Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Scalar/JumpThreading.cpp
Warning:line 1451, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name JumpThreading.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Scalar -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/Transforms/Scalar/JumpThreading.cpp
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Jump Threading pass.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Transforms/Scalar/JumpThreading.h"
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/MapVector.h"
17#include "llvm/ADT/Optional.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/BlockFrequencyInfo.h"
24#include "llvm/Analysis/BranchProbabilityInfo.h"
25#include "llvm/Analysis/CFG.h"
26#include "llvm/Analysis/ConstantFolding.h"
27#include "llvm/Analysis/DomTreeUpdater.h"
28#include "llvm/Analysis/GlobalsModRef.h"
29#include "llvm/Analysis/GuardUtils.h"
30#include "llvm/Analysis/InstructionSimplify.h"
31#include "llvm/Analysis/LazyValueInfo.h"
32#include "llvm/Analysis/Loads.h"
33#include "llvm/Analysis/LoopInfo.h"
34#include "llvm/Analysis/MemoryLocation.h"
35#include "llvm/Analysis/TargetLibraryInfo.h"
36#include "llvm/Analysis/TargetTransformInfo.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/IR/BasicBlock.h"
39#include "llvm/IR/CFG.h"
40#include "llvm/IR/Constant.h"
41#include "llvm/IR/ConstantRange.h"
42#include "llvm/IR/Constants.h"
43#include "llvm/IR/DataLayout.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/InstrTypes.h"
47#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/IntrinsicInst.h"
50#include "llvm/IR/Intrinsics.h"
51#include "llvm/IR/LLVMContext.h"
52#include "llvm/IR/MDBuilder.h"
53#include "llvm/IR/Metadata.h"
54#include "llvm/IR/Module.h"
55#include "llvm/IR/PassManager.h"
56#include "llvm/IR/PatternMatch.h"
57#include "llvm/IR/Type.h"
58#include "llvm/IR/Use.h"
59#include "llvm/IR/Value.h"
60#include "llvm/InitializePasses.h"
61#include "llvm/Pass.h"
62#include "llvm/Support/BlockFrequency.h"
63#include "llvm/Support/BranchProbability.h"
64#include "llvm/Support/Casting.h"
65#include "llvm/Support/CommandLine.h"
66#include "llvm/Support/Debug.h"
67#include "llvm/Support/raw_ostream.h"
68#include "llvm/Transforms/Scalar.h"
69#include "llvm/Transforms/Utils/BasicBlockUtils.h"
70#include "llvm/Transforms/Utils/Cloning.h"
71#include "llvm/Transforms/Utils/Local.h"
72#include "llvm/Transforms/Utils/SSAUpdater.h"
73#include "llvm/Transforms/Utils/ValueMapper.h"
74#include <algorithm>
75#include <cassert>
76#include <cstdint>
77#include <iterator>
78#include <memory>
79#include <utility>
80
81using namespace llvm;
82using namespace jumpthreading;
83
84#define DEBUG_TYPE"jump-threading" "jump-threading"
85
86STATISTIC(NumThreads, "Number of jumps threaded")static llvm::Statistic NumThreads = {"jump-threading", "NumThreads"
, "Number of jumps threaded"}
;
87STATISTIC(NumFolds, "Number of terminators folded")static llvm::Statistic NumFolds = {"jump-threading", "NumFolds"
, "Number of terminators folded"}
;
88STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi")static llvm::Statistic NumDupes = {"jump-threading", "NumDupes"
, "Number of branch blocks duplicated to eliminate phi"}
;
89
90static cl::opt<unsigned>
91BBDuplicateThreshold("jump-threading-threshold",
92 cl::desc("Max block size to duplicate for jump threading"),
93 cl::init(6), cl::Hidden);
94
95static cl::opt<unsigned>
96ImplicationSearchThreshold(
97 "jump-threading-implication-search-threshold",
98 cl::desc("The number of predecessors to search for a stronger "
99 "condition to use to thread over a weaker condition"),
100 cl::init(3), cl::Hidden);
101
102static cl::opt<bool> PrintLVIAfterJumpThreading(
103 "print-lvi-after-jump-threading",
104 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105 cl::Hidden);
106
107static cl::opt<bool> JumpThreadingFreezeSelectCond(
108 "jump-threading-freeze-select-cond",
109 cl::desc("Freeze the condition when unfolding select"), cl::init(false),
110 cl::Hidden);
111
112static cl::opt<bool> ThreadAcrossLoopHeaders(
113 "jump-threading-across-loop-headers",
114 cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
115 cl::init(false), cl::Hidden);
116
117
118namespace {
119
120 /// This pass performs 'jump threading', which looks at blocks that have
121 /// multiple predecessors and multiple successors. If one or more of the
122 /// predecessors of the block can be proven to always jump to one of the
123 /// successors, we forward the edge from the predecessor to the successor by
124 /// duplicating the contents of this block.
125 ///
126 /// An example of when this can occur is code like this:
127 ///
128 /// if () { ...
129 /// X = 4;
130 /// }
131 /// if (X < 3) {
132 ///
133 /// In this case, the unconditional branch at the end of the first if can be
134 /// revectored to the false side of the second if.
135 class JumpThreading : public FunctionPass {
136 JumpThreadingPass Impl;
137
138 public:
139 static char ID; // Pass identification
140
141 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
142 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
143 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
144 }
145
146 bool runOnFunction(Function &F) override;
147
148 void getAnalysisUsage(AnalysisUsage &AU) const override {
149 AU.addRequired<DominatorTreeWrapperPass>();
150 AU.addPreserved<DominatorTreeWrapperPass>();
151 AU.addRequired<AAResultsWrapperPass>();
152 AU.addRequired<LazyValueInfoWrapperPass>();
153 AU.addPreserved<LazyValueInfoWrapperPass>();
154 AU.addPreserved<GlobalsAAWrapperPass>();
155 AU.addRequired<TargetLibraryInfoWrapperPass>();
156 AU.addRequired<TargetTransformInfoWrapperPass>();
157 }
158
159 void releaseMemory() override { Impl.releaseMemory(); }
160 };
161
162} // end anonymous namespace
163
164char JumpThreading::ID = 0;
165
166INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",static void *initializeJumpThreadingPassOnce(PassRegistry &
Registry) {
167 "Jump Threading", false, false)static void *initializeJumpThreadingPassOnce(PassRegistry &
Registry) {
168INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
169INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)initializeLazyValueInfoWrapperPassPass(Registry);
170INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
171INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
172INITIALIZE_PASS_END(JumpThreading, "jump-threading",PassInfo *PI = new PassInfo( "Jump Threading", "jump-threading"
, &JumpThreading::ID, PassInfo::NormalCtor_t(callDefaultCtor
<JumpThreading>), false, false); Registry.registerPass(
*PI, true); return PI; } static llvm::once_flag InitializeJumpThreadingPassFlag
; void llvm::initializeJumpThreadingPass(PassRegistry &Registry
) { llvm::call_once(InitializeJumpThreadingPassFlag, initializeJumpThreadingPassOnce
, std::ref(Registry)); }
173 "Jump Threading", false, false)PassInfo *PI = new PassInfo( "Jump Threading", "jump-threading"
, &JumpThreading::ID, PassInfo::NormalCtor_t(callDefaultCtor
<JumpThreading>), false, false); Registry.registerPass(
*PI, true); return PI; } static llvm::once_flag InitializeJumpThreadingPassFlag
; void llvm::initializeJumpThreadingPass(PassRegistry &Registry
) { llvm::call_once(InitializeJumpThreadingPassFlag, initializeJumpThreadingPassOnce
, std::ref(Registry)); }
174
175// Public interface to the Jump Threading pass
176FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
177 return new JumpThreading(InsertFr, Threshold);
178}
179
180JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
181 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
182 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
183}
184
185// Update branch probability information according to conditional
186// branch probability. This is usually made possible for cloned branches
187// in inline instances by the context specific profile in the caller.
188// For instance,
189//
190// [Block PredBB]
191// [Branch PredBr]
192// if (t) {
193// Block A;
194// } else {
195// Block B;
196// }
197//
198// [Block BB]
199// cond = PN([true, %A], [..., %B]); // PHI node
200// [Branch CondBr]
201// if (cond) {
202// ... // P(cond == true) = 1%
203// }
204//
205// Here we know that when block A is taken, cond must be true, which means
206// P(cond == true | A) = 1
207//
208// Given that P(cond == true) = P(cond == true | A) * P(A) +
209// P(cond == true | B) * P(B)
210// we get:
211// P(cond == true ) = P(A) + P(cond == true | B) * P(B)
212//
213// which gives us:
214// P(A) is less than P(cond == true), i.e.
215// P(t == true) <= P(cond == true)
216//
217// In other words, if we know P(cond == true) is unlikely, we know
218// that P(t == true) is also unlikely.
219//
220static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
221 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
222 if (!CondBr)
223 return;
224
225 uint64_t TrueWeight, FalseWeight;
226 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
227 return;
228
229 if (TrueWeight + FalseWeight == 0)
230 // Zero branch_weights do not give a hint for getting branch probabilities.
231 // Technically it would result in division by zero denominator, which is
232 // TrueWeight + FalseWeight.
233 return;
234
235 // Returns the outgoing edge of the dominating predecessor block
236 // that leads to the PhiNode's incoming block:
237 auto GetPredOutEdge =
238 [](BasicBlock *IncomingBB,
239 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
240 auto *PredBB = IncomingBB;
241 auto *SuccBB = PhiBB;
242 SmallPtrSet<BasicBlock *, 16> Visited;
243 while (true) {
244 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
245 if (PredBr && PredBr->isConditional())
246 return {PredBB, SuccBB};
247 Visited.insert(PredBB);
248 auto *SinglePredBB = PredBB->getSinglePredecessor();
249 if (!SinglePredBB)
250 return {nullptr, nullptr};
251
252 // Stop searching when SinglePredBB has been visited. It means we see
253 // an unreachable loop.
254 if (Visited.count(SinglePredBB))
255 return {nullptr, nullptr};
256
257 SuccBB = PredBB;
258 PredBB = SinglePredBB;
259 }
260 };
261
262 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
263 Value *PhiOpnd = PN->getIncomingValue(i);
264 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
265
266 if (!CI || !CI->getType()->isIntegerTy(1))
267 continue;
268
269 BranchProbability BP =
270 (CI->isOne() ? BranchProbability::getBranchProbability(
271 TrueWeight, TrueWeight + FalseWeight)
272 : BranchProbability::getBranchProbability(
273 FalseWeight, TrueWeight + FalseWeight));
274
275 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
276 if (!PredOutEdge.first)
277 return;
278
279 BasicBlock *PredBB = PredOutEdge.first;
280 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
281 if (!PredBr)
282 return;
283
284 uint64_t PredTrueWeight, PredFalseWeight;
285 // FIXME: We currently only set the profile data when it is missing.
286 // With PGO, this can be used to refine even existing profile data with
287 // context information. This needs to be done after more performance
288 // testing.
289 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
290 continue;
291
292 // We can not infer anything useful when BP >= 50%, because BP is the
293 // upper bound probability value.
294 if (BP >= BranchProbability(50, 100))
295 continue;
296
297 SmallVector<uint32_t, 2> Weights;
298 if (PredBr->getSuccessor(0) == PredOutEdge.second) {
299 Weights.push_back(BP.getNumerator());
300 Weights.push_back(BP.getCompl().getNumerator());
301 } else {
302 Weights.push_back(BP.getCompl().getNumerator());
303 Weights.push_back(BP.getNumerator());
304 }
305 PredBr->setMetadata(LLVMContext::MD_prof,
306 MDBuilder(PredBr->getParent()->getContext())
307 .createBranchWeights(Weights));
308 }
309}
310
311/// runOnFunction - Toplevel algorithm.
312bool JumpThreading::runOnFunction(Function &F) {
313 if (skipFunction(F))
314 return false;
315 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
316 // Jump Threading has no sense for the targets with divergent CF
317 if (TTI->hasBranchDivergence())
318 return false;
319 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
320 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
321 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
322 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
323 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
324 std::unique_ptr<BlockFrequencyInfo> BFI;
325 std::unique_ptr<BranchProbabilityInfo> BPI;
326 if (F.hasProfileData()) {
327 LoopInfo LI{DominatorTree(F)};
328 BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
329 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
330 }
331
332 bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
333 std::move(BFI), std::move(BPI));
334 if (PrintLVIAfterJumpThreading) {
335 dbgs() << "LVI for function '" << F.getName() << "':\n";
336 LVI->printLVI(F, DTU.getDomTree(), dbgs());
337 }
338 return Changed;
339}
340
341PreservedAnalyses JumpThreadingPass::run(Function &F,
342 FunctionAnalysisManager &AM) {
343 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
344 // Jump Threading has no sense for the targets with divergent CF
345 if (TTI.hasBranchDivergence())
346 return PreservedAnalyses::all();
347 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
348 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
349 auto &LVI = AM.getResult<LazyValueAnalysis>(F);
350 auto &AA = AM.getResult<AAManager>(F);
351 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
352
353 std::unique_ptr<BlockFrequencyInfo> BFI;
354 std::unique_ptr<BranchProbabilityInfo> BPI;
355 if (F.hasProfileData()) {
356 LoopInfo LI{DominatorTree(F)};
357 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
358 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
359 }
360
361 bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(),
362 std::move(BFI), std::move(BPI));
363
364 if (PrintLVIAfterJumpThreading) {
365 dbgs() << "LVI for function '" << F.getName() << "':\n";
366 LVI.printLVI(F, DTU.getDomTree(), dbgs());
367 }
368
369 if (!Changed)
370 return PreservedAnalyses::all();
371 PreservedAnalyses PA;
372 PA.preserve<DominatorTreeAnalysis>();
373 PA.preserve<LazyValueAnalysis>();
374 return PA;
375}
376
377bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
378 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
379 AliasAnalysis *AA_, DomTreeUpdater *DTU_,
380 bool HasProfileData_,
381 std::unique_ptr<BlockFrequencyInfo> BFI_,
382 std::unique_ptr<BranchProbabilityInfo> BPI_) {
383 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "Jump threading on function '"
<< F.getName() << "'\n"; } } while (false)
;
384 TLI = TLI_;
385 TTI = TTI_;
386 LVI = LVI_;
387 AA = AA_;
388 DTU = DTU_;
389 BFI.reset();
390 BPI.reset();
391 // When profile data is available, we need to update edge weights after
392 // successful jump threading, which requires both BPI and BFI being available.
393 HasProfileData = HasProfileData_;
394 auto *GuardDecl = F.getParent()->getFunction(
395 Intrinsic::getName(Intrinsic::experimental_guard));
396 HasGuards = GuardDecl && !GuardDecl->use_empty();
397 if (HasProfileData) {
398 BPI = std::move(BPI_);
399 BFI = std::move(BFI_);
400 }
401
402 // Reduce the number of instructions duplicated when optimizing strictly for
403 // size.
404 if (BBDuplicateThreshold.getNumOccurrences())
405 BBDupThreshold = BBDuplicateThreshold;
406 else if (F.hasFnAttribute(Attribute::MinSize))
407 BBDupThreshold = 3;
408 else
409 BBDupThreshold = DefaultBBDupThreshold;
410
411 // JumpThreading must not processes blocks unreachable from entry. It's a
412 // waste of compute time and can potentially lead to hangs.
