Bug Summary

File:llvm/lib/Transforms/Scalar/LICM.cpp
Warning:line 1197, column 33
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LICM.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/Transforms/Scalar -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-08-28-193554-24367-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp

1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion, attempting to remove as much
10// code from the body of a loop as possible. It does this by either hoisting
11// code into the preheader block, or by sinking code to the exit blocks if it is
12// safe. This pass also promotes must-aliased memory locations in the loop to
13// live in registers, thus hoisting and sinking "invariant" loads and stores.
14//
15// Hoisting operations out of loops is a canonicalization transform. It
16// enables and simplifies subsequent optimizations in the middle-end.
17// Rematerialization of hoisted instructions to reduce register pressure is the
18// responsibility of the back-end, which has more accurate information about
19// register pressure and also handles other optimizations than LICM that
20// increase live-ranges.
21//
22// This pass uses alias analysis for two purposes:
23//
24// 1. Moving loop invariant loads and calls out of loops. If we can determine
25// that a load or call inside of a loop never aliases anything stored to,
26// we can hoist it or sink it like any other instruction.
27// 2. Scalar Promotion of Memory - If there is a store instruction inside of
28// the loop, we try to move the store to happen AFTER the loop instead of
29// inside of the loop. This can only happen if a few conditions are true:
30// A. The pointer stored through is loop invariant
31// B. There are no stores or loads in the loop which _may_ alias the
32// pointer. There are no calls in the loop which mod/ref the pointer.
33// If these conditions are true, we can promote the loads and stores in the
34// loop of the pointer to use a temporary alloca'd variable. We then use
35// the SSAUpdater to construct the appropriate SSA form for the value.
36//
37//===----------------------------------------------------------------------===//
38
39#include "llvm/Transforms/Scalar/LICM.h"
40#include "llvm/ADT/SetOperations.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/BasicAliasAnalysis.h"
45#include "llvm/Analysis/BlockFrequencyInfo.h"
46#include "llvm/Analysis/CaptureTracking.h"
47#include "llvm/Analysis/ConstantFolding.h"
48#include "llvm/Analysis/GlobalsModRef.h"
49#include "llvm/Analysis/GuardUtils.h"
50#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51#include "llvm/Analysis/Loads.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopIterator.h"
54#include "llvm/Analysis/LoopPass.h"
55#include "llvm/Analysis/MemoryBuiltins.h"
56#include "llvm/Analysis/MemorySSA.h"
57#include "llvm/Analysis/MemorySSAUpdater.h"
58#include "llvm/Analysis/MustExecute.h"
59#include "llvm/Analysis/OptimizationRemarkEmitter.h"
60#include "llvm/Analysis/ScalarEvolution.h"
61#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
62#include "llvm/Analysis/TargetLibraryInfo.h"
63#include "llvm/Analysis/ValueTracking.h"
64#include "llvm/IR/CFG.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfoMetadata.h"
68#include "llvm/IR/DerivedTypes.h"
69#include "llvm/IR/Dominators.h"
70#include "llvm/IR/Instructions.h"
71#include "llvm/IR/IntrinsicInst.h"
72#include "llvm/IR/LLVMContext.h"
73#include "llvm/IR/Metadata.h"
74#include "llvm/IR/PatternMatch.h"
75#include "llvm/IR/PredIteratorCache.h"
76#include "llvm/InitializePasses.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/raw_ostream.h"
80#include "llvm/Transforms/Scalar.h"
81#include "llvm/Transforms/Scalar/LoopPassManager.h"
82#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
83#include "llvm/Transforms/Utils/BasicBlockUtils.h"
84#include "llvm/Transforms/Utils/Local.h"
85#include "llvm/Transforms/Utils/LoopUtils.h"
86#include "llvm/Transforms/Utils/SSAUpdater.h"
87#include <algorithm>
88#include <utility>
89using namespace llvm;
90
91#define DEBUG_TYPE"licm" "licm"
92
93STATISTIC(NumCreatedBlocks, "Number of blocks created")static llvm::Statistic NumCreatedBlocks = {"licm", "NumCreatedBlocks"
, "Number of blocks created"}
;
94STATISTIC(NumClonedBranches, "Number of branches cloned")static llvm::Statistic NumClonedBranches = {"licm", "NumClonedBranches"
, "Number of branches cloned"}
;
95STATISTIC(NumSunk, "Number of instructions sunk out of loop")static llvm::Statistic NumSunk = {"licm", "NumSunk", "Number of instructions sunk out of loop"
}
;
96STATISTIC(NumHoisted, "Number of instructions hoisted out of loop")static llvm::Statistic NumHoisted = {"licm", "NumHoisted", "Number of instructions hoisted out of loop"
}
;
97STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk")static llvm::Statistic NumMovedLoads = {"licm", "NumMovedLoads"
, "Number of load insts hoisted or sunk"}
;
98STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk")static llvm::Statistic NumMovedCalls = {"licm", "NumMovedCalls"
, "Number of call insts hoisted or sunk"}
;
99STATISTIC(NumPromoted, "Number of memory locations promoted to registers")static llvm::Statistic NumPromoted = {"licm", "NumPromoted", "Number of memory locations promoted to registers"
}
;
100
101/// Memory promotion is enabled by default.
102static cl::opt<bool>
103 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
104 cl::desc("Disable memory promotion in LICM pass"));
105
106static cl::opt<bool> ControlFlowHoisting(
107 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
108 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
109
110static cl::opt<unsigned> HoistSinkColdnessThreshold(
111 "licm-coldness-threshold", cl::Hidden, cl::init(4),
112 cl::desc("Relative coldness Threshold of hoisting/sinking destination "
113 "block for LICM to be considered beneficial"));
114
115static cl::opt<uint32_t> MaxNumUsesTraversed(
116 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
117 cl::desc("Max num uses visited for identifying load "
118 "invariance in loop using invariant start (default = 8)"));
119
120// Experimental option to allow imprecision in LICM in pathological cases, in
121// exchange for faster compile. This is to be removed if MemorySSA starts to
122// address the same issue. This flag applies only when LICM uses MemorySSA
123// instead on AliasSetTracker. LICM calls MemorySSAWalker's
124// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
125// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
126// which may not be precise, since optimizeUses is capped. The result is
127// correct, but we may not get as "far up" as possible to get which access is
128// clobbering the one queried.
129cl::opt<unsigned> llvm::SetLicmMssaOptCap(
130 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
131 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
132 "for faster compile. Caps the MemorySSA clobbering calls."));
133
134// Experimentally, memory promotion carries less importance than sinking and
135// hoisting. Limit when we do promotion when using MemorySSA, in order to save
136// compile time.
137cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
138 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
139 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
140 "effect. When MSSA in LICM is enabled, then this is the maximum "
141 "number of accesses allowed to be present in a loop in order to "
142 "enable memory promotion."));
143
144static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
145static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
146 const LoopSafetyInfo *SafetyInfo,
147 TargetTransformInfo *TTI, bool &FreeInLoop,
148 bool LoopNestMode);
149static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
150 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
151 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
152 OptimizationRemarkEmitter *ORE);
153static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
154 BlockFrequencyInfo *BFI, const Loop *CurLoop,
155 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
156 OptimizationRemarkEmitter *ORE);
157static bool isSafeToExecuteUnconditionally(Instruction &Inst,
158 const DominatorTree *DT,
159 const TargetLibraryInfo *TLI,
160 const Loop *CurLoop,
161 const LoopSafetyInfo *SafetyInfo,
162 OptimizationRemarkEmitter *ORE,
163 const Instruction *CtxI = nullptr);
164static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
165 AliasSetTracker *CurAST, Loop *CurLoop,
166 AAResults *AA);
167static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
168 Loop *CurLoop, Instruction &I,
169 SinkAndHoistLICMFlags &Flags);
170static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
171 MemoryUse &MU);
172static Instruction *cloneInstructionInExitBlock(
173 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
174 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
175
176static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
177 MemorySSAUpdater *MSSAU);
178
179static void moveInstructionBefore(Instruction &I, Instruction &Dest,
180 ICFLoopSafetyInfo &SafetyInfo,
181 MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
182
183static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
184 function_ref<void(Instruction *)> Fn);
185static SmallVector<SmallSetVector<Value *, 8>, 0>
186collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
187
188namespace {
189struct LoopInvariantCodeMotion {
190 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
191 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
192 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
193 OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
194
195 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
196 unsigned LicmMssaNoAccForPromotionCap)
197 : LicmMssaOptCap(LicmMssaOptCap),
198 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
199
200private:
201 unsigned LicmMssaOptCap;
202 unsigned LicmMssaNoAccForPromotionCap;
203};
204
205struct LegacyLICMPass : public LoopPass {
206 static char ID; // Pass identification, replacement for typeid
207 LegacyLICMPass(
208 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
209 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
210 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
211 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
212 }
213
214 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
215 if (skipLoop(L))
216 return false;
217
218 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Perform LICM on Loop with header at block "
<< L->getHeader()->getNameOrAsOperand() <<
"\n"; } } while (false)
219 << L->getHeader()->getNameOrAsOperand() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Perform LICM on Loop with header at block "
<< L->getHeader()->getNameOrAsOperand() <<
"\n"; } } while (false)
;
220
221 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
222 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
223 bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
224 BlockFrequencyInfo *BFI =
225 hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
226 : nullptr;
227 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
228 // pass. Function analyses need to be preserved across loop transformations
229 // but ORE cannot be preserved (see comment before the pass definition).
230 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
231 return LICM.runOnLoop(
232 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
233 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
234 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
235 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
236 *L->getHeader()->getParent()),
237 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
238 *L->getHeader()->getParent()),
239 SE ? &SE->getSE() : nullptr, MSSA, &ORE);
240 }
241
242 /// This transformation requires natural loop information & requires that
243 /// loop preheaders be inserted into the CFG...
244 ///
245 void getAnalysisUsage(AnalysisUsage &AU) const override {
246 AU.addPreserved<DominatorTreeWrapperPass>();
247 AU.addPreserved<LoopInfoWrapperPass>();
248 AU.addRequired<TargetLibraryInfoWrapperPass>();
249 AU.addRequired<MemorySSAWrapperPass>();
250 AU.addPreserved<MemorySSAWrapperPass>();
251 AU.addRequired<TargetTransformInfoWrapperPass>();
252 getLoopAnalysisUsage(AU);
253 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
254 AU.addPreserved<LazyBlockFrequencyInfoPass>();
255 AU.addPreserved<LazyBranchProbabilityInfoPass>();
256 }
257
258private:
259 LoopInvariantCodeMotion LICM;
260};
261} // namespace
262
263PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
264 LoopStandardAnalysisResults &AR, LPMUpdater &) {
265 if (!AR.MSSA)
266 report_fatal_error("LICM requires MemorySSA (loop-mssa)");
267
268 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
269 // pass. Function analyses need to be preserved across loop transformations
270 // but ORE cannot be preserved (see comment before the pass definition).
271 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
272
273 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
274 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
275 &AR.SE, AR.MSSA, &ORE))
276 return PreservedAnalyses::all();
277
278 auto PA = getLoopPassPreservedAnalyses();
279
280 PA.preserve<DominatorTreeAnalysis>();
281 PA.preserve<LoopAnalysis>();
282 PA.preserve<MemorySSAAnalysis>();
283
284 return PA;
285}
286
287PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
288 LoopStandardAnalysisResults &AR,
289 LPMUpdater &) {
290 if (!AR.MSSA)
291 report_fatal_error("LNICM requires MemorySSA (loop-mssa)");
292
293 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
294 // pass. Function analyses need to be preserved across loop transformations
295 // but ORE cannot be preserved (see comment before the pass definition).
296 OptimizationRemarkEmitter ORE(LN.getParent());
297
298 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
299
300 Loop &OutermostLoop = LN.getOutermostLoop();
301 bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, AR.BFI,
302 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);
303
304 if (!Changed)
305 return PreservedAnalyses::all();
306
307 auto PA = getLoopPassPreservedAnalyses();
308
309 PA.preserve<DominatorTreeAnalysis>();
310 PA.preserve<LoopAnalysis>();
311 PA.preserve<MemorySSAAnalysis>();
312
313 return PA;
314}
315
316char LegacyLICMPass::ID = 0;
317INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
318 false, false)static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
319INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
320INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
321INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
322INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
323INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)initializeLazyBFIPassPass(Registry);
324INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
325 false)PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
326
327Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
328Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
329 unsigned LicmMssaNoAccForPromotionCap) {
330 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
331}
332
333llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
334 MemorySSA *MSSA)
335 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
336 IsSink, L, MSSA) {}
337
338llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
339 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
340 Loop *L, MemorySSA *MSSA)
341 : LicmMssaOptCap(LicmMssaOptCap),
342 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
343 IsSink(IsSink) {
344 assert(((L != nullptr) == (MSSA != nullptr)) &&(static_cast <bool> (((L != nullptr) == (MSSA != nullptr
)) && "Unexpected values for SinkAndHoistLICMFlags") ?
void (0) : __assert_fail ("((L != nullptr) == (MSSA != nullptr)) && \"Unexpected values for SinkAndHoistLICMFlags\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 345, __extension__ __PRETTY_FUNCTION__))
345 "Unexpected values for SinkAndHoistLICMFlags")(static_cast <bool> (((L != nullptr) == (MSSA != nullptr
)) && "Unexpected values for SinkAndHoistLICMFlags") ?
void (0) : __assert_fail ("((L != nullptr) == (MSSA != nullptr)) && \"Unexpected values for SinkAndHoistLICMFlags\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 345, __extension__ __PRETTY_FUNCTION__))
;
346 if (!MSSA)
347 return;
348
349 unsigned AccessCapCount = 0;
350 for (auto *BB : L->getBlocks())
351 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
352 for (const auto &MA : *Accesses) {
353 (void)MA;
354 ++AccessCapCount;
355 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
356 NoOfMemAccTooLarge = true;
357 return;
358 }
359 }
360}
361
362/// Hoist expressions out of the specified loop. Note, alias info for inner
363/// loop is not preserved so it is not a good idea to run LICM multiple
364/// times on one loop.
365bool LoopInvariantCodeMotion::runOnLoop(
366 Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
367 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
368 ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE,
369 bool LoopNestMode) {
370 bool Changed = false;
371
372 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.")(static_cast <bool> (L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."
) ? void (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop is not in LCSSA form.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 372, __extension__ __PRETTY_FUNCTION__))
;
373
374 // If this loop has metadata indicating that LICM is not to be performed then
375 // just exit.
376 if (hasDisableLICMTransformsHint(L)) {
377 return false;
378 }
379
380 // Don't sink stores from loops with coroutine suspend instructions.
381 // LICM would sink instructions into the default destination of
382 // the coroutine switch. The default destination of the switch is to
383 // handle the case where the coroutine is suspended, by which point the
384 // coroutine frame may have been destroyed. No instruction can be sunk there.
385 // FIXME: This would unfortunately hurt the performance of coroutines, however
386 // there is currently no general solution for this. Similar issues could also
387 // potentially happen in other passes where instructions are being moved
388 // across that edge.
389 bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
390 return llvm::any_of(*BB, [](Instruction &I) {
391 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
392 return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
393 });
394 });
395
396 MemorySSAUpdater MSSAU(MSSA);
397 SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
398 /*IsSink=*/true, L, MSSA);
399
400 // Get the preheader block to move instructions into...
401 BasicBlock *Preheader = L->getLoopPreheader();
402
403 // Compute loop safety information.
404 ICFLoopSafetyInfo SafetyInfo;
405 SafetyInfo.computeLoopSafetyInfo(L);
406
407 // We want to visit all of the instructions in this loop... that are not parts
408 // of our subloops (they have already had their invariants hoisted out of
409 // their loop, into this loop, so there is no need to process the BODIES of
410 // the subloops).
411 //
412 // Traverse the body of the loop in depth first order on the dominator tree so
413 // that we are guaranteed to see definitions before we see uses. This allows
414 // us to sink instructions in one pass, without iteration. After sinking
415 // instructions, we perform another pass to hoist them out of the loop.
416 if (L->hasDedicatedExits())
417 Changed |= LoopNestMode
418 ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI,
419 DT, BFI, TLI, TTI, L, &MSSAU,
420 &SafetyInfo, Flags, ORE)
421 : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI,
422 TLI, TTI, L, &MSSAU, &SafetyInfo, Flags, ORE);
423 Flags.setIsSink(false);
424 if (Preheader)
425 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
426 &MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode);
427
428 // Now that all loop invariants have been removed from the loop, promote any
429 // memory references to scalars that we can.
430 // Don't sink stores from loops without dedicated block exits. Exits
431 // containing indirect branches are not transformed by loop simplify,
432 // make sure we catch that. An additional load may be generated in the
433 // preheader for SSA updater, so also avoid sinking when no preheader
434 // is available.
435 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
436 !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
437 // Figure out the loop exits and their insertion points
438 SmallVector<BasicBlock *, 8> ExitBlocks;
439 L->getUniqueExitBlocks(ExitBlocks);
440
441 // We can't insert into a catchswitch.
442 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
443 return isa<CatchSwitchInst>(Exit->getTerminator());
444 });
445
446 if (!HasCatchSwitch) {
447 SmallVector<Instruction *, 8> InsertPts;
448 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
449 InsertPts.reserve(ExitBlocks.size());
450 MSSAInsertPts.reserve(ExitBlocks.size());
451 for (BasicBlock *ExitBlock : ExitBlocks) {
452 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
453 MSSAInsertPts.push_back(nullptr);
454 }
455
456 PredIteratorCache PIC;
457
458 // Promoting one set of accesses may make the pointers for another set
459 // loop invariant, so run this in a loop (with the MaybePromotable set
460 // decreasing in size over time).
461 bool Promoted = false;
462 bool LocalPromoted;
463 do {
464 LocalPromoted = false;
465 for (const SmallSetVector<Value *, 8> &PointerMustAliases :
466 collectPromotionCandidates(MSSA, AA, L)) {
467 LocalPromoted |= promoteLoopAccessesToScalars(
468 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC,
469 LI, DT, TLI, L, &MSSAU, &SafetyInfo, ORE);
470 }
471 Promoted |= LocalPromoted;
472 } while (LocalPromoted);
473
474 // Once we have promoted values across the loop body we have to
475 // recursively reform LCSSA as any nested loop may now have values defined
476 // within the loop used in the outer loop.
477 // FIXME: This is really heavy handed. It would be a bit better to use an
478 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
479 // it as it went.
480 if (Promoted)
481 formLCSSARecursively(*L, *DT, LI, SE);
482
483 Changed |= Promoted;
484 }
485 }
486
487 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
488 // specifically moving instructions across the loop boundary and so it is
489 // especially in need of sanity checking here.
490 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!")(static_cast <bool> (L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"
) ? void (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 490, __extension__ __PRETTY_FUNCTION__))
;
491 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&(static_cast <bool> ((L->isOutermost() || L->getParentLoop
()->isLCSSAForm(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? void (0) : __assert_fail ("(L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 492, __extension__ __PRETTY_FUNCTION__))
492 "Parent loop not left in LCSSA form after LICM!")(static_cast <bool> ((L->isOutermost() || L->getParentLoop
()->isLCSSAForm(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? void (0) : __assert_fail ("(L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 492, __extension__ __PRETTY_FUNCTION__))
;
493
494 if (VerifyMemorySSA)
495 MSSA->verifyMemorySSA();
496
497 if (Changed && SE)
498 SE->forgetLoopDispositions(L);
499 return Changed;
500}
501
502/// Walk the specified region of the CFG (defined by all blocks dominated by
503/// the specified block, and that are in the current loop) in reverse depth
504/// first order w.r.t the DominatorTree. This allows us to visit uses before
505/// definitions, allowing us to sink a loop body in one pass without iteration.
506///
507bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
508 DominatorTree *DT, BlockFrequencyInfo *BFI,
509 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
510 Loop *CurLoop, MemorySSAUpdater *MSSAU,
511 ICFLoopSafetyInfo *SafetyInfo,
512 SinkAndHoistLICMFlags &Flags,
513 OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {
514
515 // Verify inputs.
516 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && MSSAU != nullptr && SafetyInfo
!= nullptr && "Unexpected input to sinkRegion.") ? void
(0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 518, __extension__ __PRETTY_FUNCTION__))
517 CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && MSSAU != nullptr && SafetyInfo
!= nullptr && "Unexpected input to sinkRegion.") ? void
(0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 518, __extension__ __PRETTY_FUNCTION__))
518 "Unexpected input to sinkRegion.")(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && MSSAU != nullptr && SafetyInfo
!= nullptr && "Unexpected input to sinkRegion.") ? void
(0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 518, __extension__ __PRETTY_FUNCTION__))
;
519
520 // We want to visit children before parents. We will enque all the parents
521 // before their children in the worklist and process the worklist in reverse
522 // order.
523 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
524
525 bool Changed = false;
526 for (DomTreeNode *DTN : reverse(Worklist)) {
527 BasicBlock *BB = DTN->getBlock();
528 // Only need to process the contents of this block if it is not part of a
529 // subloop (which would already have been processed).
530 if (inSubLoop(BB, CurLoop, LI))
531 continue;
532
533 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
534 Instruction &I = *--II;
535
536 // The instruction is not used in the loop if it is dead. In this case,
537 // we just delete it instead of sinking it.
538 if (isInstructionTriviallyDead(&I, TLI)) {
539 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM deleting dead inst: " <<
I << '\n'; } } while (false)
;
540 salvageKnowledge(&I);
541 salvageDebugInfo(I);
542 ++II;
543 eraseInstruction(I, *SafetyInfo, MSSAU);
544 Changed = true;
545 continue;
546 }
547
548 // Check to see if we can sink this instruction to the exit blocks
549 // of the loop. We can do this if the all users of the instruction are
550 // outside of the loop. In this case, it doesn't even matter if the
551 // operands of the instruction are loop invariant.
552 //
553 bool FreeInLoop = false;
554 bool LoopNestMode = OutermostLoop != nullptr;
555 if (!I.mayHaveSideEffects() &&
556 isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop,
557 SafetyInfo, TTI, FreeInLoop, LoopNestMode) &&
558 canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/nullptr, MSSAU, true,
559 &Flags, ORE)) {
560 if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
561 if (!FreeInLoop) {
562 ++II;
563 salvageDebugInfo(I);
564 eraseInstruction(I, *SafetyInfo, MSSAU);
565 }
566 Changed = true;
567 }
568 }
569 }
570 }
571 if (VerifyMemorySSA)
572 MSSAU->getMemorySSA()->verifyMemorySSA();
573 return Changed;
574}
575
576bool llvm::sinkRegionForLoopNest(
577 DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
578 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
579 Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
580 SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE) {
581
582 bool Changed = false;
583 SmallPriorityWorklist<Loop *, 4> Worklist;
584 Worklist.insert(CurLoop);
585 appendLoopsToWorklist(*CurLoop, Worklist);
586 while (!Worklist.empty()) {
587 Loop *L = Worklist.pop_back_val();
588 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI,
589 TTI, L, MSSAU, SafetyInfo, Flags, ORE, CurLoop);
590 }
591 return Changed;
592}
593
594namespace {
595// This is a helper class for hoistRegion to make it able to hoist control flow
596// in order to be able to hoist phis. The way this works is that we initially
597// start hoisting to the loop preheader, and when we see a loop invariant branch
598// we make note of this. When we then come to hoist an instruction that's
599// conditional on such a branch we duplicate the branch and the relevant control
600// flow, then hoist the instruction into the block corresponding to its original
601// block in the duplicated control flow.
602class ControlFlowHoister {
603private:
604 // Information about the loop we are hoisting from
605 LoopInfo *LI;
606 DominatorTree *DT;
607 Loop *CurLoop;
608 MemorySSAUpdater *MSSAU;
609
610 // A map of blocks in the loop to the block their instructions will be hoisted
611 // to.
612 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
613
614 // The branches that we can hoist, mapped to the block that marks a
615 // convergence point of their control flow.
616 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
617
618public:
619 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
620 MemorySSAUpdater *MSSAU)
621 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
622
623 void registerPossiblyHoistableBranch(BranchInst *BI) {
624 // We can only hoist conditional branches with loop invariant operands.
625 if (!ControlFlowHoisting || !BI->isConditional() ||
626 !CurLoop->hasLoopInvariantOperands(BI))
627 return;
628
629 // The branch destinations need to be in the loop, and we don't gain
630 // anything by duplicating conditional branches with duplicate successors,
631 // as it's essentially the same as an unconditional branch.
632 BasicBlock *TrueDest = BI->getSuccessor(0);
633 BasicBlock *FalseDest = BI->getSuccessor(1);
634 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
635 TrueDest == FalseDest)
636 return;
637
638 // We can hoist BI if one branch destination is the successor of the other,
639 // or both have common successor which we check by seeing if the
640 // intersection of their successors is non-empty.
641 // TODO: This could be expanded to allowing branches where both ends
642 // eventually converge to a single block.
643 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
644 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
645 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
646 BasicBlock *CommonSucc = nullptr;
647 if (TrueDestSucc.count(FalseDest)) {
648 CommonSucc = FalseDest;
649 } else if (FalseDestSucc.count(TrueDest)) {
650 CommonSucc = TrueDest;
651 } else {
652 set_intersect(TrueDestSucc, FalseDestSucc);
653 // If there's one common successor use that.
654 if (TrueDestSucc.size() == 1)
655 CommonSucc = *TrueDestSucc.begin();
656 // If there's more than one pick whichever appears first in the block list
657 // (we can't use the value returned by TrueDestSucc.begin() as it's
658 // unpredicatable which element gets returned).
659 else if (!TrueDestSucc.empty()) {
660 Function *F = TrueDest->getParent();
661 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
662 auto It = llvm::find_if(*F, IsSucc);
663 assert(It != F->end() && "Could not find successor in function")(static_cast <bool> (It != F->end() && "Could not find successor in function"
) ? void (0) : __assert_fail ("It != F->end() && \"Could not find successor in function\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 663, __extension__ __PRETTY_FUNCTION__))
;
664 CommonSucc = &*It;
665 }
666 }
667 // The common successor has to be dominated by the branch, as otherwise
668 // there will be some other path to the successor that will not be
669 // controlled by this branch so any phi we hoist would be controlled by the
670 // wrong condition. This also takes care of avoiding hoisting of loop back
671 // edges.
672 // TODO: In some cases this could be relaxed if the successor is dominated
673 // by another block that's been hoisted and we can guarantee that the
674 // control flow has been replicated exactly.
675 if (CommonSucc && DT->dominates(BI, CommonSucc))
676 HoistableBranches[BI] = CommonSucc;
677 }
678
679 bool canHoistPHI(PHINode *PN) {
680 // The phi must have loop invariant operands.
681 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
682 return false;
683 // We can hoist phis if the block they are in is the target of hoistable
684 // branches which cover all of the predecessors of the block.
685 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
686 BasicBlock *BB = PN->getParent();
687 for (BasicBlock *PredBB : predecessors(BB))
688 PredecessorBlocks.insert(PredBB);
689 // If we have less predecessor blocks than predecessors then the phi will
690 // have more than one incoming value for the same block which we can't
691 // handle.
692 // TODO: This could be handled be erasing some of the duplicate incoming
693 // values.
694 if (PredecessorBlocks.size() != pred_size(BB))
695 return false;
696 for (auto &Pair : HoistableBranches) {
697 if (Pair.second == BB) {
698 // Which blocks are predecessors via this branch depends on if the
699 // branch is triangle-like or diamond-like.
700 if (Pair.first->getSuccessor(0) == BB) {
701 PredecessorBlocks.erase(Pair.first->getParent());
702 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
703 } else if (Pair.first->getSuccessor(1) == BB) {
704 PredecessorBlocks.erase(Pair.first->getParent());
705 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
706 } else {
707 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
708 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
709 }
710 }
711 }
712 // PredecessorBlocks will now be empty if for every predecessor of BB we
713 // found a hoistable branch source.
714 return PredecessorBlocks.empty();
715 }
716
717 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
718 if (!ControlFlowHoisting)
719 return CurLoop->getLoopPreheader();
720 // If BB has already been hoisted, return that
721 if (HoistDestinationMap.count(BB))
722 return HoistDestinationMap[BB];
723
724 // Check if this block is conditional based on a pending branch
725 auto HasBBAsSuccessor =
726 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
727 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
728 Pair.first->getSuccessor(1) == BB);
729 };
730 auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
731
732 // If not involved in a pending branch, hoist to preheader
733 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
734 if (It == HoistableBranches.end()) {
735 LLVM_DEBUG(dbgs() << "LICM using "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
736 << InitialPreheader->getNameOrAsOperand()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
737 << " as hoist destination for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
738 << BB->getNameOrAsOperand() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
;
739 HoistDestinationMap[BB] = InitialPreheader;
740 return InitialPreheader;
741 }
742 BranchInst *BI = It->first;
743 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==(static_cast <bool> (std::find_if(++It, HoistableBranches
.end(), HasBBAsSuccessor) == HoistableBranches.end() &&
"BB is expected to be the target of at most one branch") ? void
(0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 745, __extension__ __PRETTY_FUNCTION__))
744 HoistableBranches.end() &&(static_cast <bool> (std::find_if(++It, HoistableBranches
.end(), HasBBAsSuccessor) == HoistableBranches.end() &&
"BB is expected to be the target of at most one branch") ? void
(0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 745, __extension__ __PRETTY_FUNCTION__))
745 "BB is expected to be the target of at most one branch")(static_cast <bool> (std::find_if(++It, HoistableBranches
.end(), HasBBAsSuccessor) == HoistableBranches.end() &&
"BB is expected to be the target of at most one branch") ? void
(0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 745, __extension__ __PRETTY_FUNCTION__))
;
746
747 LLVMContext &C = BB->getContext();
748 BasicBlock *TrueDest = BI->getSuccessor(0);
749 BasicBlock *FalseDest = BI->getSuccessor(1);
750 BasicBlock *CommonSucc = HoistableBranches[BI];
751 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
752
753 // Create hoisted versions of blocks that currently don't have them
754 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
755 if (HoistDestinationMap.count(Orig))
756 return HoistDestinationMap[Orig];
757 BasicBlock *New =
758 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
759 HoistDestinationMap[Orig] = New;
760 DT->addNewBlock(New, HoistTarget);
761 if (CurLoop->getParentLoop())
762 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
763 ++NumCreatedBlocks;
764 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
765 << " as hoist destination for " << Orig->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
766 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
;
767 return New;
768 };
769 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
770 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
771 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
772
773 // Link up these blocks with branches.
774 if (!HoistCommonSucc->getTerminator()) {
775 // The new common successor we've generated will branch to whatever that
776 // hoist target branched to.
777 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
778 assert(TargetSucc && "Expected hoist target to have a single successor")(static_cast <bool> (TargetSucc && "Expected hoist target to have a single successor"
) ? void (0) : __assert_fail ("TargetSucc && \"Expected hoist target to have a single successor\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 778, __extension__ __PRETTY_FUNCTION__))
;
779 HoistCommonSucc->moveBefore(TargetSucc);
780 BranchInst::Create(TargetSucc, HoistCommonSucc);
781 }
782 if (!HoistTrueDest->getTerminator()) {
783 HoistTrueDest->moveBefore(HoistCommonSucc);
784 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
785 }
786 if (!HoistFalseDest->getTerminator()) {
787 HoistFalseDest->moveBefore(HoistCommonSucc);
788 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
789 }
790
791 // If BI is being cloned to what was originally the preheader then
792 // HoistCommonSucc will now be the new preheader.
793 if (HoistTarget == InitialPreheader) {
794 // Phis in the loop header now need to use the new preheader.
795 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
796 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
797 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
798 // The new preheader dominates the loop header.
799 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
800 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
801 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
802 // The preheader hoist destination is now the new preheader, with the
803 // exception of the hoist destination of this branch.
804 for (auto &Pair : HoistDestinationMap)
805 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
806 Pair.second = HoistCommonSucc;
807 }
808
809 // Now finally clone BI.
810 ReplaceInstWithInst(
811 HoistTarget->getTerminator(),
812 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
813 ++NumClonedBranches;
814
815 assert(CurLoop->getLoopPreheader() &&(static_cast <bool> (CurLoop->getLoopPreheader() &&
"Hoisting blocks should not have destroyed preheader") ? void
(0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 816, __extension__ __PRETTY_FUNCTION__))
816 "Hoisting blocks should not have destroyed preheader")(static_cast <bool> (CurLoop->getLoopPreheader() &&
"Hoisting blocks should not have destroyed preheader") ? void
(0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 816, __extension__ __PRETTY_FUNCTION__))
;
817 return HoistDestinationMap[BB];
818 }
819};
820} // namespace
821
822// Hoisting/sinking instruction out of a loop isn't always beneficial. It's only
823// only worthwhile if the destination block is actually colder than current
824// block.
825static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock,
826 OptimizationRemarkEmitter *ORE,
827 BlockFrequencyInfo *BFI) {
828 // Check block frequency only when runtime profile is available
829 // to avoid pathological cases. With static profile, lean towards
830 // hosting because it helps canonicalize the loop for vectorizer.
831 if (!DstBlock->getParent()->hasProfileData())
832 return true;
833
834 if (!HoistSinkColdnessThreshold || !BFI)
835 return true;
836
837 BasicBlock *SrcBlock = I.getParent();
838 if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold >
839 BFI->getBlockFreq(SrcBlock).getFrequency()) {
840 ORE->emit([&]() {
841 return OptimizationRemarkMissed(DEBUG_TYPE"licm", "SinkHoistInst", &I)
842 << "failed to sink or hoist instruction because containing block "
843 "has lower frequency than destination block";
844 });
845 return false;
846 }
847
848 return true;
849}
850
851/// Walk the specified region of the CFG (defined by all blocks dominated by
852/// the specified block, and that are in the current loop) in depth first
853/// order w.r.t the DominatorTree. This allows us to visit definitions before
854/// uses, allowing us to hoist a loop body in one pass without iteration.
855///
856bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
857 DominatorTree *DT, BlockFrequencyInfo *BFI,
858 TargetLibraryInfo *TLI, Loop *CurLoop,
859 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
860 ICFLoopSafetyInfo *SafetyInfo,
861 SinkAndHoistLICMFlags &Flags,
862 OptimizationRemarkEmitter *ORE, bool LoopNestMode) {
863 // Verify inputs.
864 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && MSSAU != nullptr && SafetyInfo
!= nullptr && "Unexpected input to hoistRegion.") ? void
(0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 866, __extension__ __PRETTY_FUNCTION__))
865 CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && MSSAU != nullptr && SafetyInfo
!= nullptr && "Unexpected input to hoistRegion.") ? void
(0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 866, __extension__ __PRETTY_FUNCTION__))
866 "Unexpected input to hoistRegion.")(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && MSSAU != nullptr && SafetyInfo
!= nullptr && "Unexpected input to hoistRegion.") ? void
(0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 866, __extension__ __PRETTY_FUNCTION__))
;
867
868 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
869
870 // Keep track of instructions that have been hoisted, as they may need to be
871 // re-hoisted if they end up not dominating all of their uses.
872 SmallVector<Instruction *, 16> HoistedInstructions;
873
874 // For PHI hoisting to work we need to hoist blocks before their successors.
875 // We can do this by iterating through the blocks in the loop in reverse
876 // post-order.
877 LoopBlocksRPO Worklist(CurLoop);
878 Worklist.perform(LI);
879 bool Changed = false;
880 for (BasicBlock *BB : Worklist) {
881 // Only need to process the contents of this block if it is not part of a
882 // subloop (which would already have been processed).
883 if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
884 continue;
885
886 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
887 Instruction &I = *II++;
888 // Try constant folding this instruction. If all the operands are
889 // constants, it is technically hoistable, but it would be better to
890 // just fold it.
891 if (Constant *C = ConstantFoldInstruction(
892 &I, I.getModule()->getDataLayout(), TLI)) {
893 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
894 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
;
895 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
896 I.replaceAllUsesWith(C);
897 if (isInstructionTriviallyDead(&I, TLI))
898 eraseInstruction(I, *SafetyInfo, MSSAU);
899 Changed = true;
900 continue;
901 }
902
903 // Try hoisting the instruction out to the preheader. We can only do
904 // this if all of the operands of the instruction are loop invariant and
905 // if it is safe to hoist the instruction. We also check block frequency
906 // to make sure instruction only gets hoisted into colder blocks.
907 // TODO: It may be safe to hoist if we are hoisting to a conditional block
908 // and we have accurately duplicated the control flow from the loop header
909 // to that block.
910 if (CurLoop->hasLoopInvariantOperands(&I) &&
911 canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/ nullptr, MSSAU,
912 true, &Flags, ORE) &&
913 worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) &&
914 isSafeToExecuteUnconditionally(
915 I, DT, TLI, CurLoop, SafetyInfo, ORE,
916 CurLoop->getLoopPreheader()->getTerminator())) {
917 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
918 MSSAU, SE, ORE);
919 HoistedInstructions.push_back(&I);
920 Changed = true;
921 continue;
922 }
923
924 // Attempt to remove floating point division out of the loop by
925 // converting it to a reciprocal multiplication.
926 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
927 CurLoop->isLoopInvariant(I.getOperand(1))) {
928 auto Divisor = I.getOperand(1);
929 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
930 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
931 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
932 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
933 ReciprocalDivisor->insertBefore(&I);
934
935 auto Product =
936 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
937 Product->setFastMathFlags(I.getFastMathFlags());
938 SafetyInfo->insertInstructionTo(Product, I.getParent());
939 Product->insertAfter(&I);
940 I.replaceAllUsesWith(Product);
941 eraseInstruction(I, *SafetyInfo, MSSAU);
942
943 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
944 SafetyInfo, MSSAU, SE, ORE);
945 HoistedInstructions.push_back(ReciprocalDivisor);
946 Changed = true;
947 continue;
948 }
949
950 auto IsInvariantStart = [&](Instruction &I) {
951 using namespace PatternMatch;
952 return I.use_empty() &&
953 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
954 };
955 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
956 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
957 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
958 };
959 if ((IsInvariantStart(I) || isGuard(&I)) &&
960 CurLoop->hasLoopInvariantOperands(&I) &&
961 MustExecuteWithoutWritesBefore(I)) {
962 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
963 MSSAU, SE, ORE);
964 HoistedInstructions.push_back(&I);
965 Changed = true;
966 continue;
967 }
968
969 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
970 if (CFH.canHoistPHI(PN)) {
971 // Redirect incoming blocks first to ensure that we create hoisted
972 // versions of those blocks before we hoist the phi.
973 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
974 PN->setIncomingBlock(
975 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
976 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
977 MSSAU, SE, ORE);
978 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected")(static_cast <bool> (DT->dominates(PN, BB) &&
"Conditional PHIs not expected") ? void (0) : __assert_fail (
"DT->dominates(PN, BB) && \"Conditional PHIs not expected\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 978, __extension__ __PRETTY_FUNCTION__))
;
979 Changed = true;
980 continue;
981 }
982 }
983
984 // Remember possibly hoistable branches so we can actually hoist them
985 // later if needed.
986 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
987 CFH.registerPossiblyHoistableBranch(BI);
988 }
989 }
990
991 // If we hoisted instructions to a conditional block they may not dominate
992 // their uses that weren't hoisted (such as phis where some operands are not
993 // loop invariant). If so make them unconditional by moving them to their
994 // immediate dominator. We iterate through the instructions in reverse order
995 // which ensures that when we rehoist an instruction we rehoist its operands,
996 // and also keep track of where in the block we are rehoisting to to make sure
997 // that we rehoist instructions before the instructions that use them.
998 Instruction *HoistPoint = nullptr;
999 if (ControlFlowHoisting) {
1000 for (Instruction *I : reverse(HoistedInstructions)) {
1001 if (!llvm::all_of(I->uses(),
1002 [&](Use &U) { return DT->dominates(I, U); })) {
1003 BasicBlock *Dominator =
1004 DT->getNode(I->getParent())->getIDom()->getBlock();
1005 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
1006 if (HoistPoint)
1007 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&(static_cast <bool> (DT->dominates(Dominator, HoistPoint
->getParent()) && "New hoist point expected to dominate old hoist point"
) ? void (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1008, __extension__ __PRETTY_FUNCTION__))
1008 "New hoist point expected to dominate old hoist point")(static_cast <bool> (DT->dominates(Dominator, HoistPoint
->getParent()) && "New hoist point expected to dominate old hoist point"
) ? void (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1008, __extension__ __PRETTY_FUNCTION__))
;
1009 HoistPoint = Dominator->getTerminator();
1010 }
1011 LLVM_DEBUG(dbgs() << "LICM rehoisting to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getNameOrAsOperand() << ": " <<
*I << "\n"; } } while (false)
1012 << HoistPoint->getParent()->getNameOrAsOperand()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getNameOrAsOperand() << ": " <<
*I << "\n"; } } while (false)
1013 << ": " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getNameOrAsOperand() << ": " <<
*I << "\n"; } } while (false)
;
1014 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
1015 HoistPoint = I;
1016 Changed = true;
1017 }
1018 }
1019 }
1020 if (VerifyMemorySSA)
1021 MSSAU->getMemorySSA()->verifyMemorySSA();
1022
1023 // Now that we've finished hoisting make sure that LI and DT are still
1024 // valid.
