Bug Summary

File:llvm/lib/IR/Instructions.cpp
Warning:line 440, column 3
Returning null reference

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Instructions.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/IR -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/IR -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/IR -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/IR -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/IR/Instructions.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/IR/Instructions.cpp

1//===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements all of the non-inline methods for the LLVM instruction
10// classes.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/IR/Instructions.h"
15#include "LLVMContextImpl.h"
16#include "llvm/ADT/None.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/IR/Attributes.h"
20#include "llvm/IR/BasicBlock.h"
21#include "llvm/IR/Constant.h"
22#include "llvm/IR/Constants.h"
23#include "llvm/IR/DataLayout.h"
24#include "llvm/IR/DerivedTypes.h"
25#include "llvm/IR/Function.h"
26#include "llvm/IR/InstrTypes.h"
27#include "llvm/IR/Instruction.h"
28#include "llvm/IR/Intrinsics.h"
29#include "llvm/IR/LLVMContext.h"
30#include "llvm/IR/MDBuilder.h"
31#include "llvm/IR/Metadata.h"
32#include "llvm/IR/Module.h"
33#include "llvm/IR/Operator.h"
34#include "llvm/IR/Type.h"
35#include "llvm/IR/Value.h"
36#include "llvm/Support/AtomicOrdering.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Support/ErrorHandling.h"
39#include "llvm/Support/MathExtras.h"
40#include "llvm/Support/TypeSize.h"
41#include <algorithm>
42#include <cassert>
43#include <cstdint>
44#include <vector>
45
46using namespace llvm;
47
48static cl::opt<bool> DisableI2pP2iOpt(
49 "disable-i2p-p2i-opt", cl::init(false),
50 cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
51
52//===----------------------------------------------------------------------===//
53// AllocaInst Class
54//===----------------------------------------------------------------------===//
55
56Optional<TypeSize>
57AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
58 TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
59 if (isArrayAllocation()) {
60 auto *C = dyn_cast<ConstantInt>(getArraySize());
61 if (!C)
62 return None;
63 assert(!Size.isScalable() && "Array elements cannot have a scalable size")(static_cast<void> (0));
64 Size *= C->getZExtValue();
65 }
66 return Size;
67}
68
69//===----------------------------------------------------------------------===//
70// SelectInst Class
71//===----------------------------------------------------------------------===//
72
73/// areInvalidOperands - Return a string if the specified operands are invalid
74/// for a select operation, otherwise return null.
75const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
76 if (Op1->getType() != Op2->getType())
77 return "both values to select must have same type";
78
79 if (Op1->getType()->isTokenTy())
80 return "select values cannot have token type";
81
82 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
83 // Vector select.
84 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
85 return "vector select condition element type must be i1";
86 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
87 if (!ET)
88 return "selected values for vector select must be vectors";
89 if (ET->getElementCount() != VT->getElementCount())
90 return "vector select requires selected vectors to have "
91 "the same vector length as select condition";
92 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
93 return "select condition must be i1 or <n x i1>";
94 }
95 return nullptr;
96}
97
98//===----------------------------------------------------------------------===//
99// PHINode Class
100//===----------------------------------------------------------------------===//
101
102PHINode::PHINode(const PHINode &PN)
103 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
104 ReservedSpace(PN.getNumOperands()) {
105 allocHungoffUses(PN.getNumOperands());
106 std::copy(PN.op_begin(), PN.op_end(), op_begin());
107 std::copy(PN.block_begin(), PN.block_end(), block_begin());
108 SubclassOptionalData = PN.SubclassOptionalData;
109}
110
111// removeIncomingValue - Remove an incoming value. This is useful if a
112// predecessor basic block is deleted.
113Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114 Value *Removed = getIncomingValue(Idx);
115
116 // Move everything after this operand down.
117 //
118 // FIXME: we could just swap with the end of the list, then erase. However,
119 // clients might not expect this to happen. The code as it is thrashes the
120 // use/def lists, which is kinda lame.
121 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
123
124 // Nuke the last value.
125 Op<-1>().set(nullptr);
126 setNumHungOffUseOperands(getNumOperands() - 1);
127
128 // If the PHI node is dead, because it has zero entries, nuke it now.
129 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130 // If anyone is using this PHI, make them use a dummy value instead...
131 replaceAllUsesWith(UndefValue::get(getType()));
132 eraseFromParent();
133 }
134 return Removed;
135}
136
137/// growOperands - grow operands - This grows the operand list in response
138/// to a push_back style of operation. This grows the number of ops by 1.5
139/// times.
140///
141void PHINode::growOperands() {
142 unsigned e = getNumOperands();
143 unsigned NumOps = e + e / 2;
144 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
145
146 ReservedSpace = NumOps;
147 growHungoffUses(ReservedSpace, /* IsPhi */ true);
148}
149
150/// hasConstantValue - If the specified PHI node always merges together the same
151/// value, return the value, otherwise return null.
152Value *PHINode::hasConstantValue() const {
153 // Exploit the fact that phi nodes always have at least one entry.
154 Value *ConstantValue = getIncomingValue(0);
155 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
156 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
157 if (ConstantValue != this)
158 return nullptr; // Incoming values not all the same.
159 // The case where the first value is this PHI.
160 ConstantValue = getIncomingValue(i);
161 }
162 if (ConstantValue == this)
163 return UndefValue::get(getType());
164 return ConstantValue;
165}
166
167/// hasConstantOrUndefValue - Whether the specified PHI node always merges
168/// together the same value, assuming that undefs result in the same value as
169/// non-undefs.
170/// Unlike \ref hasConstantValue, this does not return a value because the
171/// unique non-undef incoming value need not dominate the PHI node.
172bool PHINode::hasConstantOrUndefValue() const {
173 Value *ConstantValue = nullptr;
174 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
175 Value *Incoming = getIncomingValue(i);
176 if (Incoming != this && !isa<UndefValue>(Incoming)) {
177 if (ConstantValue && ConstantValue != Incoming)
178 return false;
179 ConstantValue = Incoming;
180 }
181 }
182 return true;
183}
184
185//===----------------------------------------------------------------------===//
186// LandingPadInst Implementation
187//===----------------------------------------------------------------------===//
188
189LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
190 const Twine &NameStr, Instruction *InsertBefore)
191 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
192 init(NumReservedValues, NameStr);
193}
194
195LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
196 const Twine &NameStr, BasicBlock *InsertAtEnd)
197 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
198 init(NumReservedValues, NameStr);
199}
200
201LandingPadInst::LandingPadInst(const LandingPadInst &LP)
202 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
203 LP.getNumOperands()),
204 ReservedSpace(LP.getNumOperands()) {
205 allocHungoffUses(LP.getNumOperands());
206 Use *OL = getOperandList();
207 const Use *InOL = LP.getOperandList();
208 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
209 OL[I] = InOL[I];
210
211 setCleanup(LP.isCleanup());
212}
213
214LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
215 const Twine &NameStr,
216 Instruction *InsertBefore) {
217 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
218}
219
220LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
221 const Twine &NameStr,
222 BasicBlock *InsertAtEnd) {
223 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
224}
225
226void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
227 ReservedSpace = NumReservedValues;
228 setNumHungOffUseOperands(0);
229 allocHungoffUses(ReservedSpace);
230 setName(NameStr);
231 setCleanup(false);
232}
233
234/// growOperands - grow operands - This grows the operand list in response to a
235/// push_back style of operation. This grows the number of ops by 2 times.
236void LandingPadInst::growOperands(unsigned Size) {
237 unsigned e = getNumOperands();
238 if (ReservedSpace >= e + Size) return;
239 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
240 growHungoffUses(ReservedSpace);
241}
242
243void LandingPadInst::addClause(Constant *Val) {
244 unsigned OpNo = getNumOperands();
245 growOperands(1);
246 assert(OpNo < ReservedSpace && "Growing didn't work!")(static_cast<void> (0));
247 setNumHungOffUseOperands(getNumOperands() + 1);
248 getOperandList()[OpNo] = Val;
249}
250
251//===----------------------------------------------------------------------===//
252// CallBase Implementation
253//===----------------------------------------------------------------------===//
254
255CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
256 Instruction *InsertPt) {
257 switch (CB->getOpcode()) {
258 case Instruction::Call:
259 return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
260 case Instruction::Invoke:
261 return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
262 case Instruction::CallBr:
263 return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
264 default:
265 llvm_unreachable("Unknown CallBase sub-class!")__builtin_unreachable();
266 }
267}
268
269CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
270 Instruction *InsertPt) {
271 SmallVector<OperandBundleDef, 2> OpDefs;
272 for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
273 auto ChildOB = CI->getOperandBundleAt(i);
274 if (ChildOB.getTagName() != OpB.getTag())
275 OpDefs.emplace_back(ChildOB);
276 }
277 OpDefs.emplace_back(OpB);
278 return CallBase::Create(CI, OpDefs, InsertPt);
279}
280
281
282Function *CallBase::getCaller() { return getParent()->getParent(); }
283
284unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
285 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!")(static_cast<void> (0));
286 return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
287}
288
289bool CallBase::isIndirectCall() const {
290 const Value *V = getCalledOperand();
291 if (isa<Function>(V) || isa<Constant>(V))
292 return false;
293 return !isInlineAsm();
294}
295
296/// Tests if this call site must be tail call optimized. Only a CallInst can
297/// be tail call optimized.
298bool CallBase::isMustTailCall() const {
299 if (auto *CI = dyn_cast<CallInst>(this))
300 return CI->isMustTailCall();
301 return false;
302}
303
304/// Tests if this call site is marked as a tail call.
305bool CallBase::isTailCall() const {
306 if (auto *CI = dyn_cast<CallInst>(this))
307 return CI->isTailCall();
308 return false;
309}
310
311Intrinsic::ID CallBase::getIntrinsicID() const {
312 if (auto *F = getCalledFunction())
313 return F->getIntrinsicID();
314 return Intrinsic::not_intrinsic;
315}
316
317bool CallBase::isReturnNonNull() const {
318 if (hasRetAttr(Attribute::NonNull))
319 return true;
320
321 if (getRetDereferenceableBytes() > 0 &&
322 !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
323 return true;
324
325 return false;
326}
327
328Value *CallBase::getReturnedArgOperand() const {
329 unsigned Index;
330
331 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
332 return getArgOperand(Index - AttributeList::FirstArgIndex);
333 if (const Function *F = getCalledFunction())
334 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
335 Index)
336 return getArgOperand(Index - AttributeList::FirstArgIndex);
337
338 return nullptr;
339}
340
341/// Determine whether the argument or parameter has the given attribute.
342bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
343 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!")(static_cast<void> (0));
344
345 if (Attrs.hasParamAttr(ArgNo, Kind))
346 return true;
347 if (const Function *F = getCalledFunction())
348 return F->getAttributes().hasParamAttr(ArgNo, Kind);
349 return false;
350}
351
352bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
353 if (const Function *F = getCalledFunction())
354 return F->getAttributes().hasFnAttr(Kind);
355 return false;
356}
357
358bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
359 if (const Function *F = getCalledFunction())
360 return F->getAttributes().hasFnAttr(Kind);
361 return false;
362}
363
364void CallBase::getOperandBundlesAsDefs(
365 SmallVectorImpl<OperandBundleDef> &Defs) const {
366 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
367 Defs.emplace_back(getOperandBundleAt(i));
368}
369
370CallBase::op_iterator
371CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
372 const unsigned BeginIndex) {
373 auto It = op_begin() + BeginIndex;
374 for (auto &B : Bundles)
375 It = std::copy(B.input_begin(), B.input_end(), It);
376
377 auto *ContextImpl = getContext().pImpl;
378 auto BI = Bundles.begin();
379 unsigned CurrentIndex = BeginIndex;
380
381 for (auto &BOI : bundle_op_infos()) {
382 assert(BI != Bundles.end() && "Incorrect allocation?")(static_cast<void> (0));
383
384 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
385 BOI.Begin = CurrentIndex;
386 BOI.End = CurrentIndex + BI->input_size();
387 CurrentIndex = BOI.End;
388 BI++;
389 }
390
391 assert(BI == Bundles.end() && "Incorrect allocation?")(static_cast<void> (0));
392
393 return It;
394}
395
396CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
397 /// When there isn't many bundles, we do a simple linear search.
398 /// Else fallback to a binary-search that use the fact that bundles usually
399 /// have similar number of argument to get faster convergence.
400 if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
1
Assuming the condition is false
2
Taking false branch
401 for (auto &BOI : bundle_op_infos())
402 if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
403 return BOI;
404
405 llvm_unreachable("Did not find operand bundle for operand!")__builtin_unreachable();
406 }
407
408 assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles")(static_cast<void> (0));
409 assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&(static_cast<void> (0))
410 OpIdx < std::prev(bundle_op_info_end())->End &&(static_cast<void> (0))
411 "The Idx isn't in the operand bundle")(static_cast<void> (0));
412
413 /// We need a decimal number below and to prevent using floating point numbers
414 /// we use an intergal value multiplied by this constant.
415 constexpr unsigned NumberScaling = 1024;
416
417 bundle_op_iterator Begin = bundle_op_info_begin();
3
Calling 'CallBase::bundle_op_info_begin'
8
Returning from 'CallBase::bundle_op_info_begin'
9
'Begin' initialized here
418 bundle_op_iterator End = bundle_op_info_end();
419 bundle_op_iterator Current = Begin;
10
'Current' initialized to the value of 'Begin'
420
421 while (Begin != End) {
11
Assuming 'Begin' is equal to 'End'
12
Loop condition is false. Execution continues on line 438
422 unsigned ScaledOperandPerBundle =
423 NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
424 Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
425 ScaledOperandPerBundle);
426 if (Current >= End)
427 Current = std::prev(End);
428 assert(Current < End && Current >= Begin &&(static_cast<void> (0))
429 "the operand bundle doesn't cover every value in the range")(static_cast<void> (0));
430 if (OpIdx >= Current->Begin && OpIdx < Current->End)
431 break;
432 if (OpIdx >= Current->End)
433 Begin = Current + 1;
434 else
435 End = Current;
436 }
437
438 assert(OpIdx >= Current->Begin && OpIdx < Current->End &&(static_cast<void> (0))
439 "the operand bundle doesn't cover every value in the range")(static_cast<void> (0));
440 return *Current;
13
Returning null reference
441}
442
443CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
444 OperandBundleDef OB,
445 Instruction *InsertPt) {
446 if (CB->getOperandBundle(ID))
447 return CB;
448
449 SmallVector<OperandBundleDef, 1> Bundles;
450 CB->getOperandBundlesAsDefs(Bundles);
451 Bundles.push_back(OB);
452 return Create(CB, Bundles, InsertPt);
453}
454
455CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
456 Instruction *InsertPt) {
457 SmallVector<OperandBundleDef, 1> Bundles;
458 bool CreateNew = false;
459
460 for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
461 auto Bundle = CB->getOperandBundleAt(I);
462 if (Bundle.getTagID() == ID) {
463 CreateNew = true;
464 continue;
465 }
466 Bundles.emplace_back(Bundle);
467 }
468
469 return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
470}
471
472bool CallBase::hasReadingOperandBundles() const {
473 // Implementation note: this is a conservative implementation of operand
474 // bundle semantics, where *any* non-assume operand bundle forces a callsite
475 // to be at least readonly.
476 return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
477}
478
479//===----------------------------------------------------------------------===//
480// CallInst Implementation
481//===----------------------------------------------------------------------===//
482
483void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
484 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
485 this->FTy = FTy;
486 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&(static_cast<void> (0))
487 "NumOperands not set up?")(static_cast<void> (0));
488
489#ifndef NDEBUG1
490 assert((Args.size() == FTy->getNumParams() ||(static_cast<void> (0))
491 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&(static_cast<void> (0))
492 "Calling a function with bad signature!")(static_cast<void> (0));
493
494 for (unsigned i = 0; i != Args.size(); ++i)
495 assert((i >= FTy->getNumParams() ||(static_cast<void> (0))
496 FTy->getParamType(i) == Args[i]->getType()) &&(static_cast<void> (0))
497 "Calling a function with a bad signature!")(static_cast<void> (0));
498#endif
499
500 // Set operands in order of their index to match use-list-order
501 // prediction.
502 llvm::copy(Args, op_begin());
503 setCalledOperand(Func);
504
505 auto It = populateBundleOperandInfos(Bundles, Args.size());
506 (void)It;
507 assert(It + 1 == op_end() && "Should add up!")(static_cast<void> (0));
508
509 setName(NameStr);
510}
511
512void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
513 this->FTy = FTy;
514 assert(getNumOperands() == 1 && "NumOperands not set up?")(static_cast<void> (0));
515 setCalledOperand(Func);
516
517 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature")(static_cast<void> (0));
518
519 setName(NameStr);
520}
521
522CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
523 Instruction *InsertBefore)
524 : CallBase(Ty->getReturnType(), Instruction::Call,
525 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
526 init(Ty, Func, Name);
527}
528
529CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
530 BasicBlock *InsertAtEnd)
531 : CallBase(Ty->getReturnType(), Instruction::Call,
532 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
533 init(Ty, Func, Name);
534}
535
536CallInst::CallInst(const CallInst &CI)
537 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
538 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
539 CI.getNumOperands()) {
540 setTailCallKind(CI.getTailCallKind());
541 setCallingConv(CI.getCallingConv());
542
543 std::copy(CI.op_begin(), CI.op_end(), op_begin());
544 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
545 bundle_op_info_begin());
546 SubclassOptionalData = CI.SubclassOptionalData;
547}
548
549CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
550 Instruction *InsertPt) {
551 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
552
553 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
554 Args, OpB, CI->getName(), InsertPt);
555 NewCI->setTailCallKind(CI->getTailCallKind());
556 NewCI->setCallingConv(CI->getCallingConv());
557 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
558 NewCI->setAttributes(CI->getAttributes());
559 NewCI->setDebugLoc(CI->getDebugLoc());
560 return NewCI;
561}
562
563// Update profile weight for call instruction by scaling it using the ratio
564// of S/T. The meaning of "branch_weights" meta data for call instruction is
565// transfered to represent call count.
566void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
567 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
568 if (ProfileData == nullptr)
569 return;
570
571 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
572 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
573 !ProfDataName->getString().equals("VP")))
574 return;
575
576 if (T == 0) {
577 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "do { } while (false)
578 "div by 0. Ignoring. Likely the function "do { } while (false)
579 << getParent()->getParent()->getName()do { } while (false)
580 << " has 0 entry count, and contains call instructions "do { } while (false)
581 "with non-zero prof info.")do { } while (false);
582 return;
583 }
584
585 MDBuilder MDB(getContext());
586 SmallVector<Metadata *, 3> Vals;
587 Vals.push_back(ProfileData->getOperand(0));
588 APInt APS(128, S), APT(128, T);
589 if (ProfDataName->getString().equals("branch_weights") &&
590 ProfileData->getNumOperands() > 0) {
591 // Using APInt::div may be expensive, but most cases should fit 64 bits.
592 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
593 ->getValue()
594 .getZExtValue());
595 Val *= APS;
596 Vals.push_back(MDB.createConstant(
597 ConstantInt::get(Type::getInt32Ty(getContext()),
598 Val.udiv(APT).getLimitedValue(UINT32_MAX(4294967295U)))));
599 } else if (ProfDataName->getString().equals("VP"))
600 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
601 // The first value is the key of the value profile, which will not change.
602 Vals.push_back(ProfileData->getOperand(i));
603 uint64_t Count =
604 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
605 ->getValue()
606 .getZExtValue();
607 // Don't scale the magic number.
608 if (Count == NOMORE_ICP_MAGICNUM) {
609 Vals.push_back(ProfileData->getOperand(i + 1));
610 continue;
611 }
612 // Using APInt::div may be expensive, but most cases should fit 64 bits.
613 APInt Val(128, Count);
614 Val *= APS;
615 Vals.push_back(MDB.createConstant(
616 ConstantInt::get(Type::getInt64Ty(getContext()),
617 Val.udiv(APT).getLimitedValue())));
618 }
619 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
620}
621
622/// IsConstantOne - Return true only if val is constant int 1
623static bool IsConstantOne(Value *val) {
624 assert(val && "IsConstantOne does not work with nullptr val")(static_cast<void> (0));
625 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
626 return CVal && CVal->isOne();
627}
628
629static Instruction *createMalloc(Instruction *InsertBefore,
630 BasicBlock *InsertAtEnd, Type *IntPtrTy,
631 Type *AllocTy, Value *AllocSize,
632 Value *ArraySize,
633 ArrayRef<OperandBundleDef> OpB,
634 Function *MallocF, const Twine &Name) {
635 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&(static_cast<void> (0))
636 "createMalloc needs either InsertBefore or InsertAtEnd")(static_cast<void> (0));
637
638 // malloc(type) becomes:
639 // bitcast (i8* malloc(typeSize)) to type*
640 // malloc(type, arraySize) becomes:
641 // bitcast (i8* malloc(typeSize*arraySize)) to type*
642 if (!ArraySize)
643 ArraySize = ConstantInt::get(IntPtrTy, 1);
644 else if (ArraySize->getType() != IntPtrTy) {
645 if (InsertBefore)
646 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
647 "", InsertBefore);
648 else
649 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
650 "", InsertAtEnd);
651 }
652
653 if (!IsConstantOne(ArraySize)) {
654 if (IsConstantOne(AllocSize)) {
655 AllocSize = ArraySize; // Operand * 1 = Operand
656 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
657 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
658 false /*ZExt*/);
659 // Malloc arg is constant product of type size and array size
660 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
661 } else {
662 // Multiply type size by the array size...
663 if (InsertBefore)
664 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
665 "mallocsize", InsertBefore);
666 else
667 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
668 "mallocsize", InsertAtEnd);
669 }
670 }
671
672 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size")(static_cast<void> (0));
673 // Create the call to Malloc.
674 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
675 Module *M = BB->getParent()->getParent();
676 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
677 FunctionCallee MallocFunc = MallocF;
678 if (!MallocFunc)
679 // prototype malloc as "void *malloc(size_t)"
680 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
681 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
682 CallInst *MCall = nullptr;
683 Instruction *Result = nullptr;
684 if (InsertBefore) {
685 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
686 InsertBefore);
687 Result = MCall;
688 if (Result->getType() != AllocPtrType)
689 // Create a cast instruction to convert to the right type...
690 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
691 } else {
692 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
693 Result = MCall;
694 if (Result->getType() != AllocPtrType) {
695 InsertAtEnd->getInstList().push_back(MCall);
696 // Create a cast instruction to convert to the right type...
697 Result = new BitCastInst(MCall, AllocPtrType, Name);
698 }
699 }
700 MCall->setTailCall();
701 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
702 MCall->setCallingConv(F->getCallingConv());
703 if (!F->returnDoesNotAlias())
704 F->setReturnDoesNotAlias();
705 }
706 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type")(static_cast<void> (0));
707
708 return Result;
709}
710
711/// CreateMalloc - Generate the IR for a call to malloc:
712/// 1. Compute the malloc call's argument as the specified type's size,
713/// possibly multiplied by the array size if the array size is not
714/// constant 1.
715/// 2. Call malloc with that argument.
716/// 3. Bitcast the result of the malloc call to the specified type.
717Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
718 Type *IntPtrTy, Type *AllocTy,
719 Value *AllocSize, Value *ArraySize,
720 Function *MallocF,
721 const Twine &Name) {
722 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
723 ArraySize, None, MallocF, Name);
724}
725Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
726 Type *IntPtrTy, Type *AllocTy,
727 Value *AllocSize, Value *ArraySize,
728 ArrayRef<OperandBundleDef> OpB,
729 Function *MallocF,
730 const Twine &Name) {
731 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
732 ArraySize, OpB, MallocF, Name);
733}
734
735/// CreateMalloc - Generate the IR for a call to malloc:
736/// 1. Compute the malloc call's argument as the specified type's size,
737/// possibly multiplied by the array size if the array size is not
738/// constant 1.
739/// 2. Call malloc with that argument.
740/// 3. Bitcast the result of the malloc call to the specified type.
741/// Note: This function does not add the bitcast to the basic block, that is the
742/// responsibility of the caller.
743Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
744 Type *IntPtrTy, Type *AllocTy,
745 Value *AllocSize, Value *ArraySize,
746 Function *MallocF, const Twine &Name) {
747 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
748 ArraySize, None, MallocF, Name);
749}
750Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
751 Type *IntPtrTy, Type *AllocTy,
752 Value *AllocSize, Value *ArraySize,
753 ArrayRef<OperandBundleDef> OpB,
754 Function *MallocF, const Twine &Name) {
755 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
756 ArraySize, OpB, MallocF, Name);
757}
758
759static Instruction *createFree(Value *Source,
760 ArrayRef<OperandBundleDef> Bundles,
761 Instruction *InsertBefore,
762 BasicBlock *InsertAtEnd) {
763 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&(static_cast<void> (0))
764 "createFree needs either InsertBefore or InsertAtEnd")(static_cast<void> (0));
765 assert(Source->getType()->isPointerTy() &&(static_cast<void> (0))
766 "Can not free something of nonpointer type!")(static_cast<void> (0));
767
768 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
769 Module *M = BB->getParent()->getParent();
770
771 Type *VoidTy = Type::getVoidTy(M->getContext());
772 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
773 // prototype free as "void free(void*)"
774 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
775 CallInst *Result = nullptr;
776 Value *PtrCast = Source;
777 if (InsertBefore) {
778 if (Source->getType() != IntPtrTy)
779 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
780 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
781 } else {
782 if (Source->getType() != IntPtrTy)
783 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
784 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
785 }
786 Result->setTailCall();
787 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
788 Result->setCallingConv(F->getCallingConv());
789
790 return Result;
791}
792
793/// CreateFree - Generate the IR for a call to the builtin free function.
794Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
795 return createFree(Source, None, InsertBefore, nullptr);
796}
797Instruction *CallInst::CreateFree(Value *Source,
798 ArrayRef<OperandBundleDef> Bundles,
799 Instruction *InsertBefore) {
800 return createFree(Source, Bundles, InsertBefore, nullptr);
801}
802
803/// CreateFree - Generate the IR for a call to the builtin free function.
804/// Note: This function does not add the call to the basic block, that is the
805/// responsibility of the caller.
806Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
807 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
808 assert(FreeCall && "CreateFree did not create a CallInst")(static_cast<void> (0));
809 return FreeCall;
810}
811Instruction *CallInst::CreateFree(Value *Source,
812 ArrayRef<OperandBundleDef> Bundles,
813 BasicBlock *InsertAtEnd) {
814 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
815 assert(FreeCall && "CreateFree did not create a CallInst")(static_cast<void> (0));
816 return FreeCall;
817}
818
819//===----------------------------------------------------------------------===//
820// InvokeInst Implementation
821//===----------------------------------------------------------------------===//
822
823void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
824 BasicBlock *IfException, ArrayRef<Value *> Args,
825 ArrayRef<OperandBundleDef> Bundles,
826 const Twine &NameStr) {
827 this->FTy = FTy;
828
829 assert((int)getNumOperands() ==(static_cast<void> (0))
830 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&(static_cast<void> (0))
831 "NumOperands not set up?")(static_cast<void> (0));
832
833#ifndef NDEBUG1
834 assert(((Args.size() == FTy->getNumParams()) ||(static_cast<void> (0))
835 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&(static_cast<void> (0))
836 "Invoking a function with bad signature")(static_cast<void> (0));
837
838 for (unsigned i = 0, e = Args.size(); i != e; i++)
839 assert((i >= FTy->getNumParams() ||(static_cast<void> (0))
840 FTy->getParamType(i) == Args[i]->getType()) &&(static_cast<void> (0))
841 "Invoking a function with a bad signature!")(static_cast<void> (0));
842#endif
843
844 // Set operands in order of their index to match use-list-order
845 // prediction.
846 llvm::copy(Args, op_begin());
847 setNormalDest(IfNormal);
848 setUnwindDest(IfException);
849 setCalledOperand(Fn);
850
851 auto It = populateBundleOperandInfos(Bundles, Args.size());
852 (void)It;
853 assert(It + 3 == op_end() && "Should add up!")(static_cast<void> (0));
854
855 setName(NameStr);
856}
857
858InvokeInst::InvokeInst(const InvokeInst &II)
859 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
860 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
861 II.getNumOperands()) {
862 setCallingConv(II.getCallingConv());
863 std::copy(II.op_begin(), II.op_end(), op_begin());
864 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
865 bundle_op_info_begin());
866 SubclassOptionalData = II.SubclassOptionalData;
867}
868
869InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
870 Instruction *InsertPt) {
871 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
872
873 auto *NewII = InvokeInst::Create(
874 II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
875 II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
876 NewII->setCallingConv(II->getCallingConv());
877 NewII->SubclassOptionalData = II->SubclassOptionalData;
878 NewII->setAttributes(II->getAttributes());
879 NewII->setDebugLoc(II->getDebugLoc());
880 return NewII;
881}
882
883LandingPadInst *InvokeInst::getLandingPadInst() const {
884 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
885}
886
887//===----------------------------------------------------------------------===//
888// CallBrInst Implementation
889//===----------------------------------------------------------------------===//
890
891void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
892 ArrayRef<BasicBlock *> IndirectDests,
893 ArrayRef<Value *> Args,
894 ArrayRef<OperandBundleDef> Bundles,
895 const Twine &NameStr) {
896 this->FTy = FTy;
897
898 assert((int)getNumOperands() ==(static_cast<void> (0))
899 ComputeNumOperands(Args.size(), IndirectDests.size(),(static_cast<void> (0))
900 CountBundleInputs(Bundles)) &&(static_cast<void> (0))
901 "NumOperands not set up?")(static_cast<void> (0));
902
903#ifndef NDEBUG1
904 assert(((Args.size() == FTy->getNumParams()) ||(static_cast<void> (0))
905 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&(static_cast<void> (0))
906 "Calling a function with bad signature")(static_cast<void> (0));
907
908 for (unsigned i = 0, e = Args.size(); i != e; i++)
909 assert((i >= FTy->getNumParams() ||(static_cast<void> (0))
910 FTy->getParamType(i) == Args[i]->getType()) &&(static_cast<void> (0))
911 "Calling a function with a bad signature!")(static_cast<void> (0));
912#endif
913
914 // Set operands in order of their index to match use-list-order
915 // prediction.
