Bug Summary

File:llvm/lib/Transforms/Scalar/LICM.cpp
Warning:line 1211, column 33
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LICM.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/lib/Transforms/Scalar -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-05-07-005843-9350-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp

/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp

1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion, attempting to remove as much
10// code from the body of a loop as possible. It does this by either hoisting
11// code into the preheader block, or by sinking code to the exit blocks if it is
12// safe. This pass also promotes must-aliased memory locations in the loop to
13// live in registers, thus hoisting and sinking "invariant" loads and stores.
14//
15// Hoisting operations out of loops is a canonicalization transform. It
16// enables and simplifies subsequent optimizations in the middle-end.
17// Rematerialization of hoisted instructions to reduce register pressure is the
18// responsibility of the back-end, which has more accurate information about
19// register pressure and also handles other optimizations than LICM that
20// increase live-ranges.
21//
22// This pass uses alias analysis for two purposes:
23//
24// 1. Moving loop invariant loads and calls out of loops. If we can determine
25// that a load or call inside of a loop never aliases anything stored to,
26// we can hoist it or sink it like any other instruction.
27// 2. Scalar Promotion of Memory - If there is a store instruction inside of
28// the loop, we try to move the store to happen AFTER the loop instead of
29// inside of the loop. This can only happen if a few conditions are true:
30// A. The pointer stored through is loop invariant
31// B. There are no stores or loads in the loop which _may_ alias the
32// pointer. There are no calls in the loop which mod/ref the pointer.
33// If these conditions are true, we can promote the loads and stores in the
34// loop of the pointer to use a temporary alloca'd variable. We then use
35// the SSAUpdater to construct the appropriate SSA form for the value.
36//
37//===----------------------------------------------------------------------===//
38
39#include "llvm/Transforms/Scalar/LICM.h"
40#include "llvm/ADT/SetOperations.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/BasicAliasAnalysis.h"
45#include "llvm/Analysis/BlockFrequencyInfo.h"
46#include "llvm/Analysis/CaptureTracking.h"
47#include "llvm/Analysis/ConstantFolding.h"
48#include "llvm/Analysis/GlobalsModRef.h"
49#include "llvm/Analysis/GuardUtils.h"
50#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51#include "llvm/Analysis/Loads.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopIterator.h"
54#include "llvm/Analysis/LoopPass.h"
55#include "llvm/Analysis/MemoryBuiltins.h"
56#include "llvm/Analysis/MemorySSA.h"
57#include "llvm/Analysis/MemorySSAUpdater.h"
58#include "llvm/Analysis/MustExecute.h"
59#include "llvm/Analysis/OptimizationRemarkEmitter.h"
60#include "llvm/Analysis/ScalarEvolution.h"
61#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
62#include "llvm/Analysis/TargetLibraryInfo.h"
63#include "llvm/Analysis/ValueTracking.h"
64#include "llvm/IR/CFG.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfoMetadata.h"
68#include "llvm/IR/DerivedTypes.h"
69#include "llvm/IR/Dominators.h"
70#include "llvm/IR/Instructions.h"
71#include "llvm/IR/IntrinsicInst.h"
72#include "llvm/IR/LLVMContext.h"
73#include "llvm/IR/Metadata.h"
74#include "llvm/IR/PatternMatch.h"
75#include "llvm/IR/PredIteratorCache.h"
76#include "llvm/InitializePasses.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/raw_ostream.h"
80#include "llvm/Transforms/Scalar.h"
81#include "llvm/Transforms/Scalar/LoopPassManager.h"
82#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
83#include "llvm/Transforms/Utils/BasicBlockUtils.h"
84#include "llvm/Transforms/Utils/Local.h"
85#include "llvm/Transforms/Utils/LoopUtils.h"
86#include "llvm/Transforms/Utils/SSAUpdater.h"
87#include <algorithm>
88#include <utility>
89using namespace llvm;
90
91#define DEBUG_TYPE"licm" "licm"
92
93STATISTIC(NumCreatedBlocks, "Number of blocks created")static llvm::Statistic NumCreatedBlocks = {"licm", "NumCreatedBlocks"
, "Number of blocks created"}
;
94STATISTIC(NumClonedBranches, "Number of branches cloned")static llvm::Statistic NumClonedBranches = {"licm", "NumClonedBranches"
, "Number of branches cloned"}
;
95STATISTIC(NumSunk, "Number of instructions sunk out of loop")static llvm::Statistic NumSunk = {"licm", "NumSunk", "Number of instructions sunk out of loop"
}
;
96STATISTIC(NumHoisted, "Number of instructions hoisted out of loop")static llvm::Statistic NumHoisted = {"licm", "NumHoisted", "Number of instructions hoisted out of loop"
}
;
97STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk")static llvm::Statistic NumMovedLoads = {"licm", "NumMovedLoads"
, "Number of load insts hoisted or sunk"}
;
98STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk")static llvm::Statistic NumMovedCalls = {"licm", "NumMovedCalls"
, "Number of call insts hoisted or sunk"}
;
99STATISTIC(NumPromoted, "Number of memory locations promoted to registers")static llvm::Statistic NumPromoted = {"licm", "NumPromoted", "Number of memory locations promoted to registers"
}
;
100
101/// Memory promotion is enabled by default.
102static cl::opt<bool>
103 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
104 cl::desc("Disable memory promotion in LICM pass"));
105
106static cl::opt<bool> ControlFlowHoisting(
107 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
108 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
109
110static cl::opt<unsigned> HoistSinkColdnessThreshold(
111 "licm-coldness-threshold", cl::Hidden, cl::init(4),
112 cl::desc("Relative coldness Threshold of hoisting/sinking destination "
113 "block for LICM to be considered beneficial"));
114
115static cl::opt<uint32_t> MaxNumUsesTraversed(
116 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
117 cl::desc("Max num uses visited for identifying load "
118 "invariance in loop using invariant start (default = 8)"));
119
120// Default value of zero implies we use the regular alias set tracker mechanism
121// instead of the cross product using AA to identify aliasing of the memory
122// location we are interested in.
123static cl::opt<int>
124LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
125 cl::desc("How many instruction to cross product using AA"));
126
127// Experimental option to allow imprecision in LICM in pathological cases, in
128// exchange for faster compile. This is to be removed if MemorySSA starts to
129// address the same issue. This flag applies only when LICM uses MemorySSA
130// instead on AliasSetTracker. LICM calls MemorySSAWalker's
131// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
132// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
133// which may not be precise, since optimizeUses is capped. The result is
134// correct, but we may not get as "far up" as possible to get which access is
135// clobbering the one queried.
136cl::opt<unsigned> llvm::SetLicmMssaOptCap(
137 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
138 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
139 "for faster compile. Caps the MemorySSA clobbering calls."));
140
141// Experimentally, memory promotion carries less importance than sinking and
142// hoisting. Limit when we do promotion when using MemorySSA, in order to save
143// compile time.
144cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
145 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
146 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
147 "effect. When MSSA in LICM is enabled, then this is the maximum "
148 "number of accesses allowed to be present in a loop in order to "
149 "enable memory promotion."));
150
151static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
152static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
153 const LoopSafetyInfo *SafetyInfo,
154 TargetTransformInfo *TTI, bool &FreeInLoop);
155static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
156 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
157 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
158 OptimizationRemarkEmitter *ORE);
159static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
160 BlockFrequencyInfo *BFI, const Loop *CurLoop,
161 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
162 OptimizationRemarkEmitter *ORE);
163static bool isSafeToExecuteUnconditionally(Instruction &Inst,
164 const DominatorTree *DT,
165 const TargetLibraryInfo *TLI,
166 const Loop *CurLoop,
167 const LoopSafetyInfo *SafetyInfo,
168 OptimizationRemarkEmitter *ORE,
169 const Instruction *CtxI = nullptr);
170static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
171 AliasSetTracker *CurAST, Loop *CurLoop,
172 AAResults *AA);
173static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
174 Loop *CurLoop, Instruction &I,
175 SinkAndHoistLICMFlags &Flags);
176static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
177 MemoryUse &MU);
178static Instruction *cloneInstructionInExitBlock(
179 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
180 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
181
182static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
183 AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
184
185static void moveInstructionBefore(Instruction &I, Instruction &Dest,
186 ICFLoopSafetyInfo &SafetyInfo,
187 MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
188
189static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
190 function_ref<void(Instruction *)> Fn);
191static SmallVector<SmallSetVector<Value *, 8>, 0>
192collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L,
193 SmallVectorImpl<Instruction *> &MaybePromotable);
194
195namespace {
196struct LoopInvariantCodeMotion {
197 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
198 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
199 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
200 OptimizationRemarkEmitter *ORE);
201
202 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
203 unsigned LicmMssaNoAccForPromotionCap)
204 : LicmMssaOptCap(LicmMssaOptCap),
205 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
206
207private:
208 unsigned LicmMssaOptCap;
209 unsigned LicmMssaNoAccForPromotionCap;
210
211 std::unique_ptr<AliasSetTracker>
212 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
213};
214
215struct LegacyLICMPass : public LoopPass {
216 static char ID; // Pass identification, replacement for typeid
217 LegacyLICMPass(
218 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
219 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
220 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
221 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
222 }
223
224 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
225 if (skipLoop(L))
226 return false;
227
228 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Perform LICM on Loop with header at block "
<< L->getHeader()->getNameOrAsOperand() <<
"\n"; } } while (false)
229 << L->getHeader()->getNameOrAsOperand() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Perform LICM on Loop with header at block "
<< L->getHeader()->getNameOrAsOperand() <<
"\n"; } } while (false)
;
230
231 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
232 MemorySSA *MSSA = EnableMSSALoopDependency
233 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
234 : nullptr;
235 bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
236 BlockFrequencyInfo *BFI =
237 hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
238 : nullptr;
239 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
240 // pass. Function analyses need to be preserved across loop transformations
241 // but ORE cannot be preserved (see comment before the pass definition).
242 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
243 return LICM.runOnLoop(
244 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
245 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
246 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
247 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
248 *L->getHeader()->getParent()),
249 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
250 *L->getHeader()->getParent()),
251 SE ? &SE->getSE() : nullptr, MSSA, &ORE);
252 }
253
254 /// This transformation requires natural loop information & requires that
255 /// loop preheaders be inserted into the CFG...
256 ///
257 void getAnalysisUsage(AnalysisUsage &AU) const override {
258 AU.addPreserved<DominatorTreeWrapperPass>();
259 AU.addPreserved<LoopInfoWrapperPass>();
260 AU.addRequired<TargetLibraryInfoWrapperPass>();
261 if (EnableMSSALoopDependency) {
262 AU.addRequired<MemorySSAWrapperPass>();
263 AU.addPreserved<MemorySSAWrapperPass>();
264 }
265 AU.addRequired<TargetTransformInfoWrapperPass>();
266 getLoopAnalysisUsage(AU);
267 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
268 AU.addPreserved<LazyBlockFrequencyInfoPass>();
269 AU.addPreserved<LazyBranchProbabilityInfoPass>();
270 }
271
272private:
273 LoopInvariantCodeMotion LICM;
274};
275} // namespace
276
277PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
278 LoopStandardAnalysisResults &AR, LPMUpdater &) {
279 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
280 // pass. Function analyses need to be preserved across loop transformations
281 // but ORE cannot be preserved (see comment before the pass definition).
282 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
283
284 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
285 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
286 &AR.SE, AR.MSSA, &ORE))
287 return PreservedAnalyses::all();
288
289 auto PA = getLoopPassPreservedAnalyses();
290
291 PA.preserve<DominatorTreeAnalysis>();
292 PA.preserve<LoopAnalysis>();
293 if (AR.MSSA)
294 PA.preserve<MemorySSAAnalysis>();
295
296 return PA;
297}
298
299char LegacyLICMPass::ID = 0;
300INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
301 false, false)static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
302INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
303INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
304INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
305INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
306INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)initializeLazyBFIPassPass(Registry);
307INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
308 false)PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
309
310Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
311Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
312 unsigned LicmMssaNoAccForPromotionCap) {
313 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
314}
315
316llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
317 MemorySSA *MSSA)
318 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
319 IsSink, L, MSSA) {}
320
321llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
322 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
323 Loop *L, MemorySSA *MSSA)
324 : LicmMssaOptCap(LicmMssaOptCap),
325 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
326 IsSink(IsSink) {
327 assert(((L != nullptr) == (MSSA != nullptr)) &&(static_cast <bool> (((L != nullptr) == (MSSA != nullptr
)) && "Unexpected values for SinkAndHoistLICMFlags") ?
void (0) : __assert_fail ("((L != nullptr) == (MSSA != nullptr)) && \"Unexpected values for SinkAndHoistLICMFlags\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
328 "Unexpected values for SinkAndHoistLICMFlags")(static_cast <bool> (((L != nullptr) == (MSSA != nullptr
)) && "Unexpected values for SinkAndHoistLICMFlags") ?
void (0) : __assert_fail ("((L != nullptr) == (MSSA != nullptr)) && \"Unexpected values for SinkAndHoistLICMFlags\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 328, __extension__ __PRETTY_FUNCTION__))
;
329 if (!MSSA)
330 return;
331
332 unsigned AccessCapCount = 0;
333 for (auto *BB : L->getBlocks())
334 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
335 for (const auto &MA : *Accesses) {
336 (void)MA;
337 ++AccessCapCount;
338 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
339 NoOfMemAccTooLarge = true;
340 return;
341 }
342 }
343}
344
345/// Hoist expressions out of the specified loop. Note, alias info for inner
346/// loop is not preserved so it is not a good idea to run LICM multiple
347/// times on one loop.
348bool LoopInvariantCodeMotion::runOnLoop(
349 Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
350 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
351 ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE) {
352 bool Changed = false;
353
354 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.")(static_cast <bool> (L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."
) ? void (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop is not in LCSSA form.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 354, __extension__ __PRETTY_FUNCTION__))
;
355
356 // If this loop has metadata indicating that LICM is not to be performed then
357 // just exit.
358 if (hasDisableLICMTransformsHint(L)) {
359 return false;
360 }
361
362 std::unique_ptr<AliasSetTracker> CurAST;
363 std::unique_ptr<MemorySSAUpdater> MSSAU;
364 std::unique_ptr<SinkAndHoistLICMFlags> Flags;
365
366 // Don't sink stores from loops with coroutine suspend instructions.
367 // LICM would sink instructions into the default destination of
368 // the coroutine switch. The default destination of the switch is to
369 // handle the case where the coroutine is suspended, by which point the
370 // coroutine frame may have been destroyed. No instruction can be sunk there.
371 // FIXME: This would unfortunately hurt the performance of coroutines, however
372 // there is currently no general solution for this. Similar issues could also
373 // potentially happen in other passes where instructions are being moved
374 // across that edge.
375 bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
376 return llvm::any_of(*BB, [](Instruction &I) {
377 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
378 return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
379 });
380 });
381
382 if (!MSSA) {
383 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using Alias Set Tracker.\n"
; } } while (false)
;
384 CurAST = collectAliasInfoForLoop(L, LI, AA);
385 Flags = std::make_unique<SinkAndHoistLICMFlags>(
386 LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true);
387 } else {
388 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using MemorySSA.\n"; } } while
(false)
;
389 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
390 Flags = std::make_unique<SinkAndHoistLICMFlags>(
391 LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true, L, MSSA);
392 }
393
394 // Get the preheader block to move instructions into...
395 BasicBlock *Preheader = L->getLoopPreheader();
396
397 // Compute loop safety information.
398 ICFLoopSafetyInfo SafetyInfo;
399 SafetyInfo.computeLoopSafetyInfo(L);
400
401 // We want to visit all of the instructions in this loop... that are not parts
402 // of our subloops (they have already had their invariants hoisted out of
403 // their loop, into this loop, so there is no need to process the BODIES of
404 // the subloops).
405 //
406 // Traverse the body of the loop in depth first order on the dominator tree so
407 // that we are guaranteed to see definitions before we see uses. This allows
408 // us to sink instructions in one pass, without iteration. After sinking
409 // instructions, we perform another pass to hoist them out of the loop.
410 if (L->hasDedicatedExits())
411 Changed |=
412 sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, TTI, L,
413 CurAST.get(), MSSAU.get(), &SafetyInfo, *Flags.get(), ORE);
414 Flags->setIsSink(false);
415 if (Preheader)
416 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
417 CurAST.get(), MSSAU.get(), SE, &SafetyInfo,
418 *Flags.get(), ORE);
419
420 // Now that all loop invariants have been removed from the loop, promote any
421 // memory references to scalars that we can.
422 // Don't sink stores from loops without dedicated block exits. Exits
423 // containing indirect branches are not transformed by loop simplify,
424 // make sure we catch that. An additional load may be generated in the
425 // preheader for SSA updater, so also avoid sinking when no preheader
426 // is available.
427 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
428 !Flags->tooManyMemoryAccesses() && !HasCoroSuspendInst) {
429 // Figure out the loop exits and their insertion points
430 SmallVector<BasicBlock *, 8> ExitBlocks;
431 L->getUniqueExitBlocks(ExitBlocks);
432
433 // We can't insert into a catchswitch.
434 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
435 return isa<CatchSwitchInst>(Exit->getTerminator());
436 });
437
438 if (!HasCatchSwitch) {
439 SmallVector<Instruction *, 8> InsertPts;
440 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
441 InsertPts.reserve(ExitBlocks.size());
442 if (MSSAU)
443 MSSAInsertPts.reserve(ExitBlocks.size());
444 for (BasicBlock *ExitBlock : ExitBlocks) {
445 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
446 if (MSSAU)
447 MSSAInsertPts.push_back(nullptr);
448 }
449
450 PredIteratorCache PIC;
451
452 bool Promoted = false;
453 if (CurAST.get()) {
454 // Loop over all of the alias sets in the tracker object.
455 for (AliasSet &AS : *CurAST) {
456 // We can promote this alias set if it has a store, if it is a "Must"
457 // alias set, if the pointer is loop invariant, and if we are not
458 // eliminating any volatile loads or stores.
459 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
460 !L->isLoopInvariant(AS.begin()->getValue()))
461 continue;
462
463 assert((static_cast <bool> (!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? void (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 465, __extension__ __PRETTY_FUNCTION__))
464 !AS.empty() &&(static_cast <bool> (!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? void (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 465, __extension__ __PRETTY_FUNCTION__))
465 "Must alias set should have at least one pointer element in it!")(static_cast <bool> (!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? void (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 465, __extension__ __PRETTY_FUNCTION__))
;
466
467 SmallSetVector<Value *, 8> PointerMustAliases;
468 for (const auto &ASI : AS)
469 PointerMustAliases.insert(ASI.getValue());
470
471 Promoted |= promoteLoopAccessesToScalars(
472 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
473 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
474 }
475 } else {
476 SmallVector<Instruction *, 16> MaybePromotable;
477 foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
478 MaybePromotable.push_back(I);
479 });
480
481 // Promoting one set of accesses may make the pointers for another set
482 // loop invariant, so run this in a loop (with the MaybePromotable set
483 // decreasing in size over time).
484 bool LocalPromoted;
485 do {
486 LocalPromoted = false;
487 for (const SmallSetVector<Value *, 8> &PointerMustAliases :
488 collectPromotionCandidates(MSSA, AA, L, MaybePromotable)) {
489 LocalPromoted |= promoteLoopAccessesToScalars(
490 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC,
491 LI, DT, TLI, L, /*AST*/nullptr, MSSAU.get(), &SafetyInfo, ORE);
492 }
493 Promoted |= LocalPromoted;
494 } while (LocalPromoted);
495 }
496
497 // Once we have promoted values across the loop body we have to
498 // recursively reform LCSSA as any nested loop may now have values defined
499 // within the loop used in the outer loop.
500 // FIXME: This is really heavy handed. It would be a bit better to use an
501 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
502 // it as it went.
503 if (Promoted)
504 formLCSSARecursively(*L, *DT, LI, SE);
505
506 Changed |= Promoted;
507 }
508 }
509
510 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
511 // specifically moving instructions across the loop boundary and so it is
512 // especially in need of sanity checking here.
513 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!")(static_cast <bool> (L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"
) ? void (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 513, __extension__ __PRETTY_FUNCTION__))
;
514 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&(static_cast <bool> ((L->isOutermost() || L->getParentLoop
()->isLCSSAForm(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? void (0) : __assert_fail ("(L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 515, __extension__ __PRETTY_FUNCTION__))
515 "Parent loop not left in LCSSA form after LICM!")(static_cast <bool> ((L->isOutermost() || L->getParentLoop
()->isLCSSAForm(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? void (0) : __assert_fail ("(L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 515, __extension__ __PRETTY_FUNCTION__))
;
516
517 if (MSSAU.get() && VerifyMemorySSA)
518 MSSAU->getMemorySSA()->verifyMemorySSA();
519
520 if (Changed && SE)
521 SE->forgetLoopDispositions(L);
522 return Changed;
523}
524
525/// Walk the specified region of the CFG (defined by all blocks dominated by
526/// the specified block, and that are in the current loop) in reverse depth
527/// first order w.r.t the DominatorTree. This allows us to visit uses before
528/// definitions, allowing us to sink a loop body in one pass without iteration.
529///
530bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
531 DominatorTree *DT, BlockFrequencyInfo *BFI,
532 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
533 Loop *CurLoop, AliasSetTracker *CurAST,
534 MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
535 SinkAndHoistLICMFlags &Flags,
536 OptimizationRemarkEmitter *ORE) {
537
538 // Verify inputs.
539 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && SafetyInfo != nullptr &&
"Unexpected input to sinkRegion.") ? void (0) : __assert_fail
("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 541, __extension__ __PRETTY_FUNCTION__))
540 CurLoop != nullptr && SafetyInfo != nullptr &&(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && SafetyInfo != nullptr &&
"Unexpected input to sinkRegion.") ? void (0) : __assert_fail
("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 541, __extension__ __PRETTY_FUNCTION__))
541 "Unexpected input to sinkRegion.")(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && SafetyInfo != nullptr &&
"Unexpected input to sinkRegion.") ? void (0) : __assert_fail
("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 541, __extension__ __PRETTY_FUNCTION__))
;
542 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&(static_cast <bool> (((CurAST != nullptr) ^ (MSSAU != nullptr
)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? void (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 543, __extension__ __PRETTY_FUNCTION__))
543 "Either AliasSetTracker or MemorySSA should be initialized.")(static_cast <bool> (((CurAST != nullptr) ^ (MSSAU != nullptr
)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? void (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 543, __extension__ __PRETTY_FUNCTION__))
;
544
545 // We want to visit children before parents. We will enque all the parents
546 // before their children in the worklist and process the worklist in reverse
547 // order.
548 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
549
550 bool Changed = false;
551 for (DomTreeNode *DTN : reverse(Worklist)) {
552 BasicBlock *BB = DTN->getBlock();
553 // Only need to process the contents of this block if it is not part of a
554 // subloop (which would already have been processed).
555 if (inSubLoop(BB, CurLoop, LI))
556 continue;
557
558 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
559 Instruction &I = *--II;
560
561 // The instruction is not used in the loop if it is dead. In this case,
562 // we just delete it instead of sinking it.
563 if (isInstructionTriviallyDead(&I, TLI)) {
564 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM deleting dead inst: " <<
I << '\n'; } } while (false)
;
565 salvageKnowledge(&I);
566 salvageDebugInfo(I);
567 ++II;
568 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
569 Changed = true;
570 continue;
571 }
572
573 // Check to see if we can sink this instruction to the exit blocks
574 // of the loop. We can do this if the all users of the instruction are
575 // outside of the loop. In this case, it doesn't even matter if the
576 // operands of the instruction are loop invariant.
577 //
578 bool FreeInLoop = false;
579 if (!I.mayHaveSideEffects() &&
580 isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
581 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
582 ORE)) {
583 if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
584 if (!FreeInLoop) {
585 ++II;
586 salvageDebugInfo(I);
587 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
588 }
589 Changed = true;
590 }
591 }
592 }
593 }
594 if (MSSAU && VerifyMemorySSA)
595 MSSAU->getMemorySSA()->verifyMemorySSA();
596 return Changed;
597}
598
599namespace {
600// This is a helper class for hoistRegion to make it able to hoist control flow
601// in order to be able to hoist phis. The way this works is that we initially
602// start hoisting to the loop preheader, and when we see a loop invariant branch
603// we make note of this. When we then come to hoist an instruction that's
604// conditional on such a branch we duplicate the branch and the relevant control
605// flow, then hoist the instruction into the block corresponding to its original
606// block in the duplicated control flow.
607class ControlFlowHoister {
608private:
609 // Information about the loop we are hoisting from
610 LoopInfo *LI;
611 DominatorTree *DT;
612 Loop *CurLoop;
613 MemorySSAUpdater *MSSAU;
614
615 // A map of blocks in the loop to the block their instructions will be hoisted
616 // to.
