Bug Summary

File:build/source/llvm/lib/Transforms/Scalar/JumpThreading.cpp
Warning:line 1386, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name JumpThreading.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/Scalar -I /build/source/llvm/lib/Transforms/Scalar -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/Transforms/Scalar/JumpThreading.cpp
1//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Jump Threading pass.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/Transforms/Scalar/JumpThreading.h"
14#include "llvm/ADT/DenseMap.h"
15#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/MapVector.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/BlockFrequencyInfo.h"
23#include "llvm/Analysis/BranchProbabilityInfo.h"
24#include "llvm/Analysis/CFG.h"
25#include "llvm/Analysis/ConstantFolding.h"
26#include "llvm/Analysis/GlobalsModRef.h"
27#include "llvm/Analysis/GuardUtils.h"
28#include "llvm/Analysis/InstructionSimplify.h"
29#include "llvm/Analysis/LazyValueInfo.h"
30#include "llvm/Analysis/Loads.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/Analysis/MemoryLocation.h"
33#include "llvm/Analysis/PostDominators.h"
34#include "llvm/Analysis/TargetLibraryInfo.h"
35#include "llvm/Analysis/TargetTransformInfo.h"
36#include "llvm/Analysis/ValueTracking.h"
37#include "llvm/IR/BasicBlock.h"
38#include "llvm/IR/CFG.h"
39#include "llvm/IR/Constant.h"
40#include "llvm/IR/ConstantRange.h"
41#include "llvm/IR/Constants.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/DebugInfo.h"
44#include "llvm/IR/Dominators.h"
45#include "llvm/IR/Function.h"
46#include "llvm/IR/InstrTypes.h"
47#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/IntrinsicInst.h"
50#include "llvm/IR/Intrinsics.h"
51#include "llvm/IR/LLVMContext.h"
52#include "llvm/IR/MDBuilder.h"
53#include "llvm/IR/Metadata.h"
54#include "llvm/IR/Module.h"
55#include "llvm/IR/PassManager.h"
56#include "llvm/IR/PatternMatch.h"
57#include "llvm/IR/ProfDataUtils.h"
58#include "llvm/IR/Type.h"
59#include "llvm/IR/Use.h"
60#include "llvm/IR/Value.h"
61#include "llvm/Support/BlockFrequency.h"
62#include "llvm/Support/BranchProbability.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Debug.h"
66#include "llvm/Support/raw_ostream.h"
67#include "llvm/Transforms/Utils/BasicBlockUtils.h"
68#include "llvm/Transforms/Utils/Cloning.h"
69#include "llvm/Transforms/Utils/Local.h"
70#include "llvm/Transforms/Utils/SSAUpdater.h"
71#include "llvm/Transforms/Utils/ValueMapper.h"
72#include <algorithm>
73#include <cassert>
74#include <cstdint>
75#include <iterator>
76#include <memory>
77#include <utility>
78
79using namespace llvm;
80using namespace jumpthreading;
81
82#define DEBUG_TYPE"jump-threading" "jump-threading"
83
84STATISTIC(NumThreads, "Number of jumps threaded")static llvm::Statistic NumThreads = {"jump-threading", "NumThreads"
, "Number of jumps threaded"}
;
85STATISTIC(NumFolds, "Number of terminators folded")static llvm::Statistic NumFolds = {"jump-threading", "NumFolds"
, "Number of terminators folded"}
;
86STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi")static llvm::Statistic NumDupes = {"jump-threading", "NumDupes"
, "Number of branch blocks duplicated to eliminate phi"}
;
87
88static cl::opt<unsigned>
89BBDuplicateThreshold("jump-threading-threshold",
90 cl::desc("Max block size to duplicate for jump threading"),
91 cl::init(6), cl::Hidden);
92
93static cl::opt<unsigned>
94ImplicationSearchThreshold(
95 "jump-threading-implication-search-threshold",
96 cl::desc("The number of predecessors to search for a stronger "
97 "condition to use to thread over a weaker condition"),
98 cl::init(3), cl::Hidden);
99
100static cl::opt<unsigned> PhiDuplicateThreshold(
101 "jump-threading-phi-threshold",
102 cl::desc("Max PHIs in BB to duplicate for jump threading"), cl::init(76),
103 cl::Hidden);
104
105static cl::opt<bool> PrintLVIAfterJumpThreading(
106 "print-lvi-after-jump-threading",
107 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
108 cl::Hidden);
109
110static cl::opt<bool> ThreadAcrossLoopHeaders(
111 "jump-threading-across-loop-headers",
112 cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
113 cl::init(false), cl::Hidden);
114
115JumpThreadingPass::JumpThreadingPass(int T) {
116 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
117}
118
119// Update branch probability information according to conditional
120// branch probability. This is usually made possible for cloned branches
121// in inline instances by the context specific profile in the caller.
122// For instance,
123//
124// [Block PredBB]
125// [Branch PredBr]
126// if (t) {
127// Block A;
128// } else {
129// Block B;
130// }
131//
132// [Block BB]
133// cond = PN([true, %A], [..., %B]); // PHI node
134// [Branch CondBr]
135// if (cond) {
136// ... // P(cond == true) = 1%
137// }
138//
139// Here we know that when block A is taken, cond must be true, which means
140// P(cond == true | A) = 1
141//
142// Given that P(cond == true) = P(cond == true | A) * P(A) +
143// P(cond == true | B) * P(B)
144// we get:
145// P(cond == true ) = P(A) + P(cond == true | B) * P(B)
146//
147// which gives us:
148// P(A) is less than P(cond == true), i.e.
149// P(t == true) <= P(cond == true)
150//
151// In other words, if we know P(cond == true) is unlikely, we know
152// that P(t == true) is also unlikely.
153//
154static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
155 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
156 if (!CondBr)
157 return;
158
159 uint64_t TrueWeight, FalseWeight;
160 if (!extractBranchWeights(*CondBr, TrueWeight, FalseWeight))
161 return;
162
163 if (TrueWeight + FalseWeight == 0)
164 // Zero branch_weights do not give a hint for getting branch probabilities.
165 // Technically it would result in division by zero denominator, which is
166 // TrueWeight + FalseWeight.
167 return;
168
169 // Returns the outgoing edge of the dominating predecessor block
170 // that leads to the PhiNode's incoming block:
171 auto GetPredOutEdge =
172 [](BasicBlock *IncomingBB,
173 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
174 auto *PredBB = IncomingBB;
175 auto *SuccBB = PhiBB;
176 SmallPtrSet<BasicBlock *, 16> Visited;
177 while (true) {
178 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
179 if (PredBr && PredBr->isConditional())
180 return {PredBB, SuccBB};
181 Visited.insert(PredBB);
182 auto *SinglePredBB = PredBB->getSinglePredecessor();
183 if (!SinglePredBB)
184 return {nullptr, nullptr};
185
186 // Stop searching when SinglePredBB has been visited. It means we see
187 // an unreachable loop.
188 if (Visited.count(SinglePredBB))
189 return {nullptr, nullptr};
190
191 SuccBB = PredBB;
192 PredBB = SinglePredBB;
193 }
194 };
195
196 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
197 Value *PhiOpnd = PN->getIncomingValue(i);
198 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
199
200 if (!CI || !CI->getType()->isIntegerTy(1))
201 continue;
202
203 BranchProbability BP =
204 (CI->isOne() ? BranchProbability::getBranchProbability(
205 TrueWeight, TrueWeight + FalseWeight)
206 : BranchProbability::getBranchProbability(
207 FalseWeight, TrueWeight + FalseWeight));
208
209 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
210 if (!PredOutEdge.first)
211 return;
212
213 BasicBlock *PredBB = PredOutEdge.first;
214 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
215 if (!PredBr)
216 return;
217
218 uint64_t PredTrueWeight, PredFalseWeight;
219 // FIXME: We currently only set the profile data when it is missing.
220 // With PGO, this can be used to refine even existing profile data with
221 // context information. This needs to be done after more performance
222 // testing.
223 if (extractBranchWeights(*PredBr, PredTrueWeight, PredFalseWeight))
224 continue;
225
226 // We can not infer anything useful when BP >= 50%, because BP is the
227 // upper bound probability value.
228 if (BP >= BranchProbability(50, 100))
229 continue;
230
231 SmallVector<uint32_t, 2> Weights;
232 if (PredBr->getSuccessor(0) == PredOutEdge.second) {
233 Weights.push_back(BP.getNumerator());
234 Weights.push_back(BP.getCompl().getNumerator());
235 } else {
236 Weights.push_back(BP.getCompl().getNumerator());
237 Weights.push_back(BP.getNumerator());
238 }
239 PredBr->setMetadata(LLVMContext::MD_prof,
240 MDBuilder(PredBr->getParent()->getContext())
241 .createBranchWeights(Weights));
242 }
243}
244
245PreservedAnalyses JumpThreadingPass::run(Function &F,
246 FunctionAnalysisManager &AM) {
247 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
248 // Jump Threading has no sense for the targets with divergent CF
249 if (TTI.hasBranchDivergence())
250 return PreservedAnalyses::all();
251 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
252 auto &LVI = AM.getResult<LazyValueAnalysis>(F);
253 auto &AA = AM.getResult<AAManager>(F);
254 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
255
256 bool Changed =
257 runImpl(F, &AM, &TLI, &TTI, &LVI, &AA,
258 std::make_unique<DomTreeUpdater>(
259 &DT, nullptr, DomTreeUpdater::UpdateStrategy::Lazy),
260 std::nullopt, std::nullopt);
261
262 if (PrintLVIAfterJumpThreading) {
263 dbgs() << "LVI for function '" << F.getName() << "':\n";
264 LVI.printLVI(F, getDomTreeUpdater()->getDomTree(), dbgs());
265 }
266
267 if (!Changed)
268 return PreservedAnalyses::all();
269
270
271 getDomTreeUpdater()->flush();
272
273#if defined(EXPENSIVE_CHECKS)
274 assert(getDomTreeUpdater()->getDomTree().verify((static_cast <bool> (getDomTreeUpdater()->getDomTree
().verify( DominatorTree::VerificationLevel::Full) &&
"DT broken after JumpThreading") ? void (0) : __assert_fail (
"getDomTreeUpdater()->getDomTree().verify( DominatorTree::VerificationLevel::Full) && \"DT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 276, __extension__
__PRETTY_FUNCTION__))
275 DominatorTree::VerificationLevel::Full) &&(static_cast <bool> (getDomTreeUpdater()->getDomTree
().verify( DominatorTree::VerificationLevel::Full) &&
"DT broken after JumpThreading") ? void (0) : __assert_fail (
"getDomTreeUpdater()->getDomTree().verify( DominatorTree::VerificationLevel::Full) && \"DT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 276, __extension__
__PRETTY_FUNCTION__))
276 "DT broken after JumpThreading")(static_cast <bool> (getDomTreeUpdater()->getDomTree
().verify( DominatorTree::VerificationLevel::Full) &&
"DT broken after JumpThreading") ? void (0) : __assert_fail (
"getDomTreeUpdater()->getDomTree().verify( DominatorTree::VerificationLevel::Full) && \"DT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 276, __extension__
__PRETTY_FUNCTION__))
;
277 assert((!getDomTreeUpdater()->hasPostDomTree() ||(static_cast <bool> ((!getDomTreeUpdater()->hasPostDomTree
() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree
::VerificationLevel::Full)) && "PDT broken after JumpThreading"
) ? void (0) : __assert_fail ("(!getDomTreeUpdater()->hasPostDomTree() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree::VerificationLevel::Full)) && \"PDT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 280, __extension__
__PRETTY_FUNCTION__))
278 getDomTreeUpdater()->getPostDomTree().verify((static_cast <bool> ((!getDomTreeUpdater()->hasPostDomTree
() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree
::VerificationLevel::Full)) && "PDT broken after JumpThreading"
) ? void (0) : __assert_fail ("(!getDomTreeUpdater()->hasPostDomTree() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree::VerificationLevel::Full)) && \"PDT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 280, __extension__
__PRETTY_FUNCTION__))
279 PostDominatorTree::VerificationLevel::Full)) &&(static_cast <bool> ((!getDomTreeUpdater()->hasPostDomTree
() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree
::VerificationLevel::Full)) && "PDT broken after JumpThreading"
) ? void (0) : __assert_fail ("(!getDomTreeUpdater()->hasPostDomTree() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree::VerificationLevel::Full)) && \"PDT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 280, __extension__
__PRETTY_FUNCTION__))
280 "PDT broken after JumpThreading")(static_cast <bool> ((!getDomTreeUpdater()->hasPostDomTree
() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree
::VerificationLevel::Full)) && "PDT broken after JumpThreading"
) ? void (0) : __assert_fail ("(!getDomTreeUpdater()->hasPostDomTree() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree::VerificationLevel::Full)) && \"PDT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 280, __extension__
__PRETTY_FUNCTION__))
;
281#else
282 assert(getDomTreeUpdater()->getDomTree().verify((static_cast <bool> (getDomTreeUpdater()->getDomTree
().verify( DominatorTree::VerificationLevel::Fast) &&
"DT broken after JumpThreading") ? void (0) : __assert_fail (
"getDomTreeUpdater()->getDomTree().verify( DominatorTree::VerificationLevel::Fast) && \"DT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 284, __extension__
__PRETTY_FUNCTION__))
283 DominatorTree::VerificationLevel::Fast) &&(static_cast <bool> (getDomTreeUpdater()->getDomTree
().verify( DominatorTree::VerificationLevel::Fast) &&
"DT broken after JumpThreading") ? void (0) : __assert_fail (
"getDomTreeUpdater()->getDomTree().verify( DominatorTree::VerificationLevel::Fast) && \"DT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 284, __extension__
__PRETTY_FUNCTION__))
284 "DT broken after JumpThreading")(static_cast <bool> (getDomTreeUpdater()->getDomTree
().verify( DominatorTree::VerificationLevel::Fast) &&
"DT broken after JumpThreading") ? void (0) : __assert_fail (
"getDomTreeUpdater()->getDomTree().verify( DominatorTree::VerificationLevel::Fast) && \"DT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 284, __extension__
__PRETTY_FUNCTION__))
;
285 assert((!getDomTreeUpdater()->hasPostDomTree() ||(static_cast <bool> ((!getDomTreeUpdater()->hasPostDomTree
() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree
::VerificationLevel::Fast)) && "PDT broken after JumpThreading"
) ? void (0) : __assert_fail ("(!getDomTreeUpdater()->hasPostDomTree() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree::VerificationLevel::Fast)) && \"PDT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 288, __extension__
__PRETTY_FUNCTION__))
286 getDomTreeUpdater()->getPostDomTree().verify((static_cast <bool> ((!getDomTreeUpdater()->hasPostDomTree
() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree
::VerificationLevel::Fast)) && "PDT broken after JumpThreading"
) ? void (0) : __assert_fail ("(!getDomTreeUpdater()->hasPostDomTree() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree::VerificationLevel::Fast)) && \"PDT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 288, __extension__
__PRETTY_FUNCTION__))
287 PostDominatorTree::VerificationLevel::Fast)) &&(static_cast <bool> ((!getDomTreeUpdater()->hasPostDomTree
() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree
::VerificationLevel::Fast)) && "PDT broken after JumpThreading"
) ? void (0) : __assert_fail ("(!getDomTreeUpdater()->hasPostDomTree() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree::VerificationLevel::Fast)) && \"PDT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 288, __extension__
__PRETTY_FUNCTION__))
288 "PDT broken after JumpThreading")(static_cast <bool> ((!getDomTreeUpdater()->hasPostDomTree
() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree
::VerificationLevel::Fast)) && "PDT broken after JumpThreading"
) ? void (0) : __assert_fail ("(!getDomTreeUpdater()->hasPostDomTree() || getDomTreeUpdater()->getPostDomTree().verify( PostDominatorTree::VerificationLevel::Fast)) && \"PDT broken after JumpThreading\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 288, __extension__
__PRETTY_FUNCTION__))
;
289#endif
290
291 return getPreservedAnalysis();
292}
293
294bool JumpThreadingPass::runImpl(Function &F_, FunctionAnalysisManager *FAM_,
295 TargetLibraryInfo *TLI_,
296 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
297 AliasAnalysis *AA_,
298 std::unique_ptr<DomTreeUpdater> DTU_,
299 std::optional<BlockFrequencyInfo *> BFI_,
300 std::optional<BranchProbabilityInfo *> BPI_) {
301 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F_.getName() << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "Jump threading on function '"
<< F_.getName() << "'\n"; } } while (false)
;
302 F = &F_;
303 FAM = FAM_;
304 TLI = TLI_;
305 TTI = TTI_;
306 LVI = LVI_;
307 AA = AA_;
308 DTU = std::move(DTU_);
309 BFI = BFI_;
310 BPI = BPI_;
311 auto *GuardDecl = F->getParent()->getFunction(
312 Intrinsic::getName(Intrinsic::experimental_guard));
313 HasGuards = GuardDecl && !GuardDecl->use_empty();
314
315 // Reduce the number of instructions duplicated when optimizing strictly for
316 // size.
