return false if there is no value data annotated,
257/// otherwise return true.
258bool getValueProfDataFromInst(const Instruction &Inst,
259 InstrProfValueKind ValueKind,
260 uint32_t MaxNumValueData,
261 InstrProfValueData ValueData[],
262 uint32_t &ActualNumValueData, uint64_t &TotalC);
263
264inline StringRef getPGOFuncNameMetadataName() { return "PGOFuncName"; }
265
266/// Return the PGOFuncName meta data associated with a function.
267MDNode *getPGOFuncNameMetadata(const Function &F);
268
269/// Create the PGOFuncName meta data if PGOFuncName is different from
270/// function's raw name. This should only apply to internal linkage functions
271/// declared by users only.
272void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName);
273
274/// Check if we can use Comdat for profile variables. This will eliminate
275/// the duplicated profile variables for Comdat functions.
276bool needsComdatForCounter(const Function &F, const Module &M);
277
278const std::error_category &instrprof_category();
279
280enum class instrprof_error {
281 success = 0,
282 eof,
283 unrecognized_format,
284 bad_magic,
285 bad_header,
286 unsupported_version,
287 unsupported_hash_type,
288 too_large,
289 truncated,
290 malformed,
291 unknown_function,
292 hash_mismatch,
293 count_mismatch,
294 counter_overflow,
295 value_site_count_mismatch,
296 compress_failed,
297 uncompress_failed,
298 empty_raw_profile,
299 zlib_unavailable
300};
301
302inline std::error_code make_error_code(instrprof_error E) {
303 return std::error_code(static_cast<int>(E), instrprof_category());
304}
305
306class InstrProfError : public ErrorInfo<InstrProfError> {
307public:
308 InstrProfError(instrprof_error Err) : Err(Err) {
309 assert(Err != instrprof_error::success && "Not an error")(static_cast <bool> (Err != instrprof_error::success &&
"Not an error") ? void (0) : __assert_fail ("Err != instrprof_error::success && \"Not an error\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ProfileData/InstrProf.h"
, 309, __extension__ __PRETTY_FUNCTION__))
;
310 }
311
312 std::string message() const override;
313
314 void log(raw_ostream &OS) const override { OS << message(); }
315
316 std::error_code convertToErrorCode() const override {
317 return make_error_code(Err);
318 }
319
320 instrprof_error get() const { return Err; }
321
322 /// Consume an Error and return the raw enum value contained within it. The
323 /// Error must either be a success value, or contain a single InstrProfError.
324 static instrprof_error take(Error E) {
325 auto Err = instrprof_error::success;
326 handleAllErrors(std::move(E), [&Err](const InstrProfError &IPE) {
327 assert(Err == instrprof_error::success && "Multiple errors encountered")(static_cast <bool> (Err == instrprof_error::success &&
"Multiple errors encountered") ? void (0) : __assert_fail ("Err == instrprof_error::success && \"Multiple errors encountered\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ProfileData/InstrProf.h"
, 327, __extension__ __PRETTY_FUNCTION__))
;
328 Err = IPE.get();
329 });
330 return Err;
331 }
332
333 static char ID;
334
335private:
336 instrprof_error Err;
337};
338
339class SoftInstrProfErrors {
340 /// Count the number of soft instrprof_errors encountered and keep track of
341 /// the first such error for reporting purposes.
342
343 /// The first soft error encountered.
344 instrprof_error FirstError = instrprof_error::success;
345
346 /// The number of hash mismatches.
347 unsigned NumHashMismatches = 0;
348
349 /// The number of count mismatches.
350 unsigned NumCountMismatches = 0;
351
352 /// The number of counter overflows.
353 unsigned NumCounterOverflows = 0;
354
355 /// The number of value site count mismatches.
356 unsigned NumValueSiteCountMismatches = 0;
357
358public:
359 SoftInstrProfErrors() = default;
360
361 ~SoftInstrProfErrors() {
362 assert(FirstError == instrprof_error::success &&(static_cast <bool> (FirstError == instrprof_error::success
&& "Unchecked soft error encountered") ? void (0) : __assert_fail
("FirstError == instrprof_error::success && \"Unchecked soft error encountered\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ProfileData/InstrProf.h"
, 363, __extension__ __PRETTY_FUNCTION__))
363 "Unchecked soft error encountered")(static_cast <bool> (FirstError == instrprof_error::success
&& "Unchecked soft error encountered") ? void (0) : __assert_fail
("FirstError == instrprof_error::success && \"Unchecked soft error encountered\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ProfileData/InstrProf.h"
, 363, __extension__ __PRETTY_FUNCTION__))
;
364 }
365
366 /// Track a soft error (\p IE) and increment its associated counter.
367 void addError(instrprof_error IE);
368
369 /// Get the number of hash mismatches.
370 unsigned getNumHashMismatches() const { return NumHashMismatches; }
371
372 /// Get the number of count mismatches.
373 unsigned getNumCountMismatches() const { return NumCountMismatches; }
374
375 /// Get the number of counter overflows.
376 unsigned getNumCounterOverflows() const { return NumCounterOverflows; }
377
378 /// Get the number of value site count mismatches.
379 unsigned getNumValueSiteCountMismatches() const {
380 return NumValueSiteCountMismatches;
381 }
382
383 /// Return the first encountered error and reset FirstError to a success
384 /// value.
385 Error takeError() {
386 if (FirstError == instrprof_error::success)
387 return Error::success();
388 auto E = make_error<InstrProfError>(FirstError);
389 FirstError = instrprof_error::success;
390 return E;
391 }
392};
393
394namespace object {
395
396class SectionRef;
397
398} // end namespace object
399
400namespace IndexedInstrProf {
401
402uint64_t ComputeHash(StringRef K);
403
404} // end namespace IndexedInstrProf
405
406/// A symbol table used for function PGO name look-up with keys
407/// (such as pointers, md5hash values) to the function. A function's
408/// PGO name or name's md5hash are used in retrieving the profile
409/// data of the function. See \c getPGOFuncName() method for details
410/// on how PGO name is formed.
411class InstrProfSymtab {
412public:
413 using AddrHashMap = std::vector<std::pair<uint64_t, uint64_t>>;
414
415private:
416 StringRef Data;
417 uint64_t Address = 0;
418 // Unique name strings.
419 StringSet<> NameTab;
420 // A map from MD5 keys to function name strings.
421 std::vector<std::pair<uint64_t, StringRef>> MD5NameMap;
422 // A map from MD5 keys to function define. We only populate this map
423 // when build the Symtab from a Module.
424 std::vector<std::pair<uint64_t, Function *>> MD5FuncMap;
425 // A map from function runtime address to function name MD5 hash.
426 // This map is only populated and used by raw instr profile reader.
427 AddrHashMap AddrToMD5Map;
428 bool Sorted = false;
429
430 static StringRef getExternalSymbol() {
431 return "** External Symbol **";
432 }
433
434 // If the symtab is created by a series of calls to \c addFuncName, \c
435 // finalizeSymtab needs to be called before looking up function names.
436 // This is required because the underlying map is a vector (for space
437 // efficiency) which needs to be sorted.
438 inline void finalizeSymtab();
439
440public:
441 InstrProfSymtab() = default;
442
443 /// Create InstrProfSymtab from an object file section which
444 /// contains function PGO names. When section may contain raw
445 /// string data or string data in compressed form. This method
446 /// only initialize the symtab with reference to the data and
447 /// the section base address. The decompression will be delayed
448 /// until before it is used. See also \c create(StringRef) method.
449 Error create(object::SectionRef &Section);
450
451 /// This interface is used by reader of CoverageMapping test
452 /// format.
453 inline Error create(StringRef D, uint64_t BaseAddr);
454
455 /// \c NameStrings is a string composed of one of more sub-strings
456 /// encoded in the format described in \c collectPGOFuncNameStrings.
457 /// This method is a wrapper to \c readPGOFuncNameStrings method.
458 inline Error create(StringRef NameStrings);
459
460 /// A wrapper interface to populate the PGO symtab with functions
461 /// decls from module \c M. This interface is used by transformation
462 /// passes such as indirect function call promotion. Variable \c InLTO
463 /// indicates if this is called from LTO optimization passes.
464 Error create(Module &M, bool InLTO = false);
465
466 /// Create InstrProfSymtab from a set of names iteratable from
467 /// \p IterRange. This interface is used by IndexedProfReader.
468 template <typename NameIterRange> Error create(const NameIterRange &IterRange);
469
470 /// Update the symtab by adding \p FuncName to the table. This interface
471 /// is used by the raw and text profile readers.
