Bug Summary

File:llvm/lib/Transforms/Scalar/LICM.cpp
Warning:line 1225, column 41
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LICM.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2021-01-24-223304-31662-1 -x c++ /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp

/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp

1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion, attempting to remove as much
10// code from the body of a loop as possible. It does this by either hoisting
11// code into the preheader block, or by sinking code to the exit blocks if it is
12// safe. This pass also promotes must-aliased memory locations in the loop to
13// live in registers, thus hoisting and sinking "invariant" loads and stores.
14//
15// Hoisting operations out of loops is a canonicalization transform. It
16// enables and simplifies subsequent optimizations in the middle-end.
17// Rematerialization of hoisted instructions to reduce register pressure is the
18// responsibility of the back-end, which has more accurate information about
19// register pressure and also handles other optimizations than LICM that
20// increase live-ranges.
21//
22// This pass uses alias analysis for two purposes:
23//
24// 1. Moving loop invariant loads and calls out of loops. If we can determine
25// that a load or call inside of a loop never aliases anything stored to,
26// we can hoist it or sink it like any other instruction.
27// 2. Scalar Promotion of Memory - If there is a store instruction inside of
28// the loop, we try to move the store to happen AFTER the loop instead of
29// inside of the loop. This can only happen if a few conditions are true:
30// A. The pointer stored through is loop invariant
31// B. There are no stores or loads in the loop which _may_ alias the
32// pointer. There are no calls in the loop which mod/ref the pointer.
33// If these conditions are true, we can promote the loads and stores in the
34// loop of the pointer to use a temporary alloca'd variable. We then use
35// the SSAUpdater to construct the appropriate SSA form for the value.
36//
37//===----------------------------------------------------------------------===//
38
39#include "llvm/Transforms/Scalar/LICM.h"
40#include "llvm/ADT/SetOperations.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/BasicAliasAnalysis.h"
45#include "llvm/Analysis/BlockFrequencyInfo.h"
46#include "llvm/Analysis/CaptureTracking.h"
47#include "llvm/Analysis/ConstantFolding.h"
48#include "llvm/Analysis/GlobalsModRef.h"
49#include "llvm/Analysis/GuardUtils.h"
50#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51#include "llvm/Analysis/Loads.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopIterator.h"
54#include "llvm/Analysis/LoopPass.h"
55#include "llvm/Analysis/MemoryBuiltins.h"
56#include "llvm/Analysis/MemorySSA.h"
57#include "llvm/Analysis/MemorySSAUpdater.h"
58#include "llvm/Analysis/MustExecute.h"
59#include "llvm/Analysis/OptimizationRemarkEmitter.h"
60#include "llvm/Analysis/ScalarEvolution.h"
61#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
62#include "llvm/Analysis/TargetLibraryInfo.h"
63#include "llvm/Analysis/ValueTracking.h"
64#include "llvm/IR/CFG.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfoMetadata.h"
68#include "llvm/IR/DerivedTypes.h"
69#include "llvm/IR/Dominators.h"
70#include "llvm/IR/Instructions.h"
71#include "llvm/IR/IntrinsicInst.h"
72#include "llvm/IR/LLVMContext.h"
73#include "llvm/IR/Metadata.h"
74#include "llvm/IR/PatternMatch.h"
75#include "llvm/IR/PredIteratorCache.h"
76#include "llvm/InitializePasses.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/raw_ostream.h"
80#include "llvm/Transforms/Scalar.h"
81#include "llvm/Transforms/Scalar/LoopPassManager.h"
82#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
83#include "llvm/Transforms/Utils/BasicBlockUtils.h"
84#include "llvm/Transforms/Utils/Local.h"
85#include "llvm/Transforms/Utils/LoopUtils.h"
86#include "llvm/Transforms/Utils/SSAUpdater.h"
87#include <algorithm>
88#include <utility>
89using namespace llvm;
90
91#define DEBUG_TYPE"licm" "licm"
92
93STATISTIC(NumCreatedBlocks, "Number of blocks created")static llvm::Statistic NumCreatedBlocks = {"licm", "NumCreatedBlocks"
, "Number of blocks created"}
;
94STATISTIC(NumClonedBranches, "Number of branches cloned")static llvm::Statistic NumClonedBranches = {"licm", "NumClonedBranches"
, "Number of branches cloned"}
;
95STATISTIC(NumSunk, "Number of instructions sunk out of loop")static llvm::Statistic NumSunk = {"licm", "NumSunk", "Number of instructions sunk out of loop"
}
;
96STATISTIC(NumHoisted, "Number of instructions hoisted out of loop")static llvm::Statistic NumHoisted = {"licm", "NumHoisted", "Number of instructions hoisted out of loop"
}
;
97STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk")static llvm::Statistic NumMovedLoads = {"licm", "NumMovedLoads"
, "Number of load insts hoisted or sunk"}
;
98STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk")static llvm::Statistic NumMovedCalls = {"licm", "NumMovedCalls"
, "Number of call insts hoisted or sunk"}
;
99STATISTIC(NumPromoted, "Number of memory locations promoted to registers")static llvm::Statistic NumPromoted = {"licm", "NumPromoted", "Number of memory locations promoted to registers"
}
;
100
101/// Memory promotion is enabled by default.
102static cl::opt<bool>
103 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
104 cl::desc("Disable memory promotion in LICM pass"));
105
106static cl::opt<bool> ControlFlowHoisting(
107 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
108 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
109
110static cl::opt<unsigned> HoistSinkColdnessThreshold(
111 "licm-coldness-threshold", cl::Hidden, cl::init(4),
112 cl::desc("Relative coldness Threshold of hoisting/sinking destination "
113 "block for LICM to be considered beneficial"));
114
115static cl::opt<uint32_t> MaxNumUsesTraversed(
116 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
117 cl::desc("Max num uses visited for identifying load "
118 "invariance in loop using invariant start (default = 8)"));
119
120// Default value of zero implies we use the regular alias set tracker mechanism
121// instead of the cross product using AA to identify aliasing of the memory
122// location we are interested in.
123static cl::opt<int>
124LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
125 cl::desc("How many instruction to cross product using AA"));
126
127// Experimental option to allow imprecision in LICM in pathological cases, in
128// exchange for faster compile. This is to be removed if MemorySSA starts to
129// address the same issue. This flag applies only when LICM uses MemorySSA
130// instead on AliasSetTracker. LICM calls MemorySSAWalker's
131// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
132// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
133// which may not be precise, since optimizeUses is capped. The result is
134// correct, but we may not get as "far up" as possible to get which access is
135// clobbering the one queried.
136cl::opt<unsigned> llvm::SetLicmMssaOptCap(
137 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
138 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
139 "for faster compile. Caps the MemorySSA clobbering calls."));
140
141// Experimentally, memory promotion carries less importance than sinking and
142// hoisting. Limit when we do promotion when using MemorySSA, in order to save
143// compile time.
144cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
145 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
146 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
147 "effect. When MSSA in LICM is enabled, then this is the maximum "
148 "number of accesses allowed to be present in a loop in order to "
149 "enable memory promotion."));
150
151static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
152static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
153 const LoopSafetyInfo *SafetyInfo,
154 TargetTransformInfo *TTI, bool &FreeInLoop);
155static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
156 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
157 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
158 OptimizationRemarkEmitter *ORE);
159static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
160 BlockFrequencyInfo *BFI, const Loop *CurLoop,
161 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
162 OptimizationRemarkEmitter *ORE);
163static bool isSafeToExecuteUnconditionally(Instruction &Inst,
164 const DominatorTree *DT,
165 const Loop *CurLoop,
166 const LoopSafetyInfo *SafetyInfo,
167 OptimizationRemarkEmitter *ORE,
168 const Instruction *CtxI = nullptr);
169static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
170 AliasSetTracker *CurAST, Loop *CurLoop,
171 AAResults *AA);
172static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
173 Loop *CurLoop, Instruction &I,
174 SinkAndHoistLICMFlags &Flags);
175static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
176 MemoryUse &MU);
177static Instruction *cloneInstructionInExitBlock(
178 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
179 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
180
181static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
182 AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
183
184static void moveInstructionBefore(Instruction &I, Instruction &Dest,
185 ICFLoopSafetyInfo &SafetyInfo,
186 MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
187
188namespace {
189struct LoopInvariantCodeMotion {
190 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
191 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
192 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
193 OptimizationRemarkEmitter *ORE);
194
195 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
196 unsigned LicmMssaNoAccForPromotionCap)
197 : LicmMssaOptCap(LicmMssaOptCap),
198 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
199
200private:
201 unsigned LicmMssaOptCap;
202 unsigned LicmMssaNoAccForPromotionCap;
203
204 std::unique_ptr<AliasSetTracker>
205 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
206 std::unique_ptr<AliasSetTracker>
207 collectAliasInfoForLoopWithMSSA(Loop *L, AAResults *AA,
208 MemorySSAUpdater *MSSAU);
209};
210
211struct LegacyLICMPass : public LoopPass {
212 static char ID; // Pass identification, replacement for typeid
213 LegacyLICMPass(
214 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
215 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
216 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
217 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
218 }
219
220 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
221 if (skipLoop(L))
222 return false;
223
224 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Perform LICM on Loop with header at block "
<< L->getHeader()->getNameOrAsOperand() <<
"\n"; } } while (false)
225 << L->getHeader()->getNameOrAsOperand() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Perform LICM on Loop with header at block "
<< L->getHeader()->getNameOrAsOperand() <<
"\n"; } } while (false)
;
226
227 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
228 MemorySSA *MSSA = EnableMSSALoopDependency
229 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
230 : nullptr;
231 bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
232 BlockFrequencyInfo *BFI =
233 hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
234 : nullptr;
235 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
236 // pass. Function analyses need to be preserved across loop transformations
237 // but ORE cannot be preserved (see comment before the pass definition).
238 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
239 return LICM.runOnLoop(
240 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
241 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
242 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
243 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
244 *L->getHeader()->getParent()),
245 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
246 *L->getHeader()->getParent()),
247 SE ? &SE->getSE() : nullptr, MSSA, &ORE);
248 }
249
250 /// This transformation requires natural loop information & requires that
251 /// loop preheaders be inserted into the CFG...
252 ///
253 void getAnalysisUsage(AnalysisUsage &AU) const override {
254 AU.addPreserved<DominatorTreeWrapperPass>();
255 AU.addPreserved<LoopInfoWrapperPass>();
256 AU.addRequired<TargetLibraryInfoWrapperPass>();
257 if (EnableMSSALoopDependency) {
258 AU.addRequired<MemorySSAWrapperPass>();
259 AU.addPreserved<MemorySSAWrapperPass>();
260 }
261 AU.addRequired<TargetTransformInfoWrapperPass>();
262 getLoopAnalysisUsage(AU);
263 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
264 AU.addPreserved<LazyBlockFrequencyInfoPass>();
265 AU.addPreserved<LazyBranchProbabilityInfoPass>();
266 }
267
268private:
269 LoopInvariantCodeMotion LICM;
270};
271} // namespace
272
273PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
274 LoopStandardAnalysisResults &AR, LPMUpdater &) {
275 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
276 // pass. Function analyses need to be preserved across loop transformations
277 // but ORE cannot be preserved (see comment before the pass definition).
278 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
279
280 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
281 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
282 &AR.SE, AR.MSSA, &ORE))
283 return PreservedAnalyses::all();
284
285 auto PA = getLoopPassPreservedAnalyses();
286
287 PA.preserve<DominatorTreeAnalysis>();
288 PA.preserve<LoopAnalysis>();
289 if (AR.MSSA)
290 PA.preserve<MemorySSAAnalysis>();
291
292 return PA;
293}
294
295char LegacyLICMPass::ID = 0;
296INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
297 false, false)static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
298INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
299INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
300INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
301INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
302INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)initializeLazyBFIPassPass(Registry);
303INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
304 false)PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
305
306Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
307Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
308 unsigned LicmMssaNoAccForPromotionCap) {
309 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
310}
311
312llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
313 MemorySSA *MSSA)
314 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
315 IsSink, L, MSSA) {}
316
317llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
318 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
319 Loop *L, MemorySSA *MSSA)
320 : LicmMssaOptCap(LicmMssaOptCap),
321 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
322 IsSink(IsSink) {
323 assert(((L != nullptr) == (MSSA != nullptr)) &&((((L != nullptr) == (MSSA != nullptr)) && "Unexpected values for SinkAndHoistLICMFlags"
) ? static_cast<void> (0) : __assert_fail ("((L != nullptr) == (MSSA != nullptr)) && \"Unexpected values for SinkAndHoistLICMFlags\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 324, __PRETTY_FUNCTION__))
324 "Unexpected values for SinkAndHoistLICMFlags")((((L != nullptr) == (MSSA != nullptr)) && "Unexpected values for SinkAndHoistLICMFlags"
) ? static_cast<void> (0) : __assert_fail ("((L != nullptr) == (MSSA != nullptr)) && \"Unexpected values for SinkAndHoistLICMFlags\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 324, __PRETTY_FUNCTION__))
;
325 if (!MSSA)
326 return;
327
328 unsigned AccessCapCount = 0;
329 for (auto *BB : L->getBlocks())
330 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
331 for (const auto &MA : *Accesses) {
332 (void)MA;
333 ++AccessCapCount;
334 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
335 NoOfMemAccTooLarge = true;
336 return;
337 }
338 }
339}
340
341/// Hoist expressions out of the specified loop. Note, alias info for inner
342/// loop is not preserved so it is not a good idea to run LICM multiple
343/// times on one loop.
344bool LoopInvariantCodeMotion::runOnLoop(
345 Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
346 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
347 ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE) {
348 bool Changed = false;
349
350 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.")((L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."
) ? static_cast<void> (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop is not in LCSSA form.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 350, __PRETTY_FUNCTION__))
;
351
352 // If this loop has metadata indicating that LICM is not to be performed then
353 // just exit.
354 if (hasDisableLICMTransformsHint(L)) {
355 return false;
356 }
357
358 std::unique_ptr<AliasSetTracker> CurAST;
359 std::unique_ptr<MemorySSAUpdater> MSSAU;
360 std::unique_ptr<SinkAndHoistLICMFlags> Flags;
361
362 if (!MSSA) {
363 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using Alias Set Tracker.\n"
; } } while (false)
;
364 CurAST = collectAliasInfoForLoop(L, LI, AA);
365 Flags = std::make_unique<SinkAndHoistLICMFlags>(
366 LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true);
367 } else {
368 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Using MemorySSA.\n"; } } while
(false)
;
369 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
370 Flags = std::make_unique<SinkAndHoistLICMFlags>(
371 LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true, L, MSSA);
372 }
373
374 // Get the preheader block to move instructions into...
375 BasicBlock *Preheader = L->getLoopPreheader();
376
377 // Compute loop safety information.
378 ICFLoopSafetyInfo SafetyInfo;
379 SafetyInfo.computeLoopSafetyInfo(L);
380
381 // We want to visit all of the instructions in this loop... that are not parts
382 // of our subloops (they have already had their invariants hoisted out of
383 // their loop, into this loop, so there is no need to process the BODIES of
384 // the subloops).
385 //
386 // Traverse the body of the loop in depth first order on the dominator tree so
387 // that we are guaranteed to see definitions before we see uses. This allows
388 // us to sink instructions in one pass, without iteration. After sinking
389 // instructions, we perform another pass to hoist them out of the loop.
390 if (L->hasDedicatedExits())
391 Changed |=
392 sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, TTI, L,
393 CurAST.get(), MSSAU.get(), &SafetyInfo, *Flags.get(), ORE);
394 Flags->setIsSink(false);
395 if (Preheader)
396 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
397 CurAST.get(), MSSAU.get(), SE, &SafetyInfo,
398 *Flags.get(), ORE);
399
400 // Now that all loop invariants have been removed from the loop, promote any
401 // memory references to scalars that we can.
402 // Don't sink stores from loops without dedicated block exits. Exits
403 // containing indirect branches are not transformed by loop simplify,
404 // make sure we catch that. An additional load may be generated in the
405 // preheader for SSA updater, so also avoid sinking when no preheader
406 // is available.
407 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
408 !Flags->tooManyMemoryAccesses()) {
409 // Figure out the loop exits and their insertion points
410 SmallVector<BasicBlock *, 8> ExitBlocks;
411 L->getUniqueExitBlocks(ExitBlocks);
412
413 // We can't insert into a catchswitch.
414 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
415 return isa<CatchSwitchInst>(Exit->getTerminator());
416 });
417
418 if (!HasCatchSwitch) {
419 SmallVector<Instruction *, 8> InsertPts;
420 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
421 InsertPts.reserve(ExitBlocks.size());
422 if (MSSAU)
423 MSSAInsertPts.reserve(ExitBlocks.size());
424 for (BasicBlock *ExitBlock : ExitBlocks) {
425 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
426 if (MSSAU)
427 MSSAInsertPts.push_back(nullptr);
428 }
429
430 PredIteratorCache PIC;
431
432 bool Promoted = false;
433
434 // Build an AST using MSSA.
435 if (!CurAST.get())
436 CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
437
438 // Loop over all of the alias sets in the tracker object.
439 for (AliasSet &AS : *CurAST) {
440 // We can promote this alias set if it has a store, if it is a "Must"
441 // alias set, if the pointer is loop invariant, and if we are not
442 // eliminating any volatile loads or stores.
443 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
444 !L->isLoopInvariant(AS.begin()->getValue()))
445 continue;
446
447 assert(((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 449, __PRETTY_FUNCTION__))
448 !AS.empty() &&((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 449, __PRETTY_FUNCTION__))
449 "Must alias set should have at least one pointer element in it!")((!AS.empty() && "Must alias set should have at least one pointer element in it!"
) ? static_cast<void> (0) : __assert_fail ("!AS.empty() && \"Must alias set should have at least one pointer element in it!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 449, __PRETTY_FUNCTION__))
;
450
451 SmallSetVector<Value *, 8> PointerMustAliases;
452 for (const auto &ASI : AS)
453 PointerMustAliases.insert(ASI.getValue());
454
455 Promoted |= promoteLoopAccessesToScalars(
456 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
457 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
458 }
459
460 // Once we have promoted values across the loop body we have to
461 // recursively reform LCSSA as any nested loop may now have values defined
462 // within the loop used in the outer loop.
463 // FIXME: This is really heavy handed. It would be a bit better to use an
464 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
465 // it as it went.
466 if (Promoted)
467 formLCSSARecursively(*L, *DT, LI, SE);
468
469 Changed |= Promoted;
470 }
471 }
472
473 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
474 // specifically moving instructions across the loop boundary and so it is
475 // especially in need of sanity checking here.
476 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!")((L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("L->isLCSSAForm(*DT) && \"Loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 476, __PRETTY_FUNCTION__))
;
477 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&(((L->isOutermost() || L->getParentLoop()->isLCSSAForm
(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("(L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 478, __PRETTY_FUNCTION__))
478 "Parent loop not left in LCSSA form after LICM!")(((L->isOutermost() || L->getParentLoop()->isLCSSAForm
(*DT)) && "Parent loop not left in LCSSA form after LICM!"
) ? static_cast<void> (0) : __assert_fail ("(L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && \"Parent loop not left in LCSSA form after LICM!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 478, __PRETTY_FUNCTION__))
;
479
480 if (MSSAU.get() && VerifyMemorySSA)
481 MSSAU->getMemorySSA()->verifyMemorySSA();
482
483 if (Changed && SE)
484 SE->forgetLoopDispositions(L);
485 return Changed;
486}
487
488/// Walk the specified region of the CFG (defined by all blocks dominated by
489/// the specified block, and that are in the current loop) in reverse depth
490/// first order w.r.t the DominatorTree. This allows us to visit uses before
491/// definitions, allowing us to sink a loop body in one pass without iteration.
492///
493bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
494 DominatorTree *DT, BlockFrequencyInfo *BFI,
495 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
496 Loop *CurLoop, AliasSetTracker *CurAST,
497 MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
498 SinkAndHoistLICMFlags &Flags,
499 OptimizationRemarkEmitter *ORE) {
500
501 // Verify inputs.
502 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 504, __PRETTY_FUNCTION__))
503 CurLoop != nullptr && SafetyInfo != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 504, __PRETTY_FUNCTION__))
504 "Unexpected input to sinkRegion.")((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to sinkRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to sinkRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 504, __PRETTY_FUNCTION__))
;
505 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 506, __PRETTY_FUNCTION__))
506 "Either AliasSetTracker or MemorySSA should be initialized.")((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 506, __PRETTY_FUNCTION__))
;
507
508 // We want to visit children before parents. We will enque all the parents
509 // before their children in the worklist and process the worklist in reverse
510 // order.
511 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
512
513 bool Changed = false;
514 for (DomTreeNode *DTN : reverse(Worklist)) {
515 BasicBlock *BB = DTN->getBlock();
516 // Only need to process the contents of this block if it is not part of a
517 // subloop (which would already have been processed).
518 if (inSubLoop(BB, CurLoop, LI))
519 continue;
520
521 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
522 Instruction &I = *--II;
523
524 // If the instruction is dead, we would try to sink it because it isn't
525 // used in the loop, instead, just delete it.
526 if (isInstructionTriviallyDead(&I, TLI)) {
527 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM deleting dead inst: " <<
I << '\n'; } } while (false)
;
528 salvageKnowledge(&I);
529 salvageDebugInfo(I);
530 ++II;
531 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
532 Changed = true;
533 continue;
534 }
535
536 // Check to see if we can sink this instruction to the exit blocks
537 // of the loop. We can do this if the all users of the instruction are
538 // outside of the loop. In this case, it doesn't even matter if the
539 // operands of the instruction are loop invariant.
540 //
541 bool FreeInLoop = false;
542 if (!I.mayHaveSideEffects() &&
543 isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
544 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
545 ORE)) {
546 if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
547 if (!FreeInLoop) {
548 ++II;
549 salvageDebugInfo(I);
550 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
551 }
552 Changed = true;
553 }
554 }
555 }
556 }
557 if (MSSAU && VerifyMemorySSA)
558 MSSAU->getMemorySSA()->verifyMemorySSA();
559 return Changed;
560}
561
562namespace {
563// This is a helper class for hoistRegion to make it able to hoist control flow
564// in order to be able to hoist phis. The way this works is that we initially
565// start hoisting to the loop preheader, and when we see a loop invariant branch
566// we make note of this. When we then come to hoist an instruction that's
567// conditional on such a branch we duplicate the branch and the relevant control
568// flow, then hoist the instruction into the block corresponding to its original
569// block in the duplicated control flow.
570class ControlFlowHoister {
571private:
572 // Information about the loop we are hoisting from
573 LoopInfo *LI;
574 DominatorTree *DT;
575 Loop *CurLoop;
576 MemorySSAUpdater *MSSAU;
577
578 // A map of blocks in the loop to the block their instructions will be hoisted
579 // to.
580 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
581
582 // The branches that we can hoist, mapped to the block that marks a
583 // convergence point of their control flow.
584 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
585
586public:
587 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
588 MemorySSAUpdater *MSSAU)
589 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
590
591 void registerPossiblyHoistableBranch(BranchInst *BI) {
592 // We can only hoist conditional branches with loop invariant operands.
593 if (!ControlFlowHoisting || !BI->isConditional() ||
594 !CurLoop->hasLoopInvariantOperands(BI))
595 return;
596
597 // The branch destinations need to be in the loop, and we don't gain
598 // anything by duplicating conditional branches with duplicate successors,
599 // as it's essentially the same as an unconditional branch.
600 BasicBlock *TrueDest = BI->getSuccessor(0);
601 BasicBlock *FalseDest = BI->getSuccessor(1);
602 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
603 TrueDest == FalseDest)
604 return;
605
606 // We can hoist BI if one branch destination is the successor of the other,
607 // or both have common successor which we check by seeing if the
608 // intersection of their successors is non-empty.
609 // TODO: This could be expanded to allowing branches where both ends
610 // eventually converge to a single block.
611 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
612 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
613 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
614 BasicBlock *CommonSucc = nullptr;
615 if (TrueDestSucc.count(FalseDest)) {
616 CommonSucc = FalseDest;
617 } else if (FalseDestSucc.count(TrueDest)) {
618 CommonSucc = TrueDest;
619 } else {
620 set_intersect(TrueDestSucc, FalseDestSucc);
621 // If there's one common successor use that.
622 if (TrueDestSucc.size() == 1)
623 CommonSucc = *TrueDestSucc.begin();
624 // If there's more than one pick whichever appears first in the block list
625 // (we can't use the value returned by TrueDestSucc.begin() as it's
626 // unpredicatable which element gets returned).
627 else if (!TrueDestSucc.empty()) {
628 Function *F = TrueDest->getParent();
629 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
630 auto It = llvm::find_if(*F, IsSucc);
631 assert(It != F->end() && "Could not find successor in function")((It != F->end() && "Could not find successor in function"
) ? static_cast<void> (0) : __assert_fail ("It != F->end() && \"Could not find successor in function\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 631, __PRETTY_FUNCTION__))
;
632 CommonSucc = &*It;
633 }
634 }
635 // The common successor has to be dominated by the branch, as otherwise
636 // there will be some other path to the successor that will not be
637 // controlled by this branch so any phi we hoist would be controlled by the
638 // wrong condition. This also takes care of avoiding hoisting of loop back
639 // edges.
640 // TODO: In some cases this could be relaxed if the successor is dominated
641 // by another block that's been hoisted and we can guarantee that the
642 // control flow has been replicated exactly.
643 if (CommonSucc && DT->dominates(BI, CommonSucc))
644 HoistableBranches[BI] = CommonSucc;
645 }
646
647 bool canHoistPHI(PHINode *PN) {
648 // The phi must have loop invariant operands.
649 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
650 return false;
651 // We can hoist phis if the block they are in is the target of hoistable
652 // branches which cover all of the predecessors of the block.
653 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
654 BasicBlock *BB = PN->getParent();
655 for (BasicBlock *PredBB : predecessors(BB))
656 PredecessorBlocks.insert(PredBB);
657 // If we have less predecessor blocks than predecessors then the phi will
658 // have more than one incoming value for the same block which we can't
659 // handle.
660 // TODO: This could be handled be erasing some of the duplicate incoming
661 // values.
662 if (PredecessorBlocks.size() != pred_size(BB))
663 return false;
664 for (auto &Pair : HoistableBranches) {
665 if (Pair.second == BB) {
666 // Which blocks are predecessors via this branch depends on if the
667 // branch is triangle-like or diamond-like.
668 if (Pair.first->getSuccessor(0) == BB) {
669 PredecessorBlocks.erase(Pair.first->getParent());
670 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
671 } else if (Pair.first->getSuccessor(1) == BB) {
672 PredecessorBlocks.erase(Pair.first->getParent());
673 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
674 } else {
675 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
676 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
677 }
678 }
679 }
680 // PredecessorBlocks will now be empty if for every predecessor of BB we
681 // found a hoistable branch source.
