Bug Summary

File:lib/Analysis/InstructionSimplify.cpp
Warning:line 425, column 20
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name InstructionSimplify.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn360825/build-llvm/lib/Analysis -I /build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis -I /build/llvm-toolchain-snapshot-9~svn360825/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn360825/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn360825/build-llvm/lib/Analysis -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn360825=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-05-16-032012-25149-1 -x c++ /build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp

1//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements routines for folding instructions into simpler forms
10// that do not require creating new instructions. This does constant folding
11// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
14// simplified: This is usually true and assuming it simplifies the logic (if
15// they have not been simplified then results are correct but maybe suboptimal).
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Analysis/InstructionSimplify.h"
20#include "llvm/ADT/SetVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/AssumptionCache.h"
24#include "llvm/Analysis/CaptureTracking.h"
25#include "llvm/Analysis/CmpInstAnalysis.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/LoopAnalysisManager.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/ValueTracking.h"
30#include "llvm/Analysis/VectorUtils.h"
31#include "llvm/IR/ConstantRange.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Dominators.h"
34#include "llvm/IR/GetElementPtrTypeIterator.h"
35#include "llvm/IR/GlobalAlias.h"
36#include "llvm/IR/InstrTypes.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/Operator.h"
39#include "llvm/IR/PatternMatch.h"
40#include "llvm/IR/ValueHandle.h"
41#include "llvm/Support/KnownBits.h"
42#include <algorithm>
43using namespace llvm;
44using namespace llvm::PatternMatch;
45
46#define DEBUG_TYPE"instsimplify" "instsimplify"
47
48enum { RecursionLimit = 3 };
49
50STATISTIC(NumExpand, "Number of expansions")static llvm::Statistic NumExpand = {"instsimplify", "NumExpand"
, "Number of expansions", {0}, {false}}
;
51STATISTIC(NumReassoc, "Number of reassociations")static llvm::Statistic NumReassoc = {"instsimplify", "NumReassoc"
, "Number of reassociations", {0}, {false}}
;
52
53static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
55static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
56 const SimplifyQuery &, unsigned);
57static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
58 unsigned);
59static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
60 const SimplifyQuery &, unsigned);
61static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
62 unsigned);
63static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
64 const SimplifyQuery &Q, unsigned MaxRecurse);
65static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
66static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
67static Value *SimplifyCastInst(unsigned, Value *, Type *,
68 const SimplifyQuery &, unsigned);
69static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
70 unsigned);
71
72static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
73 Value *FalseVal) {
74 BinaryOperator::BinaryOps BinOpCode;
75 if (auto *BO = dyn_cast<BinaryOperator>(Cond))
76 BinOpCode = BO->getOpcode();
77 else
78 return nullptr;
79
80 CmpInst::Predicate ExpectedPred, Pred1, Pred2;
81 if (BinOpCode == BinaryOperator::Or) {
82 ExpectedPred = ICmpInst::ICMP_NE;
83 } else if (BinOpCode == BinaryOperator::And) {
84 ExpectedPred = ICmpInst::ICMP_EQ;
85 } else
86 return nullptr;
87
88 // %A = icmp eq %TV, %FV
89 // %B = icmp eq %X, %Y (and one of these is a select operand)
90 // %C = and %A, %B
91 // %D = select %C, %TV, %FV
92 // -->
93 // %FV
94
95 // %A = icmp ne %TV, %FV
96 // %B = icmp ne %X, %Y (and one of these is a select operand)
97 // %C = or %A, %B
98 // %D = select %C, %TV, %FV
99 // -->
100 // %TV
101 Value *X, *Y;
102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
103 m_Specific(FalseVal)),
104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
105 Pred1 != Pred2 || Pred1 != ExpectedPred)
106 return nullptr;
107
108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
110
111 return nullptr;
112}
113
114/// For a boolean type or a vector of boolean type, return false or a vector
115/// with every element false.
116static Constant *getFalse(Type *Ty) {
117 return ConstantInt::getFalse(Ty);
118}
119
120/// For a boolean type or a vector of boolean type, return true or a vector
121/// with every element true.
122static Constant *getTrue(Type *Ty) {
123 return ConstantInt::getTrue(Ty);
124}
125
126/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
128 Value *RHS) {
129 CmpInst *Cmp = dyn_cast<CmpInst>(V);
130 if (!Cmp)
131 return false;
132 CmpInst::Predicate CPred = Cmp->getPredicate();
133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
134 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
135 return true;
136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
137 CRHS == LHS;
138}
139
140/// Does the given value dominate the specified phi node?
141static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
142 Instruction *I = dyn_cast<Instruction>(V);
143 if (!I)
144 // Arguments and constants dominate all instructions.
145 return true;
146
147 // If we are processing instructions (and/or basic blocks) that have not been
148 // fully added to a function, the parent nodes may still be null. Simply
149 // return the conservative answer in these cases.
150 if (!I->getParent() || !P->getParent() || !I->getFunction())
151 return false;
152
153 // If we have a DominatorTree then do a precise test.
154 if (DT)
155 return DT->dominates(I, P);
156
157 // Otherwise, if the instruction is in the entry block and is not an invoke,
158 // then it obviously dominates all phi nodes.
159 if (I->getParent() == &I->getFunction()->getEntryBlock() &&
160 !isa<InvokeInst>(I))
161 return true;
162
163 return false;
164}
165
166/// Simplify "A op (B op' C)" by distributing op over op', turning it into
167/// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
168/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
169/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
170/// Returns the simplified value, or null if no simplification was performed.
171static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
172 Instruction::BinaryOps OpcodeToExpand,
173 const SimplifyQuery &Q, unsigned MaxRecurse) {
174 // Recursion is always used, so bail out at once if we already hit the limit.
175 if (!MaxRecurse--)
176 return nullptr;
177
178 // Check whether the expression has the form "(A op' B) op C".
179 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
180 if (Op0->getOpcode() == OpcodeToExpand) {
181 // It does! Try turning it into "(A op C) op' (B op C)".
182 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
183 // Do "A op C" and "B op C" both simplify?
184 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
185 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
186 // They do! Return "L op' R" if it simplifies or is already available.
187 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
188 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
189 && L == B && R == A)) {
190 ++NumExpand;
191 return LHS;
192 }
193 // Otherwise return "L op' R" if it simplifies.
194 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
195 ++NumExpand;
196 return V;
197 }
198 }
199 }
200
201 // Check whether the expression has the form "A op (B op' C)".
202 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
203 if (Op1->getOpcode() == OpcodeToExpand) {
204 // It does! Try turning it into "(A op B) op' (A op C)".
205 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
206 // Do "A op B" and "A op C" both simplify?
207 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
208 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
209 // They do! Return "L op' R" if it simplifies or is already available.
210 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
211 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
212 && L == C && R == B)) {
213 ++NumExpand;
214 return RHS;
215 }
216 // Otherwise return "L op' R" if it simplifies.
217 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
218 ++NumExpand;
219 return V;
220 }
221 }
222 }
223
224 return nullptr;
225}
226
227/// Generic simplifications for associative binary operations.
228/// Returns the simpler value, or null if none was found.
229static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
230 Value *LHS, Value *RHS,
231 const SimplifyQuery &Q,
232 unsigned MaxRecurse) {
233 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!")((Instruction::isAssociative(Opcode) && "Not an associative operation!"
) ? static_cast<void> (0) : __assert_fail ("Instruction::isAssociative(Opcode) && \"Not an associative operation!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 233, __PRETTY_FUNCTION__))
;
234
235 // Recursion is always used, so bail out at once if we already hit the limit.
236 if (!MaxRecurse--)
237 return nullptr;
238
239 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
240 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
241
242 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
243 if (Op0 && Op0->getOpcode() == Opcode) {
244 Value *A = Op0->getOperand(0);
245 Value *B = Op0->getOperand(1);
246 Value *C = RHS;
247
248 // Does "B op C" simplify?
249 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
250 // It does! Return "A op V" if it simplifies or is already available.
251 // If V equals B then "A op V" is just the LHS.
252 if (V == B) return LHS;
253 // Otherwise return "A op V" if it simplifies.
254 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
255 ++NumReassoc;
256 return W;
257 }
258 }
259 }
260
261 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
262 if (Op1 && Op1->getOpcode() == Opcode) {
263 Value *A = LHS;
264 Value *B = Op1->getOperand(0);
265 Value *C = Op1->getOperand(1);
266
267 // Does "A op B" simplify?
268 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
269 // It does! Return "V op C" if it simplifies or is already available.
270 // If V equals B then "V op C" is just the RHS.
271 if (V == B) return RHS;
272 // Otherwise return "V op C" if it simplifies.
273 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
274 ++NumReassoc;
275 return W;
276 }
277 }
278 }
279
280 // The remaining transforms require commutativity as well as associativity.
281 if (!Instruction::isCommutative(Opcode))
282 return nullptr;
283
284 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
285 if (Op0 && Op0->getOpcode() == Opcode) {
286 Value *A = Op0->getOperand(0);
287 Value *B = Op0->getOperand(1);
288 Value *C = RHS;
289
290 // Does "C op A" simplify?
291 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
292 // It does! Return "V op B" if it simplifies or is already available.
293 // If V equals A then "V op B" is just the LHS.
294 if (V == A) return LHS;
295 // Otherwise return "V op B" if it simplifies.
296 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
297 ++NumReassoc;
298 return W;
299 }
300 }
301 }
302
303 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
304 if (Op1 && Op1->getOpcode() == Opcode) {
305 Value *A = LHS;
306 Value *B = Op1->getOperand(0);
307 Value *C = Op1->getOperand(1);
308
309 // Does "C op A" simplify?
310 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
311 // It does! Return "B op V" if it simplifies or is already available.
312 // If V equals C then "B op V" is just the RHS.
313 if (V == C) return RHS;
314 // Otherwise return "B op V" if it simplifies.
315 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
316 ++NumReassoc;
317 return W;
318 }
319 }
320 }
321
322 return nullptr;
323}
324
325/// In the case of a binary operation with a select instruction as an operand,
326/// try to simplify the binop by seeing whether evaluating it on both branches
327/// of the select results in the same value. Returns the common value if so,
328/// otherwise returns null.
329static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
330 Value *RHS, const SimplifyQuery &Q,
331 unsigned MaxRecurse) {
332 // Recursion is always used, so bail out at once if we already hit the limit.
333 if (!MaxRecurse--)
334 return nullptr;
335
336 SelectInst *SI;
337 if (isa<SelectInst>(LHS)) {
338 SI = cast<SelectInst>(LHS);
339 } else {
340 assert(isa<SelectInst>(RHS) && "No select instruction operand!")((isa<SelectInst>(RHS) && "No select instruction operand!"
) ? static_cast<void> (0) : __assert_fail ("isa<SelectInst>(RHS) && \"No select instruction operand!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 340, __PRETTY_FUNCTION__))
;
341 SI = cast<SelectInst>(RHS);
342 }
343
344 // Evaluate the BinOp on the true and false branches of the select.
345 Value *TV;
346 Value *FV;
347 if (SI == LHS) {
348 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
349 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
350 } else {
351 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
352 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
353 }
354
355 // If they simplified to the same value, then return the common value.
356 // If they both failed to simplify then return null.
357 if (TV == FV)
358 return TV;
359
360 // If one branch simplified to undef, return the other one.
361 if (TV && isa<UndefValue>(TV))
362 return FV;
363 if (FV && isa<UndefValue>(FV))
364 return TV;
365
366 // If applying the operation did not change the true and false select values,
367 // then the result of the binop is the select itself.
368 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
369 return SI;
370
371 // If one branch simplified and the other did not, and the simplified
372 // value is equal to the unsimplified one, return the simplified value.
373 // For example, select (cond, X, X & Z) & Z -> X & Z.
374 if ((FV && !TV) || (TV && !FV)) {
375 // Check that the simplified value has the form "X op Y" where "op" is the
376 // same as the original operation.
377 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
378 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
379 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
380 // We already know that "op" is the same as for the simplified value. See
381 // if the operands match too. If so, return the simplified value.
382 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
383 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
384 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
385 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
386 Simplified->getOperand(1) == UnsimplifiedRHS)
387 return Simplified;
388 if (Simplified->isCommutative() &&
389 Simplified->getOperand(1) == UnsimplifiedLHS &&
390 Simplified->getOperand(0) == UnsimplifiedRHS)
391 return Simplified;
392 }
393 }
394
395 return nullptr;
396}
397
398/// In the case of a comparison with a select instruction, try to simplify the
399/// comparison by seeing whether both branches of the select result in the same
400/// value. Returns the common value if so, otherwise returns null.
401static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
402 Value *RHS, const SimplifyQuery &Q,
403 unsigned MaxRecurse) {
404 // Recursion is always used, so bail out at once if we already hit the limit.
405 if (!MaxRecurse--)
26
Taking false branch
406 return nullptr;
407
408 // Make sure the select is on the LHS.
409 if (!isa<SelectInst>(LHS)) {
27
Taking true branch
410 std::swap(LHS, RHS);
411 Pred = CmpInst::getSwappedPredicate(Pred);
412 }
413 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!")((isa<SelectInst>(LHS) && "Not comparing with a select instruction!"
) ? static_cast<void> (0) : __assert_fail ("isa<SelectInst>(LHS) && \"Not comparing with a select instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 413, __PRETTY_FUNCTION__))
;
28
'?' condition is true
414 SelectInst *SI = cast<SelectInst>(LHS);
415 Value *Cond = SI->getCondition();
29
Calling 'SelectInst::getCondition'
34
Returning from 'SelectInst::getCondition'
35
'Cond' initialized here
416 Value *TV = SI->getTrueValue();
417 Value *FV = SI->getFalseValue();
418
419 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
420 // Does "cmp TV, RHS" simplify?
421 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
422 if (TCmp == Cond) {
36
Assuming 'TCmp' is equal to 'Cond'
37
Assuming pointer value is null
38
Taking true branch
423 // It not only simplified, it simplified to the select condition. Replace
424 // it with 'true'.
425 TCmp = getTrue(Cond->getType());
39
Called C++ object pointer is null
426 } else if (!TCmp) {
427 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
428 // condition then we can replace it with 'true'. Otherwise give up.
429 if (!isSameCompare(Cond, Pred, TV, RHS))
430 return nullptr;
431 TCmp = getTrue(Cond->getType());
432 }
433
434 // Does "cmp FV, RHS" simplify?
435 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
436 if (FCmp == Cond) {
437 // It not only simplified, it simplified to the select condition. Replace
438 // it with 'false'.
439 FCmp = getFalse(Cond->getType());
440 } else if (!FCmp) {
441 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
442 // condition then we can replace it with 'false'. Otherwise give up.
443 if (!isSameCompare(Cond, Pred, FV, RHS))
444 return nullptr;
445 FCmp = getFalse(Cond->getType());
446 }
447
448 // If both sides simplified to the same value, then use it as the result of
449 // the original comparison.
450 if (TCmp == FCmp)
451 return TCmp;
452
453 // The remaining cases only make sense if the select condition has the same
454 // type as the result of the comparison, so bail out if this is not so.
455 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
456 return nullptr;
457 // If the false value simplified to false, then the result of the compare
458 // is equal to "Cond && TCmp". This also catches the case when the false
459 // value simplified to false and the true value to true, returning "Cond".
460 if (match(FCmp, m_Zero()))
461 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
462 return V;
463 // If the true value simplified to true, then the result of the compare
464 // is equal to "Cond || FCmp".
465 if (match(TCmp, m_One()))
466 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
467 return V;
468 // Finally, if the false value simplified to true and the true value to
469 // false, then the result of the compare is equal to "!Cond".
470 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
471 if (Value *V =
472 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
473 Q, MaxRecurse))
474 return V;
475
476 return nullptr;
477}
478
479/// In the case of a binary operation with an operand that is a PHI instruction,
480/// try to simplify the binop by seeing whether evaluating it on the incoming
481/// phi values yields the same result for every value. If so returns the common
482/// value, otherwise returns null.
483static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
484 Value *RHS, const SimplifyQuery &Q,
485 unsigned MaxRecurse) {
486 // Recursion is always used, so bail out at once if we already hit the limit.
487 if (!MaxRecurse--)
488 return nullptr;
489
490 PHINode *PI;
491 if (isa<PHINode>(LHS)) {
492 PI = cast<PHINode>(LHS);
493 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
494 if (!valueDominatesPHI(RHS, PI, Q.DT))
495 return nullptr;
496 } else {
497 assert(isa<PHINode>(RHS) && "No PHI instruction operand!")((isa<PHINode>(RHS) && "No PHI instruction operand!"
) ? static_cast<void> (0) : __assert_fail ("isa<PHINode>(RHS) && \"No PHI instruction operand!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 497, __PRETTY_FUNCTION__))
;
498 PI = cast<PHINode>(RHS);
499 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
500 if (!valueDominatesPHI(LHS, PI, Q.DT))
501 return nullptr;
502 }
503
504 // Evaluate the BinOp on the incoming phi values.
505 Value *CommonValue = nullptr;
506 for (Value *Incoming : PI->incoming_values()) {
507 // If the incoming value is the phi node itself, it can safely be skipped.
508 if (Incoming == PI) continue;
509 Value *V = PI == LHS ?
510 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
511 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
512 // If the operation failed to simplify, or simplified to a different value
513 // to previously, then give up.
514 if (!V || (CommonValue && V != CommonValue))
515 return nullptr;
516 CommonValue = V;
517 }
518
519 return CommonValue;
520}
521
522/// In the case of a comparison with a PHI instruction, try to simplify the
523/// comparison by seeing whether comparing with all of the incoming phi values
524/// yields the same result every time. If so returns the common result,
525/// otherwise returns null.
526static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
527 const SimplifyQuery &Q, unsigned MaxRecurse) {
528 // Recursion is always used, so bail out at once if we already hit the limit.
529 if (!MaxRecurse--)
530 return nullptr;
531
532 // Make sure the phi is on the LHS.
533 if (!isa<PHINode>(LHS)) {
534 std::swap(LHS, RHS);
535 Pred = CmpInst::getSwappedPredicate(Pred);
536 }
537 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!")((isa<PHINode>(LHS) && "Not comparing with a phi instruction!"
) ? static_cast<void> (0) : __assert_fail ("isa<PHINode>(LHS) && \"Not comparing with a phi instruction!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 537, __PRETTY_FUNCTION__))
;
538 PHINode *PI = cast<PHINode>(LHS);
539
540 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
541 if (!valueDominatesPHI(RHS, PI, Q.DT))
542 return nullptr;
543
544 // Evaluate the BinOp on the incoming phi values.
545 Value *CommonValue = nullptr;
546 for (Value *Incoming : PI->incoming_values()) {
547 // If the incoming value is the phi node itself, it can safely be skipped.
548 if (Incoming == PI) continue;
549 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
550 // If the operation failed to simplify, or simplified to a different value
551 // to previously, then give up.
552 if (!V || (CommonValue && V != CommonValue))
553 return nullptr;
554 CommonValue = V;
555 }
556
557 return CommonValue;
558}
559
560static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
561 Value *&Op0, Value *&Op1,
562 const SimplifyQuery &Q) {
563 if (auto *CLHS = dyn_cast<Constant>(Op0)) {
564 if (auto *CRHS = dyn_cast<Constant>(Op1))
565 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
566
567 // Canonicalize the constant to the RHS if this is a commutative operation.
568 if (Instruction::isCommutative(Opcode))
569 std::swap(Op0, Op1);
570 }
571 return nullptr;
572}
573
574/// Given operands for an Add, see if we can fold the result.
575/// If not, this returns null.
576static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
577 const SimplifyQuery &Q, unsigned MaxRecurse) {
578 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
579 return C;
580
581 // X + undef -> undef
582 if (match(Op1, m_Undef()))
583 return Op1;
584
585 // X + 0 -> X
586 if (match(Op1, m_Zero()))
587 return Op0;
588
589 // If two operands are negative, return 0.
590 if (isKnownNegation(Op0, Op1))
591 return Constant::getNullValue(Op0->getType());
592
593 // X + (Y - X) -> Y
594 // (Y - X) + X -> Y
595 // Eg: X + -X -> 0
596 Value *Y = nullptr;
597 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
598 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
599 return Y;
600
601 // X + ~X -> -1 since ~X = -X-1
602 Type *Ty = Op0->getType();
603 if (match(Op0, m_Not(m_Specific(Op1))) ||
604 match(Op1, m_Not(m_Specific(Op0))))
605 return Constant::getAllOnesValue(Ty);
606
607 // add nsw/nuw (xor Y, signmask), signmask --> Y
608 // The no-wrapping add guarantees that the top bit will be set by the add.
609 // Therefore, the xor must be clearing the already set sign bit of Y.
610 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
611 match(Op0, m_Xor(m_Value(Y), m_SignMask())))
612 return Y;
613
614 // add nuw %x, -1 -> -1, because %x can only be 0.
615 if (IsNUW && match(Op1, m_AllOnes()))
616 return Op1; // Which is -1.
617
618 /// i1 add -> xor.
619 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
620 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
621 return V;
622
623 // Try some generic simplifications for associative operations.
624 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
625 MaxRecurse))
626 return V;
627
628 // Threading Add over selects and phi nodes is pointless, so don't bother.
629 // Threading over the select in "A + select(cond, B, C)" means evaluating
630 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
631 // only if B and C are equal. If B and C are equal then (since we assume
632 // that operands have already been simplified) "select(cond, B, C)" should
633 // have been simplified to the common value of B and C already. Analysing
634 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
635 // for threading over phi nodes.
636
637 return nullptr;
638}
639
640Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
641 const SimplifyQuery &Query) {
642 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
643}
644
645/// Compute the base pointer and cumulative constant offsets for V.
646///
647/// This strips all constant offsets off of V, leaving it the base pointer, and
648/// accumulates the total constant offset applied in the returned constant. It
649/// returns 0 if V is not a pointer, and returns the constant '0' if there are
650/// no constant offsets applied.
651///
652/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
653/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
654/// folding.
655static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
656 bool AllowNonInbounds = false) {
657 assert(V->getType()->isPtrOrPtrVectorTy())((V->getType()->isPtrOrPtrVectorTy()) ? static_cast<
void> (0) : __assert_fail ("V->getType()->isPtrOrPtrVectorTy()"
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 657, __PRETTY_FUNCTION__))
;
658
659 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
660 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
661
662 // Even though we don't look through PHI nodes, we could be called on an
663 // instruction in an unreachable block, which may be on a cycle.
664 SmallPtrSet<Value *, 4> Visited;
665 Visited.insert(V);
666 do {
667 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
668 if ((!AllowNonInbounds && !GEP->isInBounds()) ||
669 !GEP->accumulateConstantOffset(DL, Offset))
670 break;
671 V = GEP->getPointerOperand();
672 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
673 V = cast<Operator>(V)->getOperand(0);
674 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
675 if (GA->isInterposable())
676 break;
677 V = GA->getAliasee();
678 } else {
679 if (auto *Call = dyn_cast<CallBase>(V))
680 if (Value *RV = Call->getReturnedArgOperand()) {
681 V = RV;
682 continue;
683 }
684 break;
685 }
686 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!")((V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"
) ? static_cast<void> (0) : __assert_fail ("V->getType()->isPtrOrPtrVectorTy() && \"Unexpected operand type!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 686, __PRETTY_FUNCTION__))
;
687 } while (Visited.insert(V).second);
688
689 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
690 if (V->getType()->isVectorTy())
691 return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
692 OffsetIntPtr);
693 return OffsetIntPtr;
694}
695
696/// Compute the constant difference between two pointer values.
697/// If the difference is not a constant, returns zero.
698static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
699 Value *RHS) {
700 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
701 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
702
703 // If LHS and RHS are not related via constant offsets to the same base
704 // value, there is nothing we can do here.
705 if (LHS != RHS)
706 return nullptr;
707
708 // Otherwise, the difference of LHS - RHS can be computed as:
709 // LHS - RHS
710 // = (LHSOffset + Base) - (RHSOffset + Base)
711 // = LHSOffset - RHSOffset
712 return ConstantExpr::getSub(LHSOffset, RHSOffset);
713}
714
715/// Given operands for a Sub, see if we can fold the result.
716/// If not, this returns null.
717static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
718 const SimplifyQuery &Q, unsigned MaxRecurse) {
719 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
720 return C;
721
722 // X - undef -> undef
723 // undef - X -> undef
724 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
725 return UndefValue::get(Op0->getType());
726
727 // X - 0 -> X
728 if (match(Op1, m_Zero()))
729 return Op0;
730
731 // X - X -> 0
732 if (Op0 == Op1)
733 return Constant::getNullValue(Op0->getType());
734
735 // Is this a negation?
736 if (match(Op0, m_Zero())) {
737 // 0 - X -> 0 if the sub is NUW.
738 if (isNUW)
739 return Constant::getNullValue(Op0->getType());
740
741 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
742 if (Known.Zero.isMaxSignedValue()) {
743 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
744 // Op1 must be 0 because negating the minimum signed value is undefined.
745 if (isNSW)
746 return Constant::getNullValue(Op0->getType());
747
748 // 0 - X -> X if X is 0 or the minimum signed value.
749 return Op1;
750 }
751 }
752
753 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
754 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
755 Value *X = nullptr, *Y = nullptr, *Z = Op1;
756 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
757 // See if "V === Y - Z" simplifies.
758 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
759 // It does! Now see if "X + V" simplifies.
760 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
761 // It does, we successfully reassociated!
762 ++NumReassoc;
763 return W;
764 }
765 // See if "V === X - Z" simplifies.
766 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
767 // It does! Now see if "Y + V" simplifies.
768 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
769 // It does, we successfully reassociated!
770 ++NumReassoc;
771 return W;
772 }
773 }
774
775 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
776 // For example, X - (X + 1) -> -1
777 X = Op0;
778 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
779 // See if "V === X - Y" simplifies.
780 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
781 // It does! Now see if "V - Z" simplifies.
782 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
783 // It does, we successfully reassociated!
784 ++NumReassoc;
785 return W;
786 }
787 // See if "V === X - Z" simplifies.
788 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
789 // It does! Now see if "V - Y" simplifies.
790 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
791 // It does, we successfully reassociated!
792 ++NumReassoc;
793 return W;
794 }
795 }
796
797 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
798 // For example, X - (X - Y) -> Y.
799 Z = Op0;
800 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
801 // See if "V === Z - X" simplifies.
802 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
803 // It does! Now see if "V + Y" simplifies.
804 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
805 // It does, we successfully reassociated!
806 ++NumReassoc;
807 return W;
808 }
809
810 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
811 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
812 match(Op1, m_Trunc(m_Value(Y))))
813 if (X->getType() == Y->getType())
814 // See if "V === X - Y" simplifies.
815 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
816 // It does! Now see if "trunc V" simplifies.
817 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
818 Q, MaxRecurse - 1))
819 // It does, return the simplified "trunc V".
820 return W;
821
822 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
823 if (match(Op0, m_PtrToInt(m_Value(X))) &&
824 match(Op1, m_PtrToInt(m_Value(Y))))
825 if (Constant *Result = computePointerDifference(Q.DL, X, Y))
826 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
827
828 // i1 sub -> xor.
829 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
830 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
831 return V;
832
833 // Threading Sub over selects and phi nodes is pointless, so don't bother.
834 // Threading over the select in "A - select(cond, B, C)" means evaluating
835 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
836 // only if B and C are equal. If B and C are equal then (since we assume
837 // that operands have already been simplified) "select(cond, B, C)" should
838 // have been simplified to the common value of B and C already. Analysing
839 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
840 // for threading over phi nodes.
841
842 return nullptr;
843}
844
845Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
846 const SimplifyQuery &Q) {
847 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
848}
849
850/// Given operands for a Mul, see if we can fold the result.
851/// If not, this returns null.
852static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
853 unsigned MaxRecurse) {
854 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
855 return C;
856
857 // X * undef -> 0
858 // X * 0 -> 0
859 if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
860 return Constant::getNullValue(Op0->getType());
861
862 // X * 1 -> X
863 if (match(Op1, m_One()))
864 return Op0;
865
866 // (X / Y) * Y -> X if the division is exact.
867 Value *X = nullptr;
868 if (Q.IIQ.UseInstrInfo &&
869 (match(Op0,
870 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
871 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
872 return X;
873
874 // i1 mul -> and.
875 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
876 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
877 return V;
878
879 // Try some generic simplifications for associative operations.
880 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
881 MaxRecurse))
882 return V;
883
884 // Mul distributes over Add. Try some generic simplifications based on this.
885 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
886 Q, MaxRecurse))
887 return V;
888
889 // If the operation is with the result of a select instruction, check whether
890 // operating on either branch of the select always yields the same value.
891 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
892 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
893 MaxRecurse))
894 return V;
895
896 // If the operation is with the result of a phi instruction, check whether
897 // operating on all incoming values of the phi always yields the same value.
898 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
899 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
900 MaxRecurse))
901 return V;
902
903 return nullptr;
904}
905
906Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
907 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
908}
909
910/// Check for common or similar folds of integer division or integer remainder.
911/// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
912static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
913 Type *Ty = Op0->getType();
914
915 // X / undef -> undef
916 // X % undef -> undef
917 if (match(Op1, m_Undef()))
918 return Op1;
919
920 // X / 0 -> undef
921 // X % 0 -> undef
922 // We don't need to preserve faults!
923 if (match(Op1, m_Zero()))
924 return UndefValue::get(Ty);
925
926 // If any element of a constant divisor vector is zero or undef, the whole op
927 // is undef.
928 auto *Op1C = dyn_cast<Constant>(Op1);
929 if (Op1C && Ty->isVectorTy()) {
930 unsigned NumElts = Ty->getVectorNumElements();
931 for (unsigned i = 0; i != NumElts; ++i) {
932 Constant *Elt = Op1C->getAggregateElement(i);
933 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
934 return UndefValue::get(Ty);
935 }
936 }
937
938 // undef / X -> 0
939 // undef % X -> 0
940 if (match(Op0, m_Undef()))
941 return Constant::getNullValue(Ty);
942
943 // 0 / X -> 0
944 // 0 % X -> 0
945 if (match(Op0, m_Zero()))
946 return Constant::getNullValue(Op0->getType());
947
948 // X / X -> 1
949 // X % X -> 0
950 if (Op0 == Op1)
951 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
952
953 // X / 1 -> X
954 // X % 1 -> 0
955 // If this is a boolean op (single-bit element type), we can't have
956 // division-by-zero or remainder-by-zero, so assume the divisor is 1.
957 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
958 Value *X;
959 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
960 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
961 return IsDiv ? Op0 : Constant::getNullValue(Ty);
962
963 return nullptr;
964}
965
966/// Given a predicate and two operands, return true if the comparison is true.
967/// This is a helper for div/rem simplification where we return some other value
968/// when we can prove a relationship between the operands.
969static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
970 const SimplifyQuery &Q, unsigned MaxRecurse) {
971 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
972 Constant *C = dyn_cast_or_null<Constant>(V);
973 return (C && C->isAllOnesValue());
974}
975
976/// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
977/// to simplify X % Y to X.
978static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
979 unsigned MaxRecurse, bool IsSigned) {
980 // Recursion is always used, so bail out at once if we already hit the limit.
981 if (!MaxRecurse--)
982 return false;
983
984 if (IsSigned) {
985 // |X| / |Y| --> 0
986 //
987 // We require that 1 operand is a simple constant. That could be extended to
988 // 2 variables if we computed the sign bit for each.
989 //
990 // Make sure that a constant is not the minimum signed value because taking
991 // the abs() of that is undefined.
992 Type *Ty = X->getType();
993 const APInt *C;
994 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
995 // Is the variable divisor magnitude always greater than the constant
996 // dividend magnitude?
997 // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
998 Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
999 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1000 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1001 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1002 return true;
1003 }
1004 if (match(Y, m_APInt(C))) {
1005 // Special-case: we can't take the abs() of a minimum signed value. If
1006 // that's the divisor, then all we have to do is prove that the dividend
1007 // is also not the minimum signed value.
1008 if (C->isMinSignedValue())
1009 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1010
1011 // Is the variable dividend magnitude always less than the constant
1012 // divisor magnitude?
1013 // |X| < |C| --> X > -abs(C) and X < abs(C)
1014 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1015 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1016 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1017 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1018 return true;
1019 }
1020 return false;
1021 }
1022
1023 // IsSigned == false.
1024 // Is the dividend unsigned less than the divisor?
1025 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1026}
1027
1028/// These are simplifications common to SDiv and UDiv.
1029static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1030 const SimplifyQuery &Q, unsigned MaxRecurse) {
1031 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1032 return C;
1033
1034 if (Value *V = simplifyDivRem(Op0, Op1, true))
1035 return V;
1036
1037 bool IsSigned = Opcode == Instruction::SDiv;
1038
1039 // (X * Y) / Y -> X if the multiplication does not overflow.
1040 Value *X;
1041 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1042 auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1043 // If the Mul does not overflow, then we are good to go.
1044 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1045 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1046 return X;
1047 // If X has the form X = A / Y, then X * Y cannot overflow.
1048 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1049 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1050 return X;
1051 }
1052
1053 // (X rem Y) / Y -> 0
1054 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1055 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1056 return Constant::getNullValue(Op0->getType());
1057
1058 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1059 ConstantInt *C1, *C2;
1060 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1061 match(Op1, m_ConstantInt(C2))) {
1062 bool Overflow;
1063 (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1064 if (Overflow)
1065 return Constant::getNullValue(Op0->getType());
1066 }
1067
1068 // If the operation is with the result of a select instruction, check whether
1069 // operating on either branch of the select always yields the same value.
1070 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1071 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1072 return V;
1073
1074 // If the operation is with the result of a phi instruction, check whether
1075 // operating on all incoming values of the phi always yields the same value.
1076 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1077 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1078 return V;
1079
1080 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1081 return Constant::getNullValue(Op0->getType());
1082
1083 return nullptr;
1084}
1085
1086/// These are simplifications common to SRem and URem.
1087static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1088 const SimplifyQuery &Q, unsigned MaxRecurse) {
1089 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1090 return C;
1091
1092 if (Value *V = simplifyDivRem(Op0, Op1, false))
1093 return V;
1094
1095 // (X % Y) % Y -> X % Y
1096 if ((Opcode == Instruction::SRem &&
1097 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1098 (Opcode == Instruction::URem &&
1099 match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1100 return Op0;
1101
1102 // (X << Y) % X -> 0
1103 if (Q.IIQ.UseInstrInfo &&
1104 ((Opcode == Instruction::SRem &&
1105 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1106 (Opcode == Instruction::URem &&
1107 match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1108 return Constant::getNullValue(Op0->getType());
1109
1110 // If the operation is with the result of a select instruction, check whether
1111 // operating on either branch of the select always yields the same value.
1112 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1113 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1114 return V;
1115
1116 // If the operation is with the result of a phi instruction, check whether
1117 // operating on all incoming values of the phi always yields the same value.
1118 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1119 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1120 return V;
1121
1122 // If X / Y == 0, then X % Y == X.
1123 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1124 return Op0;
1125
1126 return nullptr;
1127}
1128
1129/// Given operands for an SDiv, see if we can fold the result.
1130/// If not, this returns null.
1131static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1132 unsigned MaxRecurse) {
1133 // If two operands are negated and no signed overflow, return -1.
1134 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1135 return Constant::getAllOnesValue(Op0->getType());
1136
1137 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1138}
1139
1140Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1141 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1142}
1143
1144/// Given operands for a UDiv, see if we can fold the result.
1145/// If not, this returns null.
1146static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1147 unsigned MaxRecurse) {
1148 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1149}
1150
1151Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1152 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1153}
1154
1155/// Given operands for an SRem, see if we can fold the result.
1156/// If not, this returns null.
1157static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1158 unsigned MaxRecurse) {
1159 // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1160 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1161 Value *X;
1162 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1163 return ConstantInt::getNullValue(Op0->getType());
1164
1165 // If the two operands are negated, return 0.
1166 if (isKnownNegation(Op0, Op1))
1167 return ConstantInt::getNullValue(Op0->getType());
1168
1169 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1170}
1171
1172Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1173 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1174}
1175
1176/// Given operands for a URem, see if we can fold the result.
1177/// If not, this returns null.
1178static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1179 unsigned MaxRecurse) {
1180 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1181}
1182
1183Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1184 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1185}
1186
1187/// Returns true if a shift by \c Amount always yields undef.
1188static bool isUndefShift(Value *Amount) {
1189 Constant *C = dyn_cast<Constant>(Amount);
1190 if (!C)
1191 return false;
1192
1193 // X shift by undef -> undef because it may shift by the bitwidth.
1194 if (isa<UndefValue>(C))
1195 return true;
1196
1197 // Shifting by the bitwidth or more is undefined.
1198 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1199 if (CI->getValue().getLimitedValue() >=
1200 CI->getType()->getScalarSizeInBits())
1201 return true;
1202
1203 // If all lanes of a vector shift are undefined the whole shift is.
1204 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1205 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1206 if (!isUndefShift(C->getAggregateElement(I)))
1207 return false;
1208 return true;
1209 }
1210
1211 return false;
1212}
1213
1214/// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1215/// If not, this returns null.
1216static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1217 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1218 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1219 return C;
1220
1221 // 0 shift by X -> 0
1222 if (match(Op0, m_Zero()))
1223 return Constant::getNullValue(Op0->getType());
1224
1225 // X shift by 0 -> X
1226 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1227 // would be poison.
1228 Value *X;
1229 if (match(Op1, m_Zero()) ||
1230 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1231 return Op0;
1232
1233 // Fold undefined shifts.
1234 if (isUndefShift(Op1))
1235 return UndefValue::get(Op0->getType());
1236
1237 // If the operation is with the result of a select instruction, check whether
1238 // operating on either branch of the select always yields the same value.
1239 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1240 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1241 return V;
1242
1243 // If the operation is with the result of a phi instruction, check whether
1244 // operating on all incoming values of the phi always yields the same value.
1245 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1246 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1247 return V;
1248
1249 // If any bits in the shift amount make that value greater than or equal to
1250 // the number of bits in the type, the shift is undefined.
1251 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1252 if (Known.One.getLimitedValue() >= Known.getBitWidth())
1253 return UndefValue::get(Op0->getType());
1254
1255 // If all valid bits in the shift amount are known zero, the first operand is
1256 // unchanged.
1257 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1258 if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1259 return Op0;
1260
1261 return nullptr;
1262}
1263
1264/// Given operands for an Shl, LShr or AShr, see if we can
1265/// fold the result. If not, this returns null.
1266static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1267 Value *Op1, bool isExact, const SimplifyQuery &Q,
1268 unsigned MaxRecurse) {
1269 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1270 return V;
1271
1272 // X >> X -> 0
1273 if (Op0 == Op1)
1274 return Constant::getNullValue(Op0->getType());
1275
1276 // undef >> X -> 0
1277 // undef >> X -> undef (if it's exact)
1278 if (match(Op0, m_Undef()))
1279 return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1280
1281 // The low bit cannot be shifted out of an exact shift if it is set.
1282 if (isExact) {
1283 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1284 if (Op0Known.One[0])
1285 return Op0;
1286 }
1287
1288 return nullptr;
1289}
1290
1291/// Given operands for an Shl, see if we can fold the result.
1292/// If not, this returns null.
1293static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1294 const SimplifyQuery &Q, unsigned MaxRecurse) {
1295 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1296 return V;
1297
1298 // undef << X -> 0
1299 // undef << X -> undef if (if it's NSW/NUW)
1300 if (match(Op0, m_Undef()))
1301 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1302
1303 // (X >> A) << A -> X
1304 Value *X;
1305 if (Q.IIQ.UseInstrInfo &&
1306 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1307 return X;
1308
1309 // shl nuw i8 C, %x -> C iff C has sign bit set.
1310 if (isNUW && match(Op0, m_Negative()))
1311 return Op0;
1312 // NOTE: could use computeKnownBits() / LazyValueInfo,
1313 // but the cost-benefit analysis suggests it isn't worth it.
1314
1315 return nullptr;
1316}
1317
1318Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1319 const SimplifyQuery &Q) {
1320 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1321}
1322
1323/// Given operands for an LShr, see if we can fold the result.
1324/// If not, this returns null.
1325static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1326 const SimplifyQuery &Q, unsigned MaxRecurse) {
1327 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1328 MaxRecurse))
1329 return V;
1330
1331 // (X << A) >> A -> X
1332 Value *X;
1333 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1334 return X;
1335
1336 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
1337 // We can return X as we do in the above case since OR alters no bits in X.
1338 // SimplifyDemandedBits in InstCombine can do more general optimization for
1339 // bit manipulation. This pattern aims to provide opportunities for other
1340 // optimizers by supporting a simple but common case in InstSimplify.
1341 Value *Y;
1342 const APInt *ShRAmt, *ShLAmt;
1343 if (match(Op1, m_APInt(ShRAmt)) &&
1344 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1345 *ShRAmt == *ShLAmt) {
1346 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1347 const unsigned Width = Op0->getType()->getScalarSizeInBits();
1348 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1349 if (ShRAmt->uge(EffWidthY))
1350 return X;
1351 }
1352
1353 return nullptr;
1354}
1355
1356Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1357 const SimplifyQuery &Q) {
1358 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1359}
1360
1361/// Given operands for an AShr, see if we can fold the result.
1362/// If not, this returns null.
1363static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1364 const SimplifyQuery &Q, unsigned MaxRecurse) {
1365 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1366 MaxRecurse))
1367 return V;
1368
1369 // all ones >>a X -> -1
1370 // Do not return Op0 because it may contain undef elements if it's a vector.
1371 if (match(Op0, m_AllOnes()))
1372 return Constant::getAllOnesValue(Op0->getType());
1373
1374 // (X << A) >> A -> X
1375 Value *X;
1376 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1377 return X;
1378
1379 // Arithmetic shifting an all-sign-bit value is a no-op.
1380 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1381 if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1382 return Op0;
1383
1384 return nullptr;
1385}
1386
1387Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1388 const SimplifyQuery &Q) {
1389 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1390}
1391
1392/// Commuted variants are assumed to be handled by calling this function again
1393/// with the parameters swapped.
1394static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1395 ICmpInst *UnsignedICmp, bool IsAnd) {
1396 Value *X, *Y;
1397
1398 ICmpInst::Predicate EqPred;
1399 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1400 !ICmpInst::isEquality(EqPred))
1401 return nullptr;
1402
1403 ICmpInst::Predicate UnsignedPred;
1404 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1405 ICmpInst::isUnsigned(UnsignedPred))
1406 ;
1407 else if (match(UnsignedICmp,
1408 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1409 ICmpInst::isUnsigned(UnsignedPred))
1410 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1411 else
1412 return nullptr;
1413
1414 // X < Y && Y != 0 --> X < Y
1415 // X < Y || Y != 0 --> Y != 0
1416 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1417 return IsAnd ? UnsignedICmp : ZeroICmp;
1418
1419 // X >= Y || Y != 0 --> true
1420 // X >= Y || Y == 0 --> X >= Y
1421 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1422 if (EqPred == ICmpInst::ICMP_NE)
1423 return getTrue(UnsignedICmp->getType());
1424 return UnsignedICmp;
1425 }
1426
1427 // X < Y && Y == 0 --> false
1428 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1429 IsAnd)
1430 return getFalse(UnsignedICmp->getType());
1431
1432 return nullptr;
1433}
1434
1435/// Commuted variants are assumed to be handled by calling this function again
1436/// with the parameters swapped.
1437static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1438 ICmpInst::Predicate Pred0, Pred1;
1439 Value *A ,*B;
1440 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1441 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1442 return nullptr;
1443
1444 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1445 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1446 // can eliminate Op1 from this 'and'.
1447 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1448 return Op0;
1449
1450 // Check for any combination of predicates that are guaranteed to be disjoint.
1451 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1452 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1453 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1454 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1455 return getFalse(Op0->getType());
1456
1457 return nullptr;
1458}
1459
1460/// Commuted variants are assumed to be handled by calling this function again
1461/// with the parameters swapped.
1462static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1463 ICmpInst::Predicate Pred0, Pred1;
1464 Value *A ,*B;
1465 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1466 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1467 return nullptr;
1468
1469 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1470 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1471 // can eliminate Op0 from this 'or'.
1472 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1473 return Op1;
1474
1475 // Check for any combination of predicates that cover the entire range of
1476 // possibilities.
1477 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1478 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1479 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1480 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1481 return getTrue(Op0->getType());
1482
1483 return nullptr;
1484}
1485
1486/// Test if a pair of compares with a shared operand and 2 constants has an
1487/// empty set intersection, full set union, or if one compare is a superset of
1488/// the other.
1489static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1490 bool IsAnd) {
1491 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1492 if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1493 return nullptr;
1494
1495 const APInt *C0, *C1;
1496 if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1497 !match(Cmp1->getOperand(1), m_APInt(C1)))
1498 return nullptr;
1499
1500 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1501 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1502
1503 // For and-of-compares, check if the intersection is empty:
1504 // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1505 if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1506 return getFalse(Cmp0->getType());
1507
1508 // For or-of-compares, check if the union is full:
1509 // (icmp X, C0) || (icmp X, C1) --> full set --> true
1510 if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1511 return getTrue(Cmp0->getType());
1512
1513 // Is one range a superset of the other?
1514 // If this is and-of-compares, take the smaller set:
1515 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1516 // If this is or-of-compares, take the larger set:
1517 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1518 if (Range0.contains(Range1))
1519 return IsAnd ? Cmp1 : Cmp0;
1520 if (Range1.contains(Range0))
1521 return IsAnd ? Cmp0 : Cmp1;
1522
1523 return nullptr;
1524}
1525
1526static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1527 bool IsAnd) {
1528 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1529 if (!match(Cmp0->getOperand(1), m_Zero()) ||
1530 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1531 return nullptr;
1532
1533 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1534 return nullptr;
1535
1536 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1537 Value *X = Cmp0->getOperand(0);
1538 Value *Y = Cmp1->getOperand(0);
1539
1540 // If one of the compares is a masked version of a (not) null check, then
1541 // that compare implies the other, so we eliminate the other. Optionally, look
1542 // through a pointer-to-int cast to match a null check of a pointer type.
1543
1544 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1545 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1546 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1547 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1548 if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1549 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1550 return Cmp1;
1551
1552 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1553 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1554 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1555 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1556 if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1557 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1558 return Cmp0;
1559
1560 return nullptr;
1561}
1562
1563static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1564 const InstrInfoQuery &IIQ) {
1565 // (icmp (add V, C0), C1) & (icmp V, C0)
1566 ICmpInst::Predicate Pred0, Pred1;
1567 const APInt *C0, *C1;
1568 Value *V;
1569 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1570 return nullptr;
1571
1572 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1573 return nullptr;
1574
1575 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1576 if (AddInst->getOperand(1) != Op1->getOperand(1))
1577 return nullptr;
1578
1579 Type *ITy = Op0->getType();
1580 bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1581 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1582
1583 const APInt Delta = *C1 - *C0;
1584 if (C0->isStrictlyPositive()) {
1585 if (Delta == 2) {
1586 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1587 return getFalse(ITy);
1588 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1589 return getFalse(ITy);
1590 }
1591 if (Delta == 1) {
1592 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1593 return getFalse(ITy);
1594 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1595 return getFalse(ITy);
1596 }
1597 }
1598 if (C0->getBoolValue() && isNUW) {
1599 if (Delta == 2)
1600 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1601 return getFalse(ITy);
1602 if (Delta == 1)
1603 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1604 return getFalse(ITy);
1605 }
1606
1607 return nullptr;
1608}
1609
1610static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1611 const InstrInfoQuery &IIQ) {
1612 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1613 return X;
1614 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
1615 return X;
1616
1617 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1618 return X;
1619 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1620 return X;
1621
1622 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1623 return X;
1624
1625 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1626 return X;
1627
1628 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ))
1629 return X;
1630 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ))
1631 return X;
1632
1633 return nullptr;
1634}
1635
1636static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1637 const InstrInfoQuery &IIQ) {
1638 // (icmp (add V, C0), C1) | (icmp V, C0)
1639 ICmpInst::Predicate Pred0, Pred1;
1640 const APInt *C0, *C1;
1641 Value *V;
1642 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1643 return nullptr;
1644
1645 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1646 return nullptr;
1647
1648 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1649 if (AddInst->getOperand(1) != Op1->getOperand(1))
1650 return nullptr;
1651
1652 Type *ITy = Op0->getType();
1653 bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1654 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1655
1656 const APInt Delta = *C1 - *C0;
1657 if (C0->isStrictlyPositive()) {
1658 if (Delta == 2) {
1659 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1660 return getTrue(ITy);
1661 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1662 return getTrue(ITy);
1663 }
1664 if (Delta == 1) {
1665 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1666 return getTrue(ITy);
1667 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1668 return getTrue(ITy);
1669 }
1670 }
1671 if (C0->getBoolValue() && isNUW) {
1672 if (Delta == 2)
1673 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1674 return getTrue(ITy);
1675 if (Delta == 1)
1676 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1677 return getTrue(ITy);
1678 }
1679
1680 return nullptr;
1681}
1682
1683static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1684 const InstrInfoQuery &IIQ) {
1685 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1686 return X;
1687 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
1688 return X;
1689
1690 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1691 return X;
1692 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1693 return X;
1694
1695 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1696 return X;
1697
1698 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1699 return X;
1700
1701 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ))
1702 return X;
1703 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ))
1704 return X;
1705
1706 return nullptr;
1707}
1708
1709static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1710 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1711 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1712 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1713 if (LHS0->getType() != RHS0->getType())
1714 return nullptr;
1715
1716 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1717 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1718 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1719 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1720 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1721 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1722 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1723 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1724 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1725 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1726 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1727 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1728 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1729 return RHS;
1730
1731 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1732 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1733 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1734 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1735 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1736 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1737 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1738 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1739 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1740 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1741 return LHS;
1742 }
1743
1744 return nullptr;
1745}
1746
1747static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1748 Value *Op0, Value *Op1, bool IsAnd) {
1749 // Look through casts of the 'and' operands to find compares.