617 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
618
619 // The branches that we can hoist, mapped to the block that marks a
620 // convergence point of their control flow.
621 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
622
623public:
624 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
625 MemorySSAUpdater *MSSAU)
626 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
627
628 void registerPossiblyHoistableBranch(BranchInst *BI) {
629 // We can only hoist conditional branches with loop invariant operands.
630 if (!ControlFlowHoisting || !BI->isConditional() ||
631 !CurLoop->hasLoopInvariantOperands(BI))
632 return;
633
634 // The branch destinations need to be in the loop, and we don't gain
635 // anything by duplicating conditional branches with duplicate successors,
636 // as it's essentially the same as an unconditional branch.
637 BasicBlock *TrueDest = BI->getSuccessor(0);
638 BasicBlock *FalseDest = BI->getSuccessor(1);
639 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
640 TrueDest == FalseDest)
641 return;
642
643 // We can hoist BI if one branch destination is the successor of the other,
644 // or both have common successor which we check by seeing if the
645 // intersection of their successors is non-empty.
646 // TODO: This could be expanded to allowing branches where both ends
647 // eventually converge to a single block.
648 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
649 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
650 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
651 BasicBlock *CommonSucc = nullptr;
652 if (TrueDestSucc.count(FalseDest)) {
653 CommonSucc = FalseDest;
654 } else if (FalseDestSucc.count(TrueDest)) {
655 CommonSucc = TrueDest;
656 } else {
657 set_intersect(TrueDestSucc, FalseDestSucc);
658 // If there's one common successor use that.
659 if (TrueDestSucc.size() == 1)
660 CommonSucc = *TrueDestSucc.begin();
661 // If there's more than one pick whichever appears first in the block list
662 // (we can't use the value returned by TrueDestSucc.begin() as it's
663 // unpredicatable which element gets returned).
664 else if (!TrueDestSucc.empty()) {
665 Function *F = TrueDest->getParent();
666 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
667 auto It = llvm::find_if(*F, IsSucc);
668 assert(It != F->end() && "Could not find successor in function")(static_cast <bool> (It != F->end() && "Could not find successor in function"
) ? void (0) : __assert_fail ("It != F->end() && \"Could not find successor in function\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 668, __extension__ __PRETTY_FUNCTION__))
;
669 CommonSucc = &*It;
670 }
671 }
672 // The common successor has to be dominated by the branch, as otherwise
673 // there will be some other path to the successor that will not be
674 // controlled by this branch so any phi we hoist would be controlled by the
675 // wrong condition. This also takes care of avoiding hoisting of loop back
676 // edges.
677 // TODO: In some cases this could be relaxed if the successor is dominated
678 // by another block that's been hoisted and we can guarantee that the
679 // control flow has been replicated exactly.
680 if (CommonSucc && DT->dominates(BI, CommonSucc))
681 HoistableBranches[BI] = CommonSucc;
682 }
683
684 bool canHoistPHI(PHINode *PN) {
685 // The phi must have loop invariant operands.
686 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
687 return false;
688 // We can hoist phis if the block they are in is the target of hoistable
689 // branches which cover all of the predecessors of the block.
690 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
691 BasicBlock *BB = PN->getParent();
692 for (BasicBlock *PredBB : predecessors(BB))
693 PredecessorBlocks.insert(PredBB);
694 // If we have less predecessor blocks than predecessors then the phi will
695 // have more than one incoming value for the same block which we can't
696 // handle.
697 // TODO: This could be handled be erasing some of the duplicate incoming
698 // values.
699 if (PredecessorBlocks.size() != pred_size(BB))
700 return false;
701 for (auto &Pair : HoistableBranches) {
702 if (Pair.second == BB) {
703 // Which blocks are predecessors via this branch depends on if the
704 // branch is triangle-like or diamond-like.
705 if (Pair.first->getSuccessor(0) == BB) {
706 PredecessorBlocks.erase(Pair.first->getParent());
707 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
708 } else if (Pair.first->getSuccessor(1) == BB) {
709 PredecessorBlocks.erase(Pair.first->getParent());
710 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
711 } else {
712 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
713 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
714 }
715 }
716 }
717 // PredecessorBlocks will now be empty if for every predecessor of BB we
718 // found a hoistable branch source.
719 return PredecessorBlocks.empty();
720 }
721
722 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
723 if (!ControlFlowHoisting)
724 return CurLoop->getLoopPreheader();
725 // If BB has already been hoisted, return that
726 if (HoistDestinationMap.count(BB))
727 return HoistDestinationMap[BB];
728
729 // Check if this block is conditional based on a pending branch
730 auto HasBBAsSuccessor =
731 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
732 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
733 Pair.first->getSuccessor(1) == BB);
734 };
735 auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
736
737 // If not involved in a pending branch, hoist to preheader
738 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
739 if (It == HoistableBranches.end()) {
740 LLVM_DEBUG(dbgs() << "LICM using "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
741 << InitialPreheader->getNameOrAsOperand()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
742 << " as hoist destination for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
743 << BB->getNameOrAsOperand() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
;
744 HoistDestinationMap[BB] = InitialPreheader;
745 return InitialPreheader;
746 }
747 BranchInst *BI = It->first;
748 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==(static_cast <bool> (std::find_if(++It, HoistableBranches
.end(), HasBBAsSuccessor) == HoistableBranches.end() &&
"BB is expected to be the target of at most one branch") ? void
(0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 750, __extension__ __PRETTY_FUNCTION__))
749 HoistableBranches.end() &&(static_cast <bool> (std::find_if(++It, HoistableBranches
.end(), HasBBAsSuccessor) == HoistableBranches.end() &&
"BB is expected to be the target of at most one branch") ? void
(0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 750, __extension__ __PRETTY_FUNCTION__))
750 "BB is expected to be the target of at most one branch")(static_cast <bool> (std::find_if(++It, HoistableBranches
.end(), HasBBAsSuccessor) == HoistableBranches.end() &&
"BB is expected to be the target of at most one branch") ? void
(0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 750, __extension__ __PRETTY_FUNCTION__))
;
751
752 LLVMContext &C = BB->getContext();
753 BasicBlock *TrueDest = BI->getSuccessor(0);
754 BasicBlock *FalseDest = BI->getSuccessor(1);
755 BasicBlock *CommonSucc = HoistableBranches[BI];
756 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
757
758 // Create hoisted versions of blocks that currently don't have them
759 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
760 if (HoistDestinationMap.count(Orig))
761 return HoistDestinationMap[Orig];
762 BasicBlock *New =
763 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
764 HoistDestinationMap[Orig] = New;
765 DT->addNewBlock(New, HoistTarget);
766 if (CurLoop->getParentLoop())
767 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
768 ++NumCreatedBlocks;
769 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
770 << " as hoist destination for " << Orig->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
771 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
;
772 return New;
773 };
774 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
775 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
776 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
777
778 // Link up these blocks with branches.
779 if (!HoistCommonSucc->getTerminator()) {
780 // The new common successor we've generated will branch to whatever that
781 // hoist target branched to.
782 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
783 assert(TargetSucc && "Expected hoist target to have a single successor")(static_cast <bool> (TargetSucc && "Expected hoist target to have a single successor"
) ? void (0) : __assert_fail ("TargetSucc && \"Expected hoist target to have a single successor\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 783, __extension__ __PRETTY_FUNCTION__))
;
784 HoistCommonSucc->moveBefore(TargetSucc);
785 BranchInst::Create(TargetSucc, HoistCommonSucc);
786 }
787 if (!HoistTrueDest->getTerminator()) {
788 HoistTrueDest->moveBefore(HoistCommonSucc);
789 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
790 }
791 if (!HoistFalseDest->getTerminator()) {
792 HoistFalseDest->moveBefore(HoistCommonSucc);
793 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
794 }
795
796 // If BI is being cloned to what was originally the preheader then
797 // HoistCommonSucc will now be the new preheader.
798 if (HoistTarget == InitialPreheader) {
799 // Phis in the loop header now need to use the new preheader.
800 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
801 if (MSSAU)
802 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
803 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
804 // The new preheader dominates the loop header.
805 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
806 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
807 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
808 // The preheader hoist destination is now the new preheader, with the
809 // exception of the hoist destination of this branch.
810 for (auto &Pair : HoistDestinationMap)
811 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
812 Pair.second = HoistCommonSucc;
813 }
814
815 // Now finally clone BI.
816 ReplaceInstWithInst(
817 HoistTarget->getTerminator(),
818 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
819 ++NumClonedBranches;
820
821 assert(CurLoop->getLoopPreheader() &&(static_cast <bool> (CurLoop->getLoopPreheader() &&
"Hoisting blocks should not have destroyed preheader") ? void
(0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 822, __extension__ __PRETTY_FUNCTION__))
822 "Hoisting blocks should not have destroyed preheader")(static_cast <bool> (CurLoop->getLoopPreheader() &&
"Hoisting blocks should not have destroyed preheader") ? void
(0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 822, __extension__ __PRETTY_FUNCTION__))
;
823 return HoistDestinationMap[BB];
824 }
825};
826} // namespace
827
828// Hoisting/sinking instruction out of a loop isn't always beneficial. It's only
829// only worthwhile if the destination block is actually colder than current
830// block.
831static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock,
832 OptimizationRemarkEmitter *ORE,
833 BlockFrequencyInfo *BFI) {
834 // Check block frequency only when runtime profile is available
835 // to avoid pathological cases. With static profile, lean towards
836 // hosting because it helps canonicalize the loop for vectorizer.
837 if (!DstBlock->getParent()->hasProfileData())
838 return true;
839
840 if (!HoistSinkColdnessThreshold || !BFI)
841 return true;
842
843 BasicBlock *SrcBlock = I.getParent();
844 if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold >
845 BFI->getBlockFreq(SrcBlock).getFrequency()) {
846 ORE->emit([&]() {
847 return OptimizationRemarkMissed(DEBUG_TYPE"licm", "SinkHoistInst", &I)
848 << "failed to sink or hoist instruction because containing block "
849 "has lower frequency than destination block";
850 });
851 return false;
852 }
853
854 return true;
855}
856
857/// Walk the specified region of the CFG (defined by all blocks dominated by
858/// the specified block, and that are in the current loop) in depth first
859/// order w.r.t the DominatorTree. This allows us to visit definitions before
860/// uses, allowing us to hoist a loop body in one pass without iteration.
861///
862bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
863 DominatorTree *DT, BlockFrequencyInfo *BFI,
864 TargetLibraryInfo *TLI, Loop *CurLoop,
865 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
866 ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
867 SinkAndHoistLICMFlags &Flags,
868 OptimizationRemarkEmitter *ORE) {
869 // Verify inputs.
870 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && SafetyInfo != nullptr &&
"Unexpected input to hoistRegion.") ? void (0) : __assert_fail
("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 872, __extension__ __PRETTY_FUNCTION__))
871 CurLoop != nullptr && SafetyInfo != nullptr &&(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && SafetyInfo != nullptr &&
"Unexpected input to hoistRegion.") ? void (0) : __assert_fail
("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 872, __extension__ __PRETTY_FUNCTION__))
872 "Unexpected input to hoistRegion.")(static_cast <bool> (N != nullptr && AA != nullptr
&& LI != nullptr && DT != nullptr &&
CurLoop != nullptr && SafetyInfo != nullptr &&
"Unexpected input to hoistRegion.") ? void (0) : __assert_fail
("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 872, __extension__ __PRETTY_FUNCTION__))
;
873 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&(static_cast <bool> (((CurAST != nullptr) ^ (MSSAU != nullptr
)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? void (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 874, __extension__ __PRETTY_FUNCTION__))
874 "Either AliasSetTracker or MemorySSA should be initialized.")(static_cast <bool> (((CurAST != nullptr) ^ (MSSAU != nullptr
)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? void (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 874, __extension__ __PRETTY_FUNCTION__))
;
875
876 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
877
878 // Keep track of instructions that have been hoisted, as they may need to be
879 // re-hoisted if they end up not dominating all of their uses.
880 SmallVector<Instruction *, 16> HoistedInstructions;
881
882 // For PHI hoisting to work we need to hoist blocks before their successors.
883 // We can do this by iterating through the blocks in the loop in reverse
884 // post-order.
885 LoopBlocksRPO Worklist(CurLoop);
886 Worklist.perform(LI);
887 bool Changed = false;
888 for (BasicBlock *BB : Worklist) {
889 // Only need to process the contents of this block if it is not part of a
890 // subloop (which would already have been processed).
891 if (inSubLoop(BB, CurLoop, LI))
892 continue;
893
894 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
895 Instruction &I = *II++;
896 // Try constant folding this instruction. If all the operands are
897 // constants, it is technically hoistable, but it would be better to
898 // just fold it.
899 if (Constant *C = ConstantFoldInstruction(
900 &I, I.getModule()->getDataLayout(), TLI)) {
901 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
902 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
;
903 if (CurAST)
904 CurAST->copyValue(&I, C);
905 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
906 I.replaceAllUsesWith(C);
907 if (isInstructionTriviallyDead(&I, TLI))
908 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
909 Changed = true;
910 continue;
911 }
912
913 // Try hoisting the instruction out to the preheader. We can only do
914 // this if all of the operands of the instruction are loop invariant and
915 // if it is safe to hoist the instruction. We also check block frequency
916 // to make sure instruction only gets hoisted into colder blocks.
917 // TODO: It may be safe to hoist if we are hoisting to a conditional block
918 // and we have accurately duplicated the control flow from the loop header
919 // to that block.
920 if (CurLoop->hasLoopInvariantOperands(&I) &&
921 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
922 ORE) &&
923 worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) &&
924 isSafeToExecuteUnconditionally(
925 I, DT, TLI, CurLoop, SafetyInfo, ORE,
926 CurLoop->getLoopPreheader()->getTerminator())) {
927 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
928 MSSAU, SE, ORE);
929 HoistedInstructions.push_back(&I);
930 Changed = true;
931 continue;
932 }
933
934 // Attempt to remove floating point division out of the loop by
935 // converting it to a reciprocal multiplication.
936 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
937 CurLoop->isLoopInvariant(I.getOperand(1))) {
938 auto Divisor = I.getOperand(1);
939 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
940 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
941 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
942 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
943 ReciprocalDivisor->insertBefore(&I);
944
945 auto Product =
946 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
947 Product->setFastMathFlags(I.getFastMathFlags());
948 SafetyInfo->insertInstructionTo(Product, I.getParent());
949 Product->insertAfter(&I);
950 I.replaceAllUsesWith(Product);
951 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
952
953 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
954 SafetyInfo, MSSAU, SE, ORE);
955 HoistedInstructions.push_back(ReciprocalDivisor);
956 Changed = true;
957 continue;
958 }
959
960 auto IsInvariantStart = [&](Instruction &I) {
961 using namespace PatternMatch;
962 return I.use_empty() &&
963 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
964 };
965 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
966 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
967 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
968 };
969 if ((IsInvariantStart(I) || isGuard(&I)) &&
970 CurLoop->hasLoopInvariantOperands(&I) &&
971 MustExecuteWithoutWritesBefore(I)) {
972 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
973 MSSAU, SE, ORE);
974 HoistedInstructions.push_back(&I);
975 Changed = true;
976 continue;
977 }
978
979 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
980 if (CFH.canHoistPHI(PN)) {
981 // Redirect incoming blocks first to ensure that we create hoisted
982 // versions of those blocks before we hoist the phi.
983 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
984 PN->setIncomingBlock(
985 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
986 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
987 MSSAU, SE, ORE);
988 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected")(static_cast <bool> (DT->dominates(PN, BB) &&
"Conditional PHIs not expected") ? void (0) : __assert_fail (
"DT->dominates(PN, BB) && \"Conditional PHIs not expected\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 988, __extension__ __PRETTY_FUNCTION__))
;
989 Changed = true;
990 continue;
991 }
992 }
993
994 // Remember possibly hoistable branches so we can actually hoist them
995 // later if needed.
996 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
997 CFH.registerPossiblyHoistableBranch(BI);
998 }
999 }
1000
1001 // If we hoisted instructions to a conditional block they may not dominate
1002 // their uses that weren't hoisted (such as phis where some operands are not
1003 // loop invariant). If so make them unconditional by moving them to their
1004 // immediate dominator. We iterate through the instructions in reverse order
1005 // which ensures that when we rehoist an instruction we rehoist its operands,
1006 // and also keep track of where in the block we are rehoisting to to make sure
1007 // that we rehoist instructions before the instructions that use them.
1008 Instruction *HoistPoint = nullptr;
1009 if (ControlFlowHoisting) {
1010 for (Instruction *I : reverse(HoistedInstructions)) {
1011 if (!llvm::all_of(I->uses(),
1012 [&](Use &U) { return DT->dominates(I, U); })) {
1013 BasicBlock *Dominator =
1014 DT->getNode(I->getParent())->getIDom()->getBlock();
1015 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
1016 if (HoistPoint)
1017 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&(static_cast <bool> (DT->dominates(Dominator, HoistPoint
->getParent()) && "New hoist point expected to dominate old hoist point"
) ? void (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1018, __extension__ __PRETTY_FUNCTION__))
1018 "New hoist point expected to dominate old hoist point")(static_cast <bool> (DT->dominates(Dominator, HoistPoint
->getParent()) && "New hoist point expected to dominate old hoist point"
) ? void (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1018, __extension__ __PRETTY_FUNCTION__))
;
1019 HoistPoint = Dominator->getTerminator();
1020 }
1021 LLVM_DEBUG(dbgs() << "LICM rehoisting to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getNameOrAsOperand() << ": " <<
*I << "\n"; } } while (false)
1022 << HoistPoint->getParent()->getNameOrAsOperand()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getNameOrAsOperand() << ": " <<
*I << "\n"; } } while (false)
1023 << ": " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getNameOrAsOperand() << ": " <<
*I << "\n"; } } while (false)
;
1024 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
1025 HoistPoint = I;
1026 Changed = true;
1027 }
1028 }
1029 }
1030 if (MSSAU && VerifyMemorySSA)
1031 MSSAU->getMemorySSA()->verifyMemorySSA();
1032
1033 // Now that we've finished hoisting make sure that LI and DT are still
1034 // valid.
1035#ifdef EXPENSIVE_CHECKS
1036 if (Changed) {
1037 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&(static_cast <bool> (DT->verify(DominatorTree::VerificationLevel
::Fast) && "Dominator tree verification failed") ? void
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1038, __extension__ __PRETTY_FUNCTION__))
1038 "Dominator tree verification failed")(static_cast <bool> (DT->verify(DominatorTree::VerificationLevel
::Fast) && "Dominator tree verification failed") ? void
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1038, __extension__ __PRETTY_FUNCTION__))
;
1039 LI->verify(*DT);
1040 }
1041#endif
1042
1043 return Changed;
1044}
1045
1046// Return true if LI is invariant within scope of the loop. LI is invariant if
1047// CurLoop is dominated by an invariant.start representing the same memory
1048// location and size as the memory location LI loads from, and also the
1049// invariant.start has no uses.
1050static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1051 Loop *CurLoop) {
1052 Value *Addr = LI->getOperand(0);
1053 const DataLayout &DL = LI->getModule()->getDataLayout();
1054 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1055
1056 // It is not currently possible for clang to generate an invariant.start
1057 // intrinsic with scalable vector types because we don't support thread local
1058 // sizeless types and we don't permit sizeless types in structs or classes.
1059 // Furthermore, even if support is added for this in future the intrinsic
1060 // itself is defined to have a size of -1 for variable sized objects. This
1061 // makes it impossible to verify if the intrinsic envelops our region of
1062 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1063 // types would have a -1 parameter, but the former is clearly double the size
1064 // of the latter.
1065 if (LocSizeInBits.isScalable())
30
Calling 'LinearPolySize::isScalable'
33
Returning from 'LinearPolySize::isScalable'
34
Taking true branch
1066 return false;
35
Returning zero, which participates in a condition later
1067
1068 // if the type is i8 addrspace(x)*, we know this is the type of
1069 // llvm.invariant.start operand
1070 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1071 LI->getPointerAddressSpace());
1072 unsigned BitcastsVisited = 0;
1073 // Look through bitcasts until we reach the i8* type (this is invariant.start
1074 // operand type).
1075 while (Addr->getType() != PtrInt8Ty) {
1076 auto *BC = dyn_cast<BitCastInst>(Addr);
1077 // Avoid traversing high number of bitcast uses.
1078 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1079 return false;
1080 Addr = BC->getOperand(0);
1081 }
1082
1083 unsigned UsesVisited = 0;
1084 // Traverse all uses of the load operand value, to see if invariant.start is
1085 // one of the uses, and whether it dominates the load instruction.
1086 for (auto *U : Addr->users()) {
1087 // Avoid traversing for Load operand with high number of users.
1088 if (++UsesVisited > MaxNumUsesTraversed)
1089 return false;
1090 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1091 // If there are escaping uses of invariant.start instruction, the load maybe
1092 // non-invariant.
1093 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1094 !II->use_empty())
1095 continue;
1096 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1097 // The intrinsic supports having a -1 argument for variable sized objects
1098 // so we should check for that here.
1099 if (InvariantSize->isNegative())
1100 continue;
1101 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1102 // Confirm the invariant.start location size contains the load operand size
1103 // in bits. Also, the invariant.start should dominate the load, and we
1104 // should not hoist the load out of a loop that contains this dominating
1105 // invariant.start.
1106 if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1107 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1108 return true;
1109 }
1110
1111 return false;
1112}
1113
1114namespace {
1115/// Return true if-and-only-if we know how to (mechanically) both hoist and
1116/// sink a given instruction out of a loop. Does not address legality
1117/// concerns such as aliasing or speculation safety.
1118bool isHoistableAndSinkableInst(Instruction &I) {
1119 // Only these instructions are hoistable/sinkable.
1120 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5
Assuming 'I' is a 'LoadInst'
6
Returning the value 1, which participates in a condition later
1121 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1122 isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1123 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1124 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1125 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1126 isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1127}
1128/// Return true if all of the alias sets within this AST are known not to
1129/// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop.
1130bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1131 const Loop *L) {
1132 if (CurAST) {
1133 for (AliasSet &AS : *CurAST) {
1134 if (!AS.isForwardingAliasSet() && AS.isMod()) {
1135 return false;
1136 }
1137 }
1138 return true;
1139 } else { /*MSSAU*/
1140 for (auto *BB : L->getBlocks())
1141 if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1142 return false;
1143 return true;
1144 }
1145}
1146
1147/// Return true if I is the only Instruction with a MemoryAccess in L.
1148bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1149 const MemorySSAUpdater *MSSAU) {
1150 for (auto *BB : L->getBlocks())
1151 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1152 int NotAPhi = 0;
1153 for (const auto &Acc : *Accs) {
1154 if (isa<MemoryPhi>(&Acc))
1155 continue;
1156 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1157 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1158 return false;
1159 }
1160 }
1161 return true;
1162}
1163}
1164
1165bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1166 Loop *CurLoop, AliasSetTracker *CurAST,
1167 MemorySSAUpdater *MSSAU,
1168 bool TargetExecutesOncePerLoop,
1169 SinkAndHoistLICMFlags *Flags,
1170 OptimizationRemarkEmitter *ORE) {
1171 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&(static_cast <bool> (((CurAST != nullptr) ^ (MSSAU != nullptr
)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? void (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1172, __extension__ __PRETTY_FUNCTION__))
1
Assuming pointer value is null
2
Assuming the condition is true
3
'?' condition is true
1172 "Either AliasSetTracker or MemorySSA should be initialized.")(static_cast <bool> (((CurAST != nullptr) ^ (MSSAU != nullptr
)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? void (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1172, __extension__ __PRETTY_FUNCTION__))
;
1173
1174 // If we don't understand the instruction, bail early.
1175 if (!isHoistableAndSinkableInst(I))
4
Calling 'isHoistableAndSinkableInst'
7
Returning from 'isHoistableAndSinkableInst'
8
Taking false branch
1176 return false;
1177
1178 MemorySSA *MSSA = MSSAU
8.1
'MSSAU' is non-null
8.1
'MSSAU' is non-null
8.1
'MSSAU' is non-null
8.1
'MSSAU' is non-null
? MSSAU->getMemorySSA() : nullptr;
9
'?' condition is true
10
'MSSA' initialized here
1179 if (MSSA)
11
Assuming 'MSSA' is null
12
Taking false branch
1180 assert(Flags != nullptr && "Flags cannot be null.")(static_cast <bool> (Flags != nullptr && "Flags cannot be null."