1025#ifdef EXPENSIVE_CHECKS
1026 if (Changed) {
1027 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&(static_cast <bool> (DT->verify(DominatorTree::VerificationLevel
::Fast) && "Dominator tree verification failed") ? void
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1028, __extension__ __PRETTY_FUNCTION__))
1028 "Dominator tree verification failed")(static_cast <bool> (DT->verify(DominatorTree::VerificationLevel
::Fast) && "Dominator tree verification failed") ? void
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1028, __extension__ __PRETTY_FUNCTION__))
;
1029 LI->verify(*DT);
1030 }
1031#endif
1032
1033 return Changed;
1034}
1035
1036// Return true if LI is invariant within scope of the loop. LI is invariant if
1037// CurLoop is dominated by an invariant.start representing the same memory
1038// location and size as the memory location LI loads from, and also the
1039// invariant.start has no uses.
1040static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1041 Loop *CurLoop) {
1042 Value *Addr = LI->getOperand(0);
1043 const DataLayout &DL = LI->getModule()->getDataLayout();
1044 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1045
1046 // It is not currently possible for clang to generate an invariant.start
1047 // intrinsic with scalable vector types because we don't support thread local
1048 // sizeless types and we don't permit sizeless types in structs or classes.
1049 // Furthermore, even if support is added for this in future the intrinsic
1050 // itself is defined to have a size of -1 for variable sized objects. This
1051 // makes it impossible to verify if the intrinsic envelops our region of
1052 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1053 // types would have a -1 parameter, but the former is clearly double the size
1054 // of the latter.
1055 if (LocSizeInBits.isScalable())
29
Calling 'LinearPolySize::isScalable'
32
Returning from 'LinearPolySize::isScalable'
33
Taking true branch
1056 return false;
34
Returning zero, which participates in a condition later
1057
1058 // if the type is i8 addrspace(x)*, we know this is the type of
1059 // llvm.invariant.start operand
1060 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1061 LI->getPointerAddressSpace());
1062 unsigned BitcastsVisited = 0;
1063 // Look through bitcasts until we reach the i8* type (this is invariant.start
1064 // operand type).
1065 while (Addr->getType() != PtrInt8Ty) {
1066 auto *BC = dyn_cast<BitCastInst>(Addr);
1067 // Avoid traversing high number of bitcast uses.
1068 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1069 return false;
1070 Addr = BC->getOperand(0);
1071 }
1072
1073 unsigned UsesVisited = 0;
1074 // Traverse all uses of the load operand value, to see if invariant.start is
1075 // one of the uses, and whether it dominates the load instruction.
1076 for (auto *U : Addr->users()) {
1077 // Avoid traversing for Load operand with high number of users.
1078 if (++UsesVisited > MaxNumUsesTraversed)
1079 return false;
1080 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1081 // If there are escaping uses of invariant.start instruction, the load maybe
1082 // non-invariant.
1083 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1084 !II->use_empty())
1085 continue;
1086 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1087 // The intrinsic supports having a -1 argument for variable sized objects
1088 // so we should check for that here.
1089 if (InvariantSize->isNegative())
1090 continue;
1091 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1092 // Confirm the invariant.start location size contains the load operand size
1093 // in bits. Also, the invariant.start should dominate the load, and we
1094 // should not hoist the load out of a loop that contains this dominating
1095 // invariant.start.
1096 if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1097 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1098 return true;
1099 }
1100
1101 return false;
1102}
1103
1104namespace {
1105/// Return true if-and-only-if we know how to (mechanically) both hoist and
1106/// sink a given instruction out of a loop. Does not address legality
1107/// concerns such as aliasing or speculation safety.
1108bool isHoistableAndSinkableInst(Instruction &I) {
1109 // Only these instructions are hoistable/sinkable.
1110 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5
Assuming 'I' is a 'LoadInst'
6
Returning the value 1, which participates in a condition later
1111 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1112 isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1113 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1114 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1115 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1116 isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1117}
1118/// Return true if all of the alias sets within this AST are known not to
1119/// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop.
1120bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1121 const Loop *L) {
1122 if (CurAST) {
1123 for (AliasSet &AS : *CurAST) {
1124 if (!AS.isForwardingAliasSet() && AS.isMod()) {
1125 return false;
1126 }
1127 }
1128 return true;
1129 } else { /*MSSAU*/
1130 for (auto *BB : L->getBlocks())
1131 if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1132 return false;
1133 return true;
1134 }
1135}
1136
1137/// Return true if I is the only Instruction with a MemoryAccess in L.
1138bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1139 const MemorySSAUpdater *MSSAU) {
1140 for (auto *BB : L->getBlocks())
1141 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1142 int NotAPhi = 0;
1143 for (const auto &Acc : *Accs) {
1144 if (isa<MemoryPhi>(&Acc))
1145 continue;
1146 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1147 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1148 return false;
1149 }
1150 }
1151 return true;
1152}
1153}
1154
1155bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1156 Loop *CurLoop, AliasSetTracker *CurAST,
1157 MemorySSAUpdater *MSSAU,
1158 bool TargetExecutesOncePerLoop,
1159 SinkAndHoistLICMFlags *Flags,
1160 OptimizationRemarkEmitter *ORE) {
1161 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&(static_cast <bool> (((CurAST != nullptr) ^ (MSSAU != nullptr
)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? void (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1162, __extension__ __PRETTY_FUNCTION__))
1
Assuming pointer value is null
2
Assuming the condition is true
3
'?' condition is true
1162 "Either AliasSetTracker or MemorySSA should be initialized.")(static_cast <bool> (((CurAST != nullptr) ^ (MSSAU != nullptr
)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? void (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1162, __extension__ __PRETTY_FUNCTION__))
;
1163
1164 // If we don't understand the instruction, bail early.
1165 if (!isHoistableAndSinkableInst(I))
4
Calling 'isHoistableAndSinkableInst'
7
Returning from 'isHoistableAndSinkableInst'
1166 return false;
1167
1168 MemorySSA *MSSA = MSSAU
8.1
'MSSAU' is non-null
8.1
'MSSAU' is non-null
8.1
'MSSAU' is non-null
8.1
'MSSAU' is non-null
? MSSAU->getMemorySSA() : nullptr;
8
Taking false branch
9
'?' condition is true
10
'MSSA' initialized here
1169 if (MSSA)
11
Assuming 'MSSA' is null
12
Taking false branch
1170 assert(Flags != nullptr && "Flags cannot be null.")(static_cast <bool> (Flags != nullptr && "Flags cannot be null."
) ? void (0) : __assert_fail ("Flags != nullptr && \"Flags cannot be null.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1170, __extension__ __PRETTY_FUNCTION__))
;
1171
1172 // Loads have extra constraints we have to verify before we can hoist them.
1173 if (LoadInst *LI
13.1
'LI' is non-null
13.1
'LI' is non-null
13.1
'LI' is non-null
13.1
'LI' is non-null
= dyn_cast<LoadInst>(&I)) {
13
Assuming the object is a 'LoadInst'
14
Taking true branch
1174 if (!LI->isUnordered())
15
Calling 'LoadInst::isUnordered'
19
Returning from 'LoadInst::isUnordered'
20
Taking false branch
1175 return false; // Don't sink/hoist volatile or ordered atomic loads!
1176
1177 // Loads from constant memory are always safe to move, even if they end up
1178 // in the same alias set as something that ends up being modified.
1179 if (AA->pointsToConstantMemory(LI->getOperand(0)))
21
Assuming the condition is false
22
Taking false branch
1180 return true;
1181 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
23
Calling 'Instruction::hasMetadata'
26
Returning from 'Instruction::hasMetadata'
1182 return true;
1183
1184 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
27
Assuming the condition is false
1185 return false; // Don't risk duplicating unordered loads
1186
1187 // This checks for an invariant.start dominating the load.
1188 if (isLoadInvariantInLoop(LI, DT, CurLoop))
28
Calling 'isLoadInvariantInLoop'
35
Returning from 'isLoadInvariantInLoop'
36
Taking false branch
1189 return true;
1190
1191 bool Invalidated;
1192 if (CurAST
36.1
'CurAST' is null
36.1
'CurAST' is null
36.1
'CurAST' is null
36.1
'CurAST' is null
)
37
Taking false branch
1193 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1194 CurLoop, AA);
1195 else
1196 Invalidated = pointerInvalidatedByLoopWithMSSA(
1197 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
38
Called C++ object pointer is null
1198 // Check loop-invariant address because this may also be a sinkable load
1199 // whose address is not necessarily loop-invariant.
1200 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1201 ORE->emit([&]() {
1202 return OptimizationRemarkMissed(
1203 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressInvalidated", LI)
1204 << "failed to move load with loop-invariant address "
1205 "because the loop may invalidate its value";
1206 });
1207
1208 return !Invalidated;
1209 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1210 // Don't sink or hoist dbg info; it's legal, but not useful.
1211 if (isa<DbgInfoIntrinsic>(I))
1212 return false;
1213
1214 // Don't sink calls which can throw.
1215 if (CI->mayThrow())
1216 return false;
1217
1218 // Convergent attribute has been used on operations that involve
1219 // inter-thread communication which results are implicitly affected by the
1220 // enclosing control flows. It is not safe to hoist or sink such operations
1221 // across control flow.
1222 if (CI->isConvergent())
1223 return false;
1224
1225 using namespace PatternMatch;
1226 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1227 // Assumes don't actually alias anything or throw
1228 return true;
1229
1230 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1231 // Widenable conditions don't actually alias anything or throw
1232 return true;
1233
1234 // Handle simple cases by querying alias analysis.
1235 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1236 if (Behavior == FMRB_DoesNotAccessMemory)
1237 return true;
1238 if (AAResults::onlyReadsMemory(Behavior)) {
1239 // A readonly argmemonly function only reads from memory pointed to by
1240 // it's arguments with arbitrary offsets. If we can prove there are no
1241 // writes to this memory in the loop, we can hoist or sink.
1242 if (AAResults::onlyAccessesArgPointees(Behavior)) {
1243 // TODO: expand to writeable arguments
1244 for (Value *Op : CI->arg_operands())
1245 if (Op->getType()->isPointerTy()) {
1246 bool Invalidated;
1247 if (CurAST)
1248 Invalidated = pointerInvalidatedByLoop(
1249 MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
1250 else
1251 Invalidated = pointerInvalidatedByLoopWithMSSA(
1252 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
1253 *Flags);
1254 if (Invalidated)
1255 return false;
1256 }
1257 return true;
1258 }
1259
1260 // If this call only reads from memory and there are no writes to memory
1261 // in the loop, we can hoist or sink the call as appropriate.
1262 if (isReadOnly(CurAST, MSSAU, CurLoop))
1263 return true;
1264 }
1265
1266 // FIXME: This should use mod/ref information to see if we can hoist or
1267 // sink the call.
1268
1269 return false;
1270 } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1271 // Fences alias (most) everything to provide ordering. For the moment,
1272 // just give up if there are any other memory operations in the loop.
1273 if (CurAST) {
1274 auto Begin = CurAST->begin();
1275 assert(Begin != CurAST->end() && "must contain FI")(static_cast <bool> (Begin != CurAST->end() &&
"must contain FI") ? void (0) : __assert_fail ("Begin != CurAST->end() && \"must contain FI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1275, __extension__ __PRETTY_FUNCTION__))
;
1276 if (std::next(Begin) != CurAST->end())
1277 // constant memory for instance, TODO: handle better
1278 return false;
1279 auto *UniqueI = Begin->getUniqueInstruction();
1280 if (!UniqueI)
1281 // other memory op, give up
1282 return false;
1283 (void)FI; // suppress unused variable warning
1284 assert(UniqueI == FI && "AS must contain FI")(static_cast <bool> (UniqueI == FI && "AS must contain FI"
) ? void (0) : __assert_fail ("UniqueI == FI && \"AS must contain FI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1284, __extension__ __PRETTY_FUNCTION__))
;
1285 return true;
1286 } else // MSSAU
1287 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1288 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1289 if (!SI->isUnordered())
1290 return false; // Don't sink/hoist volatile or ordered atomic store!
1291
1292 // We can only hoist a store that we can prove writes a value which is not
1293 // read or overwritten within the loop. For those cases, we fallback to
1294 // load store promotion instead. TODO: We can extend this to cases where
1295 // there is exactly one write to the location and that write dominates an
1296 // arbitrary number of reads in the loop.
1297 if (CurAST) {
1298 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1299
1300 if (AS.isRef() || !AS.isMustAlias())
1301 // Quick exit test, handled by the full path below as well.
1302 return false;
1303 auto *UniqueI = AS.getUniqueInstruction();
1304 if (!UniqueI)
1305 // other memory op, give up
1306 return false;
1307 assert(UniqueI == SI && "AS must contain SI")(static_cast <bool> (UniqueI == SI && "AS must contain SI"
) ? void (0) : __assert_fail ("UniqueI == SI && \"AS must contain SI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1307, __extension__ __PRETTY_FUNCTION__))
;
1308 return true;
1309 } else { // MSSAU
1310 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1311 return true;
1312 // If there are more accesses than the Promotion cap or no "quota" to
1313 // check clobber, then give up as we're not walking a list that long.
1314 if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
1315 return false;
1316 // If there are interfering Uses (i.e. their defining access is in the
1317 // loop), or ordered loads (stored as Defs!), don't move this store.
1318 // Could do better here, but this is conservatively correct.
1319 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1320 // moving accesses. Can also extend to dominating uses.
1321 auto *SIMD = MSSA->getMemoryAccess(SI);
1322 for (auto *BB : CurLoop->getBlocks())
1323 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1324 for (const auto &MA : *Accesses)
1325 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1326 auto *MD = MU->getDefiningAccess();
1327 if (!MSSA->isLiveOnEntryDef(MD) &&
1328 CurLoop->contains(MD->getBlock()))
1329 return false;
1330 // Disable hoisting past potentially interfering loads. Optimized
1331 // Uses may point to an access outside the loop, as getClobbering
1332 // checks the previous iteration when walking the backedge.
1333 // FIXME: More precise: no Uses that alias SI.
1334 if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
1335 return false;
1336 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1337 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1338 (void)LI; // Silence warning.
1339 assert(!LI->isUnordered() && "Expected unordered load")(static_cast <bool> (!LI->isUnordered() && "Expected unordered load"
) ? void (0) : __assert_fail ("!LI->isUnordered() && \"Expected unordered load\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1339, __extension__ __PRETTY_FUNCTION__))
;
1340 return false;
1341 }
1342 // Any call, while it may not be clobbering SI, it may be a use.
1343 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1344 // Check if the call may read from the memory location written
1345 // to by SI. Check CI's attributes and arguments; the number of
1346 // such checks performed is limited above by NoOfMemAccTooLarge.
1347 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1348 if (isModOrRefSet(MRI))
1349 return false;
1350 }
1351 }
1352 }
1353 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1354 Flags->incrementClobberingCalls();
1355 // If there are no clobbering Defs in the loop, store is safe to hoist.
1356 return MSSA->isLiveOnEntryDef(Source) ||
1357 !CurLoop->contains(Source->getBlock());
1358 }
1359 }
1360
1361 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing")(static_cast <bool> (!I.mayReadOrWriteMemory() &&
"unhandled aliasing") ? void (0) : __assert_fail ("!I.mayReadOrWriteMemory() && \"unhandled aliasing\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1361, __extension__ __PRETTY_FUNCTION__))
;
1362
1363 // We've established mechanical ability and aliasing, it's up to the caller
1364 // to check fault safety
1365 return true;
1366}
1367
1368/// Returns true if a PHINode is a trivially replaceable with an
1369/// Instruction.
1370/// This is true when all incoming values are that instruction.
1371/// This pattern occurs most often with LCSSA PHI nodes.
1372///
1373static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1374 for (const Value *IncValue : PN.incoming_values())
1375 if (IncValue != &I)
1376 return false;
1377
1378 return true;
1379}
1380
1381/// Return true if the instruction is free in the loop.
1382static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1383 const TargetTransformInfo *TTI) {
1384
1385 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1386 if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1387 TargetTransformInfo::TCC_Free)
1388 return false;
1389 // For a GEP, we cannot simply use getUserCost because currently it
1390 // optimistically assume that a GEP will fold into addressing mode
1391 // regardless of its users.
1392 const BasicBlock *BB = GEP->getParent();
1393 for (const User *U : GEP->users()) {
1394 const Instruction *UI = cast<Instruction>(U);
1395 if (CurLoop->contains(UI) &&
1396 (BB != UI->getParent() ||
1397 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1398 return false;
1399 }
1400 return true;
1401 } else
1402 return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1403 TargetTransformInfo::TCC_Free;
1404}
1405
1406/// Return true if the only users of this instruction are outside of
1407/// the loop. If this is true, we can sink the instruction to the exit
1408/// blocks of the loop.
1409///
1410/// We also return true if the instruction could be folded away in lowering.
1411/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1412static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1413 const LoopSafetyInfo *SafetyInfo,
1414 TargetTransformInfo *TTI, bool &FreeInLoop,
1415 bool LoopNestMode) {
1416 const auto &BlockColors = SafetyInfo->getBlockColors();
1417 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1418 for (const User *U : I.users()) {
1419 const Instruction *UI = cast<Instruction>(U);
1420 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1421 const BasicBlock *BB = PN->getParent();
1422 // We cannot sink uses in catchswitches.
1423 if (isa<CatchSwitchInst>(BB->getTerminator()))
1424 return false;
1425
1426 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1427 // phi use is too muddled.
1428 if (isa<CallInst>(I))
1429 if (!BlockColors.empty() &&
1430 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1431 return false;
1432
1433 if (LoopNestMode) {
1434 while (isa<PHINode>(UI) && UI->hasOneUser() &&
1435 UI->getNumOperands() == 1) {
1436 if (!CurLoop->contains(UI))
1437 break;
1438 UI = cast<Instruction>(UI->user_back());
1439 }
1440 }
1441 }
1442
1443 if (CurLoop->contains(UI)) {
1444 if (IsFree) {
1445 FreeInLoop = true;
1446 continue;
1447 }
1448 return false;
1449 }
1450 }
1451 return true;
1452}
1453
1454static Instruction *cloneInstructionInExitBlock(
1455 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1456 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1457 Instruction *New;
1458 if (auto *CI = dyn_cast<CallInst>(&I)) {
1459 const auto &BlockColors = SafetyInfo->getBlockColors();
1460
1461 // Sinking call-sites need to be handled differently from other
1462 // instructions. The cloned call-site needs a funclet bundle operand
1463 // appropriate for its location in the CFG.
1464 SmallVector<OperandBundleDef, 1> OpBundles;
1465 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1466 BundleIdx != BundleEnd; ++BundleIdx) {
1467 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1468 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1469 continue;
1470
1471 OpBundles.emplace_back(Bundle);
1472 }
1473
1474 if (!BlockColors.empty()) {
1475 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1476 assert(CV.size() == 1 && "non-unique color for exit block!")(static_cast <bool> (CV.size() == 1 && "non-unique color for exit block!"
) ? void (0) : __assert_fail ("CV.size() == 1 && \"non-unique color for exit block!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1476, __extension__ __PRETTY_FUNCTION__))
;
1477 BasicBlock *BBColor = CV.front();
1478 Instruction *EHPad = BBColor->getFirstNonPHI();
1479 if (EHPad->isEHPad())
1480 OpBundles.emplace_back("funclet", EHPad);
1481 }
1482
1483 New = CallInst::Create(CI, OpBundles);
1484 } else {
1485 New = I.clone();
1486 }
1487
1488 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1489 if (!I.getName().empty())
1490 New->setName(I.getName() + ".le");
1491
1492 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1493 // Create a new MemoryAccess and let MemorySSA set its defining access.
1494 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1495 New, nullptr, New->getParent(), MemorySSA::Beginning);
1496 if (NewMemAcc) {
1497 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1498 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1499 else {
1500 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1501 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1502 }
1503 }
1504 }
1505
1506 // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that
1507 // this is particularly cheap because we can rip off the PHI node that we're
1508 // replacing for the number and blocks of the predecessors.
1509 // OPT: If this shows up in a profile, we can instead finish sinking all
1510 // invariant instructions, and then walk their operands to re-establish
1511 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1512 // sinking bottom-up.
1513 for (Use &Op : New->operands())
1514 if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
1515 auto *OInst = cast<Instruction>(Op.get());
1516 PHINode *OpPN =
1517 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1518 OInst->getName() + ".lcssa", &ExitBlock.front());
1519 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1520 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1521 Op = OpPN;
1522 }
1523 return New;
1524}
1525
1526static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1527 MemorySSAUpdater *MSSAU) {
1528 if (MSSAU)
1529 MSSAU->removeMemoryAccess(&I);
1530 SafetyInfo.removeInstruction(&I);
1531 I.eraseFromParent();
1532}
1533
1534static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1535 ICFLoopSafetyInfo &SafetyInfo,
1536 MemorySSAUpdater *MSSAU,
1537 ScalarEvolution *SE) {
1538 SafetyInfo.removeInstruction(&I);
1539 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1540 I.moveBefore(&Dest);
1541 if (MSSAU)
1542 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1543 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1544 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1545 MemorySSA::BeforeTerminator);
1546 if (SE)
1547 SE->forgetValue(&I);
1548}
1549
1550static Instruction *sinkThroughTriviallyReplaceablePHI(
1551 PHINode *TPN, Instruction *I, LoopInfo *LI,
1552 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1553 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1554 MemorySSAUpdater *MSSAU) {
1555 assert(isTriviallyReplaceablePHI(*TPN, *I) &&(static_cast <bool> (isTriviallyReplaceablePHI(*TPN, *I
) && "Expect only trivially replaceable PHI") ? void (
0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1556, __extension__ __PRETTY_FUNCTION__))
1556 "Expect only trivially replaceable PHI")(static_cast <bool> (isTriviallyReplaceablePHI(*TPN, *I
) && "Expect only trivially replaceable PHI") ? void (
0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1556, __extension__ __PRETTY_FUNCTION__))
;
1557 BasicBlock *ExitBlock = TPN->getParent();
1558 Instruction *New;
1559 auto It = SunkCopies.find(ExitBlock);
1560 if (It != SunkCopies.end())
1561 New = It->second;
1562 else
1563 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1564 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1565 return New;
1566}
1567
1568static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1569 BasicBlock *BB = PN->getParent();
1570 if (!BB->canSplitPredecessors())
1571 return false;
1572 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1573 // it require updating BlockColors for all offspring blocks accordingly. By
1574 // skipping such corner case, we can make updating BlockColors after splitting
1575 // predecessor fairly simple.
1576 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1577 return false;
1578 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1579 BasicBlock *BBPred = *PI;
1580 if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1581 isa<CallBrInst>(BBPred->getTerminator()))
1582 return false;
1583 }
1584 return true;
1585}
1586
1587static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1588 LoopInfo *LI, const Loop *CurLoop,
1589 LoopSafetyInfo *SafetyInfo,
1590 MemorySSAUpdater *MSSAU) {
1591#ifndef NDEBUG
1592 SmallVector<BasicBlock *, 32> ExitBlocks;
1593 CurLoop->getUniqueExitBlocks(ExitBlocks);
1594 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1595 ExitBlocks.end());
1596#endif
1597 BasicBlock *ExitBB = PN->getParent();
1598 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.")(static_cast <bool> (ExitBlockSet.count(ExitBB) &&
"Expect the PHI is in an exit block.") ? void (0) : __assert_fail
("ExitBlockSet.count(ExitBB) && \"Expect the PHI is in an exit block.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1598, __extension__ __PRETTY_FUNCTION__))
;
1599
1600 // Split predecessors of the loop exit to make instructions in the loop are
1601 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1602 // loop in the canonical form where each predecessor of each exit block should
1603 // be contained within the loop. For example, this will convert the loop below
1604 // from
1605 //
1606 // LB1:
1607 // %v1 =
1608 // br %LE, %LB2
1609 // LB2:
1610 // %v2 =
1611 // br %LE, %LB1
1612 // LE:
1613 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1614 //
1615 // to
1616 //
1617 // LB1:
1618 // %v1 =
1619 // br %LE.split, %LB2
1620 // LB2:
1621 // %v2 =
1622 // br %LE.split2, %LB1
1623 // LE.split:
1624 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1625 // br %LE
1626 // LE.split2:
1627 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1628 // br %LE
1629 // LE:
1630 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1631 //
1632 const auto &BlockColors = SafetyInfo->getBlockColors();
1633 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1634 while (!PredBBs.empty()) {
1635 BasicBlock *PredBB = *PredBBs.begin();
1636 assert(CurLoop->contains(PredBB) &&(static_cast <bool> (CurLoop->contains(PredBB) &&
"Expect all predecessors are in the loop") ? void (0) : __assert_fail
("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1637, __extension__ __PRETTY_FUNCTION__))
1637 "Expect all predecessors are in the loop")(static_cast <bool> (CurLoop->contains(PredBB) &&
"Expect all predecessors are in the loop") ? void (0) : __assert_fail
("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1637, __extension__ __PRETTY_FUNCTION__))
;
1638 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1639 BasicBlock *NewPred = SplitBlockPredecessors(
1640 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1641 // Since we do not allow splitting EH-block with BlockColors in
1642 // canSplitPredecessors(), we can simply assign predecessor's color to
1643 // the new block.
1644 if (!BlockColors.empty())
1645 // Grab a reference to the ColorVector to be inserted before getting the
1646 // reference to the vector we are copying because inserting the new
1647 // element in BlockColors might cause the map to be reallocated.
1648 SafetyInfo->copyColors(NewPred, PredBB);
1649 }
1650 PredBBs.remove(PredBB);
1651 }
1652}
1653
1654/// When an instruction is found to only be used outside of the loop, this
1655/// function moves it to the exit blocks and patches up SSA form as needed.
1656/// This method is guaranteed to remove the original instruction from its
1657/// position, and may either delete it or move it to outside of the loop.
1658///
1659static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1660 BlockFrequencyInfo *BFI, const Loop *CurLoop,
1661 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
1662 OptimizationRemarkEmitter *ORE) {
1663 bool Changed = false;
1664 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM sinking instruction: " <<
I << "\n"; } } while (false)
;
1665
1666 // Iterate over users to be ready for actual sinking. Replace users via
1667 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1668 SmallPtrSet<Instruction *, 8> VisitedUsers;
1669 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1670 auto *User = cast<Instruction>(*UI);
1671 Use &U = UI.getUse();
1672 ++UI;
1673
1674 if (VisitedUsers.count(User) || CurLoop->contains(User))
1675 continue;
1676
1677 if (!DT->isReachableFromEntry(User->getParent())) {
1678 U = UndefValue::get(I.getType());
1679 Changed = true;
1680 continue;
1681 }
1682
1683 // The user must be a PHI node.
1684 PHINode *PN = cast<PHINode>(User);
1685
1686 // Surprisingly, instructions can be used outside of loops without any
1687 // exits. This can only happen in PHI nodes if the incoming block is
1688 // unreachable.
1689 BasicBlock *BB = PN->getIncomingBlock(U);
1690 if (!DT->isReachableFromEntry(BB)) {
1691 U = UndefValue::get(I.getType());
1692 Changed = true;
1693 continue;
1694 }
1695
1696 VisitedUsers.insert(PN);
1697 if (isTriviallyReplaceablePHI(*PN, I))
1698 continue;
1699
1700 if (!canSplitPredecessors(PN, SafetyInfo))
1701 return Changed;
1702
1703 // Split predecessors of the PHI so that we can make users trivially
1704 // replaceable.
1705 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1706
1707 // Should rebuild the iterators, as they may be invalidated by
1708 // splitPredecessorsOfLoopExit().
1709 UI = I.user_begin();
1710 UE = I.user_end();
1711 }
1712
1713 if (VisitedUsers.empty())
1714 return Changed;
1715
1716 ORE->emit([&]() {
1717 return OptimizationRemark(DEBUG_TYPE"licm", "InstSunk", &I)
1718 << "sinking " << ore::NV("Inst", &I);
1719 });
1720 if (isa<LoadInst>(I))
1721 ++NumMovedLoads;
1722 else if (isa<CallInst>(I))
1723 ++NumMovedCalls;
1724 ++NumSunk;
1725
1726#ifndef NDEBUG
1727 SmallVector<BasicBlock *, 32> ExitBlocks;
1728 CurLoop->getUniqueExitBlocks(ExitBlocks);
1729 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1730 ExitBlocks.end());
1731#endif
1732
1733 // Clones of this instruction. Don't create more than one per exit block!
1734 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1735
1736 // If this instruction is only used outside of the loop, then all users are
1737 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1738 // the instruction.
1739 // First check if I is worth sinking for all uses. Sink only when it is worth
1740 // across all uses.
1741 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1742 SmallVector<PHINode *, 8> ExitPNs;
1743 for (auto *UI : Users) {
1744 auto *User = cast<Instruction>(UI);
1745
1746 if (CurLoop->contains(User))
1747 continue;
1748
1749 PHINode *PN = cast<PHINode>(User);
1750 assert(ExitBlockSet.count(PN->getParent()) &&(static_cast <bool> (ExitBlockSet.count(PN->getParent
()) && "The LCSSA PHI is not in an exit block!") ? void
(0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1751, __extension__ __PRETTY_FUNCTION__))
1751 "The LCSSA PHI is not in an exit block!")(static_cast <bool> (ExitBlockSet.count(PN->getParent
()) && "The LCSSA PHI is not in an exit block!") ? void
(0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1751, __extension__ __PRETTY_FUNCTION__))
;
1752 if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) {
1753 return Changed;
1754 }
1755
1756 ExitPNs.push_back(PN);
1757 }
1758
1759 for (auto *PN : ExitPNs) {
1760
1761 // The PHI must be trivially replaceable.
1762 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1763 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1764 PN->replaceAllUsesWith(New);
1765 eraseInstruction(*PN, *SafetyInfo, nullptr);
1766 Changed = true;
1767 }
1768 return Changed;
1769}
1770
1771/// When an instruction is found to only use loop invariant operands that
1772/// is safe to hoist, this instruction is called to do the dirty work.
1773///
1774static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1775 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1776 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1777 OptimizationRemarkEmitter *ORE) {
1778 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getNameOrAsOperand() << ": " << I << "\n"
; } } while (false)
1779 << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getNameOrAsOperand() << ": " << I << "\n"
; } } while (false)
;
1780 ORE->emit([&]() {
1781 return OptimizationRemark(DEBUG_TYPE"licm", "Hoisted", &I) << "hoisting "
1782 << ore::NV("Inst", &I);
1783 });
1784
1785 // Metadata can be dependent on conditions we are hoisting above.
1786 // Conservatively strip all metadata on the instruction unless we were
1787 // guaranteed to execute I if we entered the loop, in which case the metadata
1788 // is valid in the loop preheader.
1789 // Similarly, If I is a call and it is not guaranteed to execute in the loop,
1790 // then moving to the preheader means we should strip attributes on the call
1791 // that can cause UB since we may be hoisting above conditions that allowed
1792 // inferring those attributes. They may not be valid at the preheader.
1793 if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
1794 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1795 // time in isGuaranteedToExecute if we don't actually have anything to
1796 // drop. It is a compile time optimization, not required for correctness.
1797 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1798 I.dropUndefImplyingAttrsAndUnknownMetadata();
1799
1800 if (isa<PHINode>(I))
1801 // Move the new node to the end of the phi list in the destination block.
1802 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1803 else
1804 // Move the new node to the destination block, before its terminator.
1805 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1806
1807 I.updateLocationAfterHoist();
1808
1809 if (isa<LoadInst>(I))
1810 ++NumMovedLoads;
1811 else if (isa<CallInst>(I))
1812 ++NumMovedCalls;
1813 ++NumHoisted;
1814}
1815
1816/// Only sink or hoist an instruction if it is not a trapping instruction,
1817/// or if the instruction is known not to trap when moved to the preheader.
1818/// or if it is a trapping instruction and is guaranteed to execute.
1819static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1820 const DominatorTree *DT,
1821 const TargetLibraryInfo *TLI,
1822 const Loop *CurLoop,
1823 const LoopSafetyInfo *SafetyInfo,
1824 OptimizationRemarkEmitter *ORE,
1825 const Instruction *CtxI) {
1826 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI))
1827 return true;
1828
1829 bool GuaranteedToExecute =
1830 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1831
1832 if (!GuaranteedToExecute) {
1833 auto *LI = dyn_cast<LoadInst>(&Inst);
1834 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1835 ORE->emit([&]() {
1836 return OptimizationRemarkMissed(
1837 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressCondExecuted", LI)
1838 << "failed to hoist load with loop-invariant address "
1839 "because load is conditionally executed";
1840 });
1841 }
1842
1843 return GuaranteedToExecute;
1844}
1845
1846namespace {
1847class LoopPromoter : public LoadAndStorePromoter {
1848 Value *SomePtr; // Designated pointer to store to.
1849 const SmallSetVector<Value *, 8> &PointerMustAliases;
1850 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1851 SmallVectorImpl<Instruction *> &LoopInsertPts;
1852 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1853 PredIteratorCache &PredCache;
1854 MemorySSAUpdater *MSSAU;
1855 LoopInfo &LI;
1856 DebugLoc DL;
1857 int Alignment;
1858 bool UnorderedAtomic;
1859 AAMDNodes AATags;
1860 ICFLoopSafetyInfo &SafetyInfo;
1861
1862 // We're about to add a use of V in a loop exit block. Insert an LCSSA phi
1863 // (if legal) if doing so would add an out-of-loop use to an instruction
1864 // defined in-loop.
1865 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1866 if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
1867 return V;
1868
1869 Instruction *I = cast<Instruction>(V);
1870 // We need to create an LCSSA PHI node for the incoming value and
1871 // store that.
1872 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1873 I->getName() + ".lcssa", &BB->front());
1874 for (BasicBlock *Pred : PredCache.get(BB))
1875 PN->addIncoming(I, Pred);
1876 return PN;
1877 }
1878
1879public:
1880 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1881 const SmallSetVector<Value *, 8> &PMA,
1882 SmallVectorImpl<BasicBlock *> &LEB,
1883 SmallVectorImpl<Instruction *> &LIP,
1884 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1885 MemorySSAUpdater *MSSAU, LoopInfo &li, DebugLoc dl,
1886 int alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
1887 ICFLoopSafetyInfo &SafetyInfo)
1888 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1889 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1890 PredCache(PIC), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1891 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1892 SafetyInfo(SafetyInfo) {}
1893
1894 bool isInstInList(Instruction *I,
1895 const SmallVectorImpl<Instruction *> &) const override {
1896 Value *Ptr;
1897 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1898 Ptr = LI->getOperand(0);
1899 else
1900 Ptr = cast<StoreInst>(I)->getPointerOperand();
1901 return PointerMustAliases.count(Ptr);
1902 }
1903
1904 void doExtraRewritesBeforeFinalDeletion() override {
1905 // Insert stores after in the loop exit blocks. Each exit block gets a
1906 // store of the live-out values that feed them. Since we've already told
1907 // the SSA updater about the defs in the loop and the preheader
1908 // definition, it is all set and we can start using it.
1909 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1910 BasicBlock *ExitBlock = LoopExitBlocks[i];
1911 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1912 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1913 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1914 Instruction *InsertPos = LoopInsertPts[i];
1915 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1916 if (UnorderedAtomic)
1917 NewSI->setOrdering(AtomicOrdering::Unordered);
1918 NewSI->setAlignment(Align(Alignment));
1919 NewSI->setDebugLoc(DL);
1920 if (AATags)
1921 NewSI->setAAMetadata(AATags);
1922
1923 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1924 MemoryAccess *NewMemAcc;
1925 if (!MSSAInsertPoint) {
1926 NewMemAcc = MSSAU->createMemoryAccessInBB(
1927 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1928 } else {
1929 NewMemAcc =
1930 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1931 }
1932 MSSAInsertPts[i] = NewMemAcc;
1933 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1934 // FIXME: true for safety, false may still be correct.
1935 }
1936 }
1937
1938 void instructionDeleted(Instruction *I) const override {
1939 SafetyInfo.removeInstruction(I);
1940 MSSAU->removeMemoryAccess(I);
1941 }
1942};
1943
1944bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1945 DominatorTree *DT) {
1946 // We can perform the captured-before check against any instruction in the
1947 // loop header, as the loop header is reachable from any instruction inside
1948 // the loop.
1949 // TODO: ReturnCaptures=true shouldn't be necessary here.
1950 return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1951 /* StoreCaptures */ true,
1952 L->getHeader()->getTerminator(), DT);
1953}
1954
1955/// Return true iff we can prove that a caller of this function can not inspect
1956/// the contents of the provided object in a well defined program.
1957bool isKnownNonEscaping(Value *Object, const Loop *L,
1958 const TargetLibraryInfo *TLI, DominatorTree *DT) {
1959 if (isa<AllocaInst>(Object))
1960 // Since the alloca goes out of scope, we know the caller can't retain a
1961 // reference to it and be well defined. Thus, we don't need to check for
1962 // capture.
1963 return true;
1964
1965 // For all other objects we need to know that the caller can't possibly
1966 // have gotten a reference to the object. There are two components of
1967 // that:
1968 // 1) Object can't be escaped by this function. This is what
1969 // PointerMayBeCaptured checks.
1970 // 2) Object can't have been captured at definition site. For this, we
1971 // need to know the return value is noalias. At the moment, we use a
1972 // weaker condition and handle only AllocLikeFunctions (which are
1973 // known to be noalias). TODO
1974 return isAllocLikeFn(Object, TLI) &&
1975 isNotCapturedBeforeOrInLoop(Object, L, DT);
1976}
1977
1978} // namespace
1979
1980/// Try to promote memory values to scalars by sinking stores out of the
1981/// loop and moving loads to before the loop. We do this by looping over
1982/// the stores in the loop, looking for stores to Must pointers which are
1983/// loop invariant.
1984///
1985bool llvm::promoteLoopAccessesToScalars(
1986 const SmallSetVector<Value *, 8> &PointerMustAliases,
1987 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1988 SmallVectorImpl<Instruction *> &InsertPts,
1989 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1990 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1991 Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
1992 OptimizationRemarkEmitter *ORE) {
1993 // Verify inputs.
1994 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&(static_cast <bool> (LI != nullptr && DT != nullptr
&& CurLoop != nullptr && SafetyInfo != nullptr
&& "Unexpected Input to promoteLoopAccessesToScalars"
) ? void (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1996, __extension__ __PRETTY_FUNCTION__))
1995 SafetyInfo != nullptr &&(static_cast <bool> (LI != nullptr && DT != nullptr
&& CurLoop != nullptr && SafetyInfo != nullptr
&& "Unexpected Input to promoteLoopAccessesToScalars"
) ? void (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1996, __extension__ __PRETTY_FUNCTION__))
1996 "Unexpected Input to promoteLoopAccessesToScalars")(static_cast <bool> (LI != nullptr && DT != nullptr
&& CurLoop != nullptr && SafetyInfo != nullptr
&& "Unexpected Input to promoteLoopAccessesToScalars"
) ? void (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1996, __extension__ __PRETTY_FUNCTION__))
;
1997
1998 Value *SomePtr = *PointerMustAliases.begin();
1999 BasicBlock *Preheader = CurLoop->getLoopPreheader();
2000
2001 // It is not safe to promote a load/store from the loop if the load/store is
2002 // conditional. For example, turning:
2003 //
2004 // for () { if (c) *P += 1; }
2005 //
2006 // into:
2007 //
2008 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
2009 //
2010 // is not safe, because *P may only be valid to access if 'c' is true.
2011 //
2012 // The safety property divides into two parts:
2013 // p1) The memory may not be dereferenceable on entry to the loop. In this
2014 // case, we can't insert the required load in the preheader.
2015 // p2) The memory model does not allow us to insert a store along any dynamic
2016 // path which did not originally have one.
2017 //
2018 // If at least one store is guaranteed to execute, both properties are
2019 // satisfied, and promotion is legal.
2020 //
2021 // This, however, is not a necessary condition. Even if no store/load is
2022 // guaranteed to execute, we can still establish these properties.
2023 // We can establish (p1) by proving that hoisting the load into the preheader
2024 // is safe (i.e. proving dereferenceability on all paths through the loop). We
2025 // can use any access within the alias set to prove dereferenceability,
2026 // since they're all must alias.
2027 //
2028 // There are two ways establish (p2):
2029 // a) Prove the location is thread-local. In this case the memory model
2030 // requirement does not apply, and stores are safe to insert.
2031 // b) Prove a store dominates every exit block. In this case, if an exit
2032 // blocks is reached, the original dynamic path would have taken us through
2033 // the store, so inserting a store into the exit block is safe. Note that this
2034 // is different from the store being guaranteed to execute. For instance,
2035 // if an exception is thrown on the first iteration of the loop, the original
2036 // store is never executed, but the exit blocks are not executed either.
