Bug Summary

File:llvm/lib/Transforms/Scalar/LICM.cpp
Warning:line 1141, column 22
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LICM.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/Scalar -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Transforms/Scalar/LICM.cpp
1//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass performs loop invariant code motion, attempting to remove as much
10// code from the body of a loop as possible. It does this by either hoisting
11// code into the preheader block, or by sinking code to the exit blocks if it is
12// safe. This pass also promotes must-aliased memory locations in the loop to
13// live in registers, thus hoisting and sinking "invariant" loads and stores.
14//
15// Hoisting operations out of loops is a canonicalization transform. It
16// enables and simplifies subsequent optimizations in the middle-end.
17// Rematerialization of hoisted instructions to reduce register pressure is the
18// responsibility of the back-end, which has more accurate information about
19// register pressure and also handles other optimizations than LICM that
20// increase live-ranges.
21//
22// This pass uses alias analysis for two purposes:
23//
24// 1. Moving loop invariant loads and calls out of loops. If we can determine
25// that a load or call inside of a loop never aliases anything stored to,
26// we can hoist it or sink it like any other instruction.
27// 2. Scalar Promotion of Memory - If there is a store instruction inside of
28// the loop, we try to move the store to happen AFTER the loop instead of
29// inside of the loop. This can only happen if a few conditions are true:
30// A. The pointer stored through is loop invariant
31// B. There are no stores or loads in the loop which _may_ alias the
32// pointer. There are no calls in the loop which mod/ref the pointer.
33// If these conditions are true, we can promote the loads and stores in the
34// loop of the pointer to use a temporary alloca'd variable. We then use
35// the SSAUpdater to construct the appropriate SSA form for the value.
36//
37//===----------------------------------------------------------------------===//
38
39#include "llvm/Transforms/Scalar/LICM.h"
40#include "llvm/ADT/SetOperations.h"
41#include "llvm/ADT/Statistic.h"
42#include "llvm/Analysis/AliasAnalysis.h"
43#include "llvm/Analysis/AliasSetTracker.h"
44#include "llvm/Analysis/BasicAliasAnalysis.h"
45#include "llvm/Analysis/BlockFrequencyInfo.h"
46#include "llvm/Analysis/CaptureTracking.h"
47#include "llvm/Analysis/ConstantFolding.h"
48#include "llvm/Analysis/GlobalsModRef.h"
49#include "llvm/Analysis/GuardUtils.h"
50#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51#include "llvm/Analysis/Loads.h"
52#include "llvm/Analysis/LoopInfo.h"
53#include "llvm/Analysis/LoopIterator.h"
54#include "llvm/Analysis/LoopPass.h"
55#include "llvm/Analysis/MemoryBuiltins.h"
56#include "llvm/Analysis/MemorySSA.h"
57#include "llvm/Analysis/MemorySSAUpdater.h"
58#include "llvm/Analysis/MustExecute.h"
59#include "llvm/Analysis/OptimizationRemarkEmitter.h"
60#include "llvm/Analysis/ScalarEvolution.h"
61#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
62#include "llvm/Analysis/TargetLibraryInfo.h"
63#include "llvm/Analysis/ValueTracking.h"
64#include "llvm/IR/CFG.h"
65#include "llvm/IR/Constants.h"
66#include "llvm/IR/DataLayout.h"
67#include "llvm/IR/DebugInfoMetadata.h"
68#include "llvm/IR/DerivedTypes.h"
69#include "llvm/IR/Dominators.h"
70#include "llvm/IR/Instructions.h"
71#include "llvm/IR/IntrinsicInst.h"
72#include "llvm/IR/LLVMContext.h"
73#include "llvm/IR/Metadata.h"
74#include "llvm/IR/PatternMatch.h"
75#include "llvm/IR/PredIteratorCache.h"
76#include "llvm/InitializePasses.h"
77#include "llvm/Support/CommandLine.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/raw_ostream.h"
80#include "llvm/Transforms/Scalar.h"
81#include "llvm/Transforms/Scalar/LoopPassManager.h"
82#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
83#include "llvm/Transforms/Utils/BasicBlockUtils.h"
84#include "llvm/Transforms/Utils/Local.h"
85#include "llvm/Transforms/Utils/LoopUtils.h"
86#include "llvm/Transforms/Utils/SSAUpdater.h"
87#include <algorithm>
88#include <utility>
89using namespace llvm;
90
91#define DEBUG_TYPE"licm" "licm"
92
93STATISTIC(NumCreatedBlocks, "Number of blocks created")static llvm::Statistic NumCreatedBlocks = {"licm", "NumCreatedBlocks"
, "Number of blocks created"}
;
94STATISTIC(NumClonedBranches, "Number of branches cloned")static llvm::Statistic NumClonedBranches = {"licm", "NumClonedBranches"
, "Number of branches cloned"}
;
95STATISTIC(NumSunk, "Number of instructions sunk out of loop")static llvm::Statistic NumSunk = {"licm", "NumSunk", "Number of instructions sunk out of loop"
}
;
96STATISTIC(NumHoisted, "Number of instructions hoisted out of loop")static llvm::Statistic NumHoisted = {"licm", "NumHoisted", "Number of instructions hoisted out of loop"
}
;
97STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk")static llvm::Statistic NumMovedLoads = {"licm", "NumMovedLoads"
, "Number of load insts hoisted or sunk"}
;
98STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk")static llvm::Statistic NumMovedCalls = {"licm", "NumMovedCalls"
, "Number of call insts hoisted or sunk"}
;
99STATISTIC(NumPromoted, "Number of memory locations promoted to registers")static llvm::Statistic NumPromoted = {"licm", "NumPromoted", "Number of memory locations promoted to registers"
}
;
100
101/// Memory promotion is enabled by default.
102static cl::opt<bool>
103 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
104 cl::desc("Disable memory promotion in LICM pass"));
105
106static cl::opt<bool> ControlFlowHoisting(
107 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
108 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
109
110static cl::opt<unsigned> HoistSinkColdnessThreshold(
111 "licm-coldness-threshold", cl::Hidden, cl::init(4),
112 cl::desc("Relative coldness Threshold of hoisting/sinking destination "
113 "block for LICM to be considered beneficial"));
114
115static cl::opt<uint32_t> MaxNumUsesTraversed(
116 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
117 cl::desc("Max num uses visited for identifying load "
118 "invariance in loop using invariant start (default = 8)"));
119
120// Experimental option to allow imprecision in LICM in pathological cases, in
121// exchange for faster compile. This is to be removed if MemorySSA starts to
122// address the same issue. This flag applies only when LICM uses MemorySSA
123// instead on AliasSetTracker. LICM calls MemorySSAWalker's
124// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
125// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
126// which may not be precise, since optimizeUses is capped. The result is
127// correct, but we may not get as "far up" as possible to get which access is
128// clobbering the one queried.
129cl::opt<unsigned> llvm::SetLicmMssaOptCap(
130 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
131 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
132 "for faster compile. Caps the MemorySSA clobbering calls."));
133
134// Experimentally, memory promotion carries less importance than sinking and
135// hoisting. Limit when we do promotion when using MemorySSA, in order to save
136// compile time.
137cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
138 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
139 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
140 "effect. When MSSA in LICM is enabled, then this is the maximum "
141 "number of accesses allowed to be present in a loop in order to "
142 "enable memory promotion."));
143
144static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
145static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
146 const LoopSafetyInfo *SafetyInfo,
147 TargetTransformInfo *TTI, bool &FreeInLoop,
148 bool LoopNestMode);
149static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
150 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
151 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
152 OptimizationRemarkEmitter *ORE);
153static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
154 BlockFrequencyInfo *BFI, const Loop *CurLoop,
155 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
156 OptimizationRemarkEmitter *ORE);
157static bool isSafeToExecuteUnconditionally(Instruction &Inst,
158 const DominatorTree *DT,
159 const TargetLibraryInfo *TLI,
160 const Loop *CurLoop,
161 const LoopSafetyInfo *SafetyInfo,
162 OptimizationRemarkEmitter *ORE,
163 const Instruction *CtxI = nullptr);
164static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
165 AliasSetTracker *CurAST, Loop *CurLoop,
166 AAResults *AA);
167static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
168 Loop *CurLoop, Instruction &I,
169 SinkAndHoistLICMFlags &Flags);
170static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
171 MemoryUse &MU);
172static Instruction *cloneInstructionInExitBlock(
173 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
174 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
175
176static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
177 MemorySSAUpdater *MSSAU);
178
179static void moveInstructionBefore(Instruction &I, Instruction &Dest,
180 ICFLoopSafetyInfo &SafetyInfo,
181 MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
182
183static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
184 function_ref<void(Instruction *)> Fn);
185static SmallVector<SmallSetVector<Value *, 8>, 0>
186collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
187
188namespace {
189struct LoopInvariantCodeMotion {
190 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
191 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
192 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
193 OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
194
195 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
196 unsigned LicmMssaNoAccForPromotionCap)
197 : LicmMssaOptCap(LicmMssaOptCap),
198 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
199
200private:
201 unsigned LicmMssaOptCap;
202 unsigned LicmMssaNoAccForPromotionCap;
203};
204
205struct LegacyLICMPass : public LoopPass {
206 static char ID; // Pass identification, replacement for typeid
207 LegacyLICMPass(
208 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
209 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
210 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
211 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
212 }
213
214 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
215 if (skipLoop(L))
216 return false;
217
218 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "do { } while (false)
219 << L->getHeader()->getNameOrAsOperand() << "\n")do { } while (false);
220
221 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
222 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
223 bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
224 BlockFrequencyInfo *BFI =
225 hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
226 : nullptr;
227 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
228 // pass. Function analyses need to be preserved across loop transformations
229 // but ORE cannot be preserved (see comment before the pass definition).
230 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
231 return LICM.runOnLoop(
232 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
233 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
234 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
235 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
236 *L->getHeader()->getParent()),
237 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
238 *L->getHeader()->getParent()),
239 SE ? &SE->getSE() : nullptr, MSSA, &ORE);
240 }
241
242 /// This transformation requires natural loop information & requires that
243 /// loop preheaders be inserted into the CFG...
244 ///
245 void getAnalysisUsage(AnalysisUsage &AU) const override {
246 AU.addPreserved<DominatorTreeWrapperPass>();
247 AU.addPreserved<LoopInfoWrapperPass>();
248 AU.addRequired<TargetLibraryInfoWrapperPass>();
249 AU.addRequired<MemorySSAWrapperPass>();
250 AU.addPreserved<MemorySSAWrapperPass>();
251 AU.addRequired<TargetTransformInfoWrapperPass>();
252 getLoopAnalysisUsage(AU);
253 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
254 AU.addPreserved<LazyBlockFrequencyInfoPass>();
255 AU.addPreserved<LazyBranchProbabilityInfoPass>();
256 }
257
258private:
259 LoopInvariantCodeMotion LICM;
260};
261} // namespace
262
263PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
264 LoopStandardAnalysisResults &AR, LPMUpdater &) {
265 if (!AR.MSSA)
266 report_fatal_error("LICM requires MemorySSA (loop-mssa)");
267
268 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
269 // pass. Function analyses need to be preserved across loop transformations
270 // but ORE cannot be preserved (see comment before the pass definition).