413 SmallPtrSet<BasicBlock *, 16> Unreachable;
414 assert(DTU && "DTU isn't passed into JumpThreading before using it.")(static_cast <bool> (DTU && "DTU isn't passed into JumpThreading before using it."
) ? void (0) : __assert_fail ("DTU && \"DTU isn't passed into JumpThreading before using it.\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 414, __extension__
__PRETTY_FUNCTION__))
;
415 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.")(static_cast <bool> (DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."
) ? void (0) : __assert_fail ("DTU->hasDomTree() && \"JumpThreading relies on DomTree to proceed.\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 415, __extension__
__PRETTY_FUNCTION__))
;
416 DominatorTree &DT = DTU->getDomTree();
417 for (auto &BB : F)
418 if (!DT.isReachableFromEntry(&BB))
419 Unreachable.insert(&BB);
420
421 if (!ThreadAcrossLoopHeaders)
422 findLoopHeaders(F);
423
424 bool EverChanged = false;
425 bool Changed;
426 do {
427 Changed = false;
428 for (auto &BB : F) {
429 if (Unreachable.count(&BB))
430 continue;
431 while (processBlock(&BB)) // Thread all of the branches we can over BB.
432 Changed = true;
433
434 // Jump threading may have introduced redundant debug values into BB
435 // which should be removed.
436 if (Changed)
437 RemoveRedundantDbgInstrs(&BB);
438
439 // Stop processing BB if it's the entry or is now deleted. The following
440 // routines attempt to eliminate BB and locating a suitable replacement
441 // for the entry is non-trivial.
442 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
443 continue;
444
445 if (pred_empty(&BB)) {
446 // When processBlock makes BB unreachable it doesn't bother to fix up
447 // the instructions in it. We must remove BB to prevent invalid IR.
448 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " JT: Deleting dead block '"
<< BB.getName() << "' with terminator: " <<
*BB.getTerminator() << '\n'; } } while (false)
449 << "' with terminator: " << *BB.getTerminator()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " JT: Deleting dead block '"
<< BB.getName() << "' with terminator: " <<
*BB.getTerminator() << '\n'; } } while (false)
450 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " JT: Deleting dead block '"
<< BB.getName() << "' with terminator: " <<
*BB.getTerminator() << '\n'; } } while (false)
;
451 LoopHeaders.erase(&BB);
452 LVI->eraseBlock(&BB);
453 DeleteDeadBlock(&BB, DTU);
454 Changed = true;
455 continue;
456 }
457
458 // processBlock doesn't thread BBs with unconditional TIs. However, if BB
459 // is "almost empty", we attempt to merge BB with its sole successor.
460 auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
461 if (BI && BI->isUnconditional()) {
462 BasicBlock *Succ = BI->getSuccessor(0);
463 if (
464 // The terminator must be the only non-phi instruction in BB.
465 BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
466 // Don't alter Loop headers and latches to ensure another pass can
467 // detect and transform nested loops later.
468 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
469 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
470 RemoveRedundantDbgInstrs(Succ);
471 // BB is valid for cleanup here because we passed in DTU. F remains
472 // BB's parent until a DTU->getDomTree() event.
473 LVI->eraseBlock(&BB);
474 Changed = true;
475 }
476 }
477 }
478 EverChanged |= Changed;
479 } while (Changed);
480
481 LoopHeaders.clear();
482 return EverChanged;
483}
484
485// Replace uses of Cond with ToVal when safe to do so. If all uses are
486// replaced, we can remove Cond. We cannot blindly replace all uses of Cond
487// because we may incorrectly replace uses when guards/assumes are uses of
488// of `Cond` and we used the guards/assume to reason about the `Cond` value
489// at the end of block. RAUW unconditionally replaces all uses
490// including the guards/assumes themselves and the uses before the
491// guard/assume.
492static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
493 assert(Cond->getType() == ToVal->getType())(static_cast <bool> (Cond->getType() == ToVal->getType
()) ? void (0) : __assert_fail ("Cond->getType() == ToVal->getType()"
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 493, __extension__
__PRETTY_FUNCTION__))
;
494 auto *BB = Cond->getParent();
495 // We can unconditionally replace all uses in non-local blocks (i.e. uses
496 // strictly dominated by BB), since LVI information is true from the
497 // terminator of BB.
498 replaceNonLocalUsesWith(Cond, ToVal);
499 for (Instruction &I : reverse(*BB)) {
500 // Reached the Cond whose uses we are trying to replace, so there are no
501 // more uses.
502 if (&I == Cond)
503 break;
504 // We only replace uses in instructions that are guaranteed to reach the end
505 // of BB, where we know Cond is ToVal.
506 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
507 break;
508 I.replaceUsesOfWith(Cond, ToVal);
509 }
510 if (Cond->use_empty() && !Cond->mayHaveSideEffects())
511 Cond->eraseFromParent();
512}
513
514/// Return the cost of duplicating a piece of this block from first non-phi
515/// and before StopAt instruction to thread across it. Stop scanning the block
516/// when exceeding the threshold. If duplication is impossible, returns ~0U.
517static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
518 BasicBlock *BB,
519 Instruction *StopAt,
520 unsigned Threshold) {
521 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?")(static_cast <bool> (StopAt->getParent() == BB &&
"Not an instruction from proper BB?") ? void (0) : __assert_fail
("StopAt->getParent() == BB && \"Not an instruction from proper BB?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 521, __extension__
__PRETTY_FUNCTION__))
;
522 /// Ignore PHI nodes, these will be flattened when duplication happens.
523 BasicBlock::const_iterator I(BB->getFirstNonPHI());
524
525 // FIXME: THREADING will delete values that are just used to compute the
526 // branch, so they shouldn't count against the duplication cost.
527
528 unsigned Bonus = 0;
529 if (BB->getTerminator() == StopAt) {
530 // Threading through a switch statement is particularly profitable. If this
531 // block ends in a switch, decrease its cost to make it more likely to
532 // happen.
533 if (isa<SwitchInst>(StopAt))
534 Bonus = 6;
535
536 // The same holds for indirect branches, but slightly more so.
537 if (isa<IndirectBrInst>(StopAt))
538 Bonus = 8;
539 }
540
541 // Bump the threshold up so the early exit from the loop doesn't skip the
542 // terminator-based Size adjustment at the end.
543 Threshold += Bonus;
544
545 // Sum up the cost of each instruction until we get to the terminator. Don't
546 // include the terminator because the copy won't include it.
547 unsigned Size = 0;
548 for (; &*I != StopAt; ++I) {
549
550 // Stop scanning the block if we've reached the threshold.
551 if (Size > Threshold)
552 return Size;
553
554 // Bail out if this instruction gives back a token type, it is not possible
555 // to duplicate it if it is used outside this BB.
556 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
557 return ~0U;
558
559 // Blocks with NoDuplicate are modelled as having infinite cost, so they
560 // are never duplicated.
561 if (const CallInst *CI = dyn_cast<CallInst>(I))
562 if (CI->cannotDuplicate() || CI->isConvergent())
563 return ~0U;
564
565 if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency)
566 == TargetTransformInfo::TCC_Free)
567 continue;
568
569 // All other instructions count for at least one unit.
570 ++Size;
571
572 // Calls are more expensive. If they are non-intrinsic calls, we model them
573 // as having cost of 4. If they are a non-vector intrinsic, we model them
574 // as having cost of 2 total, and if they are a vector intrinsic, we model
575 // them as having cost 1.
576 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
577 if (!isa<IntrinsicInst>(CI))
578 Size += 3;
579 else if (!CI->getType()->isVectorTy())
580 Size += 1;
581 }
582 }
583
584 return Size > Bonus ? Size - Bonus : 0;
585}
586
587/// findLoopHeaders - We do not want jump threading to turn proper loop
588/// structures into irreducible loops. Doing this breaks up the loop nesting
589/// hierarchy and pessimizes later transformations. To prevent this from
590/// happening, we first have to find the loop headers. Here we approximate this
591/// by finding targets of backedges in the CFG.
592///
593/// Note that there definitely are cases when we want to allow threading of
594/// edges across a loop header. For example, threading a jump from outside the
595/// loop (the preheader) to an exit block of the loop is definitely profitable.
596/// It is also almost always profitable to thread backedges from within the loop
597/// to exit blocks, and is often profitable to thread backedges to other blocks
598/// within the loop (forming a nested loop). This simple analysis is not rich
599/// enough to track all of these properties and keep it up-to-date as the CFG
600/// mutates, so we don't allow any of these transformations.
601void JumpThreadingPass::findLoopHeaders(Function &F) {
602 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
603 FindFunctionBackedges(F, Edges);
604
605 for (const auto &Edge : Edges)
606 LoopHeaders.insert(Edge.second);
607}
608
609/// getKnownConstant - Helper method to determine if we can thread over a
610/// terminator with the given value as its condition, and if so what value to
611/// use for that. What kind of value this is depends on whether we want an
612/// integer or a block address, but an undef is always accepted.
613/// Returns null if Val is null or not an appropriate constant.
614static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
615 if (!Val)
616 return nullptr;
617
618 // Undef is "known" enough.
619 if (UndefValue *U = dyn_cast<UndefValue>(Val))
620 return U;
621
622 if (Preference == WantBlockAddress)
623 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
624
625 return dyn_cast<ConstantInt>(Val);
626}
627
628/// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
629/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
630/// in any of our predecessors. If so, return the known list of value and pred
631/// BB in the result vector.
632///
633/// This returns true if there were any known values.
634bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
635 Value *V, BasicBlock *BB, PredValueInfo &Result,
636 ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
637 Instruction *CxtI) {
638 // This method walks up use-def chains recursively. Because of this, we could
639 // get into an infinite loop going around loops in the use-def chain. To
640 // prevent this, keep track of what (value, block) pairs we've already visited
641 // and terminate the search if we loop back to them
642 if (!RecursionSet.insert(V).second)
643 return false;
644
645 // If V is a constant, then it is known in all predecessors.
646 if (Constant *KC = getKnownConstant(V, Preference)) {
647 for (BasicBlock *Pred : predecessors(BB))
648 Result.emplace_back(KC, Pred);
649
650 return !Result.empty();
651 }
652
653 // If V is a non-instruction value, or an instruction in a different block,
654 // then it can't be derived from a PHI.
655 Instruction *I = dyn_cast<Instruction>(V);
656 if (!I || I->getParent() != BB) {
657
658 // Okay, if this is a live-in value, see if it has a known value at the end
659 // of any of our predecessors.
660 //
661 // FIXME: This should be an edge property, not a block end property.
662 /// TODO: Per PR2563, we could infer value range information about a
663 /// predecessor based on its terminator.
664 //
665 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
666 // "I" is a non-local compare-with-a-constant instruction. This would be
667 // able to handle value inequalities better, for example if the compare is
668 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
669 // Perhaps getConstantOnEdge should be smart enough to do this?
670 for (BasicBlock *P : predecessors(BB)) {
671 // If the value is known by LazyValueInfo to be a constant in a
672 // predecessor, use that information to try to thread this block.
673 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
674 if (Constant *KC = getKnownConstant(PredCst, Preference))
675 Result.emplace_back(KC, P);
676 }
677
678 return !Result.empty();
679 }
680
681 /// If I is a PHI node, then we know the incoming values for any constants.
682 if (PHINode *PN = dyn_cast<PHINode>(I)) {
683 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
684 Value *InVal = PN->getIncomingValue(i);
685 if (Constant *KC = getKnownConstant(InVal, Preference)) {
686 Result.emplace_back(KC, PN->getIncomingBlock(i));
687 } else {
688 Constant *CI = LVI->getConstantOnEdge(InVal,
689 PN->getIncomingBlock(i),
690 BB, CxtI);
691 if (Constant *KC = getKnownConstant(CI, Preference))
692 Result.emplace_back(KC, PN->getIncomingBlock(i));
693 }
694 }
695
696 return !Result.empty();
697 }
698
699 // Handle Cast instructions.
700 if (CastInst *CI = dyn_cast<CastInst>(I)) {
701 Value *Source = CI->getOperand(0);
702 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
703 RecursionSet, CxtI);
704 if (Result.empty())
705 return false;
706
707 // Convert the known values.
708 for (auto &R : Result)
709 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
710
711 return true;
712 }
713
714 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
715 Value *Source = FI->getOperand(0);
716 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
717 RecursionSet, CxtI);
718
719 erase_if(Result, [](auto &Pair) {
720 return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
721 });
722
723 return !Result.empty();
724 }
725
726 // Handle some boolean conditions.
727 if (I->getType()->getPrimitiveSizeInBits() == 1) {
728 using namespace PatternMatch;
729 if (Preference != WantInteger)
730 return false;
731 // X | true -> true
732 // X & false -> false
733 Value *Op0, *Op1;
734 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
735 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
736 PredValueInfoTy LHSVals, RHSVals;
737
738 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
739 RecursionSet, CxtI);
740 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
741 RecursionSet, CxtI);
742
743 if (LHSVals.empty() && RHSVals.empty())
744 return false;
745
746 ConstantInt *InterestingVal;
747 if (match(I, m_LogicalOr()))
748 InterestingVal = ConstantInt::getTrue(I->getContext());
749 else
750 InterestingVal = ConstantInt::getFalse(I->getContext());
751
752 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
753
754 // Scan for the sentinel. If we find an undef, force it to the
755 // interesting value: x|undef -> true and x&undef -> false.
756 for (const auto &LHSVal : LHSVals)
757 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
758 Result.emplace_back(InterestingVal, LHSVal.second);
759 LHSKnownBBs.insert(LHSVal.second);
760 }
761 for (const auto &RHSVal : RHSVals)
762 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
763 // If we already inferred a value for this block on the LHS, don't
764 // re-add it.
765 if (!LHSKnownBBs.count(RHSVal.second))
766 Result.emplace_back(InterestingVal, RHSVal.second);
767 }
768
769 return !Result.empty();
770 }
771
772 // Handle the NOT form of XOR.
773 if (I->getOpcode() == Instruction::Xor &&
774 isa<ConstantInt>(I->getOperand(1)) &&
775 cast<ConstantInt>(I->getOperand(1))->isOne()) {
776 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
777 WantInteger, RecursionSet, CxtI);
778 if (Result.empty())
779 return false;
780
781 // Invert the known values.
782 for (auto &R : Result)
783 R.first = ConstantExpr::getNot(R.first);
784
785 return true;
786 }
787
788 // Try to simplify some other binary operator values.
789 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
790 if (Preference != WantInteger)
791 return false;
792 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
793 PredValueInfoTy LHSVals;
794 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
795 WantInteger, RecursionSet, CxtI);
796
797 // Try to use constant folding to simplify the binary operator.
798 for (const auto &LHSVal : LHSVals) {
799 Constant *V = LHSVal.first;
800 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
801
802 if (Constant *KC = getKnownConstant(Folded, WantInteger))
803 Result.emplace_back(KC, LHSVal.second);
804 }
805 }
806
807 return !Result.empty();
808 }
809
810 // Handle compare with phi operand, where the PHI is defined in this block.