682 return PredecessorBlocks.empty();
683 }
684
685 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
686 if (!ControlFlowHoisting)
687 return CurLoop->getLoopPreheader();
688 // If BB has already been hoisted, return that
689 if (HoistDestinationMap.count(BB))
690 return HoistDestinationMap[BB];
691
692 // Check if this block is conditional based on a pending branch
693 auto HasBBAsSuccessor =
694 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
695 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
696 Pair.first->getSuccessor(1) == BB);
697 };
698 auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
699
700 // If not involved in a pending branch, hoist to preheader
701 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
702 if (It == HoistableBranches.end()) {
703 LLVM_DEBUG(dbgs() << "LICM using "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
704 << InitialPreheader->getNameOrAsOperand()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
705 << " as hoist destination for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
706 << BB->getNameOrAsOperand() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM using " << InitialPreheader
->getNameOrAsOperand() << " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n"; } } while
(false)
;
707 HoistDestinationMap[BB] = InitialPreheader;
708 return InitialPreheader;
709 }
710 BranchInst *BI = It->first;
711 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 713, __PRETTY_FUNCTION__))
712 HoistableBranches.end() &&((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 713, __PRETTY_FUNCTION__))
713 "BB is expected to be the target of at most one branch")((std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor
) == HoistableBranches.end() && "BB is expected to be the target of at most one branch"
) ? static_cast<void> (0) : __assert_fail ("std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == HoistableBranches.end() && \"BB is expected to be the target of at most one branch\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 713, __PRETTY_FUNCTION__))
;
714
715 LLVMContext &C = BB->getContext();
716 BasicBlock *TrueDest = BI->getSuccessor(0);
717 BasicBlock *FalseDest = BI->getSuccessor(1);
718 BasicBlock *CommonSucc = HoistableBranches[BI];
719 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
720
721 // Create hoisted versions of blocks that currently don't have them
722 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
723 if (HoistDestinationMap.count(Orig))
724 return HoistDestinationMap[Orig];
725 BasicBlock *New =
726 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
727 HoistDestinationMap[Orig] = New;
728 DT->addNewBlock(New, HoistTarget);
729 if (CurLoop->getParentLoop())
730 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
731 ++NumCreatedBlocks;
732 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
733 << " as hoist destination for " << Orig->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
734 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM created " << New->
getName() << " as hoist destination for " << Orig
->getName() << "\n"; } } while (false)
;
735 return New;
736 };
737 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
738 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
739 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
740
741 // Link up these blocks with branches.
742 if (!HoistCommonSucc->getTerminator()) {
743 // The new common successor we've generated will branch to whatever that
744 // hoist target branched to.
745 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
746 assert(TargetSucc && "Expected hoist target to have a single successor")((TargetSucc && "Expected hoist target to have a single successor"
) ? static_cast<void> (0) : __assert_fail ("TargetSucc && \"Expected hoist target to have a single successor\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 746, __PRETTY_FUNCTION__))
;
747 HoistCommonSucc->moveBefore(TargetSucc);
748 BranchInst::Create(TargetSucc, HoistCommonSucc);
749 }
750 if (!HoistTrueDest->getTerminator()) {
751 HoistTrueDest->moveBefore(HoistCommonSucc);
752 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
753 }
754 if (!HoistFalseDest->getTerminator()) {
755 HoistFalseDest->moveBefore(HoistCommonSucc);
756 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
757 }
758
759 // If BI is being cloned to what was originally the preheader then
760 // HoistCommonSucc will now be the new preheader.
761 if (HoistTarget == InitialPreheader) {
762 // Phis in the loop header now need to use the new preheader.
763 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
764 if (MSSAU)
765 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
766 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
767 // The new preheader dominates the loop header.
768 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
769 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
770 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
771 // The preheader hoist destination is now the new preheader, with the
772 // exception of the hoist destination of this branch.
773 for (auto &Pair : HoistDestinationMap)
774 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
775 Pair.second = HoistCommonSucc;
776 }
777
778 // Now finally clone BI.
779 ReplaceInstWithInst(
780 HoistTarget->getTerminator(),
781 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
782 ++NumClonedBranches;
783
784 assert(CurLoop->getLoopPreheader() &&((CurLoop->getLoopPreheader() && "Hoisting blocks should not have destroyed preheader"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 785, __PRETTY_FUNCTION__))
785 "Hoisting blocks should not have destroyed preheader")((CurLoop->getLoopPreheader() && "Hoisting blocks should not have destroyed preheader"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->getLoopPreheader() && \"Hoisting blocks should not have destroyed preheader\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 785, __PRETTY_FUNCTION__))
;
786 return HoistDestinationMap[BB];
787 }
788};
789} // namespace
790
791// Hoisting/sinking instruction out of a loop isn't always beneficial. It's only
792// only worthwhile if the destination block is actually colder than current
793// block.
794static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock,
795 OptimizationRemarkEmitter *ORE,
796 BlockFrequencyInfo *BFI) {
797 // Check block frequency only when runtime profile is available
798 // to avoid pathological cases. With static profile, lean towards
799 // hosting because it helps canonicalize the loop for vectorizer.
800 if (!DstBlock->getParent()->hasProfileData())
801 return true;
802
803 if (!HoistSinkColdnessThreshold || !BFI)
804 return true;
805
806 BasicBlock *SrcBlock = I.getParent();
807 if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold >
808 BFI->getBlockFreq(SrcBlock).getFrequency()) {
809 ORE->emit([&]() {
810 return OptimizationRemarkMissed(DEBUG_TYPE"licm", "SinkHoistInst", &I)
811 << "failed to sink or hoist instruction because containing block "
812 "has lower frequency than destination block";
813 });
814 return false;
815 }
816
817 return true;
818}
819
820/// Walk the specified region of the CFG (defined by all blocks dominated by
821/// the specified block, and that are in the current loop) in depth first
822/// order w.r.t the DominatorTree. This allows us to visit definitions before
823/// uses, allowing us to hoist a loop body in one pass without iteration.
824///
825bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
826 DominatorTree *DT, BlockFrequencyInfo *BFI,
827 TargetLibraryInfo *TLI, Loop *CurLoop,
828 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
829 ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
830 SinkAndHoistLICMFlags &Flags,
831 OptimizationRemarkEmitter *ORE) {
832 // Verify inputs.
833 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 835, __PRETTY_FUNCTION__))
834 CurLoop != nullptr && SafetyInfo != nullptr &&((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 835, __PRETTY_FUNCTION__))
835 "Unexpected input to hoistRegion.")((N != nullptr && AA != nullptr && LI != nullptr
&& DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr && "Unexpected input to hoistRegion."
) ? static_cast<void> (0) : __assert_fail ("N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected input to hoistRegion.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 835, __PRETTY_FUNCTION__))
;
836 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 837, __PRETTY_FUNCTION__))
837 "Either AliasSetTracker or MemorySSA should be initialized.")((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 837, __PRETTY_FUNCTION__))
;
838
839 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
840
841 // Keep track of instructions that have been hoisted, as they may need to be
842 // re-hoisted if they end up not dominating all of their uses.
843 SmallVector<Instruction *, 16> HoistedInstructions;
844
845 // For PHI hoisting to work we need to hoist blocks before their successors.
846 // We can do this by iterating through the blocks in the loop in reverse
847 // post-order.
848 LoopBlocksRPO Worklist(CurLoop);
849 Worklist.perform(LI);
850 bool Changed = false;
851 for (BasicBlock *BB : Worklist) {
852 // Only need to process the contents of this block if it is not part of a
853 // subloop (which would already have been processed).
854 if (inSubLoop(BB, CurLoop, LI))
855 continue;
856
857 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
858 Instruction &I = *II++;
859 // Try constant folding this instruction. If all the operands are
860 // constants, it is technically hoistable, but it would be better to
861 // just fold it.
862 if (Constant *C = ConstantFoldInstruction(
863 &I, I.getModule()->getDataLayout(), TLI)) {
864 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
865 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM folding inst: " << I <<
" --> " << *C << '\n'; } } while (false)
;
866 if (CurAST)
867 CurAST->copyValue(&I, C);
868 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
869 I.replaceAllUsesWith(C);
870 if (isInstructionTriviallyDead(&I, TLI))
871 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
872 Changed = true;
873 continue;
874 }
875
876 // Try hoisting the instruction out to the preheader. We can only do
877 // this if all of the operands of the instruction are loop invariant and
878 // if it is safe to hoist the instruction. We also check block frequency
879 // to make sure instruction only gets hoisted into colder blocks.
880 // TODO: It may be safe to hoist if we are hoisting to a conditional block
881 // and we have accurately duplicated the control flow from the loop header
882 // to that block.
883 if (CurLoop->hasLoopInvariantOperands(&I) &&
884 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
885 ORE) &&
886 worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) &&
887 isSafeToExecuteUnconditionally(
888 I, DT, CurLoop, SafetyInfo, ORE,
889 CurLoop->getLoopPreheader()->getTerminator())) {
890 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
891 MSSAU, SE, ORE);
892 HoistedInstructions.push_back(&I);
893 Changed = true;
894 continue;
895 }
896
897 // Attempt to remove floating point division out of the loop by
898 // converting it to a reciprocal multiplication.
899 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
900 CurLoop->isLoopInvariant(I.getOperand(1))) {
901 auto Divisor = I.getOperand(1);
902 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
903 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
904 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
905 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
906 ReciprocalDivisor->insertBefore(&I);
907
908 auto Product =
909 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
910 Product->setFastMathFlags(I.getFastMathFlags());
911 SafetyInfo->insertInstructionTo(Product, I.getParent());
912 Product->insertAfter(&I);
913 I.replaceAllUsesWith(Product);
914 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
915
916 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
917 SafetyInfo, MSSAU, SE, ORE);
918 HoistedInstructions.push_back(ReciprocalDivisor);
919 Changed = true;
920 continue;
921 }
922
923 auto IsInvariantStart = [&](Instruction &I) {
924 using namespace PatternMatch;
925 return I.use_empty() &&
926 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
927 };
928 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
929 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
930 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
931 };
932 if ((IsInvariantStart(I) || isGuard(&I)) &&
933 CurLoop->hasLoopInvariantOperands(&I) &&
934 MustExecuteWithoutWritesBefore(I)) {
935 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
936 MSSAU, SE, ORE);
937 HoistedInstructions.push_back(&I);
938 Changed = true;
939 continue;
940 }
941
942 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
943 if (CFH.canHoistPHI(PN)) {
944 // Redirect incoming blocks first to ensure that we create hoisted
945 // versions of those blocks before we hoist the phi.
946 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
947 PN->setIncomingBlock(
948 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
949 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
950 MSSAU, SE, ORE);
951 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected")((DT->dominates(PN, BB) && "Conditional PHIs not expected"
) ? static_cast<void> (0) : __assert_fail ("DT->dominates(PN, BB) && \"Conditional PHIs not expected\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 951, __PRETTY_FUNCTION__))
;
952 Changed = true;
953 continue;
954 }
955 }
956
957 // Remember possibly hoistable branches so we can actually hoist them
958 // later if needed.
959 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
960 CFH.registerPossiblyHoistableBranch(BI);
961 }
962 }
963
964 // If we hoisted instructions to a conditional block they may not dominate
965 // their uses that weren't hoisted (such as phis where some operands are not
966 // loop invariant). If so make them unconditional by moving them to their
967 // immediate dominator. We iterate through the instructions in reverse order
968 // which ensures that when we rehoist an instruction we rehoist its operands,
969 // and also keep track of where in the block we are rehoisting to to make sure
970 // that we rehoist instructions before the instructions that use them.
971 Instruction *HoistPoint = nullptr;
972 if (ControlFlowHoisting) {
973 for (Instruction *I : reverse(HoistedInstructions)) {
974 if (!llvm::all_of(I->uses(),
975 [&](Use &U) { return DT->dominates(I, U); })) {
976 BasicBlock *Dominator =
977 DT->getNode(I->getParent())->getIDom()->getBlock();
978 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
979 if (HoistPoint)
980 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&((DT->dominates(Dominator, HoistPoint->getParent()) &&
"New hoist point expected to dominate old hoist point") ? static_cast
<void> (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 981, __PRETTY_FUNCTION__))
981 "New hoist point expected to dominate old hoist point")((DT->dominates(Dominator, HoistPoint->getParent()) &&
"New hoist point expected to dominate old hoist point") ? static_cast
<void> (0) : __assert_fail ("DT->dominates(Dominator, HoistPoint->getParent()) && \"New hoist point expected to dominate old hoist point\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 981, __PRETTY_FUNCTION__))
;
982 HoistPoint = Dominator->getTerminator();
983 }
984 LLVM_DEBUG(dbgs() << "LICM rehoisting to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getNameOrAsOperand() << ": " <<
*I << "\n"; } } while (false)
985 << HoistPoint->getParent()->getNameOrAsOperand()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getNameOrAsOperand() << ": " <<
*I << "\n"; } } while (false)
986 << ": " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM rehoisting to " << HoistPoint
->getParent()->getNameOrAsOperand() << ": " <<
*I << "\n"; } } while (false)
;
987 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
988 HoistPoint = I;
989 Changed = true;
990 }
991 }
992 }
993 if (MSSAU && VerifyMemorySSA)
994 MSSAU->getMemorySSA()->verifyMemorySSA();
995
996 // Now that we've finished hoisting make sure that LI and DT are still
997 // valid.
998#ifdef EXPENSIVE_CHECKS
999 if (Changed) {
1000 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&((DT->verify(DominatorTree::VerificationLevel::Fast) &&
"Dominator tree verification failed") ? static_cast<void>
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1001, __PRETTY_FUNCTION__))
1001 "Dominator tree verification failed")((DT->verify(DominatorTree::VerificationLevel::Fast) &&
"Dominator tree verification failed") ? static_cast<void>
(0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast) && \"Dominator tree verification failed\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1001, __PRETTY_FUNCTION__))
;
1002 LI->verify(*DT);
1003 }
1004#endif
1005
1006 return Changed;
1007}
1008
1009// Return true if LI is invariant within scope of the loop. LI is invariant if
1010// CurLoop is dominated by an invariant.start representing the same memory
1011// location and size as the memory location LI loads from, and also the
1012// invariant.start has no uses.
1013static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1014 Loop *CurLoop) {
1015 Value *Addr = LI->getOperand(0);
1016 const DataLayout &DL = LI->getModule()->getDataLayout();
1017 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1018
1019 // It is not currently possible for clang to generate an invariant.start
1020 // intrinsic with scalable vector types because we don't support thread local
1021 // sizeless types and we don't permit sizeless types in structs or classes.
1022 // Furthermore, even if support is added for this in future the intrinsic
1023 // itself is defined to have a size of -1 for variable sized objects. This
1024 // makes it impossible to verify if the intrinsic envelops our region of
1025 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1026 // types would have a -1 parameter, but the former is clearly double the size
1027 // of the latter.
1028 if (LocSizeInBits.isScalable())
1029 return false;
1030
1031 // if the type is i8 addrspace(x)*, we know this is the type of
1032 // llvm.invariant.start operand
1033 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1034 LI->getPointerAddressSpace());
1035 unsigned BitcastsVisited = 0;
1036 // Look through bitcasts until we reach the i8* type (this is invariant.start
1037 // operand type).
1038 while (Addr->getType() != PtrInt8Ty) {
1039 auto *BC = dyn_cast<BitCastInst>(Addr);
1040 // Avoid traversing high number of bitcast uses.
1041 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1042 return false;
1043 Addr = BC->getOperand(0);
1044 }
1045
1046 unsigned UsesVisited = 0;
1047 // Traverse all uses of the load operand value, to see if invariant.start is
1048 // one of the uses, and whether it dominates the load instruction.
1049 for (auto *U : Addr->users()) {
1050 // Avoid traversing for Load operand with high number of users.
1051 if (++UsesVisited > MaxNumUsesTraversed)
1052 return false;
1053 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1054 // If there are escaping uses of invariant.start instruction, the load maybe
1055 // non-invariant.
1056 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1057 !II->use_empty())
1058 continue;
1059 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1060 // The intrinsic supports having a -1 argument for variable sized objects
1061 // so we should check for that here.
1062 if (InvariantSize->isNegative())
1063 continue;
1064 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1065 // Confirm the invariant.start location size contains the load operand size
1066 // in bits. Also, the invariant.start should dominate the load, and we
1067 // should not hoist the load out of a loop that contains this dominating
1068 // invariant.start.
1069 if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1070 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1071 return true;
1072 }
1073
1074 return false;
1075}
1076
1077namespace {
1078/// Return true if-and-only-if we know how to (mechanically) both hoist and
1079/// sink a given instruction out of a loop. Does not address legality
1080/// concerns such as aliasing or speculation safety.
1081bool isHoistableAndSinkableInst(Instruction &I) {
1082 // Only these instructions are hoistable/sinkable.
1083 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
5
Assuming 'I' is a 'LoadInst'
6
Returning the value 1, which participates in a condition later
1084 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1085 isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1086 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1087 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1088 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1089 isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1090}
1091/// Return true if all of the alias sets within this AST are known not to
1092/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
1093bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1094 const Loop *L) {
1095 if (CurAST) {
1096 for (AliasSet &AS : *CurAST) {
1097 if (!AS.isForwardingAliasSet() && AS.isMod()) {
1098 return false;
1099 }
1100 }
1101 return true;
1102 } else { /*MSSAU*/
1103 for (auto *BB : L->getBlocks())
1104 if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1105 return false;
1106 return true;
1107 }
1108}
1109
1110/// Return true if I is the only Instruction with a MemoryAccess in L.
1111bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1112 const MemorySSAUpdater *MSSAU) {
1113 for (auto *BB : L->getBlocks())
1114 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1115 int NotAPhi = 0;
1116 for (const auto &Acc : *Accs) {
1117 if (isa<MemoryPhi>(&Acc))
1118 continue;
1119 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1120 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1121 return false;
1122 }
1123 }
1124 return true;
1125}
1126}
1127
1128bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1129 Loop *CurLoop, AliasSetTracker *CurAST,
1130 MemorySSAUpdater *MSSAU,
1131 bool TargetExecutesOncePerLoop,
1132 SinkAndHoistLICMFlags *Flags,
1133 OptimizationRemarkEmitter *ORE) {
1134 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1135, __PRETTY_FUNCTION__))
1
Assuming pointer value is null
2
Assuming the condition is true
3
'?' condition is true
1135 "Either AliasSetTracker or MemorySSA should be initialized.")((((CurAST != nullptr) ^ (MSSAU != nullptr)) && "Either AliasSetTracker or MemorySSA should be initialized."
) ? static_cast<void> (0) : __assert_fail ("((CurAST != nullptr) ^ (MSSAU != nullptr)) && \"Either AliasSetTracker or MemorySSA should be initialized.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1135, __PRETTY_FUNCTION__))
;
1136
1137 // If we don't understand the instruction, bail early.
1138 if (!isHoistableAndSinkableInst(I))
4
Calling 'isHoistableAndSinkableInst'
7
Returning from 'isHoistableAndSinkableInst'
8
Taking false branch
1139 return false;
1140
1141 MemorySSA *MSSA = MSSAU
8.1
'MSSAU' is non-null
8.1
'MSSAU' is non-null
8.1
'MSSAU' is non-null
8.1
'MSSAU' is non-null
8.1
'MSSAU' is non-null
? MSSAU->getMemorySSA() : nullptr;
9
'?' condition is true
10
'MSSA' initialized here
1142 if (MSSA)
11
Assuming 'MSSA' is null
12
Taking false branch
1143 assert(Flags != nullptr && "Flags cannot be null.")((Flags != nullptr && "Flags cannot be null.") ? static_cast
<void> (0) : __assert_fail ("Flags != nullptr && \"Flags cannot be null.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1143, __PRETTY_FUNCTION__))
;
1144
1145 // Loads have extra constraints we have to verify before we can hoist them.
1146 if (LoadInst *LI
13.1
'LI' is null
13.1
'LI' is null
13.1
'LI' is null
13.1
'LI' is null
13.1
'LI' is null
= dyn_cast<LoadInst>(&I)) {
13
Assuming the object is not a 'LoadInst'
14
Taking false branch
1147 if (!LI->isUnordered())
1148 return false; // Don't sink/hoist volatile or ordered atomic loads!
1149
1150 // Loads from constant memory are always safe to move, even if they end up
1151 // in the same alias set as something that ends up being modified.
1152 if (AA->pointsToConstantMemory(LI->getOperand(0)))
1153 return true;
1154 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1155 return true;
1156
1157 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1158 return false; // Don't risk duplicating unordered loads
1159
1160 // This checks for an invariant.start dominating the load.
1161 if (isLoadInvariantInLoop(LI, DT, CurLoop))
1162 return true;
1163
1164 bool Invalidated;
1165 if (CurAST)
1166 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1167 CurLoop, AA);
1168 else
1169 Invalidated = pointerInvalidatedByLoopWithMSSA(
1170 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
1171 // Check loop-invariant address because this may also be a sinkable load
1172 // whose address is not necessarily loop-invariant.
1173 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1174 ORE->emit([&]() {
1175 return OptimizationRemarkMissed(
1176 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressInvalidated", LI)
1177 << "failed to move load with loop-invariant address "
1178 "because the loop may invalidate its value";
1179 });
1180
1181 return !Invalidated;
1182 } else if (CallInst *CI
15.1
'CI' is non-null
15.1
'CI' is non-null
15.1
'CI' is non-null
15.1
'CI' is non-null
15.1
'CI' is non-null
= dyn_cast<CallInst>(&I)) {
15
Assuming the object is a 'CallInst'
16
Taking true branch
1183 // Don't sink or hoist dbg info; it's legal, but not useful.
1184 if (isa<DbgInfoIntrinsic>(I))
17
Assuming 'I' is not a 'DbgInfoIntrinsic'
18
Taking false branch
1185 return false;
1186
1187 // Don't sink calls which can throw.
1188 if (CI->mayThrow())
19
Assuming the condition is false
20
Taking false branch
1189 return false;
1190
1191 // Convergent attribute has been used on operations that involve
1192 // inter-thread communication which results are implicitly affected by the
1193 // enclosing control flows. It is not safe to hoist or sink such operations
1194 // across control flow.
1195 if (CI->isConvergent())
21
Calling 'CallBase::isConvergent'
37
Returning from 'CallBase::isConvergent'
38
Assuming the condition is false
39
Taking false branch
1196 return false;
1197
1198 using namespace PatternMatch;
1199 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
40
Calling 'match<llvm::CallInst, llvm::PatternMatch::IntrinsicID_match>'
47
Returning from 'match<llvm::CallInst, llvm::PatternMatch::IntrinsicID_match>'
48
Taking false branch
1200 // Assumes don't actually alias anything or throw
1201 return true;
1202
1203 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
49
Calling 'match<llvm::CallInst, llvm::PatternMatch::IntrinsicID_match>'
56
Returning from 'match<llvm::CallInst, llvm::PatternMatch::IntrinsicID_match>'
57
Taking false branch
1204 // Widenable conditions don't actually alias anything or throw
1205 return true;
1206
1207 // Handle simple cases by querying alias analysis.
1208 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1209 if (Behavior == FMRB_DoesNotAccessMemory)
58
Assuming 'Behavior' is not equal to FMRB_DoesNotAccessMemory
59
Taking false branch
1210 return true;
1211 if (AAResults::onlyReadsMemory(Behavior)) {
60
Calling 'AAResults::onlyReadsMemory'
63
Returning from 'AAResults::onlyReadsMemory'
64
Taking true branch
1212 // A readonly argmemonly function only reads from memory pointed to by
1213 // it's arguments with arbitrary offsets. If we can prove there are no
1214 // writes to this memory in the loop, we can hoist or sink.
1215 if (AAResults::onlyAccessesArgPointees(Behavior)) {
65
Calling 'AAResults::onlyAccessesArgPointees'
68
Returning from 'AAResults::onlyAccessesArgPointees'
69
Taking true branch
1216 // TODO: expand to writeable arguments
1217 for (Value *Op : CI->arg_operands())
70
Assuming '__begin5' is not equal to '__end5'
1218 if (Op->getType()->isPointerTy()) {
71
Calling 'Type::isPointerTy'
74
Returning from 'Type::isPointerTy'
75
Taking true branch
1219 bool Invalidated;
1220 if (CurAST
75.1
'CurAST' is null
75.1
'CurAST' is null
75.1
'CurAST' is null
75.1
'CurAST' is null
75.1
'CurAST' is null
)
76
Taking false branch
1221 Invalidated = pointerInvalidatedByLoop(
1222 MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
1223 else
1224 Invalidated = pointerInvalidatedByLoopWithMSSA(
1225 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
77
Called C++ object pointer is null
1226 *Flags);
1227 if (Invalidated)
1228 return false;
1229 }
1230 return true;
1231 }
1232
1233 // If this call only reads from memory and there are no writes to memory
1234 // in the loop, we can hoist or sink the call as appropriate.
1235 if (isReadOnly(CurAST, MSSAU, CurLoop))
1236 return true;
1237 }
1238
1239 // FIXME: This should use mod/ref information to see if we can hoist or
1240 // sink the call.
1241
1242 return false;
1243 } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1244 // Fences alias (most) everything to provide ordering. For the moment,
1245 // just give up if there are any other memory operations in the loop.
1246 if (CurAST) {
1247 auto Begin = CurAST->begin();
1248 assert(Begin != CurAST->end() && "must contain FI")((Begin != CurAST->end() && "must contain FI") ? static_cast
<void> (0) : __assert_fail ("Begin != CurAST->end() && \"must contain FI\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1248, __PRETTY_FUNCTION__))
;
1249 if (std::next(Begin) != CurAST->end())
1250 // constant memory for instance, TODO: handle better
1251 return false;
1252 auto *UniqueI = Begin->getUniqueInstruction();
1253 if (!UniqueI)
1254 // other memory op, give up
1255 return false;
1256 (void)FI; // suppress unused variable warning
1257 assert(UniqueI == FI && "AS must contain FI")((UniqueI == FI && "AS must contain FI") ? static_cast
<void> (0) : __assert_fail ("UniqueI == FI && \"AS must contain FI\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1257, __PRETTY_FUNCTION__))
;
1258 return true;
1259 } else // MSSAU
1260 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1261 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1262 if (!SI->isUnordered())
1263 return false; // Don't sink/hoist volatile or ordered atomic store!
1264
1265 // We can only hoist a store that we can prove writes a value which is not
1266 // read or overwritten within the loop. For those cases, we fallback to
1267 // load store promotion instead. TODO: We can extend this to cases where
1268 // there is exactly one write to the location and that write dominates an
1269 // arbitrary number of reads in the loop.
1270 if (CurAST) {
1271 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1272
1273 if (AS.isRef() || !AS.isMustAlias())
1274 // Quick exit test, handled by the full path below as well.
1275 return false;
1276 auto *UniqueI = AS.getUniqueInstruction();
1277 if (!UniqueI)
1278 // other memory op, give up
1279 return false;
1280 assert(UniqueI == SI && "AS must contain SI")((UniqueI == SI && "AS must contain SI") ? static_cast
<void> (0) : __assert_fail ("UniqueI == SI && \"AS must contain SI\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1280, __PRETTY_FUNCTION__))
;
1281 return true;
1282 } else { // MSSAU
1283 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1284 return true;
1285 // If there are more accesses than the Promotion cap or no "quota" to
1286 // check clobber, then give up as we're not walking a list that long.
1287 if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
1288 return false;
1289 // If there are interfering Uses (i.e. their defining access is in the
1290 // loop), or ordered loads (stored as Defs!), don't move this store.