916 std::copy(Args.begin(), Args.end(), op_begin());
917 NumIndirectDests = IndirectDests.size();
918 setDefaultDest(Fallthrough);
919 for (unsigned i = 0; i != NumIndirectDests; ++i)
920 setIndirectDest(i, IndirectDests[i]);
921 setCalledOperand(Fn);
922
923 auto It = populateBundleOperandInfos(Bundles, Args.size());
924 (void)It;
925 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!")(static_cast<void> (0));
926
927 setName(NameStr);
928}
929
930void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
931 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr")(static_cast<void> (0));
932 if (BasicBlock *OldBB = getIndirectDest(i)) {
933 BlockAddress *Old = BlockAddress::get(OldBB);
934 BlockAddress *New = BlockAddress::get(B);
935 for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
936 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
937 setArgOperand(ArgNo, New);
938 }
939}
940
941CallBrInst::CallBrInst(const CallBrInst &CBI)
942 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
943 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
944 CBI.getNumOperands()) {
945 setCallingConv(CBI.getCallingConv());
946 std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
947 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
948 bundle_op_info_begin());
949 SubclassOptionalData = CBI.SubclassOptionalData;
950 NumIndirectDests = CBI.NumIndirectDests;
951}
952
953CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
954 Instruction *InsertPt) {
955 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
956
957 auto *NewCBI = CallBrInst::Create(
958 CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
959 CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
960 NewCBI->setCallingConv(CBI->getCallingConv());
961 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
962 NewCBI->setAttributes(CBI->getAttributes());
963 NewCBI->setDebugLoc(CBI->getDebugLoc());
964 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
965 return NewCBI;
966}
967
968//===----------------------------------------------------------------------===//
969// ReturnInst Implementation
970//===----------------------------------------------------------------------===//
971
972ReturnInst::ReturnInst(const ReturnInst &RI)
973 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
974 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
975 RI.getNumOperands()) {
976 if (RI.getNumOperands())
977 Op<0>() = RI.Op<0>();
978 SubclassOptionalData = RI.SubclassOptionalData;
979}
980
981ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
982 : Instruction(Type::getVoidTy(C), Instruction::Ret,
983 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
984 InsertBefore) {
985 if (retVal)
986 Op<0>() = retVal;
987}
988
989ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
990 : Instruction(Type::getVoidTy(C), Instruction::Ret,
991 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
992 InsertAtEnd) {
993 if (retVal)
994 Op<0>() = retVal;
995}
996
997ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
998 : Instruction(Type::getVoidTy(Context), Instruction::Ret,
999 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
1000
1001//===----------------------------------------------------------------------===//
1002// ResumeInst Implementation
1003//===----------------------------------------------------------------------===//
1004
1005ResumeInst::ResumeInst(const ResumeInst &RI)
1006 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1007 OperandTraits<ResumeInst>::op_begin(this), 1) {
1008 Op<0>() = RI.Op<0>();
1009}
1010
1011ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1012 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1013 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1014 Op<0>() = Exn;
1015}
1016
1017ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1018 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1019 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1020 Op<0>() = Exn;
1021}
1022
1023//===----------------------------------------------------------------------===//
1024// CleanupReturnInst Implementation
1025//===----------------------------------------------------------------------===//
1026
1027CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1028 : Instruction(CRI.getType(), Instruction::CleanupRet,
1029 OperandTraits<CleanupReturnInst>::op_end(this) -
1030 CRI.getNumOperands(),
1031 CRI.getNumOperands()) {
1032 setSubclassData<Instruction::OpaqueField>(
1033 CRI.getSubclassData<Instruction::OpaqueField>());
1034 Op<0>() = CRI.Op<0>();
1035 if (CRI.hasUnwindDest())
1036 Op<1>() = CRI.Op<1>();
1037}
1038
1039void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1040 if (UnwindBB)
1041 setSubclassData<UnwindDestField>(true);
1042
1043 Op<0>() = CleanupPad;
1044 if (UnwindBB)
1045 Op<1>() = UnwindBB;
1046}
1047
1048CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1049 unsigned Values, Instruction *InsertBefore)
1050 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1051 Instruction::CleanupRet,
1052 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1053 Values, InsertBefore) {
1054 init(CleanupPad, UnwindBB);
1055}
1056
1057CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1058 unsigned Values, BasicBlock *InsertAtEnd)
1059 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1060 Instruction::CleanupRet,
1061 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1062 Values, InsertAtEnd) {
1063 init(CleanupPad, UnwindBB);
1064}
1065
1066//===----------------------------------------------------------------------===//
1067// CatchReturnInst Implementation
1068//===----------------------------------------------------------------------===//
1069void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1070 Op<0>() = CatchPad;
1071 Op<1>() = BB;
1072}
1073
1074CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1075 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1076 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1077 Op<0>() = CRI.Op<0>();
1078 Op<1>() = CRI.Op<1>();
1079}
1080
1081CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1082 Instruction *InsertBefore)
1083 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1084 OperandTraits<CatchReturnInst>::op_begin(this), 2,
1085 InsertBefore) {
1086 init(CatchPad, BB);
1087}
1088
1089CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1090 BasicBlock *InsertAtEnd)
1091 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1092 OperandTraits<CatchReturnInst>::op_begin(this), 2,
1093 InsertAtEnd) {
1094 init(CatchPad, BB);
1095}
1096
1097//===----------------------------------------------------------------------===//
1098// CatchSwitchInst Implementation
1099//===----------------------------------------------------------------------===//
1100
1101CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1102 unsigned NumReservedValues,
1103 const Twine &NameStr,
1104 Instruction *InsertBefore)
1105 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1106 InsertBefore) {
1107 if (UnwindDest)
1108 ++NumReservedValues;
1109 init(ParentPad, UnwindDest, NumReservedValues + 1);
1110 setName(NameStr);
1111}
1112
1113CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1114 unsigned NumReservedValues,
1115 const Twine &NameStr, BasicBlock *InsertAtEnd)
1116 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1117 InsertAtEnd) {
1118 if (UnwindDest)
1119 ++NumReservedValues;
1120 init(ParentPad, UnwindDest, NumReservedValues + 1);
1121 setName(NameStr);
1122}
1123
1124CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1125 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1126 CSI.getNumOperands()) {
1127 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1128 setNumHungOffUseOperands(ReservedSpace);
1129 Use *OL = getOperandList();
1130 const Use *InOL = CSI.getOperandList();
1131 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1132 OL[I] = InOL[I];
1133}
1134
1135void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1136 unsigned NumReservedValues) {
1137 assert(ParentPad && NumReservedValues)(static_cast<void> (0));
1138
1139 ReservedSpace = NumReservedValues;
1140 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1141 allocHungoffUses(ReservedSpace);
1142
1143 Op<0>() = ParentPad;
1144 if (UnwindDest) {
1145 setSubclassData<UnwindDestField>(true);
1146 setUnwindDest(UnwindDest);
1147 }
1148}
1149
1150/// growOperands - grow operands - This grows the operand list in response to a
1151/// push_back style of operation. This grows the number of ops by 2 times.
1152void CatchSwitchInst::growOperands(unsigned Size) {
1153 unsigned NumOperands = getNumOperands();
1154 assert(NumOperands >= 1)(static_cast<void> (0));
1155 if (ReservedSpace >= NumOperands + Size)
1156 return;
1157 ReservedSpace = (NumOperands + Size / 2) * 2;
1158 growHungoffUses(ReservedSpace);
1159}
1160
1161void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1162 unsigned OpNo = getNumOperands();
1163 growOperands(1);
1164 assert(OpNo < ReservedSpace && "Growing didn't work!")(static_cast<void> (0));
1165 setNumHungOffUseOperands(getNumOperands() + 1);
1166 getOperandList()[OpNo] = Handler;
1167}
1168
1169void CatchSwitchInst::removeHandler(handler_iterator HI) {
1170 // Move all subsequent handlers up one.
1171 Use *EndDst = op_end() - 1;
1172 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1173 *CurDst = *(CurDst + 1);
1174 // Null out the last handler use.
1175 *EndDst = nullptr;
1176
1177 setNumHungOffUseOperands(getNumOperands() - 1);
1178}
1179
1180//===----------------------------------------------------------------------===//
1181// FuncletPadInst Implementation
1182//===----------------------------------------------------------------------===//
1183void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1184 const Twine &NameStr) {
1185 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?")(static_cast<void> (0));
1186 llvm::copy(Args, op_begin());
1187 setParentPad(ParentPad);
1188 setName(NameStr);
1189}
1190
1191FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1192 : Instruction(FPI.getType(), FPI.getOpcode(),
1193 OperandTraits<FuncletPadInst>::op_end(this) -
1194 FPI.getNumOperands(),
1195 FPI.getNumOperands()) {
1196 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1197 setParentPad(FPI.getParentPad());
1198}
1199
1200FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1201 ArrayRef<Value *> Args, unsigned Values,
1202 const Twine &NameStr, Instruction *InsertBefore)
1203 : Instruction(ParentPad->getType(), Op,
1204 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1205 InsertBefore) {
1206 init(ParentPad, Args, NameStr);
1207}
1208
1209FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1210 ArrayRef<Value *> Args, unsigned Values,
1211 const Twine &NameStr, BasicBlock *InsertAtEnd)
1212 : Instruction(ParentPad->getType(), Op,
1213 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1214 InsertAtEnd) {
1215 init(ParentPad, Args, NameStr);
1216}
1217
1218//===----------------------------------------------------------------------===//
1219// UnreachableInst Implementation
1220//===----------------------------------------------------------------------===//
1221
1222UnreachableInst::UnreachableInst(LLVMContext &Context,
1223 Instruction *InsertBefore)
1224 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1225 0, InsertBefore) {}
1226UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1227 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1228 0, InsertAtEnd) {}
1229
1230//===----------------------------------------------------------------------===//
1231// BranchInst Implementation
1232//===----------------------------------------------------------------------===//
1233
1234void BranchInst::AssertOK() {
1235 if (isConditional())
1236 assert(getCondition()->getType()->isIntegerTy(1) &&(static_cast<void> (0))
1237 "May only branch on boolean predicates!")(static_cast<void> (0));
1238}
1239
1240BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1241 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1242 OperandTraits<BranchInst>::op_end(this) - 1, 1,
1243 InsertBefore) {
1244 assert(IfTrue && "Branch destination may not be null!")(static_cast<void> (0));
1245 Op<-1>() = IfTrue;
1246}
1247
1248BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1249 Instruction *InsertBefore)
1250 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1251 OperandTraits<BranchInst>::op_end(this) - 3, 3,
1252 InsertBefore) {
1253 // Assign in order of operand index to make use-list order predictable.
1254 Op<-3>() = Cond;
1255 Op<-2>() = IfFalse;
1256 Op<-1>() = IfTrue;
1257#ifndef NDEBUG1
1258 AssertOK();
1259#endif
1260}
1261
1262BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1263 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1264 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1265 assert(IfTrue && "Branch destination may not be null!")(static_cast<void> (0));
1266 Op<-1>() = IfTrue;
1267}
1268
1269BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1270 BasicBlock *InsertAtEnd)
1271 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1272 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1273 // Assign in order of operand index to make use-list order predictable.
1274 Op<-3>() = Cond;
1275 Op<-2>() = IfFalse;
1276 Op<-1>() = IfTrue;
1277#ifndef NDEBUG1
1278 AssertOK();
1279#endif
1280}
1281
1282BranchInst::BranchInst(const BranchInst &BI)
1283 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1284 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1285 BI.getNumOperands()) {
1286 // Assign in order of operand index to make use-list order predictable.
1287 if (BI.getNumOperands() != 1) {
1288 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!")(static_cast<void> (0));
1289 Op<-3>() = BI.Op<-3>();
1290 Op<-2>() = BI.Op<-2>();
1291 }
1292 Op<-1>() = BI.Op<-1>();
1293 SubclassOptionalData = BI.SubclassOptionalData;
1294}
1295
1296void BranchInst::swapSuccessors() {
1297 assert(isConditional() &&(static_cast<void> (0))
1298 "Cannot swap successors of an unconditional branch")(static_cast<void> (0));
1299 Op<-1>().swap(Op<-2>());
1300
1301 // Update profile metadata if present and it matches our structural
1302 // expectations.
1303 swapProfMetadata();
1304}
1305
1306//===----------------------------------------------------------------------===//
1307// AllocaInst Implementation
1308//===----------------------------------------------------------------------===//
1309
1310static Value *getAISize(LLVMContext &Context, Value *Amt) {
1311 if (!Amt)
1312 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1313 else {
1314 assert(!isa<BasicBlock>(Amt) &&(static_cast<void> (0))
1315 "Passed basic block into allocation size parameter! Use other ctor")(static_cast<void> (0));
1316 assert(Amt->getType()->isIntegerTy() &&(static_cast<void> (0))
1317 "Allocation array size is not an integer!")(static_cast<void> (0));
1318 }
1319 return Amt;
1320}
1321
1322static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1323 assert(BB && "Insertion BB cannot be null when alignment not provided!")(static_cast<void> (0));
1324 assert(BB->getParent() &&(static_cast<void> (0))
1325 "BB must be in a Function when alignment not provided!")(static_cast<void> (0));
1326 const DataLayout &DL = BB->getModule()->getDataLayout();
1327 return DL.getPrefTypeAlign(Ty);
1328}
1329
1330static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1331 assert(I && "Insertion position cannot be null when alignment not provided!")(static_cast<void> (0));
1332 return computeAllocaDefaultAlign(Ty, I->getParent());
1333}
1334
1335AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1336 Instruction *InsertBefore)
1337 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1338
1339AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1340 BasicBlock *InsertAtEnd)
1341 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1342
1343AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1344 const Twine &Name, Instruction *InsertBefore)
1345 : AllocaInst(Ty, AddrSpace, ArraySize,
1346 computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1347 InsertBefore) {}
1348
1349AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1350 const Twine &Name, BasicBlock *InsertAtEnd)
1351 : AllocaInst(Ty, AddrSpace, ArraySize,
1352 computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1353 InsertAtEnd) {}
1354
1355AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1356 Align Align, const Twine &Name,
1357 Instruction *InsertBefore)
1358 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1359 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1360 AllocatedType(Ty) {
1361 setAlignment(Align);
1362 assert(!Ty->isVoidTy() && "Cannot allocate void!")(static_cast<void> (0));
1363 setName(Name);
1364}
1365
1366AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1367 Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1368 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1369 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1370 AllocatedType(Ty) {
1371 setAlignment(Align);
1372 assert(!Ty->isVoidTy() && "Cannot allocate void!")(static_cast<void> (0));
1373 setName(Name);
1374}
1375
1376
1377bool AllocaInst::isArrayAllocation() const {
1378 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1379 return !CI->isOne();
1380 return true;
1381}
1382
1383/// isStaticAlloca - Return true if this alloca is in the entry block of the
1384/// function and is a constant size. If so, the code generator will fold it
1385/// into the prolog/epilog code, so it is basically free.
1386bool AllocaInst::isStaticAlloca() const {
1387 // Must be constant size.
1388 if (!isa<ConstantInt>(getArraySize())) return false;
1389
1390 // Must be in the entry block.
1391 const BasicBlock *Parent = getParent();
1392 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1393}
1394
1395//===----------------------------------------------------------------------===//
1396// LoadInst Implementation
1397//===----------------------------------------------------------------------===//
1398
1399void LoadInst::AssertOK() {
1400 assert(getOperand(0)->getType()->isPointerTy() &&(static_cast<void> (0))
1401 "Ptr must have pointer type.")(static_cast<void> (0));
1402 assert(!(isAtomic() && getAlignment() == 0) &&(static_cast<void> (0))
1403 "Alignment required for atomic load")(static_cast<void> (0));
1404}
1405
1406static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1407 assert(BB && "Insertion BB cannot be null when alignment not provided!")(static_cast<void> (0));
1408 assert(BB->getParent() &&(static_cast<void> (0))
1409 "BB must be in a Function when alignment not provided!")(static_cast<void> (0));
1410 const DataLayout &DL = BB->getModule()->getDataLayout();
1411 return DL.getABITypeAlign(Ty);
1412}
1413
1414static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1415 assert(I && "Insertion position cannot be null when alignment not provided!")(static_cast<void> (0));
1416 return computeLoadStoreDefaultAlign(Ty, I->getParent());
1417}
1418
1419LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1420 Instruction *InsertBef)
1421 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1422
1423LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1424 BasicBlock *InsertAE)
1425 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1426
1427LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1428 Instruction *InsertBef)
1429 : LoadInst(Ty, Ptr, Name, isVolatile,
1430 computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1431
1432LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1433 BasicBlock *InsertAE)
1434 : LoadInst(Ty, Ptr, Name, isVolatile,
1435 computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1436
1437LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1438 Align Align, Instruction *InsertBef)
1439 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1440 SyncScope::System, InsertBef) {}
1441
1442LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1443 Align Align, BasicBlock *InsertAE)
1444 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1445 SyncScope::System, InsertAE) {}
1446
1447LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1448 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1449 Instruction *InsertBef)
1450 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1451 assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty))(static_cast<void> (0));
1452 setVolatile(isVolatile);
1453 setAlignment(Align);
1454 setAtomic(Order, SSID);
1455 AssertOK();
1456 setName(Name);
1457}
1458
1459LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1460 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1461 BasicBlock *InsertAE)
1462 : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1463 assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty))(static_cast<void> (0));
1464 setVolatile(isVolatile);
1465 setAlignment(Align);
1466 setAtomic(Order, SSID);
1467 AssertOK();
1468 setName(Name);
1469}
1470
1471//===----------------------------------------------------------------------===//
1472// StoreInst Implementation
1473//===----------------------------------------------------------------------===//
1474
1475void StoreInst::AssertOK() {
1476 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!")(static_cast<void> (0));
1477 assert(getOperand(1)->getType()->isPointerTy() &&(static_cast<void> (0))
1478 "Ptr must have pointer type!")(static_cast<void> (0));
1479 assert(cast<PointerType>(getOperand(1)->getType())(static_cast<void> (0))
1480 ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&(static_cast<void> (0))
1481 "Ptr must be a pointer to Val type!")(static_cast<void> (0));
1482 assert(!(isAtomic() && getAlignment() == 0) &&(static_cast<void> (0))
1483 "Alignment required for atomic store")(static_cast<void> (0));
1484}
1485
1486StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1487 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1488
1489StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1490 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1491
1492StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1493 Instruction *InsertBefore)
1494 : StoreInst(val, addr, isVolatile,
1495 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1496 InsertBefore) {}
1497
1498StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1499 BasicBlock *InsertAtEnd)
1500 : StoreInst(val, addr, isVolatile,
1501 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1502 InsertAtEnd) {}
1503
1504StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1505 Instruction *InsertBefore)
1506 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1507 SyncScope::System, InsertBefore) {}
1508
1509StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1510 BasicBlock *InsertAtEnd)
1511 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1512 SyncScope::System, InsertAtEnd) {}
1513
1514StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1515 AtomicOrdering Order, SyncScope::ID SSID,
1516 Instruction *InsertBefore)
1517 : Instruction(Type::getVoidTy(val->getContext()), Store,
1518 OperandTraits<StoreInst>::op_begin(this),
1519 OperandTraits<StoreInst>::operands(this), InsertBefore) {
1520 Op<0>() = val;
1521 Op<1>() = addr;
1522 setVolatile(isVolatile);
1523 setAlignment(Align);
1524 setAtomic(Order, SSID);
1525 AssertOK();
1526}
1527
1528StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1529 AtomicOrdering Order, SyncScope::ID SSID,
1530 BasicBlock *InsertAtEnd)
1531 : Instruction(Type::getVoidTy(val->getContext()), Store,
1532 OperandTraits<StoreInst>::op_begin(this),
1533 OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1534 Op<0>() = val;
1535 Op<1>() = addr;
1536 setVolatile(isVolatile);
1537 setAlignment(Align);
1538 setAtomic(Order, SSID);
1539 AssertOK();
1540}
1541
1542
1543//===----------------------------------------------------------------------===//
1544// AtomicCmpXchgInst Implementation
1545//===----------------------------------------------------------------------===//
1546
1547void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1548 Align Alignment, AtomicOrdering SuccessOrdering,
1549 AtomicOrdering FailureOrdering,
1550 SyncScope::ID SSID) {
1551 Op<0>() = Ptr;
1552 Op<1>() = Cmp;
1553 Op<2>() = NewVal;
1554 setSuccessOrdering(SuccessOrdering);
1555 setFailureOrdering(FailureOrdering);
1556 setSyncScopeID(SSID);
1557 setAlignment(Alignment);
1558
1559 assert(getOperand(0) && getOperand(1) && getOperand(2) &&(static_cast<void> (0))
1560 "All operands must be non-null!")(static_cast<void> (0));
1561 assert(getOperand(0)->getType()->isPointerTy() &&(static_cast<void> (0))
1562 "Ptr must have pointer type!")(static_cast<void> (0));
1563 assert(cast<PointerType>(getOperand(0)->getType())(static_cast<void> (0))
1564 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&(static_cast<void> (0))
1565 "Ptr must be a pointer to Cmp type!")(static_cast<void> (0));
1566 assert(cast<PointerType>(getOperand(0)->getType())(static_cast<void> (0))
1567 ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&(static_cast<void> (0))
1568 "Ptr must be a pointer to NewVal type!")(static_cast<void> (0));
1569 assert(getOperand(1)->getType() == getOperand(2)->getType() &&(static_cast<void> (0))
1570 "Cmp type and NewVal type must be same!")(static_cast<void> (0));
1571}
1572
1573AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1574 Align Alignment,
1575 AtomicOrdering SuccessOrdering,
1576 AtomicOrdering FailureOrdering,
1577 SyncScope::ID SSID,
1578 Instruction *InsertBefore)
1579 : Instruction(
1580 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1581 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1582 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1583 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1584}
1585
1586AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1587 Align Alignment,
1588 AtomicOrdering SuccessOrdering,
1589 AtomicOrdering FailureOrdering,
1590 SyncScope::ID SSID,
1591 BasicBlock *InsertAtEnd)
1592 : Instruction(
1593 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1594 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1595 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1596 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1597}
1598
1599//===----------------------------------------------------------------------===//
1600// AtomicRMWInst Implementation
1601//===----------------------------------------------------------------------===//
1602
1603void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1604 Align Alignment, AtomicOrdering Ordering,
1605 SyncScope::ID SSID) {
1606 Op<0>() = Ptr;
1607 Op<1>() = Val;
1608 setOperation(Operation);
1609 setOrdering(Ordering);
1610 setSyncScopeID(SSID);
1611 setAlignment(Alignment);
1612
1613 assert(getOperand(0) && getOperand(1) &&(static_cast<void> (0))
1614 "All operands must be non-null!")(static_cast<void> (0));
1615 assert(getOperand(0)->getType()->isPointerTy() &&(static_cast<void> (0))
1616 "Ptr must have pointer type!")(static_cast<void> (0));
1617 assert(cast<PointerType>(getOperand(0)->getType())(static_cast<void> (0))
1618 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&(static_cast<void> (0))
1619 "Ptr must be a pointer to Val type!")(static_cast<void> (0));
1620 assert(Ordering != AtomicOrdering::NotAtomic &&(static_cast<void> (0))
1621 "AtomicRMW instructions must be atomic!")(static_cast<void> (0));
1622}
1623
1624AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1625 Align Alignment, AtomicOrdering Ordering,
1626 SyncScope::ID SSID, Instruction *InsertBefore)
1627 : Instruction(Val->getType(), AtomicRMW,
1628 OperandTraits<AtomicRMWInst>::op_begin(this),
1629 OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1630 Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1631}
1632
1633AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1634 Align Alignment, AtomicOrdering Ordering,
1635 SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1636 : Instruction(Val->getType(), AtomicRMW,
1637 OperandTraits<AtomicRMWInst>::op_begin(this),
1638 OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1639 Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1640}
1641
1642StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1643 switch (Op) {
1644 case AtomicRMWInst::Xchg:
1645 return "xchg";
1646 case AtomicRMWInst::Add:
1647 return "add";
1648 case AtomicRMWInst::Sub:
1649 return "sub";
1650 case AtomicRMWInst::And:
1651 return "and";
1652 case AtomicRMWInst::Nand:
1653 return "nand";
1654 case AtomicRMWInst::Or:
1655 return "or";
1656 case AtomicRMWInst::Xor:
1657 return "xor";
1658 case AtomicRMWInst::Max:
1659 return "max";
1660 case AtomicRMWInst::Min:
1661 return "min";
1662 case AtomicRMWInst::UMax:
1663 return "umax";
1664 case AtomicRMWInst::UMin:
1665 return "umin";
1666 case AtomicRMWInst::FAdd:
1667 return "fadd";
1668 case AtomicRMWInst::FSub:
1669 return "fsub";
1670 case AtomicRMWInst::BAD_BINOP:
1671 return "<invalid operation>";
1672 }
1673
1674 llvm_unreachable("invalid atomicrmw operation")__builtin_unreachable();
1675}
1676
1677//===----------------------------------------------------------------------===//
1678// FenceInst Implementation
1679//===----------------------------------------------------------------------===//
1680
1681FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1682 SyncScope::ID SSID,
1683 Instruction *InsertBefore)
1684 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1685 setOrdering(Ordering);
1686 setSyncScopeID(SSID);
1687}
1688
1689FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1690 SyncScope::ID SSID,
1691 BasicBlock *InsertAtEnd)
1692 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1693 setOrdering(Ordering);
1694 setSyncScopeID(SSID);
1695}
1696
1697//===----------------------------------------------------------------------===//
1698// GetElementPtrInst Implementation
1699//===----------------------------------------------------------------------===//
1700
1701void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1702 const Twine &Name) {
1703 assert(getNumOperands() == 1 + IdxList.size() &&(static_cast<void> (0))
1704 "NumOperands not initialized?")(static_cast<void> (0));
1705 Op<0>() = Ptr;
1706 llvm::copy(IdxList, op_begin() + 1);
1707 setName(Name);
1708}
1709
1710GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1711 : Instruction(GEPI.getType(), GetElementPtr,
1712 OperandTraits<GetElementPtrInst>::op_end(this) -
1713 GEPI.getNumOperands(),
1714 GEPI.getNumOperands()),
1715 SourceElementType(GEPI.SourceElementType),
1716 ResultElementType(GEPI.ResultElementType) {
1717 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1718 SubclassOptionalData = GEPI.SubclassOptionalData;
1719}
1720
1721Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1722 if (auto *Struct = dyn_cast<StructType>(Ty)) {
1723 if (!Struct->indexValid(Idx))
1724 return nullptr;
1725 return Struct->getTypeAtIndex(Idx);
1726 }
1727 if (!Idx->getType()->isIntOrIntVectorTy())
1728 return nullptr;
1729 if (auto *Array = dyn_cast<ArrayType>(Ty))
1730 return Array->getElementType();
1731 if (auto *Vector = dyn_cast<VectorType>(Ty))
1732 return Vector->getElementType();
1733 return nullptr;
1734}
1735
1736Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1737 if (auto *Struct = dyn_cast<StructType>(Ty)) {
1738 if (Idx >= Struct->getNumElements())
1739 return nullptr;
1740 return Struct->getElementType(Idx);
1741 }
1742 if (auto *Array = dyn_cast<ArrayType>(Ty))
1743 return Array->getElementType();
1744 if (auto *Vector = dyn_cast<VectorType>(Ty))
1745 return Vector->getElementType();
1746 return nullptr;
1747}
1748
1749template <typename IndexTy>
1750static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1751 if (IdxList.empty())
1752 return Ty;
1753 for (IndexTy V : IdxList.slice(1)) {
1754 Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1755 if (!Ty)
1756 return Ty;
1757 }
1758 return Ty;
1759}
1760
1761Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1762 return getIndexedTypeInternal(Ty, IdxList);
1763}
1764
1765Type *GetElementPtrInst::getIndexedType(Type *Ty,
1766 ArrayRef<Constant *> IdxList) {
1767 return getIndexedTypeInternal(Ty, IdxList);
1768}
1769
1770Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1771 return getIndexedTypeInternal(Ty, IdxList);
1772}
1773
1774/// hasAllZeroIndices - Return true if all of the indices of this GEP are
1775/// zeros. If so, the result pointer and the first operand have the same
1776/// value, just potentially different types.
1777bool GetElementPtrInst::hasAllZeroIndices() const {
1778 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1779 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1780 if (!CI->isZero()) return false;
1781 } else {
1782 return false;
1783 }
1784 }
1785 return true;
1786}
1787
1788/// hasAllConstantIndices - Return true if all of the indices of this GEP are
1789/// constant integers. If so, the result pointer and the first operand have
1790/// a constant offset between them.
1791bool GetElementPtrInst::hasAllConstantIndices() const {
1792 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1793 if (!isa<ConstantInt>(getOperand(i)))
1794 return false;
1795 }
1796 return true;
1797}
1798
1799void GetElementPtrInst::setIsInBounds(bool B) {
1800 cast<GEPOperator>(this)->setIsInBounds(B);
1801}
1802
1803bool GetElementPtrInst::isInBounds() const {
1804 return cast<GEPOperator>(this)->isInBounds();
1805}
1806
1807bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1808 APInt &Offset) const {
1809 // Delegate to the generic GEPOperator implementation.
1810 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1811}
1812
1813bool GetElementPtrInst::collectOffset(
1814 const DataLayout &DL, unsigned BitWidth,
1815 MapVector<Value *, APInt> &VariableOffsets,
1816 APInt &ConstantOffset) const {
1817 // Delegate to the generic GEPOperator implementation.
1818 return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1819 ConstantOffset);
1820}
1821
1822//===----------------------------------------------------------------------===//
1823// ExtractElementInst Implementation
1824//===----------------------------------------------------------------------===//
1825
1826ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1827 const Twine &Name,
1828 Instruction *InsertBef)
1829 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1830 ExtractElement,
1831 OperandTraits<ExtractElementInst>::op_begin(this),
1832 2, InsertBef) {
1833 assert(isValidOperands(Val, Index) &&(static_cast<void> (0))
1834 "Invalid extractelement instruction operands!")(static_cast<void> (0));
1835 Op<0>() = Val;
1836 Op<1>() = Index;
1837 setName(Name);
1838}
1839
1840ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1841 const Twine &Name,
1842 BasicBlock *InsertAE)
1843 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1844 ExtractElement,
1845 OperandTraits<ExtractElementInst>::op_begin(this),
1846 2, InsertAE) {
1847 assert(isValidOperands(Val, Index) &&(static_cast<void> (0))
1848 "Invalid extractelement instruction operands!")(static_cast<void> (0));
1849
1850 Op<0>() = Val;
1851 Op<1>() = Index;
1852 setName(Name);
1853}
1854
1855bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1856 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1857 return false;
1858 return true;
1859}
1860
1861//===----------------------------------------------------------------------===//
1862// InsertElementInst Implementation
1863//===----------------------------------------------------------------------===//
1864
1865InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1866 const Twine &Name,
1867 Instruction *InsertBef)
1868 : Instruction(Vec->getType(), InsertElement,
1869 OperandTraits<InsertElementInst>::op_begin(this),
1870 3, InsertBef) {
1871 assert(isValidOperands(Vec, Elt, Index) &&(static_cast<void> (0))
1872 "Invalid insertelement instruction operands!")(static_cast<void> (0));
1873 Op<0>() = Vec;
1874 Op<1>() = Elt;
1875 Op<2>() = Index;
1876 setName(Name);
1877}
1878
1879InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1880 const Twine &Name,
1881 BasicBlock *InsertAE)
1882 : Instruction(Vec->getType(), InsertElement,
1883 OperandTraits<InsertElementInst>::op_begin(this),
1884 3, InsertAE) {
1885 assert(isValidOperands(Vec, Elt, Index) &&(static_cast<void> (0))
1886 "Invalid insertelement instruction operands!")(static_cast<void> (0));
1887
1888 Op<0>() = Vec;
1889 Op<1>() = Elt;
1890 Op<2>() = Index;
1891 setName(Name);
1892}
1893
1894bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1895 const Value *Index) {
1896 if (!Vec->getType()->isVectorTy())
1897 return false; // First operand of insertelement must be vector type.