811 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
812 if (Preference != WantInteger)
813 return false;
814 Type *CmpType = Cmp->getType();
815 Value *CmpLHS = Cmp->getOperand(0);
816 Value *CmpRHS = Cmp->getOperand(1);
817 CmpInst::Predicate Pred = Cmp->getPredicate();
818
819 PHINode *PN = dyn_cast<PHINode>(CmpLHS);
820 if (!PN)
821 PN = dyn_cast<PHINode>(CmpRHS);
822 if (PN && PN->getParent() == BB) {
823 const DataLayout &DL = PN->getModule()->getDataLayout();
824 // We can do this simplification if any comparisons fold to true or false.
825 // See if any do.
826 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
827 BasicBlock *PredBB = PN->getIncomingBlock(i);
828 Value *LHS, *RHS;
829 if (PN == CmpLHS) {
830 LHS = PN->getIncomingValue(i);
831 RHS = CmpRHS->DoPHITranslation(BB, PredBB);
832 } else {
833 LHS = CmpLHS->DoPHITranslation(BB, PredBB);
834 RHS = PN->getIncomingValue(i);
835 }
836 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
837 if (!Res) {
838 if (!isa<Constant>(RHS))
839 continue;
840
841 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
842 auto LHSInst = dyn_cast<Instruction>(LHS);
843 if (LHSInst && LHSInst->getParent() == BB)
844 continue;
845
846 LazyValueInfo::Tristate
847 ResT = LVI->getPredicateOnEdge(Pred, LHS,
848 cast<Constant>(RHS), PredBB, BB,
849 CxtI ? CxtI : Cmp);
850 if (ResT == LazyValueInfo::Unknown)
851 continue;
852 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
853 }
854
855 if (Constant *KC = getKnownConstant(Res, WantInteger))
856 Result.emplace_back(KC, PredBB);
857 }
858
859 return !Result.empty();
860 }
861
862 // If comparing a live-in value against a constant, see if we know the
863 // live-in value on any predecessors.
864 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
865 Constant *CmpConst = cast<Constant>(CmpRHS);
866
867 if (!isa<Instruction>(CmpLHS) ||
868 cast<Instruction>(CmpLHS)->getParent() != BB) {
869 for (BasicBlock *P : predecessors(BB)) {
870 // If the value is known by LazyValueInfo to be a constant in a
871 // predecessor, use that information to try to thread this block.
872 LazyValueInfo::Tristate Res =
873 LVI->getPredicateOnEdge(Pred, CmpLHS,
874 CmpConst, P, BB, CxtI ? CxtI : Cmp);
875 if (Res == LazyValueInfo::Unknown)
876 continue;
877
878 Constant *ResC = ConstantInt::get(CmpType, Res);
879 Result.emplace_back(ResC, P);
880 }
881
882 return !Result.empty();
883 }
884
885 // InstCombine can fold some forms of constant range checks into
886 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
887 // x as a live-in.
888 {
889 using namespace PatternMatch;
890
891 Value *AddLHS;
892 ConstantInt *AddConst;
893 if (isa<ConstantInt>(CmpConst) &&
894 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
895 if (!isa<Instruction>(AddLHS) ||
896 cast<Instruction>(AddLHS)->getParent() != BB) {
897 for (BasicBlock *P : predecessors(BB)) {
898 // If the value is known by LazyValueInfo to be a ConstantRange in
899 // a predecessor, use that information to try to thread this
900 // block.
901 ConstantRange CR = LVI->getConstantRangeOnEdge(
902 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
903 // Propagate the range through the addition.
904 CR = CR.add(AddConst->getValue());
905
906 // Get the range where the compare returns true.
907 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
908 Pred, cast<ConstantInt>(CmpConst)->getValue());
909
910 Constant *ResC;
911 if (CmpRange.contains(CR))
912 ResC = ConstantInt::getTrue(CmpType);
913 else if (CmpRange.inverse().contains(CR))
914 ResC = ConstantInt::getFalse(CmpType);
915 else
916 continue;
917
918 Result.emplace_back(ResC, P);
919 }
920
921 return !Result.empty();
922 }
923 }
924 }
925
926 // Try to find a constant value for the LHS of a comparison,
927 // and evaluate it statically if we can.
928 PredValueInfoTy LHSVals;
929 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
930 WantInteger, RecursionSet, CxtI);
931
932 for (const auto &LHSVal : LHSVals) {
933 Constant *V = LHSVal.first;
934 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
935 if (Constant *KC = getKnownConstant(Folded, WantInteger))
936 Result.emplace_back(KC, LHSVal.second);
937 }
938
939 return !Result.empty();
940 }
941 }
942
943 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
944 // Handle select instructions where at least one operand is a known constant
945 // and we can figure out the condition value for any predecessor block.
946 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
947 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
948 PredValueInfoTy Conds;
949 if ((TrueVal || FalseVal) &&
950 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
951 WantInteger, RecursionSet, CxtI)) {
952 for (auto &C : Conds) {
953 Constant *Cond = C.first;
954
955 // Figure out what value to use for the condition.
956 bool KnownCond;
957 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
958 // A known boolean.
959 KnownCond = CI->isOne();
960 } else {
961 assert(isa<UndefValue>(Cond) && "Unexpected condition value")(static_cast <bool> (isa<UndefValue>(Cond) &&
"Unexpected condition value") ? void (0) : __assert_fail ("isa<UndefValue>(Cond) && \"Unexpected condition value\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 961, __extension__
__PRETTY_FUNCTION__))
;
962 // Either operand will do, so be sure to pick the one that's a known
963 // constant.
964 // FIXME: Do this more cleverly if both values are known constants?
965 KnownCond = (TrueVal != nullptr);
966 }
967
968 // See if the select has a known constant value for this predecessor.
969 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
970 Result.emplace_back(Val, C.second);
971 }
972
973 return !Result.empty();
974 }
975 }
976
977 // If all else fails, see if LVI can figure out a constant value for us.
978 assert(CxtI->getParent() == BB && "CxtI should be in BB")(static_cast <bool> (CxtI->getParent() == BB &&
"CxtI should be in BB") ? void (0) : __assert_fail ("CxtI->getParent() == BB && \"CxtI should be in BB\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 978, __extension__
__PRETTY_FUNCTION__))
;
979 Constant *CI = LVI->getConstant(V, CxtI);
980 if (Constant *KC = getKnownConstant(CI, Preference)) {
981 for (BasicBlock *Pred : predecessors(BB))
982 Result.emplace_back(KC, Pred);
983 }
984
985 return !Result.empty();
986}
987
988/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
989/// in an undefined jump, decide which block is best to revector to.
990///
991/// Since we can pick an arbitrary destination, we pick the successor with the
992/// fewest predecessors. This should reduce the in-degree of the others.
993static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
994 Instruction *BBTerm = BB->getTerminator();
995 unsigned MinSucc = 0;
996 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
997 // Compute the successor with the minimum number of predecessors.
998 unsigned MinNumPreds = pred_size(TestBB);
999 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1000 TestBB = BBTerm->getSuccessor(i);
1001 unsigned NumPreds = pred_size(TestBB);
1002 if (NumPreds < MinNumPreds) {
1003 MinSucc = i;
1004 MinNumPreds = NumPreds;
1005 }
1006 }
1007
1008 return MinSucc;
1009}
1010
1011static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1012 if (!BB->hasAddressTaken()) return false;
1013
1014 // If the block has its address taken, it may be a tree of dead constants
1015 // hanging off of it. These shouldn't keep the block alive.
1016 BlockAddress *BA = BlockAddress::get(BB);
1017 BA->removeDeadConstantUsers();
1018 return !BA->use_empty();
1019}
1020
1021/// processBlock - If there are any predecessors whose control can be threaded
1022/// through to a successor, transform them now.
1023bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1024 // If the block is trivially dead, just return and let the caller nuke it.
1025 // This simplifies other transformations.
1026 if (DTU->isBBPendingDeletion(BB) ||
1027 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1028 return false;
1029
1030 // If this block has a single predecessor, and if that pred has a single
1031 // successor, merge the blocks. This encourages recursive jump threading
1032 // because now the condition in this block can be threaded through
1033 // predecessors of our predecessor block.
1034 if (maybeMergeBasicBlockIntoOnlyPred(BB))
1035 return true;
1036
1037 if (tryToUnfoldSelectInCurrBB(BB))
1038 return true;
1039
1040 // Look if we can propagate guards to predecessors.
1041 if (HasGuards && processGuards(BB))
1042 return true;
1043
1044 // What kind of constant we're looking for.
1045 ConstantPreference Preference = WantInteger;
1046
1047 // Look to see if the terminator is a conditional branch, switch or indirect
1048 // branch, if not we can't thread it.
1049 Value *Condition;
1050 Instruction *Terminator = BB->getTerminator();
1051 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1052 // Can't thread an unconditional jump.
1053 if (BI->isUnconditional()) return false;
1054 Condition = BI->getCondition();
1055 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1056 Condition = SI->getCondition();
1057 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1058 // Can't thread indirect branch with no successors.
1059 if (IB->getNumSuccessors() == 0) return false;
1060 Condition = IB->getAddress()->stripPointerCasts();
1061 Preference = WantBlockAddress;
1062 } else {
1063 return false; // Must be an invoke or callbr.
1064 }
1065
1066 // Keep track if we constant folded the condition in this invocation.
1067 bool ConstantFolded = false;
1068
1069 // Run constant folding to see if we can reduce the condition to a simple
1070 // constant.
1071 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1072 Value *SimpleVal =
1073 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1074 if (SimpleVal) {
1075 I->replaceAllUsesWith(SimpleVal);
1076 if (isInstructionTriviallyDead(I, TLI))
1077 I->eraseFromParent();
1078 Condition = SimpleVal;
1079 ConstantFolded = true;
1080 }
1081 }
1082
1083 // If the terminator is branching on an undef or freeze undef, we can pick any
1084 // of the successors to branch to. Let getBestDestForJumpOnUndef decide.
1085 auto *FI = dyn_cast<FreezeInst>(Condition);
1086 if (isa<UndefValue>(Condition) ||
1087 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1088 unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1089 std::vector<DominatorTree::UpdateType> Updates;
1090
1091 // Fold the branch/switch.
1092 Instruction *BBTerm = BB->getTerminator();
1093 Updates.reserve(BBTerm->getNumSuccessors());
1094 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1095 if (i == BestSucc) continue;
1096 BasicBlock *Succ = BBTerm->getSuccessor(i);
1097 Succ->removePredecessor(BB, true);
1098 Updates.push_back({DominatorTree::Delete, BB, Succ});
1099 }
1100
1101 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " In block '" <<
BB->getName() << "' folding undef terminator: " <<
*BBTerm << '\n'; } } while (false)
1102 << "' folding undef terminator: " << *BBTerm << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " In block '" <<
BB->getName() << "' folding undef terminator: " <<
*BBTerm << '\n'; } } while (false)
;
1103 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1104 ++NumFolds;
1105 BBTerm->eraseFromParent();
1106 DTU->applyUpdatesPermissive(Updates);
1107 if (FI)
1108 FI->eraseFromParent();
1109 return true;
1110 }
1111
1112 // If the terminator of this block is branching on a constant, simplify the
1113 // terminator to an unconditional branch. This can occur due to threading in
1114 // other blocks.
1115 if (getKnownConstant(Condition, Preference)) {
1116 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " In block '" <<
BB->getName() << "' folding terminator: " << *
BB->getTerminator() << '\n'; } } while (false)
1117 << "' folding terminator: " << *BB->getTerminator()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " In block '" <<
BB->getName() << "' folding terminator: " << *
BB->getTerminator() << '\n'; } } while (false)
1118 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " In block '" <<
BB->getName() << "' folding terminator: " << *
BB->getTerminator() << '\n'; } } while (false)
;
1119 ++NumFolds;
1120 ConstantFoldTerminator(BB, true, nullptr, DTU);
1121 if (HasProfileData)
1122 BPI->eraseBlock(BB);
1123 return true;
1124 }
1125
1126 Instruction *CondInst = dyn_cast<Instruction>(Condition);
1127
1128 // All the rest of our checks depend on the condition being an instruction.
1129 if (!CondInst) {
1130 // FIXME: Unify this with code below.
1131 if (processThreadableEdges(Condition, BB, Preference, Terminator))
1132 return true;
1133 return ConstantFolded;
1134 }
1135
1136 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1137 // If we're branching on a conditional, LVI might be able to determine
1138 // it's value at the branch instruction. We only handle comparisons
1139 // against a constant at this time.
1140 // TODO: This should be extended to handle switches as well.
1141 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1142 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1143 if (CondBr && CondConst) {
1144 // We should have returned as soon as we turn a conditional branch to
1145 // unconditional. Because its no longer interesting as far as jump
1146 // threading is concerned.
1147 assert(CondBr->isConditional() && "Threading on unconditional terminator")(static_cast <bool> (CondBr->isConditional() &&
"Threading on unconditional terminator") ? void (0) : __assert_fail
("CondBr->isConditional() && \"Threading on unconditional terminator\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1147, __extension__
__PRETTY_FUNCTION__))
;
1148
1149 LazyValueInfo::Tristate Ret =
1150 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1151 CondConst, CondBr, /*UseBlockValue=*/false);
1152 if (Ret != LazyValueInfo::Unknown) {
1153 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1154 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1155 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1156 ToRemoveSucc->removePredecessor(BB, true);
1157 BranchInst *UncondBr =
1158 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1159 UncondBr->setDebugLoc(CondBr->getDebugLoc());
1160 ++NumFolds;
1161 CondBr->eraseFromParent();
1162 if (CondCmp->use_empty())
1163 CondCmp->eraseFromParent();
1164 // We can safely replace *some* uses of the CondInst if it has
1165 // exactly one value as returned by LVI. RAUW is incorrect in the
1166 // presence of guards and assumes, that have the `Cond` as the use. This
1167 // is because we use the guards/assume to reason about the `Cond` value
1168 // at the end of block, but RAUW unconditionally replaces all uses
1169 // including the guards/assumes themselves and the uses before the
1170 // guard/assume.
1171 else if (CondCmp->getParent() == BB) {
1172 auto *CI = Ret == LazyValueInfo::True ?
1173 ConstantInt::getTrue(CondCmp->getType()) :
1174 ConstantInt::getFalse(CondCmp->getType());
1175 replaceFoldableUses(CondCmp, CI);
1176 }
1177 DTU->applyUpdatesPermissive(
1178 {{DominatorTree::Delete, BB, ToRemoveSucc}});
1179 if (HasProfileData)
1180 BPI->eraseBlock(BB);
1181 return true;
1182 }
1183
1184 // We did not manage to simplify this branch, try to see whether
1185 // CondCmp depends on a known phi-select pattern.
1186 if (tryToUnfoldSelect(CondCmp, BB))
1187 return true;
1188 }
1189 }
1190
1191 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1192 if (tryToUnfoldSelect(SI, BB))
1193 return true;
1194
1195 // Check for some cases that are worth simplifying. Right now we want to look
1196 // for loads that are used by a switch or by the condition for the branch. If
1197 // we see one, check to see if it's partially redundant. If so, insert a PHI
1198 // which can then be used to thread the values.