317 if (BBDuplicateThreshold.getNumOccurrences())
318 BBDupThreshold = BBDuplicateThreshold;
319 else if (F->hasFnAttribute(Attribute::MinSize))
320 BBDupThreshold = 3;
321 else
322 BBDupThreshold = DefaultBBDupThreshold;
323
324 // JumpThreading must not processes blocks unreachable from entry. It's a
325 // waste of compute time and can potentially lead to hangs.
326 SmallPtrSet<BasicBlock *, 16> Unreachable;
327 assert(DTU && "DTU isn't passed into JumpThreading before using it.")(static_cast <bool> (DTU && "DTU isn't passed into JumpThreading before using it."
) ? void (0) : __assert_fail ("DTU && \"DTU isn't passed into JumpThreading before using it.\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 327, __extension__
__PRETTY_FUNCTION__))
;
328 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.")(static_cast <bool> (DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."
) ? void (0) : __assert_fail ("DTU->hasDomTree() && \"JumpThreading relies on DomTree to proceed.\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 328, __extension__
__PRETTY_FUNCTION__))
;
329 DominatorTree &DT = DTU->getDomTree();
330 for (auto &BB : *F)
331 if (!DT.isReachableFromEntry(&BB))
332 Unreachable.insert(&BB);
333
334 if (!ThreadAcrossLoopHeaders)
335 findLoopHeaders(*F);
336
337 bool EverChanged = false;
338 bool Changed;
339 do {
340 Changed = false;
341 for (auto &BB : *F) {
342 if (Unreachable.count(&BB))
343 continue;
344 while (processBlock(&BB)) // Thread all of the branches we can over BB.
345 Changed = ChangedSinceLastAnalysisUpdate = true;
346
347 // Jump threading may have introduced redundant debug values into BB
348 // which should be removed.
349 if (Changed)
350 RemoveRedundantDbgInstrs(&BB);
351
352 // Stop processing BB if it's the entry or is now deleted. The following
353 // routines attempt to eliminate BB and locating a suitable replacement
354 // for the entry is non-trivial.
355 if (&BB == &F->getEntryBlock() || DTU->isBBPendingDeletion(&BB))
356 continue;
357
358 if (pred_empty(&BB)) {
359 // When processBlock makes BB unreachable it doesn't bother to fix up
360 // the instructions in it. We must remove BB to prevent invalid IR.
361 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " JT: Deleting dead block '"
<< BB.getName() << "' with terminator: " <<
*BB.getTerminator() << '\n'; } } while (false)
362 << "' with terminator: " << *BB.getTerminator()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " JT: Deleting dead block '"
<< BB.getName() << "' with terminator: " <<
*BB.getTerminator() << '\n'; } } while (false)
363 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " JT: Deleting dead block '"
<< BB.getName() << "' with terminator: " <<
*BB.getTerminator() << '\n'; } } while (false)
;
364 LoopHeaders.erase(&BB);
365 LVI->eraseBlock(&BB);
366 DeleteDeadBlock(&BB, DTU.get());
367 Changed = ChangedSinceLastAnalysisUpdate = true;
368 continue;
369 }
370
371 // processBlock doesn't thread BBs with unconditional TIs. However, if BB
372 // is "almost empty", we attempt to merge BB with its sole successor.
373 auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
374 if (BI && BI->isUnconditional()) {
375 BasicBlock *Succ = BI->getSuccessor(0);
376 if (
377 // The terminator must be the only non-phi instruction in BB.
378 BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
379 // Don't alter Loop headers and latches to ensure another pass can
380 // detect and transform nested loops later.
381 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
382 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU.get())) {
383 RemoveRedundantDbgInstrs(Succ);
384 // BB is valid for cleanup here because we passed in DTU. F remains
385 // BB's parent until a DTU->getDomTree() event.
386 LVI->eraseBlock(&BB);
387 Changed = ChangedSinceLastAnalysisUpdate = true;
388 }
389 }
390 }
391 EverChanged |= Changed;
392 } while (Changed);
393
394 LoopHeaders.clear();
395 return EverChanged;
396}
397
398// Replace uses of Cond with ToVal when safe to do so. If all uses are
399// replaced, we can remove Cond. We cannot blindly replace all uses of Cond
400// because we may incorrectly replace uses when guards/assumes are uses of
401// of `Cond` and we used the guards/assume to reason about the `Cond` value
402// at the end of block. RAUW unconditionally replaces all uses
403// including the guards/assumes themselves and the uses before the
404// guard/assume.
405static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
406 BasicBlock *KnownAtEndOfBB) {
407 bool Changed = false;
408 assert(Cond->getType() == ToVal->getType())(static_cast <bool> (Cond->getType() == ToVal->getType
()) ? void (0) : __assert_fail ("Cond->getType() == ToVal->getType()"
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 408, __extension__
__PRETTY_FUNCTION__))
;
409 // We can unconditionally replace all uses in non-local blocks (i.e. uses
410 // strictly dominated by BB), since LVI information is true from the
411 // terminator of BB.
412 if (Cond->getParent() == KnownAtEndOfBB)
413 Changed |= replaceNonLocalUsesWith(Cond, ToVal);
414 for (Instruction &I : reverse(*KnownAtEndOfBB)) {
415 // Reached the Cond whose uses we are trying to replace, so there are no
416 // more uses.
417 if (&I == Cond)
418 break;
419 // We only replace uses in instructions that are guaranteed to reach the end
420 // of BB, where we know Cond is ToVal.
421 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
422 break;
423 Changed |= I.replaceUsesOfWith(Cond, ToVal);
424 }
425 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
426 Cond->eraseFromParent();
427 Changed = true;
428 }
429 return Changed;
430}
431
432/// Return the cost of duplicating a piece of this block from first non-phi
433/// and before StopAt instruction to thread across it. Stop scanning the block
434/// when exceeding the threshold. If duplication is impossible, returns ~0U.
435static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
436 BasicBlock *BB,
437 Instruction *StopAt,
438 unsigned Threshold) {
439 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?")(static_cast <bool> (StopAt->getParent() == BB &&
"Not an instruction from proper BB?") ? void (0) : __assert_fail
("StopAt->getParent() == BB && \"Not an instruction from proper BB?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 439, __extension__
__PRETTY_FUNCTION__))
;
440
441 // Do not duplicate the BB if it has a lot of PHI nodes.
442 // If a threadable chain is too long then the number of PHI nodes can add up,
443 // leading to a substantial increase in compile time when rewriting the SSA.
444 unsigned PhiCount = 0;
445 Instruction *FirstNonPHI = nullptr;
446 for (Instruction &I : *BB) {
447 if (!isa<PHINode>(&I)) {
448 FirstNonPHI = &I;
449 break;
450 }
451 if (++PhiCount > PhiDuplicateThreshold)
452 return ~0U;
453 }
454
455 /// Ignore PHI nodes, these will be flattened when duplication happens.
456 BasicBlock::const_iterator I(FirstNonPHI);
457
458 // FIXME: THREADING will delete values that are just used to compute the
459 // branch, so they shouldn't count against the duplication cost.
460
461 unsigned Bonus = 0;
462 if (BB->getTerminator() == StopAt) {
463 // Threading through a switch statement is particularly profitable. If this
464 // block ends in a switch, decrease its cost to make it more likely to
465 // happen.
466 if (isa<SwitchInst>(StopAt))
467 Bonus = 6;
468
469 // The same holds for indirect branches, but slightly more so.
470 if (isa<IndirectBrInst>(StopAt))
471 Bonus = 8;
472 }
473
474 // Bump the threshold up so the early exit from the loop doesn't skip the
475 // terminator-based Size adjustment at the end.
476 Threshold += Bonus;
477
478 // Sum up the cost of each instruction until we get to the terminator. Don't
479 // include the terminator because the copy won't include it.
480 unsigned Size = 0;
481 for (; &*I != StopAt; ++I) {
482
483 // Stop scanning the block if we've reached the threshold.
484 if (Size > Threshold)
485 return Size;
486
487 // Bail out if this instruction gives back a token type, it is not possible
488 // to duplicate it if it is used outside this BB.
489 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
490 return ~0U;
491
492 // Blocks with NoDuplicate are modelled as having infinite cost, so they
493 // are never duplicated.
494 if (const CallInst *CI = dyn_cast<CallInst>(I))
495 if (CI->cannotDuplicate() || CI->isConvergent())
496 return ~0U;
497
498 if (TTI->getInstructionCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) ==
499 TargetTransformInfo::TCC_Free)
500 continue;
501
502 // All other instructions count for at least one unit.
503 ++Size;
504
505 // Calls are more expensive. If they are non-intrinsic calls, we model them
506 // as having cost of 4. If they are a non-vector intrinsic, we model them
507 // as having cost of 2 total, and if they are a vector intrinsic, we model
508 // them as having cost 1.
509 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
510 if (!isa<IntrinsicInst>(CI))
511 Size += 3;
512 else if (!CI->getType()->isVectorTy())
513 Size += 1;
514 }
515 }
516
517 return Size > Bonus ? Size - Bonus : 0;
518}
519
520/// findLoopHeaders - We do not want jump threading to turn proper loop
521/// structures into irreducible loops. Doing this breaks up the loop nesting
522/// hierarchy and pessimizes later transformations. To prevent this from
523/// happening, we first have to find the loop headers. Here we approximate this
524/// by finding targets of backedges in the CFG.
525///
526/// Note that there definitely are cases when we want to allow threading of
527/// edges across a loop header. For example, threading a jump from outside the
528/// loop (the preheader) to an exit block of the loop is definitely profitable.
529/// It is also almost always profitable to thread backedges from within the loop
530/// to exit blocks, and is often profitable to thread backedges to other blocks
531/// within the loop (forming a nested loop). This simple analysis is not rich
532/// enough to track all of these properties and keep it up-to-date as the CFG
533/// mutates, so we don't allow any of these transformations.
534void JumpThreadingPass::findLoopHeaders(Function &F) {
535 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
536 FindFunctionBackedges(F, Edges);
537
538 for (const auto &Edge : Edges)
539 LoopHeaders.insert(Edge.second);
540}
541
542/// getKnownConstant - Helper method to determine if we can thread over a
543/// terminator with the given value as its condition, and if so what value to
544/// use for that. What kind of value this is depends on whether we want an
545/// integer or a block address, but an undef is always accepted.
546/// Returns null if Val is null or not an appropriate constant.
547static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
548 if (!Val)
549 return nullptr;
550
551 // Undef is "known" enough.
552 if (UndefValue *U = dyn_cast<UndefValue>(Val))
553 return U;
554
555 if (Preference == WantBlockAddress)
556 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
557
558 return dyn_cast<ConstantInt>(Val);
559}
560
561/// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
562/// if we can infer that the value is a known ConstantInt/BlockAddress or undef
563/// in any of our predecessors. If so, return the known list of value and pred
564/// BB in the result vector.
565///
566/// This returns true if there were any known values.
567bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
568 Value *V, BasicBlock *BB, PredValueInfo &Result,
569 ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
570 Instruction *CxtI) {
571 // This method walks up use-def chains recursively. Because of this, we could
572 // get into an infinite loop going around loops in the use-def chain. To
573 // prevent this, keep track of what (value, block) pairs we've already visited
574 // and terminate the search if we loop back to them
575 if (!RecursionSet.insert(V).second)
576 return false;
577
578 // If V is a constant, then it is known in all predecessors.
579 if (Constant *KC = getKnownConstant(V, Preference)) {
580 for (BasicBlock *Pred : predecessors(BB))
581 Result.emplace_back(KC, Pred);
582
583 return !Result.empty();
584 }
585
586 // If V is a non-instruction value, or an instruction in a different block,
587 // then it can't be derived from a PHI.
588 Instruction *I = dyn_cast<Instruction>(V);
589 if (!I || I->getParent() != BB) {
590
591 // Okay, if this is a live-in value, see if it has a known value at the any
592 // edge from our predecessors.
593 for (BasicBlock *P : predecessors(BB)) {
594 using namespace PatternMatch;
595 // If the value is known by LazyValueInfo to be a constant in a
596 // predecessor, use that information to try to thread this block.
597 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
598 // If I is a non-local compare-with-constant instruction, use more-rich
599 // 'getPredicateOnEdge' method. This would be able to handle value
600 // inequalities better, for example if the compare is "X < 4" and "X < 3"
601 // is known true but "X < 4" itself is not available.
602 CmpInst::Predicate Pred;
603 Value *Val;
604 Constant *Cst;
605 if (!PredCst && match(V, m_Cmp(Pred, m_Value(Val), m_Constant(Cst)))) {
606 auto Res = LVI->getPredicateOnEdge(Pred, Val, Cst, P, BB, CxtI);
607 if (Res != LazyValueInfo::Unknown)
608 PredCst = ConstantInt::getBool(V->getContext(), Res);
609 }
610 if (Constant *KC = getKnownConstant(PredCst, Preference))
611 Result.emplace_back(KC, P);
612 }
613
614 return !Result.empty();
615 }
616
617 /// If I is a PHI node, then we know the incoming values for any constants.
618 if (PHINode *PN = dyn_cast<PHINode>(I)) {
619 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
620 Value *InVal = PN->getIncomingValue(i);
621 if (Constant *KC = getKnownConstant(InVal, Preference)) {
622 Result.emplace_back(KC, PN->getIncomingBlock(i));
623 } else {
624 Constant *CI = LVI->getConstantOnEdge(InVal,
625 PN->getIncomingBlock(i),
626 BB, CxtI);
627 if (Constant *KC = getKnownConstant(CI, Preference))
628 Result.emplace_back(KC, PN->getIncomingBlock(i));
629 }
630 }
631
632 return !Result.empty();
633 }
634
635 // Handle Cast instructions.
636 if (CastInst *CI = dyn_cast<CastInst>(I)) {
637 Value *Source = CI->getOperand(0);
638 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
639 RecursionSet, CxtI);
640 if (Result.empty())
641 return false;
642
643 // Convert the known values.
644 for (auto &R : Result)
645 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
646
647 return true;
648 }
649
650 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
651 Value *Source = FI->getOperand(0);
652 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
653 RecursionSet, CxtI);
654
655 erase_if(Result, [](auto &Pair) {
656 return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
657 });
658
659 return !Result.empty();
660 }
661
662 // Handle some boolean conditions.
663 if (I->getType()->getPrimitiveSizeInBits() == 1) {
664 using namespace PatternMatch;
665 if (Preference != WantInteger)
666 return false;
667 // X | true -> true
668 // X & false -> false
669 Value *Op0, *Op1;
670 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
671 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
672 PredValueInfoTy LHSVals, RHSVals;
673
674 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
675 RecursionSet, CxtI);
676 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
677 RecursionSet, CxtI);
678
679 if (LHSVals.empty() && RHSVals.empty())
680 return false;
681
682 ConstantInt *InterestingVal;
683 if (match(I, m_LogicalOr()))
684 InterestingVal = ConstantInt::getTrue(I->getContext());
685 else
686 InterestingVal = ConstantInt::getFalse(I->getContext());
687
688 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
689
690 // Scan for the sentinel. If we find an undef, force it to the
691 // interesting value: x|undef -> true and x&undef -> false.
692 for (const auto &LHSVal : LHSVals)
693 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
694 Result.emplace_back(InterestingVal, LHSVal.second);
695 LHSKnownBBs.insert(LHSVal.second);
696 }
697 for (const auto &RHSVal : RHSVals)
698 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
699 // If we already inferred a value for this block on the LHS, don't
700 // re-add it.
701 if (!LHSKnownBBs.count(RHSVal.second))
702 Result.emplace_back(InterestingVal, RHSVal.second);
703 }
704
705 return !Result.empty();
706 }
707
708 // Handle the NOT form of XOR.
709 if (I->getOpcode() == Instruction::Xor &&
710 isa<ConstantInt>(I->getOperand(1)) &&
711 cast<ConstantInt>(I->getOperand(1))->isOne()) {
712 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
713 WantInteger, RecursionSet, CxtI);
714 if (Result.empty())
715 return false;
716
717 // Invert the known values.
718 for (auto &R : Result)
719 R.first = ConstantExpr::getNot(R.first);
720
721 return true;
722 }
723
724 // Try to simplify some other binary operator values.
725 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
726 if (Preference != WantInteger)
727 return false;
728 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
729 const DataLayout &DL = BO->getModule()->getDataLayout();
730 PredValueInfoTy LHSVals;
731 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
732 WantInteger, RecursionSet, CxtI);
733
734 // Try to use constant folding to simplify the binary operator.
735 for (const auto &LHSVal : LHSVals) {
736 Constant *V = LHSVal.first;
737 Constant *Folded =
738 ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
739
740 if (Constant *KC = getKnownConstant(Folded, WantInteger))
741 Result.emplace_back(KC, LHSVal.second);
742 }
743 }
744
745 return !Result.empty();
746 }
747
748 // Handle compare with phi operand, where the PHI is defined in this block.
749 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
750 if (Preference != WantInteger)
751 return false;
752 Type *CmpType = Cmp->getType();
753 Value *CmpLHS = Cmp->getOperand(0);
754 Value *CmpRHS = Cmp->getOperand(1);
755 CmpInst::Predicate Pred = Cmp->getPredicate();
756
757 PHINode *PN = dyn_cast<PHINode>(CmpLHS);
758 if (!PN)
759 PN = dyn_cast<PHINode>(CmpRHS);
760 if (PN && PN->getParent() == BB) {
761 const DataLayout &DL = PN->getModule()->getDataLayout();
762 // We can do this simplification if any comparisons fold to true or false.