2037
2038 bool DereferenceableInPH = false;
2039 bool SafeToInsertStore = false;
2040
2041 SmallVector<Instruction *, 64> LoopUses;
2042
2043 // We start with an alignment of one and try to find instructions that allow
2044 // us to prove better alignment.
2045 Align Alignment;
2046 // Keep track of which types of access we see
2047 bool SawUnorderedAtomic = false;
2048 bool SawNotAtomic = false;
2049 AAMDNodes AATags;
2050
2051 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
2052
2053 bool IsKnownThreadLocalObject = false;
2054 if (SafetyInfo->anyBlockMayThrow()) {
2055 // If a loop can throw, we have to insert a store along each unwind edge.
2056 // That said, we can't actually make the unwind edge explicit. Therefore,
2057 // we have to prove that the store is dead along the unwind edge. We do
2058 // this by proving that the caller can't have a reference to the object
2059 // after return and thus can't possibly load from the object.
2060 Value *Object = getUnderlyingObject(SomePtr);
2061 if (!isKnownNonEscaping(Object, CurLoop, TLI, DT))
2062 return false;
2063 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
2064 // visible to other threads if captured and used during their lifetimes.
2065 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
2066 }
2067
2068 // Check that all of the pointers in the alias set have the same type. We
2069 // cannot (yet) promote a memory location that is loaded and stored in
2070 // different sizes. While we are at it, collect alignment and AA info.
2071 for (Value *ASIV : PointerMustAliases) {
2072 // Check that all of the pointers in the alias set have the same type. We
2073 // cannot (yet) promote a memory location that is loaded and stored in
2074 // different sizes.
2075 if (SomePtr->getType() != ASIV->getType())
2076 return false;
2077
2078 for (User *U : ASIV->users()) {
2079 // Ignore instructions that are outside the loop.
2080 Instruction *UI = dyn_cast<Instruction>(U);
2081 if (!UI || !CurLoop->contains(UI))
2082 continue;
2083
2084 // If there is an non-load/store instruction in the loop, we can't promote
2085 // it.
2086 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2087 if (!Load->isUnordered())
2088 return false;
2089
2090 SawUnorderedAtomic |= Load->isAtomic();
2091 SawNotAtomic |= !Load->isAtomic();
2092
2093 Align InstAlignment = Load->getAlign();
2094
2095 // Note that proving a load safe to speculate requires proving
2096 // sufficient alignment at the target location. Proving it guaranteed
2097 // to execute does as well. Thus we can increase our guaranteed
2098 // alignment as well.
2099 if (!DereferenceableInPH || (InstAlignment > Alignment))
2100 if (isSafeToExecuteUnconditionally(*Load, DT, TLI, CurLoop,
2101 SafetyInfo, ORE,
2102 Preheader->getTerminator())) {
2103 DereferenceableInPH = true;
2104 Alignment = std::max(Alignment, InstAlignment);
2105 }
2106 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2107 // Stores *of* the pointer are not interesting, only stores *to* the
2108 // pointer.
2109 if (UI->getOperand(1) != ASIV)
2110 continue;
2111 if (!Store->isUnordered())
2112 return false;
2113
2114 SawUnorderedAtomic |= Store->isAtomic();
2115 SawNotAtomic |= !Store->isAtomic();
2116
2117 // If the store is guaranteed to execute, both properties are satisfied.
2118 // We may want to check if a store is guaranteed to execute even if we
2119 // already know that promotion is safe, since it may have higher
2120 // alignment than any other guaranteed stores, in which case we can
2121 // raise the alignment on the promoted store.
2122 Align InstAlignment = Store->getAlign();
2123
2124 if (!DereferenceableInPH || !SafeToInsertStore ||
2125 (InstAlignment > Alignment)) {
2126 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2127 DereferenceableInPH = true;
2128 SafeToInsertStore = true;
2129 Alignment = std::max(Alignment, InstAlignment);
2130 }
2131 }
2132
2133 // If a store dominates all exit blocks, it is safe to sink.
2134 // As explained above, if an exit block was executed, a dominating
2135 // store must have been executed at least once, so we are not
2136 // introducing stores on paths that did not have them.
2137 // Note that this only looks at explicit exit blocks. If we ever
2138 // start sinking stores into unwind edges (see above), this will break.
2139 if (!SafeToInsertStore)
2140 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2141 return DT->dominates(Store->getParent(), Exit);
2142 });
2143
2144 // If the store is not guaranteed to execute, we may still get
2145 // deref info through it.
2146 if (!DereferenceableInPH) {
2147 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2148 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2149 Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI);
2150 }
2151 } else
2152 return false; // Not a load or store.
2153
2154 // Merge the AA tags.
2155 if (LoopUses.empty()) {
2156 // On the first load/store, just take its AA tags.
2157 UI->getAAMetadata(AATags);
2158 } else if (AATags) {
2159 UI->getAAMetadata(AATags, /* Merge = */ true);
2160 }
2161
2162 LoopUses.push_back(UI);
2163 }
2164 }
2165
2166 // If we found both an unordered atomic instruction and a non-atomic memory
2167 // access, bail. We can't blindly promote non-atomic to atomic since we
2168 // might not be able to lower the result. We can't downgrade since that
2169 // would violate memory model. Also, align 0 is an error for atomics.
2170 if (SawUnorderedAtomic && SawNotAtomic)
2171 return false;
2172
2173 // If we're inserting an atomic load in the preheader, we must be able to
2174 // lower it. We're only guaranteed to be able to lower naturally aligned
2175 // atomics.
2176 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2177 if (SawUnorderedAtomic &&
2178 Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2179 return false;
2180
2181 // If we couldn't prove we can hoist the load, bail.
2182 if (!DereferenceableInPH)
2183 return false;
2184
2185 // We know we can hoist the load, but don't have a guaranteed store.
2186 // Check whether the location is thread-local. If it is, then we can insert
2187 // stores along paths which originally didn't have them without violating the
2188 // memory model.
2189 if (!SafeToInsertStore) {
2190 if (IsKnownThreadLocalObject)
2191 SafeToInsertStore = true;
2192 else {
2193 Value *Object = getUnderlyingObject(SomePtr);
2194 SafeToInsertStore =
2195 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2196 isNotCapturedBeforeOrInLoop(Object, CurLoop, DT);
2197 }
2198 }
2199
2200 // If we've still failed to prove we can sink the store, give up.
2201 if (!SafeToInsertStore)
2202 return false;
2203
2204 // Otherwise, this is safe to promote, lets do it!
2205 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtrdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
2206 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
;
2207 ORE->emit([&]() {
2208 return OptimizationRemark(DEBUG_TYPE"licm", "PromoteLoopAccessesToScalar",
2209 LoopUses[0])
2210 << "Moving accesses to memory location out of the loop";
2211 });
2212 ++NumPromoted;
2213
2214 // Look at all the loop uses, and try to merge their locations.
2215 std::vector<const DILocation *> LoopUsesLocs;
2216 for (auto U : LoopUses)
2217 LoopUsesLocs.push_back(U->getDebugLoc().get());
2218 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2219
2220 // We use the SSAUpdater interface to insert phi nodes as required.
2221 SmallVector<PHINode *, 16> NewPHIs;
2222 SSAUpdater SSA(&NewPHIs);
2223 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2224 InsertPts, MSSAInsertPts, PIC, MSSAU, *LI, DL,
2225 Alignment.value(), SawUnorderedAtomic, AATags,
2226 *SafetyInfo);
2227
2228 // Set up the preheader to have a definition of the value. It is the live-out
2229 // value from the preheader that uses in the loop will use.
2230 LoadInst *PreheaderLoad = new LoadInst(
2231 SomePtr->getType()->getPointerElementType(), SomePtr,
2232 SomePtr->getName() + ".promoted", Preheader->getTerminator());
2233 if (SawUnorderedAtomic)
2234 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2235 PreheaderLoad->setAlignment(Alignment);
2236 PreheaderLoad->setDebugLoc(DebugLoc());
2237 if (AATags)
2238 PreheaderLoad->setAAMetadata(AATags);
2239 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2240
2241 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2242 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2243 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2244 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2245
2246 if (VerifyMemorySSA)
2247 MSSAU->getMemorySSA()->verifyMemorySSA();
2248 // Rewrite all the loads in the loop and remember all the definitions from
2249 // stores in the loop.
2250 Promoter.run(LoopUses);
2251
2252 if (VerifyMemorySSA)
2253 MSSAU->getMemorySSA()->verifyMemorySSA();
2254 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2255 if (PreheaderLoad->use_empty())
2256 eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU);
2257
2258 return true;
2259}
2260
2261static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2262 function_ref<void(Instruction *)> Fn) {
2263 for (const BasicBlock *BB : L->blocks())
2264 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2265 for (const auto &Access : *Accesses)
2266 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2267 Fn(MUD->getMemoryInst());
2268}
2269
2270static SmallVector<SmallSetVector<Value *, 8>, 0>
2271collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
2272 AliasSetTracker AST(*AA);
2273
2274 auto IsPotentiallyPromotable = [L](const Instruction *I) {
2275 if (const auto *SI = dyn_cast<StoreInst>(I))
2276 return L->isLoopInvariant(SI->getPointerOperand());
2277 if (const auto *LI = dyn_cast<LoadInst>(I))
2278 return L->isLoopInvariant(LI->getPointerOperand());
2279 return false;
2280 };
2281
2282 // Populate AST with potentially promotable accesses and remove them from
2283 // MaybePromotable, so they will not be checked again on the next iteration.
2284 SmallPtrSet<Value *, 16> AttemptingPromotion;
2285 foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2286 if (IsPotentiallyPromotable(I)) {
2287 AttemptingPromotion.insert(I);
2288 AST.add(I);
2289 }
2290 });
2291
2292 // We're only interested in must-alias sets that contain a mod.
2293 SmallVector<const AliasSet *, 8> Sets;
2294 for (AliasSet &AS : AST)
2295 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2296 Sets.push_back(&AS);
2297
2298 if (Sets.empty())
2299 return {}; // Nothing to promote...
2300
2301 // Discard any sets for which there is an aliasing non-promotable access.
2302 foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2303 if (AttemptingPromotion.contains(I))
2304 return;
2305
2306 llvm::erase_if(Sets, [&](const AliasSet *AS) {
2307 return AS->aliasesUnknownInst(I, *AA);
2308 });
2309 });
2310
2311 SmallVector<SmallSetVector<Value *, 8>, 0> Result;
2312 for (const AliasSet *Set : Sets) {
2313 SmallSetVector<Value *, 8> PointerMustAliases;
2314 for (const auto &ASI : *Set)
2315 PointerMustAliases.insert(ASI.getValue());
2316 Result.push_back(std::move(PointerMustAliases));
2317 }
2318
2319 return Result;
2320}
2321
2322static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2323 AliasSetTracker *CurAST, Loop *CurLoop,
2324 AAResults *AA) {
2325 return CurAST->getAliasSetFor(MemLoc).isMod();
2326}
2327
2328bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2329 Loop *CurLoop, Instruction &I,
2330 SinkAndHoistLICMFlags &Flags) {
2331 // For hoisting, use the walker to determine safety
2332 if (!Flags.getIsSink()) {
2333 MemoryAccess *Source;
2334 // See declaration of SetLicmMssaOptCap for usage details.
2335 if (Flags.tooManyClobberingCalls())
2336 Source = MU->getDefiningAccess();
2337 else {
2338 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2339 Flags.incrementClobberingCalls();
2340 }
2341 return !MSSA->isLiveOnEntryDef(Source) &&
2342 CurLoop->contains(Source->getBlock());
2343 }
2344
2345 // For sinking, we'd need to check all Defs below this use. The getClobbering
2346 // call will look on the backedge of the loop, but will check aliasing with
2347 // the instructions on the previous iteration.
2348 // For example:
2349 // for (i ... )
2350 // load a[i] ( Use (LoE)
2351 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2352 // i++;
2353 // The load sees no clobbering inside the loop, as the backedge alias check
2354 // does phi translation, and will check aliasing against store a[i-1].
2355 // However sinking the load outside the loop, below the store is incorrect.
2356
2357 // For now, only sink if there are no Defs in the loop, and the existing ones
2358 // precede the use and are in the same block.
2359 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2360 // needs PostDominatorTreeAnalysis.
2361 // FIXME: More precise: no Defs that alias this Use.
2362 if (Flags.tooManyMemoryAccesses())
2363 return true;
2364 for (auto *BB : CurLoop->getBlocks())
2365 if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
2366 return true;
2367 // When sinking, the source block may not be part of the loop so check it.
2368 if (!CurLoop->contains(&I))
2369 return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
2370
2371 return false;
2372}
2373
2374bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
2375 MemoryUse &MU) {
2376 if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2377 for (const auto &MA : *Accesses)
2378 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2379 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2380 return true;
2381 return false;
2382}
2383
2384/// Little predicate that returns true if the specified basic block is in
2385/// a subloop of the current one, not the current one itself.
2386///
2387static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2388 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop")(static_cast <bool> (CurLoop->contains(BB) &&
"Only valid if BB is IN the loop") ? void (0) : __assert_fail
("CurLoop->contains(BB) && \"Only valid if BB is IN the loop\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/Transforms/Scalar/LICM.cpp"
, 2388, __extension__ __PRETTY_FUNCTION__))
;
2389 return LI->getLoopFor(BB) != CurLoop;
2390}

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/OperandTraits.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/User.h"
41#include "llvm/IR/Value.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <iterator>
49
50namespace llvm {
51
52class APInt;
53class ConstantInt;
54class DataLayout;
55class LLVMContext;
56
57//===----------------------------------------------------------------------===//
58// AllocaInst Class
59//===----------------------------------------------------------------------===//
60
61/// an instruction to allocate memory on the stack
62class AllocaInst : public UnaryInstruction {
63 Type *AllocatedType;
64
65 using AlignmentField = AlignmentBitfieldElementT<0>;
66 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
67 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
68 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
69 SwiftErrorField>(),
70 "Bitfields must be contiguous");
71
72protected:
73 // Note: Instruction needs to be a friend here to call cloneImpl.
74 friend class Instruction;
75
76 AllocaInst *cloneImpl() const;
77
78public:
79 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
80 const Twine &Name, Instruction *InsertBefore);
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
82 const Twine &Name, BasicBlock *InsertAtEnd);
83
84 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
85 Instruction *InsertBefore);
86 AllocaInst(Type *Ty, unsigned AddrSpace,
87 const Twine &Name, BasicBlock *InsertAtEnd);
88
89 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
90 const Twine &Name = "", Instruction *InsertBefore = nullptr);
91 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
92 const Twine &Name, BasicBlock *InsertAtEnd);
93
94 /// Return true if there is an allocation size parameter to the allocation
95 /// instruction that is not 1.
96 bool isArrayAllocation() const;
97
98 /// Get the number of elements allocated. For a simple allocation of a single
99 /// element, this will return a constant 1 value.
100 const Value *getArraySize() const { return getOperand(0); }
101 Value *getArraySize() { return getOperand(0); }
102
103 /// Overload to return most specific pointer type.
104 PointerType *getType() const {
105 return cast<PointerType>(Instruction::getType());
106 }
107
108 /// Get allocation size in bits. Returns None if size can't be determined,
109 /// e.g. in case of a VLA.
110 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
111
112 /// Return the type that is being allocated by the instruction.
113 Type *getAllocatedType() const { return AllocatedType; }
114 /// for use only in special circumstances that need to generically
115 /// transform a whole instruction (eg: IR linking and vectorization).
116 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
117
118 /// Return the alignment of the memory that is being allocated by the
119 /// instruction.
120 Align getAlign() const {
121 return Align(1ULL << getSubclassData<AlignmentField>());
122 }
123
124 void setAlignment(Align Align) {
125 setSubclassData<AlignmentField>(Log2(Align));
126 }
127
128 // FIXME: Remove this one transition to Align is over.
129 unsigned getAlignment() const { return getAlign().value(); }
130
131 /// Return true if this alloca is in the entry block of the function and is a
132 /// constant size. If so, the code generator will fold it into the
133 /// prolog/epilog code, so it is basically free.
134 bool isStaticAlloca() const;
135
136 /// Return true if this alloca is used as an inalloca argument to a call. Such
137 /// allocas are never considered static even if they are in the entry block.
138 bool isUsedWithInAlloca() const {
139 return getSubclassData<UsedWithInAllocaField>();
140 }
141
142 /// Specify whether this alloca is used to represent the arguments to a call.
143 void setUsedWithInAlloca(bool V) {
144 setSubclassData<UsedWithInAllocaField>(V);
145 }
146
147 /// Return true if this alloca is used as a swifterror argument to a call.
148 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
149 /// Specify whether this alloca is used to represent a swifterror.
150 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
151
152 // Methods for support type inquiry through isa, cast, and dyn_cast:
153 static bool classof(const Instruction *I) {
154 return (I->getOpcode() == Instruction::Alloca);
155 }
156 static bool classof(const Value *V) {
157 return isa<Instruction>(V) && classof(cast<Instruction>(V));
158 }
159
160private:
161 // Shadow Instruction::setInstructionSubclassData with a private forwarding
162 // method so that subclasses cannot accidentally use it.
163 template <typename Bitfield>
164 void setSubclassData(typename Bitfield::Type Value) {
165 Instruction::setSubclassData<Bitfield>(Value);
166 }
167};
168
169//===----------------------------------------------------------------------===//
170// LoadInst Class
171//===----------------------------------------------------------------------===//
172
173/// An instruction for reading from memory. This uses the SubclassData field in
174/// Value to store whether or not the load is volatile.
175class LoadInst : public UnaryInstruction {
176 using VolatileField = BoolBitfieldElementT<0>;
177 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
178 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
179 static_assert(
180 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
181 "Bitfields must be contiguous");
182
183 void AssertOK();
184
185protected:
186 // Note: Instruction needs to be a friend here to call cloneImpl.
187 friend class Instruction;
188
189 LoadInst *cloneImpl() const;
190
191public:
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
193 Instruction *InsertBefore);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
195 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
196 Instruction *InsertBefore);
197 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198 BasicBlock *InsertAtEnd);
199 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200 Align Align, Instruction *InsertBefore = nullptr);
201 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202 Align Align, BasicBlock *InsertAtEnd);
203 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
204 Align Align, AtomicOrdering Order,
205 SyncScope::ID SSID = SyncScope::System,
206 Instruction *InsertBefore = nullptr);
207 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
208 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
209 BasicBlock *InsertAtEnd);
210
211 /// Return true if this is a load from a volatile memory location.
212 bool isVolatile() const { return getSubclassData<VolatileField>(); }
213
214 /// Specify whether this is a volatile load or not.
215 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
216
217 /// Return the alignment of the access that is being performed.
218 /// FIXME: Remove this function once transition to Align is over.
219 /// Use getAlign() instead.
220 unsigned getAlignment() const { return getAlign().value(); }
221
222 /// Return the alignment of the access that is being performed.
223 Align getAlign() const {
224 return Align(1ULL << (getSubclassData<AlignmentField>()));
225 }
226
227 void setAlignment(Align Align) {
228 setSubclassData<AlignmentField>(Log2(Align));
229 }
230
231 /// Returns the ordering constraint of this load instruction.
232 AtomicOrdering getOrdering() const {
233 return getSubclassData<OrderingField>();
234 }
235 /// Sets the ordering constraint of this load instruction. May not be Release
236 /// or AcquireRelease.
237 void setOrdering(AtomicOrdering Ordering) {
238 setSubclassData<OrderingField>(Ordering);
239 }
240
241 /// Returns the synchronization scope ID of this load instruction.
242 SyncScope::ID getSyncScopeID() const {
243 return SSID;
244 }
245
246 /// Sets the synchronization scope ID of this load instruction.
247 void setSyncScopeID(SyncScope::ID SSID) {
248 this->SSID = SSID;
249 }
250
251 /// Sets the ordering constraint and the synchronization scope ID of this load
252 /// instruction.
253 void setAtomic(AtomicOrdering Ordering,
254 SyncScope::ID SSID = SyncScope::System) {
255 setOrdering(Ordering);
256 setSyncScopeID(SSID);
257 }
258
259 bool isSimple() const { return !isAtomic() && !isVolatile(); }
260
261 bool isUnordered() const {
262 return (getOrdering() == AtomicOrdering::NotAtomic ||
16
Assuming the condition is true
18
Returning the value 1, which participates in a condition later
263 getOrdering() == AtomicOrdering::Unordered) &&
264 !isVolatile();
17
Assuming the condition is true
265 }
266
267 Value *getPointerOperand() { return getOperand(0); }
268 const Value *getPointerOperand() const { return getOperand(0); }
269 static unsigned getPointerOperandIndex() { return 0U; }
270 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
271
272 /// Returns the address space of the pointer operand.
273 unsigned getPointerAddressSpace() const {
274 return getPointerOperandType()->getPointerAddressSpace();
275 }
276
277 // Methods for support type inquiry through isa, cast, and dyn_cast:
278 static bool classof(const Instruction *I) {
279 return I->getOpcode() == Instruction::Load;
280 }
281 static bool classof(const Value *V) {
282 return isa<Instruction>(V) && classof(cast<Instruction>(V));
283 }
284
285private:
286 // Shadow Instruction::setInstructionSubclassData with a private forwarding
287 // method so that subclasses cannot accidentally use it.
288 template <typename Bitfield>
289 void setSubclassData(typename Bitfield::Type Value) {
290 Instruction::setSubclassData<Bitfield>(Value);
291 }
292
293 /// The synchronization scope ID of this load instruction. Not quite enough
294 /// room in SubClassData for everything, so synchronization scope ID gets its
295 /// own field.
296 SyncScope::ID SSID;
297};
298
299//===----------------------------------------------------------------------===//
300// StoreInst Class
301//===----------------------------------------------------------------------===//
302
303/// An instruction for storing to memory.
304class StoreInst : public Instruction {
305 using VolatileField = BoolBitfieldElementT<0>;
306 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
307 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
308 static_assert(
309 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
310 "Bitfields must be contiguous");
311
312 void AssertOK();
313
314protected:
315 // Note: Instruction needs to be a friend here to call cloneImpl.
316 friend class Instruction;
317
318 StoreInst *cloneImpl() const;
319
320public:
321 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
322 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
325 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
326 Instruction *InsertBefore = nullptr);
327 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
328 BasicBlock *InsertAtEnd);
329 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
330 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
331 Instruction *InsertBefore = nullptr);
332 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
333 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
334
335 // allocate space for exactly two operands
336 void *operator new(size_t S) { return User::operator new(S, 2); }
337 void operator delete(void *Ptr) { User::operator delete(Ptr); }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<StoreInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 437, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<StoreInst>::op_begin(const_cast
<StoreInst*>(this))[i_nocapture].get()); } void StoreInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<StoreInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 437, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
StoreInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned StoreInst::getNumOperands() const { return OperandTraits
<StoreInst>::operands(this); } template <int Idx_nocapture
> Use &StoreInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
StoreInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t S) { return User::operator new(S, 0); }
466 void operator delete(void *Ptr) { User::operator delete(Ptr); }
467
468 /// Returns the ordering constraint of this fence instruction.
469 AtomicOrdering getOrdering() const {
470 return getSubclassData<OrderingField>();
471 }
472
473 /// Sets the ordering constraint of this fence instruction. May only be
474 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
475 void setOrdering(AtomicOrdering Ordering) {
476 setSubclassData<OrderingField>(Ordering);
477 }
478
479 /// Returns the synchronization scope ID of this fence instruction.
480 SyncScope::ID getSyncScopeID() const {
481 return SSID;
482 }
483
484 /// Sets the synchronization scope ID of this fence instruction.
485 void setSyncScopeID(SyncScope::ID SSID) {
486 this->SSID = SSID;
487 }
488
489 // Methods for support type inquiry through isa, cast, and dyn_cast:
490 static bool classof(const Instruction *I) {
491 return I->getOpcode() == Instruction::Fence;
492 }
493 static bool classof(const Value *V) {
494 return isa<Instruction>(V) && classof(cast<Instruction>(V));
495 }
496
497private:
498 // Shadow Instruction::setInstructionSubclassData with a private forwarding
499 // method so that subclasses cannot accidentally use it.
500 template <typename Bitfield>
501 void setSubclassData(typename Bitfield::Type Value) {
502 Instruction::setSubclassData<Bitfield>(Value);
503 }
504
505 /// The synchronization scope ID of this fence instruction. Not quite enough
506 /// room in SubClassData for everything, so synchronization scope ID gets its
507 /// own field.
508 SyncScope::ID SSID;
509};
510
511//===----------------------------------------------------------------------===//
512// AtomicCmpXchgInst Class
513//===----------------------------------------------------------------------===//
514
515/// An instruction that atomically checks whether a
516/// specified value is in a memory location, and, if it is, stores a new value
517/// there. The value returned by this instruction is a pair containing the
518/// original value as first element, and an i1 indicating success (true) or
519/// failure (false) as second element.
520///
521class AtomicCmpXchgInst : public Instruction {
522 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
523 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
524 SyncScope::ID SSID);
525
526 template <unsigned Offset>
527 using AtomicOrderingBitfieldElement =
528 typename Bitfield::Element<AtomicOrdering, Offset, 3,
529 AtomicOrdering::LAST>;
530
531protected:
532 // Note: Instruction needs to be a friend here to call cloneImpl.
533 friend class Instruction;
534
535 AtomicCmpXchgInst *cloneImpl() const;
536
537public:
538 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
539 AtomicOrdering SuccessOrdering,
540 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
541 Instruction *InsertBefore = nullptr);
542 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
543 AtomicOrdering SuccessOrdering,
544 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
545 BasicBlock *InsertAtEnd);
546
547 // allocate space for exactly three operands
548 void *operator new(size_t S) { return User::operator new(S, 3); }
549 void operator delete(void *Ptr) { User::operator delete(Ptr); }
550
551 using VolatileField = BoolBitfieldElementT<0>;
552 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
553 using SuccessOrderingField =
554 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
555 using FailureOrderingField =
556 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
557 using AlignmentField =
558 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
559 static_assert(
560 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
561 FailureOrderingField, AlignmentField>(),
562 "Bitfields must be contiguous");
563
564 /// Return the alignment of the memory that is being allocated by the
565 /// instruction.
566 Align getAlign() const {
567 return Align(1ULL << getSubclassData<AlignmentField>());
568 }
569
570 void setAlignment(Align Align) {
571 setSubclassData<AlignmentField>(Log2(Align));
572 }
573
574 /// Return true if this is a cmpxchg from a volatile memory
575 /// location.
576 ///
577 bool isVolatile() const { return getSubclassData<VolatileField>(); }
578
579 /// Specify whether this is a volatile cmpxchg.
580 ///
581 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
582
583 /// Return true if this cmpxchg may spuriously fail.
584 bool isWeak() const { return getSubclassData<WeakField>(); }
585
586 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
587
588 /// Transparently provide more efficient getOperand methods.
589 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
590
591 static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
592 return Ordering != AtomicOrdering::NotAtomic &&
593 Ordering != AtomicOrdering::Unordered;
594 }
595
596 static bool isValidFailureOrdering(AtomicOrdering Ordering) {
597 return Ordering != AtomicOrdering::NotAtomic &&
598 Ordering != AtomicOrdering::Unordered &&
599 Ordering != AtomicOrdering::AcquireRelease &&
600 Ordering != AtomicOrdering::Release;
601 }
602
603 /// Returns the success ordering constraint of this cmpxchg instruction.
604 AtomicOrdering getSuccessOrdering() const {
605 return getSubclassData<SuccessOrderingField>();
606 }
607
608 /// Sets the success ordering constraint of this cmpxchg instruction.
609 void setSuccessOrdering(AtomicOrdering Ordering) {
610 assert(isValidSuccessOrdering(Ordering) &&(static_cast <bool> (isValidSuccessOrdering(Ordering) &&
"invalid CmpXchg success ordering") ? void (0) : __assert_fail
("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 611, __extension__ __PRETTY_FUNCTION__))
611 "invalid CmpXchg success ordering")(static_cast <bool> (isValidSuccessOrdering(Ordering) &&
"invalid CmpXchg success ordering") ? void (0) : __assert_fail
("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 611, __extension__ __PRETTY_FUNCTION__))
;
612 setSubclassData<SuccessOrderingField>(Ordering);
613 }
614
615 /// Returns the failure ordering constraint of this cmpxchg instruction.
616 AtomicOrdering getFailureOrdering() const {
617 return getSubclassData<FailureOrderingField>();
618 }
619
620 /// Sets the failure ordering constraint of this cmpxchg instruction.
621 void setFailureOrdering(AtomicOrdering Ordering) {
622 assert(isValidFailureOrdering(Ordering) &&(static_cast <bool> (isValidFailureOrdering(Ordering) &&
"invalid CmpXchg failure ordering") ? void (0) : __assert_fail
("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 623, __extension__ __PRETTY_FUNCTION__))
623 "invalid CmpXchg failure ordering")(static_cast <bool> (isValidFailureOrdering(Ordering) &&
"invalid CmpXchg failure ordering") ? void (0) : __assert_fail
("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 623, __extension__ __PRETTY_FUNCTION__))
;
624 setSubclassData<FailureOrderingField>(Ordering);
625 }
626
627 /// Returns a single ordering which is at least as strong as both the
628 /// success and failure orderings for this cmpxchg.
629 AtomicOrdering getMergedOrdering() const {
630 if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
631 return AtomicOrdering::SequentiallyConsistent;
632 if (getFailureOrdering() == AtomicOrdering::Acquire) {
633 if (getSuccessOrdering() == AtomicOrdering::Monotonic)
634 return AtomicOrdering::Acquire;
635 if (getSuccessOrdering() == AtomicOrdering::Release)
636 return AtomicOrdering::AcquireRelease;
637 }
638 return getSuccessOrdering();
639 }
640
641 /// Returns the synchronization scope ID of this cmpxchg instruction.
642 SyncScope::ID getSyncScopeID() const {
643 return SSID;
644 }
645
646 /// Sets the synchronization scope ID of this cmpxchg instruction.
647 void setSyncScopeID(SyncScope::ID SSID) {
648 this->SSID = SSID;
649 }
650
651 Value *getPointerOperand() { return getOperand(0); }
652 const Value *getPointerOperand() const { return getOperand(0); }
653 static unsigned getPointerOperandIndex() { return 0U; }
654
655 Value *getCompareOperand() { return getOperand(1); }
656 const Value *getCompareOperand() const { return getOperand(1); }
657
658 Value *getNewValOperand() { return getOperand(2); }
659 const Value *getNewValOperand() const { return getOperand(2); }
660
661 /// Returns the address space of the pointer operand.
662 unsigned getPointerAddressSpace() const {
663 return getPointerOperand()->getType()->getPointerAddressSpace();
664 }
665
666 /// Returns the strongest permitted ordering on failure, given the
667 /// desired ordering on success.
668 ///
669 /// If the comparison in a cmpxchg operation fails, there is no atomic store
670 /// so release semantics cannot be provided. So this function drops explicit
671 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
672 /// operation would remain SequentiallyConsistent.
673 static AtomicOrdering
674 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
675 switch (SuccessOrdering) {
676 default:
677 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 677)
;
678 case AtomicOrdering::Release:
679 case AtomicOrdering::Monotonic:
680 return AtomicOrdering::Monotonic;
681 case AtomicOrdering::AcquireRelease:
682 case AtomicOrdering::Acquire:
683 return AtomicOrdering::Acquire;
684 case AtomicOrdering::SequentiallyConsistent:
685 return AtomicOrdering::SequentiallyConsistent;
686 }
687 }
688
689 // Methods for support type inquiry through isa, cast, and dyn_cast:
690 static bool classof(const Instruction *I) {
691 return I->getOpcode() == Instruction::AtomicCmpXchg;
692 }
693 static bool classof(const Value *V) {
694 return isa<Instruction>(V) && classof(cast<Instruction>(V));
695 }
696
697private:
698 // Shadow Instruction::setInstructionSubclassData with a private forwarding
699 // method so that subclasses cannot accidentally use it.
700 template <typename Bitfield>
701 void setSubclassData(typename Bitfield::Type Value) {
702 Instruction::setSubclassData<Bitfield>(Value);
703 }
704
705 /// The synchronization scope ID of this cmpxchg instruction. Not quite
706 /// enough room in SubClassData for everything, so synchronization scope ID
707 /// gets its own field.
708 SyncScope::ID SSID;
709};
710
711template <>
712struct OperandTraits<AtomicCmpXchgInst> :
713 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
714};
715
716DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 716, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<AtomicCmpXchgInst>::op_begin
(const_cast<AtomicCmpXchgInst*>(this))[i_nocapture].get
()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 716, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
AtomicCmpXchgInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned AtomicCmpXchgInst::getNumOperands() const { return
OperandTraits<AtomicCmpXchgInst>::operands(this); } template
<int Idx_nocapture> Use &AtomicCmpXchgInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &AtomicCmpXchgInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
717
718//===----------------------------------------------------------------------===//
719// AtomicRMWInst Class
720//===----------------------------------------------------------------------===//
721
722/// an instruction that atomically reads a memory location,
723/// combines it with another value, and then stores the result back. Returns
724/// the old value.
725///
726class AtomicRMWInst : public Instruction {
727protected:
728 // Note: Instruction needs to be a friend here to call cloneImpl.
729 friend class Instruction;
730
731 AtomicRMWInst *cloneImpl() const;
732
733public:
734 /// This enumeration lists the possible modifications atomicrmw can make. In
735 /// the descriptions, 'p' is the pointer to the instruction's memory location,
736 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
737 /// instruction. These instructions always return 'old'.
738 enum BinOp : unsigned {
739 /// *p = v
740 Xchg,
741 /// *p = old + v
742 Add,
743 /// *p = old - v
744 Sub,
745 /// *p = old & v
746 And,
747 /// *p = ~(old & v)
748 Nand,
749 /// *p = old | v
750 Or,
751 /// *p = old ^ v
752 Xor,
753 /// *p = old >signed v ? old : v
754 Max,
755 /// *p = old <signed v ? old : v
756 Min,
757 /// *p = old >unsigned v ? old : v
758 UMax,
759 /// *p = old <unsigned v ? old : v
760 UMin,
761
762 /// *p = old + v
763 FAdd,
764
765 /// *p = old - v
766 FSub,
767
768 FIRST_BINOP = Xchg,
769 LAST_BINOP = FSub,
770 BAD_BINOP
771 };
772
773private:
774 template <unsigned Offset>
775 using AtomicOrderingBitfieldElement =
776 typename Bitfield::Element<AtomicOrdering, Offset, 3,
777 AtomicOrdering::LAST>;
778
779 template <unsigned Offset>
780 using BinOpBitfieldElement =
781 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
782
783public:
784 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
785 AtomicOrdering Ordering, SyncScope::ID SSID,
786 Instruction *InsertBefore = nullptr);
787 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
788 AtomicOrdering Ordering, SyncScope::ID SSID,
789 BasicBlock *InsertAtEnd);
790
791 // allocate space for exactly two operands
792 void *operator new(size_t S) { return User::operator new(S, 2); }
793 void operator delete(void *Ptr) { User::operator delete(Ptr); }
794
795 using VolatileField = BoolBitfieldElementT<0>;
796 using AtomicOrderingField =
797 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
798 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
799 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
800 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
801 OperationField, AlignmentField>(),
802 "Bitfields must be contiguous");
803
804 BinOp getOperation() const { return getSubclassData<OperationField>(); }
805
806 static StringRef getOperationName(BinOp Op);
807
808 static bool isFPOperation(BinOp Op) {
809 switch (Op) {
810 case AtomicRMWInst::FAdd:
811 case AtomicRMWInst::FSub:
812 return true;
813 default:
814 return false;
815 }
816 }
817
818 void setOperation(BinOp Operation) {
819 setSubclassData<OperationField>(Operation);
820 }
821
822 /// Return the alignment of the memory that is being allocated by the
823 /// instruction.
824 Align getAlign() const {
825 return Align(1ULL << getSubclassData<AlignmentField>());
826 }
827
828 void setAlignment(Align Align) {
829 setSubclassData<AlignmentField>(Log2(Align));
830 }
831
832 /// Return true if this is a RMW on a volatile memory location.
833 ///
834 bool isVolatile() const { return getSubclassData<VolatileField>(); }
835
836 /// Specify whether this is a volatile RMW or not.
837 ///
838 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
839
840 /// Transparently provide more efficient getOperand methods.
841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
842
843 /// Returns the ordering constraint of this rmw instruction.
844 AtomicOrdering getOrdering() const {
845 return getSubclassData<AtomicOrderingField>();
846 }
847
848 /// Sets the ordering constraint of this rmw instruction.
849 void setOrdering(AtomicOrdering Ordering) {
850 assert(Ordering != AtomicOrdering::NotAtomic &&(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 851, __extension__ __PRETTY_FUNCTION__))
851 "atomicrmw instructions can only be atomic.")(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 851, __extension__ __PRETTY_FUNCTION__))
;
852 setSubclassData<AtomicOrderingField>(Ordering);
853 }
854
855 /// Returns the synchronization scope ID of this rmw instruction.
856 SyncScope::ID getSyncScopeID() const {
857 return SSID;
858 }
859
860 /// Sets the synchronization scope ID of this rmw instruction.
861 void setSyncScopeID(SyncScope::ID SSID) {
862 this->SSID = SSID;
863 }
864
865 Value *getPointerOperand() { return getOperand(0); }
866 const Value *getPointerOperand() const { return getOperand(0); }
867 static unsigned getPointerOperandIndex() { return 0U; }
868
869 Value *getValOperand() { return getOperand(1); }
870 const Value *getValOperand() const { return getOperand(1); }
871
872 /// Returns the address space of the pointer operand.
873 unsigned getPointerAddressSpace() const {
874 return getPointerOperand()->getType()->getPointerAddressSpace();
875 }
876
877 bool isFloatingPointOperation() const {
878 return isFPOperation(getOperation());
879 }
880
881 // Methods for support type inquiry through isa, cast, and dyn_cast:
882 static bool classof(const Instruction *I) {
883 return I->getOpcode() == Instruction::AtomicRMW;
884 }
885 static bool classof(const Value *V) {
886 return isa<Instruction>(V) && classof(cast<Instruction>(V));
887 }
888
889private:
890 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
891 AtomicOrdering Ordering, SyncScope::ID SSID);
892
893 // Shadow Instruction::setInstructionSubclassData with a private forwarding
894 // method so that subclasses cannot accidentally use it.
895 template <typename Bitfield>
896 void setSubclassData(typename Bitfield::Type Value) {
897 Instruction::setSubclassData<Bitfield>(Value);
898 }
899
900 /// The synchronization scope ID of this rmw instruction. Not quite enough
901 /// room in SubClassData for everything, so synchronization scope ID gets its
902 /// own field.
903 SyncScope::ID SSID;
904};
905
906template <>
907struct OperandTraits<AtomicRMWInst>
908 : public FixedNumOperandTraits<AtomicRMWInst,2> {
909};
910
911DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicRMWInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 911, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast
<AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<AtomicRMWInst
>::operands(this) && "setOperand() out of range!")
? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 911, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
AtomicRMWInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits
<AtomicRMWInst>::operands(this); } template <int Idx_nocapture
> Use &AtomicRMWInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &AtomicRMWInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
912
913//===----------------------------------------------------------------------===//
914// GetElementPtrInst Class
915//===----------------------------------------------------------------------===//
916
917// checkGEPType - Simple wrapper function to give a better assertion failure
918// message on bad indexes for a gep instruction.
919//
920inline Type *checkGEPType(Type *Ty) {
921 assert(Ty && "Invalid GetElementPtrInst indices for type!")(static_cast <bool> (Ty && "Invalid GetElementPtrInst indices for type!"
) ? void (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 921, __extension__ __PRETTY_FUNCTION__))
;
922 return Ty;
923}
924
925/// an instruction for type-safe pointer arithmetic to
926/// access elements of arrays and structs
927///
928class GetElementPtrInst : public Instruction {
929 Type *SourceElementType;
930 Type *ResultElementType;
931
932 GetElementPtrInst(const GetElementPtrInst &GEPI);
933
934 /// Constructors - Create a getelementptr instruction with a base pointer an
935 /// list of indices. The first ctor can optionally insert before an existing
936 /// instruction, the second appends the new instruction to the specified
937 /// BasicBlock.
938 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList, unsigned Values,
940 const Twine &NameStr, Instruction *InsertBefore);
941 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
942 ArrayRef<Value *> IdxList, unsigned Values,
943 const Twine &NameStr, BasicBlock *InsertAtEnd);
944
945 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
946
947protected:
948 // Note: Instruction needs to be a friend here to call cloneImpl.