1199 Value *SimplifyValue = CondInst;
1200
1201 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1202 // Look into freeze's operand
1203 SimplifyValue = FI->getOperand(0);
1204
1205 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1206 if (isa<Constant>(CondCmp->getOperand(1)))
1207 SimplifyValue = CondCmp->getOperand(0);
1208
1209 // TODO: There are other places where load PRE would be profitable, such as
1210 // more complex comparisons.
1211 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1212 if (simplifyPartiallyRedundantLoad(LoadI))
1213 return true;
1214
1215 // Before threading, try to propagate profile data backwards:
1216 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1217 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1218 updatePredecessorProfileMetadata(PN, BB);
1219
1220 // Handle a variety of cases where we are branching on something derived from
1221 // a PHI node in the current block. If we can prove that any predecessors
1222 // compute a predictable value based on a PHI node, thread those predecessors.
1223 if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1224 return true;
1225
1226 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1227 // the current block, see if we can simplify.
1228 PHINode *PN = dyn_cast<PHINode>(
1229 isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
1230 : CondInst);
1231
1232 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1233 return processBranchOnPHI(PN);
1234
1235 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1236 if (CondInst->getOpcode() == Instruction::Xor &&
1237 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1238 return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1239
1240 // Search for a stronger dominating condition that can be used to simplify a
1241 // conditional branch leaving BB.
1242 if (processImpliedCondition(BB))
1243 return true;
1244
1245 return false;
1246}
1247
1248bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1249 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1250 if (!BI || !BI->isConditional())
1251 return false;
1252
1253 Value *Cond = BI->getCondition();
1254 BasicBlock *CurrentBB = BB;
1255 BasicBlock *CurrentPred = BB->getSinglePredecessor();
1256 unsigned Iter = 0;
1257
1258 auto &DL = BB->getModule()->getDataLayout();
1259
1260 while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1261 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1262 if (!PBI || !PBI->isConditional())
1263 return false;
1264 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1265 return false;
1266
1267 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1268 Optional<bool> Implication =
1269 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1270 if (Implication) {
1271 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1272 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1273 RemoveSucc->removePredecessor(BB);
1274 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1275 UncondBI->setDebugLoc(BI->getDebugLoc());
1276 ++NumFolds;
1277 BI->eraseFromParent();
1278 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1279 if (HasProfileData)
1280 BPI->eraseBlock(BB);
1281 return true;
1282 }
1283 CurrentBB = CurrentPred;
1284 CurrentPred = CurrentBB->getSinglePredecessor();
1285 }
1286
1287 return false;
1288}
1289
1290/// Return true if Op is an instruction defined in the given block.
1291static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1292 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1293 if (OpInst->getParent() == BB)
1294 return true;
1295 return false;
1296}
1297
1298/// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1299/// redundant load instruction, eliminate it by replacing it with a PHI node.
1300/// This is an important optimization that encourages jump threading, and needs
1301/// to be run interlaced with other jump threading tasks.
1302bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1303 // Don't hack volatile and ordered loads.
1304 if (!LoadI->isUnordered()) return false;
1
Taking false branch
1305
1306 // If the load is defined in a block with exactly one predecessor, it can't be
1307 // partially redundant.
1308 BasicBlock *LoadBB = LoadI->getParent();
1309 if (LoadBB->getSinglePredecessor())
2
Assuming the condition is false
3
Taking false branch
1310 return false;
1311
1312 // If the load is defined in an EH pad, it can't be partially redundant,
1313 // because the edges between the invoke and the EH pad cannot have other
1314 // instructions between them.
1315 if (LoadBB->isEHPad())
4
Assuming the condition is false
5
Taking false branch
1316 return false;
1317
1318 Value *LoadedPtr = LoadI->getOperand(0);
1319
1320 // If the loaded operand is defined in the LoadBB and its not a phi,
1321 // it can't be available in predecessors.
1322 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1323 return false;
1324
1325 // Scan a few instructions up from the load, to see if it is obviously live at
1326 // the entry to its block.
1327 BasicBlock::iterator BBIt(LoadI);
1328 bool IsLoadCSE;
1329 if (Value *AvailableVal = FindAvailableLoadedValue(
6
Assuming 'AvailableVal' is null
7
Taking false branch
1330 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1331 // If the value of the load is locally available within the block, just use
1332 // it. This frequently occurs for reg2mem'd allocas.
1333
1334 if (IsLoadCSE) {
1335 LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1336 combineMetadataForCSE(NLoadI, LoadI, false);
1337 };
1338
1339 // If the returned value is the load itself, replace with an undef. This can
1340 // only happen in dead loops.
1341 if (AvailableVal == LoadI)
1342 AvailableVal = UndefValue::get(LoadI->getType());
1343 if (AvailableVal->getType() != LoadI->getType())
1344 AvailableVal = CastInst::CreateBitOrPointerCast(
1345 AvailableVal, LoadI->getType(), "", LoadI);
1346 LoadI->replaceAllUsesWith(AvailableVal);
1347 LoadI->eraseFromParent();
1348 return true;
1349 }
1350
1351 // Otherwise, if we scanned the whole block and got to the top of the block,
1352 // we know the block is locally transparent to the load. If not, something
1353 // might clobber its value.
1354 if (BBIt != LoadBB->begin())
8
Taking false branch
1355 return false;
1356
1357 // If all of the loads and stores that feed the value have the same AA tags,
1358 // then we can propagate them onto any newly inserted loads.
1359 AAMDNodes AATags = LoadI->getAAMetadata();
1360
1361 SmallPtrSet<BasicBlock*, 8> PredsScanned;
1362
1363 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1364
1365 AvailablePredsTy AvailablePreds;
1366 BasicBlock *OneUnavailablePred = nullptr;
9
'OneUnavailablePred' initialized to a null pointer value
1367 SmallVector<LoadInst*, 8> CSELoads;
1368
1369 // If we got here, the loaded value is transparent through to the start of the
1370 // block. Check to see if it is available in any of the predecessor blocks.
1371 for (BasicBlock *PredBB : predecessors(LoadBB)) {
1372 // If we already scanned this predecessor, skip it.
1373 if (!PredsScanned.insert(PredBB).second)
1374 continue;
1375
1376 BBIt = PredBB->end();
1377 unsigned NumScanedInst = 0;
1378 Value *PredAvailable = nullptr;
1379 // NOTE: We don't CSE load that is volatile or anything stronger than
1380 // unordered, that should have been checked when we entered the function.
1381 assert(LoadI->isUnordered() &&(static_cast <bool> (LoadI->isUnordered() &&
"Attempting to CSE volatile or atomic loads") ? void (0) : __assert_fail
("LoadI->isUnordered() && \"Attempting to CSE volatile or atomic loads\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1382, __extension__
__PRETTY_FUNCTION__))
1382 "Attempting to CSE volatile or atomic loads")(static_cast <bool> (LoadI->isUnordered() &&
"Attempting to CSE volatile or atomic loads") ? void (0) : __assert_fail
("LoadI->isUnordered() && \"Attempting to CSE volatile or atomic loads\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1382, __extension__
__PRETTY_FUNCTION__))
;
1383 // If this is a load on a phi pointer, phi-translate it and search
1384 // for available load/store to the pointer in predecessors.
1385 Type *AccessTy = LoadI->getType();
1386 const auto &DL = LoadI->getModule()->getDataLayout();
1387 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1388 LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1389 AATags);
1390 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1391 PredBB, BBIt, DefMaxInstsToScan,
1392 AA, &IsLoadCSE, &NumScanedInst);
1393
1394 // If PredBB has a single predecessor, continue scanning through the
1395 // single predecessor.
1396 BasicBlock *SinglePredBB = PredBB;
1397 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1398 NumScanedInst < DefMaxInstsToScan) {
1399 SinglePredBB = SinglePredBB->getSinglePredecessor();
1400 if (SinglePredBB) {
1401 BBIt = SinglePredBB->end();
1402 PredAvailable = findAvailablePtrLoadStore(
1403 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1404 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1405 &NumScanedInst);
1406 }
1407 }
1408
1409 if (!PredAvailable) {
1410 OneUnavailablePred = PredBB;
1411 continue;
1412 }
1413
1414 if (IsLoadCSE)
1415 CSELoads.push_back(cast<LoadInst>(PredAvailable));
1416
1417 // If so, this load is partially redundant. Remember this info so that we
1418 // can create a PHI node.
1419 AvailablePreds.emplace_back(PredBB, PredAvailable);
1420 }
1421
1422 // If the loaded value isn't available in any predecessor, it isn't partially
1423 // redundant.
1424 if (AvailablePreds.empty()) return false;
10
Taking false branch
1425
1426 // Okay, the loaded value is available in at least one (and maybe all!)
1427 // predecessors. If the value is unavailable in more than one unique
1428 // predecessor, we want to insert a merge block for those common predecessors.
1429 // This ensures that we only have to insert one reload, thus not increasing
1430 // code size.
1431 BasicBlock *UnavailablePred = nullptr;
1432
1433 // If the value is unavailable in one of predecessors, we will end up
1434 // inserting a new instruction into them. It is only valid if all the
1435 // instructions before LoadI are guaranteed to pass execution to its
1436 // successor, or if LoadI is safe to speculate.
1437 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1438 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1439 // It requires domination tree analysis, so for this simple case it is an
1440 // overkill.
1441 if (PredsScanned.size() != AvailablePreds.size() &&
11
Assuming the condition is false
1442 !isSafeToSpeculativelyExecute(LoadI))
1443 for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1444 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1445 return false;
1446
1447 // If there is exactly one predecessor where the value is unavailable, the
1448 // already computed 'OneUnavailablePred' block is it. If it ends in an
1449 // unconditional branch, we know that it isn't a critical edge.
1450 if (PredsScanned.size() == AvailablePreds.size()+1 &&
12
Assuming the condition is true
1451 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
13
Called C++ object pointer is null
1452 UnavailablePred = OneUnavailablePred;
1453 } else if (PredsScanned.size() != AvailablePreds.size()) {
1454 // Otherwise, we had multiple unavailable predecessors or we had a critical
1455 // edge from the one.
1456 SmallVector<BasicBlock*, 8> PredsToSplit;
1457 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1458
1459 for (const auto &AvailablePred : AvailablePreds)
1460 AvailablePredSet.insert(AvailablePred.first);
1461
1462 // Add all the unavailable predecessors to the PredsToSplit list.
1463 for (BasicBlock *P : predecessors(LoadBB)) {
1464 // If the predecessor is an indirect goto, we can't split the edge.
1465 // Same for CallBr.
1466 if (isa<IndirectBrInst>(P->getTerminator()) ||
1467 isa<CallBrInst>(P->getTerminator()))
1468 return false;
1469
1470 if (!AvailablePredSet.count(P))
1471 PredsToSplit.push_back(P);
1472 }
1473
1474 // Split them out to their own block.
1475 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1476 }
1477
1478 // If the value isn't available in all predecessors, then there will be
1479 // exactly one where it isn't available. Insert a load on that edge and add
1480 // it to the AvailablePreds list.
1481 if (UnavailablePred) {
1482 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&(static_cast <bool> (UnavailablePred->getTerminator(
)->getNumSuccessors() == 1 && "Can't handle critical edge here!"
) ? void (0) : __assert_fail ("UnavailablePred->getTerminator()->getNumSuccessors() == 1 && \"Can't handle critical edge here!\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1483, __extension__
__PRETTY_FUNCTION__))
1483 "Can't handle critical edge here!")(static_cast <bool> (UnavailablePred->getTerminator(
)->getNumSuccessors() == 1 && "Can't handle critical edge here!"
) ? void (0) : __assert_fail ("UnavailablePred->getTerminator()->getNumSuccessors() == 1 && \"Can't handle critical edge here!\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1483, __extension__
__PRETTY_FUNCTION__))
;
1484 LoadInst *NewVal = new LoadInst(
1485 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1486 LoadI->getName() + ".pr", false, LoadI->getAlign(),
1487 LoadI->getOrdering(), LoadI->getSyncScopeID(),
1488 UnavailablePred->getTerminator());
1489 NewVal->setDebugLoc(LoadI->getDebugLoc());
1490 if (AATags)
1491 NewVal->setAAMetadata(AATags);
1492
1493 AvailablePreds.emplace_back(UnavailablePred, NewVal);
1494 }
1495
1496 // Now we know that each predecessor of this block has a value in
1497 // AvailablePreds, sort them for efficient access as we're walking the preds.
1498 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1499
1500 // Create a PHI node at the start of the block for the PRE'd load value.
1501 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1502 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1503 &LoadBB->front());
1504 PN->takeName(LoadI);
1505 PN->setDebugLoc(LoadI->getDebugLoc());
1506
1507 // Insert new entries into the PHI for each predecessor. A single block may
1508 // have multiple entries here.
1509 for (pred_iterator PI = PB; PI != PE; ++PI) {
1510 BasicBlock *P = *PI;
1511 AvailablePredsTy::iterator I =
1512 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1513
1514 assert(I != AvailablePreds.end() && I->first == P &&(static_cast <bool> (I != AvailablePreds.end() &&
I->first == P && "Didn't find entry for predecessor!"
) ? void (0) : __assert_fail ("I != AvailablePreds.end() && I->first == P && \"Didn't find entry for predecessor!\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1515, __extension__
__PRETTY_FUNCTION__))
1515 "Didn't find entry for predecessor!")(static_cast <bool> (I != AvailablePreds.end() &&
I->first == P && "Didn't find entry for predecessor!"
) ? void (0) : __assert_fail ("I != AvailablePreds.end() && I->first == P && \"Didn't find entry for predecessor!\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1515, __extension__
__PRETTY_FUNCTION__))
;
1516
1517 // If we have an available predecessor but it requires casting, insert the
1518 // cast in the predecessor and use the cast. Note that we have to update the
1519 // AvailablePreds vector as we go so that all of the PHI entries for this
1520 // predecessor use the same bitcast.
1521 Value *&PredV = I->second;
1522 if (PredV->getType() != LoadI->getType())
1523 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1524 P->getTerminator());
1525
1526 PN->addIncoming(PredV, I->first);
1527 }
1528
1529 for (LoadInst *PredLoadI : CSELoads) {
1530 combineMetadataForCSE(PredLoadI, LoadI, true);
1531 }
1532
1533 LoadI->replaceAllUsesWith(PN);
1534 LoadI->eraseFromParent();
1535
1536 return true;
1537}
1538
1539/// findMostPopularDest - The specified list contains multiple possible
1540/// threadable destinations. Pick the one that occurs the most frequently in
1541/// the list.
1542static BasicBlock *
1543findMostPopularDest(BasicBlock *BB,
1544 const SmallVectorImpl<std::pair<BasicBlock *,
1545 BasicBlock *>> &PredToDestList) {
1546 assert(!PredToDestList.empty())(static_cast <bool> (!PredToDestList.empty()) ? void (0
) : __assert_fail ("!PredToDestList.empty()", "llvm/lib/Transforms/Scalar/JumpThreading.cpp"
, 1546, __extension__ __PRETTY_FUNCTION__))
;
1547
1548 // Determine popularity. If there are multiple possible destinations, we
1549 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1550 // blocks with known and real destinations to threading undef. We'll handle
1551 // them later if interesting.
