File: | llvm/lib/Analysis/LazyValueInfo.cpp |
Warning: | line 1421, column 34 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// | ||||||
2 | // | ||||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||
6 | // | ||||||
7 | //===----------------------------------------------------------------------===// | ||||||
8 | // | ||||||
9 | // This file defines the interface for lazy computation of value constraint | ||||||
10 | // information. | ||||||
11 | // | ||||||
12 | //===----------------------------------------------------------------------===// | ||||||
13 | |||||||
14 | #include "llvm/Analysis/LazyValueInfo.h" | ||||||
15 | #include "llvm/ADT/DenseSet.h" | ||||||
16 | #include "llvm/ADT/Optional.h" | ||||||
17 | #include "llvm/ADT/STLExtras.h" | ||||||
18 | #include "llvm/Analysis/AssumptionCache.h" | ||||||
19 | #include "llvm/Analysis/ConstantFolding.h" | ||||||
20 | #include "llvm/Analysis/InstructionSimplify.h" | ||||||
21 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||||
22 | #include "llvm/Analysis/ValueTracking.h" | ||||||
23 | #include "llvm/Analysis/ValueLattice.h" | ||||||
24 | #include "llvm/IR/AssemblyAnnotationWriter.h" | ||||||
25 | #include "llvm/IR/CFG.h" | ||||||
26 | #include "llvm/IR/ConstantRange.h" | ||||||
27 | #include "llvm/IR/Constants.h" | ||||||
28 | #include "llvm/IR/DataLayout.h" | ||||||
29 | #include "llvm/IR/Dominators.h" | ||||||
30 | #include "llvm/IR/Instructions.h" | ||||||
31 | #include "llvm/IR/IntrinsicInst.h" | ||||||
32 | #include "llvm/IR/Intrinsics.h" | ||||||
33 | #include "llvm/IR/LLVMContext.h" | ||||||
34 | #include "llvm/IR/PatternMatch.h" | ||||||
35 | #include "llvm/IR/ValueHandle.h" | ||||||
36 | #include "llvm/Support/Debug.h" | ||||||
37 | #include "llvm/Support/FormattedStream.h" | ||||||
38 | #include "llvm/Support/raw_ostream.h" | ||||||
39 | #include <map> | ||||||
40 | using namespace llvm; | ||||||
41 | using namespace PatternMatch; | ||||||
42 | |||||||
43 | #define DEBUG_TYPE"lazy-value-info" "lazy-value-info" | ||||||
44 | |||||||
45 | // This is the number of worklist items we will process to try to discover an | ||||||
46 | // answer for a given value. | ||||||
47 | static const unsigned MaxProcessedPerValue = 500; | ||||||
48 | |||||||
49 | char LazyValueInfoWrapperPass::ID = 0; | ||||||
50 | INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",static void *initializeLazyValueInfoWrapperPassPassOnce(PassRegistry &Registry) { | ||||||
51 | "Lazy Value Information Analysis", false, true)static void *initializeLazyValueInfoWrapperPassPassOnce(PassRegistry &Registry) { | ||||||
52 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry); | ||||||
53 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | ||||||
54 | INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",PassInfo *PI = new PassInfo( "Lazy Value Information Analysis" , "lazy-value-info", &LazyValueInfoWrapperPass::ID, PassInfo ::NormalCtor_t(callDefaultCtor<LazyValueInfoWrapperPass> ), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoWrapperPassPassFlag ; void llvm::initializeLazyValueInfoWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeLazyValueInfoWrapperPassPassFlag , initializeLazyValueInfoWrapperPassPassOnce, std::ref(Registry )); } | ||||||
55 | "Lazy Value Information Analysis", false, true)PassInfo *PI = new PassInfo( "Lazy Value Information Analysis" , "lazy-value-info", &LazyValueInfoWrapperPass::ID, PassInfo ::NormalCtor_t(callDefaultCtor<LazyValueInfoWrapperPass> ), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoWrapperPassPassFlag ; void llvm::initializeLazyValueInfoWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeLazyValueInfoWrapperPassPassFlag , initializeLazyValueInfoWrapperPassPassOnce, std::ref(Registry )); } | ||||||
56 | |||||||
57 | namespace llvm { | ||||||
58 | FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } | ||||||
59 | } | ||||||
60 | |||||||
61 | AnalysisKey LazyValueAnalysis::Key; | ||||||
62 | |||||||
63 | /// Returns true if this lattice value represents at most one possible value. | ||||||
64 | /// This is as precise as any lattice value can get while still representing | ||||||
65 | /// reachable code. | ||||||
66 | static bool hasSingleValue(const ValueLatticeElement &Val) { | ||||||
67 | if (Val.isConstantRange() && | ||||||
68 | Val.getConstantRange().isSingleElement()) | ||||||
69 | // Integer constants are single element ranges | ||||||
70 | return true; | ||||||
71 | if (Val.isConstant()) | ||||||
72 | // Non integer constants | ||||||
73 | return true; | ||||||
74 | return false; | ||||||
75 | } | ||||||
76 | |||||||
77 | /// Combine two sets of facts about the same value into a single set of | ||||||
78 | /// facts. Note that this method is not suitable for merging facts along | ||||||
79 | /// different paths in a CFG; that's what the mergeIn function is for. This | ||||||
80 | /// is for merging facts gathered about the same value at the same location | ||||||
81 | /// through two independent means. | ||||||
82 | /// Notes: | ||||||
83 | /// * This method does not promise to return the most precise possible lattice | ||||||
84 | /// value implied by A and B. It is allowed to return any lattice element | ||||||
85 | /// which is at least as strong as *either* A or B (unless our facts | ||||||
86 | /// conflict, see below). | ||||||
87 | /// * Due to unreachable code, the intersection of two lattice values could be | ||||||
88 | /// contradictory. If this happens, we return some valid lattice value so as | ||||||
89 | /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but | ||||||
90 | /// we do not make this guarantee. TODO: This would be a useful enhancement. | ||||||
91 | static ValueLatticeElement intersect(const ValueLatticeElement &A, | ||||||
92 | const ValueLatticeElement &B) { | ||||||
93 | // Undefined is the strongest state. It means the value is known to be along | ||||||
94 | // an unreachable path. | ||||||
95 | if (A.isUndefined()) | ||||||
96 | return A; | ||||||
97 | if (B.isUndefined()) | ||||||
98 | return B; | ||||||
99 | |||||||
100 | // If we gave up for one, but got a useable fact from the other, use it. | ||||||
101 | if (A.isOverdefined()) | ||||||
102 | return B; | ||||||
103 | if (B.isOverdefined()) | ||||||
104 | return A; | ||||||
105 | |||||||
106 | // Can't get any more precise than constants. | ||||||
107 | if (hasSingleValue(A)) | ||||||
108 | return A; | ||||||
109 | if (hasSingleValue(B)) | ||||||
110 | return B; | ||||||
111 | |||||||
112 | // Could be either constant range or not constant here. | ||||||
113 | if (!A.isConstantRange() || !B.isConstantRange()) { | ||||||
114 | // TODO: Arbitrary choice, could be improved | ||||||
115 | return A; | ||||||
116 | } | ||||||
117 | |||||||
118 | // Intersect two constant ranges | ||||||
119 | ConstantRange Range = | ||||||
120 | A.getConstantRange().intersectWith(B.getConstantRange()); | ||||||
121 | // Note: An empty range is implicitly converted to overdefined internally. | ||||||
122 | // TODO: We could instead use Undefined here since we've proven a conflict | ||||||
123 | // and thus know this path must be unreachable. | ||||||
124 | return ValueLatticeElement::getRange(std::move(Range)); | ||||||
125 | } | ||||||
126 | |||||||
127 | //===----------------------------------------------------------------------===// | ||||||
128 | // LazyValueInfoCache Decl | ||||||
129 | //===----------------------------------------------------------------------===// | ||||||
130 | |||||||
131 | namespace { | ||||||
132 | /// A callback value handle updates the cache when values are erased. | ||||||
133 | class LazyValueInfoCache; | ||||||
134 | struct LVIValueHandle final : public CallbackVH { | ||||||
135 | // Needs to access getValPtr(), which is protected. | ||||||
136 | friend struct DenseMapInfo<LVIValueHandle>; | ||||||
137 | |||||||
138 | LazyValueInfoCache *Parent; | ||||||
139 | |||||||
140 | LVIValueHandle(Value *V, LazyValueInfoCache *P) | ||||||
141 | : CallbackVH(V), Parent(P) { } | ||||||
142 | |||||||
143 | void deleted() override; | ||||||
144 | void allUsesReplacedWith(Value *V) override { | ||||||
145 | deleted(); | ||||||
146 | } | ||||||
147 | }; | ||||||
148 | } // end anonymous namespace | ||||||
149 | |||||||
150 | namespace { | ||||||
151 | /// This is the cache kept by LazyValueInfo which | ||||||
152 | /// maintains information about queries across the clients' queries. | ||||||
153 | class LazyValueInfoCache { | ||||||
154 | public: | ||||||
155 | typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>> | ||||||
156 | PerBlockValueCacheTy; | ||||||
157 | |||||||
158 | private: | ||||||
159 | /// This is all of the cached block information for exactly one Value*. | ||||||
160 | /// The entries are sorted by the BasicBlock* of the | ||||||
161 | /// entries, allowing us to do a lookup with a binary search. | ||||||
162 | /// Over-defined lattice values are recorded in OverDefinedCache to reduce | ||||||
163 | /// memory overhead. | ||||||
164 | struct ValueCacheEntryTy { | ||||||
165 | ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {} | ||||||
166 | LVIValueHandle Handle; | ||||||
167 | SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals; | ||||||
168 | }; | ||||||
169 | |||||||
170 | /// Keep track of all blocks that we have ever seen, so we | ||||||
171 | /// don't spend time removing unused blocks from our caches. | ||||||
172 | DenseSet<PoisoningVH<BasicBlock> > SeenBlocks; | ||||||
173 | |||||||
174 | /// This is all of the cached information for all values, | ||||||
175 | /// mapped from Value* to key information. | ||||||
176 | DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache; | ||||||
177 | /// This tracks, on a per-block basis, the set of values that are | ||||||
178 | /// over-defined at the end of that block. | ||||||
179 | PerBlockValueCacheTy OverDefinedCache; | ||||||
180 | /// This tracks, on a per-block basis, the set of pointers that are | ||||||
181 | /// dereferenced in the block (and thus non-null at the end of the block). | ||||||
182 | PerBlockValueCacheTy DereferencedPointerCache; | ||||||
183 | |||||||
184 | |||||||
185 | public: | ||||||
186 | void insertResult(Value *Val, BasicBlock *BB, | ||||||
187 | const ValueLatticeElement &Result) { | ||||||
188 | SeenBlocks.insert(BB); | ||||||
189 | |||||||
190 | // Insert over-defined values into their own cache to reduce memory | ||||||
191 | // overhead. | ||||||
192 | if (Result.isOverdefined()) | ||||||
193 | OverDefinedCache[BB].insert(Val); | ||||||
194 | else { | ||||||
195 | auto It = ValueCache.find_as(Val); | ||||||
196 | if (It == ValueCache.end()) { | ||||||
197 | ValueCache[Val] = std::make_unique<ValueCacheEntryTy>(Val, this); | ||||||
198 | It = ValueCache.find_as(Val); | ||||||
199 | assert(It != ValueCache.end() && "Val was just added to the map!")((It != ValueCache.end() && "Val was just added to the map!" ) ? static_cast<void> (0) : __assert_fail ("It != ValueCache.end() && \"Val was just added to the map!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 199, __PRETTY_FUNCTION__)); | ||||||
200 | } | ||||||
201 | It->second->BlockVals[BB] = Result; | ||||||
202 | } | ||||||
203 | } | ||||||
204 | |||||||
205 | bool isOverdefined(Value *V, BasicBlock *BB) const { | ||||||
206 | auto ODI = OverDefinedCache.find(BB); | ||||||
207 | |||||||
208 | if (ODI == OverDefinedCache.end()) | ||||||
209 | return false; | ||||||
210 | |||||||
211 | return ODI->second.count(V); | ||||||
212 | } | ||||||
213 | |||||||
214 | bool hasCachedValueInfo(Value *V, BasicBlock *BB) const { | ||||||
215 | if (isOverdefined(V, BB)) | ||||||
216 | return true; | ||||||
217 | |||||||
218 | auto I = ValueCache.find_as(V); | ||||||
219 | if (I == ValueCache.end()) | ||||||
220 | return false; | ||||||
221 | |||||||
222 | return I->second->BlockVals.count(BB); | ||||||
223 | } | ||||||
224 | |||||||
225 | ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const { | ||||||
226 | if (isOverdefined(V, BB)) | ||||||
227 | return ValueLatticeElement::getOverdefined(); | ||||||
228 | |||||||
229 | auto I = ValueCache.find_as(V); | ||||||
230 | if (I == ValueCache.end()) | ||||||
231 | return ValueLatticeElement(); | ||||||
232 | auto BBI = I->second->BlockVals.find(BB); | ||||||
233 | if (BBI == I->second->BlockVals.end()) | ||||||
234 | return ValueLatticeElement(); | ||||||
235 | return BBI->second; | ||||||
236 | } | ||||||
237 | |||||||
238 | std::pair<PerBlockValueCacheTy::iterator, bool> | ||||||
239 | getOrInitDereferencedPointers(BasicBlock *BB) { | ||||||
240 | return DereferencedPointerCache.try_emplace(BB); | ||||||
241 | } | ||||||
242 | |||||||
243 | /// clear - Empty the cache. | ||||||
244 | void clear() { | ||||||
245 | SeenBlocks.clear(); | ||||||
246 | ValueCache.clear(); | ||||||
247 | OverDefinedCache.clear(); | ||||||
248 | DereferencedPointerCache.clear(); | ||||||
249 | } | ||||||
250 | |||||||
251 | /// Inform the cache that a given value has been deleted. | ||||||
252 | void eraseValue(Value *V); | ||||||
253 | |||||||
254 | /// This is part of the update interface to inform the cache | ||||||
255 | /// that a block has been deleted. | ||||||
256 | void eraseBlock(BasicBlock *BB); | ||||||
257 | |||||||
258 | /// Updates the cache to remove any influence an overdefined value in | ||||||
259 | /// OldSucc might have (unless also overdefined in NewSucc). This just | ||||||
260 | /// flushes elements from the cache and does not add any. | ||||||
261 | void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); | ||||||
262 | |||||||
263 | friend struct LVIValueHandle; | ||||||
264 | }; | ||||||
265 | } | ||||||
266 | |||||||
267 | static void eraseValueFromPerBlockValueCache( | ||||||
268 | Value *V, LazyValueInfoCache::PerBlockValueCacheTy &Cache) { | ||||||
269 | for (auto I = Cache.begin(), E = Cache.end(); I != E;) { | ||||||
270 | // Copy and increment the iterator immediately so we can erase behind | ||||||
271 | // ourselves. | ||||||
272 | auto Iter = I++; | ||||||
273 | SmallPtrSetImpl<Value *> &ValueSet = Iter->second; | ||||||
274 | ValueSet.erase(V); | ||||||
275 | if (ValueSet.empty()) | ||||||
276 | Cache.erase(Iter); | ||||||
277 | } | ||||||
278 | } | ||||||
279 | |||||||
280 | void LazyValueInfoCache::eraseValue(Value *V) { | ||||||
281 | eraseValueFromPerBlockValueCache(V, OverDefinedCache); | ||||||
282 | eraseValueFromPerBlockValueCache(V, DereferencedPointerCache); | ||||||
283 | ValueCache.erase(V); | ||||||
284 | } | ||||||
285 | |||||||
286 | void LVIValueHandle::deleted() { | ||||||
287 | // This erasure deallocates *this, so it MUST happen after we're done | ||||||
288 | // using any and all members of *this. | ||||||
289 | Parent->eraseValue(*this); | ||||||
290 | } | ||||||
291 | |||||||
292 | void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { | ||||||
293 | // The SeenBlocks shortcut applies only to the value caches, | ||||||
294 | // always clear the dereferenced pointer cache. | ||||||
295 | DereferencedPointerCache.erase(BB); | ||||||
296 | |||||||
297 | // Shortcut if we have never seen this block. | ||||||
298 | DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB); | ||||||
299 | if (I == SeenBlocks.end()) | ||||||
300 | return; | ||||||
301 | SeenBlocks.erase(I); | ||||||
302 | |||||||
303 | OverDefinedCache.erase(BB); | ||||||
304 | |||||||
305 | for (auto &I : ValueCache) | ||||||
306 | I.second->BlockVals.erase(BB); | ||||||
307 | } | ||||||
308 | |||||||
309 | void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, | ||||||
310 | BasicBlock *NewSucc) { | ||||||
311 | // When an edge in the graph has been threaded, values that we could not | ||||||
312 | // determine a value for before (i.e. were marked overdefined) may be | ||||||
313 | // possible to solve now. We do NOT try to proactively update these values. | ||||||
314 | // Instead, we clear their entries from the cache, and allow lazy updating to | ||||||
315 | // recompute them when needed. | ||||||
316 | |||||||
317 | // The updating process is fairly simple: we need to drop cached info | ||||||
318 | // for all values that were marked overdefined in OldSucc, and for those same | ||||||
319 | // values in any successor of OldSucc (except NewSucc) in which they were | ||||||
320 | // also marked overdefined. | ||||||
321 | std::vector<BasicBlock*> worklist; | ||||||
322 | worklist.push_back(OldSucc); | ||||||
323 | |||||||
324 | auto I = OverDefinedCache.find(OldSucc); | ||||||
325 | if (I == OverDefinedCache.end()) | ||||||
326 | return; // Nothing to process here. | ||||||
327 | SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end()); | ||||||
328 | |||||||
329 | // Use a worklist to perform a depth-first search of OldSucc's successors. | ||||||
330 | // NOTE: We do not need a visited list since any blocks we have already | ||||||
331 | // visited will have had their overdefined markers cleared already, and we | ||||||
332 | // thus won't loop to their successors. | ||||||
333 | while (!worklist.empty()) { | ||||||
334 | BasicBlock *ToUpdate = worklist.back(); | ||||||
335 | worklist.pop_back(); | ||||||
336 | |||||||
337 | // Skip blocks only accessible through NewSucc. | ||||||
338 | if (ToUpdate == NewSucc) continue; | ||||||
339 | |||||||
340 | // If a value was marked overdefined in OldSucc, and is here too... | ||||||
341 | auto OI = OverDefinedCache.find(ToUpdate); | ||||||
342 | if (OI == OverDefinedCache.end()) | ||||||
343 | continue; | ||||||
344 | SmallPtrSetImpl<Value *> &ValueSet = OI->second; | ||||||
345 | |||||||
346 | bool changed = false; | ||||||
347 | for (Value *V : ValsToClear) { | ||||||
348 | if (!ValueSet.erase(V)) | ||||||
349 | continue; | ||||||
350 | |||||||
351 | // If we removed anything, then we potentially need to update | ||||||
352 | // blocks successors too. | ||||||
353 | changed = true; | ||||||
354 | |||||||
355 | if (ValueSet.empty()) { | ||||||
356 | OverDefinedCache.erase(OI); | ||||||
357 | break; | ||||||
358 | } | ||||||
359 | } | ||||||
360 | |||||||
361 | if (!changed) continue; | ||||||
362 | |||||||
363 | worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate)); | ||||||
364 | } | ||||||
365 | } | ||||||
366 | |||||||
367 | |||||||
368 | namespace { | ||||||
369 | /// An assembly annotator class to print LazyValueCache information in | ||||||
370 | /// comments. | ||||||
371 | class LazyValueInfoImpl; | ||||||
372 | class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { | ||||||
373 | LazyValueInfoImpl *LVIImpl; | ||||||
374 | // While analyzing which blocks we can solve values for, we need the dominator | ||||||
375 | // information. Since this is an optional parameter in LVI, we require this | ||||||
376 | // DomTreeAnalysis pass in the printer pass, and pass the dominator | ||||||
377 | // tree to the LazyValueInfoAnnotatedWriter. | ||||||
378 | DominatorTree &DT; | ||||||
379 | |||||||
380 | public: | ||||||
381 | LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) | ||||||
382 | : LVIImpl(L), DT(DTree) {} | ||||||
383 | |||||||
384 | virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, | ||||||
385 | formatted_raw_ostream &OS); | ||||||
386 | |||||||
387 | virtual void emitInstructionAnnot(const Instruction *I, | ||||||
388 | formatted_raw_ostream &OS); | ||||||
389 | }; | ||||||
390 | } | ||||||
391 | namespace { | ||||||
392 | // The actual implementation of the lazy analysis and update. Note that the | ||||||
393 | // inheritance from LazyValueInfoCache is intended to be temporary while | ||||||
394 | // splitting the code and then transitioning to a has-a relationship. | ||||||
395 | class LazyValueInfoImpl { | ||||||
396 | |||||||
397 | /// Cached results from previous queries | ||||||
398 | LazyValueInfoCache TheCache; | ||||||
399 | |||||||
400 | /// This stack holds the state of the value solver during a query. | ||||||
401 | /// It basically emulates the callstack of the naive | ||||||
402 | /// recursive value lookup process. | ||||||
403 | SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; | ||||||
404 | |||||||
405 | /// Keeps track of which block-value pairs are in BlockValueStack. | ||||||
406 | DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; | ||||||
407 | |||||||
408 | /// Push BV onto BlockValueStack unless it's already in there. | ||||||
409 | /// Returns true on success. | ||||||
410 | bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { | ||||||
411 | if (!BlockValueSet.insert(BV).second) | ||||||
412 | return false; // It's already in the stack. | ||||||
413 | |||||||
414 | LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "PUSH: " << *BV. second << " in " << BV.first->getName() << "\n"; } } while (false) | ||||||
415 | << BV.first->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "PUSH: " << *BV. second << " in " << BV.first->getName() << "\n"; } } while (false); | ||||||
416 | BlockValueStack.push_back(BV); | ||||||
417 | return true; | ||||||
418 | } | ||||||
419 | |||||||
420 | AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. | ||||||
421 | const DataLayout &DL; ///< A mandatory DataLayout | ||||||
422 | DominatorTree *DT; ///< An optional DT pointer. | ||||||
423 | DominatorTree *DisabledDT; ///< Stores DT if it's disabled. | ||||||
424 | |||||||
425 | ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB); | ||||||
426 | bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T, | ||||||
427 | ValueLatticeElement &Result, Instruction *CxtI = nullptr); | ||||||
428 | bool hasBlockValue(Value *Val, BasicBlock *BB); | ||||||
429 | |||||||
430 | // These methods process one work item and may add more. A false value | ||||||
431 | // returned means that the work item was not completely processed and must | ||||||
432 | // be revisited after going through the new items. | ||||||
433 | bool solveBlockValue(Value *Val, BasicBlock *BB); | ||||||
434 | bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val, | ||||||
435 | BasicBlock *BB); | ||||||
436 | bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val, | ||||||
437 | BasicBlock *BB); | ||||||
438 | bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN, | ||||||
439 | BasicBlock *BB); | ||||||
440 | bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S, | ||||||
441 | BasicBlock *BB); | ||||||
442 | Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I, | ||||||
443 | BasicBlock *BB); | ||||||
444 | bool solveBlockValueBinaryOpImpl( | ||||||
445 | ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB, | ||||||
446 | std::function<ConstantRange(const ConstantRange &, | ||||||
447 | const ConstantRange &)> OpFn); | ||||||
448 | bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI, | ||||||
449 | BasicBlock *BB); | ||||||
450 | bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI, | ||||||
451 | BasicBlock *BB); | ||||||
452 | bool solveBlockValueOverflowIntrinsic( | ||||||
453 | ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB); | ||||||
454 | bool solveBlockValueSaturatingIntrinsic(ValueLatticeElement &BBLV, | ||||||
455 | SaturatingInst *SI, BasicBlock *BB); | ||||||
456 | bool solveBlockValueIntrinsic(ValueLatticeElement &BBLV, IntrinsicInst *II, | ||||||
457 | BasicBlock *BB); | ||||||
458 | bool solveBlockValueExtractValue(ValueLatticeElement &BBLV, | ||||||
459 | ExtractValueInst *EVI, BasicBlock *BB); | ||||||
460 | bool isNonNullDueToDereferenceInBlock(Value *Val, BasicBlock *BB); | ||||||
461 | void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, | ||||||
462 | ValueLatticeElement &BBLV, | ||||||
463 | Instruction *BBI); | ||||||
464 | |||||||
465 | void solve(); | ||||||
466 | |||||||
467 | public: | ||||||
468 | /// This is the query interface to determine the lattice | ||||||
469 | /// value for the specified Value* at the end of the specified block. | ||||||
470 | ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, | ||||||
471 | Instruction *CxtI = nullptr); | ||||||
472 | |||||||
473 | /// This is the query interface to determine the lattice | ||||||
474 | /// value for the specified Value* at the specified instruction (generally | ||||||
475 | /// from an assume intrinsic). | ||||||
476 | ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); | ||||||
477 | |||||||
478 | /// This is the query interface to determine the lattice | ||||||
479 | /// value for the specified Value* that is true on the specified edge. | ||||||
480 | ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, | ||||||
481 | BasicBlock *ToBB, | ||||||
482 | Instruction *CxtI = nullptr); | ||||||
483 | |||||||
484 | /// Complete flush all previously computed values | ||||||
485 | void clear() { | ||||||
486 | TheCache.clear(); | ||||||
487 | } | ||||||
488 | |||||||