1898
1899 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1900 return false;// Second operand of insertelement must be vector element type.
1901
1902 if (!Index->getType()->isIntegerTy())
1903 return false; // Third operand of insertelement must be i32.
1904 return true;
1905}
1906
1907//===----------------------------------------------------------------------===//
1908// ShuffleVectorInst Implementation
1909//===----------------------------------------------------------------------===//
1910
1911ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1912 const Twine &Name,
1913 Instruction *InsertBefore)
1914 : Instruction(
1915 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1916 cast<VectorType>(Mask->getType())->getElementCount()),
1917 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1918 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1919 assert(isValidOperands(V1, V2, Mask) &&(static_cast<void> (0))
1920 "Invalid shuffle vector instruction operands!")(static_cast<void> (0));
1921
1922 Op<0>() = V1;
1923 Op<1>() = V2;
1924 SmallVector<int, 16> MaskArr;
1925 getShuffleMask(cast<Constant>(Mask), MaskArr);
1926 setShuffleMask(MaskArr);
1927 setName(Name);
1928}
1929
1930ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1931 const Twine &Name, BasicBlock *InsertAtEnd)
1932 : Instruction(
1933 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1934 cast<VectorType>(Mask->getType())->getElementCount()),
1935 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1936 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1937 assert(isValidOperands(V1, V2, Mask) &&(static_cast<void> (0))
1938 "Invalid shuffle vector instruction operands!")(static_cast<void> (0));
1939
1940 Op<0>() = V1;
1941 Op<1>() = V2;
1942 SmallVector<int, 16> MaskArr;
1943 getShuffleMask(cast<Constant>(Mask), MaskArr);
1944 setShuffleMask(MaskArr);
1945 setName(Name);
1946}
1947
1948ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1949 const Twine &Name,
1950 Instruction *InsertBefore)
1951 : Instruction(
1952 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1953 Mask.size(), isa<ScalableVectorType>(V1->getType())),
1954 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1955 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1956 assert(isValidOperands(V1, V2, Mask) &&(static_cast<void> (0))
1957 "Invalid shuffle vector instruction operands!")(static_cast<void> (0));
1958 Op<0>() = V1;
1959 Op<1>() = V2;
1960 setShuffleMask(Mask);
1961 setName(Name);
1962}
1963
1964ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1965 const Twine &Name, BasicBlock *InsertAtEnd)
1966 : Instruction(
1967 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1968 Mask.size(), isa<ScalableVectorType>(V1->getType())),
1969 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1970 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1971 assert(isValidOperands(V1, V2, Mask) &&(static_cast<void> (0))
1972 "Invalid shuffle vector instruction operands!")(static_cast<void> (0));
1973
1974 Op<0>() = V1;
1975 Op<1>() = V2;
1976 setShuffleMask(Mask);
1977 setName(Name);
1978}
1979
1980void ShuffleVectorInst::commute() {
1981 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1982 int NumMaskElts = ShuffleMask.size();
1983 SmallVector<int, 16> NewMask(NumMaskElts);
1984 for (int i = 0; i != NumMaskElts; ++i) {
1985 int MaskElt = getMaskValue(i);
1986 if (MaskElt == UndefMaskElem) {
1987 NewMask[i] = UndefMaskElem;
1988 continue;
1989 }
1990 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask")(static_cast<void> (0));
1991 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1992 NewMask[i] = MaskElt;
1993 }
1994 setShuffleMask(NewMask);
1995 Op<0>().swap(Op<1>());
1996}
1997
1998bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1999 ArrayRef<int> Mask) {
2000 // V1 and V2 must be vectors of the same type.
2001 if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
2002 return false;
2003
2004 // Make sure the mask elements make sense.
2005 int V1Size =
2006 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
2007 for (int Elem : Mask)
2008 if (Elem != UndefMaskElem && Elem >= V1Size * 2)
2009 return false;
2010
2011 if (isa<ScalableVectorType>(V1->getType()))
2012 if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2013 return false;
2014
2015 return true;
2016}
2017
2018bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2019 const Value *Mask) {
2020 // V1 and V2 must be vectors of the same type.
2021 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2022 return false;
2023
2024 // Mask must be vector of i32, and must be the same kind of vector as the
2025 // input vectors
2026 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2027 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2028 isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2029 return false;
2030
2031 // Check to see if Mask is valid.
2032 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2033 return true;
2034
2035 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2036 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2037 for (Value *Op : MV->operands()) {
2038 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2039 if (CI->uge(V1Size*2))
2040 return false;
2041 } else if (!isa<UndefValue>(Op)) {
2042 return false;
2043 }
2044 }
2045 return true;
2046 }
2047
2048 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2049 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2050 for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2051 i != e; ++i)
2052 if (CDS->getElementAsInteger(i) >= V1Size*2)
2053 return false;
2054 return true;
2055 }
2056
2057 return false;
2058}
2059
2060void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2061 SmallVectorImpl<int> &Result) {
2062 ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2063
2064 if (isa<ConstantAggregateZero>(Mask)) {
2065 Result.resize(EC.getKnownMinValue(), 0);
2066 return;
2067 }
2068
2069 Result.reserve(EC.getKnownMinValue());
2070
2071 if (EC.isScalable()) {
2072 assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&(static_cast<void> (0))
2073 "Scalable vector shuffle mask must be undef or zeroinitializer")(static_cast<void> (0));
2074 int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2075 for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2076 Result.emplace_back(MaskVal);
2077 return;
2078 }
2079
2080 unsigned NumElts = EC.getKnownMinValue();
2081
2082 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2083 for (unsigned i = 0; i != NumElts; ++i)
2084 Result.push_back(CDS->getElementAsInteger(i));
2085 return;
2086 }
2087 for (unsigned i = 0; i != NumElts; ++i) {
2088 Constant *C = Mask->getAggregateElement(i);
2089 Result.push_back(isa<UndefValue>(C) ? -1 :
2090 cast<ConstantInt>(C)->getZExtValue());
2091 }
2092}
2093
2094void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2095 ShuffleMask.assign(Mask.begin(), Mask.end());
2096 ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2097}
2098
2099Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2100 Type *ResultTy) {
2101 Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2102 if (isa<ScalableVectorType>(ResultTy)) {
2103 assert(is_splat(Mask) && "Unexpected shuffle")(static_cast<void> (0));
2104 Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2105 if (Mask[0] == 0)
2106 return Constant::getNullValue(VecTy);
2107 return UndefValue::get(VecTy);
2108 }
2109 SmallVector<Constant *, 16> MaskConst;
2110 for (int Elem : Mask) {
2111 if (Elem == UndefMaskElem)
2112 MaskConst.push_back(UndefValue::get(Int32Ty));
2113 else
2114 MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2115 }
2116 return ConstantVector::get(MaskConst);
2117}
2118
2119static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2120 assert(!Mask.empty() && "Shuffle mask must contain elements")(static_cast<void> (0));
2121 bool UsesLHS = false;
2122 bool UsesRHS = false;
2123 for (int I : Mask) {
2124 if (I == -1)
2125 continue;
2126 assert(I >= 0 && I < (NumOpElts * 2) &&(static_cast<void> (0))
2127 "Out-of-bounds shuffle mask element")(static_cast<void> (0));
2128 UsesLHS |= (I < NumOpElts);
2129 UsesRHS |= (I >= NumOpElts);
2130 if (UsesLHS && UsesRHS)
2131 return false;
2132 }
2133 // Allow for degenerate case: completely undef mask means neither source is used.
2134 return UsesLHS || UsesRHS;
2135}
2136
2137bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2138 // We don't have vector operand size information, so assume operands are the
2139 // same size as the mask.
2140 return isSingleSourceMaskImpl(Mask, Mask.size());
2141}
2142
2143static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2144 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2145 return false;
2146 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2147 if (Mask[i] == -1)
2148 continue;
2149 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2150 return false;
2151 }
2152 return true;
2153}
2154
2155bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2156 // We don't have vector operand size information, so assume operands are the
2157 // same size as the mask.
2158 return isIdentityMaskImpl(Mask, Mask.size());
2159}
2160
2161bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2162 if (!isSingleSourceMask(Mask))
2163 return false;
2164 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2165 if (Mask[i] == -1)
2166 continue;
2167 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2168 return false;
2169 }
2170 return true;
2171}
2172
2173bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2174 if (!isSingleSourceMask(Mask))
2175 return false;
2176 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2177 if (Mask[i] == -1)
2178 continue;
2179 if (Mask[i] != 0 && Mask[i] != NumElts)
2180 return false;
2181 }
2182 return true;
2183}
2184
2185bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2186 // Select is differentiated from identity. It requires using both sources.
2187 if (isSingleSourceMask(Mask))
2188 return false;
2189 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2190 if (Mask[i] == -1)
2191 continue;
2192 if (Mask[i] != i && Mask[i] != (NumElts + i))
2193 return false;
2194 }
2195 return true;
2196}
2197
2198bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2199 // Example masks that will return true:
2200 // v1 = <a, b, c, d>
2201 // v2 = <e, f, g, h>
2202 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2203 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2204
2205 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2206 int NumElts = Mask.size();
2207 if (NumElts < 2 || !isPowerOf2_32(NumElts))
2208 return false;
2209
2210 // 2. The first element of the mask must be either a 0 or a 1.
2211 if (Mask[0] != 0 && Mask[0] != 1)
2212 return false;
2213
2214 // 3. The difference between the first 2 elements must be equal to the
2215 // number of elements in the mask.
2216 if ((Mask[1] - Mask[0]) != NumElts)
2217 return false;
2218
2219 // 4. The difference between consecutive even-numbered and odd-numbered
2220 // elements must be equal to 2.
2221 for (int i = 2; i < NumElts; ++i) {
2222 int MaskEltVal = Mask[i];
2223 if (MaskEltVal == -1)
2224 return false;
2225 int MaskEltPrevVal = Mask[i - 2];
2226 if (MaskEltVal - MaskEltPrevVal != 2)
2227 return false;
2228 }
2229 return true;
2230}
2231
2232bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2233 int NumSrcElts, int &Index) {
2234 // Must extract from a single source.
2235 if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2236 return false;
2237
2238 // Must be smaller (else this is an Identity shuffle).
2239 if (NumSrcElts <= (int)Mask.size())
2240 return false;
2241
2242 // Find start of extraction, accounting that we may start with an UNDEF.
2243 int SubIndex = -1;
2244 for (int i = 0, e = Mask.size(); i != e; ++i) {
2245 int M = Mask[i];
2246 if (M < 0)
2247 continue;
2248 int Offset = (M % NumSrcElts) - i;
2249 if (0 <= SubIndex && SubIndex != Offset)
2250 return false;
2251 SubIndex = Offset;
2252 }
2253
2254 if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2255 Index = SubIndex;
2256 return true;
2257 }
2258 return false;
2259}
2260
2261bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
2262 int NumSrcElts, int &NumSubElts,
2263 int &Index) {
2264 int NumMaskElts = Mask.size();
2265
2266 // Don't try to match if we're shuffling to a smaller size.
2267 if (NumMaskElts < NumSrcElts)
2268 return false;
2269
2270 // TODO: We don't recognize self-insertion/widening.
2271 if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2272 return false;
2273
2274 // Determine which mask elements are attributed to which source.
2275 APInt UndefElts = APInt::getNullValue(NumMaskElts);
2276 APInt Src0Elts = APInt::getNullValue(NumMaskElts);
2277 APInt Src1Elts = APInt::getNullValue(NumMaskElts);
2278 bool Src0Identity = true;
2279 bool Src1Identity = true;
2280
2281 for (int i = 0; i != NumMaskElts; ++i) {
2282 int M = Mask[i];
2283 if (M < 0) {
2284 UndefElts.setBit(i);
2285 continue;
2286 }
2287 if (M < NumSrcElts) {
2288 Src0Elts.setBit(i);
2289 Src0Identity &= (M == i);
2290 continue;
2291 }
2292 Src1Elts.setBit(i);
2293 Src1Identity &= (M == (i + NumSrcElts));
2294 continue;
2295 }
2296 assert((Src0Elts | Src1Elts | UndefElts).isAllOnesValue() &&(static_cast<void> (0))
2297 "unknown shuffle elements")(static_cast<void> (0));
2298 assert(!Src0Elts.isNullValue() && !Src1Elts.isNullValue() &&(static_cast<void> (0))
2299 "2-source shuffle not found")(static_cast<void> (0));
2300
2301 // Determine lo/hi span ranges.
2302 // TODO: How should we handle undefs at the start of subvector insertions?
2303 int Src0Lo = Src0Elts.countTrailingZeros();
2304 int Src1Lo = Src1Elts.countTrailingZeros();
2305 int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros();
2306 int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros();
2307
2308 // If src0 is in place, see if the src1 elements is inplace within its own
2309 // span.
2310 if (Src0Identity) {
2311 int NumSub1Elts = Src1Hi - Src1Lo;
2312 ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2313 if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2314 NumSubElts = NumSub1Elts;
2315 Index = Src1Lo;
2316 return true;
2317 }
2318 }
2319
2320 // If src1 is in place, see if the src0 elements is inplace within its own
2321 // span.
2322 if (Src1Identity) {
2323 int NumSub0Elts = Src0Hi - Src0Lo;
2324 ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2325 if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2326 NumSubElts = NumSub0Elts;
2327 Index = Src0Lo;
2328 return true;
2329 }
2330 }
2331
2332 return false;
2333}
2334
2335bool ShuffleVectorInst::isIdentityWithPadding() const {
2336 if (isa<UndefValue>(Op<2>()))
2337 return false;
2338
2339 // FIXME: Not currently possible to express a shuffle mask for a scalable
2340 // vector for this case.
2341 if (isa<ScalableVectorType>(getType()))
2342 return false;
2343
2344 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2345 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2346 if (NumMaskElts <= NumOpElts)
2347 return false;
2348
2349 // The first part of the mask must choose elements from exactly 1 source op.
2350 ArrayRef<int> Mask = getShuffleMask();
2351 if (!isIdentityMaskImpl(Mask, NumOpElts))
2352 return false;
2353
2354 // All extending must be with undef elements.
2355 for (int i = NumOpElts; i < NumMaskElts; ++i)
2356 if (Mask[i] != -1)
2357 return false;
2358
2359 return true;
2360}
2361
2362bool ShuffleVectorInst::isIdentityWithExtract() const {
2363 if (isa<UndefValue>(Op<2>()))
2364 return false;
2365
2366 // FIXME: Not currently possible to express a shuffle mask for a scalable
2367 // vector for this case.
2368 if (isa<ScalableVectorType>(getType()))
2369 return false;
2370
2371 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2372 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2373 if (NumMaskElts >= NumOpElts)
2374 return false;
2375
2376 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2377}
2378
2379bool ShuffleVectorInst::isConcat() const {
2380 // Vector concatenation is differentiated from identity with padding.
2381 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2382 isa<UndefValue>(Op<2>()))
2383 return false;
2384
2385 // FIXME: Not currently possible to express a shuffle mask for a scalable
2386 // vector for this case.
2387 if (isa<ScalableVectorType>(getType()))
2388 return false;
2389
2390 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2391 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2392 if (NumMaskElts != NumOpElts * 2)
2393 return false;
2394
2395 // Use the mask length rather than the operands' vector lengths here. We
2396 // already know that the shuffle returns a vector twice as long as the inputs,
2397 // and neither of the inputs are undef vectors. If the mask picks consecutive
2398 // elements from both inputs, then this is a concatenation of the inputs.
2399 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2400}
2401
2402//===----------------------------------------------------------------------===//
2403// InsertValueInst Class
2404//===----------------------------------------------------------------------===//
2405
2406void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2407 const Twine &Name) {
2408 assert(getNumOperands() == 2 && "NumOperands not initialized?")(static_cast<void> (0));
2409
2410 // There's no fundamental reason why we require at least one index
2411 // (other than weirdness with &*IdxBegin being invalid; see
2412 // getelementptr's init routine for example). But there's no
2413 // present need to support it.
2414 assert(!Idxs.empty() && "InsertValueInst must have at least one index")(static_cast<void> (0));
2415
2416 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==(static_cast<void> (0))
2417 Val->getType() && "Inserted value must match indexed type!")(static_cast<void> (0));
2418 Op<0>() = Agg;
2419 Op<1>() = Val;
2420
2421 Indices.append(Idxs.begin(), Idxs.end());
2422 setName(Name);
2423}
2424
2425InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2426 : Instruction(IVI.getType(), InsertValue,
2427 OperandTraits<InsertValueInst>::op_begin(this), 2),
2428 Indices(IVI.Indices) {
2429 Op<0>() = IVI.getOperand(0);
2430 Op<1>() = IVI.getOperand(1);
2431 SubclassOptionalData = IVI.SubclassOptionalData;
2432}
2433
2434//===----------------------------------------------------------------------===//
2435// ExtractValueInst Class
2436//===----------------------------------------------------------------------===//
2437
2438void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2439 assert(getNumOperands() == 1 && "NumOperands not initialized?")(static_cast<void> (0));
2440
2441 // There's no fundamental reason why we require at least one index.
2442 // But there's no present need to support it.
2443 assert(!Idxs.empty() && "ExtractValueInst must have at least one index")(static_cast<void> (0));
2444
2445 Indices.append(Idxs.begin(), Idxs.end());
2446 setName(Name);
2447}
2448
2449ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2450 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2451 Indices(EVI.Indices) {
2452 SubclassOptionalData = EVI.SubclassOptionalData;
2453}
2454
2455// getIndexedType - Returns the type of the element that would be extracted
2456// with an extractvalue instruction with the specified parameters.
2457//
2458// A null type is returned if the indices are invalid for the specified
2459// pointer type.
2460//
2461Type *ExtractValueInst::getIndexedType(Type *Agg,
2462 ArrayRef<unsigned> Idxs) {
2463 for (unsigned Index : Idxs) {
2464 // We can't use CompositeType::indexValid(Index) here.
2465 // indexValid() always returns true for arrays because getelementptr allows
2466 // out-of-bounds indices. Since we don't allow those for extractvalue and
2467 // insertvalue we need to check array indexing manually.
2468 // Since the only other types we can index into are struct types it's just
2469 // as easy to check those manually as well.
2470 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2471 if (Index >= AT->getNumElements())
2472 return nullptr;
2473 Agg = AT->getElementType();
2474 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2475 if (Index >= ST->getNumElements())
2476 return nullptr;
2477 Agg = ST->getElementType(Index);
2478 } else {
2479 // Not a valid type to index into.
2480 return nullptr;
2481 }
2482 }
2483 return const_cast<Type*>(Agg);
2484}
2485
2486//===----------------------------------------------------------------------===//
2487// UnaryOperator Class
2488//===----------------------------------------------------------------------===//
2489
2490UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2491 Type *Ty, const Twine &Name,
2492 Instruction *InsertBefore)
2493 : UnaryInstruction(Ty, iType, S, InsertBefore) {
2494 Op<0>() = S;
2495 setName(Name);
2496 AssertOK();
2497}
2498
2499UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2500 Type *Ty, const Twine &Name,
2501 BasicBlock *InsertAtEnd)
2502 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2503 Op<0>() = S;
2504 setName(Name);
2505 AssertOK();
2506}
2507
2508UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2509 const Twine &Name,
2510 Instruction *InsertBefore) {
2511 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2512}
2513
2514UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2515 const Twine &Name,
2516 BasicBlock *InsertAtEnd) {
2517 UnaryOperator *Res = Create(Op, S, Name);
2518 InsertAtEnd->getInstList().push_back(Res);
2519 return Res;
2520}
2521
2522void UnaryOperator::AssertOK() {
2523 Value *LHS = getOperand(0);
2524 (void)LHS; // Silence warnings.
2525#ifndef NDEBUG1
2526 switch (getOpcode()) {
2527 case FNeg:
2528 assert(getType() == LHS->getType() &&(static_cast<void> (0))
2529 "Unary operation should return same type as operand!")(static_cast<void> (0));
2530 assert(getType()->isFPOrFPVectorTy() &&(static_cast<void> (0))
2531 "Tried to create a floating-point operation on a "(static_cast<void> (0))
2532 "non-floating-point type!")(static_cast<void> (0));
2533 break;
2534 default: llvm_unreachable("Invalid opcode provided")__builtin_unreachable();
2535 }
2536#endif
2537}
2538
2539//===----------------------------------------------------------------------===//
2540// BinaryOperator Class
2541//===----------------------------------------------------------------------===//
2542
2543BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2544 Type *Ty, const Twine &Name,
2545 Instruction *InsertBefore)
2546 : Instruction(Ty, iType,
2547 OperandTraits<BinaryOperator>::op_begin(this),
2548 OperandTraits<BinaryOperator>::operands(this),
2549 InsertBefore) {
2550 Op<0>() = S1;
2551 Op<1>() = S2;
2552 setName(Name);
2553 AssertOK();
2554}
2555
2556BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2557 Type *Ty, const Twine &Name,
2558 BasicBlock *InsertAtEnd)
2559 : Instruction(Ty, iType,
2560 OperandTraits<BinaryOperator>::op_begin(this),
2561 OperandTraits<BinaryOperator>::operands(this),
2562 InsertAtEnd) {
2563 Op<0>() = S1;
2564 Op<1>() = S2;
2565 setName(Name);
2566 AssertOK();
2567}
2568
2569void BinaryOperator::AssertOK() {
2570 Value *LHS = getOperand(0), *RHS = getOperand(1);
2571 (void)LHS; (void)RHS; // Silence warnings.
2572 assert(LHS->getType() == RHS->getType() &&(static_cast<void> (0))
2573 "Binary operator operand types must match!")(static_cast<void> (0));
2574#ifndef NDEBUG1
2575 switch (getOpcode()) {
2576 case Add: case Sub:
2577 case Mul:
2578 assert(getType() == LHS->getType() &&(static_cast<void> (0))
2579 "Arithmetic operation should return same type as operands!")(static_cast<void> (0));
2580 assert(getType()->isIntOrIntVectorTy() &&(static_cast<void> (0))
2581 "Tried to create an integer operation on a non-integer type!")(static_cast<void> (0));
2582 break;
2583 case FAdd: case FSub:
2584 case FMul:
2585 assert(getType() == LHS->getType() &&(static_cast<void> (0))
2586 "Arithmetic operation should return same type as operands!")(static_cast<void> (0));
2587 assert(getType()->isFPOrFPVectorTy() &&(static_cast<void> (0))
2588 "Tried to create a floating-point operation on a "(static_cast<void> (0))
2589 "non-floating-point type!")(static_cast<void> (0));
2590 break;
2591 case UDiv:
2592 case SDiv:
2593 assert(getType() == LHS->getType() &&(static_cast<void> (0))
2594 "Arithmetic operation should return same type as operands!")(static_cast<void> (0));
2595 assert(getType()->isIntOrIntVectorTy() &&(static_cast<void> (0))
2596 "Incorrect operand type (not integer) for S/UDIV")(static_cast<void> (0));
2597 break;
2598 case FDiv:
2599 assert(getType() == LHS->getType() &&(static_cast<void> (0))
2600 "Arithmetic operation should return same type as operands!")(static_cast<void> (0));
2601 assert(getType()->isFPOrFPVectorTy() &&(static_cast<void> (0))
2602 "Incorrect operand type (not floating point) for FDIV")(static_cast<void> (0));
2603 break;
2604 case URem:
2605 case SRem:
2606 assert(getType() == LHS->getType() &&(static_cast<void> (0))
2607 "Arithmetic operation should return same type as operands!")(static_cast<void> (0));
2608 assert(getType()->isIntOrIntVectorTy() &&(static_cast<void> (0))
2609 "Incorrect operand type (not integer) for S/UREM")(static_cast<void> (0));
2610 break;
2611 case FRem:
2612 assert(getType() == LHS->getType() &&(static_cast<void> (0))
2613 "Arithmetic operation should return same type as operands!")(static_cast<void> (0));
2614 assert(getType()->isFPOrFPVectorTy() &&(static_cast<void> (0))
2615 "Incorrect operand type (not floating point) for FREM")(static_cast<void> (0));
2616 break;
2617 case Shl:
2618 case LShr:
2619 case AShr:
2620 assert(getType() == LHS->getType() &&(static_cast<void> (0))
2621 "Shift operation should return same type as operands!")(static_cast<void> (0));
2622 assert(getType()->isIntOrIntVectorTy() &&(static_cast<void> (0))
2623 "Tried to create a shift operation on a non-integral type!")(static_cast<void> (0));
2624 break;
2625 case And: case Or:
2626 case Xor:
2627 assert(getType() == LHS->getType() &&(static_cast<void> (0))
2628 "Logical operation should return same type as operands!")(static_cast<void> (0));
2629 assert(getType()->isIntOrIntVectorTy() &&(static_cast<void> (0))
2630 "Tried to create a logical operation on a non-integral type!")(static_cast<void> (0));
2631 break;
2632 default: llvm_unreachable("Invalid opcode provided")__builtin_unreachable();
2633 }
2634#endif
2635}
2636
2637BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2638 const Twine &Name,
2639 Instruction *InsertBefore) {
2640 assert(S1->getType() == S2->getType() &&(static_cast<void> (0))
2641 "Cannot create binary operator with two operands of differing type!")(static_cast<void> (0));
2642 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2643}
2644
2645BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2646 const Twine &Name,
2647 BasicBlock *InsertAtEnd) {
2648 BinaryOperator *Res = Create(Op, S1, S2, Name);
2649 InsertAtEnd->getInstList().push_back(Res);
2650 return Res;
2651}
2652
2653BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2654 Instruction *InsertBefore) {
2655 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2656 return new BinaryOperator(Instruction::Sub,
2657 zero, Op,
2658 Op->getType(), Name, InsertBefore);
2659}
2660
2661BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2662 BasicBlock *InsertAtEnd) {
2663 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2664 return new BinaryOperator(Instruction::Sub,
2665 zero, Op,
2666 Op->getType(), Name, InsertAtEnd);
2667}
2668
2669BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2670 Instruction *InsertBefore) {
2671 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2672 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2673}
2674
2675BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2676 BasicBlock *InsertAtEnd) {
2677 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2678 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2679}
2680
2681BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2682 Instruction *InsertBefore) {
2683 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2684 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2685}
2686
2687BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2688 BasicBlock *InsertAtEnd) {
2689 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2690 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2691}
2692
2693BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2694 Instruction *InsertBefore) {
2695 Constant *C = Constant::getAllOnesValue(Op->getType());
2696 return new BinaryOperator(Instruction::Xor, Op, C,
2697 Op->getType(), Name, InsertBefore);
2698}
2699
2700BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2701 BasicBlock *InsertAtEnd) {
2702 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2703 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2704 Op->getType(), Name, InsertAtEnd);
2705}
2706
2707// Exchange the two operands to this instruction. This instruction is safe to
2708// use on any binary instruction and does not modify the semantics of the
2709// instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2710// is changed.
2711bool BinaryOperator::swapOperands() {
2712 if (!isCommutative())
2713 return true; // Can't commute operands
2714 Op<0>().swap(Op<1>());
2715 return false;
2716}
2717
2718//===----------------------------------------------------------------------===//
2719// FPMathOperator Class
2720//===----------------------------------------------------------------------===//
2721
2722float FPMathOperator::getFPAccuracy() const {
2723 const MDNode *MD =
2724 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2725 if (!MD)
2726 return 0.0;
2727 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2728 return Accuracy->getValueAPF().convertToFloat();
2729}
2730
2731//===----------------------------------------------------------------------===//
2732// CastInst Class
2733//===----------------------------------------------------------------------===//
2734
2735// Just determine if this cast only deals with integral->integral conversion.
2736bool CastInst::isIntegerCast() const {
2737 switch (getOpcode()) {
2738 default: return false;
2739 case Instruction::ZExt:
2740 case Instruction::SExt:
2741 case Instruction::Trunc:
2742 return true;
2743 case Instruction::BitCast:
2744 return getOperand(0)->getType()->isIntegerTy() &&
2745 getType()->isIntegerTy();
2746 }
2747}
2748
2749bool CastInst::isLosslessCast() const {
2750 // Only BitCast can be lossless, exit fast if we're not BitCast
2751 if (getOpcode() != Instruction::BitCast)
2752 return false;
2753
2754 // Identity cast is always lossless
2755 Type *SrcTy = getOperand(0)->getType();
2756 Type *DstTy = getType();
2757 if (SrcTy == DstTy)
2758 return true;
2759
2760 // Pointer to pointer is always lossless.
2761 if (SrcTy->isPointerTy())
2762 return DstTy->isPointerTy();
2763 return false; // Other types have no identity values
2764}
2765
2766/// This function determines if the CastInst does not require any bits to be
2767/// changed in order to effect the cast. Essentially, it identifies cases where
2768/// no code gen is necessary for the cast, hence the name no-op cast. For
2769/// example, the following are all no-op casts:
2770/// # bitcast i32* %x to i8*
2771/// # bitcast <2 x i32> %x to <4 x i16>
2772/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2773/// Determine if the described cast is a no-op.
2774bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2775 Type *SrcTy,
2776 Type *DestTy,
2777 const DataLayout &DL) {
2778 assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition")(static_cast<void> (0));
2779 switch (Opcode) {
2780 default: llvm_unreachable("Invalid CastOp")__builtin_unreachable();
2781 case Instruction::Trunc:
2782 case Instruction::ZExt:
2783 case Instruction::SExt:
2784 case Instruction::FPTrunc:
2785 case Instruction::FPExt:
2786 case Instruction::UIToFP:
2787 case Instruction::SIToFP:
2788 case Instruction::FPToUI:
2789 case Instruction::FPToSI:
2790 case Instruction::AddrSpaceCast:
2791 // TODO: Target informations may give a more accurate answer here.
2792 return false;
2793 case Instruction::BitCast:
2794 return true; // BitCast never modifies bits.
2795 case Instruction::PtrToInt:
2796 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2797 DestTy->getScalarSizeInBits();
2798 case Instruction::IntToPtr:
2799 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2800 SrcTy->getScalarSizeInBits();
2801 }
2802}
2803
2804bool CastInst::isNoopCast(const DataLayout &DL) const {
2805 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2806}
2807
2808/// This function determines if a pair of casts can be eliminated and what
2809/// opcode should be used in the elimination. This assumes that there are two
2810/// instructions like this:
2811/// * %F = firstOpcode SrcTy %x to MidTy
2812/// * %S = secondOpcode MidTy %F to DstTy
2813/// The function returns a resultOpcode so these two casts can be replaced with:
2814/// * %Replacement = resultOpcode %SrcTy %x to DstTy
2815/// If no such cast is permitted, the function returns 0.