1552 MapVector<BasicBlock *, unsigned> DestPopularity;
1553
1554 // Populate DestPopularity with the successors in the order they appear in the
1555 // successor list. This way, we ensure determinism by iterating it in the
1556 // same order in std::max_element below. We map nullptr to 0 so that we can
1557 // return nullptr when PredToDestList contains nullptr only.
1558 DestPopularity[nullptr] = 0;
1559 for (auto *SuccBB : successors(BB))
1560 DestPopularity[SuccBB] = 0;
1561
1562 for (const auto &PredToDest : PredToDestList)
1563 if (PredToDest.second)
1564 DestPopularity[PredToDest.second]++;
1565
1566 // Find the most popular dest.
1567 using VT = decltype(DestPopularity)::value_type;
1568 auto MostPopular = std::max_element(
1569 DestPopularity.begin(), DestPopularity.end(),
1570 [](const VT &L, const VT &R) { return L.second < R.second; });
1571
1572 // Okay, we have finally picked the most popular destination.
1573 return MostPopular->first;
1574}
1575
1576// Try to evaluate the value of V when the control flows from PredPredBB to
1577// BB->getSinglePredecessor() and then on to BB.
1578Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1579 BasicBlock *PredPredBB,
1580 Value *V) {
1581 BasicBlock *PredBB = BB->getSinglePredecessor();
1582 assert(PredBB && "Expected a single predecessor")(static_cast <bool> (PredBB && "Expected a single predecessor"
) ? void (0) : __assert_fail ("PredBB && \"Expected a single predecessor\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1582, __extension__
__PRETTY_FUNCTION__))
;
1583
1584 if (Constant *Cst = dyn_cast<Constant>(V)) {
1585 return Cst;
1586 }
1587
1588 // Consult LVI if V is not an instruction in BB or PredBB.
1589 Instruction *I = dyn_cast<Instruction>(V);
1590 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1591 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1592 }
1593
1594 // Look into a PHI argument.
1595 if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1596 if (PHI->getParent() == PredBB)
1597 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1598 return nullptr;
1599 }
1600
1601 // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1602 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1603 if (CondCmp->getParent() == BB) {
1604 Constant *Op0 =
1605 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1606 Constant *Op1 =
1607 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1608 if (Op0 && Op1) {
1609 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1610 }
1611 }
1612 return nullptr;
1613 }
1614
1615 return nullptr;
1616}
1617
1618bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1619 ConstantPreference Preference,
1620 Instruction *CxtI) {
1621 // If threading this would thread across a loop header, don't even try to
1622 // thread the edge.
1623 if (LoopHeaders.count(BB))
1624 return false;
1625
1626 PredValueInfoTy PredValues;
1627 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1628 CxtI)) {
1629 // We don't have known values in predecessors. See if we can thread through
1630 // BB and its sole predecessor.
1631 return maybethreadThroughTwoBasicBlocks(BB, Cond);
1632 }
1633
1634 assert(!PredValues.empty() &&(static_cast <bool> (!PredValues.empty() && "computeValueKnownInPredecessors returned true with no values"
) ? void (0) : __assert_fail ("!PredValues.empty() && \"computeValueKnownInPredecessors returned true with no values\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1635, __extension__
__PRETTY_FUNCTION__))
1635 "computeValueKnownInPredecessors returned true with no values")(static_cast <bool> (!PredValues.empty() && "computeValueKnownInPredecessors returned true with no values"
) ? void (0) : __assert_fail ("!PredValues.empty() && \"computeValueKnownInPredecessors returned true with no values\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1635, __extension__
__PRETTY_FUNCTION__))
;
1636
1637 LLVM_DEBUG(dbgs() << "IN BB: " << *BB;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
1638 for (const auto &PredValue : PredValues) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
1639 dbgs() << " BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
1640 << "': FOUND condition = " << *PredValue.firstdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
1641 << " for pred '" << PredValue.second->getName() << "'.\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
1642 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
;
1643
1644 // Decide what we want to thread through. Convert our list of known values to
1645 // a list of known destinations for each pred. This also discards duplicate
1646 // predecessors and keeps track of the undefined inputs (which are represented
1647 // as a null dest in the PredToDestList).
1648 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1649 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1650
1651 BasicBlock *OnlyDest = nullptr;
1652 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1653 Constant *OnlyVal = nullptr;
1654 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1655
1656 for (const auto &PredValue : PredValues) {
1657 BasicBlock *Pred = PredValue.second;
1658 if (!SeenPreds.insert(Pred).second)
1659 continue; // Duplicate predecessor entry.
1660
1661 Constant *Val = PredValue.first;
1662
1663 BasicBlock *DestBB;
1664 if (isa<UndefValue>(Val))
1665 DestBB = nullptr;
1666 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1667 assert(isa<ConstantInt>(Val) && "Expecting a constant integer")(static_cast <bool> (isa<ConstantInt>(Val) &&
"Expecting a constant integer") ? void (0) : __assert_fail (
"isa<ConstantInt>(Val) && \"Expecting a constant integer\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1667, __extension__
__PRETTY_FUNCTION__))
;
1668 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1669 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1670 assert(isa<ConstantInt>(Val) && "Expecting a constant integer")(static_cast <bool> (isa<ConstantInt>(Val) &&
"Expecting a constant integer") ? void (0) : __assert_fail (
"isa<ConstantInt>(Val) && \"Expecting a constant integer\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1670, __extension__
__PRETTY_FUNCTION__))
;
1671 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1672 } else {
1673 assert(isa<IndirectBrInst>(BB->getTerminator())(static_cast <bool> (isa<IndirectBrInst>(BB->getTerminator
()) && "Unexpected terminator") ? void (0) : __assert_fail
("isa<IndirectBrInst>(BB->getTerminator()) && \"Unexpected terminator\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1674, __extension__
__PRETTY_FUNCTION__))
1674 && "Unexpected terminator")(static_cast <bool> (isa<IndirectBrInst>(BB->getTerminator
()) && "Unexpected terminator") ? void (0) : __assert_fail
("isa<IndirectBrInst>(BB->getTerminator()) && \"Unexpected terminator\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1674, __extension__
__PRETTY_FUNCTION__))
;
1675 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress")(static_cast <bool> (isa<BlockAddress>(Val) &&
"Expecting a constant blockaddress") ? void (0) : __assert_fail
("isa<BlockAddress>(Val) && \"Expecting a constant blockaddress\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1675, __extension__
__PRETTY_FUNCTION__))
;
1676 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1677 }
1678
1679 // If we have exactly one destination, remember it for efficiency below.
1680 if (PredToDestList.empty()) {
1681 OnlyDest = DestBB;
1682 OnlyVal = Val;
1683 } else {
1684 if (OnlyDest != DestBB)
1685 OnlyDest = MultipleDestSentinel;
1686 // It possible we have same destination, but different value, e.g. default
1687 // case in switchinst.
1688 if (Val != OnlyVal)
1689 OnlyVal = MultipleVal;
1690 }
1691
1692 // If the predecessor ends with an indirect goto, we can't change its
1693 // destination. Same for CallBr.
1694 if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1695 isa<CallBrInst>(Pred->getTerminator()))
1696 continue;
1697
1698 PredToDestList.emplace_back(Pred, DestBB);
1699 }
1700
1701 // If all edges were unthreadable, we fail.
1702 if (PredToDestList.empty())
1703 return false;
1704
1705 // If all the predecessors go to a single known successor, we want to fold,
1706 // not thread. By doing so, we do not need to duplicate the current block and
1707 // also miss potential opportunities in case we dont/cant duplicate.
1708 if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1709 if (BB->hasNPredecessors(PredToDestList.size())) {
1710 bool SeenFirstBranchToOnlyDest = false;
1711 std::vector <DominatorTree::UpdateType> Updates;
1712 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1713 for (BasicBlock *SuccBB : successors(BB)) {
1714 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1715 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1716 } else {
1717 SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1718 Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1719 }
1720 }
1721
1722 // Finally update the terminator.
1723 Instruction *Term = BB->getTerminator();
1724 BranchInst::Create(OnlyDest, Term);
1725 ++NumFolds;
1726 Term->eraseFromParent();
1727 DTU->applyUpdatesPermissive(Updates);
1728 if (HasProfileData)
1729 BPI->eraseBlock(BB);
1730
1731 // If the condition is now dead due to the removal of the old terminator,
1732 // erase it.
1733 if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1734 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1735 CondInst->eraseFromParent();
1736 // We can safely replace *some* uses of the CondInst if it has
1737 // exactly one value as returned by LVI. RAUW is incorrect in the
1738 // presence of guards and assumes, that have the `Cond` as the use. This
1739 // is because we use the guards/assume to reason about the `Cond` value
1740 // at the end of block, but RAUW unconditionally replaces all uses
1741 // including the guards/assumes themselves and the uses before the
1742 // guard/assume.
1743 else if (OnlyVal && OnlyVal != MultipleVal &&
1744 CondInst->getParent() == BB)
1745 replaceFoldableUses(CondInst, OnlyVal);
1746 }
1747 return true;
1748 }
1749 }
1750
1751 // Determine which is the most common successor. If we have many inputs and
1752 // this block is a switch, we want to start by threading the batch that goes
1753 // to the most popular destination first. If we only know about one
1754 // threadable destination (the common case) we can avoid this.
1755 BasicBlock *MostPopularDest = OnlyDest;
1756
1757 if (MostPopularDest == MultipleDestSentinel) {
1758 // Remove any loop headers from the Dest list, threadEdge conservatively
1759 // won't process them, but we might have other destination that are eligible
1760 // and we still want to process.
1761 erase_if(PredToDestList,
1762 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1763 return LoopHeaders.contains(PredToDest.second);
1764 });
1765
1766 if (PredToDestList.empty())
1767 return false;
1768
1769 MostPopularDest = findMostPopularDest(BB, PredToDestList);
1770 }
1771
1772 // Now that we know what the most popular destination is, factor all
1773 // predecessors that will jump to it into a single predecessor.
1774 SmallVector<BasicBlock*, 16> PredsToFactor;
1775 for (const auto &PredToDest : PredToDestList)
1776 if (PredToDest.second == MostPopularDest) {
1777 BasicBlock *Pred = PredToDest.first;
1778
1779 // This predecessor may be a switch or something else that has multiple
1780 // edges to the block. Factor each of these edges by listing them
1781 // according to # occurrences in PredsToFactor.
1782 for (BasicBlock *Succ : successors(Pred))
1783 if (Succ == BB)
1784 PredsToFactor.push_back(Pred);
1785 }
1786
1787 // If the threadable edges are branching on an undefined value, we get to pick
1788 // the destination that these predecessors should get to.
1789 if (!MostPopularDest)
1790 MostPopularDest = BB->getTerminator()->
1791 getSuccessor(getBestDestForJumpOnUndef(BB));
1792
1793 // Ok, try to thread it!
1794 return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1795}
1796
1797/// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1798/// a PHI node (or freeze PHI) in the current block. See if there are any
1799/// simplifications we can do based on inputs to the phi node.
1800bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1801 BasicBlock *BB = PN->getParent();
1802
1803 // TODO: We could make use of this to do it once for blocks with common PHI
1804 // values.
1805 SmallVector<BasicBlock*, 1> PredBBs;
1806 PredBBs.resize(1);
1807
1808 // If any of the predecessor blocks end in an unconditional branch, we can
1809 // *duplicate* the conditional branch into that block in order to further
1810 // encourage jump threading and to eliminate cases where we have branch on a
1811 // phi of an icmp (branch on icmp is much better).
1812 // This is still beneficial when a frozen phi is used as the branch condition
1813 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1814 // to br(icmp(freeze ...)).
1815 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1816 BasicBlock *PredBB = PN->getIncomingBlock(i);
1817 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1818 if (PredBr->isUnconditional()) {
1819 PredBBs[0] = PredBB;
1820 // Try to duplicate BB into PredBB.
1821 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1822 return true;
1823 }
1824 }
1825
1826 return false;
1827}
1828
1829/// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1830/// a xor instruction in the current block. See if there are any
1831/// simplifications we can do based on inputs to the xor.
1832bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1833 BasicBlock *BB = BO->getParent();
1834
1835 // If either the LHS or RHS of the xor is a constant, don't do this
1836 // optimization.
1837 if (isa<ConstantInt>(BO->getOperand(0)) ||
1838 isa<ConstantInt>(BO->getOperand(1)))
1839 return false;
1840
1841 // If the first instruction in BB isn't a phi, we won't be able to infer
1842 // anything special about any particular predecessor.
1843 if (!isa<PHINode>(BB->front()))
1844 return false;
1845
1846 // If this BB is a landing pad, we won't be able to split the edge into it.
1847 if (BB->isEHPad())
1848 return false;
1849
1850 // If we have a xor as the branch input to this block, and we know that the
1851 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1852 // the condition into the predecessor and fix that value to true, saving some
1853 // logical ops on that path and encouraging other paths to simplify.
1854 //
1855 // This copies something like this:
1856 //
1857 // BB:
1858 // %X = phi i1 [1], [%X']
1859 // %Y = icmp eq i32 %A, %B
1860 // %Z = xor i1 %X, %Y
1861 // br i1 %Z, ...
1862 //
1863 // Into:
1864 // BB':
1865 // %Y = icmp ne i32 %A, %B
1866 // br i1 %Y, ...
1867
1868 PredValueInfoTy XorOpValues;
1869 bool isLHS = true;
1870 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1871 WantInteger, BO)) {
1872 assert(XorOpValues.empty())(static_cast <bool> (XorOpValues.empty()) ? void (0) : __assert_fail
("XorOpValues.empty()", "llvm/lib/Transforms/Scalar/JumpThreading.cpp"
, 1872, __extension__ __PRETTY_FUNCTION__))
;
1873 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1874 WantInteger, BO))
1875 return false;
1876 isLHS = false;
1877 }
1878
1879 assert(!XorOpValues.empty() &&(static_cast <bool> (!XorOpValues.empty() && "computeValueKnownInPredecessors returned true with no values"
) ? void (0) : __assert_fail ("!XorOpValues.empty() && \"computeValueKnownInPredecessors returned true with no values\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1880, __extension__
__PRETTY_FUNCTION__))
1880 "computeValueKnownInPredecessors returned true with no values")(static_cast <bool> (!XorOpValues.empty() && "computeValueKnownInPredecessors returned true with no values"
) ? void (0) : __assert_fail ("!XorOpValues.empty() && \"computeValueKnownInPredecessors returned true with no values\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1880, __extension__
__PRETTY_FUNCTION__))
;
1881
1882 // Scan the information to see which is most popular: true or false. The
1883 // predecessors can be of the set true, false, or undef.
1884 unsigned NumTrue = 0, NumFalse = 0;
1885 for (const auto &XorOpValue : XorOpValues) {
1886 if (isa<UndefValue>(XorOpValue.first))
1887 // Ignore undefs for the count.
1888 continue;
1889 if (cast<ConstantInt>(XorOpValue.first)->isZero())
1890 ++NumFalse;
1891 else
1892 ++NumTrue;
1893 }
1894
1895 // Determine which value to split on, true, false, or undef if neither.