1750 auto *Cast0 = dyn_cast<CastInst>(Op0);
1751 auto *Cast1 = dyn_cast<CastInst>(Op1);
1752 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1753 Cast0->getSrcTy() == Cast1->getSrcTy()) {
1754 Op0 = Cast0->getOperand(0);
1755 Op1 = Cast1->getOperand(0);
1756 }
1757
1758 Value *V = nullptr;
1759 auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1760 auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1761 if (ICmp0 && ICmp1)
1762 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ)
1763 : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ);
1764
1765 auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1766 auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1767 if (FCmp0 && FCmp1)
1768 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1769
1770 if (!V)
1771 return nullptr;
1772 if (!Cast0)
1773 return V;
1774
1775 // If we looked through casts, we can only handle a constant simplification
1776 // because we are not allowed to create a cast instruction here.
1777 if (auto *C = dyn_cast<Constant>(V))
1778 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1779
1780 return nullptr;
1781}
1782
1783/// Given operands for an And, see if we can fold the result.
1784/// If not, this returns null.
1785static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1786 unsigned MaxRecurse) {
1787 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1788 return C;
1789
1790 // X & undef -> 0
1791 if (match(Op1, m_Undef()))
1792 return Constant::getNullValue(Op0->getType());
1793
1794 // X & X = X
1795 if (Op0 == Op1)
1796 return Op0;
1797
1798 // X & 0 = 0
1799 if (match(Op1, m_Zero()))
1800 return Constant::getNullValue(Op0->getType());
1801
1802 // X & -1 = X
1803 if (match(Op1, m_AllOnes()))
1804 return Op0;
1805
1806 // A & ~A = ~A & A = 0
1807 if (match(Op0, m_Not(m_Specific(Op1))) ||
1808 match(Op1, m_Not(m_Specific(Op0))))
1809 return Constant::getNullValue(Op0->getType());
1810
1811 // (A | ?) & A = A
1812 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1813 return Op1;
1814
1815 // A & (A | ?) = A
1816 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1817 return Op0;
1818
1819 // A mask that only clears known zeros of a shifted value is a no-op.
1820 Value *X;
1821 const APInt *Mask;
1822 const APInt *ShAmt;
1823 if (match(Op1, m_APInt(Mask))) {
1824 // If all bits in the inverted and shifted mask are clear:
1825 // and (shl X, ShAmt), Mask --> shl X, ShAmt
1826 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1827 (~(*Mask)).lshr(*ShAmt).isNullValue())
1828 return Op0;
1829
1830 // If all bits in the inverted and shifted mask are clear:
1831 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1832 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1833 (~(*Mask)).shl(*ShAmt).isNullValue())
1834 return Op0;
1835 }
1836
1837 // A & (-A) = A if A is a power of two or zero.
1838 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1839 match(Op1, m_Neg(m_Specific(Op0)))) {
1840 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1841 Q.DT))
1842 return Op0;
1843 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1844 Q.DT))
1845 return Op1;
1846 }
1847
1848 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
1849 return V;
1850
1851 // Try some generic simplifications for associative operations.
1852 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1853 MaxRecurse))
1854 return V;
1855
1856 // And distributes over Or. Try some generic simplifications based on this.
1857 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1858 Q, MaxRecurse))
1859 return V;
1860
1861 // And distributes over Xor. Try some generic simplifications based on this.
1862 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1863 Q, MaxRecurse))
1864 return V;
1865
1866 // If the operation is with the result of a select instruction, check whether
1867 // operating on either branch of the select always yields the same value.
1868 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1869 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1870 MaxRecurse))
1871 return V;
1872
1873 // If the operation is with the result of a phi instruction, check whether
1874 // operating on all incoming values of the phi always yields the same value.
1875 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1876 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1877 MaxRecurse))
1878 return V;
1879
1880 // Assuming the effective width of Y is not larger than A, i.e. all bits
1881 // from X and Y are disjoint in (X << A) | Y,
1882 // if the mask of this AND op covers all bits of X or Y, while it covers
1883 // no bits from the other, we can bypass this AND op. E.g.,
1884 // ((X << A) | Y) & Mask -> Y,
1885 // if Mask = ((1 << effective_width_of(Y)) - 1)
1886 // ((X << A) | Y) & Mask -> X << A,
1887 // if Mask = ((1 << effective_width_of(X)) - 1) << A
1888 // SimplifyDemandedBits in InstCombine can optimize the general case.
1889 // This pattern aims to help other passes for a common case.
1890 Value *Y, *XShifted;
1891 if (match(Op1, m_APInt(Mask)) &&
1892 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
1893 m_Value(XShifted)),
1894 m_Value(Y)))) {
1895 const unsigned Width = Op0->getType()->getScalarSizeInBits();
1896 const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
1897 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1898 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1899 if (EffWidthY <= ShftCnt) {
1900 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
1901 Q.DT);
1902 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
1903 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
1904 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
1905 // If the mask is extracting all bits from X or Y as is, we can skip
1906 // this AND op.
1907 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
1908 return Y;
1909 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
1910 return XShifted;
1911 }
1912 }
1913
1914 return nullptr;
1915}
1916
1917Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1918 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
1919}
1920
1921/// Given operands for an Or, see if we can fold the result.
1922/// If not, this returns null.
1923static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1924 unsigned MaxRecurse) {
1925 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1926 return C;
1927
1928 // X | undef -> -1
1929 // X | -1 = -1
1930 // Do not return Op1 because it may contain undef elements if it's a vector.
1931 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
1932 return Constant::getAllOnesValue(Op0->getType());
1933
1934 // X | X = X
1935 // X | 0 = X
1936 if (Op0 == Op1 || match(Op1, m_Zero()))
1937 return Op0;
1938
1939 // A | ~A = ~A | A = -1
1940 if (match(Op0, m_Not(m_Specific(Op1))) ||
1941 match(Op1, m_Not(m_Specific(Op0))))
1942 return Constant::getAllOnesValue(Op0->getType());
1943
1944 // (A & ?) | A = A
1945 if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
1946 return Op1;
1947
1948 // A | (A & ?) = A
1949 if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
1950 return Op0;
1951
1952 // ~(A & ?) | A = -1
1953 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1954 return Constant::getAllOnesValue(Op1->getType());
1955
1956 // A | ~(A & ?) = -1
1957 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1958 return Constant::getAllOnesValue(Op0->getType());
1959
1960 Value *A, *B;
1961 // (A & ~B) | (A ^ B) -> (A ^ B)
1962 // (~B & A) | (A ^ B) -> (A ^ B)
1963 // (A & ~B) | (B ^ A) -> (B ^ A)
1964 // (~B & A) | (B ^ A) -> (B ^ A)
1965 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1966 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1967 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1968 return Op1;
1969
1970 // Commute the 'or' operands.
1971 // (A ^ B) | (A & ~B) -> (A ^ B)
1972 // (A ^ B) | (~B & A) -> (A ^ B)
1973 // (B ^ A) | (A & ~B) -> (B ^ A)
1974 // (B ^ A) | (~B & A) -> (B ^ A)
1975 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1976 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1977 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1978 return Op0;
1979
1980 // (A & B) | (~A ^ B) -> (~A ^ B)
1981 // (B & A) | (~A ^ B) -> (~A ^ B)
1982 // (A & B) | (B ^ ~A) -> (B ^ ~A)
1983 // (B & A) | (B ^ ~A) -> (B ^ ~A)
1984 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1985 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1986 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1987 return Op1;
1988
1989 // (~A ^ B) | (A & B) -> (~A ^ B)
1990 // (~A ^ B) | (B & A) -> (~A ^ B)
1991 // (B ^ ~A) | (A & B) -> (B ^ ~A)
1992 // (B ^ ~A) | (B & A) -> (B ^ ~A)
1993 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1994 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1995 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1996 return Op0;
1997
1998 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
1999 return V;
2000
2001 // Try some generic simplifications for associative operations.
2002 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2003 MaxRecurse))
2004 return V;
2005
2006 // Or distributes over And. Try some generic simplifications based on this.
2007 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
2008 MaxRecurse))
2009 return V;
2010
2011 // If the operation is with the result of a select instruction, check whether
2012 // operating on either branch of the select always yields the same value.
2013 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2014 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2015 MaxRecurse))
2016 return V;
2017
2018 // (A & C1)|(B & C2)
2019 const APInt *C1, *C2;
2020 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2021 match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2022 if (*C1 == ~*C2) {
2023 // (A & C1)|(B & C2)
2024 // If we have: ((V + N) & C1) | (V & C2)
2025 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2026 // replace with V+N.
2027 Value *N;
2028 if (C2->isMask() && // C2 == 0+1+
2029 match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2030 // Add commutes, try both ways.
2031 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2032 return A;
2033 }
2034 // Or commutes, try both ways.
2035 if (C1->isMask() &&
2036 match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2037 // Add commutes, try both ways.
2038 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2039 return B;
2040 }
2041 }
2042 }
2043
2044 // If the operation is with the result of a phi instruction, check whether
2045 // operating on all incoming values of the phi always yields the same value.
2046 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2047 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2048 return V;
2049
2050 return nullptr;
2051}
2052
2053Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2054 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2055}
2056
2057/// Given operands for a Xor, see if we can fold the result.
2058/// If not, this returns null.
2059static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2060 unsigned MaxRecurse) {
2061 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2062 return C;
2063
2064 // A ^ undef -> undef
2065 if (match(Op1, m_Undef()))
2066 return Op1;
2067
2068 // A ^ 0 = A
2069 if (match(Op1, m_Zero()))
2070 return Op0;
2071
2072 // A ^ A = 0
2073 if (Op0 == Op1)
2074 return Constant::getNullValue(Op0->getType());
2075
2076 // A ^ ~A = ~A ^ A = -1
2077 if (match(Op0, m_Not(m_Specific(Op1))) ||
2078 match(Op1, m_Not(m_Specific(Op0))))
2079 return Constant::getAllOnesValue(Op0->getType());
2080
2081 // Try some generic simplifications for associative operations.
2082 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2083 MaxRecurse))
2084 return V;
2085
2086 // Threading Xor over selects and phi nodes is pointless, so don't bother.
2087 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2088 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2089 // only if B and C are equal. If B and C are equal then (since we assume
2090 // that operands have already been simplified) "select(cond, B, C)" should
2091 // have been simplified to the common value of B and C already. Analysing
2092 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
2093 // for threading over phi nodes.
2094
2095 return nullptr;
2096}
2097
2098Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2099 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2100}
2101
2102
2103static Type *GetCompareTy(Value *Op) {
2104 return CmpInst::makeCmpResultType(Op->getType());
2105}
2106
2107/// Rummage around inside V looking for something equivalent to the comparison
2108/// "LHS Pred RHS". Return such a value if found, otherwise return null.
2109/// Helper function for analyzing max/min idioms.
2110static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2111 Value *LHS, Value *RHS) {
2112 SelectInst *SI = dyn_cast<SelectInst>(V);
2113 if (!SI)
2114 return nullptr;
2115 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2116 if (!Cmp)
2117 return nullptr;
2118 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2119 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2120 return Cmp;
2121 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2122 LHS == CmpRHS && RHS == CmpLHS)
2123 return Cmp;
2124 return nullptr;
2125}
2126
2127// A significant optimization not implemented here is assuming that alloca
2128// addresses are not equal to incoming argument values. They don't *alias*,
2129// as we say, but that doesn't mean they aren't equal, so we take a
2130// conservative approach.
2131//
2132// This is inspired in part by C++11 5.10p1:
2133// "Two pointers of the same type compare equal if and only if they are both
2134// null, both point to the same function, or both represent the same
2135// address."
2136//
2137// This is pretty permissive.
2138//
2139// It's also partly due to C11 6.5.9p6:
2140// "Two pointers compare equal if and only if both are null pointers, both are
2141// pointers to the same object (including a pointer to an object and a
2142// subobject at its beginning) or function, both are pointers to one past the
2143// last element of the same array object, or one is a pointer to one past the
2144// end of one array object and the other is a pointer to the start of a
2145// different array object that happens to immediately follow the first array
2146// object in the address space.)
2147//
2148// C11's version is more restrictive, however there's no reason why an argument
2149// couldn't be a one-past-the-end value for a stack object in the caller and be
2150// equal to the beginning of a stack object in the callee.
2151//
2152// If the C and C++ standards are ever made sufficiently restrictive in this
2153// area, it may be possible to update LLVM's semantics accordingly and reinstate
2154// this optimization.
2155static Constant *
2156computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2157 const DominatorTree *DT, CmpInst::Predicate Pred,
2158 AssumptionCache *AC, const Instruction *CxtI,
2159 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2160 // First, skip past any trivial no-ops.
2161 LHS = LHS->stripPointerCasts();
2162 RHS = RHS->stripPointerCasts();
2163
2164 // A non-null pointer is not equal to a null pointer.
2165 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2166 IIQ.UseInstrInfo) &&
2167 isa<ConstantPointerNull>(RHS) &&
2168 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2169 return ConstantInt::get(GetCompareTy(LHS),
2170 !CmpInst::isTrueWhenEqual(Pred));
2171
2172 // We can only fold certain predicates on pointer comparisons.
2173 switch (Pred) {
2174 default:
2175 return nullptr;
2176
2177 // Equality comaprisons are easy to fold.
2178 case CmpInst::ICMP_EQ:
2179 case CmpInst::ICMP_NE:
2180 break;
2181
2182 // We can only handle unsigned relational comparisons because 'inbounds' on
2183 // a GEP only protects against unsigned wrapping.
2184 case CmpInst::ICMP_UGT:
2185 case CmpInst::ICMP_UGE:
2186 case CmpInst::ICMP_ULT:
2187 case CmpInst::ICMP_ULE:
2188 // However, we have to switch them to their signed variants to handle
2189 // negative indices from the base pointer.
2190 Pred = ICmpInst::getSignedPredicate(Pred);
2191 break;
2192 }
2193
2194 // Strip off any constant offsets so that we can reason about them.
2195 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2196 // here and compare base addresses like AliasAnalysis does, however there are
2197 // numerous hazards. AliasAnalysis and its utilities rely on special rules
2198 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2199 // doesn't need to guarantee pointer inequality when it says NoAlias.
2200 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2201 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2202
2203 // If LHS and RHS are related via constant offsets to the same base
2204 // value, we can replace it with an icmp which just compares the offsets.
2205 if (LHS == RHS)
2206 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2207
2208 // Various optimizations for (in)equality comparisons.
2209 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2210 // Different non-empty allocations that exist at the same time have
2211 // different addresses (if the program can tell). Global variables always
2212 // exist, so they always exist during the lifetime of each other and all
2213 // allocas. Two different allocas usually have different addresses...
2214 //
2215 // However, if there's an @llvm.stackrestore dynamically in between two
2216 // allocas, they may have the same address. It's tempting to reduce the
2217 // scope of the problem by only looking at *static* allocas here. That would
2218 // cover the majority of allocas while significantly reducing the likelihood
2219 // of having an @llvm.stackrestore pop up in the middle. However, it's not
2220 // actually impossible for an @llvm.stackrestore to pop up in the middle of
2221 // an entry block. Also, if we have a block that's not attached to a
2222 // function, we can't tell if it's "static" under the current definition.
2223 // Theoretically, this problem could be fixed by creating a new kind of
2224 // instruction kind specifically for static allocas. Such a new instruction
2225 // could be required to be at the top of the entry block, thus preventing it
2226 // from being subject to a @llvm.stackrestore. Instcombine could even
2227 // convert regular allocas into these special allocas. It'd be nifty.
2228 // However, until then, this problem remains open.
2229 //
2230 // So, we'll assume that two non-empty allocas have different addresses
2231 // for now.
2232 //
2233 // With all that, if the offsets are within the bounds of their allocations
2234 // (and not one-past-the-end! so we can't use inbounds!), and their
2235 // allocations aren't the same, the pointers are not equal.
2236 //
2237 // Note that it's not necessary to check for LHS being a global variable
2238 // address, due to canonicalization and constant folding.
2239 if (isa<AllocaInst>(LHS) &&
2240 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2241 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2242 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2243 uint64_t LHSSize, RHSSize;
2244 ObjectSizeOpts Opts;
2245 Opts.NullIsUnknownSize =
2246 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2247 if (LHSOffsetCI && RHSOffsetCI &&
2248 getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2249 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2250 const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2251 const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2252 if (!LHSOffsetValue.isNegative() &&
2253 !RHSOffsetValue.isNegative() &&
2254 LHSOffsetValue.ult(LHSSize) &&
2255 RHSOffsetValue.ult(RHSSize)) {
2256 return ConstantInt::get(GetCompareTy(LHS),
2257 !CmpInst::isTrueWhenEqual(Pred));
2258 }
2259 }
2260
2261 // Repeat the above check but this time without depending on DataLayout
2262 // or being able to compute a precise size.
2263 if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2264 !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2265 LHSOffset->isNullValue() &&
2266 RHSOffset->isNullValue())
2267 return ConstantInt::get(GetCompareTy(LHS),
2268 !CmpInst::isTrueWhenEqual(Pred));
2269 }
2270
2271 // Even if an non-inbounds GEP occurs along the path we can still optimize
2272 // equality comparisons concerning the result. We avoid walking the whole
2273 // chain again by starting where the last calls to
2274 // stripAndComputeConstantOffsets left off and accumulate the offsets.
2275 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2276 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2277 if (LHS == RHS)
2278 return ConstantExpr::getICmp(Pred,
2279 ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2280 ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2281
2282 // If one side of the equality comparison must come from a noalias call
2283 // (meaning a system memory allocation function), and the other side must
2284 // come from a pointer that cannot overlap with dynamically-allocated
2285 // memory within the lifetime of the current function (allocas, byval
2286 // arguments, globals), then determine the comparison result here.
2287 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2288 GetUnderlyingObjects(LHS, LHSUObjs, DL);
2289 GetUnderlyingObjects(RHS, RHSUObjs, DL);
2290
2291 // Is the set of underlying objects all noalias calls?
2292 auto IsNAC = [](ArrayRef<const Value *> Objects) {
2293 return all_of(Objects, isNoAliasCall);
2294 };
2295
2296 // Is the set of underlying objects all things which must be disjoint from
2297 // noalias calls. For allocas, we consider only static ones (dynamic
2298 // allocas might be transformed into calls to malloc not simultaneously
2299 // live with the compared-to allocation). For globals, we exclude symbols
2300 // that might be resolve lazily to symbols in another dynamically-loaded
2301 // library (and, thus, could be malloc'ed by the implementation).
2302 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2303 return all_of(Objects, [](const Value *V) {
2304 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2305 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2306 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2307 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2308 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2309 !GV->isThreadLocal();
2310 if (const Argument *A = dyn_cast<Argument>(V))
2311 return A->hasByValAttr();
2312 return false;
2313 });
2314 };
2315
2316 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2317 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2318 return ConstantInt::get(GetCompareTy(LHS),
2319 !CmpInst::isTrueWhenEqual(Pred));
2320
2321 // Fold comparisons for non-escaping pointer even if the allocation call
2322 // cannot be elided. We cannot fold malloc comparison to null. Also, the
2323 // dynamic allocation call could be either of the operands.
2324 Value *MI = nullptr;
2325 if (isAllocLikeFn(LHS, TLI) &&
2326 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2327 MI = LHS;
2328 else if (isAllocLikeFn(RHS, TLI) &&
2329 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2330 MI = RHS;
2331 // FIXME: We should also fold the compare when the pointer escapes, but the
2332 // compare dominates the pointer escape
2333 if (MI && !PointerMayBeCaptured(MI, true, true))
2334 return ConstantInt::get(GetCompareTy(LHS),
2335 CmpInst::isFalseWhenEqual(Pred));
2336 }
2337
2338 // Otherwise, fail.
2339 return nullptr;
2340}
2341
2342/// Fold an icmp when its operands have i1 scalar type.
2343static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2344 Value *RHS, const SimplifyQuery &Q) {
2345 Type *ITy = GetCompareTy(LHS); // The return type.
2346 Type *OpTy = LHS->getType(); // The operand type.
2347 if (!OpTy->isIntOrIntVectorTy(1))
2348 return nullptr;
2349
2350 // A boolean compared to true/false can be simplified in 14 out of the 20
2351 // (10 predicates * 2 constants) possible combinations. Cases not handled here
2352 // require a 'not' of the LHS, so those must be transformed in InstCombine.
2353 if (match(RHS, m_Zero())) {
2354 switch (Pred) {
2355 case CmpInst::ICMP_NE: // X != 0 -> X
2356 case CmpInst::ICMP_UGT: // X >u 0 -> X
2357 case CmpInst::ICMP_SLT: // X <s 0 -> X
2358 return LHS;
2359
2360 case CmpInst::ICMP_ULT: // X <u 0 -> false
2361 case CmpInst::ICMP_SGT: // X >s 0 -> false
2362 return getFalse(ITy);
2363
2364 case CmpInst::ICMP_UGE: // X >=u 0 -> true
2365 case CmpInst::ICMP_SLE: // X <=s 0 -> true
2366 return getTrue(ITy);
2367
2368 default: break;
2369 }
2370 } else if (match(RHS, m_One())) {
2371 switch (Pred) {
2372 case CmpInst::ICMP_EQ: // X == 1 -> X
2373 case CmpInst::ICMP_UGE: // X >=u 1 -> X
2374 case CmpInst::ICMP_SLE: // X <=s -1 -> X
2375 return LHS;
2376
2377 case CmpInst::ICMP_UGT: // X >u 1 -> false
2378 case CmpInst::ICMP_SLT: // X <s -1 -> false
2379 return getFalse(ITy);
2380
2381 case CmpInst::ICMP_ULE: // X <=u 1 -> true
2382 case CmpInst::ICMP_SGE: // X >=s -1 -> true
2383 return getTrue(ITy);
2384
2385 default: break;
2386 }
2387 }
2388
2389 switch (Pred) {
2390 default:
2391 break;
2392 case ICmpInst::ICMP_UGE:
2393 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2394 return getTrue(ITy);
2395 break;
2396 case ICmpInst::ICMP_SGE:
2397 /// For signed comparison, the values for an i1 are 0 and -1
2398 /// respectively. This maps into a truth table of:
2399 /// LHS | RHS | LHS >=s RHS | LHS implies RHS
2400 /// 0 | 0 | 1 (0 >= 0) | 1
2401 /// 0 | 1 | 1 (0 >= -1) | 1
2402 /// 1 | 0 | 0 (-1 >= 0) | 0
2403 /// 1 | 1 | 1 (-1 >= -1) | 1
2404 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2405 return getTrue(ITy);
2406 break;
2407 case ICmpInst::ICMP_ULE:
2408 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2409 return getTrue(ITy);
2410 break;
2411 }
2412
2413 return nullptr;
2414}
2415
2416/// Try hard to fold icmp with zero RHS because this is a common case.
2417static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2418 Value *RHS, const SimplifyQuery &Q) {
2419 if (!match(RHS, m_Zero()))
2420 return nullptr;
2421
2422 Type *ITy = GetCompareTy(LHS); // The return type.
2423 switch (Pred) {
2424 default:
2425 llvm_unreachable("Unknown ICmp predicate!")::llvm::llvm_unreachable_internal("Unknown ICmp predicate!", "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 2425)
;
2426 case ICmpInst::ICMP_ULT:
2427 return getFalse(ITy);
2428 case ICmpInst::ICMP_UGE:
2429 return getTrue(ITy);
2430 case ICmpInst::ICMP_EQ:
2431 case ICmpInst::ICMP_ULE:
2432 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2433 return getFalse(ITy);
2434 break;
2435 case ICmpInst::ICMP_NE:
2436 case ICmpInst::ICMP_UGT:
2437 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2438 return getTrue(ITy);
2439 break;
2440 case ICmpInst::ICMP_SLT: {
2441 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2442 if (LHSKnown.isNegative())
2443 return getTrue(ITy);
2444 if (LHSKnown.isNonNegative())
2445 return getFalse(ITy);
2446 break;
2447 }
2448 case ICmpInst::ICMP_SLE: {
2449 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2450 if (LHSKnown.isNegative())
2451 return getTrue(ITy);
2452 if (LHSKnown.isNonNegative() &&
2453 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2454 return getFalse(ITy);
2455 break;
2456 }
2457 case ICmpInst::ICMP_SGE: {
2458 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2459 if (LHSKnown.isNegative())
2460 return getFalse(ITy);
2461 if (LHSKnown.isNonNegative())
2462 return getTrue(ITy);
2463 break;
2464 }
2465 case ICmpInst::ICMP_SGT: {
2466 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2467 if (LHSKnown.isNegative())
2468 return getFalse(ITy);
2469 if (LHSKnown.isNonNegative() &&
2470 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2471 return getTrue(ITy);
2472 break;
2473 }
2474 }
2475
2476 return nullptr;
2477}
2478
2479static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2480 Value *RHS, const InstrInfoQuery &IIQ) {
2481 Type *ITy = GetCompareTy(RHS); // The return type.
2482
2483 Value *X;
2484 // Sign-bit checks can be optimized to true/false after unsigned
2485 // floating-point casts:
2486 // icmp slt (bitcast (uitofp X)), 0 --> false
2487 // icmp sgt (bitcast (uitofp X)), -1 --> true
2488 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2489 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2490 return ConstantInt::getFalse(ITy);
2491 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2492 return ConstantInt::getTrue(ITy);
2493 }
2494
2495 const APInt *C;
2496 if (!match(RHS, m_APInt(C)))
2497 return nullptr;
2498
2499 // Rule out tautological comparisons (eg., ult 0 or uge 0).
2500 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2501 if (RHS_CR.isEmptySet())
2502 return ConstantInt::getFalse(ITy);
2503 if (RHS_CR.isFullSet())
2504 return ConstantInt::getTrue(ITy);
2505
2506 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2507 if (!LHS_CR.isFullSet()) {
2508 if (RHS_CR.contains(LHS_CR))
2509 return ConstantInt::getTrue(ITy);
2510 if (RHS_CR.inverse().contains(LHS_CR))
2511 return ConstantInt::getFalse(ITy);
2512 }
2513
2514 return nullptr;
2515}
2516
2517/// TODO: A large part of this logic is duplicated in InstCombine's
2518/// foldICmpBinOp(). We should be able to share that and avoid the code
2519/// duplication.
2520static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2521 Value *RHS, const SimplifyQuery &Q,
2522 unsigned MaxRecurse) {
2523 Type *ITy = GetCompareTy(LHS); // The return type.
2524
2525 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2526 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2527 if (MaxRecurse && (LBO || RBO)) {
2528 // Analyze the case when either LHS or RHS is an add instruction.
2529 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2530 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2531 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2532 if (LBO && LBO->getOpcode() == Instruction::Add) {
2533 A = LBO->getOperand(0);
2534 B = LBO->getOperand(1);
2535 NoLHSWrapProblem =
2536 ICmpInst::isEquality(Pred) ||
2537 (CmpInst::isUnsigned(Pred) &&
2538 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2539 (CmpInst::isSigned(Pred) &&
2540 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2541 }
2542 if (RBO && RBO->getOpcode() == Instruction::Add) {
2543 C = RBO->getOperand(0);
2544 D = RBO->getOperand(1);
2545 NoRHSWrapProblem =
2546 ICmpInst::isEquality(Pred) ||
2547 (CmpInst::isUnsigned(Pred) &&
2548 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2549 (CmpInst::isSigned(Pred) &&
2550 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2551 }
2552
2553 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2554 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2555 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2556 Constant::getNullValue(RHS->getType()), Q,
2557 MaxRecurse - 1))
2558 return V;
2559
2560 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2561 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2562 if (Value *V =
2563 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2564 C == LHS ? D : C, Q, MaxRecurse - 1))
2565 return V;
2566
2567 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2568 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2569 NoRHSWrapProblem) {
2570 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2571 Value *Y, *Z;
2572 if (A == C) {
2573 // C + B == C + D -> B == D
2574 Y = B;
2575 Z = D;
2576 } else if (A == D) {
2577 // D + B == C + D -> B == C
2578 Y = B;
2579 Z = C;
2580 } else if (B == C) {
2581 // A + C == C + D -> A == D
2582 Y = A;
2583 Z = D;
2584 } else {
2585 assert(B == D)((B == D) ? static_cast<void> (0) : __assert_fail ("B == D"
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 2585, __PRETTY_FUNCTION__))
;
2586 // A + D == C + D -> A == C
2587 Y = A;
2588 Z = C;
2589 }
2590 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2591 return V;
2592 }
2593 }
2594
2595 {
2596 Value *Y = nullptr;
2597 // icmp pred (or X, Y), X
2598 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2599 if (Pred == ICmpInst::ICMP_ULT)
2600 return getFalse(ITy);
2601 if (Pred == ICmpInst::ICMP_UGE)
2602 return getTrue(ITy);
2603
2604 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2605 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2606 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2607 if (RHSKnown.isNonNegative() && YKnown.isNegative())
2608 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2609 if (RHSKnown.isNegative() || YKnown.isNonNegative())
2610 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2611 }
2612 }
2613 // icmp pred X, (or X, Y)
2614 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2615 if (Pred == ICmpInst::ICMP_ULE)
2616 return getTrue(ITy);
2617 if (Pred == ICmpInst::ICMP_UGT)
2618 return getFalse(ITy);
2619
2620 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2621 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2622 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2623 if (LHSKnown.isNonNegative() && YKnown.isNegative())
2624 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2625 if (LHSKnown.isNegative() || YKnown.isNonNegative())
2626 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2627 }
2628 }
2629 }
2630
2631 // icmp pred (and X, Y), X
2632 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2633 if (Pred == ICmpInst::ICMP_UGT)
2634 return getFalse(ITy);
2635 if (Pred == ICmpInst::ICMP_ULE)
2636 return getTrue(ITy);
2637 }
2638 // icmp pred X, (and X, Y)
2639 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2640 if (Pred == ICmpInst::ICMP_UGE)
2641 return getTrue(ITy);
2642 if (Pred == ICmpInst::ICMP_ULT)
2643 return getFalse(ITy);
2644 }
2645
2646 // 0 - (zext X) pred C
2647 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2648 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2649 if (RHSC->getValue().isStrictlyPositive()) {
2650 if (Pred == ICmpInst::ICMP_SLT)
2651 return ConstantInt::getTrue(RHSC->getContext());
2652 if (Pred == ICmpInst::ICMP_SGE)
2653 return ConstantInt::getFalse(RHSC->getContext());
2654 if (Pred == ICmpInst::ICMP_EQ)
2655 return ConstantInt::getFalse(RHSC->getContext());
2656 if (Pred == ICmpInst::ICMP_NE)
2657 return ConstantInt::getTrue(RHSC->getContext());
2658 }
2659 if (RHSC->getValue().isNonNegative()) {
2660 if (Pred == ICmpInst::ICMP_SLE)
2661 return ConstantInt::getTrue(RHSC->getContext());
2662 if (Pred == ICmpInst::ICMP_SGT)
2663 return ConstantInt::getFalse(RHSC->getContext());
2664 }
2665 }
2666 }
2667
2668 // icmp pred (urem X, Y), Y
2669 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2670 switch (Pred) {
2671 default:
2672 break;
2673 case ICmpInst::ICMP_SGT:
2674 case ICmpInst::ICMP_SGE: {
2675 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2676 if (!Known.isNonNegative())
2677 break;
2678 LLVM_FALLTHROUGH[[clang::fallthrough]];
2679 }
2680 case ICmpInst::ICMP_EQ:
2681 case ICmpInst::ICMP_UGT:
2682 case ICmpInst::ICMP_UGE:
2683 return getFalse(ITy);
2684 case ICmpInst::ICMP_SLT:
2685 case ICmpInst::ICMP_SLE: {
2686 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2687 if (!Known.isNonNegative())
2688 break;
2689 LLVM_FALLTHROUGH[[clang::fallthrough]];
2690 }
2691 case ICmpInst::ICMP_NE:
2692 case ICmpInst::ICMP_ULT:
2693 case ICmpInst::ICMP_ULE:
2694 return getTrue(ITy);
2695 }
2696 }
2697
2698 // icmp pred X, (urem Y, X)
2699 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2700 switch (Pred) {
2701 default:
2702 break;
2703 case ICmpInst::ICMP_SGT:
2704 case ICmpInst::ICMP_SGE: {
2705 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2706 if (!Known.isNonNegative())
2707 break;
2708 LLVM_FALLTHROUGH[[clang::fallthrough]];
2709 }
2710 case ICmpInst::ICMP_NE:
2711 case ICmpInst::ICMP_UGT:
2712 case ICmpInst::ICMP_UGE:
2713 return getTrue(ITy);
2714 case ICmpInst::ICMP_SLT:
2715 case ICmpInst::ICMP_SLE: {
2716 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2717 if (!Known.isNonNegative())
2718 break;
2719 LLVM_FALLTHROUGH[[clang::fallthrough]];
2720 }
2721 case ICmpInst::ICMP_EQ:
2722 case ICmpInst::ICMP_ULT:
2723 case ICmpInst::ICMP_ULE:
2724 return getFalse(ITy);
2725 }
2726 }
2727
2728 // x >> y <=u x
2729 // x udiv y <=u x.
2730 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2731 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2732 // icmp pred (X op Y), X
2733 if (Pred == ICmpInst::ICMP_UGT)
2734 return getFalse(ITy);
2735 if (Pred == ICmpInst::ICMP_ULE)
2736 return getTrue(ITy);
2737 }
2738
2739 // x >=u x >> y
2740 // x >=u x udiv y.
2741 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2742 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2743 // icmp pred X, (X op Y)
2744 if (Pred == ICmpInst::ICMP_ULT)
2745 return getFalse(ITy);
2746 if (Pred == ICmpInst::ICMP_UGE)
2747 return getTrue(ITy);
2748 }
2749
2750 // handle:
2751 // CI2 << X == CI
2752 // CI2 << X != CI
2753 //
2754 // where CI2 is a power of 2 and CI isn't
2755 if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2756 const APInt *CI2Val, *CIVal = &CI->getValue();
2757 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2758 CI2Val->isPowerOf2()) {
2759 if (!CIVal->isPowerOf2()) {
2760 // CI2 << X can equal zero in some circumstances,
2761 // this simplification is unsafe if CI is zero.
2762 //
2763 // We know it is safe if:
2764 // - The shift is nsw, we can't shift out the one bit.
2765 // - The shift is nuw, we can't shift out the one bit.
2766 // - CI2 is one
2767 // - CI isn't zero
2768 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2769 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2770 CI2Val->isOneValue() || !CI->isZero()) {
2771 if (Pred == ICmpInst::ICMP_EQ)
2772 return ConstantInt::getFalse(RHS->getContext());
2773 if (Pred == ICmpInst::ICMP_NE)
2774 return ConstantInt::getTrue(RHS->getContext());
2775 }
2776 }
2777 if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2778 if (Pred == ICmpInst::ICMP_UGT)
2779 return ConstantInt::getFalse(RHS->getContext());
2780 if (Pred == ICmpInst::ICMP_ULE)
2781 return ConstantInt::getTrue(RHS->getContext());
2782 }
2783 }
2784 }
2785
2786 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2787 LBO->getOperand(1) == RBO->getOperand(1)) {
2788 switch (LBO->getOpcode()) {
2789 default:
2790 break;
2791 case Instruction::UDiv:
2792 case Instruction::LShr:
2793 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
2794 !Q.IIQ.isExact(RBO))
2795 break;
2796 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2797 RBO->getOperand(0), Q, MaxRecurse - 1))
2798 return V;
2799 break;
2800 case Instruction::SDiv:
2801 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
2802 !Q.IIQ.isExact(RBO))
2803 break;
2804 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2805 RBO->getOperand(0), Q, MaxRecurse - 1))
2806 return V;
2807 break;
2808 case Instruction::AShr:
2809 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
2810 break;
2811 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2812 RBO->getOperand(0), Q, MaxRecurse - 1))
2813 return V;
2814 break;
2815 case Instruction::Shl: {
2816 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
2817 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
2818 if (!NUW && !NSW)
2819 break;
2820 if (!NSW && ICmpInst::isSigned(Pred))
2821 break;
2822 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2823 RBO->getOperand(0), Q, MaxRecurse - 1))
2824 return V;
2825 break;
2826 }
2827 }
2828 }
2829 return nullptr;
2830}
2831
2832/// Simplify integer comparisons where at least one operand of the compare
2833/// matches an integer min/max idiom.
2834static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2835 Value *RHS, const SimplifyQuery &Q,
2836 unsigned MaxRecurse) {
2837 Type *ITy = GetCompareTy(LHS); // The return type.
2838 Value *A, *B;
2839 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2840 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2841
2842 // Signed variants on "max(a,b)>=a -> true".
2843 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2844 if (A != RHS)
2845 std::swap(A, B); // smax(A, B) pred A.
2846 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2847 // We analyze this as smax(A, B) pred A.
2848 P = Pred;
2849 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2850 (A == LHS || B == LHS)) {
2851 if (A != LHS)
2852 std::swap(A, B); // A pred smax(A, B).
2853 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2854 // We analyze this as smax(A, B) swapped-pred A.
2855 P = CmpInst::getSwappedPredicate(Pred);
2856 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2857 (A == RHS || B == RHS)) {
2858 if (A != RHS)
2859 std::swap(A, B); // smin(A, B) pred A.
2860 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2861 // We analyze this as smax(-A, -B) swapped-pred -A.
2862 // Note that we do not need to actually form -A or -B thanks to EqP.
2863 P = CmpInst::getSwappedPredicate(Pred);
2864 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2865 (A == LHS || B == LHS)) {
2866 if (A != LHS)
2867 std::swap(A, B); // A pred smin(A, B).
2868 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2869 // We analyze this as smax(-A, -B) pred -A.
2870 // Note that we do not need to actually form -A or -B thanks to EqP.
2871 P = Pred;
2872 }
2873 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2874 // Cases correspond to "max(A, B) p A".
2875 switch (P) {
2876 default:
2877 break;
2878 case CmpInst::ICMP_EQ:
2879 case CmpInst::ICMP_SLE:
2880 // Equivalent to "A EqP B". This may be the same as the condition tested
2881 // in the max/min; if so, we can just return that.
2882 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2883 return V;
2884 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2885 return V;
2886 // Otherwise, see if "A EqP B" simplifies.
2887 if (MaxRecurse)
2888 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2889 return V;
2890 break;
2891 case CmpInst::ICMP_NE:
2892 case CmpInst::ICMP_SGT: {
2893 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2894 // Equivalent to "A InvEqP B". This may be the same as the condition
2895 // tested in the max/min; if so, we can just return that.
2896 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2897 return V;
2898 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2899 return V;
2900 // Otherwise, see if "A InvEqP B" simplifies.
2901 if (MaxRecurse)
2902 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2903 return V;
2904 break;
2905 }
2906 case CmpInst::ICMP_SGE:
2907 // Always true.
2908 return getTrue(ITy);
2909 case CmpInst::ICMP_SLT:
2910 // Always false.
2911 return getFalse(ITy);
2912 }
2913 }
2914
2915 // Unsigned variants on "max(a,b)>=a -> true".
2916 P = CmpInst::BAD_ICMP_PREDICATE;
2917 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2918 if (A != RHS)
2919 std::swap(A, B); // umax(A, B) pred A.
2920 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2921 // We analyze this as umax(A, B) pred A.
2922 P = Pred;
2923 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2924 (A == LHS || B == LHS)) {
2925 if (A != LHS)
2926 std::swap(A, B); // A pred umax(A, B).
2927 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2928 // We analyze this as umax(A, B) swapped-pred A.
2929 P = CmpInst::getSwappedPredicate(Pred);
2930 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2931 (A == RHS || B == RHS)) {
2932 if (A != RHS)
2933 std::swap(A, B); // umin(A, B) pred A.
2934 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2935 // We analyze this as umax(-A, -B) swapped-pred -A.
2936 // Note that we do not need to actually form -A or -B thanks to EqP.
2937 P = CmpInst::getSwappedPredicate(Pred);
2938 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2939 (A == LHS || B == LHS)) {
2940 if (A != LHS)
2941 std::swap(A, B); // A pred umin(A, B).
2942 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2943 // We analyze this as umax(-A, -B) pred -A.
2944 // Note that we do not need to actually form -A or -B thanks to EqP.
2945 P = Pred;
2946 }
2947 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2948 // Cases correspond to "max(A, B) p A".
2949 switch (P) {
2950 default:
2951 break;
2952 case CmpInst::ICMP_EQ:
2953 case CmpInst::ICMP_ULE:
2954 // Equivalent to "A EqP B". This may be the same as the condition tested
2955 // in the max/min; if so, we can just return that.
2956 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2957 return V;
2958 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2959 return V;
2960 // Otherwise, see if "A EqP B" simplifies.
2961 if (MaxRecurse)
2962 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2963 return V;
2964 break;
2965 case CmpInst::ICMP_NE:
2966 case CmpInst::ICMP_UGT: {
2967 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2968 // Equivalent to "A InvEqP B". This may be the same as the condition
2969 // tested in the max/min; if so, we can just return that.
2970 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2971 return V;
2972 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2973 return V;
2974 // Otherwise, see if "A InvEqP B" simplifies.
2975 if (MaxRecurse)
2976 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2977 return V;
2978 break;
2979 }
2980 case CmpInst::ICMP_UGE:
2981 // Always true.
2982 return getTrue(ITy);
2983 case CmpInst::ICMP_ULT:
2984 // Always false.
2985 return getFalse(ITy);
2986 }
2987 }
2988
2989 // Variants on "max(x,y) >= min(x,z)".
2990 Value *C, *D;
2991 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2992 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2993 (A == C || A == D || B == C || B == D)) {
2994 // max(x, ?) pred min(x, ?).
2995 if (Pred == CmpInst::ICMP_SGE)
2996 // Always true.
2997 return getTrue(ITy);
2998 if (Pred == CmpInst::ICMP_SLT)
2999 // Always false.
3000 return getFalse(ITy);
3001 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3002 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3003 (A == C || A == D || B == C || B == D)) {
3004 // min(x, ?) pred max(x, ?).
3005 if (Pred == CmpInst::ICMP_SLE)
3006 // Always true.
3007 return getTrue(ITy);
3008 if (Pred == CmpInst::ICMP_SGT)
3009 // Always false.
3010 return getFalse(ITy);
3011 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3012 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3013 (A == C || A == D || B == C || B == D)) {
3014 // max(x, ?) pred min(x, ?).
3015 if (Pred == CmpInst::ICMP_UGE)
3016 // Always true.
3017 return getTrue(ITy);
3018 if (Pred == CmpInst::ICMP_ULT)
3019 // Always false.
3020 return getFalse(ITy);
3021 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3022 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3023 (A == C || A == D || B == C || B == D)) {
3024 // min(x, ?) pred max(x, ?).
3025 if (Pred == CmpInst::ICMP_ULE)
3026 // Always true.
3027 return getTrue(ITy);
3028 if (Pred == CmpInst::ICMP_UGT)
3029 // Always false.
3030 return getFalse(ITy);
3031 }
3032
3033 return nullptr;
3034}
3035
3036/// Given operands for an ICmpInst, see if we can fold the result.
3037/// If not, this returns null.
3038static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3039 const SimplifyQuery &Q, unsigned MaxRecurse) {
3040 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3041 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!")((CmpInst::isIntPredicate(Pred) && "Not an integer compare!"
) ? static_cast<void> (0) : __assert_fail ("CmpInst::isIntPredicate(Pred) && \"Not an integer compare!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 3041, __PRETTY_FUNCTION__))
;
3042
3043 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3044 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3045 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3046
3047 // If we have a constant, make sure it is on the RHS.
3048 std::swap(LHS, RHS);
3049 Pred = CmpInst::getSwappedPredicate(Pred);
3050 }
3051 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X")((!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"
) ? static_cast<void> (0) : __assert_fail ("!isa<UndefValue>(LHS) && \"Unexpected icmp undef,%X\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 3051, __PRETTY_FUNCTION__))
;
3052
3053 Type *ITy = GetCompareTy(LHS); // The return type.
3054
3055 // For EQ and NE, we can always pick a value for the undef to make the
3056 // predicate pass or fail, so we can return undef.
3057 // Matches behavior in llvm::ConstantFoldCompareInstruction.
3058 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred))
3059 return UndefValue::get(ITy);
3060
3061 // icmp X, X -> true/false
3062 // icmp X, undef -> true/false because undef could be X.
3063 if (LHS == RHS || isa<UndefValue>(RHS))
3064 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3065
3066 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3067 return V;
3068
3069 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3070 return V;
3071
3072 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3073 return V;
3074
3075 // If both operands have range metadata, use the metadata
3076 // to simplify the comparison.
3077 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3078 auto RHS_Instr = cast<Instruction>(RHS);
3079 auto LHS_Instr = cast<Instruction>(LHS);
3080
3081 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3082 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3083 auto RHS_CR = getConstantRangeFromMetadata(
3084 *RHS_Instr->getMetadata(LLVMContext::MD_range));
3085 auto LHS_CR = getConstantRangeFromMetadata(
3086 *LHS_Instr->getMetadata(LLVMContext::MD_range));
3087
3088 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3089 if (Satisfied_CR.contains(LHS_CR))
3090 return ConstantInt::getTrue(RHS->getContext());
3091
3092 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3093 CmpInst::getInversePredicate(Pred), RHS_CR);
3094 if (InversedSatisfied_CR.contains(LHS_CR))
3095 return ConstantInt::getFalse(RHS->getContext());
3096 }
3097 }
3098
3099 // Compare of cast, for example (zext X) != 0 -> X != 0
3100 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3101 Instruction *LI = cast<CastInst>(LHS);
3102 Value *SrcOp = LI->getOperand(0);
3103 Type *SrcTy = SrcOp->getType();
3104 Type *DstTy = LI->getType();
3105
3106 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3107 // if the integer type is the same size as the pointer type.
3108 if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3109 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3110 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3111 // Transfer the cast to the constant.
3112 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3113 ConstantExpr::getIntToPtr(RHSC, SrcTy),
3114 Q, MaxRecurse-1))
3115 return V;
3116 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3117 if (RI->getOperand(0)->getType() == SrcTy)
3118 // Compare without the cast.
3119 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3120 Q, MaxRecurse-1))
3121 return V;
3122 }
3123 }
3124
3125 if (isa<ZExtInst>(LHS)) {
3126 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3127 // same type.
3128 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3129 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3130 // Compare X and Y. Note that signed predicates become unsigned.
3131 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3132 SrcOp, RI->getOperand(0), Q,
3133 MaxRecurse-1))
3134 return V;
3135 }
3136 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3137 // too. If not, then try to deduce the result of the comparison.
3138 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3139 // Compute the constant that would happen if we truncated to SrcTy then
3140 // reextended to DstTy.
3141 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3142 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3143
3144 // If the re-extended constant didn't change then this is effectively
3145 // also a case of comparing two zero-extended values.
3146 if (RExt == CI && MaxRecurse)
3147 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3148 SrcOp, Trunc, Q, MaxRecurse-1))
3149 return V;
3150
3151 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3152 // there. Use this to work out the result of the comparison.
3153 if (RExt != CI) {
3154 switch (Pred) {
3155 default: llvm_unreachable("Unknown ICmp predicate!")::llvm::llvm_unreachable_internal("Unknown ICmp predicate!", "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 3155)
;
3156 // LHS <u RHS.
3157 case ICmpInst::ICMP_EQ:
3158 case ICmpInst::ICMP_UGT:
3159 case ICmpInst::ICMP_UGE:
3160 return ConstantInt::getFalse(CI->getContext());
3161
3162 case ICmpInst::ICMP_NE:
3163 case ICmpInst::ICMP_ULT:
3164 case ICmpInst::ICMP_ULE:
3165 return ConstantInt::getTrue(CI->getContext());
3166
3167 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
3168 // is non-negative then LHS <s RHS.