) ? void (0) : __assert_fail ("Flags != nullptr && \"Flags cannot be null.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1180, __extension__ __PRETTY_FUNCTION__))
;
1181
1182 // Loads have extra constraints we have to verify before we can hoist them.
1183 if (LoadInst *LI
13.1
'LI' is non-null
13.1
'LI' is non-null
13.1
'LI' is non-null
13.1
'LI' is non-null
= dyn_cast<LoadInst>(&I)) {
13
Assuming the object is a 'LoadInst'
14
Taking true branch
1184 if (!LI->isUnordered())
15
Calling 'LoadInst::isUnordered'
19
Returning from 'LoadInst::isUnordered'
20
Taking false branch
1185 return false; // Don't sink/hoist volatile or ordered atomic loads!
1186
1187 // Loads from constant memory are always safe to move, even if they end up
1188 // in the same alias set as something that ends up being modified.
1189 if (AA->pointsToConstantMemory(LI->getOperand(0)))
21
Assuming the condition is false
22
Taking false branch
1190 return true;
1191 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
23
Calling 'Instruction::hasMetadata'
26
Returning from 'Instruction::hasMetadata'
27
Taking false branch
1192 return true;
1193
1194 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
28
Assuming the condition is false
1195 return false; // Don't risk duplicating unordered loads
1196
1197 // This checks for an invariant.start dominating the load.
1198 if (isLoadInvariantInLoop(LI, DT, CurLoop))
29
Calling 'isLoadInvariantInLoop'
36
Returning from 'isLoadInvariantInLoop'
37
Taking false branch
1199 return true;
1200
1201 // Stores with an invariant.group metadata are ok to sink/hoist.
1202 if (LI->hasMetadata(LLVMContext::MD_invariant_group))
38
Calling 'Instruction::hasMetadata'
41
Returning from 'Instruction::hasMetadata'
42
Taking false branch
1203 return true;
1204
1205 bool Invalidated;
1206 if (CurAST
42.1
'CurAST' is null
42.1
'CurAST' is null
42.1
'CurAST' is null
42.1
'CurAST' is null
)
43
Taking false branch
1207 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1208 CurLoop, AA);
1209 else
1210 Invalidated = pointerInvalidatedByLoopWithMSSA(
1211 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
44
Called C++ object pointer is null
1212 // Check loop-invariant address because this may also be a sinkable load
1213 // whose address is not necessarily loop-invariant.
1214 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1215 ORE->emit([&]() {
1216 return OptimizationRemarkMissed(
1217 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressInvalidated", LI)
1218 << "failed to move load with loop-invariant address "
1219 "because the loop may invalidate its value";
1220 });
1221
1222 return !Invalidated;
1223 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1224 // Don't sink or hoist dbg info; it's legal, but not useful.
1225 if (isa<DbgInfoIntrinsic>(I))
1226 return false;
1227
1228 // Don't sink calls which can throw.
1229 if (CI->mayThrow())
1230 return false;
1231
1232 // Convergent attribute has been used on operations that involve
1233 // inter-thread communication which results are implicitly affected by the
1234 // enclosing control flows. It is not safe to hoist or sink such operations
1235 // across control flow.
1236 if (CI->isConvergent())
1237 return false;
1238
1239 using namespace PatternMatch;
1240 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1241 // Assumes don't actually alias anything or throw
1242 return true;
1243
1244 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1245 // Widenable conditions don't actually alias anything or throw
1246 return true;
1247
1248 // Handle simple cases by querying alias analysis.
1249 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1250 if (Behavior == FMRB_DoesNotAccessMemory)
1251 return true;
1252 if (AAResults::onlyReadsMemory(Behavior)) {
1253 // A readonly argmemonly function only reads from memory pointed to by
1254 // it's arguments with arbitrary offsets. If we can prove there are no
1255 // writes to this memory in the loop, we can hoist or sink.
1256 if (AAResults::onlyAccessesArgPointees(Behavior)) {
1257 // TODO: expand to writeable arguments
1258 for (Value *Op : CI->arg_operands())
1259 if (Op->getType()->isPointerTy()) {
1260 bool Invalidated;
1261 if (CurAST)
1262 Invalidated = pointerInvalidatedByLoop(
1263 MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
1264 else
1265 Invalidated = pointerInvalidatedByLoopWithMSSA(
1266 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
1267 *Flags);
1268 if (Invalidated)
1269 return false;
1270 }
1271 return true;
1272 }
1273
1274 // If this call only reads from memory and there are no writes to memory
1275 // in the loop, we can hoist or sink the call as appropriate.
1276 if (isReadOnly(CurAST, MSSAU, CurLoop))
1277 return true;
1278 }
1279
1280 // FIXME: This should use mod/ref information to see if we can hoist or
1281 // sink the call.
1282
1283 return false;
1284 } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1285 // Fences alias (most) everything to provide ordering. For the moment,
1286 // just give up if there are any other memory operations in the loop.
1287 if (CurAST) {
1288 auto Begin = CurAST->begin();
1289 assert(Begin != CurAST->end() && "must contain FI")(static_cast <bool> (Begin != CurAST->end() &&
"must contain FI") ? void (0) : __assert_fail ("Begin != CurAST->end() && \"must contain FI\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1289, __extension__ __PRETTY_FUNCTION__))
;
1290 if (std::next(Begin) != CurAST->end())
1291 // constant memory for instance, TODO: handle better
1292 return false;
1293 auto *UniqueI = Begin->getUniqueInstruction();
1294 if (!UniqueI)
1295 // other memory op, give up
1296 return false;
1297 (void)FI; // suppress unused variable warning
1298 assert(UniqueI == FI && "AS must contain FI")(static_cast <bool> (UniqueI == FI && "AS must contain FI"
) ? void (0) : __assert_fail ("UniqueI == FI && \"AS must contain FI\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1298, __extension__ __PRETTY_FUNCTION__))
;
1299 return true;
1300 } else // MSSAU
1301 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1302 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1303 if (!SI->isUnordered())
1304 return false; // Don't sink/hoist volatile or ordered atomic store!
1305
1306 // We can only hoist a store that we can prove writes a value which is not
1307 // read or overwritten within the loop. For those cases, we fallback to
1308 // load store promotion instead. TODO: We can extend this to cases where
1309 // there is exactly one write to the location and that write dominates an
1310 // arbitrary number of reads in the loop.
1311 if (CurAST) {
1312 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1313
1314 if (AS.isRef() || !AS.isMustAlias())
1315 // Quick exit test, handled by the full path below as well.
1316 return false;
1317 auto *UniqueI = AS.getUniqueInstruction();
1318 if (!UniqueI)
1319 // other memory op, give up
1320 return false;
1321 assert(UniqueI == SI && "AS must contain SI")(static_cast <bool> (UniqueI == SI && "AS must contain SI"
) ? void (0) : __assert_fail ("UniqueI == SI && \"AS must contain SI\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1321, __extension__ __PRETTY_FUNCTION__))
;
1322 return true;
1323 } else { // MSSAU
1324 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1325 return true;
1326 // If there are more accesses than the Promotion cap or no "quota" to
1327 // check clobber, then give up as we're not walking a list that long.
1328 if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
1329 return false;
1330 // If there are interfering Uses (i.e. their defining access is in the
1331 // loop), or ordered loads (stored as Defs!), don't move this store.
1332 // Could do better here, but this is conservatively correct.
1333 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1334 // moving accesses. Can also extend to dominating uses.
1335 auto *SIMD = MSSA->getMemoryAccess(SI);
1336 for (auto *BB : CurLoop->getBlocks())
1337 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1338 for (const auto &MA : *Accesses)
1339 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1340 auto *MD = MU->getDefiningAccess();
1341 if (!MSSA->isLiveOnEntryDef(MD) &&
1342 CurLoop->contains(MD->getBlock()))
1343 return false;
1344 // Disable hoisting past potentially interfering loads. Optimized
1345 // Uses may point to an access outside the loop, as getClobbering
1346 // checks the previous iteration when walking the backedge.
1347 // FIXME: More precise: no Uses that alias SI.
1348 if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
1349 return false;
1350 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1351 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1352 (void)LI; // Silence warning.
1353 assert(!LI->isUnordered() && "Expected unordered load")(static_cast <bool> (!LI->isUnordered() && "Expected unordered load"
) ? void (0) : __assert_fail ("!LI->isUnordered() && \"Expected unordered load\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1353, __extension__ __PRETTY_FUNCTION__))
;
1354 return false;
1355 }
1356 // Any call, while it may not be clobbering SI, it may be a use.
1357 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1358 // Check if the call may read from the memory location written
1359 // to by SI. Check CI's attributes and arguments; the number of
1360 // such checks performed is limited above by NoOfMemAccTooLarge.
1361 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1362 if (isModOrRefSet(MRI))
1363 return false;
1364 }
1365 }
1366 }
1367 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1368 Flags->incrementClobberingCalls();
1369 // If there are no clobbering Defs in the loop, store is safe to hoist.
1370 return MSSA->isLiveOnEntryDef(Source) ||
1371 !CurLoop->contains(Source->getBlock());
1372 }
1373 }
1374
1375 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing")(static_cast <bool> (!I.mayReadOrWriteMemory() &&
"unhandled aliasing") ? void (0) : __assert_fail ("!I.mayReadOrWriteMemory() && \"unhandled aliasing\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1375, __extension__ __PRETTY_FUNCTION__))
;
1376
1377 // We've established mechanical ability and aliasing, it's up to the caller
1378 // to check fault safety
1379 return true;
1380}
1381
1382/// Returns true if a PHINode is a trivially replaceable with an
1383/// Instruction.
1384/// This is true when all incoming values are that instruction.
1385/// This pattern occurs most often with LCSSA PHI nodes.
1386///
1387static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1388 for (const Value *IncValue : PN.incoming_values())
1389 if (IncValue != &I)
1390 return false;
1391
1392 return true;
1393}
1394
1395/// Return true if the instruction is free in the loop.
1396static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1397 const TargetTransformInfo *TTI) {
1398
1399 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1400 if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1401 TargetTransformInfo::TCC_Free)
1402 return false;
1403 // For a GEP, we cannot simply use getUserCost because currently it
1404 // optimistically assume that a GEP will fold into addressing mode
1405 // regardless of its users.
1406 const BasicBlock *BB = GEP->getParent();
1407 for (const User *U : GEP->users()) {
1408 const Instruction *UI = cast<Instruction>(U);
1409 if (CurLoop->contains(UI) &&
1410 (BB != UI->getParent() ||
1411 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1412 return false;
1413 }
1414 return true;
1415 } else
1416 return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1417 TargetTransformInfo::TCC_Free;
1418}
1419
1420/// Return true if the only users of this instruction are outside of
1421/// the loop. If this is true, we can sink the instruction to the exit
1422/// blocks of the loop.
1423///
1424/// We also return true if the instruction could be folded away in lowering.
1425/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1426static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1427 const LoopSafetyInfo *SafetyInfo,
1428 TargetTransformInfo *TTI, bool &FreeInLoop) {
1429 const auto &BlockColors = SafetyInfo->getBlockColors();
1430 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1431 for (const User *U : I.users()) {
1432 const Instruction *UI = cast<Instruction>(U);
1433 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1434 const BasicBlock *BB = PN->getParent();
1435 // We cannot sink uses in catchswitches.
1436 if (isa<CatchSwitchInst>(BB->getTerminator()))
1437 return false;
1438
1439 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1440 // phi use is too muddled.
1441 if (isa<CallInst>(I))
1442 if (!BlockColors.empty() &&
1443 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1444 return false;
1445 }
1446
1447 if (CurLoop->contains(UI)) {
1448 if (IsFree) {
1449 FreeInLoop = true;
1450 continue;
1451 }
1452 return false;
1453 }
1454 }
1455 return true;
1456}
1457
1458static Instruction *cloneInstructionInExitBlock(
1459 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1460 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1461 Instruction *New;
1462 if (auto *CI = dyn_cast<CallInst>(&I)) {
1463 const auto &BlockColors = SafetyInfo->getBlockColors();
1464
1465 // Sinking call-sites need to be handled differently from other
1466 // instructions. The cloned call-site needs a funclet bundle operand
1467 // appropriate for its location in the CFG.
1468 SmallVector<OperandBundleDef, 1> OpBundles;
1469 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1470 BundleIdx != BundleEnd; ++BundleIdx) {
1471 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1472 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1473 continue;
1474
1475 OpBundles.emplace_back(Bundle);
1476 }
1477
1478 if (!BlockColors.empty()) {
1479 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1480 assert(CV.size() == 1 && "non-unique color for exit block!")(static_cast <bool> (CV.size() == 1 && "non-unique color for exit block!"
) ? void (0) : __assert_fail ("CV.size() == 1 && \"non-unique color for exit block!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1480, __extension__ __PRETTY_FUNCTION__))
;
1481 BasicBlock *BBColor = CV.front();
1482 Instruction *EHPad = BBColor->getFirstNonPHI();
1483 if (EHPad->isEHPad())
1484 OpBundles.emplace_back("funclet", EHPad);
1485 }
1486
1487 New = CallInst::Create(CI, OpBundles);
1488 } else {
1489 New = I.clone();
1490 }
1491
1492 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1493 if (!I.getName().empty())
1494 New->setName(I.getName() + ".le");
1495
1496 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1497 // Create a new MemoryAccess and let MemorySSA set its defining access.
1498 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1499 New, nullptr, New->getParent(), MemorySSA::Beginning);
1500 if (NewMemAcc) {
1501 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1502 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1503 else {
1504 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1505 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1506 }
1507 }
1508 }
1509
1510 // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that
1511 // this is particularly cheap because we can rip off the PHI node that we're
1512 // replacing for the number and blocks of the predecessors.
1513 // OPT: If this shows up in a profile, we can instead finish sinking all
1514 // invariant instructions, and then walk their operands to re-establish
1515 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1516 // sinking bottom-up.
1517 for (Use &Op : New->operands())
1518 if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
1519 auto *OInst = cast<Instruction>(Op.get());
1520 PHINode *OpPN =
1521 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1522 OInst->getName() + ".lcssa", &ExitBlock.front());
1523 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1524 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1525 Op = OpPN;
1526 }
1527 return New;
1528}
1529
1530static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1531 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1532 if (AST)
1533 AST->deleteValue(&I);
1534 if (MSSAU)
1535 MSSAU->removeMemoryAccess(&I);
1536 SafetyInfo.removeInstruction(&I);
1537 I.eraseFromParent();
1538}
1539
1540static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1541 ICFLoopSafetyInfo &SafetyInfo,
1542 MemorySSAUpdater *MSSAU,
1543 ScalarEvolution *SE) {
1544 SafetyInfo.removeInstruction(&I);
1545 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1546 I.moveBefore(&Dest);
1547 if (MSSAU)
1548 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1549 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1550 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1551 MemorySSA::BeforeTerminator);
1552 if (SE)
1553 SE->forgetValue(&I);
1554}
1555
1556static Instruction *sinkThroughTriviallyReplaceablePHI(
1557 PHINode *TPN, Instruction *I, LoopInfo *LI,
1558 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1559 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1560 MemorySSAUpdater *MSSAU) {
1561 assert(isTriviallyReplaceablePHI(*TPN, *I) &&(static_cast <bool> (isTriviallyReplaceablePHI(*TPN, *I
) && "Expect only trivially replaceable PHI") ? void (
0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1562, __extension__ __PRETTY_FUNCTION__))
1562 "Expect only trivially replaceable PHI")(static_cast <bool> (isTriviallyReplaceablePHI(*TPN, *I
) && "Expect only trivially replaceable PHI") ? void (
0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1562, __extension__ __PRETTY_FUNCTION__))
;
1563 BasicBlock *ExitBlock = TPN->getParent();
1564 Instruction *New;
1565 auto It = SunkCopies.find(ExitBlock);
1566 if (It != SunkCopies.end())
1567 New = It->second;
1568 else
1569 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1570 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1571 return New;
1572}
1573
1574static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1575 BasicBlock *BB = PN->getParent();
1576 if (!BB->canSplitPredecessors())
1577 return false;
1578 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1579 // it require updating BlockColors for all offspring blocks accordingly. By
1580 // skipping such corner case, we can make updating BlockColors after splitting
1581 // predecessor fairly simple.
1582 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1583 return false;
1584 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1585 BasicBlock *BBPred = *PI;
1586 if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1587 isa<CallBrInst>(BBPred->getTerminator()))
1588 return false;
1589 }
1590 return true;
1591}
1592
1593static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1594 LoopInfo *LI, const Loop *CurLoop,
1595 LoopSafetyInfo *SafetyInfo,
1596 MemorySSAUpdater *MSSAU) {
1597#ifndef NDEBUG
1598 SmallVector<BasicBlock *, 32> ExitBlocks;
1599 CurLoop->getUniqueExitBlocks(ExitBlocks);
1600 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1601 ExitBlocks.end());
1602#endif
1603 BasicBlock *ExitBB = PN->getParent();
1604 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.")(static_cast <bool> (ExitBlockSet.count(ExitBB) &&
"Expect the PHI is in an exit block.") ? void (0) : __assert_fail
("ExitBlockSet.count(ExitBB) && \"Expect the PHI is in an exit block.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1604, __extension__ __PRETTY_FUNCTION__))
;
1605
1606 // Split predecessors of the loop exit to make instructions in the loop are
1607 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1608 // loop in the canonical form where each predecessor of each exit block should
1609 // be contained within the loop. For example, this will convert the loop below
1610 // from
1611 //
1612 // LB1:
1613 // %v1 =
1614 // br %LE, %LB2
1615 // LB2:
1616 // %v2 =
1617 // br %LE, %LB1
1618 // LE:
1619 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1620 //
1621 // to
1622 //
1623 // LB1:
1624 // %v1 =
1625 // br %LE.split, %LB2
1626 // LB2:
1627 // %v2 =
1628 // br %LE.split2, %LB1
1629 // LE.split:
1630 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1631 // br %LE
1632 // LE.split2:
1633 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1634 // br %LE
1635 // LE:
1636 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1637 //
1638 const auto &BlockColors = SafetyInfo->getBlockColors();
1639 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1640 while (!PredBBs.empty()) {
1641 BasicBlock *PredBB = *PredBBs.begin();
1642 assert(CurLoop->contains(PredBB) &&(static_cast <bool> (CurLoop->contains(PredBB) &&
"Expect all predecessors are in the loop") ? void (0) : __assert_fail
("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1643, __extension__ __PRETTY_FUNCTION__))
1643 "Expect all predecessors are in the loop")(static_cast <bool> (CurLoop->contains(PredBB) &&
"Expect all predecessors are in the loop") ? void (0) : __assert_fail
("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1643, __extension__ __PRETTY_FUNCTION__))
;
1644 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1645 BasicBlock *NewPred = SplitBlockPredecessors(
1646 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1647 // Since we do not allow splitting EH-block with BlockColors in
1648 // canSplitPredecessors(), we can simply assign predecessor's color to
1649 // the new block.
1650 if (!BlockColors.empty())
1651 // Grab a reference to the ColorVector to be inserted before getting the
1652 // reference to the vector we are copying because inserting the new
1653 // element in BlockColors might cause the map to be reallocated.
1654 SafetyInfo->copyColors(NewPred, PredBB);
1655 }
1656 PredBBs.remove(PredBB);
1657 }
1658}
1659
1660/// When an instruction is found to only be used outside of the loop, this
1661/// function moves it to the exit blocks and patches up SSA form as needed.
1662/// This method is guaranteed to remove the original instruction from its
1663/// position, and may either delete it or move it to outside of the loop.
1664///
1665static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1666 BlockFrequencyInfo *BFI, const Loop *CurLoop,
1667 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
1668 OptimizationRemarkEmitter *ORE) {
1669 bool Changed = false;
1670 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM sinking instruction: " <<
I << "\n"; } } while (false)
;
1671
1672 // Iterate over users to be ready for actual sinking. Replace users via
1673 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1674 SmallPtrSet<Instruction *, 8> VisitedUsers;
1675 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1676 auto *User = cast<Instruction>(*UI);
1677 Use &U = UI.getUse();
1678 ++UI;
1679
1680 if (VisitedUsers.count(User) || CurLoop->contains(User))
1681 continue;
1682
1683 if (!DT->isReachableFromEntry(User->getParent())) {
1684 U = UndefValue::get(I.getType());
1685 Changed = true;
1686 continue;
1687 }
1688
1689 // The user must be a PHI node.
1690 PHINode *PN = cast<PHINode>(User);
1691
1692 // Surprisingly, instructions can be used outside of loops without any
1693 // exits. This can only happen in PHI nodes if the incoming block is
1694 // unreachable.
1695 BasicBlock *BB = PN->getIncomingBlock(U);
1696 if (!DT->isReachableFromEntry(BB)) {
1697 U = UndefValue::get(I.getType());
1698 Changed = true;
1699 continue;
1700 }
1701
1702 VisitedUsers.insert(PN);
1703 if (isTriviallyReplaceablePHI(*PN, I))
1704 continue;
1705
1706 if (!canSplitPredecessors(PN, SafetyInfo))
1707 return Changed;
1708
1709 // Split predecessors of the PHI so that we can make users trivially
1710 // replaceable.
1711 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1712
1713 // Should rebuild the iterators, as they may be invalidated by
1714 // splitPredecessorsOfLoopExit().
1715 UI = I.user_begin();
1716 UE = I.user_end();
1717 }
1718
1719 if (VisitedUsers.empty())
1720 return Changed;
1721
1722 ORE->emit([&]() {
1723 return OptimizationRemark(DEBUG_TYPE"licm", "InstSunk", &I)
1724 << "sinking " << ore::NV("Inst", &I);
1725 });
1726 if (isa<LoadInst>(I))
1727 ++NumMovedLoads;
1728 else if (isa<CallInst>(I))
1729 ++NumMovedCalls;
1730 ++NumSunk;
1731
1732#ifndef NDEBUG
1733 SmallVector<BasicBlock *, 32> ExitBlocks;
1734 CurLoop->getUniqueExitBlocks(ExitBlocks);
1735 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1736 ExitBlocks.end());
1737#endif
1738
1739 // Clones of this instruction. Don't create more than one per exit block!
1740 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1741
1742 // If this instruction is only used outside of the loop, then all users are
1743 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1744 // the instruction.
1745 // First check if I is worth sinking for all uses. Sink only when it is worth
1746 // across all uses.
1747 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1748 SmallVector<PHINode *, 8> ExitPNs;
1749 for (auto *UI : Users) {
1750 auto *User = cast<Instruction>(UI);
1751
1752 if (CurLoop->contains(User))
1753 continue;
1754
1755 PHINode *PN = cast<PHINode>(User);
1756 assert(ExitBlockSet.count(PN->getParent()) &&(static_cast <bool> (ExitBlockSet.count(PN->getParent
()) && "The LCSSA PHI is not in an exit block!") ? void
(0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1757, __extension__ __PRETTY_FUNCTION__))
1757 "The LCSSA PHI is not in an exit block!")(static_cast <bool> (ExitBlockSet.count(PN->getParent
()) && "The LCSSA PHI is not in an exit block!") ? void
(0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1757, __extension__ __PRETTY_FUNCTION__))
;
1758 if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) {
1759 return Changed;
1760 }
1761
1762 ExitPNs.push_back(PN);
1763 }
1764
1765 for (auto *PN : ExitPNs) {
1766
1767 // The PHI must be trivially replaceable.
1768 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1769 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1770 PN->replaceAllUsesWith(New);
1771 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1772 Changed = true;
1773 }
1774 return Changed;
1775}
1776
1777/// When an instruction is found to only use loop invariant operands that
1778/// is safe to hoist, this instruction is called to do the dirty work.
1779///
1780static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1781 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1782 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1783 OptimizationRemarkEmitter *ORE) {
1784 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getNameOrAsOperand() << ": " << I << "\n"
; } } while (false)
1785 << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getNameOrAsOperand() << ": " << I << "\n"
; } } while (false)
;
1786 ORE->emit([&]() {
1787 return OptimizationRemark(DEBUG_TYPE"licm", "Hoisted", &I) << "hoisting "
1788 << ore::NV("Inst", &I);
1789 });
1790
1791 // Metadata can be dependent on conditions we are hoisting above.
1792 // Conservatively strip all metadata on the instruction unless we were
1793 // guaranteed to execute I if we entered the loop, in which case the metadata
1794 // is valid in the loop preheader.
1795 if (I.hasMetadataOtherThanDebugLoc() &&
1796 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1797 // time in isGuaranteedToExecute if we don't actually have anything to
1798 // drop. It is a compile time optimization, not required for correctness.
1799 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1800 I.dropUnknownNonDebugMetadata();
1801
1802 if (isa<PHINode>(I))
1803 // Move the new node to the end of the phi list in the destination block.
1804 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1805 else
1806 // Move the new node to the destination block, before its terminator.