949 friend class Instruction;
950
951 GetElementPtrInst *cloneImpl() const;
952
953public:
954 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
955 ArrayRef<Value *> IdxList,
956 const Twine &NameStr = "",
957 Instruction *InsertBefore = nullptr) {
958 unsigned Values = 1 + unsigned(IdxList.size());
959 assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type"
) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 959, __extension__ __PRETTY_FUNCTION__))
;
960 assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 961, __extension__ __PRETTY_FUNCTION__))
961 ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 961, __extension__ __PRETTY_FUNCTION__))
;
962 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
963 NameStr, InsertBefore);
964 }
965
966 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
967 ArrayRef<Value *> IdxList,
968 const Twine &NameStr,
969 BasicBlock *InsertAtEnd) {
970 unsigned Values = 1 + unsigned(IdxList.size());
971 assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type"
) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 971, __extension__ __PRETTY_FUNCTION__))
;
972 assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 973, __extension__ __PRETTY_FUNCTION__))
973 ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 973, __extension__ __PRETTY_FUNCTION__))
;
974 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
975 NameStr, InsertAtEnd);
976 }
977
978 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
979 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
980 Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
981 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
{
982 return CreateInBounds(
983 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
984 NameStr, InsertBefore);
985 }
986
987 /// Create an "inbounds" getelementptr. See the documentation for the
988 /// "inbounds" flag in LangRef.html for details.
989 static GetElementPtrInst *
990 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
991 const Twine &NameStr = "",
992 Instruction *InsertBefore = nullptr) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1000 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1001 BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1002 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
{
1003 return CreateInBounds(
1004 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
1005 NameStr, InsertAtEnd);
1006 }
1007
1008 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
1009 ArrayRef<Value *> IdxList,
1010 const Twine &NameStr,
1011 BasicBlock *InsertAtEnd) {
1012 GetElementPtrInst *GEP =
1013 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
1014 GEP->setIsInBounds(true);
1015 return GEP;
1016 }
1017
1018 /// Transparently provide more efficient getOperand methods.
1019 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1020
1021 Type *getSourceElementType() const { return SourceElementType; }
1022
1023 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1024 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1025
1026 Type *getResultElementType() const {
1027 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1028, __extension__ __PRETTY_FUNCTION__))
1028 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1028, __extension__ __PRETTY_FUNCTION__))
;
1029 return ResultElementType;
1030 }
1031
1032 /// Returns the address space of this instruction's pointer type.
1033 unsigned getAddressSpace() const {
1034 // Note that this is always the same as the pointer operand's address space
1035 // and that is cheaper to compute, so cheat here.
1036 return getPointerAddressSpace();
1037 }
1038
1039 /// Returns the result type of a getelementptr with the given source
1040 /// element type and indexes.
1041 ///
1042 /// Null is returned if the indices are invalid for the specified
1043 /// source element type.
1044 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1045 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1046 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1047
1048 /// Return the type of the element at the given index of an indexable
1049 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1050 ///
1051 /// Returns null if the type can't be indexed, or the given index is not
1052 /// legal for the given type.
1053 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1054 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1055
1056 inline op_iterator idx_begin() { return op_begin()+1; }
1057 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1058 inline op_iterator idx_end() { return op_end(); }
1059 inline const_op_iterator idx_end() const { return op_end(); }
1060
1061 inline iterator_range<op_iterator> indices() {
1062 return make_range(idx_begin(), idx_end());
1063 }
1064
1065 inline iterator_range<const_op_iterator> indices() const {
1066 return make_range(idx_begin(), idx_end());
1067 }
1068
1069 Value *getPointerOperand() {
1070 return getOperand(0);
1071 }
1072 const Value *getPointerOperand() const {
1073 return getOperand(0);
1074 }
1075 static unsigned getPointerOperandIndex() {
1076 return 0U; // get index for modifying correct operand.
1077 }
1078
1079 /// Method to return the pointer operand as a
1080 /// PointerType.
1081 Type *getPointerOperandType() const {
1082 return getPointerOperand()->getType();
1083 }
1084
1085 /// Returns the address space of the pointer operand.
1086 unsigned getPointerAddressSpace() const {
1087 return getPointerOperandType()->getPointerAddressSpace();
1088 }
1089
1090 /// Returns the pointer type returned by the GEP
1091 /// instruction, which may be a vector of pointers.
1092 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1093 ArrayRef<Value *> IdxList) {
1094 PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1095 unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1096 Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1097 Type *PtrTy = OrigPtrTy->isOpaque()
1098 ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1099 : PointerType::get(ResultElemTy, AddrSpace);
1100 // Vector GEP
1101 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1102 ElementCount EltCount = PtrVTy->getElementCount();
1103 return VectorType::get(PtrTy, EltCount);
1104 }
1105 for (Value *Index : IdxList)
1106 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1107 ElementCount EltCount = IndexVTy->getElementCount();
1108 return VectorType::get(PtrTy, EltCount);
1109 }
1110 // Scalar GEP
1111 return PtrTy;
1112 }
1113
1114 unsigned getNumIndices() const { // Note: always non-negative
1115 return getNumOperands() - 1;
1116 }
1117
1118 bool hasIndices() const {
1119 return getNumOperands() > 1;
1120 }
1121
1122 /// Return true if all of the indices of this GEP are
1123 /// zeros. If so, the result pointer and the first operand have the same
1124 /// value, just potentially different types.
1125 bool hasAllZeroIndices() const;
1126
1127 /// Return true if all of the indices of this GEP are
1128 /// constant integers. If so, the result pointer and the first operand have
1129 /// a constant offset between them.
1130 bool hasAllConstantIndices() const;
1131
1132 /// Set or clear the inbounds flag on this GEP instruction.
1133 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1134 void setIsInBounds(bool b = true);
1135
1136 /// Determine whether the GEP has the inbounds flag.
1137 bool isInBounds() const;
1138
1139 /// Accumulate the constant address offset of this GEP if possible.
1140 ///
1141 /// This routine accepts an APInt into which it will accumulate the constant
1142 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1143 /// all-constant, it returns false and the value of the offset APInt is
1144 /// undefined (it is *not* preserved!). The APInt passed into this routine
1145 /// must be at least as wide as the IntPtr type for the address space of
1146 /// the base GEP pointer.
1147 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1148 bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1149 MapVector<Value *, APInt> &VariableOffsets,
1150 APInt &ConstantOffset) const;
1151 // Methods for support type inquiry through isa, cast, and dyn_cast:
1152 static bool classof(const Instruction *I) {
1153 return (I->getOpcode() == Instruction::GetElementPtr);
1154 }
1155 static bool classof(const Value *V) {
1156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1157 }
1158};
1159
1160template <>
1161struct OperandTraits<GetElementPtrInst> :
1162 public VariadicOperandTraits<GetElementPtrInst, 1> {
1163};
1164
1165GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1166 ArrayRef<Value *> IdxList, unsigned Values,
1167 const Twine &NameStr,
1168 Instruction *InsertBefore)
1169 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1170 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1171 Values, InsertBefore),
1172 SourceElementType(PointeeType),
1173 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1174 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1175, __extension__ __PRETTY_FUNCTION__))
1175 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1175, __extension__ __PRETTY_FUNCTION__))
;
1176 init(Ptr, IdxList, NameStr);
1177}
1178
1179GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1180 ArrayRef<Value *> IdxList, unsigned Values,
1181 const Twine &NameStr,
1182 BasicBlock *InsertAtEnd)
1183 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1184 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1185 Values, InsertAtEnd),
1186 SourceElementType(PointeeType),
1187 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1188 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1189, __extension__ __PRETTY_FUNCTION__))
1189 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1189, __extension__ __PRETTY_FUNCTION__))
;
1190 init(Ptr, IdxList, NameStr);
1191}
1192
1193DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<GetElementPtrInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1193, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<GetElementPtrInst>::op_begin
(const_cast<GetElementPtrInst*>(this))[i_nocapture].get
()); } void GetElementPtrInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<GetElementPtrInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1193, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
GetElementPtrInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned GetElementPtrInst::getNumOperands() const { return
OperandTraits<GetElementPtrInst>::operands(this); } template
<int Idx_nocapture> Use &GetElementPtrInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &GetElementPtrInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1194
1195//===----------------------------------------------------------------------===//
1196// ICmpInst Class
1197//===----------------------------------------------------------------------===//
1198
1199/// This instruction compares its operands according to the predicate given
1200/// to the constructor. It only operates on integers or pointers. The operands
1201/// must be identical types.
1202/// Represent an integer comparison operator.
1203class ICmpInst: public CmpInst {
1204 void AssertOK() {
1205 assert(isIntPredicate() &&(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1206, __extension__ __PRETTY_FUNCTION__))
1206 "Invalid ICmp predicate value")(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1206, __extension__ __PRETTY_FUNCTION__))
;
1207 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1208, __extension__ __PRETTY_FUNCTION__))
1208 "Both operands to ICmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1208, __extension__ __PRETTY_FUNCTION__))
;
1209 // Check that the operands are the right type
1210 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1212, __extension__ __PRETTY_FUNCTION__))
1211 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1212, __extension__ __PRETTY_FUNCTION__))
1212 "Invalid operand types for ICmp instruction")(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1212, __extension__ __PRETTY_FUNCTION__))
;
1213 }
1214
1215protected:
1216 // Note: Instruction needs to be a friend here to call cloneImpl.
1217 friend class Instruction;
1218
1219 /// Clone an identical ICmpInst
1220 ICmpInst *cloneImpl() const;
1221
1222public:
1223 /// Constructor with insert-before-instruction semantics.
1224 ICmpInst(
1225 Instruction *InsertBefore, ///< Where to insert
1226 Predicate pred, ///< The predicate to use for the comparison
1227 Value *LHS, ///< The left-hand-side of the expression
1228 Value *RHS, ///< The right-hand-side of the expression
1229 const Twine &NameStr = "" ///< Name of the instruction
1230 ) : CmpInst(makeCmpResultType(LHS->getType()),
1231 Instruction::ICmp, pred, LHS, RHS, NameStr,
1232 InsertBefore) {
1233#ifndef NDEBUG
1234 AssertOK();
1235#endif
1236 }
1237
1238 /// Constructor with insert-at-end semantics.
1239 ICmpInst(
1240 BasicBlock &InsertAtEnd, ///< Block to insert into.
1241 Predicate pred, ///< The predicate to use for the comparison
1242 Value *LHS, ///< The left-hand-side of the expression
1243 Value *RHS, ///< The right-hand-side of the expression
1244 const Twine &NameStr = "" ///< Name of the instruction
1245 ) : CmpInst(makeCmpResultType(LHS->getType()),
1246 Instruction::ICmp, pred, LHS, RHS, NameStr,
1247 &InsertAtEnd) {
1248#ifndef NDEBUG
1249 AssertOK();
1250#endif
1251 }
1252
1253 /// Constructor with no-insertion semantics
1254 ICmpInst(
1255 Predicate pred, ///< The predicate to use for the comparison
1256 Value *LHS, ///< The left-hand-side of the expression
1257 Value *RHS, ///< The right-hand-side of the expression
1258 const Twine &NameStr = "" ///< Name of the instruction
1259 ) : CmpInst(makeCmpResultType(LHS->getType()),
1260 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1261#ifndef NDEBUG
1262 AssertOK();
1263#endif
1264 }
1265
1266 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1267 /// @returns the predicate that would be the result if the operand were
1268 /// regarded as signed.
1269 /// Return the signed version of the predicate
1270 Predicate getSignedPredicate() const {
1271 return getSignedPredicate(getPredicate());
1272 }
1273
1274 /// This is a static version that you can use without an instruction.
1275 /// Return the signed version of the predicate.
1276 static Predicate getSignedPredicate(Predicate pred);
1277
1278 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1279 /// @returns the predicate that would be the result if the operand were
1280 /// regarded as unsigned.
1281 /// Return the unsigned version of the predicate
1282 Predicate getUnsignedPredicate() const {
1283 return getUnsignedPredicate(getPredicate());
1284 }
1285
1286 /// This is a static version that you can use without an instruction.
1287 /// Return the unsigned version of the predicate.
1288 static Predicate getUnsignedPredicate(Predicate pred);
1289
1290 /// Return true if this predicate is either EQ or NE. This also
1291 /// tests for commutativity.
1292 static bool isEquality(Predicate P) {
1293 return P == ICMP_EQ || P == ICMP_NE;
1294 }
1295
1296 /// Return true if this predicate is either EQ or NE. This also
1297 /// tests for commutativity.
1298 bool isEquality() const {
1299 return isEquality(getPredicate());
1300 }
1301
1302 /// @returns true if the predicate of this ICmpInst is commutative
1303 /// Determine if this relation is commutative.
1304 bool isCommutative() const { return isEquality(); }
1305
1306 /// Return true if the predicate is relational (not EQ or NE).
1307 ///
1308 bool isRelational() const {
1309 return !isEquality();
1310 }
1311
1312 /// Return true if the predicate is relational (not EQ or NE).
1313 ///
1314 static bool isRelational(Predicate P) {
1315 return !isEquality(P);
1316 }
1317
1318 /// Return true if the predicate is SGT or UGT.
1319 ///
1320 static bool isGT(Predicate P) {
1321 return P == ICMP_SGT || P == ICMP_UGT;
1322 }
1323
1324 /// Return true if the predicate is SLT or ULT.
1325 ///
1326 static bool isLT(Predicate P) {
1327 return P == ICMP_SLT || P == ICMP_ULT;
1328 }
1329
1330 /// Return true if the predicate is SGE or UGE.
1331 ///
1332 static bool isGE(Predicate P) {
1333 return P == ICMP_SGE || P == ICMP_UGE;
1334 }
1335
1336 /// Return true if the predicate is SLE or ULE.
1337 ///
1338 static bool isLE(Predicate P) {
1339 return P == ICMP_SLE || P == ICMP_ULE;
1340 }
1341
1342 /// Exchange the two operands to this instruction in such a way that it does
1343 /// not modify the semantics of the instruction. The predicate value may be
1344 /// changed to retain the same result if the predicate is order dependent
1345 /// (e.g. ult).
1346 /// Swap operands and adjust predicate.
1347 void swapOperands() {
1348 setPredicate(getSwappedPredicate());
1349 Op<0>().swap(Op<1>());
1350 }
1351
1352 // Methods for support type inquiry through isa, cast, and dyn_cast:
1353 static bool classof(const Instruction *I) {
1354 return I->getOpcode() == Instruction::ICmp;
1355 }
1356 static bool classof(const Value *V) {
1357 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1358 }
1359};
1360
1361//===----------------------------------------------------------------------===//
1362// FCmpInst Class
1363//===----------------------------------------------------------------------===//
1364
1365/// This instruction compares its operands according to the predicate given
1366/// to the constructor. It only operates on floating point values or packed
1367/// vectors of floating point values. The operands must be identical types.
1368/// Represents a floating point comparison operator.
1369class FCmpInst: public CmpInst {
1370 void AssertOK() {
1371 assert(isFPPredicate() && "Invalid FCmp predicate value")(static_cast <bool> (isFPPredicate() && "Invalid FCmp predicate value"
) ? void (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1371, __extension__ __PRETTY_FUNCTION__))
;
1372 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1373, __extension__ __PRETTY_FUNCTION__))
1373 "Both operands to FCmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1373, __extension__ __PRETTY_FUNCTION__))
;
1374 // Check that the operands are the right type
1375 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1376, __extension__ __PRETTY_FUNCTION__))
1376 "Invalid operand types for FCmp instruction")(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1376, __extension__ __PRETTY_FUNCTION__))
;
1377 }
1378
1379protected:
1380 // Note: Instruction needs to be a friend here to call cloneImpl.
1381 friend class Instruction;
1382
1383 /// Clone an identical FCmpInst
1384 FCmpInst *cloneImpl() const;
1385
1386public:
1387 /// Constructor with insert-before-instruction semantics.
1388 FCmpInst(
1389 Instruction *InsertBefore, ///< Where to insert
1390 Predicate pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "" ///< Name of the instruction
1394 ) : CmpInst(makeCmpResultType(LHS->getType()),
1395 Instruction::FCmp, pred, LHS, RHS, NameStr,
1396 InsertBefore) {
1397 AssertOK();
1398 }
1399
1400 /// Constructor with insert-at-end semantics.
1401 FCmpInst(
1402 BasicBlock &InsertAtEnd, ///< Block to insert into.
1403 Predicate pred, ///< The predicate to use for the comparison
1404 Value *LHS, ///< The left-hand-side of the expression
1405 Value *RHS, ///< The right-hand-side of the expression
1406 const Twine &NameStr = "" ///< Name of the instruction
1407 ) : CmpInst(makeCmpResultType(LHS->getType()),
1408 Instruction::FCmp, pred, LHS, RHS, NameStr,
1409 &InsertAtEnd) {
1410 AssertOK();
1411 }
1412
1413 /// Constructor with no-insertion semantics
1414 FCmpInst(
1415 Predicate Pred, ///< The predicate to use for the comparison
1416 Value *LHS, ///< The left-hand-side of the expression
1417 Value *RHS, ///< The right-hand-side of the expression
1418 const Twine &NameStr = "", ///< Name of the instruction
1419 Instruction *FlagsSource = nullptr
1420 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1421 RHS, NameStr, nullptr, FlagsSource) {
1422 AssertOK();
1423 }
1424
1425 /// @returns true if the predicate of this instruction is EQ or NE.
1426 /// Determine if this is an equality predicate.
1427 static bool isEquality(Predicate Pred) {
1428 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1429 Pred == FCMP_UNE;
1430 }
1431
1432 /// @returns true if the predicate of this instruction is EQ or NE.
1433 /// Determine if this is an equality predicate.
1434 bool isEquality() const { return isEquality(getPredicate()); }
1435
1436 /// @returns true if the predicate of this instruction is commutative.
1437 /// Determine if this is a commutative predicate.
1438 bool isCommutative() const {
1439 return isEquality() ||
1440 getPredicate() == FCMP_FALSE ||
1441 getPredicate() == FCMP_TRUE ||
1442 getPredicate() == FCMP_ORD ||
1443 getPredicate() == FCMP_UNO;
1444 }
1445
1446 /// @returns true if the predicate is relational (not EQ or NE).
1447 /// Determine if this a relational predicate.
1448 bool isRelational() const { return !isEquality(); }
1449
1450 /// Exchange the two operands to this instruction in such a way that it does
1451 /// not modify the semantics of the instruction. The predicate value may be
1452 /// changed to retain the same result if the predicate is order dependent
1453 /// (e.g. ult).
1454 /// Swap operands and adjust predicate.
1455 void swapOperands() {
1456 setPredicate(getSwappedPredicate());
1457 Op<0>().swap(Op<1>());
1458 }
1459
1460 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1461 static bool classof(const Instruction *I) {
1462 return I->getOpcode() == Instruction::FCmp;
1463 }
1464 static bool classof(const Value *V) {
1465 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1466 }
1467};
1468
1469//===----------------------------------------------------------------------===//
1470/// This class represents a function call, abstracting a target
1471/// machine's calling convention. This class uses low bit of the SubClassData
1472/// field to indicate whether or not this is a tail call. The rest of the bits
1473/// hold the calling convention of the call.
1474///
1475class CallInst : public CallBase {
1476 CallInst(const CallInst &CI);
1477
1478 /// Construct a CallInst given a range of arguments.
1479 /// Construct a CallInst from a range of arguments
1480 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1481 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1482 Instruction *InsertBefore);
1483
1484 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1485 const Twine &NameStr, Instruction *InsertBefore)
1486 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1487
1488 /// Construct a CallInst given a range of arguments.
1489 /// Construct a CallInst from a range of arguments
1490 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1491 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1492 BasicBlock *InsertAtEnd);
1493
1494 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1495 Instruction *InsertBefore);
1496
1497 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1498 BasicBlock *InsertAtEnd);
1499
1500 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1501 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1502 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1503
1504 /// Compute the number of operands to allocate.
1505 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1506 // We need one operand for the called function, plus the input operand
1507 // counts provided.
1508 return 1 + NumArgs + NumBundleInputs;
1509 }
1510
1511protected:
1512 // Note: Instruction needs to be a friend here to call cloneImpl.
1513 friend class Instruction;
1514
1515 CallInst *cloneImpl() const;
1516
1517public:
1518 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1519 Instruction *InsertBefore = nullptr) {
1520 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1521 }
1522
1523 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1524 const Twine &NameStr,
1525 Instruction *InsertBefore = nullptr) {
1526 return new (ComputeNumOperands(Args.size()))
1527 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1528 }
1529
1530 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1531 ArrayRef<OperandBundleDef> Bundles = None,
1532 const Twine &NameStr = "",
1533 Instruction *InsertBefore = nullptr) {
1534 const int NumOperands =
1535 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1536 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1537
1538 return new (NumOperands, DescriptorBytes)
1539 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1540 }
1541
1542 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1543 BasicBlock *InsertAtEnd) {
1544 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1545 }
1546
1547 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1548 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1549 return new (ComputeNumOperands(Args.size()))
1550 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1551 }
1552
1553 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554 ArrayRef<OperandBundleDef> Bundles,
1555 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1556 const int NumOperands =
1557 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1558 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1559
1560 return new (NumOperands, DescriptorBytes)
1561 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1562 }
1563
1564 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1565 Instruction *InsertBefore = nullptr) {
1566 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1567 InsertBefore);
1568 }
1569
1570 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1571 ArrayRef<OperandBundleDef> Bundles = None,
1572 const Twine &NameStr = "",
1573 Instruction *InsertBefore = nullptr) {
1574 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1575 NameStr, InsertBefore);
1576 }
1577
1578 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1579 const Twine &NameStr,
1580 Instruction *InsertBefore = nullptr) {
1581 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1582 InsertBefore);
1583 }
1584
1585 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1586 BasicBlock *InsertAtEnd) {
1587 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1588 InsertAtEnd);
1589 }
1590
1591 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1592 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1593 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1594 InsertAtEnd);
1595 }
1596
1597 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1598 ArrayRef<OperandBundleDef> Bundles,
1599 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1600 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1601 NameStr, InsertAtEnd);
1602 }
1603
1604 /// Create a clone of \p CI with a different set of operand bundles and
1605 /// insert it before \p InsertPt.
1606 ///
1607 /// The returned call instruction is identical \p CI in every way except that
1608 /// the operand bundles for the new instruction are set to the operand bundles
1609 /// in \p Bundles.
1610 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1611 Instruction *InsertPt = nullptr);
1612
1613 /// Generate the IR for a call to malloc:
1614 /// 1. Compute the malloc call's argument as the specified type's size,
1615 /// possibly multiplied by the array size if the array size is not
1616 /// constant 1.
1617 /// 2. Call malloc with that argument.
1618 /// 3. Bitcast the result of the malloc call to the specified type.
1619 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1620 Type *AllocTy, Value *AllocSize,
1621 Value *ArraySize = nullptr,
1622 Function *MallocF = nullptr,
1623 const Twine &Name = "");
1624 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1625 Type *AllocTy, Value *AllocSize,
1626 Value *ArraySize = nullptr,
1627 Function *MallocF = nullptr,
1628 const Twine &Name = "");
1629 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1630 Type *AllocTy, Value *AllocSize,
1631 Value *ArraySize = nullptr,
1632 ArrayRef<OperandBundleDef> Bundles = None,
1633 Function *MallocF = nullptr,
1634 const Twine &Name = "");
1635 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1636 Type *AllocTy, Value *AllocSize,
1637 Value *ArraySize = nullptr,
1638 ArrayRef<OperandBundleDef> Bundles = None,
1639 Function *MallocF = nullptr,
1640 const Twine &Name = "");
1641 /// Generate the IR for a call to the builtin free function.
1642 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1643 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1644 static Instruction *CreateFree(Value *Source,
1645 ArrayRef<OperandBundleDef> Bundles,
1646 Instruction *InsertBefore);
1647 static Instruction *CreateFree(Value *Source,
1648 ArrayRef<OperandBundleDef> Bundles,
1649 BasicBlock *InsertAtEnd);
1650
1651 // Note that 'musttail' implies 'tail'.
1652 enum TailCallKind : unsigned {
1653 TCK_None = 0,
1654 TCK_Tail = 1,
1655 TCK_MustTail = 2,
1656 TCK_NoTail = 3,
1657 TCK_LAST = TCK_NoTail
1658 };
1659
1660 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1661 static_assert(
1662 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1663 "Bitfields must be contiguous");
1664
1665 TailCallKind getTailCallKind() const {
1666 return getSubclassData<TailCallKindField>();
1667 }
1668
1669 bool isTailCall() const {
1670 TailCallKind Kind = getTailCallKind();
1671 return Kind == TCK_Tail || Kind == TCK_MustTail;
1672 }
1673
1674 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1675
1676 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1677
1678 void setTailCallKind(TailCallKind TCK) {
1679 setSubclassData<TailCallKindField>(TCK);
1680 }
1681
1682 void setTailCall(bool IsTc = true) {
1683 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1684 }
1685
1686 /// Return true if the call can return twice
1687 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1688 void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); }
1689
1690 // Methods for support type inquiry through isa, cast, and dyn_cast:
1691 static bool classof(const Instruction *I) {
1692 return I->getOpcode() == Instruction::Call;
1693 }
1694 static bool classof(const Value *V) {
1695 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1696 }
1697
1698 /// Updates profile metadata by scaling it by \p S / \p T.
1699 void updateProfWeight(uint64_t S, uint64_t T);
1700
1701private:
1702 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1703 // method so that subclasses cannot accidentally use it.
1704 template <typename Bitfield>
1705 void setSubclassData(typename Bitfield::Type Value) {
1706 Instruction::setSubclassData<Bitfield>(Value);
1707 }
1708};
1709
1710CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1711 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1712 BasicBlock *InsertAtEnd)
1713 : CallBase(Ty->getReturnType(), Instruction::Call,
1714 OperandTraits<CallBase>::op_end(this) -
1715 (Args.size() + CountBundleInputs(Bundles) + 1),
1716 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1717 InsertAtEnd) {
1718 init(Ty, Func, Args, Bundles, NameStr);
1719}
1720
1721CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1722 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1723 Instruction *InsertBefore)
1724 : CallBase(Ty->getReturnType(), Instruction::Call,
1725 OperandTraits<CallBase>::op_end(this) -
1726 (Args.size() + CountBundleInputs(Bundles) + 1),
1727 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1728 InsertBefore) {
1729 init(Ty, Func, Args, Bundles, NameStr);
1730}
1731
1732//===----------------------------------------------------------------------===//
1733// SelectInst Class
1734//===----------------------------------------------------------------------===//
1735
1736/// This class represents the LLVM 'select' instruction.
1737///
1738class SelectInst : public Instruction {
1739 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1740 Instruction *InsertBefore)
1741 : Instruction(S1->getType(), Instruction::Select,
1742 &Op<0>(), 3, InsertBefore) {
1743 init(C, S1, S2);
1744 setName(NameStr);
1745 }
1746
1747 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1748 BasicBlock *InsertAtEnd)
1749 : Instruction(S1->getType(), Instruction::Select,
1750 &Op<0>(), 3, InsertAtEnd) {
1751 init(C, S1, S2);
1752 setName(NameStr);
1753 }
1754
1755 void init(Value *C, Value *S1, Value *S2) {
1756 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")(static_cast <bool> (!areInvalidOperands(C, S1, S2) &&
"Invalid operands for select") ? void (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1756, __extension__ __PRETTY_FUNCTION__))
;
1757 Op<0>() = C;
1758 Op<1>() = S1;
1759 Op<2>() = S2;
1760 }
1761
1762protected:
1763 // Note: Instruction needs to be a friend here to call cloneImpl.
1764 friend class Instruction;
1765
1766 SelectInst *cloneImpl() const;
1767
1768public:
1769 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1770 const Twine &NameStr = "",
1771 Instruction *InsertBefore = nullptr,
1772 Instruction *MDFrom = nullptr) {
1773 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1774 if (MDFrom)
1775 Sel->copyMetadata(*MDFrom);
1776 return Sel;
1777 }
1778
1779 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1780 const Twine &NameStr,
1781 BasicBlock *InsertAtEnd) {
1782 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1783 }
1784
1785 const Value *getCondition() const { return Op<0>(); }
1786 const Value *getTrueValue() const { return Op<1>(); }
1787 const Value *getFalseValue() const { return Op<2>(); }
1788 Value *getCondition() { return Op<0>(); }
1789 Value *getTrueValue() { return Op<1>(); }
1790 Value *getFalseValue() { return Op<2>(); }
1791
1792 void setCondition(Value *V) { Op<0>() = V; }
1793 void setTrueValue(Value *V) { Op<1>() = V; }
1794 void setFalseValue(Value *V) { Op<2>() = V; }
1795
1796 /// Swap the true and false values of the select instruction.
1797 /// This doesn't swap prof metadata.
1798 void swapValues() { Op<1>().swap(Op<2>()); }
1799
1800 /// Return a string if the specified operands are invalid
1801 /// for a select operation, otherwise return null.
1802 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1803
1804 /// Transparently provide more efficient getOperand methods.
1805 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1806
1807 OtherOps getOpcode() const {
1808 return static_cast<OtherOps>(Instruction::getOpcode());
1809 }
1810
1811 // Methods for support type inquiry through isa, cast, and dyn_cast:
1812 static bool classof(const Instruction *I) {
1813 return I->getOpcode() == Instruction::Select;
1814 }
1815 static bool classof(const Value *V) {
1816 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1817 }
1818};
1819
1820template <>
1821struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1822};
1823
1824DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<SelectInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1824, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<SelectInst>::op_begin(const_cast
<SelectInst*>(this))[i_nocapture].get()); } void SelectInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<SelectInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1824, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
SelectInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned SelectInst::getNumOperands() const { return OperandTraits
<SelectInst>::operands(this); } template <int Idx_nocapture
> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1825
1826//===----------------------------------------------------------------------===//
1827// VAArgInst Class
1828//===----------------------------------------------------------------------===//
1829
1830/// This class represents the va_arg llvm instruction, which returns
1831/// an argument of the specified type given a va_list and increments that list
1832///
1833class VAArgInst : public UnaryInstruction {
1834protected:
1835 // Note: Instruction needs to be a friend here to call cloneImpl.
1836 friend class Instruction;
1837
1838 VAArgInst *cloneImpl() const;
1839
1840public:
1841 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1842 Instruction *InsertBefore = nullptr)
1843 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1844 setName(NameStr);
1845 }
1846
1847 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1848 BasicBlock *InsertAtEnd)
1849 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1850 setName(NameStr);
1851 }
1852
1853 Value *getPointerOperand() { return getOperand(0); }
1854 const Value *getPointerOperand() const { return getOperand(0); }
1855 static unsigned getPointerOperandIndex() { return 0U; }
1856
1857 // Methods for support type inquiry through isa, cast, and dyn_cast:
1858 static bool classof(const Instruction *I) {
1859 return I->getOpcode() == VAArg;
1860 }
1861 static bool classof(const Value *V) {
1862 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1863 }
1864};
1865
1866//===----------------------------------------------------------------------===//
1867// ExtractElementInst Class
1868//===----------------------------------------------------------------------===//
1869
1870/// This instruction extracts a single (scalar)
1871/// element from a VectorType value
1872///
1873class ExtractElementInst : public Instruction {
1874 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1875 Instruction *InsertBefore = nullptr);
1876 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1877 BasicBlock *InsertAtEnd);
1878
1879protected:
1880 // Note: Instruction needs to be a friend here to call cloneImpl.
1881 friend class Instruction;
1882
1883 ExtractElementInst *cloneImpl() const;
1884
1885public:
1886 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1887 const Twine &NameStr = "",
1888 Instruction *InsertBefore = nullptr) {
1889 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1890 }
1891
1892 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1893 const Twine &NameStr,
1894 BasicBlock *InsertAtEnd) {
1895 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1896 }
1897
1898 /// Return true if an extractelement instruction can be
1899 /// formed with the specified operands.
1900 static bool isValidOperands(const Value *Vec, const Value *Idx);
1901
1902 Value *getVectorOperand() { return Op<0>(); }
1903 Value *getIndexOperand() { return Op<1>(); }
1904 const Value *getVectorOperand() const { return Op<0>(); }
1905 const Value *getIndexOperand() const { return Op<1>(); }
1906
1907 VectorType *getVectorOperandType() const {
1908 return cast<VectorType>(getVectorOperand()->getType());
1909 }
1910
1911 /// Transparently provide more efficient getOperand methods.
1912 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1913
1914 // Methods for support type inquiry through isa, cast, and dyn_cast:
1915 static bool classof(const Instruction *I) {
1916 return I->getOpcode() == Instruction::ExtractElement;
1917 }
1918 static bool classof(const Value *V) {
1919 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1920 }
1921};
1922
1923template <>
1924struct OperandTraits<ExtractElementInst> :
1925 public FixedNumOperandTraits<ExtractElementInst, 2> {
1926};
1927
1928DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
(static_cast <bool> (i_nocapture < OperandTraits<
ExtractElementInst>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1928, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ExtractElementInst>::op_begin
(const_cast<ExtractElementInst*>(this))[i_nocapture].get
()); } void ExtractElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ExtractElementInst>::operands(this)
&& "setOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1928, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ExtractElementInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned ExtractElementInst::getNumOperands() const { return
OperandTraits<ExtractElementInst>::operands(this); } template
<int Idx_nocapture> Use &ExtractElementInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &ExtractElementInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1929
1930//===----------------------------------------------------------------------===//
1931// InsertElementInst Class
1932//===----------------------------------------------------------------------===//
1933
1934/// This instruction inserts a single (scalar)
1935/// element into a VectorType value
1936///
1937class InsertElementInst : public Instruction {
1938 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1939 const Twine &NameStr = "",
1940 Instruction *InsertBefore = nullptr);
1941 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1942 BasicBlock *InsertAtEnd);
1943
1944protected:
1945 // Note: Instruction needs to be a friend here to call cloneImpl.
1946 friend class Instruction;
1947
1948 InsertElementInst *cloneImpl() const;
1949
1950public:
1951 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1952 const Twine &NameStr = "",
1953 Instruction *InsertBefore = nullptr) {
1954 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1955 }
1956
1957 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1958 const Twine &NameStr,
1959 BasicBlock *InsertAtEnd) {
1960 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1961 }
1962
1963 /// Return true if an insertelement instruction can be
1964 /// formed with the specified operands.
1965 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1966 const Value *Idx);
1967
1968 /// Overload to return most specific vector type.
1969 ///
1970 VectorType *getType() const {
1971 return cast<VectorType>(Instruction::getType());
1972 }
1973
1974 /// Transparently provide more efficient getOperand methods.
1975 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1976
1977 // Methods for support type inquiry through isa, cast, and dyn_cast:
1978 static bool classof(const Instruction *I) {
1979 return I->getOpcode() == Instruction::InsertElement;
1980 }
1981 static bool classof(const Value *V) {
1982 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1983 }
1984};
1985
1986template <>
1987struct OperandTraits<InsertElementInst> :
1988 public FixedNumOperandTraits<InsertElementInst, 3> {
1989};
1990
1991DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<InsertElementInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1991, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<InsertElementInst>::op_begin
(const_cast<InsertElementInst*>(this))[i_nocapture].get
()); } void InsertElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<InsertElementInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 1991, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
InsertElementInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned InsertElementInst::getNumOperands() const { return
OperandTraits<InsertElementInst>::operands(this); } template
<int Idx_nocapture> Use &InsertElementInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &InsertElementInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1992
1993//===----------------------------------------------------------------------===//
1994// ShuffleVectorInst Class
1995//===----------------------------------------------------------------------===//
1996
1997constexpr int UndefMaskElem = -1;
1998
1999/// This instruction constructs a fixed permutation of two
2000/// input vectors.
2001///
2002/// For each element of the result vector, the shuffle mask selects an element
2003/// from one of the input vectors to copy to the result. Non-negative elements
2004/// in the mask represent an index into the concatenated pair of input vectors.
2005/// UndefMaskElem (-1) specifies that the result element is undefined.
2006///
2007/// For scalable vectors, all the elements of the mask must be 0 or -1. This
2008/// requirement may be relaxed in the future.
2009class ShuffleVectorInst : public Instruction {
2010 SmallVector<int, 4> ShuffleMask;
2011 Constant *ShuffleMaskForBitcode;
2012
2013protected:
2014 // Note: Instruction needs to be a friend here to call cloneImpl.
2015 friend class Instruction;
2016
2017 ShuffleVectorInst *cloneImpl() const;
2018
2019public:
2020 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2021 const Twine &NameStr = "",
2022 Instruction *InsertBefor = nullptr);
2023 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2024 const Twine &NameStr, BasicBlock *InsertAtEnd);
2025 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2026 const Twine &NameStr = "",
2027 Instruction *InsertBefor = nullptr);
2028 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2029 const Twine &NameStr, BasicBlock *InsertAtEnd);
2030
2031 void *operator new(size_t S) { return User::operator new(S, 2); }
2032 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2033
2034 /// Swap the operands and adjust the mask to preserve the semantics
2035 /// of the instruction.
2036 void commute();
2037
2038 /// Return true if a shufflevector instruction can be
2039 /// formed with the specified operands.
2040 static bool isValidOperands(const Value *V1, const Value *V2,
2041 const Value *Mask);
2042 static bool isValidOperands(const Value *V1, const Value *V2,
2043 ArrayRef<int> Mask);
2044
2045 /// Overload to return most specific vector type.
2046 ///
2047 VectorType *getType() const {
2048 return cast<VectorType>(Instruction::getType());
2049 }
2050
2051 /// Transparently provide more efficient getOperand methods.
2052 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2053
2054 /// Return the shuffle mask value of this instruction for the given element
2055 /// index. Return UndefMaskElem if the element is undef.
2056 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2057
2058 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2059 /// elements of the mask are returned as UndefMaskElem.
2060 static void getShuffleMask(const Constant *Mask,
2061 SmallVectorImpl<int> &Result);
2062
2063 /// Return the mask for this instruction as a vector of integers. Undefined
2064 /// elements of the mask are returned as UndefMaskElem.
2065 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2066 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2067 }
2068
2069 /// Return the mask for this instruction, for use in bitcode.
2070 ///
2071 /// TODO: This is temporary until we decide a new bitcode encoding for
2072 /// shufflevector.
2073 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2074
2075 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2076 Type *ResultTy);
2077
2078 void setShuffleMask(ArrayRef<int> Mask);
2079
2080 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2081
2082 /// Return true if this shuffle returns a vector with a different number of
2083 /// elements than its source vectors.
2084 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2085 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2086 bool changesLength() const {
2087 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2088 ->getElementCount()
2089 .getKnownMinValue();
2090 unsigned NumMaskElts = ShuffleMask.size();
2091 return NumSourceElts != NumMaskElts;
2092 }
2093
2094 /// Return true if this shuffle returns a vector with a greater number of
2095 /// elements than its source vectors.
2096 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2097 bool increasesLength() const {
2098 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2099 ->getElementCount()
2100 .getKnownMinValue();
2101 unsigned NumMaskElts = ShuffleMask.size();
2102 return NumSourceElts < NumMaskElts;
2103 }
2104
2105 /// Return true if this shuffle mask chooses elements from exactly one source
2106 /// vector.
2107 /// Example: <7,5,undef,7>
2108 /// This assumes that vector operands are the same length as the mask.
2109 static bool isSingleSourceMask(ArrayRef<int> Mask);
2110 static bool isSingleSourceMask(const Constant *Mask) {
2111 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2111, __extension__ __PRETTY_FUNCTION__))
;
2112 SmallVector<int, 16> MaskAsInts;
2113 getShuffleMask(Mask, MaskAsInts);
2114 return isSingleSourceMask(MaskAsInts);
2115 }
2116
2117 /// Return true if this shuffle chooses elements from exactly one source
2118 /// vector without changing the length of that vector.
2119 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2120 /// TODO: Optionally allow length-changing shuffles.
2121 bool isSingleSource() const {
2122 return !changesLength() && isSingleSourceMask(ShuffleMask);
2123 }
2124
2125 /// Return true if this shuffle mask chooses elements from exactly one source
2126 /// vector without lane crossings. A shuffle using this mask is not
2127 /// necessarily a no-op because it may change the number of elements from its
2128 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2129 /// Example: <undef,undef,2,3>
2130 static bool isIdentityMask(ArrayRef<int> Mask);
2131 static bool isIdentityMask(const Constant *Mask) {
2132 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2132, __extension__ __PRETTY_FUNCTION__))
;
2133 SmallVector<int, 16> MaskAsInts;
2134 getShuffleMask(Mask, MaskAsInts);
2135 return isIdentityMask(MaskAsInts);
2136 }
2137
2138 /// Return true if this shuffle chooses elements from exactly one source
2139 /// vector without lane crossings and does not change the number of elements
2140 /// from its input vectors.
2141 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2142 bool isIdentity() const {
2143 return !changesLength() && isIdentityMask(ShuffleMask);
2144 }
2145
2146 /// Return true if this shuffle lengthens exactly one source vector with
2147 /// undefs in the high elements.
2148 bool isIdentityWithPadding() const;
2149
2150 /// Return true if this shuffle extracts the first N elements of exactly one
2151 /// source vector.
2152 bool isIdentityWithExtract() const;
2153
2154 /// Return true if this shuffle concatenates its 2 source vectors. This
2155 /// returns false if either input is undefined. In that case, the shuffle is
2156 /// is better classified as an identity with padding operation.