2816unsigned CastInst::isEliminableCastPair(
2817 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2818 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2819 Type *DstIntPtrTy) {
2820 // Define the 144 possibilities for these two cast instructions. The values
2821 // in this matrix determine what to do in a given situation and select the
2822 // case in the switch below. The rows correspond to firstOp, the columns
2823 // correspond to secondOp. In looking at the table below, keep in mind
2824 // the following cast properties:
2825 //
2826 // Size Compare Source Destination
2827 // Operator Src ? Size Type Sign Type Sign
2828 // -------- ------------ ------------------- ---------------------
2829 // TRUNC > Integer Any Integral Any
2830 // ZEXT < Integral Unsigned Integer Any
2831 // SEXT < Integral Signed Integer Any
2832 // FPTOUI n/a FloatPt n/a Integral Unsigned
2833 // FPTOSI n/a FloatPt n/a Integral Signed
2834 // UITOFP n/a Integral Unsigned FloatPt n/a
2835 // SITOFP n/a Integral Signed FloatPt n/a
2836 // FPTRUNC > FloatPt n/a FloatPt n/a
2837 // FPEXT < FloatPt n/a FloatPt n/a
2838 // PTRTOINT n/a Pointer n/a Integral Unsigned
2839 // INTTOPTR n/a Integral Unsigned Pointer n/a
2840 // BITCAST = FirstClass n/a FirstClass n/a
2841 // ADDRSPCST n/a Pointer n/a Pointer n/a
2842 //
2843 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2844 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2845 // into "fptoui double to i64", but this loses information about the range
2846 // of the produced value (we no longer know the top-part is all zeros).
2847 // Further this conversion is often much more expensive for typical hardware,
2848 // and causes issues when building libgcc. We disallow fptosi+sext for the
2849 // same reason.
2850 const unsigned numCastOps =
2851 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2852 static const uint8_t CastResults[numCastOps][numCastOps] = {
2853 // T F F U S F F P I B A -+
2854 // R Z S P P I I T P 2 N T S |
2855 // U E E 2 2 2 2 R E I T C C +- secondOp
2856 // N X X U S F F N X N 2 V V |
2857 // C T T I I P P C T T P T T -+
2858 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2859 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2860 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2861 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2862 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2863 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2864 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2865 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2866 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2867 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2868 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2869 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2870 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2871 };
2872
2873 // TODO: This logic could be encoded into the table above and handled in the
2874 // switch below.
2875 // If either of the casts are a bitcast from scalar to vector, disallow the
2876 // merging. However, any pair of bitcasts are allowed.
2877 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2878 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2879 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2880
2881 // Check if any of the casts convert scalars <-> vectors.
2882 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2883 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2884 if (!AreBothBitcasts)
2885 return 0;
2886
2887 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2888 [secondOp-Instruction::CastOpsBegin];
2889 switch (ElimCase) {
2890 case 0:
2891 // Categorically disallowed.
2892 return 0;
2893 case 1:
2894 // Allowed, use first cast's opcode.
2895 return firstOp;
2896 case 2:
2897 // Allowed, use second cast's opcode.
2898 return secondOp;
2899 case 3:
2900 // No-op cast in second op implies firstOp as long as the DestTy
2901 // is integer and we are not converting between a vector and a
2902 // non-vector type.
2903 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2904 return firstOp;
2905 return 0;
2906 case 4:
2907 // No-op cast in second op implies firstOp as long as the DestTy
2908 // is floating point.
2909 if (DstTy->isFloatingPointTy())
2910 return firstOp;
2911 return 0;
2912 case 5:
2913 // No-op cast in first op implies secondOp as long as the SrcTy
2914 // is an integer.
2915 if (SrcTy->isIntegerTy())
2916 return secondOp;
2917 return 0;
2918 case 6:
2919 // No-op cast in first op implies secondOp as long as the SrcTy
2920 // is a floating point.
2921 if (SrcTy->isFloatingPointTy())
2922 return secondOp;
2923 return 0;
2924 case 7: {
2925 // Disable inttoptr/ptrtoint optimization if enabled.
2926 if (DisableI2pP2iOpt)
2927 return 0;
2928
2929 // Cannot simplify if address spaces are different!
2930 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2931 return 0;
2932
2933 unsigned MidSize = MidTy->getScalarSizeInBits();
2934 // We can still fold this without knowing the actual sizes as long we
2935 // know that the intermediate pointer is the largest possible
2936 // pointer size.
2937 // FIXME: Is this always true?
2938 if (MidSize == 64)
2939 return Instruction::BitCast;
2940
2941 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2942 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2943 return 0;
2944 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2945 if (MidSize >= PtrSize)
2946 return Instruction::BitCast;
2947 return 0;
2948 }
2949 case 8: {
2950 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2951 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2952 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2953 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2954 unsigned DstSize = DstTy->getScalarSizeInBits();
2955 if (SrcSize == DstSize)
2956 return Instruction::BitCast;
2957 else if (SrcSize < DstSize)
2958 return firstOp;
2959 return secondOp;
2960 }
2961 case 9:
2962 // zext, sext -> zext, because sext can't sign extend after zext
2963 return Instruction::ZExt;
2964 case 11: {
2965 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2966 if (!MidIntPtrTy)
2967 return 0;
2968 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2969 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2970 unsigned DstSize = DstTy->getScalarSizeInBits();
2971 if (SrcSize <= PtrSize && SrcSize == DstSize)
2972 return Instruction::BitCast;
2973 return 0;
2974 }
2975 case 12:
2976 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2977 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2978 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2979 return Instruction::AddrSpaceCast;
2980 return Instruction::BitCast;
2981 case 13:
2982 // FIXME: this state can be merged with (1), but the following assert
2983 // is useful to check the correcteness of the sequence due to semantic
2984 // change of bitcast.
2985 assert((static_cast<void> (0))
2986 SrcTy->isPtrOrPtrVectorTy() &&(static_cast<void> (0))
2987 MidTy->isPtrOrPtrVectorTy() &&(static_cast<void> (0))
2988 DstTy->isPtrOrPtrVectorTy() &&(static_cast<void> (0))
2989 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&(static_cast<void> (0))
2990 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&(static_cast<void> (0))
2991 "Illegal addrspacecast, bitcast sequence!")(static_cast<void> (0));
2992 // Allowed, use first cast's opcode
2993 return firstOp;
2994 case 14: {
2995 // bitcast, addrspacecast -> addrspacecast if the element type of
2996 // bitcast's source is the same as that of addrspacecast's destination.
2997 PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
2998 PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
2999 if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
3000 return Instruction::AddrSpaceCast;
3001 return 0;
3002 }
3003 case 15:
3004 // FIXME: this state can be merged with (1), but the following assert
3005 // is useful to check the correcteness of the sequence due to semantic
3006 // change of bitcast.
3007 assert((static_cast<void> (0))
3008 SrcTy->isIntOrIntVectorTy() &&(static_cast<void> (0))
3009 MidTy->isPtrOrPtrVectorTy() &&(static_cast<void> (0))
3010 DstTy->isPtrOrPtrVectorTy() &&(static_cast<void> (0))
3011 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&(static_cast<void> (0))
3012 "Illegal inttoptr, bitcast sequence!")(static_cast<void> (0));
3013 // Allowed, use first cast's opcode
3014 return firstOp;
3015 case 16:
3016 // FIXME: this state can be merged with (2), but the following assert
3017 // is useful to check the correcteness of the sequence due to semantic
3018 // change of bitcast.
3019 assert((static_cast<void> (0))
3020 SrcTy->isPtrOrPtrVectorTy() &&(static_cast<void> (0))
3021 MidTy->isPtrOrPtrVectorTy() &&(static_cast<void> (0))
3022 DstTy->isIntOrIntVectorTy() &&(static_cast<void> (0))
3023 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&(static_cast<void> (0))
3024 "Illegal bitcast, ptrtoint sequence!")(static_cast<void> (0));
3025 // Allowed, use second cast's opcode
3026 return secondOp;
3027 case 17:
3028 // (sitofp (zext x)) -> (uitofp x)
3029 return Instruction::UIToFP;
3030 case 99:
3031 // Cast combination can't happen (error in input). This is for all cases
3032 // where the MidTy is not the same for the two cast instructions.
3033 llvm_unreachable("Invalid Cast Combination")__builtin_unreachable();
3034 default:
3035 llvm_unreachable("Error in CastResults table!!!")__builtin_unreachable();
3036 }
3037}
3038
3039CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3040 const Twine &Name, Instruction *InsertBefore) {
3041 assert(castIsValid(op, S, Ty) && "Invalid cast!")(static_cast<void> (0));
3042 // Construct and return the appropriate CastInst subclass
3043 switch (op) {
3044 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
3045 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
3046 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
3047 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
3048 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
3049 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
3050 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
3051 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
3052 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
3053 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
3054 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
3055 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
3056 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
3057 default: llvm_unreachable("Invalid opcode provided")__builtin_unreachable();
3058 }
3059}
3060
3061CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3062 const Twine &Name, BasicBlock *InsertAtEnd) {
3063 assert(castIsValid(op, S, Ty) && "Invalid cast!")(static_cast<void> (0));
3064 // Construct and return the appropriate CastInst subclass
3065 switch (op) {
3066 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
3067 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
3068 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
3069 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
3070 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
3071 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
3072 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
3073 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
3074 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
3075 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
3076 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
3077 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
3078 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
3079 default: llvm_unreachable("Invalid opcode provided")__builtin_unreachable();
3080 }
3081}
3082
3083CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3084 const Twine &Name,
3085 Instruction *InsertBefore) {
3086 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3087 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3088 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3089}
3090
3091CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3092 const Twine &Name,
3093 BasicBlock *InsertAtEnd) {
3094 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3095 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3096 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3097}
3098
3099CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3100 const Twine &Name,
3101 Instruction *InsertBefore) {
3102 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3103 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3104 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3105}
3106
3107CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3108 const Twine &Name,
3109 BasicBlock *InsertAtEnd) {
3110 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3111 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3112 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3113}
3114
3115CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3116 const Twine &Name,
3117 Instruction *InsertBefore) {
3118 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3119 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3120 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3121}
3122
3123CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3124 const Twine &Name,
3125 BasicBlock *InsertAtEnd) {
3126 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3127 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3128 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3129}
3130
3131CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3132 const Twine &Name,
3133 BasicBlock *InsertAtEnd) {
3134 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast")(static_cast<void> (0));
3135 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&(static_cast<void> (0))
3136 "Invalid cast")(static_cast<void> (0));
3137 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast")(static_cast<void> (0));
3138 assert((!Ty->isVectorTy() ||(static_cast<void> (0))
3139 cast<VectorType>(Ty)->getElementCount() ==(static_cast<void> (0))
3140 cast<VectorType>(S->getType())->getElementCount()) &&(static_cast<void> (0))
3141 "Invalid cast")(static_cast<void> (0));
3142
3143 if (Ty->isIntOrIntVectorTy())
3144 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3145
3146 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3147}
3148
3149/// Create a BitCast or a PtrToInt cast instruction
3150CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3151 const Twine &Name,
3152 Instruction *InsertBefore) {
3153 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast")(static_cast<void> (0));
3154 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&(static_cast<void> (0))
3155 "Invalid cast")(static_cast<void> (0));
3156 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast")(static_cast<void> (0));
3157 assert((!Ty->isVectorTy() ||(static_cast<void> (0))
3158 cast<VectorType>(Ty)->getElementCount() ==(static_cast<void> (0))
3159 cast<VectorType>(S->getType())->getElementCount()) &&(static_cast<void> (0))
3160 "Invalid cast")(static_cast<void> (0));
3161
3162 if (Ty->isIntOrIntVectorTy())
3163 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3164
3165 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3166}
3167
3168CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3169 Value *S, Type *Ty,
3170 const Twine &Name,
3171 BasicBlock *InsertAtEnd) {
3172 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast")(static_cast<void> (0));
3173 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast")(static_cast<void> (0));
3174
3175 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3176 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3177
3178 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3179}
3180
3181CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3182 Value *S, Type *Ty,
3183 const Twine &Name,
3184 Instruction *InsertBefore) {
3185 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast")(static_cast<void> (0));
3186 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast")(static_cast<void> (0));
3187
3188 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3189 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3190
3191 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3192}
3193
3194CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3195 const Twine &Name,
3196 Instruction *InsertBefore) {
3197 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3198 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3199 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3200 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3201
3202 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3203}
3204
3205CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3206 bool isSigned, const Twine &Name,
3207 Instruction *InsertBefore) {
3208 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&(static_cast<void> (0))
3209 "Invalid integer cast")(static_cast<void> (0));
3210 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3211 unsigned DstBits = Ty->getScalarSizeInBits();
3212 Instruction::CastOps opcode =
3213 (SrcBits == DstBits ? Instruction::BitCast :
3214 (SrcBits > DstBits ? Instruction::Trunc :
3215 (isSigned ? Instruction::SExt : Instruction::ZExt)));
3216 return Create(opcode, C, Ty, Name, InsertBefore);
3217}
3218
3219CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3220 bool isSigned, const Twine &Name,
3221 BasicBlock *InsertAtEnd) {
3222 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&(static_cast<void> (0))
3223 "Invalid cast")(static_cast<void> (0));
3224 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3225 unsigned DstBits = Ty->getScalarSizeInBits();
3226 Instruction::CastOps opcode =
3227 (SrcBits == DstBits ? Instruction::BitCast :
3228 (SrcBits > DstBits ? Instruction::Trunc :
3229 (isSigned ? Instruction::SExt : Instruction::ZExt)));
3230 return Create(opcode, C, Ty, Name, InsertAtEnd);
3231}
3232
3233CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3234 const Twine &Name,
3235 Instruction *InsertBefore) {
3236 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&(static_cast<void> (0))
3237 "Invalid cast")(static_cast<void> (0));
3238 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3239 unsigned DstBits = Ty->getScalarSizeInBits();
3240 Instruction::CastOps opcode =
3241 (SrcBits == DstBits ? Instruction::BitCast :
3242 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3243 return Create(opcode, C, Ty, Name, InsertBefore);
3244}
3245
3246CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3247 const Twine &Name,
3248 BasicBlock *InsertAtEnd) {
3249 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&(static_cast<void> (0))
3250 "Invalid cast")(static_cast<void> (0));
3251 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3252 unsigned DstBits = Ty->getScalarSizeInBits();
3253 Instruction::CastOps opcode =
3254 (SrcBits == DstBits ? Instruction::BitCast :
3255 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3256 return Create(opcode, C, Ty, Name, InsertAtEnd);
3257}
3258
3259bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3260 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3261 return false;
3262
3263 if (SrcTy == DestTy)
3264 return true;
3265
3266 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3267 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3268 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3269 // An element by element cast. Valid if casting the elements is valid.
3270 SrcTy = SrcVecTy->getElementType();
3271 DestTy = DestVecTy->getElementType();
3272 }
3273 }
3274 }
3275
3276 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3277 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3278 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3279 }
3280 }
3281
3282 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3283 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3284
3285 // Could still have vectors of pointers if the number of elements doesn't
3286 // match
3287 if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3288 return false;
3289
3290 if (SrcBits != DestBits)
3291 return false;
3292
3293 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3294 return false;
3295
3296 return true;
3297}
3298
3299bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3300 const DataLayout &DL) {
3301 // ptrtoint and inttoptr are not allowed on non-integral pointers
3302 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3303 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3304 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3305 !DL.isNonIntegralPointerType(PtrTy));
3306 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3307 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3308 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3309 !DL.isNonIntegralPointerType(PtrTy));
3310
3311 return isBitCastable(SrcTy, DestTy);
3312}
3313
3314// Provide a way to get a "cast" where the cast opcode is inferred from the
3315// types and size of the operand. This, basically, is a parallel of the
3316// logic in the castIsValid function below. This axiom should hold:
3317// castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3318// should not assert in castIsValid. In other words, this produces a "correct"
3319// casting opcode for the arguments passed to it.
3320Instruction::CastOps
3321CastInst::getCastOpcode(
3322 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3323 Type *SrcTy = Src->getType();
3324
3325 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&(static_cast<void> (0))
3326 "Only first class types are castable!")(static_cast<void> (0));
3327
3328 if (SrcTy == DestTy)
3329 return BitCast;
3330
3331 // FIXME: Check address space sizes here
3332 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3333 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3334 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3335 // An element by element cast. Find the appropriate opcode based on the
3336 // element types.
3337 SrcTy = SrcVecTy->getElementType();
3338 DestTy = DestVecTy->getElementType();
3339 }
3340
3341 // Get the bit sizes, we'll need these
3342 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3343 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3344
3345 // Run through the possibilities ...
3346 if (DestTy->isIntegerTy()) { // Casting to integral
3347 if (SrcTy->isIntegerTy()) { // Casting from integral
3348 if (DestBits < SrcBits)
3349 return Trunc; // int -> smaller int
3350 else if (DestBits > SrcBits) { // its an extension
3351 if (SrcIsSigned)
3352 return SExt; // signed -> SEXT
3353 else
3354 return ZExt; // unsigned -> ZEXT
3355 } else {
3356 return BitCast; // Same size, No-op cast
3357 }
3358 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3359 if (DestIsSigned)
3360 return FPToSI; // FP -> sint
3361 else
3362 return FPToUI; // FP -> uint
3363 } else if (SrcTy->isVectorTy()) {
3364 assert(DestBits == SrcBits &&(static_cast<void> (0))
3365 "Casting vector to integer of different width")(static_cast<void> (0));
3366 return BitCast; // Same size, no-op cast
3367 } else {
3368 assert(SrcTy->isPointerTy() &&(static_cast<void> (0))
3369 "Casting from a value that is not first-class type")(static_cast<void> (0));
3370 return PtrToInt; // ptr -> int
3371 }
3372 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3373 if (SrcTy->isIntegerTy()) { // Casting from integral
3374 if (SrcIsSigned)
3375 return SIToFP; // sint -> FP
3376 else
3377 return UIToFP; // uint -> FP
3378 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3379 if (DestBits < SrcBits) {
3380 return FPTrunc; // FP -> smaller FP
3381 } else if (DestBits > SrcBits) {
3382 return FPExt; // FP -> larger FP
3383 } else {
3384 return BitCast; // same size, no-op cast
3385 }
3386 } else if (SrcTy->isVectorTy()) {
3387 assert(DestBits == SrcBits &&(static_cast<void> (0))
3388 "Casting vector to floating point of different width")(static_cast<void> (0));
3389 return BitCast; // same size, no-op cast
3390 }
3391 llvm_unreachable("Casting pointer or non-first class to float")__builtin_unreachable();
3392 } else if (DestTy->isVectorTy()) {
3393 assert(DestBits == SrcBits &&(static_cast<void> (0))
3394 "Illegal cast to vector (wrong type or size)")(static_cast<void> (0));
3395 return BitCast;
3396 } else if (DestTy->isPointerTy()) {
3397 if (SrcTy->isPointerTy()) {
3398 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3399 return AddrSpaceCast;
3400 return BitCast; // ptr -> ptr
3401 } else if (SrcTy->isIntegerTy()) {
3402 return IntToPtr; // int -> ptr
3403 }
3404 llvm_unreachable("Casting pointer to other than pointer or int")__builtin_unreachable();
3405 } else if (DestTy->isX86_MMXTy()) {
3406 if (SrcTy->isVectorTy()) {
3407 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX")(static_cast<void> (0));
3408 return BitCast; // 64-bit vector to MMX
3409 }
3410 llvm_unreachable("Illegal cast to X86_MMX")__builtin_unreachable();
3411 }
3412 llvm_unreachable("Casting to type that is not first-class")__builtin_unreachable();
3413}
3414
3415//===----------------------------------------------------------------------===//
3416// CastInst SubClass Constructors
3417//===----------------------------------------------------------------------===//
3418
3419/// Check that the construction parameters for a CastInst are correct. This
3420/// could be broken out into the separate constructors but it is useful to have
3421/// it in one place and to eliminate the redundant code for getting the sizes
3422/// of the types involved.
3423bool
3424CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3425 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3426 SrcTy->isAggregateType() || DstTy->isAggregateType())
3427 return false;
3428
3429 // Get the size of the types in bits, and whether we are dealing
3430 // with vector types, we'll need this later.
3431 bool SrcIsVec = isa<VectorType>(SrcTy);
3432 bool DstIsVec = isa<VectorType>(DstTy);
3433 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3434 unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3435
3436 // If these are vector types, get the lengths of the vectors (using zero for
3437 // scalar types means that checking that vector lengths match also checks that
3438 // scalars are not being converted to vectors or vectors to scalars).
3439 ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3440 : ElementCount::getFixed(0);
3441 ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3442 : ElementCount::getFixed(0);
3443
3444 // Switch on the opcode provided
3445 switch (op) {
3446 default: return false; // This is an input error
3447 case Instruction::Trunc:
3448 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3449 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3450 case Instruction::ZExt:
3451 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3452 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3453 case Instruction::SExt:
3454 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3455 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3456 case Instruction::FPTrunc:
3457 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3458 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3459 case Instruction::FPExt:
3460 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3461 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3462 case Instruction::UIToFP:
3463 case Instruction::SIToFP:
3464 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3465 SrcEC == DstEC;
3466 case Instruction::FPToUI:
3467 case Instruction::FPToSI:
3468 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3469 SrcEC == DstEC;
3470 case Instruction::PtrToInt:
3471 if (SrcEC != DstEC)
3472 return false;
3473 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3474 case Instruction::IntToPtr:
3475 if (SrcEC != DstEC)
3476 return false;
3477 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3478 case Instruction::BitCast: {
3479 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3480 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3481
3482 // BitCast implies a no-op cast of type only. No bits change.
3483 // However, you can't cast pointers to anything but pointers.
3484 if (!SrcPtrTy != !DstPtrTy)
3485 return false;
3486
3487 // For non-pointer cases, the cast is okay if the source and destination bit
3488 // widths are identical.
3489 if (!SrcPtrTy)
3490 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3491
3492 // If both are pointers then the address spaces must match.
3493 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3494 return false;
3495
3496 // A vector of pointers must have the same number of elements.
3497 if (SrcIsVec && DstIsVec)
3498 return SrcEC == DstEC;
3499 if (SrcIsVec)
3500 return SrcEC == ElementCount::getFixed(1);
3501 if (DstIsVec)
3502 return DstEC == ElementCount::getFixed(1);
3503
3504 return true;
3505 }
3506 case Instruction::AddrSpaceCast: {
3507 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3508 if (!SrcPtrTy)
3509 return false;
3510
3511 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3512 if (!DstPtrTy)
3513 return false;
3514
3515 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3516 return false;
3517
3518 return SrcEC == DstEC;
3519 }
3520 }
3521}
3522
3523TruncInst::TruncInst(
3524 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3525) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3526 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc")(static_cast<void> (0));
3527}
3528
3529TruncInst::TruncInst(
3530 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3531) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3532 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc")(static_cast<void> (0));
3533}
3534
3535ZExtInst::ZExtInst(
3536 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3537) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3538 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt")(static_cast<void> (0));
3539}
3540
3541ZExtInst::ZExtInst(
3542 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3543) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3544 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt")(static_cast<void> (0));
3545}
3546SExtInst::SExtInst(
3547 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3548) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3549 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt")(static_cast<void> (0));
3550}
3551
3552SExtInst::SExtInst(
3553 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3554) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3555 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt")(static_cast<void> (0));
3556}
3557
3558FPTruncInst::FPTruncInst(
3559 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3560) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3561 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc")(static_cast<void> (0));
3562}
3563
3564FPTruncInst::FPTruncInst(
3565 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3566) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3567 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc")(static_cast<void> (0));
3568}
3569
3570FPExtInst::FPExtInst(
3571 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3572) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3573 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt")(static_cast<void> (0));
3574}
3575
3576FPExtInst::FPExtInst(
3577 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3578) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3579 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt")(static_cast<void> (0));
3580}
3581
3582UIToFPInst::UIToFPInst(
3583 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3584) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3585 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP")(static_cast<void> (0));
3586}
3587
3588UIToFPInst::UIToFPInst(
3589 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3590) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3591 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP")(static_cast<void> (0));
3592}
3593
3594SIToFPInst::SIToFPInst(
3595 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3596) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3597 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP")(static_cast<void> (0));
3598}
3599
3600SIToFPInst::SIToFPInst(
3601 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3602) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3603 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP")(static_cast<void> (0));
3604}
3605
3606FPToUIInst::FPToUIInst(
3607 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3608) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3609 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI")(static_cast<void> (0));
3610}
3611
3612FPToUIInst::FPToUIInst(
3613 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3614) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3615 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI")(static_cast<void> (0));
3616}
3617
3618FPToSIInst::FPToSIInst(
3619 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3620) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3621 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI")(static_cast<void> (0));
3622}
3623
3624FPToSIInst::FPToSIInst(
3625 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3626) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3627 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI")(static_cast<void> (0));
3628}
3629
3630PtrToIntInst::PtrToIntInst(
3631 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3632) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3633 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt")(static_cast<void> (0));
3634}
3635
3636PtrToIntInst::PtrToIntInst(
3637 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3638) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3639 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt")(static_cast<void> (0));
3640}
3641
3642IntToPtrInst::IntToPtrInst(
3643 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3644) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3645 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr")(static_cast<void> (0));
3646}
3647
3648IntToPtrInst::IntToPtrInst(
3649 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3650) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3651 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr")(static_cast<void> (0));
3652}
3653
3654BitCastInst::BitCastInst(
3655 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3656) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3657 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast")(static_cast<void> (0));
3658}
3659
3660BitCastInst::BitCastInst(
3661 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3662) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3663 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast")(static_cast<void> (0));
3664}
3665
3666AddrSpaceCastInst::AddrSpaceCastInst(
3667 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3668) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3669 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast")(static_cast<void> (0));
3670}
3671
3672AddrSpaceCastInst::AddrSpaceCastInst(
3673 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3674) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3675 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast")(static_cast<void> (0));
3676}
3677
3678//===----------------------------------------------------------------------===//
3679// CmpInst Classes
3680//===----------------------------------------------------------------------===//
3681
3682CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3683 Value *RHS, const Twine &Name, Instruction *InsertBefore,
3684 Instruction *FlagsSource)
3685 : Instruction(ty, op,
3686 OperandTraits<CmpInst>::op_begin(this),
3687 OperandTraits<CmpInst>::operands(this),
3688 InsertBefore) {
3689 Op<0>() = LHS;
3690 Op<1>() = RHS;
3691 setPredicate((Predicate)predicate);
3692 setName(Name);
3693 if (FlagsSource)
3694 copyIRFlags(FlagsSource);
3695}
3696
3697CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3698 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3699 : Instruction(ty, op,
3700 OperandTraits<CmpInst>::op_begin(this),
3701 OperandTraits<CmpInst>::operands(this),
3702 InsertAtEnd) {
3703 Op<0>() = LHS;
3704 Op<1>() = RHS;
3705 setPredicate((Predicate)predicate);
3706 setName(Name);
3707}
3708
3709CmpInst *
3710CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3711 const Twine &Name, Instruction *InsertBefore) {
3712 if (Op == Instruction::ICmp) {
3713 if (InsertBefore)
3714 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3715 S1, S2, Name);
3716 else
3717 return new ICmpInst(CmpInst::Predicate(predicate),
3718 S1, S2, Name);
3719 }
3720
3721 if (InsertBefore)
3722 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3723 S1, S2, Name);
3724 else
3725 return new FCmpInst(CmpInst::Predicate(predicate),
3726 S1, S2, Name);
3727}
3728
3729CmpInst *
3730CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3731 const Twine &Name, BasicBlock *InsertAtEnd) {
3732 if (Op == Instruction::ICmp) {
3733 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3734 S1, S2, Name);
3735 }
3736 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3737 S1, S2, Name);
3738}
3739
3740void CmpInst::swapOperands() {
3741 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3742 IC->swapOperands();
3743 else
3744 cast<FCmpInst>(this)->swapOperands();
3745}
3746
3747bool CmpInst::isCommutative() const {
3748 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3749 return IC->isCommutative();
3750 return cast<FCmpInst>(this)->isCommutative();
3751}
3752
3753bool CmpInst::isEquality(Predicate P) {
3754 if (ICmpInst::isIntPredicate(P))
3755 return ICmpInst::isEquality(P);
3756 if (FCmpInst::isFPPredicate(P))
3757 return FCmpInst::isEquality(P);
3758 llvm_unreachable("Unsupported predicate kind")__builtin_unreachable();
3759}
3760
3761CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3762 switch (pred) {
3763 default: llvm_unreachable("Unknown cmp predicate!")__builtin_unreachable();
3764 case ICMP_EQ: return ICMP_NE;
3765 case ICMP_NE: return ICMP_EQ;
3766 case ICMP_UGT: return ICMP_ULE;
3767 case ICMP_ULT: return ICMP_UGE;
3768 case ICMP_UGE: return ICMP_ULT;
3769 case ICMP_ULE: return ICMP_UGT;
3770 case ICMP_SGT: return ICMP_SLE;
3771 case ICMP_SLT: return ICMP_SGE;
3772 case ICMP_SGE: return ICMP_SLT;
3773 case ICMP_SLE: return ICMP_SGT;
3774
3775 case FCMP_OEQ: return FCMP_UNE;
3776 case FCMP_ONE: return FCMP_UEQ;
3777 case FCMP_OGT: return FCMP_ULE;
3778 case FCMP_OLT: return FCMP_UGE;
3779 case FCMP_OGE: return FCMP_ULT;
3780 case FCMP_OLE: return FCMP_UGT;
3781 case FCMP_UEQ: return FCMP_ONE;
3782 case FCMP_UNE: return FCMP_OEQ;
3783 case FCMP_UGT: return FCMP_OLE;
3784 case FCMP_ULT: return FCMP_OGE;
3785 case FCMP_UGE: return FCMP_OLT;
3786 case FCMP_ULE: return FCMP_OGT;
3787 case FCMP_ORD: return FCMP_UNO;
3788 case FCMP_UNO: return FCMP_ORD;
3789 case FCMP_TRUE: return FCMP_FALSE;
3790 case FCMP_FALSE: return FCMP_TRUE;
3791 }
3792}
3793
3794StringRef CmpInst::getPredicateName(Predicate Pred) {
3795 switch (Pred) {
3796 default: return "unknown";
3797 case FCmpInst::FCMP_FALSE: return "false";
3798 case FCmpInst::FCMP_OEQ: return "oeq";
3799 case FCmpInst::FCMP_OGT: return "ogt";
3800 case FCmpInst::FCMP_OGE: return "oge";
3801 case FCmpInst::FCMP_OLT: return "olt";
3802 case FCmpInst::FCMP_OLE: return "ole";
3803 case FCmpInst::FCMP_ONE: return "one";
3804 case FCmpInst::FCMP_ORD: return "ord";
3805 case FCmpInst::FCMP_UNO: return "uno";
3806 case FCmpInst::FCMP_UEQ: return "ueq";
3807 case FCmpInst::FCMP_UGT: return "ugt";
3808 case FCmpInst::FCMP_UGE: return "uge";
3809 case FCmpInst::FCMP_ULT: return "ult";
3810 case FCmpInst::FCMP_ULE: return "ule";
3811 case FCmpInst::FCMP_UNE: return "une";
3812 case FCmpInst::FCMP_TRUE: return "true";
3813 case ICmpInst::ICMP_EQ: return "eq";
3814 case ICmpInst::ICMP_NE: return "ne";
3815 case ICmpInst::ICMP_SGT: return "sgt";
3816 case ICmpInst::ICMP_SGE: return "sge";
3817 case ICmpInst::ICMP_SLT: return "slt";
3818 case ICmpInst::ICMP_SLE: return "sle";
3819 case ICmpInst::ICMP_UGT: return "ugt";
3820 case ICmpInst::ICMP_UGE: return "uge";
3821 case ICmpInst::ICMP_ULT: return "ult";
3822 case ICmpInst::ICMP_ULE: return "ule";
3823 }
3824}
3825
3826ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3827 switch (pred) {
3828 default: llvm_unreachable("Unknown icmp predicate!")__builtin_unreachable();
3829 case ICMP_EQ: case ICMP_NE:
3830 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3831 return pred;
3832 case ICMP_UGT: return ICMP_SGT;
3833 case ICMP_ULT: return ICMP_SLT;
3834 case ICMP_UGE: return ICMP_SGE;
3835 case ICMP_ULE: return ICMP_SLE;
3836 }
3837}
3838
3839ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3840 switch (pred) {
3841 default: llvm_unreachable("Unknown icmp predicate!")__builtin_unreachable();
3842 case ICMP_EQ: case ICMP_NE:
3843 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3844 return pred;
3845 case ICMP_SGT: return ICMP_UGT;
3846 case ICMP_SLT: return ICMP_ULT;
3847 case ICMP_SGE: return ICMP_UGE;
3848 case ICMP_SLE: return ICMP_ULE;
3849 }
3850}
3851
3852CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3853 switch (pred) {
3854 default: llvm_unreachable("Unknown cmp predicate!")__builtin_unreachable();
3855 case ICMP_EQ: case ICMP_NE:
3856 return pred;
3857 case ICMP_SGT: return ICMP_SLT;
3858 case ICMP_SLT: return ICMP_SGT;
3859 case ICMP_SGE: return ICMP_SLE;
3860 case ICMP_SLE: return ICMP_SGE;
3861 case ICMP_UGT: return ICMP_ULT;
3862 case ICMP_ULT: return ICMP_UGT;
3863 case ICMP_UGE: return ICMP_ULE;
3864 case ICMP_ULE: return ICMP_UGE;
3865
3866 case FCMP_FALSE: case FCMP_TRUE:
3867 case FCMP_OEQ: case FCMP_ONE:
3868 case FCMP_UEQ: case FCMP_UNE:
3869 case FCMP_ORD: case FCMP_UNO:
3870 return pred;
3871 case FCMP_OGT: return FCMP_OLT;
3872 case FCMP_OLT: return FCMP_OGT;
3873 case FCMP_OGE: return FCMP_OLE;
3874 case FCMP_OLE: return FCMP_OGE;
3875 case FCMP_UGT: return FCMP_ULT;
3876 case FCMP_ULT: return FCMP_UGT;
3877 case FCMP_UGE: return FCMP_ULE;
3878 case FCMP_ULE: return FCMP_UGE;
3879 }
3880}
3881
3882bool CmpInst::isNonStrictPredicate(Predicate pred) {
3883 switch (pred) {
3884 case ICMP_SGE:
3885 case ICMP_SLE:
3886 case ICMP_UGE:
3887 case ICMP_ULE:
3888 case FCMP_OGE:
3889 case FCMP_OLE:
3890 case FCMP_UGE:
3891 case FCMP_ULE:
3892 return true;
3893 default:
3894 return false;
3895 }
3896}
3897
3898bool CmpInst::isStrictPredicate(Predicate pred) {
3899 switch (pred) {
3900 case ICMP_SGT:
3901 case ICMP_SLT:
3902 case ICMP_UGT:
3903 case ICMP_ULT:
3904 case FCMP_OGT:
3905 case FCMP_OLT:
3906 case FCMP_UGT:
3907 case FCMP_ULT:
3908 return true;
3909 default:
3910 return false;
3911 }
3912}
3913
3914CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3915 switch (pred) {
3916 case ICMP_SGE:
3917 return ICMP_SGT;
3918 case ICMP_SLE:
3919 return ICMP_SLT;
3920 case ICMP_UGE:
3921 return ICMP_UGT;
3922 case ICMP_ULE:
3923 return ICMP_ULT;
3924 case FCMP_OGE:
3925 return FCMP_OGT;
3926 case FCMP_OLE:
3927 return FCMP_OLT;
3928 case FCMP_UGE:
3929 return FCMP_UGT;
3930 case FCMP_ULE:
3931 return FCMP_ULT;
3932 default:
3933 return pred;
3934 }
3935}
3936
3937CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3938 switch (pred) {
3939 case ICMP_SGT:
3940 return ICMP_SGE;
3941 case ICMP_SLT:
3942 return ICMP_SLE;
3943 case ICMP_UGT:
3944 return ICMP_UGE;
3945 case ICMP_ULT:
3946 return ICMP_ULE;
3947 case FCMP_OGT:
3948 return FCMP_OGE;
3949 case FCMP_OLT:
3950 return FCMP_OLE;
3951 case FCMP_UGT:
3952 return FCMP_UGE;
3953 case FCMP_ULT:
3954 return FCMP_ULE;
3955 default:
3956 return pred;
3957 }
3958}
3959
3960CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3961 assert(CmpInst::isRelational(pred) && "Call only with relational predicate!")(static_cast<void> (0));
3962
3963 if (isStrictPredicate(pred))
3964 return getNonStrictPredicate(pred);
3965 if (isNonStrictPredicate(pred))
3966 return getStrictPredicate(pred);
3967
3968 llvm_unreachable("Unknown predicate!")__builtin_unreachable();
3969}
3970
3971CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3972 assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!")(static_cast<void> (0));
3973
3974 switch (pred) {
3975 default:
3976 llvm_unreachable("Unknown predicate!")__builtin_unreachable();
3977 case CmpInst::ICMP_ULT:
3978 return CmpInst::ICMP_SLT;
3979 case CmpInst::ICMP_ULE:
3980 return CmpInst::ICMP_SLE;
3981 case CmpInst::ICMP_UGT:
3982 return CmpInst::ICMP_SGT;
3983 case CmpInst::ICMP_UGE:
3984 return CmpInst::ICMP_SGE;
3985 }
3986}
3987
3988CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
3989 assert(CmpInst::isSigned(pred) && "Call only with signed predicates!")(static_cast<void> (0));
3990
3991 switch (pred) {
3992 default:
3993 llvm_unreachable("Unknown predicate!")__builtin_unreachable();
3994 case CmpInst::ICMP_SLT:
3995 return CmpInst::ICMP_ULT;
3996 case CmpInst::ICMP_SLE:
3997 return CmpInst::ICMP_ULE;
3998 case CmpInst::ICMP_SGT:
3999 return CmpInst::ICMP_UGT;
4000 case CmpInst::ICMP_SGE:
4001 return CmpInst::ICMP_UGE;
4002 }
4003}
4004
4005bool CmpInst::isUnsigned(Predicate predicate) {
4006 switch (predicate) {
4007 default: return false;
4008 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
4009 case ICmpInst::ICMP_UGE: return true;
4010 }
4011}
4012
4013bool CmpInst::isSigned(Predicate predicate) {
4014 switch (predicate) {
4015 default: return false;
4016 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
4017 case ICmpInst::ICMP_SGE: return true;
4018 }
4019}
4020
4021CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
4022 assert(CmpInst::isRelational(pred) &&(static_cast<void> (0))
4023 "Call only with non-equality predicates!")(static_cast<void> (0));
4024
4025 if (isSigned(pred))
4026 return getUnsignedPredicate(pred);
4027 if (isUnsigned(pred))
4028 return getSignedPredicate(pred);
4029
4030 llvm_unreachable("Unknown predicate!")__builtin_unreachable();
4031}
4032
4033bool CmpInst::isOrdered(Predicate predicate) {
4034 switch (predicate) {
4035 default: return false;
4036 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
4037 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
4038 case FCmpInst::FCMP_ORD: return true;
4039 }
4040}
4041
4042bool CmpInst::isUnordered(Predicate predicate) {
4043 switch (predicate) {
4044 default: return false;
4045 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
4046 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
4047 case FCmpInst::FCMP_UNO: return true;
4048 }
4049}
4050
4051bool CmpInst::isTrueWhenEqual(Predicate predicate) {
4052 switch(predicate) {
4053 default: return false;
4054 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
4055 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
4056 }
4057}
4058
4059bool CmpInst::isFalseWhenEqual(Predicate predicate) {
4060 switch(predicate) {
4061 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
4062 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
4063 default: return false;
4064 }
4065}
4066
4067bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4068 // If the predicates match, then we know the first condition implies the
4069 // second is true.
