File: | llvm/lib/Analysis/LazyValueInfo.cpp |
Warning: | line 1340, column 34 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// | ||||||
2 | // | ||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||
6 | // | ||||||
7 | //===----------------------------------------------------------------------===// | ||||||
8 | // | ||||||
9 | // This file defines the interface for lazy computation of value constraint | ||||||
10 | // information. | ||||||
11 | // | ||||||
12 | //===----------------------------------------------------------------------===// | ||||||
13 | |||||||
14 | #include "llvm/Analysis/LazyValueInfo.h" | ||||||
15 | #include "llvm/ADT/DenseSet.h" | ||||||
16 | #include "llvm/ADT/Optional.h" | ||||||
17 | #include "llvm/ADT/STLExtras.h" | ||||||
18 | #include "llvm/Analysis/AssumptionCache.h" | ||||||
19 | #include "llvm/Analysis/ConstantFolding.h" | ||||||
20 | #include "llvm/Analysis/InstructionSimplify.h" | ||||||
21 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||||
22 | #include "llvm/Analysis/ValueLattice.h" | ||||||
23 | #include "llvm/Analysis/ValueTracking.h" | ||||||
24 | #include "llvm/IR/AssemblyAnnotationWriter.h" | ||||||
25 | #include "llvm/IR/CFG.h" | ||||||
26 | #include "llvm/IR/ConstantRange.h" | ||||||
27 | #include "llvm/IR/Constants.h" | ||||||
28 | #include "llvm/IR/DataLayout.h" | ||||||
29 | #include "llvm/IR/Dominators.h" | ||||||
30 | #include "llvm/IR/Instructions.h" | ||||||
31 | #include "llvm/IR/IntrinsicInst.h" | ||||||
32 | #include "llvm/IR/Intrinsics.h" | ||||||
33 | #include "llvm/IR/LLVMContext.h" | ||||||
34 | #include "llvm/IR/PatternMatch.h" | ||||||
35 | #include "llvm/IR/ValueHandle.h" | ||||||
36 | #include "llvm/InitializePasses.h" | ||||||
37 | #include "llvm/Support/Debug.h" | ||||||
38 | #include "llvm/Support/FormattedStream.h" | ||||||
39 | #include "llvm/Support/KnownBits.h" | ||||||
40 | #include "llvm/Support/raw_ostream.h" | ||||||
41 | #include <map> | ||||||
42 | using namespace llvm; | ||||||
43 | using namespace PatternMatch; | ||||||
44 | |||||||
45 | #define DEBUG_TYPE"lazy-value-info" "lazy-value-info" | ||||||
46 | |||||||
47 | // This is the number of worklist items we will process to try to discover an | ||||||
48 | // answer for a given value. | ||||||
49 | static const unsigned MaxProcessedPerValue = 500; | ||||||
50 | |||||||
51 | char LazyValueInfoWrapperPass::ID = 0; | ||||||
52 | LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { | ||||||
53 | initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); | ||||||
54 | } | ||||||
55 | INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",static void *initializeLazyValueInfoWrapperPassPassOnce(PassRegistry &Registry) { | ||||||
56 | "Lazy Value Information Analysis", false, true)static void *initializeLazyValueInfoWrapperPassPassOnce(PassRegistry &Registry) { | ||||||
57 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry); | ||||||
58 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | ||||||
59 | INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",PassInfo *PI = new PassInfo( "Lazy Value Information Analysis" , "lazy-value-info", &LazyValueInfoWrapperPass::ID, PassInfo ::NormalCtor_t(callDefaultCtor<LazyValueInfoWrapperPass> ), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoWrapperPassPassFlag ; void llvm::initializeLazyValueInfoWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeLazyValueInfoWrapperPassPassFlag , initializeLazyValueInfoWrapperPassPassOnce, std::ref(Registry )); } | ||||||
60 | "Lazy Value Information Analysis", false, true)PassInfo *PI = new PassInfo( "Lazy Value Information Analysis" , "lazy-value-info", &LazyValueInfoWrapperPass::ID, PassInfo ::NormalCtor_t(callDefaultCtor<LazyValueInfoWrapperPass> ), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoWrapperPassPassFlag ; void llvm::initializeLazyValueInfoWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeLazyValueInfoWrapperPassPassFlag , initializeLazyValueInfoWrapperPassPassOnce, std::ref(Registry )); } | ||||||
61 | |||||||
62 | namespace llvm { | ||||||
63 | FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } | ||||||
64 | } | ||||||
65 | |||||||
66 | AnalysisKey LazyValueAnalysis::Key; | ||||||
67 | |||||||
68 | /// Returns true if this lattice value represents at most one possible value. | ||||||
69 | /// This is as precise as any lattice value can get while still representing | ||||||
70 | /// reachable code. | ||||||
71 | static bool hasSingleValue(const ValueLatticeElement &Val) { | ||||||
72 | if (Val.isConstantRange() && | ||||||
73 | Val.getConstantRange().isSingleElement()) | ||||||
74 | // Integer constants are single element ranges | ||||||
75 | return true; | ||||||
76 | if (Val.isConstant()) | ||||||
77 | // Non integer constants | ||||||
78 | return true; | ||||||
79 | return false; | ||||||
80 | } | ||||||
81 | |||||||
82 | /// Combine two sets of facts about the same value into a single set of | ||||||
83 | /// facts. Note that this method is not suitable for merging facts along | ||||||
84 | /// different paths in a CFG; that's what the mergeIn function is for. This | ||||||
85 | /// is for merging facts gathered about the same value at the same location | ||||||
86 | /// through two independent means. | ||||||
87 | /// Notes: | ||||||
88 | /// * This method does not promise to return the most precise possible lattice | ||||||
89 | /// value implied by A and B. It is allowed to return any lattice element | ||||||
90 | /// which is at least as strong as *either* A or B (unless our facts | ||||||
91 | /// conflict, see below). | ||||||
92 | /// * Due to unreachable code, the intersection of two lattice values could be | ||||||
93 | /// contradictory. If this happens, we return some valid lattice value so as | ||||||
94 | /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but | ||||||
95 | /// we do not make this guarantee. TODO: This would be a useful enhancement. | ||||||
96 | static ValueLatticeElement intersect(const ValueLatticeElement &A, | ||||||
97 | const ValueLatticeElement &B) { | ||||||
98 | // Undefined is the strongest state. It means the value is known to be along | ||||||
99 | // an unreachable path. | ||||||
100 | if (A.isUnknown()) | ||||||
101 | return A; | ||||||
102 | if (B.isUnknown()) | ||||||
103 | return B; | ||||||
104 | |||||||
105 | // If we gave up for one, but got a useable fact from the other, use it. | ||||||
106 | if (A.isOverdefined()) | ||||||
107 | return B; | ||||||
108 | if (B.isOverdefined()) | ||||||
109 | return A; | ||||||
110 | |||||||
111 | // Can't get any more precise than constants. | ||||||
112 | if (hasSingleValue(A)) | ||||||
113 | return A; | ||||||
114 | if (hasSingleValue(B)) | ||||||
115 | return B; | ||||||
116 | |||||||
117 | // Could be either constant range or not constant here. | ||||||
118 | if (!A.isConstantRange() || !B.isConstantRange()) { | ||||||
119 | // TODO: Arbitrary choice, could be improved | ||||||
120 | return A; | ||||||
121 | } | ||||||
122 | |||||||
123 | // Intersect two constant ranges | ||||||
124 | ConstantRange Range = | ||||||
125 | A.getConstantRange().intersectWith(B.getConstantRange()); | ||||||
126 | // Note: An empty range is implicitly converted to unknown or undef depending | ||||||
127 | // on MayIncludeUndef internally. | ||||||
128 | return ValueLatticeElement::getRange( | ||||||
129 | std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() | | ||||||
130 | B.isConstantRangeIncludingUndef()); | ||||||
131 | } | ||||||
132 | |||||||
133 | //===----------------------------------------------------------------------===// | ||||||
134 | // LazyValueInfoCache Decl | ||||||
135 | //===----------------------------------------------------------------------===// | ||||||
136 | |||||||
137 | namespace { | ||||||
138 | /// A callback value handle updates the cache when values are erased. | ||||||
139 | class LazyValueInfoCache; | ||||||
140 | struct LVIValueHandle final : public CallbackVH { | ||||||
141 | LazyValueInfoCache *Parent; | ||||||
142 | |||||||
143 | LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) | ||||||
144 | : CallbackVH(V), Parent(P) { } | ||||||
145 | |||||||
146 | void deleted() override; | ||||||
147 | void allUsesReplacedWith(Value *V) override { | ||||||
148 | deleted(); | ||||||
149 | } | ||||||
150 | }; | ||||||
151 | } // end anonymous namespace | ||||||
152 | |||||||
153 | namespace { | ||||||
154 | using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>; | ||||||
155 | |||||||
156 | /// This is the cache kept by LazyValueInfo which | ||||||
157 | /// maintains information about queries across the clients' queries. | ||||||
158 | class LazyValueInfoCache { | ||||||
159 | /// This is all of the cached information for one basic block. It contains | ||||||
160 | /// the per-value lattice elements, as well as a separate set for | ||||||
161 | /// overdefined values to reduce memory usage. Additionally pointers | ||||||
162 | /// dereferenced in the block are cached for nullability queries. | ||||||
163 | struct BlockCacheEntry { | ||||||
164 | SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; | ||||||
165 | SmallDenseSet<AssertingVH<Value>, 4> OverDefined; | ||||||
166 | // None indicates that the nonnull pointers for this basic block | ||||||
167 | // block have not been computed yet. | ||||||
168 | Optional<NonNullPointerSet> NonNullPointers; | ||||||
169 | }; | ||||||
170 | |||||||
171 | /// Cached information per basic block. | ||||||
172 | DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> | ||||||
173 | BlockCache; | ||||||
174 | /// Set of value handles used to erase values from the cache on deletion. | ||||||
175 | DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; | ||||||
176 | |||||||
177 | const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { | ||||||
178 | auto It = BlockCache.find_as(BB); | ||||||
179 | if (It == BlockCache.end()) | ||||||
180 | return nullptr; | ||||||
181 | return It->second.get(); | ||||||
182 | } | ||||||
183 | |||||||
184 | BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { | ||||||
185 | auto It = BlockCache.find_as(BB); | ||||||
186 | if (It == BlockCache.end()) | ||||||
187 | It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() }) | ||||||
188 | .first; | ||||||
189 | |||||||
190 | return It->second.get(); | ||||||
191 | } | ||||||
192 | |||||||
193 | void addValueHandle(Value *Val) { | ||||||
194 | auto HandleIt = ValueHandles.find_as(Val); | ||||||
195 | if (HandleIt == ValueHandles.end()) | ||||||
196 | ValueHandles.insert({ Val, this }); | ||||||
197 | } | ||||||
198 | |||||||
199 | public: | ||||||
200 | void insertResult(Value *Val, BasicBlock *BB, | ||||||
201 | const ValueLatticeElement &Result) { | ||||||
202 | BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); | ||||||
203 | |||||||
204 | // Insert over-defined values into their own cache to reduce memory | ||||||
205 | // overhead. | ||||||
206 | if (Result.isOverdefined()) | ||||||
207 | Entry->OverDefined.insert(Val); | ||||||
208 | else | ||||||
209 | Entry->LatticeElements.insert({ Val, Result }); | ||||||
210 | |||||||
211 | addValueHandle(Val); | ||||||
212 | } | ||||||
213 | |||||||
214 | Optional<ValueLatticeElement> getCachedValueInfo(Value *V, | ||||||
215 | BasicBlock *BB) const { | ||||||
216 | const BlockCacheEntry *Entry = getBlockEntry(BB); | ||||||
217 | if (!Entry) | ||||||
218 | return None; | ||||||
219 | |||||||
220 | if (Entry->OverDefined.count(V)) | ||||||
221 | return ValueLatticeElement::getOverdefined(); | ||||||
222 | |||||||
223 | auto LatticeIt = Entry->LatticeElements.find_as(V); | ||||||
224 | if (LatticeIt == Entry->LatticeElements.end()) | ||||||
225 | return None; | ||||||
226 | |||||||
227 | return LatticeIt->second; | ||||||
228 | } | ||||||
229 | |||||||
230 | bool isNonNullAtEndOfBlock( | ||||||
231 | Value *V, BasicBlock *BB, | ||||||
232 | function_ref<NonNullPointerSet(BasicBlock *)> InitFn) { | ||||||
233 | BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); | ||||||
234 | if (!Entry->NonNullPointers) { | ||||||
235 | Entry->NonNullPointers = InitFn(BB); | ||||||
236 | for (Value *V : *Entry->NonNullPointers) | ||||||
237 | addValueHandle(V); | ||||||
238 | } | ||||||
239 | |||||||
240 | return Entry->NonNullPointers->count(V); | ||||||
241 | } | ||||||
242 | |||||||
243 | /// clear - Empty the cache. | ||||||
244 | void clear() { | ||||||
245 | BlockCache.clear(); | ||||||
246 | ValueHandles.clear(); | ||||||
247 | } | ||||||
248 | |||||||
249 | /// Inform the cache that a given value has been deleted. | ||||||
250 | void eraseValue(Value *V); | ||||||
251 | |||||||
252 | /// This is part of the update interface to inform the cache | ||||||
253 | /// that a block has been deleted. | ||||||
254 | void eraseBlock(BasicBlock *BB); | ||||||
255 | |||||||
256 | /// Updates the cache to remove any influence an overdefined value in | ||||||
257 | /// OldSucc might have (unless also overdefined in NewSucc). This just | ||||||
258 | /// flushes elements from the cache and does not add any. | ||||||
259 | void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); | ||||||
260 | }; | ||||||
261 | } | ||||||
262 | |||||||
263 | void LazyValueInfoCache::eraseValue(Value *V) { | ||||||
264 | for (auto &Pair : BlockCache) { | ||||||
265 | Pair.second->LatticeElements.erase(V); | ||||||
266 | Pair.second->OverDefined.erase(V); | ||||||
267 | if (Pair.second->NonNullPointers) | ||||||
268 | Pair.second->NonNullPointers->erase(V); | ||||||
269 | } | ||||||
270 | |||||||
271 | auto HandleIt = ValueHandles.find_as(V); | ||||||
272 | if (HandleIt != ValueHandles.end()) | ||||||
273 | ValueHandles.erase(HandleIt); | ||||||
274 | } | ||||||
275 | |||||||
276 | void LVIValueHandle::deleted() { | ||||||
277 | // This erasure deallocates *this, so it MUST happen after we're done | ||||||
278 | // using any and all members of *this. | ||||||
279 | Parent->eraseValue(*this); | ||||||
280 | } | ||||||
281 | |||||||
282 | void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { | ||||||
283 | BlockCache.erase(BB); | ||||||
284 | } | ||||||
285 | |||||||
286 | void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, | ||||||
287 | BasicBlock *NewSucc) { | ||||||
288 | // When an edge in the graph has been threaded, values that we could not | ||||||
289 | // determine a value for before (i.e. were marked overdefined) may be | ||||||
290 | // possible to solve now. We do NOT try to proactively update these values. | ||||||
291 | // Instead, we clear their entries from the cache, and allow lazy updating to | ||||||
292 | // recompute them when needed. | ||||||
293 | |||||||
294 | // The updating process is fairly simple: we need to drop cached info | ||||||
295 | // for all values that were marked overdefined in OldSucc, and for those same | ||||||
296 | // values in any successor of OldSucc (except NewSucc) in which they were | ||||||
297 | // also marked overdefined. | ||||||
298 | std::vector<BasicBlock*> worklist; | ||||||
299 | worklist.push_back(OldSucc); | ||||||
300 | |||||||
301 | const BlockCacheEntry *Entry = getBlockEntry(OldSucc); | ||||||
302 | if (!Entry || Entry->OverDefined.empty()) | ||||||
303 | return; // Nothing to process here. | ||||||
304 | SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), | ||||||
305 | Entry->OverDefined.end()); | ||||||
306 | |||||||
307 | // Use a worklist to perform a depth-first search of OldSucc's successors. | ||||||
308 | // NOTE: We do not need a visited list since any blocks we have already | ||||||
309 | // visited will have had their overdefined markers cleared already, and we | ||||||
310 | // thus won't loop to their successors. | ||||||
311 | while (!worklist.empty()) { | ||||||
312 | BasicBlock *ToUpdate = worklist.back(); | ||||||
313 | worklist.pop_back(); | ||||||
314 | |||||||
315 | // Skip blocks only accessible through NewSucc. | ||||||
316 | if (ToUpdate == NewSucc) continue; | ||||||
317 | |||||||
318 | // If a value was marked overdefined in OldSucc, and is here too... | ||||||
319 | auto OI = BlockCache.find_as(ToUpdate); | ||||||
320 | if (OI == BlockCache.end() || OI->second->OverDefined.empty()) | ||||||
321 | continue; | ||||||
322 | auto &ValueSet = OI->second->OverDefined; | ||||||
323 | |||||||
324 | bool changed = false; | ||||||
325 | for (Value *V : ValsToClear) { | ||||||
326 | if (!ValueSet.erase(V)) | ||||||
327 | continue; | ||||||
328 | |||||||
329 | // If we removed anything, then we potentially need to update | ||||||
330 | // blocks successors too. | ||||||
331 | changed = true; | ||||||
332 | } | ||||||
333 | |||||||
334 | if (!changed) continue; | ||||||
335 | |||||||
336 | llvm::append_range(worklist, successors(ToUpdate)); | ||||||
337 | } | ||||||
338 | } | ||||||
339 | |||||||
340 | |||||||
341 | namespace { | ||||||
342 | /// An assembly annotator class to print LazyValueCache information in | ||||||
343 | /// comments. | ||||||
344 | class LazyValueInfoImpl; | ||||||
345 | class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { | ||||||
346 | LazyValueInfoImpl *LVIImpl; | ||||||
347 | // While analyzing which blocks we can solve values for, we need the dominator | ||||||
348 | // information. | ||||||
349 | DominatorTree &DT; | ||||||
350 | |||||||
351 | public: | ||||||
352 | LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) | ||||||
353 | : LVIImpl(L), DT(DTree) {} | ||||||
354 | |||||||
355 | void emitBasicBlockStartAnnot(const BasicBlock *BB, | ||||||
356 | formatted_raw_ostream &OS) override; | ||||||
357 | |||||||
358 | void emitInstructionAnnot(const Instruction *I, | ||||||
359 | formatted_raw_ostream &OS) override; | ||||||
360 | }; | ||||||
361 | } | ||||||
362 | namespace { | ||||||
363 | // The actual implementation of the lazy analysis and update. Note that the | ||||||
364 | // inheritance from LazyValueInfoCache is intended to be temporary while | ||||||
365 | // splitting the code and then transitioning to a has-a relationship. | ||||||
366 | class LazyValueInfoImpl { | ||||||
367 | |||||||
368 | /// Cached results from previous queries | ||||||
369 | LazyValueInfoCache TheCache; | ||||||
370 | |||||||
371 | /// This stack holds the state of the value solver during a query. | ||||||
372 | /// It basically emulates the callstack of the naive | ||||||
373 | /// recursive value lookup process. | ||||||
374 | SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; | ||||||
375 | |||||||
376 | /// Keeps track of which block-value pairs are in BlockValueStack. | ||||||
377 | DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; | ||||||
378 | |||||||
379 | /// Push BV onto BlockValueStack unless it's already in there. | ||||||
380 | /// Returns true on success. | ||||||
381 | bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { | ||||||
382 | if (!BlockValueSet.insert(BV).second) | ||||||
383 | return false; // It's already in the stack. | ||||||
384 | |||||||
385 | LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "PUSH: " << *BV. second << " in " << BV.first->getName() << "\n"; } } while (false) | ||||||
386 | << BV.first->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "PUSH: " << *BV. second << " in " << BV.first->getName() << "\n"; } } while (false); | ||||||
387 | BlockValueStack.push_back(BV); | ||||||
388 | return true; | ||||||
389 | } | ||||||
390 | |||||||
391 | AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. | ||||||
392 | const DataLayout &DL; ///< A mandatory DataLayout | ||||||
393 | |||||||
394 | /// Declaration of the llvm.experimental.guard() intrinsic, | ||||||
395 | /// if it exists in the module. | ||||||
396 | Function *GuardDecl; | ||||||
397 | |||||||
398 | Optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB); | ||||||
399 | Optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, | ||||||
400 | BasicBlock *T, Instruction *CxtI = nullptr); | ||||||
401 | |||||||
402 | // These methods process one work item and may add more. A false value | ||||||
403 | // returned means that the work item was not completely processed and must | ||||||
404 | // be revisited after going through the new items. | ||||||
405 | bool solveBlockValue(Value *Val, BasicBlock *BB); | ||||||
406 | Optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, BasicBlock *BB); | ||||||
407 | Optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, | ||||||
408 | BasicBlock *BB); | ||||||
409 | Optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, | ||||||
410 | BasicBlock *BB); | ||||||
411 | Optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, | ||||||
412 | BasicBlock *BB); | ||||||
413 | Optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI, | ||||||
414 | BasicBlock *BB); | ||||||
415 | Optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( | ||||||
416 | Instruction *I, BasicBlock *BB, | ||||||
417 | std::function<ConstantRange(const ConstantRange &, | ||||||
418 | const ConstantRange &)> OpFn); | ||||||
419 | Optional<ValueLatticeElement> solveBlockValueBinaryOp(BinaryOperator *BBI, | ||||||
420 | BasicBlock *BB); | ||||||
421 | Optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, | ||||||
422 | BasicBlock *BB); | ||||||
423 | Optional<ValueLatticeElement> solveBlockValueOverflowIntrinsic( | ||||||
424 | WithOverflowInst *WO, BasicBlock *BB); | ||||||
425 | Optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, | ||||||
426 | BasicBlock *BB); | ||||||
427 | Optional<ValueLatticeElement> solveBlockValueExtractValue( | ||||||
428 | ExtractValueInst *EVI, BasicBlock *BB); | ||||||
429 | bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB); | ||||||
430 | void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, | ||||||
431 | ValueLatticeElement &BBLV, | ||||||
432 | Instruction *BBI); | ||||||
433 | |||||||
434 | void solve(); | ||||||
435 | |||||||
436 | public: | ||||||
437 | /// This is the query interface to determine the lattice value for the | ||||||
438 | /// specified Value* at the context instruction (if specified) or at the | ||||||
439 | /// start of the block. | ||||||
440 | ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, | ||||||
441 | Instruction *CxtI = nullptr); | ||||||
442 | |||||||
443 | /// This is the query interface to determine the lattice value for the | ||||||
444 | /// specified Value* at the specified instruction using only information | ||||||
445 | /// from assumes/guards and range metadata. Unlike getValueInBlock(), no | ||||||
446 | /// recursive query is performed. | ||||||
447 | ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); | ||||||
448 | |||||||
449 | /// This is the query interface to determine the lattice | ||||||
450 | /// value for the specified Value* that is true on the specified edge. | ||||||
451 | ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, | ||||||
452 | BasicBlock *ToBB, | ||||||
453 | Instruction *CxtI = nullptr); | ||||||
454 | |||||||
455 | /// Complete flush all previously computed values | ||||||
456 | void clear() { | ||||||
457 | TheCache.clear(); | ||||||
458 | } | ||||||
459 | |||||||
460 | /// Printing the LazyValueInfo Analysis. | ||||||
461 | void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { | ||||||
462 | LazyValueInfoAnnotatedWriter Writer(this, DTree); | ||||||
463 | F.print(OS, &Writer); | ||||||
464 | } | ||||||
465 | |||||||
466 | /// This is part of the update interface to inform the cache | ||||||
467 | /// that a block has been deleted. | ||||||
468 | void eraseBlock(BasicBlock *BB) { | ||||||
469 | TheCache.eraseBlock(BB); | ||||||
470 | } | ||||||
471 | |||||||
472 | /// This is the update interface to inform the cache that an edge from | ||||||
473 | /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. | ||||||
474 | void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); | ||||||
475 | |||||||
476 | LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, | ||||||
477 | Function *GuardDecl) | ||||||
478 | : AC(AC), DL(DL), GuardDecl(GuardDecl) {} | ||||||
479 | }; | ||||||
480 | } // end anonymous namespace | ||||||
481 | |||||||
482 | |||||||
483 | void LazyValueInfoImpl::solve() { | ||||||
484 | SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( | ||||||
485 | BlockValueStack.begin(), BlockValueStack.end()); | ||||||
486 | |||||||
487 | unsigned processedCount = 0; | ||||||
488 | while (!BlockValueStack.empty()) { | ||||||
489 | processedCount++; | ||||||
490 | // Abort if we have to process too many values to get a result for this one. | ||||||
491 | // Because of the design of the overdefined cache currently being per-block | ||||||
492 | // to avoid naming-related issues (IE it wants to try to give different | ||||||
493 | // results for the same name in different blocks), overdefined results don't | ||||||
494 | // get cached globally, which in turn means we will often try to rediscover | ||||||
495 | // the same overdefined result again and again. Once something like | ||||||
496 | // PredicateInfo is used in LVI or CVP, we should be able to make the | ||||||
497 | // overdefined cache global, and remove this throttle. | ||||||
498 | if (processedCount > MaxProcessedPerValue) { | ||||||
499 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "Giving up on stack because we are getting too deep\n" ; } } while (false) | ||||||
500 | dbgs() << "Giving up on stack because we are getting too deep\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "Giving up on stack because we are getting too deep\n" ; } } while (false); | ||||||
501 | // Fill in the original values | ||||||
502 | while (!StartingStack.empty()) { | ||||||
503 | std::pair<BasicBlock *, Value *> &e = StartingStack.back(); | ||||||
504 | TheCache.insertResult(e.second, e.first, | ||||||
505 | ValueLatticeElement::getOverdefined()); | ||||||
506 | StartingStack.pop_back(); | ||||||
507 | } | ||||||
508 | BlockValueSet.clear(); | ||||||
509 | BlockValueStack.clear(); | ||||||
510 | return; | ||||||
511 | } | ||||||
512 | std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); | ||||||
513 | assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!")((BlockValueSet.count(e) && "Stack value should be in BlockValueSet!" ) ? static_cast<void> (0) : __assert_fail ("BlockValueSet.count(e) && \"Stack value should be in BlockValueSet!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 513, __PRETTY_FUNCTION__)); | ||||||
514 | |||||||
515 | if (solveBlockValue(e.second, e.first)) { | ||||||
516 | // The work item was completely processed. | ||||||
517 | assert(BlockValueStack.back() == e && "Nothing should have been pushed!")((BlockValueStack.back() == e && "Nothing should have been pushed!" ) ? static_cast<void> (0) : __assert_fail ("BlockValueStack.back() == e && \"Nothing should have been pushed!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 517, __PRETTY_FUNCTION__)); | ||||||
518 | #ifndef NDEBUG | ||||||
519 | Optional<ValueLatticeElement> BBLV = | ||||||
520 | TheCache.getCachedValueInfo(e.second, e.first); | ||||||
521 | assert(BBLV && "Result should be in cache!")((BBLV && "Result should be in cache!") ? static_cast <void> (0) : __assert_fail ("BBLV && \"Result should be in cache!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 521, __PRETTY_FUNCTION__)); | ||||||
522 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " << *BBLV << "\n"; } } while (false) | ||||||
523 | dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " << *BBLV << "\n"; } } while (false) | ||||||
524 | << *BBLV << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " << *BBLV << "\n"; } } while (false); | ||||||
525 | #endif | ||||||
526 | |||||||
527 | BlockValueStack.pop_back(); | ||||||
528 | BlockValueSet.erase(e); | ||||||
529 | } else { | ||||||
530 | // More work needs to be done before revisiting. | ||||||
531 | assert(BlockValueStack.back() != e && "Stack should have been pushed!")((BlockValueStack.back() != e && "Stack should have been pushed!" ) ? static_cast<void> (0) : __assert_fail ("BlockValueStack.back() != e && \"Stack should have been pushed!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 531, __PRETTY_FUNCTION__)); | ||||||
532 | } | ||||||
533 | } | ||||||
534 | } | ||||||
535 | |||||||
536 | Optional<ValueLatticeElement> LazyValueInfoImpl::getBlockValue(Value *Val, | ||||||
537 | BasicBlock *BB) { | ||||||
538 | // If already a constant, there is nothing to compute. | ||||||
539 | if (Constant *VC = dyn_cast<Constant>(Val)) | ||||||
540 | return ValueLatticeElement::get(VC); | ||||||
541 | |||||||
542 | if (Optional<ValueLatticeElement> OptLatticeVal = | ||||||
543 | TheCache.getCachedValueInfo(Val, BB)) | ||||||
544 | return OptLatticeVal; | ||||||
545 | |||||||
546 | // We have hit a cycle, assume overdefined. | ||||||
547 | if (!pushBlockValue({ BB, Val })) | ||||||
548 | return ValueLatticeElement::getOverdefined(); | ||||||
549 | |||||||
550 | // Yet to be resolved. | ||||||
551 | return None; | ||||||
552 | } | ||||||
553 | |||||||
554 | static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { | ||||||
555 | switch (BBI->getOpcode()) { | ||||||
556 | default: break; | ||||||
557 | case Instruction::Load: | ||||||
558 | case Instruction::Call: | ||||||
559 | case Instruction::Invoke: | ||||||
560 | if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) | ||||||
561 | if (isa<IntegerType>(BBI->getType())) { | ||||||
562 | return ValueLatticeElement::getRange( | ||||||
563 | getConstantRangeFromMetadata(*Ranges)); | ||||||
564 | } | ||||||
565 | break; | ||||||
566 | }; | ||||||
567 | // Nothing known - will be intersected with other facts | ||||||
568 | return ValueLatticeElement::getOverdefined(); | ||||||
569 | } | ||||||
570 | |||||||
571 | bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { | ||||||
572 | assert(!isa<Constant>(Val) && "Value should not be constant")((!isa<Constant>(Val) && "Value should not be constant" ) ? static_cast<void> (0) : __assert_fail ("!isa<Constant>(Val) && \"Value should not be constant\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 572, __PRETTY_FUNCTION__)); | ||||||
573 | assert(!TheCache.getCachedValueInfo(Val, BB) &&((!TheCache.getCachedValueInfo(Val, BB) && "Value should not be in cache" ) ? static_cast<void> (0) : __assert_fail ("!TheCache.getCachedValueInfo(Val, BB) && \"Value should not be in cache\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 574, __PRETTY_FUNCTION__)) | ||||||
574 | "Value should not be in cache")((!TheCache.getCachedValueInfo(Val, BB) && "Value should not be in cache" ) ? static_cast<void> (0) : __assert_fail ("!TheCache.getCachedValueInfo(Val, BB) && \"Value should not be in cache\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 574, __PRETTY_FUNCTION__)); | ||||||
575 | |||||||
576 | // Hold off inserting this value into the Cache in case we have to return | ||||||
577 | // false and come back later. | ||||||
578 | Optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); | ||||||
579 | if (!Res) | ||||||
580 | // Work pushed, will revisit | ||||||
581 | return false; | ||||||
582 | |||||||
583 | TheCache.insertResult(Val, BB, *Res); | ||||||
584 | return true; | ||||||
585 | } | ||||||
586 | |||||||
587 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueImpl( | ||||||
588 | Value *Val, BasicBlock *BB) { | ||||||
589 | Instruction *BBI = dyn_cast<Instruction>(Val); | ||||||
590 | if (!BBI || BBI->getParent() != BB) | ||||||
591 | return solveBlockValueNonLocal(Val, BB); | ||||||
592 | |||||||
593 | if (PHINode *PN = dyn_cast<PHINode>(BBI)) | ||||||
594 | return solveBlockValuePHINode(PN, BB); | ||||||
595 | |||||||
596 | if (auto *SI = dyn_cast<SelectInst>(BBI)) | ||||||
597 | return solveBlockValueSelect(SI, BB); | ||||||
598 | |||||||
599 | // If this value is a nonnull pointer, record it's range and bailout. Note | ||||||
600 | // that for all other pointer typed values, we terminate the search at the | ||||||
601 | // definition. We could easily extend this to look through geps, bitcasts, | ||||||
602 | // and the like to prove non-nullness, but it's not clear that's worth it | ||||||
603 | // compile time wise. The context-insensitive value walk done inside | ||||||
604 | // isKnownNonZero gets most of the profitable cases at much less expense. | ||||||
605 | // This does mean that we have a sensitivity to where the defining | ||||||
606 | // instruction is placed, even if it could legally be hoisted much higher. | ||||||
607 | // That is unfortunate. | ||||||
608 | PointerType *PT = dyn_cast<PointerType>(BBI->getType()); | ||||||
609 | if (PT && isKnownNonZero(BBI, DL)) | ||||||
610 | return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); | ||||||
611 | |||||||
612 | if (BBI->getType()->isIntegerTy()) { | ||||||
613 | if (auto *CI = dyn_cast<CastInst>(BBI)) | ||||||
614 | return solveBlockValueCast(CI, BB); | ||||||
615 | |||||||
616 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) | ||||||