2157 bool isConcat() const;
2158
2159 /// Return true if this shuffle mask chooses elements from its source vectors
2160 /// without lane crossings. A shuffle using this mask would be
2161 /// equivalent to a vector select with a constant condition operand.
2162 /// Example: <4,1,6,undef>
2163 /// This returns false if the mask does not choose from both input vectors.
2164 /// In that case, the shuffle is better classified as an identity shuffle.
2165 /// This assumes that vector operands are the same length as the mask
2166 /// (a length-changing shuffle can never be equivalent to a vector select).
2167 static bool isSelectMask(ArrayRef<int> Mask);
2168 static bool isSelectMask(const Constant *Mask) {
2169 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2169, __extension__ __PRETTY_FUNCTION__))
;
2170 SmallVector<int, 16> MaskAsInts;
2171 getShuffleMask(Mask, MaskAsInts);
2172 return isSelectMask(MaskAsInts);
2173 }
2174
2175 /// Return true if this shuffle chooses elements from its source vectors
2176 /// without lane crossings and all operands have the same number of elements.
2177 /// In other words, this shuffle is equivalent to a vector select with a
2178 /// constant condition operand.
2179 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2180 /// This returns false if the mask does not choose from both input vectors.
2181 /// In that case, the shuffle is better classified as an identity shuffle.
2182 /// TODO: Optionally allow length-changing shuffles.
2183 bool isSelect() const {
2184 return !changesLength() && isSelectMask(ShuffleMask);
2185 }
2186
2187 /// Return true if this shuffle mask swaps the order of elements from exactly
2188 /// one source vector.
2189 /// Example: <7,6,undef,4>
2190 /// This assumes that vector operands are the same length as the mask.
2191 static bool isReverseMask(ArrayRef<int> Mask);
2192 static bool isReverseMask(const Constant *Mask) {
2193 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2193, __extension__ __PRETTY_FUNCTION__))
;
2194 SmallVector<int, 16> MaskAsInts;
2195 getShuffleMask(Mask, MaskAsInts);
2196 return isReverseMask(MaskAsInts);
2197 }
2198
2199 /// Return true if this shuffle swaps the order of elements from exactly
2200 /// one source vector.
2201 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2202 /// TODO: Optionally allow length-changing shuffles.
2203 bool isReverse() const {
2204 return !changesLength() && isReverseMask(ShuffleMask);
2205 }
2206
2207 /// Return true if this shuffle mask chooses all elements with the same value
2208 /// as the first element of exactly one source vector.
2209 /// Example: <4,undef,undef,4>
2210 /// This assumes that vector operands are the same length as the mask.
2211 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2212 static bool isZeroEltSplatMask(const Constant *Mask) {
2213 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2213, __extension__ __PRETTY_FUNCTION__))
;
2214 SmallVector<int, 16> MaskAsInts;
2215 getShuffleMask(Mask, MaskAsInts);
2216 return isZeroEltSplatMask(MaskAsInts);
2217 }
2218
2219 /// Return true if all elements of this shuffle are the same value as the
2220 /// first element of exactly one source vector without changing the length
2221 /// of that vector.
2222 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2223 /// TODO: Optionally allow length-changing shuffles.
2224 /// TODO: Optionally allow splats from other elements.
2225 bool isZeroEltSplat() const {
2226 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2227 }
2228
2229 /// Return true if this shuffle mask is a transpose mask.
2230 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2231 /// even- or odd-numbered vector elements from two n-dimensional source
2232 /// vectors and write each result into consecutive elements of an
2233 /// n-dimensional destination vector. Two shuffles are necessary to complete
2234 /// the transpose, one for the even elements and another for the odd elements.
2235 /// This description closely follows how the TRN1 and TRN2 AArch64
2236 /// instructions operate.
2237 ///
2238 /// For example, a simple 2x2 matrix can be transposed with:
2239 ///
2240 /// ; Original matrix
2241 /// m0 = < a, b >
2242 /// m1 = < c, d >
2243 ///
2244 /// ; Transposed matrix
2245 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2246 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2247 ///
2248 /// For matrices having greater than n columns, the resulting nx2 transposed
2249 /// matrix is stored in two result vectors such that one vector contains
2250 /// interleaved elements from all the even-numbered rows and the other vector
2251 /// contains interleaved elements from all the odd-numbered rows. For example,
2252 /// a 2x4 matrix can be transposed with:
2253 ///
2254 /// ; Original matrix
2255 /// m0 = < a, b, c, d >
2256 /// m1 = < e, f, g, h >
2257 ///
2258 /// ; Transposed matrix
2259 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2260 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2261 static bool isTransposeMask(ArrayRef<int> Mask);
2262 static bool isTransposeMask(const Constant *Mask) {
2263 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2263, __extension__ __PRETTY_FUNCTION__))
;
2264 SmallVector<int, 16> MaskAsInts;
2265 getShuffleMask(Mask, MaskAsInts);
2266 return isTransposeMask(MaskAsInts);
2267 }
2268
2269 /// Return true if this shuffle transposes the elements of its inputs without
2270 /// changing the length of the vectors. This operation may also be known as a
2271 /// merge or interleave. See the description for isTransposeMask() for the
2272 /// exact specification.
2273 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2274 bool isTranspose() const {
2275 return !changesLength() && isTransposeMask(ShuffleMask);
2276 }
2277
2278 /// Return true if this shuffle mask is an extract subvector mask.
2279 /// A valid extract subvector mask returns a smaller vector from a single
2280 /// source operand. The base extraction index is returned as well.
2281 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2282 int &Index);
2283 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2284 int &Index) {
2285 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2285, __extension__ __PRETTY_FUNCTION__))
;
2286 // Not possible to express a shuffle mask for a scalable vector for this
2287 // case.
2288 if (isa<ScalableVectorType>(Mask->getType()))
2289 return false;
2290 SmallVector<int, 16> MaskAsInts;
2291 getShuffleMask(Mask, MaskAsInts);
2292 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2293 }
2294
2295 /// Return true if this shuffle mask is an extract subvector mask.
2296 bool isExtractSubvectorMask(int &Index) const {
2297 // Not possible to express a shuffle mask for a scalable vector for this
2298 // case.
2299 if (isa<ScalableVectorType>(getType()))
2300 return false;
2301
2302 int NumSrcElts =
2303 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2304 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2305 }
2306
2307 /// Return true if this shuffle mask is an insert subvector mask.
2308 /// A valid insert subvector mask inserts the lowest elements of a second
2309 /// source operand into an in-place first source operand operand.
2310 /// Both the sub vector width and the insertion index is returned.
2311 static bool isInsertSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2312 int &NumSubElts, int &Index);
2313 static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts,
2314 int &NumSubElts, int &Index) {
2315 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2315, __extension__ __PRETTY_FUNCTION__))
;
2316 // Not possible to express a shuffle mask for a scalable vector for this
2317 // case.
2318 if (isa<ScalableVectorType>(Mask->getType()))
2319 return false;
2320 SmallVector<int, 16> MaskAsInts;
2321 getShuffleMask(Mask, MaskAsInts);
2322 return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index);
2323 }
2324
2325 /// Return true if this shuffle mask is an insert subvector mask.
2326 bool isInsertSubvectorMask(int &NumSubElts, int &Index) const {
2327 // Not possible to express a shuffle mask for a scalable vector for this
2328 // case.
2329 if (isa<ScalableVectorType>(getType()))
2330 return false;
2331
2332 int NumSrcElts =
2333 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2334 return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index);
2335 }
2336
2337 /// Change values in a shuffle permute mask assuming the two vector operands
2338 /// of length InVecNumElts have swapped position.
2339 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2340 unsigned InVecNumElts) {
2341 for (int &Idx : Mask) {
2342 if (Idx == -1)
2343 continue;
2344 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2345 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2346, __extension__ __PRETTY_FUNCTION__))
2346 "shufflevector mask index out of range")(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2346, __extension__ __PRETTY_FUNCTION__))
;
2347 }
2348 }
2349
2350 // Methods for support type inquiry through isa, cast, and dyn_cast:
2351 static bool classof(const Instruction *I) {
2352 return I->getOpcode() == Instruction::ShuffleVector;
2353 }
2354 static bool classof(const Value *V) {
2355 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2356 }
2357};
2358
2359template <>
2360struct OperandTraits<ShuffleVectorInst>
2361 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2362
2363DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<ShuffleVectorInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2363, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ShuffleVectorInst>::op_begin
(const_cast<ShuffleVectorInst*>(this))[i_nocapture].get
()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ShuffleVectorInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2363, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ShuffleVectorInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned ShuffleVectorInst::getNumOperands() const { return
OperandTraits<ShuffleVectorInst>::operands(this); } template
<int Idx_nocapture> Use &ShuffleVectorInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &ShuffleVectorInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2364
2365//===----------------------------------------------------------------------===//
2366// ExtractValueInst Class
2367//===----------------------------------------------------------------------===//
2368
2369/// This instruction extracts a struct member or array
2370/// element value from an aggregate value.
2371///
2372class ExtractValueInst : public UnaryInstruction {
2373 SmallVector<unsigned, 4> Indices;
2374
2375 ExtractValueInst(const ExtractValueInst &EVI);
2376
2377 /// Constructors - Create a extractvalue instruction with a base aggregate
2378 /// value and a list of indices. The first ctor can optionally insert before
2379 /// an existing instruction, the second appends the new instruction to the
2380 /// specified BasicBlock.
2381 inline ExtractValueInst(Value *Agg,
2382 ArrayRef<unsigned> Idxs,
2383 const Twine &NameStr,
2384 Instruction *InsertBefore);
2385 inline ExtractValueInst(Value *Agg,
2386 ArrayRef<unsigned> Idxs,
2387 const Twine &NameStr, BasicBlock *InsertAtEnd);
2388
2389 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2390
2391protected:
2392 // Note: Instruction needs to be a friend here to call cloneImpl.
2393 friend class Instruction;
2394
2395 ExtractValueInst *cloneImpl() const;
2396
2397public:
2398 static ExtractValueInst *Create(Value *Agg,
2399 ArrayRef<unsigned> Idxs,
2400 const Twine &NameStr = "",
2401 Instruction *InsertBefore = nullptr) {
2402 return new
2403 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2404 }
2405
2406 static ExtractValueInst *Create(Value *Agg,
2407 ArrayRef<unsigned> Idxs,
2408 const Twine &NameStr,
2409 BasicBlock *InsertAtEnd) {
2410 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2411 }
2412
2413 /// Returns the type of the element that would be extracted
2414 /// with an extractvalue instruction with the specified parameters.
2415 ///
2416 /// Null is returned if the indices are invalid for the specified type.
2417 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2418
2419 using idx_iterator = const unsigned*;
2420
2421 inline idx_iterator idx_begin() const { return Indices.begin(); }
2422 inline idx_iterator idx_end() const { return Indices.end(); }
2423 inline iterator_range<idx_iterator> indices() const {
2424 return make_range(idx_begin(), idx_end());
2425 }
2426
2427 Value *getAggregateOperand() {
2428 return getOperand(0);
2429 }
2430 const Value *getAggregateOperand() const {
2431 return getOperand(0);
2432 }
2433 static unsigned getAggregateOperandIndex() {
2434 return 0U; // get index for modifying correct operand
2435 }
2436
2437 ArrayRef<unsigned> getIndices() const {
2438 return Indices;
2439 }
2440
2441 unsigned getNumIndices() const {
2442 return (unsigned)Indices.size();
2443 }
2444
2445 bool hasIndices() const {
2446 return true;
2447 }
2448
2449 // Methods for support type inquiry through isa, cast, and dyn_cast:
2450 static bool classof(const Instruction *I) {
2451 return I->getOpcode() == Instruction::ExtractValue;
2452 }
2453 static bool classof(const Value *V) {
2454 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2455 }
2456};
2457
2458ExtractValueInst::ExtractValueInst(Value *Agg,
2459 ArrayRef<unsigned> Idxs,
2460 const Twine &NameStr,
2461 Instruction *InsertBefore)
2462 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2463 ExtractValue, Agg, InsertBefore) {
2464 init(Idxs, NameStr);
2465}
2466
2467ExtractValueInst::ExtractValueInst(Value *Agg,
2468 ArrayRef<unsigned> Idxs,
2469 const Twine &NameStr,
2470 BasicBlock *InsertAtEnd)
2471 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2472 ExtractValue, Agg, InsertAtEnd) {
2473 init(Idxs, NameStr);
2474}
2475
2476//===----------------------------------------------------------------------===//
2477// InsertValueInst Class
2478//===----------------------------------------------------------------------===//
2479
2480/// This instruction inserts a struct field of array element
2481/// value into an aggregate value.
2482///
2483class InsertValueInst : public Instruction {
2484 SmallVector<unsigned, 4> Indices;
2485
2486 InsertValueInst(const InsertValueInst &IVI);
2487
2488 /// Constructors - Create a insertvalue instruction with a base aggregate
2489 /// value, a value to insert, and a list of indices. The first ctor can
2490 /// optionally insert before an existing instruction, the second appends
2491 /// the new instruction to the specified BasicBlock.
2492 inline InsertValueInst(Value *Agg, Value *Val,
2493 ArrayRef<unsigned> Idxs,
2494 const Twine &NameStr,
2495 Instruction *InsertBefore);
2496 inline InsertValueInst(Value *Agg, Value *Val,
2497 ArrayRef<unsigned> Idxs,
2498 const Twine &NameStr, BasicBlock *InsertAtEnd);
2499
2500 /// Constructors - These two constructors are convenience methods because one
2501 /// and two index insertvalue instructions are so common.
2502 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2503 const Twine &NameStr = "",
2504 Instruction *InsertBefore = nullptr);
2505 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2506 BasicBlock *InsertAtEnd);
2507
2508 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2509 const Twine &NameStr);
2510
2511protected:
2512 // Note: Instruction needs to be a friend here to call cloneImpl.
2513 friend class Instruction;
2514
2515 InsertValueInst *cloneImpl() const;
2516
2517public:
2518 // allocate space for exactly two operands
2519 void *operator new(size_t S) { return User::operator new(S, 2); }
2520 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2521
2522 static InsertValueInst *Create(Value *Agg, Value *Val,
2523 ArrayRef<unsigned> Idxs,
2524 const Twine &NameStr = "",
2525 Instruction *InsertBefore = nullptr) {
2526 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2527 }
2528
2529 static InsertValueInst *Create(Value *Agg, Value *Val,
2530 ArrayRef<unsigned> Idxs,
2531 const Twine &NameStr,
2532 BasicBlock *InsertAtEnd) {
2533 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2534 }
2535
2536 /// Transparently provide more efficient getOperand methods.
2537 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2538
2539 using idx_iterator = const unsigned*;
2540
2541 inline idx_iterator idx_begin() const { return Indices.begin(); }
2542 inline idx_iterator idx_end() const { return Indices.end(); }
2543 inline iterator_range<idx_iterator> indices() const {
2544 return make_range(idx_begin(), idx_end());
2545 }
2546
2547 Value *getAggregateOperand() {
2548 return getOperand(0);
2549 }
2550 const Value *getAggregateOperand() const {
2551 return getOperand(0);
2552 }
2553 static unsigned getAggregateOperandIndex() {
2554 return 0U; // get index for modifying correct operand
2555 }
2556
2557 Value *getInsertedValueOperand() {
2558 return getOperand(1);
2559 }
2560 const Value *getInsertedValueOperand() const {
2561 return getOperand(1);
2562 }
2563 static unsigned getInsertedValueOperandIndex() {
2564 return 1U; // get index for modifying correct operand
2565 }
2566
2567 ArrayRef<unsigned> getIndices() const {
2568 return Indices;
2569 }
2570
2571 unsigned getNumIndices() const {
2572 return (unsigned)Indices.size();
2573 }
2574
2575 bool hasIndices() const {
2576 return true;
2577 }
2578
2579 // Methods for support type inquiry through isa, cast, and dyn_cast:
2580 static bool classof(const Instruction *I) {
2581 return I->getOpcode() == Instruction::InsertValue;
2582 }
2583 static bool classof(const Value *V) {
2584 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2585 }
2586};
2587
2588template <>
2589struct OperandTraits<InsertValueInst> :
2590 public FixedNumOperandTraits<InsertValueInst, 2> {
2591};
2592
2593InsertValueInst::InsertValueInst(Value *Agg,
2594 Value *Val,
2595 ArrayRef<unsigned> Idxs,
2596 const Twine &NameStr,
2597 Instruction *InsertBefore)
2598 : Instruction(Agg->getType(), InsertValue,
2599 OperandTraits<InsertValueInst>::op_begin(this),
2600 2, InsertBefore) {
2601 init(Agg, Val, Idxs, NameStr);
2602}
2603
2604InsertValueInst::InsertValueInst(Value *Agg,
2605 Value *Val,
2606 ArrayRef<unsigned> Idxs,
2607 const Twine &NameStr,
2608 BasicBlock *InsertAtEnd)
2609 : Instruction(Agg->getType(), InsertValue,
2610 OperandTraits<InsertValueInst>::op_begin(this),
2611 2, InsertAtEnd) {
2612 init(Agg, Val, Idxs, NameStr);
2613}
2614
2615DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<InsertValueInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2615, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<InsertValueInst>::op_begin
(const_cast<InsertValueInst*>(this))[i_nocapture].get()
); } void InsertValueInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2615, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
InsertValueInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned InsertValueInst::getNumOperands() const { return
OperandTraits<InsertValueInst>::operands(this); } template
<int Idx_nocapture> Use &InsertValueInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &InsertValueInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
2616
2617//===----------------------------------------------------------------------===//
2618// PHINode Class
2619//===----------------------------------------------------------------------===//
2620
2621// PHINode - The PHINode class is used to represent the magical mystical PHI
2622// node, that can not exist in nature, but can be synthesized in a computer
2623// scientist's overactive imagination.
2624//
2625class PHINode : public Instruction {
2626 /// The number of operands actually allocated. NumOperands is
2627 /// the number actually in use.
2628 unsigned ReservedSpace;
2629
2630 PHINode(const PHINode &PN);
2631
2632 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2633 const Twine &NameStr = "",
2634 Instruction *InsertBefore = nullptr)
2635 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2636 ReservedSpace(NumReservedValues) {
2637 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2637, __extension__ __PRETTY_FUNCTION__))
;
2638 setName(NameStr);
2639 allocHungoffUses(ReservedSpace);
2640 }
2641
2642 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2643 BasicBlock *InsertAtEnd)
2644 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2645 ReservedSpace(NumReservedValues) {
2646 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2646, __extension__ __PRETTY_FUNCTION__))
;
2647 setName(NameStr);
2648 allocHungoffUses(ReservedSpace);
2649 }
2650
2651protected:
2652 // Note: Instruction needs to be a friend here to call cloneImpl.
2653 friend class Instruction;
2654
2655 PHINode *cloneImpl() const;
2656
2657 // allocHungoffUses - this is more complicated than the generic
2658 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2659 // values and pointers to the incoming blocks, all in one allocation.
2660 void allocHungoffUses(unsigned N) {
2661 User::allocHungoffUses(N, /* IsPhi */ true);
2662 }
2663
2664public:
2665 /// Constructors - NumReservedValues is a hint for the number of incoming
2666 /// edges that this phi node will have (use 0 if you really have no idea).
2667 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2668 const Twine &NameStr = "",
2669 Instruction *InsertBefore = nullptr) {
2670 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2671 }
2672
2673 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2674 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2675 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2676 }
2677
2678 /// Provide fast operand accessors
2679 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2680
2681 // Block iterator interface. This provides access to the list of incoming
2682 // basic blocks, which parallels the list of incoming values.
2683
2684 using block_iterator = BasicBlock **;
2685 using const_block_iterator = BasicBlock * const *;
2686
2687 block_iterator block_begin() {
2688 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2689 }
2690
2691 const_block_iterator block_begin() const {
2692 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2693 }
2694
2695 block_iterator block_end() {
2696 return block_begin() + getNumOperands();
2697 }
2698
2699 const_block_iterator block_end() const {
2700 return block_begin() + getNumOperands();
2701 }
2702
2703 iterator_range<block_iterator> blocks() {
2704 return make_range(block_begin(), block_end());
2705 }
2706
2707 iterator_range<const_block_iterator> blocks() const {
2708 return make_range(block_begin(), block_end());
2709 }
2710
2711 op_range incoming_values() { return operands(); }
2712
2713 const_op_range incoming_values() const { return operands(); }
2714
2715 /// Return the number of incoming edges
2716 ///
2717 unsigned getNumIncomingValues() const { return getNumOperands(); }
2718
2719 /// Return incoming value number x
2720 ///
2721 Value *getIncomingValue(unsigned i) const {
2722 return getOperand(i);
2723 }
2724 void setIncomingValue(unsigned i, Value *V) {
2725 assert(V && "PHI node got a null value!")(static_cast <bool> (V && "PHI node got a null value!"
) ? void (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2725, __extension__ __PRETTY_FUNCTION__))
;
2726 assert(getType() == V->getType() &&(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2727, __extension__ __PRETTY_FUNCTION__))
2727 "All operands to PHI node must be the same type as the PHI node!")(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2727, __extension__ __PRETTY_FUNCTION__))
;
2728 setOperand(i, V);
2729 }
2730
2731 static unsigned getOperandNumForIncomingValue(unsigned i) {
2732 return i;
2733 }
2734
2735 static unsigned getIncomingValueNumForOperand(unsigned i) {
2736 return i;
2737 }
2738
2739 /// Return incoming basic block number @p i.
2740 ///
2741 BasicBlock *getIncomingBlock(unsigned i) const {
2742 return block_begin()[i];
2743 }
2744
2745 /// Return incoming basic block corresponding
2746 /// to an operand of the PHI.
2747 ///
2748 BasicBlock *getIncomingBlock(const Use &U) const {
2749 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")(static_cast <bool> (this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? void (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2749, __extension__ __PRETTY_FUNCTION__))
;
2750 return getIncomingBlock(unsigned(&U - op_begin()));
2751 }
2752
2753 /// Return incoming basic block corresponding
2754 /// to value use iterator.
2755 ///
2756 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2757 return getIncomingBlock(I.getUse());
2758 }
2759
2760 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2761 assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2761, __extension__ __PRETTY_FUNCTION__))
;
2762 block_begin()[i] = BB;
2763 }
2764
2765 /// Replace every incoming basic block \p Old to basic block \p New.
2766 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2767 assert(New && Old && "PHI node got a null basic block!")(static_cast <bool> (New && Old && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2767, __extension__ __PRETTY_FUNCTION__))
;
2768 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2769 if (getIncomingBlock(Op) == Old)
2770 setIncomingBlock(Op, New);
2771 }
2772
2773 /// Add an incoming value to the end of the PHI list
2774 ///
2775 void addIncoming(Value *V, BasicBlock *BB) {
2776 if (getNumOperands() == ReservedSpace)
2777 growOperands(); // Get more space!
2778 // Initialize some new operands.
2779 setNumHungOffUseOperands(getNumOperands() + 1);
2780 setIncomingValue(getNumOperands() - 1, V);
2781 setIncomingBlock(getNumOperands() - 1, BB);
2782 }
2783
2784 /// Remove an incoming value. This is useful if a
2785 /// predecessor basic block is deleted. The value removed is returned.
2786 ///
2787 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2788 /// is true), the PHI node is destroyed and any uses of it are replaced with
2789 /// dummy values. The only time there should be zero incoming values to a PHI
2790 /// node is when the block is dead, so this strategy is sound.
2791 ///
2792 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2793
2794 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2795 int Idx = getBasicBlockIndex(BB);
2796 assert(Idx >= 0 && "Invalid basic block argument to remove!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument to remove!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2796, __extension__ __PRETTY_FUNCTION__))
;
2797 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2798 }
2799
2800 /// Return the first index of the specified basic
2801 /// block in the value list for this PHI. Returns -1 if no instance.
2802 ///
2803 int getBasicBlockIndex(const BasicBlock *BB) const {
2804 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2805 if (block_begin()[i] == BB)
2806 return i;
2807 return -1;
2808 }
2809
2810 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2811 int Idx = getBasicBlockIndex(BB);
2812 assert(Idx >= 0 && "Invalid basic block argument!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2812, __extension__ __PRETTY_FUNCTION__))
;
2813 return getIncomingValue(Idx);
2814 }
2815
2816 /// Set every incoming value(s) for block \p BB to \p V.
2817 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2818 assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2818, __extension__ __PRETTY_FUNCTION__))
;
2819 bool Found = false;
2820 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2821 if (getIncomingBlock(Op) == BB) {
2822 Found = true;
2823 setIncomingValue(Op, V);
2824 }
2825 (void)Found;
2826 assert(Found && "Invalid basic block argument to set!")(static_cast <bool> (Found && "Invalid basic block argument to set!"
) ? void (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2826, __extension__ __PRETTY_FUNCTION__))
;
2827 }
2828
2829 /// If the specified PHI node always merges together the
2830 /// same value, return the value, otherwise return null.
2831 Value *hasConstantValue() const;
2832
2833 /// Whether the specified PHI node always merges
2834 /// together the same value, assuming undefs are equal to a unique
2835 /// non-undef value.
2836 bool hasConstantOrUndefValue() const;
2837
2838 /// If the PHI node is complete which means all of its parent's predecessors
2839 /// have incoming value in this PHI, return true, otherwise return false.
2840 bool isComplete() const {
2841 return llvm::all_of(predecessors(getParent()),
2842 [this](const BasicBlock *Pred) {
2843 return getBasicBlockIndex(Pred) >= 0;
2844 });
2845 }
2846
2847 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2848 static bool classof(const Instruction *I) {
2849 return I->getOpcode() == Instruction::PHI;
2850 }
2851 static bool classof(const Value *V) {
2852 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2853 }
2854
2855private:
2856 void growOperands();
2857};
2858
2859template <>
2860struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2861};
2862
2863DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { (static_cast <bool> (i_nocapture < OperandTraits
<PHINode>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2863, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<PHINode>::op_begin(const_cast
<PHINode*>(this))[i_nocapture].get()); } void PHINode::
setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<PHINode>::
operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2863, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
PHINode>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
PHINode::getNumOperands() const { return OperandTraits<PHINode
>::operands(this); } template <int Idx_nocapture> Use
&PHINode::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
PHINode::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2864
2865//===----------------------------------------------------------------------===//
2866// LandingPadInst Class
2867//===----------------------------------------------------------------------===//
2868
2869//===---------------------------------------------------------------------------
2870/// The landingpad instruction holds all of the information
2871/// necessary to generate correct exception handling. The landingpad instruction
2872/// cannot be moved from the top of a landing pad block, which itself is
2873/// accessible only from the 'unwind' edge of an invoke. This uses the
2874/// SubclassData field in Value to store whether or not the landingpad is a
2875/// cleanup.
2876///
2877class LandingPadInst : public Instruction {
2878 using CleanupField = BoolBitfieldElementT<0>;
2879
2880 /// The number of operands actually allocated. NumOperands is
2881 /// the number actually in use.
2882 unsigned ReservedSpace;
2883
2884 LandingPadInst(const LandingPadInst &LP);
2885
2886public:
2887 enum ClauseType { Catch, Filter };
2888
2889private:
2890 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2891 const Twine &NameStr, Instruction *InsertBefore);
2892 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2893 const Twine &NameStr, BasicBlock *InsertAtEnd);
2894
2895 // Allocate space for exactly zero operands.
2896 void *operator new(size_t S) { return User::operator new(S); }
2897
2898 void growOperands(unsigned Size);
2899 void init(unsigned NumReservedValues, const Twine &NameStr);
2900
2901protected:
2902 // Note: Instruction needs to be a friend here to call cloneImpl.
2903 friend class Instruction;
2904
2905 LandingPadInst *cloneImpl() const;
2906
2907public:
2908 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2909
2910 /// Constructors - NumReservedClauses is a hint for the number of incoming
2911 /// clauses that this landingpad will have (use 0 if you really have no idea).
2912 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2913 const Twine &NameStr = "",
2914 Instruction *InsertBefore = nullptr);
2915 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2916 const Twine &NameStr, BasicBlock *InsertAtEnd);
2917
2918 /// Provide fast operand accessors
2919 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2920
2921 /// Return 'true' if this landingpad instruction is a
2922 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2923 /// doesn't catch the exception.
2924 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2925
2926 /// Indicate that this landingpad instruction is a cleanup.
2927 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2928
2929 /// Add a catch or filter clause to the landing pad.
2930 void addClause(Constant *ClauseVal);
2931
2932 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2933 /// determine what type of clause this is.
2934 Constant *getClause(unsigned Idx) const {
2935 return cast<Constant>(getOperandList()[Idx]);
2936 }
2937
2938 /// Return 'true' if the clause and index Idx is a catch clause.
2939 bool isCatch(unsigned Idx) const {
2940 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2941 }
2942
2943 /// Return 'true' if the clause and index Idx is a filter clause.
2944 bool isFilter(unsigned Idx) const {
2945 return isa<ArrayType>(getOperandList()[Idx]->getType());
2946 }
2947
2948 /// Get the number of clauses for this landing pad.
2949 unsigned getNumClauses() const { return getNumOperands(); }
2950
2951 /// Grow the size of the operand list to accommodate the new
2952 /// number of clauses.
2953 void reserveClauses(unsigned Size) { growOperands(Size); }
2954
2955 // Methods for support type inquiry through isa, cast, and dyn_cast:
2956 static bool classof(const Instruction *I) {
2957 return I->getOpcode() == Instruction::LandingPad;
2958 }
2959 static bool classof(const Value *V) {
2960 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2961 }
2962};
2963
2964template <>
2965struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2966};
2967
2968DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2968, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<LandingPadInst>::op_begin(
const_cast<LandingPadInst*>(this))[i_nocapture].get());
} void LandingPadInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 2968, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
LandingPadInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2969
2970//===----------------------------------------------------------------------===//
2971// ReturnInst Class
2972//===----------------------------------------------------------------------===//
2973
2974//===---------------------------------------------------------------------------
2975/// Return a value (possibly void), from a function. Execution
2976/// does not continue in this function any longer.
2977///
2978class ReturnInst : public Instruction {
2979 ReturnInst(const ReturnInst &RI);
2980
2981private:
2982 // ReturnInst constructors:
2983 // ReturnInst() - 'ret void' instruction
2984 // ReturnInst( null) - 'ret void' instruction
2985 // ReturnInst(Value* X) - 'ret X' instruction
2986 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2987 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2988 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2989 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2990 //
2991 // NOTE: If the Value* passed is of type void then the constructor behaves as
2992 // if it was passed NULL.
2993 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2994 Instruction *InsertBefore = nullptr);
2995 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2996 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2997
2998protected:
2999 // Note: Instruction needs to be a friend here to call cloneImpl.
3000 friend class Instruction;
3001
3002 ReturnInst *cloneImpl() const;
3003
3004public:
3005 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
3006 Instruction *InsertBefore = nullptr) {
3007 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
3008 }
3009
3010 static ReturnInst* Create(LLVMContext &C, Value *retVal,
3011 BasicBlock *InsertAtEnd) {
3012 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
3013 }
3014
3015 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
3016 return new(0) ReturnInst(C, InsertAtEnd);
3017 }
3018
3019 /// Provide fast operand accessors
3020 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3021
3022 /// Convenience accessor. Returns null if there is no return value.
3023 Value *getReturnValue() const {
3024 return getNumOperands() != 0 ? getOperand(0) : nullptr;
3025 }
3026
3027 unsigned getNumSuccessors() const { return 0; }
3028
3029 // Methods for support type inquiry through isa, cast, and dyn_cast:
3030 static bool classof(const Instruction *I) {
3031 return (I->getOpcode() == Instruction::Ret);
3032 }
3033 static bool classof(const Value *V) {
3034 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3035 }
3036
3037private:
3038 BasicBlock *getSuccessor(unsigned idx) const {
3039 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3039)
;
3040 }
3041
3042 void setSuccessor(unsigned idx, BasicBlock *B) {
3043 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3043)
;
3044 }
3045};
3046
3047template <>
3048struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3049};
3050
3051DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<ReturnInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3051, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ReturnInst>::op_begin(const_cast
<ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<ReturnInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3051, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ReturnInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned ReturnInst::getNumOperands() const { return OperandTraits
<ReturnInst>::operands(this); } template <int Idx_nocapture
> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3052
3053//===----------------------------------------------------------------------===//
3054// BranchInst Class
3055//===----------------------------------------------------------------------===//
3056
3057//===---------------------------------------------------------------------------
3058/// Conditional or Unconditional Branch instruction.
3059///
3060class BranchInst : public Instruction {
3061 /// Ops list - Branches are strange. The operands are ordered:
3062 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3063 /// they don't have to check for cond/uncond branchness. These are mostly
3064 /// accessed relative from op_end().
3065 BranchInst(const BranchInst &BI);
3066 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3067 // BranchInst(BB *B) - 'br B'
3068 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3069 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3070 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3071 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3072 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3073 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3074 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3075 Instruction *InsertBefore = nullptr);
3076 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3077 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3078 BasicBlock *InsertAtEnd);
3079
3080 void AssertOK();
3081
3082protected:
3083 // Note: Instruction needs to be a friend here to call cloneImpl.
3084 friend class Instruction;
3085
3086 BranchInst *cloneImpl() const;
3087
3088public:
3089 /// Iterator type that casts an operand to a basic block.
3090 ///
3091 /// This only makes sense because the successors are stored as adjacent
3092 /// operands for branch instructions.
3093 struct succ_op_iterator
3094 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3095 std::random_access_iterator_tag, BasicBlock *,
3096 ptrdiff_t, BasicBlock *, BasicBlock *> {
3097 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3098
3099 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3100 BasicBlock *operator->() const { return operator*(); }
3101 };
3102
3103 /// The const version of `succ_op_iterator`.
3104 struct const_succ_op_iterator
3105 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3106 std::random_access_iterator_tag,
3107 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3108 const BasicBlock *> {
3109 explicit const_succ_op_iterator(const_value_op_iterator I)
3110 : iterator_adaptor_base(I) {}
3111
3112 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3113 const BasicBlock *operator->() const { return operator*(); }
3114 };
3115
3116 static BranchInst *Create(BasicBlock *IfTrue,
3117 Instruction *InsertBefore = nullptr) {
3118 return new(1) BranchInst(IfTrue, InsertBefore);
3119 }
3120
3121 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3122 Value *Cond, Instruction *InsertBefore = nullptr) {
3123 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3124 }
3125
3126 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3127 return new(1) BranchInst(IfTrue, InsertAtEnd);
3128 }
3129
3130 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3131 Value *Cond, BasicBlock *InsertAtEnd) {
3132 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3133 }
3134
3135 /// Transparently provide more efficient getOperand methods.
3136 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3137
3138 bool isUnconditional() const { return getNumOperands() == 1; }
3139 bool isConditional() const { return getNumOperands() == 3; }
3140
3141 Value *getCondition() const {
3142 assert(isConditional() && "Cannot get condition of an uncond branch!")(static_cast <bool> (isConditional() && "Cannot get condition of an uncond branch!"
) ? void (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3142, __extension__ __PRETTY_FUNCTION__))
;
3143 return Op<-3>();
3144 }
3145
3146 void setCondition(Value *V) {
3147 assert(isConditional() && "Cannot set condition of unconditional branch!")(static_cast <bool> (isConditional() && "Cannot set condition of unconditional branch!"
) ? void (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3147, __extension__ __PRETTY_FUNCTION__))
;
3148 Op<-3>() = V;
3149 }
3150
3151 unsigned getNumSuccessors() const { return 1+isConditional(); }
3152
3153 BasicBlock *getSuccessor(unsigned i) const {
3154 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (i < getNumSuccessors() &&
"Successor # out of range for Branch!") ? void (0) : __assert_fail
("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3154, __extension__ __PRETTY_FUNCTION__))
;
3155 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3156 }
3157
3158 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3159 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor # out of range for Branch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3159, __extension__ __PRETTY_FUNCTION__))
;
3160 *(&Op<-1>() - idx) = NewSucc;
3161 }
3162
3163 /// Swap the successors of this branch instruction.
3164 ///
3165 /// Swaps the successors of the branch instruction. This also swaps any
3166 /// branch weight metadata associated with the instruction so that it
3167 /// continues to map correctly to each operand.
3168 void swapSuccessors();
3169
3170 iterator_range<succ_op_iterator> successors() {
3171 return make_range(
3172 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3173 succ_op_iterator(value_op_end()));
3174 }
3175
3176 iterator_range<const_succ_op_iterator> successors() const {
3177 return make_range(const_succ_op_iterator(
3178 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3179 const_succ_op_iterator(value_op_end()));
3180 }
3181
3182 // Methods for support type inquiry through isa, cast, and dyn_cast:
3183 static bool classof(const Instruction *I) {
3184 return (I->getOpcode() == Instruction::Br);
3185 }
3186 static bool classof(const Value *V) {
3187 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3188 }
3189};
3190
3191template <>
3192struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3193};
3194
3195DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<BranchInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3195, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<BranchInst>::op_begin(const_cast
<BranchInst*>(this))[i_nocapture].get()); } void BranchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<BranchInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3195, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
BranchInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned BranchInst::getNumOperands() const { return OperandTraits
<BranchInst>::operands(this); } template <int Idx_nocapture
> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3196
3197//===----------------------------------------------------------------------===//
3198// SwitchInst Class
3199//===----------------------------------------------------------------------===//
3200
3201//===---------------------------------------------------------------------------
3202/// Multiway switch
3203///
3204class SwitchInst : public Instruction {
3205 unsigned ReservedSpace;
3206
3207 // Operand[0] = Value to switch on
3208 // Operand[1] = Default basic block destination
3209 // Operand[2n ] = Value to match
3210 // Operand[2n+1] = BasicBlock to go to on match
3211 SwitchInst(const SwitchInst &SI);
3212
3213 /// Create a new switch instruction, specifying a value to switch on and a
3214 /// default destination. The number of additional cases can be specified here
3215 /// to make memory allocation more efficient. This constructor can also
3216 /// auto-insert before another instruction.
3217 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3218 Instruction *InsertBefore);
3219
3220 /// Create a new switch instruction, specifying a value to switch on and a
3221 /// default destination. The number of additional cases can be specified here
3222 /// to make memory allocation more efficient. This constructor also
3223 /// auto-inserts at the end of the specified BasicBlock.
3224 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3225 BasicBlock *InsertAtEnd);
3226
3227 // allocate space for exactly zero operands
3228 void *operator new(size_t S) { return User::operator new(S); }
3229
3230 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3231 void growOperands();
3232
3233protected:
3234 // Note: Instruction needs to be a friend here to call cloneImpl.
3235 friend class Instruction;
3236
3237 SwitchInst *cloneImpl() const;
3238
3239public:
3240 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3241
3242 // -2
3243 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3244
3245 template <typename CaseHandleT> class CaseIteratorImpl;
3246
3247 /// A handle to a particular switch case. It exposes a convenient interface
3248 /// to both the case value and the successor block.
3249 ///
3250 /// We define this as a template and instantiate it to form both a const and
3251 /// non-const handle.
3252 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3253 class CaseHandleImpl {
3254 // Directly befriend both const and non-const iterators.
3255 friend class SwitchInst::CaseIteratorImpl<
3256 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3257
3258 protected:
3259 // Expose the switch type we're parameterized with to the iterator.
3260 using SwitchInstType = SwitchInstT;
3261
3262 SwitchInstT *SI;
3263 ptrdiff_t Index;
3264
3265 CaseHandleImpl() = default;
3266 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3267
3268 public:
3269 /// Resolves case value for current case.
3270 ConstantIntT *getCaseValue() const {
3271 assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3272, __extension__ __PRETTY_FUNCTION__))
3272 "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3272, __extension__ __PRETTY_FUNCTION__))
;
3273 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3274 }
3275
3276 /// Resolves successor for current case.
3277 BasicBlockT *getCaseSuccessor() const {
3278 assert(((unsigned)Index < SI->getNumCases() ||(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3280, __extension__ __PRETTY_FUNCTION__))
3279 (unsigned)Index == DefaultPseudoIndex) &&(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3280, __extension__ __PRETTY_FUNCTION__))
3280 "Index out the number of cases.")(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3280, __extension__ __PRETTY_FUNCTION__))
;
3281 return SI->getSuccessor(getSuccessorIndex());
3282 }
3283
3284 /// Returns number of current case.
3285 unsigned getCaseIndex() const { return Index; }
3286
3287 /// Returns successor index for current case successor.