489 | /// Printing the LazyValueInfo Analysis. | ||||||
490 | void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { | ||||||
491 | LazyValueInfoAnnotatedWriter Writer(this, DTree); | ||||||
492 | F.print(OS, &Writer); | ||||||
493 | } | ||||||
494 | |||||||
495 | /// This is part of the update interface to inform the cache | ||||||
496 | /// that a block has been deleted. | ||||||
497 | void eraseBlock(BasicBlock *BB) { | ||||||
498 | TheCache.eraseBlock(BB); | ||||||
499 | } | ||||||
500 | |||||||
501 | /// Disables use of the DominatorTree within LVI. | ||||||
502 | void disableDT() { | ||||||
503 | if (DT) { | ||||||
504 | assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!")((!DisabledDT && "Both DT and DisabledDT are not nullptr!" ) ? static_cast<void> (0) : __assert_fail ("!DisabledDT && \"Both DT and DisabledDT are not nullptr!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 504, __PRETTY_FUNCTION__)); | ||||||
505 | std::swap(DT, DisabledDT); | ||||||
506 | } | ||||||
507 | } | ||||||
508 | |||||||
509 | /// Enables use of the DominatorTree within LVI. Does nothing if the class | ||||||
510 | /// instance was initialized without a DT pointer. | ||||||
511 | void enableDT() { | ||||||
512 | if (DisabledDT) { | ||||||
513 | assert(!DT && "Both DT and DisabledDT are not nullptr!")((!DT && "Both DT and DisabledDT are not nullptr!") ? static_cast<void> (0) : __assert_fail ("!DT && \"Both DT and DisabledDT are not nullptr!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 513, __PRETTY_FUNCTION__)); | ||||||
514 | std::swap(DT, DisabledDT); | ||||||
515 | } | ||||||
516 | } | ||||||
517 | |||||||
518 | /// This is the update interface to inform the cache that an edge from | ||||||
519 | /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. | ||||||
520 | void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); | ||||||
521 | |||||||
522 | LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, | ||||||
523 | DominatorTree *DT = nullptr) | ||||||
524 | : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {} | ||||||
525 | }; | ||||||
526 | } // end anonymous namespace | ||||||
527 | |||||||
528 | |||||||
529 | void LazyValueInfoImpl::solve() { | ||||||
530 | SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( | ||||||
531 | BlockValueStack.begin(), BlockValueStack.end()); | ||||||
532 | |||||||
533 | unsigned processedCount = 0; | ||||||
534 | while (!BlockValueStack.empty()) { | ||||||
535 | processedCount++; | ||||||
536 | // Abort if we have to process too many values to get a result for this one. | ||||||
537 | // Because of the design of the overdefined cache currently being per-block | ||||||
538 | // to avoid naming-related issues (IE it wants to try to give different | ||||||
539 | // results for the same name in different blocks), overdefined results don't | ||||||
540 | // get cached globally, which in turn means we will often try to rediscover | ||||||
541 | // the same overdefined result again and again. Once something like | ||||||
542 | // PredicateInfo is used in LVI or CVP, we should be able to make the | ||||||
543 | // overdefined cache global, and remove this throttle. | ||||||
544 | if (processedCount > MaxProcessedPerValue) { | ||||||
545 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "Giving up on stack because we are getting too deep\n" ; } } while (false) | ||||||
546 | dbgs() << "Giving up on stack because we are getting too deep\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "Giving up on stack because we are getting too deep\n" ; } } while (false); | ||||||
547 | // Fill in the original values | ||||||
548 | while (!StartingStack.empty()) { | ||||||
549 | std::pair<BasicBlock *, Value *> &e = StartingStack.back(); | ||||||
550 | TheCache.insertResult(e.second, e.first, | ||||||
551 | ValueLatticeElement::getOverdefined()); | ||||||
552 | StartingStack.pop_back(); | ||||||
553 | } | ||||||
554 | BlockValueSet.clear(); | ||||||
555 | BlockValueStack.clear(); | ||||||
556 | return; | ||||||
557 | } | ||||||
558 | std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); | ||||||
559 | assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!")((BlockValueSet.count(e) && "Stack value should be in BlockValueSet!" ) ? static_cast<void> (0) : __assert_fail ("BlockValueSet.count(e) && \"Stack value should be in BlockValueSet!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 559, __PRETTY_FUNCTION__)); | ||||||
560 | |||||||
561 | if (solveBlockValue(e.second, e.first)) { | ||||||
562 | // The work item was completely processed. | ||||||
563 | assert(BlockValueStack.back() == e && "Nothing should have been pushed!")((BlockValueStack.back() == e && "Nothing should have been pushed!" ) ? static_cast<void> (0) : __assert_fail ("BlockValueStack.back() == e && \"Nothing should have been pushed!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 563, __PRETTY_FUNCTION__)); | ||||||
564 | assert(TheCache.hasCachedValueInfo(e.second, e.first) &&((TheCache.hasCachedValueInfo(e.second, e.first) && "Result should be in cache!" ) ? static_cast<void> (0) : __assert_fail ("TheCache.hasCachedValueInfo(e.second, e.first) && \"Result should be in cache!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 565, __PRETTY_FUNCTION__)) | ||||||
565 | "Result should be in cache!")((TheCache.hasCachedValueInfo(e.second, e.first) && "Result should be in cache!" ) ? static_cast<void> (0) : __assert_fail ("TheCache.hasCachedValueInfo(e.second, e.first) && \"Result should be in cache!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 565, __PRETTY_FUNCTION__)); | ||||||
566 | |||||||
567 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " << TheCache.getCachedValueInfo(e.second, e.first) << "\n"; } } while (false) | ||||||
568 | dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " << TheCache.getCachedValueInfo(e.second, e.first) << "\n"; } } while (false) | ||||||
569 | << TheCache.getCachedValueInfo(e.second, e.first) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " << TheCache.getCachedValueInfo(e.second, e.first) << "\n"; } } while (false); | ||||||
570 | |||||||
571 | BlockValueStack.pop_back(); | ||||||
572 | BlockValueSet.erase(e); | ||||||
573 | } else { | ||||||
574 | // More work needs to be done before revisiting. | ||||||
575 | assert(BlockValueStack.back() != e && "Stack should have been pushed!")((BlockValueStack.back() != e && "Stack should have been pushed!" ) ? static_cast<void> (0) : __assert_fail ("BlockValueStack.back() != e && \"Stack should have been pushed!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 575, __PRETTY_FUNCTION__)); | ||||||
576 | } | ||||||
577 | } | ||||||
578 | } | ||||||
579 | |||||||
580 | bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) { | ||||||
581 | // If already a constant, there is nothing to compute. | ||||||
582 | if (isa<Constant>(Val)) | ||||||
583 | return true; | ||||||
584 | |||||||
585 | return TheCache.hasCachedValueInfo(Val, BB); | ||||||
586 | } | ||||||
587 | |||||||
588 | ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val, | ||||||
589 | BasicBlock *BB) { | ||||||
590 | // If already a constant, there is nothing to compute. | ||||||
591 | if (Constant *VC = dyn_cast<Constant>(Val)) | ||||||
592 | return ValueLatticeElement::get(VC); | ||||||
593 | |||||||
594 | return TheCache.getCachedValueInfo(Val, BB); | ||||||
595 | } | ||||||
596 | |||||||
597 | static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { | ||||||
598 | switch (BBI->getOpcode()) { | ||||||
599 | default: break; | ||||||
600 | case Instruction::Load: | ||||||
601 | case Instruction::Call: | ||||||
602 | case Instruction::Invoke: | ||||||
603 | if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) | ||||||
604 | if (isa<IntegerType>(BBI->getType())) { | ||||||
605 | return ValueLatticeElement::getRange( | ||||||
606 | getConstantRangeFromMetadata(*Ranges)); | ||||||
607 | } | ||||||
608 | break; | ||||||
609 | }; | ||||||
610 | // Nothing known - will be intersected with other facts | ||||||
611 | return ValueLatticeElement::getOverdefined(); | ||||||
612 | } | ||||||
613 | |||||||
614 | bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { | ||||||
615 | if (isa<Constant>(Val)) | ||||||
616 | return true; | ||||||
617 | |||||||
618 | if (TheCache.hasCachedValueInfo(Val, BB)) { | ||||||
619 | // If we have a cached value, use that. | ||||||
620 | LLVM_DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val="do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " reuse BB '" << BB->getName() << "' val=" << TheCache.getCachedValueInfo (Val, BB) << '\n'; } } while (false) | ||||||
621 | << TheCache.getCachedValueInfo(Val, BB) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " reuse BB '" << BB->getName() << "' val=" << TheCache.getCachedValueInfo (Val, BB) << '\n'; } } while (false); | ||||||
622 | |||||||
623 | // Since we're reusing a cached value, we don't need to update the | ||||||
624 | // OverDefinedCache. The cache will have been properly updated whenever the | ||||||
625 | // cached value was inserted. | ||||||
626 | return true; | ||||||
627 | } | ||||||
628 | |||||||
629 | // Hold off inserting this value into the Cache in case we have to return | ||||||
630 | // false and come back later. | ||||||
631 | ValueLatticeElement Res; | ||||||
632 | if (!solveBlockValueImpl(Res, Val, BB)) | ||||||
633 | // Work pushed, will revisit | ||||||
634 | return false; | ||||||
635 | |||||||
636 | TheCache.insertResult(Val, BB, Res); | ||||||
637 | return true; | ||||||
638 | } | ||||||
639 | |||||||
640 | bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res, | ||||||
641 | Value *Val, BasicBlock *BB) { | ||||||
642 | // If this value is a nonnull pointer, record it's range and bailout. Note | ||||||
643 | // that for all other pointer typed values, we terminate the search at the | ||||||
644 | // definition. We could easily extend this to look through geps, bitcasts, | ||||||
645 | // and the like to prove non-nullness, but it's not clear that's worth it | ||||||
646 | // compile time wise. The context-insensitive value walk done inside | ||||||
647 | // isKnownNonZero gets most of the profitable cases at much less expense. | ||||||
648 | // This does mean that we have a sensitivity to where the defining | ||||||
649 | // instruction is placed, even if it could legally be hoisted much higher. | ||||||
650 | // That is unfortunate. | ||||||
651 | PointerType *PT = dyn_cast<PointerType>(Val->getType()); | ||||||
652 | if (PT && isKnownNonZero(Val, DL)) { | ||||||
653 | Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); | ||||||
654 | return true; | ||||||
655 | } | ||||||
656 | |||||||
657 | Instruction *BBI = dyn_cast<Instruction>(Val); | ||||||
658 | if (!BBI || BBI->getParent() != BB) | ||||||
659 | return solveBlockValueNonLocal(Res, Val, BB); | ||||||
660 | |||||||
661 | if (PHINode *PN = dyn_cast<PHINode>(BBI)) | ||||||
662 | return solveBlockValuePHINode(Res, PN, BB); | ||||||
663 | |||||||
664 | if (auto *SI = dyn_cast<SelectInst>(BBI)) | ||||||
665 | return solveBlockValueSelect(Res, SI, BB); | ||||||
666 | |||||||
667 | if (BBI->getType()->isIntegerTy()) { | ||||||
668 | if (auto *CI = dyn_cast<CastInst>(BBI)) | ||||||
669 | return solveBlockValueCast(Res, CI, BB); | ||||||
670 | |||||||
671 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) | ||||||
672 | return solveBlockValueBinaryOp(Res, BO, BB); | ||||||
673 | |||||||
674 | if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) | ||||||
675 | return solveBlockValueExtractValue(Res, EVI, BB); | ||||||
676 | |||||||
677 | if (auto *II = dyn_cast<IntrinsicInst>(BBI)) | ||||||
678 | return solveBlockValueIntrinsic(Res, II, BB); | ||||||
679 | } | ||||||
680 | |||||||
681 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - unknown inst def found.\n"; } } while (false) | ||||||
682 | << "' - unknown inst def found.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - unknown inst def found.\n"; } } while (false); | ||||||
683 | Res = getFromRangeMetadata(BBI); | ||||||
684 | return true; | ||||||
685 | } | ||||||
686 | |||||||
687 | static void AddDereferencedPointer( | ||||||
688 | Value *Ptr, SmallPtrSet<Value *, 4> &PtrSet, const DataLayout &DL) { | ||||||
689 | // TODO: Use NullPointerIsDefined instead. | ||||||
690 | if (Ptr->getType()->getPointerAddressSpace() == 0) { | ||||||
691 | Ptr = GetUnderlyingObject(Ptr, DL); | ||||||
692 | PtrSet.insert(Ptr); | ||||||
693 | } | ||||||
694 | } | ||||||
695 | |||||||
696 | static void AddPointersDereferencedByInstruction( | ||||||
697 | Instruction *I, SmallPtrSet<Value *, 4> &PtrSet, const DataLayout &DL) { | ||||||
698 | if (LoadInst *L = dyn_cast<LoadInst>(I)) { | ||||||
699 | AddDereferencedPointer(L->getPointerOperand(), PtrSet, DL); | ||||||
700 | } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { | ||||||
701 | AddDereferencedPointer(S->getPointerOperand(), PtrSet, DL); | ||||||
702 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { | ||||||
703 | if (MI->isVolatile()) return; | ||||||
704 | |||||||
705 | // FIXME: check whether it has a valuerange that excludes zero? | ||||||
706 | ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); | ||||||
707 | if (!Len || Len->isZero()) return; | ||||||
708 | |||||||
709 | AddDereferencedPointer(MI->getRawDest(), PtrSet, DL); | ||||||
710 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) | ||||||
711 | AddDereferencedPointer(MTI->getRawSource(), PtrSet, DL); | ||||||
712 | } | ||||||
713 | } | ||||||
714 | |||||||
715 | bool LazyValueInfoImpl::isNonNullDueToDereferenceInBlock( | ||||||
716 | Value *Val, BasicBlock *BB) { | ||||||
717 | if (NullPointerIsDefined(BB->getParent(), | ||||||
718 | Val->getType()->getPointerAddressSpace())) | ||||||
719 | return false; | ||||||
720 | |||||||
721 | const DataLayout &DL = BB->getModule()->getDataLayout(); | ||||||
722 | Val = GetUnderlyingObject(Val, DL); | ||||||
723 | |||||||
724 | LazyValueInfoCache::PerBlockValueCacheTy::iterator It; | ||||||
725 | bool NeedsInit; | ||||||
726 | std::tie(It, NeedsInit) = TheCache.getOrInitDereferencedPointers(BB); | ||||||
727 | |||||||
728 | if (NeedsInit) | ||||||
729 | for (Instruction &I : *BB) | ||||||
730 | AddPointersDereferencedByInstruction(&I, It->second, DL); | ||||||
731 | |||||||
732 | return It->second.count(Val); | ||||||
733 | } | ||||||
734 | |||||||
735 | bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV, | ||||||
736 | Value *Val, BasicBlock *BB) { | ||||||
737 | ValueLatticeElement Result; // Start Undefined. | ||||||
738 | |||||||
739 | // If this is the entry block, we must be asking about an argument. The | ||||||
740 | // value is overdefined. | ||||||
741 | if (BB == &BB->getParent()->getEntryBlock()) { | ||||||
742 | assert(isa<Argument>(Val) && "Unknown live-in to the entry block")((isa<Argument>(Val) && "Unknown live-in to the entry block" ) ? static_cast<void> (0) : __assert_fail ("isa<Argument>(Val) && \"Unknown live-in to the entry block\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 742, __PRETTY_FUNCTION__)); | ||||||
743 | BBLV = ValueLatticeElement::getOverdefined(); | ||||||
744 | return true; | ||||||
745 | } | ||||||
746 | |||||||
747 | // Loop over all of our predecessors, merging what we know from them into | ||||||
748 | // result. If we encounter an unexplored predecessor, we eagerly explore it | ||||||
749 | // in a depth first manner. In practice, this has the effect of discovering | ||||||
750 | // paths we can't analyze eagerly without spending compile times analyzing | ||||||
751 | // other paths. This heuristic benefits from the fact that predecessors are | ||||||
752 | // frequently arranged such that dominating ones come first and we quickly | ||||||
753 | // find a path to function entry. TODO: We should consider explicitly | ||||||
754 | // canonicalizing to make this true rather than relying on this happy | ||||||
755 | // accident. | ||||||
756 | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | ||||||
757 | ValueLatticeElement EdgeResult; | ||||||
758 | if (!getEdgeValue(Val, *PI, BB, EdgeResult)) | ||||||
759 | // Explore that input, then return here | ||||||
760 | return false; | ||||||
761 | |||||||
762 | Result.mergeIn(EdgeResult, DL); | ||||||
763 | |||||||
764 | // If we hit overdefined, exit early. The BlockVals entry is already set | ||||||
765 | // to overdefined. | ||||||
766 | if (Result.isOverdefined()) { | ||||||
767 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (non local).\n" ; } } while (false) | ||||||
768 | << "' - overdefined because of pred (non local).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (non local).\n" ; } } while (false); | ||||||
769 | BBLV = Result; | ||||||
770 | return true; | ||||||
771 | } | ||||||
772 | } | ||||||
773 | |||||||
774 | // Return the merged value, which is more precise than 'overdefined'. | ||||||
775 | assert(!Result.isOverdefined())((!Result.isOverdefined()) ? static_cast<void> (0) : __assert_fail ("!Result.isOverdefined()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 775, __PRETTY_FUNCTION__)); | ||||||
776 | BBLV = Result; | ||||||
777 | return true; | ||||||
778 | } | ||||||
779 | |||||||
780 | bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV, | ||||||
781 | PHINode *PN, BasicBlock *BB) { | ||||||
782 | ValueLatticeElement Result; // Start Undefined. | ||||||
783 | |||||||
784 | // Loop over all of our predecessors, merging what we know from them into | ||||||
785 | // result. See the comment about the chosen traversal order in | ||||||
786 | // solveBlockValueNonLocal; the same reasoning applies here. | ||||||
787 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { | ||||||
788 | BasicBlock *PhiBB = PN->getIncomingBlock(i); | ||||||
789 | Value *PhiVal = PN->getIncomingValue(i); | ||||||
790 | ValueLatticeElement EdgeResult; | ||||||
791 | // Note that we can provide PN as the context value to getEdgeValue, even | ||||||
792 | // though the results will be cached, because PN is the value being used as | ||||||
793 | // the cache key in the caller. | ||||||
794 | if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN)) | ||||||
795 | // Explore that input, then return here | ||||||
796 | return false; | ||||||
797 | |||||||
798 | Result.mergeIn(EdgeResult, DL); | ||||||
799 | |||||||
800 | // If we hit overdefined, exit early. The BlockVals entry is already set | ||||||
801 | // to overdefined. | ||||||
802 | if (Result.isOverdefined()) { | ||||||
803 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (local).\n" ; } } while (false) | ||||||
804 | << "' - overdefined because of pred (local).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined because of pred (local).\n" ; } } while (false); | ||||||
805 | |||||||
806 | BBLV = Result; | ||||||
807 | return true; | ||||||
808 | } | ||||||
809 | } | ||||||
810 | |||||||
811 | // Return the merged value, which is more precise than 'overdefined'. | ||||||
812 | assert(!Result.isOverdefined() && "Possible PHI in entry block?")((!Result.isOverdefined() && "Possible PHI in entry block?" ) ? static_cast<void> (0) : __assert_fail ("!Result.isOverdefined() && \"Possible PHI in entry block?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 812, __PRETTY_FUNCTION__)); | ||||||
813 | BBLV = Result; | ||||||
814 | return true; | ||||||
815 | } | ||||||
816 | |||||||
817 | static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, | ||||||
818 | bool isTrueDest = true); | ||||||
819 | |||||||
820 | // If we can determine a constraint on the value given conditions assumed by | ||||||
821 | // the program, intersect those constraints with BBLV | ||||||
822 | void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( | ||||||
823 | Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { | ||||||
824 | BBI = BBI ? BBI : dyn_cast<Instruction>(Val); | ||||||
825 | if (!BBI) | ||||||
826 | return; | ||||||
827 | |||||||
828 | for (auto &AssumeVH : AC->assumptionsFor(Val)) { | ||||||
829 | if (!AssumeVH) | ||||||
830 | continue; | ||||||
831 | auto *I = cast<CallInst>(AssumeVH); | ||||||
832 | if (!isValidAssumeForContext(I, BBI, DT)) | ||||||
833 | continue; | ||||||
834 | |||||||
835 | BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0))); | ||||||
836 | } | ||||||
837 | |||||||
838 | // If guards are not used in the module, don't spend time looking for them | ||||||
839 | auto *GuardDecl = BBI->getModule()->getFunction( | ||||||
840 | Intrinsic::getName(Intrinsic::experimental_guard)); | ||||||
841 | if (GuardDecl && !GuardDecl->use_empty()) { | ||||||
842 | if (BBI->getIterator() == BBI->getParent()->begin()) | ||||||
843 | return; | ||||||
844 | for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()), | ||||||
845 | BBI->getParent()->rend())) { | ||||||
846 | Value *Cond = nullptr; | ||||||
847 | if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) | ||||||
848 | BBLV = intersect(BBLV, getValueFromCondition(Val, Cond)); | ||||||
849 | } | ||||||
850 | } | ||||||
851 | |||||||
852 | if (BBLV.isOverdefined()) { | ||||||
853 | // Check whether we're checking at the terminator, and the pointer has | ||||||
854 | // been dereferenced in this block. | ||||||
855 | PointerType *PTy = dyn_cast<PointerType>(Val->getType()); | ||||||
856 | if (PTy && BBI->getParent()->getTerminator() == BBI && | ||||||
857 | isNonNullDueToDereferenceInBlock(Val, BBI->getParent())) | ||||||
858 | BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); | ||||||
859 | } | ||||||
860 | } | ||||||
861 | |||||||
862 | bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV, | ||||||
863 | SelectInst *SI, BasicBlock *BB) { | ||||||
864 | |||||||
865 | // Recurse on our inputs if needed | ||||||
866 | if (!hasBlockValue(SI->getTrueValue(), BB)) { | ||||||
867 | if (pushBlockValue(std::make_pair(BB, SI->getTrueValue()))) | ||||||
868 | return false; | ||||||
869 | BBLV = ValueLatticeElement::getOverdefined(); | ||||||
870 | return true; | ||||||
871 | } | ||||||
872 | ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB); | ||||||
873 | // If we hit overdefined, don't ask more queries. We want to avoid poisoning | ||||||
874 | // extra slots in the table if we can. | ||||||
875 | if (TrueVal.isOverdefined()) { | ||||||
876 | BBLV = ValueLatticeElement::getOverdefined(); | ||||||
877 | return true; | ||||||
878 | } | ||||||
879 | |||||||
880 | if (!hasBlockValue(SI->getFalseValue(), BB)) { | ||||||
881 | if (pushBlockValue(std::make_pair(BB, SI->getFalseValue()))) | ||||||
882 | return false; | ||||||
883 | BBLV = ValueLatticeElement::getOverdefined(); | ||||||
884 | return true; | ||||||
885 | } | ||||||
886 | ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB); | ||||||
887 | // If we hit overdefined, don't ask more queries. We want to avoid poisoning | ||||||
888 | // extra slots in the table if we can. | ||||||
889 | if (FalseVal.isOverdefined()) { | ||||||
890 | BBLV = ValueLatticeElement::getOverdefined(); | ||||||
891 | return true; | ||||||
892 | } | ||||||
893 | |||||||
894 | if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) { | ||||||
895 | const ConstantRange &TrueCR = TrueVal.getConstantRange(); | ||||||
896 | const ConstantRange &FalseCR = FalseVal.getConstantRange(); | ||||||
897 | Value *LHS = nullptr; | ||||||
898 | Value *RHS = nullptr; | ||||||
899 | SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); | ||||||
900 | // Is this a min specifically of our two inputs? (Avoid the risk of | ||||||
901 | // ValueTracking getting smarter looking back past our immediate inputs.) | ||||||
902 | if (SelectPatternResult::isMinOrMax(SPR.Flavor) && | ||||||
903 | LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) { | ||||||
904 | ConstantRange ResultCR = [&]() { | ||||||
905 | switch (SPR.Flavor) { | ||||||
906 | default: | ||||||
907 | llvm_unreachable("unexpected minmax type!")::llvm::llvm_unreachable_internal("unexpected minmax type!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 907); | ||||||
908 | case SPF_SMIN: /// Signed minimum | ||||||
909 | return TrueCR.smin(FalseCR); | ||||||
910 | case SPF_UMIN: /// Unsigned minimum | ||||||
911 | return TrueCR.umin(FalseCR); | ||||||
912 | case SPF_SMAX: /// Signed maximum | ||||||
913 | return TrueCR.smax(FalseCR); | ||||||
914 | case SPF_UMAX: /// Unsigned maximum | ||||||
915 | return TrueCR.umax(FalseCR); | ||||||
916 | }; | ||||||
917 | }(); | ||||||
918 | BBLV = ValueLatticeElement::getRange(ResultCR); | ||||||
919 | return true; | ||||||
920 | } | ||||||
921 | |||||||
922 | if (SPR.Flavor == SPF_ABS) { | ||||||
923 | if (LHS == SI->getTrueValue()) { | ||||||
924 | BBLV = ValueLatticeElement::getRange(TrueCR.abs()); | ||||||