763 // See if any do.
764 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
765 BasicBlock *PredBB = PN->getIncomingBlock(i);
766 Value *LHS, *RHS;
767 if (PN == CmpLHS) {
768 LHS = PN->getIncomingValue(i);
769 RHS = CmpRHS->DoPHITranslation(BB, PredBB);
770 } else {
771 LHS = CmpLHS->DoPHITranslation(BB, PredBB);
772 RHS = PN->getIncomingValue(i);
773 }
774 Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
775 if (!Res) {
776 if (!isa<Constant>(RHS))
777 continue;
778
779 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
780 auto LHSInst = dyn_cast<Instruction>(LHS);
781 if (LHSInst && LHSInst->getParent() == BB)
782 continue;
783
784 LazyValueInfo::Tristate
785 ResT = LVI->getPredicateOnEdge(Pred, LHS,
786 cast<Constant>(RHS), PredBB, BB,
787 CxtI ? CxtI : Cmp);
788 if (ResT == LazyValueInfo::Unknown)
789 continue;
790 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
791 }
792
793 if (Constant *KC = getKnownConstant(Res, WantInteger))
794 Result.emplace_back(KC, PredBB);
795 }
796
797 return !Result.empty();
798 }
799
800 // If comparing a live-in value against a constant, see if we know the
801 // live-in value on any predecessors.
802 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
803 Constant *CmpConst = cast<Constant>(CmpRHS);
804
805 if (!isa<Instruction>(CmpLHS) ||
806 cast<Instruction>(CmpLHS)->getParent() != BB) {
807 for (BasicBlock *P : predecessors(BB)) {
808 // If the value is known by LazyValueInfo to be a constant in a
809 // predecessor, use that information to try to thread this block.
810 LazyValueInfo::Tristate Res =
811 LVI->getPredicateOnEdge(Pred, CmpLHS,
812 CmpConst, P, BB, CxtI ? CxtI : Cmp);
813 if (Res == LazyValueInfo::Unknown)
814 continue;
815
816 Constant *ResC = ConstantInt::get(CmpType, Res);
817 Result.emplace_back(ResC, P);
818 }
819
820 return !Result.empty();
821 }
822
823 // InstCombine can fold some forms of constant range checks into
824 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
825 // x as a live-in.
826 {
827 using namespace PatternMatch;
828
829 Value *AddLHS;
830 ConstantInt *AddConst;
831 if (isa<ConstantInt>(CmpConst) &&
832 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
833 if (!isa<Instruction>(AddLHS) ||
834 cast<Instruction>(AddLHS)->getParent() != BB) {
835 for (BasicBlock *P : predecessors(BB)) {
836 // If the value is known by LazyValueInfo to be a ConstantRange in
837 // a predecessor, use that information to try to thread this
838 // block.
839 ConstantRange CR = LVI->getConstantRangeOnEdge(
840 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
841 // Propagate the range through the addition.
842 CR = CR.add(AddConst->getValue());
843
844 // Get the range where the compare returns true.
845 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
846 Pred, cast<ConstantInt>(CmpConst)->getValue());
847
848 Constant *ResC;
849 if (CmpRange.contains(CR))
850 ResC = ConstantInt::getTrue(CmpType);
851 else if (CmpRange.inverse().contains(CR))
852 ResC = ConstantInt::getFalse(CmpType);
853 else
854 continue;
855
856 Result.emplace_back(ResC, P);
857 }
858
859 return !Result.empty();
860 }
861 }
862 }
863
864 // Try to find a constant value for the LHS of a comparison,
865 // and evaluate it statically if we can.
866 PredValueInfoTy LHSVals;
867 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
868 WantInteger, RecursionSet, CxtI);
869
870 for (const auto &LHSVal : LHSVals) {
871 Constant *V = LHSVal.first;
872 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
873 if (Constant *KC = getKnownConstant(Folded, WantInteger))
874 Result.emplace_back(KC, LHSVal.second);
875 }
876
877 return !Result.empty();
878 }
879 }
880
881 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
882 // Handle select instructions where at least one operand is a known constant
883 // and we can figure out the condition value for any predecessor block.
884 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
885 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
886 PredValueInfoTy Conds;
887 if ((TrueVal || FalseVal) &&
888 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
889 WantInteger, RecursionSet, CxtI)) {
890 for (auto &C : Conds) {
891 Constant *Cond = C.first;
892
893 // Figure out what value to use for the condition.
894 bool KnownCond;
895 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
896 // A known boolean.
897 KnownCond = CI->isOne();
898 } else {
899 assert(isa<UndefValue>(Cond) && "Unexpected condition value")(static_cast <bool> (isa<UndefValue>(Cond) &&
"Unexpected condition value") ? void (0) : __assert_fail ("isa<UndefValue>(Cond) && \"Unexpected condition value\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 899, __extension__
__PRETTY_FUNCTION__))
;
900 // Either operand will do, so be sure to pick the one that's a known
901 // constant.
902 // FIXME: Do this more cleverly if both values are known constants?
903 KnownCond = (TrueVal != nullptr);
904 }
905
906 // See if the select has a known constant value for this predecessor.
907 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
908 Result.emplace_back(Val, C.second);
909 }
910
911 return !Result.empty();
912 }
913 }
914
915 // If all else fails, see if LVI can figure out a constant value for us.
916 assert(CxtI->getParent() == BB && "CxtI should be in BB")(static_cast <bool> (CxtI->getParent() == BB &&
"CxtI should be in BB") ? void (0) : __assert_fail ("CxtI->getParent() == BB && \"CxtI should be in BB\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 916, __extension__
__PRETTY_FUNCTION__))
;
917 Constant *CI = LVI->getConstant(V, CxtI);
918 if (Constant *KC = getKnownConstant(CI, Preference)) {
919 for (BasicBlock *Pred : predecessors(BB))
920 Result.emplace_back(KC, Pred);
921 }
922
923 return !Result.empty();
924}
925
926/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
927/// in an undefined jump, decide which block is best to revector to.
928///
929/// Since we can pick an arbitrary destination, we pick the successor with the
930/// fewest predecessors. This should reduce the in-degree of the others.
931static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
932 Instruction *BBTerm = BB->getTerminator();
933 unsigned MinSucc = 0;
934 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
935 // Compute the successor with the minimum number of predecessors.
936 unsigned MinNumPreds = pred_size(TestBB);
937 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
938 TestBB = BBTerm->getSuccessor(i);
939 unsigned NumPreds = pred_size(TestBB);
940 if (NumPreds < MinNumPreds) {
941 MinSucc = i;
942 MinNumPreds = NumPreds;
943 }
944 }
945
946 return MinSucc;
947}
948
949static bool hasAddressTakenAndUsed(BasicBlock *BB) {
950 if (!BB->hasAddressTaken()) return false;
951
952 // If the block has its address taken, it may be a tree of dead constants
953 // hanging off of it. These shouldn't keep the block alive.
954 BlockAddress *BA = BlockAddress::get(BB);
955 BA->removeDeadConstantUsers();
956 return !BA->use_empty();
957}
958
959/// processBlock - If there are any predecessors whose control can be threaded
960/// through to a successor, transform them now.
961bool JumpThreadingPass::processBlock(BasicBlock *BB) {
962 // If the block is trivially dead, just return and let the caller nuke it.
963 // This simplifies other transformations.
964 if (DTU->isBBPendingDeletion(BB) ||
965 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
966 return false;
967
968 // If this block has a single predecessor, and if that pred has a single
969 // successor, merge the blocks. This encourages recursive jump threading
970 // because now the condition in this block can be threaded through
971 // predecessors of our predecessor block.
972 if (maybeMergeBasicBlockIntoOnlyPred(BB))
973 return true;
974
975 if (tryToUnfoldSelectInCurrBB(BB))
976 return true;
977
978 // Look if we can propagate guards to predecessors.
979 if (HasGuards && processGuards(BB))
980 return true;
981
982 // What kind of constant we're looking for.
983 ConstantPreference Preference = WantInteger;
984
985 // Look to see if the terminator is a conditional branch, switch or indirect
986 // branch, if not we can't thread it.
987 Value *Condition;
988 Instruction *Terminator = BB->getTerminator();
989 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
990 // Can't thread an unconditional jump.
991 if (BI->isUnconditional()) return false;
992 Condition = BI->getCondition();
993 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
994 Condition = SI->getCondition();
995 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
996 // Can't thread indirect branch with no successors.
997 if (IB->getNumSuccessors() == 0) return false;
998 Condition = IB->getAddress()->stripPointerCasts();
999 Preference = WantBlockAddress;
1000 } else {
1001 return false; // Must be an invoke or callbr.
1002 }
1003
1004 // Keep track if we constant folded the condition in this invocation.
1005 bool ConstantFolded = false;
1006
1007 // Run constant folding to see if we can reduce the condition to a simple
1008 // constant.
1009 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1010 Value *SimpleVal =
1011 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1012 if (SimpleVal) {
1013 I->replaceAllUsesWith(SimpleVal);
1014 if (isInstructionTriviallyDead(I, TLI))
1015 I->eraseFromParent();
1016 Condition = SimpleVal;
1017 ConstantFolded = true;
1018 }
1019 }
1020
1021 // If the terminator is branching on an undef or freeze undef, we can pick any
1022 // of the successors to branch to. Let getBestDestForJumpOnUndef decide.
1023 auto *FI = dyn_cast<FreezeInst>(Condition);
1024 if (isa<UndefValue>(Condition) ||
1025 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1026 unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1027 std::vector<DominatorTree::UpdateType> Updates;
1028
1029 // Fold the branch/switch.
1030 Instruction *BBTerm = BB->getTerminator();
1031 Updates.reserve(BBTerm->getNumSuccessors());
1032 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1033 if (i == BestSucc) continue;
1034 BasicBlock *Succ = BBTerm->getSuccessor(i);
1035 Succ->removePredecessor(BB, true);
1036 Updates.push_back({DominatorTree::Delete, BB, Succ});
1037 }
1038
1039 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " In block '" <<
BB->getName() << "' folding undef terminator: " <<
*BBTerm << '\n'; } } while (false)
1040 << "' folding undef terminator: " << *BBTerm << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " In block '" <<
BB->getName() << "' folding undef terminator: " <<
*BBTerm << '\n'; } } while (false)
;
1041 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1042 ++NumFolds;
1043 BBTerm->eraseFromParent();
1044 DTU->applyUpdatesPermissive(Updates);
1045 if (FI)
1046 FI->eraseFromParent();
1047 return true;
1048 }
1049
1050 // If the terminator of this block is branching on a constant, simplify the
1051 // terminator to an unconditional branch. This can occur due to threading in
1052 // other blocks.
1053 if (getKnownConstant(Condition, Preference)) {
1054 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " In block '" <<
BB->getName() << "' folding terminator: " << *
BB->getTerminator() << '\n'; } } while (false)
1055 << "' folding terminator: " << *BB->getTerminator()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " In block '" <<
BB->getName() << "' folding terminator: " << *
BB->getTerminator() << '\n'; } } while (false)
1056 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " In block '" <<
BB->getName() << "' folding terminator: " << *
BB->getTerminator() << '\n'; } } while (false)
;
1057 ++NumFolds;
1058 ConstantFoldTerminator(BB, true, nullptr, DTU.get());
1059 if (auto *BPI = getBPI())
1060 BPI->eraseBlock(BB);
1061 return true;
1062 }
1063
1064 Instruction *CondInst = dyn_cast<Instruction>(Condition);
1065
1066 // All the rest of our checks depend on the condition being an instruction.
1067 if (!CondInst) {
1068 // FIXME: Unify this with code below.
1069 if (processThreadableEdges(Condition, BB, Preference, Terminator))
1070 return true;
1071 return ConstantFolded;
1072 }
1073
1074 // Some of the following optimization can safely work on the unfrozen cond.
1075 Value *CondWithoutFreeze = CondInst;
1076 if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1077 CondWithoutFreeze = FI->getOperand(0);
1078
1079 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1080 // If we're branching on a conditional, LVI might be able to determine
1081 // it's value at the branch instruction. We only handle comparisons
1082 // against a constant at this time.
1083 if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1084 LazyValueInfo::Tristate Ret =
1085 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1086 CondConst, BB->getTerminator(),
1087 /*UseBlockValue=*/false);
1088 if (Ret != LazyValueInfo::Unknown) {
1089 // We can safely replace *some* uses of the CondInst if it has
1090 // exactly one value as returned by LVI. RAUW is incorrect in the
1091 // presence of guards and assumes, that have the `Cond` as the use. This
1092 // is because we use the guards/assume to reason about the `Cond` value
1093 // at the end of block, but RAUW unconditionally replaces all uses
1094 // including the guards/assumes themselves and the uses before the
1095 // guard/assume.
1096 auto *CI = Ret == LazyValueInfo::True ?
1097 ConstantInt::getTrue(CondCmp->getType()) :
1098 ConstantInt::getFalse(CondCmp->getType());
1099 if (replaceFoldableUses(CondCmp, CI, BB))
1100 return true;
1101 }
1102
1103 // We did not manage to simplify this branch, try to see whether
1104 // CondCmp depends on a known phi-select pattern.
1105 if (tryToUnfoldSelect(CondCmp, BB))
1106 return true;
1107 }
1108 }
1109
1110 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1111 if (tryToUnfoldSelect(SI, BB))
1112 return true;
1113
1114 // Check for some cases that are worth simplifying. Right now we want to look
1115 // for loads that are used by a switch or by the condition for the branch. If
1116 // we see one, check to see if it's partially redundant. If so, insert a PHI
1117 // which can then be used to thread the values.
1118 Value *SimplifyValue = CondWithoutFreeze;
1119
1120 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1121 if (isa<Constant>(CondCmp->getOperand(1)))
1122 SimplifyValue = CondCmp->getOperand(0);
1123
1124 // TODO: There are other places where load PRE would be profitable, such as
1125 // more complex comparisons.
1126 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1127 if (simplifyPartiallyRedundantLoad(LoadI))
1128 return true;
1129
1130 // Before threading, try to propagate profile data backwards:
1131 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1132 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1133 updatePredecessorProfileMetadata(PN, BB);
1134
1135 // Handle a variety of cases where we are branching on something derived from
1136 // a PHI node in the current block. If we can prove that any predecessors
1137 // compute a predictable value based on a PHI node, thread those predecessors.
1138 if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1139 return true;
1140
1141 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1142 // the current block, see if we can simplify.
1143 PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1144 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1145 return processBranchOnPHI(PN);
1146
1147 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1148 if (CondInst->getOpcode() == Instruction::Xor &&
1149 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1150 return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1151
1152 // Search for a stronger dominating condition that can be used to simplify a
1153 // conditional branch leaving BB.
1154 if (processImpliedCondition(BB))
1155 return true;
1156
1157 return false;
1158}
1159
1160bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1161 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1162 if (!BI || !BI->isConditional())
1163 return false;
1164
1165 Value *Cond = BI->getCondition();
1166 // Assuming that predecessor's branch was taken, if pred's branch condition
1167 // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1168 // freeze(Cond) is either true or a nondeterministic value.
1169 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1170 // without affecting other instructions.
1171 auto *FICond = dyn_cast<FreezeInst>(Cond);
1172 if (FICond && FICond->hasOneUse())
1173 Cond = FICond->getOperand(0);
1174 else
1175 FICond = nullptr;
1176
1177 BasicBlock *CurrentBB = BB;
1178 BasicBlock *CurrentPred = BB->getSinglePredecessor();
1179 unsigned Iter = 0;
1180
1181 auto &DL = BB->getModule()->getDataLayout();
1182
1183 while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1184 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1185 if (!PBI || !PBI->isConditional())
1186 return false;
1187 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1188 return false;
1189
1190 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1191 std::optional<bool> Implication =
1192 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1193
1194 // If the branch condition of BB (which is Cond) and CurrentPred are
1195 // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1196 if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1197 if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1198 FICond->getOperand(0))
1199 Implication = CondIsTrue;
1200 }
1201
1202 if (Implication) {
1203 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1204 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1205 RemoveSucc->removePredecessor(BB);
1206 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1207 UncondBI->setDebugLoc(BI->getDebugLoc());
1208 ++NumFolds;
1209 BI->eraseFromParent();
1210 if (FICond)
1211 FICond->eraseFromParent();
1212
1213 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1214 if (auto *BPI = getBPI())
1215 BPI->eraseBlock(BB);
1216 return true;
1217 }
1218 CurrentBB = CurrentPred;
1219 CurrentPred = CurrentBB->getSinglePredecessor();
1220 }
1221
1222 return false;
1223}
1224
1225/// Return true if Op is an instruction defined in the given block.
1226static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1227 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1228 if (OpInst->getParent() == BB)
1229 return true;
1230 return false;
1231}
1232
1233/// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1234/// redundant load instruction, eliminate it by replacing it with a PHI node.
1235/// This is an important optimization that encourages jump threading, and needs
1236/// to be run interlaced with other jump threading tasks.
1237bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1238 // Don't hack volatile and ordered loads.