472 Error addFuncName(StringRef FuncName) {
473 if (FuncName.empty())
474 return make_error<InstrProfError>(instrprof_error::malformed);
475 auto Ins = NameTab.insert(FuncName);
476 if (Ins.second) {
477 MD5NameMap.push_back(std::make_pair(
478 IndexedInstrProf::ComputeHash(FuncName), Ins.first->getKey()));
479 Sorted = false;
480 }
481 return Error::success();
482 }
483
484 /// Map a function address to its name's MD5 hash. This interface
485 /// is only used by the raw profiler reader.
486 void mapAddress(uint64_t Addr, uint64_t MD5Val) {
487 AddrToMD5Map.push_back(std::make_pair(Addr, MD5Val));
488 }
489
490 /// Return a function's hash, or 0, if the function isn't in this SymTab.
491 uint64_t getFunctionHashFromAddress(uint64_t Address);
492
493 /// Return function's PGO name from the function name's symbol
494 /// address in the object file. If an error occurs, return
495 /// an empty string.
496 StringRef getFuncName(uint64_t FuncNameAddress, size_t NameSize);
497
498 /// Return function's PGO name from the name's md5 hash value.
499 /// If not found, return an empty string.
500 inline StringRef getFuncName(uint64_t FuncMD5Hash);
501
502 /// Just like getFuncName, except that it will return a non-empty StringRef
503 /// if the function is external to this symbol table. All such cases
504 /// will be represented using the same StringRef value.
505 inline StringRef getFuncNameOrExternalSymbol(uint64_t FuncMD5Hash);
506
507 /// True if Symbol is the value used to represent external symbols.
508 static bool isExternalSymbol(const StringRef &Symbol) {
509 return Symbol == InstrProfSymtab::getExternalSymbol();
510 }
511
512 /// Return function from the name's md5 hash. Return nullptr if not found.
513 inline Function *getFunction(uint64_t FuncMD5Hash);
514
515 /// Return the function's original assembly name by stripping off
516 /// the prefix attached (to symbols with priviate linkage). For
517 /// global functions, it returns the same string as getFuncName.
518 inline StringRef getOrigFuncName(uint64_t FuncMD5Hash);
519
520 /// Return the name section data.
521 inline StringRef getNameData() const { return Data; }
522};
523
524Error InstrProfSymtab::create(StringRef D, uint64_t BaseAddr) {
525 Data = D;
526 Address = BaseAddr;
527 return Error::success();
528}
529
530Error InstrProfSymtab::create(StringRef NameStrings) {
531 return readPGOFuncNameStrings(NameStrings, *this);
532}
533
534template <typename NameIterRange>
535Error InstrProfSymtab::create(const NameIterRange &IterRange) {
536 for (auto Name : IterRange)
537 if (Error E = addFuncName(Name))
538 return E;
539
540 finalizeSymtab();
541 return Error::success();
542}
543
544void InstrProfSymtab::finalizeSymtab() {
545 if (Sorted)
546 return;
547 llvm::sort(MD5NameMap.begin(), MD5NameMap.end(), less_first());
548 llvm::sort(MD5FuncMap.begin(), MD5FuncMap.end(), less_first());
549 llvm::sort(AddrToMD5Map.begin(), AddrToMD5Map.end(), less_first());
550 AddrToMD5Map.erase(std::unique(AddrToMD5Map.begin(), AddrToMD5Map.end()),
551 AddrToMD5Map.end());
552 Sorted = true;
553}
554
555StringRef InstrProfSymtab::getFuncNameOrExternalSymbol(uint64_t FuncMD5Hash) {
556 StringRef ret = getFuncName(FuncMD5Hash);
557 if (ret.empty())
558 return InstrProfSymtab::getExternalSymbol();
559 return ret;
560}
561
562StringRef InstrProfSymtab::getFuncName(uint64_t FuncMD5Hash) {
563 finalizeSymtab();
564 auto Result =
565 std::lower_bound(MD5NameMap.begin(), MD5NameMap.end(), FuncMD5Hash,
566 [](const std::pair<uint64_t, std::string> &LHS,
567 uint64_t RHS) { return LHS.first < RHS; });
568 if (Result != MD5NameMap.end() && Result->first == FuncMD5Hash)
569 return Result->second;
570 return StringRef();
571}
572
573Function* InstrProfSymtab::getFunction(uint64_t FuncMD5Hash) {
574 finalizeSymtab();
575 auto Result =
576 std::lower_bound(MD5FuncMap.begin(), MD5FuncMap.end(), FuncMD5Hash,
577 [](const std::pair<uint64_t, Function*> &LHS,
578 uint64_t RHS) { return LHS.first < RHS; });
579 if (Result != MD5FuncMap.end() && Result->first == FuncMD5Hash)
580 return Result->second;
581 return nullptr;
582}
583
584// See also getPGOFuncName implementation. These two need to be
585// matched.
586StringRef InstrProfSymtab::getOrigFuncName(uint64_t FuncMD5Hash) {
587 StringRef PGOName = getFuncName(FuncMD5Hash);
588 size_t S = PGOName.find_first_of(':');
589 if (S == StringRef::npos)
590 return PGOName;
591 return PGOName.drop_front(S + 1);
592}
593
594struct InstrProfValueSiteRecord {
595 /// Value profiling data pairs at a given value site.
596 std::list<InstrProfValueData> ValueData;
597
598 InstrProfValueSiteRecord() { ValueData.clear(); }
599 template <class InputIterator>
600 InstrProfValueSiteRecord(InputIterator F, InputIterator L)
601 : ValueData(F, L) {}
602
603 /// Sort ValueData ascending by Value
604 void sortByTargetValues() {
605 ValueData.sort(
606 [](const InstrProfValueData &left, const InstrProfValueData &right) {
607 return left.Value < right.Value;
608 });
609 }
610 /// Sort ValueData Descending by Count
611 inline void sortByCount();
612
613 /// Merge data from another InstrProfValueSiteRecord
614 /// Optionally scale merged counts by \p Weight.
615 void merge(InstrProfValueSiteRecord &Input, uint64_t Weight,
616 function_ref<void(instrprof_error)> Warn);
617 /// Scale up value profile data counts.
618 void scale(uint64_t Weight, function_ref<void(instrprof_error)> Warn);
619};
620
621/// Profiling information for a single function.
622struct InstrProfRecord {
623 std::vector<uint64_t> Counts;
624
625 InstrProfRecord() = default;
626 InstrProfRecord(std::vector<uint64_t> Counts) : Counts(std::move(Counts)) {}
627 InstrProfRecord(InstrProfRecord &&) = default;
628 InstrProfRecord(const InstrProfRecord &RHS)
629 : Counts(RHS.Counts),
630 ValueData(RHS.ValueData
8
'?' condition is true
631 ? llvm::make_unique<ValueProfData>(*RHS.ValueData)
9
Calling 'make_unique'
11
Returned allocated memory
632 : nullptr) {}
633 InstrProfRecord &operator=(InstrProfRecord &&) = default;
634 InstrProfRecord &operator=(const InstrProfRecord &RHS) {
635 Counts = RHS.Counts;
636 if (!RHS.ValueData) {
637 ValueData = nullptr;
638 return *this;
639 }
640 if (!ValueData)
641 ValueData = llvm::make_unique<ValueProfData>(*RHS.ValueData);
642 else
643 *ValueData = *RHS.ValueData;
644 return *this;
645 }
646
647 /// Return the number of value profile kinds with non-zero number
648 /// of profile sites.
649 inline uint32_t getNumValueKinds() const;
650 /// Return the number of instrumented sites for ValueKind.
651 inline uint32_t getNumValueSites(uint32_t ValueKind) const;
652
653 /// Return the total number of ValueData for ValueKind.
654 inline uint32_t getNumValueData(uint32_t ValueKind) const;
655
656 /// Return the number of value data collected for ValueKind at profiling
657 /// site: Site.
658 inline uint32_t getNumValueDataForSite(uint32_t ValueKind,
659 uint32_t Site) const;
660
661 /// Return the array of profiled values at \p Site. If \p TotalC
662 /// is not null, the total count of all target values at this site
663 /// will be stored in \c *TotalC.
664 inline std::unique_ptr<InstrProfValueData[]>
665 getValueForSite(uint32_t ValueKind, uint32_t Site,
666 uint64_t *TotalC = nullptr) const;
667
668 /// Get the target value/counts of kind \p ValueKind collected at site
669 /// \p Site and store the result in array \p Dest. Return the total
670 /// counts of all target values at this site.