271 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
272
273 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
274 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
275 &AR.SE, AR.MSSA, &ORE))
276 return PreservedAnalyses::all();
277
278 auto PA = getLoopPassPreservedAnalyses();
279
280 PA.preserve<DominatorTreeAnalysis>();
281 PA.preserve<LoopAnalysis>();
282 PA.preserve<MemorySSAAnalysis>();
283
284 return PA;
285}
286
287PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
288 LoopStandardAnalysisResults &AR,
289 LPMUpdater &) {
290 if (!AR.MSSA)
291 report_fatal_error("LNICM requires MemorySSA (loop-mssa)");
292
293 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
294 // pass. Function analyses need to be preserved across loop transformations
295 // but ORE cannot be preserved (see comment before the pass definition).
296 OptimizationRemarkEmitter ORE(LN.getParent());
297
298 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
299
300 Loop &OutermostLoop = LN.getOutermostLoop();
301 bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, AR.BFI,
302 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);
303
304 if (!Changed)
305 return PreservedAnalyses::all();
306
307 auto PA = getLoopPassPreservedAnalyses();
308
309 PA.preserve<DominatorTreeAnalysis>();
310 PA.preserve<LoopAnalysis>();
311 PA.preserve<MemorySSAAnalysis>();
312
313 return PA;
314}
315
316char LegacyLICMPass::ID = 0;
317INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
318 false, false)static void *initializeLegacyLICMPassPassOnce(PassRegistry &
Registry) {
319INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
320INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
321INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
322INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
323INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)initializeLazyBFIPassPass(Registry);
324INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
325 false)PassInfo *PI = new PassInfo( "Loop Invariant Code Motion", "licm"
, &LegacyLICMPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LegacyLICMPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLegacyLICMPassPassFlag
; void llvm::initializeLegacyLICMPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeLegacyLICMPassPassFlag, initializeLegacyLICMPassPassOnce
, std::ref(Registry)); }
326
327Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
328Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
329 unsigned LicmMssaNoAccForPromotionCap) {
330 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
331}
332
333llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
334 MemorySSA *MSSA)
335 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
336 IsSink, L, MSSA) {}
337
338llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
339 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
340 Loop *L, MemorySSA *MSSA)
341 : LicmMssaOptCap(LicmMssaOptCap),
342 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
343 IsSink(IsSink) {
344 assert(((L != nullptr) == (MSSA != nullptr)) &&(static_cast<void> (0))
345 "Unexpected values for SinkAndHoistLICMFlags")(static_cast<void> (0));
346 if (!MSSA)
347 return;
348
349 unsigned AccessCapCount = 0;
350 for (auto *BB : L->getBlocks())
351 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
352 for (const auto &MA : *Accesses) {
353 (void)MA;
354 ++AccessCapCount;
355 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
356 NoOfMemAccTooLarge = true;
357 return;
358 }
359 }
360}
361
362/// Hoist expressions out of the specified loop. Note, alias info for inner
363/// loop is not preserved so it is not a good idea to run LICM multiple
364/// times on one loop.
365bool LoopInvariantCodeMotion::runOnLoop(
366 Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
367 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
368 ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE,
369 bool LoopNestMode) {
370 bool Changed = false;
371
372 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.")(static_cast<void> (0));
373
374 // If this loop has metadata indicating that LICM is not to be performed then
375 // just exit.
376 if (hasDisableLICMTransformsHint(L)) {
377 return false;
378 }
379
380 // Don't sink stores from loops with coroutine suspend instructions.
381 // LICM would sink instructions into the default destination of
382 // the coroutine switch. The default destination of the switch is to
383 // handle the case where the coroutine is suspended, by which point the
384 // coroutine frame may have been destroyed. No instruction can be sunk there.
385 // FIXME: This would unfortunately hurt the performance of coroutines, however
386 // there is currently no general solution for this. Similar issues could also
387 // potentially happen in other passes where instructions are being moved
388 // across that edge.
389 bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
390 return llvm::any_of(*BB, [](Instruction &I) {
391 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
392 return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
393 });
394 });
395
396 MemorySSAUpdater MSSAU(MSSA);
397 SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
398 /*IsSink=*/true, L, MSSA);
399
400 // Get the preheader block to move instructions into...
401 BasicBlock *Preheader = L->getLoopPreheader();
402
403 // Compute loop safety information.
404 ICFLoopSafetyInfo SafetyInfo;
405 SafetyInfo.computeLoopSafetyInfo(L);
406
407 // We want to visit all of the instructions in this loop... that are not parts
408 // of our subloops (they have already had their invariants hoisted out of
409 // their loop, into this loop, so there is no need to process the BODIES of
410 // the subloops).
411 //
412 // Traverse the body of the loop in depth first order on the dominator tree so
413 // that we are guaranteed to see definitions before we see uses. This allows
414 // us to sink instructions in one pass, without iteration. After sinking
415 // instructions, we perform another pass to hoist them out of the loop.
416 if (L->hasDedicatedExits())
417 Changed |= LoopNestMode
418 ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI,
419 DT, BFI, TLI, TTI, L, &MSSAU,
420 &SafetyInfo, Flags, ORE)
421 : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI,
422 TLI, TTI, L, &MSSAU, &SafetyInfo, Flags, ORE);
423 Flags.setIsSink(false);
424 if (Preheader)
425 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
426 &MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode);
427
428 // Now that all loop invariants have been removed from the loop, promote any
429 // memory references to scalars that we can.
430 // Don't sink stores from loops without dedicated block exits. Exits
431 // containing indirect branches are not transformed by loop simplify,
432 // make sure we catch that. An additional load may be generated in the
433 // preheader for SSA updater, so also avoid sinking when no preheader
434 // is available.
435 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
436 !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
437 // Figure out the loop exits and their insertion points
438 SmallVector<BasicBlock *, 8> ExitBlocks;
439 L->getUniqueExitBlocks(ExitBlocks);
440
441 // We can't insert into a catchswitch.
442 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
443 return isa<CatchSwitchInst>(Exit->getTerminator());
444 });
445
446 if (!HasCatchSwitch) {
447 SmallVector<Instruction *, 8> InsertPts;
448 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
449 InsertPts.reserve(ExitBlocks.size());
450 MSSAInsertPts.reserve(ExitBlocks.size());
451 for (BasicBlock *ExitBlock : ExitBlocks) {
452 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
453 MSSAInsertPts.push_back(nullptr);
454 }
455
456 PredIteratorCache PIC;
457
458 // Promoting one set of accesses may make the pointers for another set
459 // loop invariant, so run this in a loop (with the MaybePromotable set
460 // decreasing in size over time).
461 bool Promoted = false;
462 bool LocalPromoted;
463 do {
464 LocalPromoted = false;
465 for (const SmallSetVector<Value *, 8> &PointerMustAliases :
466 collectPromotionCandidates(MSSA, AA, L)) {
467 LocalPromoted |= promoteLoopAccessesToScalars(
468 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC,
469 LI, DT, TLI, L, &MSSAU, &SafetyInfo, ORE);
470 }
471 Promoted |= LocalPromoted;
472 } while (LocalPromoted);
473
474 // Once we have promoted values across the loop body we have to
475 // recursively reform LCSSA as any nested loop may now have values defined
476 // within the loop used in the outer loop.
477 // FIXME: This is really heavy handed. It would be a bit better to use an
478 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
479 // it as it went.
480 if (Promoted)
481 formLCSSARecursively(*L, *DT, LI, SE);
482
483 Changed |= Promoted;
484 }
485 }
486
487 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
488 // specifically moving instructions across the loop boundary and so it is
489 // especially in need of sanity checking here.
490 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!")(static_cast<void> (0));
491 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&(static_cast<void> (0))
492 "Parent loop not left in LCSSA form after LICM!")(static_cast<void> (0));
493
494 if (VerifyMemorySSA)
495 MSSA->verifyMemorySSA();
496
497 if (Changed && SE)
498 SE->forgetLoopDispositions(L);
499 return Changed;
500}
501
502/// Walk the specified region of the CFG (defined by all blocks dominated by
503/// the specified block, and that are in the current loop) in reverse depth
504/// first order w.r.t the DominatorTree. This allows us to visit uses before
505/// definitions, allowing us to sink a loop body in one pass without iteration.
506///
507bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
508 DominatorTree *DT, BlockFrequencyInfo *BFI,
509 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
510 Loop *CurLoop, MemorySSAUpdater *MSSAU,
511 ICFLoopSafetyInfo *SafetyInfo,
512 SinkAndHoistLICMFlags &Flags,
513 OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {
514
515 // Verify inputs.
516 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&(static_cast<void> (0))
517 CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&(static_cast<void> (0))
518 "Unexpected input to sinkRegion.")(static_cast<void> (0));
519
520 // We want to visit children before parents. We will enque all the parents
521 // before their children in the worklist and process the worklist in reverse
522 // order.
523 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
524
525 bool Changed = false;
526 for (DomTreeNode *DTN : reverse(Worklist)) {
527 BasicBlock *BB = DTN->getBlock();
528 // Only need to process the contents of this block if it is not part of a
529 // subloop (which would already have been processed).
530 if (inSubLoop(BB, CurLoop, LI))
531 continue;
532
533 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
534 Instruction &I = *--II;
535
536 // The instruction is not used in the loop if it is dead. In this case,
537 // we just delete it instead of sinking it.
538 if (isInstructionTriviallyDead(&I, TLI)) {
539 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n')do { } while (false);
540 salvageKnowledge(&I);
541 salvageDebugInfo(I);
542 ++II;
543 eraseInstruction(I, *SafetyInfo, MSSAU);
544 Changed = true;
545 continue;
546 }
547
548 // Check to see if we can sink this instruction to the exit blocks
549 // of the loop. We can do this if the all users of the instruction are
550 // outside of the loop. In this case, it doesn't even matter if the
551 // operands of the instruction are loop invariant.
552 //
553 bool FreeInLoop = false;
554 bool LoopNestMode = OutermostLoop != nullptr;
555 if (!I.mayHaveSideEffects() &&
556 isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop,
557 SafetyInfo, TTI, FreeInLoop, LoopNestMode) &&
558 canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/nullptr, MSSAU, true,
559 &Flags, ORE)) {
560 if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
561 if (!FreeInLoop) {
562 ++II;
563 salvageDebugInfo(I);
564 eraseInstruction(I, *SafetyInfo, MSSAU);
565 }
566 Changed = true;
567 }
568 }
569 }
570 }
571 if (VerifyMemorySSA)
572 MSSAU->getMemorySSA()->verifyMemorySSA();
573 return Changed;
574}
575
576bool llvm::sinkRegionForLoopNest(
577 DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
578 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
579 Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
580 SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE) {
581
582 bool Changed = false;
583 SmallPriorityWorklist<Loop *, 4> Worklist;
584 Worklist.insert(CurLoop);
585 appendLoopsToWorklist(*CurLoop, Worklist);
586 while (!Worklist.empty()) {
587 Loop *L = Worklist.pop_back_val();
588 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI,
589 TTI, L, MSSAU, SafetyInfo, Flags, ORE, CurLoop);
590 }
591 return Changed;
592}
593
594namespace {
595// This is a helper class for hoistRegion to make it able to hoist control flow
596// in order to be able to hoist phis. The way this works is that we initially
597// start hoisting to the loop preheader, and when we see a loop invariant branch
598// we make note of this. When we then come to hoist an instruction that's
599// conditional on such a branch we duplicate the branch and the relevant control
600// flow, then hoist the instruction into the block corresponding to its original
601// block in the duplicated control flow.