3169 case ICmpInst::ICMP_SGT:
3170 case ICmpInst::ICMP_SGE:
3171 return CI->getValue().isNegative() ?
3172 ConstantInt::getTrue(CI->getContext()) :
3173 ConstantInt::getFalse(CI->getContext());
3174
3175 case ICmpInst::ICMP_SLT:
3176 case ICmpInst::ICMP_SLE:
3177 return CI->getValue().isNegative() ?
3178 ConstantInt::getFalse(CI->getContext()) :
3179 ConstantInt::getTrue(CI->getContext());
3180 }
3181 }
3182 }
3183 }
3184
3185 if (isa<SExtInst>(LHS)) {
3186 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3187 // same type.
3188 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3189 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3190 // Compare X and Y. Note that the predicate does not change.
3191 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3192 Q, MaxRecurse-1))
3193 return V;
3194 }
3195 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3196 // too. If not, then try to deduce the result of the comparison.
3197 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3198 // Compute the constant that would happen if we truncated to SrcTy then
3199 // reextended to DstTy.
3200 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3201 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3202
3203 // If the re-extended constant didn't change then this is effectively
3204 // also a case of comparing two sign-extended values.
3205 if (RExt == CI && MaxRecurse)
3206 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3207 return V;
3208
3209 // Otherwise the upper bits of LHS are all equal, while RHS has varying
3210 // bits there. Use this to work out the result of the comparison.
3211 if (RExt != CI) {
3212 switch (Pred) {
3213 default: llvm_unreachable("Unknown ICmp predicate!")::llvm::llvm_unreachable_internal("Unknown ICmp predicate!", "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 3213)
;
3214 case ICmpInst::ICMP_EQ:
3215 return ConstantInt::getFalse(CI->getContext());
3216 case ICmpInst::ICMP_NE:
3217 return ConstantInt::getTrue(CI->getContext());
3218
3219 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
3220 // LHS >s RHS.
3221 case ICmpInst::ICMP_SGT:
3222 case ICmpInst::ICMP_SGE:
3223 return CI->getValue().isNegative() ?
3224 ConstantInt::getTrue(CI->getContext()) :
3225 ConstantInt::getFalse(CI->getContext());
3226 case ICmpInst::ICMP_SLT:
3227 case ICmpInst::ICMP_SLE:
3228 return CI->getValue().isNegative() ?
3229 ConstantInt::getFalse(CI->getContext()) :
3230 ConstantInt::getTrue(CI->getContext());
3231
3232 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
3233 // LHS >u RHS.
3234 case ICmpInst::ICMP_UGT:
3235 case ICmpInst::ICMP_UGE:
3236 // Comparison is true iff the LHS <s 0.
3237 if (MaxRecurse)
3238 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3239 Constant::getNullValue(SrcTy),
3240 Q, MaxRecurse-1))
3241 return V;
3242 break;
3243 case ICmpInst::ICMP_ULT:
3244 case ICmpInst::ICMP_ULE:
3245 // Comparison is true iff the LHS >=s 0.
3246 if (MaxRecurse)
3247 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3248 Constant::getNullValue(SrcTy),
3249 Q, MaxRecurse-1))
3250 return V;
3251 break;
3252 }
3253 }
3254 }
3255 }
3256 }
3257
3258 // icmp eq|ne X, Y -> false|true if X != Y
3259 if (ICmpInst::isEquality(Pred) &&
3260 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3261 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3262 }
3263
3264 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3265 return V;
3266
3267 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3268 return V;
3269
3270 // Simplify comparisons of related pointers using a powerful, recursive
3271 // GEP-walk when we have target data available..
3272 if (LHS->getType()->isPointerTy())
3273 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3274 Q.IIQ, LHS, RHS))
3275 return C;
3276 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3277 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3278 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3279 Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3280 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3281 Q.DL.getTypeSizeInBits(CRHS->getType()))
3282 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3283 Q.IIQ, CLHS->getPointerOperand(),
3284 CRHS->getPointerOperand()))
3285 return C;
3286
3287 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3288 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3289 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3290 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3291 (ICmpInst::isEquality(Pred) ||
3292 (GLHS->isInBounds() && GRHS->isInBounds() &&
3293 Pred == ICmpInst::getSignedPredicate(Pred)))) {
3294 // The bases are equal and the indices are constant. Build a constant
3295 // expression GEP with the same indices and a null base pointer to see
3296 // what constant folding can make out of it.
3297 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3298 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3299 Constant *NewLHS = ConstantExpr::getGetElementPtr(
3300 GLHS->getSourceElementType(), Null, IndicesLHS);
3301
3302 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3303 Constant *NewRHS = ConstantExpr::getGetElementPtr(
3304 GLHS->getSourceElementType(), Null, IndicesRHS);
3305 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3306 }
3307 }
3308 }
3309
3310 // If the comparison is with the result of a select instruction, check whether
3311 // comparing with either branch of the select always yields the same value.
3312 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3313 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3314 return V;
3315
3316 // If the comparison is with the result of a phi instruction, check whether
3317 // doing the compare with each incoming phi value yields a common result.
3318 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3319 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3320 return V;
3321
3322 return nullptr;
3323}
3324
3325Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3326 const SimplifyQuery &Q) {
3327 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3328}
3329
3330/// Given operands for an FCmpInst, see if we can fold the result.
3331/// If not, this returns null.
3332static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3333 FastMathFlags FMF, const SimplifyQuery &Q,
3334 unsigned MaxRecurse) {
3335 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3336 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!")((CmpInst::isFPPredicate(Pred) && "Not an FP compare!"
) ? static_cast<void> (0) : __assert_fail ("CmpInst::isFPPredicate(Pred) && \"Not an FP compare!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 3336, __PRETTY_FUNCTION__))
;
4
'?' condition is true
3337
3338 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
5
Taking false branch
3339 if (Constant *CRHS = dyn_cast<Constant>(RHS))
3340 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3341
3342 // If we have a constant, make sure it is on the RHS.
3343 std::swap(LHS, RHS);
3344 Pred = CmpInst::getSwappedPredicate(Pred);
3345 }
3346
3347 // Fold trivial predicates.
3348 Type *RetTy = GetCompareTy(LHS);
3349 if (Pred == FCmpInst::FCMP_FALSE)
6
Assuming 'Pred' is not equal to FCMP_FALSE
7
Taking false branch
3350 return getFalse(RetTy);
3351 if (Pred == FCmpInst::FCMP_TRUE)
8
Assuming 'Pred' is not equal to FCMP_TRUE
9
Taking false branch
3352 return getTrue(RetTy);
3353
3354 // Fold (un)ordered comparison if we can determine there are no NaNs.
3355 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
10
Assuming 'Pred' is not equal to FCMP_UNO
11
Assuming 'Pred' is not equal to FCMP_ORD
12
Taking false branch
3356 if (FMF.noNaNs() ||
3357 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3358 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3359
3360 // NaN is unordered; NaN is not ordered.
3361 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&(((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
"Comparison must be either ordered or unordered") ? static_cast
<void> (0) : __assert_fail ("(FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && \"Comparison must be either ordered or unordered\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 3362, __PRETTY_FUNCTION__))
13
Assuming the condition is true
14
'?' condition is true
3362 "Comparison must be either ordered or unordered")(((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
"Comparison must be either ordered or unordered") ? static_cast
<void> (0) : __assert_fail ("(FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && \"Comparison must be either ordered or unordered\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 3362, __PRETTY_FUNCTION__))
;
3363 if (match(RHS, m_NaN()))
15
Calling 'match<llvm::Value, llvm::PatternMatch::cstfp_pred_ty<llvm::PatternMatch::is_nan>>'
17
Returning from 'match<llvm::Value, llvm::PatternMatch::cstfp_pred_ty<llvm::PatternMatch::is_nan>>'
18
Assuming the condition is false
19
Taking false branch
3364 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3365
3366 // fcmp pred x, undef and fcmp pred undef, x
3367 // fold to true if unordered, false if ordered
3368 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
20
Taking false branch
3369 // Choosing NaN for the undef will always make unordered comparison succeed
3370 // and ordered comparison fail.
3371 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3372 }
3373
3374 // fcmp x,x -> true/false. Not all compares are foldable.
3375 if (LHS == RHS) {
21
Assuming 'LHS' is not equal to 'RHS'
22
Taking false branch
3376 if (CmpInst::isTrueWhenEqual(Pred))
3377 return getTrue(RetTy);
3378 if (CmpInst::isFalseWhenEqual(Pred))
3379 return getFalse(RetTy);
3380 }
3381
3382 // Handle fcmp with constant RHS.
3383 // TODO: Use match with a specific FP value, so these work with vectors with
3384 // undef lanes.
3385 const APFloat *C;
3386 if (match(RHS, m_APFloat(C))) {
23
Taking false branch
3387 // Check whether the constant is an infinity.
3388 if (C->isInfinity()) {
3389 if (C->isNegative()) {
3390 switch (Pred) {
3391 case FCmpInst::FCMP_OLT:
3392 // No value is ordered and less than negative infinity.
3393 return getFalse(RetTy);
3394 case FCmpInst::FCMP_UGE:
3395 // All values are unordered with or at least negative infinity.
3396 return getTrue(RetTy);
3397 default:
3398 break;
3399 }
3400 } else {
3401 switch (Pred) {
3402 case FCmpInst::FCMP_OGT:
3403 // No value is ordered and greater than infinity.
3404 return getFalse(RetTy);
3405 case FCmpInst::FCMP_ULE:
3406 // All values are unordered with and at most infinity.
3407 return getTrue(RetTy);
3408 default:
3409 break;
3410 }
3411 }
3412 }
3413 if (C->isNegative() && !C->isNegZero()) {
3414 assert(!C->isNaN() && "Unexpected NaN constant!")((!C->isNaN() && "Unexpected NaN constant!") ? static_cast
<void> (0) : __assert_fail ("!C->isNaN() && \"Unexpected NaN constant!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 3414, __PRETTY_FUNCTION__))
;
3415 // TODO: We can catch more cases by using a range check rather than
3416 // relying on CannotBeOrderedLessThanZero.
3417 switch (Pred) {
3418 case FCmpInst::FCMP_UGE:
3419 case FCmpInst::FCMP_UGT:
3420 case FCmpInst::FCMP_UNE:
3421 // (X >= 0) implies (X > C) when (C < 0)
3422 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3423 return getTrue(RetTy);
3424 break;
3425 case FCmpInst::FCMP_OEQ:
3426 case FCmpInst::FCMP_OLE:
3427 case FCmpInst::FCMP_OLT:
3428 // (X >= 0) implies !(X < C) when (C < 0)
3429 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3430 return getFalse(RetTy);
3431 break;
3432 default:
3433 break;
3434 }
3435 }
3436 }
3437 if (match(RHS, m_AnyZeroFP())) {
24
Taking false branch
3438 switch (Pred) {
3439 case FCmpInst::FCMP_OGE:
3440 if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI))
3441 return getTrue(RetTy);
3442 break;
3443 case FCmpInst::FCMP_UGE:
3444 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3445 return getTrue(RetTy);
3446 break;
3447 case FCmpInst::FCMP_ULT:
3448 if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI))
3449 return getFalse(RetTy);
3450 break;
3451 case FCmpInst::FCMP_OLT:
3452 if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3453 return getFalse(RetTy);
3454 break;
3455 default:
3456 break;
3457 }
3458 }
3459
3460 // If the comparison is with the result of a select instruction, check whether
3461 // comparing with either branch of the select always yields the same value.
3462 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3463 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
25
Calling 'ThreadCmpOverSelect'
3464 return V;
3465
3466 // If the comparison is with the result of a phi instruction, check whether
3467 // doing the compare with each incoming phi value yields a common result.
3468 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3469 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3470 return V;
3471
3472 return nullptr;
3473}
3474
3475Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3476 FastMathFlags FMF, const SimplifyQuery &Q) {
3477 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3478}
3479
3480/// See if V simplifies when its operand Op is replaced with RepOp.
3481static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3482 const SimplifyQuery &Q,
3483 unsigned MaxRecurse) {
3484 // Trivial replacement.
3485 if (V == Op)
3486 return RepOp;
3487
3488 // We cannot replace a constant, and shouldn't even try.
3489 if (isa<Constant>(Op))
3490 return nullptr;
3491
3492 auto *I = dyn_cast<Instruction>(V);
3493 if (!I)
3494 return nullptr;
3495
3496 // If this is a binary operator, try to simplify it with the replaced op.
3497 if (auto *B = dyn_cast<BinaryOperator>(I)) {
3498 // Consider:
3499 // %cmp = icmp eq i32 %x, 2147483647
3500 // %add = add nsw i32 %x, 1
3501 // %sel = select i1 %cmp, i32 -2147483648, i32 %add
3502 //
3503 // We can't replace %sel with %add unless we strip away the flags.
3504 if (isa<OverflowingBinaryOperator>(B))
3505 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
3506 return nullptr;
3507 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
3508 return nullptr;
3509
3510 if (MaxRecurse) {
3511 if (B->getOperand(0) == Op)
3512 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3513 MaxRecurse - 1);
3514 if (B->getOperand(1) == Op)
3515 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3516 MaxRecurse - 1);
3517 }
3518 }
3519
3520 // Same for CmpInsts.
3521 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3522 if (MaxRecurse) {
3523 if (C->getOperand(0) == Op)
3524 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3525 MaxRecurse - 1);
3526 if (C->getOperand(1) == Op)
3527 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3528 MaxRecurse - 1);
3529 }
3530 }
3531
3532 // Same for GEPs.
3533 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3534 if (MaxRecurse) {
3535 SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3536 transform(GEP->operands(), NewOps.begin(),
3537 [&](Value *V) { return V == Op ? RepOp : V; });
3538 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
3539 MaxRecurse - 1);
3540 }
3541 }
3542
3543 // TODO: We could hand off more cases to instsimplify here.
3544
3545 // If all operands are constant after substituting Op for RepOp then we can
3546 // constant fold the instruction.
3547 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3548 // Build a list of all constant operands.
3549 SmallVector<Constant *, 8> ConstOps;
3550 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3551 if (I->getOperand(i) == Op)
3552 ConstOps.push_back(CRepOp);
3553 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3554 ConstOps.push_back(COp);
3555 else
3556 break;
3557 }
3558
3559 // All operands were constants, fold it.
3560 if (ConstOps.size() == I->getNumOperands()) {
3561 if (CmpInst *C = dyn_cast<CmpInst>(I))
3562 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3563 ConstOps[1], Q.DL, Q.TLI);
3564
3565 if (LoadInst *LI = dyn_cast<LoadInst>(I))
3566 if (!LI->isVolatile())
3567 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3568
3569 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3570 }
3571 }
3572
3573 return nullptr;
3574}
3575
3576/// Try to simplify a select instruction when its condition operand is an
3577/// integer comparison where one operand of the compare is a constant.
3578static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3579 const APInt *Y, bool TrueWhenUnset) {
3580 const APInt *C;
3581
3582 // (X & Y) == 0 ? X & ~Y : X --> X
3583 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
3584 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3585 *Y == ~*C)
3586 return TrueWhenUnset ? FalseVal : TrueVal;
3587
3588 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
3589 // (X & Y) != 0 ? X : X & ~Y --> X
3590 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3591 *Y == ~*C)
3592 return TrueWhenUnset ? FalseVal : TrueVal;
3593
3594 if (Y->isPowerOf2()) {
3595 // (X & Y) == 0 ? X | Y : X --> X | Y
3596 // (X & Y) != 0 ? X | Y : X --> X
3597 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3598 *Y == *C)
3599 return TrueWhenUnset ? TrueVal : FalseVal;
3600
3601 // (X & Y) == 0 ? X : X | Y --> X
3602 // (X & Y) != 0 ? X : X | Y --> X | Y
3603 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3604 *Y == *C)
3605 return TrueWhenUnset ? TrueVal : FalseVal;
3606 }
3607
3608 return nullptr;
3609}
3610
3611/// An alternative way to test if a bit is set or not uses sgt/slt instead of
3612/// eq/ne.
3613static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3614 ICmpInst::Predicate Pred,
3615 Value *TrueVal, Value *FalseVal) {
3616 Value *X;
3617 APInt Mask;
3618 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3619 return nullptr;
3620
3621 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3622 Pred == ICmpInst::ICMP_EQ);
3623}
3624
3625/// Try to simplify a select instruction when its condition operand is an
3626/// integer comparison.
3627static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3628 Value *FalseVal, const SimplifyQuery &Q,
3629 unsigned MaxRecurse) {
3630 ICmpInst::Predicate Pred;
3631 Value *CmpLHS, *CmpRHS;
3632 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3633 return nullptr;
3634
3635 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3636 Value *X;
3637 const APInt *Y;
3638 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3639 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3640 Pred == ICmpInst::ICMP_EQ))
3641 return V;
3642
3643 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
3644 Value *ShAmt;
3645 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(),
3646 m_Value(ShAmt)),
3647 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X),
3648 m_Value(ShAmt)));
3649 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
3650 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
3651 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt &&
3652 Pred == ICmpInst::ICMP_EQ)
3653 return X;
3654 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
3655 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
3656 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt &&
3657 Pred == ICmpInst::ICMP_NE)
3658 return X;
3659
3660 // Test for a zero-shift-guard-op around rotates. These are used to
3661 // avoid UB from oversized shifts in raw IR rotate patterns, but the
3662 // intrinsics do not have that problem.
3663 // We do not allow this transform for the general funnel shift case because
3664 // that would not preserve the poison safety of the original code.
3665 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X),
3666 m_Deferred(X),
3667 m_Value(ShAmt)),
3668 m_Intrinsic<Intrinsic::fshr>(m_Value(X),
3669 m_Deferred(X),
3670 m_Value(ShAmt)));
3671 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt)
3672 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt)
3673 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt &&
3674 Pred == ICmpInst::ICMP_NE)
3675 return TrueVal;
3676 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
3677 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
3678 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
3679 Pred == ICmpInst::ICMP_EQ)
3680 return FalseVal;
3681 }
3682
3683 // Check for other compares that behave like bit test.
3684 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3685 TrueVal, FalseVal))
3686 return V;
3687
3688 // If we have an equality comparison, then we know the value in one of the
3689 // arms of the select. See if substituting this value into the arm and
3690 // simplifying the result yields the same value as the other arm.
3691 if (Pred == ICmpInst::ICMP_EQ) {
3692 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3693 TrueVal ||
3694 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3695 TrueVal)
3696 return FalseVal;
3697 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3698 FalseVal ||
3699 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3700 FalseVal)
3701 return FalseVal;
3702 } else if (Pred == ICmpInst::ICMP_NE) {
3703 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3704 FalseVal ||
3705 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3706 FalseVal)
3707 return TrueVal;
3708 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3709 TrueVal ||
3710 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3711 TrueVal)
3712 return TrueVal;
3713 }
3714
3715 return nullptr;
3716}
3717
3718/// Try to simplify a select instruction when its condition operand is a
3719/// floating-point comparison.
3720static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) {
3721 FCmpInst::Predicate Pred;
3722 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
3723 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
3724 return nullptr;
3725
3726 // TODO: The transform may not be valid with -0.0. An incomplete way of
3727 // testing for that possibility is to check if at least one operand is a
3728 // non-zero constant.
3729 const APFloat *C;
3730 if ((match(T, m_APFloat(C)) && C->isNonZero()) ||
3731 (match(F, m_APFloat(C)) && C->isNonZero())) {
3732 // (T == F) ? T : F --> F
3733 // (F == T) ? T : F --> F
3734 if (Pred == FCmpInst::FCMP_OEQ)
3735 return F;
3736
3737 // (T != F) ? T : F --> T
3738 // (F != T) ? T : F --> T
3739 if (Pred == FCmpInst::FCMP_UNE)
3740 return T;
3741 }
3742
3743 return nullptr;
3744}
3745
3746/// Given operands for a SelectInst, see if we can fold the result.
3747/// If not, this returns null.
3748static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3749 const SimplifyQuery &Q, unsigned MaxRecurse) {
3750 if (auto *CondC = dyn_cast<Constant>(Cond)) {
3751 if (auto *TrueC = dyn_cast<Constant>(TrueVal))
3752 if (auto *FalseC = dyn_cast<Constant>(FalseVal))
3753 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
3754
3755 // select undef, X, Y -> X or Y
3756 if (isa<UndefValue>(CondC))
3757 return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
3758
3759 // TODO: Vector constants with undef elements don't simplify.
3760
3761 // select true, X, Y -> X
3762 if (CondC->isAllOnesValue())
3763 return TrueVal;
3764 // select false, X, Y -> Y
3765 if (CondC->isNullValue())
3766 return FalseVal;
3767 }
3768
3769 // select ?, X, X -> X
3770 if (TrueVal == FalseVal)
3771 return TrueVal;
3772
3773 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X
3774 return FalseVal;
3775 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X
3776 return TrueVal;
3777
3778 if (Value *V =
3779 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
3780 return V;
3781
3782 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal))
3783 return V;
3784
3785 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
3786 return V;
3787
3788 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
3789 if (Imp)
3790 return *Imp ? TrueVal : FalseVal;
3791
3792 return nullptr;
3793}
3794
3795Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3796 const SimplifyQuery &Q) {
3797 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3798}
3799
3800/// Given operands for an GetElementPtrInst, see if we can fold the result.
3801/// If not, this returns null.
3802static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3803 const SimplifyQuery &Q, unsigned) {
3804 // The type of the GEP pointer operand.
3805 unsigned AS =
3806 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3807
3808 // getelementptr P -> P.
3809 if (Ops.size() == 1)
3810 return Ops[0];
3811
3812 // Compute the (pointer) type returned by the GEP instruction.
3813 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3814 Type *GEPTy = PointerType::get(LastType, AS);
3815 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3816 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3817 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3818 GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3819
3820 if (isa<UndefValue>(Ops[0]))
3821 return UndefValue::get(GEPTy);
3822
3823 if (Ops.size() == 2) {
3824 // getelementptr P, 0 -> P.
3825 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
3826 return Ops[0];
3827
3828 Type *Ty = SrcTy;
3829 if (Ty->isSized()) {
3830 Value *P;
3831 uint64_t C;
3832 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3833 // getelementptr P, N -> P if P points to a type of zero size.
3834 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
3835 return Ops[0];
3836
3837 // The following transforms are only safe if the ptrtoint cast
3838 // doesn't truncate the pointers.
3839 if (Ops[1]->getType()->getScalarSizeInBits() ==
3840 Q.DL.getIndexSizeInBits(AS)) {
3841 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3842 if (match(P, m_Zero()))
3843 return Constant::getNullValue(GEPTy);
3844 Value *Temp;
3845 if (match(P, m_PtrToInt(m_Value(Temp))))
3846 if (Temp->getType() == GEPTy)
3847 return Temp;
3848 return nullptr;
3849 };
3850
3851 // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3852 if (TyAllocSize == 1 &&
3853 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3854 if (Value *R = PtrToIntOrZero(P))
3855 return R;
3856
3857 // getelementptr V, (ashr (sub P, V), C) -> Q
3858 // if P points to a type of size 1 << C.
3859 if (match(Ops[1],
3860 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3861 m_ConstantInt(C))) &&
3862 TyAllocSize == 1ULL << C)
3863 if (Value *R = PtrToIntOrZero(P))
3864 return R;
3865
3866 // getelementptr V, (sdiv (sub P, V), C) -> Q
3867 // if P points to a type of size C.
3868 if (match(Ops[1],
3869 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3870 m_SpecificInt(TyAllocSize))))
3871 if (Value *R = PtrToIntOrZero(P))
3872 return R;
3873 }
3874 }
3875 }
3876
3877 if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3878 all_of(Ops.slice(1).drop_back(1),
3879 [](Value *Idx) { return match(Idx, m_Zero()); })) {
3880 unsigned IdxWidth =
3881 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3882 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
3883 APInt BasePtrOffset(IdxWidth, 0);
3884 Value *StrippedBasePtr =
3885 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3886 BasePtrOffset);
3887
3888 // gep (gep V, C), (sub 0, V) -> C
3889 if (match(Ops.back(),
3890 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3891 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3892 return ConstantExpr::getIntToPtr(CI, GEPTy);
3893 }
3894 // gep (gep V, C), (xor V, -1) -> C-1
3895 if (match(Ops.back(),
3896 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3897 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3898 return ConstantExpr::getIntToPtr(CI, GEPTy);
3899 }
3900 }
3901 }
3902
3903 // Check to see if this is constant foldable.
3904 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
3905 return nullptr;
3906
3907 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3908 Ops.slice(1));
3909 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
3910 return CEFolded;
3911 return CE;
3912}
3913
3914Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3915 const SimplifyQuery &Q) {
3916 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
3917}
3918
3919/// Given operands for an InsertValueInst, see if we can fold the result.
3920/// If not, this returns null.
3921static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3922 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
3923 unsigned) {
3924 if (Constant *CAgg = dyn_cast<Constant>(Agg))
3925 if (Constant *CVal = dyn_cast<Constant>(Val))
3926 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3927
3928 // insertvalue x, undef, n -> x
3929 if (match(Val, m_Undef()))
3930 return Agg;
3931
3932 // insertvalue x, (extractvalue y, n), n
3933 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3934 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3935 EV->getIndices() == Idxs) {
3936 // insertvalue undef, (extractvalue y, n), n -> y
3937 if (match(Agg, m_Undef()))
3938 return EV->getAggregateOperand();
3939
3940 // insertvalue y, (extractvalue y, n), n -> y
3941 if (Agg == EV->getAggregateOperand())
3942 return Agg;
3943 }
3944
3945 return nullptr;
3946}
3947
3948Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
3949 ArrayRef<unsigned> Idxs,
3950 const SimplifyQuery &Q) {
3951 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
3952}
3953
3954Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
3955 const SimplifyQuery &Q) {
3956 // Try to constant fold.
3957 auto *VecC = dyn_cast<Constant>(Vec);
3958 auto *ValC = dyn_cast<Constant>(Val);
3959 auto *IdxC = dyn_cast<Constant>(Idx);
3960 if (VecC && ValC && IdxC)
3961 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
3962
3963 // Fold into undef if index is out of bounds.
3964 if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
3965 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
3966 if (CI->uge(NumElements))
3967 return UndefValue::get(Vec->getType());
3968 }
3969
3970 // If index is undef, it might be out of bounds (see above case)
3971 if (isa<UndefValue>(Idx))
3972 return UndefValue::get(Vec->getType());
3973
3974 return nullptr;
3975}
3976
3977/// Given operands for an ExtractValueInst, see if we can fold the result.
3978/// If not, this returns null.
3979static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3980 const SimplifyQuery &, unsigned) {
3981 if (auto *CAgg = dyn_cast<Constant>(Agg))
3982 return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3983
3984 // extractvalue x, (insertvalue y, elt, n), n -> elt
3985 unsigned NumIdxs = Idxs.size();
3986 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3987 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3988 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3989 unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3990 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3991 if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3992 Idxs.slice(0, NumCommonIdxs)) {
3993 if (NumIdxs == NumInsertValueIdxs)
3994 return IVI->getInsertedValueOperand();
3995 break;
3996 }
3997 }
3998
3999 return nullptr;
4000}
4001
4002Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4003 const SimplifyQuery &Q) {
4004 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4005}
4006
4007/// Given operands for an ExtractElementInst, see if we can fold the result.
4008/// If not, this returns null.
4009static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
4010 unsigned) {
4011 if (auto *CVec = dyn_cast<Constant>(Vec)) {
4012 if (auto *CIdx = dyn_cast<Constant>(Idx))
4013 return ConstantFoldExtractElementInstruction(CVec, CIdx);
4014
4015 // The index is not relevant if our vector is a splat.
4016 if (auto *Splat = CVec->getSplatValue())
4017 return Splat;
4018
4019 if (isa<UndefValue>(Vec))
4020 return UndefValue::get(Vec->getType()->getVectorElementType());
4021 }
4022
4023 // If extracting a specified index from the vector, see if we can recursively
4024 // find a previously computed scalar that was inserted into the vector.
4025 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4026 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
4027 // definitely out of bounds, thus undefined result
4028 return UndefValue::get(Vec->getType()->getVectorElementType());
4029 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4030 return Elt;
4031 }
4032
4033 // An undef extract index can be arbitrarily chosen to be an out-of-range
4034 // index value, which would result in the instruction being undef.
4035 if (isa<UndefValue>(Idx))
4036 return UndefValue::get(Vec->getType()->getVectorElementType());
4037
4038 return nullptr;
4039}
4040
4041Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4042 const SimplifyQuery &Q) {
4043 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4044}
4045
4046/// See if we can fold the given phi. If not, returns null.
4047static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4048 // If all of the PHI's incoming values are the same then replace the PHI node
4049 // with the common value.
4050 Value *CommonValue = nullptr;
4051 bool HasUndefInput = false;
4052 for (Value *Incoming : PN->incoming_values()) {
4053 // If the incoming value is the phi node itself, it can safely be skipped.
4054 if (Incoming == PN) continue;
4055 if (isa<UndefValue>(Incoming)) {
4056 // Remember that we saw an undef value, but otherwise ignore them.
4057 HasUndefInput = true;
4058 continue;
4059 }
4060 if (CommonValue && Incoming != CommonValue)
4061 return nullptr; // Not the same, bail out.
4062 CommonValue = Incoming;
4063 }
4064
4065 // If CommonValue is null then all of the incoming values were either undef or
4066 // equal to the phi node itself.
4067 if (!CommonValue)
4068 return UndefValue::get(PN->getType());
4069
4070 // If we have a PHI node like phi(X, undef, X), where X is defined by some
4071 // instruction, we cannot return X as the result of the PHI node unless it
4072 // dominates the PHI block.
4073 if (HasUndefInput)
4074 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4075
4076 return CommonValue;
4077}
4078
4079static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4080 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4081 if (auto *C = dyn_cast<Constant>(Op))
4082 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4083
4084 if (auto *CI = dyn_cast<CastInst>(Op)) {
4085 auto *Src = CI->getOperand(0);
4086 Type *SrcTy = Src->getType();
4087 Type *MidTy = CI->getType();
4088 Type *DstTy = Ty;
4089 if (Src->getType() == Ty) {
4090 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4091 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4092 Type *SrcIntPtrTy =
4093 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4094 Type *MidIntPtrTy =
4095 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4096 Type *DstIntPtrTy =
4097 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4098 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4099 SrcIntPtrTy, MidIntPtrTy,
4100 DstIntPtrTy) == Instruction::BitCast)
4101 return Src;
4102 }
4103 }
4104
4105 // bitcast x -> x
4106 if (CastOpc == Instruction::BitCast)
4107 if (Op->getType() == Ty)
4108 return Op;
4109
4110 return nullptr;
4111}
4112
4113Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4114 const SimplifyQuery &Q) {
4115 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4116}
4117
4118/// For the given destination element of a shuffle, peek through shuffles to
4119/// match a root vector source operand that contains that element in the same
4120/// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4121static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4122 int MaskVal, Value *RootVec,
4123 unsigned MaxRecurse) {
4124 if (!MaxRecurse--)
4125 return nullptr;
4126
4127 // Bail out if any mask value is undefined. That kind of shuffle may be
4128 // simplified further based on demanded bits or other folds.
4129 if (MaskVal == -1)
4130 return nullptr;
4131
4132 // The mask value chooses which source operand we need to look at next.
4133 int InVecNumElts = Op0->getType()->getVectorNumElements();
4134 int RootElt = MaskVal;
4135 Value *SourceOp = Op0;
4136 if (MaskVal >= InVecNumElts) {
4137 RootElt = MaskVal - InVecNumElts;
4138 SourceOp = Op1;
4139 }
4140
4141 // If the source operand is a shuffle itself, look through it to find the
4142 // matching root vector.
4143 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4144 return foldIdentityShuffles(
4145 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4146 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4147 }
4148
4149 // TODO: Look through bitcasts? What if the bitcast changes the vector element
4150 // size?
4151
4152 // The source operand is not a shuffle. Initialize the root vector value for
4153 // this shuffle if that has not been done yet.
4154 if (!RootVec)
4155 RootVec = SourceOp;
4156
4157 // Give up as soon as a source operand does not match the existing root value.
4158 if (RootVec != SourceOp)
4159 return nullptr;
4160
4161 // The element must be coming from the same lane in the source vector
4162 // (although it may have crossed lanes in intermediate shuffles).
4163 if (RootElt != DestElt)
4164 return nullptr;
4165
4166 return RootVec;
4167}
4168
4169static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4170 Type *RetTy, const SimplifyQuery &Q,
4171 unsigned MaxRecurse) {
4172 if (isa<UndefValue>(Mask))
4173 return UndefValue::get(RetTy);
4174
4175 Type *InVecTy = Op0->getType();
4176 unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4177 unsigned InVecNumElts = InVecTy->getVectorNumElements();
4178
4179 SmallVector<int, 32> Indices;
4180 ShuffleVectorInst::getShuffleMask(Mask, Indices);
4181 assert(MaskNumElts == Indices.size() &&((MaskNumElts == Indices.size() && "Size of Indices not same as number of mask elements?"
) ? static_cast<void> (0) : __assert_fail ("MaskNumElts == Indices.size() && \"Size of Indices not same as number of mask elements?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 4182, __PRETTY_FUNCTION__))
4182 "Size of Indices not same as number of mask elements?")((MaskNumElts == Indices.size() && "Size of Indices not same as number of mask elements?"
) ? static_cast<void> (0) : __assert_fail ("MaskNumElts == Indices.size() && \"Size of Indices not same as number of mask elements?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 4182, __PRETTY_FUNCTION__))
;
4183
4184 // Canonicalization: If mask does not select elements from an input vector,
4185 // replace that input vector with undef.
4186 bool MaskSelects0 = false, MaskSelects1 = false;
4187 for (unsigned i = 0; i != MaskNumElts; ++i) {
4188 if (Indices[i] == -1)
4189 continue;
4190 if ((unsigned)Indices[i] < InVecNumElts)
4191 MaskSelects0 = true;
4192 else
4193 MaskSelects1 = true;
4194 }
4195 if (!MaskSelects0)
4196 Op0 = UndefValue::get(InVecTy);
4197 if (!MaskSelects1)
4198 Op1 = UndefValue::get(InVecTy);
4199
4200 auto *Op0Const = dyn_cast<Constant>(Op0);
4201 auto *Op1Const = dyn_cast<Constant>(Op1);
4202
4203 // If all operands are constant, constant fold the shuffle.
4204 if (Op0Const && Op1Const)
4205 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4206
4207 // Canonicalization: if only one input vector is constant, it shall be the
4208 // second one.
4209 if (Op0Const && !Op1Const) {
4210 std::swap(Op0, Op1);
4211 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4212 }
4213
4214 // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4215 // value type is same as the input vectors' type.
4216 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4217 if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4218 OpShuf->getMask()->getSplatValue())
4219 return Op0;
4220
4221 // Don't fold a shuffle with undef mask elements. This may get folded in a
4222 // better way using demanded bits or other analysis.
4223 // TODO: Should we allow this?
4224 if (find(Indices, -1) != Indices.end())
4225 return nullptr;
4226
4227 // Check if every element of this shuffle can be mapped back to the
4228 // corresponding element of a single root vector. If so, we don't need this
4229 // shuffle. This handles simple identity shuffles as well as chains of
4230 // shuffles that may widen/narrow and/or move elements across lanes and back.
4231 Value *RootVec = nullptr;
4232 for (unsigned i = 0; i != MaskNumElts; ++i) {
4233 // Note that recursion is limited for each vector element, so if any element
4234 // exceeds the limit, this will fail to simplify.
4235 RootVec =
4236 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4237
4238 // We can't replace a widening/narrowing shuffle with one of its operands.
4239 if (!RootVec || RootVec->getType() != RetTy)
4240 return nullptr;
4241 }
4242 return RootVec;
4243}
4244
4245/// Given operands for a ShuffleVectorInst, fold the result or return null.
4246Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4247 Type *RetTy, const SimplifyQuery &Q) {
4248 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4249}
4250
4251static Constant *foldConstant(Instruction::UnaryOps Opcode,
4252 Value *&Op, const SimplifyQuery &Q) {
4253 if (auto *C = dyn_cast<Constant>(Op))
4254 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4255 return nullptr;
4256}
4257
4258/// Given the operand for an FNeg, see if we can fold the result. If not, this
4259/// returns null.
4260static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4261 const SimplifyQuery &Q, unsigned MaxRecurse) {
4262 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4263 return C;
4264
4265 Value *X;
4266 // fneg (fneg X) ==> X
4267 if (match(Op, m_FNeg(m_Value(X))))
4268 return X;
4269
4270 return nullptr;
4271}
4272
4273Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4274 const SimplifyQuery &Q) {
4275 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4276}
4277
4278static Constant *propagateNaN(Constant *In) {
4279 // If the input is a vector with undef elements, just return a default NaN.
4280 if (!In->isNaN())
4281 return ConstantFP::getNaN(In->getType());
4282
4283 // Propagate the existing NaN constant when possible.
4284 // TODO: Should we quiet a signaling NaN?
4285 return In;
4286}
4287
4288static Constant *simplifyFPBinop(Value *Op0, Value *Op1) {
4289 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4290 return ConstantFP::getNaN(Op0->getType());
4291
4292 if (match(Op0, m_NaN()))
4293 return propagateNaN(cast<Constant>(Op0));
4294 if (match(Op1, m_NaN()))
4295 return propagateNaN(cast<Constant>(Op1));
4296
4297 return nullptr;
4298}
4299
4300/// Given operands for an FAdd, see if we can fold the result. If not, this
4301/// returns null.
4302static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4303 const SimplifyQuery &Q, unsigned MaxRecurse) {
4304 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4305 return C;
4306
4307 if (Constant *C = simplifyFPBinop(Op0, Op1))
4308 return C;
4309
4310 // fadd X, -0 ==> X
4311 if (match(Op1, m_NegZeroFP()))
4312 return Op0;
4313
4314 // fadd X, 0 ==> X, when we know X is not -0
4315 if (match(Op1, m_PosZeroFP()) &&
4316 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4317 return Op0;
4318
4319 // With nnan: -X + X --> 0.0 (and commuted variant)
4320 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4321 // Negative zeros are allowed because we always end up with positive zero:
4322 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4323 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4324 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4325 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4326 if (FMF.noNaNs()) {
4327 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4328 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4329 return ConstantFP::getNullValue(Op0->getType());
4330
4331 if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4332 match(Op1, m_FNeg(m_Specific(Op0))))
4333 return ConstantFP::getNullValue(Op0->getType());
4334 }
4335
4336 // (X - Y) + Y --> X
4337 // Y + (X - Y) --> X
4338 Value *X;
4339 if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4340 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4341 match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4342 return X;
4343
4344 return nullptr;
4345}
4346
4347/// Given operands for an FSub, see if we can fold the result. If not, this
4348/// returns null.
4349static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4350 const SimplifyQuery &Q, unsigned MaxRecurse) {
4351 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4352 return C;
4353
4354 if (Constant *C = simplifyFPBinop(Op0, Op1))
4355 return C;
4356
4357 // fsub X, +0 ==> X
4358 if (match(Op1, m_PosZeroFP()))
4359 return Op0;
4360
4361 // fsub X, -0 ==> X, when we know X is not -0
4362 if (match(Op1, m_NegZeroFP()) &&
4363 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4364 return Op0;
4365
4366 // fsub -0.0, (fsub -0.0, X) ==> X
4367 Value *X;
4368 if (match(Op0, m_NegZeroFP()) &&
4369 match(Op1, m_FSub(m_NegZeroFP(), m_Value(X))))
4370 return X;
4371
4372 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4373 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4374 match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))))
4375 return X;
4376
4377 // fsub nnan x, x ==> 0.0
4378 if (FMF.noNaNs() && Op0 == Op1)
4379 return Constant::getNullValue(Op0->getType());
4380
4381 // Y - (Y - X) --> X
4382 // (X + Y) - Y --> X
4383 if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4384 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4385 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4386 return X;
4387
4388 return nullptr;
4389}
4390
4391/// Given the operands for an FMul, see if we can fold the result
4392static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4393 const SimplifyQuery &Q, unsigned MaxRecurse) {
4394 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4395 return C;
4396
4397 if (Constant *C = simplifyFPBinop(Op0, Op1))
4398 return C;
4399
4400 // fmul X, 1.0 ==> X
4401 if (match(Op1, m_FPOne()))
4402 return Op0;
4403
4404 // fmul nnan nsz X, 0 ==> 0
4405 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4406 return ConstantFP::getNullValue(Op0->getType());
4407
4408 // sqrt(X) * sqrt(X) --> X, if we can:
4409 // 1. Remove the intermediate rounding (reassociate).
4410 // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4411 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4412 Value *X;
4413 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4414 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4415 return X;
4416
4417 return nullptr;
4418}
4419
4420Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4421 const SimplifyQuery &Q) {
4422 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4423}
4424
4425
4426Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4427 const SimplifyQuery &Q) {
4428 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4429}
4430
4431Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4432 const SimplifyQuery &Q) {
4433 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4434}
4435
4436static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4437 const SimplifyQuery &Q, unsigned) {
4438 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4439 return C;
4440
4441 if (Constant *C = simplifyFPBinop(Op0, Op1))
4442 return C;
4443
4444 // X / 1.0 -> X
4445 if (match(Op1, m_FPOne()))
4446 return Op0;
4447
4448 // 0 / X -> 0
4449 // Requires that NaNs are off (X could be zero) and signed zeroes are
4450 // ignored (X could be positive or negative, so the output sign is unknown).
4451 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4452 return ConstantFP::getNullValue(Op0->getType());
4453
4454 if (FMF.noNaNs()) {
4455 // X / X -> 1.0 is legal when NaNs are ignored.
4456 // We can ignore infinities because INF/INF is NaN.
4457 if (Op0 == Op1)
4458 return ConstantFP::get(Op0->getType(), 1.0);
4459
4460 // (X * Y) / Y --> X if we can reassociate to the above form.
4461 Value *X;
4462 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4463 return X;
4464
4465 // -X / X -> -1.0 and
4466 // X / -X -> -1.0 are legal when NaNs are ignored.
4467 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4468 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
4469 match(Op1, m_FNegNSZ(m_Specific(Op0))))
4470 return ConstantFP::get(Op0->getType(), -1.0);
4471 }
4472
4473 return nullptr;
4474}
4475
4476Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4477 const SimplifyQuery &Q) {
4478 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4479}
4480
4481static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4482 const SimplifyQuery &Q, unsigned) {
4483 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4484 return C;
4485
4486 if (Constant *C = simplifyFPBinop(Op0, Op1))
4487 return C;
4488
4489 // Unlike fdiv, the result of frem always matches the sign of the dividend.
4490 // The constant match may include undef elements in a vector, so return a full
4491 // zero constant as the result.
4492 if (FMF.noNaNs()) {
4493 // +0 % X -> 0
4494 if (match(Op0, m_PosZeroFP()))
4495 return ConstantFP::getNullValue(Op0->getType());
4496 // -0 % X -> -0
4497 if (match(Op0, m_NegZeroFP()))
4498 return ConstantFP::getNegativeZero(Op0->getType());
4499 }
4500
4501 return nullptr;
4502}
4503
4504Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4505 const SimplifyQuery &Q) {
4506 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4507}
4508
4509//=== Helper functions for higher up the class hierarchy.
4510
4511/// Given the operand for a UnaryOperator, see if we can fold the result.
4512/// If not, this returns null.
4513static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
4514 unsigned MaxRecurse) {
4515 switch (Opcode) {
4516 case Instruction::FNeg:
4517 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
4518 default:
4519 llvm_unreachable("Unexpected opcode")::llvm::llvm_unreachable_internal("Unexpected opcode", "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 4519)
;
4520 }
4521}
4522
4523/// Given the operand for a UnaryOperator, see if we can fold the result.
4524/// If not, this returns null.
4525/// In contrast to SimplifyUnOp, try to use FastMathFlag when folding the
4526/// result. In case we don't need FastMathFlags, simply fall to SimplifyUnOp.
4527static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
4528 const FastMathFlags &FMF,
4529 const SimplifyQuery &Q, unsigned MaxRecurse) {
4530 switch (Opcode) {
4531 case Instruction::FNeg:
4532 return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
4533 default:
4534 return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
4535 }
4536}
4537
4538Value *llvm::SimplifyFPUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
4539 const SimplifyQuery &Q) {
4540 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
4541}
4542
4543/// Given operands for a BinaryOperator, see if we can fold the result.
4544/// If not, this returns null.
4545static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4546 const SimplifyQuery &Q, unsigned MaxRecurse) {
4547 switch (Opcode) {
4548 case Instruction::Add:
4549 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4550 case Instruction::Sub:
4551 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4552 case Instruction::Mul:
4553 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4554 case Instruction::SDiv:
4555 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4556 case Instruction::UDiv:
4557 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4558 case Instruction::SRem:
4559 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4560 case Instruction::URem:
4561 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4562 case Instruction::Shl:
4563 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4564 case Instruction::LShr:
4565 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4566 case Instruction::AShr:
4567 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4568 case Instruction::And:
4569 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4570 case Instruction::Or:
4571 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4572 case Instruction::Xor:
4573 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4574 case Instruction::FAdd:
4575 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4576 case Instruction::FSub:
4577 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4578 case Instruction::FMul:
4579 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4580 case Instruction::FDiv:
4581 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4582 case Instruction::FRem:
4583 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4584 default:
4585 llvm_unreachable("Unexpected opcode")::llvm::llvm_unreachable_internal("Unexpected opcode", "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 4585)
;
4586 }
4587}
4588
4589/// Given operands for a BinaryOperator, see if we can fold the result.
4590/// If not, this returns null.
4591/// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4592/// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4593static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4594 const FastMathFlags &FMF, const SimplifyQuery &Q,
4595 unsigned MaxRecurse) {
4596 switch (Opcode) {
4597 case Instruction::FAdd:
4598 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4599 case Instruction::FSub:
4600 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4601 case Instruction::FMul:
4602 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4603 case Instruction::FDiv:
4604 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4605 default:
4606 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4607 }
4608}
4609
4610Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4611 const SimplifyQuery &Q) {
4612 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4613}
4614
4615Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4616 FastMathFlags FMF, const SimplifyQuery &Q) {
4617 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4618}
4619
4620/// Given operands for a CmpInst, see if we can fold the result.
4621static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4622 const SimplifyQuery &Q, unsigned MaxRecurse) {
4623 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
2
Taking false branch
4624 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4625 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3
Calling 'SimplifyFCmpInst'
4626}
4627
4628Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4629 const SimplifyQuery &Q) {
4630 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
1
Calling 'SimplifyCmpInst'
4631}
4632
4633static bool IsIdempotent(Intrinsic::ID ID) {
4634 switch (ID) {
4635 default: return false;
4636
4637 // Unary idempotent: f(f(x)) = f(x)
4638 case Intrinsic::fabs:
4639 case Intrinsic::floor:
4640 case Intrinsic::ceil:
4641 case Intrinsic::trunc:
4642 case Intrinsic::rint:
4643 case Intrinsic::nearbyint:
4644 case Intrinsic::round:
4645 case Intrinsic::canonicalize:
4646 return true;
4647 }
4648}
4649
4650static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4651 const DataLayout &DL) {
4652 GlobalValue *PtrSym;
4653 APInt PtrOffset;
4654 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4655 return nullptr;
4656
4657 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4658 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4659 Type *Int32PtrTy = Int32Ty->getPointerTo();
4660 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4661
4662 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4663 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4664 return nullptr;
4665
4666 uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4667 if (OffsetInt % 4 != 0)
4668 return nullptr;
4669
4670 Constant *C = ConstantExpr::getGetElementPtr(
4671 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4672 ConstantInt::get(Int64Ty, OffsetInt / 4));
4673 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4674 if (!Loaded)
4675 return nullptr;
4676
4677 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4678 if (!LoadedCE)
4679 return nullptr;
4680
4681 if (LoadedCE->getOpcode() == Instruction::Trunc) {
4682 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4683 if (!LoadedCE)
4684 return nullptr;
4685 }
4686
4687 if (LoadedCE->getOpcode() != Instruction::Sub)
4688 return nullptr;
4689
4690 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4691 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4692 return nullptr;
4693 auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4694
4695 Constant *LoadedRHS = LoadedCE->getOperand(1);
4696 GlobalValue *LoadedRHSSym;
4697 APInt LoadedRHSOffset;
4698 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4699 DL) ||
4700 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4701 return nullptr;
4702
4703 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4704}
4705
4706static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
4707 const SimplifyQuery &Q) {
4708 // Idempotent functions return the same result when called repeatedly.