617 | return solveBlockValueBinaryOp(BO, BB); | ||||||
618 | |||||||
619 | if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) | ||||||
620 | return solveBlockValueExtractValue(EVI, BB); | ||||||
621 | |||||||
622 | if (auto *II = dyn_cast<IntrinsicInst>(BBI)) | ||||||
623 | return solveBlockValueIntrinsic(II, BB); | ||||||
624 | } | ||||||
625 | |||||||
626 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - unknown inst def found.\n"; } } while (false) | ||||||
627 | << "' - unknown inst def found.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - unknown inst def found.\n"; } } while (false); | ||||||
628 | return getFromRangeMetadata(BBI); | ||||||
629 | } | ||||||
630 | |||||||
631 | static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) { | ||||||
632 | // TODO: Use NullPointerIsDefined instead. | ||||||
633 | if (Ptr->getType()->getPointerAddressSpace() == 0) | ||||||
634 | PtrSet.insert(getUnderlyingObject(Ptr)); | ||||||
635 | } | ||||||
636 | |||||||
637 | static void AddNonNullPointersByInstruction( | ||||||
638 | Instruction *I, NonNullPointerSet &PtrSet) { | ||||||
639 | if (LoadInst *L = dyn_cast<LoadInst>(I)) { | ||||||
640 | AddNonNullPointer(L->getPointerOperand(), PtrSet); | ||||||
641 | } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { | ||||||
642 | AddNonNullPointer(S->getPointerOperand(), PtrSet); | ||||||
643 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { | ||||||
644 | if (MI->isVolatile()) return; | ||||||
645 | |||||||
646 | // FIXME: check whether it has a valuerange that excludes zero? | ||||||
647 | ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); | ||||||
648 | if (!Len || Len->isZero()) return; | ||||||
649 | |||||||
650 | AddNonNullPointer(MI->getRawDest(), PtrSet); | ||||||
651 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) | ||||||
652 | AddNonNullPointer(MTI->getRawSource(), PtrSet); | ||||||
653 | } | ||||||
654 | } | ||||||
655 | |||||||
656 | bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) { | ||||||
657 | if (NullPointerIsDefined(BB->getParent(), | ||||||
658 | Val->getType()->getPointerAddressSpace())) | ||||||
659 | return false; | ||||||
660 | |||||||
661 | Val = getUnderlyingObject(Val); | ||||||
662 | return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) { | ||||||
663 | NonNullPointerSet NonNullPointers; | ||||||
664 | for (Instruction &I : *BB) | ||||||
665 | AddNonNullPointersByInstruction(&I, NonNullPointers); | ||||||
666 | return NonNullPointers; | ||||||
667 | }); | ||||||
668 | } | ||||||
669 | |||||||
670 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueNonLocal( | ||||||
671 | Value *Val, BasicBlock *BB) { | ||||||
672 | ValueLatticeElement Result; // Start Undefined. | ||||||
673 | |||||||
674 | // If this is the entry block, we must be asking about an argument. The | ||||||
675 | // value is overdefined. | ||||||
676 | if (BB == &BB->getParent()->getEntryBlock()) { | ||||||
677 | assert(isa<Argument>(Val) && "Unknown live-in to the entry block")((isa<Argument>(Val) && "Unknown live-in to the entry block" ) ? static_cast<void> (0) : __assert_fail ("isa<Argument>(Val) && \"Unknown live-in to the entry block\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 677, __PRETTY_FUNCTION__)); | ||||||
678 | return ValueLatticeElement::getOverdefined(); | ||||||
679 | } | ||||||
680 | |||||||
681 | // Loop over all of our predecessors, merging what we know from them into | ||||||
682 | // result. If we encounter an unexplored predecessor, we eagerly explore it | ||||||
683 | // in a depth first manner. In practice, this has the effect of discovering | ||||||
684 | // paths we can't analyze eagerly without spending compile times analyzing | ||||||
685 | // other paths. This heuristic benefits from the fact that predecessors are | ||||||
686 | // frequently arranged such that dominating ones come first and we quickly | ||||||
687 | // find a path to function entry. TODO: We should consider explicitly | ||||||
688 | // canonicalizing to make this true rather than relying on this happy | ||||||
689 | // accident. | ||||||
690 | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | ||||||
691 | Optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, *PI, BB); | ||||||
692 | if (!EdgeResult) | ||||||
693 | // Explore that input, then return here | ||||||
694 | return None; | ||||||
695 | |||||||
696 | Result.mergeIn(*EdgeResult); | ||||||
697 | |||||||
698 | // If we hit overdefined, exit early. The BlockVals entry is already set | ||||||
699 | // to overdefined. | ||||||
700 | if (Result.isOverdefined()) { | ||||||
701 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (non local).\n" ; } } while (false) | ||||||
702 | << "' - overdefined because of pred (non local).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (non local).\n" ; } } while (false); | ||||||
703 | return Result; | ||||||
704 | } | ||||||
705 | } | ||||||
706 | |||||||
707 | // Return the merged value, which is more precise than 'overdefined'. | ||||||
708 | assert(!Result.isOverdefined())((!Result.isOverdefined()) ? static_cast<void> (0) : __assert_fail ("!Result.isOverdefined()", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 708, __PRETTY_FUNCTION__)); | ||||||
709 | return Result; | ||||||
710 | } | ||||||
711 | |||||||
712 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValuePHINode( | ||||||
713 | PHINode *PN, BasicBlock *BB) { | ||||||
714 | ValueLatticeElement Result; // Start Undefined. | ||||||
715 | |||||||
716 | // Loop over all of our predecessors, merging what we know from them into | ||||||
717 | // result. See the comment about the chosen traversal order in | ||||||
718 | // solveBlockValueNonLocal; the same reasoning applies here. | ||||||
719 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | ||||||
720 | BasicBlock *PhiBB = PN->getIncomingBlock(i); | ||||||
721 | Value *PhiVal = PN->getIncomingValue(i); | ||||||
722 | // Note that we can provide PN as the context value to getEdgeValue, even | ||||||
723 | // though the results will be cached, because PN is the value being used as | ||||||
724 | // the cache key in the caller. | ||||||
725 | Optional<ValueLatticeElement> EdgeResult = | ||||||
726 | getEdgeValue(PhiVal, PhiBB, BB, PN); | ||||||
727 | if (!EdgeResult) | ||||||
728 | // Explore that input, then return here | ||||||
729 | return None; | ||||||
730 | |||||||
731 | Result.mergeIn(*EdgeResult); | ||||||
732 | |||||||
733 | // If we hit overdefined, exit early. The BlockVals entry is already set | ||||||
734 | // to overdefined. | ||||||
735 | if (Result.isOverdefined()) { | ||||||
736 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (local).\n" ; } } while (false) | ||||||
737 | << "' - overdefined because of pred (local).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (local).\n" ; } } while (false); | ||||||
738 | |||||||
739 | return Result; | ||||||
740 | } | ||||||
741 | } | ||||||
742 | |||||||
743 | // Return the merged value, which is more precise than 'overdefined'. | ||||||
744 | assert(!Result.isOverdefined() && "Possible PHI in entry block?")((!Result.isOverdefined() && "Possible PHI in entry block?" ) ? static_cast<void> (0) : __assert_fail ("!Result.isOverdefined() && \"Possible PHI in entry block?\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 744, __PRETTY_FUNCTION__)); | ||||||
745 | return Result; | ||||||
746 | } | ||||||
747 | |||||||
748 | static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, | ||||||
749 | bool isTrueDest = true); | ||||||
750 | |||||||
751 | // If we can determine a constraint on the value given conditions assumed by | ||||||
752 | // the program, intersect those constraints with BBLV | ||||||
753 | void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( | ||||||
754 | Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { | ||||||
755 | BBI = BBI ? BBI : dyn_cast<Instruction>(Val); | ||||||
756 | if (!BBI) | ||||||
757 | return; | ||||||
758 | |||||||
759 | BasicBlock *BB = BBI->getParent(); | ||||||
760 | for (auto &AssumeVH : AC->assumptionsFor(Val)) { | ||||||
761 | if (!AssumeVH) | ||||||
762 | continue; | ||||||
763 | |||||||
764 | // Only check assumes in the block of the context instruction. Other | ||||||
765 | // assumes will have already been taken into account when the value was | ||||||
766 | // propagated from predecessor blocks. | ||||||
767 | auto *I = cast<CallInst>(AssumeVH); | ||||||
768 | if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) | ||||||
769 | continue; | ||||||
770 | |||||||
771 | BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); | ||||||
772 | } | ||||||
773 | |||||||
774 | // If guards are not used in the module, don't spend time looking for them | ||||||
775 | if (GuardDecl && !GuardDecl->use_empty() && | ||||||
776 | BBI->getIterator() != BB->begin()) { | ||||||
777 | for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()), | ||||||
778 | BB->rend())) { | ||||||
779 | Value *Cond = nullptr; | ||||||
780 | if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) | ||||||
781 | BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); | ||||||
782 | } | ||||||
783 | } | ||||||
784 | |||||||
785 | if (BBLV.isOverdefined()) { | ||||||
786 | // Check whether we're checking at the terminator, and the pointer has | ||||||
787 | // been dereferenced in this block. | ||||||
788 | PointerType *PTy = dyn_cast<PointerType>(Val->getType()); | ||||||
789 | if (PTy && BB->getTerminator() == BBI && | ||||||
790 | isNonNullAtEndOfBlock(Val, BB)) | ||||||
791 | BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); | ||||||
792 | } | ||||||
793 | } | ||||||
794 | |||||||
795 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueSelect( | ||||||
796 | SelectInst *SI, BasicBlock *BB) { | ||||||
797 | // Recurse on our inputs if needed | ||||||
798 | Optional<ValueLatticeElement> OptTrueVal = | ||||||
799 | getBlockValue(SI->getTrueValue(), BB); | ||||||
800 | if (!OptTrueVal) | ||||||
801 | return None; | ||||||
802 | ValueLatticeElement &TrueVal = *OptTrueVal; | ||||||
803 | |||||||
804 | // If we hit overdefined, don't ask more queries. We want to avoid poisoning | ||||||
805 | // extra slots in the table if we can. | ||||||
806 | if (TrueVal.isOverdefined()) | ||||||
807 | return ValueLatticeElement::getOverdefined(); | ||||||
808 | |||||||
809 | Optional<ValueLatticeElement> OptFalseVal = | ||||||
810 | getBlockValue(SI->getFalseValue(), BB); | ||||||
811 | if (!OptFalseVal) | ||||||
812 | return None; | ||||||
813 | ValueLatticeElement &FalseVal = *OptFalseVal; | ||||||
814 | |||||||
815 | // If we hit overdefined, don't ask more queries. We want to avoid poisoning | ||||||
816 | // extra slots in the table if we can. | ||||||
817 | if (FalseVal.isOverdefined()) | ||||||
818 | return ValueLatticeElement::getOverdefined(); | ||||||
819 | |||||||
820 | if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { | ||||||
821 | const ConstantRange &TrueCR = TrueVal.getConstantRange(); | ||||||
822 | const ConstantRange &FalseCR = FalseVal.getConstantRange(); | ||||||
823 | Value *LHS = nullptr; | ||||||
824 | Value *RHS = nullptr; | ||||||
825 | SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); | ||||||
826 | // Is this a min specifically of our two inputs? (Avoid the risk of | ||||||
827 | // ValueTracking getting smarter looking back past our immediate inputs.) | ||||||
828 | if (SelectPatternResult::isMinOrMax(SPR.Flavor) && | ||||||
829 | LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { | ||||||
830 | ConstantRange ResultCR = [&]() { | ||||||
831 | switch (SPR.Flavor) { | ||||||
832 | default: | ||||||
833 | llvm_unreachable("unexpected minmax type!")::llvm::llvm_unreachable_internal("unexpected minmax type!", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 833); | ||||||
834 | case SPF_SMIN: /// Signed minimum | ||||||
835 | return TrueCR.smin(FalseCR); | ||||||
836 | case SPF_UMIN: /// Unsigned minimum | ||||||
837 | return TrueCR.umin(FalseCR); | ||||||
838 | case SPF_SMAX: /// Signed maximum | ||||||
839 | return TrueCR.smax(FalseCR); | ||||||
840 | case SPF_UMAX: /// Unsigned maximum | ||||||
841 | return TrueCR.umax(FalseCR); | ||||||
842 | }; | ||||||
843 | }(); | ||||||
844 | return ValueLatticeElement::getRange( | ||||||
845 | ResultCR, TrueVal.isConstantRangeIncludingUndef() | | ||||||
846 | FalseVal.isConstantRangeIncludingUndef()); | ||||||
847 | } | ||||||
848 | |||||||
849 | if (SPR.Flavor == SPF_ABS) { | ||||||
850 | if (LHS == SI->getTrueValue()) | ||||||
851 | return ValueLatticeElement::getRange( | ||||||
852 | TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); | ||||||
853 | if (LHS == SI->getFalseValue()) | ||||||
854 | return ValueLatticeElement::getRange( | ||||||
855 | FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); | ||||||
856 | } | ||||||
857 | |||||||
858 | if (SPR.Flavor == SPF_NABS) { | ||||||
859 | ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth())); | ||||||
860 | if (LHS == SI->getTrueValue()) | ||||||
861 | return ValueLatticeElement::getRange( | ||||||
862 | Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); | ||||||
863 | if (LHS == SI->getFalseValue()) | ||||||
864 | return ValueLatticeElement::getRange( | ||||||
865 | Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); | ||||||
866 | } | ||||||
867 | } | ||||||
868 | |||||||
869 | // Can we constrain the facts about the true and false values by using the | ||||||
870 | // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). | ||||||
871 | // TODO: We could potentially refine an overdefined true value above. | ||||||
872 | Value *Cond = SI->getCondition(); | ||||||
873 | TrueVal = intersect(TrueVal, | ||||||
874 | getValueFromCondition(SI->getTrueValue(), Cond, true)); | ||||||
875 | FalseVal = intersect(FalseVal, | ||||||
876 | getValueFromCondition(SI->getFalseValue(), Cond, false)); | ||||||
877 | |||||||
878 | // Handle clamp idioms such as: | ||||||
879 | // %24 = constantrange<0, 17> | ||||||
880 | // %39 = icmp eq i32 %24, 0 | ||||||
881 | // %40 = add i32 %24, -1 | ||||||
882 | // %siv.next = select i1 %39, i32 16, i32 %40 | ||||||
883 | // %siv.next = constantrange<0, 17> not <-1, 17> | ||||||
884 | // In general, this can handle any clamp idiom which tests the edge | ||||||
885 | // condition via an equality or inequality. | ||||||
886 | if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { | ||||||
887 | ICmpInst::Predicate Pred = ICI->getPredicate(); | ||||||
888 | Value *A = ICI->getOperand(0); | ||||||
889 | if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) { | ||||||
890 | auto addConstants = [](ConstantInt *A, ConstantInt *B) { | ||||||
891 | assert(A->getType() == B->getType())((A->getType() == B->getType()) ? static_cast<void> (0) : __assert_fail ("A->getType() == B->getType()", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 891, __PRETTY_FUNCTION__)); | ||||||
892 | return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); | ||||||
893 | }; | ||||||
894 | // See if either input is A + C2, subject to the constraint from the | ||||||
895 | // condition that A != C when that input is used. We can assume that | ||||||
896 | // that input doesn't include C + C2. | ||||||
897 | ConstantInt *CIAdded; | ||||||
898 | switch (Pred) { | ||||||
899 | default: break; | ||||||
900 | case ICmpInst::ICMP_EQ: | ||||||
901 | if (match(SI->getFalseValue(), m_Add(m_Specific(A), | ||||||
902 | m_ConstantInt(CIAdded)))) { | ||||||
903 | auto ResNot = addConstants(CIBase, CIAdded); | ||||||
904 | FalseVal = intersect(FalseVal, | ||||||
905 | ValueLatticeElement::getNot(ResNot)); | ||||||
906 | } | ||||||
907 | break; | ||||||
908 | case ICmpInst::ICMP_NE: | ||||||
909 | if (match(SI->getTrueValue(), m_Add(m_Specific(A), | ||||||
910 | m_ConstantInt(CIAdded)))) { | ||||||
911 | auto ResNot = addConstants(CIBase, CIAdded); | ||||||
912 | TrueVal = intersect(TrueVal, | ||||||
913 | ValueLatticeElement::getNot(ResNot)); | ||||||
914 | } | ||||||
915 | break; | ||||||
916 | }; | ||||||
917 | } | ||||||
918 | } | ||||||
919 | |||||||
920 | ValueLatticeElement Result = TrueVal; | ||||||
921 | Result.mergeIn(FalseVal); | ||||||
922 | return Result; | ||||||
923 | } | ||||||
924 | |||||||
925 | Optional<ConstantRange> LazyValueInfoImpl::getRangeFor(Value *V, | ||||||
926 | Instruction *CxtI, | ||||||
927 | BasicBlock *BB) { | ||||||
928 | Optional<ValueLatticeElement> OptVal = getBlockValue(V, BB); | ||||||
929 | if (!OptVal) | ||||||
930 | return None; | ||||||
931 | |||||||
932 | ValueLatticeElement &Val = *OptVal; | ||||||
933 | intersectAssumeOrGuardBlockValueConstantRange(V, Val, CxtI); | ||||||
934 | if (Val.isConstantRange()) | ||||||
935 | return Val.getConstantRange(); | ||||||
936 | |||||||
937 | const unsigned OperandBitWidth = DL.getTypeSizeInBits(V->getType()); | ||||||
938 | return ConstantRange::getFull(OperandBitWidth); | ||||||
939 | } | ||||||
940 | |||||||
941 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueCast( | ||||||
942 | CastInst *CI, BasicBlock *BB) { | ||||||
943 | // Without knowing how wide the input is, we can't analyze it in any useful | ||||||
944 | // way. | ||||||
945 | if (!CI->getOperand(0)->getType()->isSized()) | ||||||
946 | return ValueLatticeElement::getOverdefined(); | ||||||
947 | |||||||
948 | // Filter out casts we don't know how to reason about before attempting to | ||||||
949 | // recurse on our operand. This can cut a long search short if we know we're | ||||||
950 | // not going to be able to get any useful information anways. | ||||||
951 | switch (CI->getOpcode()) { | ||||||
952 | case Instruction::Trunc: | ||||||
953 | case Instruction::SExt: | ||||||
954 | case Instruction::ZExt: | ||||||
955 | case Instruction::BitCast: | ||||||
956 | break; | ||||||
957 | default: | ||||||
958 | // Unhandled instructions are overdefined. | ||||||
959 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown cast).\n" ; } } while (false) | ||||||
960 | << "' - overdefined (unknown cast).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown cast).\n" ; } } while (false); | ||||||
961 | return ValueLatticeElement::getOverdefined(); | ||||||
962 | } | ||||||
963 | |||||||
964 | // Figure out the range of the LHS. If that fails, we still apply the | ||||||
965 | // transfer rule on the full set since we may be able to locally infer | ||||||
966 | // interesting facts. | ||||||
967 | Optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB); | ||||||
968 | if (!LHSRes.hasValue()) | ||||||
969 | // More work to do before applying this transfer rule. | ||||||
970 | return None; | ||||||
971 | const ConstantRange &LHSRange = LHSRes.getValue(); | ||||||
972 | |||||||
973 | const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); | ||||||
974 | |||||||
975 | // NOTE: We're currently limited by the set of operations that ConstantRange | ||||||
976 | // can evaluate symbolically. Enhancing that set will allows us to analyze | ||||||
977 | // more definitions. | ||||||
978 | return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), | ||||||
979 | ResultBitWidth)); | ||||||
980 | } | ||||||
981 | |||||||
982 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOpImpl( | ||||||
983 | Instruction *I, BasicBlock *BB, | ||||||
984 | std::function<ConstantRange(const ConstantRange &, | ||||||
985 | const ConstantRange &)> OpFn) { | ||||||
986 | // Figure out the ranges of the operands. If that fails, use a | ||||||
987 | // conservative range, but apply the transfer rule anyways. This | ||||||
988 | // lets us pick up facts from expressions like "and i32 (call i32 | ||||||
989 | // @foo()), 32" | ||||||
990 | Optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB); | ||||||
991 | Optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB); | ||||||
992 | if (!LHSRes.hasValue() || !RHSRes.hasValue()) | ||||||
993 | // More work to do before applying this transfer rule. | ||||||
994 | return None; | ||||||
995 | |||||||
996 | const ConstantRange &LHSRange = LHSRes.getValue(); | ||||||
997 | const ConstantRange &RHSRange = RHSRes.getValue(); | ||||||
998 | return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); | ||||||
999 | } | ||||||
1000 | |||||||
1001 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueBinaryOp( | ||||||
1002 | BinaryOperator *BO, BasicBlock *BB) { | ||||||
1003 | assert(BO->getOperand(0)->getType()->isSized() &&((BO->getOperand(0)->getType()->isSized() && "all operands to binary operators are sized") ? static_cast< void> (0) : __assert_fail ("BO->getOperand(0)->getType()->isSized() && \"all operands to binary operators are sized\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1004, __PRETTY_FUNCTION__)) | ||||||
1004 | "all operands to binary operators are sized")((BO->getOperand(0)->getType()->isSized() && "all operands to binary operators are sized") ? static_cast< void> (0) : __assert_fail ("BO->getOperand(0)->getType()->isSized() && \"all operands to binary operators are sized\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1004, __PRETTY_FUNCTION__)); | ||||||
1005 | if (BO->getOpcode() == Instruction::Xor) { | ||||||
1006 | // Xor is the only operation not supported by ConstantRange::binaryOp(). | ||||||
1007 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown binary operator).\n" ; } } while (false) | ||||||
1008 | << "' - overdefined (unknown binary operator).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown binary operator).\n" ; } } while (false); | ||||||
1009 | return ValueLatticeElement::getOverdefined(); | ||||||
1010 | } | ||||||
1011 | |||||||
1012 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { | ||||||
1013 | unsigned NoWrapKind = 0; | ||||||
1014 | if (OBO->hasNoUnsignedWrap()) | ||||||
1015 | NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; | ||||||
1016 | if (OBO->hasNoSignedWrap()) | ||||||
1017 | NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; | ||||||
1018 | |||||||
1019 | return solveBlockValueBinaryOpImpl( | ||||||
1020 | BO, BB, | ||||||
1021 | [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||
1022 | return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); | ||||||
1023 | }); | ||||||
1024 | } | ||||||
1025 | |||||||
1026 | return solveBlockValueBinaryOpImpl( | ||||||
1027 | BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||
1028 | return CR1.binaryOp(BO->getOpcode(), CR2); | ||||||
1029 | }); | ||||||
1030 | } | ||||||
1031 | |||||||
1032 | Optional<ValueLatticeElement> | ||||||
1033 | LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, | ||||||
1034 | BasicBlock *BB) { | ||||||
1035 | return solveBlockValueBinaryOpImpl( | ||||||
1036 | WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||
1037 | return CR1.binaryOp(WO->getBinaryOp(), CR2); | ||||||
1038 | }); | ||||||
1039 | } | ||||||
1040 | |||||||
1041 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueIntrinsic( | ||||||
1042 | IntrinsicInst *II, BasicBlock *BB) { | ||||||
1043 | if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { | ||||||
1044 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown intrinsic).\n" ; } } while (false) | ||||||
1045 | << "' - overdefined (unknown intrinsic).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown intrinsic).\n" ; } } while (false); | ||||||
1046 | return ValueLatticeElement::getOverdefined(); | ||||||
1047 | } | ||||||
1048 | |||||||
1049 | SmallVector<ConstantRange, 2> OpRanges; | ||||||
1050 | for (Value *Op : II->args()) { | ||||||
1051 | Optional<ConstantRange> Range = getRangeFor(Op, II, BB); | ||||||
1052 | if (!Range) | ||||||
1053 | return None; | ||||||
1054 | OpRanges.push_back(*Range); | ||||||
1055 | } | ||||||
1056 | |||||||
1057 | return ValueLatticeElement::getRange( | ||||||
1058 | ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges)); | ||||||
1059 | } | ||||||
1060 | |||||||
1061 | Optional<ValueLatticeElement> LazyValueInfoImpl::solveBlockValueExtractValue( | ||||||
1062 | ExtractValueInst *EVI, BasicBlock *BB) { | ||||||
1063 | if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) | ||||||
1064 | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) | ||||||
1065 | return solveBlockValueOverflowIntrinsic(WO, BB); | ||||||
1066 | |||||||
1067 | // Handle extractvalue of insertvalue to allow further simplification | ||||||
1068 | // based on replaced with.overflow intrinsics. | ||||||
1069 | if (Value *V = SimplifyExtractValueInst( | ||||||
1070 | EVI->getAggregateOperand(), EVI->getIndices(), | ||||||
1071 | EVI->getModule()->getDataLayout())) | ||||||
1072 | return getBlockValue(V, BB); | ||||||
1073 | |||||||
1074 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown extractvalue).\n" ; } } while (false) | ||||||
1075 | << "' - overdefined (unknown extractvalue).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown extractvalue).\n" ; } } while (false); | ||||||
1076 | return ValueLatticeElement::getOverdefined(); | ||||||
1077 | } | ||||||
1078 | |||||||
1079 | static bool matchICmpOperand(const APInt *&Offset, Value *LHS, Value *Val, | ||||||
1080 | ICmpInst::Predicate Pred) { | ||||||
1081 | if (LHS == Val) | ||||||
1082 | return true; | ||||||
1083 | |||||||
1084 | // Handle range checking idiom produced by InstCombine. We will subtract the | ||||||
1085 | // offset from the allowed range for RHS in this case. | ||||||
1086 | if (match(LHS, m_Add(m_Specific(Val), m_APInt(Offset)))) | ||||||
1087 | return true; | ||||||
1088 | |||||||
1089 | // If (x | y) < C, then (x < C) && (y < C). | ||||||
1090 | if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) && | ||||||
1091 | (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) | ||||||
1092 | return true; | ||||||
1093 | |||||||
1094 | // If (x & y) > C, then (x > C) && (y > C). | ||||||
1095 | if (match(LHS, m_c_And(m_Specific(Val), m_Value())) && | ||||||
1096 | (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) | ||||||
1097 | return true; | ||||||
1098 | |||||||
1099 | return false; | ||||||
1100 | } | ||||||
1101 | |||||||
1102 | /// Get value range for a "(Val + Offset) Pred RHS" condition. | ||||||
1103 | static ValueLatticeElement getValueFromSimpleICmpCondition( | ||||||
1104 | CmpInst::Predicate Pred, Value *RHS, const APInt *Offset) { | ||||||
1105 | ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), | ||||||
1106 | /*isFullSet=*/true); | ||||||
1107 | if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) | ||||||
1108 | RHSRange = ConstantRange(CI->getValue()); | ||||||
1109 | else if (Instruction *I = dyn_cast<Instruction>(RHS)) | ||||||
1110 | if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) | ||||||
1111 | RHSRange = getConstantRangeFromMetadata(*Ranges); | ||||||
1112 | |||||||
1113 | ConstantRange TrueValues = | ||||||
1114 | ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); | ||||||
1115 | |||||||
1116 | if (Offset) | ||||||
1117 | TrueValues = TrueValues.subtract(*Offset); | ||||||
1118 | |||||||
1119 | return ValueLatticeElement::getRange(std::move(TrueValues)); | ||||||
1120 | } | ||||||
1121 | |||||||
1122 | static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, | ||||||
1123 | bool isTrueDest) { | ||||||
1124 | Value *LHS = ICI->getOperand(0); | ||||||
1125 | Value *RHS = ICI->getOperand(1); | ||||||
1126 | |||||||
1127 | // Get the predicate that must hold along the considered edge. | ||||||
1128 | CmpInst::Predicate EdgePred = | ||||||
1129 | isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); | ||||||
1130 | |||||||
1131 | if (isa<Constant>(RHS)) { | ||||||
1132 | if (ICI->isEquality() && LHS == Val) { | ||||||
1133 | if (EdgePred == ICmpInst::ICMP_EQ) | ||||||
1134 | return ValueLatticeElement::get(cast<Constant>(RHS)); | ||||||
1135 | else if (!isa<UndefValue>(RHS)) | ||||||
1136 | return ValueLatticeElement::getNot(cast<Constant>(RHS)); | ||||||
1137 | } | ||||||
1138 | } | ||||||
1139 | |||||||
1140 | if (!Val->getType()->isIntegerTy()) | ||||||
1141 | return ValueLatticeElement::getOverdefined(); | ||||||
1142 | |||||||
1143 | const APInt *Offset = nullptr; | ||||||
1144 | if (matchICmpOperand(Offset, LHS, Val, EdgePred)) | ||||||
1145 | return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset); | ||||||
1146 | |||||||
1147 | CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred); | ||||||
1148 | if (matchICmpOperand(Offset, RHS, Val, SwappedPred)) | ||||||
1149 | return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset); | ||||||
1150 | |||||||
1151 | // If (Val & Mask) == C then all the masked bits are known and we can compute | ||||||
1152 | // a value range based on that. | ||||||
1153 | const APInt *Mask, *C; | ||||||
1154 | if (EdgePred == ICmpInst::ICMP_EQ && | ||||||
1155 | match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) && | ||||||
1156 | match(RHS, m_APInt(C))) { | ||||||
1157 | KnownBits Known; | ||||||
1158 | Known.Zero = ~*C & *Mask; | ||||||
1159 | Known.One = *C & *Mask; | ||||||
1160 | return ValueLatticeElement::getRange( | ||||||
1161 | ConstantRange::fromKnownBits(Known, /*IsSigned*/ false)); | ||||||
1162 | } | ||||||
1163 | |||||||
1164 | return ValueLatticeElement::getOverdefined(); | ||||||
1165 | } | ||||||
1166 | |||||||
1167 | // Handle conditions of the form | ||||||
1168 | // extractvalue(op.with.overflow(%x, C), 1). | ||||||
1169 | static ValueLatticeElement getValueFromOverflowCondition( | ||||||
1170 | Value *Val, WithOverflowInst *WO, bool IsTrueDest) { | ||||||
1171 | // TODO: This only works with a constant RHS for now. We could also compute | ||||||
1172 | // the range of the RHS, but this doesn't fit into the current structure of | ||||||
1173 | // the edge value calculation. | ||||||
1174 | const APInt *C; | ||||||
1175 | if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) | ||||||
1176 | return ValueLatticeElement::getOverdefined(); | ||||||
1177 | |||||||
1178 | // Calculate the possible values of %x for which no overflow occurs. | ||||||
1179 | ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( | ||||||
1180 | WO->getBinaryOp(), *C, WO->getNoWrapKind()); | ||||||
1181 | |||||||
1182 | // If overflow is false, %x is constrained to NWR. If overflow is true, %x is | ||||||
1183 | // constrained to it's inverse (all values that might cause overflow). | ||||||
1184 | if (IsTrueDest) | ||||||
1185 | NWR = NWR.inverse(); | ||||||
1186 | return ValueLatticeElement::getRange(NWR); | ||||||
1187 | } | ||||||
1188 | |||||||
1189 | static ValueLatticeElement | ||||||
1190 | getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, | ||||||
1191 | SmallDenseMap<Value*, ValueLatticeElement> &Visited); | ||||||
1192 | |||||||
1193 | static ValueLatticeElement | ||||||
1194 | getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, | ||||||
1195 | SmallDenseMap<Value*, ValueLatticeElement> &Visited) { | ||||||
1196 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) | ||||||
1197 | return getValueFromICmpCondition(Val, ICI, isTrueDest); | ||||||
1198 | |||||||
1199 | if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) | ||||||
1200 | if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) | ||||||
1201 | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) | ||||||
1202 | return getValueFromOverflowCondition(Val, WO, isTrueDest); | ||||||
1203 | |||||||
1204 | Value *L, *R; | ||||||
1205 | bool IsAnd; | ||||||
1206 | if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))) | ||||||
1207 | IsAnd = true; | ||||||
1208 | else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) | ||||||
1209 | IsAnd = false; | ||||||
1210 | else | ||||||
1211 | return ValueLatticeElement::getOverdefined(); | ||||||
1212 | |||||||
1213 | // Prevent infinite recursion if Cond references itself as in this example: | ||||||
1214 | // Cond: "%tmp4 = and i1 %tmp4, undef" | ||||||
1215 | // BL: "%tmp4 = and i1 %tmp4, undef" | ||||||
1216 | // BR: "i1 undef" | ||||||
1217 | if (L == Cond || R == Cond) | ||||||
1218 | return ValueLatticeElement::getOverdefined(); | ||||||
1219 | |||||||
1220 | // if (L && R) -> intersect L and R | ||||||
1221 | // if (!(L || R)) -> intersect L and R | ||||||
1222 | // if (L || R) -> union L and R | ||||||
1223 | // if (!(L && R)) -> union L and R | ||||||
1224 | if (isTrueDest ^ IsAnd) { | ||||||
1225 | ValueLatticeElement V = getValueFromCondition(Val, L, isTrueDest, Visited); | ||||||
1226 | if (V.isOverdefined()) | ||||||
1227 | return V; | ||||||
1228 | V.mergeIn(getValueFromCondition(Val, R, isTrueDest, Visited)); | ||||||
1229 | return V; | ||||||
1230 | } | ||||||
1231 | |||||||
1232 | return intersect(getValueFromCondition(Val, L, isTrueDest, Visited), | ||||||
1233 | getValueFromCondition(Val, R, isTrueDest, Visited)); | ||||||
1234 | } | ||||||
1235 | |||||||
1236 | static ValueLatticeElement | ||||||
1237 | getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, | ||||||