671 inline uint64_t getValueForSite(InstrProfValueData Dest[], uint32_t ValueKind,
672 uint32_t Site) const;
673
674 /// Reserve space for NumValueSites sites.
675 inline void reserveSites(uint32_t ValueKind, uint32_t NumValueSites);
676
677 /// Add ValueData for ValueKind at value Site.
678 void addValueData(uint32_t ValueKind, uint32_t Site,
679 InstrProfValueData *VData, uint32_t N,
680 InstrProfSymtab *SymTab);
681
682 /// Merge the counts in \p Other into this one.
683 /// Optionally scale merged counts by \p Weight.
684 void merge(InstrProfRecord &Other, uint64_t Weight,
685 function_ref<void(instrprof_error)> Warn);
686
687 /// Scale up profile counts (including value profile data) by
688 /// \p Weight.
689 void scale(uint64_t Weight, function_ref<void(instrprof_error)> Warn);
690
691 /// Sort value profile data (per site) by count.
692 void sortValueData() {
693 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
694 for (auto &SR : getValueSitesForKind(Kind))
695 SR.sortByCount();
696 }
697
698 /// Clear value data entries and edge counters.
699 void Clear() {
700 Counts.clear();
701 clearValueData();
702 }
703
704 /// Clear value data entries
705 void clearValueData() { ValueData = nullptr; }
706
707private:
708 struct ValueProfData {
709 std::vector<InstrProfValueSiteRecord> IndirectCallSites;
710 std::vector<InstrProfValueSiteRecord> MemOPSizes;
711 };
712 std::unique_ptr<ValueProfData> ValueData;
713
714 MutableArrayRef<InstrProfValueSiteRecord>
715 getValueSitesForKind(uint32_t ValueKind) {
716 // Cast to /add/ const (should be an implicit_cast, ideally, if that's ever
717 // implemented in LLVM) to call the const overload of this function, then
718 // cast away the constness from the result.
719 auto AR = const_cast<const InstrProfRecord *>(this)->getValueSitesForKind(
720 ValueKind);
721 return makeMutableArrayRef(
722 const_cast<InstrProfValueSiteRecord *>(AR.data()), AR.size());
723 }
724 ArrayRef<InstrProfValueSiteRecord>
725 getValueSitesForKind(uint32_t ValueKind) const {
726 if (!ValueData)
727 return None;
728 switch (ValueKind) {
729 case IPVK_IndirectCallTarget:
730 return ValueData->IndirectCallSites;
731 case IPVK_MemOPSize:
732 return ValueData->MemOPSizes;
733 default:
734 llvm_unreachable("Unknown value kind!")::llvm::llvm_unreachable_internal("Unknown value kind!", "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ProfileData/InstrProf.h"
, 734)
;
735 }
736 }
737
738 std::vector<InstrProfValueSiteRecord> &
739 getOrCreateValueSitesForKind(uint32_t ValueKind) {
740 if (!ValueData)
741 ValueData = llvm::make_unique<ValueProfData>();
742 switch (ValueKind) {
743 case IPVK_IndirectCallTarget:
744 return ValueData->IndirectCallSites;
745 case IPVK_MemOPSize:
746 return ValueData->MemOPSizes;
747 default:
748 llvm_unreachable("Unknown value kind!")::llvm::llvm_unreachable_internal("Unknown value kind!", "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ProfileData/InstrProf.h"
, 748)
;
749 }
750 }
751
752 // Map indirect call target name hash to name string.
753 uint64_t remapValue(uint64_t Value, uint32_t ValueKind,
754 InstrProfSymtab *SymTab);
755
756 // Merge Value Profile data from Src record to this record for ValueKind.
757 // Scale merged value counts by \p Weight.
758 void mergeValueProfData(uint32_t ValkeKind, InstrProfRecord &Src,
759 uint64_t Weight,
760 function_ref<void(instrprof_error)> Warn);
761
762 // Scale up value profile data count.
763 void scaleValueProfData(uint32_t ValueKind, uint64_t Weight,
764 function_ref<void(instrprof_error)> Warn);
765};
766
767struct NamedInstrProfRecord : InstrProfRecord {
768 StringRef Name;
769 uint64_t Hash;
770
771 NamedInstrProfRecord() = default;
772 NamedInstrProfRecord(StringRef Name, uint64_t Hash,
773 std::vector<uint64_t> Counts)
774 : InstrProfRecord(std::move(Counts)), Name(Name), Hash(Hash) {}
775};
776
777uint32_t InstrProfRecord::getNumValueKinds() const {
778 uint32_t NumValueKinds = 0;
779 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
780 NumValueKinds += !(getValueSitesForKind(Kind).empty());
781 return NumValueKinds;
782}
783
784uint32_t InstrProfRecord::getNumValueData(uint32_t ValueKind) const {
785 uint32_t N = 0;
786 for (auto &SR : getValueSitesForKind(ValueKind))
787 N += SR.ValueData.size();
788 return N;
789}
790
791uint32_t InstrProfRecord::getNumValueSites(uint32_t ValueKind) const {
792 return getValueSitesForKind(ValueKind).size();
793}
794
795uint32_t InstrProfRecord::getNumValueDataForSite(uint32_t ValueKind,
796 uint32_t Site) const {
797 return getValueSitesForKind(ValueKind)[Site].ValueData.size();
798}
799
800std::unique_ptr<InstrProfValueData[]>
801InstrProfRecord::getValueForSite(uint32_t ValueKind, uint32_t Site,
802 uint64_t *TotalC) const {
803 uint64_t Dummy;
804 uint64_t &TotalCount = (TotalC == nullptr ? Dummy : *TotalC);
805 uint32_t N = getNumValueDataForSite(ValueKind, Site);
806 if (N == 0) {
807 TotalCount = 0;
808 return std::unique_ptr<InstrProfValueData[]>(nullptr);
809 }
810
811 auto VD = llvm::make_unique<InstrProfValueData[]>(N);
812 TotalCount = getValueForSite(VD.get(), ValueKind, Site);
813
814 return VD;
815}
816
817uint64_t InstrProfRecord::getValueForSite(InstrProfValueData Dest[],
818 uint32_t ValueKind,
819 uint32_t Site) const {
820 uint32_t I = 0;
821 uint64_t TotalCount = 0;
822 for (auto V : getValueSitesForKind(ValueKind)[Site].ValueData) {
823 Dest[I].Value = V.Value;
824 Dest[I].Count = V.Count;
825 TotalCount = SaturatingAdd(TotalCount, V.Count);
826 I++;
827 }
828 return TotalCount;
829}
830
831void InstrProfRecord::reserveSites(uint32_t ValueKind, uint32_t NumValueSites) {
832 if (!NumValueSites)
833 return;
834 getOrCreateValueSitesForKind(ValueKind).reserve(NumValueSites);
835}
836
837inline support::endianness getHostEndianness() {
838 return sys::IsLittleEndianHost ? support::little : support::big;
839}
840
841// Include definitions for value profile data
842#define INSTR_PROF_VALUE_PROF_DATA
843#include "llvm/ProfileData/InstrProfData.inc"
844
845void InstrProfValueSiteRecord::sortByCount() {
846 ValueData.sort(
847 [](const InstrProfValueData &left, const InstrProfValueData &right) {
848 return left.Count > right.Count;
849 });
850 // Now truncate
851 size_t max_s = INSTR_PROF_MAX_NUM_VAL_PER_SITE255;
852 if (ValueData.size() > max_s)
853 ValueData.resize(max_s);
854}
855
856namespace IndexedInstrProf {
857
858enum class HashT : uint32_t {
859 MD5,
860 Last = MD5
861};
862
863inline uint64_t ComputeHash(HashT Type, StringRef K) {
864 switch (Type) {
865 case HashT::MD5:
866 return MD5Hash(K);
867 }
868 llvm_unreachable("Unhandled hash type")::llvm::llvm_unreachable_internal("Unhandled hash type", "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ProfileData/InstrProf.h"
, 868)
;
869}
870
871const uint64_t Magic = 0x8169666f72706cff; // "\xfflprofi\x81"
872
873enum ProfVersion {
874 // Version 1 is the first version. In this version, the value of
875 // a key/value pair can only include profile data of a single function.
876 // Due to this restriction, the number of block counters for a given
877 // function is not recorded but derived from the length of the value.