925 | return true; | ||||||
926 | } | ||||||
927 | if (LHS == SI->getFalseValue()) { | ||||||
928 | BBLV = ValueLatticeElement::getRange(FalseCR.abs()); | ||||||
929 | return true; | ||||||
930 | } | ||||||
931 | } | ||||||
932 | |||||||
933 | if (SPR.Flavor == SPF_NABS) { | ||||||
934 | ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth())); | ||||||
935 | if (LHS == SI->getTrueValue()) { | ||||||
936 | BBLV = ValueLatticeElement::getRange(Zero.sub(TrueCR.abs())); | ||||||
937 | return true; | ||||||
938 | } | ||||||
939 | if (LHS == SI->getFalseValue()) { | ||||||
940 | BBLV = ValueLatticeElement::getRange(Zero.sub(FalseCR.abs())); | ||||||
941 | return true; | ||||||
942 | } | ||||||
943 | } | ||||||
944 | } | ||||||
945 | |||||||
946 | // Can we constrain the facts about the true and false values by using the | ||||||
947 | // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). | ||||||
948 | // TODO: We could potentially refine an overdefined true value above. | ||||||
949 | Value *Cond = SI->getCondition(); | ||||||
950 | TrueVal = intersect(TrueVal, | ||||||
951 | getValueFromCondition(SI->getTrueValue(), Cond, true)); | ||||||
952 | FalseVal = intersect(FalseVal, | ||||||
953 | getValueFromCondition(SI->getFalseValue(), Cond, false)); | ||||||
954 | |||||||
955 | // Handle clamp idioms such as: | ||||||
956 | // %24 = constantrange<0, 17> | ||||||
957 | // %39 = icmp eq i32 %24, 0 | ||||||
958 | // %40 = add i32 %24, -1 | ||||||
959 | // %siv.next = select i1 %39, i32 16, i32 %40 | ||||||
960 | // %siv.next = constantrange<0, 17> not <-1, 17> | ||||||
961 | // In general, this can handle any clamp idiom which tests the edge | ||||||
962 | // condition via an equality or inequality. | ||||||
963 | if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { | ||||||
964 | ICmpInst::Predicate Pred = ICI->getPredicate(); | ||||||
965 | Value *A = ICI->getOperand(0); | ||||||
966 | if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) { | ||||||
967 | auto addConstants = [](ConstantInt *A, ConstantInt *B) { | ||||||
968 | assert(A->getType() == B->getType())((A->getType() == B->getType()) ? static_cast<void> (0) : __assert_fail ("A->getType() == B->getType()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 968, __PRETTY_FUNCTION__)); | ||||||
969 | return ConstantInt::get(A->getType(), A->getValue() + B->getValue()); | ||||||
970 | }; | ||||||
971 | // See if either input is A + C2, subject to the constraint from the | ||||||
972 | // condition that A != C when that input is used. We can assume that | ||||||
973 | // that input doesn't include C + C2. | ||||||
974 | ConstantInt *CIAdded; | ||||||
975 | switch (Pred) { | ||||||
976 | default: break; | ||||||
977 | case ICmpInst::ICMP_EQ: | ||||||
978 | if (match(SI->getFalseValue(), m_Add(m_Specific(A), | ||||||
979 | m_ConstantInt(CIAdded)))) { | ||||||
980 | auto ResNot = addConstants(CIBase, CIAdded); | ||||||
981 | FalseVal = intersect(FalseVal, | ||||||
982 | ValueLatticeElement::getNot(ResNot)); | ||||||
983 | } | ||||||
984 | break; | ||||||
985 | case ICmpInst::ICMP_NE: | ||||||
986 | if (match(SI->getTrueValue(), m_Add(m_Specific(A), | ||||||
987 | m_ConstantInt(CIAdded)))) { | ||||||
988 | auto ResNot = addConstants(CIBase, CIAdded); | ||||||
989 | TrueVal = intersect(TrueVal, | ||||||
990 | ValueLatticeElement::getNot(ResNot)); | ||||||
991 | } | ||||||
992 | break; | ||||||
993 | }; | ||||||
994 | } | ||||||
995 | } | ||||||
996 | |||||||
997 | ValueLatticeElement Result; // Start Undefined. | ||||||
998 | Result.mergeIn(TrueVal, DL); | ||||||
999 | Result.mergeIn(FalseVal, DL); | ||||||
1000 | BBLV = Result; | ||||||
1001 | return true; | ||||||
1002 | } | ||||||
1003 | |||||||
1004 | Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op, | ||||||
1005 | Instruction *I, | ||||||
1006 | BasicBlock *BB) { | ||||||
1007 | if (!hasBlockValue(I->getOperand(Op), BB)) | ||||||
1008 | if (pushBlockValue(std::make_pair(BB, I->getOperand(Op)))) | ||||||
1009 | return None; | ||||||
1010 | |||||||
1011 | const unsigned OperandBitWidth = | ||||||
1012 | DL.getTypeSizeInBits(I->getOperand(Op)->getType()); | ||||||
1013 | ConstantRange Range = ConstantRange::getFull(OperandBitWidth); | ||||||
1014 | if (hasBlockValue(I->getOperand(Op), BB)) { | ||||||
1015 | ValueLatticeElement Val = getBlockValue(I->getOperand(Op), BB); | ||||||
1016 | intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I); | ||||||
1017 | if (Val.isConstantRange()) | ||||||
1018 | Range = Val.getConstantRange(); | ||||||
1019 | } | ||||||
1020 | return Range; | ||||||
1021 | } | ||||||
1022 | |||||||
1023 | bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV, | ||||||
1024 | CastInst *CI, | ||||||
1025 | BasicBlock *BB) { | ||||||
1026 | if (!CI->getOperand(0)->getType()->isSized()) { | ||||||
1027 | // Without knowing how wide the input is, we can't analyze it in any useful | ||||||
1028 | // way. | ||||||
1029 | BBLV = ValueLatticeElement::getOverdefined(); | ||||||
1030 | return true; | ||||||
1031 | } | ||||||
1032 | |||||||
1033 | // Filter out casts we don't know how to reason about before attempting to | ||||||
1034 | // recurse on our operand. This can cut a long search short if we know we're | ||||||
1035 | // not going to be able to get any useful information anways. | ||||||
1036 | switch (CI->getOpcode()) { | ||||||
1037 | case Instruction::Trunc: | ||||||
1038 | case Instruction::SExt: | ||||||
1039 | case Instruction::ZExt: | ||||||
1040 | case Instruction::BitCast: | ||||||
1041 | break; | ||||||
1042 | default: | ||||||
1043 | // Unhandled instructions are overdefined. | ||||||
1044 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown cast).\n" ; } } while (false) | ||||||
1045 | << "' - overdefined (unknown cast).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown cast).\n" ; } } while (false); | ||||||
1046 | BBLV = ValueLatticeElement::getOverdefined(); | ||||||
1047 | return true; | ||||||
1048 | } | ||||||
1049 | |||||||
1050 | // Figure out the range of the LHS. If that fails, we still apply the | ||||||
1051 | // transfer rule on the full set since we may be able to locally infer | ||||||
1052 | // interesting facts. | ||||||
1053 | Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB); | ||||||
1054 | if (!LHSRes.hasValue()) | ||||||
1055 | // More work to do before applying this transfer rule. | ||||||
1056 | return false; | ||||||
1057 | ConstantRange LHSRange = LHSRes.getValue(); | ||||||
1058 | |||||||
1059 | const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); | ||||||
1060 | |||||||
1061 | // NOTE: We're currently limited by the set of operations that ConstantRange | ||||||
1062 | // can evaluate symbolically. Enhancing that set will allows us to analyze | ||||||
1063 | // more definitions. | ||||||
1064 | BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), | ||||||
1065 | ResultBitWidth)); | ||||||
1066 | return true; | ||||||
1067 | } | ||||||
1068 | |||||||
1069 | bool LazyValueInfoImpl::solveBlockValueBinaryOpImpl( | ||||||
1070 | ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB, | ||||||
1071 | std::function<ConstantRange(const ConstantRange &, | ||||||
1072 | const ConstantRange &)> OpFn) { | ||||||
1073 | // Figure out the ranges of the operands. If that fails, use a | ||||||
1074 | // conservative range, but apply the transfer rule anyways. This | ||||||
1075 | // lets us pick up facts from expressions like "and i32 (call i32 | ||||||
1076 | // @foo()), 32" | ||||||
1077 | Optional<ConstantRange> LHSRes = getRangeForOperand(0, I, BB); | ||||||
1078 | Optional<ConstantRange> RHSRes = getRangeForOperand(1, I, BB); | ||||||
1079 | if (!LHSRes.hasValue() || !RHSRes.hasValue()) | ||||||
1080 | // More work to do before applying this transfer rule. | ||||||
1081 | return false; | ||||||
1082 | |||||||
1083 | ConstantRange LHSRange = LHSRes.getValue(); | ||||||
1084 | ConstantRange RHSRange = RHSRes.getValue(); | ||||||
1085 | BBLV = ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); | ||||||
1086 | return true; | ||||||
1087 | } | ||||||
1088 | |||||||
1089 | bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV, | ||||||
1090 | BinaryOperator *BO, | ||||||
1091 | BasicBlock *BB) { | ||||||
1092 | |||||||
1093 | assert(BO->getOperand(0)->getType()->isSized() &&((BO->getOperand(0)->getType()->isSized() && "all operands to binary operators are sized") ? static_cast< void> (0) : __assert_fail ("BO->getOperand(0)->getType()->isSized() && \"all operands to binary operators are sized\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1094, __PRETTY_FUNCTION__)) | ||||||
1094 | "all operands to binary operators are sized")((BO->getOperand(0)->getType()->isSized() && "all operands to binary operators are sized") ? static_cast< void> (0) : __assert_fail ("BO->getOperand(0)->getType()->isSized() && \"all operands to binary operators are sized\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1094, __PRETTY_FUNCTION__)); | ||||||
1095 | if (BO->getOpcode() == Instruction::Xor) { | ||||||
1096 | // Xor is the only operation not supported by ConstantRange::binaryOp(). | ||||||
1097 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown binary operator).\n" ; } } while (false) | ||||||
1098 | << "' - overdefined (unknown binary operator).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown binary operator).\n" ; } } while (false); | ||||||
1099 | BBLV = ValueLatticeElement::getOverdefined(); | ||||||
1100 | return true; | ||||||
1101 | } | ||||||
1102 | |||||||
1103 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { | ||||||
1104 | unsigned NoWrapKind = 0; | ||||||
1105 | if (OBO->hasNoUnsignedWrap()) | ||||||
1106 | NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; | ||||||
1107 | if (OBO->hasNoSignedWrap()) | ||||||
1108 | NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; | ||||||
1109 | |||||||
1110 | return solveBlockValueBinaryOpImpl( | ||||||
1111 | BBLV, BO, BB, | ||||||
1112 | [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||
1113 | return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); | ||||||
1114 | }); | ||||||
1115 | } | ||||||
1116 | |||||||
1117 | return solveBlockValueBinaryOpImpl( | ||||||
1118 | BBLV, BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||
1119 | return CR1.binaryOp(BO->getOpcode(), CR2); | ||||||
1120 | }); | ||||||
1121 | } | ||||||
1122 | |||||||
1123 | bool LazyValueInfoImpl::solveBlockValueOverflowIntrinsic( | ||||||
1124 | ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB) { | ||||||
1125 | return solveBlockValueBinaryOpImpl(BBLV, WO, BB, | ||||||
1126 | [WO](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||
1127 | return CR1.binaryOp(WO->getBinaryOp(), CR2); | ||||||
1128 | }); | ||||||
1129 | } | ||||||
1130 | |||||||
1131 | bool LazyValueInfoImpl::solveBlockValueSaturatingIntrinsic( | ||||||
1132 | ValueLatticeElement &BBLV, SaturatingInst *SI, BasicBlock *BB) { | ||||||
1133 | switch (SI->getIntrinsicID()) { | ||||||
1134 | case Intrinsic::uadd_sat: | ||||||
1135 | return solveBlockValueBinaryOpImpl( | ||||||
1136 | BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||
1137 | return CR1.uadd_sat(CR2); | ||||||
1138 | }); | ||||||
1139 | case Intrinsic::usub_sat: | ||||||
1140 | return solveBlockValueBinaryOpImpl( | ||||||
1141 | BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||
1142 | return CR1.usub_sat(CR2); | ||||||
1143 | }); | ||||||
1144 | case Intrinsic::sadd_sat: | ||||||
1145 | return solveBlockValueBinaryOpImpl( | ||||||
1146 | BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||
1147 | return CR1.sadd_sat(CR2); | ||||||
1148 | }); | ||||||
1149 | case Intrinsic::ssub_sat: | ||||||
1150 | return solveBlockValueBinaryOpImpl( | ||||||
1151 | BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) { | ||||||
1152 | return CR1.ssub_sat(CR2); | ||||||
1153 | }); | ||||||
1154 | default: | ||||||
1155 | llvm_unreachable("All llvm.sat intrinsic are handled.")::llvm::llvm_unreachable_internal("All llvm.sat intrinsic are handled." , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1155); | ||||||
1156 | } | ||||||
1157 | } | ||||||
1158 | |||||||
1159 | bool LazyValueInfoImpl::solveBlockValueIntrinsic(ValueLatticeElement &BBLV, | ||||||
1160 | IntrinsicInst *II, | ||||||
1161 | BasicBlock *BB) { | ||||||
1162 | if (auto *SI = dyn_cast<SaturatingInst>(II)) | ||||||
1163 | return solveBlockValueSaturatingIntrinsic(BBLV, SI, BB); | ||||||
1164 | |||||||
1165 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown intrinsic).\n" ; } } while (false) | ||||||
1166 | << "' - overdefined (unknown intrinsic).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown intrinsic).\n" ; } } while (false); | ||||||
1167 | BBLV = ValueLatticeElement::getOverdefined(); | ||||||
1168 | return true; | ||||||
1169 | } | ||||||
1170 | |||||||
1171 | bool LazyValueInfoImpl::solveBlockValueExtractValue( | ||||||
1172 | ValueLatticeElement &BBLV, ExtractValueInst *EVI, BasicBlock *BB) { | ||||||
1173 | if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) | ||||||
1174 | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) | ||||||
1175 | return solveBlockValueOverflowIntrinsic(BBLV, WO, BB); | ||||||
1176 | |||||||
1177 | // Handle extractvalue of insertvalue to allow further simplification | ||||||
1178 | // based on replaced with.overflow intrinsics. | ||||||
1179 | if (Value *V = SimplifyExtractValueInst( | ||||||
1180 | EVI->getAggregateOperand(), EVI->getIndices(), | ||||||
1181 | EVI->getModule()->getDataLayout())) { | ||||||
1182 | if (!hasBlockValue(V, BB)) { | ||||||
1183 | if (pushBlockValue({ BB, V })) | ||||||
1184 | return false; | ||||||
1185 | BBLV = ValueLatticeElement::getOverdefined(); | ||||||
1186 | return true; | ||||||
1187 | } | ||||||
1188 | BBLV = getBlockValue(V, BB); | ||||||
1189 | return true; | ||||||
1190 | } | ||||||
1191 | |||||||
1192 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown extractvalue).\n" ; } } while (false) | ||||||
1193 | << "' - overdefined (unknown extractvalue).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " compute BB '" << BB->getName() << "' - overdefined (unknown extractvalue).\n" ; } } while (false); | ||||||
1194 | BBLV = ValueLatticeElement::getOverdefined(); | ||||||
1195 | return true; | ||||||
1196 | } | ||||||
1197 | |||||||
1198 | static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI, | ||||||
1199 | bool isTrueDest) { | ||||||
1200 | Value *LHS = ICI->getOperand(0); | ||||||
1201 | Value *RHS = ICI->getOperand(1); | ||||||
1202 | CmpInst::Predicate Predicate = ICI->getPredicate(); | ||||||
1203 | |||||||
1204 | if (isa<Constant>(RHS)) { | ||||||
1205 | if (ICI->isEquality() && LHS == Val) { | ||||||
1206 | // We know that V has the RHS constant if this is a true SETEQ or | ||||||
1207 | // false SETNE. | ||||||
1208 | if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ)) | ||||||
1209 | return ValueLatticeElement::get(cast<Constant>(RHS)); | ||||||
1210 | else | ||||||
1211 | return ValueLatticeElement::getNot(cast<Constant>(RHS)); | ||||||
1212 | } | ||||||
1213 | } | ||||||
1214 | |||||||
1215 | if (!Val->getType()->isIntegerTy()) | ||||||
1216 | return ValueLatticeElement::getOverdefined(); | ||||||
1217 | |||||||
1218 | // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible | ||||||
1219 | // range of Val guaranteed by the condition. Recognize comparisons in the from | ||||||
1220 | // of: | ||||||
1221 | // icmp <pred> Val, ... | ||||||
1222 | // icmp <pred> (add Val, Offset), ... | ||||||
1223 | // The latter is the range checking idiom that InstCombine produces. Subtract | ||||||
1224 | // the offset from the allowed range for RHS in this case. | ||||||
1225 | |||||||
1226 | // Val or (add Val, Offset) can be on either hand of the comparison | ||||||
1227 | if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) { | ||||||
1228 | std::swap(LHS, RHS); | ||||||
1229 | Predicate = CmpInst::getSwappedPredicate(Predicate); | ||||||
1230 | } | ||||||
1231 | |||||||
1232 | ConstantInt *Offset = nullptr; | ||||||
1233 | if (LHS != Val) | ||||||
1234 | match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset))); | ||||||
1235 | |||||||
1236 | if (LHS == Val || Offset) { | ||||||
1237 | // Calculate the range of values that are allowed by the comparison | ||||||
1238 | ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), | ||||||
1239 | /*isFullSet=*/true); | ||||||
1240 | if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) | ||||||
1241 | RHSRange = ConstantRange(CI->getValue()); | ||||||
1242 | else if (Instruction *I = dyn_cast<Instruction>(RHS)) | ||||||
1243 | if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) | ||||||
1244 | RHSRange = getConstantRangeFromMetadata(*Ranges); | ||||||
1245 | |||||||
1246 | // If we're interested in the false dest, invert the condition | ||||||
1247 | CmpInst::Predicate Pred = | ||||||
1248 | isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate); | ||||||
1249 | ConstantRange TrueValues = | ||||||
1250 | ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); | ||||||
1251 | |||||||
1252 | if (Offset) // Apply the offset from above. | ||||||
1253 | TrueValues = TrueValues.subtract(Offset->getValue()); | ||||||
1254 | |||||||
1255 | return ValueLatticeElement::getRange(std::move(TrueValues)); | ||||||
1256 | } | ||||||
1257 | |||||||
1258 | return ValueLatticeElement::getOverdefined(); | ||||||
1259 | } | ||||||
1260 | |||||||
1261 | // Handle conditions of the form | ||||||
1262 | // extractvalue(op.with.overflow(%x, C), 1). | ||||||
1263 | static ValueLatticeElement getValueFromOverflowCondition( | ||||||
1264 | Value *Val, WithOverflowInst *WO, bool IsTrueDest) { | ||||||
1265 | // TODO: This only works with a constant RHS for now. We could also compute | ||||||
1266 | // the range of the RHS, but this doesn't fit into the current structure of | ||||||
1267 | // the edge value calculation. | ||||||
1268 | const APInt *C; | ||||||
1269 | if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) | ||||||
1270 | return ValueLatticeElement::getOverdefined(); | ||||||
1271 | |||||||
1272 | // Calculate the possible values of %x for which no overflow occurs. | ||||||
1273 | ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( | ||||||
1274 | WO->getBinaryOp(), *C, WO->getNoWrapKind()); | ||||||
1275 | |||||||
1276 | // If overflow is false, %x is constrained to NWR. If overflow is true, %x is | ||||||
1277 | // constrained to it's inverse (all values that might cause overflow). | ||||||
1278 | if (IsTrueDest) | ||||||
1279 | NWR = NWR.inverse(); | ||||||
1280 | return ValueLatticeElement::getRange(NWR); | ||||||
1281 | } | ||||||
1282 | |||||||
1283 | static ValueLatticeElement | ||||||
1284 | getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, | ||||||
1285 | DenseMap<Value*, ValueLatticeElement> &Visited); | ||||||
1286 | |||||||
1287 | static ValueLatticeElement | ||||||
1288 | getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest, | ||||||
1289 | DenseMap<Value*, ValueLatticeElement> &Visited) { | ||||||
1290 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) | ||||||
1291 | return getValueFromICmpCondition(Val, ICI, isTrueDest); | ||||||
1292 | |||||||
1293 | if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) | ||||||
1294 | if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) | ||||||
1295 | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) | ||||||
1296 | return getValueFromOverflowCondition(Val, WO, isTrueDest); | ||||||
1297 | |||||||
1298 | // Handle conditions in the form of (cond1 && cond2), we know that on the | ||||||
1299 | // true dest path both of the conditions hold. Similarly for conditions of | ||||||
1300 | // the form (cond1 || cond2), we know that on the false dest path neither | ||||||
1301 | // condition holds. | ||||||
1302 | BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond); | ||||||
1303 | if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) || | ||||||
1304 | (!isTrueDest && BO->getOpcode() != BinaryOperator::Or)) | ||||||
1305 | return ValueLatticeElement::getOverdefined(); | ||||||
1306 | |||||||
1307 | // Prevent infinite recursion if Cond references itself as in this example: | ||||||
1308 | // Cond: "%tmp4 = and i1 %tmp4, undef" | ||||||
1309 | // BL: "%tmp4 = and i1 %tmp4, undef" | ||||||
1310 | // BR: "i1 undef" | ||||||
1311 | Value *BL = BO->getOperand(0); | ||||||
1312 | Value *BR = BO->getOperand(1); | ||||||
1313 | if (BL == Cond || BR == Cond) | ||||||
1314 | return ValueLatticeElement::getOverdefined(); | ||||||
1315 | |||||||
1316 | return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited), | ||||||
1317 | getValueFromCondition(Val, BR, isTrueDest, Visited)); | ||||||
1318 | } | ||||||
1319 | |||||||
1320 | static ValueLatticeElement | ||||||
1321 | getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest, | ||||||
1322 | DenseMap<Value*, ValueLatticeElement> &Visited) { | ||||||
1323 | auto I = Visited.find(Cond); | ||||||
1324 | if (I != Visited.end()) | ||||||
1325 | return I->second; | ||||||
1326 | |||||||
1327 | auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited); | ||||||
1328 | Visited[Cond] = Result; | ||||||
1329 | return Result; | ||||||
1330 | } | ||||||
1331 | |||||||
1332 | ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond, | ||||||
1333 | bool isTrueDest) { | ||||||
1334 | assert(Cond && "precondition")((Cond && "precondition") ? static_cast<void> ( 0) : __assert_fail ("Cond && \"precondition\"", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1334, __PRETTY_FUNCTION__)); | ||||||
1335 | DenseMap<Value*, ValueLatticeElement> Visited; | ||||||
1336 | return getValueFromCondition(Val, Cond, isTrueDest, Visited); | ||||||
1337 | } | ||||||
1338 | |||||||
1339 | // Return true if Usr has Op as an operand, otherwise false. | ||||||
1340 | static bool usesOperand(User *Usr, Value *Op) { | ||||||
1341 | return find(Usr->operands(), Op) != Usr->op_end(); | ||||||
1342 | } | ||||||
1343 | |||||||
1344 | // Return true if the instruction type of Val is supported by | ||||||
1345 | // constantFoldUser(). Currently CastInst and BinaryOperator only. Call this | ||||||
1346 | // before calling constantFoldUser() to find out if it's even worth attempting | ||||||
1347 | // to call it. | ||||||
1348 | static bool isOperationFoldable(User *Usr) { | ||||||
1349 | return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr); | ||||||
1350 | } | ||||||
1351 | |||||||
1352 | // Check if Usr can be simplified to an integer constant when the value of one | ||||||
1353 | // of its operands Op is an integer constant OpConstVal. If so, return it as an | ||||||
1354 | // lattice value range with a single element or otherwise return an overdefined | ||||||
1355 | // lattice value. | ||||||
1356 | static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, | ||||||
1357 | const APInt &OpConstVal, | ||||||
1358 | const DataLayout &DL) { | ||||||
1359 | assert(isOperationFoldable(Usr) && "Precondition")((isOperationFoldable(Usr) && "Precondition") ? static_cast <void> (0) : __assert_fail ("isOperationFoldable(Usr) && \"Precondition\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1359, __PRETTY_FUNCTION__)); | ||||||
1360 | Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); | ||||||
1361 | // Check if Usr can be simplified to a constant. | ||||||
1362 | if (auto *CI = dyn_cast<CastInst>(Usr)) { | ||||||
1363 | assert(CI->getOperand(0) == Op && "Operand 0 isn't Op")((CI->getOperand(0) == Op && "Operand 0 isn't Op") ? static_cast<void> (0) : __assert_fail ("CI->getOperand(0) == Op && \"Operand 0 isn't Op\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1363, __PRETTY_FUNCTION__)); | ||||||
1364 | if (auto *C = dyn_cast_or_null<ConstantInt>( | ||||||
1365 | SimplifyCastInst(CI->getOpcode(), OpConst, | ||||||
1366 | CI->getDestTy(), DL))) { | ||||||
1367 | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); | ||||||
1368 | } | ||||||
1369 | } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { | ||||||
1370 | bool Op0Match = BO->getOperand(0) == Op; | ||||||
1371 | bool Op1Match = BO->getOperand(1) == Op; | ||||||
1372 | assert((Op0Match || Op1Match) &&(((Op0Match || Op1Match) && "Operand 0 nor Operand 1 isn't a match" ) ? static_cast<void> (0) : __assert_fail ("(Op0Match || Op1Match) && \"Operand 0 nor Operand 1 isn't a match\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1373, __PRETTY_FUNCTION__)) | ||||||
1373 | "Operand 0 nor Operand 1 isn't a match")(((Op0Match || Op1Match) && "Operand 0 nor Operand 1 isn't a match" ) ? static_cast<void> (0) : __assert_fail ("(Op0Match || Op1Match) && \"Operand 0 nor Operand 1 isn't a match\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1373, __PRETTY_FUNCTION__)); | ||||||