1238 | SmallDenseMap<Value*, ValueLatticeElement> &Visited) { | ||||||
1239 | auto I = Visited.find(Cond); | ||||||
1240 | if (I != Visited.end()) | ||||||
1241 | return I->second; | ||||||
1242 | |||||||
1243 | auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited); | ||||||
1244 | Visited[Cond] = Result; | ||||||
1245 | return Result; | ||||||
1246 | } | ||||||
1247 | |||||||
1248 | ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, | ||||||
1249 | bool isTrueDest) { | ||||||
1250 | assert(Cond && "precondition")((Cond && "precondition") ? static_cast<void> ( 0) : __assert_fail ("Cond && \"precondition\"", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1250, __PRETTY_FUNCTION__)); | ||||||
1251 | SmallDenseMap<Value*, ValueLatticeElement> Visited; | ||||||
1252 | return getValueFromCondition(Val, Cond, isTrueDest, Visited); | ||||||
1253 | } | ||||||
1254 | |||||||
1255 | // Return true if Usr has Op as an operand, otherwise false. | ||||||
1256 | static bool usesOperand(User *Usr, Value *Op) { | ||||||
1257 | return is_contained(Usr->operands(), Op); | ||||||
1258 | } | ||||||
1259 | |||||||
1260 | // Return true if the instruction type of Val is supported by | ||||||
1261 | // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only. | ||||||
1262 | // Call this before calling constantFoldUser() to find out if it's even worth | ||||||
1263 | // attempting to call it. | ||||||
1264 | static bool isOperationFoldable(User *Usr) { | ||||||
1265 | return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr); | ||||||
1266 | } | ||||||
1267 | |||||||
1268 | // Check if Usr can be simplified to an integer constant when the value of one | ||||||
1269 | // of its operands Op is an integer constant OpConstVal. If so, return it as an | ||||||
1270 | // lattice value range with a single element or otherwise return an overdefined | ||||||
1271 | // lattice value. | ||||||
1272 | static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, | ||||||
1273 | const APInt &OpConstVal, | ||||||
1274 | const DataLayout &DL) { | ||||||
1275 | assert(isOperationFoldable(Usr) && "Precondition")((isOperationFoldable(Usr) && "Precondition") ? static_cast <void> (0) : __assert_fail ("isOperationFoldable(Usr) && \"Precondition\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1275, __PRETTY_FUNCTION__)); | ||||||
1276 | Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); | ||||||
1277 | // Check if Usr can be simplified to a constant. | ||||||
1278 | if (auto *CI = dyn_cast<CastInst>(Usr)) { | ||||||
1279 | assert(CI->getOperand(0) == Op && "Operand 0 isn't Op")((CI->getOperand(0) == Op && "Operand 0 isn't Op") ? static_cast<void> (0) : __assert_fail ("CI->getOperand(0) == Op && \"Operand 0 isn't Op\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1279, __PRETTY_FUNCTION__)); | ||||||
1280 | if (auto *C = dyn_cast_or_null<ConstantInt>( | ||||||
1281 | SimplifyCastInst(CI->getOpcode(), OpConst, | ||||||
1282 | CI->getDestTy(), DL))) { | ||||||
1283 | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); | ||||||
1284 | } | ||||||
1285 | } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { | ||||||
1286 | bool Op0Match = BO->getOperand(0) == Op; | ||||||
1287 | bool Op1Match = BO->getOperand(1) == Op; | ||||||
1288 | assert((Op0Match || Op1Match) &&(((Op0Match || Op1Match) && "Operand 0 nor Operand 1 isn't a match" ) ? static_cast<void> (0) : __assert_fail ("(Op0Match || Op1Match) && \"Operand 0 nor Operand 1 isn't a match\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1289, __PRETTY_FUNCTION__)) | ||||||
1289 | "Operand 0 nor Operand 1 isn't a match")(((Op0Match || Op1Match) && "Operand 0 nor Operand 1 isn't a match" ) ? static_cast<void> (0) : __assert_fail ("(Op0Match || Op1Match) && \"Operand 0 nor Operand 1 isn't a match\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1289, __PRETTY_FUNCTION__)); | ||||||
1290 | Value *LHS = Op0Match ? OpConst : BO->getOperand(0); | ||||||
1291 | Value *RHS = Op1Match ? OpConst : BO->getOperand(1); | ||||||
1292 | if (auto *C = dyn_cast_or_null<ConstantInt>( | ||||||
1293 | SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { | ||||||
1294 | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); | ||||||
1295 | } | ||||||
1296 | } else if (isa<FreezeInst>(Usr)) { | ||||||
1297 | assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op")((cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op") ? static_cast<void> (0) : __assert_fail ("cast<FreezeInst>(Usr)->getOperand(0) == Op && \"Operand 0 isn't Op\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1297, __PRETTY_FUNCTION__)); | ||||||
1298 | return ValueLatticeElement::getRange(ConstantRange(OpConstVal)); | ||||||
1299 | } | ||||||
1300 | return ValueLatticeElement::getOverdefined(); | ||||||
1301 | } | ||||||
1302 | |||||||
1303 | /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if | ||||||
1304 | /// Val is not constrained on the edge. Result is unspecified if return value | ||||||
1305 | /// is false. | ||||||
1306 | static Optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, | ||||||
1307 | BasicBlock *BBFrom, | ||||||
1308 | BasicBlock *BBTo) { | ||||||
1309 | // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we | ||||||
1310 | // know that v != 0. | ||||||
1311 | if (BranchInst *BI
| ||||||
1312 | // If this is a conditional branch and only one successor goes to BBTo, then | ||||||
1313 | // we may be able to infer something from the condition. | ||||||
1314 | if (BI->isConditional() && | ||||||
1315 | BI->getSuccessor(0) != BI->getSuccessor(1)) { | ||||||
1316 | bool isTrueDest = BI->getSuccessor(0) == BBTo; | ||||||
1317 | assert(BI->getSuccessor(!isTrueDest) == BBTo &&((BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom" ) ? static_cast<void> (0) : __assert_fail ("BI->getSuccessor(!isTrueDest) == BBTo && \"BBTo isn't a successor of BBFrom\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1318, __PRETTY_FUNCTION__)) | ||||||
1318 | "BBTo isn't a successor of BBFrom")((BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom" ) ? static_cast<void> (0) : __assert_fail ("BI->getSuccessor(!isTrueDest) == BBTo && \"BBTo isn't a successor of BBFrom\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1318, __PRETTY_FUNCTION__)); | ||||||
1319 | Value *Condition = BI->getCondition(); | ||||||
1320 | |||||||
1321 | // If V is the condition of the branch itself, then we know exactly what | ||||||
1322 | // it is. | ||||||
1323 | if (Condition == Val) | ||||||
1324 | return ValueLatticeElement::get(ConstantInt::get( | ||||||
1325 | Type::getInt1Ty(Val->getContext()), isTrueDest)); | ||||||
1326 | |||||||
1327 | // If the condition of the branch is an equality comparison, we may be | ||||||
1328 | // able to infer the value. | ||||||
1329 | ValueLatticeElement Result = getValueFromCondition(Val, Condition, | ||||||
1330 | isTrueDest); | ||||||
1331 | if (!Result.isOverdefined()) | ||||||
1332 | return Result; | ||||||
1333 | |||||||
1334 | if (User *Usr
| ||||||
1335 | assert(Result.isOverdefined() && "Result isn't overdefined")((Result.isOverdefined() && "Result isn't overdefined" ) ? static_cast<void> (0) : __assert_fail ("Result.isOverdefined() && \"Result isn't overdefined\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1335, __PRETTY_FUNCTION__)); | ||||||
1336 | // Check with isOperationFoldable() first to avoid linearly iterating | ||||||
1337 | // over the operands unnecessarily which can be expensive for | ||||||
1338 | // instructions with many operands. | ||||||
1339 | if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { | ||||||
1340 | const DataLayout &DL = BBTo->getModule()->getDataLayout(); | ||||||
| |||||||
1341 | if (usesOperand(Usr, Condition)) { | ||||||
1342 | // If Val has Condition as an operand and Val can be folded into a | ||||||
1343 | // constant with either Condition == true or Condition == false, | ||||||
1344 | // propagate the constant. | ||||||
1345 | // eg. | ||||||
1346 | // ; %Val is true on the edge to %then. | ||||||
1347 | // %Val = and i1 %Condition, true. | ||||||
1348 | // br %Condition, label %then, label %else | ||||||
1349 | APInt ConditionVal(1, isTrueDest ? 1 : 0); | ||||||
1350 | Result = constantFoldUser(Usr, Condition, ConditionVal, DL); | ||||||
1351 | } else { | ||||||
1352 | // If one of Val's operand has an inferred value, we may be able to | ||||||
1353 | // infer the value of Val. | ||||||
1354 | // eg. | ||||||
1355 | // ; %Val is 94 on the edge to %then. | ||||||
1356 | // %Val = add i8 %Op, 1 | ||||||
1357 | // %Condition = icmp eq i8 %Op, 93 | ||||||
1358 | // br i1 %Condition, label %then, label %else | ||||||
1359 | for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { | ||||||
1360 | Value *Op = Usr->getOperand(i); | ||||||
1361 | ValueLatticeElement OpLatticeVal = | ||||||
1362 | getValueFromCondition(Op, Condition, isTrueDest); | ||||||
1363 | if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { | ||||||
1364 | Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); | ||||||
1365 | break; | ||||||
1366 | } | ||||||
1367 | } | ||||||
1368 | } | ||||||
1369 | } | ||||||
1370 | } | ||||||
1371 | if (!Result.isOverdefined()) | ||||||
1372 | return Result; | ||||||
1373 | } | ||||||
1374 | } | ||||||
1375 | |||||||
1376 | // If the edge was formed by a switch on the value, then we may know exactly | ||||||
1377 | // what it is. | ||||||
1378 | if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { | ||||||
1379 | Value *Condition = SI->getCondition(); | ||||||
1380 | if (!isa<IntegerType>(Val->getType())) | ||||||
1381 | return None; | ||||||
1382 | bool ValUsesConditionAndMayBeFoldable = false; | ||||||
1383 | if (Condition != Val) { | ||||||
1384 | // Check if Val has Condition as an operand. | ||||||
1385 | if (User *Usr = dyn_cast<User>(Val)) | ||||||
1386 | ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && | ||||||
1387 | usesOperand(Usr, Condition); | ||||||
1388 | if (!ValUsesConditionAndMayBeFoldable) | ||||||
1389 | return None; | ||||||
1390 | } | ||||||
1391 | assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&(((Condition == Val || ValUsesConditionAndMayBeFoldable) && "Condition != Val nor Val doesn't use Condition") ? static_cast <void> (0) : __assert_fail ("(Condition == Val || ValUsesConditionAndMayBeFoldable) && \"Condition != Val nor Val doesn't use Condition\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1392, __PRETTY_FUNCTION__)) | ||||||
1392 | "Condition != Val nor Val doesn't use Condition")(((Condition == Val || ValUsesConditionAndMayBeFoldable) && "Condition != Val nor Val doesn't use Condition") ? static_cast <void> (0) : __assert_fail ("(Condition == Val || ValUsesConditionAndMayBeFoldable) && \"Condition != Val nor Val doesn't use Condition\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1392, __PRETTY_FUNCTION__)); | ||||||
1393 | |||||||
1394 | bool DefaultCase = SI->getDefaultDest() == BBTo; | ||||||
1395 | unsigned BitWidth = Val->getType()->getIntegerBitWidth(); | ||||||
1396 | ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); | ||||||
1397 | |||||||
1398 | for (auto Case : SI->cases()) { | ||||||
1399 | APInt CaseValue = Case.getCaseValue()->getValue(); | ||||||
1400 | ConstantRange EdgeVal(CaseValue); | ||||||
1401 | if (ValUsesConditionAndMayBeFoldable) { | ||||||
1402 | User *Usr = cast<User>(Val); | ||||||
1403 | const DataLayout &DL = BBTo->getModule()->getDataLayout(); | ||||||
1404 | ValueLatticeElement EdgeLatticeVal = | ||||||
1405 | constantFoldUser(Usr, Condition, CaseValue, DL); | ||||||
1406 | if (EdgeLatticeVal.isOverdefined()) | ||||||
1407 | return None; | ||||||
1408 | EdgeVal = EdgeLatticeVal.getConstantRange(); | ||||||
1409 | } | ||||||
1410 | if (DefaultCase) { | ||||||
1411 | // It is possible that the default destination is the destination of | ||||||
1412 | // some cases. We cannot perform difference for those cases. | ||||||
1413 | // We know Condition != CaseValue in BBTo. In some cases we can use | ||||||
1414 | // this to infer Val == f(Condition) is != f(CaseValue). For now, we | ||||||
1415 | // only do this when f is identity (i.e. Val == Condition), but we | ||||||
1416 | // should be able to do this for any injective f. | ||||||
1417 | if (Case.getCaseSuccessor() != BBTo && Condition == Val) | ||||||
1418 | EdgesVals = EdgesVals.difference(EdgeVal); | ||||||
1419 | } else if (Case.getCaseSuccessor() == BBTo) | ||||||
1420 | EdgesVals = EdgesVals.unionWith(EdgeVal); | ||||||
1421 | } | ||||||
1422 | return ValueLatticeElement::getRange(std::move(EdgesVals)); | ||||||
1423 | } | ||||||
1424 | return None; | ||||||
1425 | } | ||||||
1426 | |||||||
1427 | /// Compute the value of Val on the edge BBFrom -> BBTo or the value at | ||||||
1428 | /// the basic block if the edge does not constrain Val. | ||||||
1429 | Optional<ValueLatticeElement> LazyValueInfoImpl::getEdgeValue( | ||||||
1430 | Value *Val, BasicBlock *BBFrom, BasicBlock *BBTo, Instruction *CxtI) { | ||||||
1431 | // If already a constant, there is nothing to compute. | ||||||
1432 | if (Constant *VC
| ||||||
1433 | return ValueLatticeElement::get(VC); | ||||||
1434 | |||||||
1435 | ValueLatticeElement LocalResult = getEdgeValueLocal(Val, BBFrom, BBTo) | ||||||
1436 | .getValueOr(ValueLatticeElement::getOverdefined()); | ||||||
1437 | if (hasSingleValue(LocalResult)) | ||||||
1438 | // Can't get any more precise here | ||||||
1439 | return LocalResult; | ||||||
1440 | |||||||
1441 | Optional<ValueLatticeElement> OptInBlock = getBlockValue(Val, BBFrom); | ||||||
1442 | if (!OptInBlock) | ||||||
1443 | return None; | ||||||
1444 | ValueLatticeElement &InBlock = *OptInBlock; | ||||||
1445 | |||||||
1446 | // Try to intersect ranges of the BB and the constraint on the edge. | ||||||
1447 | intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, | ||||||
1448 | BBFrom->getTerminator()); | ||||||
1449 | // We can use the context instruction (generically the ultimate instruction | ||||||
1450 | // the calling pass is trying to simplify) here, even though the result of | ||||||
1451 | // this function is generally cached when called from the solve* functions | ||||||
1452 | // (and that cached result might be used with queries using a different | ||||||
1453 | // context instruction), because when this function is called from the solve* | ||||||
1454 | // functions, the context instruction is not provided. When called from | ||||||
1455 | // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, | ||||||
1456 | // but then the result is not cached. | ||||||
1457 | intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); | ||||||
1458 | |||||||
1459 | return intersect(LocalResult, InBlock); | ||||||
1460 | } | ||||||
1461 | |||||||
1462 | ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, | ||||||
1463 | Instruction *CxtI) { | ||||||
1464 | LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting block end value " << *V << " at '" << BB->getName() << "'\n"; } } while (false) | ||||||
1465 | << BB->getName() << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting block end value " << *V << " at '" << BB->getName() << "'\n"; } } while (false); | ||||||
1466 | |||||||
1467 | assert(BlockValueStack.empty() && BlockValueSet.empty())((BlockValueStack.empty() && BlockValueSet.empty()) ? static_cast<void> (0) : __assert_fail ("BlockValueStack.empty() && BlockValueSet.empty()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1467, __PRETTY_FUNCTION__)); | ||||||
1468 | Optional<ValueLatticeElement> OptResult = getBlockValue(V, BB); | ||||||
1469 | if (!OptResult) { | ||||||
1470 | solve(); | ||||||
1471 | OptResult = getBlockValue(V, BB); | ||||||
1472 | assert(OptResult && "Value not available after solving")((OptResult && "Value not available after solving") ? static_cast<void> (0) : __assert_fail ("OptResult && \"Value not available after solving\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1472, __PRETTY_FUNCTION__)); | ||||||
1473 | } | ||||||
1474 | ValueLatticeElement Result = *OptResult; | ||||||
1475 | intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); | ||||||
1476 | |||||||
1477 | LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " Result = " << Result << "\n"; } } while (false); | ||||||
1478 | return Result; | ||||||
1479 | } | ||||||
1480 | |||||||
1481 | ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { | ||||||
1482 | LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() << "'\n" ; } } while (false) | ||||||
1483 | << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() << "'\n" ; } } while (false); | ||||||
1484 | |||||||
1485 | if (auto *C = dyn_cast<Constant>(V)) | ||||||
1486 | return ValueLatticeElement::get(C); | ||||||
1487 | |||||||
1488 | ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); | ||||||
1489 | if (auto *I = dyn_cast<Instruction>(V)) | ||||||
1490 | Result = getFromRangeMetadata(I); | ||||||
1491 | intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); | ||||||
1492 | |||||||
1493 | LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " Result = " << Result << "\n"; } } while (false); | ||||||
1494 | return Result; | ||||||
1495 | } | ||||||
1496 | |||||||
1497 | ValueLatticeElement LazyValueInfoImpl:: | ||||||
1498 | getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, | ||||||
1499 | Instruction *CxtI) { | ||||||
1500 | LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting edge value " << *V << " from '" << FromBB->getName() << "' to '" << ToBB->getName() << "'\n" ; } } while (false) | ||||||
1501 | << FromBB->getName() << "' to '" << ToBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting edge value " << *V << " from '" << FromBB->getName() << "' to '" << ToBB->getName() << "'\n" ; } } while (false) | ||||||
1502 | << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting edge value " << *V << " from '" << FromBB->getName() << "' to '" << ToBB->getName() << "'\n" ; } } while (false); | ||||||
1503 | |||||||
1504 | Optional<ValueLatticeElement> Result = getEdgeValue(V, FromBB, ToBB, CxtI); | ||||||
1505 | if (!Result) { | ||||||
1506 | solve(); | ||||||
1507 | Result = getEdgeValue(V, FromBB, ToBB, CxtI); | ||||||
1508 | assert(Result && "More work to do after problem solved?")((Result && "More work to do after problem solved?") ? static_cast<void> (0) : __assert_fail ("Result && \"More work to do after problem solved?\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1508, __PRETTY_FUNCTION__)); | ||||||
1509 | } | ||||||
1510 | |||||||
1511 | LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " Result = " << *Result << "\n"; } } while (false); | ||||||
1512 | return *Result; | ||||||
1513 | } | ||||||
1514 | |||||||
1515 | void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | ||||||
1516 | BasicBlock *NewSucc) { | ||||||
1517 | TheCache.threadEdgeImpl(OldSucc, NewSucc); | ||||||
1518 | } | ||||||
1519 | |||||||
1520 | //===----------------------------------------------------------------------===// | ||||||
1521 | // LazyValueInfo Impl | ||||||
1522 | //===----------------------------------------------------------------------===// | ||||||
1523 | |||||||
1524 | /// This lazily constructs the LazyValueInfoImpl. | ||||||
1525 | static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, | ||||||
1526 | const Module *M) { | ||||||
1527 | if (!PImpl) { | ||||||
1528 | assert(M && "getCache() called with a null Module")((M && "getCache() called with a null Module") ? static_cast <void> (0) : __assert_fail ("M && \"getCache() called with a null Module\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1528, __PRETTY_FUNCTION__)); | ||||||
1529 | const DataLayout &DL = M->getDataLayout(); | ||||||
1530 | Function *GuardDecl = M->getFunction( | ||||||
1531 | Intrinsic::getName(Intrinsic::experimental_guard)); | ||||||
1532 | PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); | ||||||
1533 | } | ||||||
1534 | return *static_cast<LazyValueInfoImpl*>(PImpl); | ||||||
1535 | } | ||||||
1536 | |||||||
1537 | bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { | ||||||
1538 | Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | ||||||
1539 | Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | ||||||
1540 | |||||||
1541 | if (Info.PImpl) | ||||||
1542 | getImpl(Info.PImpl, Info.AC, F.getParent()).clear(); | ||||||
1543 | |||||||
1544 | // Fully lazy. | ||||||
1545 | return false; | ||||||
1546 | } | ||||||
1547 | |||||||
1548 | void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | ||||||
1549 | AU.setPreservesAll(); | ||||||
1550 | AU.addRequired<AssumptionCacheTracker>(); | ||||||
1551 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | ||||||
1552 | } | ||||||
1553 | |||||||
1554 | LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } | ||||||
1555 | |||||||
1556 | LazyValueInfo::~LazyValueInfo() { releaseMemory(); } | ||||||
1557 | |||||||
1558 | void LazyValueInfo::releaseMemory() { | ||||||
1559 | // If the cache was allocated, free it. | ||||||
1560 | if (PImpl) { | ||||||
1561 | delete &getImpl(PImpl, AC, nullptr); | ||||||
1562 | PImpl = nullptr; | ||||||
1563 | } | ||||||
1564 | } | ||||||
1565 | |||||||
1566 | bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, | ||||||
1567 | FunctionAnalysisManager::Invalidator &Inv) { | ||||||
1568 | // We need to invalidate if we have either failed to preserve this analyses | ||||||
1569 | // result directly or if any of its dependencies have been invalidated. | ||||||
1570 | auto PAC = PA.getChecker<LazyValueAnalysis>(); | ||||||
1571 | if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) | ||||||
1572 | return true; | ||||||
1573 | |||||||
1574 | return false; | ||||||
1575 | } | ||||||
1576 | |||||||
1577 | void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } | ||||||
1578 | |||||||
1579 | LazyValueInfo LazyValueAnalysis::run(Function &F, | ||||||
1580 | FunctionAnalysisManager &FAM) { | ||||||
1581 | auto &AC = FAM.getResult<AssumptionAnalysis>(F); | ||||||
1582 | auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); | ||||||
1583 | |||||||
1584 | return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI); | ||||||
1585 | } | ||||||
1586 | |||||||
1587 | /// Returns true if we can statically tell that this value will never be a | ||||||
1588 | /// "useful" constant. In practice, this means we've got something like an | ||||||
1589 | /// alloca or a malloc call for which a comparison against a constant can | ||||||
1590 | /// only be guarding dead code. Note that we are potentially giving up some | ||||||
1591 | /// precision in dead code (a constant result) in favour of avoiding a | ||||||
1592 | /// expensive search for a easily answered common query. | ||||||
1593 | static bool isKnownNonConstant(Value *V) { | ||||||
1594 | V = V->stripPointerCasts(); | ||||||
1595 | // The return val of alloc cannot be a Constant. | ||||||
1596 | if (isa<AllocaInst>(V)) | ||||||
1597 | return true; | ||||||
1598 | return false; | ||||||
1599 | } | ||||||
1600 | |||||||
1601 | Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) { | ||||||
1602 | // Bail out early if V is known not to be a Constant. | ||||||
1603 | if (isKnownNonConstant(V)) | ||||||
1604 | return nullptr; | ||||||
1605 | |||||||
1606 | BasicBlock *BB = CxtI->getParent(); | ||||||
1607 | ValueLatticeElement Result = | ||||||
1608 | getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); | ||||||
1609 | |||||||
1610 | if (Result.isConstant()) | ||||||
1611 | return Result.getConstant(); | ||||||
1612 | if (Result.isConstantRange()) { | ||||||
1613 | const ConstantRange &CR = Result.getConstantRange(); | ||||||
1614 | if (const APInt *SingleVal = CR.getSingleElement()) | ||||||
1615 | return ConstantInt::get(V->getContext(), *SingleVal); | ||||||
1616 | } | ||||||
1617 | return nullptr; | ||||||
1618 | } | ||||||
1619 | |||||||
1620 | ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI, | ||||||
1621 | bool UndefAllowed) { | ||||||
1622 | assert(V->getType()->isIntegerTy())((V->getType()->isIntegerTy()) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntegerTy()", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1622, __PRETTY_FUNCTION__)); | ||||||
1623 | unsigned Width = V->getType()->getIntegerBitWidth(); | ||||||
1624 | BasicBlock *BB = CxtI->getParent(); | ||||||
1625 | ValueLatticeElement Result = | ||||||
1626 | getImpl(PImpl, AC, BB->getModule()).getValueInBlock(V, BB, CxtI); | ||||||
1627 | if (Result.isUnknown()) | ||||||
1628 | return ConstantRange::getEmpty(Width); | ||||||
1629 | if (Result.isConstantRange(UndefAllowed)) | ||||||
1630 | return Result.getConstantRange(UndefAllowed); | ||||||
1631 | // We represent ConstantInt constants as constant ranges but other kinds | ||||||
1632 | // of integer constants, i.e. ConstantExpr will be tagged as constants | ||||||
1633 | assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&((!(Result.isConstant() && isa<ConstantInt>(Result .getConstant())) && "ConstantInt value must be represented as constantrange" ) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1634, __PRETTY_FUNCTION__)) | ||||||
1634 | "ConstantInt value must be represented as constantrange")((!(Result.isConstant() && isa<ConstantInt>(Result .getConstant())) && "ConstantInt value must be represented as constantrange" ) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1634, __PRETTY_FUNCTION__)); | ||||||
1635 | return ConstantRange::getFull(Width); | ||||||
1636 | } | ||||||
1637 | |||||||
1638 | /// Determine whether the specified value is known to be a | ||||||
1639 | /// constant on the specified edge. Return null if not. | ||||||
1640 | Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, | ||||||
1641 | BasicBlock *ToBB, | ||||||
1642 | Instruction *CxtI) { | ||||||
1643 | Module *M = FromBB->getModule(); | ||||||
1644 | ValueLatticeElement Result = | ||||||
1645 | getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); | ||||||
1646 | |||||||
1647 | if (Result.isConstant()) | ||||||
1648 | return Result.getConstant(); | ||||||
1649 | if (Result.isConstantRange()) { | ||||||
1650 | const ConstantRange &CR = Result.getConstantRange(); | ||||||
1651 | if (const APInt *SingleVal = CR.getSingleElement()) | ||||||
1652 | return ConstantInt::get(V->getContext(), *SingleVal); | ||||||
1653 | } | ||||||
1654 | return nullptr; | ||||||
1655 | } | ||||||
1656 | |||||||
1657 | ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, | ||||||
1658 | BasicBlock *FromBB, | ||||||
1659 | BasicBlock *ToBB, | ||||||
1660 | Instruction *CxtI) { | ||||||
1661 | unsigned Width = V->getType()->getIntegerBitWidth(); | ||||||
1662 | Module *M = FromBB->getModule(); | ||||||
1663 | ValueLatticeElement Result = | ||||||
1664 | getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); | ||||||
| |||||||
1665 | |||||||
1666 | if (Result.isUnknown()) | ||||||
1667 | return ConstantRange::getEmpty(Width); | ||||||
1668 | if (Result.isConstantRange()) | ||||||
1669 | return Result.getConstantRange(); | ||||||
1670 | // We represent ConstantInt constants as constant ranges but other kinds | ||||||
1671 | // of integer constants, i.e. ConstantExpr will be tagged as constants | ||||||
1672 | assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&((!(Result.isConstant() && isa<ConstantInt>(Result .getConstant())) && "ConstantInt value must be represented as constantrange" ) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1673, __PRETTY_FUNCTION__)) | ||||||
1673 | "ConstantInt value must be represented as constantrange")((!(Result.isConstant() && isa<ConstantInt>(Result .getConstant())) && "ConstantInt value must be represented as constantrange" ) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/LazyValueInfo.cpp" , 1673, __PRETTY_FUNCTION__)); | ||||||
1674 | return ConstantRange::getFull(Width); | ||||||
1675 | } | ||||||
1676 | |||||||
1677 | static LazyValueInfo::Tristate | ||||||
1678 | getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, | ||||||
1679 | const DataLayout &DL, TargetLibraryInfo *TLI) { | ||||||
1680 | // If we know the value is a constant, evaluate the conditional. | ||||||
1681 | Constant *Res = nullptr; | ||||||
1682 | if (Val.isConstant()) { | ||||||
1683 | Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); | ||||||
1684 | if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) | ||||||
1685 | return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; | ||||||
1686 | return LazyValueInfo::Unknown; | ||||||
1687 | } | ||||||
1688 | |||||||
1689 | if (Val.isConstantRange()) { | ||||||
1690 | ConstantInt *CI = dyn_cast<ConstantInt>(C); | ||||||
1691 | if (!CI) return LazyValueInfo::Unknown; | ||||||
1692 | |||||||
1693 | const ConstantRange &CR = Val.getConstantRange(); | ||||||
1694 | if (Pred == ICmpInst::ICMP_EQ) { | ||||||
1695 | if (!CR.contains(CI->getValue())) | ||||||
1696 | return LazyValueInfo::False; | ||||||
1697 | |||||||
1698 | if (CR.isSingleElement()) | ||||||
1699 | return LazyValueInfo::True; | ||||||
1700 | } else if (Pred == ICmpInst::ICMP_NE) { | ||||||
1701 | if (!CR.contains(CI->getValue())) | ||||||
1702 | return LazyValueInfo::True; | ||||||
1703 | |||||||
1704 | if (CR.isSingleElement()) | ||||||
1705 | return LazyValueInfo::False; | ||||||
1706 | } else { | ||||||
1707 | // Handle more complex predicates. | ||||||
1708 | ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( | ||||||
1709 | (ICmpInst::Predicate)Pred, CI->getValue()); | ||||||
1710 | if (TrueValues.contains(CR)) | ||||||
1711 | return LazyValueInfo::True; | ||||||
1712 | if (TrueValues.inverse().contains(CR)) | ||||||
1713 | return LazyValueInfo::False; | ||||||
1714 | } | ||||||
1715 | return LazyValueInfo::Unknown; | ||||||
1716 | } | ||||||
1717 | |||||||
1718 | if (Val.isNotConstant()) { | ||||||
1719 | // If this is an equality comparison, we can try to fold it knowing that | ||||||
1720 | // "V != C1". | ||||||
1721 | if (Pred == ICmpInst::ICMP_EQ) { | ||||||
1722 | // !C1 == C -> false iff C1 == C. | ||||||
1723 | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | ||||||
1724 | Val.getNotConstant(), C, DL, | ||||||
1725 | TLI); | ||||||
1726 | if (Res->isNullValue()) | ||||||
1727 | return LazyValueInfo::False; | ||||||
1728 | } else if (Pred == ICmpInst::ICMP_NE) { | ||||||
1729 | // !C1 != C -> true iff C1 == C. | ||||||
1730 | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | ||||||
1731 | Val.getNotConstant(), C, DL, | ||||||
1732 | TLI); | ||||||
1733 | if (Res->isNullValue()) | ||||||
1734 | return LazyValueInfo::True; | ||||||
1735 | } | ||||||
1736 | return LazyValueInfo::Unknown; | ||||||
1737 | } | ||||||
1738 | |||||||
1739 | return LazyValueInfo::Unknown; | ||||||
1740 | } | ||||||
1741 | |||||||
1742 | /// Determine whether the specified value comparison with a constant is known to | ||||||
1743 | /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. | ||||||
1744 | LazyValueInfo::Tristate | ||||||
1745 | LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, | ||||||
1746 | BasicBlock *FromBB, BasicBlock *ToBB, | ||||||
1747 | Instruction *CxtI) { | ||||||
1748 | Module *M = FromBB->getModule(); | ||||||
1749 | ValueLatticeElement Result = | ||||||
1750 | getImpl(PImpl, AC, M).getValueOnEdge(V, FromBB, ToBB, CxtI); | ||||||
1751 | |||||||
1752 | return getPredicateResult(Pred, C, Result, M->getDataLayout(), TLI); | ||||||
1753 | } | ||||||
1754 | |||||||
1755 | LazyValueInfo::Tristate | ||||||
1756 | LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, | ||||||
1757 | Instruction *CxtI, bool UseBlockValue) { | ||||||
1758 | // Is or is not NonNull are common predicates being queried. If | ||||||
1759 | // isKnownNonZero can tell us the result of the predicate, we can | ||||||
1760 | // return it quickly. But this is only a fastpath, and falling | ||||||
1761 | // through would still be correct. | ||||||
1762 | Module *M = CxtI->getModule(); | ||||||
1763 | const DataLayout &DL = M->getDataLayout(); | ||||||
1764 | if (V->getType()->isPointerTy() && C->isNullValue() && | ||||||
1765 | isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { | ||||||
1766 | if (Pred == ICmpInst::ICMP_EQ) | ||||||
1767 | return LazyValueInfo::False; | ||||||
1768 | else if (Pred == ICmpInst::ICMP_NE) | ||||||
1769 | return LazyValueInfo::True; | ||||||
1770 | } | ||||||
1771 | |||||||
1772 | ValueLatticeElement Result = UseBlockValue | ||||||
1773 | ? getImpl(PImpl, AC, M).getValueInBlock(V, CxtI->getParent(), CxtI) | ||||||
1774 | : getImpl(PImpl, AC, M).getValueAt(V, CxtI); | ||||||
1775 | Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); | ||||||
1776 | if (Ret != Unknown) | ||||||
1777 | return Ret; | ||||||
1778 | |||||||
1779 | // Note: The following bit of code is somewhat distinct from the rest of LVI; | ||||||
1780 | // LVI as a whole tries to compute a lattice value which is conservatively | ||||||
1781 | // correct at a given location. In this case, we have a predicate which we | ||||||