1896 ConstantInt *SplitVal = nullptr;
1897 if (NumTrue > NumFalse)
1898 SplitVal = ConstantInt::getTrue(BB->getContext());
1899 else if (NumTrue != 0 || NumFalse != 0)
1900 SplitVal = ConstantInt::getFalse(BB->getContext());
1901
1902 // Collect all of the blocks that this can be folded into so that we can
1903 // factor this once and clone it once.
1904 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1905 for (const auto &XorOpValue : XorOpValues) {
1906 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1907 continue;
1908
1909 BlocksToFoldInto.push_back(XorOpValue.second);
1910 }
1911
1912 // If we inferred a value for all of the predecessors, then duplication won't
1913 // help us. However, we can just replace the LHS or RHS with the constant.
1914 if (BlocksToFoldInto.size() ==
1915 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1916 if (!SplitVal) {
1917 // If all preds provide undef, just nuke the xor, because it is undef too.
1918 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1919 BO->eraseFromParent();
1920 } else if (SplitVal->isZero()) {
1921 // If all preds provide 0, replace the xor with the other input.
1922 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1923 BO->eraseFromParent();
1924 } else {
1925 // If all preds provide 1, set the computed value to 1.
1926 BO->setOperand(!isLHS, SplitVal);
1927 }
1928
1929 return true;
1930 }
1931
1932 // If any of predecessors end with an indirect goto, we can't change its
1933 // destination. Same for CallBr.
1934 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1935 return isa<IndirectBrInst>(Pred->getTerminator()) ||
1936 isa<CallBrInst>(Pred->getTerminator());
1937 }))
1938 return false;
1939
1940 // Try to duplicate BB into PredBB.
1941 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1942}
1943
1944/// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1945/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1946/// NewPred using the entries from OldPred (suitably mapped).
1947static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1948 BasicBlock *OldPred,
1949 BasicBlock *NewPred,
1950 DenseMap<Instruction*, Value*> &ValueMap) {
1951 for (PHINode &PN : PHIBB->phis()) {
1952 // Ok, we have a PHI node. Figure out what the incoming value was for the
1953 // DestBlock.
1954 Value *IV = PN.getIncomingValueForBlock(OldPred);
1955
1956 // Remap the value if necessary.
1957 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1958 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1959 if (I != ValueMap.end())
1960 IV = I->second;
1961 }
1962
1963 PN.addIncoming(IV, NewPred);
1964 }
1965}
1966
1967/// Merge basic block BB into its sole predecessor if possible.
1968bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1969 BasicBlock *SinglePred = BB->getSinglePredecessor();
1970 if (!SinglePred)
1971 return false;
1972
1973 const Instruction *TI = SinglePred->getTerminator();
1974 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1975 SinglePred == BB || hasAddressTakenAndUsed(BB))
1976 return false;
1977
1978 // If SinglePred was a loop header, BB becomes one.
1979 if (LoopHeaders.erase(SinglePred))
1980 LoopHeaders.insert(BB);
1981
1982 LVI->eraseBlock(SinglePred);
1983 MergeBasicBlockIntoOnlyPred(BB, DTU);
1984
1985 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1986 // BB code within one basic block `BB`), we need to invalidate the LVI
1987 // information associated with BB, because the LVI information need not be
1988 // true for all of BB after the merge. For example,
1989 // Before the merge, LVI info and code is as follows:
1990 // SinglePred: <LVI info1 for %p val>
1991 // %y = use of %p
1992 // call @exit() // need not transfer execution to successor.
1993 // assume(%p) // from this point on %p is true
1994 // br label %BB
1995 // BB: <LVI info2 for %p val, i.e. %p is true>
1996 // %x = use of %p
1997 // br label exit
1998 //
1999 // Note that this LVI info for blocks BB and SinglPred is correct for %p
2000 // (info2 and info1 respectively). After the merge and the deletion of the
2001 // LVI info1 for SinglePred. We have the following code:
2002 // BB: <LVI info2 for %p val>
2003 // %y = use of %p
2004 // call @exit()
2005 // assume(%p)
2006 // %x = use of %p <-- LVI info2 is correct from here onwards.
2007 // br label exit
2008 // LVI info2 for BB is incorrect at the beginning of BB.
2009
2010 // Invalidate LVI information for BB if the LVI is not provably true for
2011 // all of BB.
2012 if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2013 LVI->eraseBlock(BB);
2014 return true;
2015}
2016
2017/// Update the SSA form. NewBB contains instructions that are copied from BB.
2018/// ValueMapping maps old values in BB to new ones in NewBB.
2019void JumpThreadingPass::updateSSA(
2020 BasicBlock *BB, BasicBlock *NewBB,
2021 DenseMap<Instruction *, Value *> &ValueMapping) {
2022 // If there were values defined in BB that are used outside the block, then we
2023 // now have to update all uses of the value to use either the original value,
2024 // the cloned value, or some PHI derived value. This can require arbitrary
2025 // PHI insertion, of which we are prepared to do, clean these up now.
2026 SSAUpdater SSAUpdate;
2027 SmallVector<Use *, 16> UsesToRename;
2028
2029 for (Instruction &I : *BB) {
2030 // Scan all uses of this instruction to see if it is used outside of its
2031 // block, and if so, record them in UsesToRename.
2032 for (Use &U : I.uses()) {
2033 Instruction *User = cast<Instruction>(U.getUser());
2034 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2035 if (UserPN->getIncomingBlock(U) == BB)
2036 continue;
2037 } else if (User->getParent() == BB)
2038 continue;
2039
2040 UsesToRename.push_back(&U);
2041 }
2042
2043 // If there are no uses outside the block, we're done with this instruction.
2044 if (UsesToRename.empty())
2045 continue;
2046 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "JT: Renaming non-local uses of: "
<< I << "\n"; } } while (false)
;
2047
2048 // We found a use of I outside of BB. Rename all uses of I that are outside
2049 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2050 // with the two values we know.
2051 SSAUpdate.Initialize(I.getType(), I.getName());
2052 SSAUpdate.AddAvailableValue(BB, &I);
2053 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2054
2055 while (!UsesToRename.empty())
2056 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2057 LLVM_DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "\n"; } } while (false)
;
2058 }
2059}
2060
2061/// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone
2062/// arguments that come from PredBB. Return the map from the variables in the
2063/// source basic block to the variables in the newly created basic block.
2064DenseMap<Instruction *, Value *>
2065JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2066 BasicBlock::iterator BE, BasicBlock *NewBB,
2067 BasicBlock *PredBB) {
2068 // We are going to have to map operands from the source basic block to the new
2069 // copy of the block 'NewBB'. If there are PHI nodes in the source basic
2070 // block, evaluate them to account for entry from PredBB.
2071 DenseMap<Instruction *, Value *> ValueMapping;
2072
2073 // Clone the phi nodes of the source basic block into NewBB. The resulting
2074 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2075 // might need to rewrite the operand of the cloned phi.
2076 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2077 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2078 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2079 ValueMapping[PN] = NewPN;
2080 }
2081
2082 // Clone noalias scope declarations in the threaded block. When threading a
2083 // loop exit, we would otherwise end up with two idential scope declarations
2084 // visible at the same time.
2085 SmallVector<MDNode *> NoAliasScopes;
2086 DenseMap<MDNode *, MDNode *> ClonedScopes;
2087 LLVMContext &Context = PredBB->getContext();
2088 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2089 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2090
2091 // Clone the non-phi instructions of the source basic block into NewBB,
2092 // keeping track of the mapping and using it to remap operands in the cloned
2093 // instructions.
2094 for (; BI != BE; ++BI) {
2095 Instruction *New = BI->clone();
2096 New->setName(BI->getName());
2097 NewBB->getInstList().push_back(New);
2098 ValueMapping[&*BI] = New;
2099 adaptNoAliasScopes(New, ClonedScopes, Context);
2100
2101 // Remap operands to patch up intra-block references.
2102 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2103 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2104 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2105 if (I != ValueMapping.end())
2106 New->setOperand(i, I->second);
2107 }
2108 }
2109
2110 return ValueMapping;
2111}
2112
2113/// Attempt to thread through two successive basic blocks.
2114bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2115 Value *Cond) {
2116 // Consider:
2117 //
2118 // PredBB:
2119 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2120 // %tobool = icmp eq i32 %cond, 0
2121 // br i1 %tobool, label %BB, label ...
2122 //
2123 // BB:
2124 // %cmp = icmp eq i32* %var, null
2125 // br i1 %cmp, label ..., label ...
2126 //
2127 // We don't know the value of %var at BB even if we know which incoming edge
2128 // we take to BB. However, once we duplicate PredBB for each of its incoming
2129 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2130 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2131
2132 // Require that BB end with a Branch for simplicity.
2133 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2134 if (!CondBr)
2135 return false;
2136
2137 // BB must have exactly one predecessor.
2138 BasicBlock *PredBB = BB->getSinglePredecessor();
2139 if (!PredBB)
2140 return false;
2141
2142 // Require that PredBB end with a conditional Branch. If PredBB ends with an
2143 // unconditional branch, we should be merging PredBB and BB instead. For
2144 // simplicity, we don't deal with a switch.
2145 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2146 if (!PredBBBranch || PredBBBranch->isUnconditional())
2147 return false;
2148
2149 // If PredBB has exactly one incoming edge, we don't gain anything by copying
2150 // PredBB.
2151 if (PredBB->getSinglePredecessor())
2152 return false;
2153
2154 // Don't thread through PredBB if it contains a successor edge to itself, in
2155 // which case we would infinite loop. Suppose we are threading an edge from
2156 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2157 // successor edge to itself. If we allowed jump threading in this case, we
2158 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since
2159 // PredBB.thread has a successor edge to PredBB, we would immediately come up
2160 // with another jump threading opportunity from PredBB.thread through PredBB
2161 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we
2162 // would keep peeling one iteration from PredBB.
2163 if (llvm::is_contained(successors(PredBB), PredBB))
2164 return false;
2165
2166 // Don't thread across a loop header.
2167 if (LoopHeaders.count(PredBB))
2168 return false;
2169
2170 // Avoid complication with duplicating EH pads.
2171 if (PredBB->isEHPad())
2172 return false;
2173
2174 // Find a predecessor that we can thread. For simplicity, we only consider a
2175 // successor edge out of BB to which we thread exactly one incoming edge into
2176 // PredBB.
2177 unsigned ZeroCount = 0;
2178 unsigned OneCount = 0;
2179 BasicBlock *ZeroPred = nullptr;
2180 BasicBlock *OnePred = nullptr;
2181 for (BasicBlock *P : predecessors(PredBB)) {
2182 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2183 evaluateOnPredecessorEdge(BB, P, Cond))) {
2184 if (CI->isZero()) {
2185 ZeroCount++;
2186 ZeroPred = P;
2187 } else if (CI->isOne()) {
2188 OneCount++;
2189 OnePred = P;
2190 }
2191 }
2192 }
2193
2194 // Disregard complicated cases where we have to thread multiple edges.
2195 BasicBlock *PredPredBB;
2196 if (ZeroCount == 1) {
2197 PredPredBB = ZeroPred;
2198 } else if (OneCount == 1) {
2199 PredPredBB = OnePred;
2200 } else {
2201 return false;
2202 }
2203
2204 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2205
2206 // If threading to the same block as we come from, we would infinite loop.
2207 if (SuccBB == BB) {
2208 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading across BB '"
<< BB->getName() << "' - would thread to self!\n"
; } } while (false)
2209 << "' - would thread to self!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading across BB '"
<< BB->getName() << "' - would thread to self!\n"
; } } while (false)
;
2210 return false;
2211 }
2212
2213 // If threading this would thread across a loop header, don't thread the edge.
2214 // See the comments above findLoopHeaders for justifications and caveats.
2215 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2216 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2217 bool BBIsHeader = LoopHeaders.count(BB);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2218 bool SuccIsHeader = LoopHeaders.count(SuccBB);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2219 dbgs() << " Not threading across "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2220 << (BBIsHeader ? "loop header BB '" : "block BB '")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2221 << BB->getName() << "' to dest "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2222 << (SuccIsHeader ? "loop header BB '" : "block BB '")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2223 << SuccBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2224 << "' - it might create an irreducible loop!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2225 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
;
2226 return false;
2227 }
2228
2229 // Compute the cost of duplicating BB and PredBB.
2230 unsigned BBCost = getJumpThreadDuplicationCost(
2231 TTI, BB, BB->getTerminator(), BBDupThreshold);
2232 unsigned PredBBCost = getJumpThreadDuplicationCost(
2233 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2234
2235 // Give up if costs are too high. We need to check BBCost and PredBBCost
2236 // individually before checking their sum because getJumpThreadDuplicationCost
2237 // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2238 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2239 BBCost + PredBBCost > BBDupThreshold) {
2240 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading BB '" <<
BB->getName() << "' - Cost is too high: " << PredBBCost
<< " for PredBB, " << BBCost << "for BB\n"
; } } while (false)
2241 << "' - Cost is too high: " << PredBBCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading BB '" <<
BB->getName() << "' - Cost is too high: " << PredBBCost
<< " for PredBB, " << BBCost << "for BB\n"
; } } while (false)
2242 << " for PredBB, " << BBCost << "for BB\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading BB '" <<
BB->getName() << "' - Cost is too high: " << PredBBCost
<< " for PredBB, " << BBCost << "for BB\n"
; } } while (false)
;
2243 return false;
2244 }
2245
2246 // Now we are ready to duplicate PredBB.
2247 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2248 return true;
2249}
2250
2251void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2252 BasicBlock *PredBB,
2253 BasicBlock *BB,
2254 BasicBlock *SuccBB) {
2255 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Threading through '"
<< PredBB->getName() << "' and '" << BB
->getName() << "'\n"; } } while (false)
2256 << BB->getName() << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Threading through '"
<< PredBB->getName() << "' and '" << BB
->getName() << "'\n"; } } while (false)
;
2257
2258 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2259 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2260
2261 BasicBlock *NewBB =
2262 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2263 PredBB->getParent(), PredBB);
2264 NewBB->moveAfter(PredBB);
2265
2266 // Set the block frequency of NewBB.
2267 if (HasProfileData) {
2268 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2269 BPI->getEdgeProbability(PredPredBB, PredBB);
2270 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2271 }
2272
2273 // We are going to have to map operands from the original BB block to the new
2274 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them
2275 // to account for entry from PredPredBB.
2276 DenseMap<Instruction *, Value *> ValueMapping =
2277 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2278
2279 // Copy the edge probabilities from PredBB to NewBB.
2280 if (HasProfileData)
2281 BPI->copyEdgeProbabilities(PredBB, NewBB);
2282
2283 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2284 // This eliminates predecessors from PredPredBB, which requires us to simplify
2285 // any PHI nodes in PredBB.
2286 Instruction *PredPredTerm = PredPredBB->getTerminator();
2287 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2288 if (PredPredTerm->getSuccessor(i) == PredBB) {
2289 PredBB->removePredecessor(PredPredBB, true);
2290 PredPredTerm->setSuccessor(i, NewBB);
2291 }
2292
2293 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2294 ValueMapping);
2295 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2296 ValueMapping);
2297
2298 DTU->applyUpdatesPermissive(
2299 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2300 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2301 {DominatorTree::Insert, PredPredBB, NewBB},
2302 {DominatorTree::Delete, PredPredBB, PredBB}});
2303
2304 updateSSA(PredBB, NewBB, ValueMapping);
2305
2306 // Clean up things like PHI nodes with single operands, dead instructions,
2307 // etc.