1291 // Could do better here, but this is conservatively correct.
1292 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1293 // moving accesses. Can also extend to dominating uses.
1294 auto *SIMD = MSSA->getMemoryAccess(SI);
1295 for (auto *BB : CurLoop->getBlocks())
1296 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1297 for (const auto &MA : *Accesses)
1298 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1299 auto *MD = MU->getDefiningAccess();
1300 if (!MSSA->isLiveOnEntryDef(MD) &&
1301 CurLoop->contains(MD->getBlock()))
1302 return false;
1303 // Disable hoisting past potentially interfering loads. Optimized
1304 // Uses may point to an access outside the loop, as getClobbering
1305 // checks the previous iteration when walking the backedge.
1306 // FIXME: More precise: no Uses that alias SI.
1307 if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
1308 return false;
1309 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1310 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1311 (void)LI; // Silence warning.
1312 assert(!LI->isUnordered() && "Expected unordered load")((!LI->isUnordered() && "Expected unordered load")
? static_cast<void> (0) : __assert_fail ("!LI->isUnordered() && \"Expected unordered load\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1312, __PRETTY_FUNCTION__))
;
1313 return false;
1314 }
1315 // Any call, while it may not be clobbering SI, it may be a use.
1316 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1317 // Check if the call may read from the memory locattion written
1318 // to by SI. Check CI's attributes and arguments; the number of
1319 // such checks performed is limited above by NoOfMemAccTooLarge.
1320 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1321 if (isModOrRefSet(MRI))
1322 return false;
1323 }
1324 }
1325 }
1326 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1327 Flags->incrementClobberingCalls();
1328 // If there are no clobbering Defs in the loop, store is safe to hoist.
1329 return MSSA->isLiveOnEntryDef(Source) ||
1330 !CurLoop->contains(Source->getBlock());
1331 }
1332 }
1333
1334 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing")((!I.mayReadOrWriteMemory() && "unhandled aliasing") ?
static_cast<void> (0) : __assert_fail ("!I.mayReadOrWriteMemory() && \"unhandled aliasing\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1334, __PRETTY_FUNCTION__))
;
1335
1336 // We've established mechanical ability and aliasing, it's up to the caller
1337 // to check fault safety
1338 return true;
1339}
1340
1341/// Returns true if a PHINode is a trivially replaceable with an
1342/// Instruction.
1343/// This is true when all incoming values are that instruction.
1344/// This pattern occurs most often with LCSSA PHI nodes.
1345///
1346static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1347 for (const Value *IncValue : PN.incoming_values())
1348 if (IncValue != &I)
1349 return false;
1350
1351 return true;
1352}
1353
1354/// Return true if the instruction is free in the loop.
1355static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1356 const TargetTransformInfo *TTI) {
1357
1358 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1359 if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1360 TargetTransformInfo::TCC_Free)
1361 return false;
1362 // For a GEP, we cannot simply use getUserCost because currently it
1363 // optimistically assume that a GEP will fold into addressing mode
1364 // regardless of its users.
1365 const BasicBlock *BB = GEP->getParent();
1366 for (const User *U : GEP->users()) {
1367 const Instruction *UI = cast<Instruction>(U);
1368 if (CurLoop->contains(UI) &&
1369 (BB != UI->getParent() ||
1370 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1371 return false;
1372 }
1373 return true;
1374 } else
1375 return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1376 TargetTransformInfo::TCC_Free;
1377}
1378
1379/// Return true if the only users of this instruction are outside of
1380/// the loop. If this is true, we can sink the instruction to the exit
1381/// blocks of the loop.
1382///
1383/// We also return true if the instruction could be folded away in lowering.
1384/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1385static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1386 const LoopSafetyInfo *SafetyInfo,
1387 TargetTransformInfo *TTI, bool &FreeInLoop) {
1388 const auto &BlockColors = SafetyInfo->getBlockColors();
1389 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1390 for (const User *U : I.users()) {
1391 const Instruction *UI = cast<Instruction>(U);
1392 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1393 const BasicBlock *BB = PN->getParent();
1394 // We cannot sink uses in catchswitches.
1395 if (isa<CatchSwitchInst>(BB->getTerminator()))
1396 return false;
1397
1398 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1399 // phi use is too muddled.
1400 if (isa<CallInst>(I))
1401 if (!BlockColors.empty() &&
1402 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1403 return false;
1404 }
1405
1406 if (CurLoop->contains(UI)) {
1407 if (IsFree) {
1408 FreeInLoop = true;
1409 continue;
1410 }
1411 return false;
1412 }
1413 }
1414 return true;
1415}
1416
1417static Instruction *cloneInstructionInExitBlock(
1418 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1419 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1420 Instruction *New;
1421 if (auto *CI = dyn_cast<CallInst>(&I)) {
1422 const auto &BlockColors = SafetyInfo->getBlockColors();
1423
1424 // Sinking call-sites need to be handled differently from other
1425 // instructions. The cloned call-site needs a funclet bundle operand
1426 // appropriate for its location in the CFG.
1427 SmallVector<OperandBundleDef, 1> OpBundles;
1428 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1429 BundleIdx != BundleEnd; ++BundleIdx) {
1430 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1431 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1432 continue;
1433
1434 OpBundles.emplace_back(Bundle);
1435 }
1436
1437 if (!BlockColors.empty()) {
1438 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1439 assert(CV.size() == 1 && "non-unique color for exit block!")((CV.size() == 1 && "non-unique color for exit block!"
) ? static_cast<void> (0) : __assert_fail ("CV.size() == 1 && \"non-unique color for exit block!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1439, __PRETTY_FUNCTION__))
;
1440 BasicBlock *BBColor = CV.front();
1441 Instruction *EHPad = BBColor->getFirstNonPHI();
1442 if (EHPad->isEHPad())
1443 OpBundles.emplace_back("funclet", EHPad);
1444 }
1445
1446 New = CallInst::Create(CI, OpBundles);
1447 } else {
1448 New = I.clone();
1449 }
1450
1451 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1452 if (!I.getName().empty())
1453 New->setName(I.getName() + ".le");
1454
1455 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1456 // Create a new MemoryAccess and let MemorySSA set its defining access.
1457 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1458 New, nullptr, New->getParent(), MemorySSA::Beginning);
1459 if (NewMemAcc) {
1460 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1461 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1462 else {
1463 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1464 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1465 }
1466 }
1467 }
1468
1469 // Build LCSSA PHI nodes for any in-loop operands. Note that this is
1470 // particularly cheap because we can rip off the PHI node that we're
1471 // replacing for the number and blocks of the predecessors.
1472 // OPT: If this shows up in a profile, we can instead finish sinking all
1473 // invariant instructions, and then walk their operands to re-establish
1474 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1475 // sinking bottom-up.
1476 for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
1477 ++OI)
1478 if (Instruction *OInst = dyn_cast<Instruction>(*OI))
1479 if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
1480 if (!OLoop->contains(&PN)) {
1481 PHINode *OpPN =
1482 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1483 OInst->getName() + ".lcssa", &ExitBlock.front());
1484 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1485 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1486 *OI = OpPN;
1487 }
1488 return New;
1489}
1490
1491static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1492 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1493 if (AST)
1494 AST->deleteValue(&I);
1495 if (MSSAU)
1496 MSSAU->removeMemoryAccess(&I);
1497 SafetyInfo.removeInstruction(&I);
1498 I.eraseFromParent();
1499}
1500
1501static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1502 ICFLoopSafetyInfo &SafetyInfo,
1503 MemorySSAUpdater *MSSAU,
1504 ScalarEvolution *SE) {
1505 SafetyInfo.removeInstruction(&I);
1506 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1507 I.moveBefore(&Dest);
1508 if (MSSAU)
1509 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1510 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1511 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1512 MemorySSA::BeforeTerminator);
1513 if (SE)
1514 SE->forgetValue(&I);
1515}
1516
1517static Instruction *sinkThroughTriviallyReplaceablePHI(
1518 PHINode *TPN, Instruction *I, LoopInfo *LI,
1519 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1520 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1521 MemorySSAUpdater *MSSAU) {
1522 assert(isTriviallyReplaceablePHI(*TPN, *I) &&((isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"
) ? static_cast<void> (0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1523, __PRETTY_FUNCTION__))
1523 "Expect only trivially replaceable PHI")((isTriviallyReplaceablePHI(*TPN, *I) && "Expect only trivially replaceable PHI"
) ? static_cast<void> (0) : __assert_fail ("isTriviallyReplaceablePHI(*TPN, *I) && \"Expect only trivially replaceable PHI\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1523, __PRETTY_FUNCTION__))
;
1524 BasicBlock *ExitBlock = TPN->getParent();
1525 Instruction *New;
1526 auto It = SunkCopies.find(ExitBlock);
1527 if (It != SunkCopies.end())
1528 New = It->second;
1529 else
1530 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1531 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1532 return New;
1533}
1534
1535static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1536 BasicBlock *BB = PN->getParent();
1537 if (!BB->canSplitPredecessors())
1538 return false;
1539 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1540 // it require updating BlockColors for all offspring blocks accordingly. By
1541 // skipping such corner case, we can make updating BlockColors after splitting
1542 // predecessor fairly simple.
1543 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1544 return false;
1545 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1546 BasicBlock *BBPred = *PI;
1547 if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1548 isa<CallBrInst>(BBPred->getTerminator()))
1549 return false;
1550 }
1551 return true;
1552}
1553
1554static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1555 LoopInfo *LI, const Loop *CurLoop,
1556 LoopSafetyInfo *SafetyInfo,
1557 MemorySSAUpdater *MSSAU) {
1558#ifndef NDEBUG
1559 SmallVector<BasicBlock *, 32> ExitBlocks;
1560 CurLoop->getUniqueExitBlocks(ExitBlocks);
1561 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1562 ExitBlocks.end());
1563#endif
1564 BasicBlock *ExitBB = PN->getParent();
1565 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.")((ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(ExitBB) && \"Expect the PHI is in an exit block.\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1565, __PRETTY_FUNCTION__))
;
1566
1567 // Split predecessors of the loop exit to make instructions in the loop are
1568 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1569 // loop in the canonical form where each predecessor of each exit block should
1570 // be contained within the loop. For example, this will convert the loop below
1571 // from
1572 //
1573 // LB1:
1574 // %v1 =
1575 // br %LE, %LB2
1576 // LB2:
1577 // %v2 =
1578 // br %LE, %LB1
1579 // LE:
1580 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1581 //
1582 // to
1583 //
1584 // LB1:
1585 // %v1 =
1586 // br %LE.split, %LB2
1587 // LB2:
1588 // %v2 =
1589 // br %LE.split2, %LB1
1590 // LE.split:
1591 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1592 // br %LE
1593 // LE.split2:
1594 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1595 // br %LE
1596 // LE:
1597 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1598 //
1599 const auto &BlockColors = SafetyInfo->getBlockColors();
1600 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1601 while (!PredBBs.empty()) {
1602 BasicBlock *PredBB = *PredBBs.begin();
1603 assert(CurLoop->contains(PredBB) &&((CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1604, __PRETTY_FUNCTION__))
1604 "Expect all predecessors are in the loop")((CurLoop->contains(PredBB) && "Expect all predecessors are in the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(PredBB) && \"Expect all predecessors are in the loop\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1604, __PRETTY_FUNCTION__))
;
1605 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1606 BasicBlock *NewPred = SplitBlockPredecessors(
1607 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1608 // Since we do not allow splitting EH-block with BlockColors in
1609 // canSplitPredecessors(), we can simply assign predecessor's color to
1610 // the new block.
1611 if (!BlockColors.empty())
1612 // Grab a reference to the ColorVector to be inserted before getting the
1613 // reference to the vector we are copying because inserting the new
1614 // element in BlockColors might cause the map to be reallocated.
1615 SafetyInfo->copyColors(NewPred, PredBB);
1616 }
1617 PredBBs.remove(PredBB);
1618 }
1619}
1620
1621/// When an instruction is found to only be used outside of the loop, this
1622/// function moves it to the exit blocks and patches up SSA form as needed.
1623/// This method is guaranteed to remove the original instruction from its
1624/// position, and may either delete it or move it to outside of the loop.
1625///
1626static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1627 BlockFrequencyInfo *BFI, const Loop *CurLoop,
1628 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
1629 OptimizationRemarkEmitter *ORE) {
1630 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM sinking instruction: " <<
I << "\n"; } } while (false)
;
1631 ORE->emit([&]() {
1632 return OptimizationRemark(DEBUG_TYPE"licm", "InstSunk", &I)
1633 << "sinking " << ore::NV("Inst", &I);
1634 });
1635 bool Changed = false;
1636 if (isa<LoadInst>(I))
1637 ++NumMovedLoads;
1638 else if (isa<CallInst>(I))
1639 ++NumMovedCalls;
1640 ++NumSunk;
1641
1642 // Iterate over users to be ready for actual sinking. Replace users via
1643 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1644 SmallPtrSet<Instruction *, 8> VisitedUsers;
1645 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1646 auto *User = cast<Instruction>(*UI);
1647 Use &U = UI.getUse();
1648 ++UI;
1649
1650 if (VisitedUsers.count(User) || CurLoop->contains(User))
1651 continue;
1652
1653 if (!DT->isReachableFromEntry(User->getParent())) {
1654 U = UndefValue::get(I.getType());
1655 Changed = true;
1656 continue;
1657 }
1658
1659 // The user must be a PHI node.
1660 PHINode *PN = cast<PHINode>(User);
1661
1662 // Surprisingly, instructions can be used outside of loops without any
1663 // exits. This can only happen in PHI nodes if the incoming block is
1664 // unreachable.
1665 BasicBlock *BB = PN->getIncomingBlock(U);
1666 if (!DT->isReachableFromEntry(BB)) {
1667 U = UndefValue::get(I.getType());
1668 Changed = true;
1669 continue;
1670 }
1671
1672 VisitedUsers.insert(PN);
1673 if (isTriviallyReplaceablePHI(*PN, I))
1674 continue;
1675
1676 if (!canSplitPredecessors(PN, SafetyInfo))
1677 return Changed;
1678
1679 // Split predecessors of the PHI so that we can make users trivially
1680 // replaceable.
1681 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1682
1683 // Should rebuild the iterators, as they may be invalidated by
1684 // splitPredecessorsOfLoopExit().
1685 UI = I.user_begin();
1686 UE = I.user_end();
1687 }
1688
1689 if (VisitedUsers.empty())
1690 return Changed;
1691
1692#ifndef NDEBUG
1693 SmallVector<BasicBlock *, 32> ExitBlocks;
1694 CurLoop->getUniqueExitBlocks(ExitBlocks);
1695 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1696 ExitBlocks.end());
1697#endif
1698
1699 // Clones of this instruction. Don't create more than one per exit block!
1700 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1701
1702 // If this instruction is only used outside of the loop, then all users are
1703 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1704 // the instruction.
1705 // First check if I is worth sinking for all uses. Sink only when it is worth
1706 // across all uses.
1707 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1708 SmallVector<PHINode *, 8> ExitPNs;
1709 for (auto *UI : Users) {
1710 auto *User = cast<Instruction>(UI);
1711
1712 if (CurLoop->contains(User))
1713 continue;
1714
1715 PHINode *PN = cast<PHINode>(User);
1716 assert(ExitBlockSet.count(PN->getParent()) &&((ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1717, __PRETTY_FUNCTION__))
1717 "The LCSSA PHI is not in an exit block!")((ExitBlockSet.count(PN->getParent()) && "The LCSSA PHI is not in an exit block!"
) ? static_cast<void> (0) : __assert_fail ("ExitBlockSet.count(PN->getParent()) && \"The LCSSA PHI is not in an exit block!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1717, __PRETTY_FUNCTION__))
;
1718 if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) {
1719 return Changed;
1720 }
1721
1722 ExitPNs.push_back(PN);
1723 }
1724
1725 for (auto *PN : ExitPNs) {
1726
1727 // The PHI must be trivially replaceable.
1728 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1729 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1730 PN->replaceAllUsesWith(New);
1731 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1732 Changed = true;
1733 }
1734 return Changed;
1735}
1736
1737/// When an instruction is found to only use loop invariant operands that
1738/// is safe to hoist, this instruction is called to do the dirty work.
1739///
1740static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1741 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1742 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1743 OptimizationRemarkEmitter *ORE) {
1744 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getNameOrAsOperand() << ": " << I << "\n"
; } } while (false)
1745 << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM hoisting to " << Dest
->getNameOrAsOperand() << ": " << I << "\n"
; } } while (false)
;
1746 ORE->emit([&]() {
1747 return OptimizationRemark(DEBUG_TYPE"licm", "Hoisted", &I) << "hoisting "
1748 << ore::NV("Inst", &I);
1749 });
1750
1751 // Metadata can be dependent on conditions we are hoisting above.
1752 // Conservatively strip all metadata on the instruction unless we were
1753 // guaranteed to execute I if we entered the loop, in which case the metadata
1754 // is valid in the loop preheader.
1755 if (I.hasMetadataOtherThanDebugLoc() &&
1756 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1757 // time in isGuaranteedToExecute if we don't actually have anything to
1758 // drop. It is a compile time optimization, not required for correctness.
1759 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1760 I.dropUnknownNonDebugMetadata();
1761
1762 if (isa<PHINode>(I))
1763 // Move the new node to the end of the phi list in the destination block.
1764 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1765 else
1766 // Move the new node to the destination block, before its terminator.
1767 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1768
1769 I.updateLocationAfterHoist();
1770
1771 if (isa<LoadInst>(I))
1772 ++NumMovedLoads;
1773 else if (isa<CallInst>(I))
1774 ++NumMovedCalls;
1775 ++NumHoisted;
1776}
1777
1778/// Only sink or hoist an instruction if it is not a trapping instruction,
1779/// or if the instruction is known not to trap when moved to the preheader.
1780/// or if it is a trapping instruction and is guaranteed to execute.
1781static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1782 const DominatorTree *DT,
1783 const Loop *CurLoop,
1784 const LoopSafetyInfo *SafetyInfo,
1785 OptimizationRemarkEmitter *ORE,
1786 const Instruction *CtxI) {
1787 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
1788 return true;
1789
1790 bool GuaranteedToExecute =
1791 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1792
1793 if (!GuaranteedToExecute) {
1794 auto *LI = dyn_cast<LoadInst>(&Inst);
1795 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1796 ORE->emit([&]() {
1797 return OptimizationRemarkMissed(
1798 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressCondExecuted", LI)
1799 << "failed to hoist load with loop-invariant address "
1800 "because load is conditionally executed";
1801 });
1802 }
1803
1804 return GuaranteedToExecute;
1805}
1806
1807namespace {
1808class LoopPromoter : public LoadAndStorePromoter {
1809 Value *SomePtr; // Designated pointer to store to.
1810 const SmallSetVector<Value *, 8> &PointerMustAliases;
1811 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1812 SmallVectorImpl<Instruction *> &LoopInsertPts;
1813 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1814 PredIteratorCache &PredCache;
1815 AliasSetTracker *AST;
1816 MemorySSAUpdater *MSSAU;
1817 LoopInfo &LI;
1818 DebugLoc DL;
1819 int Alignment;
1820 bool UnorderedAtomic;
1821 AAMDNodes AATags;
1822 ICFLoopSafetyInfo &SafetyInfo;
1823
1824 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1825 if (Instruction *I = dyn_cast<Instruction>(V))
1826 if (Loop *L = LI.getLoopFor(I->getParent()))
1827 if (!L->contains(BB)) {
1828 // We need to create an LCSSA PHI node for the incoming value and
1829 // store that.
1830 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1831 I->getName() + ".lcssa", &BB->front());
1832 for (BasicBlock *Pred : PredCache.get(BB))
1833 PN->addIncoming(I, Pred);
1834 return PN;
1835 }
1836 return V;
1837 }
1838
1839public:
1840 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1841 const SmallSetVector<Value *, 8> &PMA,
1842 SmallVectorImpl<BasicBlock *> &LEB,
1843 SmallVectorImpl<Instruction *> &LIP,
1844 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1845 AliasSetTracker *ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1846 DebugLoc dl, int alignment, bool UnorderedAtomic,
1847 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1848 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1849 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1850 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1851 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1852 SafetyInfo(SafetyInfo) {}
1853
1854 bool isInstInList(Instruction *I,
1855 const SmallVectorImpl<Instruction *> &) const override {
1856 Value *Ptr;
1857 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1858 Ptr = LI->getOperand(0);
1859 else
1860 Ptr = cast<StoreInst>(I)->getPointerOperand();
1861 return PointerMustAliases.count(Ptr);
1862 }
1863
1864 void doExtraRewritesBeforeFinalDeletion() override {
1865 // Insert stores after in the loop exit blocks. Each exit block gets a
1866 // store of the live-out values that feed them. Since we've already told
1867 // the SSA updater about the defs in the loop and the preheader
1868 // definition, it is all set and we can start using it.
1869 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1870 BasicBlock *ExitBlock = LoopExitBlocks[i];
1871 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1872 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1873 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1874 Instruction *InsertPos = LoopInsertPts[i];
1875 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1876 if (UnorderedAtomic)
1877 NewSI->setOrdering(AtomicOrdering::Unordered);
1878 NewSI->setAlignment(Align(Alignment));
1879 NewSI->setDebugLoc(DL);
1880 if (AATags)
1881 NewSI->setAAMetadata(AATags);
1882
1883 if (MSSAU) {
1884 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1885 MemoryAccess *NewMemAcc;
1886 if (!MSSAInsertPoint) {
1887 NewMemAcc = MSSAU->createMemoryAccessInBB(
1888 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1889 } else {
1890 NewMemAcc =
1891 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1892 }
1893 MSSAInsertPts[i] = NewMemAcc;
1894 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1895 // FIXME: true for safety, false may still be correct.
1896 }
1897 }
1898 }
1899
1900 void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1901 // Update alias analysis.
1902 if (AST)
1903 AST->copyValue(LI, V);
1904 }
1905 void instructionDeleted(Instruction *I) const override {
1906 SafetyInfo.removeInstruction(I);
1907 if (AST)
1908 AST->deleteValue(I);
1909 if (MSSAU)
1910 MSSAU->removeMemoryAccess(I);
1911 }
1912};
1913
1914
1915/// Return true iff we can prove that a caller of this function can not inspect
1916/// the contents of the provided object in a well defined program.
1917bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
1918 if (isa<AllocaInst>(Object))
1919 // Since the alloca goes out of scope, we know the caller can't retain a
1920 // reference to it and be well defined. Thus, we don't need to check for
1921 // capture.
1922 return true;
1923
1924 // For all other objects we need to know that the caller can't possibly
1925 // have gotten a reference to the object. There are two components of
1926 // that:
1927 // 1) Object can't be escaped by this function. This is what
1928 // PointerMayBeCaptured checks.
1929 // 2) Object can't have been captured at definition site. For this, we
1930 // need to know the return value is noalias. At the moment, we use a
1931 // weaker condition and handle only AllocLikeFunctions (which are
1932 // known to be noalias). TODO
1933 return isAllocLikeFn(Object, TLI) &&
1934 !PointerMayBeCaptured(Object, true, true);
1935}
1936
1937} // namespace
1938
1939/// Try to promote memory values to scalars by sinking stores out of the
1940/// loop and moving loads to before the loop. We do this by looping over
1941/// the stores in the loop, looking for stores to Must pointers which are
1942/// loop invariant.
1943///
1944bool llvm::promoteLoopAccessesToScalars(
1945 const SmallSetVector<Value *, 8> &PointerMustAliases,
1946 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1947 SmallVectorImpl<Instruction *> &InsertPts,
1948 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1949 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1950 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
1951 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
1952 // Verify inputs.
1953 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && SafetyInfo != nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1955, __PRETTY_FUNCTION__))
1954 SafetyInfo != nullptr &&((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && SafetyInfo != nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1955, __PRETTY_FUNCTION__))
1955 "Unexpected Input to promoteLoopAccessesToScalars")((LI != nullptr && DT != nullptr && CurLoop !=
nullptr && SafetyInfo != nullptr && "Unexpected Input to promoteLoopAccessesToScalars"
) ? static_cast<void> (0) : __assert_fail ("LI != nullptr && DT != nullptr && CurLoop != nullptr && SafetyInfo != nullptr && \"Unexpected Input to promoteLoopAccessesToScalars\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 1955, __PRETTY_FUNCTION__))
;
1956
1957 Value *SomePtr = *PointerMustAliases.begin();
1958 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1959
1960 // It is not safe to promote a load/store from the loop if the load/store is
1961 // conditional. For example, turning:
1962 //
1963 // for () { if (c) *P += 1; }
1964 //
1965 // into:
1966 //
1967 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
1968 //
1969 // is not safe, because *P may only be valid to access if 'c' is true.
1970 //
1971 // The safety property divides into two parts:
1972 // p1) The memory may not be dereferenceable on entry to the loop. In this
1973 // case, we can't insert the required load in the preheader.
1974 // p2) The memory model does not allow us to insert a store along any dynamic
1975 // path which did not originally have one.
1976 //
1977 // If at least one store is guaranteed to execute, both properties are
1978 // satisfied, and promotion is legal.
1979 //
1980 // This, however, is not a necessary condition. Even if no store/load is
1981 // guaranteed to execute, we can still establish these properties.
1982 // We can establish (p1) by proving that hoisting the load into the preheader
1983 // is safe (i.e. proving dereferenceability on all paths through the loop). We
1984 // can use any access within the alias set to prove dereferenceability,
1985 // since they're all must alias.
1986 //
1987 // There are two ways establish (p2):
1988 // a) Prove the location is thread-local. In this case the memory model
1989 // requirement does not apply, and stores are safe to insert.
1990 // b) Prove a store dominates every exit block. In this case, if an exit
1991 // blocks is reached, the original dynamic path would have taken us through
1992 // the store, so inserting a store into the exit block is safe. Note that this
1993 // is different from the store being guaranteed to execute. For instance,
1994 // if an exception is thrown on the first iteration of the loop, the original
1995 // store is never executed, but the exit blocks are not executed either.
1996
1997 bool DereferenceableInPH = false;
1998 bool SafeToInsertStore = false;
1999
2000 SmallVector<Instruction *, 64> LoopUses;
2001
2002 // We start with an alignment of one and try to find instructions that allow
2003 // us to prove better alignment.
2004 Align Alignment;
2005 // Keep track of which types of access we see
2006 bool SawUnorderedAtomic = false;
2007 bool SawNotAtomic = false;
2008 AAMDNodes AATags;
2009
2010 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
2011
2012 bool IsKnownThreadLocalObject = false;
2013 if (SafetyInfo->anyBlockMayThrow()) {
2014 // If a loop can throw, we have to insert a store along each unwind edge.
2015 // That said, we can't actually make the unwind edge explicit. Therefore,
2016 // we have to prove that the store is dead along the unwind edge. We do
2017 // this by proving that the caller can't have a reference to the object
2018 // after return and thus can't possibly load from the object.
2019 Value *Object = getUnderlyingObject(SomePtr);
2020 if (!isKnownNonEscaping(Object, TLI))
2021 return false;
2022 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
2023 // visible to other threads if captured and used during their lifetimes.