602class ControlFlowHoister {
603private:
604 // Information about the loop we are hoisting from
605 LoopInfo *LI;
606 DominatorTree *DT;
607 Loop *CurLoop;
608 MemorySSAUpdater *MSSAU;
609
610 // A map of blocks in the loop to the block their instructions will be hoisted
611 // to.
612 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
613
614 // The branches that we can hoist, mapped to the block that marks a
615 // convergence point of their control flow.
616 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
617
618public:
619 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
620 MemorySSAUpdater *MSSAU)
621 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
622
623 void registerPossiblyHoistableBranch(BranchInst *BI) {
624 // We can only hoist conditional branches with loop invariant operands.
625 if (!ControlFlowHoisting || !BI->isConditional() ||
626 !CurLoop->hasLoopInvariantOperands(BI))
627 return;
628
629 // The branch destinations need to be in the loop, and we don't gain
630 // anything by duplicating conditional branches with duplicate successors,
631 // as it's essentially the same as an unconditional branch.
632 BasicBlock *TrueDest = BI->getSuccessor(0);
633 BasicBlock *FalseDest = BI->getSuccessor(1);
634 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
635 TrueDest == FalseDest)
636 return;
637
638 // We can hoist BI if one branch destination is the successor of the other,
639 // or both have common successor which we check by seeing if the
640 // intersection of their successors is non-empty.
641 // TODO: This could be expanded to allowing branches where both ends
642 // eventually converge to a single block.
643 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
644 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
645 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
646 BasicBlock *CommonSucc = nullptr;
647 if (TrueDestSucc.count(FalseDest)) {
648 CommonSucc = FalseDest;
649 } else if (FalseDestSucc.count(TrueDest)) {
650 CommonSucc = TrueDest;
651 } else {
652 set_intersect(TrueDestSucc, FalseDestSucc);
653 // If there's one common successor use that.
654 if (TrueDestSucc.size() == 1)
655 CommonSucc = *TrueDestSucc.begin();
656 // If there's more than one pick whichever appears first in the block list
657 // (we can't use the value returned by TrueDestSucc.begin() as it's
658 // unpredicatable which element gets returned).
659 else if (!TrueDestSucc.empty()) {
660 Function *F = TrueDest->getParent();
661 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
662 auto It = llvm::find_if(*F, IsSucc);
663 assert(It != F->end() && "Could not find successor in function")(static_cast<void> (0));
664 CommonSucc = &*It;
665 }
666 }
667 // The common successor has to be dominated by the branch, as otherwise
668 // there will be some other path to the successor that will not be
669 // controlled by this branch so any phi we hoist would be controlled by the
670 // wrong condition. This also takes care of avoiding hoisting of loop back
671 // edges.
672 // TODO: In some cases this could be relaxed if the successor is dominated
673 // by another block that's been hoisted and we can guarantee that the
674 // control flow has been replicated exactly.
675 if (CommonSucc && DT->dominates(BI, CommonSucc))
676 HoistableBranches[BI] = CommonSucc;
677 }
678
679 bool canHoistPHI(PHINode *PN) {
680 // The phi must have loop invariant operands.
681 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
682 return false;
683 // We can hoist phis if the block they are in is the target of hoistable
684 // branches which cover all of the predecessors of the block.
685 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
686 BasicBlock *BB = PN->getParent();
687 for (BasicBlock *PredBB : predecessors(BB))
688 PredecessorBlocks.insert(PredBB);
689 // If we have less predecessor blocks than predecessors then the phi will
690 // have more than one incoming value for the same block which we can't
691 // handle.
692 // TODO: This could be handled be erasing some of the duplicate incoming
693 // values.
694 if (PredecessorBlocks.size() != pred_size(BB))
695 return false;
696 for (auto &Pair : HoistableBranches) {
697 if (Pair.second == BB) {
698 // Which blocks are predecessors via this branch depends on if the
699 // branch is triangle-like or diamond-like.
700 if (Pair.first->getSuccessor(0) == BB) {
701 PredecessorBlocks.erase(Pair.first->getParent());
702 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
703 } else if (Pair.first->getSuccessor(1) == BB) {
704 PredecessorBlocks.erase(Pair.first->getParent());
705 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
706 } else {
707 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
708 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
709 }
710 }
711 }
712 // PredecessorBlocks will now be empty if for every predecessor of BB we
713 // found a hoistable branch source.
714 return PredecessorBlocks.empty();
715 }
716
717 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
718 if (!ControlFlowHoisting)
719 return CurLoop->getLoopPreheader();
720 // If BB has already been hoisted, return that
721 if (HoistDestinationMap.count(BB))
722 return HoistDestinationMap[BB];
723
724 // Check if this block is conditional based on a pending branch
725 auto HasBBAsSuccessor =
726 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
727 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
728 Pair.first->getSuccessor(1) == BB);
729 };
730 auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
731
732 // If not involved in a pending branch, hoist to preheader
733 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
734 if (It == HoistableBranches.end()) {
735 LLVM_DEBUG(dbgs() << "LICM using "do { } while (false)
736 << InitialPreheader->getNameOrAsOperand()do { } while (false)
737 << " as hoist destination for "do { } while (false)
738 << BB->getNameOrAsOperand() << "\n")do { } while (false);
739 HoistDestinationMap[BB] = InitialPreheader;
740 return InitialPreheader;
741 }
742 BranchInst *BI = It->first;
743 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==(static_cast<void> (0))
744 HoistableBranches.end() &&(static_cast<void> (0))
745 "BB is expected to be the target of at most one branch")(static_cast<void> (0));
746
747 LLVMContext &C = BB->getContext();
748 BasicBlock *TrueDest = BI->getSuccessor(0);
749 BasicBlock *FalseDest = BI->getSuccessor(1);
750 BasicBlock *CommonSucc = HoistableBranches[BI];
751 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
752
753 // Create hoisted versions of blocks that currently don't have them
754 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
755 if (HoistDestinationMap.count(Orig))
756 return HoistDestinationMap[Orig];
757 BasicBlock *New =
758 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
759 HoistDestinationMap[Orig] = New;
760 DT->addNewBlock(New, HoistTarget);
761 if (CurLoop->getParentLoop())
762 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
763 ++NumCreatedBlocks;
764 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()do { } while (false)
765 << " as hoist destination for " << Orig->getName()do { } while (false)
766 << "\n")do { } while (false);
767 return New;
768 };
769 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
770 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
771 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
772
773 // Link up these blocks with branches.
774 if (!HoistCommonSucc->getTerminator()) {
775 // The new common successor we've generated will branch to whatever that
776 // hoist target branched to.
777 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
778 assert(TargetSucc && "Expected hoist target to have a single successor")(static_cast<void> (0));
779 HoistCommonSucc->moveBefore(TargetSucc);
780 BranchInst::Create(TargetSucc, HoistCommonSucc);
781 }
782 if (!HoistTrueDest->getTerminator()) {
783 HoistTrueDest->moveBefore(HoistCommonSucc);
784 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
785 }
786 if (!HoistFalseDest->getTerminator()) {
787 HoistFalseDest->moveBefore(HoistCommonSucc);
788 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
789 }
790
791 // If BI is being cloned to what was originally the preheader then
792 // HoistCommonSucc will now be the new preheader.
793 if (HoistTarget == InitialPreheader) {
794 // Phis in the loop header now need to use the new preheader.
795 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
796 MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
797 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
798 // The new preheader dominates the loop header.
799 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
800 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
801 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
802 // The preheader hoist destination is now the new preheader, with the
803 // exception of the hoist destination of this branch.
804 for (auto &Pair : HoistDestinationMap)
805 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
806 Pair.second = HoistCommonSucc;
807 }
808
809 // Now finally clone BI.
810 ReplaceInstWithInst(
811 HoistTarget->getTerminator(),
812 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
813 ++NumClonedBranches;
814
815 assert(CurLoop->getLoopPreheader() &&(static_cast<void> (0))
816 "Hoisting blocks should not have destroyed preheader")(static_cast<void> (0));
817 return HoistDestinationMap[BB];
818 }
819};
820} // namespace
821
822// Hoisting/sinking instruction out of a loop isn't always beneficial. It's only
823// only worthwhile if the destination block is actually colder than current
824// block.
825static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock,
826 OptimizationRemarkEmitter *ORE,
827 BlockFrequencyInfo *BFI) {
828 // Check block frequency only when runtime profile is available
829 // to avoid pathological cases. With static profile, lean towards
830 // hosting because it helps canonicalize the loop for vectorizer.
831 if (!DstBlock->getParent()->hasProfileData())
832 return true;
833
834 if (!HoistSinkColdnessThreshold || !BFI)
835 return true;
836
837 BasicBlock *SrcBlock = I.getParent();
838 if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold >
839 BFI->getBlockFreq(SrcBlock).getFrequency()) {
840 ORE->emit([&]() {
841 return OptimizationRemarkMissed(DEBUG_TYPE"licm", "SinkHoistInst", &I)
842 << "failed to sink or hoist instruction because containing block "
843 "has lower frequency than destination block";
844 });
845 return false;
846 }
847
848 return true;
849}
850
851/// Walk the specified region of the CFG (defined by all blocks dominated by
852/// the specified block, and that are in the current loop) in depth first
853/// order w.r.t the DominatorTree. This allows us to visit definitions before
854/// uses, allowing us to hoist a loop body in one pass without iteration.
855///
856bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
857 DominatorTree *DT, BlockFrequencyInfo *BFI,
858 TargetLibraryInfo *TLI, Loop *CurLoop,
859 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
860 ICFLoopSafetyInfo *SafetyInfo,
861 SinkAndHoistLICMFlags &Flags,
862 OptimizationRemarkEmitter *ORE, bool LoopNestMode) {
863 // Verify inputs.
864 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&(static_cast<void> (0))
865 CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&(static_cast<void> (0))
866 "Unexpected input to hoistRegion.")(static_cast<void> (0));
867
868 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
869
870 // Keep track of instructions that have been hoisted, as they may need to be
871 // re-hoisted if they end up not dominating all of their uses.
872 SmallVector<Instruction *, 16> HoistedInstructions;
873
874 // For PHI hoisting to work we need to hoist blocks before their successors.
875 // We can do this by iterating through the blocks in the loop in reverse
876 // post-order.