1239 if (!LoadI->isUnordered()) return false;
1
Taking false branch
1240
1241 // If the load is defined in a block with exactly one predecessor, it can't be
1242 // partially redundant.
1243 BasicBlock *LoadBB = LoadI->getParent();
1244 if (LoadBB->getSinglePredecessor())
2
Assuming the condition is false
3
Taking false branch
1245 return false;
1246
1247 // If the load is defined in an EH pad, it can't be partially redundant,
1248 // because the edges between the invoke and the EH pad cannot have other
1249 // instructions between them.
1250 if (LoadBB->isEHPad())
4
Assuming the condition is false
5
Taking false branch
1251 return false;
1252
1253 Value *LoadedPtr = LoadI->getOperand(0);
1254
1255 // If the loaded operand is defined in the LoadBB and its not a phi,
1256 // it can't be available in predecessors.
1257 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
6
Assuming 'LoadedPtr' is a 'class llvm::PHINode &'
7
Taking false branch
1258 return false;
1259
1260 // Scan a few instructions up from the load, to see if it is obviously live at
1261 // the entry to its block.
1262 BasicBlock::iterator BBIt(LoadI);
1263 bool IsLoadCSE;
1264 if (Value *AvailableVal = FindAvailableLoadedValue(
8
Assuming 'AvailableVal' is null
9
Taking false branch
1265 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1266 // If the value of the load is locally available within the block, just use
1267 // it. This frequently occurs for reg2mem'd allocas.
1268
1269 if (IsLoadCSE) {
1270 LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1271 combineMetadataForCSE(NLoadI, LoadI, false);
1272 };
1273
1274 // If the returned value is the load itself, replace with poison. This can
1275 // only happen in dead loops.
1276 if (AvailableVal == LoadI)
1277 AvailableVal = PoisonValue::get(LoadI->getType());
1278 if (AvailableVal->getType() != LoadI->getType())
1279 AvailableVal = CastInst::CreateBitOrPointerCast(
1280 AvailableVal, LoadI->getType(), "", LoadI);
1281 LoadI->replaceAllUsesWith(AvailableVal);
1282 LoadI->eraseFromParent();
1283 return true;
1284 }
1285
1286 // Otherwise, if we scanned the whole block and got to the top of the block,
1287 // we know the block is locally transparent to the load. If not, something
1288 // might clobber its value.
1289 if (BBIt != LoadBB->begin())
10
Taking false branch
1290 return false;
1291
1292 // If all of the loads and stores that feed the value have the same AA tags,
1293 // then we can propagate them onto any newly inserted loads.
1294 AAMDNodes AATags = LoadI->getAAMetadata();
1295
1296 SmallPtrSet<BasicBlock*, 8> PredsScanned;
1297
1298 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1299
1300 AvailablePredsTy AvailablePreds;
1301 BasicBlock *OneUnavailablePred = nullptr;
11
'OneUnavailablePred' initialized to a null pointer value
1302 SmallVector<LoadInst*, 8> CSELoads;
1303
1304 // If we got here, the loaded value is transparent through to the start of the
1305 // block. Check to see if it is available in any of the predecessor blocks.
1306 for (BasicBlock *PredBB : predecessors(LoadBB)) {
1307 // If we already scanned this predecessor, skip it.
1308 if (!PredsScanned.insert(PredBB).second)
1309 continue;
1310
1311 BBIt = PredBB->end();
1312 unsigned NumScanedInst = 0;
1313 Value *PredAvailable = nullptr;
1314 // NOTE: We don't CSE load that is volatile or anything stronger than
1315 // unordered, that should have been checked when we entered the function.
1316 assert(LoadI->isUnordered() &&(static_cast <bool> (LoadI->isUnordered() &&
"Attempting to CSE volatile or atomic loads") ? void (0) : __assert_fail
("LoadI->isUnordered() && \"Attempting to CSE volatile or atomic loads\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1317, __extension__
__PRETTY_FUNCTION__))
1317 "Attempting to CSE volatile or atomic loads")(static_cast <bool> (LoadI->isUnordered() &&
"Attempting to CSE volatile or atomic loads") ? void (0) : __assert_fail
("LoadI->isUnordered() && \"Attempting to CSE volatile or atomic loads\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1317, __extension__
__PRETTY_FUNCTION__))
;
1318 // If this is a load on a phi pointer, phi-translate it and search
1319 // for available load/store to the pointer in predecessors.
1320 Type *AccessTy = LoadI->getType();
1321 const auto &DL = LoadI->getModule()->getDataLayout();
1322 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1323 LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1324 AATags);
1325 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1326 PredBB, BBIt, DefMaxInstsToScan,
1327 AA, &IsLoadCSE, &NumScanedInst);
1328
1329 // If PredBB has a single predecessor, continue scanning through the
1330 // single predecessor.
1331 BasicBlock *SinglePredBB = PredBB;
1332 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1333 NumScanedInst < DefMaxInstsToScan) {
1334 SinglePredBB = SinglePredBB->getSinglePredecessor();
1335 if (SinglePredBB) {
1336 BBIt = SinglePredBB->end();
1337 PredAvailable = findAvailablePtrLoadStore(
1338 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1339 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1340 &NumScanedInst);
1341 }
1342 }
1343
1344 if (!PredAvailable) {
1345 OneUnavailablePred = PredBB;
1346 continue;
1347 }
1348
1349 if (IsLoadCSE)
1350 CSELoads.push_back(cast<LoadInst>(PredAvailable));
1351
1352 // If so, this load is partially redundant. Remember this info so that we
1353 // can create a PHI node.
1354 AvailablePreds.emplace_back(PredBB, PredAvailable);
1355 }
1356
1357 // If the loaded value isn't available in any predecessor, it isn't partially
1358 // redundant.
1359 if (AvailablePreds.empty()) return false;
12
Taking false branch
1360
1361 // Okay, the loaded value is available in at least one (and maybe all!)
1362 // predecessors. If the value is unavailable in more than one unique
1363 // predecessor, we want to insert a merge block for those common predecessors.
1364 // This ensures that we only have to insert one reload, thus not increasing
1365 // code size.
1366 BasicBlock *UnavailablePred = nullptr;
1367
1368 // If the value is unavailable in one of predecessors, we will end up
1369 // inserting a new instruction into them. It is only valid if all the
1370 // instructions before LoadI are guaranteed to pass execution to its
1371 // successor, or if LoadI is safe to speculate.
1372 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1373 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1374 // It requires domination tree analysis, so for this simple case it is an
1375 // overkill.
1376 if (PredsScanned.size() != AvailablePreds.size() &&
13
Assuming the condition is false
1377 !isSafeToSpeculativelyExecute(LoadI))
1378 for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1379 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1380 return false;
1381
1382 // If there is exactly one predecessor where the value is unavailable, the
1383 // already computed 'OneUnavailablePred' block is it. If it ends in an
1384 // unconditional branch, we know that it isn't a critical edge.
1385 if (PredsScanned.size() == AvailablePreds.size()+1 &&
14
Assuming the condition is true
1386 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
15
Called C++ object pointer is null
1387 UnavailablePred = OneUnavailablePred;
1388 } else if (PredsScanned.size() != AvailablePreds.size()) {
1389 // Otherwise, we had multiple unavailable predecessors or we had a critical
1390 // edge from the one.
1391 SmallVector<BasicBlock*, 8> PredsToSplit;
1392 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1393
1394 for (const auto &AvailablePred : AvailablePreds)
1395 AvailablePredSet.insert(AvailablePred.first);
1396
1397 // Add all the unavailable predecessors to the PredsToSplit list.
1398 for (BasicBlock *P : predecessors(LoadBB)) {
1399 // If the predecessor is an indirect goto, we can't split the edge.
1400 if (isa<IndirectBrInst>(P->getTerminator()))
1401 return false;
1402
1403 if (!AvailablePredSet.count(P))
1404 PredsToSplit.push_back(P);
1405 }
1406
1407 // Split them out to their own block.
1408 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1409 }
1410
1411 // If the value isn't available in all predecessors, then there will be
1412 // exactly one where it isn't available. Insert a load on that edge and add
1413 // it to the AvailablePreds list.
1414 if (UnavailablePred) {
1415 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&(static_cast <bool> (UnavailablePred->getTerminator(
)->getNumSuccessors() == 1 && "Can't handle critical edge here!"
) ? void (0) : __assert_fail ("UnavailablePred->getTerminator()->getNumSuccessors() == 1 && \"Can't handle critical edge here!\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1416, __extension__
__PRETTY_FUNCTION__))
1416 "Can't handle critical edge here!")(static_cast <bool> (UnavailablePred->getTerminator(
)->getNumSuccessors() == 1 && "Can't handle critical edge here!"
) ? void (0) : __assert_fail ("UnavailablePred->getTerminator()->getNumSuccessors() == 1 && \"Can't handle critical edge here!\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1416, __extension__
__PRETTY_FUNCTION__))
;
1417 LoadInst *NewVal = new LoadInst(
1418 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1419 LoadI->getName() + ".pr", false, LoadI->getAlign(),
1420 LoadI->getOrdering(), LoadI->getSyncScopeID(),
1421 UnavailablePred->getTerminator());
1422 NewVal->setDebugLoc(LoadI->getDebugLoc());
1423 if (AATags)
1424 NewVal->setAAMetadata(AATags);
1425
1426 AvailablePreds.emplace_back(UnavailablePred, NewVal);
1427 }
1428
1429 // Now we know that each predecessor of this block has a value in
1430 // AvailablePreds, sort them for efficient access as we're walking the preds.
1431 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1432
1433 // Create a PHI node at the start of the block for the PRE'd load value.
1434 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1435 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1436 &LoadBB->front());
1437 PN->takeName(LoadI);
1438 PN->setDebugLoc(LoadI->getDebugLoc());
1439
1440 // Insert new entries into the PHI for each predecessor. A single block may
1441 // have multiple entries here.
1442 for (pred_iterator PI = PB; PI != PE; ++PI) {
1443 BasicBlock *P = *PI;
1444 AvailablePredsTy::iterator I =
1445 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1446
1447 assert(I != AvailablePreds.end() && I->first == P &&(static_cast <bool> (I != AvailablePreds.end() &&
I->first == P && "Didn't find entry for predecessor!"
) ? void (0) : __assert_fail ("I != AvailablePreds.end() && I->first == P && \"Didn't find entry for predecessor!\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1448, __extension__
__PRETTY_FUNCTION__))
1448 "Didn't find entry for predecessor!")(static_cast <bool> (I != AvailablePreds.end() &&
I->first == P && "Didn't find entry for predecessor!"
) ? void (0) : __assert_fail ("I != AvailablePreds.end() && I->first == P && \"Didn't find entry for predecessor!\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1448, __extension__
__PRETTY_FUNCTION__))
;
1449
1450 // If we have an available predecessor but it requires casting, insert the
1451 // cast in the predecessor and use the cast. Note that we have to update the
1452 // AvailablePreds vector as we go so that all of the PHI entries for this
1453 // predecessor use the same bitcast.
1454 Value *&PredV = I->second;
1455 if (PredV->getType() != LoadI->getType())
1456 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1457 P->getTerminator());
1458
1459 PN->addIncoming(PredV, I->first);
1460 }
1461
1462 for (LoadInst *PredLoadI : CSELoads) {
1463 combineMetadataForCSE(PredLoadI, LoadI, true);
1464 }
1465
1466 LoadI->replaceAllUsesWith(PN);
1467 LoadI->eraseFromParent();
1468
1469 return true;
1470}
1471
1472/// findMostPopularDest - The specified list contains multiple possible
1473/// threadable destinations. Pick the one that occurs the most frequently in
1474/// the list.
1475static BasicBlock *
1476findMostPopularDest(BasicBlock *BB,
1477 const SmallVectorImpl<std::pair<BasicBlock *,
1478 BasicBlock *>> &PredToDestList) {
1479 assert(!PredToDestList.empty())(static_cast <bool> (!PredToDestList.empty()) ? void (0
) : __assert_fail ("!PredToDestList.empty()", "llvm/lib/Transforms/Scalar/JumpThreading.cpp"
, 1479, __extension__ __PRETTY_FUNCTION__))
;
1480
1481 // Determine popularity. If there are multiple possible destinations, we
1482 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1483 // blocks with known and real destinations to threading undef. We'll handle
1484 // them later if interesting.
1485 MapVector<BasicBlock *, unsigned> DestPopularity;
1486
1487 // Populate DestPopularity with the successors in the order they appear in the
1488 // successor list. This way, we ensure determinism by iterating it in the
1489 // same order in std::max_element below. We map nullptr to 0 so that we can
1490 // return nullptr when PredToDestList contains nullptr only.
1491 DestPopularity[nullptr] = 0;
1492 for (auto *SuccBB : successors(BB))
1493 DestPopularity[SuccBB] = 0;
1494
1495 for (const auto &PredToDest : PredToDestList)
1496 if (PredToDest.second)
1497 DestPopularity[PredToDest.second]++;
1498
1499 // Find the most popular dest.
1500 auto MostPopular = std::max_element(
1501 DestPopularity.begin(), DestPopularity.end(), llvm::less_second());
1502
1503 // Okay, we have finally picked the most popular destination.
1504 return MostPopular->first;
1505}
1506
1507// Try to evaluate the value of V when the control flows from PredPredBB to
1508// BB->getSinglePredecessor() and then on to BB.
1509Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1510 BasicBlock *PredPredBB,
1511 Value *V) {
1512 BasicBlock *PredBB = BB->getSinglePredecessor();
1513 assert(PredBB && "Expected a single predecessor")(static_cast <bool> (PredBB && "Expected a single predecessor"
) ? void (0) : __assert_fail ("PredBB && \"Expected a single predecessor\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1513, __extension__
__PRETTY_FUNCTION__))
;
1514
1515 if (Constant *Cst = dyn_cast<Constant>(V)) {
1516 return Cst;
1517 }
1518
1519 // Consult LVI if V is not an instruction in BB or PredBB.
1520 Instruction *I = dyn_cast<Instruction>(V);
1521 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1522 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1523 }
1524
1525 // Look into a PHI argument.
1526 if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1527 if (PHI->getParent() == PredBB)
1528 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1529 return nullptr;
1530 }
1531
1532 // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1533 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1534 if (CondCmp->getParent() == BB) {
1535 Constant *Op0 =
1536 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1537 Constant *Op1 =
1538 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1539 if (Op0 && Op1) {
1540 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1541 }
1542 }
1543 return nullptr;
1544 }
1545
1546 return nullptr;
1547}
1548
1549bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1550 ConstantPreference Preference,
1551 Instruction *CxtI) {
1552 // If threading this would thread across a loop header, don't even try to
1553 // thread the edge.
1554 if (LoopHeaders.count(BB))
1555 return false;
1556
1557 PredValueInfoTy PredValues;
1558 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1559 CxtI)) {
1560 // We don't have known values in predecessors. See if we can thread through
1561 // BB and its sole predecessor.
1562 return maybethreadThroughTwoBasicBlocks(BB, Cond);
1563 }
1564
1565 assert(!PredValues.empty() &&(static_cast <bool> (!PredValues.empty() && "computeValueKnownInPredecessors returned true with no values"
) ? void (0) : __assert_fail ("!PredValues.empty() && \"computeValueKnownInPredecessors returned true with no values\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1566, __extension__
__PRETTY_FUNCTION__))
1566 "computeValueKnownInPredecessors returned true with no values")(static_cast <bool> (!PredValues.empty() && "computeValueKnownInPredecessors returned true with no values"
) ? void (0) : __assert_fail ("!PredValues.empty() && \"computeValueKnownInPredecessors returned true with no values\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1566, __extension__
__PRETTY_FUNCTION__))
;
1567
1568 LLVM_DEBUG(dbgs() << "IN BB: " << *BB;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
1569 for (const auto &PredValue : PredValues) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
1570 dbgs() << " BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
1571 << "': FOUND condition = " << *PredValue.firstdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
1572 << " for pred '" << PredValue.second->getName() << "'.\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
1573 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "IN BB: " << *BB;
for (const auto &PredValue : PredValues) { dbgs() <<
" BB '" << BB->getName() << "': FOUND condition = "
<< *PredValue.first << " for pred '" << PredValue
.second->getName() << "'.\n"; }; } } while (false)
;
1574
1575 // Decide what we want to thread through. Convert our list of known values to
1576 // a list of known destinations for each pred. This also discards duplicate
1577 // predecessors and keeps track of the undefined inputs (which are represented
1578 // as a null dest in the PredToDestList).
1579 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1580 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1581
1582 BasicBlock *OnlyDest = nullptr;
1583 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1584 Constant *OnlyVal = nullptr;
1585 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1586
1587 for (const auto &PredValue : PredValues) {
1588 BasicBlock *Pred = PredValue.second;
1589 if (!SeenPreds.insert(Pred).second)
1590 continue; // Duplicate predecessor entry.