878 Version1 = 1,
879 // The version 2 format supports recording profile data of multiple
880 // functions which share the same key in one value field. To support this,
881 // the number block counters is recorded as an uint64_t field right after the
882 // function structural hash.
883 Version2 = 2,
884 // Version 3 supports value profile data. The value profile data is expected
885 // to follow the block counter profile data.
886 Version3 = 3,
887 // In this version, profile summary data \c IndexedInstrProf::Summary is
888 // stored after the profile header.
889 Version4 = 4,
890 // In this version, the frontend PGO stable hash algorithm defaults to V2.
891 Version5 = 5,
892 // The current version is 5.
893 CurrentVersion = INSTR_PROF_INDEX_VERSION5
894};
895const uint64_t Version = ProfVersion::CurrentVersion;
896
897const HashT HashType = HashT::MD5;
898
899inline uint64_t ComputeHash(StringRef K) { return ComputeHash(HashType, K); }
900
901// This structure defines the file header of the LLVM profile
902// data file in indexed-format.
903struct Header {
904 uint64_t Magic;
905 uint64_t Version;
906 uint64_t Unused; // Becomes unused since version 4
907 uint64_t HashType;
908 uint64_t HashOffset;
909};
910
911// Profile summary data recorded in the profile data file in indexed
912// format. It is introduced in version 4. The summary data follows
913// right after the profile file header.
914struct Summary {
915 struct Entry {
916 uint64_t Cutoff; ///< The required percentile of total execution count.
917 uint64_t
918 MinBlockCount; ///< The minimum execution count for this percentile.
919 uint64_t NumBlocks; ///< Number of blocks >= the minumum execution count.
920 };
921 // The field kind enumerator to assigned value mapping should remain
922 // unchanged when a new kind is added or an old kind gets deleted in
923 // the future.
924 enum SummaryFieldKind {
925 /// The total number of functions instrumented.
926 TotalNumFunctions = 0,
927 /// Total number of instrumented blocks/edges.
928 TotalNumBlocks = 1,
929 /// The maximal execution count among all functions.
930 /// This field does not exist for profile data from IR based
931 /// instrumentation.
932 MaxFunctionCount = 2,
933 /// Max block count of the program.
934 MaxBlockCount = 3,
935 /// Max internal block count of the program (excluding entry blocks).
936 MaxInternalBlockCount = 4,
937 /// The sum of all instrumented block counts.
938 TotalBlockCount = 5,
939 NumKinds = TotalBlockCount + 1
940 };
941
942 // The number of summmary fields following the summary header.
943 uint64_t NumSummaryFields;
944 // The number of Cutoff Entries (Summary::Entry) following summary fields.
945 uint64_t NumCutoffEntries;
946
947 Summary() = delete;
948 Summary(uint32_t Size) { memset(this, 0, Size); }
949
950 void operator delete(void *ptr) { ::operator delete(ptr); }
951
952 static uint32_t getSize(uint32_t NumSumFields, uint32_t NumCutoffEntries) {
953 return sizeof(Summary) + NumCutoffEntries * sizeof(Entry) +
954 NumSumFields * sizeof(uint64_t);
955 }
956
957 const uint64_t *getSummaryDataBase() const {
958 return reinterpret_cast<const uint64_t *>(this + 1);
959 }
960
961 uint64_t *getSummaryDataBase() {
962 return reinterpret_cast<uint64_t *>(this + 1);
963 }
964
965 const Entry *getCutoffEntryBase() const {
966 return reinterpret_cast<const Entry *>(
967 &getSummaryDataBase()[NumSummaryFields]);
968 }
969
970 Entry *getCutoffEntryBase() {
971 return reinterpret_cast<Entry *>(&getSummaryDataBase()[NumSummaryFields]);
972 }
973
974 uint64_t get(SummaryFieldKind K) const {
975 return getSummaryDataBase()[K];
976 }
977
978 void set(SummaryFieldKind K, uint64_t V) {
979 getSummaryDataBase()[K] = V;
980 }
981
982 const Entry &getEntry(uint32_t I) const { return getCutoffEntryBase()[I]; }
983
984 void setEntry(uint32_t I, const ProfileSummaryEntry &E) {
985 Entry &ER = getCutoffEntryBase()[I];
986 ER.Cutoff = E.Cutoff;
987 ER.MinBlockCount = E.MinCount;
988 ER.NumBlocks = E.NumCounts;
989 }
990};
991
992inline std::unique_ptr<Summary> allocSummary(uint32_t TotalSize) {
993 return std::unique_ptr<Summary>(new (::operator new(TotalSize))
994 Summary(TotalSize));
995}
996
997} // end namespace IndexedInstrProf
998
999namespace RawInstrProf {
1000
1001// Version 1: First version
1002// Version 2: Added value profile data section. Per-function control data
1003// struct has more fields to describe value profile information.
1004// Version 3: Compressed name section support. Function PGO name reference
1005// from control data struct is changed from raw pointer to Name's MD5 value.
1006// Version 4: ValueDataBegin and ValueDataSizes fields are removed from the
1007// raw header.
1008const uint64_t Version = INSTR_PROF_RAW_VERSION4;
1009
1010template <class IntPtrT> inline uint64_t getMagic();
1011template <> inline uint64_t getMagic<uint64_t>() {
1012 return INSTR_PROF_RAW_MAGIC_64(uint64_t)255 << 56 | (uint64_t)'l' << 48 | (uint64_t
)'p' << 40 | (uint64_t)'r' << 32 | (uint64_t)'o' <<
24 | (uint64_t)'f' << 16 | (uint64_t)'r' << 8 | (
uint64_t)129
;
1013}
1014
1015template <> inline uint64_t getMagic<uint32_t>() {
1016 return INSTR_PROF_RAW_MAGIC_32(uint64_t)255 << 56 | (uint64_t)'l' << 48 | (uint64_t
)'p' << 40 | (uint64_t)'r' << 32 | (uint64_t)'o' <<
24 | (uint64_t)'f' << 16 | (uint64_t)'R' << 8 | (
uint64_t)129
;
1017}
1018
1019// Per-function profile data header/control structure.
1020// The definition should match the structure defined in
1021// compiler-rt/lib/profile/InstrProfiling.h.
1022// It should also match the synthesized type in
1023// Transforms/Instrumentation/InstrProfiling.cpp:getOrCreateRegionCounters.
1024template <class IntPtrT> struct LLVM_ALIGNAS(8)alignas(8) ProfileData {
1025 #define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Type Name;
1026 #include "llvm/ProfileData/InstrProfData.inc"
1027};
1028
1029// File header structure of the LLVM profile data in raw format.
1030// The definition should match the header referenced in
1031// compiler-rt/lib/profile/InstrProfilingFile.c and
1032// InstrProfilingBuffer.c.
1033struct Header {
1034#define INSTR_PROF_RAW_HEADER(Type, Name, Init) const Type Name;
1035#include "llvm/ProfileData/InstrProfData.inc"
1036};
1037
1038} // end namespace RawInstrProf
1039
1040// Parse MemOP Size range option.
1041void getMemOPSizeRangeFromOption(StringRef Str, int64_t &RangeStart,
1042 int64_t &RangeLast);
1043
1044} // end namespace llvm
1045
1046#endif // LLVM_PROFILEDATA_INSTRPROF_H

/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <algorithm>
26#include <cassert>
27#include <cstddef>
28#include <cstdint>
29#include <cstdlib>
30#include <functional>
31#include <initializer_list>
32#include <iterator>
33#include <limits>
34#include <memory>
35#include <tuple>
36#include <type_traits>
37#include <utility>
38
39#ifdef EXPENSIVE_CHECKS
40#include <random> // for std::mt19937
41#endif
42
43namespace llvm {
44
45// Only used by compiler if both template types are the same. Useful when
46// using SFINAE to test for the existence of member functions.
47template <typename T, T> struct SameType;
48
49namespace detail {
50
51template <typename RangeT>
52using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53
54template <typename RangeT>
55using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
57
58} // end namespace detail
59
60//===----------------------------------------------------------------------===//
61// Extra additions to <functional>
62//===----------------------------------------------------------------------===//
63
64template <class Ty> struct identity {
65 using argument_type = Ty;
66
67 Ty &operator()(Ty &self) const {
68 return self;
69 }
70 const Ty &operator()(const Ty &self) const {
71 return self;
72 }
73};
74
75template <class Ty> struct less_ptr {
76 bool operator()(const Ty* left, const Ty* right) const {
77 return *left < *right;
78 }
79};
80
81template <class Ty> struct greater_ptr {
82 bool operator()(const Ty* left, const Ty* right) const {
83 return *right < *left;
84 }
85};
86
87/// An efficient, type-erasing, non-owning reference to a callable. This is
88/// intended for use as the type of a function parameter that is not used
89/// after the function in question returns.