1782 | // weren't able to prove about the merged result, and we're pushing that | ||||||
1783 | // predicate back along each incoming edge to see if we can prove it | ||||||
1784 | // separately for each input. As a motivating example, consider: | ||||||
1785 | // bb1: | ||||||
1786 | // %v1 = ... ; constantrange<1, 5> | ||||||
1787 | // br label %merge | ||||||
1788 | // bb2: | ||||||
1789 | // %v2 = ... ; constantrange<10, 20> | ||||||
1790 | // br label %merge | ||||||
1791 | // merge: | ||||||
1792 | // %phi = phi [%v1, %v2] ; constantrange<1,20> | ||||||
1793 | // %pred = icmp eq i32 %phi, 8 | ||||||
1794 | // We can't tell from the lattice value for '%phi' that '%pred' is false | ||||||
1795 | // along each path, but by checking the predicate over each input separately, | ||||||
1796 | // we can. | ||||||
1797 | // We limit the search to one step backwards from the current BB and value. | ||||||
1798 | // We could consider extending this to search further backwards through the | ||||||
1799 | // CFG and/or value graph, but there are non-obvious compile time vs quality | ||||||
1800 | // tradeoffs. | ||||||
1801 | if (CxtI) { | ||||||
1802 | BasicBlock *BB = CxtI->getParent(); | ||||||
1803 | |||||||
1804 | // Function entry or an unreachable block. Bail to avoid confusing | ||||||
1805 | // analysis below. | ||||||
1806 | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); | ||||||
1807 | if (PI == PE) | ||||||
1808 | return Unknown; | ||||||
1809 | |||||||
1810 | // If V is a PHI node in the same block as the context, we need to ask | ||||||
1811 | // questions about the predicate as applied to the incoming value along | ||||||
1812 | // each edge. This is useful for eliminating cases where the predicate is | ||||||
1813 | // known along all incoming edges. | ||||||
1814 | if (auto *PHI = dyn_cast<PHINode>(V)) | ||||||
1815 | if (PHI->getParent() == BB) { | ||||||
1816 | Tristate Baseline = Unknown; | ||||||
1817 | for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { | ||||||
1818 | Value *Incoming = PHI->getIncomingValue(i); | ||||||
1819 | BasicBlock *PredBB = PHI->getIncomingBlock(i); | ||||||
1820 | // Note that PredBB may be BB itself. | ||||||
1821 | Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, | ||||||
1822 | CxtI); | ||||||
1823 | |||||||
1824 | // Keep going as long as we've seen a consistent known result for | ||||||
1825 | // all inputs. | ||||||
1826 | Baseline = (i == 0) ? Result /* First iteration */ | ||||||
1827 | : (Baseline == Result ? Baseline : Unknown); /* All others */ | ||||||
1828 | if (Baseline == Unknown) | ||||||
1829 | break; | ||||||
1830 | } | ||||||
1831 | if (Baseline != Unknown) | ||||||
1832 | return Baseline; | ||||||
1833 | } | ||||||
1834 | |||||||
1835 | // For a comparison where the V is outside this block, it's possible | ||||||
1836 | // that we've branched on it before. Look to see if the value is known | ||||||
1837 | // on all incoming edges. | ||||||
1838 | if (!isa<Instruction>(V) || | ||||||
1839 | cast<Instruction>(V)->getParent() != BB) { | ||||||
1840 | // For predecessor edge, determine if the comparison is true or false | ||||||
1841 | // on that edge. If they're all true or all false, we can conclude | ||||||
1842 | // the value of the comparison in this block. | ||||||
1843 | Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | ||||||
1844 | if (Baseline != Unknown) { | ||||||
1845 | // Check that all remaining incoming values match the first one. | ||||||
1846 | while (++PI != PE) { | ||||||
1847 | Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | ||||||
1848 | if (Ret != Baseline) break; | ||||||
1849 | } | ||||||
1850 | // If we terminated early, then one of the values didn't match. | ||||||
1851 | if (PI == PE) { | ||||||
1852 | return Baseline; | ||||||
1853 | } | ||||||
1854 | } | ||||||
1855 | } | ||||||
1856 | } | ||||||
1857 | return Unknown; | ||||||
1858 | } | ||||||
1859 | |||||||
1860 | void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | ||||||
1861 | BasicBlock *NewSucc) { | ||||||
1862 | if (PImpl) { | ||||||
1863 | getImpl(PImpl, AC, PredBB->getModule()) | ||||||
1864 | .threadEdge(PredBB, OldSucc, NewSucc); | ||||||
1865 | } | ||||||
1866 | } | ||||||
1867 | |||||||
1868 | void LazyValueInfo::eraseBlock(BasicBlock *BB) { | ||||||
1869 | if (PImpl) { | ||||||
1870 | getImpl(PImpl, AC, BB->getModule()).eraseBlock(BB); | ||||||
1871 | } | ||||||
1872 | } | ||||||
1873 | |||||||
1874 | |||||||
1875 | void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { | ||||||
1876 | if (PImpl) { | ||||||
1877 | getImpl(PImpl, AC, F.getParent()).printLVI(F, DTree, OS); | ||||||
1878 | } | ||||||
1879 | } | ||||||
1880 | |||||||
1881 | // Print the LVI for the function arguments at the start of each basic block. | ||||||
1882 | void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( | ||||||
1883 | const BasicBlock *BB, formatted_raw_ostream &OS) { | ||||||
1884 | // Find if there are latticevalues defined for arguments of the function. | ||||||
1885 | auto *F = BB->getParent(); | ||||||
1886 | for (auto &Arg : F->args()) { | ||||||
1887 | ValueLatticeElement Result = LVIImpl->getValueInBlock( | ||||||
1888 | const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); | ||||||
1889 | if (Result.isUnknown()) | ||||||
1890 | continue; | ||||||
1891 | OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; | ||||||
1892 | } | ||||||
1893 | } | ||||||
1894 | |||||||
1895 | // This function prints the LVI analysis for the instruction I at the beginning | ||||||
1896 | // of various basic blocks. It relies on calculated values that are stored in | ||||||
1897 | // the LazyValueInfoCache, and in the absence of cached values, recalculate the | ||||||
1898 | // LazyValueInfo for `I`, and print that info. | ||||||
1899 | void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( | ||||||
1900 | const Instruction *I, formatted_raw_ostream &OS) { | ||||||
1901 | |||||||
1902 | auto *ParentBB = I->getParent(); | ||||||
1903 | SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; | ||||||
1904 | // We can generate (solve) LVI values only for blocks that are dominated by | ||||||
1905 | // the I's parent. However, to avoid generating LVI for all dominating blocks, | ||||||
1906 | // that contain redundant/uninteresting information, we print LVI for | ||||||
1907 | // blocks that may use this LVI information (such as immediate successor | ||||||
1908 | // blocks, and blocks that contain uses of `I`). | ||||||
1909 | auto printResult = [&](const BasicBlock *BB) { | ||||||
1910 | if (!BlocksContainingLVI.insert(BB).second) | ||||||
1911 | return; | ||||||
1912 | ValueLatticeElement Result = LVIImpl->getValueInBlock( | ||||||
1913 | const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); | ||||||
1914 | OS << "; LatticeVal for: '" << *I << "' in BB: '"; | ||||||
1915 | BB->printAsOperand(OS, false); | ||||||
1916 | OS << "' is: " << Result << "\n"; | ||||||
1917 | }; | ||||||
1918 | |||||||
1919 | printResult(ParentBB); | ||||||
1920 | // Print the LVI analysis results for the immediate successor blocks, that | ||||||
1921 | // are dominated by `ParentBB`. | ||||||
1922 | for (auto *BBSucc : successors(ParentBB)) | ||||||
1923 | if (DT.dominates(ParentBB, BBSucc)) | ||||||
1924 | printResult(BBSucc); | ||||||
1925 | |||||||
1926 | // Print LVI in blocks where `I` is used. | ||||||
1927 | for (auto *U : I->users()) | ||||||
1928 | if (auto *UseI = dyn_cast<Instruction>(U)) | ||||||
1929 | if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) | ||||||
1930 | printResult(UseI->getParent()); | ||||||
1931 | |||||||
1932 | } | ||||||
1933 | |||||||
1934 | namespace { | ||||||
1935 | // Printer class for LazyValueInfo results. | ||||||
1936 | class LazyValueInfoPrinter : public FunctionPass { | ||||||
1937 | public: | ||||||
1938 | static char ID; // Pass identification, replacement for typeid | ||||||
1939 | LazyValueInfoPrinter() : FunctionPass(ID) { | ||||||
1940 | initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); | ||||||
1941 | } | ||||||
1942 | |||||||
1943 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||||
1944 | AU.setPreservesAll(); | ||||||
1945 | AU.addRequired<LazyValueInfoWrapperPass>(); | ||||||
1946 | AU.addRequired<DominatorTreeWrapperPass>(); | ||||||
1947 | } | ||||||
1948 | |||||||
1949 | // Get the mandatory dominator tree analysis and pass this in to the | ||||||
1950 | // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. | ||||||
1951 | bool runOnFunction(Function &F) override { | ||||||
1952 | dbgs() << "LVI for function '" << F.getName() << "':\n"; | ||||||
1953 | auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); | ||||||
1954 | auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | ||||||
1955 | LVI.printLVI(F, DTree, dbgs()); | ||||||
1956 | return false; | ||||||
1957 | } | ||||||
1958 | }; | ||||||
1959 | } | ||||||
1960 | |||||||
1961 | char LazyValueInfoPrinter::ID = 0; | ||||||
1962 | INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",static void *initializeLazyValueInfoPrinterPassOnce(PassRegistry &Registry) { | ||||||
1963 | "Lazy Value Info Printer Pass", false, false)static void *initializeLazyValueInfoPrinterPassOnce(PassRegistry &Registry) { | ||||||
1964 | INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)initializeLazyValueInfoWrapperPassPass(Registry); | ||||||
1965 | INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",PassInfo *PI = new PassInfo( "Lazy Value Info Printer Pass", "print-lazy-value-info" , &LazyValueInfoPrinter::ID, PassInfo::NormalCtor_t(callDefaultCtor <LazyValueInfoPrinter>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoPrinterPassFlag ; void llvm::initializeLazyValueInfoPrinterPass(PassRegistry & Registry) { llvm::call_once(InitializeLazyValueInfoPrinterPassFlag , initializeLazyValueInfoPrinterPassOnce, std::ref(Registry)) ; } | ||||||
1966 | "Lazy Value Info Printer Pass", false, false)PassInfo *PI = new PassInfo( "Lazy Value Info Printer Pass", "print-lazy-value-info" , &LazyValueInfoPrinter::ID, PassInfo::NormalCtor_t(callDefaultCtor <LazyValueInfoPrinter>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoPrinterPassFlag ; void llvm::initializeLazyValueInfoPrinterPass(PassRegistry & Registry) { llvm::call_once(InitializeLazyValueInfoPrinterPassFlag , initializeLazyValueInfoPrinterPassOnce, std::ref(Registry)) ; } |
1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file exposes the class definitions of all of the subclasses of the |
10 | // Instruction class. This is meant to be an easy way to get access to all |
11 | // instruction subclasses. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_IR_INSTRUCTIONS_H |
16 | #define LLVM_IR_INSTRUCTIONS_H |
17 | |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/Bitfields.h" |
20 | #include "llvm/ADT/None.h" |
21 | #include "llvm/ADT/STLExtras.h" |
22 | #include "llvm/ADT/SmallVector.h" |
23 | #include "llvm/ADT/StringRef.h" |
24 | #include "llvm/ADT/Twine.h" |
25 | #include "llvm/ADT/iterator.h" |
26 | #include "llvm/ADT/iterator_range.h" |
27 | #include "llvm/IR/Attributes.h" |
28 | #include "llvm/IR/BasicBlock.h" |
29 | #include "llvm/IR/CallingConv.h" |
30 | #include "llvm/IR/CFG.h" |
31 | #include "llvm/IR/Constant.h" |
32 | #include "llvm/IR/DerivedTypes.h" |
33 | #include "llvm/IR/Function.h" |
34 | #include "llvm/IR/InstrTypes.h" |
35 | #include "llvm/IR/Instruction.h" |
36 | #include "llvm/IR/OperandTraits.h" |
37 | #include "llvm/IR/Type.h" |
38 | #include "llvm/IR/Use.h" |
39 | #include "llvm/IR/User.h" |
40 | #include "llvm/IR/Value.h" |
41 | #include "llvm/Support/AtomicOrdering.h" |
42 | #include "llvm/Support/Casting.h" |
43 | #include "llvm/Support/ErrorHandling.h" |
44 | #include <cassert> |
45 | #include <cstddef> |
46 | #include <cstdint> |
47 | #include <iterator> |
48 | |
49 | namespace llvm { |
50 | |
51 | class APInt; |
52 | class ConstantInt; |
53 | class DataLayout; |
54 | class LLVMContext; |
55 | |
56 | //===----------------------------------------------------------------------===// |
57 | // AllocaInst Class |
58 | //===----------------------------------------------------------------------===// |
59 | |
60 | /// an instruction to allocate memory on the stack |
61 | class AllocaInst : public UnaryInstruction { |
62 | Type *AllocatedType; |
63 | |
64 | using AlignmentField = AlignmentBitfieldElementT<0>; |
65 | using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; |
66 | using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; |
67 | static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, |
68 | SwiftErrorField>(), |
69 | "Bitfields must be contiguous"); |
70 | |
71 | protected: |
72 | // Note: Instruction needs to be a friend here to call cloneImpl. |
73 | friend class Instruction; |
74 | |
75 | AllocaInst *cloneImpl() const; |
76 | |
77 | public: |
78 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
79 | const Twine &Name, Instruction *InsertBefore); |
80 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
81 | const Twine &Name, BasicBlock *InsertAtEnd); |
82 | |
83 | AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, |
84 | Instruction *InsertBefore); |
85 | AllocaInst(Type *Ty, unsigned AddrSpace, |
86 | const Twine &Name, BasicBlock *InsertAtEnd); |
87 | |
88 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
89 | const Twine &Name = "", Instruction *InsertBefore = nullptr); |
90 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
91 | const Twine &Name, BasicBlock *InsertAtEnd); |
92 | |
93 | /// Return true if there is an allocation size parameter to the allocation |
94 | /// instruction that is not 1. |
95 | bool isArrayAllocation() const; |
96 | |
97 | /// Get the number of elements allocated. For a simple allocation of a single |
98 | /// element, this will return a constant 1 value. |
99 | const Value *getArraySize() const { return getOperand(0); } |
100 | Value *getArraySize() { return getOperand(0); } |
101 | |
102 | /// Overload to return most specific pointer type. |
103 | PointerType *getType() const { |
104 | return cast<PointerType>(Instruction::getType()); |
105 | } |
106 | |
107 | /// Get allocation size in bits. Returns None if size can't be determined, |
108 | /// e.g. in case of a VLA. |
109 | Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; |
110 | |
111 | /// Return the type that is being allocated by the instruction. |
112 | Type *getAllocatedType() const { return AllocatedType; } |
113 | /// for use only in special circumstances that need to generically |
114 | /// transform a whole instruction (eg: IR linking and vectorization). |
115 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } |
116 | |
117 | /// Return the alignment of the memory that is being allocated by the |
118 | /// instruction. |
119 | Align getAlign() const { |
120 | return Align(1ULL << getSubclassData<AlignmentField>()); |
121 | } |
122 | |
123 | void setAlignment(Align Align) { |
124 | setSubclassData<AlignmentField>(Log2(Align)); |
125 | } |
126 | |
127 | // FIXME: Remove this one transition to Align is over. |
128 | unsigned getAlignment() const { return getAlign().value(); } |
129 | |
130 | /// Return true if this alloca is in the entry block of the function and is a |
131 | /// constant size. If so, the code generator will fold it into the |
132 | /// prolog/epilog code, so it is basically free. |
133 | bool isStaticAlloca() const; |
134 | |
135 | /// Return true if this alloca is used as an inalloca argument to a call. Such |
136 | /// allocas are never considered static even if they are in the entry block. |
137 | bool isUsedWithInAlloca() const { |
138 | return getSubclassData<UsedWithInAllocaField>(); |
139 | } |
140 | |
141 | /// Specify whether this alloca is used to represent the arguments to a call. |
142 | void setUsedWithInAlloca(bool V) { |
143 | setSubclassData<UsedWithInAllocaField>(V); |
144 | } |
145 | |
146 | /// Return true if this alloca is used as a swifterror argument to a call. |
147 | bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } |
148 | /// Specify whether this alloca is used to represent a swifterror. |
149 | void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } |
150 | |
151 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
152 | static bool classof(const Instruction *I) { |
153 | return (I->getOpcode() == Instruction::Alloca); |
154 | } |
155 | static bool classof(const Value *V) { |
156 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
157 | } |
158 | |
159 | private: |
160 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
161 | // method so that subclasses cannot accidentally use it. |
162 | template <typename Bitfield> |
163 | void setSubclassData(typename Bitfield::Type Value) { |
164 | Instruction::setSubclassData<Bitfield>(Value); |
165 | } |
166 | }; |
167 | |
168 | //===----------------------------------------------------------------------===// |
169 | // LoadInst Class |
170 | //===----------------------------------------------------------------------===// |
171 | |
172 | /// An instruction for reading from memory. This uses the SubclassData field in |
173 | /// Value to store whether or not the load is volatile. |
174 | class LoadInst : public UnaryInstruction { |
175 | using VolatileField = BoolBitfieldElementT<0>; |
176 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
177 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
178 | static_assert( |
179 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
180 | "Bitfields must be contiguous"); |
181 | |
182 | void AssertOK(); |
183 | |
184 | protected: |
185 | // Note: Instruction needs to be a friend here to call cloneImpl. |
186 | friend class Instruction; |
187 | |
188 | LoadInst *cloneImpl() const; |
189 | |
190 | public: |
191 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, |
192 | Instruction *InsertBefore); |
193 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); |
194 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
195 | Instruction *InsertBefore); |
196 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
197 | BasicBlock *InsertAtEnd); |
198 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
199 | Align Align, Instruction *InsertBefore = nullptr); |
200 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
201 | Align Align, BasicBlock *InsertAtEnd); |
202 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
203 | Align Align, AtomicOrdering Order, |
204 | SyncScope::ID SSID = SyncScope::System, |
205 | Instruction *InsertBefore = nullptr); |
206 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
207 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, |
208 | BasicBlock *InsertAtEnd); |
209 | |
210 | /// Return true if this is a load from a volatile memory location. |
211 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
212 | |
213 | /// Specify whether this is a volatile load or not. |
214 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
215 | |
216 | /// Return the alignment of the access that is being performed. |
217 | /// FIXME: Remove this function once transition to Align is over. |
218 | /// Use getAlign() instead. |
219 | unsigned getAlignment() const { return getAlign().value(); } |
220 | |
221 | /// Return the alignment of the access that is being performed. |
222 | Align getAlign() const { |
223 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
224 | } |
225 | |
226 | void setAlignment(Align Align) { |
227 | setSubclassData<AlignmentField>(Log2(Align)); |
228 | } |
229 | |
230 | /// Returns the ordering constraint of this load instruction. |
231 | AtomicOrdering getOrdering() const { |
232 | return getSubclassData<OrderingField>(); |
233 | } |
234 | /// Sets the ordering constraint of this load instruction. May not be Release |
235 | /// or AcquireRelease. |
236 | void setOrdering(AtomicOrdering Ordering) { |
237 | setSubclassData<OrderingField>(Ordering); |
238 | } |
239 | |
240 | /// Returns the synchronization scope ID of this load instruction. |
241 | SyncScope::ID getSyncScopeID() const { |
242 | return SSID; |
243 | } |
244 | |
245 | /// Sets the synchronization scope ID of this load instruction. |
246 | void setSyncScopeID(SyncScope::ID SSID) { |
247 | this->SSID = SSID; |
248 | } |
249 | |
250 | /// Sets the ordering constraint and the synchronization scope ID of this load |
251 | /// instruction. |
252 | void setAtomic(AtomicOrdering Ordering, |
253 | SyncScope::ID SSID = SyncScope::System) { |
254 | setOrdering(Ordering); |
255 | setSyncScopeID(SSID); |
256 | } |
257 | |
258 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
259 | |
260 | bool isUnordered() const { |
261 | return (getOrdering() == AtomicOrdering::NotAtomic || |
262 | getOrdering() == AtomicOrdering::Unordered) && |
263 | !isVolatile(); |
264 | } |
265 | |
266 | Value *getPointerOperand() { return getOperand(0); } |
267 | const Value *getPointerOperand() const { return getOperand(0); } |
268 | static unsigned getPointerOperandIndex() { return 0U; } |
269 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
270 | |
271 | /// Returns the address space of the pointer operand. |
272 | unsigned getPointerAddressSpace() const { |
273 | return getPointerOperandType()->getPointerAddressSpace(); |
274 | } |
275 | |
276 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
277 | static bool classof(const Instruction *I) { |
278 | return I->getOpcode() == Instruction::Load; |
279 | } |
280 | static bool classof(const Value *V) { |
281 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
282 | } |
283 | |
284 | private: |
285 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
286 | // method so that subclasses cannot accidentally use it. |
287 | template <typename Bitfield> |
288 | void setSubclassData(typename Bitfield::Type Value) { |
289 | Instruction::setSubclassData<Bitfield>(Value); |
290 | } |
291 | |
292 | /// The synchronization scope ID of this load instruction. Not quite enough |
293 | /// room in SubClassData for everything, so synchronization scope ID gets its |
294 | /// own field. |
295 | SyncScope::ID SSID; |
296 | }; |
297 | |
298 | //===----------------------------------------------------------------------===// |
299 | // StoreInst Class |
300 | //===----------------------------------------------------------------------===// |
301 | |
302 | /// An instruction for storing to memory. |
303 | class StoreInst : public Instruction { |
304 | using VolatileField = BoolBitfieldElementT<0>; |
305 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
306 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
307 | static_assert( |
308 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
309 | "Bitfields must be contiguous"); |
310 | |
311 | void AssertOK(); |
312 | |
313 | protected: |
314 | // Note: Instruction needs to be a friend here to call cloneImpl. |
315 | friend class Instruction; |
316 | |
317 | StoreInst *cloneImpl() const; |
318 | |
319 | public: |
320 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); |
321 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); |
322 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); |
323 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); |
324 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
325 | Instruction *InsertBefore = nullptr); |
326 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
327 | BasicBlock *InsertAtEnd); |
328 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
329 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
330 | Instruction *InsertBefore = nullptr); |
331 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
332 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
333 | |
334 | // allocate space for exactly two operands |
335 | void *operator new(size_t s) { |
336 | return User::operator new(s, 2); |
337 | } |
338 | |
339 | /// Return true if this is a store to a volatile memory location. |
340 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
341 | |
342 | /// Specify whether this is a volatile store or not. |
343 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
344 | |
345 | /// Transparently provide more efficient getOperand methods. |
346 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
347 | |
348 | /// Return the alignment of the access that is being performed |
349 | /// FIXME: Remove this function once transition to Align is over. |
350 | /// Use getAlign() instead. |
351 | unsigned getAlignment() const { return getAlign().value(); } |
352 | |
353 | Align getAlign() const { |
354 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
355 | } |
356 | |
357 | void setAlignment(Align Align) { |
358 | setSubclassData<AlignmentField>(Log2(Align)); |
359 | } |
360 | |
361 | /// Returns the ordering constraint of this store instruction. |
362 | AtomicOrdering getOrdering() const { |
363 | return getSubclassData<OrderingField>(); |
364 | } |
365 | |
366 | /// Sets the ordering constraint of this store instruction. May not be |
367 | /// Acquire or AcquireRelease. |
368 | void setOrdering(AtomicOrdering Ordering) { |
369 | setSubclassData<OrderingField>(Ordering); |
370 | } |
371 | |
372 | /// Returns the synchronization scope ID of this store instruction. |
373 | SyncScope::ID getSyncScopeID() const { |
374 | return SSID; |
375 | } |
376 | |
377 | /// Sets the synchronization scope ID of this store instruction. |
378 | void setSyncScopeID(SyncScope::ID SSID) { |
379 | this->SSID = SSID; |
380 | } |
381 | |
382 | /// Sets the ordering constraint and the synchronization scope ID of this |
383 | /// store instruction. |
384 | void setAtomic(AtomicOrdering Ordering, |
385 | SyncScope::ID SSID = SyncScope::System) { |
386 | setOrdering(Ordering); |
387 | setSyncScopeID(SSID); |
388 | } |
389 | |
390 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
391 | |
392 | bool isUnordered() const { |
393 | return (getOrdering() == AtomicOrdering::NotAtomic || |
394 | getOrdering() == AtomicOrdering::Unordered) && |
395 | !isVolatile(); |
396 | } |
397 | |
398 | Value *getValueOperand() { return getOperand(0); } |
399 | const Value *getValueOperand() const { return getOperand(0); } |
400 | |
401 | Value *getPointerOperand() { return getOperand(1); } |
402 | const Value *getPointerOperand() const { return getOperand(1); } |
403 | static unsigned getPointerOperandIndex() { return 1U; } |
404 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
405 | |
406 | /// Returns the address space of the pointer operand. |
407 | unsigned getPointerAddressSpace() const { |
408 | return getPointerOperandType()->getPointerAddressSpace(); |
409 | } |
410 | |
411 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
412 | static bool classof(const Instruction *I) { |
413 | return I->getOpcode() == Instruction::Store; |
414 | } |
415 | static bool classof(const Value *V) { |
416 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
417 | } |
418 | |
419 | private: |
420 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
421 | // method so that subclasses cannot accidentally use it. |
422 | template <typename Bitfield> |
423 | void setSubclassData(typename Bitfield::Type Value) { |
424 | Instruction::setSubclassData<Bitfield>(Value); |
425 | } |
426 | |
427 | /// The synchronization scope ID of this store instruction. Not quite enough |
428 | /// room in SubClassData for everything, so synchronization scope ID gets its |
429 | /// own field. |
430 | SyncScope::ID SSID; |
431 | }; |
432 | |
433 | template <> |
434 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { |
435 | }; |
436 | |
437 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { ((i_nocapture < OperandTraits <StoreInst>::operands(this) && "getOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 437, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst *>(this))[i_nocapture].get()); } void StoreInst::setOperand (unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture < OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 437, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>:: op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst ::getNumOperands() const { return OperandTraits<StoreInst> ::operands(this); } template <int Idx_nocapture> Use & StoreInst::Op() { return this->OpFrom<Idx_nocapture> (this); } template <int Idx_nocapture> const Use &StoreInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
438 | |
439 | //===----------------------------------------------------------------------===// |
440 | // FenceInst Class |
441 | //===----------------------------------------------------------------------===// |
442 | |
443 | /// An instruction for ordering other memory operations. |
444 | class FenceInst : public Instruction { |
445 | using OrderingField = AtomicOrderingBitfieldElementT<0>; |
446 | |
447 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); |
448 | |
449 | protected: |
450 | // Note: Instruction needs to be a friend here to call cloneImpl. |
451 | friend class Instruction; |
452 | |
453 | FenceInst *cloneImpl() const; |
454 | |
455 | public: |
456 | // Ordering may only be Acquire, Release, AcquireRelease, or |
457 | // SequentiallyConsistent. |
458 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
459 | SyncScope::ID SSID = SyncScope::System, |
460 | Instruction *InsertBefore = nullptr); |
461 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, |
462 | BasicBlock *InsertAtEnd); |
463 | |
464 | // allocate space for exactly zero operands |
465 | void *operator new(size_t s) { |
466 | return User::operator new(s, 0); |
467 | } |
468 | |
469 | /// Returns the ordering constraint of this fence instruction. |
470 | AtomicOrdering getOrdering() const { |
471 | return getSubclassData<OrderingField>(); |
472 | } |
473 | |
474 | /// Sets the ordering constraint of this fence instruction. May only be |
475 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. |
476 | void setOrdering(AtomicOrdering Ordering) { |
477 | setSubclassData<OrderingField>(Ordering); |
478 | } |
479 | |
480 | /// Returns the synchronization scope ID of this fence instruction. |
481 | SyncScope::ID getSyncScopeID() const { |
482 | return SSID; |
483 | } |
484 | |
485 | /// Sets the synchronization scope ID of this fence instruction. |
486 | void setSyncScopeID(SyncScope::ID SSID) { |
487 | this->SSID = SSID; |
488 | } |
489 | |
490 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
491 | static bool classof(const Instruction *I) { |
492 | return I->getOpcode() == Instruction::Fence; |
493 | } |
494 | static bool classof(const Value *V) { |
495 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
496 | } |
497 | |
498 | private: |
499 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
500 | // method so that subclasses cannot accidentally use it. |
501 | template <typename Bitfield> |
502 | void setSubclassData(typename Bitfield::Type Value) { |
503 | Instruction::setSubclassData<Bitfield>(Value); |
504 | } |
505 | |
506 | /// The synchronization scope ID of this fence instruction. Not quite enough |
507 | /// room in SubClassData for everything, so synchronization scope ID gets its |
508 | /// own field. |
509 | SyncScope::ID SSID; |
510 | }; |
511 | |
512 | //===----------------------------------------------------------------------===// |
513 | // AtomicCmpXchgInst Class |
514 | //===----------------------------------------------------------------------===// |
515 | |
516 | /// An instruction that atomically checks whether a |
517 | /// specified value is in a memory location, and, if it is, stores a new value |
518 | /// there. The value returned by this instruction is a pair containing the |
519 | /// original value as first element, and an i1 indicating success (true) or |
520 | /// failure (false) as second element. |
521 | /// |
522 | class AtomicCmpXchgInst : public Instruction { |
523 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, |
524 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, |
525 | SyncScope::ID SSID); |
526 | |
527 | template <unsigned Offset> |
528 | using AtomicOrderingBitfieldElement = |
529 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
530 | AtomicOrdering::LAST>; |
531 | |
532 | protected: |
533 | // Note: Instruction needs to be a friend here to call cloneImpl. |
534 | friend class Instruction; |
535 | |
536 | AtomicCmpXchgInst *cloneImpl() const; |
537 | |
538 | public: |
539 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
540 | AtomicOrdering SuccessOrdering, |
541 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
542 | Instruction *InsertBefore = nullptr); |
543 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
544 | AtomicOrdering SuccessOrdering, |
545 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
546 | BasicBlock *InsertAtEnd); |
547 | |
548 | // allocate space for exactly three operands |
549 | void *operator new(size_t s) { |
550 | return User::operator new(s, 3); |