1591
1592 Constant *Val = PredValue.first;
1593
1594 BasicBlock *DestBB;
1595 if (isa<UndefValue>(Val))
1596 DestBB = nullptr;
1597 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1598 assert(isa<ConstantInt>(Val) && "Expecting a constant integer")(static_cast <bool> (isa<ConstantInt>(Val) &&
"Expecting a constant integer") ? void (0) : __assert_fail (
"isa<ConstantInt>(Val) && \"Expecting a constant integer\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1598, __extension__
__PRETTY_FUNCTION__))
;
1599 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1600 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1601 assert(isa<ConstantInt>(Val) && "Expecting a constant integer")(static_cast <bool> (isa<ConstantInt>(Val) &&
"Expecting a constant integer") ? void (0) : __assert_fail (
"isa<ConstantInt>(Val) && \"Expecting a constant integer\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1601, __extension__
__PRETTY_FUNCTION__))
;
1602 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1603 } else {
1604 assert(isa<IndirectBrInst>(BB->getTerminator())(static_cast <bool> (isa<IndirectBrInst>(BB->getTerminator
()) && "Unexpected terminator") ? void (0) : __assert_fail
("isa<IndirectBrInst>(BB->getTerminator()) && \"Unexpected terminator\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1605, __extension__
__PRETTY_FUNCTION__))
1605 && "Unexpected terminator")(static_cast <bool> (isa<IndirectBrInst>(BB->getTerminator
()) && "Unexpected terminator") ? void (0) : __assert_fail
("isa<IndirectBrInst>(BB->getTerminator()) && \"Unexpected terminator\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1605, __extension__
__PRETTY_FUNCTION__))
;
1606 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress")(static_cast <bool> (isa<BlockAddress>(Val) &&
"Expecting a constant blockaddress") ? void (0) : __assert_fail
("isa<BlockAddress>(Val) && \"Expecting a constant blockaddress\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1606, __extension__
__PRETTY_FUNCTION__))
;
1607 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1608 }
1609
1610 // If we have exactly one destination, remember it for efficiency below.
1611 if (PredToDestList.empty()) {
1612 OnlyDest = DestBB;
1613 OnlyVal = Val;
1614 } else {
1615 if (OnlyDest != DestBB)
1616 OnlyDest = MultipleDestSentinel;
1617 // It possible we have same destination, but different value, e.g. default
1618 // case in switchinst.
1619 if (Val != OnlyVal)
1620 OnlyVal = MultipleVal;
1621 }
1622
1623 // If the predecessor ends with an indirect goto, we can't change its
1624 // destination.
1625 if (isa<IndirectBrInst>(Pred->getTerminator()))
1626 continue;
1627
1628 PredToDestList.emplace_back(Pred, DestBB);
1629 }
1630
1631 // If all edges were unthreadable, we fail.
1632 if (PredToDestList.empty())
1633 return false;
1634
1635 // If all the predecessors go to a single known successor, we want to fold,
1636 // not thread. By doing so, we do not need to duplicate the current block and
1637 // also miss potential opportunities in case we dont/cant duplicate.
1638 if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1639 if (BB->hasNPredecessors(PredToDestList.size())) {
1640 bool SeenFirstBranchToOnlyDest = false;
1641 std::vector <DominatorTree::UpdateType> Updates;
1642 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1643 for (BasicBlock *SuccBB : successors(BB)) {
1644 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1645 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1646 } else {
1647 SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1648 Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1649 }
1650 }
1651
1652 // Finally update the terminator.
1653 Instruction *Term = BB->getTerminator();
1654 BranchInst::Create(OnlyDest, Term);
1655 ++NumFolds;
1656 Term->eraseFromParent();
1657 DTU->applyUpdatesPermissive(Updates);
1658 if (auto *BPI = getBPI())
1659 BPI->eraseBlock(BB);
1660
1661 // If the condition is now dead due to the removal of the old terminator,
1662 // erase it.
1663 if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1664 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1665 CondInst->eraseFromParent();
1666 // We can safely replace *some* uses of the CondInst if it has
1667 // exactly one value as returned by LVI. RAUW is incorrect in the
1668 // presence of guards and assumes, that have the `Cond` as the use. This
1669 // is because we use the guards/assume to reason about the `Cond` value
1670 // at the end of block, but RAUW unconditionally replaces all uses
1671 // including the guards/assumes themselves and the uses before the
1672 // guard/assume.
1673 else if (OnlyVal && OnlyVal != MultipleVal)
1674 replaceFoldableUses(CondInst, OnlyVal, BB);
1675 }
1676 return true;
1677 }
1678 }
1679
1680 // Determine which is the most common successor. If we have many inputs and
1681 // this block is a switch, we want to start by threading the batch that goes
1682 // to the most popular destination first. If we only know about one
1683 // threadable destination (the common case) we can avoid this.
1684 BasicBlock *MostPopularDest = OnlyDest;
1685
1686 if (MostPopularDest == MultipleDestSentinel) {
1687 // Remove any loop headers from the Dest list, threadEdge conservatively
1688 // won't process them, but we might have other destination that are eligible
1689 // and we still want to process.
1690 erase_if(PredToDestList,
1691 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1692 return LoopHeaders.contains(PredToDest.second);
1693 });
1694
1695 if (PredToDestList.empty())
1696 return false;
1697
1698 MostPopularDest = findMostPopularDest(BB, PredToDestList);
1699 }
1700
1701 // Now that we know what the most popular destination is, factor all
1702 // predecessors that will jump to it into a single predecessor.
1703 SmallVector<BasicBlock*, 16> PredsToFactor;
1704 for (const auto &PredToDest : PredToDestList)
1705 if (PredToDest.second == MostPopularDest) {
1706 BasicBlock *Pred = PredToDest.first;
1707
1708 // This predecessor may be a switch or something else that has multiple
1709 // edges to the block. Factor each of these edges by listing them
1710 // according to # occurrences in PredsToFactor.
1711 for (BasicBlock *Succ : successors(Pred))
1712 if (Succ == BB)
1713 PredsToFactor.push_back(Pred);
1714 }
1715
1716 // If the threadable edges are branching on an undefined value, we get to pick
1717 // the destination that these predecessors should get to.
1718 if (!MostPopularDest)
1719 MostPopularDest = BB->getTerminator()->
1720 getSuccessor(getBestDestForJumpOnUndef(BB));
1721
1722 // Ok, try to thread it!
1723 return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1724}
1725
1726/// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1727/// a PHI node (or freeze PHI) in the current block. See if there are any
1728/// simplifications we can do based on inputs to the phi node.
1729bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1730 BasicBlock *BB = PN->getParent();
1731
1732 // TODO: We could make use of this to do it once for blocks with common PHI
1733 // values.
1734 SmallVector<BasicBlock*, 1> PredBBs;
1735 PredBBs.resize(1);
1736
1737 // If any of the predecessor blocks end in an unconditional branch, we can
1738 // *duplicate* the conditional branch into that block in order to further
1739 // encourage jump threading and to eliminate cases where we have branch on a
1740 // phi of an icmp (branch on icmp is much better).
1741 // This is still beneficial when a frozen phi is used as the branch condition
1742 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1743 // to br(icmp(freeze ...)).
1744 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1745 BasicBlock *PredBB = PN->getIncomingBlock(i);
1746 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1747 if (PredBr->isUnconditional()) {
1748 PredBBs[0] = PredBB;
1749 // Try to duplicate BB into PredBB.
1750 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1751 return true;
1752 }
1753 }
1754
1755 return false;
1756}
1757
1758/// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1759/// a xor instruction in the current block. See if there are any
1760/// simplifications we can do based on inputs to the xor.
1761bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1762 BasicBlock *BB = BO->getParent();
1763
1764 // If either the LHS or RHS of the xor is a constant, don't do this
1765 // optimization.
1766 if (isa<ConstantInt>(BO->getOperand(0)) ||
1767 isa<ConstantInt>(BO->getOperand(1)))
1768 return false;
1769
1770 // If the first instruction in BB isn't a phi, we won't be able to infer
1771 // anything special about any particular predecessor.
1772 if (!isa<PHINode>(BB->front()))
1773 return false;
1774
1775 // If this BB is a landing pad, we won't be able to split the edge into it.
1776 if (BB->isEHPad())
1777 return false;
1778
1779 // If we have a xor as the branch input to this block, and we know that the
1780 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1781 // the condition into the predecessor and fix that value to true, saving some
1782 // logical ops on that path and encouraging other paths to simplify.
1783 //
1784 // This copies something like this:
1785 //
1786 // BB:
1787 // %X = phi i1 [1], [%X']
1788 // %Y = icmp eq i32 %A, %B
1789 // %Z = xor i1 %X, %Y
1790 // br i1 %Z, ...
1791 //
1792 // Into:
1793 // BB':
1794 // %Y = icmp ne i32 %A, %B
1795 // br i1 %Y, ...
1796
1797 PredValueInfoTy XorOpValues;
1798 bool isLHS = true;
1799 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1800 WantInteger, BO)) {
1801 assert(XorOpValues.empty())(static_cast <bool> (XorOpValues.empty()) ? void (0) : __assert_fail
("XorOpValues.empty()", "llvm/lib/Transforms/Scalar/JumpThreading.cpp"
, 1801, __extension__ __PRETTY_FUNCTION__))
;
1802 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1803 WantInteger, BO))
1804 return false;
1805 isLHS = false;
1806 }
1807
1808 assert(!XorOpValues.empty() &&(static_cast <bool> (!XorOpValues.empty() && "computeValueKnownInPredecessors returned true with no values"
) ? void (0) : __assert_fail ("!XorOpValues.empty() && \"computeValueKnownInPredecessors returned true with no values\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1809, __extension__
__PRETTY_FUNCTION__))
1809 "computeValueKnownInPredecessors returned true with no values")(static_cast <bool> (!XorOpValues.empty() && "computeValueKnownInPredecessors returned true with no values"
) ? void (0) : __assert_fail ("!XorOpValues.empty() && \"computeValueKnownInPredecessors returned true with no values\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 1809, __extension__
__PRETTY_FUNCTION__))
;
1810
1811 // Scan the information to see which is most popular: true or false. The
1812 // predecessors can be of the set true, false, or undef.
1813 unsigned NumTrue = 0, NumFalse = 0;
1814 for (const auto &XorOpValue : XorOpValues) {
1815 if (isa<UndefValue>(XorOpValue.first))
1816 // Ignore undefs for the count.
1817 continue;
1818 if (cast<ConstantInt>(XorOpValue.first)->isZero())
1819 ++NumFalse;
1820 else
1821 ++NumTrue;
1822 }
1823
1824 // Determine which value to split on, true, false, or undef if neither.
1825 ConstantInt *SplitVal = nullptr;
1826 if (NumTrue > NumFalse)
1827 SplitVal = ConstantInt::getTrue(BB->getContext());
1828 else if (NumTrue != 0 || NumFalse != 0)
1829 SplitVal = ConstantInt::getFalse(BB->getContext());
1830
1831 // Collect all of the blocks that this can be folded into so that we can
1832 // factor this once and clone it once.
1833 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1834 for (const auto &XorOpValue : XorOpValues) {
1835 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1836 continue;
1837
1838 BlocksToFoldInto.push_back(XorOpValue.second);
1839 }
1840
1841 // If we inferred a value for all of the predecessors, then duplication won't
1842 // help us. However, we can just replace the LHS or RHS with the constant.
1843 if (BlocksToFoldInto.size() ==
1844 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1845 if (!SplitVal) {
1846 // If all preds provide undef, just nuke the xor, because it is undef too.
1847 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1848 BO->eraseFromParent();
1849 } else if (SplitVal->isZero() && BO != BO->getOperand(isLHS)) {
1850 // If all preds provide 0, replace the xor with the other input.
1851 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1852 BO->eraseFromParent();
1853 } else {
1854 // If all preds provide 1, set the computed value to 1.
1855 BO->setOperand(!isLHS, SplitVal);
1856 }
1857
1858 return true;
1859 }
1860
1861 // If any of predecessors end with an indirect goto, we can't change its
1862 // destination.
1863 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1864 return isa<IndirectBrInst>(Pred->getTerminator());
1865 }))
1866 return false;
1867
1868 // Try to duplicate BB into PredBB.
1869 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1870}
1871
1872/// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1873/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1874/// NewPred using the entries from OldPred (suitably mapped).
1875static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1876 BasicBlock *OldPred,
1877 BasicBlock *NewPred,
1878 DenseMap<Instruction*, Value*> &ValueMap) {
1879 for (PHINode &PN : PHIBB->phis()) {
1880 // Ok, we have a PHI node. Figure out what the incoming value was for the
1881 // DestBlock.
1882 Value *IV = PN.getIncomingValueForBlock(OldPred);
1883
1884 // Remap the value if necessary.
1885 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1886 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1887 if (I != ValueMap.end())
1888 IV = I->second;
1889 }
1890
1891 PN.addIncoming(IV, NewPred);
1892 }
1893}
1894
1895/// Merge basic block BB into its sole predecessor if possible.
1896bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1897 BasicBlock *SinglePred = BB->getSinglePredecessor();
1898 if (!SinglePred)
1899 return false;
1900
1901 const Instruction *TI = SinglePred->getTerminator();
1902 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1903 SinglePred == BB || hasAddressTakenAndUsed(BB))
1904 return false;
1905
1906 // If SinglePred was a loop header, BB becomes one.
1907 if (LoopHeaders.erase(SinglePred))
1908 LoopHeaders.insert(BB);
1909
1910 LVI->eraseBlock(SinglePred);
1911 MergeBasicBlockIntoOnlyPred(BB, DTU.get());
1912
1913 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1914 // BB code within one basic block `BB`), we need to invalidate the LVI
1915 // information associated with BB, because the LVI information need not be
1916 // true for all of BB after the merge. For example,
1917 // Before the merge, LVI info and code is as follows:
1918 // SinglePred: <LVI info1 for %p val>
1919 // %y = use of %p
1920 // call @exit() // need not transfer execution to successor.
1921 // assume(%p) // from this point on %p is true
1922 // br label %BB
1923 // BB: <LVI info2 for %p val, i.e. %p is true>
1924 // %x = use of %p
1925 // br label exit
1926 //
1927 // Note that this LVI info for blocks BB and SinglPred is correct for %p
1928 // (info2 and info1 respectively). After the merge and the deletion of the
1929 // LVI info1 for SinglePred. We have the following code:
1930 // BB: <LVI info2 for %p val>
1931 // %y = use of %p
1932 // call @exit()
1933 // assume(%p)
1934 // %x = use of %p <-- LVI info2 is correct from here onwards.
1935 // br label exit
1936 // LVI info2 for BB is incorrect at the beginning of BB.
1937
1938 // Invalidate LVI information for BB if the LVI is not provably true for
1939 // all of BB.
1940 if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1941 LVI->eraseBlock(BB);
1942 return true;
1943}
1944
1945/// Update the SSA form. NewBB contains instructions that are copied from BB.
1946/// ValueMapping maps old values in BB to new ones in NewBB.
1947void JumpThreadingPass::updateSSA(
1948 BasicBlock *BB, BasicBlock *NewBB,
1949 DenseMap<Instruction *, Value *> &ValueMapping) {
1950 // If there were values defined in BB that are used outside the block, then we
1951 // now have to update all uses of the value to use either the original value,
1952 // the cloned value, or some PHI derived value. This can require arbitrary
1953 // PHI insertion, of which we are prepared to do, clean these up now.
1954 SSAUpdater SSAUpdate;
1955 SmallVector<Use *, 16> UsesToRename;
1956 SmallVector<DbgValueInst *, 4> DbgValues;
1957
1958 for (Instruction &I : *BB) {
1959 // Scan all uses of this instruction to see if it is used outside of its
1960 // block, and if so, record them in UsesToRename.
1961 for (Use &U : I.uses()) {
1962 Instruction *User = cast<Instruction>(U.getUser());
1963 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1964 if (UserPN->getIncomingBlock(U) == BB)
1965 continue;
1966 } else if (User->getParent() == BB)
1967 continue;
1968
1969 UsesToRename.push_back(&U);
1970 }
1971
1972 // Find debug values outside of the block
1973 findDbgValues(DbgValues, &I);
1974 DbgValues.erase(remove_if(DbgValues,
1975 [&](const DbgValueInst *DbgVal) {
1976 return DbgVal->getParent() == BB;
1977 }),
1978 DbgValues.end());
1979
1980 // If there are no uses outside the block, we're done with this instruction.
1981 if (UsesToRename.empty() && DbgValues.empty())
1982 continue;
1983 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "JT: Renaming non-local uses of: "
<< I << "\n"; } } while (false)
;
1984
1985 // We found a use of I outside of BB. Rename all uses of I that are outside
1986 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1987 // with the two values we know.
1988 SSAUpdate.Initialize(I.getType(), I.getName());
1989 SSAUpdate.AddAvailableValue(BB, &I);
1990 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1991
1992 while (!UsesToRename.empty())
1993 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1994 if (!DbgValues.empty()) {
1995 SSAUpdate.UpdateDebugValues(&I, DbgValues);
1996 DbgValues.clear();
1997 }
1998
1999 LLVM_DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "\n"; } } while (false)
;
2000 }
2001}
2002
2003/// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone
2004/// arguments that come from PredBB. Return the map from the variables in the
2005/// source basic block to the variables in the newly created basic block.