877 LoopBlocksRPO Worklist(CurLoop);
878 Worklist.perform(LI);
879 bool Changed = false;
880 for (BasicBlock *BB : Worklist) {
881 // Only need to process the contents of this block if it is not part of a
882 // subloop (which would already have been processed).
883 if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
884 continue;
885
886 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
887 Instruction &I = *II++;
888 // Try constant folding this instruction. If all the operands are
889 // constants, it is technically hoistable, but it would be better to
890 // just fold it.
891 if (Constant *C = ConstantFoldInstruction(
892 &I, I.getModule()->getDataLayout(), TLI)) {
893 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *Cdo { } while (false)
894 << '\n')do { } while (false);
895 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
896 I.replaceAllUsesWith(C);
897 if (isInstructionTriviallyDead(&I, TLI))
898 eraseInstruction(I, *SafetyInfo, MSSAU);
899 Changed = true;
900 continue;
901 }
902
903 // Try hoisting the instruction out to the preheader. We can only do
904 // this if all of the operands of the instruction are loop invariant and
905 // if it is safe to hoist the instruction. We also check block frequency
906 // to make sure instruction only gets hoisted into colder blocks.
907 // TODO: It may be safe to hoist if we are hoisting to a conditional block
908 // and we have accurately duplicated the control flow from the loop header
909 // to that block.
910 if (CurLoop->hasLoopInvariantOperands(&I) &&
911 canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/ nullptr, MSSAU,
912 true, &Flags, ORE) &&
913 worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) &&
914 isSafeToExecuteUnconditionally(
915 I, DT, TLI, CurLoop, SafetyInfo, ORE,
916 CurLoop->getLoopPreheader()->getTerminator())) {
917 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
918 MSSAU, SE, ORE);
919 HoistedInstructions.push_back(&I);
920 Changed = true;
921 continue;
922 }
923
924 // Attempt to remove floating point division out of the loop by
925 // converting it to a reciprocal multiplication.
926 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
927 CurLoop->isLoopInvariant(I.getOperand(1))) {
928 auto Divisor = I.getOperand(1);
929 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
930 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
931 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
932 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
933 ReciprocalDivisor->insertBefore(&I);
934
935 auto Product =
936 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
937 Product->setFastMathFlags(I.getFastMathFlags());
938 SafetyInfo->insertInstructionTo(Product, I.getParent());
939 Product->insertAfter(&I);
940 I.replaceAllUsesWith(Product);
941 eraseInstruction(I, *SafetyInfo, MSSAU);
942
943 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
944 SafetyInfo, MSSAU, SE, ORE);
945 HoistedInstructions.push_back(ReciprocalDivisor);
946 Changed = true;
947 continue;
948 }
949
950 auto IsInvariantStart = [&](Instruction &I) {
951 using namespace PatternMatch;
952 return I.use_empty() &&
953 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
954 };
955 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
956 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
957 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
958 };
959 if ((IsInvariantStart(I) || isGuard(&I)) &&
960 CurLoop->hasLoopInvariantOperands(&I) &&
961 MustExecuteWithoutWritesBefore(I)) {
962 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
963 MSSAU, SE, ORE);
964 HoistedInstructions.push_back(&I);
965 Changed = true;
966 continue;
967 }
968
969 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
970 if (CFH.canHoistPHI(PN)) {
971 // Redirect incoming blocks first to ensure that we create hoisted
972 // versions of those blocks before we hoist the phi.
973 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
974 PN->setIncomingBlock(
975 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
976 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
977 MSSAU, SE, ORE);
978 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected")(static_cast<void> (0));
979 Changed = true;
980 continue;
981 }
982 }
983
984 // Remember possibly hoistable branches so we can actually hoist them
985 // later if needed.
986 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
987 CFH.registerPossiblyHoistableBranch(BI);
988 }
989 }
990
991 // If we hoisted instructions to a conditional block they may not dominate
992 // their uses that weren't hoisted (such as phis where some operands are not
993 // loop invariant). If so make them unconditional by moving them to their
994 // immediate dominator. We iterate through the instructions in reverse order
995 // which ensures that when we rehoist an instruction we rehoist its operands,
996 // and also keep track of where in the block we are rehoisting to to make sure
997 // that we rehoist instructions before the instructions that use them.
998 Instruction *HoistPoint = nullptr;
999 if (ControlFlowHoisting) {
1000 for (Instruction *I : reverse(HoistedInstructions)) {
1001 if (!llvm::all_of(I->uses(),
1002 [&](Use &U) { return DT->dominates(I, U); })) {
1003 BasicBlock *Dominator =
1004 DT->getNode(I->getParent())->getIDom()->getBlock();
1005 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
1006 if (HoistPoint)
1007 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&(static_cast<void> (0))
1008 "New hoist point expected to dominate old hoist point")(static_cast<void> (0));
1009 HoistPoint = Dominator->getTerminator();
1010 }
1011 LLVM_DEBUG(dbgs() << "LICM rehoisting to "do { } while (false)
1012 << HoistPoint->getParent()->getNameOrAsOperand()do { } while (false)
1013 << ": " << *I << "\n")do { } while (false);
1014 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
1015 HoistPoint = I;
1016 Changed = true;
1017 }
1018 }
1019 }
1020 if (VerifyMemorySSA)
1021 MSSAU->getMemorySSA()->verifyMemorySSA();
1022
1023 // Now that we've finished hoisting make sure that LI and DT are still
1024 // valid.
1025#ifdef EXPENSIVE_CHECKS
1026 if (Changed) {
1027 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&(static_cast<void> (0))
1028 "Dominator tree verification failed")(static_cast<void> (0));
1029 LI->verify(*DT);
1030 }
1031#endif
1032
1033 return Changed;
1034}
1035
1036// Return true if LI is invariant within scope of the loop. LI is invariant if
1037// CurLoop is dominated by an invariant.start representing the same memory
1038// location and size as the memory location LI loads from, and also the
1039// invariant.start has no uses.
1040static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1041 Loop *CurLoop) {
1042 Value *Addr = LI->getOperand(0);
1043 const DataLayout &DL = LI->getModule()->getDataLayout();
1044 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1045
1046 // It is not currently possible for clang to generate an invariant.start
1047 // intrinsic with scalable vector types because we don't support thread local
1048 // sizeless types and we don't permit sizeless types in structs or classes.
1049 // Furthermore, even if support is added for this in future the intrinsic
1050 // itself is defined to have a size of -1 for variable sized objects. This
1051 // makes it impossible to verify if the intrinsic envelops our region of
1052 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1053 // types would have a -1 parameter, but the former is clearly double the size
1054 // of the latter.
1055 if (LocSizeInBits.isScalable())
1056 return false;
1057
1058 // if the type is i8 addrspace(x)*, we know this is the type of
1059 // llvm.invariant.start operand
1060 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1061 LI->getPointerAddressSpace());
1062 unsigned BitcastsVisited = 0;
1063 // Look through bitcasts until we reach the i8* type (this is invariant.start
1064 // operand type).
1065 while (Addr->getType() != PtrInt8Ty) {
1066 auto *BC = dyn_cast<BitCastInst>(Addr);
1067 // Avoid traversing high number of bitcast uses.
1068 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1069 return false;
1070 Addr = BC->getOperand(0);
1071 }
1072
1073 unsigned UsesVisited = 0;
1074 // Traverse all uses of the load operand value, to see if invariant.start is
1075 // one of the uses, and whether it dominates the load instruction.
1076 for (auto *U : Addr->users()) {
1077 // Avoid traversing for Load operand with high number of users.
1078 if (++UsesVisited > MaxNumUsesTraversed)
1079 return false;
1080 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1081 // If there are escaping uses of invariant.start instruction, the load maybe
1082 // non-invariant.
1083 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1084 !II->use_empty())
1085 continue;
1086 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1087 // The intrinsic supports having a -1 argument for variable sized objects
1088 // so we should check for that here.
1089 if (InvariantSize->isNegative())
1090 continue;
1091 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1092 // Confirm the invariant.start location size contains the load operand size
1093 // in bits. Also, the invariant.start should dominate the load, and we
1094 // should not hoist the load out of a loop that contains this dominating
1095 // invariant.start.
1096 if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1097 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1098 return true;
1099 }
1100
1101 return false;
1102}
1103
1104namespace {
1105/// Return true if-and-only-if we know how to (mechanically) both hoist and
1106/// sink a given instruction out of a loop. Does not address legality
1107/// concerns such as aliasing or speculation safety.
1108bool isHoistableAndSinkableInst(Instruction &I) {
1109 // Only these instructions are hoistable/sinkable.
1110 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
2
Assuming 'I' is a 'LoadInst'
3
Returning the value 1, which participates in a condition later
1111 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1112 isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1113 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1114 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1115 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1116 isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1117}
1118/// Return true if all of the alias sets within this AST are known not to
1119/// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop.
1120bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1121 const Loop *L) {
1122 if (CurAST) {
1123 for (AliasSet &AS : *CurAST) {
1124 if (!AS.isForwardingAliasSet() && AS.isMod()) {
1125 return false;
1126 }
1127 }
1128 return true;
1129 } else { /*MSSAU*/
1130 for (auto *BB : L->getBlocks())
1131 if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1132 return false;
1133 return true;
1134 }
1135}
1136
1137/// Return true if I is the only Instruction with a MemoryAccess in L.
1138bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1139 const MemorySSAUpdater *MSSAU) {
1140 for (auto *BB : L->getBlocks())
19
Assuming '__begin1' is not equal to '__end1'
1141 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
20
Called C++ object pointer is null
1142 int NotAPhi = 0;
1143 for (const auto &Acc : *Accs) {
1144 if (isa<MemoryPhi>(&Acc))
1145 continue;
1146 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1147 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1148 return false;
1149 }
1150 }
1151 return true;
1152}
1153}
1154
1155bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1156 Loop *CurLoop, AliasSetTracker *CurAST,
1157 MemorySSAUpdater *MSSAU,
1158 bool TargetExecutesOncePerLoop,
1159 SinkAndHoistLICMFlags *Flags,
1160 OptimizationRemarkEmitter *ORE) {
1161 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&(static_cast<void> (0))
1162 "Either AliasSetTracker or MemorySSA should be initialized.")(static_cast<void> (0));
1163
1164 // If we don't understand the instruction, bail early.
1165 if (!isHoistableAndSinkableInst(I))
1
Calling 'isHoistableAndSinkableInst'
4
Returning from 'isHoistableAndSinkableInst'
1166 return false;
1167
1168 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
5
Taking false branch
6
Assuming 'MSSAU' is null
7
'?' condition is false
1169 if (MSSA
7.1
'MSSA' is null
)
8
Taking false branch
1170 assert(Flags != nullptr && "Flags cannot be null.")(static_cast<void> (0));
1171
1172 // Loads have extra constraints we have to verify before we can hoist them.
1173 if (LoadInst *LI
9.1
'LI' is null
= dyn_cast<LoadInst>(&I)) {
9
Assuming the object is not a 'LoadInst'
10
Taking false branch
1174 if (!LI->isUnordered())
1175 return false; // Don't sink/hoist volatile or ordered atomic loads!