4070 if (Pred1 == Pred2)
4071 return true;
4072
4073 switch (Pred1) {
4074 default:
4075 break;
4076 case ICMP_EQ:
4077 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4078 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
4079 Pred2 == ICMP_SLE;
4080 case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
4081 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
4082 case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
4083 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
4084 case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
4085 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
4086 case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
4087 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
4088 }
4089 return false;
4090}
4091
4092bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4093 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4094}
4095
4096//===----------------------------------------------------------------------===//
4097// SwitchInst Implementation
4098//===----------------------------------------------------------------------===//
4099
4100void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4101 assert(Value && Default && NumReserved)(static_cast<void> (0));
4102 ReservedSpace = NumReserved;
4103 setNumHungOffUseOperands(2);
4104 allocHungoffUses(ReservedSpace);
4105
4106 Op<0>() = Value;
4107 Op<1>() = Default;
4108}
4109
4110/// SwitchInst ctor - Create a new switch instruction, specifying a value to
4111/// switch on and a default destination. The number of additional cases can
4112/// be specified here to make memory allocation more efficient. This
4113/// constructor can also autoinsert before another instruction.
4114SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4115 Instruction *InsertBefore)
4116 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4117 nullptr, 0, InsertBefore) {
4118 init(Value, Default, 2+NumCases*2);
4119}
4120
4121/// SwitchInst ctor - Create a new switch instruction, specifying a value to
4122/// switch on and a default destination. The number of additional cases can
4123/// be specified here to make memory allocation more efficient. This
4124/// constructor also autoinserts at the end of the specified BasicBlock.
4125SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4126 BasicBlock *InsertAtEnd)
4127 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4128 nullptr, 0, InsertAtEnd) {
4129 init(Value, Default, 2+NumCases*2);
4130}
4131
4132SwitchInst::SwitchInst(const SwitchInst &SI)
4133 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4134 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4135 setNumHungOffUseOperands(SI.getNumOperands());
4136 Use *OL = getOperandList();
4137 const Use *InOL = SI.getOperandList();
4138 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4139 OL[i] = InOL[i];
4140 OL[i+1] = InOL[i+1];
4141 }
4142 SubclassOptionalData = SI.SubclassOptionalData;
4143}
4144
4145/// addCase - Add an entry to the switch instruction...
4146///
4147void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4148 unsigned NewCaseIdx = getNumCases();
4149 unsigned OpNo = getNumOperands();
4150 if (OpNo+2 > ReservedSpace)
4151 growOperands(); // Get more space!
4152 // Initialize some new operands.
4153 assert(OpNo+1 < ReservedSpace && "Growing didn't work!")(static_cast<void> (0));
4154 setNumHungOffUseOperands(OpNo+2);
4155 CaseHandle Case(this, NewCaseIdx);
4156 Case.setValue(OnVal);
4157 Case.setSuccessor(Dest);
4158}
4159
4160/// removeCase - This method removes the specified case and its successor
4161/// from the switch instruction.
4162SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4163 unsigned idx = I->getCaseIndex();
4164
4165 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!")(static_cast<void> (0));
4166
4167 unsigned NumOps = getNumOperands();
4168 Use *OL = getOperandList();
4169
4170 // Overwrite this case with the end of the list.
4171 if (2 + (idx + 1) * 2 != NumOps) {
4172 OL[2 + idx * 2] = OL[NumOps - 2];
4173 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4174 }
4175
4176 // Nuke the last value.
4177 OL[NumOps-2].set(nullptr);
4178 OL[NumOps-2+1].set(nullptr);
4179 setNumHungOffUseOperands(NumOps-2);
4180
4181 return CaseIt(this, idx);
4182}
4183
4184/// growOperands - grow operands - This grows the operand list in response
4185/// to a push_back style of operation. This grows the number of ops by 3 times.
4186///
4187void SwitchInst::growOperands() {
4188 unsigned e = getNumOperands();
4189 unsigned NumOps = e*3;
4190
4191 ReservedSpace = NumOps;
4192 growHungoffUses(ReservedSpace);
4193}
4194
4195MDNode *
4196SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4197 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4198 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4199 if (MDName->getString() == "branch_weights")
4200 return ProfileData;
4201 return nullptr;
4202}
4203
4204MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4205 assert(Changed && "called only if metadata has changed")(static_cast<void> (0));
4206
4207 if (!Weights)
4208 return nullptr;
4209
4210 assert(SI.getNumSuccessors() == Weights->size() &&(static_cast<void> (0))
4211 "num of prof branch_weights must accord with num of successors")(static_cast<void> (0));
4212
4213 bool AllZeroes =
4214 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4215
4216 if (AllZeroes || Weights.getValue().size() < 2)
4217 return nullptr;
4218
4219 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4220}
4221
4222void SwitchInstProfUpdateWrapper::init() {
4223 MDNode *ProfileData = getProfBranchWeightsMD(SI);
4224 if (!ProfileData)
4225 return;
4226
4227 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4228 llvm_unreachable("number of prof branch_weights metadata operands does "__builtin_unreachable()
4229 "not correspond to number of succesors")__builtin_unreachable();
4230 }
4231
4232 SmallVector<uint32_t, 8> Weights;
4233 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4234 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4235 uint32_t CW = C->getValue().getZExtValue();
4236 Weights.push_back(CW);
4237 }
4238 this->Weights = std::move(Weights);
4239}
4240
4241SwitchInst::CaseIt
4242SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4243 if (Weights) {
4244 assert(SI.getNumSuccessors() == Weights->size() &&(static_cast<void> (0))
4245 "num of prof branch_weights must accord with num of successors")(static_cast<void> (0));
4246 Changed = true;
4247 // Copy the last case to the place of the removed one and shrink.
4248 // This is tightly coupled with the way SwitchInst::removeCase() removes
4249 // the cases in SwitchInst::removeCase(CaseIt).
4250 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4251 Weights.getValue().pop_back();
4252 }
4253 return SI.removeCase(I);
4254}
4255
4256void SwitchInstProfUpdateWrapper::addCase(
4257 ConstantInt *OnVal, BasicBlock *Dest,
4258 SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4259 SI.addCase(OnVal, Dest);
4260
4261 if (!Weights && W && *W) {
4262 Changed = true;
4263 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4264 Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4265 } else if (Weights) {
4266 Changed = true;
4267 Weights.getValue().push_back(W ? *W : 0);
4268 }
4269 if (Weights)
4270 assert(SI.getNumSuccessors() == Weights->size() &&(static_cast<void> (0))
4271 "num of prof branch_weights must accord with num of successors")(static_cast<void> (0));
4272}
4273
4274SymbolTableList<Instruction>::iterator
4275SwitchInstProfUpdateWrapper::eraseFromParent() {
4276 // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4277 Changed = false;
4278 if (Weights)
4279 Weights->resize(0);
4280 return SI.eraseFromParent();
4281}
4282
4283SwitchInstProfUpdateWrapper::CaseWeightOpt
4284SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4285 if (!Weights)
4286 return None;
4287 return Weights.getValue()[idx];
4288}
4289
4290void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4291 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4292 if (!W)
4293 return;
4294
4295 if (!Weights && *W)
4296 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4297
4298 if (Weights) {
4299 auto &OldW = Weights.getValue()[idx];
4300 if (*W != OldW) {
4301 Changed = true;
4302 OldW = *W;
4303 }
4304 }
4305}
4306
4307SwitchInstProfUpdateWrapper::CaseWeightOpt
4308SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4309 unsigned idx) {
4310 if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4311 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4312 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4313 ->getValue()
4314 .getZExtValue();
4315
4316 return None;
4317}
4318
4319//===----------------------------------------------------------------------===//
4320// IndirectBrInst Implementation
4321//===----------------------------------------------------------------------===//
4322
4323void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4324 assert(Address && Address->getType()->isPointerTy() &&(static_cast<void> (0))
4325 "Address of indirectbr must be a pointer")(static_cast<void> (0));
4326 ReservedSpace = 1+NumDests;
4327 setNumHungOffUseOperands(1);
4328 allocHungoffUses(ReservedSpace);
4329
4330 Op<0>() = Address;
4331}
4332
4333
4334/// growOperands - grow operands - This grows the operand list in response
4335/// to a push_back style of operation. This grows the number of ops by 2 times.
4336///
4337void IndirectBrInst::growOperands() {
4338 unsigned e = getNumOperands();
4339 unsigned NumOps = e*2;
4340
4341 ReservedSpace = NumOps;
4342 growHungoffUses(ReservedSpace);
4343}
4344
4345IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4346 Instruction *InsertBefore)
4347 : Instruction(Type::getVoidTy(Address->getContext()),
4348 Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4349 init(Address, NumCases);
4350}
4351
4352IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4353 BasicBlock *InsertAtEnd)
4354 : Instruction(Type::getVoidTy(Address->getContext()),
4355 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4356 init(Address, NumCases);
4357}
4358
4359IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4360 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4361 nullptr, IBI.getNumOperands()) {
4362 allocHungoffUses(IBI.getNumOperands());
4363 Use *OL = getOperandList();
4364 const Use *InOL = IBI.getOperandList();
4365 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4366 OL[i] = InOL[i];
4367 SubclassOptionalData = IBI.SubclassOptionalData;
4368}
4369
4370/// addDestination - Add a destination.
4371///
4372void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4373 unsigned OpNo = getNumOperands();
4374 if (OpNo+1 > ReservedSpace)
4375 growOperands(); // Get more space!
4376 // Initialize some new operands.
4377 assert(OpNo < ReservedSpace && "Growing didn't work!")(static_cast<void> (0));
4378 setNumHungOffUseOperands(OpNo+1);
4379 getOperandList()[OpNo] = DestBB;
4380}
4381
4382/// removeDestination - This method removes the specified successor from the
4383/// indirectbr instruction.
4384void IndirectBrInst::removeDestination(unsigned idx) {
4385 assert(idx < getNumOperands()-1 && "Successor index out of range!")(static_cast<void> (0));
4386
4387 unsigned NumOps = getNumOperands();
4388 Use *OL = getOperandList();
4389
4390 // Replace this value with the last one.
4391 OL[idx+1] = OL[NumOps-1];
4392
4393 // Nuke the last value.
4394 OL[NumOps-1].set(nullptr);
4395 setNumHungOffUseOperands(NumOps-1);
4396}
4397
4398//===----------------------------------------------------------------------===//
4399// FreezeInst Implementation
4400//===----------------------------------------------------------------------===//
4401
4402FreezeInst::FreezeInst(Value *S,
4403 const Twine &Name, Instruction *InsertBefore)
4404 : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4405 setName(Name);
4406}
4407
4408FreezeInst::FreezeInst(Value *S,
4409 const Twine &Name, BasicBlock *InsertAtEnd)
4410 : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4411 setName(Name);
4412}
4413
4414//===----------------------------------------------------------------------===//
4415// cloneImpl() implementations
4416//===----------------------------------------------------------------------===//
4417
4418// Define these methods here so vtables don't get emitted into every translation
4419// unit that uses these classes.
4420
4421GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4422 return new (getNumOperands()) GetElementPtrInst(*this);
4423}
4424
4425UnaryOperator *UnaryOperator::cloneImpl() const {
4426 return Create(getOpcode(), Op<0>());
4427}
4428
4429BinaryOperator *BinaryOperator::cloneImpl() const {
4430 return Create(getOpcode(), Op<0>(), Op<1>());
4431}
4432
4433FCmpInst *FCmpInst::cloneImpl() const {
4434 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4435}
4436
4437ICmpInst *ICmpInst::cloneImpl() const {
4438 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4439}
4440
4441ExtractValueInst *ExtractValueInst::cloneImpl() const {
4442 return new ExtractValueInst(*this);
4443}
4444
4445InsertValueInst *InsertValueInst::cloneImpl() const {
4446 return new InsertValueInst(*this);
4447}
4448
4449AllocaInst *AllocaInst::cloneImpl() const {
4450 AllocaInst *Result =
4451 new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4452 getOperand(0), getAlign());
4453 Result->setUsedWithInAlloca(isUsedWithInAlloca());
4454 Result->setSwiftError(isSwiftError());
4455 return Result;
4456}
4457
4458LoadInst *LoadInst::cloneImpl() const {
4459 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4460 getAlign(), getOrdering(), getSyncScopeID());
4461}
4462
4463StoreInst *StoreInst::cloneImpl() const {
4464 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4465 getOrdering(), getSyncScopeID());
4466}
4467
4468AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4469 AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4470 getOperand(0), getOperand(1), getOperand(2), getAlign(),
4471 getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4472 Result->setVolatile(isVolatile());
4473 Result->setWeak(isWeak());
4474 return Result;
4475}
4476
4477AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4478 AtomicRMWInst *Result =
4479 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4480 getAlign(), getOrdering(), getSyncScopeID());
4481 Result->setVolatile(isVolatile());
4482 return Result;
4483}
4484
4485FenceInst *FenceInst::cloneImpl() const {
4486 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4487}
4488
4489TruncInst *TruncInst::cloneImpl() const {
4490 return new TruncInst(getOperand(0), getType());
4491}
4492
4493ZExtInst *ZExtInst::cloneImpl() const {
4494 return new ZExtInst(getOperand(0), getType());
4495}
4496
4497SExtInst *SExtInst::cloneImpl() const {
4498 return new SExtInst(getOperand(0), getType());
4499}
4500
4501FPTruncInst *FPTruncInst::cloneImpl() const {
4502 return new FPTruncInst(getOperand(0), getType());
4503}
4504
4505FPExtInst *FPExtInst::cloneImpl() const {
4506 return new FPExtInst(getOperand(0), getType());
4507}
4508
4509UIToFPInst *UIToFPInst::cloneImpl() const {
4510 return new UIToFPInst(getOperand(0), getType());
4511}
4512
4513SIToFPInst *SIToFPInst::cloneImpl() const {
4514 return new SIToFPInst(getOperand(0), getType());
4515}
4516
4517FPToUIInst *FPToUIInst::cloneImpl() const {
4518 return new FPToUIInst(getOperand(0), getType());
4519}
4520
4521FPToSIInst *FPToSIInst::cloneImpl() const {
4522 return new FPToSIInst(getOperand(0), getType());
4523}
4524
4525PtrToIntInst *PtrToIntInst::cloneImpl() const {
4526 return new PtrToIntInst(getOperand(0), getType());
4527}
4528
4529IntToPtrInst *IntToPtrInst::cloneImpl() const {
4530 return new IntToPtrInst(getOperand(0), getType());
4531}
4532
4533BitCastInst *BitCastInst::cloneImpl() const {
4534 return new BitCastInst(getOperand(0), getType());
4535}
4536
4537AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4538 return new AddrSpaceCastInst(getOperand(0), getType());
4539}
4540
4541CallInst *CallInst::cloneImpl() const {
4542 if (hasOperandBundles()) {
4543 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4544 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4545 }
4546 return new(getNumOperands()) CallInst(*this);
4547}
4548
4549SelectInst *SelectInst::cloneImpl() const {
4550 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4551}
4552
4553VAArgInst *VAArgInst::cloneImpl() const {
4554 return new VAArgInst(getOperand(0), getType());
4555}
4556
4557ExtractElementInst *ExtractElementInst::cloneImpl() const {
4558 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4559}
4560
4561InsertElementInst *InsertElementInst::cloneImpl() const {
4562 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4563}
4564
4565ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4566 return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4567}
4568
4569PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4570
4571LandingPadInst *LandingPadInst::cloneImpl() const {
4572 return new LandingPadInst(*this);
4573}
4574
4575ReturnInst *ReturnInst::cloneImpl() const {
4576 return new(getNumOperands()) ReturnInst(*this);
4577}
4578
4579BranchInst *BranchInst::cloneImpl() const {
4580 return new(getNumOperands()) BranchInst(*this);
4581}
4582
4583SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4584
4585IndirectBrInst *IndirectBrInst::cloneImpl() const {
4586 return new IndirectBrInst(*this);
4587}
4588
4589InvokeInst *InvokeInst::cloneImpl() const {
4590 if (hasOperandBundles()) {
4591 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4592 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4593 }
4594 return new(getNumOperands()) InvokeInst(*this);
4595}
4596
4597CallBrInst *CallBrInst::cloneImpl() const {
4598 if (hasOperandBundles()) {
4599 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4600 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4601 }
4602 return new (getNumOperands()) CallBrInst(*this);
4603}
4604
4605ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4606
4607CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4608 return new (getNumOperands()) CleanupReturnInst(*this);
4609}
4610
4611CatchReturnInst *CatchReturnInst::cloneImpl() const {
4612 return new (getNumOperands()) CatchReturnInst(*this);
4613}
4614
4615CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4616 return new CatchSwitchInst(*this);
4617}
4618
4619FuncletPadInst *FuncletPadInst::cloneImpl() const {
4620 return new (getNumOperands()) FuncletPadInst(*this);
4621}
4622
4623UnreachableInst *UnreachableInst::cloneImpl() const {
4624 LLVMContext &Context = getContext();
4625 return new UnreachableInst(Context);
4626}
4627
4628FreezeInst *FreezeInst::cloneImpl() const {
4629 return new FreezeInst(getOperand(0));
4630}

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include/llvm/IR/InstrTypes.h

1//===- llvm/InstrTypes.h - Important Instruction subclasses -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines various meta classes of instructions that exist in the VM
10// representation. Specific concrete subclasses of these may be found in the
11// i*.h files...
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRTYPES_H
16#define LLVM_IR_INSTRTYPES_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/Instruction.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/OperandTraits.h"
34#include "llvm/IR/Type.h"
35#include "llvm/IR/User.h"
36#include "llvm/IR/Value.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Support/ErrorHandling.h"
39#include <algorithm>
40#include <cassert>
41#include <cstddef>
42#include <cstdint>
43#include <iterator>
44#include <string>
45#include <vector>
46
47namespace llvm {
48
49namespace Intrinsic {
50typedef unsigned ID;
51}
52
53//===----------------------------------------------------------------------===//
54// UnaryInstruction Class
55//===----------------------------------------------------------------------===//
56
57class UnaryInstruction : public Instruction {
58protected:
59 UnaryInstruction(Type *Ty, unsigned iType, Value *V,
60 Instruction *IB = nullptr)
61 : Instruction(Ty, iType, &Op<0>(), 1, IB) {
62 Op<0>() = V;
63 }
64 UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
65 : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
66 Op<0>() = V;
67 }
68
69public:
70 // allocate space for exactly one operand
71 void *operator new(size_t S) { return User::operator new(S, 1); }
72 void operator delete(void *Ptr) { User::operator delete(Ptr); }
73
74 /// Transparently provide more efficient getOperand methods.
75 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
76
77 // Methods for support type inquiry through isa, cast, and dyn_cast:
78 static bool classof(const Instruction *I) {
79 return I->isUnaryOp() ||
80 I->getOpcode() == Instruction::Alloca ||
81 I->getOpcode() == Instruction::Load ||
82 I->getOpcode() == Instruction::VAArg ||
83 I->getOpcode() == Instruction::ExtractValue ||
84 (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
85 }
86 static bool classof(const Value *V) {
87 return isa<Instruction>(V) && classof(cast<Instruction>(V));
88 }
89};
90
91template <>
92struct OperandTraits<UnaryInstruction> :
93 public FixedNumOperandTraits<UnaryInstruction, 1> {
94};
95
96DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)UnaryInstruction::op_iterator UnaryInstruction::op_begin() { return
OperandTraits<UnaryInstruction>::op_begin(this); } UnaryInstruction
::const_op_iterator UnaryInstruction::op_begin() const { return
OperandTraits<UnaryInstruction>::op_begin(const_cast<
UnaryInstruction*>(this)); } UnaryInstruction::op_iterator
UnaryInstruction::op_end() { return OperandTraits<UnaryInstruction
>::op_end(this); } UnaryInstruction::const_op_iterator UnaryInstruction
::op_end() const { return OperandTraits<UnaryInstruction>
::op_end(const_cast<UnaryInstruction*>(this)); } Value *
UnaryInstruction::getOperand(unsigned i_nocapture) const { (static_cast
<void> (0)); return cast_or_null<Value>( OperandTraits
<UnaryInstruction>::op_begin(const_cast<UnaryInstruction
*>(this))[i_nocapture].get()); } void UnaryInstruction::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { (static_cast<
void> (0)); OperandTraits<UnaryInstruction>::op_begin
(this)[i_nocapture] = Val_nocapture; } unsigned UnaryInstruction
::getNumOperands() const { return OperandTraits<UnaryInstruction
>::operands(this); } template <int Idx_nocapture> Use
&UnaryInstruction::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
UnaryInstruction::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
97
98//===----------------------------------------------------------------------===//
99// UnaryOperator Class
100//===----------------------------------------------------------------------===//
101
102class UnaryOperator : public UnaryInstruction {
103 void AssertOK();
104
105protected:
106 UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
107 const Twine &Name, Instruction *InsertBefore);
108 UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
109 const Twine &Name, BasicBlock *InsertAtEnd);
110
111 // Note: Instruction needs to be a friend here to call cloneImpl.
112 friend class Instruction;
113
114 UnaryOperator *cloneImpl() const;
115
116public:
117
118 /// Construct a unary instruction, given the opcode and an operand.
119 /// Optionally (if InstBefore is specified) insert the instruction
120 /// into a BasicBlock right before the specified instruction. The specified
121 /// Instruction is allowed to be a dereferenced end iterator.
122 ///
123 static UnaryOperator *Create(UnaryOps Op, Value *S,
124 const Twine &Name = Twine(),
125 Instruction *InsertBefore = nullptr);
126
127 /// Construct a unary instruction, given the opcode and an operand.
128 /// Also automatically insert this instruction to the end of the
129 /// BasicBlock specified.
130 ///
131 static UnaryOperator *Create(UnaryOps Op, Value *S,
132 const Twine &Name,
133 BasicBlock *InsertAtEnd);
134
135 /// These methods just forward to Create, and are useful when you
136 /// statically know what type of instruction you're going to create. These
137 /// helpers just save some typing.