3288 unsigned getSuccessorIndex() const {
3289 assert(((unsigned)Index == DefaultPseudoIndex ||(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3291, __extension__ __PRETTY_FUNCTION__))
3290 (unsigned)Index < SI->getNumCases()) &&(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3291, __extension__ __PRETTY_FUNCTION__))
3291 "Index out the number of cases.")(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3291, __extension__ __PRETTY_FUNCTION__))
;
3292 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3293 }
3294
3295 bool operator==(const CaseHandleImpl &RHS) const {
3296 assert(SI == RHS.SI && "Incompatible operators.")(static_cast <bool> (SI == RHS.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3296, __extension__ __PRETTY_FUNCTION__))
;
3297 return Index == RHS.Index;
3298 }
3299 };
3300
3301 using ConstCaseHandle =
3302 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3303
3304 class CaseHandle
3305 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3306 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3307
3308 public:
3309 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3310
3311 /// Sets the new value for current case.
3312 void setValue(ConstantInt *V) {
3313 assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3314, __extension__ __PRETTY_FUNCTION__))
3314 "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3314, __extension__ __PRETTY_FUNCTION__))
;
3315 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3316 }
3317
3318 /// Sets the new successor for current case.
3319 void setSuccessor(BasicBlock *S) {
3320 SI->setSuccessor(getSuccessorIndex(), S);
3321 }
3322 };
3323
3324 template <typename CaseHandleT>
3325 class CaseIteratorImpl
3326 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3327 std::random_access_iterator_tag,
3328 CaseHandleT> {
3329 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3330
3331 CaseHandleT Case;
3332
3333 public:
3334 /// Default constructed iterator is in an invalid state until assigned to
3335 /// a case for a particular switch.
3336 CaseIteratorImpl() = default;
3337
3338 /// Initializes case iterator for given SwitchInst and for given
3339 /// case number.
3340 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3341
3342 /// Initializes case iterator for given SwitchInst and for given
3343 /// successor index.
3344 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3345 unsigned SuccessorIndex) {
3346 assert(SuccessorIndex < SI->getNumSuccessors() &&(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors
() && "Successor index # out of range!") ? void (0) :
__assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3347, __extension__ __PRETTY_FUNCTION__))
3347 "Successor index # out of range!")(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors
() && "Successor index # out of range!") ? void (0) :
__assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3347, __extension__ __PRETTY_FUNCTION__))
;
3348 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3349 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3350 }
3351
3352 /// Support converting to the const variant. This will be a no-op for const
3353 /// variant.
3354 operator CaseIteratorImpl<ConstCaseHandle>() const {
3355 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3356 }
3357
3358 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3359 // Check index correctness after addition.
3360 // Note: Index == getNumCases() means end().
3361 assert(Case.Index + N >= 0 &&(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3363, __extension__ __PRETTY_FUNCTION__))
3362 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3363, __extension__ __PRETTY_FUNCTION__))
3363 "Case.Index out the number of cases.")(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3363, __extension__ __PRETTY_FUNCTION__))
;
3364 Case.Index += N;
3365 return *this;
3366 }
3367 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3368 // Check index correctness after subtraction.
3369 // Note: Case.Index == getNumCases() means end().
3370 assert(Case.Index - N >= 0 &&(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3372, __extension__ __PRETTY_FUNCTION__))
3371 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3372, __extension__ __PRETTY_FUNCTION__))
3372 "Case.Index out the number of cases.")(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3372, __extension__ __PRETTY_FUNCTION__))
;
3373 Case.Index -= N;
3374 return *this;
3375 }
3376 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3377 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3377, __extension__ __PRETTY_FUNCTION__))
;
3378 return Case.Index - RHS.Case.Index;
3379 }
3380 bool operator==(const CaseIteratorImpl &RHS) const {
3381 return Case == RHS.Case;
3382 }
3383 bool operator<(const CaseIteratorImpl &RHS) const {
3384 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3384, __extension__ __PRETTY_FUNCTION__))
;
3385 return Case.Index < RHS.Case.Index;
3386 }
3387 CaseHandleT &operator*() { return Case; }
3388 const CaseHandleT &operator*() const { return Case; }
3389 };
3390
3391 using CaseIt = CaseIteratorImpl<CaseHandle>;
3392 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3393
3394 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3395 unsigned NumCases,
3396 Instruction *InsertBefore = nullptr) {
3397 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3398 }
3399
3400 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3401 unsigned NumCases, BasicBlock *InsertAtEnd) {
3402 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3403 }
3404
3405 /// Provide fast operand accessors
3406 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3407
3408 // Accessor Methods for Switch stmt
3409 Value *getCondition() const { return getOperand(0); }
3410 void setCondition(Value *V) { setOperand(0, V); }
3411
3412 BasicBlock *getDefaultDest() const {
3413 return cast<BasicBlock>(getOperand(1));
3414 }
3415
3416 void setDefaultDest(BasicBlock *DefaultCase) {
3417 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3418 }
3419
3420 /// Return the number of 'cases' in this switch instruction, excluding the
3421 /// default case.
3422 unsigned getNumCases() const {
3423 return getNumOperands()/2 - 1;
3424 }
3425
3426 /// Returns a read/write iterator that points to the first case in the
3427 /// SwitchInst.
3428 CaseIt case_begin() {
3429 return CaseIt(this, 0);
3430 }
3431
3432 /// Returns a read-only iterator that points to the first case in the
3433 /// SwitchInst.
3434 ConstCaseIt case_begin() const {
3435 return ConstCaseIt(this, 0);
3436 }
3437
3438 /// Returns a read/write iterator that points one past the last in the
3439 /// SwitchInst.
3440 CaseIt case_end() {
3441 return CaseIt(this, getNumCases());
3442 }
3443
3444 /// Returns a read-only iterator that points one past the last in the
3445 /// SwitchInst.
3446 ConstCaseIt case_end() const {
3447 return ConstCaseIt(this, getNumCases());
3448 }
3449
3450 /// Iteration adapter for range-for loops.
3451 iterator_range<CaseIt> cases() {
3452 return make_range(case_begin(), case_end());
3453 }
3454
3455 /// Constant iteration adapter for range-for loops.
3456 iterator_range<ConstCaseIt> cases() const {
3457 return make_range(case_begin(), case_end());
3458 }
3459
3460 /// Returns an iterator that points to the default case.
3461 /// Note: this iterator allows to resolve successor only. Attempt
3462 /// to resolve case value causes an assertion.
3463 /// Also note, that increment and decrement also causes an assertion and
3464 /// makes iterator invalid.
3465 CaseIt case_default() {
3466 return CaseIt(this, DefaultPseudoIndex);
3467 }
3468 ConstCaseIt case_default() const {
3469 return ConstCaseIt(this, DefaultPseudoIndex);
3470 }
3471
3472 /// Search all of the case values for the specified constant. If it is
3473 /// explicitly handled, return the case iterator of it, otherwise return
3474 /// default case iterator to indicate that it is handled by the default
3475 /// handler.
3476 CaseIt findCaseValue(const ConstantInt *C) {
3477 CaseIt I = llvm::find_if(
3478 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3479 if (I != case_end())
3480 return I;
3481
3482 return case_default();
3483 }
3484 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3485 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3486 return Case.getCaseValue() == C;
3487 });
3488 if (I != case_end())
3489 return I;
3490
3491 return case_default();
3492 }
3493
3494 /// Finds the unique case value for a given successor. Returns null if the
3495 /// successor is not found, not unique, or is the default case.
3496 ConstantInt *findCaseDest(BasicBlock *BB) {
3497 if (BB == getDefaultDest())
3498 return nullptr;
3499
3500 ConstantInt *CI = nullptr;
3501 for (auto Case : cases()) {
3502 if (Case.getCaseSuccessor() != BB)
3503 continue;
3504
3505 if (CI)
3506 return nullptr; // Multiple cases lead to BB.
3507
3508 CI = Case.getCaseValue();
3509 }
3510
3511 return CI;
3512 }
3513
3514 /// Add an entry to the switch instruction.
3515 /// Note:
3516 /// This action invalidates case_end(). Old case_end() iterator will
3517 /// point to the added case.
3518 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3519
3520 /// This method removes the specified case and its successor from the switch
3521 /// instruction. Note that this operation may reorder the remaining cases at
3522 /// index idx and above.
3523 /// Note:
3524 /// This action invalidates iterators for all cases following the one removed,
3525 /// including the case_end() iterator. It returns an iterator for the next
3526 /// case.
3527 CaseIt removeCase(CaseIt I);
3528
3529 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3530 BasicBlock *getSuccessor(unsigned idx) const {
3531 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor idx out of range for switch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3531, __extension__ __PRETTY_FUNCTION__))
;
3532 return cast<BasicBlock>(getOperand(idx*2+1));
3533 }
3534 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3535 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor # out of range for switch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3535, __extension__ __PRETTY_FUNCTION__))
;
3536 setOperand(idx * 2 + 1, NewSucc);
3537 }
3538
3539 // Methods for support type inquiry through isa, cast, and dyn_cast:
3540 static bool classof(const Instruction *I) {
3541 return I->getOpcode() == Instruction::Switch;
3542 }
3543 static bool classof(const Value *V) {
3544 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3545 }
3546};
3547
3548/// A wrapper class to simplify modification of SwitchInst cases along with
3549/// their prof branch_weights metadata.
3550class SwitchInstProfUpdateWrapper {
3551 SwitchInst &SI;
3552 Optional<SmallVector<uint32_t, 8> > Weights = None;
3553 bool Changed = false;
3554
3555protected:
3556 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3557
3558 MDNode *buildProfBranchWeightsMD();
3559
3560 void init();
3561
3562public:
3563 using CaseWeightOpt = Optional<uint32_t>;
3564 SwitchInst *operator->() { return &SI; }
3565 SwitchInst &operator*() { return SI; }
3566 operator SwitchInst *() { return &SI; }
3567
3568 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3569
3570 ~SwitchInstProfUpdateWrapper() {
3571 if (Changed)
3572 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3573 }
3574
3575 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3576 /// correspondent branch weight.
3577 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3578
3579 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3580 /// specified branch weight for the added case.
3581 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3582
3583 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3584 /// this object to not touch the underlying SwitchInst in destructor.
3585 SymbolTableList<Instruction>::iterator eraseFromParent();
3586
3587 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3588 CaseWeightOpt getSuccessorWeight(unsigned idx);
3589
3590 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3591};
3592
3593template <>
3594struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3595};
3596
3597DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<SwitchInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3597, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<SwitchInst>::op_begin(const_cast
<SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<SwitchInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3597, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
SwitchInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned SwitchInst::getNumOperands() const { return OperandTraits
<SwitchInst>::operands(this); } template <int Idx_nocapture
> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3598
3599//===----------------------------------------------------------------------===//
3600// IndirectBrInst Class
3601//===----------------------------------------------------------------------===//
3602
3603//===---------------------------------------------------------------------------
3604/// Indirect Branch Instruction.
3605///
3606class IndirectBrInst : public Instruction {
3607 unsigned ReservedSpace;
3608
3609 // Operand[0] = Address to jump to
3610 // Operand[n+1] = n-th destination
3611 IndirectBrInst(const IndirectBrInst &IBI);
3612
3613 /// Create a new indirectbr instruction, specifying an
3614 /// Address to jump to. The number of expected destinations can be specified
3615 /// here to make memory allocation more efficient. This constructor can also
3616 /// autoinsert before another instruction.
3617 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3618
3619 /// Create a new indirectbr instruction, specifying an
3620 /// Address to jump to. The number of expected destinations can be specified
3621 /// here to make memory allocation more efficient. This constructor also
3622 /// autoinserts at the end of the specified BasicBlock.
3623 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3624
3625 // allocate space for exactly zero operands
3626 void *operator new(size_t S) { return User::operator new(S); }
3627
3628 void init(Value *Address, unsigned NumDests);
3629 void growOperands();
3630
3631protected:
3632 // Note: Instruction needs to be a friend here to call cloneImpl.
3633 friend class Instruction;
3634
3635 IndirectBrInst *cloneImpl() const;
3636
3637public:
3638 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3639
3640 /// Iterator type that casts an operand to a basic block.
3641 ///
3642 /// This only makes sense because the successors are stored as adjacent
3643 /// operands for indirectbr instructions.
3644 struct succ_op_iterator
3645 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3646 std::random_access_iterator_tag, BasicBlock *,
3647 ptrdiff_t, BasicBlock *, BasicBlock *> {
3648 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3649
3650 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3651 BasicBlock *operator->() const { return operator*(); }
3652 };
3653
3654 /// The const version of `succ_op_iterator`.
3655 struct const_succ_op_iterator
3656 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3657 std::random_access_iterator_tag,
3658 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3659 const BasicBlock *> {
3660 explicit const_succ_op_iterator(const_value_op_iterator I)
3661 : iterator_adaptor_base(I) {}
3662
3663 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3664 const BasicBlock *operator->() const { return operator*(); }
3665 };
3666
3667 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3668 Instruction *InsertBefore = nullptr) {
3669 return new IndirectBrInst(Address, NumDests, InsertBefore);
3670 }
3671
3672 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3673 BasicBlock *InsertAtEnd) {
3674 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3675 }
3676
3677 /// Provide fast operand accessors.
3678 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3679
3680 // Accessor Methods for IndirectBrInst instruction.
3681 Value *getAddress() { return getOperand(0); }
3682 const Value *getAddress() const { return getOperand(0); }
3683 void setAddress(Value *V) { setOperand(0, V); }
3684
3685 /// return the number of possible destinations in this
3686 /// indirectbr instruction.
3687 unsigned getNumDestinations() const { return getNumOperands()-1; }
3688
3689 /// Return the specified destination.
3690 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3691 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3692
3693 /// Add a destination.
3694 ///
3695 void addDestination(BasicBlock *Dest);
3696
3697 /// This method removes the specified successor from the
3698 /// indirectbr instruction.
3699 void removeDestination(unsigned i);
3700
3701 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3702 BasicBlock *getSuccessor(unsigned i) const {
3703 return cast<BasicBlock>(getOperand(i+1));
3704 }
3705 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3706 setOperand(i + 1, NewSucc);
3707 }
3708
3709 iterator_range<succ_op_iterator> successors() {
3710 return make_range(succ_op_iterator(std::next(value_op_begin())),
3711 succ_op_iterator(value_op_end()));
3712 }
3713
3714 iterator_range<const_succ_op_iterator> successors() const {
3715 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3716 const_succ_op_iterator(value_op_end()));
3717 }
3718
3719 // Methods for support type inquiry through isa, cast, and dyn_cast:
3720 static bool classof(const Instruction *I) {
3721 return I->getOpcode() == Instruction::IndirectBr;
3722 }
3723 static bool classof(const Value *V) {
3724 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3725 }
3726};
3727
3728template <>
3729struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3730};
3731
3732DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3732, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<IndirectBrInst>::op_begin(
const_cast<IndirectBrInst*>(this))[i_nocapture].get());
} void IndirectBrInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<IndirectBrInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3732, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
IndirectBrInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3733
3734//===----------------------------------------------------------------------===//
3735// InvokeInst Class
3736//===----------------------------------------------------------------------===//
3737
3738/// Invoke instruction. The SubclassData field is used to hold the
3739/// calling convention of the call.
3740///
3741class InvokeInst : public CallBase {
3742 /// The number of operands for this call beyond the called function,
3743 /// arguments, and operand bundles.
3744 static constexpr int NumExtraOperands = 2;
3745
3746 /// The index from the end of the operand array to the normal destination.
3747 static constexpr int NormalDestOpEndIdx = -3;
3748
3749 /// The index from the end of the operand array to the unwind destination.
3750 static constexpr int UnwindDestOpEndIdx = -2;
3751
3752 InvokeInst(const InvokeInst &BI);
3753
3754 /// Construct an InvokeInst given a range of arguments.
3755 ///
3756 /// Construct an InvokeInst from a range of arguments
3757 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3758 BasicBlock *IfException, ArrayRef<Value *> Args,
3759 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3760 const Twine &NameStr, Instruction *InsertBefore);
3761
3762 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3763 BasicBlock *IfException, ArrayRef<Value *> Args,
3764 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3765 const Twine &NameStr, BasicBlock *InsertAtEnd);
3766
3767 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3768 BasicBlock *IfException, ArrayRef<Value *> Args,
3769 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3770
3771 /// Compute the number of operands to allocate.
3772 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3773 // We need one operand for the called function, plus our extra operands and
3774 // the input operand counts provided.
3775 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3776 }
3777
3778protected:
3779 // Note: Instruction needs to be a friend here to call cloneImpl.
3780 friend class Instruction;
3781
3782 InvokeInst *cloneImpl() const;
3783
3784public:
3785 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3786 BasicBlock *IfException, ArrayRef<Value *> Args,
3787 const Twine &NameStr,
3788 Instruction *InsertBefore = nullptr) {
3789 int NumOperands = ComputeNumOperands(Args.size());
3790 return new (NumOperands)
3791 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3792 NameStr, InsertBefore);
3793 }
3794
3795 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3796 BasicBlock *IfException, ArrayRef<Value *> Args,
3797 ArrayRef<OperandBundleDef> Bundles = None,
3798 const Twine &NameStr = "",
3799 Instruction *InsertBefore = nullptr) {
3800 int NumOperands =
3801 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3802 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3803
3804 return new (NumOperands, DescriptorBytes)
3805 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3806 NameStr, InsertBefore);
3807 }
3808
3809 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3810 BasicBlock *IfException, ArrayRef<Value *> Args,
3811 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3812 int NumOperands = ComputeNumOperands(Args.size());
3813 return new (NumOperands)
3814 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3815 NameStr, InsertAtEnd);
3816 }
3817
3818 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3819 BasicBlock *IfException, ArrayRef<Value *> Args,
3820 ArrayRef<OperandBundleDef> Bundles,
3821 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3822 int NumOperands =
3823 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3824 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3825
3826 return new (NumOperands, DescriptorBytes)
3827 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3828 NameStr, InsertAtEnd);
3829 }
3830
3831 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3832 BasicBlock *IfException, ArrayRef<Value *> Args,
3833 const Twine &NameStr,
3834 Instruction *InsertBefore = nullptr) {
3835 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3836 IfException, Args, None, NameStr, InsertBefore);
3837 }
3838
3839 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3840 BasicBlock *IfException, ArrayRef<Value *> Args,
3841 ArrayRef<OperandBundleDef> Bundles = None,
3842 const Twine &NameStr = "",
3843 Instruction *InsertBefore = nullptr) {
3844 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3845 IfException, Args, Bundles, NameStr, InsertBefore);
3846 }
3847
3848 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3849 BasicBlock *IfException, ArrayRef<Value *> Args,
3850 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3851 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3852 IfException, Args, NameStr, InsertAtEnd);
3853 }
3854
3855 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3856 BasicBlock *IfException, ArrayRef<Value *> Args,
3857 ArrayRef<OperandBundleDef> Bundles,
3858 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3859 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3860 IfException, Args, Bundles, NameStr, InsertAtEnd);
3861 }
3862
3863 /// Create a clone of \p II with a different set of operand bundles and
3864 /// insert it before \p InsertPt.
3865 ///
3866 /// The returned invoke instruction is identical to \p II in every way except
3867 /// that the operand bundles for the new instruction are set to the operand
3868 /// bundles in \p Bundles.
3869 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3870 Instruction *InsertPt = nullptr);
3871
3872 // get*Dest - Return the destination basic blocks...
3873 BasicBlock *getNormalDest() const {
3874 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3875 }
3876 BasicBlock *getUnwindDest() const {
3877 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3878 }
3879 void setNormalDest(BasicBlock *B) {
3880 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3881 }
3882 void setUnwindDest(BasicBlock *B) {
3883 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3884 }
3885
3886 /// Get the landingpad instruction from the landing pad
3887 /// block (the unwind destination).
3888 LandingPadInst *getLandingPadInst() const;
3889
3890 BasicBlock *getSuccessor(unsigned i) const {
3891 assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!"
) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3891, __extension__ __PRETTY_FUNCTION__))
;
3892 return i == 0 ? getNormalDest() : getUnwindDest();
3893 }
3894
3895 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3896 assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!"
) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 3896, __extension__ __PRETTY_FUNCTION__))
;
3897 if (i == 0)
3898 setNormalDest(NewSucc);
3899 else
3900 setUnwindDest(NewSucc);
3901 }
3902
3903 unsigned getNumSuccessors() const { return 2; }
3904
3905 // Methods for support type inquiry through isa, cast, and dyn_cast:
3906 static bool classof(const Instruction *I) {
3907 return (I->getOpcode() == Instruction::Invoke);
3908 }
3909 static bool classof(const Value *V) {
3910 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3911 }
3912
3913private:
3914 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3915 // method so that subclasses cannot accidentally use it.
3916 template <typename Bitfield>
3917 void setSubclassData(typename Bitfield::Type Value) {
3918 Instruction::setSubclassData<Bitfield>(Value);
3919 }
3920};
3921
3922InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3923 BasicBlock *IfException, ArrayRef<Value *> Args,
3924 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3925 const Twine &NameStr, Instruction *InsertBefore)
3926 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3927 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3928 InsertBefore) {
3929 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3930}
3931
3932InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3933 BasicBlock *IfException, ArrayRef<Value *> Args,
3934 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3935 const Twine &NameStr, BasicBlock *InsertAtEnd)
3936 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3937 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3938 InsertAtEnd) {
3939 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3940}
3941
3942//===----------------------------------------------------------------------===//
3943// CallBrInst Class
3944//===----------------------------------------------------------------------===//
3945
3946/// CallBr instruction, tracking function calls that may not return control but
3947/// instead transfer it to a third location. The SubclassData field is used to
3948/// hold the calling convention of the call.
3949///
3950class CallBrInst : public CallBase {
3951
3952 unsigned NumIndirectDests;
3953
3954 CallBrInst(const CallBrInst &BI);
3955
3956 /// Construct a CallBrInst given a range of arguments.
3957 ///
3958 /// Construct a CallBrInst from a range of arguments
3959 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3960 ArrayRef<BasicBlock *> IndirectDests,
3961 ArrayRef<Value *> Args,
3962 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3963 const Twine &NameStr, Instruction *InsertBefore);
3964
3965 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3966 ArrayRef<BasicBlock *> IndirectDests,
3967 ArrayRef<Value *> Args,
3968 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3969 const Twine &NameStr, BasicBlock *InsertAtEnd);
3970
3971 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3972 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3973 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3974
3975 /// Should the Indirect Destinations change, scan + update the Arg list.
3976 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3977
3978 /// Compute the number of operands to allocate.
3979 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3980 int NumBundleInputs = 0) {
3981 // We need one operand for the called function, plus our extra operands and
3982 // the input operand counts provided.
3983 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3984 }
3985
3986protected:
3987 // Note: Instruction needs to be a friend here to call cloneImpl.
3988 friend class Instruction;
3989
3990 CallBrInst *cloneImpl() const;
3991
3992public:
3993 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3994 BasicBlock *DefaultDest,
3995 ArrayRef<BasicBlock *> IndirectDests,
3996 ArrayRef<Value *> Args, const Twine &NameStr,
3997 Instruction *InsertBefore = nullptr) {
3998 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3999 return new (NumOperands)
4000 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4001 NumOperands, NameStr, InsertBefore);
4002 }
4003
4004 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4005 BasicBlock *DefaultDest,
4006 ArrayRef<BasicBlock *> IndirectDests,
4007 ArrayRef<Value *> Args,
4008 ArrayRef<OperandBundleDef> Bundles = None,
4009 const Twine &NameStr = "",
4010 Instruction *InsertBefore = nullptr) {
4011 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4012 CountBundleInputs(Bundles));
4013 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4014
4015 return new (NumOperands, DescriptorBytes)
4016 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4017 NumOperands, NameStr, InsertBefore);
4018 }
4019
4020 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4021 BasicBlock *DefaultDest,
4022 ArrayRef<BasicBlock *> IndirectDests,
4023 ArrayRef<Value *> Args, const Twine &NameStr,
4024 BasicBlock *InsertAtEnd) {
4025 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4026 return new (NumOperands)
4027 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4028 NumOperands, NameStr, InsertAtEnd);
4029 }
4030
4031 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4032 BasicBlock *DefaultDest,
4033 ArrayRef<BasicBlock *> IndirectDests,
4034 ArrayRef<Value *> Args,
4035 ArrayRef<OperandBundleDef> Bundles,
4036 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4037 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4038 CountBundleInputs(Bundles));
4039 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4040
4041 return new (NumOperands, DescriptorBytes)
4042 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4043 NumOperands, NameStr, InsertAtEnd);
4044 }
4045
4046 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4047 ArrayRef<BasicBlock *> IndirectDests,
4048 ArrayRef<Value *> Args, const Twine &NameStr,
4049 Instruction *InsertBefore = nullptr) {
4050 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4051 IndirectDests, Args, NameStr, InsertBefore);
4052 }
4053
4054 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4055 ArrayRef<BasicBlock *> IndirectDests,
4056 ArrayRef<Value *> Args,
4057 ArrayRef<OperandBundleDef> Bundles = None,
4058 const Twine &NameStr = "",
4059 Instruction *InsertBefore = nullptr) {
4060 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4061 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4062 }
4063
4064 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4065 ArrayRef<BasicBlock *> IndirectDests,
4066 ArrayRef<Value *> Args, const Twine &NameStr,
4067 BasicBlock *InsertAtEnd) {
4068 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4069 IndirectDests, Args, NameStr, InsertAtEnd);
4070 }
4071
4072 static CallBrInst *Create(FunctionCallee Func,
4073 BasicBlock *DefaultDest,
4074 ArrayRef<BasicBlock *> IndirectDests,
4075 ArrayRef<Value *> Args,
4076 ArrayRef<OperandBundleDef> Bundles,
4077 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4078 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4079 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4080 }
4081
4082 /// Create a clone of \p CBI with a different set of operand bundles and
4083 /// insert it before \p InsertPt.
4084 ///
4085 /// The returned callbr instruction is identical to \p CBI in every way
4086 /// except that the operand bundles for the new instruction are set to the
4087 /// operand bundles in \p Bundles.
4088 static CallBrInst *Create(CallBrInst *CBI,
4089 ArrayRef<OperandBundleDef> Bundles,
4090 Instruction *InsertPt = nullptr);
4091
4092 /// Return the number of callbr indirect dest labels.
4093 ///
4094 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4095
4096 /// getIndirectDestLabel - Return the i-th indirect dest label.
4097 ///
4098 Value *getIndirectDestLabel(unsigned i) const {
4099 assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() &&
"Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4099, __extension__ __PRETTY_FUNCTION__))
;
4100 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4101 1);
4102 }
4103
4104 Value *getIndirectDestLabelUse(unsigned i) const {
4105 assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() &&
"Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4105, __extension__ __PRETTY_FUNCTION__))
;
4106 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4107 1);
4108 }
4109
4110 // Return the destination basic blocks...
4111 BasicBlock *getDefaultDest() const {
4112 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4113 }
4114 BasicBlock *getIndirectDest(unsigned i) const {
4115 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4116 }
4117 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4118 SmallVector<BasicBlock *, 16> IndirectDests;
4119 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4120 IndirectDests.push_back(getIndirectDest(i));
4121 return IndirectDests;
4122 }
4123 void setDefaultDest(BasicBlock *B) {
4124 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4125 }
4126 void setIndirectDest(unsigned i, BasicBlock *B) {
4127 updateArgBlockAddresses(i, B);
4128 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4129 }
4130
4131 BasicBlock *getSuccessor(unsigned i) const {
4132 assert(i < getNumSuccessors() + 1 &&(static_cast <bool> (i < getNumSuccessors() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4133, __extension__ __PRETTY_FUNCTION__))
4133 "Successor # out of range for callbr!")(static_cast <bool> (i < getNumSuccessors() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4133, __extension__ __PRETTY_FUNCTION__))
;
4134 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4135 }
4136
4137 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4138 assert(i < getNumIndirectDests() + 1 &&(static_cast <bool> (i < getNumIndirectDests() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4139, __extension__ __PRETTY_FUNCTION__))
4139 "Successor # out of range for callbr!")(static_cast <bool> (i < getNumIndirectDests() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4139, __extension__ __PRETTY_FUNCTION__))
;
4140 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4141 }
4142
4143 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4144
4145 // Methods for support type inquiry through isa, cast, and dyn_cast:
4146 static bool classof(const Instruction *I) {
4147 return (I->getOpcode() == Instruction::CallBr);
4148 }
4149 static bool classof(const Value *V) {
4150 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4151 }
4152
4153private:
4154 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4155 // method so that subclasses cannot accidentally use it.
4156 template <typename Bitfield>
4157 void setSubclassData(typename Bitfield::Type Value) {
4158 Instruction::setSubclassData<Bitfield>(Value);
4159 }
4160};
4161
4162CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4163 ArrayRef<BasicBlock *> IndirectDests,
4164 ArrayRef<Value *> Args,
4165 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4166 const Twine &NameStr, Instruction *InsertBefore)
4167 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4168 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4169 InsertBefore) {
4170 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4171}
4172
4173CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4174 ArrayRef<BasicBlock *> IndirectDests,
4175 ArrayRef<Value *> Args,
4176 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4177 const Twine &NameStr, BasicBlock *InsertAtEnd)
4178 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4179 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4180 InsertAtEnd) {
4181 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4182}
4183
4184//===----------------------------------------------------------------------===//
4185// ResumeInst Class
4186//===----------------------------------------------------------------------===//
4187
4188//===---------------------------------------------------------------------------
4189/// Resume the propagation of an exception.
4190///
4191class ResumeInst : public Instruction {
4192 ResumeInst(const ResumeInst &RI);
4193
4194 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4195 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4196
4197protected:
4198 // Note: Instruction needs to be a friend here to call cloneImpl.
4199 friend class Instruction;
4200
4201 ResumeInst *cloneImpl() const;
4202
4203public:
4204 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4205 return new(1) ResumeInst(Exn, InsertBefore);
4206 }
4207
4208 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4209 return new(1) ResumeInst(Exn, InsertAtEnd);
4210 }
4211
4212 /// Provide fast operand accessors
4213 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4214
4215 /// Convenience accessor.
4216 Value *getValue() const { return Op<0>(); }
4217
4218 unsigned getNumSuccessors() const { return 0; }
4219
4220 // Methods for support type inquiry through isa, cast, and dyn_cast:
4221 static bool classof(const Instruction *I) {
4222 return I->getOpcode() == Instruction::Resume;
4223 }
4224 static bool classof(const Value *V) {
4225 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4226 }
4227
4228private:
4229 BasicBlock *getSuccessor(unsigned idx) const {
4230 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4230)
;
4231 }
4232
4233 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4234 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4234)
;
4235 }
4236};
4237
4238template <>
4239struct OperandTraits<ResumeInst> :
4240 public FixedNumOperandTraits<ResumeInst, 1> {
4241};
4242
4243DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<ResumeInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4243, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ResumeInst>::op_begin(const_cast
<ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<ResumeInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4243, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ResumeInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned ResumeInst::getNumOperands() const { return OperandTraits
<ResumeInst>::operands(this); } template <int Idx_nocapture
> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ResumeInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4244
4245//===----------------------------------------------------------------------===//
4246// CatchSwitchInst Class
4247//===----------------------------------------------------------------------===//
4248class CatchSwitchInst : public Instruction {
4249 using UnwindDestField = BoolBitfieldElementT<0>;
4250
4251 /// The number of operands actually allocated. NumOperands is
4252 /// the number actually in use.
4253 unsigned ReservedSpace;
4254
4255 // Operand[0] = Outer scope
4256 // Operand[1] = Unwind block destination
4257 // Operand[n] = BasicBlock to go to on match
4258 CatchSwitchInst(const CatchSwitchInst &CSI);
4259
4260 /// Create a new switch instruction, specifying a
4261 /// default destination. The number of additional handlers can be specified
4262 /// here to make memory allocation more efficient.
4263 /// This constructor can also autoinsert before another instruction.
4264 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4265 unsigned NumHandlers, const Twine &NameStr,
4266 Instruction *InsertBefore);
4267
4268 /// Create a new switch instruction, specifying a
4269 /// default destination. The number of additional handlers can be specified
4270 /// here to make memory allocation more efficient.
4271 /// This constructor also autoinserts at the end of the specified BasicBlock.
4272 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4273 unsigned NumHandlers, const Twine &NameStr,
4274 BasicBlock *InsertAtEnd);
4275
4276 // allocate space for exactly zero operands
4277 void *operator new(size_t S) { return User::operator new(S); }
4278
4279 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4280 void growOperands(unsigned Size);
4281
4282protected:
4283 // Note: Instruction needs to be a friend here to call cloneImpl.
4284 friend class Instruction;
4285
4286 CatchSwitchInst *cloneImpl() const;
4287
4288public:
4289 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4290
4291 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4292 unsigned NumHandlers,
4293 const Twine &NameStr = "",
4294 Instruction *InsertBefore = nullptr) {
4295 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4296 InsertBefore);
4297 }
4298
4299 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4300 unsigned NumHandlers, const Twine &NameStr,
4301 BasicBlock *InsertAtEnd) {
4302 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4303 InsertAtEnd);
4304 }
4305
4306 /// Provide fast operand accessors
4307 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4308
4309 // Accessor Methods for CatchSwitch stmt
4310 Value *getParentPad() const { return getOperand(0); }
4311 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4312
4313 // Accessor Methods for CatchSwitch stmt
4314 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4315 bool unwindsToCaller() const { return !hasUnwindDest(); }
4316 BasicBlock *getUnwindDest() const {
4317 if (hasUnwindDest())
4318 return cast<BasicBlock>(getOperand(1));
4319 return nullptr;
4320 }
4321 void setUnwindDest(BasicBlock *UnwindDest) {
4322 assert(UnwindDest)(static_cast <bool> (UnwindDest) ? void (0) : __assert_fail
("UnwindDest", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4322, __extension__ __PRETTY_FUNCTION__))
;
4323 assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4323, __extension__ __PRETTY_FUNCTION__))
;
4324 setOperand(1, UnwindDest);
4325 }
4326
4327 /// return the number of 'handlers' in this catchswitch
4328 /// instruction, except the default handler
4329 unsigned getNumHandlers() const {
4330 if (hasUnwindDest())
4331 return getNumOperands() - 2;
4332 return getNumOperands() - 1;
4333 }
4334
4335private:
4336 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4337 static const BasicBlock *handler_helper(const Value *V) {
4338 return cast<BasicBlock>(V);
4339 }
4340
4341public:
4342 using DerefFnTy = BasicBlock *(*)(Value *);
4343 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4344 using handler_range = iterator_range<handler_iterator>;
4345 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4346 using const_handler_iterator =
4347 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4348 using const_handler_range = iterator_range<const_handler_iterator>;
4349
4350 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4351 handler_iterator handler_begin() {
4352 op_iterator It = op_begin() + 1;
4353 if (hasUnwindDest())
4354 ++It;
4355 return handler_iterator(It, DerefFnTy(handler_helper));
4356 }
4357
4358 /// Returns an iterator that points to the first handler in the
4359 /// CatchSwitchInst.
4360 const_handler_iterator handler_begin() const {
4361 const_op_iterator It = op_begin() + 1;
4362 if (hasUnwindDest())
4363 ++It;
4364 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4365 }
4366
4367 /// Returns a read-only iterator that points one past the last
4368 /// handler in the CatchSwitchInst.
4369 handler_iterator handler_end() {
4370 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4371 }
4372
4373 /// Returns an iterator that points one past the last handler in the
4374 /// CatchSwitchInst.
4375 const_handler_iterator handler_end() const {
4376 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4377 }
4378
4379 /// iteration adapter for range-for loops.
4380 handler_range handlers() {
4381 return make_range(handler_begin(), handler_end());
4382 }
4383
4384 /// iteration adapter for range-for loops.
4385 const_handler_range handlers() const {
4386 return make_range(handler_begin(), handler_end());
4387 }
4388
4389 /// Add an entry to the switch instruction...
4390 /// Note:
4391 /// This action invalidates handler_end(). Old handler_end() iterator will
4392 /// point to the added handler.
4393 void addHandler(BasicBlock *Dest);
4394
4395 void removeHandler(handler_iterator HI);
4396
4397 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4398 BasicBlock *getSuccessor(unsigned Idx) const {
4399 assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4400, __extension__ __PRETTY_FUNCTION__))
4400 "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4400, __extension__ __PRETTY_FUNCTION__))
;
4401 return cast<BasicBlock>(getOperand(Idx + 1));
4402 }
4403 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4404 assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4405, __extension__ __PRETTY_FUNCTION__))
4405 "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4405, __extension__ __PRETTY_FUNCTION__))
;
4406 setOperand(Idx + 1, NewSucc);
4407 }
4408
4409 // Methods for support type inquiry through isa, cast, and dyn_cast:
4410 static bool classof(const Instruction *I) {
4411 return I->getOpcode() == Instruction::CatchSwitch;
4412 }
4413 static bool classof(const Value *V) {
4414 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4415 }
4416};
4417
4418template <>
4419struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4420
4421DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<CatchSwitchInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4421, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<CatchSwitchInst>::op_begin
(const_cast<CatchSwitchInst*>(this))[i_nocapture].get()
); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<CatchSwitchInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4421, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
CatchSwitchInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned CatchSwitchInst::getNumOperands() const { return
OperandTraits<CatchSwitchInst>::operands(this); } template
<int Idx_nocapture> Use &CatchSwitchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &CatchSwitchInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
4422
4423//===----------------------------------------------------------------------===//
4424// CleanupPadInst Class
4425//===----------------------------------------------------------------------===//
4426class CleanupPadInst : public FuncletPadInst {
4427private:
4428 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4429 unsigned Values, const Twine &NameStr,
4430 Instruction *InsertBefore)
4431 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4432 NameStr, InsertBefore) {}
4433 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4434 unsigned Values, const Twine &NameStr,
4435 BasicBlock *InsertAtEnd)
4436 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4437 NameStr, InsertAtEnd) {}
4438
4439public:
4440 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4441 const Twine &NameStr = "",
4442 Instruction *InsertBefore = nullptr) {
4443 unsigned Values = 1 + Args.size();
4444 return new (Values)
4445 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4446 }
4447
4448 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4449 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4450 unsigned Values = 1 + Args.size();
4451 return new (Values)
4452 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4453 }
4454
4455 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4456 static bool classof(const Instruction *I) {
4457 return I->getOpcode() == Instruction::CleanupPad;
4458 }
4459 static bool classof(const Value *V) {
4460 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4461 }
4462};
4463
4464//===----------------------------------------------------------------------===//
4465// CatchPadInst Class
4466//===----------------------------------------------------------------------===//
4467class CatchPadInst : public FuncletPadInst {
4468private:
4469 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4470 unsigned Values, const Twine &NameStr,
4471 Instruction *InsertBefore)
4472 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4473 NameStr, InsertBefore) {}
4474 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4475 unsigned Values, const Twine &NameStr,
4476 BasicBlock *InsertAtEnd)
4477 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4478 NameStr, InsertAtEnd) {}
4479
4480public:
4481 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4482 const Twine &NameStr = "",
4483 Instruction *InsertBefore = nullptr) {
4484 unsigned Values = 1 + Args.size();
4485 return new (Values)
4486 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4487 }
4488
4489 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4490 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4491 unsigned Values = 1 + Args.size();
4492 return new (Values)
4493 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4494 }
4495
4496 /// Convenience accessors
4497 CatchSwitchInst *getCatchSwitch() const {
4498 return cast<CatchSwitchInst>(Op<-1>());
4499 }
4500 void setCatchSwitch(Value *CatchSwitch) {
4501 assert(CatchSwitch)(static_cast <bool> (CatchSwitch) ? void (0) : __assert_fail
("CatchSwitch", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4501, __extension__ __PRETTY_FUNCTION__))
;
4502 Op<-1>() = CatchSwitch;
4503 }
4504
4505 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4506 static bool classof(const Instruction *I) {
4507 return I->getOpcode() == Instruction::CatchPad;
4508 }
4509 static bool classof(const Value *V) {
4510 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4511 }
4512};
4513
4514//===----------------------------------------------------------------------===//
4515// CatchReturnInst Class
4516//===----------------------------------------------------------------------===//
4517
4518class CatchReturnInst : public Instruction {
4519 CatchReturnInst(const CatchReturnInst &RI);
4520 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4521 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4522
4523 void init(Value *CatchPad, BasicBlock *BB);
4524
4525protected:
4526 // Note: Instruction needs to be a friend here to call cloneImpl.
4527 friend class Instruction;
4528
4529 CatchReturnInst *cloneImpl() const;
4530
4531public:
4532 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4533 Instruction *InsertBefore = nullptr) {
4534 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4534, __extension__ __PRETTY_FUNCTION__))
;
4535 assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4535, __extension__ __PRETTY_FUNCTION__))
;
4536 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4537 }
4538
4539 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4540 BasicBlock *InsertAtEnd) {
4541 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4541, __extension__ __PRETTY_FUNCTION__))
;
4542 assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4542, __extension__ __PRETTY_FUNCTION__))
;
4543 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4544 }
4545
4546 /// Provide fast operand accessors
4547 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4548
4549 /// Convenience accessors.