551 | } |
552 | |
553 | using VolatileField = BoolBitfieldElementT<0>; |
554 | using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; |
555 | using SuccessOrderingField = |
556 | AtomicOrderingBitfieldElementT<WeakField::NextBit>; |
557 | using FailureOrderingField = |
558 | AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; |
559 | using AlignmentField = |
560 | AlignmentBitfieldElementT<FailureOrderingField::NextBit>; |
561 | static_assert( |
562 | Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, |
563 | FailureOrderingField, AlignmentField>(), |
564 | "Bitfields must be contiguous"); |
565 | |
566 | /// Return the alignment of the memory that is being allocated by the |
567 | /// instruction. |
568 | Align getAlign() const { |
569 | return Align(1ULL << getSubclassData<AlignmentField>()); |
570 | } |
571 | |
572 | void setAlignment(Align Align) { |
573 | setSubclassData<AlignmentField>(Log2(Align)); |
574 | } |
575 | |
576 | /// Return true if this is a cmpxchg from a volatile memory |
577 | /// location. |
578 | /// |
579 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
580 | |
581 | /// Specify whether this is a volatile cmpxchg. |
582 | /// |
583 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
584 | |
585 | /// Return true if this cmpxchg may spuriously fail. |
586 | bool isWeak() const { return getSubclassData<WeakField>(); } |
587 | |
588 | void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } |
589 | |
590 | /// Transparently provide more efficient getOperand methods. |
591 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
592 | |
593 | /// Returns the success ordering constraint of this cmpxchg instruction. |
594 | AtomicOrdering getSuccessOrdering() const { |
595 | return getSubclassData<SuccessOrderingField>(); |
596 | } |
597 | |
598 | /// Sets the success ordering constraint of this cmpxchg instruction. |
599 | void setSuccessOrdering(AtomicOrdering Ordering) { |
600 | assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 601, __PRETTY_FUNCTION__)) |
601 | "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 601, __PRETTY_FUNCTION__)); |
602 | setSubclassData<SuccessOrderingField>(Ordering); |
603 | } |
604 | |
605 | /// Returns the failure ordering constraint of this cmpxchg instruction. |
606 | AtomicOrdering getFailureOrdering() const { |
607 | return getSubclassData<FailureOrderingField>(); |
608 | } |
609 | |
610 | /// Sets the failure ordering constraint of this cmpxchg instruction. |
611 | void setFailureOrdering(AtomicOrdering Ordering) { |
612 | assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 613, __PRETTY_FUNCTION__)) |
613 | "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 613, __PRETTY_FUNCTION__)); |
614 | setSubclassData<FailureOrderingField>(Ordering); |
615 | } |
616 | |
617 | /// Returns the synchronization scope ID of this cmpxchg instruction. |
618 | SyncScope::ID getSyncScopeID() const { |
619 | return SSID; |
620 | } |
621 | |
622 | /// Sets the synchronization scope ID of this cmpxchg instruction. |
623 | void setSyncScopeID(SyncScope::ID SSID) { |
624 | this->SSID = SSID; |
625 | } |
626 | |
627 | Value *getPointerOperand() { return getOperand(0); } |
628 | const Value *getPointerOperand() const { return getOperand(0); } |
629 | static unsigned getPointerOperandIndex() { return 0U; } |
630 | |
631 | Value *getCompareOperand() { return getOperand(1); } |
632 | const Value *getCompareOperand() const { return getOperand(1); } |
633 | |
634 | Value *getNewValOperand() { return getOperand(2); } |
635 | const Value *getNewValOperand() const { return getOperand(2); } |
636 | |
637 | /// Returns the address space of the pointer operand. |
638 | unsigned getPointerAddressSpace() const { |
639 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
640 | } |
641 | |
642 | /// Returns the strongest permitted ordering on failure, given the |
643 | /// desired ordering on success. |
644 | /// |
645 | /// If the comparison in a cmpxchg operation fails, there is no atomic store |
646 | /// so release semantics cannot be provided. So this function drops explicit |
647 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent |
648 | /// operation would remain SequentiallyConsistent. |
649 | static AtomicOrdering |
650 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { |
651 | switch (SuccessOrdering) { |
652 | default: |
653 | llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 653); |
654 | case AtomicOrdering::Release: |
655 | case AtomicOrdering::Monotonic: |
656 | return AtomicOrdering::Monotonic; |
657 | case AtomicOrdering::AcquireRelease: |
658 | case AtomicOrdering::Acquire: |
659 | return AtomicOrdering::Acquire; |
660 | case AtomicOrdering::SequentiallyConsistent: |
661 | return AtomicOrdering::SequentiallyConsistent; |
662 | } |
663 | } |
664 | |
665 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
666 | static bool classof(const Instruction *I) { |
667 | return I->getOpcode() == Instruction::AtomicCmpXchg; |
668 | } |
669 | static bool classof(const Value *V) { |
670 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
671 | } |
672 | |
673 | private: |
674 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
675 | // method so that subclasses cannot accidentally use it. |
676 | template <typename Bitfield> |
677 | void setSubclassData(typename Bitfield::Type Value) { |
678 | Instruction::setSubclassData<Bitfield>(Value); |
679 | } |
680 | |
681 | /// The synchronization scope ID of this cmpxchg instruction. Not quite |
682 | /// enough room in SubClassData for everything, so synchronization scope ID |
683 | /// gets its own field. |
684 | SyncScope::ID SSID; |
685 | }; |
686 | |
687 | template <> |
688 | struct OperandTraits<AtomicCmpXchgInst> : |
689 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { |
690 | }; |
691 | |
692 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst >::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 692, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast <AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst> ::operands(this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 692, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst::getNumOperands() const { return OperandTraits <AtomicCmpXchgInst>::operands(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &AtomicCmpXchgInst::Op() const { return this ->OpFrom<Idx_nocapture>(this); } |
693 | |
694 | //===----------------------------------------------------------------------===// |
695 | // AtomicRMWInst Class |
696 | //===----------------------------------------------------------------------===// |
697 | |
698 | /// an instruction that atomically reads a memory location, |
699 | /// combines it with another value, and then stores the result back. Returns |
700 | /// the old value. |
701 | /// |
702 | class AtomicRMWInst : public Instruction { |
703 | protected: |
704 | // Note: Instruction needs to be a friend here to call cloneImpl. |
705 | friend class Instruction; |
706 | |
707 | AtomicRMWInst *cloneImpl() const; |
708 | |
709 | public: |
710 | /// This enumeration lists the possible modifications atomicrmw can make. In |
711 | /// the descriptions, 'p' is the pointer to the instruction's memory location, |
712 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the |
713 | /// instruction. These instructions always return 'old'. |
714 | enum BinOp : unsigned { |
715 | /// *p = v |
716 | Xchg, |
717 | /// *p = old + v |
718 | Add, |
719 | /// *p = old - v |
720 | Sub, |
721 | /// *p = old & v |
722 | And, |
723 | /// *p = ~(old & v) |
724 | Nand, |
725 | /// *p = old | v |
726 | Or, |
727 | /// *p = old ^ v |
728 | Xor, |
729 | /// *p = old >signed v ? old : v |
730 | Max, |
731 | /// *p = old <signed v ? old : v |
732 | Min, |
733 | /// *p = old >unsigned v ? old : v |
734 | UMax, |
735 | /// *p = old <unsigned v ? old : v |
736 | UMin, |
737 | |
738 | /// *p = old + v |
739 | FAdd, |
740 | |
741 | /// *p = old - v |
742 | FSub, |
743 | |
744 | FIRST_BINOP = Xchg, |
745 | LAST_BINOP = FSub, |
746 | BAD_BINOP |
747 | }; |
748 | |
749 | private: |
750 | template <unsigned Offset> |
751 | using AtomicOrderingBitfieldElement = |
752 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
753 | AtomicOrdering::LAST>; |
754 | |
755 | template <unsigned Offset> |
756 | using BinOpBitfieldElement = |
757 | typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>; |
758 | |
759 | public: |
760 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
761 | AtomicOrdering Ordering, SyncScope::ID SSID, |
762 | Instruction *InsertBefore = nullptr); |
763 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
764 | AtomicOrdering Ordering, SyncScope::ID SSID, |
765 | BasicBlock *InsertAtEnd); |
766 | |
767 | // allocate space for exactly two operands |
768 | void *operator new(size_t s) { |
769 | return User::operator new(s, 2); |
770 | } |
771 | |
772 | using VolatileField = BoolBitfieldElementT<0>; |
773 | using AtomicOrderingField = |
774 | AtomicOrderingBitfieldElementT<VolatileField::NextBit>; |
775 | using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; |
776 | using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; |
777 | static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, |
778 | OperationField, AlignmentField>(), |
779 | "Bitfields must be contiguous"); |
780 | |
781 | BinOp getOperation() const { return getSubclassData<OperationField>(); } |
782 | |
783 | static StringRef getOperationName(BinOp Op); |
784 | |
785 | static bool isFPOperation(BinOp Op) { |
786 | switch (Op) { |
787 | case AtomicRMWInst::FAdd: |
788 | case AtomicRMWInst::FSub: |
789 | return true; |
790 | default: |
791 | return false; |
792 | } |
793 | } |
794 | |
795 | void setOperation(BinOp Operation) { |
796 | setSubclassData<OperationField>(Operation); |
797 | } |
798 | |
799 | /// Return the alignment of the memory that is being allocated by the |
800 | /// instruction. |
801 | Align getAlign() const { |
802 | return Align(1ULL << getSubclassData<AlignmentField>()); |
803 | } |
804 | |
805 | void setAlignment(Align Align) { |
806 | setSubclassData<AlignmentField>(Log2(Align)); |
807 | } |
808 | |
809 | /// Return true if this is a RMW on a volatile memory location. |
810 | /// |
811 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
812 | |
813 | /// Specify whether this is a volatile RMW or not. |
814 | /// |
815 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
816 | |
817 | /// Transparently provide more efficient getOperand methods. |
818 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
819 | |
820 | /// Returns the ordering constraint of this rmw instruction. |
821 | AtomicOrdering getOrdering() const { |
822 | return getSubclassData<AtomicOrderingField>(); |
823 | } |
824 | |
825 | /// Sets the ordering constraint of this rmw instruction. |
826 | void setOrdering(AtomicOrdering Ordering) { |
827 | assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 828, __PRETTY_FUNCTION__)) |
828 | "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 828, __PRETTY_FUNCTION__)); |
829 | setSubclassData<AtomicOrderingField>(Ordering); |
830 | } |
831 | |
832 | /// Returns the synchronization scope ID of this rmw instruction. |
833 | SyncScope::ID getSyncScopeID() const { |
834 | return SSID; |
835 | } |
836 | |
837 | /// Sets the synchronization scope ID of this rmw instruction. |
838 | void setSyncScopeID(SyncScope::ID SSID) { |
839 | this->SSID = SSID; |
840 | } |
841 | |
842 | Value *getPointerOperand() { return getOperand(0); } |
843 | const Value *getPointerOperand() const { return getOperand(0); } |
844 | static unsigned getPointerOperandIndex() { return 0U; } |
845 | |
846 | Value *getValOperand() { return getOperand(1); } |
847 | const Value *getValOperand() const { return getOperand(1); } |
848 | |
849 | /// Returns the address space of the pointer operand. |
850 | unsigned getPointerAddressSpace() const { |
851 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
852 | } |
853 | |
854 | bool isFloatingPointOperation() const { |
855 | return isFPOperation(getOperation()); |
856 | } |
857 | |
858 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
859 | static bool classof(const Instruction *I) { |
860 | return I->getOpcode() == Instruction::AtomicRMW; |
861 | } |
862 | static bool classof(const Value *V) { |
863 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
864 | } |
865 | |
866 | private: |
867 | void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, |
868 | AtomicOrdering Ordering, SyncScope::ID SSID); |
869 | |
870 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
871 | // method so that subclasses cannot accidentally use it. |
872 | template <typename Bitfield> |
873 | void setSubclassData(typename Bitfield::Type Value) { |
874 | Instruction::setSubclassData<Bitfield>(Value); |
875 | } |
876 | |
877 | /// The synchronization scope ID of this rmw instruction. Not quite enough |
878 | /// room in SubClassData for everything, so synchronization scope ID gets its |
879 | /// own field. |
880 | SyncScope::ID SSID; |
881 | }; |
882 | |
883 | template <> |
884 | struct OperandTraits<AtomicRMWInst> |
885 | : public FixedNumOperandTraits<AtomicRMWInst,2> { |
886 | }; |
887 | |
888 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { ((i_nocapture < OperandTraits <AtomicRMWInst>::operands(this) && "getOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 888, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<AtomicRMWInst>::op_begin(const_cast< AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( i_nocapture < OperandTraits<AtomicRMWInst>::operands (this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 888, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst> ::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst ::getNumOperands() const { return OperandTraits<AtomicRMWInst >::operands(this); } template <int Idx_nocapture> Use &AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
889 | |
890 | //===----------------------------------------------------------------------===// |
891 | // GetElementPtrInst Class |
892 | //===----------------------------------------------------------------------===// |
893 | |
894 | // checkGEPType - Simple wrapper function to give a better assertion failure |
895 | // message on bad indexes for a gep instruction. |
896 | // |
897 | inline Type *checkGEPType(Type *Ty) { |
898 | assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!" ) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 898, __PRETTY_FUNCTION__)); |
899 | return Ty; |
900 | } |
901 | |
902 | /// an instruction for type-safe pointer arithmetic to |
903 | /// access elements of arrays and structs |
904 | /// |
905 | class GetElementPtrInst : public Instruction { |
906 | Type *SourceElementType; |
907 | Type *ResultElementType; |
908 | |
909 | GetElementPtrInst(const GetElementPtrInst &GEPI); |
910 | |
911 | /// Constructors - Create a getelementptr instruction with a base pointer an |
912 | /// list of indices. The first ctor can optionally insert before an existing |
913 | /// instruction, the second appends the new instruction to the specified |
914 | /// BasicBlock. |
915 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
916 | ArrayRef<Value *> IdxList, unsigned Values, |
917 | const Twine &NameStr, Instruction *InsertBefore); |
918 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
919 | ArrayRef<Value *> IdxList, unsigned Values, |
920 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
921 | |
922 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); |
923 | |
924 | protected: |
925 | // Note: Instruction needs to be a friend here to call cloneImpl. |
926 | friend class Instruction; |
927 | |
928 | GetElementPtrInst *cloneImpl() const; |
929 | |
930 | public: |
931 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
932 | ArrayRef<Value *> IdxList, |
933 | const Twine &NameStr = "", |
934 | Instruction *InsertBefore = nullptr) { |
935 | unsigned Values = 1 + unsigned(IdxList.size()); |
936 | if (!PointeeType) |
937 | PointeeType = |
938 | cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(); |
939 | else |
940 | assert(((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 942, __PRETTY_FUNCTION__)) |
941 | PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 942, __PRETTY_FUNCTION__)) |
942 | cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 942, __PRETTY_FUNCTION__)); |
943 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
944 | NameStr, InsertBefore); |
945 | } |
946 | |
947 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
948 | ArrayRef<Value *> IdxList, |
949 | const Twine &NameStr, |
950 | BasicBlock *InsertAtEnd) { |
951 | unsigned Values = 1 + unsigned(IdxList.size()); |
952 | if (!PointeeType) |
953 | PointeeType = |
954 | cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(); |
955 | else |
956 | assert(((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 958, __PRETTY_FUNCTION__)) |
957 | PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 958, __PRETTY_FUNCTION__)) |
958 | cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 958, __PRETTY_FUNCTION__)); |
959 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
960 | NameStr, InsertAtEnd); |
961 | } |
962 | |
963 | /// Create an "inbounds" getelementptr. See the documentation for the |
964 | /// "inbounds" flag in LangRef.html for details. |
965 | static GetElementPtrInst *CreateInBounds(Value *Ptr, |
966 | ArrayRef<Value *> IdxList, |
967 | const Twine &NameStr = "", |
968 | Instruction *InsertBefore = nullptr){ |
969 | return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore); |
970 | } |
971 | |
972 | static GetElementPtrInst * |
973 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, |
974 | const Twine &NameStr = "", |
975 | Instruction *InsertBefore = nullptr) { |
976 | GetElementPtrInst *GEP = |
977 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); |
978 | GEP->setIsInBounds(true); |
979 | return GEP; |
980 | } |
981 | |
982 | static GetElementPtrInst *CreateInBounds(Value *Ptr, |
983 | ArrayRef<Value *> IdxList, |
984 | const Twine &NameStr, |
985 | BasicBlock *InsertAtEnd) { |
986 | return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd); |
987 | } |
988 | |
989 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, |
990 | ArrayRef<Value *> IdxList, |
991 | const Twine &NameStr, |
992 | BasicBlock *InsertAtEnd) { |
993 | GetElementPtrInst *GEP = |
994 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); |
995 | GEP->setIsInBounds(true); |
996 | return GEP; |
997 | } |
998 | |
999 | /// Transparently provide more efficient getOperand methods. |
1000 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1001 | |
1002 | Type *getSourceElementType() const { return SourceElementType; } |
1003 | |
1004 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } |
1005 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } |
1006 | |
1007 | Type *getResultElementType() const { |
1008 | assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1009, __PRETTY_FUNCTION__)) |
1009 | cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1009, __PRETTY_FUNCTION__)); |
1010 | return ResultElementType; |
1011 | } |
1012 | |
1013 | /// Returns the address space of this instruction's pointer type. |
1014 | unsigned getAddressSpace() const { |
1015 | // Note that this is always the same as the pointer operand's address space |
1016 | // and that is cheaper to compute, so cheat here. |
1017 | return getPointerAddressSpace(); |
1018 | } |
1019 | |
1020 | /// Returns the result type of a getelementptr with the given source |
1021 | /// element type and indexes. |
1022 | /// |
1023 | /// Null is returned if the indices are invalid for the specified |
1024 | /// source element type. |
1025 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); |
1026 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); |
1027 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); |
1028 | |
1029 | /// Return the type of the element at the given index of an indexable |
1030 | /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". |
1031 | /// |
1032 | /// Returns null if the type can't be indexed, or the given index is not |
1033 | /// legal for the given type. |
1034 | static Type *getTypeAtIndex(Type *Ty, Value *Idx); |
1035 | static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); |
1036 | |
1037 | inline op_iterator idx_begin() { return op_begin()+1; } |
1038 | inline const_op_iterator idx_begin() const { return op_begin()+1; } |
1039 | inline op_iterator idx_end() { return op_end(); } |
1040 | inline const_op_iterator idx_end() const { return op_end(); } |
1041 | |
1042 | inline iterator_range<op_iterator> indices() { |
1043 | return make_range(idx_begin(), idx_end()); |
1044 | } |
1045 | |
1046 | inline iterator_range<const_op_iterator> indices() const { |
1047 | return make_range(idx_begin(), idx_end()); |
1048 | } |
1049 | |
1050 | Value *getPointerOperand() { |
1051 | return getOperand(0); |
1052 | } |
1053 | const Value *getPointerOperand() const { |
1054 | return getOperand(0); |
1055 | } |
1056 | static unsigned getPointerOperandIndex() { |
1057 | return 0U; // get index for modifying correct operand. |
1058 | } |
1059 | |
1060 | /// Method to return the pointer operand as a |
1061 | /// PointerType. |
1062 | Type *getPointerOperandType() const { |
1063 | return getPointerOperand()->getType(); |
1064 | } |
1065 | |
1066 | /// Returns the address space of the pointer operand. |
1067 | unsigned getPointerAddressSpace() const { |
1068 | return getPointerOperandType()->getPointerAddressSpace(); |
1069 | } |
1070 | |
1071 | /// Returns the pointer type returned by the GEP |
1072 | /// instruction, which may be a vector of pointers. |
1073 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, |
1074 | ArrayRef<Value *> IdxList) { |
1075 | Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)), |
1076 | Ptr->getType()->getPointerAddressSpace()); |
1077 | // Vector GEP |
1078 | if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { |
1079 | ElementCount EltCount = PtrVTy->getElementCount(); |
1080 | return VectorType::get(PtrTy, EltCount); |
1081 | } |
1082 | for (Value *Index : IdxList) |
1083 | if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { |
1084 | ElementCount EltCount = IndexVTy->getElementCount(); |
1085 | return VectorType::get(PtrTy, EltCount); |
1086 | } |
1087 | // Scalar GEP |
1088 | return PtrTy; |
1089 | } |
1090 | |
1091 | unsigned getNumIndices() const { // Note: always non-negative |
1092 | return getNumOperands() - 1; |
1093 | } |
1094 | |
1095 | bool hasIndices() const { |
1096 | return getNumOperands() > 1; |
1097 | } |
1098 | |
1099 | /// Return true if all of the indices of this GEP are |
1100 | /// zeros. If so, the result pointer and the first operand have the same |
1101 | /// value, just potentially different types. |
1102 | bool hasAllZeroIndices() const; |
1103 | |
1104 | /// Return true if all of the indices of this GEP are |
1105 | /// constant integers. If so, the result pointer and the first operand have |
1106 | /// a constant offset between them. |
1107 | bool hasAllConstantIndices() const; |
1108 | |
1109 | /// Set or clear the inbounds flag on this GEP instruction. |
1110 | /// See LangRef.html for the meaning of inbounds on a getelementptr. |
1111 | void setIsInBounds(bool b = true); |
1112 | |
1113 | /// Determine whether the GEP has the inbounds flag. |
1114 | bool isInBounds() const; |
1115 | |
1116 | /// Accumulate the constant address offset of this GEP if possible. |
1117 | /// |
1118 | /// This routine accepts an APInt into which it will accumulate the constant |
1119 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not |
1120 | /// all-constant, it returns false and the value of the offset APInt is |
1121 | /// undefined (it is *not* preserved!). The APInt passed into this routine |
1122 | /// must be at least as wide as the IntPtr type for the address space of |
1123 | /// the base GEP pointer. |
1124 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; |
1125 | |
1126 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1127 | static bool classof(const Instruction *I) { |
1128 | return (I->getOpcode() == Instruction::GetElementPtr); |
1129 | } |
1130 | static bool classof(const Value *V) { |
1131 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1132 | } |
1133 | }; |
1134 | |
1135 | template <> |
1136 | struct OperandTraits<GetElementPtrInst> : |
1137 | public VariadicOperandTraits<GetElementPtrInst, 1> { |
1138 | }; |
1139 | |
1140 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
1141 | ArrayRef<Value *> IdxList, unsigned Values, |
1142 | const Twine &NameStr, |
1143 | Instruction *InsertBefore) |
1144 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
1145 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
1146 | Values, InsertBefore), |
1147 | SourceElementType(PointeeType), |
1148 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
1149 | assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1150, __PRETTY_FUNCTION__)) |
1150 | cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1150, __PRETTY_FUNCTION__)); |
1151 | init(Ptr, IdxList, NameStr); |
1152 | } |
1153 | |
1154 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
1155 | ArrayRef<Value *> IdxList, unsigned Values, |
1156 | const Twine &NameStr, |
1157 | BasicBlock *InsertAtEnd) |
1158 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
1159 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
1160 | Values, InsertAtEnd), |
1161 | SourceElementType(PointeeType), |
1162 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
1163 | assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1164, __PRETTY_FUNCTION__)) |
1164 | cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1164, __PRETTY_FUNCTION__)); |
1165 | init(Ptr, IdxList, NameStr); |
1166 | } |
1167 | |
1168 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst >::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1168, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<GetElementPtrInst>::op_begin(const_cast <GetElementPtrInst*>(this))[i_nocapture].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((i_nocapture < OperandTraits<GetElementPtrInst> ::operands(this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1168, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst::getNumOperands() const { return OperandTraits <GetElementPtrInst>::operands(this); } template <int Idx_nocapture> Use &GetElementPtrInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &GetElementPtrInst::Op() const { return this ->OpFrom<Idx_nocapture>(this); } |
1169 | |
1170 | //===----------------------------------------------------------------------===// |
1171 | // ICmpInst Class |
1172 | //===----------------------------------------------------------------------===// |
1173 | |
1174 | /// This instruction compares its operands according to the predicate given |
1175 | /// to the constructor. It only operates on integers or pointers. The operands |
1176 | /// must be identical types. |
1177 | /// Represent an integer comparison operator. |
1178 | class ICmpInst: public CmpInst { |
1179 | void AssertOK() { |
1180 | assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value") ? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1181, __PRETTY_FUNCTION__)) |
1181 | "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value") ? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1181, __PRETTY_FUNCTION__)); |
1182 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!" ) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1183, __PRETTY_FUNCTION__)) |
1183 | "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!" ) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1183, __PRETTY_FUNCTION__)); |
1184 | // Check that the operands are the right type |
1185 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand (0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction" ) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1187, __PRETTY_FUNCTION__)) |
1186 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand (0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction" ) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1187, __PRETTY_FUNCTION__)) |
1187 | "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand (0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction" ) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1187, __PRETTY_FUNCTION__)); |
1188 | } |
1189 | |
1190 | protected: |
1191 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1192 | friend class Instruction; |
1193 | |
1194 | /// Clone an identical ICmpInst |
1195 | ICmpInst *cloneImpl() const; |
1196 | |
1197 | public: |
1198 | /// Constructor with insert-before-instruction semantics. |
1199 | ICmpInst( |
1200 | Instruction *InsertBefore, ///< Where to insert |
1201 | Predicate pred, ///< The predicate to use for the comparison |
1202 | Value *LHS, ///< The left-hand-side of the expression |
1203 | Value *RHS, ///< The right-hand-side of the expression |
1204 | const Twine &NameStr = "" ///< Name of the instruction |
1205 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1206 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
1207 | InsertBefore) { |
1208 | #ifndef NDEBUG |
1209 | AssertOK(); |
1210 | #endif |
1211 | } |
1212 | |
1213 | /// Constructor with insert-at-end semantics. |
1214 | ICmpInst( |
1215 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
1216 | Predicate pred, ///< The predicate to use for the comparison |
1217 | Value *LHS, ///< The left-hand-side of the expression |
1218 | Value *RHS, ///< The right-hand-side of the expression |
1219 | const Twine &NameStr = "" ///< Name of the instruction |
1220 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1221 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
1222 | &InsertAtEnd) { |
1223 | #ifndef NDEBUG |
1224 | AssertOK(); |
1225 | #endif |
1226 | } |
1227 | |
1228 | /// Constructor with no-insertion semantics |
1229 | ICmpInst( |
1230 | Predicate pred, ///< The predicate to use for the comparison |
1231 | Value *LHS, ///< The left-hand-side of the expression |
1232 | Value *RHS, ///< The right-hand-side of the expression |
1233 | const Twine &NameStr = "" ///< Name of the instruction |
1234 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1235 | Instruction::ICmp, pred, LHS, RHS, NameStr) { |
1236 | #ifndef NDEBUG |
1237 | AssertOK(); |
1238 | #endif |
1239 | } |
1240 | |
1241 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. |
1242 | /// @returns the predicate that would be the result if the operand were |
1243 | /// regarded as signed. |
1244 | /// Return the signed version of the predicate |
1245 | Predicate getSignedPredicate() const { |
1246 | return getSignedPredicate(getPredicate()); |
1247 | } |
1248 | |
1249 | /// This is a static version that you can use without an instruction. |
1250 | /// Return the signed version of the predicate. |
1251 | static Predicate getSignedPredicate(Predicate pred); |
1252 | |
1253 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. |
1254 | /// @returns the predicate that would be the result if the operand were |
1255 | /// regarded as unsigned. |
1256 | /// Return the unsigned version of the predicate |
1257 | Predicate getUnsignedPredicate() const { |
1258 | return getUnsignedPredicate(getPredicate()); |
1259 | } |
1260 | |
1261 | /// This is a static version that you can use without an instruction. |
1262 | /// Return the unsigned version of the predicate. |
1263 | static Predicate getUnsignedPredicate(Predicate pred); |
1264 | |
1265 | /// Return true if this predicate is either EQ or NE. This also |
1266 | /// tests for commutativity. |
1267 | static bool isEquality(Predicate P) { |
1268 | return P == ICMP_EQ || P == ICMP_NE; |
1269 | } |
1270 | |
1271 | /// Return true if this predicate is either EQ or NE. This also |
1272 | /// tests for commutativity. |
1273 | bool isEquality() const { |
1274 | return isEquality(getPredicate()); |
1275 | } |
1276 | |
1277 | /// @returns true if the predicate of this ICmpInst is commutative |
1278 | /// Determine if this relation is commutative. |
1279 | bool isCommutative() const { return isEquality(); } |
1280 | |
1281 | /// Return true if the predicate is relational (not EQ or NE). |
1282 | /// |
1283 | bool isRelational() const { |
1284 | return !isEquality(); |
1285 | } |
1286 | |
1287 | /// Return true if the predicate is relational (not EQ or NE). |
1288 | /// |
1289 | static bool isRelational(Predicate P) { |
1290 | return !isEquality(P); |
1291 | } |
1292 | |
1293 | /// Return true if the predicate is SGT or UGT. |
1294 | /// |
1295 | static bool isGT(Predicate P) { |
1296 | return P == ICMP_SGT || P == ICMP_UGT; |
1297 | } |
1298 | |
1299 | /// Return true if the predicate is SLT or ULT. |