2308 SimplifyInstructionsInBlock(NewBB, TLI);
2309 SimplifyInstructionsInBlock(PredBB, TLI);
2310
2311 SmallVector<BasicBlock *, 1> PredsToFactor;
2312 PredsToFactor.push_back(NewBB);
2313 threadEdge(BB, PredsToFactor, SuccBB);
2314}
2315
2316/// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2317bool JumpThreadingPass::tryThreadEdge(
2318 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2319 BasicBlock *SuccBB) {
2320 // If threading to the same block as we come from, we would infinite loop.
2321 if (SuccBB == BB) {
2322 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading across BB '"
<< BB->getName() << "' - would thread to self!\n"
; } } while (false)
2323 << "' - would thread to self!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading across BB '"
<< BB->getName() << "' - would thread to self!\n"
; } } while (false)
;
2324 return false;
2325 }
2326
2327 // If threading this would thread across a loop header, don't thread the edge.
2328 // See the comments above findLoopHeaders for justifications and caveats.
2329 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2330 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2331 bool BBIsHeader = LoopHeaders.count(BB);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2332 bool SuccIsHeader = LoopHeaders.count(SuccBB);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2333 dbgs() << " Not threading across "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2334 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2335 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2336 << SuccBB->getName() << "' - it might create an irreducible loop!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2337 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
;
2338 return false;
2339 }
2340
2341 unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2342 TTI, BB, BB->getTerminator(), BBDupThreshold);
2343 if (JumpThreadCost > BBDupThreshold) {
2344 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading BB '" <<
BB->getName() << "' - Cost is too high: " << JumpThreadCost
<< "\n"; } } while (false)
2345 << "' - Cost is too high: " << JumpThreadCost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading BB '" <<
BB->getName() << "' - Cost is too high: " << JumpThreadCost
<< "\n"; } } while (false)
;
2346 return false;
2347 }
2348
2349 threadEdge(BB, PredBBs, SuccBB);
2350 return true;
2351}
2352
2353/// threadEdge - We have decided that it is safe and profitable to factor the
2354/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2355/// across BB. Transform the IR to reflect this change.
2356void JumpThreadingPass::threadEdge(BasicBlock *BB,
2357 const SmallVectorImpl<BasicBlock *> &PredBBs,
2358 BasicBlock *SuccBB) {
2359 assert(SuccBB != BB && "Don't create an infinite loop")(static_cast <bool> (SuccBB != BB && "Don't create an infinite loop"
) ? void (0) : __assert_fail ("SuccBB != BB && \"Don't create an infinite loop\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2359, __extension__
__PRETTY_FUNCTION__))
;
2360
2361 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&(static_cast <bool> (!LoopHeaders.count(BB) && !
LoopHeaders.count(SuccBB) && "Don't thread across loop headers"
) ? void (0) : __assert_fail ("!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && \"Don't thread across loop headers\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2362, __extension__
__PRETTY_FUNCTION__))
2362 "Don't thread across loop headers")(static_cast <bool> (!LoopHeaders.count(BB) && !
LoopHeaders.count(SuccBB) && "Don't thread across loop headers"
) ? void (0) : __assert_fail ("!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && \"Don't thread across loop headers\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2362, __extension__
__PRETTY_FUNCTION__))
;
2363
2364 // And finally, do it! Start by factoring the predecessors if needed.
2365 BasicBlock *PredBB;
2366 if (PredBBs.size() == 1)
2367 PredBB = PredBBs[0];
2368 else {
2369 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Factoring out " <<
PredBBs.size() << " common predecessors.\n"; } } while
(false)
2370 << " common predecessors.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Factoring out " <<
PredBBs.size() << " common predecessors.\n"; } } while
(false)
;
2371 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2372 }
2373
2374 // And finally, do it!
2375 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Threading edge from '"
<< PredBB->getName() << "' to '" << SuccBB
->getName() << ", across block:\n " << *BB <<
"\n"; } } while (false)
2376 << "' to '" << SuccBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Threading edge from '"
<< PredBB->getName() << "' to '" << SuccBB
->getName() << ", across block:\n " << *BB <<
"\n"; } } while (false)
2377 << ", across block:\n " << *BB << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Threading edge from '"
<< PredBB->getName() << "' to '" << SuccBB
->getName() << ", across block:\n " << *BB <<
"\n"; } } while (false)
;
2378
2379 LVI->threadEdge(PredBB, BB, SuccBB);
2380
2381 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2382 BB->getName()+".thread",
2383 BB->getParent(), BB);
2384 NewBB->moveAfter(PredBB);
2385
2386 // Set the block frequency of NewBB.
2387 if (HasProfileData) {
2388 auto NewBBFreq =
2389 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2390 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2391 }
2392
2393 // Copy all the instructions from BB to NewBB except the terminator.
2394 DenseMap<Instruction *, Value *> ValueMapping =
2395 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2396
2397 // We didn't copy the terminator from BB over to NewBB, because there is now
2398 // an unconditional jump to SuccBB. Insert the unconditional jump.
2399 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2400 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2401
2402 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2403 // PHI nodes for NewBB now.
2404 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2405
2406 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2407 // eliminates predecessors from BB, which requires us to simplify any PHI
2408 // nodes in BB.
2409 Instruction *PredTerm = PredBB->getTerminator();
2410 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2411 if (PredTerm->getSuccessor(i) == BB) {
2412 BB->removePredecessor(PredBB, true);
2413 PredTerm->setSuccessor(i, NewBB);
2414 }
2415
2416 // Enqueue required DT updates.
2417 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2418 {DominatorTree::Insert, PredBB, NewBB},
2419 {DominatorTree::Delete, PredBB, BB}});
2420
2421 updateSSA(BB, NewBB, ValueMapping);
2422
2423 // At this point, the IR is fully up to date and consistent. Do a quick scan
2424 // over the new instructions and zap any that are constants or dead. This
2425 // frequently happens because of phi translation.
2426 SimplifyInstructionsInBlock(NewBB, TLI);
2427
2428 // Update the edge weight from BB to SuccBB, which should be less than before.
2429 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2430
2431 // Threaded an edge!
2432 ++NumThreads;
2433}
2434
2435/// Create a new basic block that will be the predecessor of BB and successor of
2436/// all blocks in Preds. When profile data is available, update the frequency of
2437/// this new block.
2438BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2439 ArrayRef<BasicBlock *> Preds,
2440 const char *Suffix) {
2441 SmallVector<BasicBlock *, 2> NewBBs;
2442
2443 // Collect the frequencies of all predecessors of BB, which will be used to
2444 // update the edge weight of the result of splitting predecessors.
2445 DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2446 if (HasProfileData)
2447 for (auto Pred : Preds)
2448 FreqMap.insert(std::make_pair(
2449 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2450
2451 // In the case when BB is a LandingPad block we create 2 new predecessors
2452 // instead of just one.
2453 if (BB->isLandingPad()) {
2454 std::string NewName = std::string(Suffix) + ".split-lp";
2455 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2456 } else {
2457 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2458 }
2459
2460 std::vector<DominatorTree::UpdateType> Updates;
2461 Updates.reserve((2 * Preds.size()) + NewBBs.size());
2462 for (auto NewBB : NewBBs) {
2463 BlockFrequency NewBBFreq(0);
2464 Updates.push_back({DominatorTree::Insert, NewBB, BB});
2465 for (auto Pred : predecessors(NewBB)) {
2466 Updates.push_back({DominatorTree::Delete, Pred, BB});
2467 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2468 if (HasProfileData) // Update frequencies between Pred -> NewBB.
2469 NewBBFreq += FreqMap.lookup(Pred);
2470 }
2471 if (HasProfileData) // Apply the summed frequency to NewBB.
2472 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2473 }
2474
2475 DTU->applyUpdatesPermissive(Updates);
2476 return NewBBs[0];
2477}
2478
2479bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2480 const Instruction *TI = BB->getTerminator();
2481 assert(TI->getNumSuccessors() > 1 && "not a split")(static_cast <bool> (TI->getNumSuccessors() > 1 &&
"not a split") ? void (0) : __assert_fail ("TI->getNumSuccessors() > 1 && \"not a split\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2481, __extension__
__PRETTY_FUNCTION__))
;
2482
2483 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2484 if (!WeightsNode)
2485 return false;
2486
2487 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2488 if (MDName->getString() != "branch_weights")
2489 return false;
2490
2491 // Ensure there are weights for all of the successors. Note that the first
2492 // operand to the metadata node is a name, not a weight.
2493 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2494}
2495
2496/// Update the block frequency of BB and branch weight and the metadata on the
2497/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2498/// Freq(PredBB->BB) / Freq(BB->SuccBB).
2499void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2500 BasicBlock *BB,
2501 BasicBlock *NewBB,
2502 BasicBlock *SuccBB) {
2503 if (!HasProfileData)
2504 return;
2505
2506 assert(BFI && BPI && "BFI & BPI should have been created here")(static_cast <bool> (BFI && BPI && "BFI & BPI should have been created here"
) ? void (0) : __assert_fail ("BFI && BPI && \"BFI & BPI should have been created here\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2506, __extension__
__PRETTY_FUNCTION__))
;
2507
2508 // As the edge from PredBB to BB is deleted, we have to update the block
2509 // frequency of BB.
2510 auto BBOrigFreq = BFI->getBlockFreq(BB);
2511 auto NewBBFreq = BFI->getBlockFreq(NewBB);
2512 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2513 auto BBNewFreq = BBOrigFreq - NewBBFreq;
2514 BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2515
2516 // Collect updated outgoing edges' frequencies from BB and use them to update
2517 // edge probabilities.
2518 SmallVector<uint64_t, 4> BBSuccFreq;
2519 for (BasicBlock *Succ : successors(BB)) {
2520 auto SuccFreq = (Succ == SuccBB)
2521 ? BB2SuccBBFreq - NewBBFreq
2522 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2523 BBSuccFreq.push_back(SuccFreq.getFrequency());
2524 }
2525
2526 uint64_t MaxBBSuccFreq =
2527 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2528
2529 SmallVector<BranchProbability, 4> BBSuccProbs;
2530 if (MaxBBSuccFreq == 0)
2531 BBSuccProbs.assign(BBSuccFreq.size(),
2532 {1, static_cast<unsigned>(BBSuccFreq.size())});
2533 else {
2534 for (uint64_t Freq : BBSuccFreq)
2535 BBSuccProbs.push_back(
2536 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2537 // Normalize edge probabilities so that they sum up to one.
2538 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2539 BBSuccProbs.end());
2540 }
2541
2542 // Update edge probabilities in BPI.
2543 BPI->setEdgeProbability(BB, BBSuccProbs);
2544
2545 // Update the profile metadata as well.
2546 //
2547 // Don't do this if the profile of the transformed blocks was statically
2548 // estimated. (This could occur despite the function having an entry
2549 // frequency in completely cold parts of the CFG.)
2550 //
2551 // In this case we don't want to suggest to subsequent passes that the
2552 // calculated weights are fully consistent. Consider this graph:
2553 //
2554 // check_1
2555 // 50% / |
2556 // eq_1 | 50%
2557 // \ |
2558 // check_2
2559 // 50% / |
2560 // eq_2 | 50%
2561 // \ |
2562 // check_3
2563 // 50% / |
2564 // eq_3 | 50%
2565 // \ |
2566 //
2567 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2568 // the overall probabilities are inconsistent; the total probability that the
2569 // value is either 1, 2 or 3 is 150%.
2570 //
2571 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2572 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2573 // the loop exit edge. Then based solely on static estimation we would assume
2574 // the loop was extremely hot.
2575 //
2576 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2577 // shouldn't make edges extremely likely or unlikely based solely on static
2578 // estimation.
2579 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2580 SmallVector<uint32_t, 4> Weights;
2581 for (auto Prob : BBSuccProbs)
2582 Weights.push_back(Prob.getNumerator());
2583
2584 auto TI = BB->getTerminator();
2585 TI->setMetadata(
2586 LLVMContext::MD_prof,
2587 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2588 }
2589}
2590
2591/// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2592/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2593/// If we can duplicate the contents of BB up into PredBB do so now, this
2594/// improves the odds that the branch will be on an analyzable instruction like
2595/// a compare.
2596bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2597 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2598 assert(!PredBBs.empty() && "Can't handle an empty set")(static_cast <bool> (!PredBBs.empty() && "Can't handle an empty set"
) ? void (0) : __assert_fail ("!PredBBs.empty() && \"Can't handle an empty set\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2598, __extension__
__PRETTY_FUNCTION__))
;
2599
2600 // If BB is a loop header, then duplicating this block outside the loop would
2601 // cause us to transform this into an irreducible loop, don't do this.
2602 // See the comments above findLoopHeaders for justifications and caveats.
2603 if (LoopHeaders.count(BB)) {
2604 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not duplicating loop header '"
<< BB->getName() << "' into predecessor block '"
<< PredBBs[0]->getName() << "' - it might create an irreducible loop!\n"
; } } while (false)
2605 << "' into predecessor block '" << PredBBs[0]->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not duplicating loop header '"
<< BB->getName() << "' into predecessor block '"
<< PredBBs[0]->getName() << "' - it might create an irreducible loop!\n"
; } } while (false)
2606 << "' - it might create an irreducible loop!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not duplicating loop header '"
<< BB->getName() << "' into predecessor block '"
<< PredBBs[0]->getName() << "' - it might create an irreducible loop!\n"
; } } while (false)
;
2607 return false;
2608 }
2609
2610 unsigned DuplicationCost = getJumpThreadDuplicationCost(
2611 TTI, BB, BB->getTerminator(), BBDupThreshold);
2612 if (DuplicationCost > BBDupThreshold) {
2613 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not duplicating BB '"
<< BB->getName() << "' - Cost is too high: " <<
DuplicationCost << "\n"; } } while (false)
2614 << "' - Cost is too high: " << DuplicationCost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not duplicating BB '"
<< BB->getName() << "' - Cost is too high: " <<
DuplicationCost << "\n"; } } while (false)
;
2615 return false;
2616 }
2617
2618 // And finally, do it! Start by factoring the predecessors if needed.
2619 std::vector<DominatorTree::UpdateType> Updates;
2620 BasicBlock *PredBB;
2621 if (PredBBs.size() == 1)
2622 PredBB = PredBBs[0];
2623 else {
2624 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Factoring out " <<
PredBBs.size() << " common predecessors.\n"; } } while
(false)
2625 << " common predecessors.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Factoring out " <<
PredBBs.size() << " common predecessors.\n"; } } while
(false)
;
2626 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2627 }
2628 Updates.push_back({DominatorTree::Delete, PredBB, BB});
2629
2630 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2631 // of PredBB.