90///
91/// This class does not own the callable, so it is not in general safe to store
92/// a function_ref.
93template<typename Fn> class function_ref;
94
95template<typename Ret, typename ...Params>
96class function_ref<Ret(Params...)> {
97 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
98 intptr_t callable;
99
100 template<typename Callable>
101 static Ret callback_fn(intptr_t callable, Params ...params) {
102 return (*reinterpret_cast<Callable*>(callable))(
103 std::forward<Params>(params)...);
104 }
105
106public:
107 function_ref() = default;
108 function_ref(std::nullptr_t) {}
109
110 template <typename Callable>
111 function_ref(Callable &&callable,
112 typename std::enable_if<
113 !std::is_same<typename std::remove_reference<Callable>::type,
114 function_ref>::value>::type * = nullptr)
115 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
116 callable(reinterpret_cast<intptr_t>(&callable)) {}
117
118 Ret operator()(Params ...params) const {
119 return callback(callable, std::forward<Params>(params)...);
120 }
121
122 operator bool() const { return callback; }
123};
124
125// deleter - Very very very simple method that is used to invoke operator
126// delete on something. It is used like this:
127//
128// for_each(V.begin(), B.end(), deleter<Interval>);
129template <class T>
130inline void deleter(T *Ptr) {
131 delete Ptr;
132}
133
134//===----------------------------------------------------------------------===//
135// Extra additions to <iterator>
136//===----------------------------------------------------------------------===//
137
138namespace adl_detail {
139
140using std::begin;
141
142template <typename ContainerTy>
143auto adl_begin(ContainerTy &&container)
144 -> decltype(begin(std::forward<ContainerTy>(container))) {
145 return begin(std::forward<ContainerTy>(container));
146}
147
148using std::end;
149
150template <typename ContainerTy>
151auto adl_end(ContainerTy &&container)
152 -> decltype(end(std::forward<ContainerTy>(container))) {
153 return end(std::forward<ContainerTy>(container));
154}
155
156using std::swap;
157
158template <typename T>
159void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
160 std::declval<T>()))) {
161 swap(std::forward<T>(lhs), std::forward<T>(rhs));
162}
163
164} // end namespace adl_detail
165
166template <typename ContainerTy>
167auto adl_begin(ContainerTy &&container)
168 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
169 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
170}
171
172template <typename ContainerTy>
173auto adl_end(ContainerTy &&container)
174 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
175 return adl_detail::adl_end(std::forward<ContainerTy>(container));
176}
177
178template <typename T>
179void adl_swap(T &&lhs, T &&rhs) noexcept(
180 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
181 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
182}
183
184// mapped_iterator - This is a simple iterator adapter that causes a function to
185// be applied whenever operator* is invoked on the iterator.
186
187template <typename ItTy, typename FuncTy,
188 typename FuncReturnTy =
189 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
190class mapped_iterator
191 : public iterator_adaptor_base<
192 mapped_iterator<ItTy, FuncTy>, ItTy,
193 typename std::iterator_traits<ItTy>::iterator_category,
194 typename std::remove_reference<FuncReturnTy>::type> {
195public:
196 mapped_iterator(ItTy U, FuncTy F)
197 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
198
199 ItTy getCurrent() { return this->I; }
200
201 FuncReturnTy operator*() { return F(*this->I); }
202
203private:
204 FuncTy F;
205};
206
207// map_iterator - Provide a convenient way to create mapped_iterators, just like
208// make_pair is useful for creating pairs...
209template <class ItTy, class FuncTy>
210inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
211 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
212}
213
214/// Helper to determine if type T has a member called rbegin().
215template <typename Ty> class has_rbegin_impl {
216 using yes = char[1];
217 using no = char[2];
218
219 template <typename Inner>
220 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
221
222 template <typename>
223 static no& test(...);
224
225public:
226 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
227};
228
229/// Metafunction to determine if T& or T has a member called rbegin().
230template <typename Ty>
231struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
232};
233
234// Returns an iterator_range over the given container which iterates in reverse.
235// Note that the container must have rbegin()/rend() methods for this to work.
236template <typename ContainerTy>
237auto reverse(ContainerTy &&C,
238 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
239 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
240 return make_range(C.rbegin(), C.rend());
241}
242
243// Returns a std::reverse_iterator wrapped around the given iterator.
244template <typename IteratorTy>
245std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
246 return std::reverse_iterator<IteratorTy>(It);
247}
248
249// Returns an iterator_range over the given container which iterates in reverse.
250// Note that the container must have begin()/end() methods which return
251// bidirectional iterators for this to work.
252template <typename ContainerTy>
253auto reverse(
254 ContainerTy &&C,
255 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
256 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
257 llvm::make_reverse_iterator(std::begin(C)))) {
258 return make_range(llvm::make_reverse_iterator(std::end(C)),
259 llvm::make_reverse_iterator(std::begin(C)));
260}
261
262/// An iterator adaptor that filters the elements of given inner iterators.
263///
264/// The predicate parameter should be a callable object that accepts the wrapped
265/// iterator's reference type and returns a bool. When incrementing or
266/// decrementing the iterator, it will call the predicate on each element and
267/// skip any where it returns false.
268///
269/// \code
270/// int A[] = { 1, 2, 3, 4 };
271/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
272/// // R contains { 1, 3 }.
273/// \endcode
274template <typename WrappedIteratorT, typename PredicateT>
275class filter_iterator
276 : public iterator_adaptor_base<
277 filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
278 typename std::common_type<
279 std::forward_iterator_tag,
280 typename std::iterator_traits<
281 WrappedIteratorT>::iterator_category>::type> {
282 using BaseT = iterator_adaptor_base<
283 filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
284 typename std::common_type<
285 std::forward_iterator_tag,
286 typename std::iterator_traits<WrappedIteratorT>::iterator_category>::
287 type>;
288
289 struct PayloadType {
290 WrappedIteratorT End;
291 PredicateT Pred;
292 };
293
294 Optional<PayloadType> Payload;
295
296 void findNextValid() {
297 assert(Payload && "Payload should be engaged when findNextValid is called")(static_cast <bool> (Payload && "Payload should be engaged when findNextValid is called"
) ? void (0) : __assert_fail ("Payload && \"Payload should be engaged when findNextValid is called\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/STLExtras.h"
, 297, __extension__ __PRETTY_FUNCTION__))
;
298 while (this->I != Payload->End && !Payload->Pred(*this->I))
299 BaseT::operator++();
300 }
301
302 // Construct the begin iterator. The begin iterator requires to know where end
303 // is, so that it can properly stop when it hits end.
304 filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred)
305 : BaseT(std::move(Begin)),
306 Payload(PayloadType{std::move(End), std::move(Pred)}) {
307 findNextValid();
308 }
309
310 // Construct the end iterator. It's not incrementable, so Payload doesn't
311 // have to be engaged.
312 filter_iterator(WrappedIteratorT End) : BaseT(End) {}
313
314public:
315 using BaseT::operator++;
316
317 filter_iterator &operator++() {
318 BaseT::operator++();
319 findNextValid();
320 return *this;
321 }
322
323 template <typename RT, typename PT>
324 friend iterator_range<filter_iterator<detail::IterOfRange<RT>, PT>>
325 make_filter_range(RT &&, PT);
326};
327
328/// Convenience function that takes a range of elements and a predicate,
329/// and return a new filter_iterator range.
330///
331/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
332/// lifetime of that temporary is not kept by the returned range object, and the
333/// temporary is going to be dropped on the floor after the make_iterator_range
334/// full expression that contains this function call.
335template <typename RangeT, typename PredicateT>
336iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
337make_filter_range(RangeT &&Range, PredicateT Pred) {
338 using FilterIteratorT =
339 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
340 return make_range(FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
341 std::end(std::forward<RangeT>(Range)),
342 std::move(Pred)),
343 FilterIteratorT(std::end(std::forward<RangeT>(Range))));
344}
345
346// forward declarations required by zip_shortest/zip_first
347template <typename R, typename UnaryPredicate>
348bool all_of(R &&range, UnaryPredicate P);
349
350template <size_t... I> struct index_sequence;
351
352template <class... Ts> struct index_sequence_for;
353
354namespace detail {
355
356using std::declval;
357
358// We have to alias this since inlining the actual type at the usage site
359// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
360template<typename... Iters> struct ZipTupleType {
361 using type = std::tuple<decltype(*declval<Iters>())...>;
362};
363
364template <typename ZipType, typename... Iters>
365using zip_traits = iterator_facade_base<
366 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
367 typename std::iterator_traits<
368 Iters>::iterator_category...>::type,
369 // ^ TODO: Implement random access methods.