1807 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1808
1809 I.updateLocationAfterHoist();
1810
1811 if (isa<LoadInst>(I))
1812 ++NumMovedLoads;
1813 else if (isa<CallInst>(I))
1814 ++NumMovedCalls;
1815 ++NumHoisted;
1816}
1817
1818/// Only sink or hoist an instruction if it is not a trapping instruction,
1819/// or if the instruction is known not to trap when moved to the preheader.
1820/// or if it is a trapping instruction and is guaranteed to execute.
1821static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1822 const DominatorTree *DT,
1823 const TargetLibraryInfo *TLI,
1824 const Loop *CurLoop,
1825 const LoopSafetyInfo *SafetyInfo,
1826 OptimizationRemarkEmitter *ORE,
1827 const Instruction *CtxI) {
1828 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI))
1829 return true;
1830
1831 bool GuaranteedToExecute =
1832 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1833
1834 if (!GuaranteedToExecute) {
1835 auto *LI = dyn_cast<LoadInst>(&Inst);
1836 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1837 ORE->emit([&]() {
1838 return OptimizationRemarkMissed(
1839 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressCondExecuted", LI)
1840 << "failed to hoist load with loop-invariant address "
1841 "because load is conditionally executed";
1842 });
1843 }
1844
1845 return GuaranteedToExecute;
1846}
1847
1848namespace {
1849class LoopPromoter : public LoadAndStorePromoter {
1850 Value *SomePtr; // Designated pointer to store to.
1851 const SmallSetVector<Value *, 8> &PointerMustAliases;
1852 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1853 SmallVectorImpl<Instruction *> &LoopInsertPts;
1854 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1855 PredIteratorCache &PredCache;
1856 AliasSetTracker *AST;
1857 MemorySSAUpdater *MSSAU;
1858 LoopInfo &LI;
1859 DebugLoc DL;
1860 int Alignment;
1861 bool UnorderedAtomic;
1862 AAMDNodes AATags;
1863 ICFLoopSafetyInfo &SafetyInfo;
1864
1865 // We're about to add a use of V in a loop exit block. Insert an LCSSA phi
1866 // (if legal) if doing so would add an out-of-loop use to an instruction
1867 // defined in-loop.
1868 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1869 if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
1870 return V;
1871
1872 Instruction *I = cast<Instruction>(V);
1873 // We need to create an LCSSA PHI node for the incoming value and
1874 // store that.
1875 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1876 I->getName() + ".lcssa", &BB->front());
1877 for (BasicBlock *Pred : PredCache.get(BB))
1878 PN->addIncoming(I, Pred);
1879 return PN;
1880 }
1881
1882public:
1883 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1884 const SmallSetVector<Value *, 8> &PMA,
1885 SmallVectorImpl<BasicBlock *> &LEB,
1886 SmallVectorImpl<Instruction *> &LIP,
1887 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1888 AliasSetTracker *ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1889 DebugLoc dl, int alignment, bool UnorderedAtomic,
1890 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1891 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1892 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1893 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1894 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1895 SafetyInfo(SafetyInfo) {}
1896
1897 bool isInstInList(Instruction *I,
1898 const SmallVectorImpl<Instruction *> &) const override {
1899 Value *Ptr;
1900 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1901 Ptr = LI->getOperand(0);
1902 else
1903 Ptr = cast<StoreInst>(I)->getPointerOperand();
1904 return PointerMustAliases.count(Ptr);
1905 }
1906
1907 void doExtraRewritesBeforeFinalDeletion() override {
1908 // Insert stores after in the loop exit blocks. Each exit block gets a
1909 // store of the live-out values that feed them. Since we've already told
1910 // the SSA updater about the defs in the loop and the preheader
1911 // definition, it is all set and we can start using it.
1912 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1913 BasicBlock *ExitBlock = LoopExitBlocks[i];
1914 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1915 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1916 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1917 Instruction *InsertPos = LoopInsertPts[i];
1918 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1919 if (UnorderedAtomic)
1920 NewSI->setOrdering(AtomicOrdering::Unordered);
1921 NewSI->setAlignment(Align(Alignment));
1922 NewSI->setDebugLoc(DL);
1923 if (AATags)
1924 NewSI->setAAMetadata(AATags);
1925
1926 if (MSSAU) {
1927 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1928 MemoryAccess *NewMemAcc;
1929 if (!MSSAInsertPoint) {
1930 NewMemAcc = MSSAU->createMemoryAccessInBB(
1931 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1932 } else {
1933 NewMemAcc =
1934 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1935 }
1936 MSSAInsertPts[i] = NewMemAcc;
1937 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1938 // FIXME: true for safety, false may still be correct.
1939 }
1940 }
1941 }
1942
1943 void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1944 // Update alias analysis.
1945 if (AST)
1946 AST->copyValue(LI, V);
1947 }
1948 void instructionDeleted(Instruction *I) const override {
1949 SafetyInfo.removeInstruction(I);
1950 if (AST)
1951 AST->deleteValue(I);
1952 if (MSSAU)
1953 MSSAU->removeMemoryAccess(I);
1954 }
1955};
1956
1957bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1958 DominatorTree *DT) {
1959 // We can perform the captured-before check against any instruction in the
1960 // loop header, as the loop header is reachable from any instruction inside
1961 // the loop.
1962 // TODO: ReturnCaptures=true shouldn't be necessary here.
1963 return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1964 /* StoreCaptures */ true,
1965 L->getHeader()->getTerminator(), DT);
1966}
1967
1968/// Return true iff we can prove that a caller of this function can not inspect
1969/// the contents of the provided object in a well defined program.
1970bool isKnownNonEscaping(Value *Object, const Loop *L,
1971 const TargetLibraryInfo *TLI, DominatorTree *DT) {
1972 if (isa<AllocaInst>(Object))
1973 // Since the alloca goes out of scope, we know the caller can't retain a
1974 // reference to it and be well defined. Thus, we don't need to check for
1975 // capture.
1976 return true;
1977
1978 // For all other objects we need to know that the caller can't possibly
1979 // have gotten a reference to the object. There are two components of
1980 // that:
1981 // 1) Object can't be escaped by this function. This is what
1982 // PointerMayBeCaptured checks.
1983 // 2) Object can't have been captured at definition site. For this, we
1984 // need to know the return value is noalias. At the moment, we use a
1985 // weaker condition and handle only AllocLikeFunctions (which are
1986 // known to be noalias). TODO
1987 return isAllocLikeFn(Object, TLI) &&
1988 isNotCapturedBeforeOrInLoop(Object, L, DT);
1989}
1990
1991} // namespace
1992
1993/// Try to promote memory values to scalars by sinking stores out of the
1994/// loop and moving loads to before the loop. We do this by looping over
1995/// the stores in the loop, looking for stores to Must pointers which are
1996/// loop invariant.
1997///
1998bool llvm::promoteLoopAccessesToScalars(
1999 const SmallSetVector<Value *, 8> &PointerMustAliases,
2000 SmallVectorImpl<BasicBlock *> &ExitBlocks,
2001 SmallVectorImpl<Instruction *> &InsertPts,
2002 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
2003 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
2004 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
2005 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
2006 // Verify inputs.
2007 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&(static_cast <bool> (LI != nullptr && DT != nullptr
&& CurLoop != nullptr && SafetyInfo != nullptr
&& "Unexpected Input to promoteLoopAccessesToScalars"
) ? void (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 2009, __extension__ __PRETTY_FUNCTION__))
2008 SafetyInfo != nullptr &&(static_cast <bool> (LI != nullptr && DT != nullptr
&& CurLoop != nullptr && SafetyInfo != nullptr
&& "Unexpected Input to promoteLoopAccessesToScalars"
) ? void (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 2009, __extension__ __PRETTY_FUNCTION__))
2009 "Unexpected Input to promoteLoopAccessesToScalars")(static_cast <bool> (LI != nullptr && DT != nullptr
&& CurLoop != nullptr && SafetyInfo != nullptr
&& "Unexpected Input to promoteLoopAccessesToScalars"
) ? void (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 2009, __extension__ __PRETTY_FUNCTION__))
;
2010
2011 Value *SomePtr = *PointerMustAliases.begin();
2012 BasicBlock *Preheader = CurLoop->getLoopPreheader();
2013
2014 // It is not safe to promote a load/store from the loop if the load/store is
2015 // conditional. For example, turning:
2016 //
2017 // for () { if (c) *P += 1; }
2018 //
2019 // into:
2020 //
2021 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
2022 //
2023 // is not safe, because *P may only be valid to access if 'c' is true.
2024 //
2025 // The safety property divides into two parts:
2026 // p1) The memory may not be dereferenceable on entry to the loop. In this
2027 // case, we can't insert the required load in the preheader.
2028 // p2) The memory model does not allow us to insert a store along any dynamic
2029 // path which did not originally have one.
2030 //
2031 // If at least one store is guaranteed to execute, both properties are
2032 // satisfied, and promotion is legal.
2033 //
2034 // This, however, is not a necessary condition. Even if no store/load is
2035 // guaranteed to execute, we can still establish these properties.
2036 // We can establish (p1) by proving that hoisting the load into the preheader
2037 // is safe (i.e. proving dereferenceability on all paths through the loop). We
2038 // can use any access within the alias set to prove dereferenceability,
2039 // since they're all must alias.
2040 //
2041 // There are two ways establish (p2):
2042 // a) Prove the location is thread-local. In this case the memory model
2043 // requirement does not apply, and stores are safe to insert.
2044 // b) Prove a store dominates every exit block. In this case, if an exit
2045 // blocks is reached, the original dynamic path would have taken us through
2046 // the store, so inserting a store into the exit block is safe. Note that this
2047 // is different from the store being guaranteed to execute. For instance,
2048 // if an exception is thrown on the first iteration of the loop, the original
2049 // store is never executed, but the exit blocks are not executed either.
2050
2051 bool DereferenceableInPH = false;
2052 bool SafeToInsertStore = false;
2053
2054 SmallVector<Instruction *, 64> LoopUses;
2055
2056 // We start with an alignment of one and try to find instructions that allow
2057 // us to prove better alignment.
2058 Align Alignment;
2059 // Keep track of which types of access we see
2060 bool SawUnorderedAtomic = false;
2061 bool SawNotAtomic = false;
2062 AAMDNodes AATags;
2063
2064 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
2065
2066 bool IsKnownThreadLocalObject = false;
2067 if (SafetyInfo->anyBlockMayThrow()) {
2068 // If a loop can throw, we have to insert a store along each unwind edge.
2069 // That said, we can't actually make the unwind edge explicit. Therefore,
2070 // we have to prove that the store is dead along the unwind edge. We do
2071 // this by proving that the caller can't have a reference to the object
2072 // after return and thus can't possibly load from the object.
2073 Value *Object = getUnderlyingObject(SomePtr);
2074 if (!isKnownNonEscaping(Object, CurLoop, TLI, DT))
2075 return false;
2076 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
2077 // visible to other threads if captured and used during their lifetimes.
2078 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
2079 }
2080
2081 // Check that all of the pointers in the alias set have the same type. We
2082 // cannot (yet) promote a memory location that is loaded and stored in
2083 // different sizes. While we are at it, collect alignment and AA info.
2084 for (Value *ASIV : PointerMustAliases) {
2085 // Check that all of the pointers in the alias set have the same type. We
2086 // cannot (yet) promote a memory location that is loaded and stored in
2087 // different sizes.
2088 if (SomePtr->getType() != ASIV->getType())
2089 return false;
2090
2091 for (User *U : ASIV->users()) {
2092 // Ignore instructions that are outside the loop.
2093 Instruction *UI = dyn_cast<Instruction>(U);
2094 if (!UI || !CurLoop->contains(UI))
2095 continue;
2096
2097 // If there is an non-load/store instruction in the loop, we can't promote
2098 // it.
2099 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2100 if (!Load->isUnordered())
2101 return false;
2102
2103 SawUnorderedAtomic |= Load->isAtomic();
2104 SawNotAtomic |= !Load->isAtomic();
2105
2106 Align InstAlignment = Load->getAlign();
2107
2108 // Note that proving a load safe to speculate requires proving
2109 // sufficient alignment at the target location. Proving it guaranteed
2110 // to execute does as well. Thus we can increase our guaranteed
2111 // alignment as well.
2112 if (!DereferenceableInPH || (InstAlignment > Alignment))
2113 if (isSafeToExecuteUnconditionally(*Load, DT, TLI, CurLoop,
2114 SafetyInfo, ORE,
2115 Preheader->getTerminator())) {
2116 DereferenceableInPH = true;
2117 Alignment = std::max(Alignment, InstAlignment);
2118 }
2119 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2120 // Stores *of* the pointer are not interesting, only stores *to* the
2121 // pointer.
2122 if (UI->getOperand(1) != ASIV)
2123 continue;
2124 if (!Store->isUnordered())
2125 return false;
2126
2127 SawUnorderedAtomic |= Store->isAtomic();
2128 SawNotAtomic |= !Store->isAtomic();
2129
2130 // If the store is guaranteed to execute, both properties are satisfied.
2131 // We may want to check if a store is guaranteed to execute even if we
2132 // already know that promotion is safe, since it may have higher
2133 // alignment than any other guaranteed stores, in which case we can
2134 // raise the alignment on the promoted store.
2135 Align InstAlignment = Store->getAlign();
2136
2137 if (!DereferenceableInPH || !SafeToInsertStore ||
2138 (InstAlignment > Alignment)) {
2139 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2140 DereferenceableInPH = true;
2141 SafeToInsertStore = true;
2142 Alignment = std::max(Alignment, InstAlignment);
2143 }
2144 }
2145
2146 // If a store dominates all exit blocks, it is safe to sink.
2147 // As explained above, if an exit block was executed, a dominating
2148 // store must have been executed at least once, so we are not
2149 // introducing stores on paths that did not have them.
2150 // Note that this only looks at explicit exit blocks. If we ever
2151 // start sinking stores into unwind edges (see above), this will break.
2152 if (!SafeToInsertStore)
2153 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2154 return DT->dominates(Store->getParent(), Exit);
2155 });
2156
2157 // If the store is not guaranteed to execute, we may still get
2158 // deref info through it.
2159 if (!DereferenceableInPH) {
2160 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2161 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2162 Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI);
2163 }
2164 } else
2165 return false; // Not a load or store.
2166
2167 // Merge the AA tags.
2168 if (LoopUses.empty()) {
2169 // On the first load/store, just take its AA tags.
2170 UI->getAAMetadata(AATags);
2171 } else if (AATags) {
2172 UI->getAAMetadata(AATags, /* Merge = */ true);
2173 }
2174
2175 LoopUses.push_back(UI);
2176 }
2177 }
2178
2179 // If we found both an unordered atomic instruction and a non-atomic memory
2180 // access, bail. We can't blindly promote non-atomic to atomic since we
2181 // might not be able to lower the result. We can't downgrade since that
2182 // would violate memory model. Also, align 0 is an error for atomics.
2183 if (SawUnorderedAtomic && SawNotAtomic)
2184 return false;
2185
2186 // If we're inserting an atomic load in the preheader, we must be able to
2187 // lower it. We're only guaranteed to be able to lower naturally aligned
2188 // atomics.
2189 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2190 if (SawUnorderedAtomic &&
2191 Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2192 return false;
2193
2194 // If we couldn't prove we can hoist the load, bail.
2195 if (!DereferenceableInPH)
2196 return false;
2197
2198 // We know we can hoist the load, but don't have a guaranteed store.
2199 // Check whether the location is thread-local. If it is, then we can insert
2200 // stores along paths which originally didn't have them without violating the
2201 // memory model.
2202 if (!SafeToInsertStore) {
2203 if (IsKnownThreadLocalObject)
2204 SafeToInsertStore = true;
2205 else {
2206 Value *Object = getUnderlyingObject(SomePtr);
2207 SafeToInsertStore =
2208 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2209 isNotCapturedBeforeOrInLoop(Object, CurLoop, DT);
2210 }
2211 }
2212
2213 // If we've still failed to prove we can sink the store, give up.
2214 if (!SafeToInsertStore)
2215 return false;
2216
2217 // Otherwise, this is safe to promote, lets do it!
2218 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtrdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
2219 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
;
2220 ORE->emit([&]() {
2221 return OptimizationRemark(DEBUG_TYPE"licm", "PromoteLoopAccessesToScalar",
2222 LoopUses[0])
2223 << "Moving accesses to memory location out of the loop";
2224 });
2225 ++NumPromoted;
2226
2227 // Look at all the loop uses, and try to merge their locations.
2228 std::vector<const DILocation *> LoopUsesLocs;
2229 for (auto U : LoopUses)
2230 LoopUsesLocs.push_back(U->getDebugLoc().get());
2231 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2232
2233 // We use the SSAUpdater interface to insert phi nodes as required.
2234 SmallVector<PHINode *, 16> NewPHIs;
2235 SSAUpdater SSA(&NewPHIs);
2236 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2237 InsertPts, MSSAInsertPts, PIC, CurAST, MSSAU, *LI, DL,
2238 Alignment.value(), SawUnorderedAtomic, AATags,
2239 *SafetyInfo);
2240
2241 // Set up the preheader to have a definition of the value. It is the live-out
2242 // value from the preheader that uses in the loop will use.
2243 LoadInst *PreheaderLoad = new LoadInst(
2244 SomePtr->getType()->getPointerElementType(), SomePtr,
2245 SomePtr->getName() + ".promoted", Preheader->getTerminator());
2246 if (SawUnorderedAtomic)
2247 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2248 PreheaderLoad->setAlignment(Alignment);
2249 PreheaderLoad->setDebugLoc(DebugLoc());
2250 if (AATags)
2251 PreheaderLoad->setAAMetadata(AATags);
2252 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2253
2254 if (MSSAU) {
2255 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2256 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2257 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2258 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2259 }
2260
2261 if (MSSAU && VerifyMemorySSA)
2262 MSSAU->getMemorySSA()->verifyMemorySSA();
2263 // Rewrite all the loads in the loop and remember all the definitions from
2264 // stores in the loop.
2265 Promoter.run(LoopUses);
2266
2267 if (MSSAU && VerifyMemorySSA)
2268 MSSAU->getMemorySSA()->verifyMemorySSA();
2269 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2270 if (PreheaderLoad->use_empty())
2271 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2272
2273 return true;
2274}
2275
2276static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2277 function_ref<void(Instruction *)> Fn) {
2278 for (const BasicBlock *BB : L->blocks())
2279 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2280 for (const auto &Access : *Accesses)
2281 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2282 Fn(MUD->getMemoryInst());
2283}
2284
2285static SmallVector<SmallSetVector<Value *, 8>, 0>
2286collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L,
2287 SmallVectorImpl<Instruction *> &MaybePromotable) {
2288 AliasSetTracker AST(*AA);
2289
2290 auto IsPotentiallyPromotable = [L](const Instruction *I) {
2291 if (const auto *SI = dyn_cast<StoreInst>(I))
2292 return L->isLoopInvariant(SI->getPointerOperand());
2293 if (const auto *LI = dyn_cast<LoadInst>(I))
2294 return L->isLoopInvariant(LI->getPointerOperand());
2295 return false;
2296 };
2297
2298 // Populate AST with potentially promotable accesses and remove them from
2299 // MaybePromotable, so they will not be checked again on the next iteration.
2300 SmallPtrSet<Value *, 16> AttemptingPromotion;
2301 llvm::erase_if(MaybePromotable, [&](Instruction *I) {
2302 if (IsPotentiallyPromotable(I)) {
2303 AttemptingPromotion.insert(I);
2304 AST.add(I);
2305 return true;
2306 }
2307 return false;
2308 });
2309
2310 // We're only interested in must-alias sets that contain a mod.
2311 SmallVector<const AliasSet *, 8> Sets;
2312 for (AliasSet &AS : AST)
2313 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2314 Sets.push_back(&AS);
2315
2316 if (Sets.empty())
2317 return {}; // Nothing to promote...
2318
2319 // Discard any sets for which there is an aliasing non-promotable access.
2320 foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2321 if (AttemptingPromotion.contains(I))
2322 return;
2323
2324 llvm::erase_if(Sets, [&](const AliasSet *AS) {
2325 return AS->aliasesUnknownInst(I, *AA);
2326 });
2327 });
2328
2329 SmallVector<SmallSetVector<Value *, 8>, 0> Result;
2330 for (const AliasSet *Set : Sets) {
2331 SmallSetVector<Value *, 8> PointerMustAliases;
2332 for (const auto &ASI : *Set)
2333 PointerMustAliases.insert(ASI.getValue());
2334 Result.push_back(std::move(PointerMustAliases));
2335 }
2336
2337 return Result;
2338}
2339
2340/// Returns an owning pointer to an alias set which incorporates aliasing info
2341/// from L and all subloops of L.
2342std::unique_ptr<AliasSetTracker>
2343LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2344 AAResults *AA) {
2345 auto CurAST = std::make_unique<AliasSetTracker>(*AA);
2346
2347 // Add everything from all the sub loops.
2348 for (Loop *InnerL : L->getSubLoops())
2349 for (BasicBlock *BB : InnerL->blocks())
2350 CurAST->add(*BB);
2351
2352 // And merge in this loop (without anything from inner loops).
2353 for (BasicBlock *BB : L->blocks())
2354 if (LI->getLoopFor(BB) == L)
2355 CurAST->add(*BB);
2356
2357 return CurAST;
2358}
2359
2360static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2361 AliasSetTracker *CurAST, Loop *CurLoop,
2362 AAResults *AA) {
2363 // First check to see if any of the basic blocks in CurLoop invalidate *V.
2364 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2365
2366 if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2367 return isInvalidatedAccordingToAST;
2368
2369 // Check with a diagnostic analysis if we can refine the information above.
2370 // This is to identify the limitations of using the AST.
2371 // The alias set mechanism used by LICM has a major weakness in that it
2372 // combines all things which may alias into a single set *before* asking
2373 // modref questions. As a result, a single readonly call within a loop will
2374 // collapse all loads and stores into a single alias set and report
2375 // invalidation if the loop contains any store. For example, readonly calls
2376 // with deopt states have this form and create a general alias set with all
2377 // loads and stores. In order to get any LICM in loops containing possible
2378 // deopt states we need a more precise invalidation of checking the mod ref
2379 // info of each instruction within the loop and LI. This has a complexity of
2380 // O(N^2), so currently, it is used only as a diagnostic tool since the
2381 // default value of LICMN2Threshold is zero.
2382
2383 // Don't look at nested loops.
2384 if (CurLoop->begin() != CurLoop->end())
2385 return true;
2386
2387 int N = 0;
2388 for (BasicBlock *BB : CurLoop->getBlocks())
2389 for (Instruction &I : *BB) {
2390 if (N >= LICMN2Theshold) {
2391 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
2392 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
;
2393 return true;
2394 }
2395 N++;
2396 auto Res = AA->getModRefInfo(&I, MemLoc);
2397 if (isModSet(Res)) {
2398 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
2399 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
;
2400 return true;
2401 }
2402 }
2403 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing okay for " << *(MemLoc
.Ptr) << "\n"; } } while (false)
;
2404 return false;
2405}
2406
2407bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2408 Loop *CurLoop, Instruction &I,
2409 SinkAndHoistLICMFlags &Flags) {
2410 // For hoisting, use the walker to determine safety
2411 if (!Flags.getIsSink()) {
2412 MemoryAccess *Source;
2413 // See declaration of SetLicmMssaOptCap for usage details.
2414 if (Flags.tooManyClobberingCalls())
2415 Source = MU->getDefiningAccess();
2416 else {
2417 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2418 Flags.incrementClobberingCalls();
2419 }
2420 return !MSSA->isLiveOnEntryDef(Source) &&
2421 CurLoop->contains(Source->getBlock());
2422 }
2423
2424 // For sinking, we'd need to check all Defs below this use. The getClobbering
2425 // call will look on the backedge of the loop, but will check aliasing with
2426 // the instructions on the previous iteration.
2427 // For example:
2428 // for (i ... )
2429 // load a[i] ( Use (LoE)
2430 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2431 // i++;
2432 // The load sees no clobbering inside the loop, as the backedge alias check
2433 // does phi translation, and will check aliasing against store a[i-1].
2434 // However sinking the load outside the loop, below the store is incorrect.
2435
2436 // For now, only sink if there are no Defs in the loop, and the existing ones
2437 // precede the use and are in the same block.
2438 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2439 // needs PostDominatorTreeAnalysis.
2440 // FIXME: More precise: no Defs that alias this Use.
2441 if (Flags.tooManyMemoryAccesses())
2442 return true;
2443 for (auto *BB : CurLoop->getBlocks())
2444 if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
2445 return true;
2446 // When sinking, the source block may not be part of the loop so check it.