1176
1177 // Loads from constant memory are always safe to move, even if they end up
1178 // in the same alias set as something that ends up being modified.
1179 if (AA->pointsToConstantMemory(LI->getOperand(0)))
1180 return true;
1181 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1182 return true;
1183
1184 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1185 return false; // Don't risk duplicating unordered loads
1186
1187 // This checks for an invariant.start dominating the load.
1188 if (isLoadInvariantInLoop(LI, DT, CurLoop))
1189 return true;
1190
1191 bool Invalidated;
1192 if (CurAST)
1193 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1194 CurLoop, AA);
1195 else
1196 Invalidated = pointerInvalidatedByLoopWithMSSA(
1197 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
1198 // Check loop-invariant address because this may also be a sinkable load
1199 // whose address is not necessarily loop-invariant.
1200 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1201 ORE->emit([&]() {
1202 return OptimizationRemarkMissed(
1203 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressInvalidated", LI)
1204 << "failed to move load with loop-invariant address "
1205 "because the loop may invalidate its value";
1206 });
1207
1208 return !Invalidated;
1209 } else if (CallInst *CI
11.1
'CI' is null
= dyn_cast<CallInst>(&I)) {
11
Assuming the object is not a 'CallInst'
12
Taking false branch
1210 // Don't sink or hoist dbg info; it's legal, but not useful.
1211 if (isa<DbgInfoIntrinsic>(I))
1212 return false;
1213
1214 // Don't sink calls which can throw.
1215 if (CI->mayThrow())
1216 return false;
1217
1218 // Convergent attribute has been used on operations that involve
1219 // inter-thread communication which results are implicitly affected by the
1220 // enclosing control flows. It is not safe to hoist or sink such operations
1221 // across control flow.
1222 if (CI->isConvergent())
1223 return false;
1224
1225 using namespace PatternMatch;
1226 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1227 // Assumes don't actually alias anything or throw
1228 return true;
1229
1230 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1231 // Widenable conditions don't actually alias anything or throw
1232 return true;
1233
1234 // Handle simple cases by querying alias analysis.
1235 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1236 if (Behavior == FMRB_DoesNotAccessMemory)
1237 return true;
1238 if (AAResults::onlyReadsMemory(Behavior)) {
1239 // A readonly argmemonly function only reads from memory pointed to by
1240 // it's arguments with arbitrary offsets. If we can prove there are no
1241 // writes to this memory in the loop, we can hoist or sink.
1242 if (AAResults::onlyAccessesArgPointees(Behavior)) {
1243 // TODO: expand to writeable arguments
1244 for (Value *Op : CI->arg_operands())
1245 if (Op->getType()->isPointerTy()) {
1246 bool Invalidated;
1247 if (CurAST)
1248 Invalidated = pointerInvalidatedByLoop(
1249 MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
1250 else
1251 Invalidated = pointerInvalidatedByLoopWithMSSA(
1252 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
1253 *Flags);
1254 if (Invalidated)
1255 return false;
1256 }
1257 return true;
1258 }
1259
1260 // If this call only reads from memory and there are no writes to memory
1261 // in the loop, we can hoist or sink the call as appropriate.
1262 if (isReadOnly(CurAST, MSSAU, CurLoop))
1263 return true;
1264 }
1265
1266 // FIXME: This should use mod/ref information to see if we can hoist or
1267 // sink the call.
1268
1269 return false;
1270 } else if (auto *FI
13.1
'FI' is non-null
= dyn_cast<FenceInst>(&I)) {
13
Assuming the object is a 'FenceInst'
14
Taking true branch
1271 // Fences alias (most) everything to provide ordering. For the moment,
1272 // just give up if there are any other memory operations in the loop.
1273 if (CurAST) {
15
Assuming 'CurAST' is null
16
Taking false branch
1274 auto Begin = CurAST->begin();
1275 assert(Begin != CurAST->end() && "must contain FI")(static_cast<void> (0));
1276 if (std::next(Begin) != CurAST->end())
1277 // constant memory for instance, TODO: handle better
1278 return false;
1279 auto *UniqueI = Begin->getUniqueInstruction();
1280 if (!UniqueI)
1281 // other memory op, give up
1282 return false;
1283 (void)FI; // suppress unused variable warning
1284 assert(UniqueI == FI && "AS must contain FI")(static_cast<void> (0));
1285 return true;
1286 } else // MSSAU
1287 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
17
Passing null pointer value via 3rd parameter 'MSSAU'
18
Calling 'isOnlyMemoryAccess'
1288 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1289 if (!SI->isUnordered())
1290 return false; // Don't sink/hoist volatile or ordered atomic store!
1291
1292 // We can only hoist a store that we can prove writes a value which is not
1293 // read or overwritten within the loop. For those cases, we fallback to
1294 // load store promotion instead. TODO: We can extend this to cases where
1295 // there is exactly one write to the location and that write dominates an
1296 // arbitrary number of reads in the loop.
1297 if (CurAST) {
1298 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1299
1300 if (AS.isRef() || !AS.isMustAlias())
1301 // Quick exit test, handled by the full path below as well.
1302 return false;
1303 auto *UniqueI = AS.getUniqueInstruction();
1304 if (!UniqueI)
1305 // other memory op, give up
1306 return false;
1307 assert(UniqueI == SI && "AS must contain SI")(static_cast<void> (0));
1308 return true;
1309 } else { // MSSAU
1310 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1311 return true;
1312 // If there are more accesses than the Promotion cap or no "quota" to
1313 // check clobber, then give up as we're not walking a list that long.
1314 if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
1315 return false;
1316 // If there are interfering Uses (i.e. their defining access is in the
1317 // loop), or ordered loads (stored as Defs!), don't move this store.
1318 // Could do better here, but this is conservatively correct.
1319 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1320 // moving accesses. Can also extend to dominating uses.
1321 auto *SIMD = MSSA->getMemoryAccess(SI);
1322 for (auto *BB : CurLoop->getBlocks())
1323 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1324 for (const auto &MA : *Accesses)
1325 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1326 auto *MD = MU->getDefiningAccess();
1327 if (!MSSA->isLiveOnEntryDef(MD) &&
1328 CurLoop->contains(MD->getBlock()))
1329 return false;
1330 // Disable hoisting past potentially interfering loads. Optimized
1331 // Uses may point to an access outside the loop, as getClobbering
1332 // checks the previous iteration when walking the backedge.
1333 // FIXME: More precise: no Uses that alias SI.
1334 if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
1335 return false;
1336 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1337 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1338 (void)LI; // Silence warning.
1339 assert(!LI->isUnordered() && "Expected unordered load")(static_cast<void> (0));
1340 return false;
1341 }
1342 // Any call, while it may not be clobbering SI, it may be a use.
1343 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1344 // Check if the call may read from the memory location written
1345 // to by SI. Check CI's attributes and arguments; the number of
1346 // such checks performed is limited above by NoOfMemAccTooLarge.
1347 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1348 if (isModOrRefSet(MRI))
1349 return false;
1350 }
1351 }
1352 }
1353 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1354 Flags->incrementClobberingCalls();
1355 // If there are no clobbering Defs in the loop, store is safe to hoist.
1356 return MSSA->isLiveOnEntryDef(Source) ||
1357 !CurLoop->contains(Source->getBlock());
1358 }
1359 }
1360
1361 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing")(static_cast<void> (0));
1362
1363 // We've established mechanical ability and aliasing, it's up to the caller
1364 // to check fault safety
1365 return true;
1366}
1367
1368/// Returns true if a PHINode is a trivially replaceable with an
1369/// Instruction.
1370/// This is true when all incoming values are that instruction.
1371/// This pattern occurs most often with LCSSA PHI nodes.
1372///
1373static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1374 for (const Value *IncValue : PN.incoming_values())
1375 if (IncValue != &I)
1376 return false;
1377
1378 return true;
1379}
1380
1381/// Return true if the instruction is free in the loop.
1382static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1383 const TargetTransformInfo *TTI) {
1384
1385 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1386 if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1387 TargetTransformInfo::TCC_Free)
1388 return false;
1389 // For a GEP, we cannot simply use getUserCost because currently it
1390 // optimistically assume that a GEP will fold into addressing mode
1391 // regardless of its users.
1392 const BasicBlock *BB = GEP->getParent();
1393 for (const User *U : GEP->users()) {
1394 const Instruction *UI = cast<Instruction>(U);
1395 if (CurLoop->contains(UI) &&
1396 (BB != UI->getParent() ||
1397 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1398 return false;
1399 }
1400 return true;
1401 } else
1402 return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1403 TargetTransformInfo::TCC_Free;
1404}
1405
1406/// Return true if the only users of this instruction are outside of
1407/// the loop. If this is true, we can sink the instruction to the exit
1408/// blocks of the loop.
1409///
1410/// We also return true if the instruction could be folded away in lowering.
1411/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
1412static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1413 const LoopSafetyInfo *SafetyInfo,
1414 TargetTransformInfo *TTI, bool &FreeInLoop,
1415 bool LoopNestMode) {
1416 const auto &BlockColors = SafetyInfo->getBlockColors();
1417 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1418 for (const User *U : I.users()) {
1419 const Instruction *UI = cast<Instruction>(U);
1420 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1421 const BasicBlock *BB = PN->getParent();
1422 // We cannot sink uses in catchswitches.
1423 if (isa<CatchSwitchInst>(BB->getTerminator()))
1424 return false;
1425
1426 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1427 // phi use is too muddled.
1428 if (isa<CallInst>(I))
1429 if (!BlockColors.empty() &&
1430 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1431 return false;
1432
1433 if (LoopNestMode) {
1434 while (isa<PHINode>(UI) && UI->hasOneUser() &&
1435 UI->getNumOperands() == 1) {
1436 if (!CurLoop->contains(UI))
1437 break;
1438 UI = cast<Instruction>(UI->user_back());
1439 }
1440 }
1441 }
1442
1443 if (CurLoop->contains(UI)) {
1444 if (IsFree) {
1445 FreeInLoop = true;
1446 continue;
1447 }
1448 return false;
1449 }
1450 }
1451 return true;
1452}
1453
1454static Instruction *cloneInstructionInExitBlock(
1455 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1456 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1457 Instruction *New;
1458 if (auto *CI = dyn_cast<CallInst>(&I)) {
1459 const auto &BlockColors = SafetyInfo->getBlockColors();
1460
1461 // Sinking call-sites need to be handled differently from other
1462 // instructions. The cloned call-site needs a funclet bundle operand
1463 // appropriate for its location in the CFG.