2024 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
2025 }
2026
2027 // Check that all of the pointers in the alias set have the same type. We
2028 // cannot (yet) promote a memory location that is loaded and stored in
2029 // different sizes. While we are at it, collect alignment and AA info.
2030 for (Value *ASIV : PointerMustAliases) {
2031 // Check that all of the pointers in the alias set have the same type. We
2032 // cannot (yet) promote a memory location that is loaded and stored in
2033 // different sizes.
2034 if (SomePtr->getType() != ASIV->getType())
2035 return false;
2036
2037 for (User *U : ASIV->users()) {
2038 // Ignore instructions that are outside the loop.
2039 Instruction *UI = dyn_cast<Instruction>(U);
2040 if (!UI || !CurLoop->contains(UI))
2041 continue;
2042
2043 // If there is an non-load/store instruction in the loop, we can't promote
2044 // it.
2045 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2046 if (!Load->isUnordered())
2047 return false;
2048
2049 SawUnorderedAtomic |= Load->isAtomic();
2050 SawNotAtomic |= !Load->isAtomic();
2051
2052 Align InstAlignment = Load->getAlign();
2053
2054 // Note that proving a load safe to speculate requires proving
2055 // sufficient alignment at the target location. Proving it guaranteed
2056 // to execute does as well. Thus we can increase our guaranteed
2057 // alignment as well.
2058 if (!DereferenceableInPH || (InstAlignment > Alignment))
2059 if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
2060 ORE, Preheader->getTerminator())) {
2061 DereferenceableInPH = true;
2062 Alignment = std::max(Alignment, InstAlignment);
2063 }
2064 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2065 // Stores *of* the pointer are not interesting, only stores *to* the
2066 // pointer.
2067 if (UI->getOperand(1) != ASIV)
2068 continue;
2069 if (!Store->isUnordered())
2070 return false;
2071
2072 SawUnorderedAtomic |= Store->isAtomic();
2073 SawNotAtomic |= !Store->isAtomic();
2074
2075 // If the store is guaranteed to execute, both properties are satisfied.
2076 // We may want to check if a store is guaranteed to execute even if we
2077 // already know that promotion is safe, since it may have higher
2078 // alignment than any other guaranteed stores, in which case we can
2079 // raise the alignment on the promoted store.
2080 Align InstAlignment = Store->getAlign();
2081
2082 if (!DereferenceableInPH || !SafeToInsertStore ||
2083 (InstAlignment > Alignment)) {
2084 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2085 DereferenceableInPH = true;
2086 SafeToInsertStore = true;
2087 Alignment = std::max(Alignment, InstAlignment);
2088 }
2089 }
2090
2091 // If a store dominates all exit blocks, it is safe to sink.
2092 // As explained above, if an exit block was executed, a dominating
2093 // store must have been executed at least once, so we are not
2094 // introducing stores on paths that did not have them.
2095 // Note that this only looks at explicit exit blocks. If we ever
2096 // start sinking stores into unwind edges (see above), this will break.
2097 if (!SafeToInsertStore)
2098 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2099 return DT->dominates(Store->getParent(), Exit);
2100 });
2101
2102 // If the store is not guaranteed to execute, we may still get
2103 // deref info through it.
2104 if (!DereferenceableInPH) {
2105 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2106 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2107 Store->getAlign(), MDL, Preheader->getTerminator(), DT);
2108 }
2109 } else
2110 return false; // Not a load or store.
2111
2112 // Merge the AA tags.
2113 if (LoopUses.empty()) {
2114 // On the first load/store, just take its AA tags.
2115 UI->getAAMetadata(AATags);
2116 } else if (AATags) {
2117 UI->getAAMetadata(AATags, /* Merge = */ true);
2118 }
2119
2120 LoopUses.push_back(UI);
2121 }
2122 }
2123
2124 // If we found both an unordered atomic instruction and a non-atomic memory
2125 // access, bail. We can't blindly promote non-atomic to atomic since we
2126 // might not be able to lower the result. We can't downgrade since that
2127 // would violate memory model. Also, align 0 is an error for atomics.
2128 if (SawUnorderedAtomic && SawNotAtomic)
2129 return false;
2130
2131 // If we're inserting an atomic load in the preheader, we must be able to
2132 // lower it. We're only guaranteed to be able to lower naturally aligned
2133 // atomics.
2134 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2135 if (SawUnorderedAtomic &&
2136 Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2137 return false;
2138
2139 // If we couldn't prove we can hoist the load, bail.
2140 if (!DereferenceableInPH)
2141 return false;
2142
2143 // We know we can hoist the load, but don't have a guaranteed store.
2144 // Check whether the location is thread-local. If it is, then we can insert
2145 // stores along paths which originally didn't have them without violating the
2146 // memory model.
2147 if (!SafeToInsertStore) {
2148 if (IsKnownThreadLocalObject)
2149 SafeToInsertStore = true;
2150 else {
2151 Value *Object = getUnderlyingObject(SomePtr);
2152 SafeToInsertStore =
2153 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2154 !PointerMayBeCaptured(Object, true, true);
2155 }
2156 }
2157
2158 // If we've still failed to prove we can sink the store, give up.
2159 if (!SafeToInsertStore)
2160 return false;
2161
2162 // Otherwise, this is safe to promote, lets do it!
2163 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtrdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
2164 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "LICM: Promoting value stored to in loop: "
<< *SomePtr << '\n'; } } while (false)
;
2165 ORE->emit([&]() {
2166 return OptimizationRemark(DEBUG_TYPE"licm", "PromoteLoopAccessesToScalar",
2167 LoopUses[0])
2168 << "Moving accesses to memory location out of the loop";
2169 });
2170 ++NumPromoted;
2171
2172 // Look at all the loop uses, and try to merge their locations.
2173 std::vector<const DILocation *> LoopUsesLocs;
2174 for (auto U : LoopUses)
2175 LoopUsesLocs.push_back(U->getDebugLoc().get());
2176 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2177
2178 // We use the SSAUpdater interface to insert phi nodes as required.
2179 SmallVector<PHINode *, 16> NewPHIs;
2180 SSAUpdater SSA(&NewPHIs);
2181 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2182 InsertPts, MSSAInsertPts, PIC, CurAST, MSSAU, *LI, DL,
2183 Alignment.value(), SawUnorderedAtomic, AATags,
2184 *SafetyInfo);
2185
2186 // Set up the preheader to have a definition of the value. It is the live-out
2187 // value from the preheader that uses in the loop will use.
2188 LoadInst *PreheaderLoad = new LoadInst(
2189 SomePtr->getType()->getPointerElementType(), SomePtr,
2190 SomePtr->getName() + ".promoted", Preheader->getTerminator());
2191 if (SawUnorderedAtomic)
2192 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2193 PreheaderLoad->setAlignment(Alignment);
2194 PreheaderLoad->setDebugLoc(DebugLoc());
2195 if (AATags)
2196 PreheaderLoad->setAAMetadata(AATags);
2197 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2198
2199 if (MSSAU) {
2200 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2201 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2202 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2203 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2204 }
2205
2206 if (MSSAU && VerifyMemorySSA)
2207 MSSAU->getMemorySSA()->verifyMemorySSA();
2208 // Rewrite all the loads in the loop and remember all the definitions from
2209 // stores in the loop.
2210 Promoter.run(LoopUses);
2211
2212 if (MSSAU && VerifyMemorySSA)
2213 MSSAU->getMemorySSA()->verifyMemorySSA();
2214 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2215 if (PreheaderLoad->use_empty())
2216 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2217
2218 return true;
2219}
2220
2221/// Returns an owning pointer to an alias set which incorporates aliasing info
2222/// from L and all subloops of L.
2223std::unique_ptr<AliasSetTracker>
2224LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2225 AAResults *AA) {
2226 auto CurAST = std::make_unique<AliasSetTracker>(*AA);
2227
2228 // Add everything from all the sub loops.
2229 for (Loop *InnerL : L->getSubLoops())
2230 for (BasicBlock *BB : InnerL->blocks())
2231 CurAST->add(*BB);
2232
2233 // And merge in this loop (without anything from inner loops).
2234 for (BasicBlock *BB : L->blocks())
2235 if (LI->getLoopFor(BB) == L)
2236 CurAST->add(*BB);
2237
2238 return CurAST;
2239}
2240
2241std::unique_ptr<AliasSetTracker>
2242LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
2243 Loop *L, AAResults *AA, MemorySSAUpdater *MSSAU) {
2244 auto *MSSA = MSSAU->getMemorySSA();
2245 auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
2246 CurAST->addAllInstructionsInLoopUsingMSSA();
2247 return CurAST;
2248}
2249
2250static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2251 AliasSetTracker *CurAST, Loop *CurLoop,
2252 AAResults *AA) {
2253 // First check to see if any of the basic blocks in CurLoop invalidate *V.
2254 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2255
2256 if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2257 return isInvalidatedAccordingToAST;
2258
2259 // Check with a diagnostic analysis if we can refine the information above.
2260 // This is to identify the limitations of using the AST.
2261 // The alias set mechanism used by LICM has a major weakness in that it
2262 // combines all things which may alias into a single set *before* asking
2263 // modref questions. As a result, a single readonly call within a loop will
2264 // collapse all loads and stores into a single alias set and report
2265 // invalidation if the loop contains any store. For example, readonly calls
2266 // with deopt states have this form and create a general alias set with all
2267 // loads and stores. In order to get any LICM in loops containing possible
2268 // deopt states we need a more precise invalidation of checking the mod ref
2269 // info of each instruction within the loop and LI. This has a complexity of
2270 // O(N^2), so currently, it is used only as a diagnostic tool since the
2271 // default value of LICMN2Threshold is zero.
2272
2273 // Don't look at nested loops.
2274 if (CurLoop->begin() != CurLoop->end())
2275 return true;
2276
2277 int N = 0;
2278 for (BasicBlock *BB : CurLoop->getBlocks())
2279 for (Instruction &I : *BB) {
2280 if (N >= LICMN2Theshold) {
2281 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
2282 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Alasing N2 threshold exhausted for "
<< *(MemLoc.Ptr) << "\n"; } } while (false)
;
2283 return true;
2284 }
2285 N++;
2286 auto Res = AA->getModRefInfo(&I, MemLoc);
2287 if (isModSet(Res)) {
2288 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
2289 << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing failed on " << I <<
" for " << *(MemLoc.Ptr) << "\n"; } } while (false
)
;
2290 return true;
2291 }
2292 }
2293 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("licm")) { dbgs() << "Aliasing okay for " << *(MemLoc
.Ptr) << "\n"; } } while (false)
;
2294 return false;
2295}
2296
2297bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2298 Loop *CurLoop, Instruction &I,
2299 SinkAndHoistLICMFlags &Flags) {
2300 // For hoisting, use the walker to determine safety
2301 if (!Flags.getIsSink()) {
2302 MemoryAccess *Source;
2303 // See declaration of SetLicmMssaOptCap for usage details.
2304 if (Flags.tooManyClobberingCalls())
2305 Source = MU->getDefiningAccess();
2306 else {
2307 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2308 Flags.incrementClobberingCalls();
2309 }
2310 return !MSSA->isLiveOnEntryDef(Source) &&
2311 CurLoop->contains(Source->getBlock());
2312 }
2313
2314 // For sinking, we'd need to check all Defs below this use. The getClobbering
2315 // call will look on the backedge of the loop, but will check aliasing with
2316 // the instructions on the previous iteration.
2317 // For example:
2318 // for (i ... )
2319 // load a[i] ( Use (LoE)
2320 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2321 // i++;
2322 // The load sees no clobbering inside the loop, as the backedge alias check
2323 // does phi translation, and will check aliasing against store a[i-1].
2324 // However sinking the load outside the loop, below the store is incorrect.
2325
2326 // For now, only sink if there are no Defs in the loop, and the existing ones
2327 // precede the use and are in the same block.
2328 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2329 // needs PostDominatorTreeAnalysis.
2330 // FIXME: More precise: no Defs that alias this Use.
2331 if (Flags.tooManyMemoryAccesses())
2332 return true;
2333 for (auto *BB : CurLoop->getBlocks())
2334 if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
2335 return true;
2336 // When sinking, the source block may not be part of the loop so check it.
2337 if (!CurLoop->contains(&I))
2338 return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
2339
2340 return false;
2341}
2342
2343bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
2344 MemoryUse &MU) {
2345 if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2346 for (const auto &MA : *Accesses)
2347 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2348 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2349 return true;
2350 return false;
2351}
2352
2353/// Little predicate that returns true if the specified basic block is in
2354/// a subloop of the current one, not the current one itself.
2355///
2356static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2357 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop")((CurLoop->contains(BB) && "Only valid if BB is IN the loop"
) ? static_cast<void> (0) : __assert_fail ("CurLoop->contains(BB) && \"Only valid if BB is IN the loop\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Transforms/Scalar/LICM.cpp"
, 2357, __PRETTY_FUNCTION__))
;
2358 return LI->getLoopFor(BB) != CurLoop;
2359}

/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h

1//===- llvm/InstrTypes.h - Important Instruction subclasses -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines various meta classes of instructions that exist in the VM
10// representation. Specific concrete subclasses of these may be found in the
11// i*.h files...
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRTYPES_H
16#define LLVM_IR_INSTRTYPES_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/StringMap.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/CallingConv.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/Function.h"
31#include "llvm/IR/Instruction.h"
32#include "llvm/IR/LLVMContext.h"
33#include "llvm/IR/OperandTraits.h"
34#include "llvm/IR/Type.h"
35#include "llvm/IR/User.h"
36#include "llvm/IR/Value.h"
37#include "llvm/Support/Casting.h"
38#include "llvm/Support/ErrorHandling.h"
39#include <algorithm>
40#include <cassert>
41#include <cstddef>
42#include <cstdint>
43#include <iterator>
44#include <string>
45#include <vector>
46
47namespace llvm {
48
49namespace Intrinsic {
50typedef unsigned ID;
51}
52
53//===----------------------------------------------------------------------===//
54// UnaryInstruction Class
55//===----------------------------------------------------------------------===//
56
57class UnaryInstruction : public Instruction {
58protected:
59 UnaryInstruction(Type *Ty, unsigned iType, Value *V,
60 Instruction *IB = nullptr)
61 : Instruction(Ty, iType, &Op<0>(), 1, IB) {
62 Op<0>() = V;
63 }
64 UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
65 : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
66 Op<0>() = V;
67 }
68
69public:
70 // allocate space for exactly one operand
71 void *operator new(size_t s) {
72 return User::operator new(s, 1);
73 }
74
75 /// Transparently provide more efficient getOperand methods.
76 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
77
78 // Methods for support type inquiry through isa, cast, and dyn_cast:
79 static bool classof(const Instruction *I) {
80 return I->isUnaryOp() ||
81 I->getOpcode() == Instruction::Alloca ||
82 I->getOpcode() == Instruction::Load ||
83 I->getOpcode() == Instruction::VAArg ||
84 I->getOpcode() == Instruction::ExtractValue ||
85 (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
86 }
87 static bool classof(const Value *V) {
88 return isa<Instruction>(V) && classof(cast<Instruction>(V));
89 }
90};
91
92template <>
93struct OperandTraits<UnaryInstruction> :
94 public FixedNumOperandTraits<UnaryInstruction, 1> {
95};
96
97DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)UnaryInstruction::op_iterator UnaryInstruction::op_begin() { return
OperandTraits<UnaryInstruction>::op_begin(this); } UnaryInstruction
::const_op_iterator UnaryInstruction::op_begin() const { return
OperandTraits<UnaryInstruction>::op_begin(const_cast<
UnaryInstruction*>(this)); } UnaryInstruction::op_iterator
UnaryInstruction::op_end() { return OperandTraits<UnaryInstruction
>::op_end(this); } UnaryInstruction::const_op_iterator UnaryInstruction
::op_end() const { return OperandTraits<UnaryInstruction>
::op_end(const_cast<UnaryInstruction*>(this)); } Value *
UnaryInstruction::getOperand(unsigned i_nocapture) const { ((
i_nocapture < OperandTraits<UnaryInstruction>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<UnaryInstruction>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 97, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<UnaryInstruction>::op_begin(const_cast<
UnaryInstruction*>(this))[i_nocapture].get()); } void UnaryInstruction
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<UnaryInstruction>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<UnaryInstruction>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 97, __PRETTY_FUNCTION__)); OperandTraits<UnaryInstruction
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
UnaryInstruction::getNumOperands() const { return OperandTraits
<UnaryInstruction>::operands(this); } template <int Idx_nocapture
> Use &UnaryInstruction::Op() { return this->OpFrom
<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &UnaryInstruction::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
98
99//===----------------------------------------------------------------------===//
100// UnaryOperator Class
101//===----------------------------------------------------------------------===//
102
103class UnaryOperator : public UnaryInstruction {
104 void AssertOK();
105
106protected:
107 UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
108 const Twine &Name, Instruction *InsertBefore);
109 UnaryOperator(UnaryOps iType, Value *S, Type *Ty,
110 const Twine &Name, BasicBlock *InsertAtEnd);
111
112 // Note: Instruction needs to be a friend here to call cloneImpl.
113 friend class Instruction;
114
115 UnaryOperator *cloneImpl() const;
116
117public:
118
119 /// Construct a unary instruction, given the opcode and an operand.
120 /// Optionally (if InstBefore is specified) insert the instruction
121 /// into a BasicBlock right before the specified instruction. The specified
122 /// Instruction is allowed to be a dereferenced end iterator.
123 ///
124 static UnaryOperator *Create(UnaryOps Op, Value *S,
125 const Twine &Name = Twine(),
126 Instruction *InsertBefore = nullptr);
127
128 /// Construct a unary instruction, given the opcode and an operand.
129 /// Also automatically insert this instruction to the end of the
130 /// BasicBlock specified.
131 ///
132 static UnaryOperator *Create(UnaryOps Op, Value *S,
133 const Twine &Name,
134 BasicBlock *InsertAtEnd);
135
136 /// These methods just forward to Create, and are useful when you
137 /// statically know what type of instruction you're going to create. These
138 /// helpers just save some typing.
139#define HANDLE_UNARY_INST(N, OPC, CLASS) \
140 static UnaryOperator *Create##OPC(Value *V, const Twine &Name = "") {\
141 return Create(Instruction::OPC, V, Name);\
142 }
143#include "llvm/IR/Instruction.def"
144#define HANDLE_UNARY_INST(N, OPC, CLASS) \
145 static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
146 BasicBlock *BB) {\
147 return Create(Instruction::OPC, V, Name, BB);\
148 }
149#include "llvm/IR/Instruction.def"
150#define HANDLE_UNARY_INST(N, OPC, CLASS) \
151 static UnaryOperator *Create##OPC(Value *V, const Twine &Name, \
152 Instruction *I) {\
153 return Create(Instruction::OPC, V, Name, I);\
154 }
155#include "llvm/IR/Instruction.def"
156
157 static UnaryOperator *
158 CreateWithCopiedFlags(UnaryOps Opc, Value *V, Instruction *CopyO,
159 const Twine &Name = "",
160 Instruction *InsertBefore = nullptr) {
161 UnaryOperator *UO = Create(Opc, V, Name, InsertBefore);
162 UO->copyIRFlags(CopyO);
163 return UO;
164 }
165
166 static UnaryOperator *CreateFNegFMF(Value *Op, Instruction *FMFSource,
167 const Twine &Name = "",
168 Instruction *InsertBefore = nullptr) {
169 return CreateWithCopiedFlags(Instruction::FNeg, Op, FMFSource, Name,
170 InsertBefore);
171 }
172
173 UnaryOps getOpcode() const {
174 return static_cast<UnaryOps>(Instruction::getOpcode());
175 }
176
177 // Methods for support type inquiry through isa, cast, and dyn_cast:
178 static bool classof(const Instruction *I) {
179 return I->isUnaryOp();
180 }
181 static bool classof(const Value *V) {
182 return isa<Instruction>(V) && classof(cast<Instruction>(V));
183 }
184};
185
186//===----------------------------------------------------------------------===//
187// BinaryOperator Class
188//===----------------------------------------------------------------------===//
189
190class BinaryOperator : public Instruction {
191 void AssertOK();
192
193protected:
194 BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
195 const Twine &Name, Instruction *InsertBefore);
196 BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
197 const Twine &Name, BasicBlock *InsertAtEnd);
198
199 // Note: Instruction needs to be a friend here to call cloneImpl.
200 friend class Instruction;
201
202 BinaryOperator *cloneImpl() const;
203
204public:
205 // allocate space for exactly two operands
206 void *operator new(size_t s) {
207 return User::operator new(s, 2);
208 }
209
210 /// Transparently provide more efficient getOperand methods.
211 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
212
213 /// Construct a binary instruction, given the opcode and the two
214 /// operands. Optionally (if InstBefore is specified) insert the instruction
215 /// into a BasicBlock right before the specified instruction. The specified
216 /// Instruction is allowed to be a dereferenced end iterator.
217 ///
218 static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
219 const Twine &Name = Twine(),
220 Instruction *InsertBefore = nullptr);
221
222 /// Construct a binary instruction, given the opcode and the two
223 /// operands. Also automatically insert this instruction to the end of the
224 /// BasicBlock specified.
225 ///
226 static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
227 const Twine &Name, BasicBlock *InsertAtEnd);
228
229 /// These methods just forward to Create, and are useful when you
230 /// statically know what type of instruction you're going to create. These
231 /// helpers just save some typing.
232#define HANDLE_BINARY_INST(N, OPC, CLASS) \
233 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
234 const Twine &Name = "") {\
235 return Create(Instruction::OPC, V1, V2, Name);\
236 }
237#include "llvm/IR/Instruction.def"
238#define HANDLE_BINARY_INST(N, OPC, CLASS) \
239 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
240 const Twine &Name, BasicBlock *BB) {\
241 return Create(Instruction::OPC, V1, V2, Name, BB);\
242 }
243#include "llvm/IR/Instruction.def"
244#define HANDLE_BINARY_INST(N, OPC, CLASS) \
245 static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
246 const Twine &Name, Instruction *I) {\
247 return Create(Instruction::OPC, V1, V2, Name, I);\
248 }
249#include "llvm/IR/Instruction.def"
250
251 static BinaryOperator *CreateWithCopiedFlags(BinaryOps Opc,
252 Value *V1, Value *V2,
253 Instruction *CopyO,
254 const Twine &Name = "") {
255 BinaryOperator *BO = Create(Opc, V1, V2, Name);
256 BO->copyIRFlags(CopyO);
257 return BO;
258 }
259
260 static BinaryOperator *CreateFAddFMF(Value *V1, Value *V2,
261 Instruction *FMFSource,
262 const Twine &Name = "") {
263 return CreateWithCopiedFlags(Instruction::FAdd, V1, V2, FMFSource, Name);
264 }
265 static BinaryOperator *CreateFSubFMF(Value *V1, Value *V2,
266 Instruction *FMFSource,
267 const Twine &Name = "") {
268 return CreateWithCopiedFlags(Instruction::FSub, V1, V2, FMFSource, Name);
269 }
270 static BinaryOperator *CreateFMulFMF(Value *V1, Value *V2,
271 Instruction *FMFSource,
272 const Twine &Name = "") {
273 return CreateWithCopiedFlags(Instruction::FMul, V1, V2, FMFSource, Name);
274 }
275 static BinaryOperator *CreateFDivFMF(Value *V1, Value *V2,
276 Instruction *FMFSource,
277 const Twine &Name = "") {
278 return CreateWithCopiedFlags(Instruction::FDiv, V1, V2, FMFSource, Name);
279 }
280 static BinaryOperator *CreateFRemFMF(Value *V1, Value *V2,
281 Instruction *FMFSource,
282 const Twine &Name = "") {
283 return CreateWithCopiedFlags(Instruction::FRem, V1, V2, FMFSource, Name);
284 }
285
286 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
287 const Twine &Name = "") {
288 BinaryOperator *BO = Create(Opc, V1, V2, Name);
289 BO->setHasNoSignedWrap(true);
290 return BO;
291 }
292 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
293 const Twine &Name, BasicBlock *BB) {
294 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
295 BO->setHasNoSignedWrap(true);
296 return BO;
297 }
298 static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
299 const Twine &Name, Instruction *I) {
300 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
301 BO->setHasNoSignedWrap(true);
302 return BO;
303 }
304
305 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
306 const Twine &Name = "") {
307 BinaryOperator *BO = Create(Opc, V1, V2, Name);
308 BO->setHasNoUnsignedWrap(true);
309 return BO;
310 }
311 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
312 const Twine &Name, BasicBlock *BB) {
313 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
314 BO->setHasNoUnsignedWrap(true);
315 return BO;
316 }
317 static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
318 const Twine &Name, Instruction *I) {
319 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
320 BO->setHasNoUnsignedWrap(true);
321 return BO;
322 }
323
324 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
325 const Twine &Name = "") {
326 BinaryOperator *BO = Create(Opc, V1, V2, Name);
327 BO->setIsExact(true);
328 return BO;
329 }
330 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
331 const Twine &Name, BasicBlock *BB) {
332 BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
333 BO->setIsExact(true);
334 return BO;
335 }
336 static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
337 const Twine &Name, Instruction *I) {
338 BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
339 BO->setIsExact(true);
340 return BO;
341 }
342
343#define DEFINE_HELPERS(OPC, NUWNSWEXACT) \
344 static BinaryOperator *Create##NUWNSWEXACT##OPC(Value *V1, Value *V2, \
345 const Twine &Name = "") { \
346 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name); \
347 } \
348 static BinaryOperator *Create##NUWNSWEXACT##OPC( \
349 Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { \
350 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB); \
351 } \
352 static BinaryOperator *Create##NUWNSWEXACT##OPC( \
353 Value *V1, Value *V2, const Twine &Name, Instruction *I) { \
354 return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I); \
355 }
356
357 DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
358 DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
359 DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
360 DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
361 DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
362 DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
363 DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
364 DEFINE_HELPERS(Shl, NUW) // CreateNUWShl
365
366 DEFINE_HELPERS(SDiv, Exact) // CreateExactSDiv
367 DEFINE_HELPERS(UDiv, Exact) // CreateExactUDiv
368 DEFINE_HELPERS(AShr, Exact) // CreateExactAShr
369 DEFINE_HELPERS(LShr, Exact) // CreateExactLShr
370
371#undef DEFINE_HELPERS
372
373 /// Helper functions to construct and inspect unary operations (NEG and NOT)
374 /// via binary operators SUB and XOR:
375 ///
376 /// Create the NEG and NOT instructions out of SUB and XOR instructions.
377 ///
378 static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
379 Instruction *InsertBefore = nullptr);
380 static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
381 BasicBlock *InsertAtEnd);
382 static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
383 Instruction *InsertBefore = nullptr);
384 static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
385 BasicBlock *InsertAtEnd);
386 static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
387 Instruction *InsertBefore = nullptr);
388 static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
389 BasicBlock *InsertAtEnd);
390 static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
391 Instruction *InsertBefore = nullptr);
392 static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
393 BasicBlock *InsertAtEnd);
394
395 BinaryOps getOpcode() const {
396 return static_cast<BinaryOps>(Instruction::getOpcode());
397 }
398
399 /// Exchange the two operands to this instruction.