2447 if (!CurLoop->contains(&I))
2448 return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
2449
2450 return false;
2451}
2452
2453bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
2454 MemoryUse &MU) {
2455 if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2456 for (const auto &MA : *Accesses)
2457 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2458 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2459 return true;
2460 return false;
2461}
2462
2463/// Little predicate that returns true if the specified basic block is in
2464/// a subloop of the current one, not the current one itself.
2465///
2466static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2467 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop")(static_cast <bool> (CurLoop->contains(BB) &&
"Only valid if BB is IN the loop") ? void (0) : __assert_fail
("CurLoop->contains(BB) && \"Only valid if BB is IN the loop\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/lib/Transforms/Scalar/LICM.cpp"
, 2467, __extension__ __PRETTY_FUNCTION__))
;
2468 return LI->getLoopFor(BB) != CurLoop;
2469}

/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/OperandTraits.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Use.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/ErrorHandling.h"
44#include <cassert>
45#include <cstddef>
46#include <cstdint>
47#include <iterator>
48
49namespace llvm {
50
51class APInt;
52class ConstantInt;
53class DataLayout;
54class LLVMContext;
55
56//===----------------------------------------------------------------------===//
57// AllocaInst Class
58//===----------------------------------------------------------------------===//
59
60/// an instruction to allocate memory on the stack
61class AllocaInst : public UnaryInstruction {
62 Type *AllocatedType;
63
64 using AlignmentField = AlignmentBitfieldElementT<0>;
65 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
66 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
67 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
68 SwiftErrorField>(),
69 "Bitfields must be contiguous");
70
71protected:
72 // Note: Instruction needs to be a friend here to call cloneImpl.
73 friend class Instruction;
74
75 AllocaInst *cloneImpl() const;
76
77public:
78 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
79 const Twine &Name, Instruction *InsertBefore);
80 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
81 const Twine &Name, BasicBlock *InsertAtEnd);
82
83 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
84 Instruction *InsertBefore);
85 AllocaInst(Type *Ty, unsigned AddrSpace,
86 const Twine &Name, BasicBlock *InsertAtEnd);
87
88 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
89 const Twine &Name = "", Instruction *InsertBefore = nullptr);
90 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
91 const Twine &Name, BasicBlock *InsertAtEnd);
92
93 /// Return true if there is an allocation size parameter to the allocation
94 /// instruction that is not 1.
95 bool isArrayAllocation() const;
96
97 /// Get the number of elements allocated. For a simple allocation of a single
98 /// element, this will return a constant 1 value.
99 const Value *getArraySize() const { return getOperand(0); }
100 Value *getArraySize() { return getOperand(0); }
101
102 /// Overload to return most specific pointer type.
103 PointerType *getType() const {
104 return cast<PointerType>(Instruction::getType());
105 }
106
107 /// Get allocation size in bits. Returns None if size can't be determined,
108 /// e.g. in case of a VLA.
109 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
110
111 /// Return the type that is being allocated by the instruction.
112 Type *getAllocatedType() const { return AllocatedType; }
113 /// for use only in special circumstances that need to generically
114 /// transform a whole instruction (eg: IR linking and vectorization).
115 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
116
117 /// Return the alignment of the memory that is being allocated by the
118 /// instruction.
119 Align getAlign() const {
120 return Align(1ULL << getSubclassData<AlignmentField>());
121 }
122
123 void setAlignment(Align Align) {
124 setSubclassData<AlignmentField>(Log2(Align));
125 }
126
127 // FIXME: Remove this one transition to Align is over.
128 unsigned getAlignment() const { return getAlign().value(); }
129
130 /// Return true if this alloca is in the entry block of the function and is a
131 /// constant size. If so, the code generator will fold it into the
132 /// prolog/epilog code, so it is basically free.
133 bool isStaticAlloca() const;
134
135 /// Return true if this alloca is used as an inalloca argument to a call. Such
136 /// allocas are never considered static even if they are in the entry block.
137 bool isUsedWithInAlloca() const {
138 return getSubclassData<UsedWithInAllocaField>();
139 }
140
141 /// Specify whether this alloca is used to represent the arguments to a call.
142 void setUsedWithInAlloca(bool V) {
143 setSubclassData<UsedWithInAllocaField>(V);
144 }
145
146 /// Return true if this alloca is used as a swifterror argument to a call.
147 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
148 /// Specify whether this alloca is used to represent a swifterror.
149 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 template <typename Bitfield>
163 void setSubclassData(typename Bitfield::Type Value) {
164 Instruction::setSubclassData<Bitfield>(Value);
165 }
166};
167
168//===----------------------------------------------------------------------===//
169// LoadInst Class
170//===----------------------------------------------------------------------===//
171
172/// An instruction for reading from memory. This uses the SubclassData field in
173/// Value to store whether or not the load is volatile.
174class LoadInst : public UnaryInstruction {
175 using VolatileField = BoolBitfieldElementT<0>;
176 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
177 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
178 static_assert(
179 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
180 "Bitfields must be contiguous");
181
182 void AssertOK();
183
184protected:
185 // Note: Instruction needs to be a friend here to call cloneImpl.
186 friend class Instruction;
187
188 LoadInst *cloneImpl() const;
189
190public:
191 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
192 Instruction *InsertBefore);
193 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 Instruction *InsertBefore);
196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197 BasicBlock *InsertAtEnd);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 Align Align, Instruction *InsertBefore = nullptr);
200 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201 Align Align, BasicBlock *InsertAtEnd);
202 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203 Align Align, AtomicOrdering Order,
204 SyncScope::ID SSID = SyncScope::System,
205 Instruction *InsertBefore = nullptr);
206 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
207 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
208 BasicBlock *InsertAtEnd);
209
210 /// Return true if this is a load from a volatile memory location.
211 bool isVolatile() const { return getSubclassData<VolatileField>(); }
212
213 /// Specify whether this is a volatile load or not.
214 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
215
216 /// Return the alignment of the access that is being performed.
217 /// FIXME: Remove this function once transition to Align is over.
218 /// Use getAlign() instead.
219 unsigned getAlignment() const { return getAlign().value(); }
220
221 /// Return the alignment of the access that is being performed.
222 Align getAlign() const {
223 return Align(1ULL << (getSubclassData<AlignmentField>()));
224 }
225
226 void setAlignment(Align Align) {
227 setSubclassData<AlignmentField>(Log2(Align));
228 }
229
230 /// Returns the ordering constraint of this load instruction.
231 AtomicOrdering getOrdering() const {
232 return getSubclassData<OrderingField>();
233 }
234 /// Sets the ordering constraint of this load instruction. May not be Release
235 /// or AcquireRelease.
236 void setOrdering(AtomicOrdering Ordering) {
237 setSubclassData<OrderingField>(Ordering);
238 }
239
240 /// Returns the synchronization scope ID of this load instruction.
241 SyncScope::ID getSyncScopeID() const {
242 return SSID;
243 }
244
245 /// Sets the synchronization scope ID of this load instruction.
246 void setSyncScopeID(SyncScope::ID SSID) {
247 this->SSID = SSID;
248 }
249
250 /// Sets the ordering constraint and the synchronization scope ID of this load
251 /// instruction.
252 void setAtomic(AtomicOrdering Ordering,
253 SyncScope::ID SSID = SyncScope::System) {
254 setOrdering(Ordering);
255 setSyncScopeID(SSID);
256 }
257
258 bool isSimple() const { return !isAtomic() && !isVolatile(); }
259
260 bool isUnordered() const {
261 return (getOrdering() == AtomicOrdering::NotAtomic ||
16
Assuming the condition is true
18
Returning the value 1, which participates in a condition later
262 getOrdering() == AtomicOrdering::Unordered) &&
263 !isVolatile();
17
Assuming the condition is true
264 }
265
266 Value *getPointerOperand() { return getOperand(0); }
267 const Value *getPointerOperand() const { return getOperand(0); }
268 static unsigned getPointerOperandIndex() { return 0U; }
269 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
270
271 /// Returns the address space of the pointer operand.
272 unsigned getPointerAddressSpace() const {
273 return getPointerOperandType()->getPointerAddressSpace();
274 }
275
276 // Methods for support type inquiry through isa, cast, and dyn_cast:
277 static bool classof(const Instruction *I) {
278 return I->getOpcode() == Instruction::Load;
279 }
280 static bool classof(const Value *V) {
281 return isa<Instruction>(V) && classof(cast<Instruction>(V));
282 }
283
284private:
285 // Shadow Instruction::setInstructionSubclassData with a private forwarding
286 // method so that subclasses cannot accidentally use it.
287 template <typename Bitfield>
288 void setSubclassData(typename Bitfield::Type Value) {
289 Instruction::setSubclassData<Bitfield>(Value);
290 }
291
292 /// The synchronization scope ID of this load instruction. Not quite enough
293 /// room in SubClassData for everything, so synchronization scope ID gets its
294 /// own field.
295 SyncScope::ID SSID;
296};
297
298//===----------------------------------------------------------------------===//
299// StoreInst Class
300//===----------------------------------------------------------------------===//
301
302/// An instruction for storing to memory.
303class StoreInst : public Instruction {
304 using VolatileField = BoolBitfieldElementT<0>;
305 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
306 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
307 static_assert(
308 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
309 "Bitfields must be contiguous");
310
311 void AssertOK();
312
313protected:
314 // Note: Instruction needs to be a friend here to call cloneImpl.
315 friend class Instruction;
316
317 StoreInst *cloneImpl() const;
318
319public:
320 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
321 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
322 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
325 Instruction *InsertBefore = nullptr);
326 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327 BasicBlock *InsertAtEnd);
328 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
329 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
330 Instruction *InsertBefore = nullptr);
331 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
332 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
333
334 // allocate space for exactly two operands
335 void *operator new(size_t s) {
336 return User::operator new(s, 2);
337 }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<StoreInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 437, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<StoreInst>::op_begin(const_cast
<StoreInst*>(this))[i_nocapture].get()); } void StoreInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<StoreInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 437, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
StoreInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned StoreInst::getNumOperands() const { return OperandTraits
<StoreInst>::operands(this); } template <int Idx_nocapture
> Use &StoreInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
StoreInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t s) {
466 return User::operator new(s, 0);
467 }
468
469 /// Returns the ordering constraint of this fence instruction.
470 AtomicOrdering getOrdering() const {
471 return getSubclassData<OrderingField>();
472 }
473
474 /// Sets the ordering constraint of this fence instruction. May only be
475 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
476 void setOrdering(AtomicOrdering Ordering) {
477 setSubclassData<OrderingField>(Ordering);
478 }
479
480 /// Returns the synchronization scope ID of this fence instruction.
481 SyncScope::ID getSyncScopeID() const {
482 return SSID;
483 }
484
485 /// Sets the synchronization scope ID of this fence instruction.
486 void setSyncScopeID(SyncScope::ID SSID) {
487 this->SSID = SSID;
488 }
489
490 // Methods for support type inquiry through isa, cast, and dyn_cast:
491 static bool classof(const Instruction *I) {
492 return I->getOpcode() == Instruction::Fence;
493 }
494 static bool classof(const Value *V) {
495 return isa<Instruction>(V) && classof(cast<Instruction>(V));
496 }
497
498private:
499 // Shadow Instruction::setInstructionSubclassData with a private forwarding
500 // method so that subclasses cannot accidentally use it.
501 template <typename Bitfield>
502 void setSubclassData(typename Bitfield::Type Value) {
503 Instruction::setSubclassData<Bitfield>(Value);
504 }
505
506 /// The synchronization scope ID of this fence instruction. Not quite enough
507 /// room in SubClassData for everything, so synchronization scope ID gets its
508 /// own field.
509 SyncScope::ID SSID;
510};
511
512//===----------------------------------------------------------------------===//
513// AtomicCmpXchgInst Class
514//===----------------------------------------------------------------------===//
515
516/// An instruction that atomically checks whether a
517/// specified value is in a memory location, and, if it is, stores a new value
518/// there. The value returned by this instruction is a pair containing the
519/// original value as first element, and an i1 indicating success (true) or
520/// failure (false) as second element.
521///
522class AtomicCmpXchgInst : public Instruction {
523 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
524 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
525 SyncScope::ID SSID);
526
527 template <unsigned Offset>
528 using AtomicOrderingBitfieldElement =
529 typename Bitfield::Element<AtomicOrdering, Offset, 3,
530 AtomicOrdering::LAST>;
531
532protected:
533 // Note: Instruction needs to be a friend here to call cloneImpl.
534 friend class Instruction;
535
536 AtomicCmpXchgInst *cloneImpl() const;
537
538public:
539 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
540 AtomicOrdering SuccessOrdering,
541 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
542 Instruction *InsertBefore = nullptr);
543 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
544 AtomicOrdering SuccessOrdering,
545 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
546 BasicBlock *InsertAtEnd);
547
548 // allocate space for exactly three operands
549 void *operator new(size_t s) {
550 return User::operator new(s, 3);
551 }
552
553 using VolatileField = BoolBitfieldElementT<0>;
554 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
555 using SuccessOrderingField =
556 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
557 using FailureOrderingField =
558 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
559 using AlignmentField =
560 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
561 static_assert(
562 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
563 FailureOrderingField, AlignmentField>(),
564 "Bitfields must be contiguous");
565
566 /// Return the alignment of the memory that is being allocated by the
567 /// instruction.
568 Align getAlign() const {
569 return Align(1ULL << getSubclassData<AlignmentField>());
570 }
571
572 void setAlignment(Align Align) {
573 setSubclassData<AlignmentField>(Log2(Align));
574 }
575
576 /// Return true if this is a cmpxchg from a volatile memory
577 /// location.
578 ///
579 bool isVolatile() const { return getSubclassData<VolatileField>(); }
580
581 /// Specify whether this is a volatile cmpxchg.
582 ///
583 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
584
585 /// Return true if this cmpxchg may spuriously fail.
586 bool isWeak() const { return getSubclassData<WeakField>(); }
587
588 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
589
590 /// Transparently provide more efficient getOperand methods.
591 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
592
593 /// Returns the success ordering constraint of this cmpxchg instruction.
594 AtomicOrdering getSuccessOrdering() const {
595 return getSubclassData<SuccessOrderingField>();
596 }
597
598 /// Sets the success ordering constraint of this cmpxchg instruction.
599 void setSuccessOrdering(AtomicOrdering Ordering) {
600 assert(Ordering != AtomicOrdering::NotAtomic &&(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "CmpXchg instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 601, __extension__ __PRETTY_FUNCTION__))
601 "CmpXchg instructions can only be atomic.")(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "CmpXchg instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 601, __extension__ __PRETTY_FUNCTION__))
;
602 setSubclassData<SuccessOrderingField>(Ordering);
603 }
604
605 /// Returns the failure ordering constraint of this cmpxchg instruction.
606 AtomicOrdering getFailureOrdering() const {
607 return getSubclassData<FailureOrderingField>();
608 }
609
610 /// Sets the failure ordering constraint of this cmpxchg instruction.
611 void setFailureOrdering(AtomicOrdering Ordering) {
612 assert(Ordering != AtomicOrdering::NotAtomic &&(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "CmpXchg instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 613, __extension__ __PRETTY_FUNCTION__))
613 "CmpXchg instructions can only be atomic.")(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "CmpXchg instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 613, __extension__ __PRETTY_FUNCTION__))
;
614 setSubclassData<FailureOrderingField>(Ordering);
615 }
616
617 /// Returns the synchronization scope ID of this cmpxchg instruction.
618 SyncScope::ID getSyncScopeID() const {
619 return SSID;
620 }
621
622 /// Sets the synchronization scope ID of this cmpxchg instruction.
623 void setSyncScopeID(SyncScope::ID SSID) {
624 this->SSID = SSID;
625 }
626
627 Value *getPointerOperand() { return getOperand(0); }
628 const Value *getPointerOperand() const { return getOperand(0); }
629 static unsigned getPointerOperandIndex() { return 0U; }
630
631 Value *getCompareOperand() { return getOperand(1); }
632 const Value *getCompareOperand() const { return getOperand(1); }
633
634 Value *getNewValOperand() { return getOperand(2); }
635 const Value *getNewValOperand() const { return getOperand(2); }
636
637 /// Returns the address space of the pointer operand.
638 unsigned getPointerAddressSpace() const {
639 return getPointerOperand()->getType()->getPointerAddressSpace();
640 }
641
642 /// Returns the strongest permitted ordering on failure, given the
643 /// desired ordering on success.
644 ///
645 /// If the comparison in a cmpxchg operation fails, there is no atomic store
646 /// so release semantics cannot be provided. So this function drops explicit
647 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
648 /// operation would remain SequentiallyConsistent.
649 static AtomicOrdering
650 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
651 switch (SuccessOrdering) {
652 default:
653 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 653)
;
654 case AtomicOrdering::Release:
655 case AtomicOrdering::Monotonic:
656 return AtomicOrdering::Monotonic;
657 case AtomicOrdering::AcquireRelease:
658 case AtomicOrdering::Acquire:
659 return AtomicOrdering::Acquire;
660 case AtomicOrdering::SequentiallyConsistent:
661 return AtomicOrdering::SequentiallyConsistent;
662 }
663 }
664
665 // Methods for support type inquiry through isa, cast, and dyn_cast:
666 static bool classof(const Instruction *I) {
667 return I->getOpcode() == Instruction::AtomicCmpXchg;
668 }
669 static bool classof(const Value *V) {
670 return isa<Instruction>(V) && classof(cast<Instruction>(V));
671 }
672
673private:
674 // Shadow Instruction::setInstructionSubclassData with a private forwarding
675 // method so that subclasses cannot accidentally use it.
676 template <typename Bitfield>
677 void setSubclassData(typename Bitfield::Type Value) {
678 Instruction::setSubclassData<Bitfield>(Value);
679 }
680
681 /// The synchronization scope ID of this cmpxchg instruction. Not quite
682 /// enough room in SubClassData for everything, so synchronization scope ID
683 /// gets its own field.
684 SyncScope::ID SSID;
685};
686
687template <>
688struct OperandTraits<AtomicCmpXchgInst> :
689 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
690};
691
692DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 692, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<AtomicCmpXchgInst>::op_begin
(const_cast<AtomicCmpXchgInst*>(this))[i_nocapture].get
()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 692, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
AtomicCmpXchgInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned AtomicCmpXchgInst::getNumOperands() const { return
OperandTraits<AtomicCmpXchgInst>::operands(this); } template
<int Idx_nocapture> Use &AtomicCmpXchgInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &AtomicCmpXchgInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
693
694//===----------------------------------------------------------------------===//
695// AtomicRMWInst Class
696//===----------------------------------------------------------------------===//
697
698/// an instruction that atomically reads a memory location,
699/// combines it with another value, and then stores the result back. Returns
700/// the old value.
701///
702class AtomicRMWInst : public Instruction {
703protected:
704 // Note: Instruction needs to be a friend here to call cloneImpl.
705 friend class Instruction;
706
707 AtomicRMWInst *cloneImpl() const;
708
709public:
710 /// This enumeration lists the possible modifications atomicrmw can make. In
711 /// the descriptions, 'p' is the pointer to the instruction's memory location,
712 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
713 /// instruction. These instructions always return 'old'.
714 enum BinOp : unsigned {
715 /// *p = v
716 Xchg,
717 /// *p = old + v
718 Add,
719 /// *p = old - v
720 Sub,
721 /// *p = old & v
722 And,
723 /// *p = ~(old & v)
724 Nand,
725 /// *p = old | v
726 Or,
727 /// *p = old ^ v
728 Xor,
729 /// *p = old >signed v ? old : v
730 Max,
731 /// *p = old <signed v ? old : v
732 Min,
733 /// *p = old >unsigned v ? old : v
734 UMax,
735 /// *p = old <unsigned v ? old : v
736 UMin,
737
738 /// *p = old + v
739 FAdd,
740
741 /// *p = old - v
742 FSub,
743
744 FIRST_BINOP = Xchg,
745 LAST_BINOP = FSub,
746 BAD_BINOP
747 };
748
749private:
750 template <unsigned Offset>
751 using AtomicOrderingBitfieldElement =
752 typename Bitfield::Element<AtomicOrdering, Offset, 3,
753 AtomicOrdering::LAST>;
754
755 template <unsigned Offset>
756 using BinOpBitfieldElement =
757 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
758
759public:
760 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
761 AtomicOrdering Ordering, SyncScope::ID SSID,
762 Instruction *InsertBefore = nullptr);
763 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
764 AtomicOrdering Ordering, SyncScope::ID SSID,
765 BasicBlock *InsertAtEnd);
766
767 // allocate space for exactly two operands
768 void *operator new(size_t s) {
769 return User::operator new(s, 2);
770 }
771
772 using VolatileField = BoolBitfieldElementT<0>;
773 using AtomicOrderingField =
774 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
775 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
776 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
777 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
778 OperationField, AlignmentField>(),
779 "Bitfields must be contiguous");
780
781 BinOp getOperation() const { return getSubclassData<OperationField>(); }
782
783 static StringRef getOperationName(BinOp Op);
784
785 static bool isFPOperation(BinOp Op) {
786 switch (Op) {
787 case AtomicRMWInst::FAdd:
788 case AtomicRMWInst::FSub:
789 return true;
790 default:
791 return false;
792 }
793 }
794
795 void setOperation(BinOp Operation) {
796 setSubclassData<OperationField>(Operation);
797 }
798
799 /// Return the alignment of the memory that is being allocated by the
800 /// instruction.
801 Align getAlign() const {
802 return Align(1ULL << getSubclassData<AlignmentField>());
803 }
804
805 void setAlignment(Align Align) {
806 setSubclassData<AlignmentField>(Log2(Align));
807 }
808
809 /// Return true if this is a RMW on a volatile memory location.
810 ///
811 bool isVolatile() const { return getSubclassData<VolatileField>(); }
812
813 /// Specify whether this is a volatile RMW or not.
814 ///
815 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
816
817 /// Transparently provide more efficient getOperand methods.
818 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
819
820 /// Returns the ordering constraint of this rmw instruction.
821 AtomicOrdering getOrdering() const {
822 return getSubclassData<AtomicOrderingField>();
823 }
824
825 /// Sets the ordering constraint of this rmw instruction.
826 void setOrdering(AtomicOrdering Ordering) {
827 assert(Ordering != AtomicOrdering::NotAtomic &&(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 828, __extension__ __PRETTY_FUNCTION__))
828 "atomicrmw instructions can only be atomic.")(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 828, __extension__ __PRETTY_FUNCTION__))
;
829 setSubclassData<AtomicOrderingField>(Ordering);
830 }
831
832 /// Returns the synchronization scope ID of this rmw instruction.
833 SyncScope::ID getSyncScopeID() const {
834 return SSID;
835 }
836
837 /// Sets the synchronization scope ID of this rmw instruction.
838 void setSyncScopeID(SyncScope::ID SSID) {
839 this->SSID = SSID;
840 }
841
842 Value *getPointerOperand() { return getOperand(0); }
843 const Value *getPointerOperand() const { return getOperand(0); }
844 static unsigned getPointerOperandIndex() { return 0U; }
845
846 Value *getValOperand() { return getOperand(1); }
847 const Value *getValOperand() const { return getOperand(1); }
848
849 /// Returns the address space of the pointer operand.
850 unsigned getPointerAddressSpace() const {
851 return getPointerOperand()->getType()->getPointerAddressSpace();
852 }
853
854 bool isFloatingPointOperation() const {
855 return isFPOperation(getOperation());
856 }
857
858 // Methods for support type inquiry through isa, cast, and dyn_cast:
859 static bool classof(const Instruction *I) {
860 return I->getOpcode() == Instruction::AtomicRMW;
861 }
862 static bool classof(const Value *V) {
863 return isa<Instruction>(V) && classof(cast<Instruction>(V));
864 }
865
866private:
867 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
868 AtomicOrdering Ordering, SyncScope::ID SSID);
869
870 // Shadow Instruction::setInstructionSubclassData with a private forwarding
871 // method so that subclasses cannot accidentally use it.
872 template <typename Bitfield>
873 void setSubclassData(typename Bitfield::Type Value) {
874 Instruction::setSubclassData<Bitfield>(Value);
875 }
876
877 /// The synchronization scope ID of this rmw instruction. Not quite enough
878 /// room in SubClassData for everything, so synchronization scope ID gets its
879 /// own field.
880 SyncScope::ID SSID;
881};
882
883template <>
884struct OperandTraits<AtomicRMWInst>
885 : public FixedNumOperandTraits<AtomicRMWInst,2> {
886};
887
888DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicRMWInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 888, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast
<AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<AtomicRMWInst
>::operands(this) && "setOperand() out of range!")
? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 888, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
AtomicRMWInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits
<AtomicRMWInst>::operands(this); } template <int Idx_nocapture
> Use &AtomicRMWInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &AtomicRMWInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
889
890//===----------------------------------------------------------------------===//
891// GetElementPtrInst Class
892//===----------------------------------------------------------------------===//
893
894// checkGEPType - Simple wrapper function to give a better assertion failure
895// message on bad indexes for a gep instruction.
896//
897inline Type *checkGEPType(Type *Ty) {
898 assert(Ty && "Invalid GetElementPtrInst indices for type!")(static_cast <bool> (Ty && "Invalid GetElementPtrInst indices for type!"
) ? void (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 898, __extension__ __PRETTY_FUNCTION__))
;
899 return Ty;
900}
901
902/// an instruction for type-safe pointer arithmetic to
903/// access elements of arrays and structs
904///
905class GetElementPtrInst : public Instruction {
906 Type *SourceElementType;
907 Type *ResultElementType;
908
909 GetElementPtrInst(const GetElementPtrInst &GEPI);
910
911 /// Constructors - Create a getelementptr instruction with a base pointer an
912 /// list of indices. The first ctor can optionally insert before an existing
913 /// instruction, the second appends the new instruction to the specified
914 /// BasicBlock.
915 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
916 ArrayRef<Value *> IdxList, unsigned Values,
917 const Twine &NameStr, Instruction *InsertBefore);
918 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
919 ArrayRef<Value *> IdxList, unsigned Values,
920 const Twine &NameStr, BasicBlock *InsertAtEnd);
921
922 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
923
924protected:
925 // Note: Instruction needs to be a friend here to call cloneImpl.
926 friend class Instruction;
927
928 GetElementPtrInst *cloneImpl() const;
929
930public:
931 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
932 ArrayRef<Value *> IdxList,
933 const Twine &NameStr = "",
934 Instruction *InsertBefore = nullptr) {
935 unsigned Values = 1 + unsigned(IdxList.size());
936 if (!PointeeType)
937 PointeeType =
938 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
939 else
940 assert((static_cast <bool> (PointeeType == cast<PointerType
>(Ptr->getType()->getScalarType())->getElementType
()) ? void (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 942, __extension__ __PRETTY_FUNCTION__))
941 PointeeType ==(static_cast <bool> (PointeeType == cast<PointerType
>(Ptr->getType()->getScalarType())->getElementType
()) ? void (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 942, __extension__ __PRETTY_FUNCTION__))
942 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())(static_cast <bool> (PointeeType == cast<PointerType
>(Ptr->getType()->getScalarType())->getElementType
()) ? void (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 942, __extension__ __PRETTY_FUNCTION__))
;
943 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
944 NameStr, InsertBefore);
945 }
946
947 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
948 ArrayRef<Value *> IdxList,
949 const Twine &NameStr,
950 BasicBlock *InsertAtEnd) {
951 unsigned Values = 1 + unsigned(IdxList.size());
952 if (!PointeeType)
953 PointeeType =
954 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
955 else
956 assert((static_cast <bool> (PointeeType == cast<PointerType
>(Ptr->getType()->getScalarType())->getElementType
()) ? void (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 958, __extension__ __PRETTY_FUNCTION__))
957 PointeeType ==(static_cast <bool> (PointeeType == cast<PointerType
>(Ptr->getType()->getScalarType())->getElementType
()) ? void (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 958, __extension__ __PRETTY_FUNCTION__))
958 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())(static_cast <bool> (PointeeType == cast<PointerType
>(Ptr->getType()->getScalarType())->getElementType
()) ? void (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 958, __extension__ __PRETTY_FUNCTION__))
;
959 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
960 NameStr, InsertAtEnd);
961 }
962
963 /// Create an "inbounds" getelementptr. See the documentation for the
964 /// "inbounds" flag in LangRef.html for details.
965 static GetElementPtrInst *CreateInBounds(Value *Ptr,
966 ArrayRef<Value *> IdxList,
967 const Twine &NameStr = "",
968 Instruction *InsertBefore = nullptr){
969 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
970 }
971
972 static GetElementPtrInst *
973 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
974 const Twine &NameStr = "",
975 Instruction *InsertBefore = nullptr) {
976 GetElementPtrInst *GEP =
977 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
978 GEP->setIsInBounds(true);
979 return GEP;
980 }
981
982 static GetElementPtrInst *CreateInBounds(Value *Ptr,
983 ArrayRef<Value *> IdxList,
984 const Twine &NameStr,
985 BasicBlock *InsertAtEnd) {
986 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
987 }
988
989 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
990 ArrayRef<Value *> IdxList,
991 const Twine &NameStr,
992 BasicBlock *InsertAtEnd) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 /// Transparently provide more efficient getOperand methods.
1000 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1001
1002 Type *getSourceElementType() const { return SourceElementType; }
1003
1004 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1005 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1006
1007 Type *getResultElementType() const {
1008 assert(ResultElementType ==(static_cast <bool> (ResultElementType == cast<PointerType
>(getType()->getScalarType())->getElementType()) ? void
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1009, __extension__ __PRETTY_FUNCTION__))
1009 cast<PointerType>(getType()->getScalarType())->getElementType())(static_cast <bool> (ResultElementType == cast<PointerType
>(getType()->getScalarType())->getElementType()) ? void
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1009, __extension__ __PRETTY_FUNCTION__))
;
1010 return ResultElementType;
1011 }
1012
1013 /// Returns the address space of this instruction's pointer type.
1014 unsigned getAddressSpace() const {
1015 // Note that this is always the same as the pointer operand's address space
1016 // and that is cheaper to compute, so cheat here.
1017 return getPointerAddressSpace();
1018 }
1019
1020 /// Returns the result type of a getelementptr with the given source
1021 /// element type and indexes.
1022 ///
1023 /// Null is returned if the indices are invalid for the specified
1024 /// source element type.
1025 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1026 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1027 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1028
1029 /// Return the type of the element at the given index of an indexable
1030 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1031 ///
1032 /// Returns null if the type can't be indexed, or the given index is not
1033 /// legal for the given type.
1034 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1035 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1036
1037 inline op_iterator idx_begin() { return op_begin()+1; }
1038 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1039 inline op_iterator idx_end() { return op_end(); }
1040 inline const_op_iterator idx_end() const { return op_end(); }
1041
1042 inline iterator_range<op_iterator> indices() {
1043 return make_range(idx_begin(), idx_end());
1044 }
1045
1046 inline iterator_range<const_op_iterator> indices() const {
1047 return make_range(idx_begin(), idx_end());
1048 }
1049
1050 Value *getPointerOperand() {
1051 return getOperand(0);
1052 }
1053 const Value *getPointerOperand() const {
1054 return getOperand(0);
1055 }
1056 static unsigned getPointerOperandIndex() {
1057 return 0U; // get index for modifying correct operand.
1058 }
1059
1060 /// Method to return the pointer operand as a
1061 /// PointerType.
1062 Type *getPointerOperandType() const {
1063 return getPointerOperand()->getType();
1064 }
1065
1066 /// Returns the address space of the pointer operand.
1067 unsigned getPointerAddressSpace() const {
1068 return getPointerOperandType()->getPointerAddressSpace();
1069 }
1070
1071 /// Returns the pointer type returned by the GEP
1072 /// instruction, which may be a vector of pointers.
1073 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1074 ArrayRef<Value *> IdxList) {
1075 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1076 Ptr->getType()->getPointerAddressSpace());
1077 // Vector GEP
1078 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1079 ElementCount EltCount = PtrVTy->getElementCount();
1080 return VectorType::get(PtrTy, EltCount);
1081 }
1082 for (Value *Index : IdxList)
1083 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1084 ElementCount EltCount = IndexVTy->getElementCount();
1085 return VectorType::get(PtrTy, EltCount);
1086 }
1087 // Scalar GEP
1088 return PtrTy;
1089 }
1090
1091 unsigned getNumIndices() const { // Note: always non-negative
1092 return getNumOperands() - 1;
1093 }
1094
1095 bool hasIndices() const {
1096 return getNumOperands() > 1;
1097 }
1098
1099 /// Return true if all of the indices of this GEP are
1100 /// zeros. If so, the result pointer and the first operand have the same
1101 /// value, just potentially different types.
1102 bool hasAllZeroIndices() const;
1103
1104 /// Return true if all of the indices of this GEP are
1105 /// constant integers. If so, the result pointer and the first operand have
1106 /// a constant offset between them.
1107 bool hasAllConstantIndices() const;
1108
1109 /// Set or clear the inbounds flag on this GEP instruction.
1110 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1111 void setIsInBounds(bool b = true);
1112
1113 /// Determine whether the GEP has the inbounds flag.
1114 bool isInBounds() const;
1115
1116 /// Accumulate the constant address offset of this GEP if possible.
1117 ///
1118 /// This routine accepts an APInt into which it will accumulate the constant
1119 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1120 /// all-constant, it returns false and the value of the offset APInt is
1121 /// undefined (it is *not* preserved!). The APInt passed into this routine
1122 /// must be at least as wide as the IntPtr type for the address space of
1123 /// the base GEP pointer.
1124 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1125
1126 // Methods for support type inquiry through isa, cast, and dyn_cast:
1127 static bool classof(const Instruction *I) {
1128 return (I->getOpcode() == Instruction::GetElementPtr);
1129 }
1130 static bool classof(const Value *V) {
1131 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1132 }
1133};
1134
1135template <>
1136struct OperandTraits<GetElementPtrInst> :
1137 public VariadicOperandTraits<GetElementPtrInst, 1> {
1138};
1139
1140GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1141 ArrayRef<Value *> IdxList, unsigned Values,
1142 const Twine &NameStr,
1143 Instruction *InsertBefore)
1144 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1145 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1146 Values, InsertBefore),
1147 SourceElementType(PointeeType),
1148 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1149 assert(ResultElementType ==(static_cast <bool> (ResultElementType == cast<PointerType
>(getType()->getScalarType())->getElementType()) ? void
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1150, __extension__ __PRETTY_FUNCTION__))
1150 cast<PointerType>(getType()->getScalarType())->getElementType())(static_cast <bool> (ResultElementType == cast<PointerType
>(getType()->getScalarType())->getElementType()) ? void
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1150, __extension__ __PRETTY_FUNCTION__))
;
1151 init(Ptr, IdxList, NameStr);
1152}
1153
1154GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1155 ArrayRef<Value *> IdxList, unsigned Values,
1156 const Twine &NameStr,
1157 BasicBlock *InsertAtEnd)
1158 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1159 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1160 Values, InsertAtEnd),
1161 SourceElementType(PointeeType),
1162 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1163 assert(ResultElementType ==(static_cast <bool> (ResultElementType == cast<PointerType
>(getType()->getScalarType())->getElementType()) ? void
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1164, __extension__ __PRETTY_FUNCTION__))
1164 cast<PointerType>(getType()->getScalarType())->getElementType())(static_cast <bool> (ResultElementType == cast<PointerType
>(getType()->getScalarType())->getElementType()) ? void
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1164, __extension__ __PRETTY_FUNCTION__))
;
1165 init(Ptr, IdxList, NameStr);
1166}
1167
1168DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<GetElementPtrInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1168, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<GetElementPtrInst>::op_begin
(const_cast<GetElementPtrInst*>(this))[i_nocapture].get
()); } void GetElementPtrInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<GetElementPtrInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1168, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
GetElementPtrInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned GetElementPtrInst::getNumOperands() const { return
OperandTraits<GetElementPtrInst>::operands(this); } template
<int Idx_nocapture> Use &GetElementPtrInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &GetElementPtrInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1169
1170//===----------------------------------------------------------------------===//
1171// ICmpInst Class
1172//===----------------------------------------------------------------------===//
1173
1174/// This instruction compares its operands according to the predicate given
1175/// to the constructor. It only operates on integers or pointers. The operands
1176/// must be identical types.
1177/// Represent an integer comparison operator.
1178class ICmpInst: public CmpInst {
1179 void AssertOK() {
1180 assert(isIntPredicate() &&(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1181, __extension__ __PRETTY_FUNCTION__))
1181 "Invalid ICmp predicate value")(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1181, __extension__ __PRETTY_FUNCTION__))
;
1182 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1183, __extension__ __PRETTY_FUNCTION__))
1183 "Both operands to ICmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1183, __extension__ __PRETTY_FUNCTION__))
;
1184 // Check that the operands are the right type
1185 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1187, __extension__ __PRETTY_FUNCTION__))
1186 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1187, __extension__ __PRETTY_FUNCTION__))
1187 "Invalid operand types for ICmp instruction")(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1187, __extension__ __PRETTY_FUNCTION__))
;
1188 }
1189
1190protected:
1191 // Note: Instruction needs to be a friend here to call cloneImpl.
1192 friend class Instruction;
1193
1194 /// Clone an identical ICmpInst
1195 ICmpInst *cloneImpl() const;
1196
1197public:
1198 /// Constructor with insert-before-instruction semantics.
1199 ICmpInst(
1200 Instruction *InsertBefore, ///< Where to insert
1201 Predicate pred, ///< The predicate to use for the comparison
1202 Value *LHS, ///< The left-hand-side of the expression
1203 Value *RHS, ///< The right-hand-side of the expression
1204 const Twine &NameStr = "" ///< Name of the instruction
1205 ) : CmpInst(makeCmpResultType(LHS->getType()),
1206 Instruction::ICmp, pred, LHS, RHS, NameStr,
1207 InsertBefore) {
1208#ifndef NDEBUG
1209 AssertOK();
1210#endif
1211 }
1212
1213 /// Constructor with insert-at-end semantics.
1214 ICmpInst(
1215 BasicBlock &InsertAtEnd, ///< Block to insert into.
1216 Predicate pred, ///< The predicate to use for the comparison
1217 Value *LHS, ///< The left-hand-side of the expression
1218 Value *RHS, ///< The right-hand-side of the expression
1219 const Twine &NameStr = "" ///< Name of the instruction
1220 ) : CmpInst(makeCmpResultType(LHS->getType()),
1221 Instruction::ICmp, pred, LHS, RHS, NameStr,
1222 &InsertAtEnd) {
1223#ifndef NDEBUG
1224 AssertOK();
1225#endif
1226 }
1227
1228 /// Constructor with no-insertion semantics
1229 ICmpInst(
1230 Predicate pred, ///< The predicate to use for the comparison
1231 Value *LHS, ///< The left-hand-side of the expression
1232 Value *RHS, ///< The right-hand-side of the expression
1233 const Twine &NameStr = "" ///< Name of the instruction
1234 ) : CmpInst(makeCmpResultType(LHS->getType()),
1235 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1236#ifndef NDEBUG
1237 AssertOK();
1238#endif
1239 }
1240
1241 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1242 /// @returns the predicate that would be the result if the operand were
1243 /// regarded as signed.
1244 /// Return the signed version of the predicate
1245 Predicate getSignedPredicate() const {
1246 return getSignedPredicate(getPredicate());
1247 }
1248
1249 /// This is a static version that you can use without an instruction.
1250 /// Return the signed version of the predicate.
1251 static Predicate getSignedPredicate(Predicate pred);
1252
1253 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1254 /// @returns the predicate that would be the result if the operand were
1255 /// regarded as unsigned.
1256 /// Return the unsigned version of the predicate
1257 Predicate getUnsignedPredicate() const {
1258 return getUnsignedPredicate(getPredicate());
1259 }
1260
1261 /// This is a static version that you can use without an instruction.
1262 /// Return the unsigned version of the predicate.
1263 static Predicate getUnsignedPredicate(Predicate pred);
1264
1265 /// Return true if this predicate is either EQ or NE. This also
1266 /// tests for commutativity.
1267 static bool isEquality(Predicate P) {
1268 return P == ICMP_EQ || P == ICMP_NE;
1269 }
1270
1271 /// Return true if this predicate is either EQ or NE. This also
1272 /// tests for commutativity.
1273 bool isEquality() const {
1274 return isEquality(getPredicate());
1275 }
1276
1277 /// @returns true if the predicate of this ICmpInst is commutative
1278 /// Determine if this relation is commutative.
1279 bool isCommutative() const { return isEquality(); }
1280
1281 /// Return true if the predicate is relational (not EQ or NE).
1282 ///
1283 bool isRelational() const {
1284 return !isEquality();
1285 }
1286
1287 /// Return true if the predicate is relational (not EQ or NE).
1288 ///
1289 static bool isRelational(Predicate P) {
1290 return !isEquality(P);
1291 }
1292
1293 /// Return true if the predicate is SGT or UGT.
1294 ///
1295 static bool isGT(Predicate P) {
1296 return P == ICMP_SGT || P == ICMP_UGT;
1297 }
1298
1299 /// Return true if the predicate is SLT or ULT.
1300 ///
1301 static bool isLT(Predicate P) {
1302 return P == ICMP_SLT || P == ICMP_ULT;
1303 }
1304
1305 /// Return true if the predicate is SGE or UGE.
1306 ///
1307 static bool isGE(Predicate P) {
1308 return P == ICMP_SGE || P == ICMP_UGE;
1309 }
1310
1311 /// Return true if the predicate is SLE or ULE.
1312 ///
1313 static bool isLE(Predicate P) {
1314 return P == ICMP_SLE || P == ICMP_ULE;
1315 }
1316
1317 /// Exchange the two operands to this instruction in such a way that it does
1318 /// not modify the semantics of the instruction. The predicate value may be
1319 /// changed to retain the same result if the predicate is order dependent
1320 /// (e.g. ult).
1321 /// Swap operands and adjust predicate.
1322 void swapOperands() {
1323 setPredicate(getSwappedPredicate());
1324 Op<0>().swap(Op<1>());
1325 }
1326
1327 // Methods for support type inquiry through isa, cast, and dyn_cast:
1328 static bool classof(const Instruction *I) {
1329 return I->getOpcode() == Instruction::ICmp;
1330 }
1331 static bool classof(const Value *V) {
1332 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1333 }
1334};
1335
1336//===----------------------------------------------------------------------===//
1337// FCmpInst Class
1338//===----------------------------------------------------------------------===//
1339
1340/// This instruction compares its operands according to the predicate given
1341/// to the constructor. It only operates on floating point values or packed
1342/// vectors of floating point values. The operands must be identical types.
1343/// Represents a floating point comparison operator.
1344class FCmpInst: public CmpInst {
1345 void AssertOK() {
1346 assert(isFPPredicate() && "Invalid FCmp predicate value")(static_cast <bool> (isFPPredicate() && "Invalid FCmp predicate value"
) ? void (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1346, __extension__ __PRETTY_FUNCTION__))
;
1347 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1348, __extension__ __PRETTY_FUNCTION__))
1348 "Both operands to FCmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1348, __extension__ __PRETTY_FUNCTION__))
;
1349 // Check that the operands are the right type
1350 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1351, __extension__ __PRETTY_FUNCTION__))
1351 "Invalid operand types for FCmp instruction")(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1351, __extension__ __PRETTY_FUNCTION__))
;
1352 }
1353
1354protected:
1355 // Note: Instruction needs to be a friend here to call cloneImpl.
1356 friend class Instruction;
1357
1358 /// Clone an identical FCmpInst
1359 FCmpInst *cloneImpl() const;
1360
1361public:
1362 /// Constructor with insert-before-instruction semantics.
1363 FCmpInst(
1364 Instruction *InsertBefore, ///< Where to insert
1365 Predicate pred, ///< The predicate to use for the comparison
1366 Value *LHS, ///< The left-hand-side of the expression
1367 Value *RHS, ///< The right-hand-side of the expression
1368 const Twine &NameStr = "" ///< Name of the instruction
1369 ) : CmpInst(makeCmpResultType(LHS->getType()),
1370 Instruction::FCmp, pred, LHS, RHS, NameStr,
1371 InsertBefore) {
1372 AssertOK();
1373 }
1374
1375 /// Constructor with insert-at-end semantics.
1376 FCmpInst(
1377 BasicBlock &InsertAtEnd, ///< Block to insert into.
1378 Predicate pred, ///< The predicate to use for the comparison
1379 Value *LHS, ///< The left-hand-side of the expression
1380 Value *RHS, ///< The right-hand-side of the expression
1381 const Twine &NameStr = "" ///< Name of the instruction
1382 ) : CmpInst(makeCmpResultType(LHS->getType()),
1383 Instruction::FCmp, pred, LHS, RHS, NameStr,
1384 &InsertAtEnd) {
1385 AssertOK();
1386 }
1387
1388 /// Constructor with no-insertion semantics
1389 FCmpInst(
1390 Predicate Pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "", ///< Name of the instruction
1394 Instruction *FlagsSource = nullptr
1395 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1396 RHS, NameStr, nullptr, FlagsSource) {
1397 AssertOK();
1398 }
1399
1400 /// @returns true if the predicate of this instruction is EQ or NE.
1401 /// Determine if this is an equality predicate.
1402 static bool isEquality(Predicate Pred) {
1403 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1404 Pred == FCMP_UNE;
1405 }
1406
1407 /// @returns true if the predicate of this instruction is EQ or NE.
1408 /// Determine if this is an equality predicate.
1409 bool isEquality() const { return isEquality(getPredicate()); }
1410
1411 /// @returns true if the predicate of this instruction is commutative.
1412 /// Determine if this is a commutative predicate.
1413 bool isCommutative() const {
1414 return isEquality() ||
1415 getPredicate() == FCMP_FALSE ||
1416 getPredicate() == FCMP_TRUE ||
1417 getPredicate() == FCMP_ORD ||
1418 getPredicate() == FCMP_UNO;
1419 }
1420
1421 /// @returns true if the predicate is relational (not EQ or NE).
1422 /// Determine if this a relational predicate.
1423 bool isRelational() const { return !isEquality(); }
1424
1425 /// Exchange the two operands to this instruction in such a way that it does
1426 /// not modify the semantics of the instruction. The predicate value may be
1427 /// changed to retain the same result if the predicate is order dependent
1428 /// (e.g. ult).
1429 /// Swap operands and adjust predicate.
1430 void swapOperands() {
1431 setPredicate(getSwappedPredicate());
1432 Op<0>().swap(Op<1>());
1433 }
1434
1435 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1436 static bool classof(const Instruction *I) {
1437 return I->getOpcode() == Instruction::FCmp;
1438 }
1439 static bool classof(const Value *V) {
1440 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1441 }
1442};
1443
1444//===----------------------------------------------------------------------===//
1445/// This class represents a function call, abstracting a target
1446/// machine's calling convention. This class uses low bit of the SubClassData
1447/// field to indicate whether or not this is a tail call. The rest of the bits
1448/// hold the calling convention of the call.
1449///
1450class CallInst : public CallBase {
1451 CallInst(const CallInst &CI);
1452
1453 /// Construct a CallInst given a range of arguments.
1454 /// Construct a CallInst from a range of arguments
1455 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1456 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1457 Instruction *InsertBefore);
1458
1459 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1460 const Twine &NameStr, Instruction *InsertBefore)
1461 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1462
1463 /// Construct a CallInst given a range of arguments.
1464 /// Construct a CallInst from a range of arguments
1465 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1466 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1467 BasicBlock *InsertAtEnd);
1468
1469 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1470 Instruction *InsertBefore);
1471
1472 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1473 BasicBlock *InsertAtEnd);
1474
1475 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1476 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1477 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1478
1479 /// Compute the number of operands to allocate.
1480 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1481 // We need one operand for the called function, plus the input operand
1482 // counts provided.
1483 return 1 + NumArgs + NumBundleInputs;
1484 }
1485
1486protected:
1487 // Note: Instruction needs to be a friend here to call cloneImpl.
1488 friend class Instruction;
1489
1490 CallInst *cloneImpl() const;
1491
1492public:
1493 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1494 Instruction *InsertBefore = nullptr) {
1495 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1496 }
1497
1498 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1499 const Twine &NameStr,
1500 Instruction *InsertBefore = nullptr) {
1501 return new (ComputeNumOperands(Args.size()))
1502 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1503 }
1504
1505 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1506 ArrayRef<OperandBundleDef> Bundles = None,
1507 const Twine &NameStr = "",
1508 Instruction *InsertBefore = nullptr) {
1509 const int NumOperands =
1510 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1511 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1512
1513 return new (NumOperands, DescriptorBytes)
1514 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1515 }
1516
1517 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1518 BasicBlock *InsertAtEnd) {
1519 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1520 }
1521
1522 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1523 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1524 return new (ComputeNumOperands(Args.size()))
1525 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1526 }
1527
1528 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1529 ArrayRef<OperandBundleDef> Bundles,
1530 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1531 const int NumOperands =
1532 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1533 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1534
1535 return new (NumOperands, DescriptorBytes)
1536 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1537 }
1538
1539 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1540 Instruction *InsertBefore = nullptr) {
1541 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1542 InsertBefore);
1543 }
1544
1545 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1546 ArrayRef<OperandBundleDef> Bundles = None,
1547 const Twine &NameStr = "",
1548 Instruction *InsertBefore = nullptr) {
1549 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1550 NameStr, InsertBefore);
1551 }
1552
1553 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1554 const Twine &NameStr,
1555 Instruction *InsertBefore = nullptr) {
1556 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1557 InsertBefore);
1558 }
1559
1560 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1561 BasicBlock *InsertAtEnd) {
1562 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1563 InsertAtEnd);
1564 }
1565
1566 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1567 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1568 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1569 InsertAtEnd);
1570 }
1571
1572 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1573 ArrayRef<OperandBundleDef> Bundles,
1574 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1575 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1576 NameStr, InsertAtEnd);
1577 }
1578
1579 /// Create a clone of \p CI with a different set of operand bundles and
1580 /// insert it before \p InsertPt.