1464 SmallVector<OperandBundleDef, 1> OpBundles;
1465 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1466 BundleIdx != BundleEnd; ++BundleIdx) {
1467 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1468 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1469 continue;
1470
1471 OpBundles.emplace_back(Bundle);
1472 }
1473
1474 if (!BlockColors.empty()) {
1475 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1476 assert(CV.size() == 1 && "non-unique color for exit block!")(static_cast<void> (0));
1477 BasicBlock *BBColor = CV.front();
1478 Instruction *EHPad = BBColor->getFirstNonPHI();
1479 if (EHPad->isEHPad())
1480 OpBundles.emplace_back("funclet", EHPad);
1481 }
1482
1483 New = CallInst::Create(CI, OpBundles);
1484 } else {
1485 New = I.clone();
1486 }
1487
1488 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1489 if (!I.getName().empty())
1490 New->setName(I.getName() + ".le");
1491
1492 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1493 // Create a new MemoryAccess and let MemorySSA set its defining access.
1494 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1495 New, nullptr, New->getParent(), MemorySSA::Beginning);
1496 if (NewMemAcc) {
1497 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1498 MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1499 else {
1500 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1501 MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1502 }
1503 }
1504 }
1505
1506 // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that
1507 // this is particularly cheap because we can rip off the PHI node that we're
1508 // replacing for the number and blocks of the predecessors.
1509 // OPT: If this shows up in a profile, we can instead finish sinking all
1510 // invariant instructions, and then walk their operands to re-establish
1511 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1512 // sinking bottom-up.
1513 for (Use &Op : New->operands())
1514 if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
1515 auto *OInst = cast<Instruction>(Op.get());
1516 PHINode *OpPN =
1517 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1518 OInst->getName() + ".lcssa", &ExitBlock.front());
1519 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1520 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1521 Op = OpPN;
1522 }
1523 return New;
1524}
1525
1526static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1527 MemorySSAUpdater *MSSAU) {
1528 if (MSSAU)
1529 MSSAU->removeMemoryAccess(&I);
1530 SafetyInfo.removeInstruction(&I);
1531 I.eraseFromParent();
1532}
1533
1534static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1535 ICFLoopSafetyInfo &SafetyInfo,
1536 MemorySSAUpdater *MSSAU,
1537 ScalarEvolution *SE) {
1538 SafetyInfo.removeInstruction(&I);
1539 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1540 I.moveBefore(&Dest);
1541 if (MSSAU)
1542 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1543 MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1544 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1545 MemorySSA::BeforeTerminator);
1546 if (SE)
1547 SE->forgetValue(&I);
1548}
1549
1550static Instruction *sinkThroughTriviallyReplaceablePHI(
1551 PHINode *TPN, Instruction *I, LoopInfo *LI,
1552 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1553 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1554 MemorySSAUpdater *MSSAU) {
1555 assert(isTriviallyReplaceablePHI(*TPN, *I) &&(static_cast<void> (0))
1556 "Expect only trivially replaceable PHI")(static_cast<void> (0));
1557 BasicBlock *ExitBlock = TPN->getParent();
1558 Instruction *New;
1559 auto It = SunkCopies.find(ExitBlock);
1560 if (It != SunkCopies.end())
1561 New = It->second;
1562 else
1563 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1564 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1565 return New;
1566}
1567
1568static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1569 BasicBlock *BB = PN->getParent();
1570 if (!BB->canSplitPredecessors())
1571 return false;
1572 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1573 // it require updating BlockColors for all offspring blocks accordingly. By
1574 // skipping such corner case, we can make updating BlockColors after splitting
1575 // predecessor fairly simple.
1576 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1577 return false;
1578 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1579 BasicBlock *BBPred = *PI;
1580 if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1581 isa<CallBrInst>(BBPred->getTerminator()))
1582 return false;
1583 }
1584 return true;
1585}
1586
1587static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1588 LoopInfo *LI, const Loop *CurLoop,
1589 LoopSafetyInfo *SafetyInfo,
1590 MemorySSAUpdater *MSSAU) {
1591#ifndef NDEBUG1
1592 SmallVector<BasicBlock *, 32> ExitBlocks;
1593 CurLoop->getUniqueExitBlocks(ExitBlocks);
1594 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1595 ExitBlocks.end());
1596#endif
1597 BasicBlock *ExitBB = PN->getParent();
1598 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.")(static_cast<void> (0));
1599
1600 // Split predecessors of the loop exit to make instructions in the loop are
1601 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1602 // loop in the canonical form where each predecessor of each exit block should
1603 // be contained within the loop. For example, this will convert the loop below
1604 // from
1605 //
1606 // LB1:
1607 // %v1 =
1608 // br %LE, %LB2
1609 // LB2:
1610 // %v2 =
1611 // br %LE, %LB1
1612 // LE:
1613 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1614 //
1615 // to
1616 //
1617 // LB1:
1618 // %v1 =
1619 // br %LE.split, %LB2
1620 // LB2:
1621 // %v2 =
1622 // br %LE.split2, %LB1
1623 // LE.split:
1624 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1625 // br %LE
1626 // LE.split2:
1627 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1628 // br %LE
1629 // LE:
1630 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1631 //
1632 const auto &BlockColors = SafetyInfo->getBlockColors();
1633 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1634 while (!PredBBs.empty()) {
1635 BasicBlock *PredBB = *PredBBs.begin();
1636 assert(CurLoop->contains(PredBB) &&(static_cast<void> (0))
1637 "Expect all predecessors are in the loop")(static_cast<void> (0));
1638 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1639 BasicBlock *NewPred = SplitBlockPredecessors(
1640 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1641 // Since we do not allow splitting EH-block with BlockColors in
1642 // canSplitPredecessors(), we can simply assign predecessor's color to
1643 // the new block.
1644 if (!BlockColors.empty())
1645 // Grab a reference to the ColorVector to be inserted before getting the
1646 // reference to the vector we are copying because inserting the new
1647 // element in BlockColors might cause the map to be reallocated.
1648 SafetyInfo->copyColors(NewPred, PredBB);
1649 }
1650 PredBBs.remove(PredBB);
1651 }
1652}
1653
1654/// When an instruction is found to only be used outside of the loop, this
1655/// function moves it to the exit blocks and patches up SSA form as needed.
1656/// This method is guaranteed to remove the original instruction from its
1657/// position, and may either delete it or move it to outside of the loop.
1658///
1659static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1660 BlockFrequencyInfo *BFI, const Loop *CurLoop,
1661 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
1662 OptimizationRemarkEmitter *ORE) {
1663 bool Changed = false;
1664 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n")do { } while (false);
1665
1666 // Iterate over users to be ready for actual sinking. Replace users via
1667 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1668 SmallPtrSet<Instruction *, 8> VisitedUsers;
1669 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1670 auto *User = cast<Instruction>(*UI);
1671 Use &U = UI.getUse();
1672 ++UI;
1673
1674 if (VisitedUsers.count(User) || CurLoop->contains(User))
1675 continue;
1676
1677 if (!DT->isReachableFromEntry(User->getParent())) {
1678 U = UndefValue::get(I.getType());
1679 Changed = true;
1680 continue;
1681 }
1682
1683 // The user must be a PHI node.
1684 PHINode *PN = cast<PHINode>(User);
1685
1686 // Surprisingly, instructions can be used outside of loops without any
1687 // exits. This can only happen in PHI nodes if the incoming block is
1688 // unreachable.
1689 BasicBlock *BB = PN->getIncomingBlock(U);
1690 if (!DT->isReachableFromEntry(BB)) {
1691 U = UndefValue::get(I.getType());
1692 Changed = true;
1693 continue;
1694 }
1695
1696 VisitedUsers.insert(PN);
1697 if (isTriviallyReplaceablePHI(*PN, I))
1698 continue;
1699
1700 if (!canSplitPredecessors(PN, SafetyInfo))
1701 return Changed;
1702
1703 // Split predecessors of the PHI so that we can make users trivially
1704 // replaceable.
1705 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1706
1707 // Should rebuild the iterators, as they may be invalidated by
1708 // splitPredecessorsOfLoopExit().
1709 UI = I.user_begin();
1710 UE = I.user_end();
1711 }
1712
1713 if (VisitedUsers.empty())
1714 return Changed;
1715
1716 ORE->emit([&]() {
1717 return OptimizationRemark(DEBUG_TYPE"licm", "InstSunk", &I)
1718 << "sinking " << ore::NV("Inst", &I);
1719 });
1720 if (isa<LoadInst>(I))
1721 ++NumMovedLoads;
1722 else if (isa<CallInst>(I))
1723 ++NumMovedCalls;
1724 ++NumSunk;
1725
1726#ifndef NDEBUG1
1727 SmallVector<BasicBlock *, 32> ExitBlocks;
1728 CurLoop->getUniqueExitBlocks(ExitBlocks);
1729 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1730 ExitBlocks.end());
1731#endif
1732
1733 // Clones of this instruction. Don't create more than one per exit block!
1734 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1735
1736 // If this instruction is only used outside of the loop, then all users are
1737 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1738 // the instruction.
1739 // First check if I is worth sinking for all uses. Sink only when it is worth
1740 // across all uses.
1741 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1742 SmallVector<PHINode *, 8> ExitPNs;
1743 for (auto *UI : Users) {
1744 auto *User = cast<Instruction>(UI);
1745
1746 if (CurLoop->contains(User))
1747 continue;
1748
1749 PHINode *PN = cast<PHINode>(User);
1750 assert(ExitBlockSet.count(PN->getParent()) &&(static_cast<void> (0))
1751 "The LCSSA PHI is not in an exit block!")(static_cast<void> (0));
1752 if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) {
1753 return Changed;
1754 }
1755
1756 ExitPNs.push_back(PN);
1757 }
1758
1759 for (auto *PN : ExitPNs) {
1760
1761 // The PHI must be trivially replaceable.
1762 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1763 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1764 PN->replaceAllUsesWith(New);
1765 eraseInstruction(*PN, *SafetyInfo, nullptr);
1766 Changed = true;
1767 }
1768 return Changed;
1769}
1770
1771/// When an instruction is found to only use loop invariant operands that
1772/// is safe to hoist, this instruction is called to do the dirty work.
1773///
1774static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1775 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1776 MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1777 OptimizationRemarkEmitter *ORE) {
1778 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "do { } while (false)
1779 << I << "\n")do { } while (false);
1780 ORE->emit([&]() {
1781 return OptimizationRemark(DEBUG_TYPE"licm", "Hoisted", &I) << "hoisting "
1782 << ore::NV("Inst", &I);
1783 });
1784
1785 // Metadata can be dependent on conditions we are hoisting above.
1786 // Conservatively strip all metadata on the instruction unless we were
1787 // guaranteed to execute I if we entered the loop, in which case the metadata
1788 // is valid in the loop preheader.
1789 // Similarly, If I is a call and it is not guaranteed to execute in the loop,
1790 // then moving to the preheader means we should strip attributes on the call
1791 // that can cause UB since we may be hoisting above conditions that allowed
1792 // inferring those attributes. They may not be valid at the preheader.
1793 if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
1794 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1795 // time in isGuaranteedToExecute if we don't actually have anything to
1796 // drop. It is a compile time optimization, not required for correctness.
1797 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1798 I.dropUndefImplyingAttrsAndUnknownMetadata();
1799
1800 if (isa<PHINode>(I))
1801 // Move the new node to the end of the phi list in the destination block.
1802 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1803 else
1804 // Move the new node to the destination block, before its terminator.