370 typename ZipTupleType<Iters...>::type,
371 typename std::iterator_traits<typename std::tuple_element<
372 0, std::tuple<Iters...>>::type>::difference_type,
373 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
374 // inner iterators have the same difference_type. It would fail if, for
375 // instance, the second field's difference_type were non-numeric while the
376 // first is.
377 typename ZipTupleType<Iters...>::type *,
378 typename ZipTupleType<Iters...>::type>;
379
380template <typename ZipType, typename... Iters>
381struct zip_common : public zip_traits<ZipType, Iters...> {
382 using Base = zip_traits<ZipType, Iters...>;
383 using value_type = typename Base::value_type;
384
385 std::tuple<Iters...> iterators;
386
387protected:
388 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
389 return value_type(*std::get<Ns>(iterators)...);
390 }
391
392 template <size_t... Ns>
393 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
394 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
395 }
396
397 template <size_t... Ns>
398 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
399 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
400 }
401
402public:
403 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
404
405 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
406
407 const value_type operator*() const {
408 return deref(index_sequence_for<Iters...>{});
409 }
410
411 ZipType &operator++() {
412 iterators = tup_inc(index_sequence_for<Iters...>{});
413 return *reinterpret_cast<ZipType *>(this);
414 }
415
416 ZipType &operator--() {
417 static_assert(Base::IsBidirectional,
418 "All inner iterators must be at least bidirectional.");
419 iterators = tup_dec(index_sequence_for<Iters...>{});
420 return *reinterpret_cast<ZipType *>(this);
421 }
422};
423
424template <typename... Iters>
425struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
426 using Base = zip_common<zip_first<Iters...>, Iters...>;
427
428 bool operator==(const zip_first<Iters...> &other) const {
429 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
430 }
431
432 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
433};
434
435template <typename... Iters>
436class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
437 template <size_t... Ns>
438 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
439 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
440 std::get<Ns>(other.iterators)...},
441 identity<bool>{});
442 }
443
444public:
445 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
446
447 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
448
449 bool operator==(const zip_shortest<Iters...> &other) const {
450 return !test(other, index_sequence_for<Iters...>{});
451 }
452};
453
454template <template <typename...> class ItType, typename... Args> class zippy {
455public:
456 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
457 using iterator_category = typename iterator::iterator_category;
458 using value_type = typename iterator::value_type;
459 using difference_type = typename iterator::difference_type;
460 using pointer = typename iterator::pointer;
461 using reference = typename iterator::reference;
462
463private:
464 std::tuple<Args...> ts;
465
466 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
467 return iterator(std::begin(std::get<Ns>(ts))...);
468 }
469 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
470 return iterator(std::end(std::get<Ns>(ts))...);
471 }
472
473public:
474 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
475
476 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
477 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
478};
479
480} // end namespace detail
481
482/// zip iterator for two or more iteratable types.
483template <typename T, typename U, typename... Args>
484detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
485 Args &&... args) {
486 return detail::zippy<detail::zip_shortest, T, U, Args...>(
487 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
488}
489
490/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
491/// be the shortest.
492template <typename T, typename U, typename... Args>
493detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
494 Args &&... args) {
495 return detail::zippy<detail::zip_first, T, U, Args...>(
496 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
497}
498
499/// Iterator wrapper that concatenates sequences together.
500///
501/// This can concatenate different iterators, even with different types, into
502/// a single iterator provided the value types of all the concatenated
503/// iterators expose `reference` and `pointer` types that can be converted to
504/// `ValueT &` and `ValueT *` respectively. It doesn't support more
505/// interesting/customized pointer or reference types.
506///
507/// Currently this only supports forward or higher iterator categories as
508/// inputs and always exposes a forward iterator interface.
509template <typename ValueT, typename... IterTs>
510class concat_iterator
511 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
512 std::forward_iterator_tag, ValueT> {
513 using BaseT = typename concat_iterator::iterator_facade_base;
514
515 /// We store both the current and end iterators for each concatenated
516 /// sequence in a tuple of pairs.
517 ///
518 /// Note that something like iterator_range seems nice at first here, but the
519 /// range properties are of little benefit and end up getting in the way
520 /// because we need to do mutation on the current iterators.
521 std::tuple<std::pair<IterTs, IterTs>...> IterPairs;
522
523 /// Attempts to increment a specific iterator.
524 ///
525 /// Returns true if it was able to increment the iterator. Returns false if
526 /// the iterator is already at the end iterator.
527 template <size_t Index> bool incrementHelper() {
528 auto &IterPair = std::get<Index>(IterPairs);
529 if (IterPair.first == IterPair.second)
530 return false;
531
532 ++IterPair.first;
533 return true;
534 }
535
536 /// Increments the first non-end iterator.
537 ///
538 /// It is an error to call this with all iterators at the end.
539 template <size_t... Ns> void increment(index_sequence<Ns...>) {
540 // Build a sequence of functions to increment each iterator if possible.
541 bool (concat_iterator::*IncrementHelperFns[])() = {
542 &concat_iterator::incrementHelper<Ns>...};
543
544 // Loop over them, and stop as soon as we succeed at incrementing one.
545 for (auto &IncrementHelperFn : IncrementHelperFns)
546 if ((this->*IncrementHelperFn)())
547 return;
548
549 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/STLExtras.h"
, 549)
;
550 }
551
552 /// Returns null if the specified iterator is at the end. Otherwise,
553 /// dereferences the iterator and returns the address of the resulting
554 /// reference.
555 template <size_t Index> ValueT *getHelper() const {
556 auto &IterPair = std::get<Index>(IterPairs);
557 if (IterPair.first == IterPair.second)
558 return nullptr;
559
560 return &*IterPair.first;
561 }
562
563 /// Finds the first non-end iterator, dereferences, and returns the resulting
564 /// reference.
565 ///
566 /// It is an error to call this with all iterators at the end.
567 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
568 // Build a sequence of functions to get from iterator if possible.
569 ValueT *(concat_iterator::*GetHelperFns[])() const = {
570 &concat_iterator::getHelper<Ns>...};
571
572 // Loop over them, and return the first result we find.
573 for (auto &GetHelperFn : GetHelperFns)
574 if (ValueT *P = (this->*GetHelperFn)())
575 return *P;
576
577 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/STLExtras.h"
, 577)
;
578 }
579
580public:
581 /// Constructs an iterator from a squence of ranges.
582 ///
583 /// We need the full range to know how to switch between each of the
584 /// iterators.
585 template <typename... RangeTs>
586 explicit concat_iterator(RangeTs &&... Ranges)
587 : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {}
588
589 using BaseT::operator++;
590
591 concat_iterator &operator++() {
592 increment(index_sequence_for<IterTs...>());
593 return *this;
594 }
595
596 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
597
598 bool operator==(const concat_iterator &RHS) const {
599 return IterPairs == RHS.IterPairs;
600 }
601};
602
603namespace detail {
604
605/// Helper to store a sequence of ranges being concatenated and access them.
606///
607/// This is designed to facilitate providing actual storage when temporaries
608/// are passed into the constructor such that we can use it as part of range
609/// based for loops.
610template <typename ValueT, typename... RangeTs> class concat_range {
611public:
612 using iterator =
613 concat_iterator<ValueT,
614 decltype(std::begin(std::declval<RangeTs &>()))...>;
615
616private:
617 std::tuple<RangeTs...> Ranges;
618
619 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
620 return iterator(std::get<Ns>(Ranges)...);
621 }
622 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
623 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
624 std::end(std::get<Ns>(Ranges)))...);
625 }
626
627public:
628 concat_range(RangeTs &&... Ranges)
629 : Ranges(std::forward<RangeTs>(Ranges)...) {}
630
631 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
632 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
633};
634
635} // end namespace detail
636
637/// Concatenated range across two or more ranges.
638///
639/// The desired value type must be explicitly specified.
640template <typename ValueT, typename... RangeTs>
641detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
642 static_assert(sizeof...(RangeTs) > 1,
643 "Need more than one range to concatenate!");
644 return detail::concat_range<ValueT, RangeTs...>(
645 std::forward<RangeTs>(Ranges)...);
646}
647
648//===----------------------------------------------------------------------===//
649// Extra additions to <utility>
650//===----------------------------------------------------------------------===//
651
652/// \brief Function object to check whether the first component of a std::pair
653/// compares less than the first component of another std::pair.