1581 ///
1582 /// The returned call instruction is identical \p CI in every way except that
1583 /// the operand bundles for the new instruction are set to the operand bundles
1584 /// in \p Bundles.
1585 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1586 Instruction *InsertPt = nullptr);
1587
1588 /// Generate the IR for a call to malloc:
1589 /// 1. Compute the malloc call's argument as the specified type's size,
1590 /// possibly multiplied by the array size if the array size is not
1591 /// constant 1.
1592 /// 2. Call malloc with that argument.
1593 /// 3. Bitcast the result of the malloc call to the specified type.
1594 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1595 Type *AllocTy, Value *AllocSize,
1596 Value *ArraySize = nullptr,
1597 Function *MallocF = nullptr,
1598 const Twine &Name = "");
1599 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1600 Type *AllocTy, Value *AllocSize,
1601 Value *ArraySize = nullptr,
1602 Function *MallocF = nullptr,
1603 const Twine &Name = "");
1604 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1605 Type *AllocTy, Value *AllocSize,
1606 Value *ArraySize = nullptr,
1607 ArrayRef<OperandBundleDef> Bundles = None,
1608 Function *MallocF = nullptr,
1609 const Twine &Name = "");
1610 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1611 Type *AllocTy, Value *AllocSize,
1612 Value *ArraySize = nullptr,
1613 ArrayRef<OperandBundleDef> Bundles = None,
1614 Function *MallocF = nullptr,
1615 const Twine &Name = "");
1616 /// Generate the IR for a call to the builtin free function.
1617 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1618 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1619 static Instruction *CreateFree(Value *Source,
1620 ArrayRef<OperandBundleDef> Bundles,
1621 Instruction *InsertBefore);
1622 static Instruction *CreateFree(Value *Source,
1623 ArrayRef<OperandBundleDef> Bundles,
1624 BasicBlock *InsertAtEnd);
1625
1626 // Note that 'musttail' implies 'tail'.
1627 enum TailCallKind : unsigned {
1628 TCK_None = 0,
1629 TCK_Tail = 1,
1630 TCK_MustTail = 2,
1631 TCK_NoTail = 3,
1632 TCK_LAST = TCK_NoTail
1633 };
1634
1635 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1636 static_assert(
1637 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1638 "Bitfields must be contiguous");
1639
1640 TailCallKind getTailCallKind() const {
1641 return getSubclassData<TailCallKindField>();
1642 }
1643
1644 bool isTailCall() const {
1645 TailCallKind Kind = getTailCallKind();
1646 return Kind == TCK_Tail || Kind == TCK_MustTail;
1647 }
1648
1649 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1650
1651 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1652
1653 void setTailCallKind(TailCallKind TCK) {
1654 setSubclassData<TailCallKindField>(TCK);
1655 }
1656
1657 void setTailCall(bool IsTc = true) {
1658 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1659 }
1660
1661 /// Return true if the call can return twice
1662 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1663 void setCanReturnTwice() {
1664 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1665 }
1666
1667 // Methods for support type inquiry through isa, cast, and dyn_cast:
1668 static bool classof(const Instruction *I) {
1669 return I->getOpcode() == Instruction::Call;
1670 }
1671 static bool classof(const Value *V) {
1672 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1673 }
1674
1675 /// Updates profile metadata by scaling it by \p S / \p T.
1676 void updateProfWeight(uint64_t S, uint64_t T);
1677
1678private:
1679 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1680 // method so that subclasses cannot accidentally use it.
1681 template <typename Bitfield>
1682 void setSubclassData(typename Bitfield::Type Value) {
1683 Instruction::setSubclassData<Bitfield>(Value);
1684 }
1685};
1686
1687CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1688 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1689 BasicBlock *InsertAtEnd)
1690 : CallBase(Ty->getReturnType(), Instruction::Call,
1691 OperandTraits<CallBase>::op_end(this) -
1692 (Args.size() + CountBundleInputs(Bundles) + 1),
1693 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1694 InsertAtEnd) {
1695 init(Ty, Func, Args, Bundles, NameStr);
1696}
1697
1698CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1699 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1700 Instruction *InsertBefore)
1701 : CallBase(Ty->getReturnType(), Instruction::Call,
1702 OperandTraits<CallBase>::op_end(this) -
1703 (Args.size() + CountBundleInputs(Bundles) + 1),
1704 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1705 InsertBefore) {
1706 init(Ty, Func, Args, Bundles, NameStr);
1707}
1708
1709//===----------------------------------------------------------------------===//
1710// SelectInst Class
1711//===----------------------------------------------------------------------===//
1712
1713/// This class represents the LLVM 'select' instruction.
1714///
1715class SelectInst : public Instruction {
1716 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1717 Instruction *InsertBefore)
1718 : Instruction(S1->getType(), Instruction::Select,
1719 &Op<0>(), 3, InsertBefore) {
1720 init(C, S1, S2);
1721 setName(NameStr);
1722 }
1723
1724 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1725 BasicBlock *InsertAtEnd)
1726 : Instruction(S1->getType(), Instruction::Select,
1727 &Op<0>(), 3, InsertAtEnd) {
1728 init(C, S1, S2);
1729 setName(NameStr);
1730 }
1731
1732 void init(Value *C, Value *S1, Value *S2) {
1733 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")(static_cast <bool> (!areInvalidOperands(C, S1, S2) &&
"Invalid operands for select") ? void (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1733, __extension__ __PRETTY_FUNCTION__))
;
1734 Op<0>() = C;
1735 Op<1>() = S1;
1736 Op<2>() = S2;
1737 }
1738
1739protected:
1740 // Note: Instruction needs to be a friend here to call cloneImpl.
1741 friend class Instruction;
1742
1743 SelectInst *cloneImpl() const;
1744
1745public:
1746 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1747 const Twine &NameStr = "",
1748 Instruction *InsertBefore = nullptr,
1749 Instruction *MDFrom = nullptr) {
1750 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1751 if (MDFrom)
1752 Sel->copyMetadata(*MDFrom);
1753 return Sel;
1754 }
1755
1756 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1757 const Twine &NameStr,
1758 BasicBlock *InsertAtEnd) {
1759 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1760 }
1761
1762 const Value *getCondition() const { return Op<0>(); }
1763 const Value *getTrueValue() const { return Op<1>(); }
1764 const Value *getFalseValue() const { return Op<2>(); }
1765 Value *getCondition() { return Op<0>(); }
1766 Value *getTrueValue() { return Op<1>(); }
1767 Value *getFalseValue() { return Op<2>(); }
1768
1769 void setCondition(Value *V) { Op<0>() = V; }
1770 void setTrueValue(Value *V) { Op<1>() = V; }
1771 void setFalseValue(Value *V) { Op<2>() = V; }
1772
1773 /// Swap the true and false values of the select instruction.
1774 /// This doesn't swap prof metadata.
1775 void swapValues() { Op<1>().swap(Op<2>()); }
1776
1777 /// Return a string if the specified operands are invalid
1778 /// for a select operation, otherwise return null.
1779 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1780
1781 /// Transparently provide more efficient getOperand methods.
1782 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1783
1784 OtherOps getOpcode() const {
1785 return static_cast<OtherOps>(Instruction::getOpcode());
1786 }
1787
1788 // Methods for support type inquiry through isa, cast, and dyn_cast:
1789 static bool classof(const Instruction *I) {
1790 return I->getOpcode() == Instruction::Select;
1791 }
1792 static bool classof(const Value *V) {
1793 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1794 }
1795};
1796
1797template <>
1798struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1799};
1800
1801DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<SelectInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1801, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<SelectInst>::op_begin(const_cast
<SelectInst*>(this))[i_nocapture].get()); } void SelectInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<SelectInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1801, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
SelectInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned SelectInst::getNumOperands() const { return OperandTraits
<SelectInst>::operands(this); } template <int Idx_nocapture
> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1802
1803//===----------------------------------------------------------------------===//
1804// VAArgInst Class
1805//===----------------------------------------------------------------------===//
1806
1807/// This class represents the va_arg llvm instruction, which returns
1808/// an argument of the specified type given a va_list and increments that list
1809///
1810class VAArgInst : public UnaryInstruction {
1811protected:
1812 // Note: Instruction needs to be a friend here to call cloneImpl.
1813 friend class Instruction;
1814
1815 VAArgInst *cloneImpl() const;
1816
1817public:
1818 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1819 Instruction *InsertBefore = nullptr)
1820 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1821 setName(NameStr);
1822 }
1823
1824 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1825 BasicBlock *InsertAtEnd)
1826 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1827 setName(NameStr);
1828 }
1829
1830 Value *getPointerOperand() { return getOperand(0); }
1831 const Value *getPointerOperand() const { return getOperand(0); }
1832 static unsigned getPointerOperandIndex() { return 0U; }
1833
1834 // Methods for support type inquiry through isa, cast, and dyn_cast:
1835 static bool classof(const Instruction *I) {
1836 return I->getOpcode() == VAArg;
1837 }
1838 static bool classof(const Value *V) {
1839 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1840 }
1841};
1842
1843//===----------------------------------------------------------------------===//
1844// ExtractElementInst Class
1845//===----------------------------------------------------------------------===//
1846
1847/// This instruction extracts a single (scalar)
1848/// element from a VectorType value
1849///
1850class ExtractElementInst : public Instruction {
1851 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1852 Instruction *InsertBefore = nullptr);
1853 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1854 BasicBlock *InsertAtEnd);
1855
1856protected:
1857 // Note: Instruction needs to be a friend here to call cloneImpl.
1858 friend class Instruction;
1859
1860 ExtractElementInst *cloneImpl() const;
1861
1862public:
1863 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1864 const Twine &NameStr = "",
1865 Instruction *InsertBefore = nullptr) {
1866 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1867 }
1868
1869 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1870 const Twine &NameStr,
1871 BasicBlock *InsertAtEnd) {
1872 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1873 }
1874
1875 /// Return true if an extractelement instruction can be
1876 /// formed with the specified operands.
1877 static bool isValidOperands(const Value *Vec, const Value *Idx);
1878
1879 Value *getVectorOperand() { return Op<0>(); }
1880 Value *getIndexOperand() { return Op<1>(); }
1881 const Value *getVectorOperand() const { return Op<0>(); }
1882 const Value *getIndexOperand() const { return Op<1>(); }
1883
1884 VectorType *getVectorOperandType() const {
1885 return cast<VectorType>(getVectorOperand()->getType());
1886 }
1887
1888 /// Transparently provide more efficient getOperand methods.
1889 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1890
1891 // Methods for support type inquiry through isa, cast, and dyn_cast:
1892 static bool classof(const Instruction *I) {
1893 return I->getOpcode() == Instruction::ExtractElement;
1894 }
1895 static bool classof(const Value *V) {
1896 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1897 }
1898};
1899
1900template <>
1901struct OperandTraits<ExtractElementInst> :
1902 public FixedNumOperandTraits<ExtractElementInst, 2> {
1903};
1904
1905DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
(static_cast <bool> (i_nocapture < OperandTraits<
ExtractElementInst>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1905, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ExtractElementInst>::op_begin
(const_cast<ExtractElementInst*>(this))[i_nocapture].get
()); } void ExtractElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ExtractElementInst>::operands(this)
&& "setOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1905, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ExtractElementInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned ExtractElementInst::getNumOperands() const { return
OperandTraits<ExtractElementInst>::operands(this); } template
<int Idx_nocapture> Use &ExtractElementInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &ExtractElementInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1906
1907//===----------------------------------------------------------------------===//
1908// InsertElementInst Class
1909//===----------------------------------------------------------------------===//
1910
1911/// This instruction inserts a single (scalar)
1912/// element into a VectorType value
1913///
1914class InsertElementInst : public Instruction {
1915 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1916 const Twine &NameStr = "",
1917 Instruction *InsertBefore = nullptr);
1918 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1919 BasicBlock *InsertAtEnd);
1920
1921protected:
1922 // Note: Instruction needs to be a friend here to call cloneImpl.
1923 friend class Instruction;
1924
1925 InsertElementInst *cloneImpl() const;
1926
1927public:
1928 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1929 const Twine &NameStr = "",
1930 Instruction *InsertBefore = nullptr) {
1931 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1932 }
1933
1934 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1935 const Twine &NameStr,
1936 BasicBlock *InsertAtEnd) {
1937 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1938 }
1939
1940 /// Return true if an insertelement instruction can be
1941 /// formed with the specified operands.
1942 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1943 const Value *Idx);
1944
1945 /// Overload to return most specific vector type.
1946 ///
1947 VectorType *getType() const {
1948 return cast<VectorType>(Instruction::getType());
1949 }
1950
1951 /// Transparently provide more efficient getOperand methods.
1952 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1953
1954 // Methods for support type inquiry through isa, cast, and dyn_cast:
1955 static bool classof(const Instruction *I) {
1956 return I->getOpcode() == Instruction::InsertElement;
1957 }
1958 static bool classof(const Value *V) {
1959 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1960 }
1961};
1962
1963template <>
1964struct OperandTraits<InsertElementInst> :
1965 public FixedNumOperandTraits<InsertElementInst, 3> {
1966};
1967
1968DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<InsertElementInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1968, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<InsertElementInst>::op_begin
(const_cast<InsertElementInst*>(this))[i_nocapture].get
()); } void InsertElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<InsertElementInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 1968, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
InsertElementInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned InsertElementInst::getNumOperands() const { return
OperandTraits<InsertElementInst>::operands(this); } template
<int Idx_nocapture> Use &InsertElementInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &InsertElementInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1969
1970//===----------------------------------------------------------------------===//
1971// ShuffleVectorInst Class
1972//===----------------------------------------------------------------------===//
1973
1974constexpr int UndefMaskElem = -1;
1975
1976/// This instruction constructs a fixed permutation of two
1977/// input vectors.
1978///
1979/// For each element of the result vector, the shuffle mask selects an element
1980/// from one of the input vectors to copy to the result. Non-negative elements
1981/// in the mask represent an index into the concatenated pair of input vectors.
1982/// UndefMaskElem (-1) specifies that the result element is undefined.
1983///
1984/// For scalable vectors, all the elements of the mask must be 0 or -1. This
1985/// requirement may be relaxed in the future.
1986class ShuffleVectorInst : public Instruction {
1987 SmallVector<int, 4> ShuffleMask;
1988 Constant *ShuffleMaskForBitcode;
1989
1990protected:
1991 // Note: Instruction needs to be a friend here to call cloneImpl.
1992 friend class Instruction;
1993
1994 ShuffleVectorInst *cloneImpl() const;
1995
1996public:
1997 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1998 const Twine &NameStr = "",
1999 Instruction *InsertBefor = nullptr);
2000 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2001 const Twine &NameStr, BasicBlock *InsertAtEnd);
2002 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2003 const Twine &NameStr = "",
2004 Instruction *InsertBefor = nullptr);
2005 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2006 const Twine &NameStr, BasicBlock *InsertAtEnd);
2007
2008 void *operator new(size_t s) { return User::operator new(s, 2); }
2009
2010 /// Swap the operands and adjust the mask to preserve the semantics
2011 /// of the instruction.
2012 void commute();
2013
2014 /// Return true if a shufflevector instruction can be
2015 /// formed with the specified operands.
2016 static bool isValidOperands(const Value *V1, const Value *V2,
2017 const Value *Mask);
2018 static bool isValidOperands(const Value *V1, const Value *V2,
2019 ArrayRef<int> Mask);
2020
2021 /// Overload to return most specific vector type.
2022 ///
2023 VectorType *getType() const {
2024 return cast<VectorType>(Instruction::getType());
2025 }
2026
2027 /// Transparently provide more efficient getOperand methods.
2028 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2029
2030 /// Return the shuffle mask value of this instruction for the given element
2031 /// index. Return UndefMaskElem if the element is undef.
2032 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2033
2034 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2035 /// elements of the mask are returned as UndefMaskElem.
2036 static void getShuffleMask(const Constant *Mask,
2037 SmallVectorImpl<int> &Result);
2038
2039 /// Return the mask for this instruction as a vector of integers. Undefined
2040 /// elements of the mask are returned as UndefMaskElem.
2041 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2042 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2043 }
2044
2045 /// Return the mask for this instruction, for use in bitcode.
2046 ///
2047 /// TODO: This is temporary until we decide a new bitcode encoding for
2048 /// shufflevector.
2049 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2050
2051 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2052 Type *ResultTy);
2053
2054 void setShuffleMask(ArrayRef<int> Mask);
2055
2056 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2057
2058 /// Return true if this shuffle returns a vector with a different number of
2059 /// elements than its source vectors.
2060 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2061 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2062 bool changesLength() const {
2063 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2064 ->getElementCount()
2065 .getKnownMinValue();
2066 unsigned NumMaskElts = ShuffleMask.size();
2067 return NumSourceElts != NumMaskElts;
2068 }
2069
2070 /// Return true if this shuffle returns a vector with a greater number of
2071 /// elements than its source vectors.
2072 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2073 bool increasesLength() const {
2074 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2075 ->getElementCount()
2076 .getKnownMinValue();
2077 unsigned NumMaskElts = ShuffleMask.size();
2078 return NumSourceElts < NumMaskElts;
2079 }
2080
2081 /// Return true if this shuffle mask chooses elements from exactly one source
2082 /// vector.
2083 /// Example: <7,5,undef,7>
2084 /// This assumes that vector operands are the same length as the mask.
2085 static bool isSingleSourceMask(ArrayRef<int> Mask);
2086 static bool isSingleSourceMask(const Constant *Mask) {
2087 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2087, __extension__ __PRETTY_FUNCTION__))
;
2088 SmallVector<int, 16> MaskAsInts;
2089 getShuffleMask(Mask, MaskAsInts);
2090 return isSingleSourceMask(MaskAsInts);
2091 }
2092
2093 /// Return true if this shuffle chooses elements from exactly one source
2094 /// vector without changing the length of that vector.
2095 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2096 /// TODO: Optionally allow length-changing shuffles.
2097 bool isSingleSource() const {
2098 return !changesLength() && isSingleSourceMask(ShuffleMask);
2099 }
2100
2101 /// Return true if this shuffle mask chooses elements from exactly one source
2102 /// vector without lane crossings. A shuffle using this mask is not
2103 /// necessarily a no-op because it may change the number of elements from its
2104 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2105 /// Example: <undef,undef,2,3>
2106 static bool isIdentityMask(ArrayRef<int> Mask);
2107 static bool isIdentityMask(const Constant *Mask) {
2108 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2108, __extension__ __PRETTY_FUNCTION__))
;
2109 SmallVector<int, 16> MaskAsInts;
2110 getShuffleMask(Mask, MaskAsInts);
2111 return isIdentityMask(MaskAsInts);
2112 }
2113
2114 /// Return true if this shuffle chooses elements from exactly one source
2115 /// vector without lane crossings and does not change the number of elements
2116 /// from its input vectors.
2117 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2118 bool isIdentity() const {
2119 return !changesLength() && isIdentityMask(ShuffleMask);
2120 }
2121
2122 /// Return true if this shuffle lengthens exactly one source vector with
2123 /// undefs in the high elements.
2124 bool isIdentityWithPadding() const;
2125
2126 /// Return true if this shuffle extracts the first N elements of exactly one
2127 /// source vector.
2128 bool isIdentityWithExtract() const;
2129
2130 /// Return true if this shuffle concatenates its 2 source vectors. This
2131 /// returns false if either input is undefined. In that case, the shuffle is
2132 /// is better classified as an identity with padding operation.
2133 bool isConcat() const;
2134
2135 /// Return true if this shuffle mask chooses elements from its source vectors
2136 /// without lane crossings. A shuffle using this mask would be
2137 /// equivalent to a vector select with a constant condition operand.
2138 /// Example: <4,1,6,undef>
2139 /// This returns false if the mask does not choose from both input vectors.
2140 /// In that case, the shuffle is better classified as an identity shuffle.
2141 /// This assumes that vector operands are the same length as the mask
2142 /// (a length-changing shuffle can never be equivalent to a vector select).
2143 static bool isSelectMask(ArrayRef<int> Mask);
2144 static bool isSelectMask(const Constant *Mask) {
2145 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2145, __extension__ __PRETTY_FUNCTION__))
;
2146 SmallVector<int, 16> MaskAsInts;
2147 getShuffleMask(Mask, MaskAsInts);
2148 return isSelectMask(MaskAsInts);
2149 }
2150
2151 /// Return true if this shuffle chooses elements from its source vectors
2152 /// without lane crossings and all operands have the same number of elements.
2153 /// In other words, this shuffle is equivalent to a vector select with a
2154 /// constant condition operand.
2155 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2156 /// This returns false if the mask does not choose from both input vectors.
2157 /// In that case, the shuffle is better classified as an identity shuffle.
2158 /// TODO: Optionally allow length-changing shuffles.
2159 bool isSelect() const {
2160 return !changesLength() && isSelectMask(ShuffleMask);
2161 }
2162
2163 /// Return true if this shuffle mask swaps the order of elements from exactly
2164 /// one source vector.
2165 /// Example: <7,6,undef,4>
2166 /// This assumes that vector operands are the same length as the mask.
2167 static bool isReverseMask(ArrayRef<int> Mask);
2168 static bool isReverseMask(const Constant *Mask) {
2169 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2169, __extension__ __PRETTY_FUNCTION__))
;
2170 SmallVector<int, 16> MaskAsInts;
2171 getShuffleMask(Mask, MaskAsInts);
2172 return isReverseMask(MaskAsInts);
2173 }
2174
2175 /// Return true if this shuffle swaps the order of elements from exactly
2176 /// one source vector.
2177 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2178 /// TODO: Optionally allow length-changing shuffles.
2179 bool isReverse() const {
2180 return !changesLength() && isReverseMask(ShuffleMask);
2181 }
2182
2183 /// Return true if this shuffle mask chooses all elements with the same value
2184 /// as the first element of exactly one source vector.
2185 /// Example: <4,undef,undef,4>
2186 /// This assumes that vector operands are the same length as the mask.
2187 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2188 static bool isZeroEltSplatMask(const Constant *Mask) {
2189 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2189, __extension__ __PRETTY_FUNCTION__))
;
2190 SmallVector<int, 16> MaskAsInts;
2191 getShuffleMask(Mask, MaskAsInts);
2192 return isZeroEltSplatMask(MaskAsInts);
2193 }
2194
2195 /// Return true if all elements of this shuffle are the same value as the
2196 /// first element of exactly one source vector without changing the length
2197 /// of that vector.
2198 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2199 /// TODO: Optionally allow length-changing shuffles.
2200 /// TODO: Optionally allow splats from other elements.
2201 bool isZeroEltSplat() const {
2202 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2203 }
2204
2205 /// Return true if this shuffle mask is a transpose mask.
2206 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2207 /// even- or odd-numbered vector elements from two n-dimensional source
2208 /// vectors and write each result into consecutive elements of an
2209 /// n-dimensional destination vector. Two shuffles are necessary to complete
2210 /// the transpose, one for the even elements and another for the odd elements.
2211 /// This description closely follows how the TRN1 and TRN2 AArch64
2212 /// instructions operate.