2006DenseMap<Instruction *, Value *>
2007JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2008 BasicBlock::iterator BE, BasicBlock *NewBB,
2009 BasicBlock *PredBB) {
2010 // We are going to have to map operands from the source basic block to the new
2011 // copy of the block 'NewBB'. If there are PHI nodes in the source basic
2012 // block, evaluate them to account for entry from PredBB.
2013 DenseMap<Instruction *, Value *> ValueMapping;
2014
2015 // Retargets llvm.dbg.value to any renamed variables.
2016 auto RetargetDbgValueIfPossible = [&](Instruction *NewInst) -> bool {
2017 auto DbgInstruction = dyn_cast<DbgValueInst>(NewInst);
2018 if (!DbgInstruction)
2019 return false;
2020
2021 SmallSet<std::pair<Value *, Value *>, 16> OperandsToRemap;
2022 for (auto DbgOperand : DbgInstruction->location_ops()) {
2023 auto DbgOperandInstruction = dyn_cast<Instruction>(DbgOperand);
2024 if (!DbgOperandInstruction)
2025 continue;
2026
2027 auto I = ValueMapping.find(DbgOperandInstruction);
2028 if (I != ValueMapping.end()) {
2029 OperandsToRemap.insert(
2030 std::pair<Value *, Value *>(DbgOperand, I->second));
2031 }
2032 }
2033
2034 for (auto &[OldOp, MappedOp] : OperandsToRemap)
2035 DbgInstruction->replaceVariableLocationOp(OldOp, MappedOp);
2036 return true;
2037 };
2038
2039 // Clone the phi nodes of the source basic block into NewBB. The resulting
2040 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2041 // might need to rewrite the operand of the cloned phi.
2042 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2043 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2044 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2045 ValueMapping[PN] = NewPN;
2046 }
2047
2048 // Clone noalias scope declarations in the threaded block. When threading a
2049 // loop exit, we would otherwise end up with two idential scope declarations
2050 // visible at the same time.
2051 SmallVector<MDNode *> NoAliasScopes;
2052 DenseMap<MDNode *, MDNode *> ClonedScopes;
2053 LLVMContext &Context = PredBB->getContext();
2054 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2055 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2056
2057 // Clone the non-phi instructions of the source basic block into NewBB,
2058 // keeping track of the mapping and using it to remap operands in the cloned
2059 // instructions.
2060 for (; BI != BE; ++BI) {
2061 Instruction *New = BI->clone();
2062 New->setName(BI->getName());
2063 New->insertInto(NewBB, NewBB->end());
2064 ValueMapping[&*BI] = New;
2065 adaptNoAliasScopes(New, ClonedScopes, Context);
2066
2067 if (RetargetDbgValueIfPossible(New))
2068 continue;
2069
2070 // Remap operands to patch up intra-block references.
2071 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2072 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2073 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2074 if (I != ValueMapping.end())
2075 New->setOperand(i, I->second);
2076 }
2077 }
2078
2079 return ValueMapping;
2080}
2081
2082/// Attempt to thread through two successive basic blocks.
2083bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2084 Value *Cond) {
2085 // Consider:
2086 //
2087 // PredBB:
2088 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2089 // %tobool = icmp eq i32 %cond, 0
2090 // br i1 %tobool, label %BB, label ...
2091 //
2092 // BB:
2093 // %cmp = icmp eq i32* %var, null
2094 // br i1 %cmp, label ..., label ...
2095 //
2096 // We don't know the value of %var at BB even if we know which incoming edge
2097 // we take to BB. However, once we duplicate PredBB for each of its incoming
2098 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2099 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2100
2101 // Require that BB end with a Branch for simplicity.
2102 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2103 if (!CondBr)
2104 return false;
2105
2106 // BB must have exactly one predecessor.
2107 BasicBlock *PredBB = BB->getSinglePredecessor();
2108 if (!PredBB)
2109 return false;
2110
2111 // Require that PredBB end with a conditional Branch. If PredBB ends with an
2112 // unconditional branch, we should be merging PredBB and BB instead. For
2113 // simplicity, we don't deal with a switch.
2114 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2115 if (!PredBBBranch || PredBBBranch->isUnconditional())
2116 return false;
2117
2118 // If PredBB has exactly one incoming edge, we don't gain anything by copying
2119 // PredBB.
2120 if (PredBB->getSinglePredecessor())
2121 return false;
2122
2123 // Don't thread through PredBB if it contains a successor edge to itself, in
2124 // which case we would infinite loop. Suppose we are threading an edge from
2125 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2126 // successor edge to itself. If we allowed jump threading in this case, we
2127 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since
2128 // PredBB.thread has a successor edge to PredBB, we would immediately come up
2129 // with another jump threading opportunity from PredBB.thread through PredBB
2130 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we
2131 // would keep peeling one iteration from PredBB.
2132 if (llvm::is_contained(successors(PredBB), PredBB))
2133 return false;
2134
2135 // Don't thread across a loop header.
2136 if (LoopHeaders.count(PredBB))
2137 return false;
2138
2139 // Avoid complication with duplicating EH pads.
2140 if (PredBB->isEHPad())
2141 return false;
2142
2143 // Find a predecessor that we can thread. For simplicity, we only consider a
2144 // successor edge out of BB to which we thread exactly one incoming edge into
2145 // PredBB.
2146 unsigned ZeroCount = 0;
2147 unsigned OneCount = 0;
2148 BasicBlock *ZeroPred = nullptr;
2149 BasicBlock *OnePred = nullptr;
2150 for (BasicBlock *P : predecessors(PredBB)) {
2151 // If PredPred ends with IndirectBrInst, we can't handle it.
2152 if (isa<IndirectBrInst>(P->getTerminator()))
2153 continue;
2154 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2155 evaluateOnPredecessorEdge(BB, P, Cond))) {
2156 if (CI->isZero()) {
2157 ZeroCount++;
2158 ZeroPred = P;
2159 } else if (CI->isOne()) {
2160 OneCount++;
2161 OnePred = P;
2162 }
2163 }
2164 }
2165
2166 // Disregard complicated cases where we have to thread multiple edges.
2167 BasicBlock *PredPredBB;
2168 if (ZeroCount == 1) {
2169 PredPredBB = ZeroPred;
2170 } else if (OneCount == 1) {
2171 PredPredBB = OnePred;
2172 } else {
2173 return false;
2174 }
2175
2176 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2177
2178 // If threading to the same block as we come from, we would infinite loop.
2179 if (SuccBB == BB) {
2180 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading across BB '"
<< BB->getName() << "' - would thread to self!\n"
; } } while (false)
2181 << "' - would thread to self!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading across BB '"
<< BB->getName() << "' - would thread to self!\n"
; } } while (false)
;
2182 return false;
2183 }
2184
2185 // If threading this would thread across a loop header, don't thread the edge.
2186 // See the comments above findLoopHeaders for justifications and caveats.
2187 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2188 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2189 bool BBIsHeader = LoopHeaders.count(BB);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2190 bool SuccIsHeader = LoopHeaders.count(SuccBB);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2191 dbgs() << " Not threading across "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2192 << (BBIsHeader ? "loop header BB '" : "block BB '")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2193 << BB->getName() << "' to dest "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2194 << (SuccIsHeader ? "loop header BB '" : "block BB '")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2195 << SuccBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2196 << "' - it might create an irreducible loop!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2197 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
;
2198 return false;
2199 }
2200
2201 // Compute the cost of duplicating BB and PredBB.
2202 unsigned BBCost = getJumpThreadDuplicationCost(
2203 TTI, BB, BB->getTerminator(), BBDupThreshold);
2204 unsigned PredBBCost = getJumpThreadDuplicationCost(
2205 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2206
2207 // Give up if costs are too high. We need to check BBCost and PredBBCost
2208 // individually before checking their sum because getJumpThreadDuplicationCost
2209 // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2210 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2211 BBCost + PredBBCost > BBDupThreshold) {
2212 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading BB '" <<
BB->getName() << "' - Cost is too high: " << PredBBCost
<< " for PredBB, " << BBCost << "for BB\n"
; } } while (false)
2213 << "' - Cost is too high: " << PredBBCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading BB '" <<
BB->getName() << "' - Cost is too high: " << PredBBCost
<< " for PredBB, " << BBCost << "for BB\n"
; } } while (false)
2214 << " for PredBB, " << BBCost << "for BB\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading BB '" <<
BB->getName() << "' - Cost is too high: " << PredBBCost
<< " for PredBB, " << BBCost << "for BB\n"
; } } while (false)
;
2215 return false;
2216 }
2217
2218 // Now we are ready to duplicate PredBB.
2219 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2220 return true;
2221}
2222
2223void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2224 BasicBlock *PredBB,
2225 BasicBlock *BB,
2226 BasicBlock *SuccBB) {
2227 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Threading through '"
<< PredBB->getName() << "' and '" << BB
->getName() << "'\n"; } } while (false)
2228 << BB->getName() << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Threading through '"
<< PredBB->getName() << "' and '" << BB
->getName() << "'\n"; } } while (false)
;
2229
2230 // Build BPI/BFI before any changes are made to IR.
2231 bool HasProfile = doesBlockHaveProfileData(BB);
2232 auto *BFI = getOrCreateBFI(HasProfile);
2233 auto *BPI = getOrCreateBPI(BFI != nullptr);
2234
2235 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2236 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2237
2238 BasicBlock *NewBB =
2239 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2240 PredBB->getParent(), PredBB);
2241 NewBB->moveAfter(PredBB);
2242
2243 // Set the block frequency of NewBB.
2244 if (BFI) {
2245 assert(BPI && "It's expected BPI to exist along with BFI")(static_cast <bool> (BPI && "It's expected BPI to exist along with BFI"
) ? void (0) : __assert_fail ("BPI && \"It's expected BPI to exist along with BFI\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2245, __extension__
__PRETTY_FUNCTION__))
;
2246 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2247 BPI->getEdgeProbability(PredPredBB, PredBB);
2248 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2249 }
2250
2251 // We are going to have to map operands from the original BB block to the new
2252 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them
2253 // to account for entry from PredPredBB.
2254 DenseMap<Instruction *, Value *> ValueMapping =
2255 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2256
2257 // Copy the edge probabilities from PredBB to NewBB.
2258 if (BPI)
2259 BPI->copyEdgeProbabilities(PredBB, NewBB);
2260
2261 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2262 // This eliminates predecessors from PredPredBB, which requires us to simplify
2263 // any PHI nodes in PredBB.
2264 Instruction *PredPredTerm = PredPredBB->getTerminator();
2265 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2266 if (PredPredTerm->getSuccessor(i) == PredBB) {
2267 PredBB->removePredecessor(PredPredBB, true);
2268 PredPredTerm->setSuccessor(i, NewBB);
2269 }
2270
2271 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2272 ValueMapping);
2273 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2274 ValueMapping);
2275
2276 DTU->applyUpdatesPermissive(
2277 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2278 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2279 {DominatorTree::Insert, PredPredBB, NewBB},
2280 {DominatorTree::Delete, PredPredBB, PredBB}});
2281
2282 updateSSA(PredBB, NewBB, ValueMapping);
2283
2284 // Clean up things like PHI nodes with single operands, dead instructions,
2285 // etc.
2286 SimplifyInstructionsInBlock(NewBB, TLI);
2287 SimplifyInstructionsInBlock(PredBB, TLI);
2288
2289 SmallVector<BasicBlock *, 1> PredsToFactor;
2290 PredsToFactor.push_back(NewBB);
2291 threadEdge(BB, PredsToFactor, SuccBB);
2292}
2293
2294/// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2295bool JumpThreadingPass::tryThreadEdge(
2296 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2297 BasicBlock *SuccBB) {
2298 // If threading to the same block as we come from, we would infinite loop.
2299 if (SuccBB == BB) {
2300 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading across BB '"
<< BB->getName() << "' - would thread to self!\n"
; } } while (false)
2301 << "' - would thread to self!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading across BB '"
<< BB->getName() << "' - would thread to self!\n"
; } } while (false)
;
2302 return false;
2303 }
2304
2305 // If threading this would thread across a loop header, don't thread the edge.
2306 // See the comments above findLoopHeaders for justifications and caveats.
2307 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2308 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2309 bool BBIsHeader = LoopHeaders.count(BB);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2310 bool SuccIsHeader = LoopHeaders.count(SuccBB);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2311 dbgs() << " Not threading across "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2312 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2313 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2314 << SuccBB->getName() << "' - it might create an irreducible loop!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
2315 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { { bool BBIsHeader = LoopHeaders.count(BB
); bool SuccIsHeader = LoopHeaders.count(SuccBB); dbgs() <<
" Not threading across " << (BBIsHeader ? "loop header BB '"
: "block BB '") << BB->getName() << "' to dest "
<< (SuccIsHeader ? "loop header BB '" : "block BB '") <<
SuccBB->getName() << "' - it might create an irreducible loop!\n"
; }; } } while (false)
;
2316 return false;
2317 }
2318
2319 unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2320 TTI, BB, BB->getTerminator(), BBDupThreshold);
2321 if (JumpThreadCost > BBDupThreshold) {
2322 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading BB '" <<
BB->getName() << "' - Cost is too high: " << JumpThreadCost
<< "\n"; } } while (false)
2323 << "' - Cost is too high: " << JumpThreadCost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not threading BB '" <<
BB->getName() << "' - Cost is too high: " << JumpThreadCost
<< "\n"; } } while (false)
;
2324 return false;
2325 }
2326
2327 threadEdge(BB, PredBBs, SuccBB);
2328 return true;
2329}
2330
2331/// threadEdge - We have decided that it is safe and profitable to factor the
2332/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2333/// across BB. Transform the IR to reflect this change.
2334void JumpThreadingPass::threadEdge(BasicBlock *BB,
2335 const SmallVectorImpl<BasicBlock *> &PredBBs,
2336 BasicBlock *SuccBB) {
2337 assert(SuccBB != BB && "Don't create an infinite loop")(static_cast <bool> (SuccBB != BB && "Don't create an infinite loop"
) ? void (0) : __assert_fail ("SuccBB != BB && \"Don't create an infinite loop\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2337, __extension__
__PRETTY_FUNCTION__))
;
2338
2339 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&(static_cast <bool> (!LoopHeaders.count(BB) && !
LoopHeaders.count(SuccBB) && "Don't thread across loop headers"
) ? void (0) : __assert_fail ("!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && \"Don't thread across loop headers\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2340, __extension__
__PRETTY_FUNCTION__))
2340 "Don't thread across loop headers")(static_cast <bool> (!LoopHeaders.count(BB) && !
LoopHeaders.count(SuccBB) && "Don't thread across loop headers"
) ? void (0) : __assert_fail ("!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && \"Don't thread across loop headers\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2340, __extension__
__PRETTY_FUNCTION__))
;
2341
2342 // Build BPI/BFI before any changes are made to IR.
2343 bool HasProfile = doesBlockHaveProfileData(BB);
2344 auto *BFI = getOrCreateBFI(HasProfile);
2345 auto *BPI = getOrCreateBPI(BFI != nullptr);
2346
2347 // And finally, do it! Start by factoring the predecessors if needed.
2348 BasicBlock *PredBB;
2349 if (PredBBs.size() == 1)
2350 PredBB = PredBBs[0];
2351 else {
2352 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Factoring out " <<
PredBBs.size() << " common predecessors.\n"; } } while
(false)
2353 << " common predecessors.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Factoring out " <<
PredBBs.size() << " common predecessors.\n"; } } while
(false)
;
2354 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2355 }
2356
2357 // And finally, do it!
2358 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Threading edge from '"
<< PredBB->getName() << "' to '" << SuccBB
->getName() << ", across block:\n " << *BB <<
"\n"; } } while (false)
2359 << "' to '" << SuccBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Threading edge from '"
<< PredBB->getName() << "' to '" << SuccBB
->getName() << ", across block:\n " << *BB <<
"\n"; } } while (false)
2360 << ", across block:\n " << *BB << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Threading edge from '"
<< PredBB->getName() << "' to '" << SuccBB
->getName() << ", across block:\n " << *BB <<
"\n"; } } while (false)
;
2361
2362 LVI->threadEdge(PredBB, BB, SuccBB);
2363
2364 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2365 BB->getName()+".thread",
2366 BB->getParent(), BB);
2367 NewBB->moveAfter(PredBB);
2368
2369 // Set the block frequency of NewBB.
2370 if (BFI) {
2371 assert(BPI && "It's expected BPI to exist along with BFI")(static_cast <bool> (BPI && "It's expected BPI to exist along with BFI"
) ? void (0) : __assert_fail ("BPI && \"It's expected BPI to exist along with BFI\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2371, __extension__
__PRETTY_FUNCTION__))
;
2372 auto NewBBFreq =
2373 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2374 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2375 }
2376
2377 // Copy all the instructions from BB to NewBB except the terminator.
2378 DenseMap<Instruction *, Value *> ValueMapping =
2379 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2380
2381 // We didn't copy the terminator from BB over to NewBB, because there is now
2382 // an unconditional jump to SuccBB. Insert the unconditional jump.
2383 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2384 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2385
2386 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2387 // PHI nodes for NewBB now.
2388 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2389
2390 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2391 // eliminates predecessors from BB, which requires us to simplify any PHI
2392 // nodes in BB.