1805 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1806
1807 I.updateLocationAfterHoist();
1808
1809 if (isa<LoadInst>(I))
1810 ++NumMovedLoads;
1811 else if (isa<CallInst>(I))
1812 ++NumMovedCalls;
1813 ++NumHoisted;
1814}
1815
1816/// Only sink or hoist an instruction if it is not a trapping instruction,
1817/// or if the instruction is known not to trap when moved to the preheader.
1818/// or if it is a trapping instruction and is guaranteed to execute.
1819static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1820 const DominatorTree *DT,
1821 const TargetLibraryInfo *TLI,
1822 const Loop *CurLoop,
1823 const LoopSafetyInfo *SafetyInfo,
1824 OptimizationRemarkEmitter *ORE,
1825 const Instruction *CtxI) {
1826 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI))
1827 return true;
1828
1829 bool GuaranteedToExecute =
1830 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1831
1832 if (!GuaranteedToExecute) {
1833 auto *LI = dyn_cast<LoadInst>(&Inst);
1834 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1835 ORE->emit([&]() {
1836 return OptimizationRemarkMissed(
1837 DEBUG_TYPE"licm", "LoadWithLoopInvariantAddressCondExecuted", LI)
1838 << "failed to hoist load with loop-invariant address "
1839 "because load is conditionally executed";
1840 });
1841 }
1842
1843 return GuaranteedToExecute;
1844}
1845
1846namespace {
1847class LoopPromoter : public LoadAndStorePromoter {
1848 Value *SomePtr; // Designated pointer to store to.
1849 const SmallSetVector<Value *, 8> &PointerMustAliases;
1850 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1851 SmallVectorImpl<Instruction *> &LoopInsertPts;
1852 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1853 PredIteratorCache &PredCache;
1854 MemorySSAUpdater *MSSAU;
1855 LoopInfo &LI;
1856 DebugLoc DL;
1857 int Alignment;
1858 bool UnorderedAtomic;
1859 AAMDNodes AATags;
1860 ICFLoopSafetyInfo &SafetyInfo;
1861
1862 // We're about to add a use of V in a loop exit block. Insert an LCSSA phi
1863 // (if legal) if doing so would add an out-of-loop use to an instruction
1864 // defined in-loop.
1865 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1866 if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
1867 return V;
1868
1869 Instruction *I = cast<Instruction>(V);
1870 // We need to create an LCSSA PHI node for the incoming value and
1871 // store that.
1872 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1873 I->getName() + ".lcssa", &BB->front());
1874 for (BasicBlock *Pred : PredCache.get(BB))
1875 PN->addIncoming(I, Pred);
1876 return PN;
1877 }
1878
1879public:
1880 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1881 const SmallSetVector<Value *, 8> &PMA,
1882 SmallVectorImpl<BasicBlock *> &LEB,
1883 SmallVectorImpl<Instruction *> &LIP,
1884 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1885 MemorySSAUpdater *MSSAU, LoopInfo &li, DebugLoc dl,
1886 int alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
1887 ICFLoopSafetyInfo &SafetyInfo)
1888 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1889 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1890 PredCache(PIC), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1891 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1892 SafetyInfo(SafetyInfo) {}
1893
1894 bool isInstInList(Instruction *I,
1895 const SmallVectorImpl<Instruction *> &) const override {
1896 Value *Ptr;
1897 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1898 Ptr = LI->getOperand(0);
1899 else
1900 Ptr = cast<StoreInst>(I)->getPointerOperand();
1901 return PointerMustAliases.count(Ptr);
1902 }
1903
1904 void doExtraRewritesBeforeFinalDeletion() override {
1905 // Insert stores after in the loop exit blocks. Each exit block gets a
1906 // store of the live-out values that feed them. Since we've already told
1907 // the SSA updater about the defs in the loop and the preheader
1908 // definition, it is all set and we can start using it.
1909 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1910 BasicBlock *ExitBlock = LoopExitBlocks[i];
1911 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1912 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1913 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1914 Instruction *InsertPos = LoopInsertPts[i];
1915 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1916 if (UnorderedAtomic)
1917 NewSI->setOrdering(AtomicOrdering::Unordered);
1918 NewSI->setAlignment(Align(Alignment));
1919 NewSI->setDebugLoc(DL);
1920 if (AATags)
1921 NewSI->setAAMetadata(AATags);
1922
1923 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1924 MemoryAccess *NewMemAcc;
1925 if (!MSSAInsertPoint) {
1926 NewMemAcc = MSSAU->createMemoryAccessInBB(
1927 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1928 } else {
1929 NewMemAcc =
1930 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1931 }
1932 MSSAInsertPts[i] = NewMemAcc;
1933 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1934 // FIXME: true for safety, false may still be correct.
1935 }
1936 }
1937
1938 void instructionDeleted(Instruction *I) const override {
1939 SafetyInfo.removeInstruction(I);
1940 MSSAU->removeMemoryAccess(I);
1941 }
1942};
1943
1944bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1945 DominatorTree *DT) {
1946 // We can perform the captured-before check against any instruction in the
1947 // loop header, as the loop header is reachable from any instruction inside
1948 // the loop.
1949 // TODO: ReturnCaptures=true shouldn't be necessary here.
1950 return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1951 /* StoreCaptures */ true,
1952 L->getHeader()->getTerminator(), DT);
1953}
1954
1955/// Return true iff we can prove that a caller of this function can not inspect
1956/// the contents of the provided object in a well defined program.
1957bool isKnownNonEscaping(Value *Object, const Loop *L,
1958 const TargetLibraryInfo *TLI, DominatorTree *DT) {
1959 if (isa<AllocaInst>(Object))
1960 // Since the alloca goes out of scope, we know the caller can't retain a
1961 // reference to it and be well defined. Thus, we don't need to check for
1962 // capture.
1963 return true;
1964
1965 // For all other objects we need to know that the caller can't possibly
1966 // have gotten a reference to the object. There are two components of
1967 // that:
1968 // 1) Object can't be escaped by this function. This is what
1969 // PointerMayBeCaptured checks.
1970 // 2) Object can't have been captured at definition site. For this, we
1971 // need to know the return value is noalias. At the moment, we use a
1972 // weaker condition and handle only AllocLikeFunctions (which are
1973 // known to be noalias). TODO
1974 return isAllocLikeFn(Object, TLI) &&
1975 isNotCapturedBeforeOrInLoop(Object, L, DT);
1976}
1977
1978} // namespace
1979
1980/// Try to promote memory values to scalars by sinking stores out of the
1981/// loop and moving loads to before the loop. We do this by looping over
1982/// the stores in the loop, looking for stores to Must pointers which are
1983/// loop invariant.
1984///
1985bool llvm::promoteLoopAccessesToScalars(
1986 const SmallSetVector<Value *, 8> &PointerMustAliases,
1987 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1988 SmallVectorImpl<Instruction *> &InsertPts,
1989 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1990 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1991 Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
1992 OptimizationRemarkEmitter *ORE) {
1993 // Verify inputs.
1994 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&(static_cast<void> (0))
1995 SafetyInfo != nullptr &&(static_cast<void> (0))
1996 "Unexpected Input to promoteLoopAccessesToScalars")(static_cast<void> (0));
1997
1998 Value *SomePtr = *PointerMustAliases.begin();
1999 BasicBlock *Preheader = CurLoop->getLoopPreheader();
2000
2001 // It is not safe to promote a load/store from the loop if the load/store is
2002 // conditional. For example, turning:
2003 //
2004 // for () { if (c) *P += 1; }
2005 //
2006 // into:
2007 //
2008 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
2009 //
2010 // is not safe, because *P may only be valid to access if 'c' is true.
2011 //
2012 // The safety property divides into two parts:
2013 // p1) The memory may not be dereferenceable on entry to the loop. In this
2014 // case, we can't insert the required load in the preheader.
2015 // p2) The memory model does not allow us to insert a store along any dynamic
2016 // path which did not originally have one.
2017 //
2018 // If at least one store is guaranteed to execute, both properties are
2019 // satisfied, and promotion is legal.
2020 //
2021 // This, however, is not a necessary condition. Even if no store/load is
2022 // guaranteed to execute, we can still establish these properties.
2023 // We can establish (p1) by proving that hoisting the load into the preheader
2024 // is safe (i.e. proving dereferenceability on all paths through the loop). We
2025 // can use any access within the alias set to prove dereferenceability,
2026 // since they're all must alias.
2027 //
2028 // There are two ways establish (p2):
2029 // a) Prove the location is thread-local. In this case the memory model
2030 // requirement does not apply, and stores are safe to insert.
2031 // b) Prove a store dominates every exit block. In this case, if an exit
2032 // blocks is reached, the original dynamic path would have taken us through
2033 // the store, so inserting a store into the exit block is safe. Note that this
2034 // is different from the store being guaranteed to execute. For instance,
2035 // if an exception is thrown on the first iteration of the loop, the original
2036 // store is never executed, but the exit blocks are not executed either.
2037
2038 bool DereferenceableInPH = false;
2039 bool SafeToInsertStore = false;
2040
2041 SmallVector<Instruction *, 64> LoopUses;
2042
2043 // We start with an alignment of one and try to find instructions that allow
2044 // us to prove better alignment.
2045 Align Alignment;
2046 // Keep track of which types of access we see
2047 bool SawUnorderedAtomic = false;
2048 bool SawNotAtomic = false;
2049 AAMDNodes AATags;
2050
2051 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
2052
2053 bool IsKnownThreadLocalObject = false;
2054 if (SafetyInfo->anyBlockMayThrow()) {
2055 // If a loop can throw, we have to insert a store along each unwind edge.
2056 // That said, we can't actually make the unwind edge explicit. Therefore,
2057 // we have to prove that the store is dead along the unwind edge. We do
2058 // this by proving that the caller can't have a reference to the object
2059 // after return and thus can't possibly load from the object.
2060 Value *Object = getUnderlyingObject(SomePtr);
2061 if (!isKnownNonEscaping(Object, CurLoop, TLI, DT))
2062 return false;
2063 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
2064 // visible to other threads if captured and used during their lifetimes.
2065 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
2066 }
2067
2068 // Check that all of the pointers in the alias set have the same type. We
2069 // cannot (yet) promote a memory location that is loaded and stored in
2070 // different sizes. While we are at it, collect alignment and AA info.
2071 for (Value *ASIV : PointerMustAliases) {
2072 // Check that all of the pointers in the alias set have the same type. We
2073 // cannot (yet) promote a memory location that is loaded and stored in
2074 // different sizes.
2075 if (SomePtr->getType() != ASIV->getType())
2076 return false;
2077
2078 for (User *U : ASIV->users()) {
2079 // Ignore instructions that are outside the loop.
2080 Instruction *UI = dyn_cast<Instruction>(U);
2081 if (!UI || !CurLoop->contains(UI))
2082 continue;
2083
2084 // If there is an non-load/store instruction in the loop, we can't promote
2085 // it.