2632 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Duplicating block '"
<< BB->getName() << "' into end of '" <<
PredBB->getName() << "' to eliminate branch on phi. Cost: "
<< DuplicationCost << " block is:" << *BB <<
"\n"; } } while (false)
2633 << "' into end of '" << PredBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Duplicating block '"
<< BB->getName() << "' into end of '" <<
PredBB->getName() << "' to eliminate branch on phi. Cost: "
<< DuplicationCost << " block is:" << *BB <<
"\n"; } } while (false)
2634 << "' to eliminate branch on phi. Cost: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Duplicating block '"
<< BB->getName() << "' into end of '" <<
PredBB->getName() << "' to eliminate branch on phi. Cost: "
<< DuplicationCost << " block is:" << *BB <<
"\n"; } } while (false)
2635 << DuplicationCost << " block is:" << *BB << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Duplicating block '"
<< BB->getName() << "' into end of '" <<
PredBB->getName() << "' to eliminate branch on phi. Cost: "
<< DuplicationCost << " block is:" << *BB <<
"\n"; } } while (false)
;
2636
2637 // Unless PredBB ends with an unconditional branch, split the edge so that we
2638 // can just clone the bits from BB into the end of the new PredBB.
2639 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2640
2641 if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2642 BasicBlock *OldPredBB = PredBB;
2643 PredBB = SplitEdge(OldPredBB, BB);
2644 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2645 Updates.push_back({DominatorTree::Insert, PredBB, BB});
2646 Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2647 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2648 }
2649
2650 // We are going to have to map operands from the original BB block into the
2651 // PredBB block. Evaluate PHI nodes in BB.
2652 DenseMap<Instruction*, Value*> ValueMapping;
2653
2654 BasicBlock::iterator BI = BB->begin();
2655 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2656 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2657 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2658 // mapping and using it to remap operands in the cloned instructions.
2659 for (; BI != BB->end(); ++BI) {
2660 Instruction *New = BI->clone();
2661
2662 // Remap operands to patch up intra-block references.
2663 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2664 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2665 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2666 if (I != ValueMapping.end())
2667 New->setOperand(i, I->second);
2668 }
2669
2670 // If this instruction can be simplified after the operands are updated,
2671 // just use the simplified value instead. This frequently happens due to
2672 // phi translation.
2673 if (Value *IV = SimplifyInstruction(
2674 New,
2675 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2676 ValueMapping[&*BI] = IV;
2677 if (!New->mayHaveSideEffects()) {
2678 New->deleteValue();
2679 New = nullptr;
2680 }
2681 } else {
2682 ValueMapping[&*BI] = New;
2683 }
2684 if (New) {
2685 // Otherwise, insert the new instruction into the block.
2686 New->setName(BI->getName());
2687 PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2688 // Update Dominance from simplified New instruction operands.
2689 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2690 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2691 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2692 }
2693 }
2694
2695 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2696 // add entries to the PHI nodes for branch from PredBB now.
2697 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2698 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2699 ValueMapping);
2700 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2701 ValueMapping);
2702
2703 updateSSA(BB, PredBB, ValueMapping);
2704
2705 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2706 // that we nuked.
2707 BB->removePredecessor(PredBB, true);
2708
2709 // Remove the unconditional branch at the end of the PredBB block.
2710 OldPredBranch->eraseFromParent();
2711 if (HasProfileData)
2712 BPI->copyEdgeProbabilities(BB, PredBB);
2713 DTU->applyUpdatesPermissive(Updates);
2714
2715 ++NumDupes;
2716 return true;
2717}
2718
2719// Pred is a predecessor of BB with an unconditional branch to BB. SI is
2720// a Select instruction in Pred. BB has other predecessors and SI is used in
2721// a PHI node in BB. SI has no other use.
2722// A new basic block, NewBB, is created and SI is converted to compare and
2723// conditional branch. SI is erased from parent.
2724void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2725 SelectInst *SI, PHINode *SIUse,
2726 unsigned Idx) {
2727 // Expand the select.
2728 //
2729 // Pred --
2730 // | v
2731 // | NewBB
2732 // | |
2733 // |-----
2734 // v
2735 // BB
2736 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2737 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2738 BB->getParent(), BB);
2739 // Move the unconditional branch to NewBB.
2740 PredTerm->removeFromParent();
2741 NewBB->getInstList().insert(NewBB->end(), PredTerm);
2742 // Create a conditional branch and update PHI nodes.
2743 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2744 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2745 SIUse->setIncomingValue(Idx, SI->getFalseValue());
2746 SIUse->addIncoming(SI->getTrueValue(), NewBB);
2747
2748 // The select is now dead.
2749 SI->eraseFromParent();
2750 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2751 {DominatorTree::Insert, Pred, NewBB}});
2752
2753 // Update any other PHI nodes in BB.
2754 for (BasicBlock::iterator BI = BB->begin();
2755 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2756 if (Phi != SIUse)
2757 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2758}
2759
2760bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2761 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2762
2763 if (!CondPHI || CondPHI->getParent() != BB)
2764 return false;
2765
2766 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2767 BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2768 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2769
2770 // The second and third condition can be potentially relaxed. Currently
2771 // the conditions help to simplify the code and allow us to reuse existing
2772 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2773 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2774 continue;
2775
2776 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2777 if (!PredTerm || !PredTerm->isUnconditional())
2778 continue;
2779
2780 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2781 return true;
2782 }
2783 return false;
2784}
2785
2786/// tryToUnfoldSelect - Look for blocks of the form
2787/// bb1:
2788/// %a = select
2789/// br bb2
2790///
2791/// bb2:
2792/// %p = phi [%a, %bb1] ...
2793/// %c = icmp %p
2794/// br i1 %c
2795///
2796/// And expand the select into a branch structure if one of its arms allows %c
2797/// to be folded. This later enables threading from bb1 over bb2.
2798bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2799 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2800 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2801 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2802
2803 if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2804 CondLHS->getParent() != BB)
2805 return false;
2806
2807 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2808 BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2809 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2810
2811 // Look if one of the incoming values is a select in the corresponding
2812 // predecessor.
2813 if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2814 continue;
2815
2816 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2817 if (!PredTerm || !PredTerm->isUnconditional())
2818 continue;
2819
2820 // Now check if one of the select values would allow us to constant fold the
2821 // terminator in BB. We don't do the transform if both sides fold, those
2822 // cases will be threaded in any case.
2823 LazyValueInfo::Tristate LHSFolds =
2824 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2825 CondRHS, Pred, BB, CondCmp);
2826 LazyValueInfo::Tristate RHSFolds =
2827 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2828 CondRHS, Pred, BB, CondCmp);
2829 if ((LHSFolds != LazyValueInfo::Unknown ||
2830 RHSFolds != LazyValueInfo::Unknown) &&
2831 LHSFolds != RHSFolds) {
2832 unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2833 return true;
2834 }
2835 }
2836 return false;
2837}
2838
2839/// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2840/// same BB in the form
2841/// bb:
2842/// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2843/// %s = select %p, trueval, falseval
2844///
2845/// or
2846///
2847/// bb:
2848/// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2849/// %c = cmp %p, 0
2850/// %s = select %c, trueval, falseval
2851///
2852/// And expand the select into a branch structure. This later enables
2853/// jump-threading over bb in this pass.
2854///
2855/// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2856/// select if the associated PHI has at least one constant. If the unfolded
2857/// select is not jump-threaded, it will be folded again in the later
2858/// optimizations.
2859bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2860 // This transform would reduce the quality of msan diagnostics.
2861 // Disable this transform under MemorySanitizer.
2862 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2863 return false;
2864
2865 // If threading this would thread across a loop header, don't thread the edge.
2866 // See the comments above findLoopHeaders for justifications and caveats.
2867 if (LoopHeaders.count(BB))
2868 return false;
2869
2870 for (BasicBlock::iterator BI = BB->begin();
2871 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2872 // Look for a Phi having at least one constant incoming value.
2873 if (llvm::all_of(PN->incoming_values(),
2874 [](Value *V) { return !isa<ConstantInt>(V); }))
2875 continue;
2876
2877 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2878 using namespace PatternMatch;
2879
2880 // Check if SI is in BB and use V as condition.
2881 if (SI->getParent() != BB)
2882 return false;
2883 Value *Cond = SI->getCondition();
2884 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2885 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2886 };
2887
2888 SelectInst *SI = nullptr;
2889 for (Use &U : PN->uses()) {
2890 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2891 // Look for a ICmp in BB that compares PN with a constant and is the
2892 // condition of a Select.
2893 if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2894 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2895 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2896 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2897 SI = SelectI;
2898 break;
2899 }
2900 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2901 // Look for a Select in BB that uses PN as condition.
2902 if (isUnfoldCandidate(SelectI, U.get())) {
2903 SI = SelectI;
2904 break;
2905 }
2906 }
2907 }
2908
2909 if (!SI)
2910 continue;
2911 // Expand the select.
2912 Value *Cond = SI->getCondition();
2913 if (InsertFreezeWhenUnfoldingSelect &&
2914 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI,
2915 &DTU->getDomTree()))
2916 Cond = new FreezeInst(Cond, "cond.fr", SI);
2917 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2918 BasicBlock *SplitBB = SI->getParent();
2919 BasicBlock *NewBB = Term->getParent();
2920 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2921 NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2922 NewPN->addIncoming(SI->getFalseValue(), BB);
2923 SI->replaceAllUsesWith(NewPN);
2924 SI->eraseFromParent();
2925 // NewBB and SplitBB are newly created blocks which require insertion.
2926 std::vector<DominatorTree::UpdateType> Updates;
2927 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2928 Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2929 Updates.push_back({DominatorTree::Insert, BB, NewBB});
2930 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2931 // BB's successors were moved to SplitBB, update DTU accordingly.
2932 for (auto *Succ : successors(SplitBB)) {
2933 Updates.push_back({DominatorTree::Delete, BB, Succ});
2934 Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2935 }
2936 DTU->applyUpdatesPermissive(Updates);
2937 return true;
2938 }
2939 return false;
2940}
2941
2942/// Try to propagate a guard from the current BB into one of its predecessors
2943/// in case if another branch of execution implies that the condition of this
2944/// guard is always true. Currently we only process the simplest case that
2945/// looks like:
2946///
2947/// Start:
2948/// %cond = ...
2949/// br i1 %cond, label %T1, label %F1
2950/// T1:
2951/// br label %Merge
2952/// F1:
2953/// br label %Merge
2954/// Merge:
2955/// %condGuard = ...
2956/// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2957///
2958/// And cond either implies condGuard or !condGuard. In this case all the
2959/// instructions before the guard can be duplicated in both branches, and the
2960/// guard is then threaded to one of them.
2961bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2962 using namespace PatternMatch;
2963
2964 // We only want to deal with two predecessors.
2965 BasicBlock *Pred1, *Pred2;
2966 auto PI = pred_begin(BB), PE = pred_end(BB);
2967 if (PI == PE)
2968 return false;
2969 Pred1 = *PI++;
2970 if (PI == PE)
2971 return false;
2972 Pred2 = *PI++;
2973 if (PI != PE)
2974 return false;
2975 if (Pred1 == Pred2)
2976 return false;
2977
2978 // Try to thread one of the guards of the block.
2979 // TODO: Look up deeper than to immediate predecessor?
2980 auto *Parent = Pred1->getSinglePredecessor();
2981 if (!Parent || Parent != Pred2->getSinglePredecessor())
2982 return false;
2983
2984 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2985 for (auto &I : *BB)
2986 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2987 return true;
2988
2989 return false;
2990}
2991
2992/// Try to propagate the guard from BB which is the lower block of a diamond
2993/// to one of its branches, in case if diamond's condition implies guard's
2994/// condition.
2995bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2996 BranchInst *BI) {
2997 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?")(static_cast <bool> (BI->getNumSuccessors() == 2 &&
"Wrong number of successors?") ? void (0) : __assert_fail ("BI->getNumSuccessors() == 2 && \"Wrong number of successors?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2997, __extension__
__PRETTY_FUNCTION__))
;
2998 assert(BI->isConditional() && "Unconditional branch has 2 successors?")(static_cast <bool> (BI->isConditional() && "Unconditional branch has 2 successors?"
) ? void (0) : __assert_fail ("BI->isConditional() && \"Unconditional branch has 2 successors?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2998, __extension__
__PRETTY_FUNCTION__))
;
2999 Value *GuardCond = Guard->getArgOperand(0);
3000 Value *BranchCond = BI->getCondition();
3001 BasicBlock *TrueDest = BI->getSuccessor(0);
3002 BasicBlock *FalseDest = BI->getSuccessor(1);
3003
3004 auto &DL = BB->getModule()->getDataLayout();
3005 bool TrueDestIsSafe = false;
3006 bool FalseDestIsSafe = false;
3007
3008 // True dest is safe if BranchCond => GuardCond.
3009 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3010 if (Impl && *Impl)
3011 TrueDestIsSafe = true;
3012 else {
3013 // False dest is safe if !BranchCond => GuardCond.
3014 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3015 if (Impl && *Impl)
3016 FalseDestIsSafe = true;
3017 }
3018
3019 if (!TrueDestIsSafe && !FalseDestIsSafe)
3020 return false;
3021
3022 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3023 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3024
3025 ValueToValueMapTy UnguardedMapping, GuardedMapping;
3026 Instruction *AfterGuard = Guard->getNextNode();
3027 unsigned Cost =
3028 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3029 if (Cost > BBDupThreshold)
3030 return false;
3031 // Duplicate all instructions before the guard and the guard itself to the
3032 // branch where implication is not proved.
3033 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3034 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3035 assert(GuardedBlock && "Could not create the guarded block?")(static_cast <bool> (GuardedBlock && "Could not create the guarded block?"
) ? void (0) : __assert_fail ("GuardedBlock && \"Could not create the guarded block?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3035, __extension__
__PRETTY_FUNCTION__))
;
3036 // Duplicate all instructions before the guard in the unguarded branch.
3037 // Since we have successfully duplicated the guarded block and this block
3038 // has fewer instructions, we expect it to succeed.
3039 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3040 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3041 assert(UnguardedBlock && "Could not create the unguarded block?")(static_cast <bool> (UnguardedBlock && "Could not create the unguarded block?"
) ? void (0) : __assert_fail ("UnguardedBlock && \"Could not create the unguarded block?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3041, __extension__
__PRETTY_FUNCTION__))
;
3042 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "Moved guard " <<
*Guard << " to block " << GuardedBlock->getName
() << "\n"; } } while (false)
3043 << GuardedBlock->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "Moved guard " <<
*Guard << " to block " << GuardedBlock->getName
() << "\n"; } } while (false)
;
3044 // Some instructions before the guard may still have uses. For them, we need
3045 // to create Phi nodes merging their copies in both guarded and unguarded
3046 // branches. Those instructions that have no uses can be just removed.
3047 SmallVector<Instruction *, 4> ToRemove;
3048 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3049 if (!isa<PHINode>(&*BI))
3050 ToRemove.push_back(&*BI);
3051
3052 Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3053 assert(InsertionPoint && "Empty block?")(static_cast <bool> (InsertionPoint && "Empty block?"
) ? void (0) : __assert_fail ("InsertionPoint && \"Empty block?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3053, __extension__
__PRETTY_FUNCTION__))
;
3054 // Substitute with Phis & remove.
3055 for (auto *Inst : reverse(ToRemove)) {
3056 if (!Inst->use_empty()) {
3057 PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3058 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3059 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3060 NewPN->insertBefore(InsertionPoint);
3061 Inst->replaceAllUsesWith(NewPN);
3062 }
3063 Inst->eraseFromParent();
3064 }
3065 return true;
3066}