4709 Intrinsic::ID IID = F->getIntrinsicID();
4710 if (IsIdempotent(IID))
4711 if (auto *II = dyn_cast<IntrinsicInst>(Op0))
4712 if (II->getIntrinsicID() == IID)
4713 return II;
4714
4715 Value *X;
4716 switch (IID) {
4717 case Intrinsic::fabs:
4718 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
4719 break;
4720 case Intrinsic::bswap:
4721 // bswap(bswap(x)) -> x
4722 if (match(Op0, m_BSwap(m_Value(X)))) return X;
4723 break;
4724 case Intrinsic::bitreverse:
4725 // bitreverse(bitreverse(x)) -> x
4726 if (match(Op0, m_BitReverse(m_Value(X)))) return X;
4727 break;
4728 case Intrinsic::exp:
4729 // exp(log(x)) -> x
4730 if (Q.CxtI->hasAllowReassoc() &&
4731 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
4732 break;
4733 case Intrinsic::exp2:
4734 // exp2(log2(x)) -> x
4735 if (Q.CxtI->hasAllowReassoc() &&
4736 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
4737 break;
4738 case Intrinsic::log:
4739 // log(exp(x)) -> x
4740 if (Q.CxtI->hasAllowReassoc() &&
4741 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
4742 break;
4743 case Intrinsic::log2:
4744 // log2(exp2(x)) -> x
4745 if (Q.CxtI->hasAllowReassoc() &&
4746 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
4747 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
4748 m_Value(X))))) return X;
4749 break;
4750 case Intrinsic::log10:
4751 // log10(pow(10.0, x)) -> x
4752 if (Q.CxtI->hasAllowReassoc() &&
4753 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
4754 m_Value(X)))) return X;
4755 break;
4756 case Intrinsic::floor:
4757 case Intrinsic::trunc:
4758 case Intrinsic::ceil:
4759 case Intrinsic::round:
4760 case Intrinsic::nearbyint:
4761 case Intrinsic::rint: {
4762 // floor (sitofp x) -> sitofp x
4763 // floor (uitofp x) -> uitofp x
4764 //
4765 // Converting from int always results in a finite integral number or
4766 // infinity. For either of those inputs, these rounding functions always
4767 // return the same value, so the rounding can be eliminated.
4768 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
4769 return Op0;
4770 break;
4771 }
4772 default:
4773 break;
4774 }
4775
4776 return nullptr;
4777}
4778
4779static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
4780 const SimplifyQuery &Q) {
4781 Intrinsic::ID IID = F->getIntrinsicID();
4782 Type *ReturnType = F->getReturnType();
4783 switch (IID) {
4784 case Intrinsic::usub_with_overflow:
4785 case Intrinsic::ssub_with_overflow:
4786 // X - X -> { 0, false }
4787 if (Op0 == Op1)
4788 return Constant::getNullValue(ReturnType);
4789 // X - undef -> undef
4790 // undef - X -> undef
4791 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4792 return UndefValue::get(ReturnType);
4793 break;
4794 case Intrinsic::uadd_with_overflow:
4795 case Intrinsic::sadd_with_overflow:
4796 // X + undef -> undef
4797 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4798 return UndefValue::get(ReturnType);
4799 break;
4800 case Intrinsic::umul_with_overflow:
4801 case Intrinsic::smul_with_overflow:
4802 // 0 * X -> { 0, false }
4803 // X * 0 -> { 0, false }
4804 if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
4805 return Constant::getNullValue(ReturnType);
4806 // undef * X -> { 0, false }
4807 // X * undef -> { 0, false }
4808 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
4809 return Constant::getNullValue(ReturnType);
4810 break;
4811 case Intrinsic::uadd_sat:
4812 // sat(MAX + X) -> MAX
4813 // sat(X + MAX) -> MAX
4814 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
4815 return Constant::getAllOnesValue(ReturnType);
4816 LLVM_FALLTHROUGH[[clang::fallthrough]];
4817 case Intrinsic::sadd_sat:
4818 // sat(X + undef) -> -1
4819 // sat(undef + X) -> -1
4820 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
4821 // For signed: Assume undef is ~X, in which case X + ~X = -1.
4822 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
4823 return Constant::getAllOnesValue(ReturnType);
4824
4825 // X + 0 -> X
4826 if (match(Op1, m_Zero()))
4827 return Op0;
4828 // 0 + X -> X
4829 if (match(Op0, m_Zero()))
4830 return Op1;
4831 break;
4832 case Intrinsic::usub_sat:
4833 // sat(0 - X) -> 0, sat(X - MAX) -> 0
4834 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
4835 return Constant::getNullValue(ReturnType);
4836 LLVM_FALLTHROUGH[[clang::fallthrough]];
4837 case Intrinsic::ssub_sat:
4838 // X - X -> 0, X - undef -> 0, undef - X -> 0
4839 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef()))
4840 return Constant::getNullValue(ReturnType);
4841 // X - 0 -> X
4842 if (match(Op1, m_Zero()))
4843 return Op0;
4844 break;
4845 case Intrinsic::load_relative:
4846 if (auto *C0 = dyn_cast<Constant>(Op0))
4847 if (auto *C1 = dyn_cast<Constant>(Op1))
4848 return SimplifyRelativeLoad(C0, C1, Q.DL);
4849 break;
4850 case Intrinsic::powi:
4851 if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
4852 // powi(x, 0) -> 1.0
4853 if (Power->isZero())
4854 return ConstantFP::get(Op0->getType(), 1.0);
4855 // powi(x, 1) -> x
4856 if (Power->isOne())
4857 return Op0;
4858 }
4859 break;
4860 case Intrinsic::maxnum:
4861 case Intrinsic::minnum:
4862 case Intrinsic::maximum:
4863 case Intrinsic::minimum: {
4864 // If the arguments are the same, this is a no-op.
4865 if (Op0 == Op1) return Op0;
4866
4867 // If one argument is undef, return the other argument.
4868 if (match(Op0, m_Undef()))
4869 return Op1;
4870 if (match(Op1, m_Undef()))
4871 return Op0;
4872
4873 // If one argument is NaN, return other or NaN appropriately.
4874 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
4875 if (match(Op0, m_NaN()))
4876 return PropagateNaN ? Op0 : Op1;
4877 if (match(Op1, m_NaN()))
4878 return PropagateNaN ? Op1 : Op0;
4879
4880 // Min/max of the same operation with common operand:
4881 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
4882 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
4883 if (M0->getIntrinsicID() == IID &&
4884 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
4885 return Op0;
4886 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
4887 if (M1->getIntrinsicID() == IID &&
4888 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
4889 return Op1;
4890
4891 // min(X, -Inf) --> -Inf (and commuted variant)
4892 // max(X, +Inf) --> +Inf (and commuted variant)
4893 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum;
4894 const APFloat *C;
4895 if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
4896 C->isNegative() == UseNegInf) ||
4897 (match(Op1, m_APFloat(C)) && C->isInfinity() &&
4898 C->isNegative() == UseNegInf))
4899 return ConstantFP::getInfinity(ReturnType, UseNegInf);
4900
4901 // TODO: minnum(nnan x, inf) -> x
4902 // TODO: minnum(nnan ninf x, flt_max) -> x
4903 // TODO: maxnum(nnan x, -inf) -> x
4904 // TODO: maxnum(nnan ninf x, -flt_max) -> x
4905 break;
4906 }
4907 default:
4908 break;
4909 }
4910
4911 return nullptr;
4912}
4913
4914template <typename IterTy>
4915static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4916 const SimplifyQuery &Q) {
4917 // Intrinsics with no operands have some kind of side effect. Don't simplify.
4918 unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4919 if (NumOperands == 0)
4920 return nullptr;
4921
4922 Intrinsic::ID IID = F->getIntrinsicID();
4923 if (NumOperands == 1)
4924 return simplifyUnaryIntrinsic(F, ArgBegin[0], Q);
4925
4926 if (NumOperands == 2)
4927 return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q);
4928
4929 // Handle intrinsics with 3 or more arguments.
4930 switch (IID) {
4931 case Intrinsic::masked_load:
4932 case Intrinsic::masked_gather: {
4933 Value *MaskArg = ArgBegin[2];
4934 Value *PassthruArg = ArgBegin[3];
4935 // If the mask is all zeros or undef, the "passthru" argument is the result.
4936 if (maskIsAllZeroOrUndef(MaskArg))
4937 return PassthruArg;
4938 return nullptr;
4939 }
4940 case Intrinsic::fshl:
4941 case Intrinsic::fshr: {
4942 Value *Op0 = ArgBegin[0], *Op1 = ArgBegin[1], *ShAmtArg = ArgBegin[2];
4943
4944 // If both operands are undef, the result is undef.
4945 if (match(Op0, m_Undef()) && match(Op1, m_Undef()))
4946 return UndefValue::get(F->getReturnType());
4947
4948 // If shift amount is undef, assume it is zero.
4949 if (match(ShAmtArg, m_Undef()))
4950 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1];
4951
4952 const APInt *ShAmtC;
4953 if (match(ShAmtArg, m_APInt(ShAmtC))) {
4954 // If there's effectively no shift, return the 1st arg or 2nd arg.
4955 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
4956 if (ShAmtC->urem(BitWidth).isNullValue())
4957 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1];
4958 }
4959 return nullptr;
4960 }
4961 default:
4962 return nullptr;
4963 }
4964}
4965
4966template <typename IterTy>
4967static Value *SimplifyCall(CallBase *Call, Value *V, IterTy ArgBegin,
4968 IterTy ArgEnd, const SimplifyQuery &Q,
4969 unsigned MaxRecurse) {
4970 Type *Ty = V->getType();
4971 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4972 Ty = PTy->getElementType();
4973 FunctionType *FTy = cast<FunctionType>(Ty);
4974
4975 // call undef -> undef
4976 // call null -> undef
4977 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4978 return UndefValue::get(FTy->getReturnType());
4979
4980 Function *F = dyn_cast<Function>(V);
4981 if (!F)
4982 return nullptr;
4983
4984 if (F->isIntrinsic())
4985 if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q))
4986 return Ret;
4987
4988 if (!canConstantFoldCallTo(Call, F))
4989 return nullptr;
4990
4991 SmallVector<Constant *, 4> ConstantArgs;
4992 ConstantArgs.reserve(ArgEnd - ArgBegin);
4993 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4994 Constant *C = dyn_cast<Constant>(*I);
4995 if (!C)
4996 return nullptr;
4997 ConstantArgs.push_back(C);
4998 }
4999
5000 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5001}
5002
5003Value *llvm::SimplifyCall(CallBase *Call, Value *V, User::op_iterator ArgBegin,
5004 User::op_iterator ArgEnd, const SimplifyQuery &Q) {
5005 return ::SimplifyCall(Call, V, ArgBegin, ArgEnd, Q, RecursionLimit);
5006}
5007
5008Value *llvm::SimplifyCall(CallBase *Call, Value *V, ArrayRef<Value *> Args,
5009 const SimplifyQuery &Q) {
5010 return ::SimplifyCall(Call, V, Args.begin(), Args.end(), Q, RecursionLimit);
5011}
5012
5013Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5014 return ::SimplifyCall(Call, Call->getCalledValue(), Call->arg_begin(),
5015 Call->arg_end(), Q, RecursionLimit);
5016}
5017
5018/// See if we can compute a simplified version of this instruction.
5019/// If not, this returns null.
5020
5021Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5022 OptimizationRemarkEmitter *ORE) {
5023 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5024 Value *Result;
5025
5026 switch (I->getOpcode()) {
5027 default:
5028 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5029 break;
5030 case Instruction::FNeg:
5031 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5032 break;
5033 case Instruction::FAdd:
5034 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5035 I->getFastMathFlags(), Q);
5036 break;
5037 case Instruction::Add:
5038 Result =
5039 SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5040 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5041 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5042 break;
5043 case Instruction::FSub:
5044 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5045 I->getFastMathFlags(), Q);
5046 break;
5047 case Instruction::Sub:
5048 Result =
5049 SimplifySubInst(I->getOperand(0), I->getOperand(1),
5050 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5051 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5052 break;
5053 case Instruction::FMul:
5054 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5055 I->getFastMathFlags(), Q);
5056 break;
5057 case Instruction::Mul:
5058 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5059 break;
5060 case Instruction::SDiv:
5061 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5062 break;
5063 case Instruction::UDiv:
5064 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5065 break;
5066 case Instruction::FDiv:
5067 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5068 I->getFastMathFlags(), Q);
5069 break;
5070 case Instruction::SRem:
5071 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5072 break;
5073 case Instruction::URem:
5074 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5075 break;
5076 case Instruction::FRem:
5077 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5078 I->getFastMathFlags(), Q);
5079 break;
5080 case Instruction::Shl:
5081 Result =
5082 SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5083 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5084 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5085 break;
5086 case Instruction::LShr:
5087 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5088 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5089 break;
5090 case Instruction::AShr:
5091 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5092 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5093 break;
5094 case Instruction::And:
5095 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5096 break;
5097 case Instruction::Or:
5098 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5099 break;
5100 case Instruction::Xor:
5101 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5102 break;
5103 case Instruction::ICmp:
5104 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5105 I->getOperand(0), I->getOperand(1), Q);
5106 break;
5107 case Instruction::FCmp:
5108 Result =
5109 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5110 I->getOperand(1), I->getFastMathFlags(), Q);
5111 break;
5112 case Instruction::Select:
5113 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5114 I->getOperand(2), Q);
5115 break;
5116 case Instruction::GetElementPtr: {
5117 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
5118 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5119 Ops, Q);
5120 break;
5121 }
5122 case Instruction::InsertValue: {
5123 InsertValueInst *IV = cast<InsertValueInst>(I);
5124 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5125 IV->getInsertedValueOperand(),
5126 IV->getIndices(), Q);
5127 break;
5128 }
5129 case Instruction::InsertElement: {
5130 auto *IE = cast<InsertElementInst>(I);
5131 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5132 IE->getOperand(2), Q);
5133 break;
5134 }
5135 case Instruction::ExtractValue: {
5136 auto *EVI = cast<ExtractValueInst>(I);
5137 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5138 EVI->getIndices(), Q);
5139 break;
5140 }
5141 case Instruction::ExtractElement: {
5142 auto *EEI = cast<ExtractElementInst>(I);
5143 Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5144 EEI->getIndexOperand(), Q);
5145 break;
5146 }
5147 case Instruction::ShuffleVector: {
5148 auto *SVI = cast<ShuffleVectorInst>(I);
5149 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5150 SVI->getMask(), SVI->getType(), Q);
5151 break;
5152 }
5153 case Instruction::PHI:
5154 Result = SimplifyPHINode(cast<PHINode>(I), Q);
5155 break;
5156 case Instruction::Call: {
5157 Result = SimplifyCall(cast<CallInst>(I), Q);
5158 break;
5159 }
5160#define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5161#include "llvm/IR/Instruction.def"
5162#undef HANDLE_CAST_INST
5163 Result =
5164 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5165 break;
5166 case Instruction::Alloca:
5167 // No simplifications for Alloca and it can't be constant folded.
5168 Result = nullptr;
5169 break;
5170 }
5171
5172 // In general, it is possible for computeKnownBits to determine all bits in a
5173 // value even when the operands are not all constants.
5174 if (!Result && I->getType()->isIntOrIntVectorTy()) {
5175 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
5176 if (Known.isConstant())
5177 Result = ConstantInt::get(I->getType(), Known.getConstant());
5178 }
5179
5180 /// If called on unreachable code, the above logic may report that the
5181 /// instruction simplified to itself. Make life easier for users by
5182 /// detecting that case here, returning a safe value instead.
5183 return Result == I ? UndefValue::get(I->getType()) : Result;
5184}
5185
5186/// Implementation of recursive simplification through an instruction's
5187/// uses.
5188///
5189/// This is the common implementation of the recursive simplification routines.
5190/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5191/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5192/// instructions to process and attempt to simplify it using
5193/// InstructionSimplify.
5194///
5195/// This routine returns 'true' only when *it* simplifies something. The passed
5196/// in simplified value does not count toward this.
5197static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
5198 const TargetLibraryInfo *TLI,
5199 const DominatorTree *DT,
5200 AssumptionCache *AC) {
5201 bool Simplified = false;
5202 SmallSetVector<Instruction *, 8> Worklist;
5203 const DataLayout &DL = I->getModule()->getDataLayout();
5204
5205 // If we have an explicit value to collapse to, do that round of the
5206 // simplification loop by hand initially.
5207 if (SimpleV) {
5208 for (User *U : I->users())
5209 if (U != I)
5210 Worklist.insert(cast<Instruction>(U));
5211
5212 // Replace the instruction with its simplified value.
5213 I->replaceAllUsesWith(SimpleV);
5214
5215 // Gracefully handle edge cases where the instruction is not wired into any
5216 // parent block.
5217 if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5218 !I->mayHaveSideEffects())
5219 I->eraseFromParent();
5220 } else {
5221 Worklist.insert(I);
5222 }
5223
5224 // Note that we must test the size on each iteration, the worklist can grow.
5225 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5226 I = Worklist[Idx];
5227
5228 // See if this instruction simplifies.
5229 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5230 if (!SimpleV)
5231 continue;
5232
5233 Simplified = true;
5234
5235 // Stash away all the uses of the old instruction so we can check them for
5236 // recursive simplifications after a RAUW. This is cheaper than checking all
5237 // uses of To on the recursive step in most cases.
5238 for (User *U : I->users())
5239 Worklist.insert(cast<Instruction>(U));
5240
5241 // Replace the instruction with its simplified value.
5242 I->replaceAllUsesWith(SimpleV);
5243
5244 // Gracefully handle edge cases where the instruction is not wired into any
5245 // parent block.
5246 if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5247 !I->mayHaveSideEffects())
5248 I->eraseFromParent();
5249 }
5250 return Simplified;
5251}
5252
5253bool llvm::recursivelySimplifyInstruction(Instruction *I,
5254 const TargetLibraryInfo *TLI,
5255 const DominatorTree *DT,
5256 AssumptionCache *AC) {
5257 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
5258}
5259
5260bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
5261 const TargetLibraryInfo *TLI,
5262 const DominatorTree *DT,
5263 AssumptionCache *AC) {
5264 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!")((I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"
) ? static_cast<void> (0) : __assert_fail ("I != SimpleV && \"replaceAndRecursivelySimplify(X,X) is not valid!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 5264, __PRETTY_FUNCTION__))
;
5265 assert(SimpleV && "Must provide a simplified value.")((SimpleV && "Must provide a simplified value.") ? static_cast
<void> (0) : __assert_fail ("SimpleV && \"Must provide a simplified value.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/lib/Analysis/InstructionSimplify.cpp"
, 5265, __PRETTY_FUNCTION__))
;
5266 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
5267}
5268
5269namespace llvm {
5270const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5271 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5272 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5273 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5274 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
5275 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5276 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5277 return {F.getParent()->getDataLayout(), TLI, DT, AC};
5278}
5279
5280const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5281 const DataLayout &DL) {
5282 return {DL, &AR.TLI, &AR.DT, &AR.AC};
5283}
5284
5285template <class T, class... TArgs>
5286const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5287 Function &F) {
5288 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5289 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5290 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5291 return {F.getParent()->getDataLayout(), TLI, DT, AC};
5292}
5293template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5294 Function &);
5295}

/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/PatternMatch.h

1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
38#include "llvm/IR/Intrinsics.h"
39#include "llvm/IR/Operator.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Support/Casting.h"
42#include <cstdint>
43
44namespace llvm {
45namespace PatternMatch {
46
47template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
48 return const_cast<Pattern &>(P).match(V);
16
Value assigned to field 'Val'
49}
50
51template <typename SubPattern_t> struct OneUse_match {
52 SubPattern_t SubPattern;
53
54 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
55
56 template <typename OpTy> bool match(OpTy *V) {
57 return V->hasOneUse() && SubPattern.match(V);
58 }
59};
60
61template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
62 return SubPattern;
63}
64
65template <typename Class> struct class_match {
66 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
67};
68
69/// Match an arbitrary value and ignore it.
70inline class_match<Value> m_Value() { return class_match<Value>(); }
71
72/// Match an arbitrary binary operation and ignore it.
73inline class_match<BinaryOperator> m_BinOp() {
74 return class_match<BinaryOperator>();
75}
76
77/// Matches any compare instruction and ignore it.
78inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
79
80/// Match an arbitrary ConstantInt and ignore it.
81inline class_match<ConstantInt> m_ConstantInt() {
82 return class_match<ConstantInt>();
83}
84
85/// Match an arbitrary undef constant.
86inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
87
88/// Match an arbitrary Constant and ignore it.
89inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
90
91/// Matching combinators
92template <typename LTy, typename RTy> struct match_combine_or {
93 LTy L;
94 RTy R;
95
96 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
97
98 template <typename ITy> bool match(ITy *V) {
99 if (L.match(V))
100 return true;
101 if (R.match(V))
102 return true;
103 return false;
104 }
105};
106
107template <typename LTy, typename RTy> struct match_combine_and {
108 LTy L;
109 RTy R;
110
111 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
112
113 template <typename ITy> bool match(ITy *V) {
114 if (L.match(V))
115 if (R.match(V))
116 return true;
117 return false;
118 }
119};
120
121/// Combine two pattern matchers matching L || R
122template <typename LTy, typename RTy>
123inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
124 return match_combine_or<LTy, RTy>(L, R);
125}
126
127/// Combine two pattern matchers matching L && R
128template <typename LTy, typename RTy>
129inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
130 return match_combine_and<LTy, RTy>(L, R);
131}
132
133struct apint_match {
134 const APInt *&Res;
135
136 apint_match(const APInt *&R) : Res(R) {}
137
138 template <typename ITy> bool match(ITy *V) {
139 if (auto *CI = dyn_cast<ConstantInt>(V)) {
140 Res = &CI->getValue();
141 return true;
142 }
143 if (V->getType()->isVectorTy())
144 if (const auto *C = dyn_cast<Constant>(V))
145 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
146 Res = &CI->getValue();
147 return true;
148 }
149 return false;
150 }
151};
152// Either constexpr if or renaming ConstantFP::getValueAPF to
153// ConstantFP::getValue is needed to do it via single template
154// function for both apint/apfloat.
155struct apfloat_match {
156 const APFloat *&Res;
157 apfloat_match(const APFloat *&R) : Res(R) {}
158 template <typename ITy> bool match(ITy *V) {
159 if (auto *CI = dyn_cast<ConstantFP>(V)) {
160 Res = &CI->getValueAPF();
161 return true;
162 }
163 if (V->getType()->isVectorTy())
164 if (const auto *C = dyn_cast<Constant>(V))
165 if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
166 Res = &CI->getValueAPF();
167 return true;
168 }
169 return false;
170 }
171};
172
173/// Match a ConstantInt or splatted ConstantVector, binding the
174/// specified pointer to the contained APInt.
175inline apint_match m_APInt(const APInt *&Res) { return Res; }
176
177/// Match a ConstantFP or splatted ConstantVector, binding the
178/// specified pointer to the contained APFloat.
179inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
180
181template <int64_t Val> struct constantint_match {
182 template <typename ITy> bool match(ITy *V) {
183 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
184 const APInt &CIV = CI->getValue();
185 if (Val >= 0)
186 return CIV == static_cast<uint64_t>(Val);
187 // If Val is negative, and CI is shorter than it, truncate to the right
188 // number of bits. If it is larger, then we have to sign extend. Just
189 // compare their negated values.
190 return -CIV == -Val;
191 }
192 return false;
193 }
194};
195
196/// Match a ConstantInt with a specific value.
197template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
198 return constantint_match<Val>();
199}
200
201/// This helper class is used to match scalar and vector integer constants that
202/// satisfy a specified predicate.
203/// For vector constants, undefined elements are ignored.
204template <typename Predicate> struct cst_pred_ty : public Predicate {
205 template <typename ITy> bool match(ITy *V) {
206 if (const auto *CI = dyn_cast<ConstantInt>(V))
207 return this->isValue(CI->getValue());
208 if (V->getType()->isVectorTy()) {
209 if (const auto *C = dyn_cast<Constant>(V)) {
210 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
211 return this->isValue(CI->getValue());
212
213 // Non-splat vector constant: check each element for a match.
214 unsigned NumElts = V->getType()->getVectorNumElements();
215 assert(NumElts != 0 && "Constant vector with no elements?")((NumElts != 0 && "Constant vector with no elements?"
) ? static_cast<void> (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/PatternMatch.h"
, 215, __PRETTY_FUNCTION__))
;
216 bool HasNonUndefElements = false;
217 for (unsigned i = 0; i != NumElts; ++i) {
218 Constant *Elt = C->getAggregateElement(i);
219 if (!Elt)
220 return false;
221 if (isa<UndefValue>(Elt))
222 continue;
223 auto *CI = dyn_cast<ConstantInt>(Elt);
224 if (!CI || !this->isValue(CI->getValue()))
225 return false;
226 HasNonUndefElements = true;
227 }
228 return HasNonUndefElements;
229 }
230 }
231 return false;
232 }
233};
234
235/// This helper class is used to match scalar and vector constants that
236/// satisfy a specified predicate, and bind them to an APInt.
237template <typename Predicate> struct api_pred_ty : public Predicate {
238 const APInt *&Res;
239
240 api_pred_ty(const APInt *&R) : Res(R) {}
241
242 template <typename ITy> bool match(ITy *V) {
243 if (const auto *CI = dyn_cast<ConstantInt>(V))
244 if (this->isValue(CI->getValue())) {
245 Res = &CI->getValue();
246 return true;
247 }
248 if (V->getType()->isVectorTy())
249 if (const auto *C = dyn_cast<Constant>(V))
250 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
251 if (this->isValue(CI->getValue())) {
252 Res = &CI->getValue();
253 return true;
254 }
255
256 return false;
257 }
258};
259
260/// This helper class is used to match scalar and vector floating-point
261/// constants that satisfy a specified predicate.
262/// For vector constants, undefined elements are ignored.
263template <typename Predicate> struct cstfp_pred_ty : public Predicate {
264 template <typename ITy> bool match(ITy *V) {
265 if (const auto *CF = dyn_cast<ConstantFP>(V))
266 return this->isValue(CF->getValueAPF());
267 if (V->getType()->isVectorTy()) {
268 if (const auto *C = dyn_cast<Constant>(V)) {
269 if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
270 return this->isValue(CF->getValueAPF());
271
272 // Non-splat vector constant: check each element for a match.
273 unsigned NumElts = V->getType()->getVectorNumElements();
274 assert(NumElts != 0 && "Constant vector with no elements?")((NumElts != 0 && "Constant vector with no elements?"
) ? static_cast<void> (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/PatternMatch.h"
, 274, __PRETTY_FUNCTION__))
;
275 bool HasNonUndefElements = false;
276 for (unsigned i = 0; i != NumElts; ++i) {
277 Constant *Elt = C->getAggregateElement(i);
278 if (!Elt)
279 return false;
280 if (isa<UndefValue>(Elt))
281 continue;
282 auto *CF = dyn_cast<ConstantFP>(Elt);
283 if (!CF || !this->isValue(CF->getValueAPF()))
284 return false;
285 HasNonUndefElements = true;
286 }
287 return HasNonUndefElements;
288 }
289 }
290 return false;
291 }
292};
293
294///////////////////////////////////////////////////////////////////////////////
295//
296// Encapsulate constant value queries for use in templated predicate matchers.
297// This allows checking if constants match using compound predicates and works
298// with vector constants, possibly with relaxed constraints. For example, ignore
299// undef values.
300//
301///////////////////////////////////////////////////////////////////////////////
302
303struct is_all_ones {
304 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
305};
306/// Match an integer or vector with all bits set.
307/// For vectors, this includes constants with undefined elements.
308inline cst_pred_ty<is_all_ones> m_AllOnes() {
309 return cst_pred_ty<is_all_ones>();
310}
311
312struct is_maxsignedvalue {
313 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
314};
315/// Match an integer or vector with values having all bits except for the high
316/// bit set (0x7f...).
317/// For vectors, this includes constants with undefined elements.
318inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
319 return cst_pred_ty<is_maxsignedvalue>();
320}
321inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
322 return V;
323}
324
325struct is_negative {
326 bool isValue(const APInt &C) { return C.isNegative(); }
327};
328/// Match an integer or vector of negative values.
329/// For vectors, this includes constants with undefined elements.
330inline cst_pred_ty<is_negative> m_Negative() {
331 return cst_pred_ty<is_negative>();
332}
333inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
334 return V;
335}
336
337struct is_nonnegative {
338 bool isValue(const APInt &C) { return C.isNonNegative(); }
339};
340/// Match an integer or vector of nonnegative values.
341/// For vectors, this includes constants with undefined elements.
342inline cst_pred_ty<is_nonnegative> m_NonNegative() {
343 return cst_pred_ty<is_nonnegative>();
344}
345inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
346 return V;
347}
348
349struct is_one {
350 bool isValue(const APInt &C) { return C.isOneValue(); }
351};
352/// Match an integer 1 or a vector with all elements equal to 1.
353/// For vectors, this includes constants with undefined elements.
354inline cst_pred_ty<is_one> m_One() {
355 return cst_pred_ty<is_one>();
356}
357
358struct is_zero_int {
359 bool isValue(const APInt &C) { return C.isNullValue(); }
360};
361/// Match an integer 0 or a vector with all elements equal to 0.
362/// For vectors, this includes constants with undefined elements.
363inline cst_pred_ty<is_zero_int> m_ZeroInt() {
364 return cst_pred_ty<is_zero_int>();
365}
366
367struct is_zero {
368 template <typename ITy> bool match(ITy *V) {
369 auto *C = dyn_cast<Constant>(V);
370 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
371 }
372};
373/// Match any null constant or a vector with all elements equal to 0.
374/// For vectors, this includes constants with undefined elements.
375inline is_zero m_Zero() {
376 return is_zero();
377}
378
379struct is_power2 {
380 bool isValue(const APInt &C) { return C.isPowerOf2(); }
381};
382/// Match an integer or vector power-of-2.
383/// For vectors, this includes constants with undefined elements.
384inline cst_pred_ty<is_power2> m_Power2() {
385 return cst_pred_ty<is_power2>();
386}
387inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
388 return V;
389}
390
391struct is_power2_or_zero {
392 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
393};
394/// Match an integer or vector of 0 or power-of-2 values.
395/// For vectors, this includes constants with undefined elements.
396inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
397 return cst_pred_ty<is_power2_or_zero>();
398}
399inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
400 return V;
401}
402
403struct is_sign_mask {
404 bool isValue(const APInt &C) { return C.isSignMask(); }
405};
406/// Match an integer or vector with only the sign bit(s) set.
407/// For vectors, this includes constants with undefined elements.
408inline cst_pred_ty<is_sign_mask> m_SignMask() {
409 return cst_pred_ty<is_sign_mask>();
410}
411
412struct is_lowbit_mask {
413 bool isValue(const APInt &C) { return C.isMask(); }
414};
415/// Match an integer or vector with only the low bit(s) set.
416/// For vectors, this includes constants with undefined elements.
417inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
418 return cst_pred_ty<is_lowbit_mask>();
419}
420
421struct is_nan {
422 bool isValue(const APFloat &C) { return C.isNaN(); }
423};
424/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
425/// For vectors, this includes constants with undefined elements.
426inline cstfp_pred_ty<is_nan> m_NaN() {
427 return cstfp_pred_ty<is_nan>();
428}
429
430struct is_any_zero_fp {
431 bool isValue(const APFloat &C) { return C.isZero(); }
432};
433/// Match a floating-point negative zero or positive zero.
434/// For vectors, this includes constants with undefined elements.
435inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
436 return cstfp_pred_ty<is_any_zero_fp>();
437}
438
439struct is_pos_zero_fp {
440 bool isValue(const APFloat &C) { return C.isPosZero(); }
441};
442/// Match a floating-point positive zero.
443/// For vectors, this includes constants with undefined elements.
444inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
445 return cstfp_pred_ty<is_pos_zero_fp>();
446}
447
448struct is_neg_zero_fp {
449 bool isValue(const APFloat &C) { return C.isNegZero(); }
450};
451/// Match a floating-point negative zero.
452/// For vectors, this includes constants with undefined elements.
453inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
454 return cstfp_pred_ty<is_neg_zero_fp>();
455}
456
457///////////////////////////////////////////////////////////////////////////////
458
459template <typename Class> struct bind_ty {
460 Class *&VR;
461
462 bind_ty(Class *&V) : VR(V) {}
463
464 template <typename ITy> bool match(ITy *V) {
465 if (auto *CV = dyn_cast<Class>(V)) {
466 VR = CV;
467 return true;
468 }
469 return false;
470 }
471};
472
473/// Match a value, capturing it if we match.
474inline bind_ty<Value> m_Value(Value *&V) { return V; }
475inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
476
477/// Match an instruction, capturing it if we match.
478inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
479/// Match a binary operator, capturing it if we match.
480inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
481
482/// Match a ConstantInt, capturing the value if we match.
483inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
484
485/// Match a Constant, capturing the value if we match.
486inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
487
488/// Match a ConstantFP, capturing the value if we match.
489inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
490
491/// Match a specified Value*.
492struct specificval_ty {
493 const Value *Val;
494
495 specificval_ty(const Value *V) : Val(V) {}
496
497 template <typename ITy> bool match(ITy *V) { return V == Val; }
498};
499
500/// Match if we have a specific specified value.
501inline specificval_ty m_Specific(const Value *V) { return V; }
502
503/// Stores a reference to the Value *, not the Value * itself,
504/// thus can be used in commutative matchers.
505template <typename Class> struct deferredval_ty {
506 Class *const &Val;
507
508 deferredval_ty(Class *const &V) : Val(V) {}
509
510 template <typename ITy> bool match(ITy *const V) { return V == Val; }
511};
512
513/// A commutative-friendly version of m_Specific().
514inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
515inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
516 return V;
517}
518
519/// Match a specified floating point value or vector of all elements of
520/// that value.
521struct specific_fpval {
522 double Val;
523
524 specific_fpval(double V) : Val(V) {}
525
526 template <typename ITy> bool match(ITy *V) {
527 if (const auto *CFP = dyn_cast<ConstantFP>(V))
528 return CFP->isExactlyValue(Val);
529 if (V->getType()->isVectorTy())
530 if (const auto *C = dyn_cast<Constant>(V))
531 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
532 return CFP->isExactlyValue(Val);
533 return false;
534 }
535};
536
537/// Match a specific floating point value or vector with all elements
538/// equal to the value.
539inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
540
541/// Match a float 1.0 or vector with all elements equal to 1.0.
542inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
543
544struct bind_const_intval_ty {
545 uint64_t &VR;
546
547 bind_const_intval_ty(uint64_t &V) : VR(V) {}
548
549 template <typename ITy> bool match(ITy *V) {
550 if (const auto *CV = dyn_cast<ConstantInt>(V))
551 if (CV->getValue().ule(UINT64_MAX(18446744073709551615UL))) {
552 VR = CV->getZExtValue();
553 return true;
554 }
555 return false;
556 }
557};
558
559/// Match a specified integer value or vector of all elements of that
560// value.
561struct specific_intval {
562 uint64_t Val;
563
564 specific_intval(uint64_t V) : Val(V) {}
565
566 template <typename ITy> bool match(ITy *V) {
567 const auto *CI = dyn_cast<ConstantInt>(V);
568 if (!CI && V->getType()->isVectorTy())
569 if (const auto *C = dyn_cast<Constant>(V))
570 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
571
572 return CI && CI->getValue() == Val;
573 }
574};
575
576/// Match a specific integer value or vector with all elements equal to
577/// the value.
578inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
579
580/// Match a ConstantInt and bind to its value. This does not match
581/// ConstantInts wider than 64-bits.
582inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
583
584//===----------------------------------------------------------------------===//
585// Matcher for any binary operator.
586//
587template <typename LHS_t, typename RHS_t, bool Commutable = false>
588struct AnyBinaryOp_match {
589 LHS_t L;
590 RHS_t R;
591
592 // The evaluation order is always stable, regardless of Commutability.
593 // The LHS is always matched first.
594 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
595
596 template <typename OpTy> bool match(OpTy *V) {
597 if (auto *I = dyn_cast<BinaryOperator>(V))
598 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
599 (Commutable && L.match(I->getOperand(1)) &&
600 R.match(I->getOperand(0)));
601 return false;
602 }
603};
604
605template <typename LHS, typename RHS>
606inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
607 return AnyBinaryOp_match<LHS, RHS>(L, R);
608}
609
610//===----------------------------------------------------------------------===//
611// Matchers for specific binary operators.
612//
613
614template <typename LHS_t, typename RHS_t, unsigned Opcode,
615 bool Commutable = false>
616struct BinaryOp_match {
617 LHS_t L;
618 RHS_t R;
619
620 // The evaluation order is always stable, regardless of Commutability.
621 // The LHS is always matched first.
622 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
623
624 template <typename OpTy> bool match(OpTy *V) {
625 if (V->getValueID() == Value::InstructionVal + Opcode) {
626 auto *I = cast<BinaryOperator>(V);
627 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
628 (Commutable && L.match(I->getOperand(1)) &&
629 R.match(I->getOperand(0)));
630 }
631 if (auto *CE = dyn_cast<ConstantExpr>(V))
632 return CE->getOpcode() == Opcode &&
633 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
634 (Commutable && L.match(CE->getOperand(1)) &&
635 R.match(CE->getOperand(0))));
636 return false;
637 }
638};
639
640template <typename LHS, typename RHS>
641inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
642 const RHS &R) {
643 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
644}
645
646template <typename LHS, typename RHS>
647inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
648 const RHS &R) {
649 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
650}
651
652template <typename LHS, typename RHS>
653inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
654 const RHS &R) {
655 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
656}
657
658template <typename LHS, typename RHS>
659inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
660 const RHS &R) {
661 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
662}
663
664template <typename Op_t> struct FNeg_match {
665 Op_t X;
666
667 FNeg_match(const Op_t &Op) : X(Op) {}
668 template <typename OpTy> bool match(OpTy *V) {
669 auto *FPMO = dyn_cast<FPMathOperator>(V);
670 if (!FPMO) return false;
671
672 if (FPMO->getOpcode() == Instruction::FNeg)
673 return X.match(FPMO->getOperand(0));
674
675 if (FPMO->getOpcode() == Instruction::FSub) {
676 if (FPMO->hasNoSignedZeros()) {
677 // With 'nsz', any zero goes.
678 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
679 return false;
680 } else {
681 // Without 'nsz', we need fsub -0.0, X exactly.
682 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
683 return false;
684 }
685
686 return X.match(FPMO->getOperand(1));
687 }
688
689 return false;
690 }
691};
692
693/// Match 'fneg X' as 'fsub -0.0, X'.
694template <typename OpTy>
695inline FNeg_match<OpTy>
696m_FNeg(const OpTy &X) {
697 return FNeg_match<OpTy>(X);
698}
699
700/// Match 'fneg X' as 'fsub +-0.0, X'.
701template <typename RHS>
702inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
703m_FNegNSZ(const RHS &X) {
704 return m_FSub(m_AnyZeroFP(), X);
705}
706
707template <typename LHS, typename RHS>
708inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
709 const RHS &R) {
710 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
711}
712
713template <typename LHS, typename RHS>
714inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
715 const RHS &R) {
716 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
717}
718
719template <typename LHS, typename RHS>
720inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
721 const RHS &R) {
722 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
723}
724
725template <typename LHS, typename RHS>
726inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
727 const RHS &R) {
728 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
729}
730
731template <typename LHS, typename RHS>
732inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
733 const RHS &R) {
734 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
735}
736
737template <typename LHS, typename RHS>
738inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
739 const RHS &R) {
740 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
741}
742
743template <typename LHS, typename RHS>
744inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
745 const RHS &R) {
746 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
747}
748
749template <typename LHS, typename RHS>
750inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
751 const RHS &R) {
752 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
753}
754
755template <typename LHS, typename RHS>
756inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
757 const RHS &R) {
758 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
759}
760
761template <typename LHS, typename RHS>
762inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
763 const RHS &R) {
764 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
765}
766
767template <typename LHS, typename RHS>
768inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
769 const RHS &R) {
770 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
771}
772
773template <typename LHS, typename RHS>
774inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
775 const RHS &R) {
776 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
777}
778
779template <typename LHS, typename RHS>
780inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
781 const RHS &R) {
782 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
783}
784
785template <typename LHS, typename RHS>
786inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
787 const RHS &R) {
788 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
789}
790
791template <typename LHS_t, typename RHS_t, unsigned Opcode,
792 unsigned WrapFlags = 0>
793struct OverflowingBinaryOp_match {
794 LHS_t L;
795 RHS_t R;
796
797 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
798 : L(LHS), R(RHS) {}
799
800 template <typename OpTy> bool match(OpTy *V) {
801 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
802 if (Op->getOpcode() != Opcode)
803 return false;
804 if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
805 !Op->hasNoUnsignedWrap())
806 return false;
807 if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
808 !Op->hasNoSignedWrap())
809 return false;
810 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
811 }
812 return false;
813 }
814};
815
816template <typename LHS, typename RHS>
817inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
818 OverflowingBinaryOperator::NoSignedWrap>
819m_NSWAdd(const LHS &L, const RHS &R) {
820 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
821 OverflowingBinaryOperator::NoSignedWrap>(
822 L, R);
823}
824template <typename LHS, typename RHS>
825inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
826 OverflowingBinaryOperator::NoSignedWrap>
827m_NSWSub(const LHS &L, const RHS &R) {
828 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
829 OverflowingBinaryOperator::NoSignedWrap>(
830 L, R);
831}
832template <typename LHS, typename RHS>
833inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
834 OverflowingBinaryOperator::NoSignedWrap>
835m_NSWMul(const LHS &L, const RHS &R) {
836 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
837 OverflowingBinaryOperator::NoSignedWrap>(
838 L, R);
839}
840template <typename LHS, typename RHS>
841inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
842 OverflowingBinaryOperator::NoSignedWrap>
843m_NSWShl(const LHS &L, const RHS &R) {
844 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
845 OverflowingBinaryOperator::NoSignedWrap>(
846 L, R);
847}
848
849template <typename LHS, typename RHS>
850inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
851 OverflowingBinaryOperator::NoUnsignedWrap>
852m_NUWAdd(const LHS &L, const RHS &R) {
853 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
854 OverflowingBinaryOperator::NoUnsignedWrap>(
855 L, R);
856}
857template <typename LHS, typename RHS>
858inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
859 OverflowingBinaryOperator::NoUnsignedWrap>
860m_NUWSub(const LHS &L, const RHS &R) {
861 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
862 OverflowingBinaryOperator::NoUnsignedWrap>(
863 L, R);
864}
865template <typename LHS, typename RHS>
866inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
867 OverflowingBinaryOperator::NoUnsignedWrap>
868m_NUWMul(const LHS &L, const RHS &R) {
869 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
870 OverflowingBinaryOperator::NoUnsignedWrap>(
871 L, R);
872}
873template <typename LHS, typename RHS>
874inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
875 OverflowingBinaryOperator::NoUnsignedWrap>
876m_NUWShl(const LHS &L, const RHS &R) {
877 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
878 OverflowingBinaryOperator::NoUnsignedWrap>(
879 L, R);
880}
881
882//===----------------------------------------------------------------------===//
883// Class that matches a group of binary opcodes.
884//
885template <typename LHS_t, typename RHS_t, typename Predicate>
886struct BinOpPred_match : Predicate {
887 LHS_t L;
888 RHS_t R;
889
890 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
891
892 template <typename OpTy> bool match(OpTy *V) {
893 if (auto *I = dyn_cast<Instruction>(V))
894 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
895 R.match(I->getOperand(1));
896 if (auto *CE = dyn_cast<ConstantExpr>(V))
897 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
898 R.match(CE->getOperand(1));
899 return false;
900 }
901};
902
903struct is_shift_op {
904 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
905};
906
907struct is_right_shift_op {
908 bool isOpType(unsigned Opcode) {
909 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
910 }
911};
912
913struct is_logical_shift_op {
914 bool isOpType(unsigned Opcode) {
915 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
916 }
917};
918
919struct is_bitwiselogic_op {
920 bool isOpType(unsigned Opcode) {
921 return Instruction::isBitwiseLogicOp(Opcode);
922 }
923};
924
925struct is_idiv_op {
926 bool isOpType(unsigned Opcode) {
927 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
928 }
929};
930
931/// Matches shift operations.
932template <typename LHS, typename RHS>
933inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
934 const RHS &R) {
935 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
936}
937
938/// Matches logical shift operations.
939template <typename LHS, typename RHS>
940inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
941 const RHS &R) {
942 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
943}
944
945/// Matches logical shift operations.
946template <typename LHS, typename RHS>
947inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
948m_LogicalShift(const LHS &L, const RHS &R) {
949 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
950}
951
952/// Matches bitwise logic operations.
953template <typename LHS, typename RHS>
954inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
955m_BitwiseLogic(const LHS &L, const RHS &R) {
956 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
957}
958
959/// Matches integer division operations.
960template <typename LHS, typename RHS>
961inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
962 const RHS &R) {
963 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
964}
965
966//===----------------------------------------------------------------------===//
967// Class that matches exact binary ops.
968//
969template <typename SubPattern_t> struct Exact_match {
970 SubPattern_t SubPattern;
971
972 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
973
974 template <typename OpTy> bool match(OpTy *V) {
975 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
976 return PEO->isExact() && SubPattern.match(V);
977 return false;
978 }
979};
980
981template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
982 return SubPattern;
983}
984
985//===----------------------------------------------------------------------===//
986// Matchers for CmpInst classes
987//
988
989template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
990 bool Commutable = false>
991struct CmpClass_match {
992 PredicateTy &Predicate;
993 LHS_t L;
994 RHS_t R;
995
996 // The evaluation order is always stable, regardless of Commutability.
997 // The LHS is always matched first.
998 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
999 : Predicate(Pred), L(LHS), R(RHS) {}
1000
1001 template <typename OpTy> bool match(OpTy *V) {
1002 if (auto *I = dyn_cast<Class>(V))
1003 if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
1004 (Commutable && L.match(I->getOperand(1)) &&
1005 R.match(I->getOperand(0)))) {
1006 Predicate = I->getPredicate();
1007 return true;
1008 }
1009 return false;
1010 }
1011};
1012
1013template <typename LHS, typename RHS>
1014inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1015m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1016 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1017}
1018
1019template <typename LHS, typename RHS>
1020inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1021m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1022 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1023}
1024
1025template <typename LHS, typename RHS>
1026inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1027m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1028 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1029}
1030
1031//===----------------------------------------------------------------------===//
1032// Matchers for instructions with a given opcode and number of operands.
1033//
1034
1035/// Matches instructions with Opcode and three operands.
1036template <typename T0, unsigned Opcode> struct OneOps_match {
1037 T0 Op1;
1038
1039 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1040
1041 template <typename OpTy> bool match(OpTy *V) {
1042 if (V->getValueID() == Value::InstructionVal + Opcode) {
1043 auto *I = cast<Instruction>(V);
1044 return Op1.match(I->getOperand(0));
1045 }
1046 return false;
1047 }
1048};
1049
1050/// Matches instructions with Opcode and three operands.
1051template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1052 T0 Op1;
1053 T1 Op2;
1054
1055 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1056
1057 template <typename OpTy> bool match(OpTy *V) {
1058 if (V->getValueID() == Value::InstructionVal + Opcode) {
1059 auto *I = cast<Instruction>(V);
1060 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1061 }
1062 return false;
1063 }
1064};
1065
1066/// Matches instructions with Opcode and three operands.
1067template <typename T0, typename T1, typename T2, unsigned Opcode>
1068struct ThreeOps_match {
1069 T0 Op1;
1070 T1 Op2;
1071 T2 Op3;
1072
1073 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1074 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1075
1076 template <typename OpTy> bool match(OpTy *V) {
1077 if (V->getValueID() == Value::InstructionVal + Opcode) {
1078 auto *I = cast<Instruction>(V);
1079 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1080 Op3.match(I->getOperand(2));
1081 }
1082 return false;
1083 }
1084};
1085
1086/// Matches SelectInst.
1087template <typename Cond, typename LHS, typename RHS>
1088inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1089m_Select(const Cond &C, const LHS &L, const RHS &R) {
1090 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1091}
1092
1093/// This matches a select of two constants, e.g.:
1094/// m_SelectCst<-1, 0>(m_Value(V))
1095template <int64_t L, int64_t R, typename Cond>
1096inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1097 Instruction::Select>
1098m_SelectCst(const Cond &C) {
1099 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1100}
1101
1102/// Matches InsertElementInst.
1103template <typename Val_t, typename Elt_t, typename Idx_t>
1104inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1105m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1106 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1107 Val, Elt, Idx);
1108}
1109
1110/// Matches ExtractElementInst.
1111template <typename Val_t, typename Idx_t>
1112inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1113m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1114 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1115}
1116
1117/// Matches ShuffleVectorInst.
1118template <typename V1_t, typename V2_t, typename Mask_t>
1119inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>
1120m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1121 return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2,
1122 m);
1123}
1124
1125/// Matches LoadInst.