1300 | /// |
1301 | static bool isLT(Predicate P) { |
1302 | return P == ICMP_SLT || P == ICMP_ULT; |
1303 | } |
1304 | |
1305 | /// Return true if the predicate is SGE or UGE. |
1306 | /// |
1307 | static bool isGE(Predicate P) { |
1308 | return P == ICMP_SGE || P == ICMP_UGE; |
1309 | } |
1310 | |
1311 | /// Return true if the predicate is SLE or ULE. |
1312 | /// |
1313 | static bool isLE(Predicate P) { |
1314 | return P == ICMP_SLE || P == ICMP_ULE; |
1315 | } |
1316 | |
1317 | /// Exchange the two operands to this instruction in such a way that it does |
1318 | /// not modify the semantics of the instruction. The predicate value may be |
1319 | /// changed to retain the same result if the predicate is order dependent |
1320 | /// (e.g. ult). |
1321 | /// Swap operands and adjust predicate. |
1322 | void swapOperands() { |
1323 | setPredicate(getSwappedPredicate()); |
1324 | Op<0>().swap(Op<1>()); |
1325 | } |
1326 | |
1327 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1328 | static bool classof(const Instruction *I) { |
1329 | return I->getOpcode() == Instruction::ICmp; |
1330 | } |
1331 | static bool classof(const Value *V) { |
1332 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1333 | } |
1334 | }; |
1335 | |
1336 | //===----------------------------------------------------------------------===// |
1337 | // FCmpInst Class |
1338 | //===----------------------------------------------------------------------===// |
1339 | |
1340 | /// This instruction compares its operands according to the predicate given |
1341 | /// to the constructor. It only operates on floating point values or packed |
1342 | /// vectors of floating point values. The operands must be identical types. |
1343 | /// Represents a floating point comparison operator. |
1344 | class FCmpInst: public CmpInst { |
1345 | void AssertOK() { |
1346 | assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ? static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1346, __PRETTY_FUNCTION__)); |
1347 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!" ) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1348, __PRETTY_FUNCTION__)) |
1348 | "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!" ) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1348, __PRETTY_FUNCTION__)); |
1349 | // Check that the operands are the right type |
1350 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction") ? static_cast< void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1351, __PRETTY_FUNCTION__)) |
1351 | "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction") ? static_cast< void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1351, __PRETTY_FUNCTION__)); |
1352 | } |
1353 | |
1354 | protected: |
1355 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1356 | friend class Instruction; |
1357 | |
1358 | /// Clone an identical FCmpInst |
1359 | FCmpInst *cloneImpl() const; |
1360 | |
1361 | public: |
1362 | /// Constructor with insert-before-instruction semantics. |
1363 | FCmpInst( |
1364 | Instruction *InsertBefore, ///< Where to insert |
1365 | Predicate pred, ///< The predicate to use for the comparison |
1366 | Value *LHS, ///< The left-hand-side of the expression |
1367 | Value *RHS, ///< The right-hand-side of the expression |
1368 | const Twine &NameStr = "" ///< Name of the instruction |
1369 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1370 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
1371 | InsertBefore) { |
1372 | AssertOK(); |
1373 | } |
1374 | |
1375 | /// Constructor with insert-at-end semantics. |
1376 | FCmpInst( |
1377 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
1378 | Predicate pred, ///< The predicate to use for the comparison |
1379 | Value *LHS, ///< The left-hand-side of the expression |
1380 | Value *RHS, ///< The right-hand-side of the expression |
1381 | const Twine &NameStr = "" ///< Name of the instruction |
1382 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1383 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
1384 | &InsertAtEnd) { |
1385 | AssertOK(); |
1386 | } |
1387 | |
1388 | /// Constructor with no-insertion semantics |
1389 | FCmpInst( |
1390 | Predicate Pred, ///< The predicate to use for the comparison |
1391 | Value *LHS, ///< The left-hand-side of the expression |
1392 | Value *RHS, ///< The right-hand-side of the expression |
1393 | const Twine &NameStr = "", ///< Name of the instruction |
1394 | Instruction *FlagsSource = nullptr |
1395 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, |
1396 | RHS, NameStr, nullptr, FlagsSource) { |
1397 | AssertOK(); |
1398 | } |
1399 | |
1400 | /// @returns true if the predicate of this instruction is EQ or NE. |
1401 | /// Determine if this is an equality predicate. |
1402 | static bool isEquality(Predicate Pred) { |
1403 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || |
1404 | Pred == FCMP_UNE; |
1405 | } |
1406 | |
1407 | /// @returns true if the predicate of this instruction is EQ or NE. |
1408 | /// Determine if this is an equality predicate. |
1409 | bool isEquality() const { return isEquality(getPredicate()); } |
1410 | |
1411 | /// @returns true if the predicate of this instruction is commutative. |
1412 | /// Determine if this is a commutative predicate. |
1413 | bool isCommutative() const { |
1414 | return isEquality() || |
1415 | getPredicate() == FCMP_FALSE || |
1416 | getPredicate() == FCMP_TRUE || |
1417 | getPredicate() == FCMP_ORD || |
1418 | getPredicate() == FCMP_UNO; |
1419 | } |
1420 | |
1421 | /// @returns true if the predicate is relational (not EQ or NE). |
1422 | /// Determine if this a relational predicate. |
1423 | bool isRelational() const { return !isEquality(); } |
1424 | |
1425 | /// Exchange the two operands to this instruction in such a way that it does |
1426 | /// not modify the semantics of the instruction. The predicate value may be |
1427 | /// changed to retain the same result if the predicate is order dependent |
1428 | /// (e.g. ult). |
1429 | /// Swap operands and adjust predicate. |
1430 | void swapOperands() { |
1431 | setPredicate(getSwappedPredicate()); |
1432 | Op<0>().swap(Op<1>()); |
1433 | } |
1434 | |
1435 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1436 | static bool classof(const Instruction *I) { |
1437 | return I->getOpcode() == Instruction::FCmp; |
1438 | } |
1439 | static bool classof(const Value *V) { |
1440 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1441 | } |
1442 | }; |
1443 | |
1444 | //===----------------------------------------------------------------------===// |
1445 | /// This class represents a function call, abstracting a target |
1446 | /// machine's calling convention. This class uses low bit of the SubClassData |
1447 | /// field to indicate whether or not this is a tail call. The rest of the bits |
1448 | /// hold the calling convention of the call. |
1449 | /// |
1450 | class CallInst : public CallBase { |
1451 | CallInst(const CallInst &CI); |
1452 | |
1453 | /// Construct a CallInst given a range of arguments. |
1454 | /// Construct a CallInst from a range of arguments |
1455 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1456 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1457 | Instruction *InsertBefore); |
1458 | |
1459 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1460 | const Twine &NameStr, Instruction *InsertBefore) |
1461 | : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} |
1462 | |
1463 | /// Construct a CallInst given a range of arguments. |
1464 | /// Construct a CallInst from a range of arguments |
1465 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1466 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1467 | BasicBlock *InsertAtEnd); |
1468 | |
1469 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, |
1470 | Instruction *InsertBefore); |
1471 | |
1472 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, |
1473 | BasicBlock *InsertAtEnd); |
1474 | |
1475 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
1476 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
1477 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); |
1478 | |
1479 | /// Compute the number of operands to allocate. |
1480 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
1481 | // We need one operand for the called function, plus the input operand |
1482 | // counts provided. |
1483 | return 1 + NumArgs + NumBundleInputs; |
1484 | } |
1485 | |
1486 | protected: |
1487 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1488 | friend class Instruction; |
1489 | |
1490 | CallInst *cloneImpl() const; |
1491 | |
1492 | public: |
1493 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", |
1494 | Instruction *InsertBefore = nullptr) { |
1495 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); |
1496 | } |
1497 | |
1498 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1499 | const Twine &NameStr, |
1500 | Instruction *InsertBefore = nullptr) { |
1501 | return new (ComputeNumOperands(Args.size())) |
1502 | CallInst(Ty, Func, Args, None, NameStr, InsertBefore); |
1503 | } |
1504 | |
1505 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1506 | ArrayRef<OperandBundleDef> Bundles = None, |
1507 | const Twine &NameStr = "", |
1508 | Instruction *InsertBefore = nullptr) { |
1509 | const int NumOperands = |
1510 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
1511 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
1512 | |
1513 | return new (NumOperands, DescriptorBytes) |
1514 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); |
1515 | } |
1516 | |
1517 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, |
1518 | BasicBlock *InsertAtEnd) { |
1519 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); |
1520 | } |
1521 | |
1522 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1523 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1524 | return new (ComputeNumOperands(Args.size())) |
1525 | CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); |
1526 | } |
1527 | |
1528 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1529 | ArrayRef<OperandBundleDef> Bundles, |
1530 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1531 | const int NumOperands = |
1532 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
1533 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
1534 | |
1535 | return new (NumOperands, DescriptorBytes) |
1536 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); |
1537 | } |
1538 | |
1539 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", |
1540 | Instruction *InsertBefore = nullptr) { |
1541 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
1542 | InsertBefore); |
1543 | } |
1544 | |
1545 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1546 | ArrayRef<OperandBundleDef> Bundles = None, |
1547 | const Twine &NameStr = "", |
1548 | Instruction *InsertBefore = nullptr) { |
1549 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
1550 | NameStr, InsertBefore); |
1551 | } |
1552 | |
1553 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1554 | const Twine &NameStr, |
1555 | Instruction *InsertBefore = nullptr) { |
1556 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
1557 | InsertBefore); |
1558 | } |
1559 | |
1560 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, |
1561 | BasicBlock *InsertAtEnd) { |
1562 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
1563 | InsertAtEnd); |
1564 | } |
1565 | |
1566 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1567 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1568 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
1569 | InsertAtEnd); |
1570 | } |
1571 | |
1572 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1573 | ArrayRef<OperandBundleDef> Bundles, |
1574 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1575 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
1576 | NameStr, InsertAtEnd); |
1577 | } |
1578 | |
1579 | /// Create a clone of \p CI with a different set of operand bundles and |
1580 | /// insert it before \p InsertPt. |
1581 | /// |
1582 | /// The returned call instruction is identical \p CI in every way except that |
1583 | /// the operand bundles for the new instruction are set to the operand bundles |
1584 | /// in \p Bundles. |
1585 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, |
1586 | Instruction *InsertPt = nullptr); |
1587 | |
1588 | /// Create a clone of \p CI with a different set of operand bundles and |
1589 | /// insert it before \p InsertPt. |
1590 | /// |
1591 | /// The returned call instruction is identical \p CI in every way except that |
1592 | /// the operand bundle for the new instruction is set to the operand bundle |
1593 | /// in \p Bundle. |
1594 | static CallInst *CreateWithReplacedBundle(CallInst *CI, |
1595 | OperandBundleDef Bundle, |
1596 | Instruction *InsertPt = nullptr); |
1597 | |
1598 | /// Generate the IR for a call to malloc: |
1599 | /// 1. Compute the malloc call's argument as the specified type's size, |
1600 | /// possibly multiplied by the array size if the array size is not |
1601 | /// constant 1. |
1602 | /// 2. Call malloc with that argument. |
1603 | /// 3. Bitcast the result of the malloc call to the specified type. |
1604 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
1605 | Type *AllocTy, Value *AllocSize, |
1606 | Value *ArraySize = nullptr, |
1607 | Function *MallocF = nullptr, |
1608 | const Twine &Name = ""); |
1609 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
1610 | Type *AllocTy, Value *AllocSize, |
1611 | Value *ArraySize = nullptr, |
1612 | Function *MallocF = nullptr, |
1613 | const Twine &Name = ""); |
1614 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
1615 | Type *AllocTy, Value *AllocSize, |
1616 | Value *ArraySize = nullptr, |
1617 | ArrayRef<OperandBundleDef> Bundles = None, |
1618 | Function *MallocF = nullptr, |
1619 | const Twine &Name = ""); |
1620 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
1621 | Type *AllocTy, Value *AllocSize, |
1622 | Value *ArraySize = nullptr, |
1623 | ArrayRef<OperandBundleDef> Bundles = None, |
1624 | Function *MallocF = nullptr, |
1625 | const Twine &Name = ""); |
1626 | /// Generate the IR for a call to the builtin free function. |
1627 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); |
1628 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); |
1629 | static Instruction *CreateFree(Value *Source, |
1630 | ArrayRef<OperandBundleDef> Bundles, |
1631 | Instruction *InsertBefore); |
1632 | static Instruction *CreateFree(Value *Source, |
1633 | ArrayRef<OperandBundleDef> Bundles, |
1634 | BasicBlock *InsertAtEnd); |
1635 | |
1636 | // Note that 'musttail' implies 'tail'. |
1637 | enum TailCallKind : unsigned { |
1638 | TCK_None = 0, |
1639 | TCK_Tail = 1, |
1640 | TCK_MustTail = 2, |
1641 | TCK_NoTail = 3, |
1642 | TCK_LAST = TCK_NoTail |
1643 | }; |
1644 | |
1645 | using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; |
1646 | static_assert( |
1647 | Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), |
1648 | "Bitfields must be contiguous"); |
1649 | |
1650 | TailCallKind getTailCallKind() const { |
1651 | return getSubclassData<TailCallKindField>(); |
1652 | } |
1653 | |
1654 | bool isTailCall() const { |
1655 | TailCallKind Kind = getTailCallKind(); |
1656 | return Kind == TCK_Tail || Kind == TCK_MustTail; |
1657 | } |
1658 | |
1659 | bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } |
1660 | |
1661 | bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } |
1662 | |
1663 | void setTailCallKind(TailCallKind TCK) { |
1664 | setSubclassData<TailCallKindField>(TCK); |
1665 | } |
1666 | |
1667 | void setTailCall(bool IsTc = true) { |
1668 | setTailCallKind(IsTc ? TCK_Tail : TCK_None); |
1669 | } |
1670 | |
1671 | /// Return true if the call can return twice |
1672 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } |
1673 | void setCanReturnTwice() { |
1674 | addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); |
1675 | } |
1676 | |
1677 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1678 | static bool classof(const Instruction *I) { |
1679 | return I->getOpcode() == Instruction::Call; |
1680 | } |
1681 | static bool classof(const Value *V) { |
1682 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1683 | } |
1684 | |
1685 | /// Updates profile metadata by scaling it by \p S / \p T. |
1686 | void updateProfWeight(uint64_t S, uint64_t T); |
1687 | |
1688 | private: |
1689 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
1690 | // method so that subclasses cannot accidentally use it. |
1691 | template <typename Bitfield> |
1692 | void setSubclassData(typename Bitfield::Type Value) { |
1693 | Instruction::setSubclassData<Bitfield>(Value); |
1694 | } |
1695 | }; |
1696 | |
1697 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1698 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1699 | BasicBlock *InsertAtEnd) |
1700 | : CallBase(Ty->getReturnType(), Instruction::Call, |
1701 | OperandTraits<CallBase>::op_end(this) - |
1702 | (Args.size() + CountBundleInputs(Bundles) + 1), |
1703 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
1704 | InsertAtEnd) { |
1705 | init(Ty, Func, Args, Bundles, NameStr); |
1706 | } |
1707 | |
1708 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1709 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1710 | Instruction *InsertBefore) |
1711 | : CallBase(Ty->getReturnType(), Instruction::Call, |
1712 | OperandTraits<CallBase>::op_end(this) - |
1713 | (Args.size() + CountBundleInputs(Bundles) + 1), |
1714 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
1715 | InsertBefore) { |
1716 | init(Ty, Func, Args, Bundles, NameStr); |
1717 | } |
1718 | |
1719 | //===----------------------------------------------------------------------===// |
1720 | // SelectInst Class |
1721 | //===----------------------------------------------------------------------===// |
1722 | |
1723 | /// This class represents the LLVM 'select' instruction. |
1724 | /// |
1725 | class SelectInst : public Instruction { |
1726 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
1727 | Instruction *InsertBefore) |
1728 | : Instruction(S1->getType(), Instruction::Select, |
1729 | &Op<0>(), 3, InsertBefore) { |
1730 | init(C, S1, S2); |
1731 | setName(NameStr); |
1732 | } |
1733 | |
1734 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
1735 | BasicBlock *InsertAtEnd) |
1736 | : Instruction(S1->getType(), Instruction::Select, |
1737 | &Op<0>(), 3, InsertAtEnd) { |
1738 | init(C, S1, S2); |
1739 | setName(NameStr); |
1740 | } |
1741 | |
1742 | void init(Value *C, Value *S1, Value *S2) { |
1743 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select" ) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1743, __PRETTY_FUNCTION__)); |
1744 | Op<0>() = C; |
1745 | Op<1>() = S1; |
1746 | Op<2>() = S2; |
1747 | } |
1748 | |
1749 | protected: |
1750 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1751 | friend class Instruction; |
1752 | |
1753 | SelectInst *cloneImpl() const; |
1754 | |
1755 | public: |
1756 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
1757 | const Twine &NameStr = "", |
1758 | Instruction *InsertBefore = nullptr, |
1759 | Instruction *MDFrom = nullptr) { |
1760 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); |
1761 | if (MDFrom) |
1762 | Sel->copyMetadata(*MDFrom); |
1763 | return Sel; |
1764 | } |
1765 | |
1766 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
1767 | const Twine &NameStr, |
1768 | BasicBlock *InsertAtEnd) { |
1769 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); |
1770 | } |
1771 | |
1772 | const Value *getCondition() const { return Op<0>(); } |
1773 | const Value *getTrueValue() const { return Op<1>(); } |
1774 | const Value *getFalseValue() const { return Op<2>(); } |
1775 | Value *getCondition() { return Op<0>(); } |
1776 | Value *getTrueValue() { return Op<1>(); } |
1777 | Value *getFalseValue() { return Op<2>(); } |
1778 | |
1779 | void setCondition(Value *V) { Op<0>() = V; } |
1780 | void setTrueValue(Value *V) { Op<1>() = V; } |
1781 | void setFalseValue(Value *V) { Op<2>() = V; } |
1782 | |
1783 | /// Swap the true and false values of the select instruction. |
1784 | /// This doesn't swap prof metadata. |
1785 | void swapValues() { Op<1>().swap(Op<2>()); } |
1786 | |
1787 | /// Return a string if the specified operands are invalid |
1788 | /// for a select operation, otherwise return null. |
1789 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); |
1790 | |
1791 | /// Transparently provide more efficient getOperand methods. |
1792 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1793 | |
1794 | OtherOps getOpcode() const { |
1795 | return static_cast<OtherOps>(Instruction::getOpcode()); |
1796 | } |
1797 | |
1798 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1799 | static bool classof(const Instruction *I) { |
1800 | return I->getOpcode() == Instruction::Select; |
1801 | } |
1802 | static bool classof(const Value *V) { |
1803 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1804 | } |
1805 | }; |
1806 | |
1807 | template <> |
1808 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { |
1809 | }; |
1810 | |
1811 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1811, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst *>(this))[i_nocapture].get()); } void SelectInst::setOperand (unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture < OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1811, __PRETTY_FUNCTION__)); OperandTraits<SelectInst> ::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst ::getNumOperands() const { return OperandTraits<SelectInst >::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & SelectInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
1812 | |
1813 | //===----------------------------------------------------------------------===// |
1814 | // VAArgInst Class |
1815 | //===----------------------------------------------------------------------===// |
1816 | |
1817 | /// This class represents the va_arg llvm instruction, which returns |
1818 | /// an argument of the specified type given a va_list and increments that list |
1819 | /// |
1820 | class VAArgInst : public UnaryInstruction { |
1821 | protected: |
1822 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1823 | friend class Instruction; |
1824 | |
1825 | VAArgInst *cloneImpl() const; |
1826 | |
1827 | public: |
1828 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", |
1829 | Instruction *InsertBefore = nullptr) |
1830 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { |
1831 | setName(NameStr); |
1832 | } |
1833 | |
1834 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, |
1835 | BasicBlock *InsertAtEnd) |
1836 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { |
1837 | setName(NameStr); |
1838 | } |
1839 | |
1840 | Value *getPointerOperand() { return getOperand(0); } |
1841 | const Value *getPointerOperand() const { return getOperand(0); } |
1842 | static unsigned getPointerOperandIndex() { return 0U; } |
1843 | |
1844 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1845 | static bool classof(const Instruction *I) { |
1846 | return I->getOpcode() == VAArg; |
1847 | } |
1848 | static bool classof(const Value *V) { |
1849 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1850 | } |
1851 | }; |
1852 | |
1853 | //===----------------------------------------------------------------------===// |
1854 | // ExtractElementInst Class |
1855 | //===----------------------------------------------------------------------===// |
1856 | |
1857 | /// This instruction extracts a single (scalar) |
1858 | /// element from a VectorType value |
1859 | /// |
1860 | class ExtractElementInst : public Instruction { |
1861 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", |
1862 | Instruction *InsertBefore = nullptr); |
1863 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, |
1864 | BasicBlock *InsertAtEnd); |
1865 | |
1866 | protected: |
1867 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1868 | friend class Instruction; |
1869 | |
1870 | ExtractElementInst *cloneImpl() const; |
1871 | |
1872 | public: |
1873 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
1874 | const Twine &NameStr = "", |
1875 | Instruction *InsertBefore = nullptr) { |
1876 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); |
1877 | } |
1878 | |
1879 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
1880 | const Twine &NameStr, |
1881 | BasicBlock *InsertAtEnd) { |
1882 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); |
1883 | } |
1884 | |
1885 | /// Return true if an extractelement instruction can be |
1886 | /// formed with the specified operands. |
1887 | static bool isValidOperands(const Value *Vec, const Value *Idx); |
1888 | |
1889 | Value *getVectorOperand() { return Op<0>(); } |
1890 | Value *getIndexOperand() { return Op<1>(); } |
1891 | const Value *getVectorOperand() const { return Op<0>(); } |
1892 | const Value *getIndexOperand() const { return Op<1>(); } |
1893 | |
1894 | VectorType *getVectorOperandType() const { |
1895 | return cast<VectorType>(getVectorOperand()->getType()); |
1896 | } |
1897 | |
1898 | /// Transparently provide more efficient getOperand methods. |
1899 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1900 | |
1901 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1902 | static bool classof(const Instruction *I) { |
1903 | return I->getOpcode() == Instruction::ExtractElement; |
1904 | } |
1905 | static bool classof(const Value *V) { |
1906 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1907 | } |
1908 | }; |
1909 | |
1910 | template <> |
1911 | struct OperandTraits<ExtractElementInst> : |
1912 | public FixedNumOperandTraits<ExtractElementInst, 2> { |
1913 | }; |
1914 | |
1915 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<ExtractElementInst>:: operands(this) && "getOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1915, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<ExtractElementInst>::op_begin(const_cast <ExtractElementInst*>(this))[i_nocapture].get()); } void ExtractElementInst::setOperand(unsigned i_nocapture, Value * Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst >::operands(this) && "setOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1915, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ExtractElementInst::getNumOperands() const { return OperandTraits <ExtractElementInst>::operands(this); } template <int Idx_nocapture> Use &ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
1916 | |
1917 | //===----------------------------------------------------------------------===// |
1918 | // InsertElementInst Class |
1919 | //===----------------------------------------------------------------------===// |
1920 | |
1921 | /// This instruction inserts a single (scalar) |
1922 | /// element into a VectorType value |
1923 | /// |
1924 | class InsertElementInst : public Instruction { |
1925 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, |
1926 | const Twine &NameStr = "", |
1927 | Instruction *InsertBefore = nullptr); |
1928 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, |
1929 | BasicBlock *InsertAtEnd); |
1930 | |
1931 | protected: |
1932 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1933 | friend class Instruction; |
1934 | |
1935 | InsertElementInst *cloneImpl() const; |
1936 | |
1937 | public: |
1938 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
1939 | const Twine &NameStr = "", |
1940 | Instruction *InsertBefore = nullptr) { |
1941 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); |
1942 | } |
1943 | |
1944 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
1945 | const Twine &NameStr, |
1946 | BasicBlock *InsertAtEnd) { |
1947 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); |
1948 | } |
1949 | |
1950 | /// Return true if an insertelement instruction can be |
1951 | /// formed with the specified operands. |
1952 | static bool isValidOperands(const Value *Vec, const Value *NewElt, |
1953 | const Value *Idx); |
1954 | |
1955 | /// Overload to return most specific vector type. |
1956 | /// |
1957 | VectorType *getType() const { |
1958 | return cast<VectorType>(Instruction::getType()); |
1959 | } |
1960 | |
1961 | /// Transparently provide more efficient getOperand methods. |
1962 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1963 | |
1964 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1965 | static bool classof(const Instruction *I) { |
1966 | return I->getOpcode() == Instruction::InsertElement; |
1967 | } |
1968 | static bool classof(const Value *V) { |
1969 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1970 | } |
1971 | }; |
1972 | |
1973 | template <> |
1974 | struct OperandTraits<InsertElementInst> : |
1975 | public FixedNumOperandTraits<InsertElementInst, 3> { |
1976 | }; |
1977 | |
1978 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst >::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1978, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<InsertElementInst>::op_begin(const_cast <InsertElementInst*>(this))[i_nocapture].get()); } void InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((i_nocapture < OperandTraits<InsertElementInst> ::operands(this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 1978, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst::getNumOperands() const { return OperandTraits <InsertElementInst>::operands(this); } template <int Idx_nocapture> Use &InsertElementInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &InsertElementInst::Op() const { return this ->OpFrom<Idx_nocapture>(this); } |
1979 | |
1980 | //===----------------------------------------------------------------------===// |
1981 | // ShuffleVectorInst Class |
1982 | //===----------------------------------------------------------------------===// |
1983 | |
1984 | constexpr int UndefMaskElem = -1; |
1985 | |
1986 | /// This instruction constructs a fixed permutation of two |
1987 | /// input vectors. |
1988 | /// |
1989 | /// For each element of the result vector, the shuffle mask selects an element |
1990 | /// from one of the input vectors to copy to the result. Non-negative elements |
1991 | /// in the mask represent an index into the concatenated pair of input vectors. |
1992 | /// UndefMaskElem (-1) specifies that the result element is undefined. |
1993 | /// |
1994 | /// For scalable vectors, all the elements of the mask must be 0 or -1. This |
1995 | /// requirement may be relaxed in the future. |
1996 | class ShuffleVectorInst : public Instruction { |
1997 | SmallVector<int, 4> ShuffleMask; |
1998 | Constant *ShuffleMaskForBitcode; |
1999 | |
2000 | protected: |
2001 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2002 | friend class Instruction; |
2003 | |
2004 | ShuffleVectorInst *cloneImpl() const; |
2005 | |
2006 | public: |
2007 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
2008 | const Twine &NameStr = "", |
2009 | Instruction *InsertBefor = nullptr); |
2010 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
2011 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2012 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
2013 | const Twine &NameStr = "", |
2014 | Instruction *InsertBefor = nullptr); |
2015 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
2016 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2017 | |
2018 | void *operator new(size_t s) { return User::operator new(s, 2); } |
2019 | |
2020 | /// Swap the operands and adjust the mask to preserve the semantics |
2021 | /// of the instruction. |
2022 | void commute(); |
2023 | |
2024 | /// Return true if a shufflevector instruction can be |
2025 | /// formed with the specified operands. |
2026 | static bool isValidOperands(const Value *V1, const Value *V2, |
2027 | const Value *Mask); |
2028 | static bool isValidOperands(const Value *V1, const Value *V2, |
2029 | ArrayRef<int> Mask); |
2030 | |
2031 | /// Overload to return most specific vector type. |
2032 | /// |
2033 | VectorType *getType() const { |
2034 | return cast<VectorType>(Instruction::getType()); |
2035 | } |
2036 | |
2037 | /// Transparently provide more efficient getOperand methods. |
2038 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2039 | |
2040 | /// Return the shuffle mask value of this instruction for the given element |
2041 | /// index. Return UndefMaskElem if the element is undef. |
2042 | int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } |
2043 | |
2044 | /// Convert the input shuffle mask operand to a vector of integers. Undefined |
2045 | /// elements of the mask are returned as UndefMaskElem. |
2046 | static void getShuffleMask(const Constant *Mask, |
2047 | SmallVectorImpl<int> &Result); |
2048 | |
2049 | /// Return the mask for this instruction as a vector of integers. Undefined |
2050 | /// elements of the mask are returned as UndefMaskElem. |