400 /// This instruction is safe to use on any binary instruction and
401 /// does not modify the semantics of the instruction. If the instruction
402 /// cannot be reversed (ie, it's a Div), then return true.
403 ///
404 bool swapOperands();
405
406 // Methods for support type inquiry through isa, cast, and dyn_cast:
407 static bool classof(const Instruction *I) {
408 return I->isBinaryOp();
409 }
410 static bool classof(const Value *V) {
411 return isa<Instruction>(V) && classof(cast<Instruction>(V));
412 }
413};
414
415template <>
416struct OperandTraits<BinaryOperator> :
417 public FixedNumOperandTraits<BinaryOperator, 2> {
418};
419
420DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)BinaryOperator::op_iterator BinaryOperator::op_begin() { return
OperandTraits<BinaryOperator>::op_begin(this); } BinaryOperator
::const_op_iterator BinaryOperator::op_begin() const { return
OperandTraits<BinaryOperator>::op_begin(const_cast<
BinaryOperator*>(this)); } BinaryOperator::op_iterator BinaryOperator
::op_end() { return OperandTraits<BinaryOperator>::op_end
(this); } BinaryOperator::const_op_iterator BinaryOperator::op_end
() const { return OperandTraits<BinaryOperator>::op_end
(const_cast<BinaryOperator*>(this)); } Value *BinaryOperator
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BinaryOperator>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<BinaryOperator>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 420, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BinaryOperator>::op_begin(const_cast<
BinaryOperator*>(this))[i_nocapture].get()); } void BinaryOperator
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<BinaryOperator>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BinaryOperator>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 420, __PRETTY_FUNCTION__)); OperandTraits<BinaryOperator
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
BinaryOperator::getNumOperands() const { return OperandTraits
<BinaryOperator>::operands(this); } template <int Idx_nocapture
> Use &BinaryOperator::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &BinaryOperator::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
421
422//===----------------------------------------------------------------------===//
423// CastInst Class
424//===----------------------------------------------------------------------===//
425
426/// This is the base class for all instructions that perform data
427/// casts. It is simply provided so that instruction category testing
428/// can be performed with code like:
429///
430/// if (isa<CastInst>(Instr)) { ... }
431/// Base class of casting instructions.
432class CastInst : public UnaryInstruction {
433protected:
434 /// Constructor with insert-before-instruction semantics for subclasses
435 CastInst(Type *Ty, unsigned iType, Value *S,
436 const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
437 : UnaryInstruction(Ty, iType, S, InsertBefore) {
438 setName(NameStr);
439 }
440 /// Constructor with insert-at-end-of-block semantics for subclasses
441 CastInst(Type *Ty, unsigned iType, Value *S,
442 const Twine &NameStr, BasicBlock *InsertAtEnd)
443 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
444 setName(NameStr);
445 }
446
447public:
448 /// Provides a way to construct any of the CastInst subclasses using an
449 /// opcode instead of the subclass's constructor. The opcode must be in the
450 /// CastOps category (Instruction::isCast(opcode) returns true). This
451 /// constructor has insert-before-instruction semantics to automatically
452 /// insert the new CastInst before InsertBefore (if it is non-null).
453 /// Construct any of the CastInst subclasses
454 static CastInst *Create(
455 Instruction::CastOps, ///< The opcode of the cast instruction
456 Value *S, ///< The value to be casted (operand 0)
457 Type *Ty, ///< The type to which cast should be made
458 const Twine &Name = "", ///< Name for the instruction
459 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
460 );
461 /// Provides a way to construct any of the CastInst subclasses using an
462 /// opcode instead of the subclass's constructor. The opcode must be in the
463 /// CastOps category. This constructor has insert-at-end-of-block semantics
464 /// to automatically insert the new CastInst at the end of InsertAtEnd (if
465 /// its non-null).
466 /// Construct any of the CastInst subclasses
467 static CastInst *Create(
468 Instruction::CastOps, ///< The opcode for the cast instruction
469 Value *S, ///< The value to be casted (operand 0)
470 Type *Ty, ///< The type to which operand is casted
471 const Twine &Name, ///< The name for the instruction
472 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
473 );
474
475 /// Create a ZExt or BitCast cast instruction
476 static CastInst *CreateZExtOrBitCast(
477 Value *S, ///< The value to be casted (operand 0)
478 Type *Ty, ///< The type to which cast should be made
479 const Twine &Name = "", ///< Name for the instruction
480 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
481 );
482
483 /// Create a ZExt or BitCast cast instruction
484 static CastInst *CreateZExtOrBitCast(
485 Value *S, ///< The value to be casted (operand 0)
486 Type *Ty, ///< The type to which operand is casted
487 const Twine &Name, ///< The name for the instruction
488 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
489 );
490
491 /// Create a SExt or BitCast cast instruction
492 static CastInst *CreateSExtOrBitCast(
493 Value *S, ///< The value to be casted (operand 0)
494 Type *Ty, ///< The type to which cast should be made
495 const Twine &Name = "", ///< Name for the instruction
496 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
497 );
498
499 /// Create a SExt or BitCast cast instruction
500 static CastInst *CreateSExtOrBitCast(
501 Value *S, ///< The value to be casted (operand 0)
502 Type *Ty, ///< The type to which operand is casted
503 const Twine &Name, ///< The name for the instruction
504 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
505 );
506
507 /// Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
508 static CastInst *CreatePointerCast(
509 Value *S, ///< The pointer value to be casted (operand 0)
510 Type *Ty, ///< The type to which operand is casted
511 const Twine &Name, ///< The name for the instruction
512 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
513 );
514
515 /// Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
516 static CastInst *CreatePointerCast(
517 Value *S, ///< The pointer value to be casted (operand 0)
518 Type *Ty, ///< The type to which cast should be made
519 const Twine &Name = "", ///< Name for the instruction
520 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
521 );
522
523 /// Create a BitCast or an AddrSpaceCast cast instruction.
524 static CastInst *CreatePointerBitCastOrAddrSpaceCast(
525 Value *S, ///< The pointer value to be casted (operand 0)
526 Type *Ty, ///< The type to which operand is casted
527 const Twine &Name, ///< The name for the instruction
528 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
529 );
530
531 /// Create a BitCast or an AddrSpaceCast cast instruction.
532 static CastInst *CreatePointerBitCastOrAddrSpaceCast(
533 Value *S, ///< The pointer value to be casted (operand 0)
534 Type *Ty, ///< The type to which cast should be made
535 const Twine &Name = "", ///< Name for the instruction
536 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
537 );
538
539 /// Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
540 ///
541 /// If the value is a pointer type and the destination an integer type,
542 /// creates a PtrToInt cast. If the value is an integer type and the
543 /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
544 /// a bitcast.
545 static CastInst *CreateBitOrPointerCast(
546 Value *S, ///< The pointer value to be casted (operand 0)
547 Type *Ty, ///< The type to which cast should be made
548 const Twine &Name = "", ///< Name for the instruction
549 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
550 );
551
552 /// Create a ZExt, BitCast, or Trunc for int -> int casts.
553 static CastInst *CreateIntegerCast(
554 Value *S, ///< The pointer value to be casted (operand 0)
555 Type *Ty, ///< The type to which cast should be made
556 bool isSigned, ///< Whether to regard S as signed or not
557 const Twine &Name = "", ///< Name for the instruction
558 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
559 );
560
561 /// Create a ZExt, BitCast, or Trunc for int -> int casts.
562 static CastInst *CreateIntegerCast(
563 Value *S, ///< The integer value to be casted (operand 0)
564 Type *Ty, ///< The integer type to which operand is casted
565 bool isSigned, ///< Whether to regard S as signed or not
566 const Twine &Name, ///< The name for the instruction
567 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
568 );
569
570 /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
571 static CastInst *CreateFPCast(
572 Value *S, ///< The floating point value to be casted
573 Type *Ty, ///< The floating point type to cast to
574 const Twine &Name = "", ///< Name for the instruction
575 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
576 );
577
578 /// Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
579 static CastInst *CreateFPCast(
580 Value *S, ///< The floating point value to be casted
581 Type *Ty, ///< The floating point type to cast to
582 const Twine &Name, ///< The name for the instruction
583 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
584 );
585
586 /// Create a Trunc or BitCast cast instruction
587 static CastInst *CreateTruncOrBitCast(
588 Value *S, ///< The value to be casted (operand 0)
589 Type *Ty, ///< The type to which cast should be made
590 const Twine &Name = "", ///< Name for the instruction
591 Instruction *InsertBefore = nullptr ///< Place to insert the instruction
592 );
593
594 /// Create a Trunc or BitCast cast instruction
595 static CastInst *CreateTruncOrBitCast(
596 Value *S, ///< The value to be casted (operand 0)
597 Type *Ty, ///< The type to which operand is casted
598 const Twine &Name, ///< The name for the instruction
599 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
600 );
601
602 /// Check whether a bitcast between these types is valid
603 static bool isBitCastable(
604 Type *SrcTy, ///< The Type from which the value should be cast.
605 Type *DestTy ///< The Type to which the value should be cast.
606 );
607
608 /// Check whether a bitcast, inttoptr, or ptrtoint cast between these
609 /// types is valid and a no-op.
610 ///
611 /// This ensures that any pointer<->integer cast has enough bits in the
612 /// integer and any other cast is a bitcast.
613 static bool isBitOrNoopPointerCastable(
614 Type *SrcTy, ///< The Type from which the value should be cast.
615 Type *DestTy, ///< The Type to which the value should be cast.
616 const DataLayout &DL);
617
618 /// Returns the opcode necessary to cast Val into Ty using usual casting
619 /// rules.
620 /// Infer the opcode for cast operand and type
621 static Instruction::CastOps getCastOpcode(
622 const Value *Val, ///< The value to cast
623 bool SrcIsSigned, ///< Whether to treat the source as signed
624 Type *Ty, ///< The Type to which the value should be casted
625 bool DstIsSigned ///< Whether to treate the dest. as signed
626 );
627
628 /// There are several places where we need to know if a cast instruction
629 /// only deals with integer source and destination types. To simplify that
630 /// logic, this method is provided.
631 /// @returns true iff the cast has only integral typed operand and dest type.
632 /// Determine if this is an integer-only cast.
633 bool isIntegerCast() const;
634
635 /// A lossless cast is one that does not alter the basic value. It implies
636 /// a no-op cast but is more stringent, preventing things like int->float,
637 /// long->double, or int->ptr.
638 /// @returns true iff the cast is lossless.
639 /// Determine if this is a lossless cast.
640 bool isLosslessCast() const;
641
642 /// A no-op cast is one that can be effected without changing any bits.
643 /// It implies that the source and destination types are the same size. The
644 /// DataLayout argument is to determine the pointer size when examining casts
645 /// involving Integer and Pointer types. They are no-op casts if the integer
646 /// is the same size as the pointer. However, pointer size varies with
647 /// platform. Note that a precondition of this method is that the cast is
648 /// legal - i.e. the instruction formed with these operands would verify.
649 static bool isNoopCast(
650 Instruction::CastOps Opcode, ///< Opcode of cast
651 Type *SrcTy, ///< SrcTy of cast
652 Type *DstTy, ///< DstTy of cast
653 const DataLayout &DL ///< DataLayout to get the Int Ptr type from.
654 );
655
656 /// Determine if this cast is a no-op cast.
657 ///
658 /// \param DL is the DataLayout to determine pointer size.
659 bool isNoopCast(const DataLayout &DL) const;
660
661 /// Determine how a pair of casts can be eliminated, if they can be at all.
662 /// This is a helper function for both CastInst and ConstantExpr.
663 /// @returns 0 if the CastInst pair can't be eliminated, otherwise
664 /// returns Instruction::CastOps value for a cast that can replace
665 /// the pair, casting SrcTy to DstTy.
666 /// Determine if a cast pair is eliminable
667 static unsigned isEliminableCastPair(
668 Instruction::CastOps firstOpcode, ///< Opcode of first cast
669 Instruction::CastOps secondOpcode, ///< Opcode of second cast
670 Type *SrcTy, ///< SrcTy of 1st cast
671 Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
672 Type *DstTy, ///< DstTy of 2nd cast
673 Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
674 Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
675 Type *DstIntPtrTy ///< Integer type corresponding to Ptr DstTy, or null
676 );
677
678 /// Return the opcode of this CastInst
679 Instruction::CastOps getOpcode() const {
680 return Instruction::CastOps(Instruction::getOpcode());
681 }
682
683 /// Return the source type, as a convenience
684 Type* getSrcTy() const { return getOperand(0)->getType(); }
685 /// Return the destination type, as a convenience
686 Type* getDestTy() const { return getType(); }
687
688 /// This method can be used to determine if a cast from SrcTy to DstTy using
689 /// Opcode op is valid or not.
690 /// @returns true iff the proposed cast is valid.
691 /// Determine if a cast is valid without creating one.
692 static bool castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy);
693 static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
694 return castIsValid(op, S->getType(), DstTy);
695 }
696
697 /// Methods for support type inquiry through isa, cast, and dyn_cast:
698 static bool classof(const Instruction *I) {
699 return I->isCast();
700 }
701 static bool classof(const Value *V) {
702 return isa<Instruction>(V) && classof(cast<Instruction>(V));
703 }
704};
705
706//===----------------------------------------------------------------------===//
707// CmpInst Class
708//===----------------------------------------------------------------------===//
709
710/// This class is the base class for the comparison instructions.
711/// Abstract base class of comparison instructions.
712class CmpInst : public Instruction {
713public:
714 /// This enumeration lists the possible predicates for CmpInst subclasses.
715 /// Values in the range 0-31 are reserved for FCmpInst, while values in the
716 /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
717 /// predicate values are not overlapping between the classes.
718 ///
719 /// Some passes (e.g. InstCombine) depend on the bit-wise characteristics of
720 /// FCMP_* values. Changing the bit patterns requires a potential change to
721 /// those passes.
722 enum Predicate : unsigned {
723 // Opcode U L G E Intuitive operation
724 FCMP_FALSE = 0, ///< 0 0 0 0 Always false (always folded)
725 FCMP_OEQ = 1, ///< 0 0 0 1 True if ordered and equal
726 FCMP_OGT = 2, ///< 0 0 1 0 True if ordered and greater than
727 FCMP_OGE = 3, ///< 0 0 1 1 True if ordered and greater than or equal
728 FCMP_OLT = 4, ///< 0 1 0 0 True if ordered and less than
729 FCMP_OLE = 5, ///< 0 1 0 1 True if ordered and less than or equal
730 FCMP_ONE = 6, ///< 0 1 1 0 True if ordered and operands are unequal
731 FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans)
732 FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
733 FCMP_UEQ = 9, ///< 1 0 0 1 True if unordered or equal
734 FCMP_UGT = 10, ///< 1 0 1 0 True if unordered or greater than
735 FCMP_UGE = 11, ///< 1 0 1 1 True if unordered, greater than, or equal
736 FCMP_ULT = 12, ///< 1 1 0 0 True if unordered or less than
737 FCMP_ULE = 13, ///< 1 1 0 1 True if unordered, less than, or equal
738 FCMP_UNE = 14, ///< 1 1 1 0 True if unordered or not equal
739 FCMP_TRUE = 15, ///< 1 1 1 1 Always true (always folded)
740 FIRST_FCMP_PREDICATE = FCMP_FALSE,
741 LAST_FCMP_PREDICATE = FCMP_TRUE,
742 BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
743 ICMP_EQ = 32, ///< equal
744 ICMP_NE = 33, ///< not equal
745 ICMP_UGT = 34, ///< unsigned greater than
746 ICMP_UGE = 35, ///< unsigned greater or equal
747 ICMP_ULT = 36, ///< unsigned less than
748 ICMP_ULE = 37, ///< unsigned less or equal
749 ICMP_SGT = 38, ///< signed greater than
750 ICMP_SGE = 39, ///< signed greater or equal
751 ICMP_SLT = 40, ///< signed less than
752 ICMP_SLE = 41, ///< signed less or equal
753 FIRST_ICMP_PREDICATE = ICMP_EQ,
754 LAST_ICMP_PREDICATE = ICMP_SLE,
755 BAD_ICMP_PREDICATE = ICMP_SLE + 1
756 };
757 using PredicateField =
758 Bitfield::Element<Predicate, 0, 6, LAST_ICMP_PREDICATE>;
759
760protected:
761 CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
762 Value *LHS, Value *RHS, const Twine &Name = "",
763 Instruction *InsertBefore = nullptr,
764 Instruction *FlagsSource = nullptr);
765
766 CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
767 Value *LHS, Value *RHS, const Twine &Name,
768 BasicBlock *InsertAtEnd);
769
770public:
771 // allocate space for exactly two operands
772 void *operator new(size_t s) {
773 return User::operator new(s, 2);
774 }
775
776 /// Construct a compare instruction, given the opcode, the predicate and
777 /// the two operands. Optionally (if InstBefore is specified) insert the
778 /// instruction into a BasicBlock right before the specified instruction.
779 /// The specified Instruction is allowed to be a dereferenced end iterator.
780 /// Create a CmpInst
781 static CmpInst *Create(OtherOps Op,
782 Predicate predicate, Value *S1,
783 Value *S2, const Twine &Name = "",
784 Instruction *InsertBefore = nullptr);
785
786 /// Construct a compare instruction, given the opcode, the predicate and the
787 /// two operands. Also automatically insert this instruction to the end of
788 /// the BasicBlock specified.
789 /// Create a CmpInst
790 static CmpInst *Create(OtherOps Op, Predicate predicate, Value *S1,
791 Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
792
793 /// Get the opcode casted to the right type
794 OtherOps getOpcode() const {
795 return static_cast<OtherOps>(Instruction::getOpcode());
796 }
797
798 /// Return the predicate for this instruction.
799 Predicate getPredicate() const { return getSubclassData<PredicateField>(); }
800
801 /// Set the predicate for this instruction to the specified value.
802 void setPredicate(Predicate P) { setSubclassData<PredicateField>(P); }
803
804 static bool isFPPredicate(Predicate P) {
805 static_assert(FIRST_FCMP_PREDICATE == 0,
806 "FIRST_FCMP_PREDICATE is required to be 0");
807 return P <= LAST_FCMP_PREDICATE;
808 }
809
810 static bool isIntPredicate(Predicate P) {
811 return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
812 }
813
814 static StringRef getPredicateName(Predicate P);
815
816 bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
817 bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
818
819 /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
820 /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
821 /// @returns the inverse predicate for the instruction's current predicate.
822 /// Return the inverse of the instruction's predicate.
823 Predicate getInversePredicate() const {
824 return getInversePredicate(getPredicate());
825 }
826
827 /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
828 /// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
829 /// @returns the inverse predicate for predicate provided in \p pred.
830 /// Return the inverse of a given predicate
831 static Predicate getInversePredicate(Predicate pred);
832
833 /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
834 /// OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
835 /// @returns the predicate that would be the result of exchanging the two
836 /// operands of the CmpInst instruction without changing the result
837 /// produced.
838 /// Return the predicate as if the operands were swapped
839 Predicate getSwappedPredicate() const {
840 return getSwappedPredicate(getPredicate());
841 }
842
843 /// This is a static version that you can use without an instruction
844 /// available.
845 /// Return the predicate as if the operands were swapped.
846 static Predicate getSwappedPredicate(Predicate pred);
847
848 /// This is a static version that you can use without an instruction
849 /// available.
850 /// @returns true if the comparison predicate is strict, false otherwise.
851 static bool isStrictPredicate(Predicate predicate);
852
853 /// @returns true if the comparison predicate is strict, false otherwise.
854 /// Determine if this instruction is using an strict comparison predicate.
855 bool isStrictPredicate() const { return isStrictPredicate(getPredicate()); }
856
857 /// This is a static version that you can use without an instruction
858 /// available.
859 /// @returns true if the comparison predicate is non-strict, false otherwise.
860 static bool isNonStrictPredicate(Predicate predicate);
861
862 /// @returns true if the comparison predicate is non-strict, false otherwise.
863 /// Determine if this instruction is using an non-strict comparison predicate.
864 bool isNonStrictPredicate() const {
865 return isNonStrictPredicate(getPredicate());
866 }
867
868 /// For example, SGE -> SGT, SLE -> SLT, ULE -> ULT, UGE -> UGT.
869 /// Returns the strict version of non-strict comparisons.
870 Predicate getStrictPredicate() const {
871 return getStrictPredicate(getPredicate());
872 }
873
874 /// This is a static version that you can use without an instruction
875 /// available.
876 /// @returns the strict version of comparison provided in \p pred.
877 /// If \p pred is not a strict comparison predicate, returns \p pred.
878 /// Returns the strict version of non-strict comparisons.
879 static Predicate getStrictPredicate(Predicate pred);
880
881 /// For example, SGT -> SGE, SLT -> SLE, ULT -> ULE, UGT -> UGE.
882 /// Returns the non-strict version of strict comparisons.
883 Predicate getNonStrictPredicate() const {
884 return getNonStrictPredicate(getPredicate());
885 }
886
887 /// This is a static version that you can use without an instruction
888 /// available.
889 /// @returns the non-strict version of comparison provided in \p pred.
890 /// If \p pred is not a strict comparison predicate, returns \p pred.
891 /// Returns the non-strict version of strict comparisons.
892 static Predicate getNonStrictPredicate(Predicate pred);
893
894 /// This is a static version that you can use without an instruction
895 /// available.
896 /// Return the flipped strictness of predicate
897 static Predicate getFlippedStrictnessPredicate(Predicate pred);
898
899 /// For predicate of kind "is X or equal to 0" returns the predicate "is X".
900 /// For predicate of kind "is X" returns the predicate "is X or equal to 0".
901 /// does not support other kind of predicates.
902 /// @returns the predicate that does not contains is equal to zero if
903 /// it had and vice versa.
904 /// Return the flipped strictness of predicate
905 Predicate getFlippedStrictnessPredicate() const {
906 return getFlippedStrictnessPredicate(getPredicate());
907 }
908
909 /// Provide more efficient getOperand methods.
910 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
911
912 /// This is just a convenience that dispatches to the subclasses.
913 /// Swap the operands and adjust predicate accordingly to retain
914 /// the same comparison.
915 void swapOperands();
916
917 /// This is just a convenience that dispatches to the subclasses.
918 /// Determine if this CmpInst is commutative.
919 bool isCommutative() const;
920
921 /// Determine if this is an equals/not equals predicate.
922 /// This is a static version that you can use without an instruction
923 /// available.
924 static bool isEquality(Predicate pred);
925
926 /// Determine if this is an equals/not equals predicate.
927 bool isEquality() const { return isEquality(getPredicate()); }
928
929 /// Return true if the predicate is relational (not EQ or NE).
930 static bool isRelational(Predicate P) { return !isEquality(P); }
931
932 /// Return true if the predicate is relational (not EQ or NE).
933 bool isRelational() const { return !isEquality(); }
934
935 /// @returns true if the comparison is signed, false otherwise.
936 /// Determine if this instruction is using a signed comparison.
937 bool isSigned() const {
938 return isSigned(getPredicate());
939 }
940
941 /// @returns true if the comparison is unsigned, false otherwise.
942 /// Determine if this instruction is using an unsigned comparison.
943 bool isUnsigned() const {
944 return isUnsigned(getPredicate());
945 }
946
947 /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
948 /// @returns the signed version of the unsigned predicate pred.
949 /// return the signed version of a predicate
950 static Predicate getSignedPredicate(Predicate pred);
951
952 /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
953 /// @returns the signed version of the predicate for this instruction (which
954 /// has to be an unsigned predicate).
955 /// return the signed version of a predicate
956 Predicate getSignedPredicate() {
957 return getSignedPredicate(getPredicate());
958 }
959
960 /// For example, SLT->ULT, SLE->ULE, SGT->UGT, SGE->UGE, ULT->Failed assert
961 /// @returns the unsigned version of the signed predicate pred.
962 static Predicate getUnsignedPredicate(Predicate pred);
963
964 /// For example, SLT->ULT, SLE->ULE, SGT->UGT, SGE->UGE, ULT->Failed assert
965 /// @returns the unsigned version of the predicate for this instruction (which
966 /// has to be an signed predicate).
967 /// return the unsigned version of a predicate
968 Predicate getUnsignedPredicate() {
969 return getUnsignedPredicate(getPredicate());
970 }
971
972 /// For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->Failed assert
973 /// @returns the unsigned version of the signed predicate pred or
974 /// the signed version of the signed predicate pred.
975 static Predicate getFlippedSignednessPredicate(Predicate pred);
976
977 /// For example, SLT->ULT, ULT->SLT, SLE->ULE, ULE->SLE, EQ->Failed assert
978 /// @returns the unsigned version of the signed predicate pred or
979 /// the signed version of the signed predicate pred.
980 Predicate getFlippedSignednessPredicate() {
981 return getFlippedSignednessPredicate(getPredicate());
982 }
983
984 /// This is just a convenience.
985 /// Determine if this is true when both operands are the same.
986 bool isTrueWhenEqual() const {
987 return isTrueWhenEqual(getPredicate());
988 }
989
990 /// This is just a convenience.
991 /// Determine if this is false when both operands are the same.
992 bool isFalseWhenEqual() const {
993 return isFalseWhenEqual(getPredicate());
994 }
995
996 /// @returns true if the predicate is unsigned, false otherwise.
997 /// Determine if the predicate is an unsigned operation.
998 static bool isUnsigned(Predicate predicate);
999
1000 /// @returns true if the predicate is signed, false otherwise.
1001 /// Determine if the predicate is an signed operation.
1002 static bool isSigned(Predicate predicate);
1003
1004 /// Determine if the predicate is an ordered operation.
1005 static bool isOrdered(Predicate predicate);
1006
1007 /// Determine if the predicate is an unordered operation.
1008 static bool isUnordered(Predicate predicate);
1009
1010 /// Determine if the predicate is true when comparing a value with itself.
1011 static bool isTrueWhenEqual(Predicate predicate);
1012
1013 /// Determine if the predicate is false when comparing a value with itself.
1014 static bool isFalseWhenEqual(Predicate predicate);
1015
1016 /// Determine if Pred1 implies Pred2 is true when two compares have matching
1017 /// operands.
1018 static bool isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2);
1019
1020 /// Determine if Pred1 implies Pred2 is false when two compares have matching
1021 /// operands.
1022 static bool isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2);
1023
1024 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1025 static bool classof(const Instruction *I) {
1026 return I->getOpcode() == Instruction::ICmp ||
1027 I->getOpcode() == Instruction::FCmp;
1028 }
1029 static bool classof(const Value *V) {
1030 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1031 }
1032
1033 /// Create a result type for fcmp/icmp
1034 static Type* makeCmpResultType(Type* opnd_type) {
1035 if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
1036 return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
1037 vt->getElementCount());
1038 }
1039 return Type::getInt1Ty(opnd_type->getContext());
1040 }
1041
1042private:
1043 // Shadow Value::setValueSubclassData with a private forwarding method so that
1044 // subclasses cannot accidentally use it.