138#define HANDLE_UNARY_INST(N, OPC, CLASS) \
139 static UnaryOperator *Create##OPC(Value *V, const Twine &Name = "") {\
140 return Create(Instruction::OPC, V, Name);\
141 }
142#include "llvm/IR/Instruction.def"
143#define HANDLE_UNARY_INST(N, OPC, CLASS) \
144 static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
145 BasicBlock *BB) {\
146 return Create(Instruction::OPC, V, Name, BB);\
147 }
148#include "llvm/IR/Instruction.def"
149#define HANDLE_UNARY_INST(N, OPC, CLASS) \
150 static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
151 Instruction *I) {\
152 return Create(Instruction::OPC, V, Name, I);\
153 }
154#include "llvm/IR/Instruction.def"
155
156 static UnaryOperator *
157 CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO,
158 const Twine &Name = "",
159 Instruction *InsertBefore = nullptr) {
160 UnaryOperator *UO = Create(Opc, V, Name, InsertBefore);
161 UO->copyIRFlags(CopyO);
162 return UO;
163 }
164
165 static UnaryOperator *CreateFNegFMF(Value *Op, Instruction *FMFSource,
166 const Twine &Name = "",
167 Instruction *InsertBefore = nullptr) {
168 return CreateWithCopiedFlags(Instruction::FNeg, Op, FMFSource, Name,
169 InsertBefore);
170 }
171
172 UnaryOps getOpcode() const {
173 return static_cast<UnaryOps>(Instruction::getOpcode());
174 }
175
176 // Methods for support type inquiry through isa, cast, and dyn_cast:
177 static bool classof(const Instruction *I) {
178 return I->isUnaryOp();
179 }
180 static bool classof(const Value *V) {
181 return isa<Instruction>(V) && classof(cast<Instruction>(V));
182 }
183};
184
185//===----------------------------------------------------------------------===//
186// BinaryOperator Class
187//===----------------------------------------------------------------------===//
188
189class BinaryOperator : public Instruction {
190 void AssertOK();
191
192protected:
193 BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
194 const Twine &Name, Instruction *InsertBefore);
195 BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
196 const Twine &Name, BasicBlock *InsertAtEnd);
197
198 // Note: Instruction needs to be a friend here to call cloneImpl.
199 friend class Instruction;
200
201 BinaryOperator *cloneImpl() const;
202
203public:
204 // allocate space for exactly two operands
205 void *operator new(size_t S) { return User::operator new(S, 2); }
206 void operator delete(void *Ptr) { User::operator delete(Ptr); }
207
208 /// Transparently provide more efficient getOperand methods.
209 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
210
211 /// Construct a binary instruction, given the opcode and the two
212 /// operands. Optionally (if InstBefore is specified) insert the instruction
213 /// into a BasicBlock right before the specified instruction. The specified
214 /// Instruction is allowed to be a dereferenced end iterator.
215 ///
216 static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
217 const Twine &Name = Twine(),
218 Instruction *InsertBefore = nullptr);
219
220 /// Construct a binary instruction, given the opcode and the two
221 /// operands. Also automatically insert this instruction to the end of the
222 /// BasicBlock specified.
223 ///
224 static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
225 const Twine &Name, BasicBlock *InsertAtEnd);
226
227 /// These methods just forward to Create, and are useful when you
228 /// statically know what type of instruction you're going to create. These
229 /// helpers just save some typing.
230#define HANDLE_BINARY_INST(N, OPC, CLASS) \
231 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
232 const Twine &Name = "") {\
233 return Create(Instruction::OPC, V1, V2, Name);\
234 }
235#include "llvm/IR/Instruction.def"
236#define HANDLE_BINARY_INST(N, OPC, CLASS) \
237 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
238 const Twine &Name, BasicBlock *BB) {\
239 return Create(Instruction::OPC, V1, V2, Name, BB);\
240 }
241#include "llvm/IR/Instruction.def"
242#define HANDLE_BINARY_INST(N, OPC, CLASS) \
243 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
244 const Twine &Name, Instruction *I) {\
245 return Create(Instruction::OPC, V1, V2, Name, I);\
246 }
247#include "llvm/IR/Instruction.def"
248
249 static BinaryOperator *
250 CreateWithCopiedFlags(BinaryOps Opc, Value *V1, Value *V2, Instruction *CopyO,
251 const Twine &Name = "",
252 Instruction *InsertBefore = nullptr) {
253 BinaryOperator *BO = Create(Opc, V1, V2, Name, InsertBefore);
254 BO->copyIRFlags(CopyO);
255 return BO;
256 }
257
258 static BinaryOperator *CreateFAddFMF(Value *V1, Value *V2,
259 Instruction *FMFSource,
260 const Twine &Name = "") {
261 return CreateWithCopiedFlags(Instruction::FAdd, V1, V2, FMFSource, Name);
262 }
263 static BinaryOperator *CreateFSubFMF(Value *V1, Value *V2,
264 Instruction *FMFSource,
265 const Twine &Name = "") {
266 return CreateWithCopiedFlags(Instruction::FSub, V1, V2, FMFSource, Name);
267 }
268 static BinaryOperator *CreateFMulFMF(Value *V1, Value *V2,
269 Instruction *FMFSource,
270 const Twine &Name = "") {
271 return CreateWithCopiedFlags(Instruction::FMul, V1, V2, FMFSource, Name);
272 }
273 static BinaryOperator *CreateFDivFMF(Value *V1, Value *V2,
274 Instruction *FMFSource,
275 const Twine &Name = "") {
276 return CreateWithCopiedFlags(Instruction::FDiv, V1, V2, FMFSource, Name);
277 }
278 static BinaryOperator *CreateFRemFMF(Value *V1, Value *V2,
279 Instruction *FMFSource,
280 const Twine &Name = "") {
281 return CreateWithCopiedFlags(Instruction::FRem, V1, V2, FMFSource, Name);
282 }
283
284 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
285 const Twine &Name = "") {
286 BinaryOperator *BO = Create(Opc, V1, V2, Name);
287 BO->setHasNoSignedWrap(true);
288 return BO;
289 }
290 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
291 const Twine &Name, BasicBlock *BB) {
292 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
293 BO->setHasNoSignedWrap(true);
294 return BO;
295 }
296 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
297 const Twine &Name, Instruction *I) {
298 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
299 BO->setHasNoSignedWrap(true);
300 return BO;
301 }
302
303 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
304 const Twine &Name = "") {
305 BinaryOperator *BO = Create(Opc, V1, V2, Name);
306 BO->setHasNoUnsignedWrap(true);
307 return BO;
308 }
309 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
310 const Twine &Name, BasicBlock *BB) {
311 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
312 BO->setHasNoUnsignedWrap(true);
313 return BO;
314 }
315 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
316 const Twine &Name, Instruction *I) {
317 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
318 BO->setHasNoUnsignedWrap(true);
319 return BO;
320 }
321
322 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
323 const Twine &Name = "") {
324 BinaryOperator *BO = Create(Opc, V1, V2, Name);
325 BO->setIsExact(true);
326 return BO;
327 }
328 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
329 const Twine &Name, BasicBlock *BB) {
330 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
331 BO->setIsExact(true);
332 return BO;
333 }
334 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
335 const Twine &Name, Instruction *I) {
336 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
337 BO->setIsExact(true);
338 return BO;
339 }
340
341#define DEFINE_HELPERS(OPC, NUWNSWEXACT) \
342 static BinaryOperator *Create##NUWNSWEXACT##OPC(Value *V1, Value *V2, \
343 const Twine &Name = "") { \
344 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name); \
345 } \
346 static BinaryOperator *Create##NUWNSWEXACT##OPC( \
347 Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { \
348 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB); \
349 } \
350 static BinaryOperator *Create##NUWNSWEXACT##OPC( \
351 Value *V1, Value *V2, const Twine &Name, Instruction *I) { \
352 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I); \
353 }
354
355 DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
356 DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
357 DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
358 DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
359 DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
360 DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
361 DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
362 DEFINE_HELPERS(Shl, NUW) // CreateNUWShl
363
364 DEFINE_HELPERS(SDiv, Exact) // CreateExactSDiv
365 DEFINE_HELPERS(UDiv, Exact) // CreateExactUDiv
366 DEFINE_HELPERS(AShr, Exact) // CreateExactAShr
367 DEFINE_HELPERS(LShr, Exact) // CreateExactLShr
368
369#undef DEFINE_HELPERS
370
371 /// Helper functions to construct and inspect unary operations (NEG and NOT)
372 /// via binary operators SUB and XOR:
373 ///
374 /// Create the NEG and NOT instructions out of SUB and XOR instructions.
375 ///
376 static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
377 Instruction *InsertBefore = nullptr);
378 static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
379 BasicBlock *InsertAtEnd);
380 static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
381 Instruction *InsertBefore = nullptr);
382 static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
383 BasicBlock *InsertAtEnd);
384 static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
385 Instruction *InsertBefore = nullptr);
386 static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
387 BasicBlock *InsertAtEnd);
388 static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
389 Instruction *InsertBefore = nullptr);
390 static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
391 BasicBlock *InsertAtEnd);
392
393 BinaryOps getOpcode() const {
394 return static_cast<BinaryOps>(Instruction::getOpcode());
395 }
396
397 /// Exchange the two operands to this instruction.
398 /// This instruction is safe to use on any binary instruction and
399 /// does not modify the semantics of the instruction. If the instruction
400 /// cannot be reversed (ie, it's a Div), then return true.
401 ///
402 bool swapOperands();
403
404 // Methods for support type inquiry through isa, cast, and dyn_cast:
405 static bool classof(const Instruction *I) {
406 return I->isBinaryOp();
407 }
408 static bool classof(const Value *V) {
409 return isa<Instruction>(V) && classof(cast<Instruction>(V));
410 }
411};
412
413template <>
414struct OperandTraits<BinaryOperator> :
415 public FixedNumOperandTraits<BinaryOperator, 2> {
416};
417
418DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)BinaryOperator::op_iterator BinaryOperator::op_begin() { return
OperandTraits<BinaryOperator>::op_begin(this); } BinaryOperator
::const_op_iterator BinaryOperator::op_begin() const { return
OperandTraits<BinaryOperator>::op_begin(const_cast<
BinaryOperator*>(this)); } BinaryOperator::op_iterator BinaryOperator
::op_end() { return OperandTraits<BinaryOperator>::op_end
(this); } BinaryOperator::const_op_iterator BinaryOperator::op_end
() const { return OperandTraits<BinaryOperator>::op_end
(const_cast<BinaryOperator*>(this)); } Value *BinaryOperator
::getOperand(unsigned i_nocapture) const { (static_cast<void
> (0)); return cast_or_null<Value>( OperandTraits<
BinaryOperator>::op_begin(const_cast<BinaryOperator*>
(this))[i_nocapture].get()); } void BinaryOperator::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { (static_cast<
void> (0)); OperandTraits<BinaryOperator>::op_begin(
this)[i_nocapture] = Val_nocapture; } unsigned BinaryOperator
::getNumOperands() const { return OperandTraits<BinaryOperator
>::operands(this); } template <int Idx_nocapture> Use
&BinaryOperator::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BinaryOperator::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
419
420//===----------------------------------------------------------------------===//
421// CastInst Class
422//===----------------------------------------------------------------------===//
423
424/// This is the base class for all instructions that perform data
425/// casts. It is simply provided so that instruction category testing
426/// can be performed with code like:
427///
428/// if (isa<CastInst>(Instr)) { ... }
429/// Base class of casting instructions.
430class CastInst : public UnaryInstruction {
431protected:
432 /// Constructor with insert-before-instruction semantics for subclasses
433 CastInst(Type *Ty, unsigned iType, Value *S,
434 const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
435 : UnaryInstruction(Ty, iType, S, InsertBefore) {
436 setName(NameStr);
437 }
438 /// Constructor with insert-at-end-of-block semantics for subclasses
439 CastInst(Type *Ty, unsigned iType, Value *S,
440 const Twine &NameStr, BasicBlock *InsertAtEnd)
441 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
442 setName(NameStr);
443 }
444
445public:
446 /// Provides a way to construct any of the CastInst subclasses using an
447 /// opcode instead of the subclass's constructor. The opcode must be in the
448 /// CastOps category (Instruction::isCast(opcode) returns true). This
449 /// constructor has insert-before-instruction semantics to automatically
450 /// insert the new CastInst before InsertBefore (if it is non-null).
451 /// Construct any of the CastInst subclasses
452 static CastInst *Create(
453 Instruction::CastOps, ///< The opcode of the cast instruction
454 Value *S, ///< The value to be casted (operand 0)
455 Type *Ty, ///< The type to which cast should be made
456 const Twine &Name = "", ///< Name for the instruction
457 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
458 );
459 /// Provides a way to construct any of the CastInst subclasses using an
460 /// opcode instead of the subclass's constructor. The opcode must be in the
461 /// CastOps category. This constructor has insert-at-end-of-block semantics
462 /// to automatically insert the new CastInst at the end of InsertAtEnd (if
463 /// its non-null).
464 /// Construct any of the CastInst subclasses
465 static CastInst *Create(
466 Instruction::CastOps, ///< The opcode for the cast instruction
467 Value *S, ///< The value to be casted (operand 0)
468 Type *Ty, ///< The type to which operand is casted
469 const Twine &Name, ///< The name for the instruction
470 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
471 );
472
473 /// Create a ZExt or BitCast cast instruction
474 static CastInst *CreateZExtOrBitCast(
475 Value *S, ///< The value to be casted (operand 0)
476 Type *Ty, ///< The type to which cast should be made
477 const Twine &Name = "", ///< Name for the instruction
478 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
479 );
480
481 /// Create a ZExt or BitCast cast instruction
482 static CastInst *CreateZExtOrBitCast(
483 Value *S, ///< The value to be casted (operand 0)
484 Type *Ty, ///< The type to which operand is casted
485 const Twine &Name, ///< The name for the instruction
486 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
487 );
488
489 /// Create a SExt or BitCast cast instruction
490 static CastInst *CreateSExtOrBitCast(
491 Value *S, ///< The value to be casted (operand 0)
492 Type *Ty, ///< The type to which cast should be made
493 const Twine &Name = "", ///< Name for the instruction
494 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
495 );
496
497 /// Create a SExt or BitCast cast instruction
498 static CastInst *CreateSExtOrBitCast(
499 Value *S, ///< The value to be casted (operand 0)
500 Type *Ty, ///< The type to which operand is casted
501 const Twine &Name, ///< The name for the instruction
502 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
503 );
504
505 /// Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
506 static CastInst *CreatePointerCast(
507 Value *S, ///< The pointer value to be casted (operand 0)
508 Type *Ty, ///< The type to which operand is casted
509 const Twine &Name, ///< The name for the instruction
510 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
511 );
512
513 /// Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
514 static CastInst *CreatePointerCast(
515 Value *S, ///< The pointer value to be casted (operand 0)
516 Type *Ty, ///< The type to which cast should be made
517 const Twine &Name = "", ///< Name for the instruction
518 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
519 );
520
521 /// Create a BitCast or an AddrSpaceCast cast instruction.
522 static CastInst *CreatePointerBitCastOrAddrSpaceCast(
523 Value *S, ///< The pointer value to be casted (operand 0)
524 Type *Ty, ///< The type to which operand is casted
525 const Twine &Name, ///< The name for the instruction
526 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
527 );
528
529 /// Create a BitCast or an AddrSpaceCast cast instruction.
530 static CastInst *CreatePointerBitCastOrAddrSpaceCast(
531 Value *S, ///< The pointer value to be casted (operand 0)
532 Type *Ty, ///< The type to which cast should be made
533 const Twine &Name = "", ///< Name for the instruction
534 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
535 );
536
537 /// Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
538 ///
539 /// If the value is a pointer type and the destination an integer type,
540 /// creates a PtrToInt cast. If the value is an integer type and the
541 /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
542 /// a bitcast.
543 static CastInst *CreateBitOrPointerCast(
544 Value *S, ///< The pointer value to be casted (operand 0)
545 Type *Ty, ///< The type to which cast should be made
546 const Twine &Name = "", ///< Name for the instruction
547 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
548 );
549
550 /// Create a ZExt, BitCast, or Trunc for int -> int casts.
551 static CastInst *CreateIntegerCast(
552 Value *S, ///< The pointer value to be casted (operand 0)
553 Type *Ty, ///< The type to which cast should be made
554 bool isSigned, ///< Whether to regard S as signed or not
555 const Twine &Name = "", ///< Name for the instruction
556 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
557 );
558
559 /// Create a ZExt, BitCast, or Trunc for int -> int casts.
560 static CastInst *CreateIntegerCast(
561 Value *S, ///< The integer value to be casted (operand 0)
562 Type *Ty, ///< The integer type to which operand is casted
563 bool isSigned, ///< Whether to regard S as signed or not
564 const Twine &Name, ///< The name for the instruction
565 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
566 );
567
568 /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
569 static CastInst *CreateFPCast(
570 Value *S, ///< The floating point value to be casted
571 Type *Ty, ///< The floating point type to cast to
572 const Twine &Name = "", ///< Name for the instruction
573 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
574 );
575
576 /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
577 static CastInst *CreateFPCast(
578 Value *S, ///< The floating point value to be casted
579 Type *Ty, ///< The floating point type to cast to
580 const Twine &Name, ///< The name for the instruction
581 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
582 );
583
584 /// Create a Trunc or BitCast cast instruction
585 static CastInst *CreateTruncOrBitCast(
586 Value *S, ///< The value to be casted (operand 0)
587 Type *Ty, ///< The type to which cast should be made
588 const Twine &Name = "", ///< Name for the instruction
589 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
590 );
591
592 /// Create a Trunc or BitCast cast instruction
593 static CastInst *CreateTruncOrBitCast(
594 Value *S, ///< The value to be casted (operand 0)
595 Type *Ty, ///< The type to which operand is casted
596 const Twine &Name, ///< The name for the instruction
597 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
598 );
599
600 /// Check whether a bitcast between these types is valid
601 static bool isBitCastable(
602 Type *SrcTy, ///< The Type from which the value should be cast.
603 Type *DestTy ///< The Type to which the value should be cast.
604 );
605
606 /// Check whether a bitcast, inttoptr, or ptrtoint cast between these
607 /// types is valid and a no-op.
608 ///
609 /// This ensures that any pointer<->integer cast has enough bits in the
610 /// integer and any other cast is a bitcast.
611 static bool isBitOrNoopPointerCastable(
612 Type *SrcTy, ///< The Type from which the value should be cast.
613 Type *DestTy, ///< The Type to which the value should be cast.
614 const DataLayout &DL);
615
616 /// Returns the opcode necessary to cast Val into Ty using usual casting
617 /// rules.
618 /// Infer the opcode for cast operand and type
619 static Instruction::CastOps getCastOpcode(
620 const Value *Val, ///< The value to cast
621 bool SrcIsSigned, ///< Whether to treat the source as signed
622 Type *Ty, ///< The Type to which the value should be casted
623 bool DstIsSigned ///< Whether to treate the dest. as signed
624 );
625
626 /// There are several places where we need to know if a cast instruction
627 /// only deals with integer source and destination types. To simplify that
628 /// logic, this method is provided.
629 /// @returns true iff the cast has only integral typed operand and dest type.
630 /// Determine if this is an integer-only cast.
631 bool isIntegerCast() const;
632
633 /// A lossless cast is one that does not alter the basic value. It implies
634 /// a no-op cast but is more stringent, preventing things like int->float,
635 /// long->double, or int->ptr.
636 /// @returns true iff the cast is lossless.
637 /// Determine if this is a lossless cast.
638 bool isLosslessCast() const;
639
640 /// A no-op cast is one that can be effected without changing any bits.
641 /// It implies that the source and destination types are the same size. The
642 /// DataLayout argument is to determine the pointer size when examining casts
643 /// involving Integer and Pointer types. They are no-op casts if the integer
644 /// is the same size as the pointer. However, pointer size varies with
645 /// platform. Note that a precondition of this method is that the cast is
646 /// legal - i.e. the instruction formed with these operands would verify.
647 static bool isNoopCast(
648 Instruction::CastOps Opcode, ///< Opcode of cast
649 Type *SrcTy, ///< SrcTy of cast
650 Type *DstTy, ///< DstTy of cast
651 const DataLayout &DL ///< DataLayout to get the Int Ptr type from.
652 );
653
654 /// Determine if this cast is a no-op cast.
655 ///
656 /// \param DL is the DataLayout to determine pointer size.
657 bool isNoopCast(const DataLayout &DL) const;
658
659 /// Determine how a pair of casts can be eliminated, if they can be at all.
660 /// This is a helper function for both CastInst and ConstantExpr.
661 /// @returns 0 if the CastInst pair can't be eliminated, otherwise
662 /// returns Instruction::CastOps value for a cast that can replace
663 /// the pair, casting SrcTy to DstTy.
664 /// Determine if a cast pair is eliminable
665 static unsigned isEliminableCastPair(
666 Instruction::CastOps firstOpcode, ///< Opcode of first cast
667 Instruction::CastOps secondOpcode, ///< Opcode of second cast
668 Type *SrcTy, ///< SrcTy of 1st cast
669 Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
670 Type *DstTy, ///< DstTy of 2nd cast
671 Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
672 Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
673 Type *DstIntPtrTy ///< Integer type corresponding to Ptr DstTy, or null
674 );
675
676 /// Return the opcode of this CastInst
677 Instruction::CastOps getOpcode() const {
678 return Instruction::CastOps(Instruction::getOpcode());
679 }
680
681 /// Return the source type, as a convenience
682 Type* getSrcTy() const { return getOperand(0)->getType(); }
683 /// Return the destination type, as a convenience
684 Type* getDestTy() const { return getType(); }
685
686 /// This method can be used to determine if a cast from SrcTy to DstTy using
687 /// Opcode op is valid or not.
688 /// @returns true iff the proposed cast is valid.
689 /// Determine if a cast is valid without creating one.
690 static bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy);
691 static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
692 return castIsValid(op, S->getType(), DstTy);
693 }
694
695 /// Methods for support type inquiry through isa, cast, and dyn_cast:
696 static bool classof(const Instruction *I) {
697 return I->isCast();
698 }
699 static bool classof(const Value *V) {
700 return isa<Instruction>(V) && classof(cast<Instruction>(V));
701 }
702};
703
704//===----------------------------------------------------------------------===//
705// CmpInst Class
706//===----------------------------------------------------------------------===//
707
708/// This class is the base class for the comparison instructions.
709/// Abstract base class of comparison instructions.
710class CmpInst : public Instruction {
711public:
712 /// This enumeration lists the possible predicates for CmpInst subclasses.
713 /// Values in the range 0-31 are reserved for FCmpInst, while values in the
714 /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
715 /// predicate values are not overlapping between the classes.
716 ///
717 /// Some passes (e.g. InstCombine) depend on the bit-wise characteristics of
718 /// FCMP_* values. Changing the bit patterns requires a potential change to
719 /// those passes.
720 enum Predicate : unsigned {
721 // Opcode U L G E Intuitive operation
722 FCMP_FALSE = 0, ///< 0 0 0 0 Always false (always folded)
723 FCMP_OEQ = 1, ///< 0 0 0 1 True if ordered and equal
724 FCMP_OGT = 2, ///< 0 0 1 0 True if ordered and greater than
725 FCMP_OGE = 3, ///< 0 0 1 1 True if ordered and greater than or equal
726 FCMP_OLT = 4, ///< 0 1 0 0 True if ordered and less than
727 FCMP_OLE = 5, ///< 0 1 0 1 True if ordered and less than or equal
728 FCMP_ONE = 6, ///< 0 1 1 0 True if ordered and operands are unequal
729 FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans)
730 FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
731 FCMP_UEQ = 9, ///< 1 0 0 1 True if unordered or equal
732 FCMP_UGT = 10, ///< 1 0 1 0 True if unordered or greater than
733 FCMP_UGE = 11, ///< 1 0 1 1 True if unordered, greater than, or equal
734 FCMP_ULT = 12, ///< 1 1 0 0 True if unordered or less than
735 FCMP_ULE = 13, ///< 1 1 0 1 True if unordered, less than, or equal
736 FCMP_UNE = 14, ///< 1 1 1 0 True if unordered or not equal
737 FCMP_TRUE = 15, ///< 1 1 1 1 Always true (always folded)
738 FIRST_FCMP_PREDICATE = FCMP_FALSE,
739 LAST_FCMP_PREDICATE = FCMP_TRUE,
740 BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
741 ICMP_EQ = 32, ///< equal
742 ICMP_NE = 33, ///< not equal
743 ICMP_UGT = 34, ///< unsigned greater than
744 ICMP_UGE = 35, ///< unsigned greater or equal
745 ICMP_ULT = 36, ///< unsigned less than
746 ICMP_ULE = 37, ///< unsigned less or equal
747 ICMP_SGT = 38, ///< signed greater than
748 ICMP_SGE = 39, ///< signed greater or equal
749 ICMP_SLT = 40, ///< signed less than
750 ICMP_SLE = 41, ///< signed less or equal
751 FIRST_ICMP_PREDICATE = ICMP_EQ,
752 LAST_ICMP_PREDICATE = ICMP_SLE,
753 BAD_ICMP_PREDICATE = ICMP_SLE + 1
754 };
755 using PredicateField =
756 Bitfield::Element<Predicate, 0, 6, LAST_ICMP_PREDICATE>;
757
758protected:
759 CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
760 Value *LHS, Value *RHS, const Twine &Name = "",
761 Instruction *InsertBefore = nullptr,
762 Instruction *FlagsSource = nullptr);
763
764 CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
765 Value *LHS, Value *RHS, const Twine &Name,
766 BasicBlock *InsertAtEnd);
767
768public:
769 // allocate space for exactly two operands
770 void *operator new(size_t S) { return User::operator new(S, 2); }
771 void operator delete(void *Ptr) { User::operator delete(Ptr); }
772
773 /// Construct a compare instruction, given the opcode, the predicate and
774 /// the two operands. Optionally (if InstBefore is specified) insert the
775 /// instruction into a BasicBlock right before the specified instruction.
776 /// The specified Instruction is allowed to be a dereferenced end iterator.
777 /// Create a CmpInst
778 static CmpInst *Create(OtherOps Op,
779 Predicate predicate, Value *S1,
780 Value *S2, const Twine &Name = "",
781 Instruction *InsertBefore = nullptr);
782
783 /// Construct a compare instruction, given the opcode, the predicate and the
784 /// two operands. Also automatically insert this instruction to the end of
785 /// the BasicBlock specified.
786 /// Create a CmpInst
787 static CmpInst *Create(OtherOps Op, Predicate predicate, Value *S1,
788 Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
789
790 /// Get the opcode casted to the right type
791 OtherOps getOpcode() const {
792 return static_cast<OtherOps>(Instruction::getOpcode());
793 }
794
795 /// Return the predicate for this instruction.
796 Predicate getPredicate() const { return getSubclassData<PredicateField>(); }
797
798 /// Set the predicate for this instruction to the specified value.
799 void setPredicate(Predicate P) { setSubclassData<PredicateField>(P); }
800
801 static bool isFPPredicate(Predicate P) {
802 static_assert(FIRST_FCMP_PREDICATE == 0,
803 "FIRST_FCMP_PREDICATE is required to be 0");
804 return P <= LAST_FCMP_PREDICATE;
805 }
806
807 static bool isIntPredicate(Predicate P) {
808 return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
809 }
810
811 static StringRef getPredicateName(Predicate P);
812
813 bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
814 bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
815
816 /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
817 /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
818 /// @returns the inverse predicate for the instruction's current predicate.
819 /// Return the inverse of the instruction's predicate.
820 Predicate getInversePredicate() const {
821 return getInversePredicate(getPredicate());
822 }
823
824 /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
825 /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
826 /// @returns the inverse predicate for predicate provided in \p pred.
827 /// Return the inverse of a given predicate
828 static Predicate getInversePredicate(Predicate pred);
829
830 /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
831 /// OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
832 /// @returns the predicate that would be the result of exchanging the two
833 /// operands of the CmpInst instruction without changing the result
834 /// produced.
835 /// Return the predicate as if the operands were swapped
836 Predicate getSwappedPredicate() const {
837 return getSwappedPredicate(getPredicate());
838 }
839
840 /// This is a static version that you can use without an instruction
841 /// available.
842 /// Return the predicate as if the operands were swapped.
843 static Predicate getSwappedPredicate(Predicate pred);
844
845 /// This is a static version that you can use without an instruction
846 /// available.
847 /// @returns true if the comparison predicate is strict, false otherwise.
848 static bool isStrictPredicate(Predicate predicate);
849
850 /// @returns true if the comparison predicate is strict, false otherwise.
851 /// Determine if this instruction is using an strict comparison predicate.
852 bool isStrictPredicate() const { return isStrictPredicate(getPredicate()); }
853
854 /// This is a static version that you can use without an instruction
855 /// available.
856 /// @returns true if the comparison predicate is non-strict, false otherwise.
857 static bool isNonStrictPredicate(Predicate predicate);
858
859 /// @returns true if the comparison predicate is non-strict, false otherwise.
860 /// Determine if this instruction is using an non-strict comparison predicate.
861 bool isNonStrictPredicate() const {
862 return isNonStrictPredicate(getPredicate());
863 }
864
865 /// For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
866 /// Returns the strict version of non-strict comparisons.
867 Predicate getStrictPredicate() const {
868 return getStrictPredicate(getPredicate());
869 }
870
871 /// This is a static version that you can use without an instruction
872 /// available.
873 /// @returns the strict version of comparison provided in \p pred.
874 /// If \p pred is not a strict comparison predicate, returns \p pred.
875 /// Returns the strict version of non-strict comparisons.
876 static Predicate getStrictPredicate(Predicate pred);
877
878 /// For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
879 /// Returns the non-strict version of strict comparisons.
880 Predicate getNonStrictPredicate() const {
881 return getNonStrictPredicate(getPredicate());
882 }
883
884 /// This is a static version that you can use without an instruction
885 /// available.
886 /// @returns the non-strict version of comparison provided in \p pred.
887 /// If \p pred is not a strict comparison predicate, returns \p pred.
888 /// Returns the non-strict version of strict comparisons.
889 static Predicate getNonStrictPredicate(Predicate pred);
890
891 /// This is a static version that you can use without an instruction
892 /// available.
893 /// Return the flipped strictness of predicate
894 static Predicate getFlippedStrictnessPredicate(Predicate pred);
895
896 /// For predicate of kind "is X or equal to 0" returns the predicate "is X".
897 /// For predicate of kind "is X" returns the predicate "is X or equal to 0".
898 /// does not support other kind of predicates.
899 /// @returns the predicate that does not contains is equal to zero if
900 /// it had and vice versa.
901 /// Return the flipped strictness of predicate
902 Predicate getFlippedStrictnessPredicate() const {
903 return getFlippedStrictnessPredicate(getPredicate());
904 }
905
906 /// Provide more efficient getOperand methods.
907 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
908
909 /// This is just a convenience that dispatches to the subclasses.
910 /// Swap the operands and adjust predicate accordingly to retain
911 /// the same comparison.
912 void swapOperands();
913
914 /// This is just a convenience that dispatches to the subclasses.
915 /// Determine if this CmpInst is commutative.
916 bool isCommutative() const;
917
918 /// Determine if this is an equals/not equals predicate.
919 /// This is a static version that you can use without an instruction
920 /// available.
921 static bool isEquality(Predicate pred);
922
923 /// Determine if this is an equals/not equals predicate.