1374 | Value *LHS = Op0Match ? OpConst : BO->getOperand(0); | ||||||
1375 | Value *RHS = Op1Match ? OpConst : BO->getOperand(1); | ||||||
1376 | if (auto *C = dyn_cast_or_null<ConstantInt>( | ||||||
1377 | SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { | ||||||
1378 | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); | ||||||
1379 | } | ||||||
1380 | } | ||||||
1381 | return ValueLatticeElement::getOverdefined(); | ||||||
1382 | } | ||||||
1383 | |||||||
1384 | /// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if | ||||||
1385 | /// Val is not constrained on the edge. Result is unspecified if return value | ||||||
1386 | /// is false. | ||||||
1387 | static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, | ||||||
1388 | BasicBlock *BBTo, ValueLatticeElement &Result) { | ||||||
1389 | // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we | ||||||
1390 | // know that v != 0. | ||||||
1391 | if (BranchInst *BI
| ||||||
1392 | // If this is a conditional branch and only one successor goes to BBTo, then | ||||||
1393 | // we may be able to infer something from the condition. | ||||||
1394 | if (BI->isConditional() && | ||||||
1395 | BI->getSuccessor(0) != BI->getSuccessor(1)) { | ||||||
1396 | bool isTrueDest = BI->getSuccessor(0) == BBTo; | ||||||
1397 | assert(BI->getSuccessor(!isTrueDest) == BBTo &&((BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom" ) ? static_cast<void> (0) : __assert_fail ("BI->getSuccessor(!isTrueDest) == BBTo && \"BBTo isn't a successor of BBFrom\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1398, __PRETTY_FUNCTION__)) | ||||||
1398 | "BBTo isn't a successor of BBFrom")((BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom" ) ? static_cast<void> (0) : __assert_fail ("BI->getSuccessor(!isTrueDest) == BBTo && \"BBTo isn't a successor of BBFrom\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1398, __PRETTY_FUNCTION__)); | ||||||
1399 | Value *Condition = BI->getCondition(); | ||||||
1400 | |||||||
1401 | // If V is the condition of the branch itself, then we know exactly what | ||||||
1402 | // it is. | ||||||
1403 | if (Condition == Val) { | ||||||
1404 | Result = ValueLatticeElement::get(ConstantInt::get( | ||||||
1405 | Type::getInt1Ty(Val->getContext()), isTrueDest)); | ||||||
1406 | return true; | ||||||
1407 | } | ||||||
1408 | |||||||
1409 | // If the condition of the branch is an equality comparison, we may be | ||||||
1410 | // able to infer the value. | ||||||
1411 | Result = getValueFromCondition(Val, Condition, isTrueDest); | ||||||
1412 | if (!Result.isOverdefined()) | ||||||
1413 | return true; | ||||||
1414 | |||||||
1415 | if (User *Usr
| ||||||
1416 | assert(Result.isOverdefined() && "Result isn't overdefined")((Result.isOverdefined() && "Result isn't overdefined" ) ? static_cast<void> (0) : __assert_fail ("Result.isOverdefined() && \"Result isn't overdefined\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1416, __PRETTY_FUNCTION__)); | ||||||
1417 | // Check with isOperationFoldable() first to avoid linearly iterating | ||||||
1418 | // over the operands unnecessarily which can be expensive for | ||||||
1419 | // instructions with many operands. | ||||||
1420 | if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { | ||||||
1421 | const DataLayout &DL = BBTo->getModule()->getDataLayout(); | ||||||
| |||||||
1422 | if (usesOperand(Usr, Condition)) { | ||||||
1423 | // If Val has Condition as an operand and Val can be folded into a | ||||||
1424 | // constant with either Condition == true or Condition == false, | ||||||
1425 | // propagate the constant. | ||||||
1426 | // eg. | ||||||
1427 | // ; %Val is true on the edge to %then. | ||||||
1428 | // %Val = and i1 %Condition, true. | ||||||
1429 | // br %Condition, label %then, label %else | ||||||
1430 | APInt ConditionVal(1, isTrueDest ? 1 : 0); | ||||||
1431 | Result = constantFoldUser(Usr, Condition, ConditionVal, DL); | ||||||
1432 | } else { | ||||||
1433 | // If one of Val's operand has an inferred value, we may be able to | ||||||
1434 | // infer the value of Val. | ||||||
1435 | // eg. | ||||||
1436 | // ; %Val is 94 on the edge to %then. | ||||||
1437 | // %Val = add i8 %Op, 1 | ||||||
1438 | // %Condition = icmp eq i8 %Op, 93 | ||||||
1439 | // br i1 %Condition, label %then, label %else | ||||||
1440 | for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { | ||||||
1441 | Value *Op = Usr->getOperand(i); | ||||||
1442 | ValueLatticeElement OpLatticeVal = | ||||||
1443 | getValueFromCondition(Op, Condition, isTrueDest); | ||||||
1444 | if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) { | ||||||
1445 | Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL); | ||||||
1446 | break; | ||||||
1447 | } | ||||||
1448 | } | ||||||
1449 | } | ||||||
1450 | } | ||||||
1451 | } | ||||||
1452 | if (!Result.isOverdefined()) | ||||||
1453 | return true; | ||||||
1454 | } | ||||||
1455 | } | ||||||
1456 | |||||||
1457 | // If the edge was formed by a switch on the value, then we may know exactly | ||||||
1458 | // what it is. | ||||||
1459 | if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { | ||||||
1460 | Value *Condition = SI->getCondition(); | ||||||
1461 | if (!isa<IntegerType>(Val->getType())) | ||||||
1462 | return false; | ||||||
1463 | bool ValUsesConditionAndMayBeFoldable = false; | ||||||
1464 | if (Condition != Val) { | ||||||
1465 | // Check if Val has Condition as an operand. | ||||||
1466 | if (User *Usr = dyn_cast<User>(Val)) | ||||||
1467 | ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && | ||||||
1468 | usesOperand(Usr, Condition); | ||||||
1469 | if (!ValUsesConditionAndMayBeFoldable) | ||||||
1470 | return false; | ||||||
1471 | } | ||||||
1472 | assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&(((Condition == Val || ValUsesConditionAndMayBeFoldable) && "Condition != Val nor Val doesn't use Condition") ? static_cast <void> (0) : __assert_fail ("(Condition == Val || ValUsesConditionAndMayBeFoldable) && \"Condition != Val nor Val doesn't use Condition\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1473, __PRETTY_FUNCTION__)) | ||||||
1473 | "Condition != Val nor Val doesn't use Condition")(((Condition == Val || ValUsesConditionAndMayBeFoldable) && "Condition != Val nor Val doesn't use Condition") ? static_cast <void> (0) : __assert_fail ("(Condition == Val || ValUsesConditionAndMayBeFoldable) && \"Condition != Val nor Val doesn't use Condition\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1473, __PRETTY_FUNCTION__)); | ||||||
1474 | |||||||
1475 | bool DefaultCase = SI->getDefaultDest() == BBTo; | ||||||
1476 | unsigned BitWidth = Val->getType()->getIntegerBitWidth(); | ||||||
1477 | ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); | ||||||
1478 | |||||||
1479 | for (auto Case : SI->cases()) { | ||||||
1480 | APInt CaseValue = Case.getCaseValue()->getValue(); | ||||||
1481 | ConstantRange EdgeVal(CaseValue); | ||||||
1482 | if (ValUsesConditionAndMayBeFoldable) { | ||||||
1483 | User *Usr = cast<User>(Val); | ||||||
1484 | const DataLayout &DL = BBTo->getModule()->getDataLayout(); | ||||||
1485 | ValueLatticeElement EdgeLatticeVal = | ||||||
1486 | constantFoldUser(Usr, Condition, CaseValue, DL); | ||||||
1487 | if (EdgeLatticeVal.isOverdefined()) | ||||||
1488 | return false; | ||||||
1489 | EdgeVal = EdgeLatticeVal.getConstantRange(); | ||||||
1490 | } | ||||||
1491 | if (DefaultCase) { | ||||||
1492 | // It is possible that the default destination is the destination of | ||||||
1493 | // some cases. We cannot perform difference for those cases. | ||||||
1494 | // We know Condition != CaseValue in BBTo. In some cases we can use | ||||||
1495 | // this to infer Val == f(Condition) is != f(CaseValue). For now, we | ||||||
1496 | // only do this when f is identity (i.e. Val == Condition), but we | ||||||
1497 | // should be able to do this for any injective f. | ||||||
1498 | if (Case.getCaseSuccessor() != BBTo && Condition == Val) | ||||||
1499 | EdgesVals = EdgesVals.difference(EdgeVal); | ||||||
1500 | } else if (Case.getCaseSuccessor() == BBTo) | ||||||
1501 | EdgesVals = EdgesVals.unionWith(EdgeVal); | ||||||
1502 | } | ||||||
1503 | Result = ValueLatticeElement::getRange(std::move(EdgesVals)); | ||||||
1504 | return true; | ||||||
1505 | } | ||||||
1506 | return false; | ||||||
1507 | } | ||||||
1508 | |||||||
1509 | /// Compute the value of Val on the edge BBFrom -> BBTo or the value at | ||||||
1510 | /// the basic block if the edge does not constrain Val. | ||||||
1511 | bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, | ||||||
1512 | BasicBlock *BBTo, | ||||||
1513 | ValueLatticeElement &Result, | ||||||
1514 | Instruction *CxtI) { | ||||||
1515 | // If already a constant, there is nothing to compute. | ||||||
1516 | if (Constant *VC
| ||||||
1517 | Result = ValueLatticeElement::get(VC); | ||||||
1518 | return true; | ||||||
1519 | } | ||||||
1520 | |||||||
1521 | ValueLatticeElement LocalResult; | ||||||
1522 | if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult)) | ||||||
1523 | // If we couldn't constrain the value on the edge, LocalResult doesn't | ||||||
1524 | // provide any information. | ||||||
1525 | LocalResult = ValueLatticeElement::getOverdefined(); | ||||||
1526 | |||||||
1527 | if (hasSingleValue(LocalResult)) { | ||||||
1528 | // Can't get any more precise here | ||||||
1529 | Result = LocalResult; | ||||||
1530 | return true; | ||||||
1531 | } | ||||||
1532 | |||||||
1533 | if (!hasBlockValue(Val, BBFrom)) { | ||||||
1534 | if (pushBlockValue(std::make_pair(BBFrom, Val))) | ||||||
1535 | return false; | ||||||
1536 | // No new information. | ||||||
1537 | Result = LocalResult; | ||||||
1538 | return true; | ||||||
1539 | } | ||||||
1540 | |||||||
1541 | // Try to intersect ranges of the BB and the constraint on the edge. | ||||||
1542 | ValueLatticeElement InBlock = getBlockValue(Val, BBFrom); | ||||||
1543 | intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, | ||||||
1544 | BBFrom->getTerminator()); | ||||||
1545 | // We can use the context instruction (generically the ultimate instruction | ||||||
1546 | // the calling pass is trying to simplify) here, even though the result of | ||||||
1547 | // this function is generally cached when called from the solve* functions | ||||||
1548 | // (and that cached result might be used with queries using a different | ||||||
1549 | // context instruction), because when this function is called from the solve* | ||||||
1550 | // functions, the context instruction is not provided. When called from | ||||||
1551 | // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, | ||||||
1552 | // but then the result is not cached. | ||||||
1553 | intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); | ||||||
1554 | |||||||
1555 | Result = intersect(LocalResult, InBlock); | ||||||
1556 | return true; | ||||||
1557 | } | ||||||
1558 | |||||||
1559 | ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, | ||||||
1560 | Instruction *CxtI) { | ||||||
1561 | LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting block end value " << *V << " at '" << BB->getName() << "'\n"; } } while (false) | ||||||
1562 | << BB->getName() << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting block end value " << *V << " at '" << BB->getName() << "'\n"; } } while (false); | ||||||
1563 | |||||||
1564 | assert(BlockValueStack.empty() && BlockValueSet.empty())((BlockValueStack.empty() && BlockValueSet.empty()) ? static_cast<void> (0) : __assert_fail ("BlockValueStack.empty() && BlockValueSet.empty()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1564, __PRETTY_FUNCTION__)); | ||||||
1565 | if (!hasBlockValue(V, BB)) { | ||||||
1566 | pushBlockValue(std::make_pair(BB, V)); | ||||||
1567 | solve(); | ||||||
1568 | } | ||||||
1569 | ValueLatticeElement Result = getBlockValue(V, BB); | ||||||
1570 | intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); | ||||||
1571 | |||||||
1572 | LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " Result = " << Result << "\n"; } } while (false); | ||||||
1573 | return Result; | ||||||
1574 | } | ||||||
1575 | |||||||
1576 | ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { | ||||||
1577 | LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() << "'\n" ; } } while (false) | ||||||
1578 | << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() << "'\n" ; } } while (false); | ||||||
1579 | |||||||
1580 | if (auto *C = dyn_cast<Constant>(V)) | ||||||
1581 | return ValueLatticeElement::get(C); | ||||||
1582 | |||||||
1583 | ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); | ||||||
1584 | if (auto *I = dyn_cast<Instruction>(V)) | ||||||
1585 | Result = getFromRangeMetadata(I); | ||||||
1586 | intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); | ||||||
1587 | |||||||
1588 | LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " Result = " << Result << "\n"; } } while (false); | ||||||
1589 | return Result; | ||||||
1590 | } | ||||||
1591 | |||||||
1592 | ValueLatticeElement LazyValueInfoImpl:: | ||||||
1593 | getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, | ||||||
1594 | Instruction *CxtI) { | ||||||
1595 | LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting edge value " << *V << " from '" << FromBB->getName() << "' to '" << ToBB->getName() << "'\n" ; } } while (false) | ||||||
1596 | << FromBB->getName() << "' to '" << ToBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting edge value " << *V << " from '" << FromBB->getName() << "' to '" << ToBB->getName() << "'\n" ; } } while (false) | ||||||
1597 | << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << "LVI Getting edge value " << *V << " from '" << FromBB->getName() << "' to '" << ToBB->getName() << "'\n" ; } } while (false); | ||||||
1598 | |||||||
1599 | ValueLatticeElement Result; | ||||||
1600 | if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) { | ||||||
1601 | solve(); | ||||||
1602 | bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI); | ||||||
1603 | (void)WasFastQuery; | ||||||
1604 | assert(WasFastQuery && "More work to do after problem solved?")((WasFastQuery && "More work to do after problem solved?" ) ? static_cast<void> (0) : __assert_fail ("WasFastQuery && \"More work to do after problem solved?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1604, __PRETTY_FUNCTION__)); | ||||||
1605 | } | ||||||
1606 | |||||||
1607 | LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("lazy-value-info")) { dbgs() << " Result = " << Result << "\n"; } } while (false); | ||||||
1608 | return Result; | ||||||
1609 | } | ||||||
1610 | |||||||
1611 | void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | ||||||
1612 | BasicBlock *NewSucc) { | ||||||
1613 | TheCache.threadEdgeImpl(OldSucc, NewSucc); | ||||||
1614 | } | ||||||
1615 | |||||||
1616 | //===----------------------------------------------------------------------===// | ||||||
1617 | // LazyValueInfo Impl | ||||||
1618 | //===----------------------------------------------------------------------===// | ||||||
1619 | |||||||
1620 | /// This lazily constructs the LazyValueInfoImpl. | ||||||
1621 | static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC, | ||||||
1622 | const DataLayout *DL, | ||||||
1623 | DominatorTree *DT = nullptr) { | ||||||
1624 | if (!PImpl) { | ||||||
1625 | assert(DL && "getCache() called with a null DataLayout")((DL && "getCache() called with a null DataLayout") ? static_cast<void> (0) : __assert_fail ("DL && \"getCache() called with a null DataLayout\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1625, __PRETTY_FUNCTION__)); | ||||||
1626 | PImpl = new LazyValueInfoImpl(AC, *DL, DT); | ||||||
1627 | } | ||||||
1628 | return *static_cast<LazyValueInfoImpl*>(PImpl); | ||||||
1629 | } | ||||||
1630 | |||||||
1631 | bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { | ||||||
1632 | Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | ||||||
1633 | const DataLayout &DL = F.getParent()->getDataLayout(); | ||||||
1634 | |||||||
1635 | DominatorTreeWrapperPass *DTWP = | ||||||
1636 | getAnalysisIfAvailable<DominatorTreeWrapperPass>(); | ||||||
1637 | Info.DT = DTWP ? &DTWP->getDomTree() : nullptr; | ||||||
1638 | Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | ||||||
1639 | |||||||
1640 | if (Info.PImpl) | ||||||
1641 | getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear(); | ||||||
1642 | |||||||
1643 | // Fully lazy. | ||||||
1644 | return false; | ||||||
1645 | } | ||||||
1646 | |||||||
1647 | void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | ||||||
1648 | AU.setPreservesAll(); | ||||||
1649 | AU.addRequired<AssumptionCacheTracker>(); | ||||||
1650 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | ||||||
1651 | } | ||||||
1652 | |||||||
1653 | LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } | ||||||
1654 | |||||||
1655 | LazyValueInfo::~LazyValueInfo() { releaseMemory(); } | ||||||
1656 | |||||||
1657 | void LazyValueInfo::releaseMemory() { | ||||||
1658 | // If the cache was allocated, free it. | ||||||
1659 | if (PImpl) { | ||||||
1660 | delete &getImpl(PImpl, AC, nullptr); | ||||||
1661 | PImpl = nullptr; | ||||||
1662 | } | ||||||
1663 | } | ||||||
1664 | |||||||
1665 | bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, | ||||||
1666 | FunctionAnalysisManager::Invalidator &Inv) { | ||||||
1667 | // We need to invalidate if we have either failed to preserve this analyses | ||||||
1668 | // result directly or if any of its dependencies have been invalidated. | ||||||
1669 | auto PAC = PA.getChecker<LazyValueAnalysis>(); | ||||||
1670 | if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || | ||||||
1671 | (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA))) | ||||||
1672 | return true; | ||||||
1673 | |||||||
1674 | return false; | ||||||
1675 | } | ||||||
1676 | |||||||
1677 | void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } | ||||||
1678 | |||||||
1679 | LazyValueInfo LazyValueAnalysis::run(Function &F, | ||||||
1680 | FunctionAnalysisManager &FAM) { | ||||||
1681 | auto &AC = FAM.getResult<AssumptionAnalysis>(F); | ||||||
1682 | auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); | ||||||
1683 | auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); | ||||||
1684 | |||||||
1685 | return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT); | ||||||
1686 | } | ||||||
1687 | |||||||
1688 | /// Returns true if we can statically tell that this value will never be a | ||||||
1689 | /// "useful" constant. In practice, this means we've got something like an | ||||||
1690 | /// alloca or a malloc call for which a comparison against a constant can | ||||||
1691 | /// only be guarding dead code. Note that we are potentially giving up some | ||||||
1692 | /// precision in dead code (a constant result) in favour of avoiding a | ||||||
1693 | /// expensive search for a easily answered common query. | ||||||
1694 | static bool isKnownNonConstant(Value *V) { | ||||||
1695 | V = V->stripPointerCasts(); | ||||||
1696 | // The return val of alloc cannot be a Constant. | ||||||
1697 | if (isa<AllocaInst>(V)) | ||||||
1698 | return true; | ||||||
1699 | return false; | ||||||
1700 | } | ||||||
1701 | |||||||
1702 | Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB, | ||||||
1703 | Instruction *CxtI) { | ||||||
1704 | // Bail out early if V is known not to be a Constant. | ||||||
1705 | if (isKnownNonConstant(V)) | ||||||
1706 | return nullptr; | ||||||
1707 | |||||||
1708 | const DataLayout &DL = BB->getModule()->getDataLayout(); | ||||||
1709 | ValueLatticeElement Result = | ||||||
1710 | getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); | ||||||
1711 | |||||||
1712 | if (Result.isConstant()) | ||||||
1713 | return Result.getConstant(); | ||||||
1714 | if (Result.isConstantRange()) { | ||||||
1715 | const ConstantRange &CR = Result.getConstantRange(); | ||||||
1716 | if (const APInt *SingleVal = CR.getSingleElement()) | ||||||
1717 | return ConstantInt::get(V->getContext(), *SingleVal); | ||||||
1718 | } | ||||||
1719 | return nullptr; | ||||||
1720 | } | ||||||
1721 | |||||||
1722 | ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB, | ||||||
1723 | Instruction *CxtI) { | ||||||
1724 | assert(V->getType()->isIntegerTy())((V->getType()->isIntegerTy()) ? static_cast<void> (0) : __assert_fail ("V->getType()->isIntegerTy()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1724, __PRETTY_FUNCTION__)); | ||||||
1725 | unsigned Width = V->getType()->getIntegerBitWidth(); | ||||||
1726 | const DataLayout &DL = BB->getModule()->getDataLayout(); | ||||||
1727 | ValueLatticeElement Result = | ||||||
1728 | getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI); | ||||||
1729 | if (Result.isUndefined()) | ||||||
1730 | return ConstantRange::getEmpty(Width); | ||||||
1731 | if (Result.isConstantRange()) | ||||||
1732 | return Result.getConstantRange(); | ||||||
1733 | // We represent ConstantInt constants as constant ranges but other kinds | ||||||
1734 | // of integer constants, i.e. ConstantExpr will be tagged as constants | ||||||
1735 | assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&((!(Result.isConstant() && isa<ConstantInt>(Result .getConstant())) && "ConstantInt value must be represented as constantrange" ) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1736, __PRETTY_FUNCTION__)) | ||||||
1736 | "ConstantInt value must be represented as constantrange")((!(Result.isConstant() && isa<ConstantInt>(Result .getConstant())) && "ConstantInt value must be represented as constantrange" ) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1736, __PRETTY_FUNCTION__)); | ||||||
1737 | return ConstantRange::getFull(Width); | ||||||
1738 | } | ||||||
1739 | |||||||
1740 | /// Determine whether the specified value is known to be a | ||||||
1741 | /// constant on the specified edge. Return null if not. | ||||||
1742 | Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, | ||||||
1743 | BasicBlock *ToBB, | ||||||
1744 | Instruction *CxtI) { | ||||||
1745 | const DataLayout &DL = FromBB->getModule()->getDataLayout(); | ||||||
1746 | ValueLatticeElement Result = | ||||||
1747 | getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); | ||||||
1748 | |||||||
1749 | if (Result.isConstant()) | ||||||
1750 | return Result.getConstant(); | ||||||
1751 | if (Result.isConstantRange()) { | ||||||
1752 | const ConstantRange &CR = Result.getConstantRange(); | ||||||
1753 | if (const APInt *SingleVal = CR.getSingleElement()) | ||||||
1754 | return ConstantInt::get(V->getContext(), *SingleVal); | ||||||
1755 | } | ||||||
1756 | return nullptr; | ||||||
1757 | } | ||||||
1758 | |||||||
1759 | ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, | ||||||
1760 | BasicBlock *FromBB, | ||||||
1761 | BasicBlock *ToBB, | ||||||
1762 | Instruction *CxtI) { | ||||||
1763 | unsigned Width = V->getType()->getIntegerBitWidth(); | ||||||
1764 | const DataLayout &DL = FromBB->getModule()->getDataLayout(); | ||||||
1765 | ValueLatticeElement Result = | ||||||
1766 | getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); | ||||||
| |||||||
1767 | |||||||
1768 | if (Result.isUndefined()) | ||||||
1769 | return ConstantRange::getEmpty(Width); | ||||||
1770 | if (Result.isConstantRange()) | ||||||
1771 | return Result.getConstantRange(); | ||||||
1772 | // We represent ConstantInt constants as constant ranges but other kinds | ||||||
1773 | // of integer constants, i.e. ConstantExpr will be tagged as constants | ||||||
1774 | assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&((!(Result.isConstant() && isa<ConstantInt>(Result .getConstant())) && "ConstantInt value must be represented as constantrange" ) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1775, __PRETTY_FUNCTION__)) | ||||||
1775 | "ConstantInt value must be represented as constantrange")((!(Result.isConstant() && isa<ConstantInt>(Result .getConstant())) && "ConstantInt value must be represented as constantrange" ) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/lib/Analysis/LazyValueInfo.cpp" , 1775, __PRETTY_FUNCTION__)); | ||||||
1776 | return ConstantRange::getFull(Width); | ||||||
1777 | } | ||||||
1778 | |||||||
1779 | static LazyValueInfo::Tristate | ||||||
1780 | getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, | ||||||
1781 | const DataLayout &DL, TargetLibraryInfo *TLI) { | ||||||
1782 | // If we know the value is a constant, evaluate the conditional. | ||||||
1783 | Constant *Res = nullptr; | ||||||
1784 | if (Val.isConstant()) { | ||||||
1785 | Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI); | ||||||