2086 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2087 if (!Load->isUnordered())
2088 return false;
2089
2090 SawUnorderedAtomic |= Load->isAtomic();
2091 SawNotAtomic |= !Load->isAtomic();
2092
2093 Align InstAlignment = Load->getAlign();
2094
2095 // Note that proving a load safe to speculate requires proving
2096 // sufficient alignment at the target location. Proving it guaranteed
2097 // to execute does as well. Thus we can increase our guaranteed
2098 // alignment as well.
2099 if (!DereferenceableInPH || (InstAlignment > Alignment))
2100 if (isSafeToExecuteUnconditionally(*Load, DT, TLI, CurLoop,
2101 SafetyInfo, ORE,
2102 Preheader->getTerminator())) {
2103 DereferenceableInPH = true;
2104 Alignment = std::max(Alignment, InstAlignment);
2105 }
2106 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2107 // Stores *of* the pointer are not interesting, only stores *to* the
2108 // pointer.
2109 if (UI->getOperand(1) != ASIV)
2110 continue;
2111 if (!Store->isUnordered())
2112 return false;
2113
2114 SawUnorderedAtomic |= Store->isAtomic();
2115 SawNotAtomic |= !Store->isAtomic();
2116
2117 // If the store is guaranteed to execute, both properties are satisfied.
2118 // We may want to check if a store is guaranteed to execute even if we
2119 // already know that promotion is safe, since it may have higher
2120 // alignment than any other guaranteed stores, in which case we can
2121 // raise the alignment on the promoted store.
2122 Align InstAlignment = Store->getAlign();
2123
2124 if (!DereferenceableInPH || !SafeToInsertStore ||
2125 (InstAlignment > Alignment)) {
2126 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2127 DereferenceableInPH = true;
2128 SafeToInsertStore = true;
2129 Alignment = std::max(Alignment, InstAlignment);
2130 }
2131 }
2132
2133 // If a store dominates all exit blocks, it is safe to sink.
2134 // As explained above, if an exit block was executed, a dominating
2135 // store must have been executed at least once, so we are not
2136 // introducing stores on paths that did not have them.
2137 // Note that this only looks at explicit exit blocks. If we ever
2138 // start sinking stores into unwind edges (see above), this will break.
2139 if (!SafeToInsertStore)
2140 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2141 return DT->dominates(Store->getParent(), Exit);
2142 });
2143
2144 // If the store is not guaranteed to execute, we may still get
2145 // deref info through it.
2146 if (!DereferenceableInPH) {
2147 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2148 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2149 Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI);
2150 }
2151 } else
2152 return false; // Not a load or store.
2153
2154 // Merge the AA tags.
2155 if (LoopUses.empty()) {
2156 // On the first load/store, just take its AA tags.
2157 UI->getAAMetadata(AATags);
2158 } else if (AATags) {
2159 UI->getAAMetadata(AATags, /* Merge = */ true);
2160 }
2161
2162 LoopUses.push_back(UI);
2163 }
2164 }
2165
2166 // If we found both an unordered atomic instruction and a non-atomic memory
2167 // access, bail. We can't blindly promote non-atomic to atomic since we
2168 // might not be able to lower the result. We can't downgrade since that
2169 // would violate memory model. Also, align 0 is an error for atomics.
2170 if (SawUnorderedAtomic && SawNotAtomic)
2171 return false;
2172
2173 // If we're inserting an atomic load in the preheader, we must be able to
2174 // lower it. We're only guaranteed to be able to lower naturally aligned
2175 // atomics.
2176 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2177 if (SawUnorderedAtomic &&
2178 Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2179 return false;
2180
2181 // If we couldn't prove we can hoist the load, bail.
2182 if (!DereferenceableInPH)
2183 return false;
2184
2185 // We know we can hoist the load, but don't have a guaranteed store.
2186 // Check whether the location is thread-local. If it is, then we can insert
2187 // stores along paths which originally didn't have them without violating the
2188 // memory model.
2189 if (!SafeToInsertStore) {
2190 if (IsKnownThreadLocalObject)
2191 SafeToInsertStore = true;
2192 else {
2193 Value *Object = getUnderlyingObject(SomePtr);
2194 SafeToInsertStore =
2195 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2196 isNotCapturedBeforeOrInLoop(Object, CurLoop, DT);
2197 }
2198 }
2199
2200 // If we've still failed to prove we can sink the store, give up.
2201 if (!SafeToInsertStore)
2202 return false;
2203
2204 // Otherwise, this is safe to promote, lets do it!
2205 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtrdo { } while (false)
2206 << '\n')do { } while (false);
2207 ORE->emit([&]() {
2208 return OptimizationRemark(DEBUG_TYPE"licm", "PromoteLoopAccessesToScalar",
2209 LoopUses[0])
2210 << "Moving accesses to memory location out of the loop";
2211 });
2212 ++NumPromoted;
2213
2214 // Look at all the loop uses, and try to merge their locations.
2215 std::vector<const DILocation *> LoopUsesLocs;
2216 for (auto U : LoopUses)
2217 LoopUsesLocs.push_back(U->getDebugLoc().get());
2218 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2219
2220 // We use the SSAUpdater interface to insert phi nodes as required.
2221 SmallVector<PHINode *, 16> NewPHIs;
2222 SSAUpdater SSA(&NewPHIs);
2223 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2224 InsertPts, MSSAInsertPts, PIC, MSSAU, *LI, DL,
2225 Alignment.value(), SawUnorderedAtomic, AATags,
2226 *SafetyInfo);
2227
2228 // Set up the preheader to have a definition of the value. It is the live-out
2229 // value from the preheader that uses in the loop will use.
2230 LoadInst *PreheaderLoad = new LoadInst(
2231 SomePtr->getType()->getPointerElementType(), SomePtr,
2232 SomePtr->getName() + ".promoted", Preheader->getTerminator());
2233 if (SawUnorderedAtomic)
2234 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2235 PreheaderLoad->setAlignment(Alignment);
2236 PreheaderLoad->setDebugLoc(DebugLoc());
2237 if (AATags)
2238 PreheaderLoad->setAAMetadata(AATags);
2239 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2240
2241 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2242 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2243 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2244 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2245
2246 if (VerifyMemorySSA)
2247 MSSAU->getMemorySSA()->verifyMemorySSA();
2248 // Rewrite all the loads in the loop and remember all the definitions from
2249 // stores in the loop.
2250 Promoter.run(LoopUses);
2251
2252 if (VerifyMemorySSA)
2253 MSSAU->getMemorySSA()->verifyMemorySSA();
2254 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2255 if (PreheaderLoad->use_empty())
2256 eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU);
2257
2258 return true;
2259}
2260
2261static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2262 function_ref<void(Instruction *)> Fn) {
2263 for (const BasicBlock *BB : L->blocks())
2264 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2265 for (const auto &Access : *Accesses)
2266 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2267 Fn(MUD->getMemoryInst());
2268}
2269
2270static SmallVector<SmallSetVector<Value *, 8>, 0>
2271collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
2272 AliasSetTracker AST(*AA);
2273
2274 auto IsPotentiallyPromotable = [L](const Instruction *I) {
2275 if (const auto *SI = dyn_cast<StoreInst>(I))
2276 return L->isLoopInvariant(SI->getPointerOperand());
2277 if (const auto *LI = dyn_cast<LoadInst>(I))
2278 return L->isLoopInvariant(LI->getPointerOperand());
2279 return false;
2280 };
2281
2282 // Populate AST with potentially promotable accesses and remove them from
2283 // MaybePromotable, so they will not be checked again on the next iteration.
2284 SmallPtrSet<Value *, 16> AttemptingPromotion;
2285 foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2286 if (IsPotentiallyPromotable(I)) {
2287 AttemptingPromotion.insert(I);
2288 AST.add(I);
2289 }
2290 });
2291
2292 // We're only interested in must-alias sets that contain a mod.
2293 SmallVector<const AliasSet *, 8> Sets;
2294 for (AliasSet &AS : AST)
2295 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2296 Sets.push_back(&AS);
2297
2298 if (Sets.empty())
2299 return {}; // Nothing to promote...
2300
2301 // Discard any sets for which there is an aliasing non-promotable access.
2302 foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2303 if (AttemptingPromotion.contains(I))
2304 return;
2305
2306 llvm::erase_if(Sets, [&](const AliasSet *AS) {
2307 return AS->aliasesUnknownInst(I, *AA);
2308 });
2309 });
2310
2311 SmallVector<SmallSetVector<Value *, 8>, 0> Result;
2312 for (const AliasSet *Set : Sets) {
2313 SmallSetVector<Value *, 8> PointerMustAliases;
2314 for (const auto &ASI : *Set)
2315 PointerMustAliases.insert(ASI.getValue());
2316 Result.push_back(std::move(PointerMustAliases));
2317 }
2318
2319 return Result;
2320}
2321
2322static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2323 AliasSetTracker *CurAST, Loop *CurLoop,
2324 AAResults *AA) {
2325 return CurAST->getAliasSetFor(MemLoc).isMod();
2326}
2327
2328bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2329 Loop *CurLoop, Instruction &I,
2330 SinkAndHoistLICMFlags &Flags) {
2331 // For hoisting, use the walker to determine safety
2332 if (!Flags.getIsSink()) {
2333 MemoryAccess *Source;
2334 // See declaration of SetLicmMssaOptCap for usage details.
2335 if (Flags.tooManyClobberingCalls())
2336 Source = MU->getDefiningAccess();
2337 else {
2338 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2339 Flags.incrementClobberingCalls();
2340 }
2341 return !MSSA->isLiveOnEntryDef(Source) &&
2342 CurLoop->contains(Source->getBlock());
2343 }
2344
2345 // For sinking, we'd need to check all Defs below this use. The getClobbering
2346 // call will look on the backedge of the loop, but will check aliasing with
2347 // the instructions on the previous iteration.
2348 // For example:
2349 // for (i ... )
2350 // load a[i] ( Use (LoE)
2351 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2352 // i++;
2353 // The load sees no clobbering inside the loop, as the backedge alias check
2354 // does phi translation, and will check aliasing against store a[i-1].
2355 // However sinking the load outside the loop, below the store is incorrect.
2356
2357 // For now, only sink if there are no Defs in the loop, and the existing ones
2358 // precede the use and are in the same block.
2359 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2360 // needs PostDominatorTreeAnalysis.
2361 // FIXME: More precise: no Defs that alias this Use.
2362 if (Flags.tooManyMemoryAccesses())
2363 return true;
2364 for (auto *BB : CurLoop->getBlocks())
2365 if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
2366 return true;
2367 // When sinking, the source block may not be part of the loop so check it.
2368 if (!CurLoop->contains(&I))
2369 return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
2370
2371 return false;
2372}
2373
2374bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
2375 MemoryUse &MU) {
2376 if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2377 for (const auto &MA : *Accesses)
2378 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2379 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2380 return true;
2381 return false;
2382}
2383
2384/// Little predicate that returns true if the specified basic block is in
2385/// a subloop of the current one, not the current one itself.
2386///
2387static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2388 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop")(static_cast<void> (0));
2389 return LI->getLoopFor(BB) != CurLoop;
2390}