1126template <typename OpTy>
1127inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1128 return OneOps_match<OpTy, Instruction::Load>(Op);
1129}
1130
1131/// Matches StoreInst.
1132template <typename ValueOpTy, typename PointerOpTy>
1133inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1134m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1135 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1136 PointerOp);
1137}
1138
1139//===----------------------------------------------------------------------===//
1140// Matchers for CastInst classes
1141//
1142
1143template <typename Op_t, unsigned Opcode> struct CastClass_match {
1144 Op_t Op;
1145
1146 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1147
1148 template <typename OpTy> bool match(OpTy *V) {
1149 if (auto *O = dyn_cast<Operator>(V))
1150 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1151 return false;
1152 }
1153};
1154
1155/// Matches BitCast.
1156template <typename OpTy>
1157inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1158 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1159}
1160
1161/// Matches PtrToInt.
1162template <typename OpTy>
1163inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1164 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1165}
1166
1167/// Matches Trunc.
1168template <typename OpTy>
1169inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1170 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1171}
1172
1173/// Matches SExt.
1174template <typename OpTy>
1175inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1176 return CastClass_match<OpTy, Instruction::SExt>(Op);
1177}
1178
1179/// Matches ZExt.
1180template <typename OpTy>
1181inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1182 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1183}
1184
1185template <typename OpTy>
1186inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1187 CastClass_match<OpTy, Instruction::SExt>>
1188m_ZExtOrSExt(const OpTy &Op) {
1189 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1190}
1191
1192/// Matches UIToFP.
1193template <typename OpTy>
1194inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1195 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1196}
1197
1198/// Matches SIToFP.
1199template <typename OpTy>
1200inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1201 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1202}
1203
1204/// Matches FPTrunc
1205template <typename OpTy>
1206inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1207 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1208}
1209
1210/// Matches FPExt
1211template <typename OpTy>
1212inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1213 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1214}
1215
1216//===----------------------------------------------------------------------===//
1217// Matchers for control flow.
1218//
1219
1220struct br_match {
1221 BasicBlock *&Succ;
1222
1223 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1224
1225 template <typename OpTy> bool match(OpTy *V) {
1226 if (auto *BI = dyn_cast<BranchInst>(V))
1227 if (BI->isUnconditional()) {
1228 Succ = BI->getSuccessor(0);
1229 return true;
1230 }
1231 return false;
1232 }
1233};
1234
1235inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1236
1237template <typename Cond_t> struct brc_match {
1238 Cond_t Cond;
1239 BasicBlock *&T, *&F;
1240
1241 brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
1242 : Cond(C), T(t), F(f) {}
1243
1244 template <typename OpTy> bool match(OpTy *V) {
1245 if (auto *BI = dyn_cast<BranchInst>(V))
1246 if (BI->isConditional() && Cond.match(BI->getCondition())) {
1247 T = BI->getSuccessor(0);
1248 F = BI->getSuccessor(1);
1249 return true;
1250 }
1251 return false;
1252 }
1253};
1254
1255template <typename Cond_t>
1256inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1257 return brc_match<Cond_t>(C, T, F);
1258}
1259
1260//===----------------------------------------------------------------------===//
1261// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1262//
1263
1264template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1265 bool Commutable = false>
1266struct MaxMin_match {
1267 LHS_t L;
1268 RHS_t R;
1269
1270 // The evaluation order is always stable, regardless of Commutability.
1271 // The LHS is always matched first.
1272 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1273
1274 template <typename OpTy> bool match(OpTy *V) {
1275 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1276 auto *SI = dyn_cast<SelectInst>(V);
1277 if (!SI)
1278 return false;
1279 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1280 if (!Cmp)
1281 return false;
1282 // At this point we have a select conditioned on a comparison. Check that
1283 // it is the values returned by the select that are being compared.
1284 Value *TrueVal = SI->getTrueValue();
1285 Value *FalseVal = SI->getFalseValue();
1286 Value *LHS = Cmp->getOperand(0);
1287 Value *RHS = Cmp->getOperand(1);
1288 if ((TrueVal != LHS || FalseVal != RHS) &&
1289 (TrueVal != RHS || FalseVal != LHS))
1290 return false;
1291 typename CmpInst_t::Predicate Pred =
1292 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1293 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1294 if (!Pred_t::match(Pred))
1295 return false;
1296 // It does! Bind the operands.
1297 return (L.match(LHS) && R.match(RHS)) ||
1298 (Commutable && L.match(RHS) && R.match(LHS));
1299 }
1300};
1301
1302/// Helper class for identifying signed max predicates.
1303struct smax_pred_ty {
1304 static bool match(ICmpInst::Predicate Pred) {
1305 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1306 }
1307};
1308
1309/// Helper class for identifying signed min predicates.
1310struct smin_pred_ty {
1311 static bool match(ICmpInst::Predicate Pred) {
1312 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1313 }
1314};
1315
1316/// Helper class for identifying unsigned max predicates.
1317struct umax_pred_ty {
1318 static bool match(ICmpInst::Predicate Pred) {
1319 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1320 }
1321};
1322
1323/// Helper class for identifying unsigned min predicates.
1324struct umin_pred_ty {
1325 static bool match(ICmpInst::Predicate Pred) {
1326 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1327 }
1328};
1329
1330/// Helper class for identifying ordered max predicates.
1331struct ofmax_pred_ty {
1332 static bool match(FCmpInst::Predicate Pred) {
1333 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1334 }
1335};
1336
1337/// Helper class for identifying ordered min predicates.
1338struct ofmin_pred_ty {
1339 static bool match(FCmpInst::Predicate Pred) {
1340 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1341 }
1342};
1343
1344/// Helper class for identifying unordered max predicates.
1345struct ufmax_pred_ty {
1346 static bool match(FCmpInst::Predicate Pred) {
1347 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1348 }
1349};
1350
1351/// Helper class for identifying unordered min predicates.
1352struct ufmin_pred_ty {
1353 static bool match(FCmpInst::Predicate Pred) {
1354 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1355 }
1356};
1357
1358template <typename LHS, typename RHS>
1359inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1360 const RHS &R) {
1361 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1362}
1363
1364template <typename LHS, typename RHS>
1365inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1366 const RHS &R) {
1367 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1368}
1369
1370template <typename LHS, typename RHS>
1371inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1372 const RHS &R) {
1373 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1374}
1375
1376template <typename LHS, typename RHS>
1377inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1378 const RHS &R) {
1379 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1380}
1381
1382/// Match an 'ordered' floating point maximum function.
1383/// Floating point has one special value 'NaN'. Therefore, there is no total
1384/// order. However, if we can ignore the 'NaN' value (for example, because of a
1385/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1386/// semantics. In the presence of 'NaN' we have to preserve the original
1387/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1388///
1389/// max(L, R) iff L and R are not NaN
1390/// m_OrdFMax(L, R) = R iff L or R are NaN
1391template <typename LHS, typename RHS>
1392inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1393 const RHS &R) {
1394 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1395}
1396
1397/// Match an 'ordered' floating point minimum function.
1398/// Floating point has one special value 'NaN'. Therefore, there is no total
1399/// order. However, if we can ignore the 'NaN' value (for example, because of a
1400/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1401/// semantics. In the presence of 'NaN' we have to preserve the original
1402/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1403///
1404/// min(L, R) iff L and R are not NaN
1405/// m_OrdFMin(L, R) = R iff L or R are NaN
1406template <typename LHS, typename RHS>
1407inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1408 const RHS &R) {
1409 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1410}
1411
1412/// Match an 'unordered' floating point maximum function.
1413/// Floating point has one special value 'NaN'. Therefore, there is no total
1414/// order. However, if we can ignore the 'NaN' value (for example, because of a
1415/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1416/// semantics. In the presence of 'NaN' we have to preserve the original
1417/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1418///
1419/// max(L, R) iff L and R are not NaN
1420/// m_UnordFMax(L, R) = L iff L or R are NaN
1421template <typename LHS, typename RHS>
1422inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1423m_UnordFMax(const LHS &L, const RHS &R) {
1424 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1425}
1426
1427/// Match an 'unordered' floating point minimum function.
1428/// Floating point has one special value 'NaN'. Therefore, there is no total
1429/// order. However, if we can ignore the 'NaN' value (for example, because of a
1430/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1431/// semantics. In the presence of 'NaN' we have to preserve the original
1432/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1433///
1434/// min(L, R) iff L and R are not NaN
1435/// m_UnordFMin(L, R) = L iff L or R are NaN
1436template <typename LHS, typename RHS>
1437inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1438m_UnordFMin(const LHS &L, const RHS &R) {
1439 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1440}
1441
1442//===----------------------------------------------------------------------===//
1443// Matchers for overflow check patterns: e.g. (a + b) u< a
1444//
1445
1446template <typename LHS_t, typename RHS_t, typename Sum_t>
1447struct UAddWithOverflow_match {
1448 LHS_t L;
1449 RHS_t R;
1450 Sum_t S;
1451
1452 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1453 : L(L), R(R), S(S) {}
1454
1455 template <typename OpTy> bool match(OpTy *V) {
1456 Value *ICmpLHS, *ICmpRHS;
1457 ICmpInst::Predicate Pred;
1458 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1459 return false;
1460
1461 Value *AddLHS, *AddRHS;
1462 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1463
1464 // (a + b) u< a, (a + b) u< b
1465 if (Pred == ICmpInst::ICMP_ULT)
1466 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1467 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1468
1469 // a >u (a + b), b >u (a + b)
1470 if (Pred == ICmpInst::ICMP_UGT)
1471 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1472 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1473
1474 // Match special-case for increment-by-1.
1475 if (Pred == ICmpInst::ICMP_EQ) {
1476 // (a + 1) == 0
1477 // (1 + a) == 0
1478 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1479 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1480 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1481 // 0 == (a + 1)
1482 // 0 == (1 + a)
1483 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1484 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1485 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1486 }
1487
1488 return false;
1489 }
1490};
1491
1492/// Match an icmp instruction checking for unsigned overflow on addition.
1493///
1494/// S is matched to the addition whose result is being checked for overflow, and
1495/// L and R are matched to the LHS and RHS of S.
1496template <typename LHS_t, typename RHS_t, typename Sum_t>
1497UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1498m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1499 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1500}
1501
1502template <typename Opnd_t> struct Argument_match {
1503 unsigned OpI;
1504 Opnd_t Val;
1505
1506 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1507
1508 template <typename OpTy> bool match(OpTy *V) {
1509 // FIXME: Should likely be switched to use `CallBase`.
1510 if (const auto *CI = dyn_cast<CallInst>(V))
1511 return Val.match(CI->getArgOperand(OpI));
1512 return false;
1513 }
1514};
1515
1516/// Match an argument.
1517template <unsigned OpI, typename Opnd_t>
1518inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1519 return Argument_match<Opnd_t>(OpI, Op);
1520}
1521
1522/// Intrinsic matchers.
1523struct IntrinsicID_match {
1524 unsigned ID;
1525
1526 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1527
1528 template <typename OpTy> bool match(OpTy *V) {
1529 if (const auto *CI = dyn_cast<CallInst>(V))
1530 if (const auto *F = CI->getCalledFunction())
1531 return F->getIntrinsicID() == ID;
1532 return false;
1533 }
1534};
1535
1536/// Intrinsic matches are combinations of ID matchers, and argument
1537/// matchers. Higher arity matcher are defined recursively in terms of and-ing
1538/// them with lower arity matchers. Here's some convenient typedefs for up to
1539/// several arguments, and more can be added as needed
1540template <typename T0 = void, typename T1 = void, typename T2 = void,
1541 typename T3 = void, typename T4 = void, typename T5 = void,
1542 typename T6 = void, typename T7 = void, typename T8 = void,
1543 typename T9 = void, typename T10 = void>
1544struct m_Intrinsic_Ty;
1545template <typename T0> struct m_Intrinsic_Ty<T0> {
1546 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1547};
1548template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1549 using Ty =
1550 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1551};
1552template <typename T0, typename T1, typename T2>
1553struct m_Intrinsic_Ty<T0, T1, T2> {
1554 using Ty =
1555 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1556 Argument_match<T2>>;
1557};
1558template <typename T0, typename T1, typename T2, typename T3>
1559struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1560 using Ty =
1561 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1562 Argument_match<T3>>;
1563};
1564
1565/// Match intrinsic calls like this:
1566/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1567template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1568 return IntrinsicID_match(IntrID);
1569}
1570
1571template <Intrinsic::ID IntrID, typename T0>
1572inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1573 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1574}
1575
1576template <Intrinsic::ID IntrID, typename T0, typename T1>
1577inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1578 const T1 &Op1) {
1579 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1580}
1581
1582template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1583inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1584m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1585 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1586}
1587
1588template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1589 typename T3>
1590inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1591m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1592 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1593}
1594
1595// Helper intrinsic matching specializations.
1596template <typename Opnd0>
1597inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1598 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1599}
1600
1601template <typename Opnd0>
1602inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1603 return m_Intrinsic<Intrinsic::bswap>(Op0);
1604}
1605
1606template <typename Opnd0>
1607inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1608 return m_Intrinsic<Intrinsic::fabs>(Op0);
1609}
1610
1611template <typename Opnd0>
1612inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1613 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1614}
1615
1616template <typename Opnd0, typename Opnd1>
1617inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1618 const Opnd1 &Op1) {
1619 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1620}
1621
1622template <typename Opnd0, typename Opnd1>
1623inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1624 const Opnd1 &Op1) {
1625 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1626}
1627
1628//===----------------------------------------------------------------------===//
1629// Matchers for two-operands operators with the operators in either order
1630//
1631
1632/// Matches a BinaryOperator with LHS and RHS in either order.
1633template <typename LHS, typename RHS>
1634inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1635 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1636}
1637
1638/// Matches an ICmp with a predicate over LHS and RHS in either order.
1639/// Does not swap the predicate.
1640template <typename LHS, typename RHS>
1641inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
1642m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1643 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
1644 R);
1645}
1646
1647/// Matches a Add with LHS and RHS in either order.
1648template <typename LHS, typename RHS>
1649inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
1650 const RHS &R) {
1651 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
1652}
1653
1654/// Matches a Mul with LHS and RHS in either order.
1655template <typename LHS, typename RHS>
1656inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
1657 const RHS &R) {
1658 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
1659}
1660
1661/// Matches an And with LHS and RHS in either order.
1662template <typename LHS, typename RHS>
1663inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
1664 const RHS &R) {
1665 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
1666}
1667
1668/// Matches an Or with LHS and RHS in either order.
1669template <typename LHS, typename RHS>
1670inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
1671 const RHS &R) {
1672 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
1673}
1674
1675/// Matches an Xor with LHS and RHS in either order.
1676template <typename LHS, typename RHS>
1677inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
1678 const RHS &R) {
1679 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
1680}
1681
1682/// Matches a 'Neg' as 'sub 0, V'.
1683template <typename ValTy>
1684inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1685m_Neg(const ValTy &V) {
1686 return m_Sub(m_ZeroInt(), V);
1687}
1688
1689/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1690template <typename ValTy>
1691inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1692m_Not(const ValTy &V) {
1693 return m_c_Xor(V, m_AllOnes());
1694}
1695
1696/// Matches an SMin with LHS and RHS in either order.
1697template <typename LHS, typename RHS>
1698inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
1699m_c_SMin(const LHS &L, const RHS &R) {
1700 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
1701}
1702/// Matches an SMax with LHS and RHS in either order.
1703template <typename LHS, typename RHS>
1704inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
1705m_c_SMax(const LHS &L, const RHS &R) {
1706 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
1707}
1708/// Matches a UMin with LHS and RHS in either order.
1709template <typename LHS, typename RHS>
1710inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
1711m_c_UMin(const LHS &L, const RHS &R) {
1712 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
1713}
1714/// Matches a UMax with LHS and RHS in either order.
1715template <typename LHS, typename RHS>
1716inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
1717m_c_UMax(const LHS &L, const RHS &R) {
1718 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
1719}
1720
1721/// Matches FAdd with LHS and RHS in either order.
1722template <typename LHS, typename RHS>
1723inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
1724m_c_FAdd(const LHS &L, const RHS &R) {
1725 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
1726}
1727
1728/// Matches FMul with LHS and RHS in either order.
1729template <typename LHS, typename RHS>
1730inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
1731m_c_FMul(const LHS &L, const RHS &R) {
1732 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
1733}
1734
1735template <typename Opnd_t> struct Signum_match {
1736 Opnd_t Val;
1737 Signum_match(const Opnd_t &V) : Val(V) {}
1738
1739 template <typename OpTy> bool match(OpTy *V) {
1740 unsigned TypeSize = V->getType()->getScalarSizeInBits();
1741 if (TypeSize == 0)
1742 return false;
1743
1744 unsigned ShiftWidth = TypeSize - 1;
1745 Value *OpL = nullptr, *OpR = nullptr;
1746
1747 // This is the representation of signum we match:
1748 //
1749 // signum(x) == (x >> 63) | (-x >>u 63)
1750 //
1751 // An i1 value is its own signum, so it's correct to match
1752 //
1753 // signum(x) == (x >> 0) | (-x >>u 0)
1754 //
1755 // for i1 values.
1756
1757 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1758 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1759 auto Signum = m_Or(LHS, RHS);
1760
1761 return Signum.match(V) && OpL == OpR && Val.match(OpL);
1762 }
1763};
1764
1765/// Matches a signum pattern.
1766///
1767/// signum(x) =
1768/// x > 0 -> 1
1769/// x == 0 -> 0
1770/// x < 0 -> -1
1771template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1772 return Signum_match<Val_t>(V);
1773}
1774
1775} // end namespace PatternMatch
1776} // end namespace llvm
1777
1778#endif // LLVM_IR_PATTERNMATCH_H

/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/ADT/iterator.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/InstrTypes.h"
33#include "llvm/IR/Instruction.h"
34#include "llvm/IR/OperandTraits.h"
35#include "llvm/IR/Type.h"
36#include "llvm/IR/Use.h"
37#include "llvm/IR/User.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Support/AtomicOrdering.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <cassert>
43#include <cstddef>
44#include <cstdint>
45#include <iterator>
46
47namespace llvm {
48
49class APInt;
50class ConstantInt;
51class DataLayout;
52class LLVMContext;
53
54//===----------------------------------------------------------------------===//
55// AllocaInst Class
56//===----------------------------------------------------------------------===//
57
58/// an instruction to allocate memory on the stack
59class AllocaInst : public UnaryInstruction {
60 Type *AllocatedType;
61
62protected:
63 // Note: Instruction needs to be a friend here to call cloneImpl.
64 friend class Instruction;
65
66 AllocaInst *cloneImpl() const;
67
68public:
69 explicit AllocaInst(Type *Ty, unsigned AddrSpace,
70 Value *ArraySize = nullptr,
71 const Twine &Name = "",
72 Instruction *InsertBefore = nullptr);
73 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
74 const Twine &Name, BasicBlock *InsertAtEnd);
75
76 AllocaInst(Type *Ty, unsigned AddrSpace,
77 const Twine &Name, Instruction *InsertBefore = nullptr);
78 AllocaInst(Type *Ty, unsigned AddrSpace,
79 const Twine &Name, BasicBlock *InsertAtEnd);
80
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
82 const Twine &Name = "", Instruction *InsertBefore = nullptr);
83 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, unsigned Align,
84 const Twine &Name, BasicBlock *InsertAtEnd);
85
86 /// Return true if there is an allocation size parameter to the allocation
87 /// instruction that is not 1.
88 bool isArrayAllocation() const;
89
90 /// Get the number of elements allocated. For a simple allocation of a single
91 /// element, this will return a constant 1 value.
92 const Value *getArraySize() const { return getOperand(0); }
93 Value *getArraySize() { return getOperand(0); }
94
95 /// Overload to return most specific pointer type.
96 PointerType *getType() const {
97 return cast<PointerType>(Instruction::getType());
98 }
99
100 /// Get allocation size in bits. Returns None if size can't be determined,
101 /// e.g. in case of a VLA.
102 Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const;
103
104 /// Return the type that is being allocated by the instruction.
105 Type *getAllocatedType() const { return AllocatedType; }
106 /// for use only in special circumstances that need to generically
107 /// transform a whole instruction (eg: IR linking and vectorization).
108 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
109
110 /// Return the alignment of the memory that is being allocated by the
111 /// instruction.
112 unsigned getAlignment() const {
113 return (1u << (getSubclassDataFromInstruction() & 31)) >> 1;
114 }
115 void setAlignment(unsigned Align);
116
117 /// Return true if this alloca is in the entry block of the function and is a
118 /// constant size. If so, the code generator will fold it into the
119 /// prolog/epilog code, so it is basically free.
120 bool isStaticAlloca() const;
121
122 /// Return true if this alloca is used as an inalloca argument to a call. Such
123 /// allocas are never considered static even if they are in the entry block.
124 bool isUsedWithInAlloca() const {
125 return getSubclassDataFromInstruction() & 32;
126 }
127
128 /// Specify whether this alloca is used to represent the arguments to a call.
129 void setUsedWithInAlloca(bool V) {
130 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
131 (V ? 32 : 0));
132 }
133
134 /// Return true if this alloca is used as a swifterror argument to a call.
135 bool isSwiftError() const {
136 return getSubclassDataFromInstruction() & 64;
137 }
138
139 /// Specify whether this alloca is used to represent a swifterror.
140 void setSwiftError(bool V) {
141 setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
142 (V ? 64 : 0));
143 }
144
145 // Methods for support type inquiry through isa, cast, and dyn_cast:
146 static bool classof(const Instruction *I) {
147 return (I->getOpcode() == Instruction::Alloca);
148 }
149 static bool classof(const Value *V) {
150 return isa<Instruction>(V) && classof(cast<Instruction>(V));
151 }
152
153private:
154 // Shadow Instruction::setInstructionSubclassData with a private forwarding
155 // method so that subclasses cannot accidentally use it.
156 void setInstructionSubclassData(unsigned short D) {
157 Instruction::setInstructionSubclassData(D);
158 }
159};
160
161//===----------------------------------------------------------------------===//
162// LoadInst Class
163//===----------------------------------------------------------------------===//
164
165/// An instruction for reading from memory. This uses the SubclassData field in
166/// Value to store whether or not the load is volatile.
167class LoadInst : public UnaryInstruction {
168 void AssertOK();
169
170protected:
171 // Note: Instruction needs to be a friend here to call cloneImpl.
172 friend class Instruction;
173
174 LoadInst *cloneImpl() const;
175
176public:
177 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr = "",
178 Instruction *InsertBefore = nullptr);
179 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
180 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
181 Instruction *InsertBefore = nullptr);
182 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
183 BasicBlock *InsertAtEnd);
184 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
185 unsigned Align, Instruction *InsertBefore = nullptr);
186 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
187 unsigned Align, BasicBlock *InsertAtEnd);
188 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
189 unsigned Align, AtomicOrdering Order,
190 SyncScope::ID SSID = SyncScope::System,
191 Instruction *InsertBefore = nullptr);
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
193 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
194 BasicBlock *InsertAtEnd);
195
196 // Deprecated [opaque pointer types]
197 explicit LoadInst(Value *Ptr, const Twine &NameStr = "",
198 Instruction *InsertBefore = nullptr)
199 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
200 InsertBefore) {}
201 LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd)
202 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
203 InsertAtEnd) {}
204 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
205 Instruction *InsertBefore = nullptr)
206 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
207 isVolatile, InsertBefore) {}
208 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
209 BasicBlock *InsertAtEnd)
210 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
211 isVolatile, InsertAtEnd) {}
212 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
213 Instruction *InsertBefore = nullptr)
214 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
215 isVolatile, Align, InsertBefore) {}
216 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
217 BasicBlock *InsertAtEnd)
218 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
219 isVolatile, Align, InsertAtEnd) {}
220 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
221 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
222 Instruction *InsertBefore = nullptr)
223 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
224 isVolatile, Align, Order, SSID, InsertBefore) {}
225 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align,
226 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd)
227 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
228 isVolatile, Align, Order, SSID, InsertAtEnd) {}
229
230 /// Return true if this is a load from a volatile memory location.
231 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
232
233 /// Specify whether this is a volatile load or not.
234 void setVolatile(bool V) {
235 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
236 (V ? 1 : 0));
237 }
238
239 /// Return the alignment of the access that is being performed.
240 unsigned getAlignment() const {
241 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
242 }
243
244 void setAlignment(unsigned Align);
245
246 /// Returns the ordering constraint of this load instruction.
247 AtomicOrdering getOrdering() const {
248 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
249 }
250
251 /// Sets the ordering constraint of this load instruction. May not be Release
252 /// or AcquireRelease.
253 void setOrdering(AtomicOrdering Ordering) {
254 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
255 ((unsigned)Ordering << 7));
256 }
257
258 /// Returns the synchronization scope ID of this load instruction.
259 SyncScope::ID getSyncScopeID() const {
260 return SSID;
261 }
262
263 /// Sets the synchronization scope ID of this load instruction.
264 void setSyncScopeID(SyncScope::ID SSID) {
265 this->SSID = SSID;
266 }
267
268 /// Sets the ordering constraint and the synchronization scope ID of this load
269 /// instruction.
270 void setAtomic(AtomicOrdering Ordering,
271 SyncScope::ID SSID = SyncScope::System) {
272 setOrdering(Ordering);
273 setSyncScopeID(SSID);
274 }
275
276 bool isSimple() const { return !isAtomic() && !isVolatile(); }
277
278 bool isUnordered() const {
279 return (getOrdering() == AtomicOrdering::NotAtomic ||
280 getOrdering() == AtomicOrdering::Unordered) &&
281 !isVolatile();
282 }
283
284 Value *getPointerOperand() { return getOperand(0); }
285 const Value *getPointerOperand() const { return getOperand(0); }
286 static unsigned getPointerOperandIndex() { return 0U; }
287 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
288
289 /// Returns the address space of the pointer operand.
290 unsigned getPointerAddressSpace() const {
291 return getPointerOperandType()->getPointerAddressSpace();
292 }
293
294 // Methods for support type inquiry through isa, cast, and dyn_cast:
295 static bool classof(const Instruction *I) {
296 return I->getOpcode() == Instruction::Load;
297 }
298 static bool classof(const Value *V) {
299 return isa<Instruction>(V) && classof(cast<Instruction>(V));
300 }
301
302private:
303 // Shadow Instruction::setInstructionSubclassData with a private forwarding
304 // method so that subclasses cannot accidentally use it.
305 void setInstructionSubclassData(unsigned short D) {
306 Instruction::setInstructionSubclassData(D);
307 }
308
309 /// The synchronization scope ID of this load instruction. Not quite enough
310 /// room in SubClassData for everything, so synchronization scope ID gets its
311 /// own field.
312 SyncScope::ID SSID;
313};
314
315//===----------------------------------------------------------------------===//
316// StoreInst Class
317//===----------------------------------------------------------------------===//
318
319/// An instruction for storing to memory.
320class StoreInst : public Instruction {
321 void AssertOK();
322
323protected:
324 // Note: Instruction needs to be a friend here to call cloneImpl.
325 friend class Instruction;
326
327 StoreInst *cloneImpl() const;
328
329public:
330 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
331 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
332 StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
333 Instruction *InsertBefore = nullptr);
334 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
335 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
336 unsigned Align, Instruction *InsertBefore = nullptr);
337 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
338 unsigned Align, BasicBlock *InsertAtEnd);
339 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
340 unsigned Align, AtomicOrdering Order,
341 SyncScope::ID SSID = SyncScope::System,
342 Instruction *InsertBefore = nullptr);
343 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
344 unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
345 BasicBlock *InsertAtEnd);
346
347 // allocate space for exactly two operands
348 void *operator new(size_t s) {
349 return User::operator new(s, 2);
350 }
351
352 /// Return true if this is a store to a volatile memory location.
353 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
354
355 /// Specify whether this is a volatile store or not.
356 void setVolatile(bool V) {
357 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
358 (V ? 1 : 0));
359 }
360
361 /// Transparently provide more efficient getOperand methods.
362 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
363
364 /// Return the alignment of the access that is being performed
365 unsigned getAlignment() const {
366 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
367 }
368
369 void setAlignment(unsigned Align);
370
371 /// Returns the ordering constraint of this store instruction.
372 AtomicOrdering getOrdering() const {
373 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
374 }
375
376 /// Sets the ordering constraint of this store instruction. May not be
377 /// Acquire or AcquireRelease.
378 void setOrdering(AtomicOrdering Ordering) {
379 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
380 ((unsigned)Ordering << 7));
381 }
382
383 /// Returns the synchronization scope ID of this store instruction.
384 SyncScope::ID getSyncScopeID() const {
385 return SSID;
386 }
387
388 /// Sets the synchronization scope ID of this store instruction.
389 void setSyncScopeID(SyncScope::ID SSID) {
390 this->SSID = SSID;
391 }
392
393 /// Sets the ordering constraint and the synchronization scope ID of this
394 /// store instruction.
395 void setAtomic(AtomicOrdering Ordering,
396 SyncScope::ID SSID = SyncScope::System) {
397 setOrdering(Ordering);
398 setSyncScopeID(SSID);
399 }
400
401 bool isSimple() const { return !isAtomic() && !isVolatile(); }
402
403 bool isUnordered() const {
404 return (getOrdering() == AtomicOrdering::NotAtomic ||
405 getOrdering() == AtomicOrdering::Unordered) &&
406 !isVolatile();
407 }
408
409 Value *getValueOperand() { return getOperand(0); }
410 const Value *getValueOperand() const { return getOperand(0); }
411
412 Value *getPointerOperand() { return getOperand(1); }
413 const Value *getPointerOperand() const { return getOperand(1); }
414 static unsigned getPointerOperandIndex() { return 1U; }
415 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
416
417 /// Returns the address space of the pointer operand.
418 unsigned getPointerAddressSpace() const {
419 return getPointerOperandType()->getPointerAddressSpace();
420 }
421
422 // Methods for support type inquiry through isa, cast, and dyn_cast:
423 static bool classof(const Instruction *I) {
424 return I->getOpcode() == Instruction::Store;
425 }
426 static bool classof(const Value *V) {
427 return isa<Instruction>(V) && classof(cast<Instruction>(V));
428 }
429
430private:
431 // Shadow Instruction::setInstructionSubclassData with a private forwarding
432 // method so that subclasses cannot accidentally use it.
433 void setInstructionSubclassData(unsigned short D) {
434 Instruction::setInstructionSubclassData(D);
435 }
436
437 /// The synchronization scope ID of this store instruction. Not quite enough
438 /// room in SubClassData for everything, so synchronization scope ID gets its
439 /// own field.
440 SyncScope::ID SSID;
441};
442
443template <>
444struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
445};
446
447DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<StoreInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 447, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst
*>(this))[i_nocapture].get()); } void StoreInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 447, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst
::getNumOperands() const { return OperandTraits<StoreInst>
::operands(this); } template <int Idx_nocapture> Use &
StoreInst::Op() { return this->OpFrom<Idx_nocapture>
(this); } template <int Idx_nocapture> const Use &StoreInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
448
449//===----------------------------------------------------------------------===//
450// FenceInst Class
451//===----------------------------------------------------------------------===//
452
453/// An instruction for ordering other memory operations.
454class FenceInst : public Instruction {
455 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
456
457protected:
458 // Note: Instruction needs to be a friend here to call cloneImpl.
459 friend class Instruction;
460
461 FenceInst *cloneImpl() const;
462
463public:
464 // Ordering may only be Acquire, Release, AcquireRelease, or
465 // SequentiallyConsistent.
466 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
467 SyncScope::ID SSID = SyncScope::System,
468 Instruction *InsertBefore = nullptr);
469 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
470 BasicBlock *InsertAtEnd);
471
472 // allocate space for exactly zero operands
473 void *operator new(size_t s) {
474 return User::operator new(s, 0);
475 }
476
477 /// Returns the ordering constraint of this fence instruction.
478 AtomicOrdering getOrdering() const {
479 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
480 }
481
482 /// Sets the ordering constraint of this fence instruction. May only be
483 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
484 void setOrdering(AtomicOrdering Ordering) {
485 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
486 ((unsigned)Ordering << 1));
487 }
488
489 /// Returns the synchronization scope ID of this fence instruction.
490 SyncScope::ID getSyncScopeID() const {
491 return SSID;
492 }
493
494 /// Sets the synchronization scope ID of this fence instruction.
495 void setSyncScopeID(SyncScope::ID SSID) {
496 this->SSID = SSID;
497 }
498
499 // Methods for support type inquiry through isa, cast, and dyn_cast:
500 static bool classof(const Instruction *I) {
501 return I->getOpcode() == Instruction::Fence;
502 }
503 static bool classof(const Value *V) {
504 return isa<Instruction>(V) && classof(cast<Instruction>(V));
505 }
506
507private:
508 // Shadow Instruction::setInstructionSubclassData with a private forwarding
509 // method so that subclasses cannot accidentally use it.
510 void setInstructionSubclassData(unsigned short D) {
511 Instruction::setInstructionSubclassData(D);
512 }
513
514 /// The synchronization scope ID of this fence instruction. Not quite enough
515 /// room in SubClassData for everything, so synchronization scope ID gets its
516 /// own field.
517 SyncScope::ID SSID;
518};
519
520//===----------------------------------------------------------------------===//
521// AtomicCmpXchgInst Class
522//===----------------------------------------------------------------------===//
523
524/// an instruction that atomically checks whether a
525/// specified value is in a memory location, and, if it is, stores a new value
526/// there. Returns the value that was loaded.
527///
528class AtomicCmpXchgInst : public Instruction {
529 void Init(Value *Ptr, Value *Cmp, Value *NewVal,
530 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
531 SyncScope::ID SSID);
532
533protected:
534 // Note: Instruction needs to be a friend here to call cloneImpl.
535 friend class Instruction;
536
537 AtomicCmpXchgInst *cloneImpl() const;
538
539public:
540 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
541 AtomicOrdering SuccessOrdering,
542 AtomicOrdering FailureOrdering,
543 SyncScope::ID SSID, Instruction *InsertBefore = nullptr);
544 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
545 AtomicOrdering SuccessOrdering,
546 AtomicOrdering FailureOrdering,
547 SyncScope::ID SSID, BasicBlock *InsertAtEnd);
548
549 // allocate space for exactly three operands
550 void *operator new(size_t s) {
551 return User::operator new(s, 3);
552 }
553
554 /// Return true if this is a cmpxchg from a volatile memory
555 /// location.
556 ///
557 bool isVolatile() const {
558 return getSubclassDataFromInstruction() & 1;
559 }
560
561 /// Specify whether this is a volatile cmpxchg.
562 ///
563 void setVolatile(bool V) {
564 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
565 (unsigned)V);
566 }
567
568 /// Return true if this cmpxchg may spuriously fail.
569 bool isWeak() const {
570 return getSubclassDataFromInstruction() & 0x100;
571 }
572
573 void setWeak(bool IsWeak) {
574 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
575 (IsWeak << 8));
576 }
577
578 /// Transparently provide more efficient getOperand methods.
579 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
580
581 /// Returns the success ordering constraint of this cmpxchg instruction.
582 AtomicOrdering getSuccessOrdering() const {
583 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
584 }
585
586 /// Sets the success ordering constraint of this cmpxchg instruction.
587 void setSuccessOrdering(AtomicOrdering Ordering) {
588 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 589, __PRETTY_FUNCTION__))
589 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 589, __PRETTY_FUNCTION__))
;
590 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
591 ((unsigned)Ordering << 2));
592 }
593
594 /// Returns the failure ordering constraint of this cmpxchg instruction.
595 AtomicOrdering getFailureOrdering() const {
596 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
597 }
598
599 /// Sets the failure ordering constraint of this cmpxchg instruction.
600 void setFailureOrdering(AtomicOrdering Ordering) {
601 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 602, __PRETTY_FUNCTION__))
602 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 602, __PRETTY_FUNCTION__))
;
603 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
604 ((unsigned)Ordering << 5));
605 }
606
607 /// Returns the synchronization scope ID of this cmpxchg instruction.
608 SyncScope::ID getSyncScopeID() const {
609 return SSID;
610 }
611
612 /// Sets the synchronization scope ID of this cmpxchg instruction.
613 void setSyncScopeID(SyncScope::ID SSID) {
614 this->SSID = SSID;
615 }
616
617 Value *getPointerOperand() { return getOperand(0); }
618 const Value *getPointerOperand() const { return getOperand(0); }
619 static unsigned getPointerOperandIndex() { return 0U; }
620
621 Value *getCompareOperand() { return getOperand(1); }
622 const Value *getCompareOperand() const { return getOperand(1); }
623
624 Value *getNewValOperand() { return getOperand(2); }
625 const Value *getNewValOperand() const { return getOperand(2); }
626
627 /// Returns the address space of the pointer operand.
628 unsigned getPointerAddressSpace() const {
629 return getPointerOperand()->getType()->getPointerAddressSpace();
630 }
631
632 /// Returns the strongest permitted ordering on failure, given the
633 /// desired ordering on success.
634 ///
635 /// If the comparison in a cmpxchg operation fails, there is no atomic store
636 /// so release semantics cannot be provided. So this function drops explicit
637 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
638 /// operation would remain SequentiallyConsistent.
639 static AtomicOrdering
640 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
641 switch (SuccessOrdering) {
642 default:
643 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 643)
;
644 case AtomicOrdering::Release:
645 case AtomicOrdering::Monotonic:
646 return AtomicOrdering::Monotonic;
647 case AtomicOrdering::AcquireRelease:
648 case AtomicOrdering::Acquire:
649 return AtomicOrdering::Acquire;
650 case AtomicOrdering::SequentiallyConsistent:
651 return AtomicOrdering::SequentiallyConsistent;
652 }
653 }
654
655 // Methods for support type inquiry through isa, cast, and dyn_cast:
656 static bool classof(const Instruction *I) {
657 return I->getOpcode() == Instruction::AtomicCmpXchg;
658 }
659 static bool classof(const Value *V) {
660 return isa<Instruction>(V) && classof(cast<Instruction>(V));
661 }
662
663private:
664 // Shadow Instruction::setInstructionSubclassData with a private forwarding
665 // method so that subclasses cannot accidentally use it.
666 void setInstructionSubclassData(unsigned short D) {
667 Instruction::setInstructionSubclassData(D);
668 }
669
670 /// The synchronization scope ID of this cmpxchg instruction. Not quite
671 /// enough room in SubClassData for everything, so synchronization scope ID
672 /// gets its own field.
673 SyncScope::ID SSID;
674};
675
676template <>
677struct OperandTraits<AtomicCmpXchgInst> :
678 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
679};
680
681DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 681, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 681, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
AtomicCmpXchgInst::getNumOperands() const { return OperandTraits
<AtomicCmpXchgInst>::operands(this); } template <int
Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &AtomicCmpXchgInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
682
683//===----------------------------------------------------------------------===//
684// AtomicRMWInst Class
685//===----------------------------------------------------------------------===//
686
687/// an instruction that atomically reads a memory location,
688/// combines it with another value, and then stores the result back. Returns
689/// the old value.
690///
691class AtomicRMWInst : public Instruction {
692protected:
693 // Note: Instruction needs to be a friend here to call cloneImpl.
694 friend class Instruction;
695
696 AtomicRMWInst *cloneImpl() const;
697
698public:
699 /// This enumeration lists the possible modifications atomicrmw can make. In
700 /// the descriptions, 'p' is the pointer to the instruction's memory location,
701 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
702 /// instruction. These instructions always return 'old'.
703 enum BinOp {
704 /// *p = v
705 Xchg,
706 /// *p = old + v
707 Add,
708 /// *p = old - v
709 Sub,
710 /// *p = old & v
711 And,
712 /// *p = ~(old & v)
713 Nand,
714 /// *p = old | v
715 Or,
716 /// *p = old ^ v
717 Xor,
718 /// *p = old >signed v ? old : v
719 Max,
720 /// *p = old <signed v ? old : v
721 Min,
722 /// *p = old >unsigned v ? old : v
723 UMax,
724 /// *p = old <unsigned v ? old : v
725 UMin,
726
727 /// *p = old + v
728 FAdd,
729
730 /// *p = old - v
731 FSub,
732
733 FIRST_BINOP = Xchg,
734 LAST_BINOP = FSub,
735 BAD_BINOP
736 };
737
738 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
739 AtomicOrdering Ordering, SyncScope::ID SSID,
740 Instruction *InsertBefore = nullptr);
741 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
742 AtomicOrdering Ordering, SyncScope::ID SSID,
743 BasicBlock *InsertAtEnd);
744
745 // allocate space for exactly two operands
746 void *operator new(size_t s) {
747 return User::operator new(s, 2);
748 }
749
750 BinOp getOperation() const {
751 return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
752 }
753
754 static StringRef getOperationName(BinOp Op);
755
756 static bool isFPOperation(BinOp Op) {
757 switch (Op) {
758 case AtomicRMWInst::FAdd:
759 case AtomicRMWInst::FSub:
760 return true;
761 default:
762 return false;
763 }
764 }
765
766 void setOperation(BinOp Operation) {
767 unsigned short SubclassData = getSubclassDataFromInstruction();
768 setInstructionSubclassData((SubclassData & 31) |
769 (Operation << 5));
770 }
771
772 /// Return true if this is a RMW on a volatile memory location.
773 ///
774 bool isVolatile() const {
775 return getSubclassDataFromInstruction() & 1;
776 }
777
778 /// Specify whether this is a volatile RMW or not.
779 ///
780 void setVolatile(bool V) {
781 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
782 (unsigned)V);
783 }
784
785 /// Transparently provide more efficient getOperand methods.
786 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
787
788 /// Returns the ordering constraint of this rmw instruction.
789 AtomicOrdering getOrdering() const {
790 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
791 }
792
793 /// Sets the ordering constraint of this rmw instruction.
794 void setOrdering(AtomicOrdering Ordering) {
795 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 796, __PRETTY_FUNCTION__))
796 "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 796, __PRETTY_FUNCTION__))
;
797 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
798 ((unsigned)Ordering << 2));
799 }
800
801 /// Returns the synchronization scope ID of this rmw instruction.
802 SyncScope::ID getSyncScopeID() const {
803 return SSID;
804 }
805
806 /// Sets the synchronization scope ID of this rmw instruction.
807 void setSyncScopeID(SyncScope::ID SSID) {
808 this->SSID = SSID;
809 }
810
811 Value *getPointerOperand() { return getOperand(0); }
812 const Value *getPointerOperand() const { return getOperand(0); }
813 static unsigned getPointerOperandIndex() { return 0U; }
814
815 Value *getValOperand() { return getOperand(1); }
816 const Value *getValOperand() const { return getOperand(1); }
817
818 /// Returns the address space of the pointer operand.
819 unsigned getPointerAddressSpace() const {
820 return getPointerOperand()->getType()->getPointerAddressSpace();
821 }
822
823 bool isFloatingPointOperation() const {
824 return isFPOperation(getOperation());
825 }
826
827 // Methods for support type inquiry through isa, cast, and dyn_cast:
828 static bool classof(const Instruction *I) {
829 return I->getOpcode() == Instruction::AtomicRMW;
830 }
831 static bool classof(const Value *V) {
832 return isa<Instruction>(V) && classof(cast<Instruction>(V));
833 }
834
835private:
836 void Init(BinOp Operation, Value *Ptr, Value *Val,
837 AtomicOrdering Ordering, SyncScope::ID SSID);
838
839 // Shadow Instruction::setInstructionSubclassData with a private forwarding
840 // method so that subclasses cannot accidentally use it.
841 void setInstructionSubclassData(unsigned short D) {
842 Instruction::setInstructionSubclassData(D);
843 }
844
845 /// The synchronization scope ID of this rmw instruction. Not quite enough
846 /// room in SubClassData for everything, so synchronization scope ID gets its
847 /// own field.
848 SyncScope::ID SSID;
849};
850
851template <>
852struct OperandTraits<AtomicRMWInst>
853 : public FixedNumOperandTraits<AtomicRMWInst,2> {
854};
855
856DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<AtomicRMWInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 856, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicRMWInst>::op_begin(const_cast<
AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<AtomicRMWInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 856, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst
::getNumOperands() const { return OperandTraits<AtomicRMWInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
857
858//===----------------------------------------------------------------------===//
859// GetElementPtrInst Class
860//===----------------------------------------------------------------------===//
861
862// checkGEPType - Simple wrapper function to give a better assertion failure
863// message on bad indexes for a gep instruction.
864//
865inline Type *checkGEPType(Type *Ty) {
866 assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!"
) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 866, __PRETTY_FUNCTION__))
;
867 return Ty;
868}
869
870/// an instruction for type-safe pointer arithmetic to
871/// access elements of arrays and structs
872///
873class GetElementPtrInst : public Instruction {
874 Type *SourceElementType;
875 Type *ResultElementType;
876
877 GetElementPtrInst(const GetElementPtrInst &GEPI);
878
879 /// Constructors - Create a getelementptr instruction with a base pointer an
880 /// list of indices. The first ctor can optionally insert before an existing
881 /// instruction, the second appends the new instruction to the specified
882 /// BasicBlock.
883 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
884 ArrayRef<Value *> IdxList, unsigned Values,
885 const Twine &NameStr, Instruction *InsertBefore);
886 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
887 ArrayRef<Value *> IdxList, unsigned Values,
888 const Twine &NameStr, BasicBlock *InsertAtEnd);
889
890 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
891
892protected:
893 // Note: Instruction needs to be a friend here to call cloneImpl.
894 friend class Instruction;
895
896 GetElementPtrInst *cloneImpl() const;
897
898public:
899 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
900 ArrayRef<Value *> IdxList,
901 const Twine &NameStr = "",
902 Instruction *InsertBefore = nullptr) {
903 unsigned Values = 1 + unsigned(IdxList.size());
904 if (!PointeeType)
905 PointeeType =
906 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
907 else
908 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 910, __PRETTY_FUNCTION__))
909 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 910, __PRETTY_FUNCTION__))
910 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 910, __PRETTY_FUNCTION__))
;
911 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
912 NameStr, InsertBefore);
913 }
914
915 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
916 ArrayRef<Value *> IdxList,
917 const Twine &NameStr,
918 BasicBlock *InsertAtEnd) {
919 unsigned Values = 1 + unsigned(IdxList.size());
920 if (!PointeeType)
921 PointeeType =
922 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
923 else
924 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 926, __PRETTY_FUNCTION__))
925 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 926, __PRETTY_FUNCTION__))
926 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 926, __PRETTY_FUNCTION__))
;
927 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
928 NameStr, InsertAtEnd);
929 }
930
931 /// Create an "inbounds" getelementptr. See the documentation for the
932 /// "inbounds" flag in LangRef.html for details.
933 static GetElementPtrInst *CreateInBounds(Value *Ptr,
934 ArrayRef<Value *> IdxList,
935 const Twine &NameStr = "",
936 Instruction *InsertBefore = nullptr){
937 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
938 }
939
940 static GetElementPtrInst *
941 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
942 const Twine &NameStr = "",
943 Instruction *InsertBefore = nullptr) {
944 GetElementPtrInst *GEP =
945 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
946 GEP->setIsInBounds(true);
947 return GEP;
948 }
949
950 static GetElementPtrInst *CreateInBounds(Value *Ptr,
951 ArrayRef<Value *> IdxList,
952 const Twine &NameStr,
953 BasicBlock *InsertAtEnd) {
954 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
955 }
956
957 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
958 ArrayRef<Value *> IdxList,
959 const Twine &NameStr,
960 BasicBlock *InsertAtEnd) {
961 GetElementPtrInst *GEP =
962 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
963 GEP->setIsInBounds(true);
964 return GEP;
965 }
966
967 /// Transparently provide more efficient getOperand methods.
968 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
969
970 Type *getSourceElementType() const { return SourceElementType; }
971
972 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
973 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
974
975 Type *getResultElementType() const {
976 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 977, __PRETTY_FUNCTION__))
977 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 977, __PRETTY_FUNCTION__))
;
978 return ResultElementType;
979 }
980
981 /// Returns the address space of this instruction's pointer type.
982 unsigned getAddressSpace() const {
983 // Note that this is always the same as the pointer operand's address space
984 // and that is cheaper to compute, so cheat here.
985 return getPointerAddressSpace();
986 }
987
988 /// Returns the type of the element that would be loaded with
989 /// a load instruction with the specified parameters.
990 ///
991 /// Null is returned if the indices are invalid for the specified
992 /// pointer type.
993 ///
994 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
995 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
996 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
997
998 inline op_iterator idx_begin() { return op_begin()+1; }
999 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1000 inline op_iterator idx_end() { return op_end(); }
1001 inline const_op_iterator idx_end() const { return op_end(); }
1002
1003 inline iterator_range<op_iterator> indices() {
1004 return make_range(idx_begin(), idx_end());
1005 }
1006
1007 inline iterator_range<const_op_iterator> indices() const {
1008 return make_range(idx_begin(), idx_end());
1009 }
1010
1011 Value *getPointerOperand() {
1012 return getOperand(0);
1013 }
1014 const Value *getPointerOperand() const {
1015 return getOperand(0);
1016 }
1017 static unsigned getPointerOperandIndex() {
1018 return 0U; // get index for modifying correct operand.