4550 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4551 void setCatchPad(CatchPadInst *CatchPad) {
4552 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4552, __extension__ __PRETTY_FUNCTION__))
;
4553 Op<0>() = CatchPad;
4554 }
4555
4556 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4557 void setSuccessor(BasicBlock *NewSucc) {
4558 assert(NewSucc)(static_cast <bool> (NewSucc) ? void (0) : __assert_fail
("NewSucc", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4558, __extension__ __PRETTY_FUNCTION__))
;
4559 Op<1>() = NewSucc;
4560 }
4561 unsigned getNumSuccessors() const { return 1; }
4562
4563 /// Get the parentPad of this catchret's catchpad's catchswitch.
4564 /// The successor block is implicitly a member of this funclet.
4565 Value *getCatchSwitchParentPad() const {
4566 return getCatchPad()->getCatchSwitch()->getParentPad();
4567 }
4568
4569 // Methods for support type inquiry through isa, cast, and dyn_cast:
4570 static bool classof(const Instruction *I) {
4571 return (I->getOpcode() == Instruction::CatchRet);
4572 }
4573 static bool classof(const Value *V) {
4574 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4575 }
4576
4577private:
4578 BasicBlock *getSuccessor(unsigned Idx) const {
4579 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchret!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4579, __extension__ __PRETTY_FUNCTION__))
;
4580 return getSuccessor();
4581 }
4582
4583 void setSuccessor(unsigned Idx, BasicBlock *B) {
4584 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchret!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4584, __extension__ __PRETTY_FUNCTION__))
;
4585 setSuccessor(B);
4586 }
4587};
4588
4589template <>
4590struct OperandTraits<CatchReturnInst>
4591 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4592
4593DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<CatchReturnInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4593, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<CatchReturnInst>::op_begin
(const_cast<CatchReturnInst*>(this))[i_nocapture].get()
); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<CatchReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4593, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
CatchReturnInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned CatchReturnInst::getNumOperands() const { return
OperandTraits<CatchReturnInst>::operands(this); } template
<int Idx_nocapture> Use &CatchReturnInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &CatchReturnInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
4594
4595//===----------------------------------------------------------------------===//
4596// CleanupReturnInst Class
4597//===----------------------------------------------------------------------===//
4598
4599class CleanupReturnInst : public Instruction {
4600 using UnwindDestField = BoolBitfieldElementT<0>;
4601
4602private:
4603 CleanupReturnInst(const CleanupReturnInst &RI);
4604 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4605 Instruction *InsertBefore = nullptr);
4606 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4607 BasicBlock *InsertAtEnd);
4608
4609 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4610
4611protected:
4612 // Note: Instruction needs to be a friend here to call cloneImpl.
4613 friend class Instruction;
4614
4615 CleanupReturnInst *cloneImpl() const;
4616
4617public:
4618 static CleanupReturnInst *Create(Value *CleanupPad,
4619 BasicBlock *UnwindBB = nullptr,
4620 Instruction *InsertBefore = nullptr) {
4621 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4621, __extension__ __PRETTY_FUNCTION__))
;
4622 unsigned Values = 1;
4623 if (UnwindBB)
4624 ++Values;
4625 return new (Values)
4626 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4627 }
4628
4629 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4630 BasicBlock *InsertAtEnd) {
4631 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4631, __extension__ __PRETTY_FUNCTION__))
;
4632 unsigned Values = 1;
4633 if (UnwindBB)
4634 ++Values;
4635 return new (Values)
4636 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4637 }
4638
4639 /// Provide fast operand accessors
4640 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4641
4642 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4643 bool unwindsToCaller() const { return !hasUnwindDest(); }
4644
4645 /// Convenience accessor.
4646 CleanupPadInst *getCleanupPad() const {
4647 return cast<CleanupPadInst>(Op<0>());
4648 }
4649 void setCleanupPad(CleanupPadInst *CleanupPad) {
4650 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4650, __extension__ __PRETTY_FUNCTION__))
;
4651 Op<0>() = CleanupPad;
4652 }
4653
4654 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4655
4656 BasicBlock *getUnwindDest() const {
4657 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4658 }
4659 void setUnwindDest(BasicBlock *NewDest) {
4660 assert(NewDest)(static_cast <bool> (NewDest) ? void (0) : __assert_fail
("NewDest", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4660, __extension__ __PRETTY_FUNCTION__))
;
4661 assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4661, __extension__ __PRETTY_FUNCTION__))
;
4662 Op<1>() = NewDest;
4663 }
4664
4665 // Methods for support type inquiry through isa, cast, and dyn_cast:
4666 static bool classof(const Instruction *I) {
4667 return (I->getOpcode() == Instruction::CleanupRet);
4668 }
4669 static bool classof(const Value *V) {
4670 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4671 }
4672
4673private:
4674 BasicBlock *getSuccessor(unsigned Idx) const {
4675 assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail
("Idx == 0", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4675, __extension__ __PRETTY_FUNCTION__))
;
4676 return getUnwindDest();
4677 }
4678
4679 void setSuccessor(unsigned Idx, BasicBlock *B) {
4680 assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail
("Idx == 0", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4680, __extension__ __PRETTY_FUNCTION__))
;
4681 setUnwindDest(B);
4682 }
4683
4684 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4685 // method so that subclasses cannot accidentally use it.
4686 template <typename Bitfield>
4687 void setSubclassData(typename Bitfield::Type Value) {
4688 Instruction::setSubclassData<Bitfield>(Value);
4689 }
4690};
4691
4692template <>
4693struct OperandTraits<CleanupReturnInst>
4694 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4695
4696DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<CleanupReturnInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4696, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<CleanupReturnInst>::op_begin
(const_cast<CleanupReturnInst*>(this))[i_nocapture].get
()); } void CleanupReturnInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<CleanupReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4696, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
CleanupReturnInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned CleanupReturnInst::getNumOperands() const { return
OperandTraits<CleanupReturnInst>::operands(this); } template
<int Idx_nocapture> Use &CleanupReturnInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &CleanupReturnInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
4697
4698//===----------------------------------------------------------------------===//
4699// UnreachableInst Class
4700//===----------------------------------------------------------------------===//
4701
4702//===---------------------------------------------------------------------------
4703/// This function has undefined behavior. In particular, the
4704/// presence of this instruction indicates some higher level knowledge that the
4705/// end of the block cannot be reached.
4706///
4707class UnreachableInst : public Instruction {
4708protected:
4709 // Note: Instruction needs to be a friend here to call cloneImpl.
4710 friend class Instruction;
4711
4712 UnreachableInst *cloneImpl() const;
4713
4714public:
4715 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4716 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4717
4718 // allocate space for exactly zero operands
4719 void *operator new(size_t S) { return User::operator new(S, 0); }
4720 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4721
4722 unsigned getNumSuccessors() const { return 0; }
4723
4724 // Methods for support type inquiry through isa, cast, and dyn_cast:
4725 static bool classof(const Instruction *I) {
4726 return I->getOpcode() == Instruction::Unreachable;
4727 }
4728 static bool classof(const Value *V) {
4729 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4730 }
4731
4732private:
4733 BasicBlock *getSuccessor(unsigned idx) const {
4734 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4734)
;
4735 }
4736
4737 void setSuccessor(unsigned idx, BasicBlock *B) {
4738 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 4738)
;
4739 }
4740};
4741
4742//===----------------------------------------------------------------------===//
4743// TruncInst Class
4744//===----------------------------------------------------------------------===//
4745
4746/// This class represents a truncation of integer types.
4747class TruncInst : public CastInst {
4748protected:
4749 // Note: Instruction needs to be a friend here to call cloneImpl.
4750 friend class Instruction;
4751
4752 /// Clone an identical TruncInst
4753 TruncInst *cloneImpl() const;
4754
4755public:
4756 /// Constructor with insert-before-instruction semantics
4757 TruncInst(
4758 Value *S, ///< The value to be truncated
4759 Type *Ty, ///< The (smaller) type to truncate to
4760 const Twine &NameStr = "", ///< A name for the new instruction
4761 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4762 );
4763
4764 /// Constructor with insert-at-end-of-block semantics
4765 TruncInst(
4766 Value *S, ///< The value to be truncated
4767 Type *Ty, ///< The (smaller) type to truncate to
4768 const Twine &NameStr, ///< A name for the new instruction
4769 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4770 );
4771
4772 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4773 static bool classof(const Instruction *I) {
4774 return I->getOpcode() == Trunc;
4775 }
4776 static bool classof(const Value *V) {
4777 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4778 }
4779};
4780
4781//===----------------------------------------------------------------------===//
4782// ZExtInst Class
4783//===----------------------------------------------------------------------===//
4784
4785/// This class represents zero extension of integer types.
4786class ZExtInst : public CastInst {
4787protected:
4788 // Note: Instruction needs to be a friend here to call cloneImpl.
4789 friend class Instruction;
4790
4791 /// Clone an identical ZExtInst
4792 ZExtInst *cloneImpl() const;
4793
4794public:
4795 /// Constructor with insert-before-instruction semantics
4796 ZExtInst(
4797 Value *S, ///< The value to be zero extended
4798 Type *Ty, ///< The type to zero extend to
4799 const Twine &NameStr = "", ///< A name for the new instruction
4800 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4801 );
4802
4803 /// Constructor with insert-at-end semantics.
4804 ZExtInst(
4805 Value *S, ///< The value to be zero extended
4806 Type *Ty, ///< The type to zero extend to
4807 const Twine &NameStr, ///< A name for the new instruction
4808 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4809 );
4810
4811 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4812 static bool classof(const Instruction *I) {
4813 return I->getOpcode() == ZExt;
4814 }
4815 static bool classof(const Value *V) {
4816 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4817 }
4818};
4819
4820//===----------------------------------------------------------------------===//
4821// SExtInst Class
4822//===----------------------------------------------------------------------===//
4823
4824/// This class represents a sign extension of integer types.
4825class SExtInst : public CastInst {
4826protected:
4827 // Note: Instruction needs to be a friend here to call cloneImpl.
4828 friend class Instruction;
4829
4830 /// Clone an identical SExtInst
4831 SExtInst *cloneImpl() const;
4832
4833public:
4834 /// Constructor with insert-before-instruction semantics
4835 SExtInst(
4836 Value *S, ///< The value to be sign extended
4837 Type *Ty, ///< The type to sign extend to
4838 const Twine &NameStr = "", ///< A name for the new instruction
4839 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4840 );
4841
4842 /// Constructor with insert-at-end-of-block semantics
4843 SExtInst(
4844 Value *S, ///< The value to be sign extended
4845 Type *Ty, ///< The type to sign extend to
4846 const Twine &NameStr, ///< A name for the new instruction
4847 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4848 );
4849
4850 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4851 static bool classof(const Instruction *I) {
4852 return I->getOpcode() == SExt;
4853 }
4854 static bool classof(const Value *V) {
4855 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4856 }
4857};
4858
4859//===----------------------------------------------------------------------===//
4860// FPTruncInst Class
4861//===----------------------------------------------------------------------===//
4862
4863/// This class represents a truncation of floating point types.
4864class FPTruncInst : public CastInst {
4865protected:
4866 // Note: Instruction needs to be a friend here to call cloneImpl.
4867 friend class Instruction;
4868
4869 /// Clone an identical FPTruncInst
4870 FPTruncInst *cloneImpl() const;
4871
4872public:
4873 /// Constructor with insert-before-instruction semantics
4874 FPTruncInst(
4875 Value *S, ///< The value to be truncated
4876 Type *Ty, ///< The type to truncate to
4877 const Twine &NameStr = "", ///< A name for the new instruction
4878 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4879 );
4880
4881 /// Constructor with insert-before-instruction semantics
4882 FPTruncInst(
4883 Value *S, ///< The value to be truncated
4884 Type *Ty, ///< The type to truncate to
4885 const Twine &NameStr, ///< A name for the new instruction
4886 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4887 );
4888
4889 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4890 static bool classof(const Instruction *I) {
4891 return I->getOpcode() == FPTrunc;
4892 }
4893 static bool classof(const Value *V) {
4894 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4895 }
4896};
4897
4898//===----------------------------------------------------------------------===//
4899// FPExtInst Class
4900//===----------------------------------------------------------------------===//
4901
4902/// This class represents an extension of floating point types.
4903class FPExtInst : public CastInst {
4904protected:
4905 // Note: Instruction needs to be a friend here to call cloneImpl.
4906 friend class Instruction;
4907
4908 /// Clone an identical FPExtInst
4909 FPExtInst *cloneImpl() const;
4910
4911public:
4912 /// Constructor with insert-before-instruction semantics
4913 FPExtInst(
4914 Value *S, ///< The value to be extended
4915 Type *Ty, ///< The type to extend to
4916 const Twine &NameStr = "", ///< A name for the new instruction
4917 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4918 );
4919
4920 /// Constructor with insert-at-end-of-block semantics
4921 FPExtInst(
4922 Value *S, ///< The value to be extended
4923 Type *Ty, ///< The type to extend to
4924 const Twine &NameStr, ///< A name for the new instruction
4925 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4926 );
4927
4928 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4929 static bool classof(const Instruction *I) {
4930 return I->getOpcode() == FPExt;
4931 }
4932 static bool classof(const Value *V) {
4933 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4934 }
4935};
4936
4937//===----------------------------------------------------------------------===//
4938// UIToFPInst Class
4939//===----------------------------------------------------------------------===//
4940
4941/// This class represents a cast unsigned integer to floating point.
4942class UIToFPInst : public CastInst {
4943protected:
4944 // Note: Instruction needs to be a friend here to call cloneImpl.
4945 friend class Instruction;
4946
4947 /// Clone an identical UIToFPInst
4948 UIToFPInst *cloneImpl() const;
4949
4950public:
4951 /// Constructor with insert-before-instruction semantics
4952 UIToFPInst(
4953 Value *S, ///< The value to be converted
4954 Type *Ty, ///< The type to convert to
4955 const Twine &NameStr = "", ///< A name for the new instruction
4956 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4957 );
4958
4959 /// Constructor with insert-at-end-of-block semantics
4960 UIToFPInst(
4961 Value *S, ///< The value to be converted
4962 Type *Ty, ///< The type to convert to
4963 const Twine &NameStr, ///< A name for the new instruction
4964 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4965 );
4966
4967 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4968 static bool classof(const Instruction *I) {
4969 return I->getOpcode() == UIToFP;
4970 }
4971 static bool classof(const Value *V) {
4972 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4973 }
4974};
4975
4976//===----------------------------------------------------------------------===//
4977// SIToFPInst Class
4978//===----------------------------------------------------------------------===//
4979
4980/// This class represents a cast from signed integer to floating point.
4981class SIToFPInst : public CastInst {
4982protected:
4983 // Note: Instruction needs to be a friend here to call cloneImpl.
4984 friend class Instruction;
4985
4986 /// Clone an identical SIToFPInst
4987 SIToFPInst *cloneImpl() const;
4988
4989public:
4990 /// Constructor with insert-before-instruction semantics
4991 SIToFPInst(
4992 Value *S, ///< The value to be converted
4993 Type *Ty, ///< The type to convert to
4994 const Twine &NameStr = "", ///< A name for the new instruction
4995 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4996 );
4997
4998 /// Constructor with insert-at-end-of-block semantics
4999 SIToFPInst(
5000 Value *S, ///< The value to be converted
5001 Type *Ty, ///< The type to convert to
5002 const Twine &NameStr, ///< A name for the new instruction
5003 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5004 );
5005
5006 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5007 static bool classof(const Instruction *I) {
5008 return I->getOpcode() == SIToFP;
5009 }
5010 static bool classof(const Value *V) {
5011 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5012 }
5013};
5014
5015//===----------------------------------------------------------------------===//
5016// FPToUIInst Class
5017//===----------------------------------------------------------------------===//
5018
5019/// This class represents a cast from floating point to unsigned integer
5020class FPToUIInst : public CastInst {
5021protected:
5022 // Note: Instruction needs to be a friend here to call cloneImpl.
5023 friend class Instruction;
5024
5025 /// Clone an identical FPToUIInst
5026 FPToUIInst *cloneImpl() const;
5027
5028public:
5029 /// Constructor with insert-before-instruction semantics
5030 FPToUIInst(
5031 Value *S, ///< The value to be converted
5032 Type *Ty, ///< The type to convert to
5033 const Twine &NameStr = "", ///< A name for the new instruction
5034 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5035 );
5036
5037 /// Constructor with insert-at-end-of-block semantics
5038 FPToUIInst(
5039 Value *S, ///< The value to be converted
5040 Type *Ty, ///< The type to convert to
5041 const Twine &NameStr, ///< A name for the new instruction
5042 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5043 );
5044
5045 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5046 static bool classof(const Instruction *I) {
5047 return I->getOpcode() == FPToUI;
5048 }
5049 static bool classof(const Value *V) {
5050 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5051 }
5052};
5053
5054//===----------------------------------------------------------------------===//
5055// FPToSIInst Class
5056//===----------------------------------------------------------------------===//
5057
5058/// This class represents a cast from floating point to signed integer.
5059class FPToSIInst : public CastInst {
5060protected:
5061 // Note: Instruction needs to be a friend here to call cloneImpl.
5062 friend class Instruction;
5063
5064 /// Clone an identical FPToSIInst
5065 FPToSIInst *cloneImpl() const;
5066
5067public:
5068 /// Constructor with insert-before-instruction semantics
5069 FPToSIInst(
5070 Value *S, ///< The value to be converted
5071 Type *Ty, ///< The type to convert to
5072 const Twine &NameStr = "", ///< A name for the new instruction
5073 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5074 );
5075
5076 /// Constructor with insert-at-end-of-block semantics
5077 FPToSIInst(
5078 Value *S, ///< The value to be converted
5079 Type *Ty, ///< The type to convert to
5080 const Twine &NameStr, ///< A name for the new instruction
5081 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5082 );
5083
5084 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5085 static bool classof(const Instruction *I) {
5086 return I->getOpcode() == FPToSI;
5087 }
5088 static bool classof(const Value *V) {
5089 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5090 }
5091};
5092
5093//===----------------------------------------------------------------------===//
5094// IntToPtrInst Class
5095//===----------------------------------------------------------------------===//
5096
5097/// This class represents a cast from an integer to a pointer.
5098class IntToPtrInst : public CastInst {
5099public:
5100 // Note: Instruction needs to be a friend here to call cloneImpl.
5101 friend class Instruction;
5102
5103 /// Constructor with insert-before-instruction semantics
5104 IntToPtrInst(
5105 Value *S, ///< The value to be converted
5106 Type *Ty, ///< The type to convert to
5107 const Twine &NameStr = "", ///< A name for the new instruction
5108 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5109 );
5110
5111 /// Constructor with insert-at-end-of-block semantics
5112 IntToPtrInst(
5113 Value *S, ///< The value to be converted
5114 Type *Ty, ///< The type to convert to
5115 const Twine &NameStr, ///< A name for the new instruction
5116 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5117 );
5118
5119 /// Clone an identical IntToPtrInst.
5120 IntToPtrInst *cloneImpl() const;
5121
5122 /// Returns the address space of this instruction's pointer type.
5123 unsigned getAddressSpace() const {
5124 return getType()->getPointerAddressSpace();
5125 }
5126
5127 // Methods for support type inquiry through isa, cast, and dyn_cast:
5128 static bool classof(const Instruction *I) {
5129 return I->getOpcode() == IntToPtr;
5130 }
5131 static bool classof(const Value *V) {
5132 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5133 }
5134};
5135
5136//===----------------------------------------------------------------------===//
5137// PtrToIntInst Class
5138//===----------------------------------------------------------------------===//
5139
5140/// This class represents a cast from a pointer to an integer.
5141class PtrToIntInst : public CastInst {
5142protected:
5143 // Note: Instruction needs to be a friend here to call cloneImpl.
5144 friend class Instruction;
5145
5146 /// Clone an identical PtrToIntInst.
5147 PtrToIntInst *cloneImpl() const;
5148
5149public:
5150 /// Constructor with insert-before-instruction semantics
5151 PtrToIntInst(
5152 Value *S, ///< The value to be converted
5153 Type *Ty, ///< The type to convert to
5154 const Twine &NameStr = "", ///< A name for the new instruction
5155 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5156 );
5157
5158 /// Constructor with insert-at-end-of-block semantics
5159 PtrToIntInst(
5160 Value *S, ///< The value to be converted
5161 Type *Ty, ///< The type to convert to
5162 const Twine &NameStr, ///< A name for the new instruction
5163 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5164 );
5165
5166 /// Gets the pointer operand.
5167 Value *getPointerOperand() { return getOperand(0); }
5168 /// Gets the pointer operand.
5169 const Value *getPointerOperand() const { return getOperand(0); }
5170 /// Gets the operand index of the pointer operand.
5171 static unsigned getPointerOperandIndex() { return 0U; }
5172
5173 /// Returns the address space of the pointer operand.
5174 unsigned getPointerAddressSpace() const {
5175 return getPointerOperand()->getType()->getPointerAddressSpace();
5176 }
5177
5178 // Methods for support type inquiry through isa, cast, and dyn_cast:
5179 static bool classof(const Instruction *I) {
5180 return I->getOpcode() == PtrToInt;
5181 }
5182 static bool classof(const Value *V) {
5183 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5184 }
5185};
5186
5187//===----------------------------------------------------------------------===//
5188// BitCastInst Class
5189//===----------------------------------------------------------------------===//
5190
5191/// This class represents a no-op cast from one type to another.
5192class BitCastInst : public CastInst {
5193protected:
5194 // Note: Instruction needs to be a friend here to call cloneImpl.
5195 friend class Instruction;
5196
5197 /// Clone an identical BitCastInst.
5198 BitCastInst *cloneImpl() const;
5199
5200public:
5201 /// Constructor with insert-before-instruction semantics
5202 BitCastInst(
5203 Value *S, ///< The value to be casted
5204 Type *Ty, ///< The type to casted to
5205 const Twine &NameStr = "", ///< A name for the new instruction
5206 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5207 );
5208
5209 /// Constructor with insert-at-end-of-block semantics
5210 BitCastInst(
5211 Value *S, ///< The value to be casted
5212 Type *Ty, ///< The type to casted to
5213 const Twine &NameStr, ///< A name for the new instruction
5214 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5215 );
5216
5217 // Methods for support type inquiry through isa, cast, and dyn_cast:
5218 static bool classof(const Instruction *I) {
5219 return I->getOpcode() == BitCast;
5220 }
5221 static bool classof(const Value *V) {
5222 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5223 }
5224};
5225
5226//===----------------------------------------------------------------------===//
5227// AddrSpaceCastInst Class
5228//===----------------------------------------------------------------------===//
5229
5230/// This class represents a conversion between pointers from one address space
5231/// to another.
5232class AddrSpaceCastInst : public CastInst {
5233protected:
5234 // Note: Instruction needs to be a friend here to call cloneImpl.
5235 friend class Instruction;
5236
5237 /// Clone an identical AddrSpaceCastInst.
5238 AddrSpaceCastInst *cloneImpl() const;
5239
5240public:
5241 /// Constructor with insert-before-instruction semantics
5242 AddrSpaceCastInst(
5243 Value *S, ///< The value to be casted
5244 Type *Ty, ///< The type to casted to
5245 const Twine &NameStr = "", ///< A name for the new instruction
5246 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5247 );
5248
5249 /// Constructor with insert-at-end-of-block semantics
5250 AddrSpaceCastInst(
5251 Value *S, ///< The value to be casted
5252 Type *Ty, ///< The type to casted to
5253 const Twine &NameStr, ///< A name for the new instruction
5254 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5255 );
5256
5257 // Methods for support type inquiry through isa, cast, and dyn_cast:
5258 static bool classof(const Instruction *I) {
5259 return I->getOpcode() == AddrSpaceCast;
5260 }
5261 static bool classof(const Value *V) {
5262 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5263 }
5264
5265 /// Gets the pointer operand.
5266 Value *getPointerOperand() {
5267 return getOperand(0);
5268 }
5269
5270 /// Gets the pointer operand.
5271 const Value *getPointerOperand() const {
5272 return getOperand(0);
5273 }
5274
5275 /// Gets the operand index of the pointer operand.
5276 static unsigned getPointerOperandIndex() {
5277 return 0U;
5278 }
5279
5280 /// Returns the address space of the pointer operand.
5281 unsigned getSrcAddressSpace() const {
5282 return getPointerOperand()->getType()->getPointerAddressSpace();
5283 }
5284
5285 /// Returns the address space of the result.
5286 unsigned getDestAddressSpace() const {
5287 return getType()->getPointerAddressSpace();
5288 }
5289};
5290
5291/// A helper function that returns the pointer operand of a load or store
5292/// instruction. Returns nullptr if not load or store.
5293inline const Value *getLoadStorePointerOperand(const Value *V) {
5294 if (auto *Load = dyn_cast<LoadInst>(V))
5295 return Load->getPointerOperand();
5296 if (auto *Store = dyn_cast<StoreInst>(V))
5297 return Store->getPointerOperand();
5298 return nullptr;
5299}
5300inline Value *getLoadStorePointerOperand(Value *V) {
5301 return const_cast<Value *>(
5302 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5303}
5304
5305/// A helper function that returns the pointer operand of a load, store
5306/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5307inline const Value *getPointerOperand(const Value *V) {
5308 if (auto *Ptr = getLoadStorePointerOperand(V))
5309 return Ptr;
5310 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5311 return Gep->getPointerOperand();
5312 return nullptr;
5313}
5314inline Value *getPointerOperand(Value *V) {
5315 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5316}
5317
5318/// A helper function that returns the alignment of load or store instruction.
5319inline Align getLoadStoreAlignment(Value *I) {
5320 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5321, __extension__ __PRETTY_FUNCTION__))
5321 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5321, __extension__ __PRETTY_FUNCTION__))
;
5322 if (auto *LI = dyn_cast<LoadInst>(I))
5323 return LI->getAlign();
5324 return cast<StoreInst>(I)->getAlign();
5325}
5326
5327/// A helper function that returns the address space of the pointer operand of
5328/// load or store instruction.
5329inline unsigned getLoadStoreAddressSpace(Value *I) {
5330 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5331, __extension__ __PRETTY_FUNCTION__))
5331 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5331, __extension__ __PRETTY_FUNCTION__))
;
5332 if (auto *LI = dyn_cast<LoadInst>(I))
5333 return LI->getPointerAddressSpace();
5334 return cast<StoreInst>(I)->getPointerAddressSpace();
5335}
5336
5337/// A helper function that returns the type of a load or store instruction.
5338inline Type *getLoadStoreType(Value *I) {
5339 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5340, __extension__ __PRETTY_FUNCTION__))
5340 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instructions.h"
, 5340, __extension__ __PRETTY_FUNCTION__))
;
5341 if (auto *LI = dyn_cast<LoadInst>(I))
5342 return LI->getType();
5343 return cast<StoreInst>(I)->getValueOperand()->getType();
5344}
5345
5346//===----------------------------------------------------------------------===//
5347// FreezeInst Class
5348//===----------------------------------------------------------------------===//
5349
5350/// This class represents a freeze function that returns random concrete
5351/// value if an operand is either a poison value or an undef value
5352class FreezeInst : public UnaryInstruction {
5353protected:
5354 // Note: Instruction needs to be a friend here to call cloneImpl.
5355 friend class Instruction;
5356
5357 /// Clone an identical FreezeInst
5358 FreezeInst *cloneImpl() const;
5359
5360public:
5361 explicit FreezeInst(Value *S,
5362 const Twine &NameStr = "",
5363 Instruction *InsertBefore = nullptr);
5364 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5365
5366 // Methods for support type inquiry through isa, cast, and dyn_cast:
5367 static inline bool classof(const Instruction *I) {
5368 return I->getOpcode() == Freeze;
5369 }
5370 static inline bool classof(const Value *V) {
5371 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5372 }
5373};
5374
5375} // end namespace llvm
5376
5377#endif // LLVM_IR_INSTRUCTIONS_H

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/IR/Instruction.h

1//===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the Instruction class, which is the
10// base class for all of the LLVM instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_INSTRUCTION_H
15#define LLVM_IR_INSTRUCTION_H
16
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/Bitfields.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/ilist_node.h"
22#include "llvm/IR/DebugLoc.h"
23#include "llvm/IR/SymbolTableListTraits.h"
24#include "llvm/IR/User.h"
25#include "llvm/IR/Value.h"
26#include "llvm/Support/AtomicOrdering.h"
27#include "llvm/Support/Casting.h"
28#include <algorithm>
29#include <cassert>
30#include <cstdint>
31#include <utility>
32
33namespace llvm {
34
35class BasicBlock;
36class FastMathFlags;
37class MDNode;
38class Module;
39struct AAMDNodes;
40
41template <> struct ilist_alloc_traits<Instruction> {
42 static inline void deleteNode(Instruction *V);
43};
44
45class Instruction : public User,
46 public ilist_node_with_parent<Instruction, BasicBlock> {
47 BasicBlock *Parent;
48 DebugLoc DbgLoc; // 'dbg' Metadata cache.
49
50 /// Relative order of this instruction in its parent basic block. Used for
51 /// O(1) local dominance checks between instructions.
52 mutable unsigned Order = 0;
53
54protected:
55 // The 15 first bits of `Value::SubclassData` are available for subclasses of
56 // `Instruction` to use.
57 using OpaqueField = Bitfield::Element<uint16_t, 0, 15>;
58
59 // Template alias so that all Instruction storing alignment use the same
60 // definiton.
61 // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent =
62 // 2^30. We store them as Log2(Alignment), so we need 5 bits to encode the 31
63 // possible values.
64 template <unsigned Offset>
65 using AlignmentBitfieldElementT =
66 typename Bitfield::Element<unsigned, Offset, 5,
67 Value::MaxAlignmentExponent>;
68
69 template <unsigned Offset>
70 using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>;
71
72 template <unsigned Offset>
73 using AtomicOrderingBitfieldElementT =
74 typename Bitfield::Element<AtomicOrdering, Offset, 3,
75 AtomicOrdering::LAST>;
76
77private:
78 // The last bit is used to store whether the instruction has metadata attached
79 // or not.
80 using HasMetadataField = Bitfield::Element<bool, 15, 1>;
81
82protected:
83 ~Instruction(); // Use deleteValue() to delete a generic Instruction.
84
85public:
86 Instruction(const Instruction &) = delete;
87 Instruction &operator=(const Instruction &) = delete;
88
89 /// Specialize the methods defined in Value, as we know that an instruction
90 /// can only be used by other instructions.
91 Instruction *user_back() { return cast<Instruction>(*user_begin());}
92 const Instruction *user_back() const { return cast<Instruction>(*user_begin());}
93
94 inline const BasicBlock *getParent() const { return Parent; }
95 inline BasicBlock *getParent() { return Parent; }
96
97 /// Return the module owning the function this instruction belongs to
98 /// or nullptr it the function does not have a module.
99 ///
100 /// Note: this is undefined behavior if the instruction does not have a
101 /// parent, or the parent basic block does not have a parent function.
102 const Module *getModule() const;
103 Module *getModule() {
104 return const_cast<Module *>(
105 static_cast<const Instruction *>(this)->getModule());
106 }
107
108 /// Return the function this instruction belongs to.
109 ///
110 /// Note: it is undefined behavior to call this on an instruction not
111 /// currently inserted into a function.
112 const Function *getFunction() const;
113 Function *getFunction() {
114 return const_cast<Function *>(
115 static_cast<const Instruction *>(this)->getFunction());
116 }
117
118 /// This method unlinks 'this' from the containing basic block, but does not
119 /// delete it.
120 void removeFromParent();
121
122 /// This method unlinks 'this' from the containing basic block and deletes it.
123 ///
124 /// \returns an iterator pointing to the element after the erased one
125 SymbolTableList<Instruction>::iterator eraseFromParent();
126
127 /// Insert an unlinked instruction into a basic block immediately before
128 /// the specified instruction.
129 void insertBefore(Instruction *InsertPos);
130
131 /// Insert an unlinked instruction into a basic block immediately after the
132 /// specified instruction.
133 void insertAfter(Instruction *InsertPos);
134
135 /// Unlink this instruction from its current basic block and insert it into
136 /// the basic block that MovePos lives in, right before MovePos.
137 void moveBefore(Instruction *MovePos);
138
139 /// Unlink this instruction and insert into BB before I.
140 ///
141 /// \pre I is a valid iterator into BB.
142 void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I);
143
144 /// Unlink this instruction from its current basic block and insert it into
145 /// the basic block that MovePos lives in, right after MovePos.
146 void moveAfter(Instruction *MovePos);
147
148 /// Given an instruction Other in the same basic block as this instruction,
149 /// return true if this instruction comes before Other. In this worst case,
150 /// this takes linear time in the number of instructions in the block. The
151 /// results are cached, so in common cases when the block remains unmodified,
152 /// it takes constant time.
153 bool comesBefore(const Instruction *Other) const;
154
155 //===--------------------------------------------------------------------===//
156 // Subclass classification.
157 //===--------------------------------------------------------------------===//
158
159 /// Returns a member of one of the enums like Instruction::Add.
160 unsigned getOpcode() const { return getValueID() - InstructionVal; }
161
162 const char *getOpcodeName() const { return getOpcodeName(getOpcode()); }
163 bool isTerminator() const { return isTerminator(getOpcode()); }
164 bool isUnaryOp() const { return isUnaryOp(getOpcode()); }
165 bool isBinaryOp() const { return isBinaryOp(getOpcode()); }
166 bool isIntDivRem() const { return isIntDivRem(getOpcode()); }
167 bool isShift() const { return isShift(getOpcode()); }
168 bool isCast() const { return isCast(getOpcode()); }
169 bool isFuncletPad() const { return isFuncletPad(getOpcode()); }
170 bool isExceptionalTerminator() const {
171 return isExceptionalTerminator(getOpcode());
172 }
173
174 /// It checks if this instruction is the only user of at least one of
175 /// its operands.
176 bool isOnlyUserOfAnyOperand();
177
178 bool isIndirectTerminator() const {
179 return isIndirectTerminator(getOpcode());
180 }
181
182 static const char* getOpcodeName(unsigned OpCode);
183
184 static inline bool isTerminator(unsigned OpCode) {
185 return OpCode >= TermOpsBegin && OpCode < TermOpsEnd;
186 }
187
188 static inline bool isUnaryOp(unsigned Opcode) {
189 return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd;
190 }
191 static inline bool isBinaryOp(unsigned Opcode) {
192 return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd;
193 }
194
195 static inline bool isIntDivRem(unsigned Opcode) {
196 return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem;
197 }
198
199 /// Determine if the Opcode is one of the shift instructions.
200 static inline bool isShift(unsigned Opcode) {
201 return Opcode >= Shl && Opcode <= AShr;
202 }
203
204 /// Return true if this is a logical shift left or a logical shift right.
205 inline bool isLogicalShift() const {
206 return getOpcode() == Shl || getOpcode() == LShr;
207 }
208
209 /// Return true if this is an arithmetic shift right.
210 inline bool isArithmeticShift() const {
211 return getOpcode() == AShr;
212 }
213
214 /// Determine if the Opcode is and/or/xor.
215 static inline bool isBitwiseLogicOp(unsigned Opcode) {
216 return Opcode == And || Opcode == Or || Opcode == Xor;
217 }
218
219 /// Return true if this is and/or/xor.
220 inline bool isBitwiseLogicOp() const {
221 return isBitwiseLogicOp(getOpcode());
222 }
223
224 /// Determine if the OpCode is one of the CastInst instructions.
225 static inline bool isCast(unsigned OpCode) {
226 return OpCode >= CastOpsBegin && OpCode < CastOpsEnd;
227 }
228
229 /// Determine if the OpCode is one of the FuncletPadInst instructions.
230 static inline bool isFuncletPad(unsigned OpCode) {
231 return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd;
232 }
233
234 /// Returns true if the OpCode is a terminator related to exception handling.
235 static inline bool isExceptionalTerminator(unsigned OpCode) {
236 switch (OpCode) {
237 case Instruction::CatchSwitch:
238 case Instruction::CatchRet:
239 case Instruction::CleanupRet:
240 case Instruction::Invoke:
241 case Instruction::Resume:
242 return true;
243 default:
244 return false;
245 }
246 }
247
248 /// Returns true if the OpCode is a terminator with indirect targets.
249 static inline bool isIndirectTerminator(unsigned OpCode) {
250 switch (OpCode) {
251 case Instruction::IndirectBr:
252 case Instruction::CallBr:
253 return true;
254 default:
255 return false;
256 }
257 }
258
259 //===--------------------------------------------------------------------===//
260 // Metadata manipulation.
261 //===--------------------------------------------------------------------===//
262
263 /// Return true if this instruction has any metadata attached to it.
264 bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); }
265
266 /// Return true if this instruction has metadata attached to it other than a
267 /// debug location.
268 bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); }
269
270 /// Return true if this instruction has the given type of metadata attached.
271 bool hasMetadata(unsigned KindID) const {
272 return getMetadata(KindID) != nullptr;
24
Assuming the condition is false
25
Returning zero, which participates in a condition later
273 }
274
275 /// Return true if this instruction has the given type of metadata attached.
276 bool hasMetadata(StringRef Kind) const {
277 return getMetadata(Kind) != nullptr;
278 }
279
280 /// Get the metadata of given kind attached to this Instruction.
281 /// If the metadata is not found then return null.
282 MDNode *getMetadata(unsigned KindID) const {
283 if (!hasMetadata()) return nullptr;
284 return getMetadataImpl(KindID);
285 }
286
287 /// Get the metadata of given kind attached to this Instruction.
288 /// If the metadata is not found then return null.
289 MDNode *getMetadata(StringRef Kind) const {
290 if (!hasMetadata()) return nullptr;
291 return getMetadataImpl(Kind);
292 }
293
294 /// Get all metadata attached to this Instruction. The first element of each
295 /// pair returned is the KindID, the second element is the metadata value.
296 /// This list is returned sorted by the KindID.
297 void
298 getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
299 if (hasMetadata())
300 getAllMetadataImpl(MDs);
301 }
302
303 /// This does the same thing as getAllMetadata, except that it filters out the
304 /// debug location.
305 void getAllMetadataOtherThanDebugLoc(
306 SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
307 Value::getAllMetadata(MDs);
308 }
309
310 /// Fills the AAMDNodes structure with AA metadata from this instruction.
311 /// When Merge is true, the existing AA metadata is merged with that from this
312 /// instruction providing the most-general result.
313 void getAAMetadata(AAMDNodes &N, bool Merge = false) const;
314
315 /// Set the metadata of the specified kind to the specified node. This updates
316 /// or replaces metadata if already present, or removes it if Node is null.
317 void setMetadata(unsigned KindID, MDNode *Node);
318 void setMetadata(StringRef Kind, MDNode *Node);
319
320 /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty,
321 /// specifies the list of meta data that needs to be copied. If \p WL is
322 /// empty, all meta data will be copied.
323 void copyMetadata(const Instruction &SrcInst,
324 ArrayRef<unsigned> WL = ArrayRef<unsigned>());
325
326 /// If the instruction has "branch_weights" MD_prof metadata and the MDNode
327 /// has three operands (including name string), swap the order of the
328 /// metadata.
329 void swapProfMetadata();
330
331 /// Drop all unknown metadata except for debug locations.
332 /// @{
333 /// Passes are required to drop metadata they don't understand. This is a
334 /// convenience method for passes to do so.
335 /// dropUndefImplyingAttrsAndUnknownMetadata should be used instead of
336 /// this API if the Instruction being modified is a call.
337 void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs);
338 void dropUnknownNonDebugMetadata() {
339 return dropUnknownNonDebugMetadata(None);
340 }
341 void dropUnknownNonDebugMetadata(unsigned ID1) {
342 return dropUnknownNonDebugMetadata(makeArrayRef(ID1));
343 }
344 void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) {
345 unsigned IDs[] = {ID1, ID2};
346 return dropUnknownNonDebugMetadata(IDs);
347 }
348 /// @}
349
350 /// Adds an !annotation metadata node with \p Annotation to this instruction.
351 /// If this instruction already has !annotation metadata, append \p Annotation
352 /// to the existing node.
353 void addAnnotationMetadata(StringRef Annotation);
354
355 /// Sets the metadata on this instruction from the AAMDNodes structure.
356 void setAAMetadata(const AAMDNodes &N);
357
358 /// Retrieve the raw weight values of a conditional branch or select.
359 /// Returns true on success with profile weights filled in.
360 /// Returns false if no metadata or invalid metadata was found.
361 bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const;
362
363 /// Retrieve total raw weight values of a branch.
364 /// Returns true on success with profile total weights filled in.
365 /// Returns false if no metadata was found.
366 bool extractProfTotalWeight(uint64_t &TotalVal) const;
367
368 /// Set the debug location information for this instruction.
369 void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); }
370
371 /// Return the debug location for this node as a DebugLoc.
372 const DebugLoc &getDebugLoc() const { return DbgLoc; }
373
374 /// Set or clear the nuw flag on this instruction, which must be an operator
375 /// which supports this flag. See LangRef.html for the meaning of this flag.