2051 | void getShuffleMask(SmallVectorImpl<int> &Result) const { |
2052 | Result.assign(ShuffleMask.begin(), ShuffleMask.end()); |
2053 | } |
2054 | |
2055 | /// Return the mask for this instruction, for use in bitcode. |
2056 | /// |
2057 | /// TODO: This is temporary until we decide a new bitcode encoding for |
2058 | /// shufflevector. |
2059 | Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } |
2060 | |
2061 | static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, |
2062 | Type *ResultTy); |
2063 | |
2064 | void setShuffleMask(ArrayRef<int> Mask); |
2065 | |
2066 | ArrayRef<int> getShuffleMask() const { return ShuffleMask; } |
2067 | |
2068 | /// Return true if this shuffle returns a vector with a different number of |
2069 | /// elements than its source vectors. |
2070 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> |
2071 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> |
2072 | bool changesLength() const { |
2073 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
2074 | ->getElementCount() |
2075 | .getKnownMinValue(); |
2076 | unsigned NumMaskElts = ShuffleMask.size(); |
2077 | return NumSourceElts != NumMaskElts; |
2078 | } |
2079 | |
2080 | /// Return true if this shuffle returns a vector with a greater number of |
2081 | /// elements than its source vectors. |
2082 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> |
2083 | bool increasesLength() const { |
2084 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
2085 | ->getElementCount() |
2086 | .getKnownMinValue(); |
2087 | unsigned NumMaskElts = ShuffleMask.size(); |
2088 | return NumSourceElts < NumMaskElts; |
2089 | } |
2090 | |
2091 | /// Return true if this shuffle mask chooses elements from exactly one source |
2092 | /// vector. |
2093 | /// Example: <7,5,undef,7> |
2094 | /// This assumes that vector operands are the same length as the mask. |
2095 | static bool isSingleSourceMask(ArrayRef<int> Mask); |
2096 | static bool isSingleSourceMask(const Constant *Mask) { |
2097 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2097, __PRETTY_FUNCTION__)); |
2098 | SmallVector<int, 16> MaskAsInts; |
2099 | getShuffleMask(Mask, MaskAsInts); |
2100 | return isSingleSourceMask(MaskAsInts); |
2101 | } |
2102 | |
2103 | /// Return true if this shuffle chooses elements from exactly one source |
2104 | /// vector without changing the length of that vector. |
2105 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> |
2106 | /// TODO: Optionally allow length-changing shuffles. |
2107 | bool isSingleSource() const { |
2108 | return !changesLength() && isSingleSourceMask(ShuffleMask); |
2109 | } |
2110 | |
2111 | /// Return true if this shuffle mask chooses elements from exactly one source |
2112 | /// vector without lane crossings. A shuffle using this mask is not |
2113 | /// necessarily a no-op because it may change the number of elements from its |
2114 | /// input vectors or it may provide demanded bits knowledge via undef lanes. |
2115 | /// Example: <undef,undef,2,3> |
2116 | static bool isIdentityMask(ArrayRef<int> Mask); |
2117 | static bool isIdentityMask(const Constant *Mask) { |
2118 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2118, __PRETTY_FUNCTION__)); |
2119 | SmallVector<int, 16> MaskAsInts; |
2120 | getShuffleMask(Mask, MaskAsInts); |
2121 | return isIdentityMask(MaskAsInts); |
2122 | } |
2123 | |
2124 | /// Return true if this shuffle chooses elements from exactly one source |
2125 | /// vector without lane crossings and does not change the number of elements |
2126 | /// from its input vectors. |
2127 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> |
2128 | bool isIdentity() const { |
2129 | return !changesLength() && isIdentityMask(ShuffleMask); |
2130 | } |
2131 | |
2132 | /// Return true if this shuffle lengthens exactly one source vector with |
2133 | /// undefs in the high elements. |
2134 | bool isIdentityWithPadding() const; |
2135 | |
2136 | /// Return true if this shuffle extracts the first N elements of exactly one |
2137 | /// source vector. |
2138 | bool isIdentityWithExtract() const; |
2139 | |
2140 | /// Return true if this shuffle concatenates its 2 source vectors. This |
2141 | /// returns false if either input is undefined. In that case, the shuffle is |
2142 | /// is better classified as an identity with padding operation. |
2143 | bool isConcat() const; |
2144 | |
2145 | /// Return true if this shuffle mask chooses elements from its source vectors |
2146 | /// without lane crossings. A shuffle using this mask would be |
2147 | /// equivalent to a vector select with a constant condition operand. |
2148 | /// Example: <4,1,6,undef> |
2149 | /// This returns false if the mask does not choose from both input vectors. |
2150 | /// In that case, the shuffle is better classified as an identity shuffle. |
2151 | /// This assumes that vector operands are the same length as the mask |
2152 | /// (a length-changing shuffle can never be equivalent to a vector select). |
2153 | static bool isSelectMask(ArrayRef<int> Mask); |
2154 | static bool isSelectMask(const Constant *Mask) { |
2155 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2155, __PRETTY_FUNCTION__)); |
2156 | SmallVector<int, 16> MaskAsInts; |
2157 | getShuffleMask(Mask, MaskAsInts); |
2158 | return isSelectMask(MaskAsInts); |
2159 | } |
2160 | |
2161 | /// Return true if this shuffle chooses elements from its source vectors |
2162 | /// without lane crossings and all operands have the same number of elements. |
2163 | /// In other words, this shuffle is equivalent to a vector select with a |
2164 | /// constant condition operand. |
2165 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> |
2166 | /// This returns false if the mask does not choose from both input vectors. |
2167 | /// In that case, the shuffle is better classified as an identity shuffle. |
2168 | /// TODO: Optionally allow length-changing shuffles. |
2169 | bool isSelect() const { |
2170 | return !changesLength() && isSelectMask(ShuffleMask); |
2171 | } |
2172 | |
2173 | /// Return true if this shuffle mask swaps the order of elements from exactly |
2174 | /// one source vector. |
2175 | /// Example: <7,6,undef,4> |
2176 | /// This assumes that vector operands are the same length as the mask. |
2177 | static bool isReverseMask(ArrayRef<int> Mask); |
2178 | static bool isReverseMask(const Constant *Mask) { |
2179 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2179, __PRETTY_FUNCTION__)); |
2180 | SmallVector<int, 16> MaskAsInts; |
2181 | getShuffleMask(Mask, MaskAsInts); |
2182 | return isReverseMask(MaskAsInts); |
2183 | } |
2184 | |
2185 | /// Return true if this shuffle swaps the order of elements from exactly |
2186 | /// one source vector. |
2187 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> |
2188 | /// TODO: Optionally allow length-changing shuffles. |
2189 | bool isReverse() const { |
2190 | return !changesLength() && isReverseMask(ShuffleMask); |
2191 | } |
2192 | |
2193 | /// Return true if this shuffle mask chooses all elements with the same value |
2194 | /// as the first element of exactly one source vector. |
2195 | /// Example: <4,undef,undef,4> |
2196 | /// This assumes that vector operands are the same length as the mask. |
2197 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); |
2198 | static bool isZeroEltSplatMask(const Constant *Mask) { |
2199 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2199, __PRETTY_FUNCTION__)); |
2200 | SmallVector<int, 16> MaskAsInts; |
2201 | getShuffleMask(Mask, MaskAsInts); |
2202 | return isZeroEltSplatMask(MaskAsInts); |
2203 | } |
2204 | |
2205 | /// Return true if all elements of this shuffle are the same value as the |
2206 | /// first element of exactly one source vector without changing the length |
2207 | /// of that vector. |
2208 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> |
2209 | /// TODO: Optionally allow length-changing shuffles. |
2210 | /// TODO: Optionally allow splats from other elements. |
2211 | bool isZeroEltSplat() const { |
2212 | return !changesLength() && isZeroEltSplatMask(ShuffleMask); |
2213 | } |
2214 | |
2215 | /// Return true if this shuffle mask is a transpose mask. |
2216 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding |
2217 | /// even- or odd-numbered vector elements from two n-dimensional source |
2218 | /// vectors and write each result into consecutive elements of an |
2219 | /// n-dimensional destination vector. Two shuffles are necessary to complete |
2220 | /// the transpose, one for the even elements and another for the odd elements. |
2221 | /// This description closely follows how the TRN1 and TRN2 AArch64 |
2222 | /// instructions operate. |
2223 | /// |
2224 | /// For example, a simple 2x2 matrix can be transposed with: |
2225 | /// |
2226 | /// ; Original matrix |
2227 | /// m0 = < a, b > |
2228 | /// m1 = < c, d > |
2229 | /// |
2230 | /// ; Transposed matrix |
2231 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > |
2232 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > |
2233 | /// |
2234 | /// For matrices having greater than n columns, the resulting nx2 transposed |
2235 | /// matrix is stored in two result vectors such that one vector contains |
2236 | /// interleaved elements from all the even-numbered rows and the other vector |
2237 | /// contains interleaved elements from all the odd-numbered rows. For example, |
2238 | /// a 2x4 matrix can be transposed with: |
2239 | /// |
2240 | /// ; Original matrix |
2241 | /// m0 = < a, b, c, d > |
2242 | /// m1 = < e, f, g, h > |
2243 | /// |
2244 | /// ; Transposed matrix |
2245 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > |
2246 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > |
2247 | static bool isTransposeMask(ArrayRef<int> Mask); |
2248 | static bool isTransposeMask(const Constant *Mask) { |
2249 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2249, __PRETTY_FUNCTION__)); |
2250 | SmallVector<int, 16> MaskAsInts; |
2251 | getShuffleMask(Mask, MaskAsInts); |
2252 | return isTransposeMask(MaskAsInts); |
2253 | } |
2254 | |
2255 | /// Return true if this shuffle transposes the elements of its inputs without |
2256 | /// changing the length of the vectors. This operation may also be known as a |
2257 | /// merge or interleave. See the description for isTransposeMask() for the |
2258 | /// exact specification. |
2259 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> |
2260 | bool isTranspose() const { |
2261 | return !changesLength() && isTransposeMask(ShuffleMask); |
2262 | } |
2263 | |
2264 | /// Return true if this shuffle mask is an extract subvector mask. |
2265 | /// A valid extract subvector mask returns a smaller vector from a single |
2266 | /// source operand. The base extraction index is returned as well. |
2267 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
2268 | int &Index); |
2269 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, |
2270 | int &Index) { |
2271 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2271, __PRETTY_FUNCTION__)); |
2272 | // Not possible to express a shuffle mask for a scalable vector for this |
2273 | // case. |
2274 | if (isa<ScalableVectorType>(Mask->getType())) |
2275 | return false; |
2276 | SmallVector<int, 16> MaskAsInts; |
2277 | getShuffleMask(Mask, MaskAsInts); |
2278 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); |
2279 | } |
2280 | |
2281 | /// Return true if this shuffle mask is an extract subvector mask. |
2282 | bool isExtractSubvectorMask(int &Index) const { |
2283 | // Not possible to express a shuffle mask for a scalable vector for this |
2284 | // case. |
2285 | if (isa<ScalableVectorType>(getType())) |
2286 | return false; |
2287 | |
2288 | int NumSrcElts = |
2289 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); |
2290 | return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); |
2291 | } |
2292 | |
2293 | /// Change values in a shuffle permute mask assuming the two vector operands |
2294 | /// of length InVecNumElts have swapped position. |
2295 | static void commuteShuffleMask(MutableArrayRef<int> Mask, |
2296 | unsigned InVecNumElts) { |
2297 | for (int &Idx : Mask) { |
2298 | if (Idx == -1) |
2299 | continue; |
2300 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; |
2301 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 && "shufflevector mask index out of range") ? static_cast<void > (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2302, __PRETTY_FUNCTION__)) |
2302 | "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 && "shufflevector mask index out of range") ? static_cast<void > (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2302, __PRETTY_FUNCTION__)); |
2303 | } |
2304 | } |
2305 | |
2306 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2307 | static bool classof(const Instruction *I) { |
2308 | return I->getOpcode() == Instruction::ShuffleVector; |
2309 | } |
2310 | static bool classof(const Value *V) { |
2311 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2312 | } |
2313 | }; |
2314 | |
2315 | template <> |
2316 | struct OperandTraits<ShuffleVectorInst> |
2317 | : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; |
2318 | |
2319 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst >::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2319, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<ShuffleVectorInst>::op_begin(const_cast <ShuffleVectorInst*>(this))[i_nocapture].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((i_nocapture < OperandTraits<ShuffleVectorInst> ::operands(this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2319, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst::getNumOperands() const { return OperandTraits <ShuffleVectorInst>::operands(this); } template <int Idx_nocapture> Use &ShuffleVectorInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &ShuffleVectorInst::Op() const { return this ->OpFrom<Idx_nocapture>(this); } |
2320 | |
2321 | //===----------------------------------------------------------------------===// |
2322 | // ExtractValueInst Class |
2323 | //===----------------------------------------------------------------------===// |
2324 | |
2325 | /// This instruction extracts a struct member or array |
2326 | /// element value from an aggregate value. |
2327 | /// |
2328 | class ExtractValueInst : public UnaryInstruction { |
2329 | SmallVector<unsigned, 4> Indices; |
2330 | |
2331 | ExtractValueInst(const ExtractValueInst &EVI); |
2332 | |
2333 | /// Constructors - Create a extractvalue instruction with a base aggregate |
2334 | /// value and a list of indices. The first ctor can optionally insert before |
2335 | /// an existing instruction, the second appends the new instruction to the |
2336 | /// specified BasicBlock. |
2337 | inline ExtractValueInst(Value *Agg, |
2338 | ArrayRef<unsigned> Idxs, |
2339 | const Twine &NameStr, |
2340 | Instruction *InsertBefore); |
2341 | inline ExtractValueInst(Value *Agg, |
2342 | ArrayRef<unsigned> Idxs, |
2343 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2344 | |
2345 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); |
2346 | |
2347 | protected: |
2348 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2349 | friend class Instruction; |
2350 | |
2351 | ExtractValueInst *cloneImpl() const; |
2352 | |
2353 | public: |
2354 | static ExtractValueInst *Create(Value *Agg, |
2355 | ArrayRef<unsigned> Idxs, |
2356 | const Twine &NameStr = "", |
2357 | Instruction *InsertBefore = nullptr) { |
2358 | return new |
2359 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); |
2360 | } |
2361 | |
2362 | static ExtractValueInst *Create(Value *Agg, |
2363 | ArrayRef<unsigned> Idxs, |
2364 | const Twine &NameStr, |
2365 | BasicBlock *InsertAtEnd) { |
2366 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); |
2367 | } |
2368 | |
2369 | /// Returns the type of the element that would be extracted |
2370 | /// with an extractvalue instruction with the specified parameters. |
2371 | /// |
2372 | /// Null is returned if the indices are invalid for the specified type. |
2373 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); |
2374 | |
2375 | using idx_iterator = const unsigned*; |
2376 | |
2377 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
2378 | inline idx_iterator idx_end() const { return Indices.end(); } |
2379 | inline iterator_range<idx_iterator> indices() const { |
2380 | return make_range(idx_begin(), idx_end()); |
2381 | } |
2382 | |
2383 | Value *getAggregateOperand() { |
2384 | return getOperand(0); |
2385 | } |
2386 | const Value *getAggregateOperand() const { |
2387 | return getOperand(0); |
2388 | } |
2389 | static unsigned getAggregateOperandIndex() { |
2390 | return 0U; // get index for modifying correct operand |
2391 | } |
2392 | |
2393 | ArrayRef<unsigned> getIndices() const { |
2394 | return Indices; |
2395 | } |
2396 | |
2397 | unsigned getNumIndices() const { |
2398 | return (unsigned)Indices.size(); |
2399 | } |
2400 | |
2401 | bool hasIndices() const { |
2402 | return true; |
2403 | } |
2404 | |
2405 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2406 | static bool classof(const Instruction *I) { |
2407 | return I->getOpcode() == Instruction::ExtractValue; |
2408 | } |
2409 | static bool classof(const Value *V) { |
2410 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2411 | } |
2412 | }; |
2413 | |
2414 | ExtractValueInst::ExtractValueInst(Value *Agg, |
2415 | ArrayRef<unsigned> Idxs, |
2416 | const Twine &NameStr, |
2417 | Instruction *InsertBefore) |
2418 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
2419 | ExtractValue, Agg, InsertBefore) { |
2420 | init(Idxs, NameStr); |
2421 | } |
2422 | |
2423 | ExtractValueInst::ExtractValueInst(Value *Agg, |
2424 | ArrayRef<unsigned> Idxs, |
2425 | const Twine &NameStr, |
2426 | BasicBlock *InsertAtEnd) |
2427 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
2428 | ExtractValue, Agg, InsertAtEnd) { |
2429 | init(Idxs, NameStr); |
2430 | } |
2431 | |
2432 | //===----------------------------------------------------------------------===// |
2433 | // InsertValueInst Class |
2434 | //===----------------------------------------------------------------------===// |
2435 | |
2436 | /// This instruction inserts a struct field of array element |
2437 | /// value into an aggregate value. |
2438 | /// |
2439 | class InsertValueInst : public Instruction { |
2440 | SmallVector<unsigned, 4> Indices; |
2441 | |
2442 | InsertValueInst(const InsertValueInst &IVI); |
2443 | |
2444 | /// Constructors - Create a insertvalue instruction with a base aggregate |
2445 | /// value, a value to insert, and a list of indices. The first ctor can |
2446 | /// optionally insert before an existing instruction, the second appends |
2447 | /// the new instruction to the specified BasicBlock. |
2448 | inline InsertValueInst(Value *Agg, Value *Val, |
2449 | ArrayRef<unsigned> Idxs, |
2450 | const Twine &NameStr, |
2451 | Instruction *InsertBefore); |
2452 | inline InsertValueInst(Value *Agg, Value *Val, |
2453 | ArrayRef<unsigned> Idxs, |
2454 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2455 | |
2456 | /// Constructors - These two constructors are convenience methods because one |
2457 | /// and two index insertvalue instructions are so common. |
2458 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, |
2459 | const Twine &NameStr = "", |
2460 | Instruction *InsertBefore = nullptr); |
2461 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, |
2462 | BasicBlock *InsertAtEnd); |
2463 | |
2464 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
2465 | const Twine &NameStr); |
2466 | |
2467 | protected: |
2468 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2469 | friend class Instruction; |
2470 | |
2471 | InsertValueInst *cloneImpl() const; |
2472 | |
2473 | public: |
2474 | // allocate space for exactly two operands |
2475 | void *operator new(size_t s) { |
2476 | return User::operator new(s, 2); |
2477 | } |
2478 | |
2479 | static InsertValueInst *Create(Value *Agg, Value *Val, |
2480 | ArrayRef<unsigned> Idxs, |
2481 | const Twine &NameStr = "", |
2482 | Instruction *InsertBefore = nullptr) { |
2483 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); |
2484 | } |
2485 | |
2486 | static InsertValueInst *Create(Value *Agg, Value *Val, |
2487 | ArrayRef<unsigned> Idxs, |
2488 | const Twine &NameStr, |
2489 | BasicBlock *InsertAtEnd) { |
2490 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); |
2491 | } |
2492 | |
2493 | /// Transparently provide more efficient getOperand methods. |
2494 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2495 | |
2496 | using idx_iterator = const unsigned*; |
2497 | |
2498 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
2499 | inline idx_iterator idx_end() const { return Indices.end(); } |
2500 | inline iterator_range<idx_iterator> indices() const { |
2501 | return make_range(idx_begin(), idx_end()); |
2502 | } |
2503 | |
2504 | Value *getAggregateOperand() { |
2505 | return getOperand(0); |
2506 | } |
2507 | const Value *getAggregateOperand() const { |
2508 | return getOperand(0); |
2509 | } |
2510 | static unsigned getAggregateOperandIndex() { |
2511 | return 0U; // get index for modifying correct operand |
2512 | } |
2513 | |
2514 | Value *getInsertedValueOperand() { |
2515 | return getOperand(1); |
2516 | } |
2517 | const Value *getInsertedValueOperand() const { |
2518 | return getOperand(1); |
2519 | } |
2520 | static unsigned getInsertedValueOperandIndex() { |
2521 | return 1U; // get index for modifying correct operand |
2522 | } |
2523 | |
2524 | ArrayRef<unsigned> getIndices() const { |
2525 | return Indices; |
2526 | } |
2527 | |
2528 | unsigned getNumIndices() const { |
2529 | return (unsigned)Indices.size(); |
2530 | } |
2531 | |
2532 | bool hasIndices() const { |
2533 | return true; |
2534 | } |
2535 | |
2536 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2537 | static bool classof(const Instruction *I) { |
2538 | return I->getOpcode() == Instruction::InsertValue; |
2539 | } |
2540 | static bool classof(const Value *V) { |
2541 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2542 | } |
2543 | }; |
2544 | |
2545 | template <> |
2546 | struct OperandTraits<InsertValueInst> : |
2547 | public FixedNumOperandTraits<InsertValueInst, 2> { |
2548 | }; |
2549 | |
2550 | InsertValueInst::InsertValueInst(Value *Agg, |
2551 | Value *Val, |
2552 | ArrayRef<unsigned> Idxs, |
2553 | const Twine &NameStr, |
2554 | Instruction *InsertBefore) |
2555 | : Instruction(Agg->getType(), InsertValue, |
2556 | OperandTraits<InsertValueInst>::op_begin(this), |
2557 | 2, InsertBefore) { |
2558 | init(Agg, Val, Idxs, NameStr); |
2559 | } |
2560 | |
2561 | InsertValueInst::InsertValueInst(Value *Agg, |
2562 | Value *Val, |
2563 | ArrayRef<unsigned> Idxs, |
2564 | const Twine &NameStr, |
2565 | BasicBlock *InsertAtEnd) |
2566 | : Instruction(Agg->getType(), InsertValue, |
2567 | OperandTraits<InsertValueInst>::op_begin(this), |
2568 | 2, InsertAtEnd) { |
2569 | init(Agg, Val, Idxs, NameStr); |
2570 | } |
2571 | |
2572 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<InsertValueInst>::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2572, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( i_nocapture < OperandTraits<InsertValueInst>::operands (this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2572, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertValueInst::getNumOperands() const { return OperandTraits <InsertValueInst>::operands(this); } template <int Idx_nocapture > Use &InsertValueInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
2573 | |
2574 | //===----------------------------------------------------------------------===// |
2575 | // PHINode Class |
2576 | //===----------------------------------------------------------------------===// |
2577 | |
2578 | // PHINode - The PHINode class is used to represent the magical mystical PHI |
2579 | // node, that can not exist in nature, but can be synthesized in a computer |
2580 | // scientist's overactive imagination. |
2581 | // |
2582 | class PHINode : public Instruction { |
2583 | /// The number of operands actually allocated. NumOperands is |
2584 | /// the number actually in use. |
2585 | unsigned ReservedSpace; |
2586 | |
2587 | PHINode(const PHINode &PN); |
2588 | |
2589 | explicit PHINode(Type *Ty, unsigned NumReservedValues, |
2590 | const Twine &NameStr = "", |
2591 | Instruction *InsertBefore = nullptr) |
2592 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), |
2593 | ReservedSpace(NumReservedValues) { |
2594 | setName(NameStr); |
2595 | allocHungoffUses(ReservedSpace); |
2596 | } |
2597 | |
2598 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, |
2599 | BasicBlock *InsertAtEnd) |
2600 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), |
2601 | ReservedSpace(NumReservedValues) { |
2602 | setName(NameStr); |
2603 | allocHungoffUses(ReservedSpace); |
2604 | } |
2605 | |
2606 | protected: |
2607 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2608 | friend class Instruction; |
2609 | |
2610 | PHINode *cloneImpl() const; |
2611 | |
2612 | // allocHungoffUses - this is more complicated than the generic |
2613 | // User::allocHungoffUses, because we have to allocate Uses for the incoming |
2614 | // values and pointers to the incoming blocks, all in one allocation. |
2615 | void allocHungoffUses(unsigned N) { |
2616 | User::allocHungoffUses(N, /* IsPhi */ true); |
2617 | } |
2618 | |
2619 | public: |
2620 | /// Constructors - NumReservedValues is a hint for the number of incoming |
2621 | /// edges that this phi node will have (use 0 if you really have no idea). |
2622 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
2623 | const Twine &NameStr = "", |
2624 | Instruction *InsertBefore = nullptr) { |
2625 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); |
2626 | } |
2627 | |
2628 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
2629 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
2630 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); |
2631 | } |
2632 | |
2633 | /// Provide fast operand accessors |
2634 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2635 | |
2636 | // Block iterator interface. This provides access to the list of incoming |
2637 | // basic blocks, which parallels the list of incoming values. |
2638 | |
2639 | using block_iterator = BasicBlock **; |
2640 | using const_block_iterator = BasicBlock * const *; |
2641 | |
2642 | block_iterator block_begin() { |
2643 | return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace); |
2644 | } |
2645 | |
2646 | const_block_iterator block_begin() const { |
2647 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); |
2648 | } |
2649 | |
2650 | block_iterator block_end() { |
2651 | return block_begin() + getNumOperands(); |
2652 | } |
2653 | |
2654 | const_block_iterator block_end() const { |
2655 | return block_begin() + getNumOperands(); |
2656 | } |
2657 | |
2658 | iterator_range<block_iterator> blocks() { |
2659 | return make_range(block_begin(), block_end()); |
2660 | } |
2661 | |
2662 | iterator_range<const_block_iterator> blocks() const { |
2663 | return make_range(block_begin(), block_end()); |
2664 | } |
2665 | |
2666 | op_range incoming_values() { return operands(); } |
2667 | |
2668 | const_op_range incoming_values() const { return operands(); } |
2669 | |
2670 | /// Return the number of incoming edges |
2671 | /// |
2672 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
2673 | |
2674 | /// Return incoming value number x |
2675 | /// |
2676 | Value *getIncomingValue(unsigned i) const { |
2677 | return getOperand(i); |
2678 | } |
2679 | void setIncomingValue(unsigned i, Value *V) { |
2680 | assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast< void> (0) : __assert_fail ("V && \"PHI node got a null value!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2680, __PRETTY_FUNCTION__)); |
2681 | assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!" ) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2682, __PRETTY_FUNCTION__)) |
2682 | "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!" ) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2682, __PRETTY_FUNCTION__)); |
2683 | setOperand(i, V); |
2684 | } |
2685 | |
2686 | static unsigned getOperandNumForIncomingValue(unsigned i) { |
2687 | return i; |
2688 | } |
2689 | |
2690 | static unsigned getIncomingValueNumForOperand(unsigned i) { |
2691 | return i; |
2692 | } |
2693 | |
2694 | /// Return incoming basic block number @p i. |
2695 | /// |
2696 | BasicBlock *getIncomingBlock(unsigned i) const { |
2697 | return block_begin()[i]; |
2698 | } |
2699 | |
2700 | /// Return incoming basic block corresponding |
2701 | /// to an operand of the PHI. |
2702 | /// |
2703 | BasicBlock *getIncomingBlock(const Use &U) const { |
2704 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?" ) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2704, __PRETTY_FUNCTION__)); |
2705 | return getIncomingBlock(unsigned(&U - op_begin())); |
2706 | } |
2707 | |
2708 | /// Return incoming basic block corresponding |
2709 | /// to value use iterator. |
2710 | /// |
2711 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { |
2712 | return getIncomingBlock(I.getUse()); |
2713 | } |
2714 | |
2715 | void setIncomingBlock(unsigned i, BasicBlock *BB) { |
2716 | assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast <void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2716, __PRETTY_FUNCTION__)); |
2717 | block_begin()[i] = BB; |
2718 | } |
2719 | |
2720 | /// Replace every incoming basic block \p Old to basic block \p New. |
2721 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { |
2722 | assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!" ) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2722, __PRETTY_FUNCTION__)); |
2723 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
2724 | if (getIncomingBlock(Op) == Old) |
2725 | setIncomingBlock(Op, New); |
2726 | } |
2727 | |
2728 | /// Add an incoming value to the end of the PHI list |
2729 | /// |
2730 | void addIncoming(Value *V, BasicBlock *BB) { |
2731 | if (getNumOperands() == ReservedSpace) |
2732 | growOperands(); // Get more space! |
2733 | // Initialize some new operands. |
2734 | setNumHungOffUseOperands(getNumOperands() + 1); |
2735 | setIncomingValue(getNumOperands() - 1, V); |
2736 | setIncomingBlock(getNumOperands() - 1, BB); |
2737 | } |
2738 | |
2739 | /// Remove an incoming value. This is useful if a |
2740 | /// predecessor basic block is deleted. The value removed is returned. |
2741 | /// |
2742 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty |
2743 | /// is true), the PHI node is destroyed and any uses of it are replaced with |
2744 | /// dummy values. The only time there should be zero incoming values to a PHI |
2745 | /// node is when the block is dead, so this strategy is sound. |
2746 | /// |
2747 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); |
2748 | |
2749 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { |
2750 | int Idx = getBasicBlockIndex(BB); |
2751 | assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!" ) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2751, __PRETTY_FUNCTION__)); |
2752 | return removeIncomingValue(Idx, DeletePHIIfEmpty); |
2753 | } |
2754 | |
2755 | /// Return the first index of the specified basic |
2756 | /// block in the value list for this PHI. Returns -1 if no instance. |
2757 | /// |
2758 | int getBasicBlockIndex(const BasicBlock *BB) const { |
2759 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
2760 | if (block_begin()[i] == BB) |
2761 | return i; |
2762 | return -1; |
2763 | } |
2764 | |
2765 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { |
2766 | int Idx = getBasicBlockIndex(BB); |
2767 | assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast <void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2767, __PRETTY_FUNCTION__)); |
2768 | return getIncomingValue(Idx); |
2769 | } |
2770 | |
2771 | /// Set every incoming value(s) for block \p BB to \p V. |
2772 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { |
2773 | assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast <void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2773, __PRETTY_FUNCTION__)); |
2774 | bool Found = false; |
2775 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
2776 | if (getIncomingBlock(Op) == BB) { |
2777 | Found = true; |
2778 | setIncomingValue(Op, V); |
2779 | } |
2780 | (void)Found; |
2781 | assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast <void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2781, __PRETTY_FUNCTION__)); |
2782 | } |
2783 | |
2784 | /// If the specified PHI node always merges together the |
2785 | /// same value, return the value, otherwise return null. |
2786 | Value *hasConstantValue() const; |