654struct less_first {
655 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
656 return lhs.first < rhs.first;
657 }
658};
659
660/// \brief Function object to check whether the second component of a std::pair
661/// compares less than the second component of another std::pair.
662struct less_second {
663 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
664 return lhs.second < rhs.second;
665 }
666};
667
668// A subset of N3658. More stuff can be added as-needed.
669
670/// \brief Represents a compile-time sequence of integers.
671template <class T, T... I> struct integer_sequence {
672 using value_type = T;
673
674 static constexpr size_t size() { return sizeof...(I); }
675};
676
677/// \brief Alias for the common case of a sequence of size_ts.
678template <size_t... I>
679struct index_sequence : integer_sequence<std::size_t, I...> {};
680
681template <std::size_t N, std::size_t... I>
682struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
683template <std::size_t... I>
684struct build_index_impl<0, I...> : index_sequence<I...> {};
685
686/// \brief Creates a compile-time integer sequence for a parameter pack.
687template <class... Ts>
688struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
689
690/// Utility type to build an inheritance chain that makes it easy to rank
691/// overload candidates.
692template <int N> struct rank : rank<N - 1> {};
693template <> struct rank<0> {};
694
695/// \brief traits class for checking whether type T is one of any of the given
696/// types in the variadic list.
697template <typename T, typename... Ts> struct is_one_of {
698 static const bool value = false;
699};
700
701template <typename T, typename U, typename... Ts>
702struct is_one_of<T, U, Ts...> {
703 static const bool value =
704 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
705};
706
707/// \brief traits class for checking whether type T is a base class for all
708/// the given types in the variadic list.
709template <typename T, typename... Ts> struct are_base_of {
710 static const bool value = true;
711};
712
713template <typename T, typename U, typename... Ts>
714struct are_base_of<T, U, Ts...> {
715 static const bool value =
716 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
717};
718
719//===----------------------------------------------------------------------===//
720// Extra additions for arrays
721//===----------------------------------------------------------------------===//
722
723/// Find the length of an array.
724template <class T, std::size_t N>
725constexpr inline size_t array_lengthof(T (&)[N]) {
726 return N;
727}
728
729/// Adapt std::less<T> for array_pod_sort.
730template<typename T>
731inline int array_pod_sort_comparator(const void *P1, const void *P2) {
732 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
733 *reinterpret_cast<const T*>(P2)))
734 return -1;
735 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
736 *reinterpret_cast<const T*>(P1)))
737 return 1;
738 return 0;
739}
740
741/// get_array_pod_sort_comparator - This is an internal helper function used to
742/// get type deduction of T right.
743template<typename T>
744inline int (*get_array_pod_sort_comparator(const T &))
745 (const void*, const void*) {
746 return array_pod_sort_comparator<T>;
747}
748
749/// array_pod_sort - This sorts an array with the specified start and end
750/// extent. This is just like std::sort, except that it calls qsort instead of
751/// using an inlined template. qsort is slightly slower than std::sort, but
752/// most sorts are not performance critical in LLVM and std::sort has to be
753/// template instantiated for each type, leading to significant measured code
754/// bloat. This function should generally be used instead of std::sort where
755/// possible.
756///
757/// This function assumes that you have simple POD-like types that can be
758/// compared with std::less and can be moved with memcpy. If this isn't true,
759/// you should use std::sort.
760///
761/// NOTE: If qsort_r were portable, we could allow a custom comparator and
762/// default to std::less.
763template<class IteratorTy>
764inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
765 // Don't inefficiently call qsort with one element or trigger undefined
766 // behavior with an empty sequence.
767 auto NElts = End - Start;
768 if (NElts <= 1) return;
769#ifdef EXPENSIVE_CHECKS
770 std::mt19937 Generator(std::random_device{}());
771 std::shuffle(Start, End, Generator);
772#endif
773 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
774}
775
776template <class IteratorTy>
777inline void array_pod_sort(
778 IteratorTy Start, IteratorTy End,
779 int (*Compare)(
780 const typename std::iterator_traits<IteratorTy>::value_type *,
781 const typename std::iterator_traits<IteratorTy>::value_type *)) {
782 // Don't inefficiently call qsort with one element or trigger undefined
783 // behavior with an empty sequence.
784 auto NElts = End - Start;
785 if (NElts <= 1) return;
786#ifdef EXPENSIVE_CHECKS
787 std::mt19937 Generator(std::random_device{}());
788 std::shuffle(Start, End, Generator);
789#endif
790 qsort(&*Start, NElts, sizeof(*Start),
791 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
792}
793
794// Provide wrappers to std::sort which shuffle the elements before sorting
795// to help uncover non-deterministic behavior (PR35135).
796template <typename IteratorTy>
797inline void sort(IteratorTy Start, IteratorTy End) {
798#ifdef EXPENSIVE_CHECKS
799 std::mt19937 Generator(std::random_device{}());
800 std::shuffle(Start, End, Generator);
801#endif
802 std::sort(Start, End);
803}
804
805template <typename IteratorTy, typename Compare>
806inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
807#ifdef EXPENSIVE_CHECKS
808 std::mt19937 Generator(std::random_device{}());
809 std::shuffle(Start, End, Generator);
810#endif
811 std::sort(Start, End, Comp);
812}
813
814//===----------------------------------------------------------------------===//
815// Extra additions to <algorithm>
816//===----------------------------------------------------------------------===//
817
818/// For a container of pointers, deletes the pointers and then clears the
819/// container.
820template<typename Container>
821void DeleteContainerPointers(Container &C) {
822 for (auto V : C)
823 delete V;
824 C.clear();
825}
826
827/// In a container of pairs (usually a map) whose second element is a pointer,
828/// deletes the second elements and then clears the container.
829template<typename Container>
830void DeleteContainerSeconds(Container &C) {
831 for (auto &V : C)
832 delete V.second;
833 C.clear();
834}
835
836/// Provide wrappers to std::for_each which take ranges instead of having to
837/// pass begin/end explicitly.
838template <typename R, typename UnaryPredicate>
839UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
840 return std::for_each(adl_begin(Range), adl_end(Range), P);
841}
842
843/// Provide wrappers to std::all_of which take ranges instead of having to pass
844/// begin/end explicitly.
845template <typename R, typename UnaryPredicate>
846bool all_of(R &&Range, UnaryPredicate P) {
847 return std::all_of(adl_begin(Range), adl_end(Range), P);
848}
849
850/// Provide wrappers to std::any_of which take ranges instead of having to pass
851/// begin/end explicitly.
852template <typename R, typename UnaryPredicate>
853bool any_of(R &&Range, UnaryPredicate P) {
854 return std::any_of(adl_begin(Range), adl_end(Range), P);
855}
856
857/// Provide wrappers to std::none_of which take ranges instead of having to pass
858/// begin/end explicitly.
859template <typename R, typename UnaryPredicate>
860bool none_of(R &&Range, UnaryPredicate P) {
861 return std::none_of(adl_begin(Range), adl_end(Range), P);
862}
863
864/// Provide wrappers to std::find which take ranges instead of having to pass
865/// begin/end explicitly.
866template <typename R, typename T>
867auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
868 return std::find(adl_begin(Range), adl_end(Range), Val);
869}
870
871/// Provide wrappers to std::find_if which take ranges instead of having to pass
872/// begin/end explicitly.
873template <typename R, typename UnaryPredicate>
874auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
875 return std::find_if(adl_begin(Range), adl_end(Range), P);
876}
877
878template <typename R, typename UnaryPredicate>
879auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
880 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
881}
882
883/// Provide wrappers to std::remove_if which take ranges instead of having to
884/// pass begin/end explicitly.
885template <typename R, typename UnaryPredicate>
886auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
887 return std::remove_if(adl_begin(Range), adl_end(Range), P);
888}
889
890/// Provide wrappers to std::copy_if which take ranges instead of having to
891/// pass begin/end explicitly.
892template <typename R, typename OutputIt, typename UnaryPredicate>
893OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
894 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
895}
896
897template <typename R, typename OutputIt>
898OutputIt copy(R &&Range, OutputIt Out) {
899 return std::copy(adl_begin(Range), adl_end(Range), Out);
900}
901
902/// Wrapper function around std::find to detect if an element exists
903/// in a container.