1019 }
1020
1021 /// Method to return the pointer operand as a
1022 /// PointerType.
1023 Type *getPointerOperandType() const {
1024 return getPointerOperand()->getType();
1025 }
1026
1027 /// Returns the address space of the pointer operand.
1028 unsigned getPointerAddressSpace() const {
1029 return getPointerOperandType()->getPointerAddressSpace();
1030 }
1031
1032 /// Returns the pointer type returned by the GEP
1033 /// instruction, which may be a vector of pointers.
1034 static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) {
1035 return getGEPReturnType(
1036 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(),
1037 Ptr, IdxList);
1038 }
1039 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1040 ArrayRef<Value *> IdxList) {
1041 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1042 Ptr->getType()->getPointerAddressSpace());
1043 // Vector GEP
1044 if (Ptr->getType()->isVectorTy()) {
1045 unsigned NumElem = Ptr->getType()->getVectorNumElements();
1046 return VectorType::get(PtrTy, NumElem);
1047 }
1048 for (Value *Index : IdxList)
1049 if (Index->getType()->isVectorTy()) {
1050 unsigned NumElem = Index->getType()->getVectorNumElements();
1051 return VectorType::get(PtrTy, NumElem);
1052 }
1053 // Scalar GEP
1054 return PtrTy;
1055 }
1056
1057 unsigned getNumIndices() const { // Note: always non-negative
1058 return getNumOperands() - 1;
1059 }
1060
1061 bool hasIndices() const {
1062 return getNumOperands() > 1;
1063 }
1064
1065 /// Return true if all of the indices of this GEP are
1066 /// zeros. If so, the result pointer and the first operand have the same
1067 /// value, just potentially different types.
1068 bool hasAllZeroIndices() const;
1069
1070 /// Return true if all of the indices of this GEP are
1071 /// constant integers. If so, the result pointer and the first operand have
1072 /// a constant offset between them.
1073 bool hasAllConstantIndices() const;
1074
1075 /// Set or clear the inbounds flag on this GEP instruction.
1076 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1077 void setIsInBounds(bool b = true);
1078
1079 /// Determine whether the GEP has the inbounds flag.
1080 bool isInBounds() const;
1081
1082 /// Accumulate the constant address offset of this GEP if possible.
1083 ///
1084 /// This routine accepts an APInt into which it will accumulate the constant
1085 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1086 /// all-constant, it returns false and the value of the offset APInt is
1087 /// undefined (it is *not* preserved!). The APInt passed into this routine
1088 /// must be at least as wide as the IntPtr type for the address space of
1089 /// the base GEP pointer.
1090 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1091
1092 // Methods for support type inquiry through isa, cast, and dyn_cast:
1093 static bool classof(const Instruction *I) {
1094 return (I->getOpcode() == Instruction::GetElementPtr);
1095 }
1096 static bool classof(const Value *V) {
1097 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1098 }
1099};
1100
1101template <>
1102struct OperandTraits<GetElementPtrInst> :
1103 public VariadicOperandTraits<GetElementPtrInst, 1> {
1104};
1105
1106GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1107 ArrayRef<Value *> IdxList, unsigned Values,
1108 const Twine &NameStr,
1109 Instruction *InsertBefore)
1110 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1111 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1112 Values, InsertBefore),
1113 SourceElementType(PointeeType),
1114 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1115 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1116, __PRETTY_FUNCTION__))
1116 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1116, __PRETTY_FUNCTION__))
;
1117 init(Ptr, IdxList, NameStr);
1118}
1119
1120GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1121 ArrayRef<Value *> IdxList, unsigned Values,
1122 const Twine &NameStr,
1123 BasicBlock *InsertAtEnd)
1124 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1125 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1126 Values, InsertAtEnd),
1127 SourceElementType(PointeeType),
1128 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1129 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1130, __PRETTY_FUNCTION__))
1130 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1130, __PRETTY_FUNCTION__))
;
1131 init(Ptr, IdxList, NameStr);
1132}
1133
1134DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1134, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<GetElementPtrInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1134, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
GetElementPtrInst::getNumOperands() const { return OperandTraits
<GetElementPtrInst>::operands(this); } template <int
Idx_nocapture> Use &GetElementPtrInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &GetElementPtrInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1135
1136//===----------------------------------------------------------------------===//
1137// ICmpInst Class
1138//===----------------------------------------------------------------------===//
1139
1140/// This instruction compares its operands according to the predicate given
1141/// to the constructor. It only operates on integers or pointers. The operands
1142/// must be identical types.
1143/// Represent an integer comparison operator.
1144class ICmpInst: public CmpInst {
1145 void AssertOK() {
1146 assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1147, __PRETTY_FUNCTION__))
1147 "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1147, __PRETTY_FUNCTION__))
;
1148 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1149, __PRETTY_FUNCTION__))
1149 "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1149, __PRETTY_FUNCTION__))
;
1150 // Check that the operands are the right type
1151 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1153, __PRETTY_FUNCTION__))
1152 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1153, __PRETTY_FUNCTION__))
1153 "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1153, __PRETTY_FUNCTION__))
;
1154 }
1155
1156protected:
1157 // Note: Instruction needs to be a friend here to call cloneImpl.
1158 friend class Instruction;
1159
1160 /// Clone an identical ICmpInst
1161 ICmpInst *cloneImpl() const;
1162
1163public:
1164 /// Constructor with insert-before-instruction semantics.
1165 ICmpInst(
1166 Instruction *InsertBefore, ///< Where to insert
1167 Predicate pred, ///< The predicate to use for the comparison
1168 Value *LHS, ///< The left-hand-side of the expression
1169 Value *RHS, ///< The right-hand-side of the expression
1170 const Twine &NameStr = "" ///< Name of the instruction
1171 ) : CmpInst(makeCmpResultType(LHS->getType()),
1172 Instruction::ICmp, pred, LHS, RHS, NameStr,
1173 InsertBefore) {
1174#ifndef NDEBUG
1175 AssertOK();
1176#endif
1177 }
1178
1179 /// Constructor with insert-at-end semantics.
1180 ICmpInst(
1181 BasicBlock &InsertAtEnd, ///< Block to insert into.
1182 Predicate pred, ///< The predicate to use for the comparison
1183 Value *LHS, ///< The left-hand-side of the expression
1184 Value *RHS, ///< The right-hand-side of the expression
1185 const Twine &NameStr = "" ///< Name of the instruction
1186 ) : CmpInst(makeCmpResultType(LHS->getType()),
1187 Instruction::ICmp, pred, LHS, RHS, NameStr,
1188 &InsertAtEnd) {
1189#ifndef NDEBUG
1190 AssertOK();
1191#endif
1192 }
1193
1194 /// Constructor with no-insertion semantics
1195 ICmpInst(
1196 Predicate pred, ///< The predicate to use for the comparison
1197 Value *LHS, ///< The left-hand-side of the expression
1198 Value *RHS, ///< The right-hand-side of the expression
1199 const Twine &NameStr = "" ///< Name of the instruction
1200 ) : CmpInst(makeCmpResultType(LHS->getType()),
1201 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1202#ifndef NDEBUG
1203 AssertOK();
1204#endif
1205 }
1206
1207 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1208 /// @returns the predicate that would be the result if the operand were
1209 /// regarded as signed.
1210 /// Return the signed version of the predicate
1211 Predicate getSignedPredicate() const {
1212 return getSignedPredicate(getPredicate());
1213 }
1214
1215 /// This is a static version that you can use without an instruction.
1216 /// Return the signed version of the predicate.
1217 static Predicate getSignedPredicate(Predicate pred);
1218
1219 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1220 /// @returns the predicate that would be the result if the operand were
1221 /// regarded as unsigned.
1222 /// Return the unsigned version of the predicate
1223 Predicate getUnsignedPredicate() const {
1224 return getUnsignedPredicate(getPredicate());
1225 }
1226
1227 /// This is a static version that you can use without an instruction.
1228 /// Return the unsigned version of the predicate.
1229 static Predicate getUnsignedPredicate(Predicate pred);
1230
1231 /// Return true if this predicate is either EQ or NE. This also
1232 /// tests for commutativity.
1233 static bool isEquality(Predicate P) {
1234 return P == ICMP_EQ || P == ICMP_NE;
1235 }
1236
1237 /// Return true if this predicate is either EQ or NE. This also
1238 /// tests for commutativity.
1239 bool isEquality() const {
1240 return isEquality(getPredicate());
1241 }
1242
1243 /// @returns true if the predicate of this ICmpInst is commutative
1244 /// Determine if this relation is commutative.
1245 bool isCommutative() const { return isEquality(); }
1246
1247 /// Return true if the predicate is relational (not EQ or NE).
1248 ///
1249 bool isRelational() const {
1250 return !isEquality();
1251 }
1252
1253 /// Return true if the predicate is relational (not EQ or NE).
1254 ///
1255 static bool isRelational(Predicate P) {
1256 return !isEquality(P);
1257 }
1258
1259 /// Exchange the two operands to this instruction in such a way that it does
1260 /// not modify the semantics of the instruction. The predicate value may be
1261 /// changed to retain the same result if the predicate is order dependent
1262 /// (e.g. ult).
1263 /// Swap operands and adjust predicate.
1264 void swapOperands() {
1265 setPredicate(getSwappedPredicate());
1266 Op<0>().swap(Op<1>());
1267 }
1268
1269 // Methods for support type inquiry through isa, cast, and dyn_cast:
1270 static bool classof(const Instruction *I) {
1271 return I->getOpcode() == Instruction::ICmp;
1272 }
1273 static bool classof(const Value *V) {
1274 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1275 }
1276};
1277
1278//===----------------------------------------------------------------------===//
1279// FCmpInst Class
1280//===----------------------------------------------------------------------===//
1281
1282/// This instruction compares its operands according to the predicate given
1283/// to the constructor. It only operates on floating point values or packed
1284/// vectors of floating point values. The operands must be identical types.
1285/// Represents a floating point comparison operator.
1286class FCmpInst: public CmpInst {
1287 void AssertOK() {
1288 assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ?
static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1288, __PRETTY_FUNCTION__))
;
1289 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1290, __PRETTY_FUNCTION__))
1290 "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1290, __PRETTY_FUNCTION__))
;
1291 // Check that the operands are the right type
1292 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1293, __PRETTY_FUNCTION__))
1293 "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1293, __PRETTY_FUNCTION__))
;
1294 }
1295
1296protected:
1297 // Note: Instruction needs to be a friend here to call cloneImpl.
1298 friend class Instruction;
1299
1300 /// Clone an identical FCmpInst
1301 FCmpInst *cloneImpl() const;
1302
1303public:
1304 /// Constructor with insert-before-instruction semantics.
1305 FCmpInst(
1306 Instruction *InsertBefore, ///< Where to insert
1307 Predicate pred, ///< The predicate to use for the comparison
1308 Value *LHS, ///< The left-hand-side of the expression
1309 Value *RHS, ///< The right-hand-side of the expression
1310 const Twine &NameStr = "" ///< Name of the instruction
1311 ) : CmpInst(makeCmpResultType(LHS->getType()),
1312 Instruction::FCmp, pred, LHS, RHS, NameStr,
1313 InsertBefore) {
1314 AssertOK();
1315 }
1316
1317 /// Constructor with insert-at-end semantics.
1318 FCmpInst(
1319 BasicBlock &InsertAtEnd, ///< Block to insert into.
1320 Predicate pred, ///< The predicate to use for the comparison
1321 Value *LHS, ///< The left-hand-side of the expression
1322 Value *RHS, ///< The right-hand-side of the expression
1323 const Twine &NameStr = "" ///< Name of the instruction
1324 ) : CmpInst(makeCmpResultType(LHS->getType()),
1325 Instruction::FCmp, pred, LHS, RHS, NameStr,
1326 &InsertAtEnd) {
1327 AssertOK();
1328 }
1329
1330 /// Constructor with no-insertion semantics
1331 FCmpInst(
1332 Predicate Pred, ///< The predicate to use for the comparison
1333 Value *LHS, ///< The left-hand-side of the expression
1334 Value *RHS, ///< The right-hand-side of the expression
1335 const Twine &NameStr = "", ///< Name of the instruction
1336 Instruction *FlagsSource = nullptr
1337 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1338 RHS, NameStr, nullptr, FlagsSource) {
1339 AssertOK();
1340 }
1341
1342 /// @returns true if the predicate of this instruction is EQ or NE.
1343 /// Determine if this is an equality predicate.
1344 static bool isEquality(Predicate Pred) {
1345 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1346 Pred == FCMP_UNE;
1347 }
1348
1349 /// @returns true if the predicate of this instruction is EQ or NE.
1350 /// Determine if this is an equality predicate.
1351 bool isEquality() const { return isEquality(getPredicate()); }
1352
1353 /// @returns true if the predicate of this instruction is commutative.
1354 /// Determine if this is a commutative predicate.
1355 bool isCommutative() const {
1356 return isEquality() ||
1357 getPredicate() == FCMP_FALSE ||
1358 getPredicate() == FCMP_TRUE ||
1359 getPredicate() == FCMP_ORD ||
1360 getPredicate() == FCMP_UNO;
1361 }
1362
1363 /// @returns true if the predicate is relational (not EQ or NE).
1364 /// Determine if this a relational predicate.
1365 bool isRelational() const { return !isEquality(); }
1366
1367 /// Exchange the two operands to this instruction in such a way that it does
1368 /// not modify the semantics of the instruction. The predicate value may be
1369 /// changed to retain the same result if the predicate is order dependent
1370 /// (e.g. ult).
1371 /// Swap operands and adjust predicate.
1372 void swapOperands() {
1373 setPredicate(getSwappedPredicate());
1374 Op<0>().swap(Op<1>());
1375 }
1376
1377 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1378 static bool classof(const Instruction *I) {
1379 return I->getOpcode() == Instruction::FCmp;
1380 }
1381 static bool classof(const Value *V) {
1382 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1383 }
1384};
1385
1386//===----------------------------------------------------------------------===//
1387/// This class represents a function call, abstracting a target
1388/// machine's calling convention. This class uses low bit of the SubClassData
1389/// field to indicate whether or not this is a tail call. The rest of the bits
1390/// hold the calling convention of the call.
1391///
1392class CallInst : public CallBase {
1393 CallInst(const CallInst &CI);
1394
1395 /// Construct a CallInst given a range of arguments.
1396 /// Construct a CallInst from a range of arguments
1397 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1398 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1399 Instruction *InsertBefore);
1400
1401 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1402 const Twine &NameStr, Instruction *InsertBefore)
1403 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1404
1405 /// Construct a CallInst given a range of arguments.
1406 /// Construct a CallInst from a range of arguments
1407 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1408 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1409 BasicBlock *InsertAtEnd);
1410
1411 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1412 Instruction *InsertBefore);
1413
1414 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1415 BasicBlock *InsertAtEnd);
1416
1417 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1418 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1419 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1420
1421 /// Compute the number of operands to allocate.
1422 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1423 // We need one operand for the called function, plus the input operand
1424 // counts provided.
1425 return 1 + NumArgs + NumBundleInputs;
1426 }
1427
1428protected:
1429 // Note: Instruction needs to be a friend here to call cloneImpl.
1430 friend class Instruction;
1431
1432 CallInst *cloneImpl() const;
1433
1434public:
1435 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1436 Instruction *InsertBefore = nullptr) {
1437 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1438 }
1439
1440 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1441 const Twine &NameStr,
1442 Instruction *InsertBefore = nullptr) {
1443 return new (ComputeNumOperands(Args.size()))
1444 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1445 }
1446
1447 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1448 ArrayRef<OperandBundleDef> Bundles = None,
1449 const Twine &NameStr = "",
1450 Instruction *InsertBefore = nullptr) {
1451 const int NumOperands =
1452 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1453 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1454
1455 return new (NumOperands, DescriptorBytes)
1456 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1457 }
1458
1459 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1460 BasicBlock *InsertAtEnd) {
1461 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1462 }
1463
1464 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1465 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1466 return new (ComputeNumOperands(Args.size()))
1467 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1468 }
1469
1470 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1471 ArrayRef<OperandBundleDef> Bundles,
1472 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1473 const int NumOperands =
1474 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1475 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1476
1477 return new (NumOperands, DescriptorBytes)
1478 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1479 }
1480
1481 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1482 Instruction *InsertBefore = nullptr) {
1483 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1484 InsertBefore);
1485 }
1486
1487 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1488 ArrayRef<OperandBundleDef> Bundles = None,
1489 const Twine &NameStr = "",
1490 Instruction *InsertBefore = nullptr) {
1491 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1492 NameStr, InsertBefore);
1493 }
1494
1495 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1496 const Twine &NameStr,
1497 Instruction *InsertBefore = nullptr) {
1498 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1499 InsertBefore);
1500 }
1501
1502 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1503 BasicBlock *InsertAtEnd) {
1504 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1505 InsertAtEnd);
1506 }
1507
1508 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1509 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1510 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1511 InsertAtEnd);
1512 }
1513
1514 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1515 ArrayRef<OperandBundleDef> Bundles,
1516 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1517 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1518 NameStr, InsertAtEnd);
1519 }
1520
1521 // Deprecated [opaque pointer types]
1522 static CallInst *Create(Value *Func, const Twine &NameStr = "",
1523 Instruction *InsertBefore = nullptr) {
1524 return Create(cast<FunctionType>(
1525 cast<PointerType>(Func->getType())->getElementType()),
1526 Func, NameStr, InsertBefore);
1527 }
1528
1529 // Deprecated [opaque pointer types]
1530 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1531 const Twine &NameStr,
1532 Instruction *InsertBefore = nullptr) {
1533 return Create(cast<FunctionType>(
1534 cast<PointerType>(Func->getType())->getElementType()),
1535 Func, Args, NameStr, InsertBefore);
1536 }
1537
1538 // Deprecated [opaque pointer types]
1539 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1540 ArrayRef<OperandBundleDef> Bundles = None,
1541 const Twine &NameStr = "",
1542 Instruction *InsertBefore = nullptr) {
1543 return Create(cast<FunctionType>(
1544 cast<PointerType>(Func->getType())->getElementType()),
1545 Func, Args, Bundles, NameStr, InsertBefore);
1546 }
1547
1548 // Deprecated [opaque pointer types]
1549 static CallInst *Create(Value *Func, const Twine &NameStr,
1550 BasicBlock *InsertAtEnd) {
1551 return Create(cast<FunctionType>(
1552 cast<PointerType>(Func->getType())->getElementType()),
1553 Func, NameStr, InsertAtEnd);
1554 }
1555
1556 // Deprecated [opaque pointer types]
1557 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1558 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1559 return Create(cast<FunctionType>(
1560 cast<PointerType>(Func->getType())->getElementType()),
1561 Func, Args, NameStr, InsertAtEnd);
1562 }
1563
1564 // Deprecated [opaque pointer types]
1565 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1566 ArrayRef<OperandBundleDef> Bundles,
1567 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1568 return Create(cast<FunctionType>(
1569 cast<PointerType>(Func->getType())->getElementType()),
1570 Func, Args, Bundles, NameStr, InsertAtEnd);
1571 }
1572
1573 /// Create a clone of \p CI with a different set of operand bundles and
1574 /// insert it before \p InsertPt.
1575 ///
1576 /// The returned call instruction is identical \p CI in every way except that
1577 /// the operand bundles for the new instruction are set to the operand bundles
1578 /// in \p Bundles.
1579 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1580 Instruction *InsertPt = nullptr);
1581
1582 /// Generate the IR for a call to malloc:
1583 /// 1. Compute the malloc call's argument as the specified type's size,
1584 /// possibly multiplied by the array size if the array size is not
1585 /// constant 1.
1586 /// 2. Call malloc with that argument.
1587 /// 3. Bitcast the result of the malloc call to the specified type.
1588 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1589 Type *AllocTy, Value *AllocSize,
1590 Value *ArraySize = nullptr,
1591 Function *MallocF = nullptr,
1592 const Twine &Name = "");
1593 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1594 Type *AllocTy, Value *AllocSize,
1595 Value *ArraySize = nullptr,
1596 Function *MallocF = nullptr,
1597 const Twine &Name = "");
1598 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1599 Type *AllocTy, Value *AllocSize,
1600 Value *ArraySize = nullptr,
1601 ArrayRef<OperandBundleDef> Bundles = None,
1602 Function *MallocF = nullptr,
1603 const Twine &Name = "");
1604 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1605 Type *AllocTy, Value *AllocSize,
1606 Value *ArraySize = nullptr,
1607 ArrayRef<OperandBundleDef> Bundles = None,
1608 Function *MallocF = nullptr,
1609 const Twine &Name = "");
1610 /// Generate the IR for a call to the builtin free function.
1611 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1612 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1613 static Instruction *CreateFree(Value *Source,
1614 ArrayRef<OperandBundleDef> Bundles,
1615 Instruction *InsertBefore);
1616 static Instruction *CreateFree(Value *Source,
1617 ArrayRef<OperandBundleDef> Bundles,
1618 BasicBlock *InsertAtEnd);
1619
1620 // Note that 'musttail' implies 'tail'.
1621 enum TailCallKind {
1622 TCK_None = 0,
1623 TCK_Tail = 1,
1624 TCK_MustTail = 2,
1625 TCK_NoTail = 3
1626 };
1627 TailCallKind getTailCallKind() const {
1628 return TailCallKind(getSubclassDataFromInstruction() & 3);
1629 }
1630
1631 bool isTailCall() const {
1632 unsigned Kind = getSubclassDataFromInstruction() & 3;
1633 return Kind == TCK_Tail || Kind == TCK_MustTail;
1634 }
1635
1636 bool isMustTailCall() const {
1637 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
1638 }
1639
1640 bool isNoTailCall() const {
1641 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail;
1642 }
1643
1644 void setTailCall(bool isTC = true) {
1645 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1646 unsigned(isTC ? TCK_Tail : TCK_None));
1647 }
1648
1649 void setTailCallKind(TailCallKind TCK) {
1650 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1651 unsigned(TCK));
1652 }
1653
1654 /// Return true if the call can return twice
1655 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1656 void setCanReturnTwice() {
1657 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1658 }
1659
1660 // Methods for support type inquiry through isa, cast, and dyn_cast:
1661 static bool classof(const Instruction *I) {
1662 return I->getOpcode() == Instruction::Call;
1663 }
1664 static bool classof(const Value *V) {
1665 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1666 }
1667
1668 /// Updates profile metadata by scaling it by \p S / \p T.
1669 void updateProfWeight(uint64_t S, uint64_t T);
1670
1671private:
1672 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1673 // method so that subclasses cannot accidentally use it.
1674 void setInstructionSubclassData(unsigned short D) {
1675 Instruction::setInstructionSubclassData(D);
1676 }
1677};
1678
1679CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1680 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1681 BasicBlock *InsertAtEnd)
1682 : CallBase(Ty->getReturnType(), Instruction::Call,
1683 OperandTraits<CallBase>::op_end(this) -
1684 (Args.size() + CountBundleInputs(Bundles) + 1),
1685 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1686 InsertAtEnd) {
1687 init(Ty, Func, Args, Bundles, NameStr);
1688}
1689
1690CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1691 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1692 Instruction *InsertBefore)
1693 : CallBase(Ty->getReturnType(), Instruction::Call,
1694 OperandTraits<CallBase>::op_end(this) -
1695 (Args.size() + CountBundleInputs(Bundles) + 1),
1696 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1697 InsertBefore) {
1698 init(Ty, Func, Args, Bundles, NameStr);
1699}
1700
1701//===----------------------------------------------------------------------===//
1702// SelectInst Class
1703//===----------------------------------------------------------------------===//
1704
1705/// This class represents the LLVM 'select' instruction.
1706///
1707class SelectInst : public Instruction {
1708 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1709 Instruction *InsertBefore)
1710 : Instruction(S1->getType(), Instruction::Select,
1711 &Op<0>(), 3, InsertBefore) {
1712 init(C, S1, S2);
1713 setName(NameStr);
1714 }
1715
1716 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1717 BasicBlock *InsertAtEnd)
1718 : Instruction(S1->getType(), Instruction::Select,
1719 &Op<0>(), 3, InsertAtEnd) {
1720 init(C, S1, S2);
1721 setName(NameStr);
1722 }
1723
1724 void init(Value *C, Value *S1, Value *S2) {
1725 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select"
) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1725, __PRETTY_FUNCTION__))
;
1726 Op<0>() = C;
1727 Op<1>() = S1;
1728 Op<2>() = S2;
1729 }
1730
1731protected:
1732 // Note: Instruction needs to be a friend here to call cloneImpl.
1733 friend class Instruction;
1734
1735 SelectInst *cloneImpl() const;
1736
1737public:
1738 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1739 const Twine &NameStr = "",
1740 Instruction *InsertBefore = nullptr,
1741 Instruction *MDFrom = nullptr) {
1742 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1743 if (MDFrom)
1744 Sel->copyMetadata(*MDFrom);
1745 return Sel;
1746 }
1747
1748 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1749 const Twine &NameStr,
1750 BasicBlock *InsertAtEnd) {
1751 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1752 }
1753
1754 const Value *getCondition() const { return Op<0>(); }
1755 const Value *getTrueValue() const { return Op<1>(); }
1756 const Value *getFalseValue() const { return Op<2>(); }
1757 Value *getCondition() { return Op<0>(); }
30
Calling 'Use::operator llvm::Value *'
32
Returning from 'Use::operator llvm::Value *'
33
Returning pointer
1758 Value *getTrueValue() { return Op<1>(); }
1759 Value *getFalseValue() { return Op<2>(); }
1760
1761 void setCondition(Value *V) { Op<0>() = V; }
1762 void setTrueValue(Value *V) { Op<1>() = V; }
1763 void setFalseValue(Value *V) { Op<2>() = V; }
1764
1765 /// Return a string if the specified operands are invalid
1766 /// for a select operation, otherwise return null.
1767 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1768
1769 /// Transparently provide more efficient getOperand methods.
1770 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1771
1772 OtherOps getOpcode() const {
1773 return static_cast<OtherOps>(Instruction::getOpcode());
1774 }
1775
1776 // Methods for support type inquiry through isa, cast, and dyn_cast:
1777 static bool classof(const Instruction *I) {
1778 return I->getOpcode() == Instruction::Select;
1779 }
1780 static bool classof(const Value *V) {
1781 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1782 }
1783};
1784
1785template <>
1786struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1787};
1788
1789DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1789, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst
*>(this))[i_nocapture].get()); } void SelectInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1789, __PRETTY_FUNCTION__)); OperandTraits<SelectInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst
::getNumOperands() const { return OperandTraits<SelectInst
>::operands(this); } template <int Idx_nocapture> Use
&SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1790
1791//===----------------------------------------------------------------------===//
1792// VAArgInst Class
1793//===----------------------------------------------------------------------===//
1794
1795/// This class represents the va_arg llvm instruction, which returns
1796/// an argument of the specified type given a va_list and increments that list
1797///
1798class VAArgInst : public UnaryInstruction {
1799protected:
1800 // Note: Instruction needs to be a friend here to call cloneImpl.
1801 friend class Instruction;
1802
1803 VAArgInst *cloneImpl() const;
1804
1805public:
1806 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1807 Instruction *InsertBefore = nullptr)
1808 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1809 setName(NameStr);
1810 }
1811
1812 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1813 BasicBlock *InsertAtEnd)
1814 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1815 setName(NameStr);
1816 }
1817
1818 Value *getPointerOperand() { return getOperand(0); }
1819 const Value *getPointerOperand() const { return getOperand(0); }
1820 static unsigned getPointerOperandIndex() { return 0U; }
1821
1822 // Methods for support type inquiry through isa, cast, and dyn_cast:
1823 static bool classof(const Instruction *I) {
1824 return I->getOpcode() == VAArg;
1825 }
1826 static bool classof(const Value *V) {
1827 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1828 }
1829};
1830
1831//===----------------------------------------------------------------------===//
1832// ExtractElementInst Class
1833//===----------------------------------------------------------------------===//
1834
1835/// This instruction extracts a single (scalar)
1836/// element from a VectorType value
1837///
1838class ExtractElementInst : public Instruction {
1839 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1840 Instruction *InsertBefore = nullptr);
1841 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1842 BasicBlock *InsertAtEnd);
1843
1844protected:
1845 // Note: Instruction needs to be a friend here to call cloneImpl.
1846 friend class Instruction;
1847
1848 ExtractElementInst *cloneImpl() const;
1849
1850public:
1851 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1852 const Twine &NameStr = "",
1853 Instruction *InsertBefore = nullptr) {
1854 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1855 }
1856
1857 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1858 const Twine &NameStr,
1859 BasicBlock *InsertAtEnd) {
1860 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1861 }
1862
1863 /// Return true if an extractelement instruction can be
1864 /// formed with the specified operands.
1865 static bool isValidOperands(const Value *Vec, const Value *Idx);
1866
1867 Value *getVectorOperand() { return Op<0>(); }
1868 Value *getIndexOperand() { return Op<1>(); }
1869 const Value *getVectorOperand() const { return Op<0>(); }
1870 const Value *getIndexOperand() const { return Op<1>(); }
1871
1872 VectorType *getVectorOperandType() const {
1873 return cast<VectorType>(getVectorOperand()->getType());
1874 }
1875
1876 /// Transparently provide more efficient getOperand methods.
1877 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1878
1879 // Methods for support type inquiry through isa, cast, and dyn_cast:
1880 static bool classof(const Instruction *I) {
1881 return I->getOpcode() == Instruction::ExtractElement;
1882 }
1883 static bool classof(const Value *V) {
1884 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1885 }
1886};
1887
1888template <>
1889struct OperandTraits<ExtractElementInst> :
1890 public FixedNumOperandTraits<ExtractElementInst, 2> {
1891};
1892
1893DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((i_nocapture < OperandTraits<ExtractElementInst>::
operands(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1893, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ExtractElementInst>::op_begin(const_cast
<ExtractElementInst*>(this))[i_nocapture].get()); } void
ExtractElementInst::setOperand(unsigned i_nocapture, Value *
Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst
>::operands(this) && "setOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1893, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ExtractElementInst::getNumOperands() const { return OperandTraits
<ExtractElementInst>::operands(this); } template <int
Idx_nocapture> Use &ExtractElementInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ExtractElementInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
1894
1895//===----------------------------------------------------------------------===//
1896// InsertElementInst Class
1897//===----------------------------------------------------------------------===//
1898
1899/// This instruction inserts a single (scalar)
1900/// element into a VectorType value
1901///
1902class InsertElementInst : public Instruction {
1903 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1904 const Twine &NameStr = "",
1905 Instruction *InsertBefore = nullptr);
1906 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1907 BasicBlock *InsertAtEnd);
1908
1909protected:
1910 // Note: Instruction needs to be a friend here to call cloneImpl.
1911 friend class Instruction;
1912
1913 InsertElementInst *cloneImpl() const;
1914
1915public:
1916 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1917 const Twine &NameStr = "",
1918 Instruction *InsertBefore = nullptr) {
1919 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1920 }
1921
1922 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1923 const Twine &NameStr,
1924 BasicBlock *InsertAtEnd) {
1925 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1926 }
1927
1928 /// Return true if an insertelement instruction can be
1929 /// formed with the specified operands.
1930 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1931 const Value *Idx);
1932
1933 /// Overload to return most specific vector type.
1934 ///
1935 VectorType *getType() const {
1936 return cast<VectorType>(Instruction::getType());
1937 }
1938
1939 /// Transparently provide more efficient getOperand methods.
1940 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1941
1942 // Methods for support type inquiry through isa, cast, and dyn_cast:
1943 static bool classof(const Instruction *I) {
1944 return I->getOpcode() == Instruction::InsertElement;
1945 }
1946 static bool classof(const Value *V) {
1947 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1948 }
1949};
1950
1951template <>
1952struct OperandTraits<InsertElementInst> :
1953 public FixedNumOperandTraits<InsertElementInst, 3> {
1954};
1955
1956DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1956, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<InsertElementInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 1956, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertElementInst::getNumOperands() const { return OperandTraits
<InsertElementInst>::operands(this); } template <int
Idx_nocapture> Use &InsertElementInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &InsertElementInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1957
1958//===----------------------------------------------------------------------===//
1959// ShuffleVectorInst Class
1960//===----------------------------------------------------------------------===//
1961
1962/// This instruction constructs a fixed permutation of two
1963/// input vectors.
1964///
1965class ShuffleVectorInst : public Instruction {
1966protected:
1967 // Note: Instruction needs to be a friend here to call cloneImpl.
1968 friend class Instruction;
1969
1970 ShuffleVectorInst *cloneImpl() const;
1971
1972public:
1973 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1974 const Twine &NameStr = "",
1975 Instruction *InsertBefor = nullptr);
1976 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1977 const Twine &NameStr, BasicBlock *InsertAtEnd);
1978
1979 // allocate space for exactly three operands
1980 void *operator new(size_t s) {
1981 return User::operator new(s, 3);
1982 }
1983
1984 /// Swap the first 2 operands and adjust the mask to preserve the semantics
1985 /// of the instruction.
1986 void commute();
1987
1988 /// Return true if a shufflevector instruction can be
1989 /// formed with the specified operands.
1990 static bool isValidOperands(const Value *V1, const Value *V2,
1991 const Value *Mask);
1992
1993 /// Overload to return most specific vector type.
1994 ///
1995 VectorType *getType() const {
1996 return cast<VectorType>(Instruction::getType());
1997 }
1998
1999 /// Transparently provide more efficient getOperand methods.
2000 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2001
2002 Constant *getMask() const {
2003 return cast<Constant>(getOperand(2));
2004 }
2005
2006 /// Return the shuffle mask value for the specified element of the mask.
2007 /// Return -1 if the element is undef.
2008 static int getMaskValue(const Constant *Mask, unsigned Elt);
2009
2010 /// Return the shuffle mask value of this instruction for the given element
2011 /// index. Return -1 if the element is undef.
2012 int getMaskValue(unsigned Elt) const {
2013 return getMaskValue(getMask(), Elt);
2014 }
2015
2016 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2017 /// elements of the mask are returned as -1.
2018 static void getShuffleMask(const Constant *Mask,
2019 SmallVectorImpl<int> &Result);
2020
2021 /// Return the mask for this instruction as a vector of integers. Undefined
2022 /// elements of the mask are returned as -1.
2023 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2024 return getShuffleMask(getMask(), Result);
2025 }
2026
2027 SmallVector<int, 16> getShuffleMask() const {
2028 SmallVector<int, 16> Mask;
2029 getShuffleMask(Mask);
2030 return Mask;
2031 }
2032
2033 /// Return true if this shuffle returns a vector with a different number of
2034 /// elements than its source vectors.
2035 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2036 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2037 bool changesLength() const {
2038 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2039 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2040 return NumSourceElts != NumMaskElts;
2041 }
2042
2043 /// Return true if this shuffle returns a vector with a greater number of
2044 /// elements than its source vectors.
2045 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2046 bool increasesLength() const {
2047 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2048 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2049 return NumSourceElts < NumMaskElts;
2050 }
2051
2052 /// Return true if this shuffle mask chooses elements from exactly one source
2053 /// vector.
2054 /// Example: <7,5,undef,7>
2055 /// This assumes that vector operands are the same length as the mask.
2056 static bool isSingleSourceMask(ArrayRef<int> Mask);
2057 static bool isSingleSourceMask(const Constant *Mask) {
2058 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2058, __PRETTY_FUNCTION__))
;
2059 SmallVector<int, 16> MaskAsInts;
2060 getShuffleMask(Mask, MaskAsInts);
2061 return isSingleSourceMask(MaskAsInts);
2062 }
2063
2064 /// Return true if this shuffle chooses elements from exactly one source
2065 /// vector without changing the length of that vector.
2066 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2067 /// TODO: Optionally allow length-changing shuffles.
2068 bool isSingleSource() const {
2069 return !changesLength() && isSingleSourceMask(getMask());
2070 }
2071
2072 /// Return true if this shuffle mask chooses elements from exactly one source
2073 /// vector without lane crossings. A shuffle using this mask is not
2074 /// necessarily a no-op because it may change the number of elements from its
2075 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2076 /// Example: <undef,undef,2,3>
2077 static bool isIdentityMask(ArrayRef<int> Mask);
2078 static bool isIdentityMask(const Constant *Mask) {
2079 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2079, __PRETTY_FUNCTION__))
;
2080 SmallVector<int, 16> MaskAsInts;
2081 getShuffleMask(Mask, MaskAsInts);
2082 return isIdentityMask(MaskAsInts);
2083 }
2084
2085 /// Return true if this shuffle chooses elements from exactly one source
2086 /// vector without lane crossings and does not change the number of elements
2087 /// from its input vectors.
2088 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2089 bool isIdentity() const {
2090 return !changesLength() && isIdentityMask(getShuffleMask());
2091 }
2092
2093 /// Return true if this shuffle lengthens exactly one source vector with
2094 /// undefs in the high elements.
2095 bool isIdentityWithPadding() const;
2096
2097 /// Return true if this shuffle extracts the first N elements of exactly one
2098 /// source vector.
2099 bool isIdentityWithExtract() const;
2100
2101 /// Return true if this shuffle concatenates its 2 source vectors. This
2102 /// returns false if either input is undefined. In that case, the shuffle is
2103 /// is better classified as an identity with padding operation.
2104 bool isConcat() const;
2105
2106 /// Return true if this shuffle mask chooses elements from its source vectors
2107 /// without lane crossings. A shuffle using this mask would be
2108 /// equivalent to a vector select with a constant condition operand.
2109 /// Example: <4,1,6,undef>
2110 /// This returns false if the mask does not choose from both input vectors.
2111 /// In that case, the shuffle is better classified as an identity shuffle.
2112 /// This assumes that vector operands are the same length as the mask
2113 /// (a length-changing shuffle can never be equivalent to a vector select).
2114 static bool isSelectMask(ArrayRef<int> Mask);
2115 static bool isSelectMask(const Constant *Mask) {
2116 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2116, __PRETTY_FUNCTION__))
;
2117 SmallVector<int, 16> MaskAsInts;
2118 getShuffleMask(Mask, MaskAsInts);
2119 return isSelectMask(MaskAsInts);
2120 }
2121
2122 /// Return true if this shuffle chooses elements from its source vectors
2123 /// without lane crossings and all operands have the same number of elements.
2124 /// In other words, this shuffle is equivalent to a vector select with a
2125 /// constant condition operand.
2126 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2127 /// This returns false if the mask does not choose from both input vectors.
2128 /// In that case, the shuffle is better classified as an identity shuffle.
2129 /// TODO: Optionally allow length-changing shuffles.
2130 bool isSelect() const {
2131 return !changesLength() && isSelectMask(getMask());
2132 }
2133
2134 /// Return true if this shuffle mask swaps the order of elements from exactly
2135 /// one source vector.
2136 /// Example: <7,6,undef,4>
2137 /// This assumes that vector operands are the same length as the mask.
2138 static bool isReverseMask(ArrayRef<int> Mask);
2139 static bool isReverseMask(const Constant *Mask) {
2140 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2140, __PRETTY_FUNCTION__))
;
2141 SmallVector<int, 16> MaskAsInts;
2142 getShuffleMask(Mask, MaskAsInts);
2143 return isReverseMask(MaskAsInts);
2144 }
2145
2146 /// Return true if this shuffle swaps the order of elements from exactly
2147 /// one source vector.
2148 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2149 /// TODO: Optionally allow length-changing shuffles.
2150 bool isReverse() const {
2151 return !changesLength() && isReverseMask(getMask());
2152 }
2153
2154 /// Return true if this shuffle mask chooses all elements with the same value
2155 /// as the first element of exactly one source vector.
2156 /// Example: <4,undef,undef,4>
2157 /// This assumes that vector operands are the same length as the mask.
2158 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2159 static bool isZeroEltSplatMask(const Constant *Mask) {
2160 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2160, __PRETTY_FUNCTION__))
;
2161 SmallVector<int, 16> MaskAsInts;
2162 getShuffleMask(Mask, MaskAsInts);
2163 return isZeroEltSplatMask(MaskAsInts);
2164 }
2165
2166 /// Return true if all elements of this shuffle are the same value as the
2167 /// first element of exactly one source vector without changing the length
2168 /// of that vector.
2169 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2170 /// TODO: Optionally allow length-changing shuffles.
2171 /// TODO: Optionally allow splats from other elements.
2172 bool isZeroEltSplat() const {
2173 return !changesLength() && isZeroEltSplatMask(getMask());
2174 }
2175
2176 /// Return true if this shuffle mask is a transpose mask.
2177 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2178 /// even- or odd-numbered vector elements from two n-dimensional source
2179 /// vectors and write each result into consecutive elements of an
2180 /// n-dimensional destination vector. Two shuffles are necessary to complete
2181 /// the transpose, one for the even elements and another for the odd elements.
2182 /// This description closely follows how the TRN1 and TRN2 AArch64
2183 /// instructions operate.
2184 ///
2185 /// For example, a simple 2x2 matrix can be transposed with:
2186 ///
2187 /// ; Original matrix
2188 /// m0 = < a, b >
2189 /// m1 = < c, d >
2190 ///
2191 /// ; Transposed matrix
2192 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2193 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2194 ///
2195 /// For matrices having greater than n columns, the resulting nx2 transposed
2196 /// matrix is stored in two result vectors such that one vector contains
2197 /// interleaved elements from all the even-numbered rows and the other vector
2198 /// contains interleaved elements from all the odd-numbered rows. For example,
2199 /// a 2x4 matrix can be transposed with:
2200 ///
2201 /// ; Original matrix
2202 /// m0 = < a, b, c, d >
2203 /// m1 = < e, f, g, h >
2204 ///
2205 /// ; Transposed matrix
2206 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2207 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2208 static bool isTransposeMask(ArrayRef<int> Mask);
2209 static bool isTransposeMask(const Constant *Mask) {
2210 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2210, __PRETTY_FUNCTION__))
;
2211 SmallVector<int, 16> MaskAsInts;
2212 getShuffleMask(Mask, MaskAsInts);
2213 return isTransposeMask(MaskAsInts);
2214 }
2215
2216 /// Return true if this shuffle transposes the elements of its inputs without
2217 /// changing the length of the vectors. This operation may also be known as a
2218 /// merge or interleave. See the description for isTransposeMask() for the
2219 /// exact specification.
2220 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2221 bool isTranspose() const {
2222 return !changesLength() && isTransposeMask(getMask());
2223 }
2224
2225 /// Return true if this shuffle mask is an extract subvector mask.
2226 /// A valid extract subvector mask returns a smaller vector from a single
2227 /// source operand. The base extraction index is returned as well.
2228 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2229 int &Index);
2230 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2231 int &Index) {
2232 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2232, __PRETTY_FUNCTION__))
;
2233 SmallVector<int, 16> MaskAsInts;
2234 getShuffleMask(Mask, MaskAsInts);
2235 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2236 }
2237
2238 /// Return true if this shuffle mask is an extract subvector mask.
2239 bool isExtractSubvectorMask(int &Index) const {
2240 int NumSrcElts = Op<0>()->getType()->getVectorNumElements();
2241 return isExtractSubvectorMask(getMask(), NumSrcElts, Index);
2242 }
2243
2244 /// Change values in a shuffle permute mask assuming the two vector operands
2245 /// of length InVecNumElts have swapped position.
2246 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2247 unsigned InVecNumElts) {
2248 for (int &Idx : Mask) {
2249 if (Idx == -1)
2250 continue;
2251 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2252 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2253, __PRETTY_FUNCTION__))
2253 "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2253, __PRETTY_FUNCTION__))
;
2254 }
2255 }
2256
2257 // Methods for support type inquiry through isa, cast, and dyn_cast:
2258 static bool classof(const Instruction *I) {
2259 return I->getOpcode() == Instruction::ShuffleVector;
2260 }
2261 static bool classof(const Value *V) {
2262 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2263 }
2264};
2265
2266template <>
2267struct OperandTraits<ShuffleVectorInst> :
2268 public FixedNumOperandTraits<ShuffleVectorInst, 3> {
2269};
2270
2271DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2271, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<ShuffleVectorInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2271, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ShuffleVectorInst::getNumOperands() const { return OperandTraits
<ShuffleVectorInst>::operands(this); } template <int
Idx_nocapture> Use &ShuffleVectorInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ShuffleVectorInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
2272
2273//===----------------------------------------------------------------------===//
2274// ExtractValueInst Class
2275//===----------------------------------------------------------------------===//
2276
2277/// This instruction extracts a struct member or array
2278/// element value from an aggregate value.
2279///
2280class ExtractValueInst : public UnaryInstruction {
2281 SmallVector<unsigned, 4> Indices;
2282
2283 ExtractValueInst(const ExtractValueInst &EVI);
2284
2285 /// Constructors - Create a extractvalue instruction with a base aggregate
2286 /// value and a list of indices. The first ctor can optionally insert before
2287 /// an existing instruction, the second appends the new instruction to the
2288 /// specified BasicBlock.
2289 inline ExtractValueInst(Value *Agg,
2290 ArrayRef<unsigned> Idxs,
2291 const Twine &NameStr,
2292 Instruction *InsertBefore);
2293 inline ExtractValueInst(Value *Agg,
2294 ArrayRef<unsigned> Idxs,
2295 const Twine &NameStr, BasicBlock *InsertAtEnd);
2296
2297 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2298
2299protected:
2300 // Note: Instruction needs to be a friend here to call cloneImpl.
2301 friend class Instruction;
2302
2303 ExtractValueInst *cloneImpl() const;
2304
2305public:
2306 static ExtractValueInst *Create(Value *Agg,
2307 ArrayRef<unsigned> Idxs,
2308 const Twine &NameStr = "",
2309 Instruction *InsertBefore = nullptr) {
2310 return new
2311 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2312 }
2313
2314 static ExtractValueInst *Create(Value *Agg,
2315 ArrayRef<unsigned> Idxs,
2316 const Twine &NameStr,
2317 BasicBlock *InsertAtEnd) {
2318 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2319 }
2320
2321 /// Returns the type of the element that would be extracted
2322 /// with an extractvalue instruction with the specified parameters.
2323 ///
2324 /// Null is returned if the indices are invalid for the specified type.
2325 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2326
2327 using idx_iterator = const unsigned*;
2328
2329 inline idx_iterator idx_begin() const { return Indices.begin(); }
2330 inline idx_iterator idx_end() const { return Indices.end(); }
2331 inline iterator_range<idx_iterator> indices() const {
2332 return make_range(idx_begin(), idx_end());
2333 }
2334
2335 Value *getAggregateOperand() {
2336 return getOperand(0);
2337 }
2338 const Value *getAggregateOperand() const {
2339 return getOperand(0);
2340 }
2341 static unsigned getAggregateOperandIndex() {
2342 return 0U; // get index for modifying correct operand
2343 }
2344
2345 ArrayRef<unsigned> getIndices() const {
2346 return Indices;
2347 }
2348
2349 unsigned getNumIndices() const {
2350 return (unsigned)Indices.size();
2351 }
2352
2353 bool hasIndices() const {
2354 return true;
2355 }
2356
2357 // Methods for support type inquiry through isa, cast, and dyn_cast:
2358 static bool classof(const Instruction *I) {
2359 return I->getOpcode() == Instruction::ExtractValue;
2360 }
2361 static bool classof(const Value *V) {
2362 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2363 }
2364};
2365
2366ExtractValueInst::ExtractValueInst(Value *Agg,
2367 ArrayRef<unsigned> Idxs,
2368 const Twine &NameStr,
2369 Instruction *InsertBefore)
2370 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2371 ExtractValue, Agg, InsertBefore) {
2372 init(Idxs, NameStr);
2373}
2374
2375ExtractValueInst::ExtractValueInst(Value *Agg,
2376 ArrayRef<unsigned> Idxs,
2377 const Twine &NameStr,
2378 BasicBlock *InsertAtEnd)
2379 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2380 ExtractValue, Agg, InsertAtEnd) {
2381 init(Idxs, NameStr);
2382}
2383
2384//===----------------------------------------------------------------------===//
2385// InsertValueInst Class
2386//===----------------------------------------------------------------------===//
2387
2388/// This instruction inserts a struct field of array element
2389/// value into an aggregate value.
2390///
2391class InsertValueInst : public Instruction {
2392 SmallVector<unsigned, 4> Indices;
2393
2394 InsertValueInst(const InsertValueInst &IVI);
2395
2396 /// Constructors - Create a insertvalue instruction with a base aggregate
2397 /// value, a value to insert, and a list of indices. The first ctor can
2398 /// optionally insert before an existing instruction, the second appends
2399 /// the new instruction to the specified BasicBlock.