2787 | |
2788 | /// Whether the specified PHI node always merges |
2789 | /// together the same value, assuming undefs are equal to a unique |
2790 | /// non-undef value. |
2791 | bool hasConstantOrUndefValue() const; |
2792 | |
2793 | /// If the PHI node is complete which means all of its parent's predecessors |
2794 | /// have incoming value in this PHI, return true, otherwise return false. |
2795 | bool isComplete() const { |
2796 | return llvm::all_of(predecessors(getParent()), |
2797 | [this](const BasicBlock *Pred) { |
2798 | return getBasicBlockIndex(Pred) >= 0; |
2799 | }); |
2800 | } |
2801 | |
2802 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
2803 | static bool classof(const Instruction *I) { |
2804 | return I->getOpcode() == Instruction::PHI; |
2805 | } |
2806 | static bool classof(const Value *V) { |
2807 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2808 | } |
2809 | |
2810 | private: |
2811 | void growOperands(); |
2812 | }; |
2813 | |
2814 | template <> |
2815 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { |
2816 | }; |
2817 | |
2818 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { ((i_nocapture < OperandTraits<PHINode>::operands (this) && "getOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2818, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<PHINode>::op_begin(const_cast<PHINode *>(this))[i_nocapture].get()); } void PHINode::setOperand( unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture < OperandTraits<PHINode>::operands(this) && "setOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2818, __PRETTY_FUNCTION__)); OperandTraits<PHINode>:: op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode ::getNumOperands() const { return OperandTraits<PHINode> ::operands(this); } template <int Idx_nocapture> Use & PHINode::Op() { return this->OpFrom<Idx_nocapture>(this ); } template <int Idx_nocapture> const Use &PHINode ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
2819 | |
2820 | //===----------------------------------------------------------------------===// |
2821 | // LandingPadInst Class |
2822 | //===----------------------------------------------------------------------===// |
2823 | |
2824 | //===--------------------------------------------------------------------------- |
2825 | /// The landingpad instruction holds all of the information |
2826 | /// necessary to generate correct exception handling. The landingpad instruction |
2827 | /// cannot be moved from the top of a landing pad block, which itself is |
2828 | /// accessible only from the 'unwind' edge of an invoke. This uses the |
2829 | /// SubclassData field in Value to store whether or not the landingpad is a |
2830 | /// cleanup. |
2831 | /// |
2832 | class LandingPadInst : public Instruction { |
2833 | using CleanupField = BoolBitfieldElementT<0>; |
2834 | |
2835 | /// The number of operands actually allocated. NumOperands is |
2836 | /// the number actually in use. |
2837 | unsigned ReservedSpace; |
2838 | |
2839 | LandingPadInst(const LandingPadInst &LP); |
2840 | |
2841 | public: |
2842 | enum ClauseType { Catch, Filter }; |
2843 | |
2844 | private: |
2845 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
2846 | const Twine &NameStr, Instruction *InsertBefore); |
2847 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
2848 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2849 | |
2850 | // Allocate space for exactly zero operands. |
2851 | void *operator new(size_t s) { |
2852 | return User::operator new(s); |
2853 | } |
2854 | |
2855 | void growOperands(unsigned Size); |
2856 | void init(unsigned NumReservedValues, const Twine &NameStr); |
2857 | |
2858 | protected: |
2859 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2860 | friend class Instruction; |
2861 | |
2862 | LandingPadInst *cloneImpl() const; |
2863 | |
2864 | public: |
2865 | /// Constructors - NumReservedClauses is a hint for the number of incoming |
2866 | /// clauses that this landingpad will have (use 0 if you really have no idea). |
2867 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
2868 | const Twine &NameStr = "", |
2869 | Instruction *InsertBefore = nullptr); |
2870 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
2871 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2872 | |
2873 | /// Provide fast operand accessors |
2874 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2875 | |
2876 | /// Return 'true' if this landingpad instruction is a |
2877 | /// cleanup. I.e., it should be run when unwinding even if its landing pad |
2878 | /// doesn't catch the exception. |
2879 | bool isCleanup() const { return getSubclassData<CleanupField>(); } |
2880 | |
2881 | /// Indicate that this landingpad instruction is a cleanup. |
2882 | void setCleanup(bool V) { setSubclassData<CleanupField>(V); } |
2883 | |
2884 | /// Add a catch or filter clause to the landing pad. |
2885 | void addClause(Constant *ClauseVal); |
2886 | |
2887 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to |
2888 | /// determine what type of clause this is. |
2889 | Constant *getClause(unsigned Idx) const { |
2890 | return cast<Constant>(getOperandList()[Idx]); |
2891 | } |
2892 | |
2893 | /// Return 'true' if the clause and index Idx is a catch clause. |
2894 | bool isCatch(unsigned Idx) const { |
2895 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); |
2896 | } |
2897 | |
2898 | /// Return 'true' if the clause and index Idx is a filter clause. |
2899 | bool isFilter(unsigned Idx) const { |
2900 | return isa<ArrayType>(getOperandList()[Idx]->getType()); |
2901 | } |
2902 | |
2903 | /// Get the number of clauses for this landing pad. |
2904 | unsigned getNumClauses() const { return getNumOperands(); } |
2905 | |
2906 | /// Grow the size of the operand list to accommodate the new |
2907 | /// number of clauses. |
2908 | void reserveClauses(unsigned Size) { growOperands(Size); } |
2909 | |
2910 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2911 | static bool classof(const Instruction *I) { |
2912 | return I->getOpcode() == Instruction::LandingPad; |
2913 | } |
2914 | static bool classof(const Value *V) { |
2915 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2916 | } |
2917 | }; |
2918 | |
2919 | template <> |
2920 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { |
2921 | }; |
2922 | |
2923 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<LandingPadInst>::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2923, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( i_nocapture < OperandTraits<LandingPadInst>::operands (this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2923, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits <LandingPadInst>::operands(this); } template <int Idx_nocapture > Use &LandingPadInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
2924 | |
2925 | //===----------------------------------------------------------------------===// |
2926 | // ReturnInst Class |
2927 | //===----------------------------------------------------------------------===// |
2928 | |
2929 | //===--------------------------------------------------------------------------- |
2930 | /// Return a value (possibly void), from a function. Execution |
2931 | /// does not continue in this function any longer. |
2932 | /// |
2933 | class ReturnInst : public Instruction { |
2934 | ReturnInst(const ReturnInst &RI); |
2935 | |
2936 | private: |
2937 | // ReturnInst constructors: |
2938 | // ReturnInst() - 'ret void' instruction |
2939 | // ReturnInst( null) - 'ret void' instruction |
2940 | // ReturnInst(Value* X) - 'ret X' instruction |
2941 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I |
2942 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I |
2943 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B |
2944 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B |
2945 | // |
2946 | // NOTE: If the Value* passed is of type void then the constructor behaves as |
2947 | // if it was passed NULL. |
2948 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, |
2949 | Instruction *InsertBefore = nullptr); |
2950 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); |
2951 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
2952 | |
2953 | protected: |
2954 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2955 | friend class Instruction; |
2956 | |
2957 | ReturnInst *cloneImpl() const; |
2958 | |
2959 | public: |
2960 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, |
2961 | Instruction *InsertBefore = nullptr) { |
2962 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); |
2963 | } |
2964 | |
2965 | static ReturnInst* Create(LLVMContext &C, Value *retVal, |
2966 | BasicBlock *InsertAtEnd) { |
2967 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); |
2968 | } |
2969 | |
2970 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { |
2971 | return new(0) ReturnInst(C, InsertAtEnd); |
2972 | } |
2973 | |
2974 | /// Provide fast operand accessors |
2975 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2976 | |
2977 | /// Convenience accessor. Returns null if there is no return value. |
2978 | Value *getReturnValue() const { |
2979 | return getNumOperands() != 0 ? getOperand(0) : nullptr; |
2980 | } |
2981 | |
2982 | unsigned getNumSuccessors() const { return 0; } |
2983 | |
2984 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2985 | static bool classof(const Instruction *I) { |
2986 | return (I->getOpcode() == Instruction::Ret); |
2987 | } |
2988 | static bool classof(const Value *V) { |
2989 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2990 | } |
2991 | |
2992 | private: |
2993 | BasicBlock *getSuccessor(unsigned idx) const { |
2994 | llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2994); |
2995 | } |
2996 | |
2997 | void setSuccessor(unsigned idx, BasicBlock *B) { |
2998 | llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 2998); |
2999 | } |
3000 | }; |
3001 | |
3002 | template <> |
3003 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { |
3004 | }; |
3005 | |
3006 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3006, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst *>(this))[i_nocapture].get()); } void ReturnInst::setOperand (unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture < OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3006, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst> ::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst ::getNumOperands() const { return OperandTraits<ReturnInst >::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ReturnInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
3007 | |
3008 | //===----------------------------------------------------------------------===// |
3009 | // BranchInst Class |
3010 | //===----------------------------------------------------------------------===// |
3011 | |
3012 | //===--------------------------------------------------------------------------- |
3013 | /// Conditional or Unconditional Branch instruction. |
3014 | /// |
3015 | class BranchInst : public Instruction { |
3016 | /// Ops list - Branches are strange. The operands are ordered: |
3017 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because |
3018 | /// they don't have to check for cond/uncond branchness. These are mostly |
3019 | /// accessed relative from op_end(). |
3020 | BranchInst(const BranchInst &BI); |
3021 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): |
3022 | // BranchInst(BB *B) - 'br B' |
3023 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' |
3024 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I |
3025 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I |
3026 | // BranchInst(BB* B, BB *I) - 'br B' insert at end |
3027 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end |
3028 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); |
3029 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
3030 | Instruction *InsertBefore = nullptr); |
3031 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); |
3032 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
3033 | BasicBlock *InsertAtEnd); |
3034 | |
3035 | void AssertOK(); |
3036 | |
3037 | protected: |
3038 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3039 | friend class Instruction; |
3040 | |
3041 | BranchInst *cloneImpl() const; |
3042 | |
3043 | public: |
3044 | /// Iterator type that casts an operand to a basic block. |
3045 | /// |
3046 | /// This only makes sense because the successors are stored as adjacent |
3047 | /// operands for branch instructions. |
3048 | struct succ_op_iterator |
3049 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
3050 | std::random_access_iterator_tag, BasicBlock *, |
3051 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
3052 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
3053 | |
3054 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3055 | BasicBlock *operator->() const { return operator*(); } |
3056 | }; |
3057 | |
3058 | /// The const version of `succ_op_iterator`. |
3059 | struct const_succ_op_iterator |
3060 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
3061 | std::random_access_iterator_tag, |
3062 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
3063 | const BasicBlock *> { |
3064 | explicit const_succ_op_iterator(const_value_op_iterator I) |
3065 | : iterator_adaptor_base(I) {} |
3066 | |
3067 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3068 | const BasicBlock *operator->() const { return operator*(); } |
3069 | }; |
3070 | |
3071 | static BranchInst *Create(BasicBlock *IfTrue, |
3072 | Instruction *InsertBefore = nullptr) { |
3073 | return new(1) BranchInst(IfTrue, InsertBefore); |
3074 | } |
3075 | |
3076 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
3077 | Value *Cond, Instruction *InsertBefore = nullptr) { |
3078 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); |
3079 | } |
3080 | |
3081 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { |
3082 | return new(1) BranchInst(IfTrue, InsertAtEnd); |
3083 | } |
3084 | |
3085 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
3086 | Value *Cond, BasicBlock *InsertAtEnd) { |
3087 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); |
3088 | } |
3089 | |
3090 | /// Transparently provide more efficient getOperand methods. |
3091 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
3092 | |
3093 | bool isUnconditional() const { return getNumOperands() == 1; } |
3094 | bool isConditional() const { return getNumOperands() == 3; } |
3095 | |
3096 | Value *getCondition() const { |
3097 | assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!" ) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3097, __PRETTY_FUNCTION__)); |
3098 | return Op<-3>(); |
3099 | } |
3100 | |
3101 | void setCondition(Value *V) { |
3102 | assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!" ) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3102, __PRETTY_FUNCTION__)); |
3103 | Op<-3>() = V; |
3104 | } |
3105 | |
3106 | unsigned getNumSuccessors() const { return 1+isConditional(); } |
3107 | |
3108 | BasicBlock *getSuccessor(unsigned i) const { |
3109 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!" ) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3109, __PRETTY_FUNCTION__)); |
3110 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); |
3111 | } |
3112 | |
3113 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
3114 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!" ) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3114, __PRETTY_FUNCTION__)); |
3115 | *(&Op<-1>() - idx) = NewSucc; |
3116 | } |
3117 | |
3118 | /// Swap the successors of this branch instruction. |
3119 | /// |
3120 | /// Swaps the successors of the branch instruction. This also swaps any |
3121 | /// branch weight metadata associated with the instruction so that it |
3122 | /// continues to map correctly to each operand. |
3123 | void swapSuccessors(); |
3124 | |
3125 | iterator_range<succ_op_iterator> successors() { |
3126 | return make_range( |
3127 | succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), |
3128 | succ_op_iterator(value_op_end())); |
3129 | } |
3130 | |
3131 | iterator_range<const_succ_op_iterator> successors() const { |
3132 | return make_range(const_succ_op_iterator( |
3133 | std::next(value_op_begin(), isConditional() ? 1 : 0)), |
3134 | const_succ_op_iterator(value_op_end())); |
3135 | } |
3136 | |
3137 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3138 | static bool classof(const Instruction *I) { |
3139 | return (I->getOpcode() == Instruction::Br); |
3140 | } |
3141 | static bool classof(const Value *V) { |
3142 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3143 | } |
3144 | }; |
3145 | |
3146 | template <> |
3147 | struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { |
3148 | }; |
3149 | |
3150 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits <BranchInst>::op_begin(this); } BranchInst::const_op_iterator BranchInst::op_begin() const { return OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this)); } BranchInst ::op_iterator BranchInst::op_end() { return OperandTraits< BranchInst>::op_end(this); } BranchInst::const_op_iterator BranchInst::op_end() const { return OperandTraits<BranchInst >::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst ::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3150, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst *>(this))[i_nocapture].get()); } void BranchInst::setOperand (unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture < OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3150, __PRETTY_FUNCTION__)); OperandTraits<BranchInst> ::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst ::getNumOperands() const { return OperandTraits<BranchInst >::operands(this); } template <int Idx_nocapture> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & BranchInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
3151 | |
3152 | //===----------------------------------------------------------------------===// |
3153 | // SwitchInst Class |
3154 | //===----------------------------------------------------------------------===// |
3155 | |
3156 | //===--------------------------------------------------------------------------- |
3157 | /// Multiway switch |
3158 | /// |
3159 | class SwitchInst : public Instruction { |
3160 | unsigned ReservedSpace; |
3161 | |
3162 | // Operand[0] = Value to switch on |
3163 | // Operand[1] = Default basic block destination |
3164 | // Operand[2n ] = Value to match |
3165 | // Operand[2n+1] = BasicBlock to go to on match |
3166 | SwitchInst(const SwitchInst &SI); |
3167 | |
3168 | /// Create a new switch instruction, specifying a value to switch on and a |
3169 | /// default destination. The number of additional cases can be specified here |
3170 | /// to make memory allocation more efficient. This constructor can also |
3171 | /// auto-insert before another instruction. |
3172 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
3173 | Instruction *InsertBefore); |
3174 | |
3175 | /// Create a new switch instruction, specifying a value to switch on and a |
3176 | /// default destination. The number of additional cases can be specified here |
3177 | /// to make memory allocation more efficient. This constructor also |
3178 | /// auto-inserts at the end of the specified BasicBlock. |
3179 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
3180 | BasicBlock *InsertAtEnd); |
3181 | |
3182 | // allocate space for exactly zero operands |
3183 | void *operator new(size_t s) { |
3184 | return User::operator new(s); |
3185 | } |
3186 | |
3187 | void init(Value *Value, BasicBlock *Default, unsigned NumReserved); |
3188 | void growOperands(); |
3189 | |
3190 | protected: |
3191 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3192 | friend class Instruction; |
3193 | |
3194 | SwitchInst *cloneImpl() const; |
3195 | |
3196 | public: |
3197 | // -2 |
3198 | static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); |
3199 | |
3200 | template <typename CaseHandleT> class CaseIteratorImpl; |
3201 | |
3202 | /// A handle to a particular switch case. It exposes a convenient interface |
3203 | /// to both the case value and the successor block. |
3204 | /// |
3205 | /// We define this as a template and instantiate it to form both a const and |
3206 | /// non-const handle. |
3207 | template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> |
3208 | class CaseHandleImpl { |
3209 | // Directly befriend both const and non-const iterators. |
3210 | friend class SwitchInst::CaseIteratorImpl< |
3211 | CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; |
3212 | |
3213 | protected: |
3214 | // Expose the switch type we're parameterized with to the iterator. |
3215 | using SwitchInstType = SwitchInstT; |
3216 | |
3217 | SwitchInstT *SI; |
3218 | ptrdiff_t Index; |
3219 | |
3220 | CaseHandleImpl() = default; |
3221 | CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} |
3222 | |
3223 | public: |
3224 | /// Resolves case value for current case. |
3225 | ConstantIntT *getCaseValue() const { |
3226 | assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3227, __PRETTY_FUNCTION__)) |
3227 | "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3227, __PRETTY_FUNCTION__)); |
3228 | return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); |
3229 | } |
3230 | |
3231 | /// Resolves successor for current case. |
3232 | BasicBlockT *getCaseSuccessor() const { |
3233 | assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3235, __PRETTY_FUNCTION__)) |
3234 | (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3235, __PRETTY_FUNCTION__)) |
3235 | "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3235, __PRETTY_FUNCTION__)); |
3236 | return SI->getSuccessor(getSuccessorIndex()); |
3237 | } |
3238 | |
3239 | /// Returns number of current case. |
3240 | unsigned getCaseIndex() const { return Index; } |
3241 | |
3242 | /// Returns successor index for current case successor. |
3243 | unsigned getSuccessorIndex() const { |
3244 | assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3246, __PRETTY_FUNCTION__)) |
3245 | (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3246, __PRETTY_FUNCTION__)) |
3246 | "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3246, __PRETTY_FUNCTION__)); |
3247 | return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; |
3248 | } |
3249 | |
3250 | bool operator==(const CaseHandleImpl &RHS) const { |
3251 | assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast <void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3251, __PRETTY_FUNCTION__)); |
3252 | return Index == RHS.Index; |
3253 | } |
3254 | }; |
3255 | |
3256 | using ConstCaseHandle = |
3257 | CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; |
3258 | |
3259 | class CaseHandle |
3260 | : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { |
3261 | friend class SwitchInst::CaseIteratorImpl<CaseHandle>; |
3262 | |
3263 | public: |
3264 | CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} |
3265 | |
3266 | /// Sets the new value for current case. |
3267 | void setValue(ConstantInt *V) { |
3268 | assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3269, __PRETTY_FUNCTION__)) |
3269 | "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3269, __PRETTY_FUNCTION__)); |
3270 | SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); |
3271 | } |
3272 | |
3273 | /// Sets the new successor for current case. |
3274 | void setSuccessor(BasicBlock *S) { |
3275 | SI->setSuccessor(getSuccessorIndex(), S); |
3276 | } |
3277 | }; |
3278 | |
3279 | template <typename CaseHandleT> |
3280 | class CaseIteratorImpl |
3281 | : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, |
3282 | std::random_access_iterator_tag, |
3283 | CaseHandleT> { |
3284 | using SwitchInstT = typename CaseHandleT::SwitchInstType; |
3285 | |
3286 | CaseHandleT Case; |
3287 | |
3288 | public: |
3289 | /// Default constructed iterator is in an invalid state until assigned to |
3290 | /// a case for a particular switch. |
3291 | CaseIteratorImpl() = default; |
3292 | |
3293 | /// Initializes case iterator for given SwitchInst and for given |
3294 | /// case number. |
3295 | CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} |
3296 | |
3297 | /// Initializes case iterator for given SwitchInst and for given |
3298 | /// successor index. |
3299 | static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, |
3300 | unsigned SuccessorIndex) { |
3301 | assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!" ) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3302, __PRETTY_FUNCTION__)) |
3302 | "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!" ) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3302, __PRETTY_FUNCTION__)); |
3303 | return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) |
3304 | : CaseIteratorImpl(SI, DefaultPseudoIndex); |
3305 | } |
3306 | |
3307 | /// Support converting to the const variant. This will be a no-op for const |
3308 | /// variant. |
3309 | operator CaseIteratorImpl<ConstCaseHandle>() const { |
3310 | return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); |
3311 | } |
3312 | |
3313 | CaseIteratorImpl &operator+=(ptrdiff_t N) { |
3314 | // Check index correctness after addition. |
3315 | // Note: Index == getNumCases() means end(). |
3316 | assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3318, __PRETTY_FUNCTION__)) |
3317 | (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3318, __PRETTY_FUNCTION__)) |
3318 | "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3318, __PRETTY_FUNCTION__)); |
3319 | Case.Index += N; |
3320 | return *this; |
3321 | } |
3322 | CaseIteratorImpl &operator-=(ptrdiff_t N) { |
3323 | // Check index correctness after subtraction. |
3324 | // Note: Case.Index == getNumCases() means end(). |
3325 | assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3327, __PRETTY_FUNCTION__)) |
3326 | (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3327, __PRETTY_FUNCTION__)) |
3327 | "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3327, __PRETTY_FUNCTION__)); |
3328 | Case.Index -= N; |
3329 | return *this; |
3330 | } |
3331 | ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { |
3332 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators." ) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3332, __PRETTY_FUNCTION__)); |
3333 | return Case.Index - RHS.Case.Index; |
3334 | } |
3335 | bool operator==(const CaseIteratorImpl &RHS) const { |
3336 | return Case == RHS.Case; |
3337 | } |
3338 | bool operator<(const CaseIteratorImpl &RHS) const { |
3339 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators." ) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3339, __PRETTY_FUNCTION__)); |
3340 | return Case.Index < RHS.Case.Index; |
3341 | } |
3342 | CaseHandleT &operator*() { return Case; } |
3343 | const CaseHandleT &operator*() const { return Case; } |
3344 | }; |
3345 | |
3346 | using CaseIt = CaseIteratorImpl<CaseHandle>; |
3347 | using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; |
3348 | |
3349 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
3350 | unsigned NumCases, |
3351 | Instruction *InsertBefore = nullptr) { |
3352 | return new SwitchInst(Value, Default, NumCases, InsertBefore); |
3353 | } |
3354 | |
3355 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
3356 | unsigned NumCases, BasicBlock *InsertAtEnd) { |
3357 | return new SwitchInst(Value, Default, NumCases, InsertAtEnd); |
3358 | } |
3359 | |
3360 | /// Provide fast operand accessors |
3361 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
3362 | |
3363 | // Accessor Methods for Switch stmt |
3364 | Value *getCondition() const { return getOperand(0); } |
3365 | void setCondition(Value *V) { setOperand(0, V); } |
3366 | |
3367 | BasicBlock *getDefaultDest() const { |
3368 | return cast<BasicBlock>(getOperand(1)); |
3369 | } |
3370 | |
3371 | void setDefaultDest(BasicBlock *DefaultCase) { |
3372 | setOperand(1, reinterpret_cast<Value*>(DefaultCase)); |
3373 | } |
3374 | |
3375 | /// Return the number of 'cases' in this switch instruction, excluding the |
3376 | /// default case. |
3377 | unsigned getNumCases() const { |
3378 | return getNumOperands()/2 - 1; |
3379 | } |
3380 | |
3381 | /// Returns a read/write iterator that points to the first case in the |
3382 | /// SwitchInst. |
3383 | CaseIt case_begin() { |
3384 | return CaseIt(this, 0); |
3385 | } |
3386 | |
3387 | /// Returns a read-only iterator that points to the first case in the |
3388 | /// SwitchInst. |
3389 | ConstCaseIt case_begin() const { |
3390 | return ConstCaseIt(this, 0); |
3391 | } |
3392 | |
3393 | /// Returns a read/write iterator that points one past the last in the |
3394 | /// SwitchInst. |
3395 | CaseIt case_end() { |
3396 | return CaseIt(this, getNumCases()); |
3397 | } |
3398 | |
3399 | /// Returns a read-only iterator that points one past the last in the |
3400 | /// SwitchInst. |
3401 | ConstCaseIt case_end() const { |
3402 | return ConstCaseIt(this, getNumCases()); |
3403 | } |
3404 | |
3405 | /// Iteration adapter for range-for loops. |
3406 | iterator_range<CaseIt> cases() { |
3407 | return make_range(case_begin(), case_end()); |
3408 | } |
3409 | |
3410 | /// Constant iteration adapter for range-for loops. |
3411 | iterator_range<ConstCaseIt> cases() const { |
3412 | return make_range(case_begin(), case_end()); |
3413 | } |
3414 | |
3415 | /// Returns an iterator that points to the default case. |
3416 | /// Note: this iterator allows to resolve successor only. Attempt |
3417 | /// to resolve case value causes an assertion. |
3418 | /// Also note, that increment and decrement also causes an assertion and |
3419 | /// makes iterator invalid. |
3420 | CaseIt case_default() { |
3421 | return CaseIt(this, DefaultPseudoIndex); |
3422 | } |
3423 | ConstCaseIt case_default() const { |
3424 | return ConstCaseIt(this, DefaultPseudoIndex); |
3425 | } |
3426 | |
3427 | /// Search all of the case values for the specified constant. If it is |
3428 | /// explicitly handled, return the case iterator of it, otherwise return |
3429 | /// default case iterator to indicate that it is handled by the default |
3430 | /// handler. |
3431 | CaseIt findCaseValue(const ConstantInt *C) { |
3432 | CaseIt I = llvm::find_if( |
3433 | cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; }); |
3434 | if (I != case_end()) |
3435 | return I; |
3436 | |
3437 | return case_default(); |
3438 | } |
3439 | ConstCaseIt findCaseValue(const ConstantInt *C) const { |
3440 | ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) { |
3441 | return Case.getCaseValue() == C; |
3442 | }); |
3443 | if (I != case_end()) |
3444 | return I; |
3445 | |
3446 | return case_default(); |
3447 | } |
3448 | |
3449 | /// Finds the unique case value for a given successor. Returns null if the |
3450 | /// successor is not found, not unique, or is the default case. |
3451 | ConstantInt *findCaseDest(BasicBlock *BB) { |
3452 | if (BB == getDefaultDest()) |
3453 | return nullptr; |
3454 | |
3455 | ConstantInt *CI = nullptr; |
3456 | for (auto Case : cases()) { |
3457 | if (Case.getCaseSuccessor() != BB) |
3458 | continue; |
3459 | |
3460 | if (CI) |
3461 | return nullptr; // Multiple cases lead to BB. |
3462 | |
3463 | CI = Case.getCaseValue(); |
3464 | } |
3465 | |
3466 | return CI; |
3467 | } |
3468 | |
3469 | /// Add an entry to the switch instruction. |
3470 | /// Note: |
3471 | /// This action invalidates case_end(). Old case_end() iterator will |
3472 | /// point to the added case. |
3473 | void addCase(ConstantInt *OnVal, BasicBlock *Dest); |
3474 | |
3475 | /// This method removes the specified case and its successor from the switch |
3476 | /// instruction. Note that this operation may reorder the remaining cases at |
3477 | /// index idx and above. |
3478 | /// Note: |
3479 | /// This action invalidates iterators for all cases following the one removed, |
3480 | /// including the case_end() iterator. It returns an iterator for the next |
3481 | /// case. |
3482 | CaseIt removeCase(CaseIt I); |
3483 | |
3484 | unsigned getNumSuccessors() const { return getNumOperands()/2; } |
3485 | BasicBlock *getSuccessor(unsigned idx) const { |
3486 | assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((idx < getNumSuccessors() &&"Successor idx out of range for switch!" ) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3486, __PRETTY_FUNCTION__)); |
3487 | return cast<BasicBlock>(getOperand(idx*2+1)); |
3488 | } |
3489 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
3490 | assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((idx < getNumSuccessors() && "Successor # out of range for switch!" ) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for switch!\"" , "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/Instructions.h" , 3490, __PRETTY_FUNCTION__)); |