2213 ///
2214 /// For example, a simple 2x2 matrix can be transposed with:
2215 ///
2216 /// ; Original matrix
2217 /// m0 = < a, b >
2218 /// m1 = < c, d >
2219 ///
2220 /// ; Transposed matrix
2221 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2222 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2223 ///
2224 /// For matrices having greater than n columns, the resulting nx2 transposed
2225 /// matrix is stored in two result vectors such that one vector contains
2226 /// interleaved elements from all the even-numbered rows and the other vector
2227 /// contains interleaved elements from all the odd-numbered rows. For example,
2228 /// a 2x4 matrix can be transposed with:
2229 ///
2230 /// ; Original matrix
2231 /// m0 = < a, b, c, d >
2232 /// m1 = < e, f, g, h >
2233 ///
2234 /// ; Transposed matrix
2235 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2236 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2237 static bool isTransposeMask(ArrayRef<int> Mask);
2238 static bool isTransposeMask(const Constant *Mask) {
2239 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2239, __extension__ __PRETTY_FUNCTION__))
;
2240 SmallVector<int, 16> MaskAsInts;
2241 getShuffleMask(Mask, MaskAsInts);
2242 return isTransposeMask(MaskAsInts);
2243 }
2244
2245 /// Return true if this shuffle transposes the elements of its inputs without
2246 /// changing the length of the vectors. This operation may also be known as a
2247 /// merge or interleave. See the description for isTransposeMask() for the
2248 /// exact specification.
2249 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2250 bool isTranspose() const {
2251 return !changesLength() && isTransposeMask(ShuffleMask);
2252 }
2253
2254 /// Return true if this shuffle mask is an extract subvector mask.
2255 /// A valid extract subvector mask returns a smaller vector from a single
2256 /// source operand. The base extraction index is returned as well.
2257 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2258 int &Index);
2259 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2260 int &Index) {
2261 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2261, __extension__ __PRETTY_FUNCTION__))
;
2262 // Not possible to express a shuffle mask for a scalable vector for this
2263 // case.
2264 if (isa<ScalableVectorType>(Mask->getType()))
2265 return false;
2266 SmallVector<int, 16> MaskAsInts;
2267 getShuffleMask(Mask, MaskAsInts);
2268 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2269 }
2270
2271 /// Return true if this shuffle mask is an extract subvector mask.
2272 bool isExtractSubvectorMask(int &Index) const {
2273 // Not possible to express a shuffle mask for a scalable vector for this
2274 // case.
2275 if (isa<ScalableVectorType>(getType()))
2276 return false;
2277
2278 int NumSrcElts =
2279 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2280 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2281 }
2282
2283 /// Change values in a shuffle permute mask assuming the two vector operands
2284 /// of length InVecNumElts have swapped position.
2285 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2286 unsigned InVecNumElts) {
2287 for (int &Idx : Mask) {
2288 if (Idx == -1)
2289 continue;
2290 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2291 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2292, __extension__ __PRETTY_FUNCTION__))
2292 "shufflevector mask index out of range")(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2292, __extension__ __PRETTY_FUNCTION__))
;
2293 }
2294 }
2295
2296 // Methods for support type inquiry through isa, cast, and dyn_cast:
2297 static bool classof(const Instruction *I) {
2298 return I->getOpcode() == Instruction::ShuffleVector;
2299 }
2300 static bool classof(const Value *V) {
2301 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2302 }
2303};
2304
2305template <>
2306struct OperandTraits<ShuffleVectorInst>
2307 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2308
2309DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<ShuffleVectorInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2309, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ShuffleVectorInst>::op_begin
(const_cast<ShuffleVectorInst*>(this))[i_nocapture].get
()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ShuffleVectorInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2309, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ShuffleVectorInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned ShuffleVectorInst::getNumOperands() const { return
OperandTraits<ShuffleVectorInst>::operands(this); } template
<int Idx_nocapture> Use &ShuffleVectorInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &ShuffleVectorInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2310
2311//===----------------------------------------------------------------------===//
2312// ExtractValueInst Class
2313//===----------------------------------------------------------------------===//
2314
2315/// This instruction extracts a struct member or array
2316/// element value from an aggregate value.
2317///
2318class ExtractValueInst : public UnaryInstruction {
2319 SmallVector<unsigned, 4> Indices;
2320
2321 ExtractValueInst(const ExtractValueInst &EVI);
2322
2323 /// Constructors - Create a extractvalue instruction with a base aggregate
2324 /// value and a list of indices. The first ctor can optionally insert before
2325 /// an existing instruction, the second appends the new instruction to the
2326 /// specified BasicBlock.
2327 inline ExtractValueInst(Value *Agg,
2328 ArrayRef<unsigned> Idxs,
2329 const Twine &NameStr,
2330 Instruction *InsertBefore);
2331 inline ExtractValueInst(Value *Agg,
2332 ArrayRef<unsigned> Idxs,
2333 const Twine &NameStr, BasicBlock *InsertAtEnd);
2334
2335 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2336
2337protected:
2338 // Note: Instruction needs to be a friend here to call cloneImpl.
2339 friend class Instruction;
2340
2341 ExtractValueInst *cloneImpl() const;
2342
2343public:
2344 static ExtractValueInst *Create(Value *Agg,
2345 ArrayRef<unsigned> Idxs,
2346 const Twine &NameStr = "",
2347 Instruction *InsertBefore = nullptr) {
2348 return new
2349 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2350 }
2351
2352 static ExtractValueInst *Create(Value *Agg,
2353 ArrayRef<unsigned> Idxs,
2354 const Twine &NameStr,
2355 BasicBlock *InsertAtEnd) {
2356 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2357 }
2358
2359 /// Returns the type of the element that would be extracted
2360 /// with an extractvalue instruction with the specified parameters.
2361 ///
2362 /// Null is returned if the indices are invalid for the specified type.
2363 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2364
2365 using idx_iterator = const unsigned*;
2366
2367 inline idx_iterator idx_begin() const { return Indices.begin(); }
2368 inline idx_iterator idx_end() const { return Indices.end(); }
2369 inline iterator_range<idx_iterator> indices() const {
2370 return make_range(idx_begin(), idx_end());
2371 }
2372
2373 Value *getAggregateOperand() {
2374 return getOperand(0);
2375 }
2376 const Value *getAggregateOperand() const {
2377 return getOperand(0);
2378 }
2379 static unsigned getAggregateOperandIndex() {
2380 return 0U; // get index for modifying correct operand
2381 }
2382
2383 ArrayRef<unsigned> getIndices() const {
2384 return Indices;
2385 }
2386
2387 unsigned getNumIndices() const {
2388 return (unsigned)Indices.size();
2389 }
2390
2391 bool hasIndices() const {
2392 return true;
2393 }
2394
2395 // Methods for support type inquiry through isa, cast, and dyn_cast:
2396 static bool classof(const Instruction *I) {
2397 return I->getOpcode() == Instruction::ExtractValue;
2398 }
2399 static bool classof(const Value *V) {
2400 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2401 }
2402};
2403
2404ExtractValueInst::ExtractValueInst(Value *Agg,
2405 ArrayRef<unsigned> Idxs,
2406 const Twine &NameStr,
2407 Instruction *InsertBefore)
2408 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2409 ExtractValue, Agg, InsertBefore) {
2410 init(Idxs, NameStr);
2411}
2412
2413ExtractValueInst::ExtractValueInst(Value *Agg,
2414 ArrayRef<unsigned> Idxs,
2415 const Twine &NameStr,
2416 BasicBlock *InsertAtEnd)
2417 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2418 ExtractValue, Agg, InsertAtEnd) {
2419 init(Idxs, NameStr);
2420}
2421
2422//===----------------------------------------------------------------------===//
2423// InsertValueInst Class
2424//===----------------------------------------------------------------------===//
2425
2426/// This instruction inserts a struct field of array element
2427/// value into an aggregate value.
2428///
2429class InsertValueInst : public Instruction {
2430 SmallVector<unsigned, 4> Indices;
2431
2432 InsertValueInst(const InsertValueInst &IVI);
2433
2434 /// Constructors - Create a insertvalue instruction with a base aggregate
2435 /// value, a value to insert, and a list of indices. The first ctor can
2436 /// optionally insert before an existing instruction, the second appends
2437 /// the new instruction to the specified BasicBlock.
2438 inline InsertValueInst(Value *Agg, Value *Val,
2439 ArrayRef<unsigned> Idxs,
2440 const Twine &NameStr,
2441 Instruction *InsertBefore);
2442 inline InsertValueInst(Value *Agg, Value *Val,
2443 ArrayRef<unsigned> Idxs,
2444 const Twine &NameStr, BasicBlock *InsertAtEnd);
2445
2446 /// Constructors - These two constructors are convenience methods because one
2447 /// and two index insertvalue instructions are so common.
2448 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2449 const Twine &NameStr = "",
2450 Instruction *InsertBefore = nullptr);
2451 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2452 BasicBlock *InsertAtEnd);
2453
2454 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2455 const Twine &NameStr);
2456
2457protected:
2458 // Note: Instruction needs to be a friend here to call cloneImpl.
2459 friend class Instruction;
2460
2461 InsertValueInst *cloneImpl() const;
2462
2463public:
2464 // allocate space for exactly two operands
2465 void *operator new(size_t s) {
2466 return User::operator new(s, 2);
2467 }
2468
2469 static InsertValueInst *Create(Value *Agg, Value *Val,
2470 ArrayRef<unsigned> Idxs,
2471 const Twine &NameStr = "",
2472 Instruction *InsertBefore = nullptr) {
2473 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2474 }
2475
2476 static InsertValueInst *Create(Value *Agg, Value *Val,
2477 ArrayRef<unsigned> Idxs,
2478 const Twine &NameStr,
2479 BasicBlock *InsertAtEnd) {
2480 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2481 }
2482
2483 /// Transparently provide more efficient getOperand methods.
2484 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2485
2486 using idx_iterator = const unsigned*;
2487
2488 inline idx_iterator idx_begin() const { return Indices.begin(); }
2489 inline idx_iterator idx_end() const { return Indices.end(); }
2490 inline iterator_range<idx_iterator> indices() const {
2491 return make_range(idx_begin(), idx_end());
2492 }
2493
2494 Value *getAggregateOperand() {
2495 return getOperand(0);
2496 }
2497 const Value *getAggregateOperand() const {
2498 return getOperand(0);
2499 }
2500 static unsigned getAggregateOperandIndex() {
2501 return 0U; // get index for modifying correct operand
2502 }
2503
2504 Value *getInsertedValueOperand() {
2505 return getOperand(1);
2506 }
2507 const Value *getInsertedValueOperand() const {
2508 return getOperand(1);
2509 }
2510 static unsigned getInsertedValueOperandIndex() {
2511 return 1U; // get index for modifying correct operand
2512 }
2513
2514 ArrayRef<unsigned> getIndices() const {
2515 return Indices;
2516 }
2517
2518 unsigned getNumIndices() const {
2519 return (unsigned)Indices.size();
2520 }
2521
2522 bool hasIndices() const {
2523 return true;
2524 }
2525
2526 // Methods for support type inquiry through isa, cast, and dyn_cast:
2527 static bool classof(const Instruction *I) {
2528 return I->getOpcode() == Instruction::InsertValue;
2529 }
2530 static bool classof(const Value *V) {
2531 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2532 }
2533};
2534
2535template <>
2536struct OperandTraits<InsertValueInst> :
2537 public FixedNumOperandTraits<InsertValueInst, 2> {
2538};
2539
2540InsertValueInst::InsertValueInst(Value *Agg,
2541 Value *Val,
2542 ArrayRef<unsigned> Idxs,
2543 const Twine &NameStr,
2544 Instruction *InsertBefore)
2545 : Instruction(Agg->getType(), InsertValue,
2546 OperandTraits<InsertValueInst>::op_begin(this),
2547 2, InsertBefore) {
2548 init(Agg, Val, Idxs, NameStr);
2549}
2550
2551InsertValueInst::InsertValueInst(Value *Agg,
2552 Value *Val,
2553 ArrayRef<unsigned> Idxs,
2554 const Twine &NameStr,
2555 BasicBlock *InsertAtEnd)
2556 : Instruction(Agg->getType(), InsertValue,
2557 OperandTraits<InsertValueInst>::op_begin(this),
2558 2, InsertAtEnd) {
2559 init(Agg, Val, Idxs, NameStr);
2560}
2561
2562DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<InsertValueInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2562, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<InsertValueInst>::op_begin
(const_cast<InsertValueInst*>(this))[i_nocapture].get()
); } void InsertValueInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2562, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
InsertValueInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned InsertValueInst::getNumOperands() const { return
OperandTraits<InsertValueInst>::operands(this); } template
<int Idx_nocapture> Use &InsertValueInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &InsertValueInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
2563
2564//===----------------------------------------------------------------------===//
2565// PHINode Class
2566//===----------------------------------------------------------------------===//
2567
2568// PHINode - The PHINode class is used to represent the magical mystical PHI
2569// node, that can not exist in nature, but can be synthesized in a computer
2570// scientist's overactive imagination.
2571//
2572class PHINode : public Instruction {
2573 /// The number of operands actually allocated. NumOperands is
2574 /// the number actually in use.
2575 unsigned ReservedSpace;
2576
2577 PHINode(const PHINode &PN);
2578
2579 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2580 const Twine &NameStr = "",
2581 Instruction *InsertBefore = nullptr)
2582 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2583 ReservedSpace(NumReservedValues) {
2584 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2584, __extension__ __PRETTY_FUNCTION__))
;
2585 setName(NameStr);
2586 allocHungoffUses(ReservedSpace);
2587 }
2588
2589 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2590 BasicBlock *InsertAtEnd)
2591 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2592 ReservedSpace(NumReservedValues) {
2593 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2593, __extension__ __PRETTY_FUNCTION__))
;
2594 setName(NameStr);
2595 allocHungoffUses(ReservedSpace);
2596 }
2597
2598protected:
2599 // Note: Instruction needs to be a friend here to call cloneImpl.
2600 friend class Instruction;
2601
2602 PHINode *cloneImpl() const;
2603
2604 // allocHungoffUses - this is more complicated than the generic
2605 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2606 // values and pointers to the incoming blocks, all in one allocation.
2607 void allocHungoffUses(unsigned N) {
2608 User::allocHungoffUses(N, /* IsPhi */ true);
2609 }
2610
2611public:
2612 /// Constructors - NumReservedValues is a hint for the number of incoming
2613 /// edges that this phi node will have (use 0 if you really have no idea).
2614 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2615 const Twine &NameStr = "",
2616 Instruction *InsertBefore = nullptr) {
2617 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2618 }
2619
2620 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2621 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2622 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2623 }
2624
2625 /// Provide fast operand accessors
2626 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2627
2628 // Block iterator interface. This provides access to the list of incoming
2629 // basic blocks, which parallels the list of incoming values.
2630
2631 using block_iterator = BasicBlock **;
2632 using const_block_iterator = BasicBlock * const *;
2633
2634 block_iterator block_begin() {
2635 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2636 }
2637
2638 const_block_iterator block_begin() const {
2639 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2640 }
2641
2642 block_iterator block_end() {
2643 return block_begin() + getNumOperands();
2644 }
2645
2646 const_block_iterator block_end() const {
2647 return block_begin() + getNumOperands();
2648 }
2649
2650 iterator_range<block_iterator> blocks() {
2651 return make_range(block_begin(), block_end());
2652 }
2653
2654 iterator_range<const_block_iterator> blocks() const {
2655 return make_range(block_begin(), block_end());
2656 }
2657
2658 op_range incoming_values() { return operands(); }
2659
2660 const_op_range incoming_values() const { return operands(); }
2661
2662 /// Return the number of incoming edges
2663 ///
2664 unsigned getNumIncomingValues() const { return getNumOperands(); }
2665
2666 /// Return incoming value number x
2667 ///
2668 Value *getIncomingValue(unsigned i) const {
2669 return getOperand(i);
2670 }
2671 void setIncomingValue(unsigned i, Value *V) {
2672 assert(V && "PHI node got a null value!")(static_cast <bool> (V && "PHI node got a null value!"
) ? void (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2672, __extension__ __PRETTY_FUNCTION__))
;
2673 assert(getType() == V->getType() &&(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2674, __extension__ __PRETTY_FUNCTION__))
2674 "All operands to PHI node must be the same type as the PHI node!")(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2674, __extension__ __PRETTY_FUNCTION__))
;
2675 setOperand(i, V);
2676 }
2677
2678 static unsigned getOperandNumForIncomingValue(unsigned i) {
2679 return i;
2680 }
2681
2682 static unsigned getIncomingValueNumForOperand(unsigned i) {
2683 return i;
2684 }
2685
2686 /// Return incoming basic block number @p i.
2687 ///
2688 BasicBlock *getIncomingBlock(unsigned i) const {
2689 return block_begin()[i];
2690 }
2691
2692 /// Return incoming basic block corresponding
2693 /// to an operand of the PHI.
2694 ///
2695 BasicBlock *getIncomingBlock(const Use &U) const {
2696 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")(static_cast <bool> (this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? void (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2696, __extension__ __PRETTY_FUNCTION__))
;
2697 return getIncomingBlock(unsigned(&U - op_begin()));
2698 }
2699
2700 /// Return incoming basic block corresponding
2701 /// to value use iterator.
2702 ///
2703 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2704 return getIncomingBlock(I.getUse());
2705 }
2706
2707 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2708 assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2708, __extension__ __PRETTY_FUNCTION__))
;
2709 block_begin()[i] = BB;
2710 }
2711
2712 /// Replace every incoming basic block \p Old to basic block \p New.
2713 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2714 assert(New && Old && "PHI node got a null basic block!")(static_cast <bool> (New && Old && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2714, __extension__ __PRETTY_FUNCTION__))
;
2715 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2716 if (getIncomingBlock(Op) == Old)
2717 setIncomingBlock(Op, New);
2718 }
2719
2720 /// Add an incoming value to the end of the PHI list
2721 ///
2722 void addIncoming(Value *V, BasicBlock *BB) {
2723 if (getNumOperands() == ReservedSpace)
2724 growOperands(); // Get more space!
2725 // Initialize some new operands.
2726 setNumHungOffUseOperands(getNumOperands() + 1);
2727 setIncomingValue(getNumOperands() - 1, V);
2728 setIncomingBlock(getNumOperands() - 1, BB);
2729 }
2730
2731 /// Remove an incoming value. This is useful if a
2732 /// predecessor basic block is deleted. The value removed is returned.
2733 ///
2734 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2735 /// is true), the PHI node is destroyed and any uses of it are replaced with
2736 /// dummy values. The only time there should be zero incoming values to a PHI
2737 /// node is when the block is dead, so this strategy is sound.
2738 ///
2739 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2740
2741 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2742 int Idx = getBasicBlockIndex(BB);
2743 assert(Idx >= 0 && "Invalid basic block argument to remove!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument to remove!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2743, __extension__ __PRETTY_FUNCTION__))
;
2744 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2745 }
2746
2747 /// Return the first index of the specified basic
2748 /// block in the value list for this PHI. Returns -1 if no instance.
2749 ///
2750 int getBasicBlockIndex(const BasicBlock *BB) const {
2751 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2752 if (block_begin()[i] == BB)
2753 return i;
2754 return -1;
2755 }
2756
2757 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2758 int Idx = getBasicBlockIndex(BB);
2759 assert(Idx >= 0 && "Invalid basic block argument!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2759, __extension__ __PRETTY_FUNCTION__))
;
2760 return getIncomingValue(Idx);
2761 }
2762
2763 /// Set every incoming value(s) for block \p BB to \p V.
2764 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2765 assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2765, __extension__ __PRETTY_FUNCTION__))
;
2766 bool Found = false;
2767 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2768 if (getIncomingBlock(Op) == BB) {
2769 Found = true;
2770 setIncomingValue(Op, V);
2771 }
2772 (void)Found;
2773 assert(Found && "Invalid basic block argument to set!")(static_cast <bool> (Found && "Invalid basic block argument to set!"
) ? void (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2773, __extension__ __PRETTY_FUNCTION__))
;
2774 }
2775
2776 /// If the specified PHI node always merges together the
2777 /// same value, return the value, otherwise return null.
2778 Value *hasConstantValue() const;
2779
2780 /// Whether the specified PHI node always merges
2781 /// together the same value, assuming undefs are equal to a unique
2782 /// non-undef value.
2783 bool hasConstantOrUndefValue() const;
2784
2785 /// If the PHI node is complete which means all of its parent's predecessors
2786 /// have incoming value in this PHI, return true, otherwise return false.
2787 bool isComplete() const {
2788 return llvm::all_of(predecessors(getParent()),
2789 [this](const BasicBlock *Pred) {
2790 return getBasicBlockIndex(Pred) >= 0;
2791 });
2792 }
2793
2794 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2795 static bool classof(const Instruction *I) {
2796 return I->getOpcode() == Instruction::PHI;
2797 }
2798 static bool classof(const Value *V) {
2799 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2800 }
2801
2802private:
2803 void growOperands();
2804};
2805
2806template <>
2807struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2808};
2809
2810DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { (static_cast <bool> (i_nocapture < OperandTraits
<PHINode>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2810, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<PHINode>::op_begin(const_cast
<PHINode*>(this))[i_nocapture].get()); } void PHINode::
setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<PHINode>::
operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2810, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
PHINode>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
PHINode::getNumOperands() const { return OperandTraits<PHINode
>::operands(this); } template <int Idx_nocapture> Use
&PHINode::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
PHINode::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2811
2812//===----------------------------------------------------------------------===//
2813// LandingPadInst Class
2814//===----------------------------------------------------------------------===//
2815
2816//===---------------------------------------------------------------------------
2817/// The landingpad instruction holds all of the information
2818/// necessary to generate correct exception handling. The landingpad instruction
2819/// cannot be moved from the top of a landing pad block, which itself is
2820/// accessible only from the 'unwind' edge of an invoke. This uses the
2821/// SubclassData field in Value to store whether or not the landingpad is a
2822/// cleanup.
2823///
2824class LandingPadInst : public Instruction {
2825 using CleanupField = BoolBitfieldElementT<0>;
2826
2827 /// The number of operands actually allocated. NumOperands is
2828 /// the number actually in use.
2829 unsigned ReservedSpace;
2830
2831 LandingPadInst(const LandingPadInst &LP);
2832
2833public:
2834 enum ClauseType { Catch, Filter };
2835
2836private:
2837 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2838 const Twine &NameStr, Instruction *InsertBefore);
2839 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2840 const Twine &NameStr, BasicBlock *InsertAtEnd);
2841
2842 // Allocate space for exactly zero operands.
2843 void *operator new(size_t s) {
2844 return User::operator new(s);
2845 }
2846
2847 void growOperands(unsigned Size);
2848 void init(unsigned NumReservedValues, const Twine &NameStr);
2849
2850protected:
2851 // Note: Instruction needs to be a friend here to call cloneImpl.
2852 friend class Instruction;
2853
2854 LandingPadInst *cloneImpl() const;
2855
2856public:
2857 /// Constructors - NumReservedClauses is a hint for the number of incoming
2858 /// clauses that this landingpad will have (use 0 if you really have no idea).
2859 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2860 const Twine &NameStr = "",
2861 Instruction *InsertBefore = nullptr);
2862 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2863 const Twine &NameStr, BasicBlock *InsertAtEnd);
2864
2865 /// Provide fast operand accessors
2866 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2867
2868 /// Return 'true' if this landingpad instruction is a
2869 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2870 /// doesn't catch the exception.
2871 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2872
2873 /// Indicate that this landingpad instruction is a cleanup.
2874 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2875
2876 /// Add a catch or filter clause to the landing pad.
2877 void addClause(Constant *ClauseVal);
2878
2879 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2880 /// determine what type of clause this is.
2881 Constant *getClause(unsigned Idx) const {
2882 return cast<Constant>(getOperandList()[Idx]);
2883 }
2884
2885 /// Return 'true' if the clause and index Idx is a catch clause.
2886 bool isCatch(unsigned Idx) const {
2887 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2888 }
2889
2890 /// Return 'true' if the clause and index Idx is a filter clause.
2891 bool isFilter(unsigned Idx) const {
2892 return isa<ArrayType>(getOperandList()[Idx]->getType());
2893 }
2894
2895 /// Get the number of clauses for this landing pad.
2896 unsigned getNumClauses() const { return getNumOperands(); }
2897
2898 /// Grow the size of the operand list to accommodate the new
2899 /// number of clauses.
2900 void reserveClauses(unsigned Size) { growOperands(Size); }
2901
2902 // Methods for support type inquiry through isa, cast, and dyn_cast:
2903 static bool classof(const Instruction *I) {
2904 return I->getOpcode() == Instruction::LandingPad;
2905 }
2906 static bool classof(const Value *V) {
2907 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2908 }
2909};
2910
2911template <>
2912struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2913};
2914
2915DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2915, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<LandingPadInst>::op_begin(
const_cast<LandingPadInst*>(this))[i_nocapture].get());
} void LandingPadInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210506100649+6304c0836a4d/llvm/include/llvm/IR/Instructions.h"
, 2915, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
LandingPadInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2916
2917//===----------------------------------------------------------------------===//
2918// ReturnInst Class
2919//===----------------------------------------------------------------------===//
2920
2921//===---------------------------------------------------------------------------
2922/// Return a value (possibly void), from a function. Execution