2400 inline InsertValueInst(Value *Agg, Value *Val,
2401 ArrayRef<unsigned> Idxs,
2402 const Twine &NameStr,
2403 Instruction *InsertBefore);
2404 inline InsertValueInst(Value *Agg, Value *Val,
2405 ArrayRef<unsigned> Idxs,
2406 const Twine &NameStr, BasicBlock *InsertAtEnd);
2407
2408 /// Constructors - These two constructors are convenience methods because one
2409 /// and two index insertvalue instructions are so common.
2410 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2411 const Twine &NameStr = "",
2412 Instruction *InsertBefore = nullptr);
2413 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2414 BasicBlock *InsertAtEnd);
2415
2416 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2417 const Twine &NameStr);
2418
2419protected:
2420 // Note: Instruction needs to be a friend here to call cloneImpl.
2421 friend class Instruction;
2422
2423 InsertValueInst *cloneImpl() const;
2424
2425public:
2426 // allocate space for exactly two operands
2427 void *operator new(size_t s) {
2428 return User::operator new(s, 2);
2429 }
2430
2431 static InsertValueInst *Create(Value *Agg, Value *Val,
2432 ArrayRef<unsigned> Idxs,
2433 const Twine &NameStr = "",
2434 Instruction *InsertBefore = nullptr) {
2435 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2436 }
2437
2438 static InsertValueInst *Create(Value *Agg, Value *Val,
2439 ArrayRef<unsigned> Idxs,
2440 const Twine &NameStr,
2441 BasicBlock *InsertAtEnd) {
2442 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2443 }
2444
2445 /// Transparently provide more efficient getOperand methods.
2446 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2447
2448 using idx_iterator = const unsigned*;
2449
2450 inline idx_iterator idx_begin() const { return Indices.begin(); }
2451 inline idx_iterator idx_end() const { return Indices.end(); }
2452 inline iterator_range<idx_iterator> indices() const {
2453 return make_range(idx_begin(), idx_end());
2454 }
2455
2456 Value *getAggregateOperand() {
2457 return getOperand(0);
2458 }
2459 const Value *getAggregateOperand() const {
2460 return getOperand(0);
2461 }
2462 static unsigned getAggregateOperandIndex() {
2463 return 0U; // get index for modifying correct operand
2464 }
2465
2466 Value *getInsertedValueOperand() {
2467 return getOperand(1);
2468 }
2469 const Value *getInsertedValueOperand() const {
2470 return getOperand(1);
2471 }
2472 static unsigned getInsertedValueOperandIndex() {
2473 return 1U; // get index for modifying correct operand
2474 }
2475
2476 ArrayRef<unsigned> getIndices() const {
2477 return Indices;
2478 }
2479
2480 unsigned getNumIndices() const {
2481 return (unsigned)Indices.size();
2482 }
2483
2484 bool hasIndices() const {
2485 return true;
2486 }
2487
2488 // Methods for support type inquiry through isa, cast, and dyn_cast:
2489 static bool classof(const Instruction *I) {
2490 return I->getOpcode() == Instruction::InsertValue;
2491 }
2492 static bool classof(const Value *V) {
2493 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2494 }
2495};
2496
2497template <>
2498struct OperandTraits<InsertValueInst> :
2499 public FixedNumOperandTraits<InsertValueInst, 2> {
2500};
2501
2502InsertValueInst::InsertValueInst(Value *Agg,
2503 Value *Val,
2504 ArrayRef<unsigned> Idxs,
2505 const Twine &NameStr,
2506 Instruction *InsertBefore)
2507 : Instruction(Agg->getType(), InsertValue,
2508 OperandTraits<InsertValueInst>::op_begin(this),
2509 2, InsertBefore) {
2510 init(Agg, Val, Idxs, NameStr);
2511}
2512
2513InsertValueInst::InsertValueInst(Value *Agg,
2514 Value *Val,
2515 ArrayRef<unsigned> Idxs,
2516 const Twine &NameStr,
2517 BasicBlock *InsertAtEnd)
2518 : Instruction(Agg->getType(), InsertValue,
2519 OperandTraits<InsertValueInst>::op_begin(this),
2520 2, InsertAtEnd) {
2521 init(Agg, Val, Idxs, NameStr);
2522}
2523
2524DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2524, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<InsertValueInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2524, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2525
2526//===----------------------------------------------------------------------===//
2527// PHINode Class
2528//===----------------------------------------------------------------------===//
2529
2530// PHINode - The PHINode class is used to represent the magical mystical PHI
2531// node, that can not exist in nature, but can be synthesized in a computer
2532// scientist's overactive imagination.
2533//
2534class PHINode : public Instruction {
2535 /// The number of operands actually allocated. NumOperands is
2536 /// the number actually in use.
2537 unsigned ReservedSpace;
2538
2539 PHINode(const PHINode &PN);
2540
2541 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2542 const Twine &NameStr = "",
2543 Instruction *InsertBefore = nullptr)
2544 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2545 ReservedSpace(NumReservedValues) {
2546 setName(NameStr);
2547 allocHungoffUses(ReservedSpace);
2548 }
2549
2550 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2551 BasicBlock *InsertAtEnd)
2552 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2553 ReservedSpace(NumReservedValues) {
2554 setName(NameStr);
2555 allocHungoffUses(ReservedSpace);
2556 }
2557
2558protected:
2559 // Note: Instruction needs to be a friend here to call cloneImpl.
2560 friend class Instruction;
2561
2562 PHINode *cloneImpl() const;
2563
2564 // allocHungoffUses - this is more complicated than the generic
2565 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2566 // values and pointers to the incoming blocks, all in one allocation.
2567 void allocHungoffUses(unsigned N) {
2568 User::allocHungoffUses(N, /* IsPhi */ true);
2569 }
2570
2571public:
2572 /// Constructors - NumReservedValues is a hint for the number of incoming
2573 /// edges that this phi node will have (use 0 if you really have no idea).
2574 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2575 const Twine &NameStr = "",
2576 Instruction *InsertBefore = nullptr) {
2577 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2578 }
2579
2580 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2581 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2582 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2583 }
2584
2585 /// Provide fast operand accessors
2586 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2587
2588 // Block iterator interface. This provides access to the list of incoming
2589 // basic blocks, which parallels the list of incoming values.
2590
2591 using block_iterator = BasicBlock **;
2592 using const_block_iterator = BasicBlock * const *;
2593
2594 block_iterator block_begin() {
2595 Use::UserRef *ref =
2596 reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
2597 return reinterpret_cast<block_iterator>(ref + 1);
2598 }
2599
2600 const_block_iterator block_begin() const {
2601 const Use::UserRef *ref =
2602 reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
2603 return reinterpret_cast<const_block_iterator>(ref + 1);
2604 }
2605
2606 block_iterator block_end() {
2607 return block_begin() + getNumOperands();
2608 }
2609
2610 const_block_iterator block_end() const {
2611 return block_begin() + getNumOperands();
2612 }
2613
2614 iterator_range<block_iterator> blocks() {
2615 return make_range(block_begin(), block_end());
2616 }
2617
2618 iterator_range<const_block_iterator> blocks() const {
2619 return make_range(block_begin(), block_end());
2620 }
2621
2622 op_range incoming_values() { return operands(); }
2623
2624 const_op_range incoming_values() const { return operands(); }
2625
2626 /// Return the number of incoming edges
2627 ///
2628 unsigned getNumIncomingValues() const { return getNumOperands(); }
2629
2630 /// Return incoming value number x
2631 ///
2632 Value *getIncomingValue(unsigned i) const {
2633 return getOperand(i);
2634 }
2635 void setIncomingValue(unsigned i, Value *V) {
2636 assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast<
void> (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2636, __PRETTY_FUNCTION__))
;
2637 assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2638, __PRETTY_FUNCTION__))
2638 "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2638, __PRETTY_FUNCTION__))
;
2639 setOperand(i, V);
2640 }
2641
2642 static unsigned getOperandNumForIncomingValue(unsigned i) {
2643 return i;
2644 }
2645
2646 static unsigned getIncomingValueNumForOperand(unsigned i) {
2647 return i;
2648 }
2649
2650 /// Return incoming basic block number @p i.
2651 ///
2652 BasicBlock *getIncomingBlock(unsigned i) const {
2653 return block_begin()[i];
2654 }
2655
2656 /// Return incoming basic block corresponding
2657 /// to an operand of the PHI.
2658 ///
2659 BasicBlock *getIncomingBlock(const Use &U) const {
2660 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2660, __PRETTY_FUNCTION__))
;
2661 return getIncomingBlock(unsigned(&U - op_begin()));
2662 }
2663
2664 /// Return incoming basic block corresponding
2665 /// to value use iterator.
2666 ///
2667 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2668 return getIncomingBlock(I.getUse());
2669 }
2670
2671 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2672 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2672, __PRETTY_FUNCTION__))
;
2673 block_begin()[i] = BB;
2674 }
2675
2676 /// Replace every incoming basic block \p Old to basic block \p New.
2677 void replaceIncomingBlockWith(BasicBlock *Old, BasicBlock *New) {
2678 assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!"
) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2678, __PRETTY_FUNCTION__))
;
2679 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2680 if (getIncomingBlock(Op) == Old)
2681 setIncomingBlock(Op, New);
2682 }
2683
2684 /// Add an incoming value to the end of the PHI list
2685 ///
2686 void addIncoming(Value *V, BasicBlock *BB) {
2687 if (getNumOperands() == ReservedSpace)
2688 growOperands(); // Get more space!
2689 // Initialize some new operands.
2690 setNumHungOffUseOperands(getNumOperands() + 1);
2691 setIncomingValue(getNumOperands() - 1, V);
2692 setIncomingBlock(getNumOperands() - 1, BB);
2693 }
2694
2695 /// Remove an incoming value. This is useful if a
2696 /// predecessor basic block is deleted. The value removed is returned.
2697 ///
2698 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2699 /// is true), the PHI node is destroyed and any uses of it are replaced with
2700 /// dummy values. The only time there should be zero incoming values to a PHI
2701 /// node is when the block is dead, so this strategy is sound.
2702 ///
2703 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2704
2705 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2706 int Idx = getBasicBlockIndex(BB);
2707 assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!"
) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2707, __PRETTY_FUNCTION__))
;
2708 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2709 }
2710
2711 /// Return the first index of the specified basic
2712 /// block in the value list for this PHI. Returns -1 if no instance.
2713 ///
2714 int getBasicBlockIndex(const BasicBlock *BB) const {
2715 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2716 if (block_begin()[i] == BB)
2717 return i;
2718 return -1;
2719 }
2720
2721 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2722 int Idx = getBasicBlockIndex(BB);
2723 assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast
<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2723, __PRETTY_FUNCTION__))
;
2724 return getIncomingValue(Idx);
2725 }
2726
2727 /// If the specified PHI node always merges together the
2728 /// same value, return the value, otherwise return null.
2729 Value *hasConstantValue() const;
2730
2731 /// Whether the specified PHI node always merges
2732 /// together the same value, assuming undefs are equal to a unique
2733 /// non-undef value.
2734 bool hasConstantOrUndefValue() const;
2735
2736 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2737 static bool classof(const Instruction *I) {
2738 return I->getOpcode() == Instruction::PHI;
2739 }
2740 static bool classof(const Value *V) {
2741 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2742 }
2743
2744private:
2745 void growOperands();
2746};
2747
2748template <>
2749struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2750};
2751
2752DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<PHINode>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2752, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<PHINode>::op_begin(const_cast<PHINode
*>(this))[i_nocapture].get()); } void PHINode::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2752, __PRETTY_FUNCTION__)); OperandTraits<PHINode>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode
::getNumOperands() const { return OperandTraits<PHINode>
::operands(this); } template <int Idx_nocapture> Use &
PHINode::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &PHINode
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2753
2754//===----------------------------------------------------------------------===//
2755// LandingPadInst Class
2756//===----------------------------------------------------------------------===//
2757
2758//===---------------------------------------------------------------------------
2759/// The landingpad instruction holds all of the information
2760/// necessary to generate correct exception handling. The landingpad instruction
2761/// cannot be moved from the top of a landing pad block, which itself is
2762/// accessible only from the 'unwind' edge of an invoke. This uses the
2763/// SubclassData field in Value to store whether or not the landingpad is a
2764/// cleanup.
2765///
2766class LandingPadInst : public Instruction {
2767 /// The number of operands actually allocated. NumOperands is
2768 /// the number actually in use.
2769 unsigned ReservedSpace;
2770
2771 LandingPadInst(const LandingPadInst &LP);
2772
2773public:
2774 enum ClauseType { Catch, Filter };
2775
2776private:
2777 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2778 const Twine &NameStr, Instruction *InsertBefore);
2779 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2780 const Twine &NameStr, BasicBlock *InsertAtEnd);
2781
2782 // Allocate space for exactly zero operands.
2783 void *operator new(size_t s) {
2784 return User::operator new(s);
2785 }
2786
2787 void growOperands(unsigned Size);
2788 void init(unsigned NumReservedValues, const Twine &NameStr);
2789
2790protected:
2791 // Note: Instruction needs to be a friend here to call cloneImpl.
2792 friend class Instruction;
2793
2794 LandingPadInst *cloneImpl() const;
2795
2796public:
2797 /// Constructors - NumReservedClauses is a hint for the number of incoming
2798 /// clauses that this landingpad will have (use 0 if you really have no idea).
2799 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2800 const Twine &NameStr = "",
2801 Instruction *InsertBefore = nullptr);
2802 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2803 const Twine &NameStr, BasicBlock *InsertAtEnd);
2804
2805 /// Provide fast operand accessors
2806 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2807
2808 /// Return 'true' if this landingpad instruction is a
2809 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2810 /// doesn't catch the exception.
2811 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2812
2813 /// Indicate that this landingpad instruction is a cleanup.
2814 void setCleanup(bool V) {
2815 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2816 (V ? 1 : 0));
2817 }
2818
2819 /// Add a catch or filter clause to the landing pad.
2820 void addClause(Constant *ClauseVal);
2821
2822 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2823 /// determine what type of clause this is.
2824 Constant *getClause(unsigned Idx) const {
2825 return cast<Constant>(getOperandList()[Idx]);
2826 }
2827
2828 /// Return 'true' if the clause and index Idx is a catch clause.
2829 bool isCatch(unsigned Idx) const {
2830 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2831 }
2832
2833 /// Return 'true' if the clause and index Idx is a filter clause.
2834 bool isFilter(unsigned Idx) const {
2835 return isa<ArrayType>(getOperandList()[Idx]->getType());
2836 }
2837
2838 /// Get the number of clauses for this landing pad.
2839 unsigned getNumClauses() const { return getNumOperands(); }
2840
2841 /// Grow the size of the operand list to accommodate the new
2842 /// number of clauses.
2843 void reserveClauses(unsigned Size) { growOperands(Size); }
2844
2845 // Methods for support type inquiry through isa, cast, and dyn_cast:
2846 static bool classof(const Instruction *I) {
2847 return I->getOpcode() == Instruction::LandingPad;
2848 }
2849 static bool classof(const Value *V) {
2850 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2851 }
2852};
2853
2854template <>
2855struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2856};
2857
2858DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2858, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2858, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2859
2860//===----------------------------------------------------------------------===//
2861// ReturnInst Class
2862//===----------------------------------------------------------------------===//
2863
2864//===---------------------------------------------------------------------------
2865/// Return a value (possibly void), from a function. Execution
2866/// does not continue in this function any longer.
2867///
2868class ReturnInst : public Instruction {
2869 ReturnInst(const ReturnInst &RI);
2870
2871private:
2872 // ReturnInst constructors:
2873 // ReturnInst() - 'ret void' instruction
2874 // ReturnInst( null) - 'ret void' instruction
2875 // ReturnInst(Value* X) - 'ret X' instruction
2876 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2877 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2878 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2879 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2880 //
2881 // NOTE: If the Value* passed is of type void then the constructor behaves as
2882 // if it was passed NULL.
2883 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2884 Instruction *InsertBefore = nullptr);
2885 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2886 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2887
2888protected:
2889 // Note: Instruction needs to be a friend here to call cloneImpl.
2890 friend class Instruction;
2891
2892 ReturnInst *cloneImpl() const;
2893
2894public:
2895 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2896 Instruction *InsertBefore = nullptr) {
2897 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2898 }
2899
2900 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2901 BasicBlock *InsertAtEnd) {
2902 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2903 }
2904
2905 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2906 return new(0) ReturnInst(C, InsertAtEnd);
2907 }
2908
2909 /// Provide fast operand accessors
2910 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2911
2912 /// Convenience accessor. Returns null if there is no return value.
2913 Value *getReturnValue() const {
2914 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2915 }
2916
2917 unsigned getNumSuccessors() const { return 0; }
2918
2919 // Methods for support type inquiry through isa, cast, and dyn_cast:
2920 static bool classof(const Instruction *I) {
2921 return (I->getOpcode() == Instruction::Ret);
2922 }
2923 static bool classof(const Value *V) {
2924 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2925 }
2926
2927private:
2928 BasicBlock *getSuccessor(unsigned idx) const {
2929 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2929)
;
2930 }
2931
2932 void setSuccessor(unsigned idx, BasicBlock *B) {
2933 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2933)
;
2934 }
2935};
2936
2937template <>
2938struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2939};
2940
2941DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2941, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst
*>(this))[i_nocapture].get()); } void ReturnInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 2941, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst
::getNumOperands() const { return OperandTraits<ReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2942
2943//===----------------------------------------------------------------------===//
2944// BranchInst Class
2945//===----------------------------------------------------------------------===//
2946
2947//===---------------------------------------------------------------------------
2948/// Conditional or Unconditional Branch instruction.
2949///
2950class BranchInst : public Instruction {
2951 /// Ops list - Branches are strange. The operands are ordered:
2952 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2953 /// they don't have to check for cond/uncond branchness. These are mostly
2954 /// accessed relative from op_end().
2955 BranchInst(const BranchInst &BI);
2956 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2957 // BranchInst(BB *B) - 'br B'
2958 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2959 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2960 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2961 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2962 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2963 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2964 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2965 Instruction *InsertBefore = nullptr);
2966 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
2967 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2968 BasicBlock *InsertAtEnd);
2969
2970 void AssertOK();
2971
2972protected:
2973 // Note: Instruction needs to be a friend here to call cloneImpl.
2974 friend class Instruction;
2975
2976 BranchInst *cloneImpl() const;
2977
2978public:
2979 /// Iterator type that casts an operand to a basic block.
2980 ///
2981 /// This only makes sense because the successors are stored as adjacent
2982 /// operands for branch instructions.
2983 struct succ_op_iterator
2984 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
2985 std::random_access_iterator_tag, BasicBlock *,
2986 ptrdiff_t, BasicBlock *, BasicBlock *> {
2987 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
2988
2989 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
2990 BasicBlock *operator->() const { return operator*(); }
2991 };
2992
2993 /// The const version of `succ_op_iterator`.
2994 struct const_succ_op_iterator
2995 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
2996 std::random_access_iterator_tag,
2997 const BasicBlock *, ptrdiff_t, const BasicBlock *,
2998 const BasicBlock *> {
2999 explicit const_succ_op_iterator(const_value_op_iterator I)
3000 : iterator_adaptor_base(I) {}
3001
3002 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3003 const BasicBlock *operator->() const { return operator*(); }
3004 };
3005
3006 static BranchInst *Create(BasicBlock *IfTrue,
3007 Instruction *InsertBefore = nullptr) {
3008 return new(1) BranchInst(IfTrue, InsertBefore);
3009 }
3010
3011 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3012 Value *Cond, Instruction *InsertBefore = nullptr) {
3013 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3014 }
3015
3016 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3017 return new(1) BranchInst(IfTrue, InsertAtEnd);
3018 }
3019
3020 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3021 Value *Cond, BasicBlock *InsertAtEnd) {
3022 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3023 }
3024
3025 /// Transparently provide more efficient getOperand methods.
3026 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3027
3028 bool isUnconditional() const { return getNumOperands() == 1; }
3029 bool isConditional() const { return getNumOperands() == 3; }
3030
3031 Value *getCondition() const {
3032 assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3032, __PRETTY_FUNCTION__))
;
3033 return Op<-3>();
3034 }
3035
3036 void setCondition(Value *V) {
3037 assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3037, __PRETTY_FUNCTION__))
;
3038 Op<-3>() = V;
3039 }
3040
3041 unsigned getNumSuccessors() const { return 1+isConditional(); }
3042
3043 BasicBlock *getSuccessor(unsigned i) const {
3044 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3044, __PRETTY_FUNCTION__))
;
3045 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3046 }
3047
3048 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3049 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3049, __PRETTY_FUNCTION__))
;
3050 *(&Op<-1>() - idx) = NewSucc;
3051 }
3052
3053 /// Swap the successors of this branch instruction.
3054 ///
3055 /// Swaps the successors of the branch instruction. This also swaps any
3056 /// branch weight metadata associated with the instruction so that it
3057 /// continues to map correctly to each operand.
3058 void swapSuccessors();
3059
3060 iterator_range<succ_op_iterator> successors() {
3061 return make_range(
3062 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3063 succ_op_iterator(value_op_end()));
3064 }
3065
3066 iterator_range<const_succ_op_iterator> successors() const {
3067 return make_range(const_succ_op_iterator(
3068 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3069 const_succ_op_iterator(value_op_end()));
3070 }
3071
3072 // Methods for support type inquiry through isa, cast, and dyn_cast:
3073 static bool classof(const Instruction *I) {
3074 return (I->getOpcode() == Instruction::Br);
3075 }
3076 static bool classof(const Value *V) {
3077 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3078 }
3079};
3080
3081template <>
3082struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3083};
3084
3085DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3085, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst
*>(this))[i_nocapture].get()); } void BranchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3085, __PRETTY_FUNCTION__)); OperandTraits<BranchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst
::getNumOperands() const { return OperandTraits<BranchInst
>::operands(this); } template <int Idx_nocapture> Use
&BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3086
3087//===----------------------------------------------------------------------===//
3088// SwitchInst Class
3089//===----------------------------------------------------------------------===//
3090
3091//===---------------------------------------------------------------------------
3092/// Multiway switch
3093///
3094class SwitchInst : public Instruction {
3095 unsigned ReservedSpace;
3096
3097 // Operand[0] = Value to switch on
3098 // Operand[1] = Default basic block destination
3099 // Operand[2n ] = Value to match
3100 // Operand[2n+1] = BasicBlock to go to on match
3101 SwitchInst(const SwitchInst &SI);
3102
3103 /// Create a new switch instruction, specifying a value to switch on and a
3104 /// default destination. The number of additional cases can be specified here
3105 /// to make memory allocation more efficient. This constructor can also
3106 /// auto-insert before another instruction.
3107 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3108 Instruction *InsertBefore);
3109
3110 /// Create a new switch instruction, specifying a value to switch on and a
3111 /// default destination. The number of additional cases can be specified here
3112 /// to make memory allocation more efficient. This constructor also
3113 /// auto-inserts at the end of the specified BasicBlock.
3114 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3115 BasicBlock *InsertAtEnd);
3116
3117 // allocate space for exactly zero operands
3118 void *operator new(size_t s) {
3119 return User::operator new(s);
3120 }
3121
3122 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3123 void growOperands();
3124
3125protected:
3126 // Note: Instruction needs to be a friend here to call cloneImpl.
3127 friend class Instruction;
3128
3129 SwitchInst *cloneImpl() const;
3130
3131public:
3132 // -2
3133 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3134
3135 template <typename CaseHandleT> class CaseIteratorImpl;
3136
3137 /// A handle to a particular switch case. It exposes a convenient interface
3138 /// to both the case value and the successor block.
3139 ///
3140 /// We define this as a template and instantiate it to form both a const and
3141 /// non-const handle.
3142 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3143 class CaseHandleImpl {
3144 // Directly befriend both const and non-const iterators.
3145 friend class SwitchInst::CaseIteratorImpl<
3146 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3147
3148 protected:
3149 // Expose the switch type we're parameterized with to the iterator.
3150 using SwitchInstType = SwitchInstT;
3151
3152 SwitchInstT *SI;
3153 ptrdiff_t Index;
3154
3155 CaseHandleImpl() = default;
3156 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3157
3158 public:
3159 /// Resolves case value for current case.
3160 ConstantIntT *getCaseValue() const {
3161 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3162, __PRETTY_FUNCTION__))
3162 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3162, __PRETTY_FUNCTION__))
;
3163 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3164 }
3165
3166 /// Resolves successor for current case.
3167 BasicBlockT *getCaseSuccessor() const {
3168 assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3170, __PRETTY_FUNCTION__))
3169 (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3170, __PRETTY_FUNCTION__))
3170 "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3170, __PRETTY_FUNCTION__))
;
3171 return SI->getSuccessor(getSuccessorIndex());
3172 }
3173
3174 /// Returns number of current case.
3175 unsigned getCaseIndex() const { return Index; }
3176
3177 /// Returns successor index for current case successor.
3178 unsigned getSuccessorIndex() const {
3179 assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3181, __PRETTY_FUNCTION__))
3180 (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3181, __PRETTY_FUNCTION__))
3181 "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3181, __PRETTY_FUNCTION__))
;
3182 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3183 }
3184
3185 bool operator==(const CaseHandleImpl &RHS) const {
3186 assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast
<void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3186, __PRETTY_FUNCTION__))
;
3187 return Index == RHS.Index;
3188 }
3189 };
3190
3191 using ConstCaseHandle =
3192 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3193
3194 class CaseHandle
3195 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3196 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3197
3198 public:
3199 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3200
3201 /// Sets the new value for current case.
3202 void setValue(ConstantInt *V) {
3203 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3204, __PRETTY_FUNCTION__))
3204 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3204, __PRETTY_FUNCTION__))
;
3205 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3206 }
3207
3208 /// Sets the new successor for current case.
3209 void setSuccessor(BasicBlock *S) {
3210 SI->setSuccessor(getSuccessorIndex(), S);
3211 }
3212 };
3213
3214 template <typename CaseHandleT>
3215 class CaseIteratorImpl
3216 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3217 std::random_access_iterator_tag,
3218 CaseHandleT> {
3219 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3220
3221 CaseHandleT Case;
3222
3223 public:
3224 /// Default constructed iterator is in an invalid state until assigned to
3225 /// a case for a particular switch.
3226 CaseIteratorImpl() = default;
3227
3228 /// Initializes case iterator for given SwitchInst and for given
3229 /// case number.
3230 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3231
3232 /// Initializes case iterator for given SwitchInst and for given
3233 /// successor index.
3234 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3235 unsigned SuccessorIndex) {
3236 assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3237, __PRETTY_FUNCTION__))
3237 "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3237, __PRETTY_FUNCTION__))
;
3238 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3239 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3240 }
3241
3242 /// Support converting to the const variant. This will be a no-op for const
3243 /// variant.
3244 operator CaseIteratorImpl<ConstCaseHandle>() const {
3245 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3246 }
3247
3248 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3249 // Check index correctness after addition.
3250 // Note: Index == getNumCases() means end().
3251 assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3253, __PRETTY_FUNCTION__))
3252 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3253, __PRETTY_FUNCTION__))
3253 "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3253, __PRETTY_FUNCTION__))
;
3254 Case.Index += N;
3255 return *this;
3256 }
3257 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3258 // Check index correctness after subtraction.
3259 // Note: Case.Index == getNumCases() means end().
3260 assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3262, __PRETTY_FUNCTION__))
3261 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3262, __PRETTY_FUNCTION__))
3262 "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3262, __PRETTY_FUNCTION__))
;
3263 Case.Index -= N;
3264 return *this;
3265 }
3266 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3267 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3267, __PRETTY_FUNCTION__))
;
3268 return Case.Index - RHS.Case.Index;
3269 }
3270 bool operator==(const CaseIteratorImpl &RHS) const {
3271 return Case == RHS.Case;
3272 }
3273 bool operator<(const CaseIteratorImpl &RHS) const {
3274 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3274, __PRETTY_FUNCTION__))
;
3275 return Case.Index < RHS.Case.Index;
3276 }
3277 CaseHandleT &operator*() { return Case; }
3278 const CaseHandleT &operator*() const { return Case; }
3279 };
3280
3281 using CaseIt = CaseIteratorImpl<CaseHandle>;
3282 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3283
3284 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3285 unsigned NumCases,
3286 Instruction *InsertBefore = nullptr) {
3287 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3288 }
3289
3290 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3291 unsigned NumCases, BasicBlock *InsertAtEnd) {
3292 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3293 }
3294
3295 /// Provide fast operand accessors
3296 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3297
3298 // Accessor Methods for Switch stmt
3299 Value *getCondition() const { return getOperand(0); }
3300 void setCondition(Value *V) { setOperand(0, V); }
3301
3302 BasicBlock *getDefaultDest() const {
3303 return cast<BasicBlock>(getOperand(1));
3304 }
3305
3306 void setDefaultDest(BasicBlock *DefaultCase) {
3307 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3308 }
3309
3310 /// Return the number of 'cases' in this switch instruction, excluding the
3311 /// default case.
3312 unsigned getNumCases() const {
3313 return getNumOperands()/2 - 1;
3314 }
3315
3316 /// Returns a read/write iterator that points to the first case in the
3317 /// SwitchInst.
3318 CaseIt case_begin() {
3319 return CaseIt(this, 0);
3320 }
3321
3322 /// Returns a read-only iterator that points to the first case in the
3323 /// SwitchInst.
3324 ConstCaseIt case_begin() const {
3325 return ConstCaseIt(this, 0);
3326 }
3327
3328 /// Returns a read/write iterator that points one past the last in the
3329 /// SwitchInst.
3330 CaseIt case_end() {
3331 return CaseIt(this, getNumCases());
3332 }
3333
3334 /// Returns a read-only iterator that points one past the last in the
3335 /// SwitchInst.
3336 ConstCaseIt case_end() const {
3337 return ConstCaseIt(this, getNumCases());
3338 }
3339
3340 /// Iteration adapter for range-for loops.
3341 iterator_range<CaseIt> cases() {
3342 return make_range(case_begin(), case_end());
3343 }
3344
3345 /// Constant iteration adapter for range-for loops.
3346 iterator_range<ConstCaseIt> cases() const {
3347 return make_range(case_begin(), case_end());
3348 }
3349
3350 /// Returns an iterator that points to the default case.
3351 /// Note: this iterator allows to resolve successor only. Attempt
3352 /// to resolve case value causes an assertion.
3353 /// Also note, that increment and decrement also causes an assertion and
3354 /// makes iterator invalid.
3355 CaseIt case_default() {
3356 return CaseIt(this, DefaultPseudoIndex);
3357 }
3358 ConstCaseIt case_default() const {
3359 return ConstCaseIt(this, DefaultPseudoIndex);
3360 }
3361
3362 /// Search all of the case values for the specified constant. If it is
3363 /// explicitly handled, return the case iterator of it, otherwise return
3364 /// default case iterator to indicate that it is handled by the default
3365 /// handler.
3366 CaseIt findCaseValue(const ConstantInt *C) {
3367 CaseIt I = llvm::find_if(
3368 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3369 if (I != case_end())
3370 return I;
3371
3372 return case_default();
3373 }
3374 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3375 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3376 return Case.getCaseValue() == C;
3377 });
3378 if (I != case_end())
3379 return I;
3380
3381 return case_default();
3382 }
3383
3384 /// Finds the unique case value for a given successor. Returns null if the
3385 /// successor is not found, not unique, or is the default case.
3386 ConstantInt *findCaseDest(BasicBlock *BB) {
3387 if (BB == getDefaultDest())
3388 return nullptr;
3389
3390 ConstantInt *CI = nullptr;
3391 for (auto Case : cases()) {
3392 if (Case.getCaseSuccessor() != BB)
3393 continue;
3394
3395 if (CI)
3396 return nullptr; // Multiple cases lead to BB.
3397
3398 CI = Case.getCaseValue();
3399 }
3400
3401 return CI;
3402 }
3403
3404 /// Add an entry to the switch instruction.
3405 /// Note:
3406 /// This action invalidates case_end(). Old case_end() iterator will
3407 /// point to the added case.
3408 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3409
3410 /// This method removes the specified case and its successor from the switch
3411 /// instruction. Note that this operation may reorder the remaining cases at
3412 /// index idx and above.
3413 /// Note:
3414 /// This action invalidates iterators for all cases following the one removed,
3415 /// including the case_end() iterator. It returns an iterator for the next
3416 /// case.
3417 CaseIt removeCase(CaseIt I);
3418
3419 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3420 BasicBlock *getSuccessor(unsigned idx) const {
3421 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((idx < getNumSuccessors() &&"Successor idx out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3421, __PRETTY_FUNCTION__))
;
3422 return cast<BasicBlock>(getOperand(idx*2+1));
3423 }
3424 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3425 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((idx < getNumSuccessors() && "Successor # out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3425, __PRETTY_FUNCTION__))
;
3426 setOperand(idx * 2 + 1, NewSucc);
3427 }
3428
3429 // Methods for support type inquiry through isa, cast, and dyn_cast:
3430 static bool classof(const Instruction *I) {
3431 return I->getOpcode() == Instruction::Switch;
3432 }
3433 static bool classof(const Value *V) {
3434 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3435 }
3436};
3437
3438template <>
3439struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3440};
3441
3442DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3442, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SwitchInst>::op_begin(const_cast<SwitchInst
*>(this))[i_nocapture].get()); } void SwitchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3442, __PRETTY_FUNCTION__)); OperandTraits<SwitchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SwitchInst
::getNumOperands() const { return OperandTraits<SwitchInst
>::operands(this); } template <int Idx_nocapture> Use
&SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3443
3444//===----------------------------------------------------------------------===//
3445// IndirectBrInst Class
3446//===----------------------------------------------------------------------===//
3447
3448//===---------------------------------------------------------------------------
3449/// Indirect Branch Instruction.
3450///
3451class IndirectBrInst : public Instruction {
3452 unsigned ReservedSpace;
3453
3454 // Operand[0] = Address to jump to
3455 // Operand[n+1] = n-th destination
3456 IndirectBrInst(const IndirectBrInst &IBI);
3457
3458 /// Create a new indirectbr instruction, specifying an
3459 /// Address to jump to. The number of expected destinations can be specified
3460 /// here to make memory allocation more efficient. This constructor can also
3461 /// autoinsert before another instruction.
3462 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3463
3464 /// Create a new indirectbr instruction, specifying an
3465 /// Address to jump to. The number of expected destinations can be specified
3466 /// here to make memory allocation more efficient. This constructor also
3467 /// autoinserts at the end of the specified BasicBlock.
3468 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3469
3470 // allocate space for exactly zero operands
3471 void *operator new(size_t s) {
3472 return User::operator new(s);
3473 }
3474
3475 void init(Value *Address, unsigned NumDests);
3476 void growOperands();
3477
3478protected:
3479 // Note: Instruction needs to be a friend here to call cloneImpl.
3480 friend class Instruction;
3481
3482 IndirectBrInst *cloneImpl() const;
3483
3484public:
3485 /// Iterator type that casts an operand to a basic block.
3486 ///
3487 /// This only makes sense because the successors are stored as adjacent
3488 /// operands for indirectbr instructions.
3489 struct succ_op_iterator
3490 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3491 std::random_access_iterator_tag, BasicBlock *,
3492 ptrdiff_t, BasicBlock *, BasicBlock *> {
3493 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3494
3495 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3496 BasicBlock *operator->() const { return operator*(); }
3497 };
3498
3499 /// The const version of `succ_op_iterator`.
3500 struct const_succ_op_iterator
3501 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3502 std::random_access_iterator_tag,
3503 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3504 const BasicBlock *> {
3505 explicit const_succ_op_iterator(const_value_op_iterator I)
3506 : iterator_adaptor_base(I) {}
3507
3508 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3509 const BasicBlock *operator->() const { return operator*(); }
3510 };
3511
3512 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3513 Instruction *InsertBefore = nullptr) {
3514 return new IndirectBrInst(Address, NumDests, InsertBefore);
3515 }
3516
3517 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3518 BasicBlock *InsertAtEnd) {
3519 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3520 }
3521
3522 /// Provide fast operand accessors.
3523 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3524
3525 // Accessor Methods for IndirectBrInst instruction.
3526 Value *getAddress() { return getOperand(0); }
3527 const Value *getAddress() const { return getOperand(0); }
3528 void setAddress(Value *V) { setOperand(0, V); }
3529
3530 /// return the number of possible destinations in this
3531 /// indirectbr instruction.
3532 unsigned getNumDestinations() const { return getNumOperands()-1; }
3533
3534 /// Return the specified destination.
3535 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3536 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3537
3538 /// Add a destination.
3539 ///
3540 void addDestination(BasicBlock *Dest);
3541
3542 /// This method removes the specified successor from the
3543 /// indirectbr instruction.
3544 void removeDestination(unsigned i);
3545
3546 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3547 BasicBlock *getSuccessor(unsigned i) const {
3548 return cast<BasicBlock>(getOperand(i+1));
3549 }
3550 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3551 setOperand(i + 1, NewSucc);
3552 }
3553
3554 iterator_range<succ_op_iterator> successors() {
3555 return make_range(succ_op_iterator(std::next(value_op_begin())),
3556 succ_op_iterator(value_op_end()));
3557 }
3558
3559 iterator_range<const_succ_op_iterator> successors() const {
3560 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3561 const_succ_op_iterator(value_op_end()));
3562 }
3563
3564 // Methods for support type inquiry through isa, cast, and dyn_cast:
3565 static bool classof(const Instruction *I) {
3566 return I->getOpcode() == Instruction::IndirectBr;
3567 }
3568 static bool classof(const Value *V) {
3569 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3570 }
3571};
3572
3573template <>
3574struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3575};
3576
3577DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<IndirectBrInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3577, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3577, __PRETTY_FUNCTION__)); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3578
3579//===----------------------------------------------------------------------===//
3580// InvokeInst Class
3581//===----------------------------------------------------------------------===//
3582
3583/// Invoke instruction. The SubclassData field is used to hold the
3584/// calling convention of the call.
3585///
3586class InvokeInst : public CallBase {
3587 /// The number of operands for this call beyond the called function,
3588 /// arguments, and operand bundles.
3589 static constexpr int NumExtraOperands = 2;
3590
3591 /// The index from the end of the operand array to the normal destination.
3592 static constexpr int NormalDestOpEndIdx = -3;
3593
3594 /// The index from the end of the operand array to the unwind destination.
3595 static constexpr int UnwindDestOpEndIdx = -2;
3596
3597 InvokeInst(const InvokeInst &BI);
3598
3599 /// Construct an InvokeInst given a range of arguments.
3600 ///
3601 /// Construct an InvokeInst from a range of arguments
3602 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3603 BasicBlock *IfException, ArrayRef<Value *> Args,
3604 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3605 const Twine &NameStr, Instruction *InsertBefore);
3606
3607 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3608 BasicBlock *IfException, ArrayRef<Value *> Args,
3609 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3610 const Twine &NameStr, BasicBlock *InsertAtEnd);
3611
3612 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3613 BasicBlock *IfException, ArrayRef<Value *> Args,
3614 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3615
3616 /// Compute the number of operands to allocate.
3617 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3618 // We need one operand for the called function, plus our extra operands and
3619 // the input operand counts provided.
3620 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3621 }
3622
3623protected:
3624 // Note: Instruction needs to be a friend here to call cloneImpl.
3625 friend class Instruction;
3626
3627 InvokeInst *cloneImpl() const;
3628
3629public:
3630 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3631 BasicBlock *IfException, ArrayRef<Value *> Args,
3632 const Twine &NameStr,
3633 Instruction *InsertBefore = nullptr) {
3634 int NumOperands = ComputeNumOperands(Args.size());
3635 return new (NumOperands)
3636 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3637 NameStr, InsertBefore);
3638 }
3639
3640 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3641 BasicBlock *IfException, ArrayRef<Value *> Args,
3642 ArrayRef<OperandBundleDef> Bundles = None,
3643 const Twine &NameStr = "",
3644 Instruction *InsertBefore = nullptr) {
3645 int NumOperands =
3646 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3647 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3648
3649 return new (NumOperands, DescriptorBytes)
3650 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3651 NameStr, InsertBefore);
3652 }
3653
3654 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3655 BasicBlock *IfException, ArrayRef<Value *> Args,
3656 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3657 int NumOperands = ComputeNumOperands(Args.size());
3658 return new (NumOperands)
3659 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3660 NameStr, InsertAtEnd);
3661 }
3662
3663 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3664 BasicBlock *IfException, ArrayRef<Value *> Args,
3665 ArrayRef<OperandBundleDef> Bundles,
3666 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3667 int NumOperands =
3668 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3669 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3670
3671 return new (NumOperands, DescriptorBytes)
3672 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3673 NameStr, InsertAtEnd);
3674 }
3675
3676 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3677 BasicBlock *IfException, ArrayRef<Value *> Args,
3678 const Twine &NameStr,
3679 Instruction *InsertBefore = nullptr) {
3680 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3681 IfException, Args, None, NameStr, InsertBefore);
3682 }
3683
3684 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3685 BasicBlock *IfException, ArrayRef<Value *> Args,
3686 ArrayRef<OperandBundleDef> Bundles = None,
3687 const Twine &NameStr = "",
3688 Instruction *InsertBefore = nullptr) {
3689 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3690 IfException, Args, Bundles, NameStr, InsertBefore);
3691 }
3692
3693 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3694 BasicBlock *IfException, ArrayRef<Value *> Args,
3695 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3696 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3697 IfException, Args, NameStr, InsertAtEnd);
3698 }
3699
3700 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3701 BasicBlock *IfException, ArrayRef<Value *> Args,
3702 ArrayRef<OperandBundleDef> Bundles,
3703 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3704 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3705 IfException, Args, Bundles, NameStr, InsertAtEnd);
3706 }
3707
3708 // Deprecated [opaque pointer types]
3709 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3710 BasicBlock *IfException, ArrayRef<Value *> Args,
3711 const Twine &NameStr,
3712 Instruction *InsertBefore = nullptr) {
3713 return Create(cast<FunctionType>(
3714 cast<PointerType>(Func->getType())->getElementType()),
3715 Func, IfNormal, IfException, Args, None, NameStr,
3716 InsertBefore);
3717 }
3718
3719 // Deprecated [opaque pointer types]
3720 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3721 BasicBlock *IfException, ArrayRef<Value *> Args,
3722 ArrayRef<OperandBundleDef> Bundles = None,
3723 const Twine &NameStr = "",
3724 Instruction *InsertBefore = nullptr) {
3725 return Create(cast<FunctionType>(
3726 cast<PointerType>(Func->getType())->getElementType()),
3727 Func, IfNormal, IfException, Args, Bundles, NameStr,
3728 InsertBefore);
3729 }
3730
3731 // Deprecated [opaque pointer types]
3732 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3733 BasicBlock *IfException, ArrayRef<Value *> Args,
3734 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3735 return Create(cast<FunctionType>(
3736 cast<PointerType>(Func->getType())->getElementType()),
3737 Func, IfNormal, IfException, Args, NameStr, InsertAtEnd);
3738 }
3739
3740 // Deprecated [opaque pointer types]
3741 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3742 BasicBlock *IfException, ArrayRef<Value *> Args,
3743 ArrayRef<OperandBundleDef> Bundles,
3744 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3745 return Create(cast<FunctionType>(
3746 cast<PointerType>(Func->getType())->getElementType()),
3747 Func, IfNormal, IfException, Args, Bundles, NameStr,
3748 InsertAtEnd);
3749 }
3750
3751 /// Create a clone of \p II with a different set of operand bundles and
3752 /// insert it before \p InsertPt.
3753 ///
3754 /// The returned invoke instruction is identical to \p II in every way except
3755 /// that the operand bundles for the new instruction are set to the operand
3756 /// bundles in \p Bundles.
3757 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3758 Instruction *InsertPt = nullptr);
3759
3760 /// Determine if the call should not perform indirect branch tracking.
3761 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
3762
3763 /// Determine if the call cannot unwind.
3764 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
3765 void setDoesNotThrow() {
3766 addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
3767 }
3768
3769 // get*Dest - Return the destination basic blocks...
3770 BasicBlock *getNormalDest() const {
3771 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3772 }
3773 BasicBlock *getUnwindDest() const {
3774 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3775 }
3776 void setNormalDest(BasicBlock *B) {
3777 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3778 }
3779 void setUnwindDest(BasicBlock *B) {
3780 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3781 }
3782
3783 /// Get the landingpad instruction from the landing pad
3784 /// block (the unwind destination).
3785 LandingPadInst *getLandingPadInst() const;
3786
3787 BasicBlock *getSuccessor(unsigned i) const {
3788 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3788, __PRETTY_FUNCTION__))
;
3789 return i == 0 ? getNormalDest() : getUnwindDest();
3790 }
3791
3792 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3793 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3793, __PRETTY_FUNCTION__))
;
3794 if (i == 0)
3795 setNormalDest(NewSucc);
3796 else
3797 setUnwindDest(NewSucc);
3798 }
3799
3800 unsigned getNumSuccessors() const { return 2; }
3801
3802 // Methods for support type inquiry through isa, cast, and dyn_cast:
3803 static bool classof(const Instruction *I) {
3804 return (I->getOpcode() == Instruction::Invoke);
3805 }
3806 static bool classof(const Value *V) {
3807 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3808 }
3809
3810private:
3811
3812 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3813 // method so that subclasses cannot accidentally use it.
3814 void setInstructionSubclassData(unsigned short D) {
3815 Instruction::setInstructionSubclassData(D);
3816 }
3817};
3818
3819InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3820 BasicBlock *IfException, ArrayRef<Value *> Args,
3821 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3822 const Twine &NameStr, Instruction *InsertBefore)
3823 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3824 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3825 InsertBefore) {
3826 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3827}
3828
3829InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3830 BasicBlock *IfException, ArrayRef<Value *> Args,
3831 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3832 const Twine &NameStr, BasicBlock *InsertAtEnd)
3833 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3834 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3835 InsertAtEnd) {
3836 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3837}
3838
3839//===----------------------------------------------------------------------===//
3840// CallBrInst Class
3841//===----------------------------------------------------------------------===//
3842
3843/// CallBr instruction, tracking function calls that may not return control but
3844/// instead transfer it to a third location. The SubclassData field is used to
3845/// hold the calling convention of the call.
3846///
3847class CallBrInst : public CallBase {
3848
3849 unsigned NumIndirectDests;
3850
3851 CallBrInst(const CallBrInst &BI);
3852
3853 /// Construct a CallBrInst given a range of arguments.
3854 ///
3855 /// Construct a CallBrInst from a range of arguments
3856 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3857 ArrayRef<BasicBlock *> IndirectDests,
3858 ArrayRef<Value *> Args,
3859 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3860 const Twine &NameStr, Instruction *InsertBefore);
3861
3862 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3863 ArrayRef<BasicBlock *> IndirectDests,
3864 ArrayRef<Value *> Args,
3865 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3866 const Twine &NameStr, BasicBlock *InsertAtEnd);
3867
3868 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3869 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3870 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3871
3872 /// Compute the number of operands to allocate.
3873 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3874 int NumBundleInputs = 0) {
3875 // We need one operand for the called function, plus our extra operands and
3876 // the input operand counts provided.
3877 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3878 }
3879
3880protected:
3881 // Note: Instruction needs to be a friend here to call cloneImpl.