1045 void setValueSubclassData(unsigned short D) {
1046 Value::setValueSubclassData(D);
1047 }
1048};
1049
1050// FIXME: these are redundant if CmpInst < BinaryOperator
1051template <>
1052struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
1053};
1054
1055DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)CmpInst::op_iterator CmpInst::op_begin() { return OperandTraits
<CmpInst>::op_begin(this); } CmpInst::const_op_iterator
CmpInst::op_begin() const { return OperandTraits<CmpInst>
::op_begin(const_cast<CmpInst*>(this)); } CmpInst::op_iterator
CmpInst::op_end() { return OperandTraits<CmpInst>::op_end
(this); } CmpInst::const_op_iterator CmpInst::op_end() const {
return OperandTraits<CmpInst>::op_end(const_cast<CmpInst
*>(this)); } Value *CmpInst::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<CmpInst>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CmpInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1055, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CmpInst>::op_begin(const_cast<CmpInst
*>(this))[i_nocapture].get()); } void CmpInst::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<CmpInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CmpInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1055, __PRETTY_FUNCTION__)); OperandTraits<CmpInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CmpInst
::getNumOperands() const { return OperandTraits<CmpInst>
::operands(this); } template <int Idx_nocapture> Use &
CmpInst::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &CmpInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1056
1057/// A lightweight accessor for an operand bundle meant to be passed
1058/// around by value.
1059struct OperandBundleUse {
1060 ArrayRef<Use> Inputs;
1061
1062 OperandBundleUse() = default;
1063 explicit OperandBundleUse(StringMapEntry<uint32_t> *Tag, ArrayRef<Use> Inputs)
1064 : Inputs(Inputs), Tag(Tag) {}
1065
1066 /// Return true if the operand at index \p Idx in this operand bundle
1067 /// has the attribute A.
1068 bool operandHasAttr(unsigned Idx, Attribute::AttrKind A) const {
1069 if (isDeoptOperandBundle())
1070 if (A == Attribute::ReadOnly || A == Attribute::NoCapture)
1071 return Inputs[Idx]->getType()->isPointerTy();
1072
1073 // Conservative answer: no operands have any attributes.
1074 return false;
1075 }
1076
1077 /// Return the tag of this operand bundle as a string.
1078 StringRef getTagName() const {
1079 return Tag->getKey();
1080 }
1081
1082 /// Return the tag of this operand bundle as an integer.
1083 ///
1084 /// Operand bundle tags are interned by LLVMContextImpl::getOrInsertBundleTag,
1085 /// and this function returns the unique integer getOrInsertBundleTag
1086 /// associated the tag of this operand bundle to.
1087 uint32_t getTagID() const {
1088 return Tag->getValue();
1089 }
1090
1091 /// Return true if this is a "deopt" operand bundle.
1092 bool isDeoptOperandBundle() const {
1093 return getTagID() == LLVMContext::OB_deopt;
1094 }
1095
1096 /// Return true if this is a "funclet" operand bundle.
1097 bool isFuncletOperandBundle() const {
1098 return getTagID() == LLVMContext::OB_funclet;
1099 }
1100
1101 /// Return true if this is a "cfguardtarget" operand bundle.
1102 bool isCFGuardTargetOperandBundle() const {
1103 return getTagID() == LLVMContext::OB_cfguardtarget;
1104 }
1105
1106private:
1107 /// Pointer to an entry in LLVMContextImpl::getOrInsertBundleTag.
1108 StringMapEntry<uint32_t> *Tag;
1109};
1110
1111/// A container for an operand bundle being viewed as a set of values
1112/// rather than a set of uses.
1113///
1114/// Unlike OperandBundleUse, OperandBundleDefT owns the memory it carries, and
1115/// so it is possible to create and pass around "self-contained" instances of
1116/// OperandBundleDef and ConstOperandBundleDef.
1117template <typename InputTy> class OperandBundleDefT {
1118 std::string Tag;
1119 std::vector<InputTy> Inputs;
1120
1121public:
1122 explicit OperandBundleDefT(std::string Tag, std::vector<InputTy> Inputs)
1123 : Tag(std::move(Tag)), Inputs(std::move(Inputs)) {}
1124 explicit OperandBundleDefT(std::string Tag, ArrayRef<InputTy> Inputs)
1125 : Tag(std::move(Tag)), Inputs(Inputs) {}
1126
1127 explicit OperandBundleDefT(const OperandBundleUse &OBU) {
1128 Tag = std::string(OBU.getTagName());
1129 llvm::append_range(Inputs, OBU.Inputs);
1130 }
1131
1132 ArrayRef<InputTy> inputs() const { return Inputs; }
1133
1134 using input_iterator = typename std::vector<InputTy>::const_iterator;
1135
1136 size_t input_size() const { return Inputs.size(); }
1137 input_iterator input_begin() const { return Inputs.begin(); }
1138 input_iterator input_end() const { return Inputs.end(); }
1139
1140 StringRef getTag() const { return Tag; }
1141};
1142
1143using OperandBundleDef = OperandBundleDefT<Value *>;
1144using ConstOperandBundleDef = OperandBundleDefT<const Value *>;
1145
1146//===----------------------------------------------------------------------===//
1147// CallBase Class
1148//===----------------------------------------------------------------------===//
1149
1150/// Base class for all callable instructions (InvokeInst and CallInst)
1151/// Holds everything related to calling a function.
1152///
1153/// All call-like instructions are required to use a common operand layout:
1154/// - Zero or more arguments to the call,
1155/// - Zero or more operand bundles with zero or more operand inputs each
1156/// bundle,
1157/// - Zero or more subclass controlled operands
1158/// - The called function.
1159///
1160/// This allows this base class to easily access the called function and the
1161/// start of the arguments without knowing how many other operands a particular
1162/// subclass requires. Note that accessing the end of the argument list isn't
1163/// as cheap as most other operations on the base class.
1164class CallBase : public Instruction {
1165protected:
1166 // The first two bits are reserved by CallInst for fast retrieval,
1167 using CallInstReservedField = Bitfield::Element<unsigned, 0, 2>;
1168 using CallingConvField =
1169 Bitfield::Element<CallingConv::ID, CallInstReservedField::NextBit, 10,
1170 CallingConv::MaxID>;
1171 static_assert(
1172 Bitfield::areContiguous<CallInstReservedField, CallingConvField>(),
1173 "Bitfields must be contiguous");
1174
1175 /// The last operand is the called operand.
1176 static constexpr int CalledOperandOpEndIdx = -1;
1177
1178 AttributeList Attrs; ///< parameter attributes for callable
1179 FunctionType *FTy;
1180
1181 template <class... ArgsTy>
1182 CallBase(AttributeList const &A, FunctionType *FT, ArgsTy &&... Args)
1183 : Instruction(std::forward<ArgsTy>(Args)...), Attrs(A), FTy(FT) {}
1184
1185 using Instruction::Instruction;
1186
1187 bool hasDescriptor() const { return Value::HasDescriptor; }
1188
1189 unsigned getNumSubclassExtraOperands() const {
1190 switch (getOpcode()) {
1191 case Instruction::Call:
1192 return 0;
1193 case Instruction::Invoke:
1194 return 2;
1195 case Instruction::CallBr:
1196 return getNumSubclassExtraOperandsDynamic();
1197 }
1198 llvm_unreachable("Invalid opcode!")::llvm::llvm_unreachable_internal("Invalid opcode!", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1198)
;
1199 }
1200
1201 /// Get the number of extra operands for instructions that don't have a fixed
1202 /// number of extra operands.
1203 unsigned getNumSubclassExtraOperandsDynamic() const;
1204
1205public:
1206 using Instruction::getContext;
1207
1208 /// Create a clone of \p CB with a different set of operand bundles and
1209 /// insert it before \p InsertPt.
1210 ///
1211 /// The returned call instruction is identical \p CB in every way except that
1212 /// the operand bundles for the new instruction are set to the operand bundles
1213 /// in \p Bundles.
1214 static CallBase *Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
1215 Instruction *InsertPt = nullptr);
1216
1217 static bool classof(const Instruction *I) {
1218 return I->getOpcode() == Instruction::Call ||
1219 I->getOpcode() == Instruction::Invoke ||
1220 I->getOpcode() == Instruction::CallBr;
1221 }
1222 static bool classof(const Value *V) {
1223 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1224 }
1225
1226 FunctionType *getFunctionType() const { return FTy; }
1227
1228 void mutateFunctionType(FunctionType *FTy) {
1229 Value::mutateType(FTy->getReturnType());
1230 this->FTy = FTy;
1231 }
1232
1233 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1234
1235 /// data_operands_begin/data_operands_end - Return iterators iterating over
1236 /// the call / invoke argument list and bundle operands. For invokes, this is
1237 /// the set of instruction operands except the invoke target and the two
1238 /// successor blocks; and for calls this is the set of instruction operands
1239 /// except the call target.
1240 User::op_iterator data_operands_begin() { return op_begin(); }
1241 User::const_op_iterator data_operands_begin() const {
1242 return const_cast<CallBase *>(this)->data_operands_begin();
1243 }
1244 User::op_iterator data_operands_end() {
1245 // Walk from the end of the operands over the called operand and any
1246 // subclass operands.
1247 return op_end() - getNumSubclassExtraOperands() - 1;
1248 }
1249 User::const_op_iterator data_operands_end() const {
1250 return const_cast<CallBase *>(this)->data_operands_end();
1251 }
1252 iterator_range<User::op_iterator> data_ops() {
1253 return make_range(data_operands_begin(), data_operands_end());
1254 }
1255 iterator_range<User::const_op_iterator> data_ops() const {
1256 return make_range(data_operands_begin(), data_operands_end());
1257 }
1258 bool data_operands_empty() const {
1259 return data_operands_end() == data_operands_begin();
1260 }
1261 unsigned data_operands_size() const {
1262 return std::distance(data_operands_begin(), data_operands_end());
1263 }
1264
1265 bool isDataOperand(const Use *U) const {
1266 assert(this == U->getUser() &&((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1267, __PRETTY_FUNCTION__))
1267 "Only valid to query with a use of this instruction!")((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1267, __PRETTY_FUNCTION__))
;
1268 return data_operands_begin() <= U && U < data_operands_end();
1269 }
1270 bool isDataOperand(Value::const_user_iterator UI) const {
1271 return isDataOperand(&UI.getUse());
1272 }
1273
1274 /// Given a value use iterator, return the data operand corresponding to it.
1275 /// Iterator must actually correspond to a data operand.
1276 unsigned getDataOperandNo(Value::const_user_iterator UI) const {
1277 return getDataOperandNo(&UI.getUse());
1278 }
1279
1280 /// Given a use for a data operand, get the data operand number that
1281 /// corresponds to it.
1282 unsigned getDataOperandNo(const Use *U) const {
1283 assert(isDataOperand(U) && "Data operand # out of range!")((isDataOperand(U) && "Data operand # out of range!")
? static_cast<void> (0) : __assert_fail ("isDataOperand(U) && \"Data operand # out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1283, __PRETTY_FUNCTION__))
;
1284 return U - data_operands_begin();
1285 }
1286
1287 /// Return the iterator pointing to the beginning of the argument list.
1288 User::op_iterator arg_begin() { return op_begin(); }
1289 User::const_op_iterator arg_begin() const {
1290 return const_cast<CallBase *>(this)->arg_begin();
1291 }
1292
1293 /// Return the iterator pointing to the end of the argument list.
1294 User::op_iterator arg_end() {
1295 // From the end of the data operands, walk backwards past the bundle
1296 // operands.
1297 return data_operands_end() - getNumTotalBundleOperands();
1298 }
1299 User::const_op_iterator arg_end() const {
1300 return const_cast<CallBase *>(this)->arg_end();
1301 }
1302
1303 /// Iteration adapter for range-for loops.
1304 iterator_range<User::op_iterator> args() {
1305 return make_range(arg_begin(), arg_end());
1306 }
1307 iterator_range<User::const_op_iterator> args() const {
1308 return make_range(arg_begin(), arg_end());
1309 }
1310 bool arg_empty() const { return arg_end() == arg_begin(); }
1311 unsigned arg_size() const { return arg_end() - arg_begin(); }
1312
1313 // Legacy API names that duplicate the above and will be removed once users
1314 // are migrated.
1315 iterator_range<User::op_iterator> arg_operands() {
1316 return make_range(arg_begin(), arg_end());
1317 }
1318 iterator_range<User::const_op_iterator> arg_operands() const {
1319 return make_range(arg_begin(), arg_end());
1320 }
1321 unsigned getNumArgOperands() const { return arg_size(); }
1322
1323 Value *getArgOperand(unsigned i) const {
1324 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1324, __PRETTY_FUNCTION__))
;
1325 return getOperand(i);
1326 }
1327
1328 void setArgOperand(unsigned i, Value *v) {
1329 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1329, __PRETTY_FUNCTION__))
;
1330 setOperand(i, v);
1331 }
1332
1333 /// Wrappers for getting the \c Use of a call argument.
1334 const Use &getArgOperandUse(unsigned i) const {
1335 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1335, __PRETTY_FUNCTION__))
;
1336 return User::getOperandUse(i);
1337 }
1338 Use &getArgOperandUse(unsigned i) {
1339 assert(i < getNumArgOperands() && "Out of bounds!")((i < getNumArgOperands() && "Out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < getNumArgOperands() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1339, __PRETTY_FUNCTION__))
;
1340 return User::getOperandUse(i);
1341 }
1342
1343 bool isArgOperand(const Use *U) const {
1344 assert(this == U->getUser() &&((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1345, __PRETTY_FUNCTION__))
1345 "Only valid to query with a use of this instruction!")((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1345, __PRETTY_FUNCTION__))
;
1346 return arg_begin() <= U && U < arg_end();
1347 }
1348 bool isArgOperand(Value::const_user_iterator UI) const {
1349 return isArgOperand(&UI.getUse());
1350 }
1351
1352 /// Given a use for a arg operand, get the arg operand number that
1353 /// corresponds to it.
1354 unsigned getArgOperandNo(const Use *U) const {
1355 assert(isArgOperand(U) && "Arg operand # out of range!")((isArgOperand(U) && "Arg operand # out of range!") ?
static_cast<void> (0) : __assert_fail ("isArgOperand(U) && \"Arg operand # out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1355, __PRETTY_FUNCTION__))
;
1356 return U - arg_begin();
1357 }
1358
1359 /// Given a value use iterator, return the arg operand number corresponding to
1360 /// it. Iterator must actually correspond to a data operand.
1361 unsigned getArgOperandNo(Value::const_user_iterator UI) const {
1362 return getArgOperandNo(&UI.getUse());
1363 }
1364
1365 /// Returns true if this CallSite passes the given Value* as an argument to
1366 /// the called function.
1367 bool hasArgument(const Value *V) const {
1368 return llvm::is_contained(args(), V);
1369 }
1370
1371 Value *getCalledOperand() const { return Op<CalledOperandOpEndIdx>(); }
1372
1373 const Use &getCalledOperandUse() const { return Op<CalledOperandOpEndIdx>(); }
1374 Use &getCalledOperandUse() { return Op<CalledOperandOpEndIdx>(); }
1375
1376 /// Returns the function called, or null if this is an
1377 /// indirect function invocation.
1378 Function *getCalledFunction() const {
1379 return dyn_cast_or_null<Function>(getCalledOperand());
1380 }
1381
1382 /// Return true if the callsite is an indirect call.
1383 bool isIndirectCall() const;
1384
1385 /// Determine whether the passed iterator points to the callee operand's Use.
1386 bool isCallee(Value::const_user_iterator UI) const {
1387 return isCallee(&UI.getUse());
1388 }
1389
1390 /// Determine whether this Use is the callee operand's Use.
1391 bool isCallee(const Use *U) const { return &getCalledOperandUse() == U; }
1392
1393 /// Helper to get the caller (the parent function).
1394 Function *getCaller();
1395 const Function *getCaller() const {
1396 return const_cast<CallBase *>(this)->getCaller();
1397 }
1398
1399 /// Tests if this call site must be tail call optimized. Only a CallInst can
1400 /// be tail call optimized.
1401 bool isMustTailCall() const;
1402
1403 /// Tests if this call site is marked as a tail call.
1404 bool isTailCall() const;
1405
1406 /// Returns the intrinsic ID of the intrinsic called or
1407 /// Intrinsic::not_intrinsic if the called function is not an intrinsic, or if
1408 /// this is an indirect call.
1409 Intrinsic::ID getIntrinsicID() const;
1410
1411 void setCalledOperand(Value *V) { Op<CalledOperandOpEndIdx>() = V; }
1412
1413 /// Sets the function called, including updating the function type.
1414 void setCalledFunction(Function *Fn) {
1415 setCalledFunction(Fn->getFunctionType(), Fn);
1416 }
1417
1418 /// Sets the function called, including updating the function type.
1419 void setCalledFunction(FunctionCallee Fn) {
1420 setCalledFunction(Fn.getFunctionType(), Fn.getCallee());
1421 }
1422
1423 /// Sets the function called, including updating to the specified function
1424 /// type.
1425 void setCalledFunction(FunctionType *FTy, Value *Fn) {
1426 this->FTy = FTy;
1427 assert(FTy == cast<FunctionType>(((FTy == cast<FunctionType>( cast<PointerType>(Fn
->getType())->getElementType())) ? static_cast<void>
(0) : __assert_fail ("FTy == cast<FunctionType>( cast<PointerType>(Fn->getType())->getElementType())"
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1428, __PRETTY_FUNCTION__))
1428 cast<PointerType>(Fn->getType())->getElementType()))((FTy == cast<FunctionType>( cast<PointerType>(Fn
->getType())->getElementType())) ? static_cast<void>
(0) : __assert_fail ("FTy == cast<FunctionType>( cast<PointerType>(Fn->getType())->getElementType())"
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1428, __PRETTY_FUNCTION__))
;
1429 // This function doesn't mutate the return type, only the function
1430 // type. Seems broken, but I'm just gonna stick an assert in for now.
1431 assert(getType() == FTy->getReturnType())((getType() == FTy->getReturnType()) ? static_cast<void
> (0) : __assert_fail ("getType() == FTy->getReturnType()"
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1431, __PRETTY_FUNCTION__))
;
1432 setCalledOperand(Fn);
1433 }
1434
1435 CallingConv::ID getCallingConv() const {
1436 return getSubclassData<CallingConvField>();
1437 }
1438
1439 void setCallingConv(CallingConv::ID CC) {
1440 setSubclassData<CallingConvField>(CC);
1441 }
1442
1443 /// Check if this call is an inline asm statement.
1444 bool isInlineAsm() const { return isa<InlineAsm>(getCalledOperand()); }
1445
1446 /// \name Attribute API
1447 ///
1448 /// These methods access and modify attributes on this call (including
1449 /// looking through to the attributes on the called function when necessary).
1450 ///@{
1451
1452 /// Return the parameter attributes for this call.
1453 ///
1454 AttributeList getAttributes() const { return Attrs; }
1455
1456 /// Set the parameter attributes for this call.
1457 ///
1458 void setAttributes(AttributeList A) { Attrs = A; }
1459
1460 /// Determine whether this call has the given attribute. If it does not
1461 /// then determine if the called function has the attribute, but only if
1462 /// the attribute is allowed for the call.
1463 bool hasFnAttr(Attribute::AttrKind Kind) const {
1464 assert(Kind != Attribute::NoBuiltin &&((Kind != Attribute::NoBuiltin && "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin"
) ? static_cast<void> (0) : __assert_fail ("Kind != Attribute::NoBuiltin && \"Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1465, __PRETTY_FUNCTION__))
23
'?' condition is true
1465 "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin")((Kind != Attribute::NoBuiltin && "Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin"
) ? static_cast<void> (0) : __assert_fail ("Kind != Attribute::NoBuiltin && \"Use CallBase::isNoBuiltin() to check for Attribute::NoBuiltin\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1465, __PRETTY_FUNCTION__))
;
1466 return hasFnAttrImpl(Kind);
24
Calling 'CallBase::hasFnAttrImpl'
33
Returning from 'CallBase::hasFnAttrImpl'
34
Returning value, which participates in a condition later
1467 }
1468
1469 /// Determine whether this call has the given attribute. If it does not
1470 /// then determine if the called function has the attribute, but only if
1471 /// the attribute is allowed for the call.
1472 bool hasFnAttr(StringRef Kind) const { return hasFnAttrImpl(Kind); }
1473
1474 /// adds the attribute to the list of attributes.
1475 void addAttribute(unsigned i, Attribute::AttrKind Kind) {
1476 AttributeList PAL = getAttributes();
1477 PAL = PAL.addAttribute(getContext(), i, Kind);
1478 setAttributes(PAL);
1479 }
1480
1481 /// adds the attribute to the list of attributes.
1482 void addAttribute(unsigned i, Attribute Attr) {
1483 AttributeList PAL = getAttributes();
1484 PAL = PAL.addAttribute(getContext(), i, Attr);
1485 setAttributes(PAL);
1486 }
1487
1488 /// Adds the attribute to the indicated argument
1489 void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
1490 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1490, __PRETTY_FUNCTION__))
;
1491 AttributeList PAL = getAttributes();
1492 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
1493 setAttributes(PAL);
1494 }
1495
1496 /// Adds the attribute to the indicated argument
1497 void addParamAttr(unsigned ArgNo, Attribute Attr) {
1498 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1498, __PRETTY_FUNCTION__))
;
1499 AttributeList PAL = getAttributes();
1500 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
1501 setAttributes(PAL);
1502 }
1503
1504 /// removes the attribute from the list of attributes.
1505 void removeAttribute(unsigned i, Attribute::AttrKind Kind) {
1506 AttributeList PAL = getAttributes();
1507 PAL = PAL.removeAttribute(getContext(), i, Kind);
1508 setAttributes(PAL);
1509 }
1510
1511 /// removes the attribute from the list of attributes.
1512 void removeAttribute(unsigned i, StringRef Kind) {
1513 AttributeList PAL = getAttributes();
1514 PAL = PAL.removeAttribute(getContext(), i, Kind);
1515 setAttributes(PAL);
1516 }
1517
1518 void removeAttributes(unsigned i, const AttrBuilder &Attrs) {
1519 AttributeList PAL = getAttributes();
1520 PAL = PAL.removeAttributes(getContext(), i, Attrs);
1521 setAttributes(PAL);
1522 }
1523
1524 /// Removes the attribute from the given argument
1525 void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
1526 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1526, __PRETTY_FUNCTION__))
;
1527 AttributeList PAL = getAttributes();
1528 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
1529 setAttributes(PAL);
1530 }
1531
1532 /// Removes the attribute from the given argument
1533 void removeParamAttr(unsigned ArgNo, StringRef Kind) {
1534 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1534, __PRETTY_FUNCTION__))
;
1535 AttributeList PAL = getAttributes();
1536 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
1537 setAttributes(PAL);
1538 }
1539
1540 /// adds the dereferenceable attribute to the list of attributes.
1541 void addDereferenceableAttr(unsigned i, uint64_t Bytes) {
1542 AttributeList PAL = getAttributes();
1543 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
1544 setAttributes(PAL);
1545 }
1546
1547 /// adds the dereferenceable_or_null attribute to the list of
1548 /// attributes.
1549 void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
1550 AttributeList PAL = getAttributes();
1551 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
1552 setAttributes(PAL);
1553 }
1554
1555 /// Determine whether the return value has the given attribute.
1556 bool hasRetAttr(Attribute::AttrKind Kind) const {
1557 return hasRetAttrImpl(Kind);
1558 }
1559 /// Determine whether the return value has the given attribute.
1560 bool hasRetAttr(StringRef Kind) const { return hasRetAttrImpl(Kind); }
1561
1562 /// Determine whether the argument or parameter has the given attribute.
1563 bool paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const;
1564
1565 /// Get the attribute of a given kind at a position.
1566 Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
1567 return getAttributes().getAttribute(i, Kind);
1568 }
1569
1570 /// Get the attribute of a given kind at a position.
1571 Attribute getAttribute(unsigned i, StringRef Kind) const {
1572 return getAttributes().getAttribute(i, Kind);
1573 }
1574
1575 /// Get the attribute of a given kind from a given arg
1576 Attribute getParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
1577 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1577, __PRETTY_FUNCTION__))
;
1578 return getAttributes().getParamAttr(ArgNo, Kind);
1579 }
1580
1581 /// Get the attribute of a given kind from a given arg
1582 Attribute getParamAttr(unsigned ArgNo, StringRef Kind) const {
1583 assert(ArgNo < getNumArgOperands() && "Out of bounds")((ArgNo < getNumArgOperands() && "Out of bounds") ?
static_cast<void> (0) : __assert_fail ("ArgNo < getNumArgOperands() && \"Out of bounds\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1583, __PRETTY_FUNCTION__))
;
1584 return getAttributes().getParamAttr(ArgNo, Kind);
1585 }
1586
1587 /// Return true if the data operand at index \p i has the attribute \p
1588 /// A.
1589 ///
1590 /// Data operands include call arguments and values used in operand bundles,
1591 /// but does not include the callee operand. This routine dispatches to the
1592 /// underlying AttributeList or the OperandBundleUser as appropriate.
1593 ///
1594 /// The index \p i is interpreted as
1595 ///
1596 /// \p i == Attribute::ReturnIndex -> the return value
1597 /// \p i in [1, arg_size + 1) -> argument number (\p i - 1)
1598 /// \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index
1599 /// (\p i - 1) in the operand list.
1600 bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind Kind) const {
1601 // Note that we have to add one because `i` isn't zero-indexed.
1602 assert(i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) &&((i < (getNumArgOperands() + getNumTotalBundleOperands() +
1) && "Data operand index out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) && \"Data operand index out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1603, __PRETTY_FUNCTION__))
1603 "Data operand index out of bounds!")((i < (getNumArgOperands() + getNumTotalBundleOperands() +
1) && "Data operand index out of bounds!") ? static_cast
<void> (0) : __assert_fail ("i < (getNumArgOperands() + getNumTotalBundleOperands() + 1) && \"Data operand index out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1603, __PRETTY_FUNCTION__))
;
1604
1605 // The attribute A can either be directly specified, if the operand in
1606 // question is a call argument; or be indirectly implied by the kind of its
1607 // containing operand bundle, if the operand is a bundle operand.
1608
1609 if (i == AttributeList::ReturnIndex)
1610 return hasRetAttr(Kind);
1611
1612 // FIXME: Avoid these i - 1 calculations and update the API to use
1613 // zero-based indices.
1614 if (i < (getNumArgOperands() + 1))
1615 return paramHasAttr(i - 1, Kind);
1616
1617 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&((hasOperandBundles() && i >= (getBundleOperandsStartIndex
() + 1) && "Must be either a call argument or an operand bundle!"
) ? static_cast<void> (0) : __assert_fail ("hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && \"Must be either a call argument or an operand bundle!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1618, __PRETTY_FUNCTION__))
1618 "Must be either a call argument or an operand bundle!")((hasOperandBundles() && i >= (getBundleOperandsStartIndex
() + 1) && "Must be either a call argument or an operand bundle!"
) ? static_cast<void> (0) : __assert_fail ("hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) && \"Must be either a call argument or an operand bundle!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1618, __PRETTY_FUNCTION__))
;
1619 return bundleOperandHasAttr(i - 1, Kind);
1620 }
1621
1622 /// Determine whether this data operand is not captured.
1623 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1624 // better indicate that this may return a conservative answer.
1625 bool doesNotCapture(unsigned OpNo) const {
1626 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::NoCapture);
1627 }
1628
1629 /// Determine whether this argument is passed by value.