904template <typename R, typename E>
905bool is_contained(R &&Range, const E &Element) {
906 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
907}
908
909/// Wrapper function around std::count to count the number of times an element
910/// \p Element occurs in the given range \p Range.
911template <typename R, typename E>
912auto count(R &&Range, const E &Element) ->
913 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
914 return std::count(adl_begin(Range), adl_end(Range), Element);
915}
916
917/// Wrapper function around std::count_if to count the number of times an
918/// element satisfying a given predicate occurs in a range.
919template <typename R, typename UnaryPredicate>
920auto count_if(R &&Range, UnaryPredicate P) ->
921 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
922 return std::count_if(adl_begin(Range), adl_end(Range), P);
923}
924
925/// Wrapper function around std::transform to apply a function to a range and
926/// store the result elsewhere.
927template <typename R, typename OutputIt, typename UnaryPredicate>
928OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
929 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
930}
931
932/// Provide wrappers to std::partition which take ranges instead of having to
933/// pass begin/end explicitly.
934template <typename R, typename UnaryPredicate>
935auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
936 return std::partition(adl_begin(Range), adl_end(Range), P);
937}
938
939/// Provide wrappers to std::lower_bound which take ranges instead of having to
940/// pass begin/end explicitly.
941template <typename R, typename ForwardIt>
942auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
943 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
944}
945
946/// \brief Given a range of type R, iterate the entire range and return a
947/// SmallVector with elements of the vector. This is useful, for example,
948/// when you want to iterate a range and then sort the results.
949template <unsigned Size, typename R>
950SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
951to_vector(R &&Range) {
952 return {adl_begin(Range), adl_end(Range)};
953}
954
955/// Provide a container algorithm similar to C++ Library Fundamentals v2's
956/// `erase_if` which is equivalent to:
957///
958/// C.erase(remove_if(C, pred), C.end());
959///
960/// This version works for any container with an erase method call accepting
961/// two iterators.
962template <typename Container, typename UnaryPredicate>
963void erase_if(Container &C, UnaryPredicate P) {
964 C.erase(remove_if(C, P), C.end());
965}
966
967//===----------------------------------------------------------------------===//
968// Extra additions to <memory>
969//===----------------------------------------------------------------------===//
970
971// Implement make_unique according to N3656.
972
973/// \brief Constructs a `new T()` with the given args and returns a
974/// `unique_ptr<T>` which owns the object.
975///
976/// Example:
977///
978/// auto p = make_unique<int>();
979/// auto p = make_unique<std::tuple<int, int>>(0, 1);
980template <class T, class... Args>
981typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
982make_unique(Args &&... args) {
983 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
10
Memory is allocated
984}
985
986/// \brief Constructs a `new T[n]` with the given args and returns a
987/// `unique_ptr<T[]>` which owns the object.
988///
989/// \param n size of the new array.
990///
991/// Example:
992///
993/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
994template <class T>
995typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
996 std::unique_ptr<T>>::type
997make_unique(size_t n) {
998 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
999}
1000
1001/// This function isn't used and is only here to provide better compile errors.
1002template <class T, class... Args>
1003typename std::enable_if<std::extent<T>::value != 0>::type
1004make_unique(Args &&...) = delete;
1005
1006struct FreeDeleter {
1007 void operator()(void* v) {
1008 ::free(v);
1009 }
1010};
1011
1012template<typename First, typename Second>
1013struct pair_hash {
1014 size_t operator()(const std::pair<First, Second> &P) const {
1015 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1016 }
1017};
1018
1019/// A functor like C++14's std::less<void> in its absence.
1020struct less {
1021 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1022 return std::forward<A>(a) < std::forward<B>(b);
1023 }
1024};
1025
1026/// A functor like C++14's std::equal<void> in its absence.
1027struct equal {
1028 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1029 return std::forward<A>(a) == std::forward<B>(b);
1030 }
1031};
1032
1033/// Binary functor that adapts to any other binary functor after dereferencing
1034/// operands.
1035template <typename T> struct deref {
1036 T func;
1037
1038 // Could be further improved to cope with non-derivable functors and
1039 // non-binary functors (should be a variadic template member function
1040 // operator()).
1041 template <typename A, typename B>
1042 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1043 assert(lhs)(static_cast <bool> (lhs) ? void (0) : __assert_fail ("lhs"
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/STLExtras.h"
, 1043, __extension__ __PRETTY_FUNCTION__))
;
1044 assert(rhs)(static_cast <bool> (rhs) ? void (0) : __assert_fail ("rhs"
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/STLExtras.h"
, 1044, __extension__ __PRETTY_FUNCTION__))
;
1045 return func(*lhs, *rhs);
1046 }
1047};
1048
1049namespace detail {
1050
1051template <typename R> class enumerator_iter;
1052
1053template <typename R> struct result_pair {
1054 friend class enumerator_iter<R>;
1055
1056 result_pair() = default;
1057 result_pair(std::size_t Index, IterOfRange<R> Iter)
1058 : Index(Index), Iter(Iter) {}
1059
1060 result_pair<R> &operator=(const result_pair<R> &Other) {
1061 Index = Other.Index;
1062 Iter = Other.Iter;
1063 return *this;
1064 }
1065
1066 std::size_t index() const { return Index; }
1067 const ValueOfRange<R> &value() const { return *Iter; }
1068 ValueOfRange<R> &value() { return *Iter; }
1069
1070private:
1071 std::size_t Index = std::numeric_limits<std::size_t>::max();
1072 IterOfRange<R> Iter;
1073};
1074
1075template <typename R>
1076class enumerator_iter
1077 : public iterator_facade_base<
1078 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1079 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1080 typename std::iterator_traits<IterOfRange<R>>::pointer,
1081 typename std::iterator_traits<IterOfRange<R>>::reference> {
1082 using result_type = result_pair<R>;
1083
1084public:
1085 explicit enumerator_iter(IterOfRange<R> EndIter)
1086 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1087
1088 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1089 : Result(Index, Iter) {}
1090
1091 result_type &operator*() { return Result; }
1092 const result_type &operator*() const { return Result; }
1093
1094 enumerator_iter<R> &operator++() {
1095 assert(Result.Index != std::numeric_limits<size_t>::max())(static_cast <bool> (Result.Index != std::numeric_limits
<size_t>::max()) ? void (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/STLExtras.h"
, 1095, __extension__ __PRETTY_FUNCTION__))
;
1096 ++Result.Iter;
1097 ++Result.Index;
1098 return *this;
1099 }
1100
1101 bool operator==(const enumerator_iter<R> &RHS) const {
1102 // Don't compare indices here, only iterators. It's possible for an end
1103 // iterator to have different indices depending on whether it was created
1104 // by calling std::end() versus incrementing a valid iterator.
1105 return Result.Iter == RHS.Result.Iter;
1106 }
1107
1108 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1109 Result = Other.Result;
1110 return *this;
1111 }
1112
1113private:
1114 result_type Result;
1115};
1116
1117template <typename R> class enumerator {
1118public:
1119 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1120
1121 enumerator_iter<R> begin() {
1122 return enumerator_iter<R>(0, std::begin(TheRange));
1123 }
1124
1125 enumerator_iter<R> end() {
1126 return enumerator_iter<R>(std::end(TheRange));
1127 }
1128
1129private:
1130 R TheRange;
1131};
1132
1133} // end namespace detail
1134
1135/// Given an input range, returns a new range whose values are are pair (A,B)
1136/// such that A is the 0-based index of the item in the sequence, and B is
1137/// the value from the original sequence. Example:
1138///
1139/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1140/// for (auto X : enumerate(Items)) {
1141/// printf("Item %d - %c\n", X.index(), X.value());
1142/// }
1143///
1144/// Output:
1145/// Item 0 - A
1146/// Item 1 - B
1147/// Item 2 - C
1148/// Item 3 - D
1149///
1150template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1151 return detail::enumerator<R>(std::forward<R>(TheRange));
1152}
1153
1154namespace detail {
1155
1156template <typename F, typename Tuple, std::size_t... I>
1157auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1158 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1159 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1160}
1161
1162} // end namespace detail
1163
1164/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1165/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1166/// return the result.
1167template <typename F, typename Tuple>
1168auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1169 std::forward<F>(f), std::forward<Tuple>(t),
1170 build_index_impl<
1171 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1172 using Indices = build_index_impl<
1173 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1174
1175 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1176 Indices{});
1177}
1178
1179} // end namespace llvm
1180
1181#endif // LLVM_ADT_STLEXTRAS_H