1786 | if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res)) | ||||||
1787 | return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; | ||||||
1788 | return LazyValueInfo::Unknown; | ||||||
1789 | } | ||||||
1790 | |||||||
1791 | if (Val.isConstantRange()) { | ||||||
1792 | ConstantInt *CI = dyn_cast<ConstantInt>(C); | ||||||
1793 | if (!CI) return LazyValueInfo::Unknown; | ||||||
1794 | |||||||
1795 | const ConstantRange &CR = Val.getConstantRange(); | ||||||
1796 | if (Pred == ICmpInst::ICMP_EQ) { | ||||||
1797 | if (!CR.contains(CI->getValue())) | ||||||
1798 | return LazyValueInfo::False; | ||||||
1799 | |||||||
1800 | if (CR.isSingleElement()) | ||||||
1801 | return LazyValueInfo::True; | ||||||
1802 | } else if (Pred == ICmpInst::ICMP_NE) { | ||||||
1803 | if (!CR.contains(CI->getValue())) | ||||||
1804 | return LazyValueInfo::True; | ||||||
1805 | |||||||
1806 | if (CR.isSingleElement()) | ||||||
1807 | return LazyValueInfo::False; | ||||||
1808 | } else { | ||||||
1809 | // Handle more complex predicates. | ||||||
1810 | ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( | ||||||
1811 | (ICmpInst::Predicate)Pred, CI->getValue()); | ||||||
1812 | if (TrueValues.contains(CR)) | ||||||
1813 | return LazyValueInfo::True; | ||||||
1814 | if (TrueValues.inverse().contains(CR)) | ||||||
1815 | return LazyValueInfo::False; | ||||||
1816 | } | ||||||
1817 | return LazyValueInfo::Unknown; | ||||||
1818 | } | ||||||
1819 | |||||||
1820 | if (Val.isNotConstant()) { | ||||||
1821 | // If this is an equality comparison, we can try to fold it knowing that | ||||||
1822 | // "V != C1". | ||||||
1823 | if (Pred == ICmpInst::ICMP_EQ) { | ||||||
1824 | // !C1 == C -> false iff C1 == C. | ||||||
1825 | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | ||||||
1826 | Val.getNotConstant(), C, DL, | ||||||
1827 | TLI); | ||||||
1828 | if (Res->isNullValue()) | ||||||
1829 | return LazyValueInfo::False; | ||||||
1830 | } else if (Pred == ICmpInst::ICMP_NE) { | ||||||
1831 | // !C1 != C -> true iff C1 == C. | ||||||
1832 | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, | ||||||
1833 | Val.getNotConstant(), C, DL, | ||||||
1834 | TLI); | ||||||
1835 | if (Res->isNullValue()) | ||||||
1836 | return LazyValueInfo::True; | ||||||
1837 | } | ||||||
1838 | return LazyValueInfo::Unknown; | ||||||
1839 | } | ||||||
1840 | |||||||
1841 | return LazyValueInfo::Unknown; | ||||||
1842 | } | ||||||
1843 | |||||||
1844 | /// Determine whether the specified value comparison with a constant is known to | ||||||
1845 | /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. | ||||||
1846 | LazyValueInfo::Tristate | ||||||
1847 | LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, | ||||||
1848 | BasicBlock *FromBB, BasicBlock *ToBB, | ||||||
1849 | Instruction *CxtI) { | ||||||
1850 | const DataLayout &DL = FromBB->getModule()->getDataLayout(); | ||||||
1851 | ValueLatticeElement Result = | ||||||
1852 | getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI); | ||||||
1853 | |||||||
1854 | return getPredicateResult(Pred, C, Result, DL, TLI); | ||||||
1855 | } | ||||||
1856 | |||||||
1857 | LazyValueInfo::Tristate | ||||||
1858 | LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, | ||||||
1859 | Instruction *CxtI) { | ||||||
1860 | // Is or is not NonNull are common predicates being queried. If | ||||||
1861 | // isKnownNonZero can tell us the result of the predicate, we can | ||||||
1862 | // return it quickly. But this is only a fastpath, and falling | ||||||
1863 | // through would still be correct. | ||||||
1864 | const DataLayout &DL = CxtI->getModule()->getDataLayout(); | ||||||
1865 | if (V->getType()->isPointerTy() && C->isNullValue() && | ||||||
1866 | isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { | ||||||
1867 | if (Pred == ICmpInst::ICMP_EQ) | ||||||
1868 | return LazyValueInfo::False; | ||||||
1869 | else if (Pred == ICmpInst::ICMP_NE) | ||||||
1870 | return LazyValueInfo::True; | ||||||
1871 | } | ||||||
1872 | ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI); | ||||||
1873 | Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI); | ||||||
1874 | if (Ret != Unknown) | ||||||
1875 | return Ret; | ||||||
1876 | |||||||
1877 | // Note: The following bit of code is somewhat distinct from the rest of LVI; | ||||||
1878 | // LVI as a whole tries to compute a lattice value which is conservatively | ||||||
1879 | // correct at a given location. In this case, we have a predicate which we | ||||||
1880 | // weren't able to prove about the merged result, and we're pushing that | ||||||
1881 | // predicate back along each incoming edge to see if we can prove it | ||||||
1882 | // separately for each input. As a motivating example, consider: | ||||||
1883 | // bb1: | ||||||
1884 | // %v1 = ... ; constantrange<1, 5> | ||||||
1885 | // br label %merge | ||||||
1886 | // bb2: | ||||||
1887 | // %v2 = ... ; constantrange<10, 20> | ||||||
1888 | // br label %merge | ||||||
1889 | // merge: | ||||||
1890 | // %phi = phi [%v1, %v2] ; constantrange<1,20> | ||||||
1891 | // %pred = icmp eq i32 %phi, 8 | ||||||
1892 | // We can't tell from the lattice value for '%phi' that '%pred' is false | ||||||
1893 | // along each path, but by checking the predicate over each input separately, | ||||||
1894 | // we can. | ||||||
1895 | // We limit the search to one step backwards from the current BB and value. | ||||||
1896 | // We could consider extending this to search further backwards through the | ||||||
1897 | // CFG and/or value graph, but there are non-obvious compile time vs quality | ||||||
1898 | // tradeoffs. | ||||||
1899 | if (CxtI) { | ||||||
1900 | BasicBlock *BB = CxtI->getParent(); | ||||||
1901 | |||||||
1902 | // Function entry or an unreachable block. Bail to avoid confusing | ||||||
1903 | // analysis below. | ||||||
1904 | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); | ||||||
1905 | if (PI == PE) | ||||||
1906 | return Unknown; | ||||||
1907 | |||||||
1908 | // If V is a PHI node in the same block as the context, we need to ask | ||||||
1909 | // questions about the predicate as applied to the incoming value along | ||||||
1910 | // each edge. This is useful for eliminating cases where the predicate is | ||||||
1911 | // known along all incoming edges. | ||||||
1912 | if (auto *PHI = dyn_cast<PHINode>(V)) | ||||||
1913 | if (PHI->getParent() == BB) { | ||||||
1914 | Tristate Baseline = Unknown; | ||||||
1915 | for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { | ||||||
1916 | Value *Incoming = PHI->getIncomingValue(i); | ||||||
1917 | BasicBlock *PredBB = PHI->getIncomingBlock(i); | ||||||
1918 | // Note that PredBB may be BB itself. | ||||||
1919 | Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, | ||||||
1920 | CxtI); | ||||||
1921 | |||||||
1922 | // Keep going as long as we've seen a consistent known result for | ||||||
1923 | // all inputs. | ||||||
1924 | Baseline = (i == 0) ? Result /* First iteration */ | ||||||
1925 | : (Baseline == Result ? Baseline : Unknown); /* All others */ | ||||||
1926 | if (Baseline == Unknown) | ||||||
1927 | break; | ||||||
1928 | } | ||||||
1929 | if (Baseline != Unknown) | ||||||
1930 | return Baseline; | ||||||
1931 | } | ||||||
1932 | |||||||
1933 | // For a comparison where the V is outside this block, it's possible | ||||||
1934 | // that we've branched on it before. Look to see if the value is known | ||||||
1935 | // on all incoming edges. | ||||||
1936 | if (!isa<Instruction>(V) || | ||||||
1937 | cast<Instruction>(V)->getParent() != BB) { | ||||||
1938 | // For predecessor edge, determine if the comparison is true or false | ||||||
1939 | // on that edge. If they're all true or all false, we can conclude | ||||||
1940 | // the value of the comparison in this block. | ||||||
1941 | Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | ||||||
1942 | if (Baseline != Unknown) { | ||||||
1943 | // Check that all remaining incoming values match the first one. | ||||||
1944 | while (++PI != PE) { | ||||||
1945 | Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); | ||||||
1946 | if (Ret != Baseline) break; | ||||||
1947 | } | ||||||
1948 | // If we terminated early, then one of the values didn't match. | ||||||
1949 | if (PI == PE) { | ||||||
1950 | return Baseline; | ||||||
1951 | } | ||||||
1952 | } | ||||||
1953 | } | ||||||
1954 | } | ||||||
1955 | return Unknown; | ||||||
1956 | } | ||||||
1957 | |||||||
1958 | void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, | ||||||
1959 | BasicBlock *NewSucc) { | ||||||
1960 | if (PImpl) { | ||||||
1961 | const DataLayout &DL = PredBB->getModule()->getDataLayout(); | ||||||
1962 | getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc); | ||||||
1963 | } | ||||||
1964 | } | ||||||
1965 | |||||||
1966 | void LazyValueInfo::eraseBlock(BasicBlock *BB) { | ||||||
1967 | if (PImpl) { | ||||||
1968 | const DataLayout &DL = BB->getModule()->getDataLayout(); | ||||||
1969 | getImpl(PImpl, AC, &DL, DT).eraseBlock(BB); | ||||||
1970 | } | ||||||
1971 | } | ||||||
1972 | |||||||
1973 | |||||||
1974 | void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { | ||||||
1975 | if (PImpl) { | ||||||
1976 | getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS); | ||||||
1977 | } | ||||||
1978 | } | ||||||
1979 | |||||||
1980 | void LazyValueInfo::disableDT() { | ||||||
1981 | if (PImpl) | ||||||
1982 | getImpl(PImpl, AC, DL, DT).disableDT(); | ||||||
1983 | } | ||||||
1984 | |||||||
1985 | void LazyValueInfo::enableDT() { | ||||||
1986 | if (PImpl) | ||||||
1987 | getImpl(PImpl, AC, DL, DT).enableDT(); | ||||||
1988 | } | ||||||
1989 | |||||||
1990 | // Print the LVI for the function arguments at the start of each basic block. | ||||||
1991 | void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( | ||||||
1992 | const BasicBlock *BB, formatted_raw_ostream &OS) { | ||||||
1993 | // Find if there are latticevalues defined for arguments of the function. | ||||||
1994 | auto *F = BB->getParent(); | ||||||
1995 | for (auto &Arg : F->args()) { | ||||||
1996 | ValueLatticeElement Result = LVIImpl->getValueInBlock( | ||||||
1997 | const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); | ||||||
1998 | if (Result.isUndefined()) | ||||||
1999 | continue; | ||||||
2000 | OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; | ||||||
2001 | } | ||||||
2002 | } | ||||||
2003 | |||||||
2004 | // This function prints the LVI analysis for the instruction I at the beginning | ||||||
2005 | // of various basic blocks. It relies on calculated values that are stored in | ||||||
2006 | // the LazyValueInfoCache, and in the absence of cached values, recalculate the | ||||||
2007 | // LazyValueInfo for `I`, and print that info. | ||||||
2008 | void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( | ||||||
2009 | const Instruction *I, formatted_raw_ostream &OS) { | ||||||
2010 | |||||||
2011 | auto *ParentBB = I->getParent(); | ||||||
2012 | SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; | ||||||
2013 | // We can generate (solve) LVI values only for blocks that are dominated by | ||||||
2014 | // the I's parent. However, to avoid generating LVI for all dominating blocks, | ||||||
2015 | // that contain redundant/uninteresting information, we print LVI for | ||||||
2016 | // blocks that may use this LVI information (such as immediate successor | ||||||
2017 | // blocks, and blocks that contain uses of `I`). | ||||||
2018 | auto printResult = [&](const BasicBlock *BB) { | ||||||
2019 | if (!BlocksContainingLVI.insert(BB).second) | ||||||
2020 | return; | ||||||
2021 | ValueLatticeElement Result = LVIImpl->getValueInBlock( | ||||||
2022 | const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); | ||||||
2023 | OS << "; LatticeVal for: '" << *I << "' in BB: '"; | ||||||
2024 | BB->printAsOperand(OS, false); | ||||||
2025 | OS << "' is: " << Result << "\n"; | ||||||
2026 | }; | ||||||
2027 | |||||||
2028 | printResult(ParentBB); | ||||||
2029 | // Print the LVI analysis results for the immediate successor blocks, that | ||||||
2030 | // are dominated by `ParentBB`. | ||||||
2031 | for (auto *BBSucc : successors(ParentBB)) | ||||||
2032 | if (DT.dominates(ParentBB, BBSucc)) | ||||||
2033 | printResult(BBSucc); | ||||||
2034 | |||||||
2035 | // Print LVI in blocks where `I` is used. | ||||||
2036 | for (auto *U : I->users()) | ||||||
2037 | if (auto *UseI = dyn_cast<Instruction>(U)) | ||||||
2038 | if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) | ||||||
2039 | printResult(UseI->getParent()); | ||||||
2040 | |||||||
2041 | } | ||||||
2042 | |||||||
2043 | namespace { | ||||||
2044 | // Printer class for LazyValueInfo results. | ||||||
2045 | class LazyValueInfoPrinter : public FunctionPass { | ||||||
2046 | public: | ||||||
2047 | static char ID; // Pass identification, replacement for typeid | ||||||
2048 | LazyValueInfoPrinter() : FunctionPass(ID) { | ||||||
2049 | initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry()); | ||||||
2050 | } | ||||||
2051 | |||||||
2052 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||||
2053 | AU.setPreservesAll(); | ||||||
2054 | AU.addRequired<LazyValueInfoWrapperPass>(); | ||||||
2055 | AU.addRequired<DominatorTreeWrapperPass>(); | ||||||
2056 | } | ||||||
2057 | |||||||
2058 | // Get the mandatory dominator tree analysis and pass this in to the | ||||||
2059 | // LVIPrinter. We cannot rely on the LVI's DT, since it's optional. | ||||||
2060 | bool runOnFunction(Function &F) override { | ||||||
2061 | dbgs() << "LVI for function '" << F.getName() << "':\n"; | ||||||
2062 | auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI(); | ||||||
2063 | auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | ||||||
2064 | LVI.printLVI(F, DTree, dbgs()); | ||||||
2065 | return false; | ||||||
2066 | } | ||||||
2067 | }; | ||||||
2068 | } | ||||||
2069 | |||||||
2070 | char LazyValueInfoPrinter::ID = 0; | ||||||
2071 | INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",static void *initializeLazyValueInfoPrinterPassOnce(PassRegistry &Registry) { | ||||||
2072 | "Lazy Value Info Printer Pass", false, false)static void *initializeLazyValueInfoPrinterPassOnce(PassRegistry &Registry) { | ||||||
2073 | INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)initializeLazyValueInfoWrapperPassPass(Registry); | ||||||
2074 | INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",PassInfo *PI = new PassInfo( "Lazy Value Info Printer Pass", "print-lazy-value-info" , &LazyValueInfoPrinter::ID, PassInfo::NormalCtor_t(callDefaultCtor <LazyValueInfoPrinter>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoPrinterPassFlag ; void llvm::initializeLazyValueInfoPrinterPass(PassRegistry & Registry) { llvm::call_once(InitializeLazyValueInfoPrinterPassFlag , initializeLazyValueInfoPrinterPassOnce, std::ref(Registry)) ; } | ||||||
2075 | "Lazy Value Info Printer Pass", false, false)PassInfo *PI = new PassInfo( "Lazy Value Info Printer Pass", "print-lazy-value-info" , &LazyValueInfoPrinter::ID, PassInfo::NormalCtor_t(callDefaultCtor <LazyValueInfoPrinter>), false, false); Registry.registerPass (*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoPrinterPassFlag ; void llvm::initializeLazyValueInfoPrinterPass(PassRegistry & Registry) { llvm::call_once(InitializeLazyValueInfoPrinterPassFlag , initializeLazyValueInfoPrinterPassOnce, std::ref(Registry)) ; } |
1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file exposes the class definitions of all of the subclasses of the |
10 | // Instruction class. This is meant to be an easy way to get access to all |
11 | // instruction subclasses. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #ifndef LLVM_IR_INSTRUCTIONS_H |
16 | #define LLVM_IR_INSTRUCTIONS_H |
17 | |
18 | #include "llvm/ADT/ArrayRef.h" |
19 | #include "llvm/ADT/None.h" |
20 | #include "llvm/ADT/STLExtras.h" |
21 | #include "llvm/ADT/SmallVector.h" |
22 | #include "llvm/ADT/StringRef.h" |
23 | #include "llvm/ADT/Twine.h" |
24 | #include "llvm/ADT/iterator.h" |
25 | #include "llvm/ADT/iterator_range.h" |
26 | #include "llvm/IR/Attributes.h" |
27 | #include "llvm/IR/BasicBlock.h" |
28 | #include "llvm/IR/CallingConv.h" |
29 | #include "llvm/IR/Constant.h" |
30 | #include "llvm/IR/DerivedTypes.h" |
31 | #include "llvm/IR/Function.h" |
32 | #include "llvm/IR/InstrTypes.h" |
33 | #include "llvm/IR/Instruction.h" |
34 | #include "llvm/IR/OperandTraits.h" |
35 | #include "llvm/IR/Type.h" |
36 | #include "llvm/IR/Use.h" |
37 | #include "llvm/IR/User.h" |
38 | #include "llvm/IR/Value.h" |
39 | #include "llvm/Support/AtomicOrdering.h" |
40 | #include "llvm/Support/Casting.h" |
41 | #include "llvm/Support/ErrorHandling.h" |
42 | #include <cassert> |
43 | #include <cstddef> |
44 | #include <cstdint> |
45 | #include <iterator> |
46 | |
47 | namespace llvm { |
48 | |
49 | class APInt; |
50 | class ConstantInt; |
51 | class DataLayout; |
52 | class LLVMContext; |
53 | |
54 | //===----------------------------------------------------------------------===// |
55 | // AllocaInst Class |
56 | //===----------------------------------------------------------------------===// |
57 | |
58 | /// an instruction to allocate memory on the stack |
59 | class AllocaInst : public UnaryInstruction { |
60 | Type *AllocatedType; |
61 | |
62 | protected: |
63 | // Note: Instruction needs to be a friend here to call cloneImpl. |
64 | friend class Instruction; |
65 | |
66 | AllocaInst *cloneImpl() const; |
67 | |
68 | public: |
69 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, |
70 | Value *ArraySize = nullptr, |
71 | const Twine &Name = "", |
72 | Instruction *InsertBefore = nullptr); |
73 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
74 | const Twine &Name, BasicBlock *InsertAtEnd); |
75 | |
76 | AllocaInst(Type *Ty, unsigned AddrSpace, |
77 | const Twine &Name, Instruction *InsertBefore = nullptr); |
78 | AllocaInst(Type *Ty, unsigned AddrSpace, |
79 | const Twine &Name, BasicBlock *InsertAtEnd); |
80 | |
81 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, MaybeAlign Align, |
82 | const Twine &Name = "", Instruction *InsertBefore = nullptr); |
83 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, MaybeAlign Align, |
84 | const Twine &Name, BasicBlock *InsertAtEnd); |
85 | |
86 | /// Return true if there is an allocation size parameter to the allocation |
87 | /// instruction that is not 1. |
88 | bool isArrayAllocation() const; |
89 | |
90 | /// Get the number of elements allocated. For a simple allocation of a single |
91 | /// element, this will return a constant 1 value. |
92 | const Value *getArraySize() const { return getOperand(0); } |
93 | Value *getArraySize() { return getOperand(0); } |
94 | |
95 | /// Overload to return most specific pointer type. |
96 | PointerType *getType() const { |
97 | return cast<PointerType>(Instruction::getType()); |
98 | } |
99 | |
100 | /// Get allocation size in bits. Returns None if size can't be determined, |
101 | /// e.g. in case of a VLA. |
102 | Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const; |
103 | |
104 | /// Return the type that is being allocated by the instruction. |
105 | Type *getAllocatedType() const { return AllocatedType; } |
106 | /// for use only in special circumstances that need to generically |
107 | /// transform a whole instruction (eg: IR linking and vectorization). |
108 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } |
109 | |
110 | /// Return the alignment of the memory that is being allocated by the |
111 | /// instruction. |
112 | unsigned getAlignment() const { |
113 | if (const auto MA = decodeMaybeAlign(getSubclassDataFromInstruction() & 31)) |
114 | return MA->value(); |
115 | return 0; |
116 | } |
117 | void setAlignment(MaybeAlign Align); |
118 | |
119 | /// Return true if this alloca is in the entry block of the function and is a |
120 | /// constant size. If so, the code generator will fold it into the |
121 | /// prolog/epilog code, so it is basically free. |
122 | bool isStaticAlloca() const; |
123 | |
124 | /// Return true if this alloca is used as an inalloca argument to a call. Such |
125 | /// allocas are never considered static even if they are in the entry block. |
126 | bool isUsedWithInAlloca() const { |
127 | return getSubclassDataFromInstruction() & 32; |
128 | } |
129 | |
130 | /// Specify whether this alloca is used to represent the arguments to a call. |
131 | void setUsedWithInAlloca(bool V) { |
132 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) | |
133 | (V ? 32 : 0)); |
134 | } |
135 | |
136 | /// Return true if this alloca is used as a swifterror argument to a call. |
137 | bool isSwiftError() const { |
138 | return getSubclassDataFromInstruction() & 64; |
139 | } |
140 | |
141 | /// Specify whether this alloca is used to represent a swifterror. |
142 | void setSwiftError(bool V) { |
143 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) | |
144 | (V ? 64 : 0)); |
145 | } |
146 | |
147 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
148 | static bool classof(const Instruction *I) { |
149 | return (I->getOpcode() == Instruction::Alloca); |
150 | } |
151 | static bool classof(const Value *V) { |
152 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
153 | } |
154 | |
155 | private: |
156 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
157 | // method so that subclasses cannot accidentally use it. |
158 | void setInstructionSubclassData(unsigned short D) { |
159 | Instruction::setInstructionSubclassData(D); |
160 | } |
161 | }; |
162 | |
163 | //===----------------------------------------------------------------------===// |
164 | // LoadInst Class |
165 | //===----------------------------------------------------------------------===// |
166 | |
167 | /// An instruction for reading from memory. This uses the SubclassData field in |
168 | /// Value to store whether or not the load is volatile. |
169 | class LoadInst : public UnaryInstruction { |
170 | void AssertOK(); |
171 | |
172 | protected: |
173 | // Note: Instruction needs to be a friend here to call cloneImpl. |
174 | friend class Instruction; |
175 | |
176 | LoadInst *cloneImpl() const; |
177 | |
178 | public: |
179 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr = "", |
180 | Instruction *InsertBefore = nullptr); |
181 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); |
182 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
183 | Instruction *InsertBefore = nullptr); |
184 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
185 | BasicBlock *InsertAtEnd); |
186 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
187 | MaybeAlign Align, Instruction *InsertBefore = nullptr); |
188 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
189 | MaybeAlign Align, BasicBlock *InsertAtEnd); |
190 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
191 | MaybeAlign Align, AtomicOrdering Order, |
192 | SyncScope::ID SSID = SyncScope::System, |
193 | Instruction *InsertBefore = nullptr); |
194 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
195 | MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID, |
196 | BasicBlock *InsertAtEnd); |
197 | |
198 | // Deprecated [opaque pointer types] |
199 | explicit LoadInst(Value *Ptr, const Twine &NameStr = "", |
200 | Instruction *InsertBefore = nullptr) |
201 | : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, |
202 | InsertBefore) {} |
203 | LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd) |
204 | : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, |
205 | InsertAtEnd) {} |
206 | LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, |
207 | Instruction *InsertBefore = nullptr) |
208 | : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, |
209 | isVolatile, InsertBefore) {} |
210 | LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, |
211 | BasicBlock *InsertAtEnd) |
212 | : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, |
213 | isVolatile, InsertAtEnd) {} |
214 | LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align, |
215 | Instruction *InsertBefore = nullptr) |
216 | : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, |
217 | isVolatile, Align, InsertBefore) {} |
218 | LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align, |
219 | BasicBlock *InsertAtEnd) |
220 | : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, |
221 | isVolatile, Align, InsertAtEnd) {} |
222 | LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align, |
223 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
224 | Instruction *InsertBefore = nullptr) |
225 | : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, |
226 | isVolatile, Align, Order, SSID, InsertBefore) {} |
227 | LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align, |