1630 bool isByValArgument(unsigned ArgNo) const {
1631 return paramHasAttr(ArgNo, Attribute::ByVal);
1632 }
1633
1634 /// Determine whether this argument is passed in an alloca.
1635 bool isInAllocaArgument(unsigned ArgNo) const {
1636 return paramHasAttr(ArgNo, Attribute::InAlloca);
1637 }
1638
1639 /// Determine whether this argument is passed by value, in an alloca, or is
1640 /// preallocated.
1641 bool isPassPointeeByValueArgument(unsigned ArgNo) const {
1642 return paramHasAttr(ArgNo, Attribute::ByVal) ||
1643 paramHasAttr(ArgNo, Attribute::InAlloca) ||
1644 paramHasAttr(ArgNo, Attribute::Preallocated);
1645 }
1646
1647 /// Determine if there are is an inalloca argument. Only the last argument can
1648 /// have the inalloca attribute.
1649 bool hasInAllocaArgument() const {
1650 return !arg_empty() && paramHasAttr(arg_size() - 1, Attribute::InAlloca);
1651 }
1652
1653 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1654 // better indicate that this may return a conservative answer.
1655 bool doesNotAccessMemory(unsigned OpNo) const {
1656 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1657 }
1658
1659 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1660 // better indicate that this may return a conservative answer.
1661 bool onlyReadsMemory(unsigned OpNo) const {
1662 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadOnly) ||
1663 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1664 }
1665
1666 // FIXME: Once this API is no longer duplicated in `CallSite`, rename this to
1667 // better indicate that this may return a conservative answer.
1668 bool doesNotReadMemory(unsigned OpNo) const {
1669 return dataOperandHasImpliedAttr(OpNo + 1, Attribute::WriteOnly) ||
1670 dataOperandHasImpliedAttr(OpNo + 1, Attribute::ReadNone);
1671 }
1672
1673 LLVM_ATTRIBUTE_DEPRECATED(unsigned getRetAlignment() const,[[deprecated("Use getRetAlign() instead")]] unsigned getRetAlignment
() const
1674 "Use getRetAlign() instead")[[deprecated("Use getRetAlign() instead")]] unsigned getRetAlignment
() const
{
1675 if (const auto MA = Attrs.getRetAlignment())
1676 return MA->value();
1677 return 0;
1678 }
1679
1680 /// Extract the alignment of the return value.
1681 MaybeAlign getRetAlign() const { return Attrs.getRetAlignment(); }
1682
1683 /// Extract the alignment for a call or parameter (0=unknown).
1684 LLVM_ATTRIBUTE_DEPRECATED(unsigned getParamAlignment(unsigned ArgNo) const,[[deprecated("Use getParamAlign() instead")]] unsigned getParamAlignment
(unsigned ArgNo) const
1685 "Use getParamAlign() instead")[[deprecated("Use getParamAlign() instead")]] unsigned getParamAlignment
(unsigned ArgNo) const
{
1686 if (const auto MA = Attrs.getParamAlignment(ArgNo))
1687 return MA->value();
1688 return 0;
1689 }
1690
1691 /// Extract the alignment for a call or parameter (0=unknown).
1692 MaybeAlign getParamAlign(unsigned ArgNo) const {
1693 return Attrs.getParamAlignment(ArgNo);
1694 }
1695
1696 /// Extract the byval type for a call or parameter.
1697 Type *getParamByValType(unsigned ArgNo) const {
1698 Type *Ty = Attrs.getParamByValType(ArgNo);
1699 return Ty ? Ty : getArgOperand(ArgNo)->getType()->getPointerElementType();
1700 }
1701
1702 /// Extract the preallocated type for a call or parameter.
1703 Type *getParamPreallocatedType(unsigned ArgNo) const {
1704 Type *Ty = Attrs.getParamPreallocatedType(ArgNo);
1705 return Ty ? Ty : getArgOperand(ArgNo)->getType()->getPointerElementType();
1706 }
1707
1708 /// Extract the number of dereferenceable bytes for a call or
1709 /// parameter (0=unknown).
1710 uint64_t getDereferenceableBytes(unsigned i) const {
1711 return Attrs.getDereferenceableBytes(i);
1712 }
1713
1714 /// Extract the number of dereferenceable_or_null bytes for a call or
1715 /// parameter (0=unknown).
1716 uint64_t getDereferenceableOrNullBytes(unsigned i) const {
1717 return Attrs.getDereferenceableOrNullBytes(i);
1718 }
1719
1720 /// Return true if the return value is known to be not null.
1721 /// This may be because it has the nonnull attribute, or because at least
1722 /// one byte is dereferenceable and the pointer is in addrspace(0).
1723 bool isReturnNonNull() const;
1724
1725 /// Determine if the return value is marked with NoAlias attribute.
1726 bool returnDoesNotAlias() const {
1727 return Attrs.hasAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
1728 }
1729
1730 /// If one of the arguments has the 'returned' attribute, returns its
1731 /// operand value. Otherwise, return nullptr.
1732 Value *getReturnedArgOperand() const;
1733
1734 /// Return true if the call should not be treated as a call to a
1735 /// builtin.
1736 bool isNoBuiltin() const {
1737 return hasFnAttrImpl(Attribute::NoBuiltin) &&
1738 !hasFnAttrImpl(Attribute::Builtin);
1739 }
1740
1741 /// Determine if the call requires strict floating point semantics.
1742 bool isStrictFP() const { return hasFnAttr(Attribute::StrictFP); }
1743
1744 /// Return true if the call should not be inlined.
1745 bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
1746 void setIsNoInline() {
1747 addAttribute(AttributeList::FunctionIndex, Attribute::NoInline);
1748 }
1749 /// Determine if the call does not access memory.
1750 bool doesNotAccessMemory() const { return hasFnAttr(Attribute::ReadNone); }
1751 void setDoesNotAccessMemory() {
1752 addAttribute(AttributeList::FunctionIndex, Attribute::ReadNone);
1753 }
1754
1755 /// Determine if the call does not access or only reads memory.
1756 bool onlyReadsMemory() const {
1757 return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
1758 }
1759
1760 /// Returns true if this function is guaranteed to return.
1761 bool willReturn() const { return hasFnAttr(Attribute::WillReturn); }
1762
1763 void setOnlyReadsMemory() {
1764 addAttribute(AttributeList::FunctionIndex, Attribute::ReadOnly);
1765 }
1766
1767 /// Determine if the call does not access or only writes memory.
1768 bool doesNotReadMemory() const {
1769 return doesNotAccessMemory() || hasFnAttr(Attribute::WriteOnly);
1770 }
1771 void setDoesNotReadMemory() {
1772 addAttribute(AttributeList::FunctionIndex, Attribute::WriteOnly);
1773 }
1774
1775 /// Determine if the call can access memmory only using pointers based
1776 /// on its arguments.
1777 bool onlyAccessesArgMemory() const {
1778 return hasFnAttr(Attribute::ArgMemOnly);
1779 }
1780 void setOnlyAccessesArgMemory() {
1781 addAttribute(AttributeList::FunctionIndex, Attribute::ArgMemOnly);
1782 }
1783
1784 /// Determine if the function may only access memory that is
1785 /// inaccessible from the IR.
1786 bool onlyAccessesInaccessibleMemory() const {
1787 return hasFnAttr(Attribute::InaccessibleMemOnly);
1788 }
1789 void setOnlyAccessesInaccessibleMemory() {
1790 addAttribute(AttributeList::FunctionIndex, Attribute::InaccessibleMemOnly);
1791 }
1792
1793 /// Determine if the function may only access memory that is
1794 /// either inaccessible from the IR or pointed to by its arguments.
1795 bool onlyAccessesInaccessibleMemOrArgMem() const {
1796 return hasFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
1797 }
1798 void setOnlyAccessesInaccessibleMemOrArgMem() {
1799 addAttribute(AttributeList::FunctionIndex,
1800 Attribute::InaccessibleMemOrArgMemOnly);
1801 }
1802 /// Determine if the call cannot return.
1803 bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
1804 void setDoesNotReturn() {
1805 addAttribute(AttributeList::FunctionIndex, Attribute::NoReturn);
1806 }
1807
1808 /// Determine if the call should not perform indirect branch tracking.
1809 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
1810
1811 /// Determine if the call cannot unwind.
1812 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
1813 void setDoesNotThrow() {
1814 addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
1815 }
1816
1817 /// Determine if the invoke cannot be duplicated.
1818 bool cannotDuplicate() const { return hasFnAttr(Attribute::NoDuplicate); }
1819 void setCannotDuplicate() {
1820 addAttribute(AttributeList::FunctionIndex, Attribute::NoDuplicate);
1821 }
1822
1823 /// Determine if the call cannot be tail merged.
1824 bool cannotMerge() const { return hasFnAttr(Attribute::NoMerge); }
1825 void setCannotMerge() {
1826 addAttribute(AttributeList::FunctionIndex, Attribute::NoMerge);
1827 }
1828
1829 /// Determine if the invoke is convergent
1830 bool isConvergent() const { return hasFnAttr(Attribute::Convergent); }
22
Calling 'CallBase::hasFnAttr'
35
Returning from 'CallBase::hasFnAttr'
36
Returning value, which participates in a condition later
1831 void setConvergent() {
1832 addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
1833 }
1834 void setNotConvergent() {
1835 removeAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
1836 }
1837
1838 /// Determine if the call returns a structure through first
1839 /// pointer argument.
1840 bool hasStructRetAttr() const {
1841 if (getNumArgOperands() == 0)
1842 return false;
1843
1844 // Be friendly and also check the callee.
1845 return paramHasAttr(0, Attribute::StructRet);
1846 }
1847
1848 /// Determine if any call argument is an aggregate passed by value.
1849 bool hasByValArgument() const {
1850 return Attrs.hasAttrSomewhere(Attribute::ByVal);
1851 }
1852
1853 ///@{
1854 // End of attribute API.
1855
1856 /// \name Operand Bundle API
1857 ///
1858 /// This group of methods provides the API to access and manipulate operand
1859 /// bundles on this call.
1860 /// @{
1861
1862 /// Return the number of operand bundles associated with this User.
1863 unsigned getNumOperandBundles() const {
1864 return std::distance(bundle_op_info_begin(), bundle_op_info_end());
1865 }
1866
1867 /// Return true if this User has any operand bundles.
1868 bool hasOperandBundles() const { return getNumOperandBundles() != 0; }
1869
1870 /// Return the index of the first bundle operand in the Use array.
1871 unsigned getBundleOperandsStartIndex() const {
1872 assert(hasOperandBundles() && "Don't call otherwise!")((hasOperandBundles() && "Don't call otherwise!") ? static_cast
<void> (0) : __assert_fail ("hasOperandBundles() && \"Don't call otherwise!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1872, __PRETTY_FUNCTION__))
;
1873 return bundle_op_info_begin()->Begin;
1874 }
1875
1876 /// Return the index of the last bundle operand in the Use array.
1877 unsigned getBundleOperandsEndIndex() const {
1878 assert(hasOperandBundles() && "Don't call otherwise!")((hasOperandBundles() && "Don't call otherwise!") ? static_cast
<void> (0) : __assert_fail ("hasOperandBundles() && \"Don't call otherwise!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1878, __PRETTY_FUNCTION__))
;
1879 return bundle_op_info_end()[-1].End;
1880 }
1881
1882 /// Return true if the operand at index \p Idx is a bundle operand.
1883 bool isBundleOperand(unsigned Idx) const {
1884 return hasOperandBundles() && Idx >= getBundleOperandsStartIndex() &&
1885 Idx < getBundleOperandsEndIndex();
1886 }
1887
1888 /// Returns true if the use is a bundle operand.
1889 bool isBundleOperand(const Use *U) const {
1890 assert(this == U->getUser() &&((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1891, __PRETTY_FUNCTION__))
1891 "Only valid to query with a use of this instruction!")((this == U->getUser() && "Only valid to query with a use of this instruction!"
) ? static_cast<void> (0) : __assert_fail ("this == U->getUser() && \"Only valid to query with a use of this instruction!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1891, __PRETTY_FUNCTION__))
;
1892 return hasOperandBundles() && isBundleOperand(U - op_begin());
1893 }
1894 bool isBundleOperand(Value::const_user_iterator UI) const {
1895 return isBundleOperand(&UI.getUse());
1896 }
1897
1898 /// Return the total number operands (not operand bundles) used by
1899 /// every operand bundle in this OperandBundleUser.
1900 unsigned getNumTotalBundleOperands() const {
1901 if (!hasOperandBundles())
1902 return 0;
1903
1904 unsigned Begin = getBundleOperandsStartIndex();
1905 unsigned End = getBundleOperandsEndIndex();
1906
1907 assert(Begin <= End && "Should be!")((Begin <= End && "Should be!") ? static_cast<void
> (0) : __assert_fail ("Begin <= End && \"Should be!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1907, __PRETTY_FUNCTION__))
;
1908 return End - Begin;
1909 }
1910
1911 /// Return the operand bundle at a specific index.
1912 OperandBundleUse getOperandBundleAt(unsigned Index) const {
1913 assert(Index < getNumOperandBundles() && "Index out of bounds!")((Index < getNumOperandBundles() && "Index out of bounds!"
) ? static_cast<void> (0) : __assert_fail ("Index < getNumOperandBundles() && \"Index out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1913, __PRETTY_FUNCTION__))
;
1914 return operandBundleFromBundleOpInfo(*(bundle_op_info_begin() + Index));
1915 }
1916
1917 /// Return the number of operand bundles with the tag Name attached to
1918 /// this instruction.
1919 unsigned countOperandBundlesOfType(StringRef Name) const {
1920 unsigned Count = 0;
1921 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
1922 if (getOperandBundleAt(i).getTagName() == Name)
1923 Count++;
1924
1925 return Count;
1926 }
1927
1928 /// Return the number of operand bundles with the tag ID attached to
1929 /// this instruction.
1930 unsigned countOperandBundlesOfType(uint32_t ID) const {
1931 unsigned Count = 0;
1932 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
1933 if (getOperandBundleAt(i).getTagID() == ID)
1934 Count++;
1935
1936 return Count;
1937 }
1938
1939 /// Return an operand bundle by name, if present.
1940 ///
1941 /// It is an error to call this for operand bundle types that may have
1942 /// multiple instances of them on the same instruction.
1943 Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
1944 assert(countOperandBundlesOfType(Name) < 2 && "Precondition violated!")((countOperandBundlesOfType(Name) < 2 && "Precondition violated!"
) ? static_cast<void> (0) : __assert_fail ("countOperandBundlesOfType(Name) < 2 && \"Precondition violated!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1944, __PRETTY_FUNCTION__))
;
1945
1946 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
1947 OperandBundleUse U = getOperandBundleAt(i);
1948 if (U.getTagName() == Name)
1949 return U;
1950 }
1951
1952 return None;
1953 }
1954
1955 /// Return an operand bundle by tag ID, if present.
1956 ///
1957 /// It is an error to call this for operand bundle types that may have
1958 /// multiple instances of them on the same instruction.
1959 Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
1960 assert(countOperandBundlesOfType(ID) < 2 && "Precondition violated!")((countOperandBundlesOfType(ID) < 2 && "Precondition violated!"
) ? static_cast<void> (0) : __assert_fail ("countOperandBundlesOfType(ID) < 2 && \"Precondition violated!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 1960, __PRETTY_FUNCTION__))
;
1961
1962 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
1963 OperandBundleUse U = getOperandBundleAt(i);
1964 if (U.getTagID() == ID)
1965 return U;
1966 }
1967
1968 return None;
1969 }
1970
1971 /// Return the list of operand bundles attached to this instruction as
1972 /// a vector of OperandBundleDefs.
1973 ///
1974 /// This function copies the OperandBundeUse instances associated with this
1975 /// OperandBundleUser to a vector of OperandBundleDefs. Note:
1976 /// OperandBundeUses and OperandBundleDefs are non-trivially *different*
1977 /// representations of operand bundles (see documentation above).
1978 void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const;
1979
1980 /// Return the operand bundle for the operand at index OpIdx.
1981 ///
1982 /// It is an error to call this with an OpIdx that does not correspond to an
1983 /// bundle operand.
1984 OperandBundleUse getOperandBundleForOperand(unsigned OpIdx) const {
1985 return operandBundleFromBundleOpInfo(getBundleOpInfoForOperand(OpIdx));
1986 }
1987
1988 /// Return true if this operand bundle user has operand bundles that
1989 /// may read from the heap.
1990 bool hasReadingOperandBundles() const {
1991 // Implementation note: this is a conservative implementation of operand
1992 // bundle semantics, where *any* operand bundle forces a callsite to be at
1993 // least readonly.
1994 return hasOperandBundles();
1995 }
1996
1997 /// Return true if this operand bundle user has operand bundles that
1998 /// may write to the heap.
1999 bool hasClobberingOperandBundles() const {
2000 for (auto &BOI : bundle_op_infos()) {
2001 if (BOI.Tag->second == LLVMContext::OB_deopt ||
2002 BOI.Tag->second == LLVMContext::OB_funclet)
2003 continue;
2004
2005 // This instruction has an operand bundle that is not known to us.
2006 // Assume the worst.
2007 return true;
2008 }
2009
2010 return false;
2011 }
2012
2013 /// Return true if the bundle operand at index \p OpIdx has the
2014 /// attribute \p A.
2015 bool bundleOperandHasAttr(unsigned OpIdx, Attribute::AttrKind A) const {
2016 auto &BOI = getBundleOpInfoForOperand(OpIdx);
2017 auto OBU = operandBundleFromBundleOpInfo(BOI);
2018 return OBU.operandHasAttr(OpIdx - BOI.Begin, A);
2019 }
2020
2021 /// Return true if \p Other has the same sequence of operand bundle
2022 /// tags with the same number of operands on each one of them as this
2023 /// OperandBundleUser.
2024 bool hasIdenticalOperandBundleSchema(const CallBase &Other) const {
2025 if (getNumOperandBundles() != Other.getNumOperandBundles())
2026 return false;
2027
2028 return std::equal(bundle_op_info_begin(), bundle_op_info_end(),
2029 Other.bundle_op_info_begin());
2030 }
2031
2032 /// Return true if this operand bundle user contains operand bundles
2033 /// with tags other than those specified in \p IDs.
2034 bool hasOperandBundlesOtherThan(ArrayRef<uint32_t> IDs) const {
2035 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
2036 uint32_t ID = getOperandBundleAt(i).getTagID();
2037 if (!is_contained(IDs, ID))
2038 return true;
2039 }
2040 return false;
2041 }
2042
2043 /// Is the function attribute S disallowed by some operand bundle on
2044 /// this operand bundle user?
2045 bool isFnAttrDisallowedByOpBundle(StringRef S) const {
2046 // Operand bundles only possibly disallow readnone, readonly and argmemonly
2047 // attributes. All String attributes are fine.
2048 return false;
2049 }
2050
2051 /// Is the function attribute A disallowed by some operand bundle on
2052 /// this operand bundle user?
2053 bool isFnAttrDisallowedByOpBundle(Attribute::AttrKind A) const {
2054 switch (A) {
28
Control jumps to the 'default' case at line 2055
2055 default:
2056 return false;
29
Returning zero, which participates in a condition later
2057
2058 case Attribute::InaccessibleMemOrArgMemOnly:
2059 return hasReadingOperandBundles();
2060
2061 case Attribute::InaccessibleMemOnly:
2062 return hasReadingOperandBundles();
2063
2064 case Attribute::ArgMemOnly:
2065 return hasReadingOperandBundles();
2066
2067 case Attribute::ReadNone:
2068 return hasReadingOperandBundles();
2069
2070 case Attribute::ReadOnly:
2071 return hasClobberingOperandBundles();
2072 }
2073
2074 llvm_unreachable("switch has a default case!")::llvm::llvm_unreachable_internal("switch has a default case!"
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 2074)
;
2075 }
2076
2077 /// Used to keep track of an operand bundle. See the main comment on
2078 /// OperandBundleUser above.
2079 struct BundleOpInfo {
2080 /// The operand bundle tag, interned by
2081 /// LLVMContextImpl::getOrInsertBundleTag.
2082 StringMapEntry<uint32_t> *Tag;
2083
2084 /// The index in the Use& vector where operands for this operand
2085 /// bundle starts.
2086 uint32_t Begin;
2087
2088 /// The index in the Use& vector where operands for this operand
2089 /// bundle ends.
2090 uint32_t End;
2091
2092 bool operator==(const BundleOpInfo &Other) const {
2093 return Tag == Other.Tag && Begin == Other.Begin && End == Other.End;
2094 }
2095 };
2096
2097 /// Simple helper function to map a BundleOpInfo to an
2098 /// OperandBundleUse.
2099 OperandBundleUse
2100 operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const {
2101 auto begin = op_begin();
2102 ArrayRef<Use> Inputs(begin + BOI.Begin, begin + BOI.End);
2103 return OperandBundleUse(BOI.Tag, Inputs);
2104 }
2105
2106 using bundle_op_iterator = BundleOpInfo *;
2107 using const_bundle_op_iterator = const BundleOpInfo *;
2108
2109 /// Return the start of the list of BundleOpInfo instances associated
2110 /// with this OperandBundleUser.
2111 ///
2112 /// OperandBundleUser uses the descriptor area co-allocated with the host User
2113 /// to store some meta information about which operands are "normal" operands,
2114 /// and which ones belong to some operand bundle.
2115 ///
2116 /// The layout of an operand bundle user is
2117 ///
2118 /// +-----------uint32_t End-------------------------------------+
2119 /// | |
2120 /// | +--------uint32_t Begin--------------------+ |
2121 /// | | | |
2122 /// ^ ^ v v
2123 /// |------|------|----|----|----|----|----|---------|----|---------|----|-----
2124 /// | BOI0 | BOI1 | .. | DU | U0 | U1 | .. | BOI0_U0 | .. | BOI1_U0 | .. | Un
2125 /// |------|------|----|----|----|----|----|---------|----|---------|----|-----
2126 /// v v ^ ^
2127 /// | | | |
2128 /// | +--------uint32_t Begin------------+ |
2129 /// | |
2130 /// +-----------uint32_t End-----------------------------+
2131 ///
2132 ///
2133 /// BOI0, BOI1 ... are descriptions of operand bundles in this User's use
2134 /// list. These descriptions are installed and managed by this class, and
2135 /// they're all instances of OperandBundleUser<T>::BundleOpInfo.
2136 ///
2137 /// DU is an additional descriptor installed by User's 'operator new' to keep
2138 /// track of the 'BOI0 ... BOIN' co-allocation. OperandBundleUser does not
2139 /// access or modify DU in any way, it's an implementation detail private to
2140 /// User.
2141 ///
2142 /// The regular Use& vector for the User starts at U0. The operand bundle
2143 /// uses are part of the Use& vector, just like normal uses. In the diagram
2144 /// above, the operand bundle uses start at BOI0_U0. Each instance of
2145 /// BundleOpInfo has information about a contiguous set of uses constituting
2146 /// an operand bundle, and the total set of operand bundle uses themselves
2147 /// form a contiguous set of uses (i.e. there are no gaps between uses
2148 /// corresponding to individual operand bundles).
2149 ///
2150 /// This class does not know the location of the set of operand bundle uses
2151 /// within the use list -- that is decided by the User using this class via
2152 /// the BeginIdx argument in populateBundleOperandInfos.
2153 ///
2154 /// Currently operand bundle users with hung-off operands are not supported.
2155 bundle_op_iterator bundle_op_info_begin() {
2156 if (!hasDescriptor())
2157 return nullptr;
2158
2159 uint8_t *BytesBegin = getDescriptor().begin();
2160 return reinterpret_cast<bundle_op_iterator>(BytesBegin);
2161 }
2162
2163 /// Return the start of the list of BundleOpInfo instances associated
2164 /// with this OperandBundleUser.
2165 const_bundle_op_iterator bundle_op_info_begin() const {
2166 auto *NonConstThis = const_cast<CallBase *>(this);
2167 return NonConstThis->bundle_op_info_begin();
2168 }
2169
2170 /// Return the end of the list of BundleOpInfo instances associated
2171 /// with this OperandBundleUser.
2172 bundle_op_iterator bundle_op_info_end() {
2173 if (!hasDescriptor())
2174 return nullptr;
2175
2176 uint8_t *BytesEnd = getDescriptor().end();
2177 return reinterpret_cast<bundle_op_iterator>(BytesEnd);
2178 }
2179
2180 /// Return the end of the list of BundleOpInfo instances associated
2181 /// with this OperandBundleUser.
2182 const_bundle_op_iterator bundle_op_info_end() const {
2183 auto *NonConstThis = const_cast<CallBase *>(this);
2184 return NonConstThis->bundle_op_info_end();
2185 }
2186
2187 /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
2188 iterator_range<bundle_op_iterator> bundle_op_infos() {
2189 return make_range(bundle_op_info_begin(), bundle_op_info_end());
2190 }
2191
2192 /// Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
2193 iterator_range<const_bundle_op_iterator> bundle_op_infos() const {
2194 return make_range(bundle_op_info_begin(), bundle_op_info_end());
2195 }
2196
2197 /// Populate the BundleOpInfo instances and the Use& vector from \p
2198 /// Bundles. Return the op_iterator pointing to the Use& one past the last
2199 /// last bundle operand use.
2200 ///
2201 /// Each \p OperandBundleDef instance is tracked by a OperandBundleInfo
2202 /// instance allocated in this User's descriptor.
2203 op_iterator populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
2204 const unsigned BeginIndex);
2205
2206public:
2207 /// Return the BundleOpInfo for the operand at index OpIdx.
2208 ///
2209 /// It is an error to call this with an OpIdx that does not correspond to an
2210 /// bundle operand.
2211 BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx);
2212 const BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx) const {
2213 return const_cast<CallBase *>(this)->getBundleOpInfoForOperand(OpIdx);
2214 }
2215
2216protected:
2217 /// Return the total number of values used in \p Bundles.
2218 static unsigned CountBundleInputs(ArrayRef<OperandBundleDef> Bundles) {
2219 unsigned Total = 0;
2220 for (auto &B : Bundles)
2221 Total += B.input_size();
2222 return Total;
2223 }
2224
2225 /// @}
2226 // End of operand bundle API.
2227
2228private:
2229 bool hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const;
2230 bool hasFnAttrOnCalledFunction(StringRef Kind) const;
2231
2232 template <typename AttrKind> bool hasFnAttrImpl(AttrKind Kind) const {
2233 if (Attrs.hasFnAttribute(Kind))
25
Assuming the condition is false
26
Taking false branch
2234 return true;
2235
2236 // Operand bundles override attributes on the called function, but don't
2237 // override attributes directly present on the call instruction.
2238 if (isFnAttrDisallowedByOpBundle(Kind))
27
Calling 'CallBase::isFnAttrDisallowedByOpBundle'
30
Returning from 'CallBase::isFnAttrDisallowedByOpBundle'
31
Taking false branch
2239 return false;
2240
2241 return hasFnAttrOnCalledFunction(Kind);
32
Returning value, which participates in a condition later
2242 }
2243
2244 /// Determine whether the return value has the given attribute. Supports
2245 /// Attribute::AttrKind and StringRef as \p AttrKind types.