924 bool isEquality() const { return isEquality(getPredicate()); }
925
926 /// Return true if the predicate is relational (not EQ or NE).
927 static bool isRelational(Predicate P) { return !isEquality(P); }
928
929 /// Return true if the predicate is relational (not EQ or NE).
930 bool isRelational() const { return !isEquality(); }
931
932 /// @returns true if the comparison is signed, false otherwise.
933 /// Determine if this instruction is using a signed comparison.
934 bool isSigned() const {
935 return isSigned(getPredicate());
936 }
937
938 /// @returns true if the comparison is unsigned, false otherwise.
939 /// Determine if this instruction is using an unsigned comparison.
940 bool isUnsigned() const {
941 return isUnsigned(getPredicate());
942 }
943
944 /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
945 /// @returns the signed version of the unsigned predicate pred.
946 /// return the signed version of a predicate
947 static Predicate getSignedPredicate(Predicate pred);
948
949 /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
950 /// @returns the signed version of the predicate for this instruction (which
951 /// has to be an unsigned predicate).
952 /// return the signed version of a predicate
953 Predicate getSignedPredicate() {
954 return getSignedPredicate(getPredicate());
955 }
956
957 /// For example, SLT->ULT, SLE->ULE, SGT->UGT, SGE->UGE, ULT->Failed assert
958 /// @returns the unsigned version of the signed predicate pred.
959 static Predicate getUnsignedPredicate(Predicate pred);
960
961 /// For example, SLT->ULT, SLE->ULE, SGT->UGT, SGE->UGE, ULT->Failed assert
962 /// @returns the unsigned version of the predicate for this instruction (which
963 /// has to be an signed predicate).
964 /// return the unsigned version of a predicate
965 Predicate getUnsignedPredicate() {
966 return getUnsignedPredicate(getPredicate());
967 }
968
969 /// For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->Failed assert
970 /// @returns the unsigned version of the signed predicate pred or
971 /// the signed version of the signed predicate pred.
972 static Predicate getFlippedSignednessPredicate(Predicate pred);
973
974 /// For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->Failed assert
975 /// @returns the unsigned version of the signed predicate pred or
976 /// the signed version of the signed predicate pred.
977 Predicate getFlippedSignednessPredicate() {
978 return getFlippedSignednessPredicate(getPredicate());
979 }
980
981 /// This is just a convenience.
982 /// Determine if this is true when both operands are the same.
983 bool isTrueWhenEqual() const {
984 return isTrueWhenEqual(getPredicate());
985 }
986
987 /// This is just a convenience.
988 /// Determine if this is false when both operands are the same.
989 bool isFalseWhenEqual() const {
990 return isFalseWhenEqual(getPredicate());
991 }
992
993 /// @returns true if the predicate is unsigned, false otherwise.
994 /// Determine if the predicate is an unsigned operation.
995 static bool isUnsigned(Predicate predicate);
996
997 /// @returns true if the predicate is signed, false otherwise.
998 /// Determine if the predicate is an signed operation.
999 static bool isSigned(Predicate predicate);
1000
1001 /// Determine if the predicate is an ordered operation.
1002 static bool isOrdered(Predicate predicate);
1003
1004 /// Determine if the predicate is an unordered operation.
1005 static bool isUnordered(Predicate predicate);
1006
1007 /// Determine if the predicate is true when comparing a value with itself.
1008 static bool isTrueWhenEqual(Predicate predicate);
1009
1010 /// Determine if the predicate is false when comparing a value with itself.
1011 static bool isFalseWhenEqual(Predicate predicate);
1012
1013 /// Determine if Pred1 implies Pred2 is true when two compares have matching
1014 /// operands.
1015 static bool isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2);
1016
1017 /// Determine if Pred1 implies Pred2 is false when two compares have matching
1018 /// operands.
1019 static bool isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2);
1020
1021 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1022 static bool classof(const Instruction *I) {
1023 return I->getOpcode() == Instruction::ICmp ||
1024 I->getOpcode() == Instruction::FCmp;
1025 }
1026 static bool classof(const Value *V) {
1027 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1028 }
1029
1030 /// Create a result type for fcmp/icmp
1031 static Type* makeCmpResultType(Type* opnd_type) {
1032 if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
1033 return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
1034 vt->getElementCount());
1035 }
1036 return Type::getInt1Ty(opnd_type->getContext());
1037 }
1038
1039private:
1040 // Shadow Value::setValueSubclassData with a private forwarding method so that
1041 // subclasses cannot accidentally use it.
1042 void setValueSubclassData(unsigned short D) {
1043 Value::setValueSubclassData(D);
1044 }
1045};
1046
1047// FIXME: these are redundant if CmpInst < BinaryOperator
1048template <>
1049struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
1050};
1051
1052DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)CmpInst::op_iterator CmpInst::op_begin() { return OperandTraits
<CmpInst>::op_begin(this); } CmpInst::const_op_iterator
CmpInst::op_begin() const { return OperandTraits<CmpInst>
::op_begin(const_cast<CmpInst*>(this)); } CmpInst::op_iterator
CmpInst::op_end() { return OperandTraits<CmpInst>::op_end
(this); } CmpInst::const_op_iterator CmpInst::op_end() const {
return OperandTraits<CmpInst>::op_end(const_cast<CmpInst
*>(this)); } Value *CmpInst::getOperand(unsigned i_nocapture
) const { (static_cast<void> (0)); return cast_or_null<
Value>( OperandTraits<CmpInst>::op_begin(const_cast<
CmpInst*>(this))[i_nocapture].get()); } void CmpInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { (static_cast<
void> (0)); OperandTraits<CmpInst>::op_begin(this)[i_nocapture
] = Val_nocapture; } unsigned CmpInst::getNumOperands() const
{ return OperandTraits<CmpInst>::operands(this); } template
<int Idx_nocapture> Use &CmpInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &CmpInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
1053
1054/// A lightweight accessor for an operand bundle meant to be passed
1055/// around by value.
1056struct OperandBundleUse {
1057 ArrayRef<Use> Inputs;
1058
1059 OperandBundleUse() = default;
1060 explicit OperandBundleUse(StringMapEntry<uint32_t> *Tag, ArrayRef<Use> Inputs)
1061 : Inputs(Inputs), Tag(Tag) {}
1062
1063 /// Return true if the operand at index \p Idx in this operand bundle
1064 /// has the attribute A.
1065 bool operandHasAttr(unsigned Idx, Attribute::AttrKind A) const {
1066 if (isDeoptOperandBundle())
1067 if (A == Attribute::ReadOnly || A == Attribute::NoCapture)
1068 return Inputs[Idx]->getType()->isPointerTy();
1069
1070 // Conservative answer: no operands have any attributes.
1071 return false;
1072 }
1073
1074 /// Return the tag of this operand bundle as a string.
1075 StringRef getTagName() const {
1076 return Tag->getKey();
1077 }
1078
1079 /// Return the tag of this operand bundle as an integer.
1080 ///
1081 /// Operand bundle tags are interned by LLVMContextImpl::getOrInsertBundleTag,
1082 /// and this function returns the unique integer getOrInsertBundleTag
1083 /// associated the tag of this operand bundle to.
1084 uint32_t getTagID() const {
1085 return Tag->getValue();
1086 }
1087
1088 /// Return true if this is a "deopt" operand bundle.
1089 bool isDeoptOperandBundle() const {
1090 return getTagID() == LLVMContext::OB_deopt;
1091 }
1092
1093 /// Return true if this is a "funclet" operand bundle.
1094 bool isFuncletOperandBundle() const {
1095 return getTagID() == LLVMContext::OB_funclet;
1096 }
1097
1098 /// Return true if this is a "cfguardtarget" operand bundle.
1099 bool isCFGuardTargetOperandBundle() const {
1100 return getTagID() == LLVMContext::OB_cfguardtarget;
1101 }
1102
1103private:
1104 /// Pointer to an entry in LLVMContextImpl::getOrInsertBundleTag.
1105 StringMapEntry<uint32_t> *Tag;
1106};
1107
1108/// A container for an operand bundle being viewed as a set of values
1109/// rather than a set of uses.
1110///
1111/// Unlike OperandBundleUse, OperandBundleDefT owns the memory it carries, and
1112/// so it is possible to create and pass around "self-contained" instances of
1113/// OperandBundleDef and ConstOperandBundleDef.
1114template <typename InputTy> class OperandBundleDefT {
1115 std::string Tag;
1116 std::vector<InputTy> Inputs;
1117
1118public:
1119 explicit OperandBundleDefT(std::string Tag, std::vector<InputTy> Inputs)
1120 : Tag(std::move(Tag)), Inputs(std::move(Inputs)) {}
1121 explicit OperandBundleDefT(std::string Tag, ArrayRef<InputTy> Inputs)
1122 : Tag(std::move(Tag)), Inputs(Inputs) {}
1123
1124 explicit OperandBundleDefT(const OperandBundleUse &OBU) {
1125 Tag = std::string(OBU.getTagName());
1126 llvm::append_range(Inputs, OBU.Inputs);
1127 }
1128
1129 ArrayRef<InputTy> inputs() const { return Inputs; }
1130
1131 using input_iterator = typename std::vector<InputTy>::const_iterator;
1132
1133 size_t input_size() const { return Inputs.size(); }
1134 input_iterator input_begin() const { return Inputs.begin(); }
1135 input_iterator input_end() const { return Inputs.end(); }
1136
1137 StringRef getTag() const { return Tag; }
1138};
1139
1140using OperandBundleDef = OperandBundleDefT<Value *>;
1141using ConstOperandBundleDef = OperandBundleDefT<const Value *>;
1142
1143//===----------------------------------------------------------------------===//
1144// CallBase Class
1145//===----------------------------------------------------------------------===//
1146
1147/// Base class for all callable instructions (InvokeInst and CallInst)
1148/// Holds everything related to calling a function.
1149///
1150/// All call-like instructions are required to use a common operand layout:
1151/// - Zero or more arguments to the call,
1152/// - Zero or more operand bundles with zero or more operand inputs each
1153/// bundle,
1154/// - Zero or more subclass controlled operands
1155/// - The called function.
1156///
1157/// This allows this base class to easily access the called function and the
1158/// start of the arguments without knowing how many other operands a particular
1159/// subclass requires. Note that accessing the end of the argument list isn't
1160/// as cheap as most other operations on the base class.
1161class CallBase : public Instruction {
1162protected:
1163 // The first two bits are reserved by CallInst for fast retrieval,
1164 using CallInstReservedField = Bitfield::Element<unsigned, 0, 2>;
1165 using CallingConvField =
1166 Bitfield::Element<CallingConv::ID, CallInstReservedField::NextBit, 10,
1167 CallingConv::MaxID>;
1168 static_assert(
1169 Bitfield::areContiguous<CallInstReservedField, CallingConvField>(),
1170 "Bitfields must be contiguous");
1171
1172 /// The last operand is the called operand.
1173 static constexpr int CalledOperandOpEndIdx = -1;
1174
1175 AttributeList Attrs; ///< parameter attributes for callable
1176 FunctionType *FTy;
1177
1178 template <class... ArgsTy>
1179 CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
1180 : Instruction(std::forward<ArgsTy>(Args)...), Attrs(A), FTy(FT) {}
1181
1182 using Instruction::Instruction;
1183
1184 bool hasDescriptor() const { return Value::HasDescriptor; }
1185
1186 unsigned getNumSubclassExtraOperands() const {
1187 switch (getOpcode()) {
1188 case Instruction::Call:
1189 return 0;
1190 case Instruction::Invoke:
1191 return 2;
1192 case Instruction::CallBr:
1193 return getNumSubclassExtraOperandsDynamic();
1194 }
1195 llvm_unreachable("Invalid opcode!")__builtin_unreachable();
1196 }
1197
1198 /// Get the number of extra operands for instructions that don't have a fixed
1199 /// number of extra operands.
1200 unsigned getNumSubclassExtraOperandsDynamic() const;
1201
1202public:
1203 using Instruction::getContext;
1204
1205 /// Create a clone of \p CB with a different set of operand bundles and
1206 /// insert it before \p InsertPt.
1207 ///
1208 /// The returned call instruction is identical \p CB in every way except that
1209 /// the operand bundles for the new instruction are set to the operand bundles
1210 /// in \p Bundles.
1211 static CallBase *Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
1212 Instruction *InsertPt = nullptr);
1213
1214 /// Create a clone of \p CB with the operand bundle with the tag matching
1215 /// \p Bundle's tag replaced with Bundle, and insert it before \p InsertPt.
1216 ///
1217 /// The returned call instruction is identical \p CI in every way except that
1218 /// the specified operand bundle has been replaced.
1219 static CallBase *Create(CallBase *CB,
1220 OperandBundleDef Bundle,
1221 Instruction *InsertPt = nullptr);
1222
1223 /// Create a clone of \p CB with operand bundle \p OB added.
1224 static CallBase *addOperandBundle(CallBase *CB, uint32_t ID,
1225 OperandBundleDef OB,
1226 Instruction *InsertPt = nullptr);
1227
1228 /// Create a clone of \p CB with operand bundle \p ID removed.
1229 static CallBase *removeOperandBundle(CallBase *CB, uint32_t ID,
1230 Instruction *InsertPt = nullptr);
1231
1232 static bool classof(const Instruction *I) {
1233 return I->getOpcode() == Instruction::Call ||
1234 I->getOpcode() == Instruction::Invoke ||
1235 I->getOpcode() == Instruction::CallBr;
1236 }
1237 static bool classof(const Value *V) {
1238 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1239 }
1240
1241 FunctionType *getFunctionType() const { return FTy; }
1242
1243 void mutateFunctionType(FunctionType *FTy) {
1244 Value::mutateType(FTy->getReturnType());
1245 this->FTy = FTy;
1246 }
1247
1248 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1249
1250 /// data_operands_begin/data_operands_end - Return iterators iterating over
1251 /// the call / invoke argument list and bundle operands. For invokes, this is
1252 /// the set of instruction operands except the invoke target and the two
1253 /// successor blocks; and for calls this is the set of instruction operands
1254 /// except the call target.
1255 User::op_iterator data_operands_begin() { return op_begin(); }
1256 User::const_op_iterator data_operands_begin() const {
1257 return const_cast<CallBase *>(this)->data_operands_begin();
1258 }
1259 User::op_iterator data_operands_end() {
1260 // Walk from the end of the operands over the called operand and any
1261 // subclass operands.
1262 return op_end() - getNumSubclassExtraOperands() - 1;
1263 }
1264 User::const_op_iterator data_operands_end() const {
1265 return const_cast<CallBase *>(this)->data_operands_end();
1266 }
1267 iterator_range<User::op_iterator> data_ops() {
1268 return make_range(data_operands_begin(), data_operands_end());
1269 }
1270 iterator_range<User::const_op_iterator> data_ops() const {
1271 return make_range(data_operands_begin(), data_operands_end());
1272 }
1273 bool data_operands_empty() const {
1274 return data_operands_end() == data_operands_begin();
1275 }
1276 unsigned data_operands_size() const {
1277 return std::distance(data_operands_begin(), data_operands_end());
1278 }
1279
1280 bool isDataOperand(const Use *U) const {
1281 assert(this == U->getUser() &&(static_cast<void> (0))
1282 "Only valid to query with a use of this instruction!")(static_cast<void> (0));
1283 return data_operands_begin() <= U && U < data_operands_end();
1284 }
1285 bool isDataOperand(Value::const_user_iterator UI) const {
1286 return isDataOperand(&UI.getUse());
1287 }
1288
1289 /// Given a value use iterator, return the data operand corresponding to it.
1290 /// Iterator must actually correspond to a data operand.
1291 unsigned getDataOperandNo(Value::const_user_iterator UI) const {
1292 return getDataOperandNo(&UI.getUse());
1293 }
1294
1295 /// Given a use for a data operand, get the data operand number that
1296 /// corresponds to it.
1297 unsigned getDataOperandNo(const Use *U) const {
1298 assert(isDataOperand(U) && "Data operand # out of range!")(static_cast<void> (0));
1299 return U - data_operands_begin();
1300 }
1301
1302 /// Return the iterator pointing to the beginning of the argument list.
1303 User::op_iterator arg_begin() { return op_begin(); }
1304 User::const_op_iterator arg_begin() const {
1305 return const_cast<CallBase *>(this)->arg_begin();
1306 }
1307
1308 /// Return the iterator pointing to the end of the argument list.
1309 User::op_iterator arg_end() {
1310 // From the end of the data operands, walk backwards past the bundle
1311 // operands.
1312 return data_operands_end() - getNumTotalBundleOperands();
1313 }
1314 User::const_op_iterator arg_end() const {
1315 return const_cast<CallBase *>(this)->arg_end();
1316 }
1317
1318 /// Iteration adapter for range-for loops.
1319 iterator_range<User::op_iterator> args() {
1320 return make_range(arg_begin(), arg_end());
1321 }
1322 iterator_range<User::const_op_iterator> args() const {
1323 return make_range(arg_begin(), arg_end());
1324 }
1325 bool arg_empty() const { return arg_end() == arg_begin(); }
1326 unsigned arg_size() const { return arg_end() - arg_begin(); }
1327
1328 // Legacy API names that duplicate the above and will be removed once users
1329 // are migrated.
1330 iterator_range<User::op_iterator> arg_operands() {
1331 return make_range(arg_begin(), arg_end());
1332 }
1333 iterator_range<User::const_op_iterator> arg_operands() const {
1334 return make_range(arg_begin(), arg_end());
1335 }
1336 unsigned getNumArgOperands() const { return arg_size(); }
1337
1338 Value *getArgOperand(unsigned i) const {
1339 assert(i < getNumArgOperands() && "Out of bounds!")(static_cast<void> (0));
1340 return getOperand(i);
1341 }
1342
1343 void setArgOperand(unsigned i, Value *v) {
1344 assert(i < getNumArgOperands() && "Out of bounds!")(static_cast<void> (0));
1345 setOperand(i, v);
1346 }
1347
1348 /// Wrappers for getting the \c Use of a call argument.
1349 const Use &getArgOperandUse(unsigned i) const {
1350 assert(i < getNumArgOperands() && "Out of bounds!")(static_cast<void> (0));
1351 return User::getOperandUse(i);
1352 }
1353 Use &getArgOperandUse(unsigned i) {
1354 assert(i < getNumArgOperands() && "Out of bounds!")(static_cast<void> (0));
1355 return User::getOperandUse(i);
1356 }
1357
1358 bool isArgOperand(const Use *U) const {
1359 assert(this == U->getUser() &&(static_cast<void> (0))
1360 "Only valid to query with a use of this instruction!")(static_cast<void> (0));
1361 return arg_begin() <= U && U < arg_end();
1362 }
1363 bool isArgOperand(Value::const_user_iterator UI) const {
1364 return isArgOperand(&UI.getUse());
1365 }
1366
1367 /// Given a use for a arg operand, get the arg operand number that
1368 /// corresponds to it.
1369 unsigned getArgOperandNo(const Use *U) const {
1370 assert(isArgOperand(U) && "Arg operand # out of range!")(static_cast<void> (0));
1371 return U - arg_begin();
1372 }
1373
1374 /// Given a value use iterator, return the arg operand number corresponding to
1375 /// it. Iterator must actually correspond to a data operand.
1376 unsigned getArgOperandNo(Value::const_user_iterator UI) const {
1377 return getArgOperandNo(&UI.getUse());
1378 }
1379
1380 /// Returns true if this CallSite passes the given Value* as an argument to
1381 /// the called function.
1382 bool hasArgument(const Value *V) const {
1383 return llvm::is_contained(args(), V);
1384 }
1385
1386 Value *getCalledOperand() const { return Op<CalledOperandOpEndIdx>(); }
1387
1388 const Use &getCalledOperandUse() const { return Op<CalledOperandOpEndIdx>(); }
1389 Use &getCalledOperandUse() { return Op<CalledOperandOpEndIdx>(); }
1390
1391 /// Returns the function called, or null if this is an
1392 /// indirect function invocation.
1393 Function *getCalledFunction() const {
1394 return dyn_cast_or_null<Function>(getCalledOperand());
1395 }
1396
1397 /// Return true if the callsite is an indirect call.
1398 bool isIndirectCall() const;
1399
1400 /// Determine whether the passed iterator points to the callee operand's Use.
1401 bool isCallee(Value::const_user_iterator UI) const {
1402 return isCallee(&UI.getUse());
1403 }
1404
1405 /// Determine whether this Use is the callee operand's Use.
1406 bool isCallee(const Use *U) const { return &getCalledOperandUse() == U; }
1407
1408 /// Helper to get the caller (the parent function).
1409 Function *getCaller();
1410 const Function *getCaller() const {
1411 return const_cast<CallBase *>(this)->getCaller();
1412 }
1413
1414 /// Tests if this call site must be tail call optimized. Only a CallInst can
1415 /// be tail call optimized.
1416 bool isMustTailCall() const;
1417
1418 /// Tests if this call site is marked as a tail call.
1419 bool isTailCall() const;
1420
1421 /// Returns the intrinsic ID of the intrinsic called or
1422 /// Intrinsic::not_intrinsic if the called function is not an intrinsic, or if
1423 /// this is an indirect call.
1424 Intrinsic::ID getIntrinsicID() const;
1425
1426 void setCalledOperand(Value *V) { Op<CalledOperandOpEndIdx>() = V; }
1427
1428 /// Sets the function called, including updating the function type.
1429 void setCalledFunction(Function *Fn) {
1430 setCalledFunction(Fn->getFunctionType(), Fn);
1431 }
1432
1433 /// Sets the function called, including updating the function type.
1434 void setCalledFunction(FunctionCallee Fn) {
1435 setCalledFunction(Fn.getFunctionType(), Fn.getCallee());
1436 }
1437
1438 /// Sets the function called, including updating to the specified function
1439 /// type.
1440 void setCalledFunction(FunctionType *FTy, Value *Fn) {
1441 this->FTy = FTy;
1442 assert(cast<PointerType>(Fn->getType())->isOpaqueOrPointeeTypeMatches(FTy))(static_cast<void> (0));
1443 // This function doesn't mutate the return type, only the function
1444 // type. Seems broken, but I'm just gonna stick an assert in for now.
1445 assert(getType() == FTy->getReturnType())(static_cast<void> (0));
1446 setCalledOperand(Fn);
1447 }
1448
1449 CallingConv::ID getCallingConv() const {
1450 return getSubclassData<CallingConvField>();
1451 }
1452
1453 void setCallingConv(CallingConv::ID CC) {
1454 setSubclassData<CallingConvField>(CC);
1455 }
1456
1457 /// Check if this call is an inline asm statement.
1458 bool isInlineAsm() const { return isa<InlineAsm>(getCalledOperand()); }
1459
1460 /// \name Attribute API
1461 ///
1462 /// These methods access and modify attributes on this call (including
1463 /// looking through to the attributes on the called function when necessary).
1464 ///@{
1465
1466 /// Return the parameter attributes for this call.
1467 ///
1468 AttributeList getAttributes() const { return Attrs; }
1469
1470 /// Set the parameter attributes for this call.
1471 ///
1472 void setAttributes(AttributeList A) { Attrs = A; }
1473
1474 /// Determine whether this call has the given attribute. If it does not
1475 /// then determine if the called function has the attribute, but only if
1476 /// the attribute is allowed for the call.
1477 bool hasFnAttr(Attribute::AttrKind Kind) const {
1478 assert(Kind != Attribute::NoBuiltin &&(static_cast<void> (0))
1479 "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin")(static_cast<void> (0));
1480 return hasFnAttrImpl(Kind);
1481 }
1482
1483 /// Determine whether this call has the given attribute. If it does not
1484 /// then determine if the called function has the attribute, but only if
1485 /// the attribute is allowed for the call.
1486 bool hasFnAttr(StringRef Kind) const { return hasFnAttrImpl(Kind); }
1487
1488 // TODO: remove non-AtIndex versions of these methods.
1489 /// adds the attribute to the list of attributes.
1490 void addAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
1491 Attrs = Attrs.addAttributeAtIndex(getContext(), i, Kind);
1492 }
1493
1494 /// adds the attribute to the list of attributes.
1495 void addAttributeAtIndex(unsigned i, Attribute Attr) {
1496 Attrs = Attrs.addAttributeAtIndex(getContext(), i, Attr);
1497 }
1498
1499 /// Adds the attribute to the function.
1500 void addFnAttr(Attribute::AttrKind Kind) {
1501 Attrs = Attrs.addFnAttribute(getContext(), Kind);
1502 }
1503
1504 /// Adds the attribute to the function.
1505 void addFnAttr(Attribute Attr) {
1506 Attrs = Attrs.addFnAttribute(getContext(), Attr);
1507 }
1508
1509 /// Adds the attribute to the return value.
1510 void addRetAttr(Attribute::AttrKind Kind) {
1511 Attrs = Attrs.addRetAttribute(getContext(), Kind);
1512 }
1513
1514 /// Adds the attribute to the return value.
1515 void addRetAttr(Attribute Attr) {
1516 Attrs = Attrs.addRetAttribute(getContext(), Attr);
1517 }
1518
1519 /// Adds the attribute to the indicated argument
1520 void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
1521 assert(ArgNo < getNumArgOperands() && "Out of bounds")(static_cast<void> (0));
1522 Attrs = Attrs.addParamAttribute(getContext(), ArgNo, Kind);
1523 }
1524
1525 /// Adds the attribute to the indicated argument
1526 void addParamAttr(unsigned ArgNo, Attribute Attr) {
1527 assert(ArgNo < getNumArgOperands() && "Out of bounds")(static_cast<void> (0));
1528 Attrs = Attrs.addParamAttribute(getContext(), ArgNo, Attr);
1529 }
1530
1531 /// removes the attribute from the list of attributes.
1532 void removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
1533 Attrs = Attrs.removeAttributeAtIndex(getContext(), i, Kind);
1534 }
1535
1536 /// removes the attribute from the list of attributes.
1537 void removeAttributeAtIndex(unsigned i, StringRef Kind) {
1538 Attrs = Attrs.removeAttributeAtIndex(getContext(), i, Kind);
1539 }
1540
1541 /// Removes the attributes from the function
1542 void removeFnAttrs(const AttrBuilder &AttrsToRemove) {
1543 Attrs = Attrs.removeFnAttributes(getContext(), AttrsToRemove);
1544 }
1545
1546 /// Removes the attribute from the function
1547 void removeFnAttr(Attribute::AttrKind Kind) {
1548 Attrs = Attrs.removeFnAttribute(getContext(), Kind);
1549 }
1550
1551 /// Removes the attribute from the return value
1552 void removeRetAttr(Attribute::AttrKind Kind) {
1553 Attrs = Attrs.removeRetAttribute(getContext(), Kind);
1554 }
1555
1556 /// Removes the attributes from the return value
1557 void removeRetAttrs(const AttrBuilder &AttrsToRemove) {
1558 Attrs = Attrs.removeRetAttributes(getContext(), AttrsToRemove);
1559 }
1560
1561 /// Removes the attribute from the given argument
1562 void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
1563 assert(ArgNo < getNumArgOperands() && "Out of bounds")(static_cast<void> (0));
1564 Attrs = Attrs.removeParamAttribute(getContext(), ArgNo, Kind);
1565 }
1566
1567 /// Removes the attribute from the given argument
1568 void removeParamAttr(unsigned ArgNo, StringRef Kind) {
1569 assert(ArgNo < getNumArgOperands() && "Out of bounds")(static_cast<void> (0));
1570 Attrs = Attrs.removeParamAttribute(getContext(), ArgNo, Kind);
1571 }
1572
1573 /// Removes the attributes from the given argument
1574 void removeParamAttrs(unsigned ArgNo, const AttrBuilder &AttrsToRemove) {
1575 Attrs = Attrs.removeParamAttributes(getContext(), ArgNo, AttrsToRemove);
1576 }
1577
1578 /// adds the dereferenceable attribute to the list of attributes.
1579 void addDereferenceableParamAttr(unsigned i, uint64_t Bytes) {
1580 Attrs = Attrs.addDereferenceableParamAttr(getContext(), i, Bytes);
1581 }
1582
1583 /// adds the dereferenceable attribute to the list of attributes.
1584 void addDereferenceableRetAttr(uint64_t Bytes) {
1585 Attrs = Attrs.addDereferenceableRetAttr(getContext(), Bytes);
1586 }
1587
1588 /// Determine whether the return value has the given attribute.
1589 bool hasRetAttr(Attribute::AttrKind Kind) const {
1590 return hasRetAttrImpl(Kind);
1591 }
1592 /// Determine whether the return value has the given attribute.
1593 bool hasRetAttr(StringRef Kind) const { return hasRetAttrImpl(Kind); }
1594
1595 /// Determine whether the argument or parameter has the given attribute.
1596 bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const;
1597
1598 /// Get the attribute of a given kind at a position.
1599 Attribute getAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) const {
1600 return getAttributes().getAttributeAtIndex(i, Kind);
1601 }
1602
1603 /// Get the attribute of a given kind at a position.
1604 Attribute getAttributeAtIndex(unsigned i, StringRef Kind) const {
1605 return getAttributes().getAttributeAtIndex(i, Kind);
1606 }
1607
1608 /// Get the attribute of a given kind for the function.
1609 Attribute getFnAttr(StringRef Kind) const {
1610 return getAttributes().getFnAttr(Kind);
1611 }
1612
1613 /// Get the attribute of a given kind for the function.
1614 Attribute getFnAttr(Attribute::AttrKind Kind) const {
1615 return getAttributes().getFnAttr(Kind);
1616 }
1617
1618 /// Get the attribute of a given kind from a given arg
1619 Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
1620 assert(ArgNo < getNumArgOperands() && "Out of bounds")(static_cast<void> (0));
1621 return getAttributes().getParamAttr(ArgNo, Kind);
1622 }
1623
1624 /// Get the attribute of a given kind from a given arg
1625 Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const {
1626 assert(ArgNo < getNumArgOperands() && "Out of bounds")(static_cast<void> (0));
1627 return getAttributes().getParamAttr(ArgNo, Kind);
1628 }
1629
1630 /// Return true if the data operand at index \p i has the attribute \p
1631 /// A.
1632 ///
1633 /// Data operands include call arguments and values used in operand bundles,
1634 /// but does not include the callee operand. This routine dispatches to the
1635 /// underlying AttributeList or the OperandBundleUser as appropriate.
1636 ///
1637 /// The index \p i is interpreted as
1638 ///
1639 /// \p i == Attribute::ReturnIndex -> the return value
1640 /// \p i in [1, arg_size + 1) -> argument number (\p i - 1)
1641 /// \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index
1642 /// (\p i - 1) in the operand list.
1643 bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
1644 // Note that we have to add one because `i` isn't zero-indexed.
1645 assert(i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) &&(static_cast<void> (0))
1646 "Data operand index out of bounds!")(static_cast<void> (0));
1647
1648 // The attribute A can either be directly specified, if the operand in
1649 // question is a call argument; or be indirectly implied by the kind of its
1650 // containing operand bundle, if the operand is a bundle operand.