228 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd) |
229 | : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr, |
230 | isVolatile, Align, Order, SSID, InsertAtEnd) {} |
231 | |
232 | /// Return true if this is a load from a volatile memory location. |
233 | bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } |
234 | |
235 | /// Specify whether this is a volatile load or not. |
236 | void setVolatile(bool V) { |
237 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | |
238 | (V ? 1 : 0)); |
239 | } |
240 | |
241 | /// Return the alignment of the access that is being performed. |
242 | unsigned getAlignment() const { |
243 | if (const auto MA = |
244 | decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31)) |
245 | return MA->value(); |
246 | return 0; |
247 | } |
248 | |
249 | void setAlignment(MaybeAlign Align); |
250 | |
251 | /// Returns the ordering constraint of this load instruction. |
252 | AtomicOrdering getOrdering() const { |
253 | return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); |
254 | } |
255 | |
256 | /// Sets the ordering constraint of this load instruction. May not be Release |
257 | /// or AcquireRelease. |
258 | void setOrdering(AtomicOrdering Ordering) { |
259 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | |
260 | ((unsigned)Ordering << 7)); |
261 | } |
262 | |
263 | /// Returns the synchronization scope ID of this load instruction. |
264 | SyncScope::ID getSyncScopeID() const { |
265 | return SSID; |
266 | } |
267 | |
268 | /// Sets the synchronization scope ID of this load instruction. |
269 | void setSyncScopeID(SyncScope::ID SSID) { |
270 | this->SSID = SSID; |
271 | } |
272 | |
273 | /// Sets the ordering constraint and the synchronization scope ID of this load |
274 | /// instruction. |
275 | void setAtomic(AtomicOrdering Ordering, |
276 | SyncScope::ID SSID = SyncScope::System) { |
277 | setOrdering(Ordering); |
278 | setSyncScopeID(SSID); |
279 | } |
280 | |
281 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
282 | |
283 | bool isUnordered() const { |
284 | return (getOrdering() == AtomicOrdering::NotAtomic || |
285 | getOrdering() == AtomicOrdering::Unordered) && |
286 | !isVolatile(); |
287 | } |
288 | |
289 | Value *getPointerOperand() { return getOperand(0); } |
290 | const Value *getPointerOperand() const { return getOperand(0); } |
291 | static unsigned getPointerOperandIndex() { return 0U; } |
292 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
293 | |
294 | /// Returns the address space of the pointer operand. |
295 | unsigned getPointerAddressSpace() const { |
296 | return getPointerOperandType()->getPointerAddressSpace(); |
297 | } |
298 | |
299 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
300 | static bool classof(const Instruction *I) { |
301 | return I->getOpcode() == Instruction::Load; |
302 | } |
303 | static bool classof(const Value *V) { |
304 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
305 | } |
306 | |
307 | private: |
308 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
309 | // method so that subclasses cannot accidentally use it. |
310 | void setInstructionSubclassData(unsigned short D) { |
311 | Instruction::setInstructionSubclassData(D); |
312 | } |
313 | |
314 | /// The synchronization scope ID of this load instruction. Not quite enough |
315 | /// room in SubClassData for everything, so synchronization scope ID gets its |
316 | /// own field. |
317 | SyncScope::ID SSID; |
318 | }; |
319 | |
320 | //===----------------------------------------------------------------------===// |
321 | // StoreInst Class |
322 | //===----------------------------------------------------------------------===// |
323 | |
324 | /// An instruction for storing to memory. |
325 | class StoreInst : public Instruction { |
326 | void AssertOK(); |
327 | |
328 | protected: |
329 | // Note: Instruction needs to be a friend here to call cloneImpl. |
330 | friend class Instruction; |
331 | |
332 | StoreInst *cloneImpl() const; |
333 | |
334 | public: |
335 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); |
336 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); |
337 | StoreInst(Value *Val, Value *Ptr, bool isVolatile = false, |
338 | Instruction *InsertBefore = nullptr); |
339 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); |
340 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align, |
341 | Instruction *InsertBefore = nullptr); |
342 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align, |
343 | BasicBlock *InsertAtEnd); |
344 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align, |
345 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
346 | Instruction *InsertBefore = nullptr); |
347 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align, |
348 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
349 | |
350 | // allocate space for exactly two operands |
351 | void *operator new(size_t s) { |
352 | return User::operator new(s, 2); |
353 | } |
354 | |
355 | /// Return true if this is a store to a volatile memory location. |
356 | bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } |
357 | |
358 | /// Specify whether this is a volatile store or not. |
359 | void setVolatile(bool V) { |
360 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | |
361 | (V ? 1 : 0)); |
362 | } |
363 | |
364 | /// Transparently provide more efficient getOperand methods. |
365 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
366 | |
367 | /// Return the alignment of the access that is being performed |
368 | unsigned getAlignment() const { |
369 | if (const auto MA = |
370 | decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31)) |
371 | return MA->value(); |
372 | return 0; |
373 | } |
374 | |
375 | void setAlignment(MaybeAlign Align); |
376 | |
377 | /// Returns the ordering constraint of this store instruction. |
378 | AtomicOrdering getOrdering() const { |
379 | return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); |
380 | } |
381 | |
382 | /// Sets the ordering constraint of this store instruction. May not be |
383 | /// Acquire or AcquireRelease. |
384 | void setOrdering(AtomicOrdering Ordering) { |
385 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | |
386 | ((unsigned)Ordering << 7)); |
387 | } |
388 | |
389 | /// Returns the synchronization scope ID of this store instruction. |
390 | SyncScope::ID getSyncScopeID() const { |
391 | return SSID; |
392 | } |
393 | |
394 | /// Sets the synchronization scope ID of this store instruction. |
395 | void setSyncScopeID(SyncScope::ID SSID) { |
396 | this->SSID = SSID; |
397 | } |
398 | |
399 | /// Sets the ordering constraint and the synchronization scope ID of this |
400 | /// store instruction. |
401 | void setAtomic(AtomicOrdering Ordering, |
402 | SyncScope::ID SSID = SyncScope::System) { |
403 | setOrdering(Ordering); |
404 | setSyncScopeID(SSID); |
405 | } |
406 | |
407 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
408 | |
409 | bool isUnordered() const { |
410 | return (getOrdering() == AtomicOrdering::NotAtomic || |
411 | getOrdering() == AtomicOrdering::Unordered) && |
412 | !isVolatile(); |
413 | } |
414 | |
415 | Value *getValueOperand() { return getOperand(0); } |
416 | const Value *getValueOperand() const { return getOperand(0); } |
417 | |
418 | Value *getPointerOperand() { return getOperand(1); } |
419 | const Value *getPointerOperand() const { return getOperand(1); } |
420 | static unsigned getPointerOperandIndex() { return 1U; } |
421 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
422 | |
423 | /// Returns the address space of the pointer operand. |
424 | unsigned getPointerAddressSpace() const { |
425 | return getPointerOperandType()->getPointerAddressSpace(); |
426 | } |
427 | |
428 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
429 | static bool classof(const Instruction *I) { |
430 | return I->getOpcode() == Instruction::Store; |
431 | } |
432 | static bool classof(const Value *V) { |
433 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
434 | } |
435 | |
436 | private: |
437 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
438 | // method so that subclasses cannot accidentally use it. |
439 | void setInstructionSubclassData(unsigned short D) { |
440 | Instruction::setInstructionSubclassData(D); |
441 | } |
442 | |
443 | /// The synchronization scope ID of this store instruction. Not quite enough |
444 | /// room in SubClassData for everything, so synchronization scope ID gets its |
445 | /// own field. |
446 | SyncScope::ID SSID; |
447 | }; |
448 | |
449 | template <> |
450 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { |
451 | }; |
452 | |
453 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { ((i_nocapture < OperandTraits <StoreInst>::operands(this) && "getOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 453, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst *>(this))[i_nocapture].get()); } void StoreInst::setOperand (unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture < OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 453, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>:: op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst ::getNumOperands() const { return OperandTraits<StoreInst> ::operands(this); } template <int Idx_nocapture> Use & StoreInst::Op() { return this->OpFrom<Idx_nocapture> (this); } template <int Idx_nocapture> const Use &StoreInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
454 | |
455 | //===----------------------------------------------------------------------===// |
456 | // FenceInst Class |
457 | //===----------------------------------------------------------------------===// |
458 | |
459 | /// An instruction for ordering other memory operations. |
460 | class FenceInst : public Instruction { |
461 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); |
462 | |
463 | protected: |
464 | // Note: Instruction needs to be a friend here to call cloneImpl. |
465 | friend class Instruction; |
466 | |
467 | FenceInst *cloneImpl() const; |
468 | |
469 | public: |
470 | // Ordering may only be Acquire, Release, AcquireRelease, or |
471 | // SequentiallyConsistent. |
472 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
473 | SyncScope::ID SSID = SyncScope::System, |
474 | Instruction *InsertBefore = nullptr); |
475 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, |
476 | BasicBlock *InsertAtEnd); |
477 | |
478 | // allocate space for exactly zero operands |
479 | void *operator new(size_t s) { |
480 | return User::operator new(s, 0); |
481 | } |
482 | |
483 | /// Returns the ordering constraint of this fence instruction. |
484 | AtomicOrdering getOrdering() const { |
485 | return AtomicOrdering(getSubclassDataFromInstruction() >> 1); |
486 | } |
487 | |
488 | /// Sets the ordering constraint of this fence instruction. May only be |
489 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. |
490 | void setOrdering(AtomicOrdering Ordering) { |
491 | setInstructionSubclassData((getSubclassDataFromInstruction() & 1) | |
492 | ((unsigned)Ordering << 1)); |
493 | } |
494 | |
495 | /// Returns the synchronization scope ID of this fence instruction. |
496 | SyncScope::ID getSyncScopeID() const { |
497 | return SSID; |
498 | } |
499 | |
500 | /// Sets the synchronization scope ID of this fence instruction. |
501 | void setSyncScopeID(SyncScope::ID SSID) { |
502 | this->SSID = SSID; |
503 | } |
504 | |
505 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
506 | static bool classof(const Instruction *I) { |
507 | return I->getOpcode() == Instruction::Fence; |
508 | } |
509 | static bool classof(const Value *V) { |
510 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
511 | } |
512 | |
513 | private: |
514 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
515 | // method so that subclasses cannot accidentally use it. |
516 | void setInstructionSubclassData(unsigned short D) { |
517 | Instruction::setInstructionSubclassData(D); |
518 | } |
519 | |
520 | /// The synchronization scope ID of this fence instruction. Not quite enough |
521 | /// room in SubClassData for everything, so synchronization scope ID gets its |
522 | /// own field. |
523 | SyncScope::ID SSID; |
524 | }; |
525 | |
526 | //===----------------------------------------------------------------------===// |
527 | // AtomicCmpXchgInst Class |
528 | //===----------------------------------------------------------------------===// |
529 | |
530 | /// An instruction that atomically checks whether a |
531 | /// specified value is in a memory location, and, if it is, stores a new value |
532 | /// there. The value returned by this instruction is a pair containing the |
533 | /// original value as first element, and an i1 indicating success (true) or |
534 | /// failure (false) as second element. |
535 | /// |
536 | class AtomicCmpXchgInst : public Instruction { |
537 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, |
538 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, |
539 | SyncScope::ID SSID); |
540 | |
541 | protected: |
542 | // Note: Instruction needs to be a friend here to call cloneImpl. |
543 | friend class Instruction; |
544 | |
545 | AtomicCmpXchgInst *cloneImpl() const; |
546 | |
547 | public: |
548 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, |
549 | AtomicOrdering SuccessOrdering, |
550 | AtomicOrdering FailureOrdering, |
551 | SyncScope::ID SSID, Instruction *InsertBefore = nullptr); |
552 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, |
553 | AtomicOrdering SuccessOrdering, |
554 | AtomicOrdering FailureOrdering, |
555 | SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
556 | |
557 | // allocate space for exactly three operands |
558 | void *operator new(size_t s) { |
559 | return User::operator new(s, 3); |
560 | } |
561 | |
562 | /// Return true if this is a cmpxchg from a volatile memory |
563 | /// location. |
564 | /// |
565 | bool isVolatile() const { |
566 | return getSubclassDataFromInstruction() & 1; |
567 | } |
568 | |
569 | /// Specify whether this is a volatile cmpxchg. |
570 | /// |
571 | void setVolatile(bool V) { |
572 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | |
573 | (unsigned)V); |
574 | } |
575 | |
576 | /// Return true if this cmpxchg may spuriously fail. |
577 | bool isWeak() const { |
578 | return getSubclassDataFromInstruction() & 0x100; |
579 | } |
580 | |
581 | void setWeak(bool IsWeak) { |
582 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) | |
583 | (IsWeak << 8)); |
584 | } |
585 | |
586 | /// Transparently provide more efficient getOperand methods. |
587 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
588 | |
589 | /// Returns the success ordering constraint of this cmpxchg instruction. |
590 | AtomicOrdering getSuccessOrdering() const { |
591 | return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7); |
592 | } |
593 | |
594 | /// Sets the success ordering constraint of this cmpxchg instruction. |
595 | void setSuccessOrdering(AtomicOrdering Ordering) { |
596 | assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 597, __PRETTY_FUNCTION__)) |
597 | "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 597, __PRETTY_FUNCTION__)); |
598 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) | |
599 | ((unsigned)Ordering << 2)); |
600 | } |
601 | |
602 | /// Returns the failure ordering constraint of this cmpxchg instruction. |
603 | AtomicOrdering getFailureOrdering() const { |
604 | return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7); |
605 | } |
606 | |
607 | /// Sets the failure ordering constraint of this cmpxchg instruction. |
608 | void setFailureOrdering(AtomicOrdering Ordering) { |
609 | assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 610, __PRETTY_FUNCTION__)) |
610 | "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 610, __PRETTY_FUNCTION__)); |
611 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) | |
612 | ((unsigned)Ordering << 5)); |
613 | } |
614 | |
615 | /// Returns the synchronization scope ID of this cmpxchg instruction. |
616 | SyncScope::ID getSyncScopeID() const { |
617 | return SSID; |
618 | } |
619 | |
620 | /// Sets the synchronization scope ID of this cmpxchg instruction. |
621 | void setSyncScopeID(SyncScope::ID SSID) { |
622 | this->SSID = SSID; |
623 | } |
624 | |
625 | Value *getPointerOperand() { return getOperand(0); } |
626 | const Value *getPointerOperand() const { return getOperand(0); } |
627 | static unsigned getPointerOperandIndex() { return 0U; } |
628 | |
629 | Value *getCompareOperand() { return getOperand(1); } |
630 | const Value *getCompareOperand() const { return getOperand(1); } |
631 | |
632 | Value *getNewValOperand() { return getOperand(2); } |
633 | const Value *getNewValOperand() const { return getOperand(2); } |
634 | |
635 | /// Returns the address space of the pointer operand. |
636 | unsigned getPointerAddressSpace() const { |
637 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
638 | } |
639 | |
640 | /// Returns the strongest permitted ordering on failure, given the |
641 | /// desired ordering on success. |
642 | /// |
643 | /// If the comparison in a cmpxchg operation fails, there is no atomic store |
644 | /// so release semantics cannot be provided. So this function drops explicit |
645 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent |
646 | /// operation would remain SequentiallyConsistent. |
647 | static AtomicOrdering |
648 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { |
649 | switch (SuccessOrdering) { |
650 | default: |
651 | llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 651); |
652 | case AtomicOrdering::Release: |
653 | case AtomicOrdering::Monotonic: |
654 | return AtomicOrdering::Monotonic; |
655 | case AtomicOrdering::AcquireRelease: |
656 | case AtomicOrdering::Acquire: |
657 | return AtomicOrdering::Acquire; |
658 | case AtomicOrdering::SequentiallyConsistent: |
659 | return AtomicOrdering::SequentiallyConsistent; |
660 | } |
661 | } |
662 | |
663 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
664 | static bool classof(const Instruction *I) { |
665 | return I->getOpcode() == Instruction::AtomicCmpXchg; |
666 | } |
667 | static bool classof(const Value *V) { |
668 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
669 | } |
670 | |
671 | private: |
672 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
673 | // method so that subclasses cannot accidentally use it. |
674 | void setInstructionSubclassData(unsigned short D) { |
675 | Instruction::setInstructionSubclassData(D); |
676 | } |
677 | |
678 | /// The synchronization scope ID of this cmpxchg instruction. Not quite |
679 | /// enough room in SubClassData for everything, so synchronization scope ID |
680 | /// gets its own field. |
681 | SyncScope::ID SSID; |
682 | }; |
683 | |
684 | template <> |
685 | struct OperandTraits<AtomicCmpXchgInst> : |
686 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { |
687 | }; |
688 | |
689 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst >::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 689, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast <AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst> ::operands(this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 689, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicCmpXchgInst::getNumOperands() const { return OperandTraits <AtomicCmpXchgInst>::operands(this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &AtomicCmpXchgInst::Op() const { return this ->OpFrom<Idx_nocapture>(this); } |
690 | |
691 | //===----------------------------------------------------------------------===// |
692 | // AtomicRMWInst Class |
693 | //===----------------------------------------------------------------------===// |
694 | |
695 | /// an instruction that atomically reads a memory location, |
696 | /// combines it with another value, and then stores the result back. Returns |
697 | /// the old value. |
698 | /// |
699 | class AtomicRMWInst : public Instruction { |
700 | protected: |
701 | // Note: Instruction needs to be a friend here to call cloneImpl. |
702 | friend class Instruction; |
703 | |
704 | AtomicRMWInst *cloneImpl() const; |
705 | |
706 | public: |
707 | /// This enumeration lists the possible modifications atomicrmw can make. In |
708 | /// the descriptions, 'p' is the pointer to the instruction's memory location, |
709 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the |
710 | /// instruction. These instructions always return 'old'. |
711 | enum BinOp { |
712 | /// *p = v |
713 | Xchg, |
714 | /// *p = old + v |
715 | Add, |
716 | /// *p = old - v |
717 | Sub, |
718 | /// *p = old & v |
719 | And, |
720 | /// *p = ~(old & v) |
721 | Nand, |
722 | /// *p = old | v |
723 | Or, |
724 | /// *p = old ^ v |
725 | Xor, |
726 | /// *p = old >signed v ? old : v |
727 | Max, |
728 | /// *p = old <signed v ? old : v |
729 | Min, |
730 | /// *p = old >unsigned v ? old : v |
731 | UMax, |
732 | /// *p = old <unsigned v ? old : v |
733 | UMin, |
734 | |
735 | /// *p = old + v |
736 | FAdd, |
737 | |
738 | /// *p = old - v |
739 | FSub, |
740 | |
741 | FIRST_BINOP = Xchg, |
742 | LAST_BINOP = FSub, |
743 | BAD_BINOP |
744 | }; |
745 | |
746 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, |
747 | AtomicOrdering Ordering, SyncScope::ID SSID, |
748 | Instruction *InsertBefore = nullptr); |
749 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, |
750 | AtomicOrdering Ordering, SyncScope::ID SSID, |
751 | BasicBlock *InsertAtEnd); |
752 | |
753 | // allocate space for exactly two operands |
754 | void *operator new(size_t s) { |
755 | return User::operator new(s, 2); |
756 | } |
757 | |
758 | BinOp getOperation() const { |
759 | return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5); |
760 | } |
761 | |
762 | static StringRef getOperationName(BinOp Op); |
763 | |
764 | static bool isFPOperation(BinOp Op) { |
765 | switch (Op) { |
766 | case AtomicRMWInst::FAdd: |
767 | case AtomicRMWInst::FSub: |
768 | return true; |
769 | default: |
770 | return false; |
771 | } |
772 | } |
773 | |
774 | void setOperation(BinOp Operation) { |
775 | unsigned short SubclassData = getSubclassDataFromInstruction(); |
776 | setInstructionSubclassData((SubclassData & 31) | |
777 | (Operation << 5)); |
778 | } |
779 | |
780 | /// Return true if this is a RMW on a volatile memory location. |
781 | /// |
782 | bool isVolatile() const { |
783 | return getSubclassDataFromInstruction() & 1; |
784 | } |
785 | |
786 | /// Specify whether this is a volatile RMW or not. |
787 | /// |
788 | void setVolatile(bool V) { |
789 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | |
790 | (unsigned)V); |
791 | } |
792 | |
793 | /// Transparently provide more efficient getOperand methods. |
794 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
795 | |
796 | /// Returns the ordering constraint of this rmw instruction. |
797 | AtomicOrdering getOrdering() const { |
798 | return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7); |
799 | } |
800 | |
801 | /// Sets the ordering constraint of this rmw instruction. |
802 | void setOrdering(AtomicOrdering Ordering) { |
803 | assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 804, __PRETTY_FUNCTION__)) |
804 | "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic." ) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 804, __PRETTY_FUNCTION__)); |
805 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) | |
806 | ((unsigned)Ordering << 2)); |
807 | } |
808 | |
809 | /// Returns the synchronization scope ID of this rmw instruction. |
810 | SyncScope::ID getSyncScopeID() const { |
811 | return SSID; |
812 | } |
813 | |
814 | /// Sets the synchronization scope ID of this rmw instruction. |
815 | void setSyncScopeID(SyncScope::ID SSID) { |
816 | this->SSID = SSID; |
817 | } |
818 | |
819 | Value *getPointerOperand() { return getOperand(0); } |
820 | const Value *getPointerOperand() const { return getOperand(0); } |
821 | static unsigned getPointerOperandIndex() { return 0U; } |
822 | |
823 | Value *getValOperand() { return getOperand(1); } |
824 | const Value *getValOperand() const { return getOperand(1); } |
825 | |
826 | /// Returns the address space of the pointer operand. |
827 | unsigned getPointerAddressSpace() const { |
828 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
829 | } |
830 | |
831 | bool isFloatingPointOperation() const { |
832 | return isFPOperation(getOperation()); |
833 | } |
834 | |
835 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
836 | static bool classof(const Instruction *I) { |
837 | return I->getOpcode() == Instruction::AtomicRMW; |
838 | } |
839 | static bool classof(const Value *V) { |