2246 template <typename AttrKind> bool hasRetAttrImpl(AttrKind Kind) const {
2247 if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
2248 return true;
2249
2250 // Look at the callee, if available.
2251 if (const Function *F = getCalledFunction())
2252 return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
2253 return false;
2254 }
2255};
2256
2257template <>
2258struct OperandTraits<CallBase> : public VariadicOperandTraits<CallBase, 1> {};
2259
2260DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallBase, Value)CallBase::op_iterator CallBase::op_begin() { return OperandTraits
<CallBase>::op_begin(this); } CallBase::const_op_iterator
CallBase::op_begin() const { return OperandTraits<CallBase
>::op_begin(const_cast<CallBase*>(this)); } CallBase
::op_iterator CallBase::op_end() { return OperandTraits<CallBase
>::op_end(this); } CallBase::const_op_iterator CallBase::op_end
() const { return OperandTraits<CallBase>::op_end(const_cast
<CallBase*>(this)); } Value *CallBase::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<CallBase
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CallBase>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 2260, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CallBase>::op_begin(const_cast<CallBase
*>(this))[i_nocapture].get()); } void CallBase::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<CallBase>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CallBase>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 2260, __PRETTY_FUNCTION__)); OperandTraits<CallBase>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned CallBase
::getNumOperands() const { return OperandTraits<CallBase>
::operands(this); } template <int Idx_nocapture> Use &
CallBase::Op() { return this->OpFrom<Idx_nocapture>(
this); } template <int Idx_nocapture> const Use &CallBase
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2261
2262//===----------------------------------------------------------------------===//
2263// FuncletPadInst Class
2264//===----------------------------------------------------------------------===//
2265class FuncletPadInst : public Instruction {
2266private:
2267 FuncletPadInst(const FuncletPadInst &CPI);
2268
2269 explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
2270 ArrayRef<Value *> Args, unsigned Values,
2271 const Twine &NameStr, Instruction *InsertBefore);
2272 explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
2273 ArrayRef<Value *> Args, unsigned Values,
2274 const Twine &NameStr, BasicBlock *InsertAtEnd);
2275
2276 void init(Value *ParentPad, ArrayRef<Value *> Args, const Twine &NameStr);
2277
2278protected:
2279 // Note: Instruction needs to be a friend here to call cloneImpl.
2280 friend class Instruction;
2281 friend class CatchPadInst;
2282 friend class CleanupPadInst;
2283
2284 FuncletPadInst *cloneImpl() const;
2285
2286public:
2287 /// Provide fast operand accessors
2288 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2289
2290 /// getNumArgOperands - Return the number of funcletpad arguments.
2291 ///
2292 unsigned getNumArgOperands() const { return getNumOperands() - 1; }
2293
2294 /// Convenience accessors
2295
2296 /// Return the outer EH-pad this funclet is nested within.
2297 ///
2298 /// Note: This returns the associated CatchSwitchInst if this FuncletPadInst
2299 /// is a CatchPadInst.
2300 Value *getParentPad() const { return Op<-1>(); }
2301 void setParentPad(Value *ParentPad) {
2302 assert(ParentPad)((ParentPad) ? static_cast<void> (0) : __assert_fail ("ParentPad"
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 2302, __PRETTY_FUNCTION__))
;
2303 Op<-1>() = ParentPad;
2304 }
2305
2306 /// getArgOperand/setArgOperand - Return/set the i-th funcletpad argument.
2307 ///
2308 Value *getArgOperand(unsigned i) const { return getOperand(i); }
2309 void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
2310
2311 /// arg_operands - iteration adapter for range-for loops.
2312 op_range arg_operands() { return op_range(op_begin(), op_end() - 1); }
2313
2314 /// arg_operands - iteration adapter for range-for loops.
2315 const_op_range arg_operands() const {
2316 return const_op_range(op_begin(), op_end() - 1);
2317 }
2318
2319 // Methods for support type inquiry through isa, cast, and dyn_cast:
2320 static bool classof(const Instruction *I) { return I->isFuncletPad(); }
2321 static bool classof(const Value *V) {
2322 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2323 }
2324};
2325
2326template <>
2327struct OperandTraits<FuncletPadInst>
2328 : public VariadicOperandTraits<FuncletPadInst, /*MINARITY=*/1> {};
2329
2330DEFINE_TRANSPARENT_OPERAND_ACCESSORS(FuncletPadInst, Value)FuncletPadInst::op_iterator FuncletPadInst::op_begin() { return
OperandTraits<FuncletPadInst>::op_begin(this); } FuncletPadInst
::const_op_iterator FuncletPadInst::op_begin() const { return
OperandTraits<FuncletPadInst>::op_begin(const_cast<
FuncletPadInst*>(this)); } FuncletPadInst::op_iterator FuncletPadInst
::op_end() { return OperandTraits<FuncletPadInst>::op_end
(this); } FuncletPadInst::const_op_iterator FuncletPadInst::op_end
() const { return OperandTraits<FuncletPadInst>::op_end
(const_cast<FuncletPadInst*>(this)); } Value *FuncletPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<FuncletPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<FuncletPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 2330, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<FuncletPadInst>::op_begin(const_cast<
FuncletPadInst*>(this))[i_nocapture].get()); } void FuncletPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<FuncletPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<FuncletPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/InstrTypes.h"
, 2330, __PRETTY_FUNCTION__)); OperandTraits<FuncletPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
FuncletPadInst::getNumOperands() const { return OperandTraits
<FuncletPadInst>::operands(this); } template <int Idx_nocapture
> Use &FuncletPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &FuncletPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2331
2332} // end namespace llvm
2333
2334#endif // LLVM_IR_INSTRTYPES_H

/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/PatternMatch.h

1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InstrTypes.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Value.h"
43#include "llvm/Support/Casting.h"
44#include <cstdint>
45
46namespace llvm {
47namespace PatternMatch {
48
49template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
41
Calling 'IntrinsicID_match::match'
45
Returning from 'IntrinsicID_match::match'
46
Returning zero, which participates in a condition later
50
Calling 'IntrinsicID_match::match'
54
Returning from 'IntrinsicID_match::match'
55
Returning zero, which participates in a condition later
51}
52
53template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55}
56
57template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65};
66
67template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69}
70
71template <typename Class> struct class_match {
72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73};
74
75/// Match an arbitrary value and ignore it.
76inline class_match<Value> m_Value() { return class_match<Value>(); }
77
78/// Match an arbitrary unary operation and ignore it.
79inline class_match<UnaryOperator> m_UnOp() {
80 return class_match<UnaryOperator>();
81}
82
83/// Match an arbitrary binary operation and ignore it.
84inline class_match<BinaryOperator> m_BinOp() {
85 return class_match<BinaryOperator>();
86}
87
88/// Matches any compare instruction and ignore it.
89inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90
91/// Match an arbitrary undef constant.
92inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
93
94/// Match an arbitrary poison constant.
95inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
96
97/// Match an arbitrary Constant and ignore it.
98inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
99
100/// Match an arbitrary ConstantInt and ignore it.
101inline class_match<ConstantInt> m_ConstantInt() {
102 return class_match<ConstantInt>();
103}
104
105/// Match an arbitrary ConstantFP and ignore it.
106inline class_match<ConstantFP> m_ConstantFP() {
107 return class_match<ConstantFP>();
108}
109
110/// Match an arbitrary ConstantExpr and ignore it.
111inline class_match<ConstantExpr> m_ConstantExpr() {
112 return class_match<ConstantExpr>();
113}
114
115/// Match an arbitrary basic block value and ignore it.
116inline class_match<BasicBlock> m_BasicBlock() {
117 return class_match<BasicBlock>();
118}
119
120/// Inverting matcher
121template <typename Ty> struct match_unless {
122 Ty M;
123
124 match_unless(const Ty &Matcher) : M(Matcher) {}
125
126 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
127};
128
129/// Match if the inner matcher does *NOT* match.
130template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
131 return match_unless<Ty>(M);
132}
133
134/// Matching combinators
135template <typename LTy, typename RTy> struct match_combine_or {
136 LTy L;
137 RTy R;
138
139 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
140
141 template <typename ITy> bool match(ITy *V) {
142 if (L.match(V))
143 return true;
144 if (R.match(V))
145 return true;
146 return false;
147 }
148};
149
150template <typename LTy, typename RTy> struct match_combine_and {
151 LTy L;
152 RTy R;
153
154 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
155
156 template <typename ITy> bool match(ITy *V) {
157 if (L.match(V))
158 if (R.match(V))
159 return true;
160 return false;
161 }
162};
163
164/// Combine two pattern matchers matching L || R
165template <typename LTy, typename RTy>
166inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
167 return match_combine_or<LTy, RTy>(L, R);
168}
169
170/// Combine two pattern matchers matching L && R
171template <typename LTy, typename RTy>
172inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
173 return match_combine_and<LTy, RTy>(L, R);
174}
175
176struct apint_match {
177 const APInt *&Res;
178 bool AllowUndef;
179
180 apint_match(const APInt *&Res, bool AllowUndef)
181 : Res(Res), AllowUndef(AllowUndef) {}
182
183 template <typename ITy> bool match(ITy *V) {
184 if (auto *CI = dyn_cast<ConstantInt>(V)) {
185 Res = &CI->getValue();
186 return true;
187 }
188 if (V->getType()->isVectorTy())
189 if (const auto *C = dyn_cast<Constant>(V))
190 if (auto *CI = dyn_cast_or_null<ConstantInt>(
191 C->getSplatValue(AllowUndef))) {
192 Res = &CI->getValue();
193 return true;
194 }
195 return false;
196 }
197};
198// Either constexpr if or renaming ConstantFP::getValueAPF to
199// ConstantFP::getValue is needed to do it via single template
200// function for both apint/apfloat.
201struct apfloat_match {
202 const APFloat *&Res;
203 bool AllowUndef;
204
205 apfloat_match(const APFloat *&Res, bool AllowUndef)
206 : Res(Res), AllowUndef(AllowUndef) {}
207
208 template <typename ITy> bool match(ITy *V) {
209 if (auto *CI = dyn_cast<ConstantFP>(V)) {
210 Res = &CI->getValueAPF();
211 return true;
212 }
213 if (V->getType()->isVectorTy())
214 if (const auto *C = dyn_cast<Constant>(V))
215 if (auto *CI = dyn_cast_or_null<ConstantFP>(
216 C->getSplatValue(AllowUndef))) {
217 Res = &CI->getValueAPF();
218 return true;
219 }
220 return false;
221 }
222};
223
224/// Match a ConstantInt or splatted ConstantVector, binding the
225/// specified pointer to the contained APInt.
226inline apint_match m_APInt(const APInt *&Res) {
227 // Forbid undefs by default to maintain previous behavior.
228 return apint_match(Res, /* AllowUndef */ false);
229}
230
231/// Match APInt while allowing undefs in splat vector constants.
232inline apint_match m_APIntAllowUndef(const APInt *&Res) {
233 return apint_match(Res, /* AllowUndef */ true);
234}
235
236/// Match APInt while forbidding undefs in splat vector constants.
237inline apint_match m_APIntForbidUndef(const APInt *&Res) {
238 return apint_match(Res, /* AllowUndef */ false);
239}
240
241/// Match a ConstantFP or splatted ConstantVector, binding the
242/// specified pointer to the contained APFloat.
243inline apfloat_match m_APFloat(const APFloat *&Res) {
244 // Forbid undefs by default to maintain previous behavior.
245 return apfloat_match(Res, /* AllowUndef */ false);
246}
247
248/// Match APFloat while allowing undefs in splat vector constants.
249inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
250 return apfloat_match(Res, /* AllowUndef */ true);
251}
252
253/// Match APFloat while forbidding undefs in splat vector constants.
254inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
255 return apfloat_match(Res, /* AllowUndef */ false);
256}
257
258template <int64_t Val> struct constantint_match {
259 template <typename ITy> bool match(ITy *V) {
260 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
261 const APInt &CIV = CI->getValue();
262 if (Val >= 0)
263 return CIV == static_cast<uint64_t>(Val);
264 // If Val is negative, and CI is shorter than it, truncate to the right
265 // number of bits. If it is larger, then we have to sign extend. Just
266 // compare their negated values.
267 return -CIV == -Val;
268 }
269 return false;
270 }
271};
272
273/// Match a ConstantInt with a specific value.
274template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
275 return constantint_match<Val>();
276}
277
278/// This helper class is used to match constant scalars, vector splats,
279/// and fixed width vectors that satisfy a specified predicate.
280/// For fixed width vector constants, undefined elements are ignored.
281template <typename Predicate, typename ConstantVal>
282struct cstval_pred_ty : public Predicate {
283 template <typename ITy> bool match(ITy *V) {
284 if (const auto *CV = dyn_cast<ConstantVal>(V))
285 return this->isValue(CV->getValue());
286 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
287 if (const auto *C = dyn_cast<Constant>(V)) {
288 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
289 return this->isValue(CV->getValue());
290
291 // Number of elements of a scalable vector unknown at compile time
292 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
293 if (!FVTy)
294 return false;
295
296 // Non-splat vector constant: check each element for a match.
297 unsigned NumElts = FVTy->getNumElements();
298 assert(NumElts != 0 && "Constant vector with no elements?")((NumElts != 0 && "Constant vector with no elements?"
) ? static_cast<void> (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/PatternMatch.h"
, 298, __PRETTY_FUNCTION__))
;
299 bool HasNonUndefElements = false;
300 for (unsigned i = 0; i != NumElts; ++i) {
301 Constant *Elt = C->getAggregateElement(i);
302 if (!Elt)
303 return false;
304 if (isa<UndefValue>(Elt))
305 continue;
306 auto *CV = dyn_cast<ConstantVal>(Elt);
307 if (!CV || !this->isValue(CV->getValue()))
308 return false;
309 HasNonUndefElements = true;
310 }
311 return HasNonUndefElements;
312 }
313 }
314 return false;
315 }
316};
317
318/// specialization of cstval_pred_ty for ConstantInt
319template <typename Predicate>
320using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
321
322/// specialization of cstval_pred_ty for ConstantFP
323template <typename Predicate>
324using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
325
326/// This helper class is used to match scalar and vector constants that
327/// satisfy a specified predicate, and bind them to an APInt.
328template <typename Predicate> struct api_pred_ty : public Predicate {
329 const APInt *&Res;
330
331 api_pred_ty(const APInt *&R) : Res(R) {}
332
333 template <typename ITy> bool match(ITy *V) {
334 if (const auto *CI = dyn_cast<ConstantInt>(V))
335 if (this->isValue(CI->getValue())) {
336 Res = &CI->getValue();
337 return true;
338 }
339 if (V->getType()->isVectorTy())
340 if (const auto *C = dyn_cast<Constant>(V))
341 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
342 if (this->isValue(CI->getValue())) {
343 Res = &CI->getValue();
344 return true;
345 }
346
347 return false;
348 }
349};
350
351/// This helper class is used to match scalar and vector constants that
352/// satisfy a specified predicate, and bind them to an APFloat.
353/// Undefs are allowed in splat vector constants.
354template <typename Predicate> struct apf_pred_ty : public Predicate {
355 const APFloat *&Res;
356
357 apf_pred_ty(const APFloat *&R) : Res(R) {}
358
359 template <typename ITy> bool match(ITy *V) {
360 if (const auto *CI = dyn_cast<ConstantFP>(V))
361 if (this->isValue(CI->getValue())) {
362 Res = &CI->getValue();
363 return true;
364 }
365 if (V->getType()->isVectorTy())
366 if (const auto *C = dyn_cast<Constant>(V))
367 if (auto *CI = dyn_cast_or_null<ConstantFP>(
368 C->getSplatValue(/* AllowUndef */ true)))
369 if (this->isValue(CI->getValue())) {
370 Res = &CI->getValue();
371 return true;
372 }
373
374 return false;
375 }
376};
377
378///////////////////////////////////////////////////////////////////////////////
379//
380// Encapsulate constant value queries for use in templated predicate matchers.
381// This allows checking if constants match using compound predicates and works
382// with vector constants, possibly with relaxed constraints. For example, ignore
383// undef values.
384//
385///////////////////////////////////////////////////////////////////////////////
386
387struct is_any_apint {
388 bool isValue(const APInt &C) { return true; }
389};
390/// Match an integer or vector with any integral constant.
391/// For vectors, this includes constants with undefined elements.
392inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
393 return cst_pred_ty<is_any_apint>();
394}
395
396struct is_all_ones {
397 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
398};
399/// Match an integer or vector with all bits set.
400/// For vectors, this includes constants with undefined elements.
401inline cst_pred_ty<is_all_ones> m_AllOnes() {
402 return cst_pred_ty<is_all_ones>();
403}
404
405struct is_maxsignedvalue {
406 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
407};
408/// Match an integer or vector with values having all bits except for the high
409/// bit set (0x7f...).
410/// For vectors, this includes constants with undefined elements.
411inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
412 return cst_pred_ty<is_maxsignedvalue>();
413}
414inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
415 return V;
416}
417
418struct is_negative {
419 bool isValue(const APInt &C) { return C.isNegative(); }
420};
421/// Match an integer or vector of negative values.
422/// For vectors, this includes constants with undefined elements.
423inline cst_pred_ty<is_negative> m_Negative() {
424 return cst_pred_ty<is_negative>();
425}
426inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
427 return V;
428}
429
430struct is_nonnegative {
431 bool isValue(const APInt &C) { return C.isNonNegative(); }
432};
433/// Match an integer or vector of non-negative values.
434/// For vectors, this includes constants with undefined elements.
435inline cst_pred_ty<is_nonnegative> m_NonNegative() {
436 return cst_pred_ty<is_nonnegative>();
437}
438inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
439 return V;
440}
441
442struct is_strictlypositive {
443 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
444};
445/// Match an integer or vector of strictly positive values.
446/// For vectors, this includes constants with undefined elements.
447inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
448 return cst_pred_ty<is_strictlypositive>();
449}
450inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
451 return V;
452}
453
454struct is_nonpositive {
455 bool isValue(const APInt &C) { return C.isNonPositive(); }
456};
457/// Match an integer or vector of non-positive values.
458/// For vectors, this includes constants with undefined elements.
459inline cst_pred_ty<is_nonpositive> m_NonPositive() {
460 return cst_pred_ty<is_nonpositive>();
461}
462inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
463
464struct is_one {
465 bool isValue(const APInt &C) { return C.isOneValue(); }
466};
467/// Match an integer 1 or a vector with all elements equal to 1.
468/// For vectors, this includes constants with undefined elements.
469inline cst_pred_ty<is_one> m_One() {
470 return cst_pred_ty<is_one>();
471}
472
473struct is_zero_int {
474 bool isValue(const APInt &C) { return C.isNullValue(); }
475};
476/// Match an integer 0 or a vector with all elements equal to 0.
477/// For vectors, this includes constants with undefined elements.
478inline cst_pred_ty<is_zero_int> m_ZeroInt() {
479 return cst_pred_ty<is_zero_int>();
480}
481
482struct is_zero {
483 template <typename ITy> bool match(ITy *V) {
484 auto *C = dyn_cast<Constant>(V);
485 // FIXME: this should be able to do something for scalable vectors
486 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
487 }
488};
489/// Match any null constant or a vector with all elements equal to 0.
490/// For vectors, this includes constants with undefined elements.
491inline is_zero m_Zero() {
492 return is_zero();
493}
494
495struct is_power2 {
496 bool isValue(const APInt &C) { return C.isPowerOf2(); }
497};
498/// Match an integer or vector power-of-2.
499/// For vectors, this includes constants with undefined elements.
500inline cst_pred_ty<is_power2> m_Power2() {
501 return cst_pred_ty<is_power2>();
502}
503inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
504 return V;
505}
506
507struct is_negated_power2 {
508 bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
509};
510/// Match a integer or vector negated power-of-2.
511/// For vectors, this includes constants with undefined elements.
512inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
513 return cst_pred_ty<is_negated_power2>();
514}
515inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
516 return V;
517}
518
519struct is_power2_or_zero {
520 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
521};
522/// Match an integer or vector of 0 or power-of-2 values.
523/// For vectors, this includes constants with undefined elements.
524inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
525 return cst_pred_ty<is_power2_or_zero>();
526}
527inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
528 return V;
529}
530
531struct is_sign_mask {
532 bool isValue(const APInt &C) { return C.isSignMask(); }
533};
534/// Match an integer or vector with only the sign bit(s) set.
535/// For vectors, this includes constants with undefined elements.
536inline cst_pred_ty<is_sign_mask> m_SignMask() {
537 return cst_pred_ty<is_sign_mask>();
538}
539
540struct is_lowbit_mask {
541 bool isValue(const APInt &C) { return C.isMask(); }
542};
543/// Match an integer or vector with only the low bit(s) set.
544/// For vectors, this includes constants with undefined elements.
545inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
546 return cst_pred_ty<is_lowbit_mask>();
547}
548
549struct icmp_pred_with_threshold {
550 ICmpInst::Predicate Pred;
551 const APInt *Thr;
552 bool isValue(const APInt &C) {
553 switch (Pred) {
554 case ICmpInst::Predicate::ICMP_EQ:
555 return C.eq(*Thr);
556 case ICmpInst::Predicate::ICMP_NE:
557 return C.ne(*Thr);
558 case ICmpInst::Predicate::ICMP_UGT:
559 return C.ugt(*Thr);
560 case ICmpInst::Predicate::ICMP_UGE:
561 return C.uge(*Thr);
562 case ICmpInst::Predicate::ICMP_ULT:
563 return C.ult(*Thr);
564 case ICmpInst::Predicate::ICMP_ULE:
565 return C.ule(*Thr);
566 case ICmpInst::Predicate::ICMP_SGT:
567 return C.sgt(*Thr);
568 case ICmpInst::Predicate::ICMP_SGE:
569 return C.sge(*Thr);
570 case ICmpInst::Predicate::ICMP_SLT:
571 return C.slt(*Thr);
572 case ICmpInst::Predicate::ICMP_SLE:
573 return C.sle(*Thr);
574 default:
575 llvm_unreachable("Unhandled ICmp predicate")::llvm::llvm_unreachable_internal("Unhandled ICmp predicate",
"/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/PatternMatch.h"
, 575)
;
576 }
577 }
578};
579/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
580/// to Threshold. For vectors, this includes constants with undefined elements.
581inline cst_pred_ty<icmp_pred_with_threshold>
582m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
583 cst_pred_ty<icmp_pred_with_threshold> P;
584 P.Pred = Predicate;
585 P.Thr = &Threshold;
586 return P;
587}
588
589struct is_nan {
590 bool isValue(const APFloat &C) { return C.isNaN(); }
591};
592/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
593/// For vectors, this includes constants with undefined elements.
594inline cstfp_pred_ty<is_nan> m_NaN() {
595 return cstfp_pred_ty<is_nan>();
596}
597
598struct is_nonnan {
599 bool isValue(const APFloat &C) { return !C.isNaN(); }
600};
601/// Match a non-NaN FP constant.
602/// For vectors, this includes constants with undefined elements.
603inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
604 return cstfp_pred_ty<is_nonnan>();
605}
606
607struct is_inf {
608 bool isValue(const APFloat &C) { return C.isInfinity(); }
609};
610/// Match a positive or negative infinity FP constant.
611/// For vectors, this includes constants with undefined elements.
612inline cstfp_pred_ty<is_inf> m_Inf() {
613 return cstfp_pred_ty<is_inf>();
614}
615
616struct is_noninf {
617 bool isValue(const APFloat &C) { return !C.isInfinity(); }
618};
619/// Match a non-infinity FP constant, i.e. finite or NaN.
620/// For vectors, this includes constants with undefined elements.
621inline cstfp_pred_ty<is_noninf> m_NonInf() {
622 return cstfp_pred_ty<is_noninf>();
623}
624
625struct is_finite {
626 bool isValue(const APFloat &C) { return C.isFinite(); }
627};
628/// Match a finite FP constant, i.e. not infinity or NaN.
629/// For vectors, this includes constants with undefined elements.
630inline cstfp_pred_ty<is_finite> m_Finite() {
631 return cstfp_pred_ty<is_finite>();
632}
633inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
634
635struct is_finitenonzero {
636 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
637};
638/// Match a finite non-zero FP constant.
639/// For vectors, this includes constants with undefined elements.
640inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
641 return cstfp_pred_ty<is_finitenonzero>();
642}
643inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
644 return V;
645}
646
647struct is_any_zero_fp {
648 bool isValue(const APFloat &C) { return C.isZero(); }
649};
650/// Match a floating-point negative zero or positive zero.
651/// For vectors, this includes constants with undefined elements.
652inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
653 return cstfp_pred_ty<is_any_zero_fp>();
654}
655
656struct is_pos_zero_fp {
657 bool isValue(const APFloat &C) { return C.isPosZero(); }
658};
659/// Match a floating-point positive zero.
660/// For vectors, this includes constants with undefined elements.
661inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
662 return cstfp_pred_ty<is_pos_zero_fp>();
663}
664
665struct is_neg_zero_fp {
666 bool isValue(const APFloat &C) { return C.isNegZero(); }
667};
668/// Match a floating-point negative zero.
669/// For vectors, this includes constants with undefined elements.
670inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
671 return cstfp_pred_ty<is_neg_zero_fp>();
672}
673
674struct is_non_zero_fp {
675 bool isValue(const APFloat &C) { return C.isNonZero(); }
676};
677/// Match a floating-point non-zero.
678/// For vectors, this includes constants with undefined elements.
679inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
680 return cstfp_pred_ty<is_non_zero_fp>();
681}
682
683///////////////////////////////////////////////////////////////////////////////
684
685template <typename Class> struct bind_ty {
686 Class *&VR;
687
688 bind_ty(Class *&V) : VR(V) {}
689
690 template <typename ITy> bool match(ITy *V) {
691 if (auto *CV = dyn_cast<Class>(V)) {
692 VR = CV;
693 return true;
694 }
695 return false;
696 }
697};
698
699/// Match a value, capturing it if we match.
700inline bind_ty<Value> m_Value(Value *&V) { return V; }
701inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
702
703/// Match an instruction, capturing it if we match.
704inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
705/// Match a unary operator, capturing it if we match.
706inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
707/// Match a binary operator, capturing it if we match.
708inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
709/// Match a with overflow intrinsic, capturing it if we match.
710inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
711
712/// Match a Constant, capturing the value if we match.
713inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
714
715/// Match a ConstantInt, capturing the value if we match.
716inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
717
718/// Match a ConstantFP, capturing the value if we match.
719inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
720
721/// Match a ConstantExpr, capturing the value if we match.
722inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
723
724/// Match a basic block value, capturing it if we match.
725inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
726inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
727 return V;
728}
729
730/// Match an arbitrary immediate Constant and ignore it.
731inline match_combine_and<class_match<Constant>,
732 match_unless<class_match<ConstantExpr>>>
733m_ImmConstant() {
734 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
735}
736
737/// Match an immediate Constant, capturing the value if we match.
738inline match_combine_and<bind_ty<Constant>,
739 match_unless<class_match<ConstantExpr>>>
740m_ImmConstant(Constant *&C) {
741 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
742}
743
744/// Match a specified Value*.
745struct specificval_ty {
746 const Value *Val;
747
748 specificval_ty(const Value *V) : Val(V) {}
749
75