3882 friend class Instruction;
3883
3884 CallBrInst *cloneImpl() const;
3885
3886public:
3887 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3888 BasicBlock *DefaultDest,
3889 ArrayRef<BasicBlock *> IndirectDests,
3890 ArrayRef<Value *> Args, const Twine &NameStr,
3891 Instruction *InsertBefore = nullptr) {
3892 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3893 return new (NumOperands)
3894 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3895 NumOperands, NameStr, InsertBefore);
3896 }
3897
3898 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3899 BasicBlock *DefaultDest,
3900 ArrayRef<BasicBlock *> IndirectDests,
3901 ArrayRef<Value *> Args,
3902 ArrayRef<OperandBundleDef> Bundles = None,
3903 const Twine &NameStr = "",
3904 Instruction *InsertBefore = nullptr) {
3905 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3906 CountBundleInputs(Bundles));
3907 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3908
3909 return new (NumOperands, DescriptorBytes)
3910 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3911 NumOperands, NameStr, InsertBefore);
3912 }
3913
3914 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3915 BasicBlock *DefaultDest,
3916 ArrayRef<BasicBlock *> IndirectDests,
3917 ArrayRef<Value *> Args, const Twine &NameStr,
3918 BasicBlock *InsertAtEnd) {
3919 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3920 return new (NumOperands)
3921 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3922 NumOperands, NameStr, InsertAtEnd);
3923 }
3924
3925 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3926 BasicBlock *DefaultDest,
3927 ArrayRef<BasicBlock *> IndirectDests,
3928 ArrayRef<Value *> Args,
3929 ArrayRef<OperandBundleDef> Bundles,
3930 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3931 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3932 CountBundleInputs(Bundles));
3933 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3934
3935 return new (NumOperands, DescriptorBytes)
3936 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3937 NumOperands, NameStr, InsertAtEnd);
3938 }
3939
3940 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3941 ArrayRef<BasicBlock *> IndirectDests,
3942 ArrayRef<Value *> Args, const Twine &NameStr,
3943 Instruction *InsertBefore = nullptr) {
3944 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3945 IndirectDests, Args, NameStr, InsertBefore);
3946 }
3947
3948 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3949 ArrayRef<BasicBlock *> IndirectDests,
3950 ArrayRef<Value *> Args,
3951 ArrayRef<OperandBundleDef> Bundles = None,
3952 const Twine &NameStr = "",
3953 Instruction *InsertBefore = nullptr) {
3954 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3955 IndirectDests, Args, Bundles, NameStr, InsertBefore);
3956 }
3957
3958 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3959 ArrayRef<BasicBlock *> IndirectDests,
3960 ArrayRef<Value *> Args, const Twine &NameStr,
3961 BasicBlock *InsertAtEnd) {
3962 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3963 IndirectDests, Args, NameStr, InsertAtEnd);
3964 }
3965
3966 static CallBrInst *Create(FunctionCallee Func,
3967 BasicBlock *DefaultDest,
3968 ArrayRef<BasicBlock *> IndirectDests,
3969 ArrayRef<Value *> Args,
3970 ArrayRef<OperandBundleDef> Bundles,
3971 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3972 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3973 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
3974 }
3975
3976 /// Create a clone of \p CBI with a different set of operand bundles and
3977 /// insert it before \p InsertPt.
3978 ///
3979 /// The returned callbr instruction is identical to \p CBI in every way
3980 /// except that the operand bundles for the new instruction are set to the
3981 /// operand bundles in \p Bundles.
3982 static CallBrInst *Create(CallBrInst *CBI,
3983 ArrayRef<OperandBundleDef> Bundles,
3984 Instruction *InsertPt = nullptr);
3985
3986 /// Return the number of callbr indirect dest labels.
3987 ///
3988 unsigned getNumIndirectDests() const { return NumIndirectDests; }
3989
3990 /// getIndirectDestLabel - Return the i-th indirect dest label.
3991 ///
3992 Value *getIndirectDestLabel(unsigned i) const {
3993 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3993, __PRETTY_FUNCTION__))
;
3994 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
3995 1);
3996 }
3997
3998 Value *getIndirectDestLabelUse(unsigned i) const {
3999 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 3999, __PRETTY_FUNCTION__))
;
4000 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4001 1);
4002 }
4003
4004 // Return the destination basic blocks...
4005 BasicBlock *getDefaultDest() const {
4006 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4007 }
4008 BasicBlock *getIndirectDest(unsigned i) const {
4009 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4010 }
4011 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4012 SmallVector<BasicBlock *, 16> IndirectDests;
4013 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4014 IndirectDests.push_back(getIndirectDest(i));
4015 return IndirectDests;
4016 }
4017 void setDefaultDest(BasicBlock *B) {
4018 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4019 }
4020 void setIndirectDest(unsigned i, BasicBlock *B) {
4021 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4022 }
4023
4024 BasicBlock *getSuccessor(unsigned i) const {
4025 assert(i < getNumSuccessors() + 1 &&((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4026, __PRETTY_FUNCTION__))
4026 "Successor # out of range for callbr!")((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4026, __PRETTY_FUNCTION__))
;
4027 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4028 }
4029
4030 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4031 assert(idx < getNumIndirectDests() + 1 &&((idx < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4032, __PRETTY_FUNCTION__))
4032 "Successor # out of range for callbr!")((idx < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4032, __PRETTY_FUNCTION__))
;
4033 *(&Op<-1>() - getNumIndirectDests() -1 + idx) =
4034 reinterpret_cast<Value *>(NewSucc);
4035 }
4036
4037 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4038
4039 // Methods for support type inquiry through isa, cast, and dyn_cast:
4040 static bool classof(const Instruction *I) {
4041 return (I->getOpcode() == Instruction::CallBr);
4042 }
4043 static bool classof(const Value *V) {
4044 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4045 }
4046
4047private:
4048
4049 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4050 // method so that subclasses cannot accidentally use it.
4051 void setInstructionSubclassData(unsigned short D) {
4052 Instruction::setInstructionSubclassData(D);
4053 }
4054};
4055
4056CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4057 ArrayRef<BasicBlock *> IndirectDests,
4058 ArrayRef<Value *> Args,
4059 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4060 const Twine &NameStr, Instruction *InsertBefore)
4061 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4062 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4063 InsertBefore) {
4064 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4065}
4066
4067CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4068 ArrayRef<BasicBlock *> IndirectDests,
4069 ArrayRef<Value *> Args,
4070 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4071 const Twine &NameStr, BasicBlock *InsertAtEnd)
4072 : CallBase(
4073 cast<FunctionType>(
4074 cast<PointerType>(Func->getType())->getElementType())
4075 ->getReturnType(),
4076 Instruction::CallBr,
4077 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4078 InsertAtEnd) {
4079 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4080}
4081
4082//===----------------------------------------------------------------------===//
4083// ResumeInst Class
4084//===----------------------------------------------------------------------===//
4085
4086//===---------------------------------------------------------------------------
4087/// Resume the propagation of an exception.
4088///
4089class ResumeInst : public Instruction {
4090 ResumeInst(const ResumeInst &RI);
4091
4092 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4093 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4094
4095protected:
4096 // Note: Instruction needs to be a friend here to call cloneImpl.
4097 friend class Instruction;
4098
4099 ResumeInst *cloneImpl() const;
4100
4101public:
4102 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4103 return new(1) ResumeInst(Exn, InsertBefore);
4104 }
4105
4106 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4107 return new(1) ResumeInst(Exn, InsertAtEnd);
4108 }
4109
4110 /// Provide fast operand accessors
4111 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4112
4113 /// Convenience accessor.
4114 Value *getValue() const { return Op<0>(); }
4115
4116 unsigned getNumSuccessors() const { return 0; }
4117
4118 // Methods for support type inquiry through isa, cast, and dyn_cast:
4119 static bool classof(const Instruction *I) {
4120 return I->getOpcode() == Instruction::Resume;
4121 }
4122 static bool classof(const Value *V) {
4123 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4124 }
4125
4126private:
4127 BasicBlock *getSuccessor(unsigned idx) const {
4128 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4128)
;
4129 }
4130
4131 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4132 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4132)
;
4133 }
4134};
4135
4136template <>
4137struct OperandTraits<ResumeInst> :
4138 public FixedNumOperandTraits<ResumeInst, 1> {
4139};
4140
4141DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4141, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ResumeInst>::op_begin(const_cast<ResumeInst
*>(this))[i_nocapture].get()); } void ResumeInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4141, __PRETTY_FUNCTION__)); OperandTraits<ResumeInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ResumeInst
::getNumOperands() const { return OperandTraits<ResumeInst
>::operands(this); } template <int Idx_nocapture> Use
&ResumeInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ResumeInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4142
4143//===----------------------------------------------------------------------===//
4144// CatchSwitchInst Class
4145//===----------------------------------------------------------------------===//
4146class CatchSwitchInst : public Instruction {
4147 /// The number of operands actually allocated. NumOperands is
4148 /// the number actually in use.
4149 unsigned ReservedSpace;
4150
4151 // Operand[0] = Outer scope
4152 // Operand[1] = Unwind block destination
4153 // Operand[n] = BasicBlock to go to on match
4154 CatchSwitchInst(const CatchSwitchInst &CSI);
4155
4156 /// Create a new switch instruction, specifying a
4157 /// default destination. The number of additional handlers can be specified
4158 /// here to make memory allocation more efficient.
4159 /// This constructor can also autoinsert before another instruction.
4160 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4161 unsigned NumHandlers, const Twine &NameStr,
4162 Instruction *InsertBefore);
4163
4164 /// Create a new switch instruction, specifying a
4165 /// default destination. The number of additional handlers can be specified
4166 /// here to make memory allocation more efficient.
4167 /// This constructor also autoinserts at the end of the specified BasicBlock.
4168 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4169 unsigned NumHandlers, const Twine &NameStr,
4170 BasicBlock *InsertAtEnd);
4171
4172 // allocate space for exactly zero operands
4173 void *operator new(size_t s) { return User::operator new(s); }
4174
4175 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4176 void growOperands(unsigned Size);
4177
4178protected:
4179 // Note: Instruction needs to be a friend here to call cloneImpl.
4180 friend class Instruction;
4181
4182 CatchSwitchInst *cloneImpl() const;
4183
4184public:
4185 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4186 unsigned NumHandlers,
4187 const Twine &NameStr = "",
4188 Instruction *InsertBefore = nullptr) {
4189 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4190 InsertBefore);
4191 }
4192
4193 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4194 unsigned NumHandlers, const Twine &NameStr,
4195 BasicBlock *InsertAtEnd) {
4196 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4197 InsertAtEnd);
4198 }
4199
4200 /// Provide fast operand accessors
4201 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4202
4203 // Accessor Methods for CatchSwitch stmt
4204 Value *getParentPad() const { return getOperand(0); }
4205 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4206
4207 // Accessor Methods for CatchSwitch stmt
4208 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4209 bool unwindsToCaller() const { return !hasUnwindDest(); }
4210 BasicBlock *getUnwindDest() const {
4211 if (hasUnwindDest())
4212 return cast<BasicBlock>(getOperand(1));
4213 return nullptr;
4214 }
4215 void setUnwindDest(BasicBlock *UnwindDest) {
4216 assert(UnwindDest)((UnwindDest) ? static_cast<void> (0) : __assert_fail (
"UnwindDest", "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4216, __PRETTY_FUNCTION__))
;
4217 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4217, __PRETTY_FUNCTION__))
;
4218 setOperand(1, UnwindDest);
4219 }
4220
4221 /// return the number of 'handlers' in this catchswitch
4222 /// instruction, except the default handler
4223 unsigned getNumHandlers() const {
4224 if (hasUnwindDest())
4225 return getNumOperands() - 2;
4226 return getNumOperands() - 1;
4227 }
4228
4229private:
4230 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4231 static const BasicBlock *handler_helper(const Value *V) {
4232 return cast<BasicBlock>(V);
4233 }
4234
4235public:
4236 using DerefFnTy = BasicBlock *(*)(Value *);
4237 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4238 using handler_range = iterator_range<handler_iterator>;
4239 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4240 using const_handler_iterator =
4241 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4242 using const_handler_range = iterator_range<const_handler_iterator>;
4243
4244 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4245 handler_iterator handler_begin() {
4246 op_iterator It = op_begin() + 1;
4247 if (hasUnwindDest())
4248 ++It;
4249 return handler_iterator(It, DerefFnTy(handler_helper));
4250 }
4251
4252 /// Returns an iterator that points to the first handler in the
4253 /// CatchSwitchInst.
4254 const_handler_iterator handler_begin() const {
4255 const_op_iterator It = op_begin() + 1;
4256 if (hasUnwindDest())
4257 ++It;
4258 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4259 }
4260
4261 /// Returns a read-only iterator that points one past the last
4262 /// handler in the CatchSwitchInst.
4263 handler_iterator handler_end() {
4264 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4265 }
4266
4267 /// Returns an iterator that points one past the last handler in the
4268 /// CatchSwitchInst.
4269 const_handler_iterator handler_end() const {
4270 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4271 }
4272
4273 /// iteration adapter for range-for loops.
4274 handler_range handlers() {
4275 return make_range(handler_begin(), handler_end());
4276 }
4277
4278 /// iteration adapter for range-for loops.
4279 const_handler_range handlers() const {
4280 return make_range(handler_begin(), handler_end());
4281 }
4282
4283 /// Add an entry to the switch instruction...
4284 /// Note:
4285 /// This action invalidates handler_end(). Old handler_end() iterator will
4286 /// point to the added handler.
4287 void addHandler(BasicBlock *Dest);
4288
4289 void removeHandler(handler_iterator HI);
4290
4291 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4292 BasicBlock *getSuccessor(unsigned Idx) const {
4293 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4294, __PRETTY_FUNCTION__))
4294 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4294, __PRETTY_FUNCTION__))
;
4295 return cast<BasicBlock>(getOperand(Idx + 1));
4296 }
4297 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4298 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4299, __PRETTY_FUNCTION__))
4299 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4299, __PRETTY_FUNCTION__))
;
4300 setOperand(Idx + 1, NewSucc);
4301 }
4302
4303 // Methods for support type inquiry through isa, cast, and dyn_cast:
4304 static bool classof(const Instruction *I) {
4305 return I->getOpcode() == Instruction::CatchSwitch;
4306 }
4307 static bool classof(const Value *V) {
4308 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4309 }
4310};
4311
4312template <>
4313struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4314
4315DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchSwitchInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4315, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this))[i_nocapture].get()); } void CatchSwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchSwitchInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4315, __PRETTY_FUNCTION__)); OperandTraits<CatchSwitchInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchSwitchInst::getNumOperands() const { return OperandTraits
<CatchSwitchInst>::operands(this); } template <int Idx_nocapture
> Use &CatchSwitchInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchSwitchInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4316
4317//===----------------------------------------------------------------------===//
4318// CleanupPadInst Class
4319//===----------------------------------------------------------------------===//
4320class CleanupPadInst : public FuncletPadInst {
4321private:
4322 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4323 unsigned Values, const Twine &NameStr,
4324 Instruction *InsertBefore)
4325 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4326 NameStr, InsertBefore) {}
4327 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4328 unsigned Values, const Twine &NameStr,
4329 BasicBlock *InsertAtEnd)
4330 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4331 NameStr, InsertAtEnd) {}
4332
4333public:
4334 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4335 const Twine &NameStr = "",
4336 Instruction *InsertBefore = nullptr) {
4337 unsigned Values = 1 + Args.size();
4338 return new (Values)
4339 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4340 }
4341
4342 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4343 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4344 unsigned Values = 1 + Args.size();
4345 return new (Values)
4346 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4347 }
4348
4349 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4350 static bool classof(const Instruction *I) {
4351 return I->getOpcode() == Instruction::CleanupPad;
4352 }
4353 static bool classof(const Value *V) {
4354 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4355 }
4356};
4357
4358//===----------------------------------------------------------------------===//
4359// CatchPadInst Class
4360//===----------------------------------------------------------------------===//
4361class CatchPadInst : public FuncletPadInst {
4362private:
4363 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4364 unsigned Values, const Twine &NameStr,
4365 Instruction *InsertBefore)
4366 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4367 NameStr, InsertBefore) {}
4368 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4369 unsigned Values, const Twine &NameStr,
4370 BasicBlock *InsertAtEnd)
4371 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4372 NameStr, InsertAtEnd) {}
4373
4374public:
4375 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4376 const Twine &NameStr = "",
4377 Instruction *InsertBefore = nullptr) {
4378 unsigned Values = 1 + Args.size();
4379 return new (Values)
4380 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4381 }
4382
4383 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4384 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4385 unsigned Values = 1 + Args.size();
4386 return new (Values)
4387 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4388 }
4389
4390 /// Convenience accessors
4391 CatchSwitchInst *getCatchSwitch() const {
4392 return cast<CatchSwitchInst>(Op<-1>());
4393 }
4394 void setCatchSwitch(Value *CatchSwitch) {
4395 assert(CatchSwitch)((CatchSwitch) ? static_cast<void> (0) : __assert_fail (
"CatchSwitch", "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4395, __PRETTY_FUNCTION__))
;
4396 Op<-1>() = CatchSwitch;
4397 }
4398
4399 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4400 static bool classof(const Instruction *I) {
4401 return I->getOpcode() == Instruction::CatchPad;
4402 }
4403 static bool classof(const Value *V) {
4404 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4405 }
4406};
4407
4408//===----------------------------------------------------------------------===//
4409// CatchReturnInst Class
4410//===----------------------------------------------------------------------===//
4411
4412class CatchReturnInst : public Instruction {
4413 CatchReturnInst(const CatchReturnInst &RI);
4414 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4415 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4416
4417 void init(Value *CatchPad, BasicBlock *BB);
4418
4419protected:
4420 // Note: Instruction needs to be a friend here to call cloneImpl.
4421 friend class Instruction;
4422
4423 CatchReturnInst *cloneImpl() const;
4424
4425public:
4426 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4427 Instruction *InsertBefore = nullptr) {
4428 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4428, __PRETTY_FUNCTION__))
;
4429 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4429, __PRETTY_FUNCTION__))
;
4430 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4431 }
4432
4433 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4434 BasicBlock *InsertAtEnd) {
4435 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4435, __PRETTY_FUNCTION__))
;
4436 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4436, __PRETTY_FUNCTION__))
;
4437 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4438 }
4439
4440 /// Provide fast operand accessors
4441 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4442
4443 /// Convenience accessors.
4444 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4445 void setCatchPad(CatchPadInst *CatchPad) {
4446 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4446, __PRETTY_FUNCTION__))
;
4447 Op<0>() = CatchPad;
4448 }
4449
4450 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4451 void setSuccessor(BasicBlock *NewSucc) {
4452 assert(NewSucc)((NewSucc) ? static_cast<void> (0) : __assert_fail ("NewSucc"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4452, __PRETTY_FUNCTION__))
;
4453 Op<1>() = NewSucc;
4454 }
4455 unsigned getNumSuccessors() const { return 1; }
4456
4457 /// Get the parentPad of this catchret's catchpad's catchswitch.
4458 /// The successor block is implicitly a member of this funclet.
4459 Value *getCatchSwitchParentPad() const {
4460 return getCatchPad()->getCatchSwitch()->getParentPad();
4461 }
4462
4463 // Methods for support type inquiry through isa, cast, and dyn_cast:
4464 static bool classof(const Instruction *I) {
4465 return (I->getOpcode() == Instruction::CatchRet);
4466 }
4467 static bool classof(const Value *V) {
4468 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4469 }
4470
4471private:
4472 BasicBlock *getSuccessor(unsigned Idx) const {
4473 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4473, __PRETTY_FUNCTION__))
;
4474 return getSuccessor();
4475 }
4476
4477 void setSuccessor(unsigned Idx, BasicBlock *B) {
4478 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4478, __PRETTY_FUNCTION__))
;
4479 setSuccessor(B);
4480 }
4481};
4482
4483template <>
4484struct OperandTraits<CatchReturnInst>
4485 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4486
4487DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchReturnInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4487, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this))[i_nocapture].get()); } void CatchReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchReturnInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4487, __PRETTY_FUNCTION__)); OperandTraits<CatchReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchReturnInst::getNumOperands() const { return OperandTraits
<CatchReturnInst>::operands(this); } template <int Idx_nocapture
> Use &CatchReturnInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchReturnInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4488
4489//===----------------------------------------------------------------------===//
4490// CleanupReturnInst Class
4491//===----------------------------------------------------------------------===//
4492
4493class CleanupReturnInst : public Instruction {
4494private:
4495 CleanupReturnInst(const CleanupReturnInst &RI);
4496 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4497 Instruction *InsertBefore = nullptr);
4498 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4499 BasicBlock *InsertAtEnd);
4500
4501 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4502
4503protected:
4504 // Note: Instruction needs to be a friend here to call cloneImpl.
4505 friend class Instruction;
4506
4507 CleanupReturnInst *cloneImpl() const;
4508
4509public:
4510 static CleanupReturnInst *Create(Value *CleanupPad,
4511 BasicBlock *UnwindBB = nullptr,
4512 Instruction *InsertBefore = nullptr) {
4513 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4513, __PRETTY_FUNCTION__))
;
4514 unsigned Values = 1;
4515 if (UnwindBB)
4516 ++Values;
4517 return new (Values)
4518 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4519 }
4520
4521 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4522 BasicBlock *InsertAtEnd) {
4523 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4523, __PRETTY_FUNCTION__))
;
4524 unsigned Values = 1;
4525 if (UnwindBB)
4526 ++Values;
4527 return new (Values)
4528 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4529 }
4530
4531 /// Provide fast operand accessors
4532 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4533
4534 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4535 bool unwindsToCaller() const { return !hasUnwindDest(); }
4536
4537 /// Convenience accessor.
4538 CleanupPadInst *getCleanupPad() const {
4539 return cast<CleanupPadInst>(Op<0>());
4540 }
4541 void setCleanupPad(CleanupPadInst *CleanupPad) {
4542 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4542, __PRETTY_FUNCTION__))
;
4543 Op<0>() = CleanupPad;
4544 }
4545
4546 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4547
4548 BasicBlock *getUnwindDest() const {
4549 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4550 }
4551 void setUnwindDest(BasicBlock *NewDest) {
4552 assert(NewDest)((NewDest) ? static_cast<void> (0) : __assert_fail ("NewDest"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4552, __PRETTY_FUNCTION__))
;
4553 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4553, __PRETTY_FUNCTION__))
;
4554 Op<1>() = NewDest;
4555 }
4556
4557 // Methods for support type inquiry through isa, cast, and dyn_cast:
4558 static bool classof(const Instruction *I) {
4559 return (I->getOpcode() == Instruction::CleanupRet);
4560 }
4561 static bool classof(const Value *V) {
4562 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4563 }
4564
4565private:
4566 BasicBlock *getSuccessor(unsigned Idx) const {
4567 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4567, __PRETTY_FUNCTION__))
;
4568 return getUnwindDest();
4569 }
4570
4571 void setSuccessor(unsigned Idx, BasicBlock *B) {
4572 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4572, __PRETTY_FUNCTION__))
;
4573 setUnwindDest(B);
4574 }
4575
4576 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4577 // method so that subclasses cannot accidentally use it.
4578 void setInstructionSubclassData(unsigned short D) {
4579 Instruction::setInstructionSubclassData(D);
4580 }
4581};
4582
4583template <>
4584struct OperandTraits<CleanupReturnInst>
4585 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4586
4587DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<CleanupReturnInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4587, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CleanupReturnInst>::op_begin(const_cast
<CleanupReturnInst*>(this))[i_nocapture].get()); } void
CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<CleanupReturnInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4587, __PRETTY_FUNCTION__)); OperandTraits<CleanupReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CleanupReturnInst::getNumOperands() const { return OperandTraits
<CleanupReturnInst>::operands(this); } template <int
Idx_nocapture> Use &CleanupReturnInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &CleanupReturnInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
4588
4589//===----------------------------------------------------------------------===//
4590// UnreachableInst Class
4591//===----------------------------------------------------------------------===//
4592
4593//===---------------------------------------------------------------------------
4594/// This function has undefined behavior. In particular, the
4595/// presence of this instruction indicates some higher level knowledge that the
4596/// end of the block cannot be reached.
4597///
4598class UnreachableInst : public Instruction {
4599protected:
4600 // Note: Instruction needs to be a friend here to call cloneImpl.
4601 friend class Instruction;
4602
4603 UnreachableInst *cloneImpl() const;
4604
4605public:
4606 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4607 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4608
4609 // allocate space for exactly zero operands
4610 void *operator new(size_t s) {
4611 return User::operator new(s, 0);
4612 }
4613
4614 unsigned getNumSuccessors() const { return 0; }
4615
4616 // Methods for support type inquiry through isa, cast, and dyn_cast:
4617 static bool classof(const Instruction *I) {
4618 return I->getOpcode() == Instruction::Unreachable;
4619 }
4620 static bool classof(const Value *V) {
4621 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4622 }
4623
4624private:
4625 BasicBlock *getSuccessor(unsigned idx) const {
4626 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4626)
;
4627 }
4628
4629 void setSuccessor(unsigned idx, BasicBlock *B) {
4630 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 4630)
;
4631 }
4632};
4633
4634//===----------------------------------------------------------------------===//
4635// TruncInst Class
4636//===----------------------------------------------------------------------===//
4637
4638/// This class represents a truncation of integer types.
4639class TruncInst : public CastInst {
4640protected:
4641 // Note: Instruction needs to be a friend here to call cloneImpl.
4642 friend class Instruction;
4643
4644 /// Clone an identical TruncInst
4645 TruncInst *cloneImpl() const;
4646
4647public:
4648 /// Constructor with insert-before-instruction semantics
4649 TruncInst(
4650 Value *S, ///< The value to be truncated
4651 Type *Ty, ///< The (smaller) type to truncate to
4652 const Twine &NameStr = "", ///< A name for the new instruction
4653 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4654 );
4655
4656 /// Constructor with insert-at-end-of-block semantics
4657 TruncInst(
4658 Value *S, ///< The value to be truncated
4659 Type *Ty, ///< The (smaller) type to truncate to
4660 const Twine &NameStr, ///< A name for the new instruction
4661 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4662 );
4663
4664 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4665 static bool classof(const Instruction *I) {
4666 return I->getOpcode() == Trunc;
4667 }
4668 static bool classof(const Value *V) {
4669 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4670 }
4671};
4672
4673//===----------------------------------------------------------------------===//
4674// ZExtInst Class
4675//===----------------------------------------------------------------------===//
4676
4677/// This class represents zero extension of integer types.
4678class ZExtInst : public CastInst {
4679protected:
4680 // Note: Instruction needs to be a friend here to call cloneImpl.
4681 friend class Instruction;
4682
4683 /// Clone an identical ZExtInst
4684 ZExtInst *cloneImpl() const;
4685
4686public:
4687 /// Constructor with insert-before-instruction semantics
4688 ZExtInst(
4689 Value *S, ///< The value to be zero extended
4690 Type *Ty, ///< The type to zero extend to
4691 const Twine &NameStr = "", ///< A name for the new instruction
4692 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4693 );
4694
4695 /// Constructor with insert-at-end semantics.
4696 ZExtInst(
4697 Value *S, ///< The value to be zero extended
4698 Type *Ty, ///< The type to zero extend to
4699 const Twine &NameStr, ///< A name for the new instruction
4700 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4701 );
4702
4703 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4704 static bool classof(const Instruction *I) {
4705 return I->getOpcode() == ZExt;
4706 }
4707 static bool classof(const Value *V) {
4708 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4709 }
4710};
4711
4712//===----------------------------------------------------------------------===//
4713// SExtInst Class
4714//===----------------------------------------------------------------------===//
4715
4716/// This class represents a sign extension of integer types.
4717class SExtInst : public CastInst {
4718protected:
4719 // Note: Instruction needs to be a friend here to call cloneImpl.
4720 friend class Instruction;
4721
4722 /// Clone an identical SExtInst
4723 SExtInst *cloneImpl() const;
4724
4725public:
4726 /// Constructor with insert-before-instruction semantics
4727 SExtInst(
4728 Value *S, ///< The value to be sign extended
4729 Type *Ty, ///< The type to sign extend to
4730 const Twine &NameStr = "", ///< A name for the new instruction
4731 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4732 );
4733
4734 /// Constructor with insert-at-end-of-block semantics
4735 SExtInst(
4736 Value *S, ///< The value to be sign extended
4737 Type *Ty, ///< The type to sign extend to
4738 const Twine &NameStr, ///< A name for the new instruction
4739 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4740 );
4741
4742 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4743 static bool classof(const Instruction *I) {
4744 return I->getOpcode() == SExt;
4745 }
4746 static bool classof(const Value *V) {
4747 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4748 }
4749};
4750
4751//===----------------------------------------------------------------------===//
4752// FPTruncInst Class
4753//===----------------------------------------------------------------------===//
4754
4755/// This class represents a truncation of floating point types.
4756class FPTruncInst : public CastInst {
4757protected:
4758 // Note: Instruction needs to be a friend here to call cloneImpl.
4759 friend class Instruction;
4760
4761 /// Clone an identical FPTruncInst
4762 FPTruncInst *cloneImpl() const;
4763
4764public:
4765 /// Constructor with insert-before-instruction semantics
4766 FPTruncInst(
4767 Value *S, ///< The value to be truncated
4768 Type *Ty, ///< The type to truncate to
4769 const Twine &NameStr = "", ///< A name for the new instruction
4770 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4771 );
4772
4773 /// Constructor with insert-before-instruction semantics
4774 FPTruncInst(
4775 Value *S, ///< The value to be truncated
4776 Type *Ty, ///< The type to truncate to
4777 const Twine &NameStr, ///< A name for the new instruction
4778 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4779 );
4780
4781 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4782 static bool classof(const Instruction *I) {
4783 return I->getOpcode() == FPTrunc;
4784 }
4785 static bool classof(const Value *V) {
4786 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4787 }
4788};
4789
4790//===----------------------------------------------------------------------===//
4791// FPExtInst Class
4792//===----------------------------------------------------------------------===//
4793
4794/// This class represents an extension of floating point types.
4795class FPExtInst : public CastInst {
4796protected:
4797 // Note: Instruction needs to be a friend here to call cloneImpl.
4798 friend class Instruction;
4799
4800 /// Clone an identical FPExtInst
4801 FPExtInst *cloneImpl() const;
4802
4803public:
4804 /// Constructor with insert-before-instruction semantics
4805 FPExtInst(
4806 Value *S, ///< The value to be extended
4807 Type *Ty, ///< The type to extend to
4808 const Twine &NameStr = "", ///< A name for the new instruction
4809 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4810 );
4811
4812 /// Constructor with insert-at-end-of-block semantics
4813 FPExtInst(
4814 Value *S, ///< The value to be extended
4815 Type *Ty, ///< The type to extend to
4816 const Twine &NameStr, ///< A name for the new instruction
4817 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4818 );
4819
4820 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4821 static bool classof(const Instruction *I) {
4822 return I->getOpcode() == FPExt;
4823 }
4824 static bool classof(const Value *V) {
4825 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4826 }
4827};
4828
4829//===----------------------------------------------------------------------===//
4830// UIToFPInst Class
4831//===----------------------------------------------------------------------===//
4832
4833/// This class represents a cast unsigned integer to floating point.
4834class UIToFPInst : public CastInst {
4835protected:
4836 // Note: Instruction needs to be a friend here to call cloneImpl.
4837 friend class Instruction;
4838
4839 /// Clone an identical UIToFPInst
4840 UIToFPInst *cloneImpl() const;
4841
4842public:
4843 /// Constructor with insert-before-instruction semantics
4844 UIToFPInst(
4845 Value *S, ///< The value to be converted
4846 Type *Ty, ///< The type to convert to
4847 const Twine &NameStr = "", ///< A name for the new instruction
4848 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4849 );
4850
4851 /// Constructor with insert-at-end-of-block semantics
4852 UIToFPInst(
4853 Value *S, ///< The value to be converted
4854 Type *Ty, ///< The type to convert to
4855 const Twine &NameStr, ///< A name for the new instruction
4856 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4857 );
4858
4859 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4860 static bool classof(const Instruction *I) {
4861 return I->getOpcode() == UIToFP;
4862 }
4863 static bool classof(const Value *V) {
4864 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4865 }
4866};
4867
4868//===----------------------------------------------------------------------===//
4869// SIToFPInst Class
4870//===----------------------------------------------------------------------===//
4871
4872/// This class represents a cast from signed integer to floating point.
4873class SIToFPInst : public CastInst {
4874protected:
4875 // Note: Instruction needs to be a friend here to call cloneImpl.
4876 friend class Instruction;
4877
4878 /// Clone an identical SIToFPInst
4879 SIToFPInst *cloneImpl() const;
4880
4881public:
4882 /// Constructor with insert-before-instruction semantics
4883 SIToFPInst(
4884 Value *S, ///< The value to be converted
4885 Type *Ty, ///< The type to convert to
4886 const Twine &NameStr = "", ///< A name for the new instruction
4887 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4888 );
4889
4890 /// Constructor with insert-at-end-of-block semantics
4891 SIToFPInst(
4892 Value *S, ///< The value to be converted
4893 Type *Ty, ///< The type to convert to
4894 const Twine &NameStr, ///< A name for the new instruction
4895 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4896 );
4897
4898 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4899 static bool classof(const Instruction *I) {
4900 return I->getOpcode() == SIToFP;
4901 }
4902 static bool classof(const Value *V) {
4903 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4904 }
4905};
4906
4907//===----------------------------------------------------------------------===//
4908// FPToUIInst Class
4909//===----------------------------------------------------------------------===//
4910
4911/// This class represents a cast from floating point to unsigned integer
4912class FPToUIInst : public CastInst {
4913protected:
4914 // Note: Instruction needs to be a friend here to call cloneImpl.
4915 friend class Instruction;
4916
4917 /// Clone an identical FPToUIInst
4918 FPToUIInst *cloneImpl() const;
4919
4920public:
4921 /// Constructor with insert-before-instruction semantics
4922 FPToUIInst(
4923 Value *S, ///< The value to be converted
4924 Type *Ty, ///< The type to convert to
4925 const Twine &NameStr = "", ///< A name for the new instruction
4926 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4927 );
4928
4929 /// Constructor with insert-at-end-of-block semantics
4930 FPToUIInst(
4931 Value *S, ///< The value to be converted
4932 Type *Ty, ///< The type to convert to
4933 const Twine &NameStr, ///< A name for the new instruction
4934 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
4935 );
4936
4937 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4938 static bool classof(const Instruction *I) {
4939 return I->getOpcode() == FPToUI;
4940 }
4941 static bool classof(const Value *V) {
4942 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4943 }
4944};
4945
4946//===----------------------------------------------------------------------===//
4947// FPToSIInst Class
4948//===----------------------------------------------------------------------===//
4949
4950/// This class represents a cast from floating point to signed integer.
4951class FPToSIInst : public CastInst {
4952protected:
4953 // Note: Instruction needs to be a friend here to call cloneImpl.
4954 friend class Instruction;
4955
4956 /// Clone an identical FPToSIInst
4957 FPToSIInst *cloneImpl() const;
4958
4959public:
4960 /// Constructor with insert-before-instruction semantics
4961 FPToSIInst(
4962 Value *S, ///< The value to be converted
4963 Type *Ty, ///< The type to convert to
4964 const Twine &NameStr = "", ///< A name for the new instruction
4965 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4966 );
4967
4968 /// Constructor with insert-at-end-of-block semantics
4969 FPToSIInst(
4970 Value *S, ///< The value to be converted
4971 Type *Ty, ///< The type to convert to
4972 const Twine &NameStr, ///< A name for the new instruction
4973 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4974 );
4975
4976 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4977 static bool classof(const Instruction *I) {
4978 return I->getOpcode() == FPToSI;
4979 }
4980 static bool classof(const Value *V) {
4981 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4982 }
4983};
4984
4985//===----------------------------------------------------------------------===//
4986// IntToPtrInst Class
4987//===----------------------------------------------------------------------===//
4988
4989/// This class represents a cast from an integer to a pointer.
4990class IntToPtrInst : public CastInst {
4991public:
4992 // Note: Instruction needs to be a friend here to call cloneImpl.
4993 friend class Instruction;
4994
4995 /// Constructor with insert-before-instruction semantics
4996 IntToPtrInst(
4997 Value *S, ///< The value to be converted
4998 Type *Ty, ///< The type to convert to
4999 const Twine &NameStr = "", ///< A name for the new instruction
5000 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5001 );
5002
5003 /// Constructor with insert-at-end-of-block semantics
5004 IntToPtrInst(
5005 Value *S, ///< The value to be converted
5006 Type *Ty, ///< The type to convert to
5007 const Twine &NameStr, ///< A name for the new instruction
5008 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5009 );
5010
5011 /// Clone an identical IntToPtrInst.
5012 IntToPtrInst *cloneImpl() const;
5013
5014 /// Returns the address space of this instruction's pointer type.
5015 unsigned getAddressSpace() const {
5016 return getType()->getPointerAddressSpace();
5017 }
5018
5019 // Methods for support type inquiry through isa, cast, and dyn_cast:
5020 static bool classof(const Instruction *I) {
5021 return I->getOpcode() == IntToPtr;
5022 }
5023 static bool classof(const Value *V) {
5024 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5025 }
5026};
5027
5028//===----------------------------------------------------------------------===//
5029// PtrToIntInst Class
5030//===----------------------------------------------------------------------===//
5031
5032/// This class represents a cast from a pointer to an integer.
5033class PtrToIntInst : public CastInst {
5034protected:
5035 // Note: Instruction needs to be a friend here to call cloneImpl.
5036 friend class Instruction;
5037
5038 /// Clone an identical PtrToIntInst.
5039 PtrToIntInst *cloneImpl() const;
5040
5041public:
5042 /// Constructor with insert-before-instruction semantics
5043 PtrToIntInst(
5044 Value *S, ///< The value to be converted
5045 Type *Ty, ///< The type to convert to
5046 const Twine &NameStr = "", ///< A name for the new instruction
5047 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5048 );
5049
5050 /// Constructor with insert-at-end-of-block semantics
5051 PtrToIntInst(
5052 Value *S, ///< The value to be converted
5053 Type *Ty, ///< The type to convert to
5054 const Twine &NameStr, ///< A name for the new instruction
5055 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5056 );
5057
5058 /// Gets the pointer operand.
5059 Value *getPointerOperand() { return getOperand(0); }
5060 /// Gets the pointer operand.
5061 const Value *getPointerOperand() const { return getOperand(0); }
5062 /// Gets the operand index of the pointer operand.
5063 static unsigned getPointerOperandIndex() { return 0U; }
5064
5065 /// Returns the address space of the pointer operand.
5066 unsigned getPointerAddressSpace() const {
5067 return getPointerOperand()->getType()->getPointerAddressSpace();
5068 }
5069
5070 // Methods for support type inquiry through isa, cast, and dyn_cast:
5071 static bool classof(const Instruction *I) {
5072 return I->getOpcode() == PtrToInt;
5073 }
5074 static bool classof(const Value *V) {
5075 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5076 }
5077};
5078
5079//===----------------------------------------------------------------------===//
5080// BitCastInst Class
5081//===----------------------------------------------------------------------===//
5082
5083/// This class represents a no-op cast from one type to another.
5084class BitCastInst : public CastInst {
5085protected:
5086 // Note: Instruction needs to be a friend here to call cloneImpl.
5087 friend class Instruction;
5088
5089 /// Clone an identical BitCastInst.
5090 BitCastInst *cloneImpl() const;
5091
5092public:
5093 /// Constructor with insert-before-instruction semantics
5094 BitCastInst(
5095 Value *S, ///< The value to be casted
5096 Type *Ty, ///< The type to casted to
5097 const Twine &NameStr = "", ///< A name for the new instruction
5098 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5099 );
5100
5101 /// Constructor with insert-at-end-of-block semantics
5102 BitCastInst(
5103 Value *S, ///< The value to be casted
5104 Type *Ty, ///< The type to casted to
5105 const Twine &NameStr, ///< A name for the new instruction
5106 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5107 );
5108
5109 // Methods for support type inquiry through isa, cast, and dyn_cast:
5110 static bool classof(const Instruction *I) {
5111 return I->getOpcode() == BitCast;
5112 }
5113 static bool classof(const Value *V) {
5114 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5115 }
5116};
5117
5118//===----------------------------------------------------------------------===//
5119// AddrSpaceCastInst Class
5120//===----------------------------------------------------------------------===//
5121
5122/// This class represents a conversion between pointers from one address space
5123/// to another.
5124class AddrSpaceCastInst : public CastInst {
5125protected:
5126 // Note: Instruction needs to be a friend here to call cloneImpl.
5127 friend class Instruction;
5128
5129 /// Clone an identical AddrSpaceCastInst.
5130 AddrSpaceCastInst *cloneImpl() const;
5131
5132public:
5133 /// Constructor with insert-before-instruction semantics
5134 AddrSpaceCastInst(
5135 Value *S, ///< The value to be casted
5136 Type *Ty, ///< The type to casted to
5137 const Twine &NameStr = "", ///< A name for the new instruction
5138 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5139 );
5140
5141 /// Constructor with insert-at-end-of-block semantics
5142 AddrSpaceCastInst(
5143 Value *S, ///< The value to be casted
5144 Type *Ty, ///< The type to casted to
5145 const Twine &NameStr, ///< A name for the new instruction
5146 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5147 );
5148
5149 // Methods for support type inquiry through isa, cast, and dyn_cast:
5150 static bool classof(const Instruction *I) {
5151 return I->getOpcode() == AddrSpaceCast;
5152 }
5153 static bool classof(const Value *V) {
5154 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5155 }
5156
5157 /// Gets the pointer operand.
5158 Value *getPointerOperand() {
5159 return getOperand(0);
5160 }
5161
5162 /// Gets the pointer operand.
5163 const Value *getPointerOperand() const {
5164 return getOperand(0);
5165 }
5166
5167 /// Gets the operand index of the pointer operand.
5168 static unsigned getPointerOperandIndex() {
5169 return 0U;
5170 }
5171
5172 /// Returns the address space of the pointer operand.
5173 unsigned getSrcAddressSpace() const {
5174 return getPointerOperand()->getType()->getPointerAddressSpace();
5175 }
5176
5177 /// Returns the address space of the result.
5178 unsigned getDestAddressSpace() const {
5179 return getType()->getPointerAddressSpace();
5180 }
5181};
5182
5183/// A helper function that returns the pointer operand of a load or store
5184/// instruction. Returns nullptr if not load or store.
5185inline Value *getLoadStorePointerOperand(Value *V) {
5186 if (auto *Load = dyn_cast<LoadInst>(V))
5187 return Load->getPointerOperand();
5188 if (auto *Store = dyn_cast<StoreInst>(V))
5189 return Store->getPointerOperand();
5190 return nullptr;
5191}
5192
5193/// A helper function that returns the pointer operand of a load, store
5194/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5195inline Value *getPointerOperand(Value *V) {
5196 if (auto *Ptr = getLoadStorePointerOperand(V))
5197 return Ptr;
5198 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5199 return Gep->getPointerOperand();
5200 return nullptr;
5201}
5202
5203/// A helper function that returns the alignment of load or store instruction.
5204inline unsigned getLoadStoreAlignment(Value *I) {
5205 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 5206, __PRETTY_FUNCTION__))
5206 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 5206, __PRETTY_FUNCTION__))
;
5207 if (auto *LI = dyn_cast<LoadInst>(I))
5208 return LI->getAlignment();
5209 return cast<StoreInst>(I)->getAlignment();
5210}
5211
5212/// A helper function that returns the address space of the pointer operand of
5213/// load or store instruction.
5214inline unsigned getLoadStoreAddressSpace(Value *I) {
5215 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 5216, __PRETTY_FUNCTION__))
5216 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Instructions.h"
, 5216, __PRETTY_FUNCTION__))
;
5217 if (auto *LI = dyn_cast<LoadInst>(I))
5218 return LI->getPointerAddressSpace();
5219 return cast<StoreInst>(I)->getPointerAddressSpace();
5220}
5221
5222} // end namespace llvm
5223
5224#endif // LLVM_IR_INSTRUCTIONS_H

/build/llvm-toolchain-snapshot-9~svn360825/include/llvm/IR/Use.h

1//===- llvm/Use.h - Definition of the Use class -----------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This defines the Use class. The Use class represents the operand of an
11/// instruction or some other User instance which refers to a Value. The Use
12/// class keeps the "use list" of the referenced value up to date.
13///
14/// Pointer tagging is used to efficiently find the User corresponding to a Use
15/// without having to store a User pointer in every Use. A User is preceded in
16/// memory by all the Uses corresponding to its operands, and the low bits of
17/// one of the fields (Prev) of the Use class are used to encode offsets to be
18/// able to find that User given a pointer to any Use. For details, see:
19///
20/// http://www.llvm.org/docs/ProgrammersManual.html#UserLayout
21///
22//===----------------------------------------------------------------------===//
23
24#ifndef LLVM_IR_USE_H
25#define LLVM_IR_USE_H
26
27#include "llvm-c/Types.h"
28#include "llvm/ADT/PointerIntPair.h"
29#include "llvm/Support/CBindingWrapping.h"
30#include "llvm/Support/Compiler.h"
31
32namespace llvm {
33
34template <typename> struct simplify_type;
35class User;
36class Value;
37
38/// A Use represents the edge between a Value definition and its users.
39///
40/// This is notionally a two-dimensional linked list. It supports traversing
41/// all of the uses for a particular value definition. It also supports jumping
42/// directly to the used value when we arrive from the User's operands, and
43/// jumping directly to the User when we arrive from the Value's uses.
44///
45/// The pointer to the used Value is explicit, and the pointer to the User is
46/// implicit. The implicit pointer is found via a waymarking algorithm
47/// described in the programmer's manual:
48///
49/// http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
50///
51/// This is essentially the single most memory intensive object in LLVM because
52/// of the number of uses in the system. At the same time, the constant time
53/// operations it allows are essential to many optimizations having reasonable
54/// time complexity.
55class Use {
56public:
57 Use(const Use &U) = delete;
58
59 /// Provide a fast substitute to std::swap<Use>
60 /// that also works with less standard-compliant compilers
61 void swap(Use &RHS);
62
63 /// Pointer traits for the UserRef PointerIntPair. This ensures we always
64 /// use the LSB regardless of pointer alignment on different targets.
65 struct UserRefPointerTraits {
66 static inline void *getAsVoidPointer(User *P) { return P; }
67
68 static inline User *getFromVoidPointer(void *P) {
69 return (User *)P;
70 }
71
72 enum { NumLowBitsAvailable = 1 };
73 };
74
75 // A type for the word following an array of hung-off Uses in memory, which is
76 // a pointer back to their User with the bottom bit set.
77 using UserRef = PointerIntPair<User *, 1, unsigned, UserRefPointerTraits>;
78
79 /// Pointer traits for the Prev PointerIntPair. This ensures we always use
80 /// the two LSBs regardless of pointer alignment on different targets.
81 struct PrevPointerTraits {
82 static inline void *getAsVoidPointer(Use **P) { return P; }
83
84 static inline Use **getFromVoidPointer(void *P) {
85 return (Use **)P;
86 }
87
88 enum { NumLowBitsAvailable = 2 };
89 };
90
91private:
92 /// Destructor - Only for zap()
93 ~Use() {
94 if (Val)
95 removeFromList();
96 }
97
98 enum PrevPtrTag { zeroDigitTag, oneDigitTag, stopTag, fullStopTag };
99
100 /// Constructor
101 Use(PrevPtrTag tag) { Prev.setInt(tag); }
102
103public:
104 friend class Value;
105
106 operator Value *() const { return Val; }
31
Returning pointer
107 Value *get() const { return Val; }
108
109 /// Returns the User that contains this Use.
110 ///
111 /// For an instruction operand, for example, this will return the
112 /// instruction.
113 User *getUser() const LLVM_READONLY__attribute__((__pure__));
114
115 inline void set(Value *Val);
116
117 inline Value *operator=(Value *RHS);
118 inline const Use &operator=(const Use &RHS);
119
120 Value *operator->() { return Val; }
121 const Value *operator->() const { return Val; }
122
123 Use *getNext() const { return Next; }
124
125 /// Return the operand # of this use in its User.
126 unsigned getOperandNo() const;
127
128 /// Initializes the waymarking tags on an array of Uses.
129 ///
130 /// This sets up the array of Uses such that getUser() can find the User from
131 /// any of those Uses.
132 static Use *initTags(Use *Start, Use *Stop);
133
134 /// Destroys Use operands when the number of operands of
135 /// a User changes.
136 static void zap(Use *Start, const Use *Stop, bool del = false);
137
138private:
139 const Use *getImpliedUser() const LLVM_READONLY__attribute__((__pure__));
140
141 Value *Val = nullptr;
142 Use *Next;
143 PointerIntPair<Use **, 2, PrevPtrTag, PrevPointerTraits> Prev;
144
145 void setPrev(Use **NewPrev) { Prev.setPointer(NewPrev); }
146
147 void addToList(Use **List) {
148 Next = *List;
149 if (Next)
150 Next->setPrev(&Next);
151 setPrev(List);
152 *List = this;
153 }
154
155 void removeFromList() {
156 Use **StrippedPrev = Prev.getPointer();
157 *StrippedPrev = Next;
158 if (Next)
159 Next->setPrev(StrippedPrev);
160 }
161};
162
163/// Allow clients to treat uses just like values when using
164/// casting operators.
165template <> struct simplify_type<Use> {
166 using SimpleType = Value *;
167
168 static SimpleType getSimplifiedValue(Use &Val) { return Val.get(); }
169};
170template <> struct simplify_type<const Use> {
171 using SimpleType = /*const*/ Value *;
172
173 static SimpleType getSimplifiedValue(const Use &Val) { return Val.get(); }
174};
175
176// Create wrappers for C Binding types (see CBindingWrapping.h).
177DEFINE_SIMPLE_CONVERSION_FUNCTIONS(Use, LLVMUseRef)inline Use *unwrap(LLVMUseRef P) { return reinterpret_cast<
Use*>(P); } inline LLVMUseRef wrap(const Use *P) { return reinterpret_cast
<LLVMUseRef>(const_cast<Use*>(P)); }
178
179} // end namespace llvm
180
181#endif // LLVM_IR_USE_H