840 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
841 | } |
842 | |
843 | private: |
844 | void Init(BinOp Operation, Value *Ptr, Value *Val, |
845 | AtomicOrdering Ordering, SyncScope::ID SSID); |
846 | |
847 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
848 | // method so that subclasses cannot accidentally use it. |
849 | void setInstructionSubclassData(unsigned short D) { |
850 | Instruction::setInstructionSubclassData(D); |
851 | } |
852 | |
853 | /// The synchronization scope ID of this rmw instruction. Not quite enough |
854 | /// room in SubClassData for everything, so synchronization scope ID gets its |
855 | /// own field. |
856 | SyncScope::ID SSID; |
857 | }; |
858 | |
859 | template <> |
860 | struct OperandTraits<AtomicRMWInst> |
861 | : public FixedNumOperandTraits<AtomicRMWInst,2> { |
862 | }; |
863 | |
864 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { ((i_nocapture < OperandTraits <AtomicRMWInst>::operands(this) && "getOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 864, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<AtomicRMWInst>::op_begin(const_cast< AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( i_nocapture < OperandTraits<AtomicRMWInst>::operands (this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 864, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst> ::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst ::getNumOperands() const { return OperandTraits<AtomicRMWInst >::operands(this); } template <int Idx_nocapture> Use &AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
865 | |
866 | //===----------------------------------------------------------------------===// |
867 | // GetElementPtrInst Class |
868 | //===----------------------------------------------------------------------===// |
869 | |
870 | // checkGEPType - Simple wrapper function to give a better assertion failure |
871 | // message on bad indexes for a gep instruction. |
872 | // |
873 | inline Type *checkGEPType(Type *Ty) { |
874 | assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!" ) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 874, __PRETTY_FUNCTION__)); |
875 | return Ty; |
876 | } |
877 | |
878 | /// an instruction for type-safe pointer arithmetic to |
879 | /// access elements of arrays and structs |
880 | /// |
881 | class GetElementPtrInst : public Instruction { |
882 | Type *SourceElementType; |
883 | Type *ResultElementType; |
884 | |
885 | GetElementPtrInst(const GetElementPtrInst &GEPI); |
886 | |
887 | /// Constructors - Create a getelementptr instruction with a base pointer an |
888 | /// list of indices. The first ctor can optionally insert before an existing |
889 | /// instruction, the second appends the new instruction to the specified |
890 | /// BasicBlock. |
891 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
892 | ArrayRef<Value *> IdxList, unsigned Values, |
893 | const Twine &NameStr, Instruction *InsertBefore); |
894 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
895 | ArrayRef<Value *> IdxList, unsigned Values, |
896 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
897 | |
898 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); |
899 | |
900 | protected: |
901 | // Note: Instruction needs to be a friend here to call cloneImpl. |
902 | friend class Instruction; |
903 | |
904 | GetElementPtrInst *cloneImpl() const; |
905 | |
906 | public: |
907 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
908 | ArrayRef<Value *> IdxList, |
909 | const Twine &NameStr = "", |
910 | Instruction *InsertBefore = nullptr) { |
911 | unsigned Values = 1 + unsigned(IdxList.size()); |
912 | if (!PointeeType) |
913 | PointeeType = |
914 | cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(); |
915 | else |
916 | assert(((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 918, __PRETTY_FUNCTION__)) |
917 | PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 918, __PRETTY_FUNCTION__)) |
918 | cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 918, __PRETTY_FUNCTION__)); |
919 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
920 | NameStr, InsertBefore); |
921 | } |
922 | |
923 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
924 | ArrayRef<Value *> IdxList, |
925 | const Twine &NameStr, |
926 | BasicBlock *InsertAtEnd) { |
927 | unsigned Values = 1 + unsigned(IdxList.size()); |
928 | if (!PointeeType) |
929 | PointeeType = |
930 | cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(); |
931 | else |
932 | assert(((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 934, __PRETTY_FUNCTION__)) |
933 | PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 934, __PRETTY_FUNCTION__)) |
934 | cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 934, __PRETTY_FUNCTION__)); |
935 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
936 | NameStr, InsertAtEnd); |
937 | } |
938 | |
939 | /// Create an "inbounds" getelementptr. See the documentation for the |
940 | /// "inbounds" flag in LangRef.html for details. |
941 | static GetElementPtrInst *CreateInBounds(Value *Ptr, |
942 | ArrayRef<Value *> IdxList, |
943 | const Twine &NameStr = "", |
944 | Instruction *InsertBefore = nullptr){ |
945 | return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore); |
946 | } |
947 | |
948 | static GetElementPtrInst * |
949 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, |
950 | const Twine &NameStr = "", |
951 | Instruction *InsertBefore = nullptr) { |
952 | GetElementPtrInst *GEP = |
953 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); |
954 | GEP->setIsInBounds(true); |
955 | return GEP; |
956 | } |
957 | |
958 | static GetElementPtrInst *CreateInBounds(Value *Ptr, |
959 | ArrayRef<Value *> IdxList, |
960 | const Twine &NameStr, |
961 | BasicBlock *InsertAtEnd) { |
962 | return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd); |
963 | } |
964 | |
965 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, |
966 | ArrayRef<Value *> IdxList, |
967 | const Twine &NameStr, |
968 | BasicBlock *InsertAtEnd) { |
969 | GetElementPtrInst *GEP = |
970 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); |
971 | GEP->setIsInBounds(true); |
972 | return GEP; |
973 | } |
974 | |
975 | /// Transparently provide more efficient getOperand methods. |
976 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
977 | |
978 | Type *getSourceElementType() const { return SourceElementType; } |
979 | |
980 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } |
981 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } |
982 | |
983 | Type *getResultElementType() const { |
984 | assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 985, __PRETTY_FUNCTION__)) |
985 | cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 985, __PRETTY_FUNCTION__)); |
986 | return ResultElementType; |
987 | } |
988 | |
989 | /// Returns the address space of this instruction's pointer type. |
990 | unsigned getAddressSpace() const { |
991 | // Note that this is always the same as the pointer operand's address space |
992 | // and that is cheaper to compute, so cheat here. |
993 | return getPointerAddressSpace(); |
994 | } |
995 | |
996 | /// Returns the type of the element that would be loaded with |
997 | /// a load instruction with the specified parameters. |
998 | /// |
999 | /// Null is returned if the indices are invalid for the specified |
1000 | /// pointer type. |
1001 | /// |
1002 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); |
1003 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); |
1004 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); |
1005 | |
1006 | inline op_iterator idx_begin() { return op_begin()+1; } |
1007 | inline const_op_iterator idx_begin() const { return op_begin()+1; } |
1008 | inline op_iterator idx_end() { return op_end(); } |
1009 | inline const_op_iterator idx_end() const { return op_end(); } |
1010 | |
1011 | inline iterator_range<op_iterator> indices() { |
1012 | return make_range(idx_begin(), idx_end()); |
1013 | } |
1014 | |
1015 | inline iterator_range<const_op_iterator> indices() const { |
1016 | return make_range(idx_begin(), idx_end()); |
1017 | } |
1018 | |
1019 | Value *getPointerOperand() { |
1020 | return getOperand(0); |
1021 | } |
1022 | const Value *getPointerOperand() const { |
1023 | return getOperand(0); |
1024 | } |
1025 | static unsigned getPointerOperandIndex() { |
1026 | return 0U; // get index for modifying correct operand. |
1027 | } |
1028 | |
1029 | /// Method to return the pointer operand as a |
1030 | /// PointerType. |
1031 | Type *getPointerOperandType() const { |
1032 | return getPointerOperand()->getType(); |
1033 | } |
1034 | |
1035 | /// Returns the address space of the pointer operand. |
1036 | unsigned getPointerAddressSpace() const { |
1037 | return getPointerOperandType()->getPointerAddressSpace(); |
1038 | } |
1039 | |
1040 | /// Returns the pointer type returned by the GEP |
1041 | /// instruction, which may be a vector of pointers. |
1042 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, |
1043 | ArrayRef<Value *> IdxList) { |
1044 | Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)), |
1045 | Ptr->getType()->getPointerAddressSpace()); |
1046 | // Vector GEP |
1047 | if (Ptr->getType()->isVectorTy()) { |
1048 | unsigned NumElem = Ptr->getType()->getVectorNumElements(); |
1049 | return VectorType::get(PtrTy, NumElem); |
1050 | } |
1051 | for (Value *Index : IdxList) |
1052 | if (Index->getType()->isVectorTy()) { |
1053 | unsigned NumElem = Index->getType()->getVectorNumElements(); |
1054 | return VectorType::get(PtrTy, NumElem); |
1055 | } |
1056 | // Scalar GEP |
1057 | return PtrTy; |
1058 | } |
1059 | |
1060 | unsigned getNumIndices() const { // Note: always non-negative |
1061 | return getNumOperands() - 1; |
1062 | } |
1063 | |
1064 | bool hasIndices() const { |
1065 | return getNumOperands() > 1; |
1066 | } |
1067 | |
1068 | /// Return true if all of the indices of this GEP are |
1069 | /// zeros. If so, the result pointer and the first operand have the same |
1070 | /// value, just potentially different types. |
1071 | bool hasAllZeroIndices() const; |
1072 | |
1073 | /// Return true if all of the indices of this GEP are |
1074 | /// constant integers. If so, the result pointer and the first operand have |
1075 | /// a constant offset between them. |
1076 | bool hasAllConstantIndices() const; |
1077 | |
1078 | /// Set or clear the inbounds flag on this GEP instruction. |
1079 | /// See LangRef.html for the meaning of inbounds on a getelementptr. |
1080 | void setIsInBounds(bool b = true); |
1081 | |
1082 | /// Determine whether the GEP has the inbounds flag. |
1083 | bool isInBounds() const; |
1084 | |
1085 | /// Accumulate the constant address offset of this GEP if possible. |
1086 | /// |
1087 | /// This routine accepts an APInt into which it will accumulate the constant |
1088 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not |
1089 | /// all-constant, it returns false and the value of the offset APInt is |
1090 | /// undefined (it is *not* preserved!). The APInt passed into this routine |
1091 | /// must be at least as wide as the IntPtr type for the address space of |
1092 | /// the base GEP pointer. |
1093 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; |
1094 | |
1095 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1096 | static bool classof(const Instruction *I) { |
1097 | return (I->getOpcode() == Instruction::GetElementPtr); |
1098 | } |
1099 | static bool classof(const Value *V) { |
1100 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1101 | } |
1102 | }; |
1103 | |
1104 | template <> |
1105 | struct OperandTraits<GetElementPtrInst> : |
1106 | public VariadicOperandTraits<GetElementPtrInst, 1> { |
1107 | }; |
1108 | |
1109 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
1110 | ArrayRef<Value *> IdxList, unsigned Values, |
1111 | const Twine &NameStr, |
1112 | Instruction *InsertBefore) |
1113 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
1114 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
1115 | Values, InsertBefore), |
1116 | SourceElementType(PointeeType), |
1117 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
1118 | assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1119, __PRETTY_FUNCTION__)) |
1119 | cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1119, __PRETTY_FUNCTION__)); |
1120 | init(Ptr, IdxList, NameStr); |
1121 | } |
1122 | |
1123 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
1124 | ArrayRef<Value *> IdxList, unsigned Values, |
1125 | const Twine &NameStr, |
1126 | BasicBlock *InsertAtEnd) |
1127 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
1128 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
1129 | Values, InsertAtEnd), |
1130 | SourceElementType(PointeeType), |
1131 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
1132 | assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1133, __PRETTY_FUNCTION__)) |
1133 | cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()-> getScalarType())->getElementType()) ? static_cast<void> (0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1133, __PRETTY_FUNCTION__)); |
1134 | init(Ptr, IdxList, NameStr); |
1135 | } |
1136 | |
1137 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst >::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1137, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<GetElementPtrInst>::op_begin(const_cast <GetElementPtrInst*>(this))[i_nocapture].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((i_nocapture < OperandTraits<GetElementPtrInst> ::operands(this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1137, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned GetElementPtrInst::getNumOperands() const { return OperandTraits <GetElementPtrInst>::operands(this); } template <int Idx_nocapture> Use &GetElementPtrInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &GetElementPtrInst::Op() const { return this ->OpFrom<Idx_nocapture>(this); } |
1138 | |
1139 | //===----------------------------------------------------------------------===// |
1140 | // ICmpInst Class |
1141 | //===----------------------------------------------------------------------===// |
1142 | |
1143 | /// This instruction compares its operands according to the predicate given |
1144 | /// to the constructor. It only operates on integers or pointers. The operands |
1145 | /// must be identical types. |
1146 | /// Represent an integer comparison operator. |
1147 | class ICmpInst: public CmpInst { |
1148 | void AssertOK() { |
1149 | assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value") ? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1150, __PRETTY_FUNCTION__)) |
1150 | "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value") ? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1150, __PRETTY_FUNCTION__)); |
1151 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!" ) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1152, __PRETTY_FUNCTION__)) |
1152 | "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to ICmp instruction are not of the same type!" ) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1152, __PRETTY_FUNCTION__)); |
1153 | // Check that the operands are the right type |
1154 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand (0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction" ) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1156, __PRETTY_FUNCTION__)) |
1155 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand (0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction" ) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1156, __PRETTY_FUNCTION__)) |
1156 | "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand (0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction" ) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1156, __PRETTY_FUNCTION__)); |
1157 | } |
1158 | |
1159 | protected: |
1160 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1161 | friend class Instruction; |
1162 | |
1163 | /// Clone an identical ICmpInst |
1164 | ICmpInst *cloneImpl() const; |
1165 | |
1166 | public: |
1167 | /// Constructor with insert-before-instruction semantics. |
1168 | ICmpInst( |
1169 | Instruction *InsertBefore, ///< Where to insert |
1170 | Predicate pred, ///< The predicate to use for the comparison |
1171 | Value *LHS, ///< The left-hand-side of the expression |
1172 | Value *RHS, ///< The right-hand-side of the expression |
1173 | const Twine &NameStr = "" ///< Name of the instruction |
1174 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1175 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
1176 | InsertBefore) { |
1177 | #ifndef NDEBUG |
1178 | AssertOK(); |
1179 | #endif |
1180 | } |
1181 | |
1182 | /// Constructor with insert-at-end semantics. |
1183 | ICmpInst( |
1184 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
1185 | Predicate pred, ///< The predicate to use for the comparison |
1186 | Value *LHS, ///< The left-hand-side of the expression |
1187 | Value *RHS, ///< The right-hand-side of the expression |
1188 | const Twine &NameStr = "" ///< Name of the instruction |
1189 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1190 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
1191 | &InsertAtEnd) { |
1192 | #ifndef NDEBUG |
1193 | AssertOK(); |
1194 | #endif |
1195 | } |
1196 | |
1197 | /// Constructor with no-insertion semantics |
1198 | ICmpInst( |
1199 | Predicate pred, ///< The predicate to use for the comparison |
1200 | Value *LHS, ///< The left-hand-side of the expression |
1201 | Value *RHS, ///< The right-hand-side of the expression |
1202 | const Twine &NameStr = "" ///< Name of the instruction |
1203 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1204 | Instruction::ICmp, pred, LHS, RHS, NameStr) { |
1205 | #ifndef NDEBUG |
1206 | AssertOK(); |
1207 | #endif |
1208 | } |
1209 | |
1210 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. |
1211 | /// @returns the predicate that would be the result if the operand were |
1212 | /// regarded as signed. |
1213 | /// Return the signed version of the predicate |
1214 | Predicate getSignedPredicate() const { |
1215 | return getSignedPredicate(getPredicate()); |
1216 | } |
1217 | |
1218 | /// This is a static version that you can use without an instruction. |
1219 | /// Return the signed version of the predicate. |
1220 | static Predicate getSignedPredicate(Predicate pred); |
1221 | |
1222 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. |
1223 | /// @returns the predicate that would be the result if the operand were |
1224 | /// regarded as unsigned. |
1225 | /// Return the unsigned version of the predicate |
1226 | Predicate getUnsignedPredicate() const { |
1227 | return getUnsignedPredicate(getPredicate()); |
1228 | } |
1229 | |
1230 | /// This is a static version that you can use without an instruction. |
1231 | /// Return the unsigned version of the predicate. |
1232 | static Predicate getUnsignedPredicate(Predicate pred); |
1233 | |
1234 | /// Return true if this predicate is either EQ or NE. This also |
1235 | /// tests for commutativity. |
1236 | static bool isEquality(Predicate P) { |
1237 | return P == ICMP_EQ || P == ICMP_NE; |
1238 | } |
1239 | |
1240 | /// Return true if this predicate is either EQ or NE. This also |
1241 | /// tests for commutativity. |
1242 | bool isEquality() const { |
1243 | return isEquality(getPredicate()); |
1244 | } |
1245 | |
1246 | /// @returns true if the predicate of this ICmpInst is commutative |
1247 | /// Determine if this relation is commutative. |
1248 | bool isCommutative() const { return isEquality(); } |
1249 | |
1250 | /// Return true if the predicate is relational (not EQ or NE). |
1251 | /// |
1252 | bool isRelational() const { |
1253 | return !isEquality(); |
1254 | } |
1255 | |
1256 | /// Return true if the predicate is relational (not EQ or NE). |
1257 | /// |
1258 | static bool isRelational(Predicate P) { |
1259 | return !isEquality(P); |
1260 | } |
1261 | |
1262 | /// Exchange the two operands to this instruction in such a way that it does |
1263 | /// not modify the semantics of the instruction. The predicate value may be |
1264 | /// changed to retain the same result if the predicate is order dependent |
1265 | /// (e.g. ult). |
1266 | /// Swap operands and adjust predicate. |
1267 | void swapOperands() { |
1268 | setPredicate(getSwappedPredicate()); |
1269 | Op<0>().swap(Op<1>()); |
1270 | } |
1271 | |
1272 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1273 | static bool classof(const Instruction *I) { |
1274 | return I->getOpcode() == Instruction::ICmp; |
1275 | } |
1276 | static bool classof(const Value *V) { |
1277 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1278 | } |
1279 | }; |
1280 | |
1281 | //===----------------------------------------------------------------------===// |
1282 | // FCmpInst Class |
1283 | //===----------------------------------------------------------------------===// |
1284 | |
1285 | /// This instruction compares its operands according to the predicate given |
1286 | /// to the constructor. It only operates on floating point values or packed |
1287 | /// vectors of floating point values. The operands must be identical types. |
1288 | /// Represents a floating point comparison operator. |
1289 | class FCmpInst: public CmpInst { |
1290 | void AssertOK() { |
1291 | assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ? static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1291, __PRETTY_FUNCTION__)); |
1292 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!" ) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1293, __PRETTY_FUNCTION__)) |
1293 | "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() && "Both operands to FCmp instruction are not of the same type!" ) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1293, __PRETTY_FUNCTION__)); |
1294 | // Check that the operands are the right type |
1295 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction") ? static_cast< void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1296, __PRETTY_FUNCTION__)) |
1296 | "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() && "Invalid operand types for FCmp instruction") ? static_cast< void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1296, __PRETTY_FUNCTION__)); |
1297 | } |
1298 | |
1299 | protected: |
1300 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1301 | friend class Instruction; |
1302 | |
1303 | /// Clone an identical FCmpInst |
1304 | FCmpInst *cloneImpl() const; |
1305 | |
1306 | public: |
1307 | /// Constructor with insert-before-instruction semantics. |
1308 | FCmpInst( |
1309 | Instruction *InsertBefore, ///< Where to insert |
1310 | Predicate pred, ///< The predicate to use for the comparison |
1311 | Value *LHS, ///< The left-hand-side of the expression |
1312 | Value *RHS, ///< The right-hand-side of the expression |
1313 | const Twine &NameStr = "" ///< Name of the instruction |
1314 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1315 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
1316 | InsertBefore) { |
1317 | AssertOK(); |
1318 | } |
1319 | |
1320 | /// Constructor with insert-at-end semantics. |
1321 | FCmpInst( |
1322 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
1323 | Predicate pred, ///< The predicate to use for the comparison |
1324 | Value *LHS, ///< The left-hand-side of the expression |
1325 | Value *RHS, ///< The right-hand-side of the expression |
1326 | const Twine &NameStr = "" ///< Name of the instruction |
1327 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
1328 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
1329 | &InsertAtEnd) { |
1330 | AssertOK(); |
1331 | } |
1332 | |
1333 | /// Constructor with no-insertion semantics |
1334 | FCmpInst( |
1335 | Predicate Pred, ///< The predicate to use for the comparison |
1336 | Value *LHS, ///< The left-hand-side of the expression |
1337 | Value *RHS, ///< The right-hand-side of the expression |
1338 | const Twine &NameStr = "", ///< Name of the instruction |
1339 | Instruction *FlagsSource = nullptr |
1340 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, |
1341 | RHS, NameStr, nullptr, FlagsSource) { |
1342 | AssertOK(); |
1343 | } |
1344 | |
1345 | /// @returns true if the predicate of this instruction is EQ or NE. |
1346 | /// Determine if this is an equality predicate. |
1347 | static bool isEquality(Predicate Pred) { |
1348 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || |
1349 | Pred == FCMP_UNE; |
1350 | } |
1351 | |
1352 | /// @returns true if the predicate of this instruction is EQ or NE. |
1353 | /// Determine if this is an equality predicate. |