376 void setHasNoUnsignedWrap(bool b = true);
377
378 /// Set or clear the nsw flag on this instruction, which must be an operator
379 /// which supports this flag. See LangRef.html for the meaning of this flag.
380 void setHasNoSignedWrap(bool b = true);
381
382 /// Set or clear the exact flag on this instruction, which must be an operator
383 /// which supports this flag. See LangRef.html for the meaning of this flag.
384 void setIsExact(bool b = true);
385
386 /// Determine whether the no unsigned wrap flag is set.
387 bool hasNoUnsignedWrap() const;
388
389 /// Determine whether the no signed wrap flag is set.
390 bool hasNoSignedWrap() const;
391
392 /// Drops flags that may cause this instruction to evaluate to poison despite
393 /// having non-poison inputs.
394 void dropPoisonGeneratingFlags();
395
396 /// This function drops non-debug unknown metadata (through
397 /// dropUnknownNonDebugMetadata). For calls, it also drops parameter and
398 /// return attributes that can cause undefined behaviour. Both of these should
399 /// be done by passes which move instructions in IR.
400 void
401 dropUndefImplyingAttrsAndUnknownMetadata(ArrayRef<unsigned> KnownIDs = {});
402
403 /// Determine whether the exact flag is set.
404 bool isExact() const;
405
406 /// Set or clear all fast-math-flags on this instruction, which must be an
407 /// operator which supports this flag. See LangRef.html for the meaning of
408 /// this flag.
409 void setFast(bool B);
410
411 /// Set or clear the reassociation flag on this instruction, which must be
412 /// an operator which supports this flag. See LangRef.html for the meaning of
413 /// this flag.
414 void setHasAllowReassoc(bool B);
415
416 /// Set or clear the no-nans flag on this instruction, which must be an
417 /// operator which supports this flag. See LangRef.html for the meaning of
418 /// this flag.
419 void setHasNoNaNs(bool B);
420
421 /// Set or clear the no-infs flag on this instruction, which must be an
422 /// operator which supports this flag. See LangRef.html for the meaning of
423 /// this flag.
424 void setHasNoInfs(bool B);
425
426 /// Set or clear the no-signed-zeros flag on this instruction, which must be
427 /// an operator which supports this flag. See LangRef.html for the meaning of
428 /// this flag.
429 void setHasNoSignedZeros(bool B);
430
431 /// Set or clear the allow-reciprocal flag on this instruction, which must be
432 /// an operator which supports this flag. See LangRef.html for the meaning of
433 /// this flag.
434 void setHasAllowReciprocal(bool B);
435
436 /// Set or clear the allow-contract flag on this instruction, which must be
437 /// an operator which supports this flag. See LangRef.html for the meaning of
438 /// this flag.
439 void setHasAllowContract(bool B);
440
441 /// Set or clear the approximate-math-functions flag on this instruction,
442 /// which must be an operator which supports this flag. See LangRef.html for
443 /// the meaning of this flag.
444 void setHasApproxFunc(bool B);
445
446 /// Convenience function for setting multiple fast-math flags on this
447 /// instruction, which must be an operator which supports these flags. See
448 /// LangRef.html for the meaning of these flags.
449 void setFastMathFlags(FastMathFlags FMF);
450
451 /// Convenience function for transferring all fast-math flag values to this
452 /// instruction, which must be an operator which supports these flags. See
453 /// LangRef.html for the meaning of these flags.
454 void copyFastMathFlags(FastMathFlags FMF);
455
456 /// Determine whether all fast-math-flags are set.
457 bool isFast() const;
458
459 /// Determine whether the allow-reassociation flag is set.
460 bool hasAllowReassoc() const;
461
462 /// Determine whether the no-NaNs flag is set.
463 bool hasNoNaNs() const;
464
465 /// Determine whether the no-infs flag is set.
466 bool hasNoInfs() const;
467
468 /// Determine whether the no-signed-zeros flag is set.
469 bool hasNoSignedZeros() const;
470
471 /// Determine whether the allow-reciprocal flag is set.
472 bool hasAllowReciprocal() const;
473
474 /// Determine whether the allow-contract flag is set.
475 bool hasAllowContract() const;
476
477 /// Determine whether the approximate-math-functions flag is set.
478 bool hasApproxFunc() const;
479
480 /// Convenience function for getting all the fast-math flags, which must be an
481 /// operator which supports these flags. See LangRef.html for the meaning of
482 /// these flags.
483 FastMathFlags getFastMathFlags() const;
484
485 /// Copy I's fast-math flags
486 void copyFastMathFlags(const Instruction *I);
487
488 /// Convenience method to copy supported exact, fast-math, and (optionally)
489 /// wrapping flags from V to this instruction.
490 void copyIRFlags(const Value *V, bool IncludeWrapFlags = true);
491
492 /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
493 /// V and this instruction.
494 void andIRFlags(const Value *V);
495
496 /// Merge 2 debug locations and apply it to the Instruction. If the
497 /// instruction is a CallIns, we need to traverse the inline chain to find
498 /// the common scope. This is not efficient for N-way merging as each time
499 /// you merge 2 iterations, you need to rebuild the hashmap to find the
500 /// common scope. However, we still choose this API because:
501 /// 1) Simplicity: it takes 2 locations instead of a list of locations.
502 /// 2) In worst case, it increases the complexity from O(N*I) to
503 /// O(2*N*I), where N is # of Instructions to merge, and I is the
504 /// maximum level of inline stack. So it is still linear.
505 /// 3) Merging of call instructions should be extremely rare in real
506 /// applications, thus the N-way merging should be in code path.
507 /// The DebugLoc attached to this instruction will be overwritten by the
508 /// merged DebugLoc.
509 void applyMergedLocation(const DILocation *LocA, const DILocation *LocB);
510
511 /// Updates the debug location given that the instruction has been hoisted
512 /// from a block to a predecessor of that block.
513 /// Note: it is undefined behavior to call this on an instruction not
514 /// currently inserted into a function.
515 void updateLocationAfterHoist();
516
517 /// Drop the instruction's debug location. This does not guarantee removal
518 /// of the !dbg source location attachment, as it must set a line 0 location
519 /// with scope information attached on call instructions. To guarantee
520 /// removal of the !dbg attachment, use the \ref setDebugLoc() API.
521 /// Note: it is undefined behavior to call this on an instruction not
522 /// currently inserted into a function.
523 void dropLocation();
524
525private:
526 // These are all implemented in Metadata.cpp.
527 MDNode *getMetadataImpl(unsigned KindID) const;
528 MDNode *getMetadataImpl(StringRef Kind) const;
529 void
530 getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const;
531
532public:
533 //===--------------------------------------------------------------------===//
534 // Predicates and helper methods.
535 //===--------------------------------------------------------------------===//
536
537 /// Return true if the instruction is associative:
538 ///
539 /// Associative operators satisfy: x op (y op z) === (x op y) op z
540 ///
541 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
542 ///
543 bool isAssociative() const LLVM_READONLY__attribute__((__pure__));
544 static bool isAssociative(unsigned Opcode) {
545 return Opcode == And || Opcode == Or || Opcode == Xor ||
546 Opcode == Add || Opcode == Mul;
547 }
548
549 /// Return true if the instruction is commutative:
550 ///
551 /// Commutative operators satisfy: (x op y) === (y op x)
552 ///
553 /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when
554 /// applied to any type.
555 ///
556 bool isCommutative() const LLVM_READONLY__attribute__((__pure__));
557 static bool isCommutative(unsigned Opcode) {
558 switch (Opcode) {
559 case Add: case FAdd:
560 case Mul: case FMul:
561 case And: case Or: case Xor:
562 return true;
563 default:
564 return false;
565 }
566 }
567
568 /// Return true if the instruction is idempotent:
569 ///
570 /// Idempotent operators satisfy: x op x === x
571 ///
572 /// In LLVM, the And and Or operators are idempotent.
573 ///
574 bool isIdempotent() const { return isIdempotent(getOpcode()); }
575 static bool isIdempotent(unsigned Opcode) {
576 return Opcode == And || Opcode == Or;
577 }
578
579 /// Return true if the instruction is nilpotent:
580 ///
581 /// Nilpotent operators satisfy: x op x === Id,
582 ///
583 /// where Id is the identity for the operator, i.e. a constant such that
584 /// x op Id === x and Id op x === x for all x.
585 ///
586 /// In LLVM, the Xor operator is nilpotent.
587 ///
588 bool isNilpotent() const { return isNilpotent(getOpcode()); }
589 static bool isNilpotent(unsigned Opcode) {
590 return Opcode == Xor;
591 }
592
593 /// Return true if this instruction may modify memory.
594 bool mayWriteToMemory() const;
595
596 /// Return true if this instruction may read memory.
597 bool mayReadFromMemory() const;
598
599 /// Return true if this instruction may read or write memory.
600 bool mayReadOrWriteMemory() const {
601 return mayReadFromMemory() || mayWriteToMemory();
602 }
603
604 /// Return true if this instruction has an AtomicOrdering of unordered or
605 /// higher.
606 bool isAtomic() const;
607
608 /// Return true if this atomic instruction loads from memory.
609 bool hasAtomicLoad() const;
610
611 /// Return true if this atomic instruction stores to memory.
612 bool hasAtomicStore() const;
613
614 /// Return true if this instruction has a volatile memory access.
615 bool isVolatile() const;
616
617 /// Return true if this instruction may throw an exception.
618 bool mayThrow() const;
619
620 /// Return true if this instruction behaves like a memory fence: it can load
621 /// or store to memory location without being given a memory location.
622 bool isFenceLike() const {
623 switch (getOpcode()) {
624 default:
625 return false;
626 // This list should be kept in sync with the list in mayWriteToMemory for
627 // all opcodes which don't have a memory location.
628 case Instruction::Fence:
629 case Instruction::CatchPad:
630 case Instruction::CatchRet:
631 case Instruction::Call:
632 case Instruction::Invoke:
633 return true;
634 }
635 }
636
637 /// Return true if the instruction may have side effects.
638 ///
639 /// Side effects are:
640 /// * Writing to memory.
641 /// * Unwinding.
642 /// * Not returning (e.g. an infinite loop).
643 ///
644 /// Note that this does not consider malloc and alloca to have side
645 /// effects because the newly allocated memory is completely invisible to
646 /// instructions which don't use the returned value. For cases where this
647 /// matters, isSafeToSpeculativelyExecute may be more appropriate.
648 bool mayHaveSideEffects() const;
649
650 /// Return true if the instruction can be removed if the result is unused.
651 ///
652 /// When constant folding some instructions cannot be removed even if their
653 /// results are unused. Specifically terminator instructions and calls that
654 /// may have side effects cannot be removed without semantically changing the
655 /// generated program.
656 bool isSafeToRemove() const;
657
658 /// Return true if the instruction will return (unwinding is considered as
659 /// a form of returning control flow here).
660 bool willReturn() const;
661
662 /// Return true if the instruction is a variety of EH-block.
663 bool isEHPad() const {
664 switch (getOpcode()) {
665 case Instruction::CatchSwitch:
666 case Instruction::CatchPad:
667 case Instruction::CleanupPad:
668 case Instruction::LandingPad:
669 return true;
670 default:
671 return false;
672 }
673 }
674
675 /// Return true if the instruction is a llvm.lifetime.start or
676 /// llvm.lifetime.end marker.
677 bool isLifetimeStartOrEnd() const;
678
679 /// Return true if the instruction is a llvm.launder.invariant.group or
680 /// llvm.strip.invariant.group.
681 bool isLaunderOrStripInvariantGroup() const;
682
683 /// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst.
684 bool isDebugOrPseudoInst() const;
685
686 /// Return a pointer to the next non-debug instruction in the same basic
687 /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
688 /// operations if \c SkipPseudoOp is true.
689 const Instruction *
690 getNextNonDebugInstruction(bool SkipPseudoOp = false) const;
691 Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) {
692 return const_cast<Instruction *>(
693 static_cast<const Instruction *>(this)->getNextNonDebugInstruction(
694 SkipPseudoOp));
695 }
696
697 /// Return a pointer to the previous non-debug instruction in the same basic
698 /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo
699 /// operations if \c SkipPseudoOp is true.
700 const Instruction *
701 getPrevNonDebugInstruction(bool SkipPseudoOp = false) const;
702 Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) {
703 return const_cast<Instruction *>(
704 static_cast<const Instruction *>(this)->getPrevNonDebugInstruction(
705 SkipPseudoOp));
706 }
707
708 /// Create a copy of 'this' instruction that is identical in all ways except
709 /// the following:
710 /// * The instruction has no parent
711 /// * The instruction has no name
712 ///
713 Instruction *clone() const;
714
715 /// Return true if the specified instruction is exactly identical to the
716 /// current one. This means that all operands match and any extra information
717 /// (e.g. load is volatile) agree.
718 bool isIdenticalTo(const Instruction *I) const;
719
720 /// This is like isIdenticalTo, except that it ignores the
721 /// SubclassOptionalData flags, which may specify conditions under which the
722 /// instruction's result is undefined.
723 bool isIdenticalToWhenDefined(const Instruction *I) const;
724
725 /// When checking for operation equivalence (using isSameOperationAs) it is
726 /// sometimes useful to ignore certain attributes.
727 enum OperationEquivalenceFlags {
728 /// Check for equivalence ignoring load/store alignment.
729 CompareIgnoringAlignment = 1<<0,
730 /// Check for equivalence treating a type and a vector of that type
731 /// as equivalent.
732 CompareUsingScalarTypes = 1<<1
733 };
734
735 /// This function determines if the specified instruction executes the same
736 /// operation as the current one. This means that the opcodes, type, operand
737 /// types and any other factors affecting the operation must be the same. This
738 /// is similar to isIdenticalTo except the operands themselves don't have to
739 /// be identical.
740 /// @returns true if the specified instruction is the same operation as
741 /// the current one.
742 /// Determine if one instruction is the same operation as another.
743 bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const;
744
745 /// Return true if there are any uses of this instruction in blocks other than
746 /// the specified block. Note that PHI nodes are considered to evaluate their
747 /// operands in the corresponding predecessor block.
748 bool isUsedOutsideOfBlock(const BasicBlock *BB) const;
749
750 /// Return the number of successors that this instruction has. The instruction
751 /// must be a terminator.
752 unsigned getNumSuccessors() const;
753
754 /// Return the specified successor. This instruction must be a terminator.
755 BasicBlock *getSuccessor(unsigned Idx) const;
756
757 /// Update the specified successor to point at the provided block. This
758 /// instruction must be a terminator.
759 void setSuccessor(unsigned Idx, BasicBlock *BB);
760
761 /// Replace specified successor OldBB to point at the provided block.
762 /// This instruction must be a terminator.
763 void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB);
764
765 /// Methods for support type inquiry through isa, cast, and dyn_cast:
766 static bool classof(const Value *V) {
767 return V->getValueID() >= Value::InstructionVal;
768 }
769
770 //----------------------------------------------------------------------
771 // Exported enumerations.
772 //
773 enum TermOps { // These terminate basic blocks
774#define FIRST_TERM_INST(N) TermOpsBegin = N,
775#define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N,
776#define LAST_TERM_INST(N) TermOpsEnd = N+1
777#include "llvm/IR/Instruction.def"
778 };
779
780 enum UnaryOps {
781#define FIRST_UNARY_INST(N) UnaryOpsBegin = N,
782#define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N,
783#define LAST_UNARY_INST(N) UnaryOpsEnd = N+1
784#include "llvm/IR/Instruction.def"
785 };
786
787 enum BinaryOps {
788#define FIRST_BINARY_INST(N) BinaryOpsBegin = N,
789#define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N,
790#define LAST_BINARY_INST(N) BinaryOpsEnd = N+1
791#include "llvm/IR/Instruction.def"
792 };
793
794 enum MemoryOps {
795#define FIRST_MEMORY_INST(N) MemoryOpsBegin = N,
796#define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N,
797#define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1
798#include "llvm/IR/Instruction.def"
799 };
800
801 enum CastOps {
802#define FIRST_CAST_INST(N) CastOpsBegin = N,
803#define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N,
804#define LAST_CAST_INST(N) CastOpsEnd = N+1
805#include "llvm/IR/Instruction.def"
806 };
807
808 enum FuncletPadOps {
809#define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N,
810#define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N,
811#define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1
812#include "llvm/IR/Instruction.def"
813 };
814
815 enum OtherOps {
816#define FIRST_OTHER_INST(N) OtherOpsBegin = N,
817#define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N,
818#define LAST_OTHER_INST(N) OtherOpsEnd = N+1
819#include "llvm/IR/Instruction.def"
820 };
821
822private:
823 friend class SymbolTableListTraits<Instruction>;
824 friend class BasicBlock; // For renumbering.
825
826 // Shadow Value::setValueSubclassData with a private forwarding method so that
827 // subclasses cannot accidentally use it.
828 void setValueSubclassData(unsigned short D) {
829 Value::setValueSubclassData(D);
830 }
831
832 unsigned short getSubclassDataFromValue() const {
833 return Value::getSubclassDataFromValue();
834 }
835
836 void setParent(BasicBlock *P);
837
838protected:
839 // Instruction subclasses can stick up to 15 bits of stuff into the
840 // SubclassData field of instruction with these members.
841
842 template <typename BitfieldElement>
843 typename BitfieldElement::Type getSubclassData() const {
844 static_assert(
845 std::is_same<BitfieldElement, HasMetadataField>::value ||
846 !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
847 "Must not overlap with the metadata bit");
848 return Bitfield::get<BitfieldElement>(getSubclassDataFromValue());
849 }
850
851 template <typename BitfieldElement>
852 void setSubclassData(typename BitfieldElement::Type Value) {
853 static_assert(
854 std::is_same<BitfieldElement, HasMetadataField>::value ||
855 !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(),
856 "Must not overlap with the metadata bit");
857 auto Storage = getSubclassDataFromValue();
858 Bitfield::set<BitfieldElement>(Storage, Value);
859 setValueSubclassData(Storage);
860 }
861
862 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
863 Instruction *InsertBefore = nullptr);
864 Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps,
865 BasicBlock *InsertAtEnd);
866
867private:
868 /// Create a copy of this instruction.
869 Instruction *cloneImpl() const;
870};
871
872inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) {
873 V->deleteValue();
874}
875
876} // end namespace llvm
877
878#endif // LLVM_IR_INSTRUCTION_H

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/TypeSize.h

1//===- TypeSize.h - Wrapper around type sizes -------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a struct that can be used to query the size of IR types
10// which may be scalable vectors. It provides convenience operators so that
11// it can be used in much the same way as a single scalar value.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_SUPPORT_TYPESIZE_H
16#define LLVM_SUPPORT_TYPESIZE_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Support/WithColor.h"
21
22#include <algorithm>
23#include <array>
24#include <cassert>
25#include <cstdint>
26#include <type_traits>
27
28namespace llvm {
29
30/// Reports a diagnostic message to indicate an invalid size request has been
31/// done on a scalable vector. This function may not return.
32void reportInvalidSizeRequest(const char *Msg);
33
34template <typename LeafTy> struct LinearPolyBaseTypeTraits {};
35
36//===----------------------------------------------------------------------===//
37// LinearPolyBase - a base class for linear polynomials with multiple
38// dimensions. This can e.g. be used to describe offsets that are have both a
39// fixed and scalable component.
40//===----------------------------------------------------------------------===//
41
42/// LinearPolyBase describes a linear polynomial:
43/// c0 * scale0 + c1 * scale1 + ... + cK * scaleK
44/// where the scale is implicit, so only the coefficients are encoded.
45template <typename LeafTy>
46class LinearPolyBase {
47public:
48 using ScalarTy = typename LinearPolyBaseTypeTraits<LeafTy>::ScalarTy;
49 static constexpr auto Dimensions = LinearPolyBaseTypeTraits<LeafTy>::Dimensions;
50 static_assert(Dimensions != std::numeric_limits<unsigned>::max(),
51 "Dimensions out of range");
52
53private:
54 std::array<ScalarTy, Dimensions> Coefficients;
55
56protected:
57 LinearPolyBase(ArrayRef<ScalarTy> Values) {
58 std::copy(Values.begin(), Values.end(), Coefficients.begin());
59 }
60
61public:
62 friend LeafTy &operator+=(LeafTy &LHS, const LeafTy &RHS) {
63 for (unsigned I=0; I<Dimensions; ++I)
64 LHS.Coefficients[I] += RHS.Coefficients[I];
65 return LHS;
66 }
67
68 friend LeafTy &operator-=(LeafTy &LHS, const LeafTy &RHS) {
69 for (unsigned I=0; I<Dimensions; ++I)
70 LHS.Coefficients[I] -= RHS.Coefficients[I];
71 return LHS;
72 }
73
74 friend LeafTy &operator*=(LeafTy &LHS, ScalarTy RHS) {
75 for (auto &C : LHS.Coefficients)
76 C *= RHS;
77 return LHS;
78 }
79
80 friend LeafTy operator+(const LeafTy &LHS, const LeafTy &RHS) {
81 LeafTy Copy = LHS;
82 return Copy += RHS;
83 }
84
85 friend LeafTy operator-(const LeafTy &LHS, const LeafTy &RHS) {
86 LeafTy Copy = LHS;
87 return Copy -= RHS;
88 }
89
90 friend LeafTy operator*(const LeafTy &LHS, ScalarTy RHS) {
91 LeafTy Copy = LHS;
92 return Copy *= RHS;
93 }
94
95 template <typename U = ScalarTy>
96 friend typename std::enable_if_t<std::is_signed<U>::value, LeafTy>
97 operator-(const LeafTy &LHS) {
98 LeafTy Copy = LHS;
99 return Copy *= -1;
100 }
101
102 bool operator==(const LinearPolyBase &RHS) const {
103 return std::equal(Coefficients.begin(), Coefficients.end(),
104 RHS.Coefficients.begin());
105 }
106
107 bool operator!=(const LinearPolyBase &RHS) const {
108 return !(*this == RHS);
109 }
110
111 bool isZero() const {
112 return all_of(Coefficients, [](const ScalarTy &C) { return C == 0; });
113 }
114 bool isNonZero() const { return !isZero(); }
115 explicit operator bool() const { return isNonZero(); }
116
117 ScalarTy getValue(unsigned Dim) const { return Coefficients[Dim]; }
118};
119
120//===----------------------------------------------------------------------===//
121// StackOffset - Represent an offset with named fixed and scalable components.
122//===----------------------------------------------------------------------===//
123
124class StackOffset;
125template <> struct LinearPolyBaseTypeTraits<StackOffset> {
126 using ScalarTy = int64_t;
127 static constexpr unsigned Dimensions = 2;
128};
129
130/// StackOffset is a class to represent an offset with 2 dimensions,
131/// named fixed and scalable, respectively. This class allows a value for both
132/// dimensions to depict e.g. "8 bytes and 16 scalable bytes", which is needed
133/// to represent stack offsets.
134class StackOffset : public LinearPolyBase<StackOffset> {
135protected:
136 StackOffset(ScalarTy Fixed, ScalarTy Scalable)
137 : LinearPolyBase<StackOffset>({Fixed, Scalable}) {}
138
139public:
140 StackOffset() : StackOffset({0, 0}) {}
141 StackOffset(const LinearPolyBase<StackOffset> &Other)
142 : LinearPolyBase<StackOffset>(Other) {}
143 static StackOffset getFixed(ScalarTy Fixed) { return {Fixed, 0}; }
144 static StackOffset getScalable(ScalarTy Scalable) { return {0, Scalable}; }
145 static StackOffset get(ScalarTy Fixed, ScalarTy Scalable) {
146 return {Fixed, Scalable};
147 }
148
149 ScalarTy getFixed() const { return this->getValue(0); }
150 ScalarTy getScalable() const { return this->getValue(1); }
151};
152
153//===----------------------------------------------------------------------===//
154// UnivariateLinearPolyBase - a base class for linear polynomials with multiple
155// dimensions, but where only one dimension can be set at any time.
156// This can e.g. be used to describe sizes that are either fixed or scalable.
157//===----------------------------------------------------------------------===//
158
159/// UnivariateLinearPolyBase is a base class for ElementCount and TypeSize.
160/// Like LinearPolyBase it tries to represent a linear polynomial
161/// where only one dimension can be set at any time, e.g.
162/// 0 * scale0 + 0 * scale1 + ... + cJ * scaleJ + ... + 0 * scaleK
163/// The dimension that is set is the univariate dimension.
164template <typename LeafTy>
165class UnivariateLinearPolyBase {
166public:
167 using ScalarTy = typename LinearPolyBaseTypeTraits<LeafTy>::ScalarTy;
168 static constexpr auto Dimensions = LinearPolyBaseTypeTraits<LeafTy>::Dimensions;
169 static_assert(Dimensions != std::numeric_limits<unsigned>::max(),
170 "Dimensions out of range");
171
172protected:
173 ScalarTy Value; // The value at the univeriate dimension.
174 unsigned UnivariateDim; // The univeriate dimension.
175
176 UnivariateLinearPolyBase(ScalarTy Val, unsigned UnivariateDim)
177 : Value(Val), UnivariateDim(UnivariateDim) {
178 assert(UnivariateDim < Dimensions && "Dimension out of range")(static_cast <bool> (UnivariateDim < Dimensions &&
"Dimension out of range") ? void (0) : __assert_fail ("UnivariateDim < Dimensions && \"Dimension out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/TypeSize.h"
, 178, __extension__ __PRETTY_FUNCTION__))
;
179 }
180
181 friend LeafTy &operator+=(LeafTy &LHS, const LeafTy &RHS) {
182 assert(LHS.UnivariateDim == RHS.UnivariateDim && "Invalid dimensions")(static_cast <bool> (LHS.UnivariateDim == RHS.UnivariateDim
&& "Invalid dimensions") ? void (0) : __assert_fail (
"LHS.UnivariateDim == RHS.UnivariateDim && \"Invalid dimensions\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/TypeSize.h"
, 182, __extension__ __PRETTY_FUNCTION__))
;
183 LHS.Value += RHS.Value;
184 return LHS;
185 }
186
187 friend LeafTy &operator-=(LeafTy &LHS, const LeafTy &RHS) {
188 assert(LHS.UnivariateDim == RHS.UnivariateDim && "Invalid dimensions")(static_cast <bool> (LHS.UnivariateDim == RHS.UnivariateDim
&& "Invalid dimensions") ? void (0) : __assert_fail (
"LHS.UnivariateDim == RHS.UnivariateDim && \"Invalid dimensions\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/TypeSize.h"
, 188, __extension__ __PRETTY_FUNCTION__))
;
189 LHS.Value -= RHS.Value;
190 return LHS;
191 }
192
193 friend LeafTy &operator*=(LeafTy &LHS, ScalarTy RHS) {
194 LHS.Value *= RHS;
195 return LHS;
196 }
197
198 friend LeafTy operator+(const LeafTy &LHS, const LeafTy &RHS) {
199 LeafTy Copy = LHS;
200 return Copy += RHS;
201 }
202
203 friend LeafTy operator-(const LeafTy &LHS, const LeafTy &RHS) {
204 LeafTy Copy = LHS;
205 return Copy -= RHS;
206 }
207
208 friend LeafTy operator*(const LeafTy &LHS, ScalarTy RHS) {
209 LeafTy Copy = LHS;
210 return Copy *= RHS;
211 }
212
213 template <typename U = ScalarTy>
214 friend typename std::enable_if<std::is_signed<U>::value, LeafTy>::type
215 operator-(const LeafTy &LHS) {
216 LeafTy Copy = LHS;
217 return Copy *= -1;
218 }
219
220public:
221 bool operator==(const UnivariateLinearPolyBase &RHS) const {
222 return Value == RHS.Value && UnivariateDim == RHS.UnivariateDim;
223 }
224
225 bool operator!=(const UnivariateLinearPolyBase &RHS) const {
226 return !(*this == RHS);
227 }
228
229 bool isZero() const { return !Value; }
230 bool isNonZero() const { return !isZero(); }
231 explicit operator bool() const { return isNonZero(); }
232 ScalarTy getValue() const { return Value; }
233 ScalarTy getValue(unsigned Dim) const {
234 return Dim == UnivariateDim ? Value : 0;
235 }
236
237 /// Add \p RHS to the value at the univariate dimension.
238 LeafTy getWithIncrement(ScalarTy RHS) const {
239 return static_cast<LeafTy>(
240 UnivariateLinearPolyBase(Value + RHS, UnivariateDim));
241 }
242
243 /// Subtract \p RHS from the value at the univariate dimension.
244 LeafTy getWithDecrement(ScalarTy RHS) const {
245 return static_cast<LeafTy>(
246 UnivariateLinearPolyBase(Value - RHS, UnivariateDim));
247 }
248};
249
250
251//===----------------------------------------------------------------------===//
252// LinearPolySize - base class for fixed- or scalable sizes.
253// ^ ^
254// | |
255// | +----- ElementCount - Leaf class to represent an element count
256// | (vscale x unsigned)
257// |
258// +-------- TypeSize - Leaf class to represent a type size
259// (vscale x uint64_t)
260//===----------------------------------------------------------------------===//
261
262/// LinearPolySize is a base class to represent sizes. It is either
263/// fixed-sized or it is scalable-sized, but it cannot be both.
264template <typename LeafTy>
265class LinearPolySize : public UnivariateLinearPolyBase<LeafTy> {
266 // Make the parent class a friend, so that it can access the protected
267 // conversion/copy-constructor for UnivariatePolyBase<LeafTy> ->
268 // LinearPolySize<LeafTy>.
269 friend class UnivariateLinearPolyBase<LeafTy>;
270
271public:
272 using ScalarTy = typename UnivariateLinearPolyBase<LeafTy>::ScalarTy;
273 enum Dims : unsigned { FixedDim = 0, ScalableDim = 1 };
274
275protected:
276 LinearPolySize(ScalarTy MinVal, Dims D)
277 : UnivariateLinearPolyBase<LeafTy>(MinVal, D) {}
278
279 LinearPolySize(const UnivariateLinearPolyBase<LeafTy> &V)
280 : UnivariateLinearPolyBase<LeafTy>(V) {}
281
282public:
283
284 static LeafTy getFixed(ScalarTy MinVal) {
285 return static_cast<LeafTy>(LinearPolySize(MinVal, FixedDim));
286 }
287 static LeafTy getScalable(ScalarTy MinVal) {
288 return static_cast<LeafTy>(LinearPolySize(MinVal, ScalableDim));
289 }
290 static LeafTy get(ScalarTy MinVal, bool Scalable) {
291 return static_cast<LeafTy>(
292 LinearPolySize(MinVal, Scalable ? ScalableDim : FixedDim));
293 }
294 static LeafTy getNull() { return get(0, false); }
295
296 /// Returns the minimum value this size can represent.
297 ScalarTy getKnownMinValue() const { return this->getValue(); }
298 /// Returns whether the size is scaled by a runtime quantity (vscale).
299 bool isScalable() const { return this->UnivariateDim == ScalableDim; }
30
Assuming field 'UnivariateDim' is equal to ScalableDim
31
Returning the value 1, which participates in a condition later
300 /// A return value of true indicates we know at compile time that the number
301 /// of elements (vscale * Min) is definitely even. However, returning false
302 /// does not guarantee that the total number of elements is odd.
303 bool isKnownEven() const { return (getKnownMinValue() & 0x1) == 0; }
304 /// This function tells the caller whether the element count is known at
305 /// compile time to be a multiple of the scalar value RHS.
306 bool isKnownMultipleOf(ScalarTy RHS) const {
307 return getKnownMinValue() % RHS == 0;
308 }
309
310 // Return the minimum value with the assumption that the count is exact.
311 // Use in places where a scalable count doesn't make sense (e.g. non-vector
312 // types, or vectors in backends which don't support scalable vectors).
313 ScalarTy getFixedValue() const {
314 assert(!isScalable() &&(static_cast <bool> (!isScalable() && "Request for a fixed element count on a scalable object"
) ? void (0) : __assert_fail ("!isScalable() && \"Request for a fixed element count on a scalable object\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/TypeSize.h"
, 315, __extension__ __PRETTY_FUNCTION__))
315 "Request for a fixed element count on a scalable object")(static_cast <bool> (!isScalable() && "Request for a fixed element count on a scalable object"
) ? void (0) : __assert_fail ("!isScalable() && \"Request for a fixed element count on a scalable object\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/TypeSize.h"
, 315, __extension__ __PRETTY_FUNCTION__))
;
316 return getKnownMinValue();
317 }
318
319 // For some cases, size ordering between scalable and fixed size types cannot
320 // be determined at compile time, so such comparisons aren't allowed.
321 //
322 // e.g. <vscale x 2 x i16> could be bigger than <4 x i32> with a runtime
323 // vscale >= 5, equal sized with a vscale of 4, and smaller with
324 // a vscale <= 3.
325 //
326 // All the functions below make use of the fact vscale is always >= 1, which
327 // means that <vscale x 4 x i32> is guaranteed to be >= <4 x i32>, etc.
328
329 static bool isKnownLT(const LinearPolySize &LHS, const LinearPolySize &RHS) {
330 if (!LHS.isScalable() || RHS.isScalable())
331 return LHS.getKnownMinValue() < RHS.getKnownMinValue();
332 return false;
333 }
334
335 static bool isKnownGT(const LinearPolySize &LHS, const LinearPolySize &RHS) {
336 if (LHS.isScalable() || !RHS.isScalable())
337 return LHS.getKnownMinValue() > RHS.getKnownMinValue();
338 return false;
339 }
340
341 static bool isKnownLE(const LinearPolySize &LHS, const LinearPolySize &RHS) {
342 if (!LHS.isScalable() || RHS.isScalable())
343 return LHS.getKnownMinValue() <= RHS.getKnownMinValue();
344 return false;
345 }
346
347 static bool isKnownGE(const LinearPolySize &LHS, const LinearPolySize &RHS) {
348 if (LHS.isScalable() || !RHS.isScalable())
349 return LHS.getKnownMinValue() >= RHS.getKnownMinValue();
350 return false;
351 }
352
353 /// We do not provide the '/' operator here because division for polynomial
354 /// types does not work in the same way as for normal integer types. We can
355 /// only divide the minimum value (or coefficient) by RHS, which is not the
356 /// same as
357 /// (Min * Vscale) / RHS
358 /// The caller is recommended to use this function in combination with
359 /// isKnownMultipleOf(RHS), which lets the caller know if it's possible to
360 /// perform a lossless divide by RHS.
361 LeafTy divideCoefficientBy(ScalarTy RHS) const {
362 return static_cast<LeafTy>(
363 LinearPolySize::get(getKnownMinValue() / RHS, isScalable()));
364 }
365
366 LeafTy coefficientNextPowerOf2() const {
367 return static_cast<LeafTy>(LinearPolySize::get(
368 static_cast<ScalarTy>(llvm::NextPowerOf2(getKnownMinValue())),
369 isScalable()));
370 }
371
372 /// Printing function.
373 void print(raw_ostream &OS) const {
374 if (isScalable())
375 OS << "vscale x ";
376 OS << getKnownMinValue();
377 }
378};
379
380class ElementCount;
381template <> struct LinearPolyBaseTypeTraits<ElementCount> {
382 using ScalarTy = unsigned;
383 static constexpr unsigned Dimensions = 2;
384};
385
386class ElementCount : public LinearPolySize<ElementCount> {
387public:
388 ElementCount() : LinearPolySize(LinearPolySize::getNull()) {}
389
390 ElementCount(const LinearPolySize<ElementCount> &V) : LinearPolySize(V) {}
391
392 /// Counting predicates.
393 ///
394 ///@{ Number of elements..
395 /// Exactly one element.
396 bool isScalar() const { return !isScalable() && getKnownMinValue() == 1; }
397 /// One or more elements.
398 bool isVector() const {
399 return (isScalable() && getKnownMinValue() != 0) || getKnownMinValue() > 1;
400 }
401 ///@}
402};
403
404// This class is used to represent the size of types. If the type is of fixed
405class TypeSize;
406template <> struct LinearPolyBaseTypeTraits<TypeSize> {
407 using ScalarTy = uint64_t;
408 static constexpr unsigned Dimensions = 2;
409};
410
411// TODO: Most functionality in this class will gradually be phased out
412// so it will resemble LinearPolySize as much as possible.
413//
414// TypeSize is used to represent the size of types. If the type is of fixed
415// size, it will represent the exact size. If the type is a scalable vector,
416// it will represent the known minimum size.
417class TypeSize : public LinearPolySize<TypeSize> {
418public:
419 TypeSize(const LinearPolySize<TypeSize> &V) : LinearPolySize(V) {}
420 TypeSize(ScalarTy MinVal, bool IsScalable)
421 : LinearPolySize(LinearPolySize::get(MinVal, IsScalable)) {}
422
423 static TypeSize Fixed(ScalarTy MinVal) { return TypeSize(MinVal, false); }
424 static TypeSize Scalable(ScalarTy MinVal) { return TypeSize(MinVal, true); }
425
426 ScalarTy getFixedSize() const { return getFixedValue(); }
427 ScalarTy getKnownMinSize() const { return getKnownMinValue(); }
428
429 // All code for this class below this point is needed because of the
430 // temporary implicit conversion to uint64_t. The operator overloads are
431 // needed because otherwise the conversion of the parent class
432 // UnivariateLinearPolyBase -> TypeSize is ambiguous.
433 // TODO: Remove the implicit conversion.
434
435 // Casts to a uint64_t if this is a fixed-width size.
436 //
437 // This interface is deprecated and will be removed in a future version
438 // of LLVM in favour of upgrading uses that rely on this implicit conversion
439 // to uint64_t. Calls to functions that return a TypeSize should use the
440 // proper interfaces to TypeSize.
441 // In practice this is mostly calls to MVT/EVT::getSizeInBits().
442 //
443 // To determine how to upgrade the code:
444 //
445 // if (<algorithm works for both scalable and fixed-width vectors>)
446 // use getKnownMinValue()
447 // else if (<algorithm works only for fixed-width vectors>) {
448 // if <algorithm can be adapted for both scalable and fixed-width vectors>
449 // update the algorithm and use getKnownMinValue()
450 // else
451 // bail out early for scalable vectors and use getFixedValue()
452 // }
453 operator ScalarTy() const;
454
455 // Additional operators needed to avoid ambiguous parses
456 // because of the implicit conversion hack.
457 friend TypeSize operator*(const TypeSize &LHS, const int RHS) {
458 return LHS * (ScalarTy)RHS;
459 }
460 friend TypeSize operator*(const TypeSize &LHS, const unsigned RHS) {
461 return LHS * (ScalarTy)RHS;
462 }
463 friend TypeSize operator*(const TypeSize &LHS, const int64_t RHS) {
464 return LHS * (ScalarTy)RHS;
465 }
466 friend TypeSize operator*(const int LHS, const TypeSize &RHS) {
467 return RHS * LHS;
468 }
469 friend TypeSize operator*(const unsigned LHS, const TypeSize &RHS) {
470 return RHS * LHS;
471 }
472 friend TypeSize operator*(const int64_t LHS, const TypeSize &RHS) {
473 return RHS * LHS;
474 }
475 friend TypeSize operator*(const uint64_t LHS, const TypeSize &RHS) {
476 return RHS * LHS;
477 }
478};
479
480//===----------------------------------------------------------------------===//
481// Utilities
482//===----------------------------------------------------------------------===//
483
484/// Returns a TypeSize with a known minimum size that is the next integer
485/// (mod 2**64) that is greater than or equal to \p Value and is a multiple
486/// of \p Align. \p Align must be non-zero.
487///
488/// Similar to the alignTo functions in MathExtras.h
489inline TypeSize alignTo(TypeSize Size, uint64_t Align) {
490 assert(Align != 0u && "Align must be non-zero")(static_cast <bool> (Align != 0u && "Align must be non-zero"
) ? void (0) : __assert_fail ("Align != 0u && \"Align must be non-zero\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/Support/TypeSize.h"
, 490, __extension__ __PRETTY_FUNCTION__))
;
491 return {(Size.getKnownMinValue() + Align - 1) / Align * Align,
492 Size.isScalable()};
493}
494
495/// Stream operator function for `LinearPolySize`.
496template <typename LeafTy>
497inline raw_ostream &operator<<(raw_ostream &OS,
498 const LinearPolySize<LeafTy> &PS) {
499 PS.print(OS);
500 return OS;
501}
502
503template <typename T> struct DenseMapInfo;
504template <> struct DenseMapInfo<ElementCount> {
505 static inline ElementCount getEmptyKey() {
506 return ElementCount::getScalable(~0U);
507 }
508 static inline ElementCount getTombstoneKey() {
509 return ElementCount::getFixed(~0U - 1);
510 }
511 static unsigned getHashValue(const ElementCount &EltCnt) {
512 unsigned HashVal = EltCnt.getKnownMinValue() * 37U;
513 if (EltCnt.isScalable())
514 return (HashVal - 1U);
515
516 return HashVal;
517 }
518
519 static bool isEqual(const ElementCount &LHS, const ElementCount &RHS) {
520 return LHS == RHS;
521 }
522};
523
524} // end namespace llvm
525
526#endif // LLVM_SUPPORT_TYPESIZE_H