1651
1652 if (i == AttributeList::ReturnIndex)
1653 return hasRetAttr(Kind);
1654
1655 // FIXME: Avoid these i - 1 calculations and update the API to use
1656 // zero-based indices.
1657 if (i < (getNumArgOperands() + 1))
1658 return paramHasAttr(i - 1, Kind);
1659
1660 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&(static_cast<void> (0))
1661 "Must be either a call argument or an operand bundle!")(static_cast<void> (0));
1662 return bundleOperandHasAttr(i - 1, Kind);
1663 }
1664
1665 /// Determine whether this data operand is not captured.
1666 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1667 // better indicate that this may return a conservative answer.
1668 bool doesNotCapture(unsigned OpNo) const {
1669 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
1670 }
1671
1672 /// Determine whether this argument is passed by value.
1673 bool isByValArgument(unsigned ArgNo) const {
1674 return paramHasAttr(ArgNo, Attribute::ByVal);
1675 }
1676
1677 /// Determine whether this argument is passed in an alloca.
1678 bool isInAllocaArgument(unsigned ArgNo) const {
1679 return paramHasAttr(ArgNo, Attribute::InAlloca);
1680 }
1681
1682 /// Determine whether this argument is passed by value, in an alloca, or is
1683 /// preallocated.
1684 bool isPassPointeeByValueArgument(unsigned ArgNo) const {
1685 return paramHasAttr(ArgNo, Attribute::ByVal) ||
1686 paramHasAttr(ArgNo, Attribute::InAlloca) ||
1687 paramHasAttr(ArgNo, Attribute::Preallocated);
1688 }
1689
1690 /// Determine whether passing undef to this argument is undefined behavior.
1691 /// If passing undef to this argument is UB, passing poison is UB as well
1692 /// because poison is more undefined than undef.
1693 bool isPassingUndefUB(unsigned ArgNo) const {
1694 return paramHasAttr(ArgNo, Attribute::NoUndef) ||
1695 // dereferenceable implies noundef.
1696 paramHasAttr(ArgNo, Attribute::Dereferenceable) ||
1697 // dereferenceable implies noundef, and null is a well-defined value.
1698 paramHasAttr(ArgNo, Attribute::DereferenceableOrNull);
1699 }
1700
1701 /// Determine if there are is an inalloca argument. Only the last argument can
1702 /// have the inalloca attribute.
1703 bool hasInAllocaArgument() const {
1704 return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
1705 }
1706
1707 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1708 // better indicate that this may return a conservative answer.
1709 bool doesNotAccessMemory(unsigned OpNo) const {
1710 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1711 }
1712
1713 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1714 // better indicate that this may return a conservative answer.
1715 bool onlyReadsMemory(unsigned OpNo) const {
1716 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
1717 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1718 }
1719
1720 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1721 // better indicate that this may return a conservative answer.
1722 bool doesNotReadMemory(unsigned OpNo) const {
1723 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
1724 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1725 }
1726
1727 /// Extract the alignment of the return value.
1728 MaybeAlign getRetAlign() const { return Attrs.getRetAlignment(); }
1729
1730 /// Extract the alignment for a call or parameter (0=unknown).
1731 MaybeAlign getParamAlign(unsigned ArgNo) const {
1732 return Attrs.getParamAlignment(ArgNo);
1733 }
1734
1735 MaybeAlign getParamStackAlign(unsigned ArgNo) const {
1736 return Attrs.getParamStackAlignment(ArgNo);
1737 }
1738
1739 /// Extract the byval type for a call or parameter.
1740 Type *getParamByValType(unsigned ArgNo) const {
1741 if (auto *Ty = Attrs.getParamByValType(ArgNo))
1742 return Ty;
1743 if (const Function *F = getCalledFunction())
1744 return F->getAttributes().getParamByValType(ArgNo);
1745 return nullptr;
1746 }
1747
1748 /// Extract the preallocated type for a call or parameter.
1749 Type *getParamPreallocatedType(unsigned ArgNo) const {
1750 if (auto *Ty = Attrs.getParamPreallocatedType(ArgNo))
1751 return Ty;
1752 if (const Function *F = getCalledFunction())
1753 return F->getAttributes().getParamPreallocatedType(ArgNo);
1754 return nullptr;
1755 }
1756
1757 /// Extract the preallocated type for a call or parameter.
1758 Type *getParamInAllocaType(unsigned ArgNo) const {
1759 if (auto *Ty = Attrs.getParamInAllocaType(ArgNo))
1760 return Ty;
1761 if (const Function *F = getCalledFunction())
1762 return F->getAttributes().getParamInAllocaType(ArgNo);
1763 return nullptr;
1764 }
1765
1766 /// Extract the number of dereferenceable bytes for a call or
1767 /// parameter (0=unknown).
1768 uint64_t getRetDereferenceableBytes() const {
1769 return Attrs.getRetDereferenceableBytes();
1770 }
1771
1772 /// Extract the number of dereferenceable bytes for a call or
1773 /// parameter (0=unknown).
1774 uint64_t getParamDereferenceableBytes(unsigned i) const {
1775 return Attrs.getParamDereferenceableBytes(i);
1776 }
1777
1778 /// Extract the number of dereferenceable_or_null bytes for a call
1779 /// (0=unknown).
1780 uint64_t getRetDereferenceableOrNullBytes() const {
1781 return Attrs.getRetDereferenceableOrNullBytes();
1782 }
1783
1784 /// Extract the number of dereferenceable_or_null bytes for a
1785 /// parameter (0=unknown).
1786 uint64_t getParamDereferenceableOrNullBytes(unsigned i) const {
1787 return Attrs.getParamDereferenceableOrNullBytes(i);
1788 }
1789
1790 /// Return true if the return value is known to be not null.
1791 /// This may be because it has the nonnull attribute, or because at least
1792 /// one byte is dereferenceable and the pointer is in addrspace(0).
1793 bool isReturnNonNull() const;
1794
1795 /// Determine if the return value is marked with NoAlias attribute.
1796 bool returnDoesNotAlias() const {
1797 return Attrs.hasRetAttr(Attribute::NoAlias);
1798 }
1799
1800 /// If one of the arguments has the 'returned' attribute, returns its
1801 /// operand value. Otherwise, return nullptr.
1802 Value *getReturnedArgOperand() const;
1803
1804 /// Return true if the call should not be treated as a call to a
1805 /// builtin.
1806 bool isNoBuiltin() const {
1807 return hasFnAttrImpl(Attribute::NoBuiltin) &&
1808 !hasFnAttrImpl(Attribute::Builtin);
1809 }
1810
1811 /// Determine if the call requires strict floating point semantics.
1812 bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); }
1813
1814 /// Return true if the call should not be inlined.
1815 bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
1816 void setIsNoInline() { addFnAttr(Attribute::NoInline); }
1817 /// Determine if the call does not access memory.
1818 bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); }
1819 void setDoesNotAccessMemory() { addFnAttr(Attribute::ReadNone); }
1820
1821 /// Determine if the call does not access or only reads memory.
1822 bool onlyReadsMemory() const {
1823 return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
1824 }
1825
1826 void setOnlyReadsMemory() { addFnAttr(Attribute::ReadOnly); }
1827
1828 /// Determine if the call does not access or only writes memory.
1829 bool doesNotReadMemory() const {
1830 return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly);
1831 }
1832 void setDoesNotReadMemory() { addFnAttr(Attribute::WriteOnly); }
1833
1834 /// Determine if the call can access memmory only using pointers based
1835 /// on its arguments.
1836 bool onlyAccessesArgMemory() const {
1837 return hasFnAttr(Attribute::ArgMemOnly);
1838 }
1839 void setOnlyAccessesArgMemory() { addFnAttr(Attribute::ArgMemOnly); }
1840
1841 /// Determine if the function may only access memory that is
1842 /// inaccessible from the IR.
1843 bool onlyAccessesInaccessibleMemory() const {
1844 return hasFnAttr(Attribute::InaccessibleMemOnly);
1845 }
1846 void setOnlyAccessesInaccessibleMemory() {
1847 addFnAttr(Attribute::InaccessibleMemOnly);
1848 }
1849
1850 /// Determine if the function may only access memory that is
1851 /// either inaccessible from the IR or pointed to by its arguments.
1852 bool onlyAccessesInaccessibleMemOrArgMem() const {
1853 return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
1854 }
1855 void setOnlyAccessesInaccessibleMemOrArgMem() {
1856 addFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
1857 }
1858 /// Determine if the call cannot return.
1859 bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
1860 void setDoesNotReturn() { addFnAttr(Attribute::NoReturn); }
1861
1862 /// Determine if the call should not perform indirect branch tracking.
1863 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
1864
1865 /// Determine if the call cannot unwind.
1866 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
1867 void setDoesNotThrow() { addFnAttr(Attribute::NoUnwind); }
1868
1869 /// Determine if the invoke cannot be duplicated.
1870 bool cannotDuplicate() const { return hasFnAttr(Attribute::NoDuplicate); }
1871 void setCannotDuplicate() { addFnAttr(Attribute::NoDuplicate); }
1872
1873 /// Determine if the call cannot be tail merged.
1874 bool cannotMerge() const { return hasFnAttr(Attribute::NoMerge); }
1875 void setCannotMerge() { addFnAttr(Attribute::NoMerge); }
1876
1877 /// Determine if the invoke is convergent
1878 bool isConvergent() const { return hasFnAttr(Attribute::Convergent); }
1879 void setConvergent() { addFnAttr(Attribute::Convergent); }
1880 void setNotConvergent() { removeFnAttr(Attribute::Convergent); }
1881
1882 /// Determine if the call returns a structure through first
1883 /// pointer argument.
1884 bool hasStructRetAttr() const {
1885 if (getNumArgOperands() == 0)
1886 return false;
1887
1888 // Be friendly and also check the callee.
1889 return paramHasAttr(0, Attribute::StructRet);
1890 }
1891
1892 /// Determine if any call argument is an aggregate passed by value.
1893 bool hasByValArgument() const {
1894 return Attrs.hasAttrSomewhere(Attribute::ByVal);
1895 }
1896
1897 ///@{
1898 // End of attribute API.
1899
1900 /// \name Operand Bundle API
1901 ///
1902 /// This group of methods provides the API to access and manipulate operand
1903 /// bundles on this call.
1904 /// @{
1905
1906 /// Return the number of operand bundles associated with this User.
1907 unsigned getNumOperandBundles() const {
1908 return std::distance(bundle_op_info_begin(), bundle_op_info_end());
1909 }
1910
1911 /// Return true if this User has any operand bundles.
1912 bool hasOperandBundles() const { return getNumOperandBundles() != 0; }
1913
1914 /// Return the index of the first bundle operand in the Use array.
1915 unsigned getBundleOperandsStartIndex() const {
1916 assert(hasOperandBundles() && "Don't call otherwise!")(static_cast<void> (0));
1917 return bundle_op_info_begin()->Begin;
1918 }
1919
1920 /// Return the index of the last bundle operand in the Use array.
1921 unsigned getBundleOperandsEndIndex() const {
1922 assert(hasOperandBundles() && "Don't call otherwise!")(static_cast<void> (0));
1923 return bundle_op_info_end()[-1].End;
1924 }
1925
1926 /// Return true if the operand at index \p Idx is a bundle operand.
1927 bool isBundleOperand(unsigned Idx) const {
1928 return hasOperandBundles() && Idx >= getBundleOperandsStartIndex() &&
1929 Idx < getBundleOperandsEndIndex();
1930 }
1931
1932 /// Returns true if the use is a bundle operand.
1933 bool isBundleOperand(const Use *U) const {
1934 assert(this == U->getUser() &&(static_cast<void> (0))
1935 "Only valid to query with a use of this instruction!")(static_cast<void> (0));
1936 return hasOperandBundles() && isBundleOperand(U - op_begin());
1937 }
1938 bool isBundleOperand(Value::const_user_iterator UI) const {
1939 return isBundleOperand(&UI.getUse());
1940 }
1941
1942 /// Return the total number operands (not operand bundles) used by
1943 /// every operand bundle in this OperandBundleUser.
1944 unsigned getNumTotalBundleOperands() const {
1945 if (!hasOperandBundles())
1946 return 0;
1947
1948 unsigned Begin = getBundleOperandsStartIndex();
1949 unsigned End = getBundleOperandsEndIndex();
1950
1951 assert(Begin <= End && "Should be!")(static_cast<void> (0));
1952 return End - Begin;
1953 }
1954
1955 /// Return the operand bundle at a specific index.
1956 OperandBundleUse getOperandBundleAt(unsigned Index) const {
1957 assert(Index < getNumOperandBundles() && "Index out of bounds!")(static_cast<void> (0));
1958 return operandBundleFromBundleOpInfo(*(bundle_op_info_begin() + Index));
1959 }
1960
1961 /// Return the number of operand bundles with the tag Name attached to
1962 /// this instruction.
1963 unsigned countOperandBundlesOfType(StringRef Name) const {
1964 unsigned Count = 0;
1965 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
1966 if (getOperandBundleAt(i).getTagName() == Name)
1967 Count++;
1968
1969 return Count;
1970 }
1971
1972 /// Return the number of operand bundles with the tag ID attached to
1973 /// this instruction.
1974 unsigned countOperandBundlesOfType(uint32_t ID) const {
1975 unsigned Count = 0;
1976 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
1977 if (getOperandBundleAt(i).getTagID() == ID)
1978 Count++;
1979
1980 return Count;
1981 }
1982
1983 /// Return an operand bundle by name, if present.
1984 ///
1985 /// It is an error to call this for operand bundle types that may have
1986 /// multiple instances of them on the same instruction.
1987 Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
1988 assert(countOperandBundlesOfType(Name) < 2 && "Precondition violated!")(static_cast<void> (0));
1989
1990 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
1991 OperandBundleUse U = getOperandBundleAt(i);
1992 if (U.getTagName() == Name)
1993 return U;
1994 }
1995
1996 return None;
1997 }
1998
1999 /// Return an operand bundle by tag ID, if present.
2000 ///
2001 /// It is an error to call this for operand bundle types that may have
2002 /// multiple instances of them on the same instruction.
2003 Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
2004 assert(countOperandBundlesOfType(ID) < 2 && "Precondition violated!")(static_cast<void> (0));
2005
2006 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
2007 OperandBundleUse U = getOperandBundleAt(i);
2008 if (U.getTagID() == ID)
2009 return U;
2010 }
2011
2012 return None;
2013 }
2014
2015 /// Return the list of operand bundles attached to this instruction as
2016 /// a vector of OperandBundleDefs.
2017 ///
2018 /// This function copies the OperandBundeUse instances associated with this
2019 /// OperandBundleUser to a vector of OperandBundleDefs. Note:
2020 /// OperandBundeUses and OperandBundleDefs are non-trivially *different*
2021 /// representations of operand bundles (see documentation above).
2022 void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const;
2023
2024 /// Return the operand bundle for the operand at index OpIdx.
2025 ///
2026 /// It is an error to call this with an OpIdx that does not correspond to an
2027 /// bundle operand.
2028 OperandBundleUse getOperandBundleForOperand(unsigned OpIdx) const {
2029 return operandBundleFromBundleOpInfo(getBundleOpInfoForOperand(OpIdx));
2030 }
2031
2032 /// Return true if this operand bundle user has operand bundles that
2033 /// may read from the heap.
2034 bool hasReadingOperandBundles() const;
2035
2036 /// Return true if this operand bundle user has operand bundles that
2037 /// may write to the heap.
2038 bool hasClobberingOperandBundles() const {
2039 for (auto &BOI : bundle_op_infos()) {
2040 if (BOI.Tag->second == LLVMContext::OB_deopt ||
2041 BOI.Tag->second == LLVMContext::OB_funclet)
2042 continue;
2043
2044 // This instruction has an operand bundle that is not known to us.
2045 // Assume the worst.
2046 return true;
2047 }
2048
2049 return false;
2050 }
2051
2052 /// Return true if the bundle operand at index \p OpIdx has the
2053 /// attribute \p A.
2054 bool bundleOperandHasAttr(unsigned OpIdx, Attribute::AttrKind A) const {
2055 auto &BOI = getBundleOpInfoForOperand(OpIdx);
2056 auto OBU = operandBundleFromBundleOpInfo(BOI);
2057 return OBU.operandHasAttr(OpIdx - BOI.Begin, A);
2058 }
2059
2060 /// Return true if \p Other has the same sequence of operand bundle
2061 /// tags with the same number of operands on each one of them as this
2062 /// OperandBundleUser.
2063 bool hasIdenticalOperandBundleSchema(const CallBase &Other) const {
2064 if (getNumOperandBundles() != Other.getNumOperandBundles())
2065 return false;
2066
2067 return std::equal(bundle_op_info_begin(), bundle_op_info_end(),
2068 Other.bundle_op_info_begin());
2069 }
2070
2071 /// Return true if this operand bundle user contains operand bundles
2072 /// with tags other than those specified in \p IDs.
2073 bool hasOperandBundlesOtherThan(ArrayRef<uint32_t> IDs) const {
2074 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
2075 uint32_t ID = getOperandBundleAt(i).getTagID();
2076 if (!is_contained(IDs, ID))
2077 return true;
2078 }
2079 return false;
2080 }
2081
2082 /// Is the function attribute S disallowed by some operand bundle on
2083 /// this operand bundle user?
2084 bool isFnAttrDisallowedByOpBundle(StringRef S) const {
2085 // Operand bundles only possibly disallow readnone, readonly and argmemonly
2086 // attributes. All String attributes are fine.
2087 return false;
2088 }
2089
2090 /// Is the function attribute A disallowed by some operand bundle on
2091 /// this operand bundle user?
2092 bool isFnAttrDisallowedByOpBundle(Attribute::AttrKind A) const {
2093 switch (A) {
2094 default:
2095 return false;
2096
2097 case Attribute::InaccessibleMemOrArgMemOnly:
2098 return hasReadingOperandBundles();
2099
2100 case Attribute::InaccessibleMemOnly:
2101 return hasReadingOperandBundles();
2102
2103 case Attribute::ArgMemOnly:
2104 return hasReadingOperandBundles();
2105
2106 case Attribute::ReadNone:
2107 return hasReadingOperandBundles();
2108
2109 case Attribute::ReadOnly:
2110 return hasClobberingOperandBundles();
2111 }
2112
2113 llvm_unreachable("switch has a default case!")__builtin_unreachable();
2114 }
2115
2116 /// Used to keep track of an operand bundle. See the main comment on
2117 /// OperandBundleUser above.
2118 struct BundleOpInfo {
2119 /// The operand bundle tag, interned by
2120 /// LLVMContextImpl::getOrInsertBundleTag.
2121 StringMapEntry<uint32_t> *Tag;
2122
2123 /// The index in the Use& vector where operands for this operand
2124 /// bundle starts.
2125 uint32_t Begin;
2126
2127 /// The index in the Use& vector where operands for this operand
2128 /// bundle ends.
2129 uint32_t End;
2130
2131 bool operator==(const BundleOpInfo &Other) const {
2132 return Tag == Other.Tag && Begin == Other.Begin && End == Other.End;
2133 }
2134 };
2135
2136 /// Simple helper function to map a BundleOpInfo to an
2137 /// OperandBundleUse.
2138 OperandBundleUse
2139 operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const {
2140 auto begin = op_begin();
2141 ArrayRef<Use> Inputs(begin + BOI.Begin, begin + BOI.End);
2142 return OperandBundleUse(BOI.Tag, Inputs);
2143 }
2144
2145 using bundle_op_iterator = BundleOpInfo *;
2146 using const_bundle_op_iterator = const BundleOpInfo *;
2147
2148 /// Return the start of the list of BundleOpInfo instances associated
2149 /// with this OperandBundleUser.
2150 ///
2151 /// OperandBundleUser uses the descriptor area co-allocated with the host User
2152 /// to store some meta information about which operands are "normal" operands,
2153 /// and which ones belong to some operand bundle.
2154 ///
2155 /// The layout of an operand bundle user is
2156 ///
2157 /// +-----------uint32_t End-------------------------------------+
2158 /// | |
2159 /// | +--------uint32_t Begin--------------------+ |
2160 /// | | | |
2161 /// ^ ^ v v
2162 /// |------|------|----|----|----|----|----|---------|----|---------|----|-----
2163 /// | BOI0 | BOI1 | .. | DU | U0 | U1 | .. | BOI0_U0 | .. | BOI1_U0 | .. | Un
2164 /// |------|------|----|----|----|----|----|---------|----|---------|----|-----
2165 /// v v ^ ^
2166 /// | | | |
2167 /// | +--------uint32_t Begin------------+ |
2168 /// | |
2169 /// +-----------uint32_t End-----------------------------+
2170 ///
2171 ///
2172 /// BOI0, BOI1 ... are descriptions of operand bundles in this User's use
2173 /// list. These descriptions are installed and managed by this class, and
2174 /// they're all instances of OperandBundleUser<T>::BundleOpInfo.
2175 ///
2176 /// DU is an additional descriptor installed by User's 'operator new' to keep
2177 /// track of the 'BOI0 ... BOIN' co-allocation. OperandBundleUser does not
2178 /// access or modify DU in any way, it's an implementation detail private to
2179 /// User.
2180 ///
2181 /// The regular Use& vector for the User starts at U0. The operand bundle
2182 /// uses are part of the Use& vector, just like normal uses. In the diagram
2183 /// above, the operand bundle uses start at BOI0_U0. Each instance of
2184 /// BundleOpInfo has information about a contiguous set of uses constituting
2185 /// an operand bundle, and the total set of operand bundle uses themselves
2186 /// form a contiguous set of uses (i.e. there are no gaps between uses
2187 /// corresponding to individual operand bundles).
2188 ///
2189 /// This class does not know the location of the set of operand bundle uses
2190 /// within the use list -- that is decided by the User using this class via
2191 /// the BeginIdx argument in populateBundleOperandInfos.
2192 ///
2193 /// Currently operand bundle users with hung-off operands are not supported.
2194 bundle_op_iterator bundle_op_info_begin() {
2195 if (!hasDescriptor())
4
Assuming the condition is false
5
Taking false branch
2196 return nullptr;
2197
2198 uint8_t *BytesBegin = getDescriptor().begin();
6
'BytesBegin' initialized here
2199 return reinterpret_cast<bundle_op_iterator>(BytesBegin);
7
Returning pointer (loaded from 'BytesBegin')
2200 }
2201
2202 /// Return the start of the list of BundleOpInfo instances associated
2203 /// with this OperandBundleUser.
2204 const_bundle_op_iterator bundle_op_info_begin() const {
2205 auto *NonConstThis = const_cast<CallBase *>(this);
2206 return NonConstThis->bundle_op_info_begin();
2207 }
2208
2209 /// Return the end of the list of BundleOpInfo instances associated
2210 /// with this OperandBundleUser.
2211 bundle_op_iterator bundle_op_info_end() {
2212 if (!hasDescriptor())
2213 return nullptr;
2214
2215 uint8_t *BytesEnd = getDescriptor().end();
2216 return reinterpret_cast<bundle_op_iterator>(BytesEnd);
2217 }
2218
2219 /// Return the end of the list of BundleOpInfo instances associated
2220 /// with this OperandBundleUser.
2221 const_bundle_op_iterator bundle_op_info_end() const {
2222 auto *NonConstThis = const_cast<CallBase *>(this);
2223 return NonConstThis->bundle_op_info_end();
2224 }
2225
2226 /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
2227 iterator_range<bundle_op_iterator> bundle_op_infos() {
2228 return make_range(bundle_op_info_begin(), bundle_op_info_end());
2229 }
2230
2231 /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
2232 iterator_range<const_bundle_op_iterator> bundle_op_infos() const {
2233 return make_range(bundle_op_info_begin(), bundle_op_info_end());
2234 }
2235
2236 /// Populate the BundleOpInfo instances and the Use& vector from \p
2237 /// Bundles. Return the op_iterator pointing to the Use& one past the last
2238 /// last bundle operand use.
2239 ///
2240 /// Each \p OperandBundleDef instance is tracked by a OperandBundleInfo
2241 /// instance allocated in this User's descriptor.
2242 op_iterator populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
2243 const unsigned BeginIndex);
2244
2245public:
2246 /// Return the BundleOpInfo for the operand at index OpIdx.
2247 ///
2248 /// It is an error to call this with an OpIdx that does not correspond to an
2249 /// bundle operand.
2250 BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx);
2251 const BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx) const {
2252 return const_cast<CallBase *>(this)->getBundleOpInfoForOperand(OpIdx);
2253 }
2254
2255protected:
2256 /// Return the total number of values used in \p Bundles.
2257 static unsigned CountBundleInputs(ArrayRef<OperandBundleDef> Bundles) {
2258 unsigned Total = 0;
2259 for (auto &B : Bundles)
2260 Total += B.input_size();
2261 return Total;
2262 }
2263
2264 /// @}
2265 // End of operand bundle API.
2266
2267private:
2268 bool hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
2269 bool hasFnAttrOnCalledFunction(StringRef Kind) const;
2270
2271 template <typename AttrKind> bool hasFnAttrImpl(AttrKind Kind) const {
2272 if (Attrs.hasFnAttr(Kind))
2273 return true;
2274
2275 // Operand bundles override attributes on the called function, but don't
2276 // override attributes directly present on the call instruction.
2277 if (isFnAttrDisallowedByOpBundle(Kind))
2278 return false;
2279
2280 return hasFnAttrOnCalledFunction(Kind);
2281 }
2282
2283 /// Determine whether the return value has the given attribute. Supports
2284 /// Attribute::AttrKind and StringRef as \p AttrKind types.
2285 template <typename AttrKind> bool hasRetAttrImpl(AttrKind Kind) const {
2286 if (Attrs.hasRetAttr(Kind))
2287 return true;
2288
2289 // Look at the callee, if available.
2290 if (const Function *F = getCalledFunction())
2291 return F->getAttributes().hasRetAttr(Kind);
2292 return false;
2293 }
2294};
2295
2296template <>
2297struct OperandTraits<CallBase> : public VariadicOperandTraits<CallBase, 1> {};
2298
2299DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallBase, Value)CallBase::op_iterator CallBase::op_begin() { return OperandTraits
<CallBase>::op_begin(this); } CallBase::const_op_iterator
CallBase::op_begin() const { return OperandTraits<CallBase
>::op_begin(const_cast<CallBase*>(this)); } CallBase
::op_iterator CallBase::op_end() { return OperandTraits<CallBase
>::op_end(this); } CallBase::const_op_iterator CallBase::op_end
() const { return OperandTraits<CallBase>::op_end(const_cast
<CallBase*>(this)); } Value *CallBase::getOperand(unsigned
i_nocapture) const { (static_cast<void> (0)); return cast_or_null
<Value>( OperandTraits<CallBase>::op_begin(const_cast
<CallBase*>(this))[i_nocapture].get()); } void CallBase
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<void> (0)); OperandTraits<CallBase>::op_begin(this
)[i_nocapture] = Val_nocapture; } unsigned CallBase::getNumOperands
() const { return OperandTraits<CallBase>::operands(this
); } template <int Idx_nocapture> Use &CallBase::Op
() { return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &CallBase::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
2300
2301//===----------------------------------------------------------------------===//
2302// FuncletPadInst Class
2303//===----------------------------------------------------------------------===//
2304class FuncletPadInst : public Instruction {
2305private:
2306 FuncletPadInst(const FuncletPadInst &CPI);
2307
2308 explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
2309 ArrayRef<Value *> Args, unsigned Values,
2310 const Twine &NameStr, Instruction *InsertBefore);
2311 explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
2312 ArrayRef<Value *> Args, unsigned Values,
2313 const Twine &NameStr, BasicBlock *InsertAtEnd);
2314
2315 void init(Value *ParentPad, ArrayRef<Value *> Args, const Twine &NameStr);
2316
2317protected:
2318 // Note: Instruction needs to be a friend here to call cloneImpl.
2319 friend class Instruction;
2320 friend class CatchPadInst;
2321 friend class CleanupPadInst;
2322
2323 FuncletPadInst *cloneImpl() const;
2324
2325public:
2326 /// Provide fast operand accessors
2327 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2328
2329 /// getNumArgOperands - Return the number of funcletpad arguments.
2330 ///
2331 unsigned getNumArgOperands() const { return getNumOperands() - 1; }
2332
2333 /// Convenience accessors
2334
2335 /// Return the outer EH-pad this funclet is nested within.
2336 ///
2337 /// Note: This returns the associated CatchSwitchInst if this FuncletPadInst
2338 /// is a CatchPadInst.
2339 Value *getParentPad() const { return Op<-1>(); }
2340 void setParentPad(Value *ParentPad) {
2341 assert(ParentPad)(static_cast<void> (0));
2342 Op<-1>() = ParentPad;
2343 }
2344
2345 /// getArgOperand/setArgOperand - Return/set the i-th funcletpad argument.
2346 ///
2347 Value *getArgOperand(unsigned i) const { return getOperand(i); }
2348 void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
2349
2350 /// arg_operands - iteration adapter for range-for loops.
2351 op_range arg_operands() { return op_range(op_begin(), op_end() - 1); }
2352
2353 /// arg_operands - iteration adapter for range-for loops.
2354 const_op_range arg_operands() const {
2355 return const_op_range(op_begin(), op_end() - 1);
2356 }
2357
2358 // Methods for support type inquiry through isa, cast, and dyn_cast:
2359 static bool classof(const Instruction *I) { return I->isFuncletPad(); }
2360 static bool classof(const Value *V) {
2361 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2362 }
2363};
2364
2365template <>
2366struct OperandTraits<FuncletPadInst>
2367 : public VariadicOperandTraits<FuncletPadInst, /*MINARITY=*/1> {};
2368
2369DEFINE_TRANSPARENT_OPERAND_ACCESSORS(FuncletPadInst, Value)FuncletPadInst::op_iterator FuncletPadInst::op_begin() { return
OperandTraits<FuncletPadInst>::op_begin(this); } FuncletPadInst
::const_op_iterator FuncletPadInst::op_begin() const { return
OperandTraits<FuncletPadInst>::op_begin(const_cast<
FuncletPadInst*>(this)); } FuncletPadInst::op_iterator FuncletPadInst
::op_end() { return OperandTraits<FuncletPadInst>::op_end
(this); } FuncletPadInst::const_op_iterator FuncletPadInst::op_end
() const { return OperandTraits<FuncletPadInst>::op_end
(const_cast<FuncletPadInst*>(this)); } Value *FuncletPadInst
::getOperand(unsigned i_nocapture) const { (static_cast<void
> (0)); return cast_or_null<Value>( OperandTraits<
FuncletPadInst>::op_begin(const_cast<FuncletPadInst*>
(this))[i_nocapture].get()); } void FuncletPadInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { (static_cast<
void> (0)); OperandTraits<FuncletPadInst>::op_begin(
this)[i_nocapture] = Val_nocapture; } unsigned FuncletPadInst
::getNumOperands() const { return OperandTraits<FuncletPadInst
>::operands(this); } template <int Idx_nocapture> Use
&FuncletPadInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
FuncletPadInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2370
2371} // end namespace llvm
2372
2373#endif // LLVM_IR_INSTRTYPES_H