2393 Instruction *PredTerm = PredBB->getTerminator();
2394 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2395 if (PredTerm->getSuccessor(i) == BB) {
2396 BB->removePredecessor(PredBB, true);
2397 PredTerm->setSuccessor(i, NewBB);
2398 }
2399
2400 // Enqueue required DT updates.
2401 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2402 {DominatorTree::Insert, PredBB, NewBB},
2403 {DominatorTree::Delete, PredBB, BB}});
2404
2405 updateSSA(BB, NewBB, ValueMapping);
2406
2407 // At this point, the IR is fully up to date and consistent. Do a quick scan
2408 // over the new instructions and zap any that are constants or dead. This
2409 // frequently happens because of phi translation.
2410 SimplifyInstructionsInBlock(NewBB, TLI);
2411
2412 // Update the edge weight from BB to SuccBB, which should be less than before.
2413 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB, BFI, BPI, HasProfile);
2414
2415 // Threaded an edge!
2416 ++NumThreads;
2417}
2418
2419/// Create a new basic block that will be the predecessor of BB and successor of
2420/// all blocks in Preds. When profile data is available, update the frequency of
2421/// this new block.
2422BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2423 ArrayRef<BasicBlock *> Preds,
2424 const char *Suffix) {
2425 SmallVector<BasicBlock *, 2> NewBBs;
2426
2427 // Collect the frequencies of all predecessors of BB, which will be used to
2428 // update the edge weight of the result of splitting predecessors.
2429 DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2430 auto *BFI = getBFI();
2431 if (BFI) {
2432 auto *BPI = getOrCreateBPI(true);
2433 for (auto *Pred : Preds)
2434 FreqMap.insert(std::make_pair(
2435 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2436 }
2437
2438 // In the case when BB is a LandingPad block we create 2 new predecessors
2439 // instead of just one.
2440 if (BB->isLandingPad()) {
2441 std::string NewName = std::string(Suffix) + ".split-lp";
2442 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2443 } else {
2444 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2445 }
2446
2447 std::vector<DominatorTree::UpdateType> Updates;
2448 Updates.reserve((2 * Preds.size()) + NewBBs.size());
2449 for (auto *NewBB : NewBBs) {
2450 BlockFrequency NewBBFreq(0);
2451 Updates.push_back({DominatorTree::Insert, NewBB, BB});
2452 for (auto *Pred : predecessors(NewBB)) {
2453 Updates.push_back({DominatorTree::Delete, Pred, BB});
2454 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2455 if (BFI) // Update frequencies between Pred -> NewBB.
2456 NewBBFreq += FreqMap.lookup(Pred);
2457 }
2458 if (BFI) // Apply the summed frequency to NewBB.
2459 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2460 }
2461
2462 DTU->applyUpdatesPermissive(Updates);
2463 return NewBBs[0];
2464}
2465
2466bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2467 const Instruction *TI = BB->getTerminator();
2468 if (!TI || TI->getNumSuccessors() < 2)
2469 return false;
2470
2471 return hasValidBranchWeightMD(*TI);
2472}
2473
2474/// Update the block frequency of BB and branch weight and the metadata on the
2475/// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2476/// Freq(PredBB->BB) / Freq(BB->SuccBB).
2477void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2478 BasicBlock *BB,
2479 BasicBlock *NewBB,
2480 BasicBlock *SuccBB,
2481 BlockFrequencyInfo *BFI,
2482 BranchProbabilityInfo *BPI,
2483 bool HasProfile) {
2484 assert(((BFI && BPI) || (!BFI && !BFI)) &&(static_cast <bool> (((BFI && BPI) || (!BFI &&
!BFI)) && "Both BFI & BPI should either be set or unset"
) ? void (0) : __assert_fail ("((BFI && BPI) || (!BFI && !BFI)) && \"Both BFI & BPI should either be set or unset\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2485, __extension__
__PRETTY_FUNCTION__))
2485 "Both BFI & BPI should either be set or unset")(static_cast <bool> (((BFI && BPI) || (!BFI &&
!BFI)) && "Both BFI & BPI should either be set or unset"
) ? void (0) : __assert_fail ("((BFI && BPI) || (!BFI && !BFI)) && \"Both BFI & BPI should either be set or unset\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2485, __extension__
__PRETTY_FUNCTION__))
;
2486
2487 if (!BFI) {
2488 assert(!HasProfile &&(static_cast <bool> (!HasProfile && "It's expected to have BFI/BPI when profile info exists"
) ? void (0) : __assert_fail ("!HasProfile && \"It's expected to have BFI/BPI when profile info exists\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2489, __extension__
__PRETTY_FUNCTION__))
2489 "It's expected to have BFI/BPI when profile info exists")(static_cast <bool> (!HasProfile && "It's expected to have BFI/BPI when profile info exists"
) ? void (0) : __assert_fail ("!HasProfile && \"It's expected to have BFI/BPI when profile info exists\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2489, __extension__
__PRETTY_FUNCTION__))
;
2490 return;
2491 }
2492
2493 // As the edge from PredBB to BB is deleted, we have to update the block
2494 // frequency of BB.
2495 auto BBOrigFreq = BFI->getBlockFreq(BB);
2496 auto NewBBFreq = BFI->getBlockFreq(NewBB);
2497 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2498 auto BBNewFreq = BBOrigFreq - NewBBFreq;
2499 BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2500
2501 // Collect updated outgoing edges' frequencies from BB and use them to update
2502 // edge probabilities.
2503 SmallVector<uint64_t, 4> BBSuccFreq;
2504 for (BasicBlock *Succ : successors(BB)) {
2505 auto SuccFreq = (Succ == SuccBB)
2506 ? BB2SuccBBFreq - NewBBFreq
2507 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2508 BBSuccFreq.push_back(SuccFreq.getFrequency());
2509 }
2510
2511 uint64_t MaxBBSuccFreq =
2512 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2513
2514 SmallVector<BranchProbability, 4> BBSuccProbs;
2515 if (MaxBBSuccFreq == 0)
2516 BBSuccProbs.assign(BBSuccFreq.size(),
2517 {1, static_cast<unsigned>(BBSuccFreq.size())});
2518 else {
2519 for (uint64_t Freq : BBSuccFreq)
2520 BBSuccProbs.push_back(
2521 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2522 // Normalize edge probabilities so that they sum up to one.
2523 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2524 BBSuccProbs.end());
2525 }
2526
2527 // Update edge probabilities in BPI.
2528 BPI->setEdgeProbability(BB, BBSuccProbs);
2529
2530 // Update the profile metadata as well.
2531 //
2532 // Don't do this if the profile of the transformed blocks was statically
2533 // estimated. (This could occur despite the function having an entry
2534 // frequency in completely cold parts of the CFG.)
2535 //
2536 // In this case we don't want to suggest to subsequent passes that the
2537 // calculated weights are fully consistent. Consider this graph:
2538 //
2539 // check_1
2540 // 50% / |
2541 // eq_1 | 50%
2542 // \ |
2543 // check_2
2544 // 50% / |
2545 // eq_2 | 50%
2546 // \ |
2547 // check_3
2548 // 50% / |
2549 // eq_3 | 50%
2550 // \ |
2551 //
2552 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2553 // the overall probabilities are inconsistent; the total probability that the
2554 // value is either 1, 2 or 3 is 150%.
2555 //
2556 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2557 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2558 // the loop exit edge. Then based solely on static estimation we would assume
2559 // the loop was extremely hot.
2560 //
2561 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2562 // shouldn't make edges extremely likely or unlikely based solely on static
2563 // estimation.
2564 if (BBSuccProbs.size() >= 2 && HasProfile) {
2565 SmallVector<uint32_t, 4> Weights;
2566 for (auto Prob : BBSuccProbs)
2567 Weights.push_back(Prob.getNumerator());
2568
2569 auto TI = BB->getTerminator();
2570 TI->setMetadata(
2571 LLVMContext::MD_prof,
2572 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2573 }
2574}
2575
2576/// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2577/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2578/// If we can duplicate the contents of BB up into PredBB do so now, this
2579/// improves the odds that the branch will be on an analyzable instruction like
2580/// a compare.
2581bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2582 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2583 assert(!PredBBs.empty() && "Can't handle an empty set")(static_cast <bool> (!PredBBs.empty() && "Can't handle an empty set"
) ? void (0) : __assert_fail ("!PredBBs.empty() && \"Can't handle an empty set\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 2583, __extension__
__PRETTY_FUNCTION__))
;
2584
2585 // If BB is a loop header, then duplicating this block outside the loop would
2586 // cause us to transform this into an irreducible loop, don't do this.
2587 // See the comments above findLoopHeaders for justifications and caveats.
2588 if (LoopHeaders.count(BB)) {
2589 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not duplicating loop header '"
<< BB->getName() << "' into predecessor block '"
<< PredBBs[0]->getName() << "' - it might create an irreducible loop!\n"
; } } while (false)
2590 << "' into predecessor block '" << PredBBs[0]->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not duplicating loop header '"
<< BB->getName() << "' into predecessor block '"
<< PredBBs[0]->getName() << "' - it might create an irreducible loop!\n"
; } } while (false)
2591 << "' - it might create an irreducible loop!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not duplicating loop header '"
<< BB->getName() << "' into predecessor block '"
<< PredBBs[0]->getName() << "' - it might create an irreducible loop!\n"
; } } while (false)
;
2592 return false;
2593 }
2594
2595 unsigned DuplicationCost = getJumpThreadDuplicationCost(
2596 TTI, BB, BB->getTerminator(), BBDupThreshold);
2597 if (DuplicationCost > BBDupThreshold) {
2598 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not duplicating BB '"
<< BB->getName() << "' - Cost is too high: " <<
DuplicationCost << "\n"; } } while (false)
2599 << "' - Cost is too high: " << DuplicationCost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Not duplicating BB '"
<< BB->getName() << "' - Cost is too high: " <<
DuplicationCost << "\n"; } } while (false)
;
2600 return false;
2601 }
2602
2603 // And finally, do it! Start by factoring the predecessors if needed.
2604 std::vector<DominatorTree::UpdateType> Updates;
2605 BasicBlock *PredBB;
2606 if (PredBBs.size() == 1)
2607 PredBB = PredBBs[0];
2608 else {
2609 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Factoring out " <<
PredBBs.size() << " common predecessors.\n"; } } while
(false)
2610 << " common predecessors.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Factoring out " <<
PredBBs.size() << " common predecessors.\n"; } } while
(false)
;
2611 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2612 }
2613 Updates.push_back({DominatorTree::Delete, PredBB, BB});
2614
2615 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2616 // of PredBB.
2617 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Duplicating block '"
<< BB->getName() << "' into end of '" <<
PredBB->getName() << "' to eliminate branch on phi. Cost: "
<< DuplicationCost << " block is:" << *BB <<
"\n"; } } while (false)
2618 << "' into end of '" << PredBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Duplicating block '"
<< BB->getName() << "' into end of '" <<
PredBB->getName() << "' to eliminate branch on phi. Cost: "
<< DuplicationCost << " block is:" << *BB <<
"\n"; } } while (false)
2619 << "' to eliminate branch on phi. Cost: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Duplicating block '"
<< BB->getName() << "' into end of '" <<
PredBB->getName() << "' to eliminate branch on phi. Cost: "
<< DuplicationCost << " block is:" << *BB <<
"\n"; } } while (false)
2620 << DuplicationCost << " block is:" << *BB << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << " Duplicating block '"
<< BB->getName() << "' into end of '" <<
PredBB->getName() << "' to eliminate branch on phi. Cost: "
<< DuplicationCost << " block is:" << *BB <<
"\n"; } } while (false)
;
2621
2622 // Unless PredBB ends with an unconditional branch, split the edge so that we
2623 // can just clone the bits from BB into the end of the new PredBB.
2624 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2625
2626 if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2627 BasicBlock *OldPredBB = PredBB;
2628 PredBB = SplitEdge(OldPredBB, BB);
2629 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2630 Updates.push_back({DominatorTree::Insert, PredBB, BB});
2631 Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2632 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2633 }
2634
2635 // We are going to have to map operands from the original BB block into the
2636 // PredBB block. Evaluate PHI nodes in BB.
2637 DenseMap<Instruction*, Value*> ValueMapping;
2638
2639 BasicBlock::iterator BI = BB->begin();
2640 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2641 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2642 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2643 // mapping and using it to remap operands in the cloned instructions.
2644 for (; BI != BB->end(); ++BI) {
2645 Instruction *New = BI->clone();
2646
2647 // Remap operands to patch up intra-block references.
2648 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2649 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2650 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2651 if (I != ValueMapping.end())
2652 New->setOperand(i, I->second);
2653 }
2654
2655 // If this instruction can be simplified after the operands are updated,
2656 // just use the simplified value instead. This frequently happens due to
2657 // phi translation.
2658 if (Value *IV = simplifyInstruction(
2659 New,
2660 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2661 ValueMapping[&*BI] = IV;
2662 if (!New->mayHaveSideEffects()) {
2663 New->deleteValue();
2664 New = nullptr;
2665 }
2666 } else {
2667 ValueMapping[&*BI] = New;
2668 }
2669 if (New) {
2670 // Otherwise, insert the new instruction into the block.
2671 New->setName(BI->getName());
2672 New->insertInto(PredBB, OldPredBranch->getIterator());
2673 // Update Dominance from simplified New instruction operands.
2674 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2675 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2676 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2677 }
2678 }
2679
2680 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2681 // add entries to the PHI nodes for branch from PredBB now.
2682 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2683 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2684 ValueMapping);
2685 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2686 ValueMapping);
2687
2688 updateSSA(BB, PredBB, ValueMapping);
2689
2690 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2691 // that we nuked.
2692 BB->removePredecessor(PredBB, true);
2693
2694 // Remove the unconditional branch at the end of the PredBB block.
2695 OldPredBranch->eraseFromParent();
2696 if (auto *BPI = getBPI())
2697 BPI->copyEdgeProbabilities(BB, PredBB);
2698 DTU->applyUpdatesPermissive(Updates);
2699
2700 ++NumDupes;
2701 return true;
2702}
2703
2704// Pred is a predecessor of BB with an unconditional branch to BB. SI is
2705// a Select instruction in Pred. BB has other predecessors and SI is used in
2706// a PHI node in BB. SI has no other use.
2707// A new basic block, NewBB, is created and SI is converted to compare and
2708// conditional branch. SI is erased from parent.
2709void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2710 SelectInst *SI, PHINode *SIUse,
2711 unsigned Idx) {
2712 // Expand the select.
2713 //
2714 // Pred --
2715 // | v
2716 // | NewBB
2717 // | |
2718 // |-----
2719 // v
2720 // BB
2721 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2722 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2723 BB->getParent(), BB);
2724 // Move the unconditional branch to NewBB.
2725 PredTerm->removeFromParent();
2726 PredTerm->insertInto(NewBB, NewBB->end());
2727 // Create a conditional branch and update PHI nodes.
2728 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2729 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2730 BI->copyMetadata(*SI, {LLVMContext::MD_prof});
2731 SIUse->setIncomingValue(Idx, SI->getFalseValue());
2732 SIUse->addIncoming(SI->getTrueValue(), NewBB);
2733
2734 uint64_t TrueWeight = 1;
2735 uint64_t FalseWeight = 1;
2736 // Copy probabilities from 'SI' to created conditional branch in 'Pred'.
2737 if (extractBranchWeights(*SI, TrueWeight, FalseWeight) &&
2738 (TrueWeight + FalseWeight) != 0) {
2739 SmallVector<BranchProbability, 2> BP;
2740 BP.emplace_back(BranchProbability::getBranchProbability(
2741 TrueWeight, TrueWeight + FalseWeight));
2742 BP.emplace_back(BranchProbability::getBranchProbability(
2743 FalseWeight, TrueWeight + FalseWeight));
2744 // Update BPI if exists.
2745 if (auto *BPI = getBPI())
2746 BPI->setEdgeProbability(Pred, BP);
2747 }
2748 // Set the block frequency of NewBB.
2749 if (auto *BFI = getBFI()) {
2750 if ((TrueWeight + FalseWeight) == 0) {
2751 TrueWeight = 1;
2752 FalseWeight = 1;
2753 }
2754 BranchProbability PredToNewBBProb = BranchProbability::getBranchProbability(
2755 TrueWeight, TrueWeight + FalseWeight);
2756 auto NewBBFreq = BFI->getBlockFreq(Pred) * PredToNewBBProb;
2757 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2758 }
2759
2760 // The select is now dead.
2761 SI->eraseFromParent();
2762 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2763 {DominatorTree::Insert, Pred, NewBB}});
2764
2765 // Update any other PHI nodes in BB.
2766 for (BasicBlock::iterator BI = BB->begin();
2767 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2768 if (Phi != SIUse)
2769 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2770}
2771
2772bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2773 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2774
2775 if (!CondPHI || CondPHI->getParent() != BB)
2776 return false;
2777
2778 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2779 BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2780 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2781
2782 // The second and third condition can be potentially relaxed. Currently
2783 // the conditions help to simplify the code and allow us to reuse existing
2784 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2785 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2786 continue;
2787
2788 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2789 if (!PredTerm || !PredTerm->isUnconditional())
2790 continue;
2791
2792 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2793 return true;
2794 }
2795 return false;
2796}
2797
2798/// tryToUnfoldSelect - Look for blocks of the form
2799/// bb1:
2800/// %a = select
2801/// br bb2
2802///
2803/// bb2:
2804/// %p = phi [%a, %bb1] ...
2805/// %c = icmp %p
2806/// br i1 %c
2807///
2808/// And expand the select into a branch structure if one of its arms allows %c
2809/// to be folded. This later enables threading from bb1 over bb2.
2810bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2811 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2812 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2813 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2814
2815 if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2816 CondLHS->getParent() != BB)
2817 return false;
2818
2819 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2820 BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2821 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2822
2823 // Look if one of the incoming values is a select in the corresponding
2824 // predecessor.
2825 if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2826 continue;
2827
2828 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2829 if (!PredTerm || !PredTerm->isUnconditional())
2830 continue;
2831
2832 // Now check if one of the select values would allow us to constant fold the
2833 // terminator in BB. We don't do the transform if both sides fold, those
2834 // cases will be threaded in any case.
2835 LazyValueInfo::Tristate LHSFolds =
2836 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2837 CondRHS, Pred, BB, CondCmp);
2838 LazyValueInfo::Tristate RHSFolds =
2839 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2840 CondRHS, Pred, BB, CondCmp);
2841 if ((LHSFolds != LazyValueInfo::Unknown ||
2842 RHSFolds != LazyValueInfo::Unknown) &&
2843 LHSFolds != RHSFolds) {
2844 unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2845 return true;
2846 }
2847 }
2848 return false;
2849}
2850
2851/// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2852/// same BB in the form
2853/// bb:
2854/// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2855/// %s = select %p, trueval, falseval
2856///
2857/// or
2858///
2859/// bb:
2860/// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2861/// %c = cmp %p, 0
2862/// %s = select %c, trueval, falseval
2863///
2864/// And expand the select into a branch structure. This later enables
2865/// jump-threading over bb in this pass.
2866///
2867/// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2868/// select if the associated PHI has at least one constant. If the unfolded
2869/// select is not jump-threaded, it will be folded again in the later
2870/// optimizations.
2871bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2872 // This transform would reduce the quality of msan diagnostics.
2873 // Disable this transform under MemorySanitizer.
2874 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2875 return false;
2876
2877 // If threading this would thread across a loop header, don't thread the edge.
2878 // See the comments above findLoopHeaders for justifications and caveats.
2879 if (LoopHeaders.count(BB))
2880 return false;
2881
2882 for (BasicBlock::iterator BI = BB->begin();
2883 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2884 // Look for a Phi having at least one constant incoming value.
2885 if (llvm::all_of(PN->incoming_values(),
2886 [](Value *V) { return !isa<ConstantInt>(V); }))
2887 continue;
2888
2889 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2890 using namespace PatternMatch;
2891
2892 // Check if SI is in BB and use V as condition.
2893 if (SI->getParent() != BB)
2894 return false;
2895 Value *Cond = SI->getCondition();
2896 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2897 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2898 };
2899
2900 SelectInst *SI = nullptr;
2901 for (Use &U : PN->uses()) {
2902 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2903 // Look for a ICmp in BB that compares PN with a constant and is the
2904 // condition of a Select.
2905 if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2906 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2907 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2908 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2909 SI = SelectI;
2910 break;
2911 }
2912 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2913 // Look for a Select in BB that uses PN as condition.
2914 if (isUnfoldCandidate(SelectI, U.get())) {
2915 SI = SelectI;
2916 break;
2917 }
2918 }
2919 }
2920
2921 if (!SI)
2922 continue;
2923 // Expand the select.
2924 Value *Cond = SI->getCondition();
2925 if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2926 Cond = new FreezeInst(Cond, "cond.fr", SI);
2927 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2928 BasicBlock *SplitBB = SI->getParent();
2929 BasicBlock *NewBB = Term->getParent();
2930 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2931 NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2932 NewPN->addIncoming(SI->getFalseValue(), BB);
2933 SI->replaceAllUsesWith(NewPN);
2934 SI->eraseFromParent();
2935 // NewBB and SplitBB are newly created blocks which require insertion.
2936 std::vector<DominatorTree::UpdateType> Updates;
2937 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2938 Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2939 Updates.push_back({DominatorTree::Insert, BB, NewBB});
2940 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2941 // BB's successors were moved to SplitBB, update DTU accordingly.
2942 for (auto *Succ : successors(SplitBB)) {
2943 Updates.push_back({DominatorTree::Delete, BB, Succ});
2944 Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2945 }
2946 DTU->applyUpdatesPermissive(Updates);
2947 return true;
2948 }
2949 return false;
2950}
2951
2952/// Try to propagate a guard from the current BB into one of its predecessors
2953/// in case if another branch of execution implies that the condition of this
2954/// guard is always true. Currently we only process the simplest case that
2955/// looks like:
2956///
2957/// Start:
2958/// %cond = ...
2959/// br i1 %cond, label %T1, label %F1
2960/// T1:
2961/// br label %Merge
2962/// F1:
2963/// br label %Merge
2964/// Merge:
2965/// %condGuard = ...
2966/// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2967///
2968/// And cond either implies condGuard or !condGuard. In this case all the
2969/// instructions before the guard can be duplicated in both branches, and the
2970/// guard is then threaded to one of them.
2971bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2972 using namespace PatternMatch;
2973
2974 // We only want to deal with two predecessors.
2975 BasicBlock *Pred1, *Pred2;
2976 auto PI = pred_begin(BB), PE = pred_end(BB);
2977 if (PI == PE)
2978 return false;
2979 Pred1 = *PI++;
2980 if (PI == PE)
2981 return false;
2982 Pred2 = *PI++;
2983 if (PI != PE)
2984 return false;
2985 if (Pred1 == Pred2)
2986 return false;
2987
2988 // Try to thread one of the guards of the block.
2989 // TODO: Look up deeper than to immediate predecessor?
2990 auto *Parent = Pred1->getSinglePredecessor();
2991 if (!Parent || Parent != Pred2->getSinglePredecessor())
2992 return false;
2993
2994 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2995 for (auto &I : *BB)
2996 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2997 return true;
2998
2999 return false;
3000}
3001
3002/// Try to propagate the guard from BB which is the lower block of a diamond
3003/// to one of its branches, in case if diamond's condition implies guard's
3004/// condition.
3005bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3006 BranchInst *BI) {
3007 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?")(static_cast <bool> (BI->getNumSuccessors() == 2 &&
"Wrong number of successors?") ? void (0) : __assert_fail ("BI->getNumSuccessors() == 2 && \"Wrong number of successors?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3007, __extension__
__PRETTY_FUNCTION__))
;
3008 assert(BI->isConditional() && "Unconditional branch has 2 successors?")(static_cast <bool> (BI->isConditional() && "Unconditional branch has 2 successors?"
) ? void (0) : __assert_fail ("BI->isConditional() && \"Unconditional branch has 2 successors?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3008, __extension__
__PRETTY_FUNCTION__))
;
3009 Value *GuardCond = Guard->getArgOperand(0);
3010 Value *BranchCond = BI->getCondition();
3011 BasicBlock *TrueDest = BI->getSuccessor(0);
3012 BasicBlock *FalseDest = BI->getSuccessor(1);
3013
3014 auto &DL = BB->getModule()->getDataLayout();
3015 bool TrueDestIsSafe = false;
3016 bool FalseDestIsSafe = false;
3017
3018 // True dest is safe if BranchCond => GuardCond.
3019 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3020 if (Impl && *Impl)
3021 TrueDestIsSafe = true;
3022 else {
3023 // False dest is safe if !BranchCond => GuardCond.
3024 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3025 if (Impl && *Impl)
3026 FalseDestIsSafe = true;
3027 }
3028
3029 if (!TrueDestIsSafe && !FalseDestIsSafe)
3030 return false;
3031
3032 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3033 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3034
3035 ValueToValueMapTy UnguardedMapping, GuardedMapping;
3036 Instruction *AfterGuard = Guard->getNextNode();
3037 unsigned Cost =
3038 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3039 if (Cost > BBDupThreshold)
3040 return false;
3041 // Duplicate all instructions before the guard and the guard itself to the
3042 // branch where implication is not proved.
3043 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3044 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3045 assert(GuardedBlock && "Could not create the guarded block?")(static_cast <bool> (GuardedBlock && "Could not create the guarded block?"
) ? void (0) : __assert_fail ("GuardedBlock && \"Could not create the guarded block?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3045, __extension__
__PRETTY_FUNCTION__))
;
3046 // Duplicate all instructions before the guard in the unguarded branch.
3047 // Since we have successfully duplicated the guarded block and this block
3048 // has fewer instructions, we expect it to succeed.
3049 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3050 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3051 assert(UnguardedBlock && "Could not create the unguarded block?")(static_cast <bool> (UnguardedBlock && "Could not create the unguarded block?"
) ? void (0) : __assert_fail ("UnguardedBlock && \"Could not create the unguarded block?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3051, __extension__
__PRETTY_FUNCTION__))
;
3052 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "Moved guard " <<
*Guard << " to block " << GuardedBlock->getName
() << "\n"; } } while (false)
3053 << GuardedBlock->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("jump-threading")) { dbgs() << "Moved guard " <<
*Guard << " to block " << GuardedBlock->getName
() << "\n"; } } while (false)
;
3054 // Some instructions before the guard may still have uses. For them, we need
3055 // to create Phi nodes merging their copies in both guarded and unguarded
3056 // branches. Those instructions that have no uses can be just removed.
3057 SmallVector<Instruction *, 4> ToRemove;
3058 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3059 if (!isa<PHINode>(&*BI))
3060 ToRemove.push_back(&*BI);
3061
3062 Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3063 assert(InsertionPoint && "Empty block?")(static_cast <bool> (InsertionPoint && "Empty block?"
) ? void (0) : __assert_fail ("InsertionPoint && \"Empty block?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3063, __extension__
__PRETTY_FUNCTION__))
;
3064 // Substitute with Phis & remove.
3065 for (auto *Inst : reverse(ToRemove)) {
3066 if (!Inst->use_empty()) {
3067 PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3068 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3069 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3070 NewPN->insertBefore(InsertionPoint);
3071 Inst->replaceAllUsesWith(NewPN);
3072 }
3073 Inst->eraseFromParent();
3074 }
3075 return true;
3076}
3077
3078PreservedAnalyses JumpThreadingPass::getPreservedAnalysis() const {
3079 PreservedAnalyses PA;
3080 PA.preserve<LazyValueAnalysis>();
3081 PA.preserve<DominatorTreeAnalysis>();
3082
3083 // TODO: We would like to preserve BPI/BFI. Enable once all paths update them.
3084 // TODO: Would be nice to verify BPI/BFI consistency as well.
3085 return PA;
3086}
3087
3088template <typename AnalysisT>
3089typename AnalysisT::Result *JumpThreadingPass::runExternalAnalysis() {
3090 assert(FAM && "Can't run external analysis without FunctionAnalysisManager")(static_cast <bool> (FAM && "Can't run external analysis without FunctionAnalysisManager"
) ? void (0) : __assert_fail ("FAM && \"Can't run external analysis without FunctionAnalysisManager\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3090, __extension__
__PRETTY_FUNCTION__))
;
3091
3092 // If there were no changes since last call to 'runExternalAnalysis' then all
3093 // analysis is either up to date or explicitly invalidated. Just go ahead and
3094 // run the "external" analysis.
3095 if (!ChangedSinceLastAnalysisUpdate) {
3096 assert(!DTU->hasPendingUpdates() &&(static_cast <bool> (!DTU->hasPendingUpdates() &&
"Lost update of 'ChangedSinceLastAnalysisUpdate'?") ? void (
0) : __assert_fail ("!DTU->hasPendingUpdates() && \"Lost update of 'ChangedSinceLastAnalysisUpdate'?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3097, __extension__
__PRETTY_FUNCTION__))
3097 "Lost update of 'ChangedSinceLastAnalysisUpdate'?")(static_cast <bool> (!DTU->hasPendingUpdates() &&
"Lost update of 'ChangedSinceLastAnalysisUpdate'?") ? void (
0) : __assert_fail ("!DTU->hasPendingUpdates() && \"Lost update of 'ChangedSinceLastAnalysisUpdate'?\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3097, __extension__
__PRETTY_FUNCTION__))
;
3098 // Run the "external" analysis.
3099 return &FAM->getResult<AnalysisT>(*F);
3100 }
3101 ChangedSinceLastAnalysisUpdate = false;
3102
3103 auto PA = getPreservedAnalysis();
3104 // TODO: This shouldn't be needed once 'getPreservedAnalysis' reports BPI/BFI
3105 // as preserved.
3106 PA.preserve<BranchProbabilityAnalysis>();
3107 PA.preserve<BlockFrequencyAnalysis>();
3108 // Report everything except explicitly preserved as invalid.
3109 FAM->invalidate(*F, PA);
3110 // Update DT/PDT.
3111 DTU->flush();
3112 // Make sure DT/PDT are valid before running "external" analysis.
3113 assert(DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast))(static_cast <bool> (DTU->getDomTree().verify(DominatorTree
::VerificationLevel::Fast)) ? void (0) : __assert_fail ("DTU->getDomTree().verify(DominatorTree::VerificationLevel::Fast)"
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3113, __extension__
__PRETTY_FUNCTION__))
;
3114 assert((!DTU->hasPostDomTree() ||(static_cast <bool> ((!DTU->hasPostDomTree() || DTU->
getPostDomTree().verify( PostDominatorTree::VerificationLevel
::Fast))) ? void (0) : __assert_fail ("(!DTU->hasPostDomTree() || DTU->getPostDomTree().verify( PostDominatorTree::VerificationLevel::Fast))"
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3116, __extension__
__PRETTY_FUNCTION__))
3115 DTU->getPostDomTree().verify((static_cast <bool> ((!DTU->hasPostDomTree() || DTU->
getPostDomTree().verify( PostDominatorTree::VerificationLevel
::Fast))) ? void (0) : __assert_fail ("(!DTU->hasPostDomTree() || DTU->getPostDomTree().verify( PostDominatorTree::VerificationLevel::Fast))"
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3116, __extension__
__PRETTY_FUNCTION__))
3116 PostDominatorTree::VerificationLevel::Fast)))(static_cast <bool> ((!DTU->hasPostDomTree() || DTU->
getPostDomTree().verify( PostDominatorTree::VerificationLevel
::Fast))) ? void (0) : __assert_fail ("(!DTU->hasPostDomTree() || DTU->getPostDomTree().verify( PostDominatorTree::VerificationLevel::Fast))"
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3116, __extension__
__PRETTY_FUNCTION__))
;
3117 // Run the "external" analysis.
3118 auto *Result = &FAM->getResult<AnalysisT>(*F);
3119 // Update analysis JumpThreading depends on and not explicitly preserved.
3120 TTI = &FAM->getResult<TargetIRAnalysis>(*F);
3121 TLI = &FAM->getResult<TargetLibraryAnalysis>(*F);
3122 AA = &FAM->getResult<AAManager>(*F);
3123
3124 return Result;
3125}
3126
3127BranchProbabilityInfo *JumpThreadingPass::getBPI() {
3128 if (!BPI) {
3129 assert(FAM && "Can't create BPI without FunctionAnalysisManager")(static_cast <bool> (FAM && "Can't create BPI without FunctionAnalysisManager"
) ? void (0) : __assert_fail ("FAM && \"Can't create BPI without FunctionAnalysisManager\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3129, __extension__
__PRETTY_FUNCTION__))
;
3130 BPI = FAM->getCachedResult<BranchProbabilityAnalysis>(*F);
3131 }
3132 return *BPI;
3133}
3134
3135BlockFrequencyInfo *JumpThreadingPass::getBFI() {
3136 if (!BFI) {
3137 assert(FAM && "Can't create BFI without FunctionAnalysisManager")(static_cast <bool> (FAM && "Can't create BFI without FunctionAnalysisManager"
) ? void (0) : __assert_fail ("FAM && \"Can't create BFI without FunctionAnalysisManager\""
, "llvm/lib/Transforms/Scalar/JumpThreading.cpp", 3137, __extension__
__PRETTY_FUNCTION__))
;
3138 BFI = FAM->getCachedResult<BlockFrequencyAnalysis>(*F);
3139 }
3140 return *BFI;
3141}
3142
3143// Important note on validity of BPI/BFI. JumpThreading tries to preserve
3144// BPI/BFI as it goes. Thus if cached instance exists it will be updated.
3145// Otherwise, new instance of BPI/BFI is created (up to date by definition).
3146BranchProbabilityInfo *JumpThreadingPass::getOrCreateBPI(bool Force) {
3147 auto *Res = getBPI();
3148 if (Res)
3149 return Res;
3150
3151 if (Force)
3152 BPI = runExternalAnalysis<BranchProbabilityAnalysis>();
3153
3154 return *BPI;
3155}
3156
3157BlockFrequencyInfo *JumpThreadingPass::getOrCreateBFI(bool Force) {
3158 auto *Res = getBFI();
3159 if (Res)
3160 return Res;
3161
3162 if (Force)
3163 BFI = runExternalAnalysis<BlockFrequencyAnalysis>();
3164
3165 return *BFI;
3166}