1354 | bool isEquality() const { return isEquality(getPredicate()); } |
1355 | |
1356 | /// @returns true if the predicate of this instruction is commutative. |
1357 | /// Determine if this is a commutative predicate. |
1358 | bool isCommutative() const { |
1359 | return isEquality() || |
1360 | getPredicate() == FCMP_FALSE || |
1361 | getPredicate() == FCMP_TRUE || |
1362 | getPredicate() == FCMP_ORD || |
1363 | getPredicate() == FCMP_UNO; |
1364 | } |
1365 | |
1366 | /// @returns true if the predicate is relational (not EQ or NE). |
1367 | /// Determine if this a relational predicate. |
1368 | bool isRelational() const { return !isEquality(); } |
1369 | |
1370 | /// Exchange the two operands to this instruction in such a way that it does |
1371 | /// not modify the semantics of the instruction. The predicate value may be |
1372 | /// changed to retain the same result if the predicate is order dependent |
1373 | /// (e.g. ult). |
1374 | /// Swap operands and adjust predicate. |
1375 | void swapOperands() { |
1376 | setPredicate(getSwappedPredicate()); |
1377 | Op<0>().swap(Op<1>()); |
1378 | } |
1379 | |
1380 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
1381 | static bool classof(const Instruction *I) { |
1382 | return I->getOpcode() == Instruction::FCmp; |
1383 | } |
1384 | static bool classof(const Value *V) { |
1385 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1386 | } |
1387 | }; |
1388 | |
1389 | //===----------------------------------------------------------------------===// |
1390 | /// This class represents a function call, abstracting a target |
1391 | /// machine's calling convention. This class uses low bit of the SubClassData |
1392 | /// field to indicate whether or not this is a tail call. The rest of the bits |
1393 | /// hold the calling convention of the call. |
1394 | /// |
1395 | class CallInst : public CallBase { |
1396 | CallInst(const CallInst &CI); |
1397 | |
1398 | /// Construct a CallInst given a range of arguments. |
1399 | /// Construct a CallInst from a range of arguments |
1400 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1401 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1402 | Instruction *InsertBefore); |
1403 | |
1404 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1405 | const Twine &NameStr, Instruction *InsertBefore) |
1406 | : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {} |
1407 | |
1408 | /// Construct a CallInst given a range of arguments. |
1409 | /// Construct a CallInst from a range of arguments |
1410 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1411 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1412 | BasicBlock *InsertAtEnd); |
1413 | |
1414 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, |
1415 | Instruction *InsertBefore); |
1416 | |
1417 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, |
1418 | BasicBlock *InsertAtEnd); |
1419 | |
1420 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
1421 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
1422 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); |
1423 | |
1424 | /// Compute the number of operands to allocate. |
1425 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
1426 | // We need one operand for the called function, plus the input operand |
1427 | // counts provided. |
1428 | return 1 + NumArgs + NumBundleInputs; |
1429 | } |
1430 | |
1431 | protected: |
1432 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1433 | friend class Instruction; |
1434 | |
1435 | CallInst *cloneImpl() const; |
1436 | |
1437 | public: |
1438 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", |
1439 | Instruction *InsertBefore = nullptr) { |
1440 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); |
1441 | } |
1442 | |
1443 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1444 | const Twine &NameStr, |
1445 | Instruction *InsertBefore = nullptr) { |
1446 | return new (ComputeNumOperands(Args.size())) |
1447 | CallInst(Ty, Func, Args, None, NameStr, InsertBefore); |
1448 | } |
1449 | |
1450 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1451 | ArrayRef<OperandBundleDef> Bundles = None, |
1452 | const Twine &NameStr = "", |
1453 | Instruction *InsertBefore = nullptr) { |
1454 | const int NumOperands = |
1455 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
1456 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
1457 | |
1458 | return new (NumOperands, DescriptorBytes) |
1459 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); |
1460 | } |
1461 | |
1462 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, |
1463 | BasicBlock *InsertAtEnd) { |
1464 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); |
1465 | } |
1466 | |
1467 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1468 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1469 | return new (ComputeNumOperands(Args.size())) |
1470 | CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd); |
1471 | } |
1472 | |
1473 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1474 | ArrayRef<OperandBundleDef> Bundles, |
1475 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1476 | const int NumOperands = |
1477 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
1478 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
1479 | |
1480 | return new (NumOperands, DescriptorBytes) |
1481 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); |
1482 | } |
1483 | |
1484 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", |
1485 | Instruction *InsertBefore = nullptr) { |
1486 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
1487 | InsertBefore); |
1488 | } |
1489 | |
1490 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1491 | ArrayRef<OperandBundleDef> Bundles = None, |
1492 | const Twine &NameStr = "", |
1493 | Instruction *InsertBefore = nullptr) { |
1494 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
1495 | NameStr, InsertBefore); |
1496 | } |
1497 | |
1498 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1499 | const Twine &NameStr, |
1500 | Instruction *InsertBefore = nullptr) { |
1501 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
1502 | InsertBefore); |
1503 | } |
1504 | |
1505 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, |
1506 | BasicBlock *InsertAtEnd) { |
1507 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
1508 | InsertAtEnd); |
1509 | } |
1510 | |
1511 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1512 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1513 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
1514 | InsertAtEnd); |
1515 | } |
1516 | |
1517 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
1518 | ArrayRef<OperandBundleDef> Bundles, |
1519 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1520 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
1521 | NameStr, InsertAtEnd); |
1522 | } |
1523 | |
1524 | // Deprecated [opaque pointer types] |
1525 | static CallInst *Create(Value *Func, const Twine &NameStr = "", |
1526 | Instruction *InsertBefore = nullptr) { |
1527 | return Create(cast<FunctionType>( |
1528 | cast<PointerType>(Func->getType())->getElementType()), |
1529 | Func, NameStr, InsertBefore); |
1530 | } |
1531 | |
1532 | // Deprecated [opaque pointer types] |
1533 | static CallInst *Create(Value *Func, ArrayRef<Value *> Args, |
1534 | const Twine &NameStr, |
1535 | Instruction *InsertBefore = nullptr) { |
1536 | return Create(cast<FunctionType>( |
1537 | cast<PointerType>(Func->getType())->getElementType()), |
1538 | Func, Args, NameStr, InsertBefore); |
1539 | } |
1540 | |
1541 | // Deprecated [opaque pointer types] |
1542 | static CallInst *Create(Value *Func, ArrayRef<Value *> Args, |
1543 | ArrayRef<OperandBundleDef> Bundles = None, |
1544 | const Twine &NameStr = "", |
1545 | Instruction *InsertBefore = nullptr) { |
1546 | return Create(cast<FunctionType>( |
1547 | cast<PointerType>(Func->getType())->getElementType()), |
1548 | Func, Args, Bundles, NameStr, InsertBefore); |
1549 | } |
1550 | |
1551 | // Deprecated [opaque pointer types] |
1552 | static CallInst *Create(Value *Func, const Twine &NameStr, |
1553 | BasicBlock *InsertAtEnd) { |
1554 | return Create(cast<FunctionType>( |
1555 | cast<PointerType>(Func->getType())->getElementType()), |
1556 | Func, NameStr, InsertAtEnd); |
1557 | } |
1558 | |
1559 | // Deprecated [opaque pointer types] |
1560 | static CallInst *Create(Value *Func, ArrayRef<Value *> Args, |
1561 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1562 | return Create(cast<FunctionType>( |
1563 | cast<PointerType>(Func->getType())->getElementType()), |
1564 | Func, Args, NameStr, InsertAtEnd); |
1565 | } |
1566 | |
1567 | // Deprecated [opaque pointer types] |
1568 | static CallInst *Create(Value *Func, ArrayRef<Value *> Args, |
1569 | ArrayRef<OperandBundleDef> Bundles, |
1570 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
1571 | return Create(cast<FunctionType>( |
1572 | cast<PointerType>(Func->getType())->getElementType()), |
1573 | Func, Args, Bundles, NameStr, InsertAtEnd); |
1574 | } |
1575 | |
1576 | /// Create a clone of \p CI with a different set of operand bundles and |
1577 | /// insert it before \p InsertPt. |
1578 | /// |
1579 | /// The returned call instruction is identical \p CI in every way except that |
1580 | /// the operand bundles for the new instruction are set to the operand bundles |
1581 | /// in \p Bundles. |
1582 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, |
1583 | Instruction *InsertPt = nullptr); |
1584 | |
1585 | /// Generate the IR for a call to malloc: |
1586 | /// 1. Compute the malloc call's argument as the specified type's size, |
1587 | /// possibly multiplied by the array size if the array size is not |
1588 | /// constant 1. |
1589 | /// 2. Call malloc with that argument. |
1590 | /// 3. Bitcast the result of the malloc call to the specified type. |
1591 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
1592 | Type *AllocTy, Value *AllocSize, |
1593 | Value *ArraySize = nullptr, |
1594 | Function *MallocF = nullptr, |
1595 | const Twine &Name = ""); |
1596 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
1597 | Type *AllocTy, Value *AllocSize, |
1598 | Value *ArraySize = nullptr, |
1599 | Function *MallocF = nullptr, |
1600 | const Twine &Name = ""); |
1601 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
1602 | Type *AllocTy, Value *AllocSize, |
1603 | Value *ArraySize = nullptr, |
1604 | ArrayRef<OperandBundleDef> Bundles = None, |
1605 | Function *MallocF = nullptr, |
1606 | const Twine &Name = ""); |
1607 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
1608 | Type *AllocTy, Value *AllocSize, |
1609 | Value *ArraySize = nullptr, |
1610 | ArrayRef<OperandBundleDef> Bundles = None, |
1611 | Function *MallocF = nullptr, |
1612 | const Twine &Name = ""); |
1613 | /// Generate the IR for a call to the builtin free function. |
1614 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); |
1615 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); |
1616 | static Instruction *CreateFree(Value *Source, |
1617 | ArrayRef<OperandBundleDef> Bundles, |
1618 | Instruction *InsertBefore); |
1619 | static Instruction *CreateFree(Value *Source, |
1620 | ArrayRef<OperandBundleDef> Bundles, |
1621 | BasicBlock *InsertAtEnd); |
1622 | |
1623 | // Note that 'musttail' implies 'tail'. |
1624 | enum TailCallKind { |
1625 | TCK_None = 0, |
1626 | TCK_Tail = 1, |
1627 | TCK_MustTail = 2, |
1628 | TCK_NoTail = 3 |
1629 | }; |
1630 | TailCallKind getTailCallKind() const { |
1631 | return TailCallKind(getSubclassDataFromInstruction() & 3); |
1632 | } |
1633 | |
1634 | bool isTailCall() const { |
1635 | unsigned Kind = getSubclassDataFromInstruction() & 3; |
1636 | return Kind == TCK_Tail || Kind == TCK_MustTail; |
1637 | } |
1638 | |
1639 | bool isMustTailCall() const { |
1640 | return (getSubclassDataFromInstruction() & 3) == TCK_MustTail; |
1641 | } |
1642 | |
1643 | bool isNoTailCall() const { |
1644 | return (getSubclassDataFromInstruction() & 3) == TCK_NoTail; |
1645 | } |
1646 | |
1647 | void setTailCall(bool isTC = true) { |
1648 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) | |
1649 | unsigned(isTC ? TCK_Tail : TCK_None)); |
1650 | } |
1651 | |
1652 | void setTailCallKind(TailCallKind TCK) { |
1653 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) | |
1654 | unsigned(TCK)); |
1655 | } |
1656 | |
1657 | /// Return true if the call can return twice |
1658 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } |
1659 | void setCanReturnTwice() { |
1660 | addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice); |
1661 | } |
1662 | |
1663 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1664 | static bool classof(const Instruction *I) { |
1665 | return I->getOpcode() == Instruction::Call; |
1666 | } |
1667 | static bool classof(const Value *V) { |
1668 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1669 | } |
1670 | |
1671 | /// Updates profile metadata by scaling it by \p S / \p T. |
1672 | void updateProfWeight(uint64_t S, uint64_t T); |
1673 | |
1674 | private: |
1675 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
1676 | // method so that subclasses cannot accidentally use it. |
1677 | void setInstructionSubclassData(unsigned short D) { |
1678 | Instruction::setInstructionSubclassData(D); |
1679 | } |
1680 | }; |
1681 | |
1682 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1683 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1684 | BasicBlock *InsertAtEnd) |
1685 | : CallBase(Ty->getReturnType(), Instruction::Call, |
1686 | OperandTraits<CallBase>::op_end(this) - |
1687 | (Args.size() + CountBundleInputs(Bundles) + 1), |
1688 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
1689 | InsertAtEnd) { |
1690 | init(Ty, Func, Args, Bundles, NameStr); |
1691 | } |
1692 | |
1693 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
1694 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
1695 | Instruction *InsertBefore) |
1696 | : CallBase(Ty->getReturnType(), Instruction::Call, |
1697 | OperandTraits<CallBase>::op_end(this) - |
1698 | (Args.size() + CountBundleInputs(Bundles) + 1), |
1699 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
1700 | InsertBefore) { |
1701 | init(Ty, Func, Args, Bundles, NameStr); |
1702 | } |
1703 | |
1704 | //===----------------------------------------------------------------------===// |
1705 | // SelectInst Class |
1706 | //===----------------------------------------------------------------------===// |
1707 | |
1708 | /// This class represents the LLVM 'select' instruction. |
1709 | /// |
1710 | class SelectInst : public Instruction { |
1711 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
1712 | Instruction *InsertBefore) |
1713 | : Instruction(S1->getType(), Instruction::Select, |
1714 | &Op<0>(), 3, InsertBefore) { |
1715 | init(C, S1, S2); |
1716 | setName(NameStr); |
1717 | } |
1718 | |
1719 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
1720 | BasicBlock *InsertAtEnd) |
1721 | : Instruction(S1->getType(), Instruction::Select, |
1722 | &Op<0>(), 3, InsertAtEnd) { |
1723 | init(C, S1, S2); |
1724 | setName(NameStr); |
1725 | } |
1726 | |
1727 | void init(Value *C, Value *S1, Value *S2) { |
1728 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select" ) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1728, __PRETTY_FUNCTION__)); |
1729 | Op<0>() = C; |
1730 | Op<1>() = S1; |
1731 | Op<2>() = S2; |
1732 | } |
1733 | |
1734 | protected: |
1735 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1736 | friend class Instruction; |
1737 | |
1738 | SelectInst *cloneImpl() const; |
1739 | |
1740 | public: |
1741 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
1742 | const Twine &NameStr = "", |
1743 | Instruction *InsertBefore = nullptr, |
1744 | Instruction *MDFrom = nullptr) { |
1745 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); |
1746 | if (MDFrom) |
1747 | Sel->copyMetadata(*MDFrom); |
1748 | return Sel; |
1749 | } |
1750 | |
1751 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
1752 | const Twine &NameStr, |
1753 | BasicBlock *InsertAtEnd) { |
1754 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); |
1755 | } |
1756 | |
1757 | const Value *getCondition() const { return Op<0>(); } |
1758 | const Value *getTrueValue() const { return Op<1>(); } |
1759 | const Value *getFalseValue() const { return Op<2>(); } |
1760 | Value *getCondition() { return Op<0>(); } |
1761 | Value *getTrueValue() { return Op<1>(); } |
1762 | Value *getFalseValue() { return Op<2>(); } |
1763 | |
1764 | void setCondition(Value *V) { Op<0>() = V; } |
1765 | void setTrueValue(Value *V) { Op<1>() = V; } |
1766 | void setFalseValue(Value *V) { Op<2>() = V; } |
1767 | |
1768 | /// Swap the true and false values of the select instruction. |
1769 | /// This doesn't swap prof metadata. |
1770 | void swapValues() { Op<1>().swap(Op<2>()); } |
1771 | |
1772 | /// Return a string if the specified operands are invalid |
1773 | /// for a select operation, otherwise return null. |
1774 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); |
1775 | |
1776 | /// Transparently provide more efficient getOperand methods. |
1777 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1778 | |
1779 | OtherOps getOpcode() const { |
1780 | return static_cast<OtherOps>(Instruction::getOpcode()); |
1781 | } |
1782 | |
1783 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1784 | static bool classof(const Instruction *I) { |
1785 | return I->getOpcode() == Instruction::Select; |
1786 | } |
1787 | static bool classof(const Value *V) { |
1788 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1789 | } |
1790 | }; |
1791 | |
1792 | template <> |
1793 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { |
1794 | }; |
1795 | |
1796 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1796, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst *>(this))[i_nocapture].get()); } void SelectInst::setOperand (unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture < OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1796, __PRETTY_FUNCTION__)); OperandTraits<SelectInst> ::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst ::getNumOperands() const { return OperandTraits<SelectInst >::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & SelectInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
1797 | |
1798 | //===----------------------------------------------------------------------===// |
1799 | // VAArgInst Class |
1800 | //===----------------------------------------------------------------------===// |
1801 | |
1802 | /// This class represents the va_arg llvm instruction, which returns |
1803 | /// an argument of the specified type given a va_list and increments that list |
1804 | /// |
1805 | class VAArgInst : public UnaryInstruction { |
1806 | protected: |
1807 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1808 | friend class Instruction; |
1809 | |
1810 | VAArgInst *cloneImpl() const; |
1811 | |
1812 | public: |
1813 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", |
1814 | Instruction *InsertBefore = nullptr) |
1815 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { |
1816 | setName(NameStr); |
1817 | } |
1818 | |
1819 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, |
1820 | BasicBlock *InsertAtEnd) |
1821 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { |
1822 | setName(NameStr); |
1823 | } |
1824 | |
1825 | Value *getPointerOperand() { return getOperand(0); } |
1826 | const Value *getPointerOperand() const { return getOperand(0); } |
1827 | static unsigned getPointerOperandIndex() { return 0U; } |
1828 | |
1829 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1830 | static bool classof(const Instruction *I) { |
1831 | return I->getOpcode() == VAArg; |
1832 | } |
1833 | static bool classof(const Value *V) { |
1834 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1835 | } |
1836 | }; |
1837 | |
1838 | //===----------------------------------------------------------------------===// |
1839 | // ExtractElementInst Class |
1840 | //===----------------------------------------------------------------------===// |
1841 | |
1842 | /// This instruction extracts a single (scalar) |
1843 | /// element from a VectorType value |
1844 | /// |
1845 | class ExtractElementInst : public Instruction { |
1846 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", |
1847 | Instruction *InsertBefore = nullptr); |
1848 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, |
1849 | BasicBlock *InsertAtEnd); |
1850 | |
1851 | protected: |
1852 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1853 | friend class Instruction; |
1854 | |
1855 | ExtractElementInst *cloneImpl() const; |
1856 | |
1857 | public: |
1858 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
1859 | const Twine &NameStr = "", |
1860 | Instruction *InsertBefore = nullptr) { |
1861 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); |
1862 | } |
1863 | |
1864 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
1865 | const Twine &NameStr, |
1866 | BasicBlock *InsertAtEnd) { |
1867 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); |
1868 | } |
1869 | |
1870 | /// Return true if an extractelement instruction can be |
1871 | /// formed with the specified operands. |
1872 | static bool isValidOperands(const Value *Vec, const Value *Idx); |
1873 | |
1874 | Value *getVectorOperand() { return Op<0>(); } |
1875 | Value *getIndexOperand() { return Op<1>(); } |
1876 | const Value *getVectorOperand() const { return Op<0>(); } |
1877 | const Value *getIndexOperand() const { return Op<1>(); } |
1878 | |
1879 | VectorType *getVectorOperandType() const { |
1880 | return cast<VectorType>(getVectorOperand()->getType()); |
1881 | } |
1882 | |
1883 | /// Transparently provide more efficient getOperand methods. |
1884 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1885 | |
1886 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1887 | static bool classof(const Instruction *I) { |
1888 | return I->getOpcode() == Instruction::ExtractElement; |
1889 | } |
1890 | static bool classof(const Value *V) { |
1891 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1892 | } |
1893 | }; |
1894 | |
1895 | template <> |
1896 | struct OperandTraits<ExtractElementInst> : |
1897 | public FixedNumOperandTraits<ExtractElementInst, 2> { |
1898 | }; |
1899 | |
1900 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<ExtractElementInst>:: operands(this) && "getOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1900, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<ExtractElementInst>::op_begin(const_cast <ExtractElementInst*>(this))[i_nocapture].get()); } void ExtractElementInst::setOperand(unsigned i_nocapture, Value * Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst >::operands(this) && "setOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1900, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ExtractElementInst::getNumOperands() const { return OperandTraits <ExtractElementInst>::operands(this); } template <int Idx_nocapture> Use &ExtractElementInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ExtractElementInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
1901 | |
1902 | //===----------------------------------------------------------------------===// |
1903 | // InsertElementInst Class |
1904 | //===----------------------------------------------------------------------===// |
1905 | |
1906 | /// This instruction inserts a single (scalar) |
1907 | /// element into a VectorType value |
1908 | /// |
1909 | class InsertElementInst : public Instruction { |
1910 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, |
1911 | const Twine &NameStr = "", |
1912 | Instruction *InsertBefore = nullptr); |
1913 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, |
1914 | BasicBlock *InsertAtEnd); |
1915 | |
1916 | protected: |
1917 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1918 | friend class Instruction; |
1919 | |
1920 | InsertElementInst *cloneImpl() const; |
1921 | |
1922 | public: |
1923 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
1924 | const Twine &NameStr = "", |
1925 | Instruction *InsertBefore = nullptr) { |
1926 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); |
1927 | } |
1928 | |
1929 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
1930 | const Twine &NameStr, |
1931 | BasicBlock *InsertAtEnd) { |
1932 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); |
1933 | } |
1934 | |
1935 | /// Return true if an insertelement instruction can be |
1936 | /// formed with the specified operands. |
1937 | static bool isValidOperands(const Value *Vec, const Value *NewElt, |
1938 | const Value *Idx); |
1939 | |
1940 | /// Overload to return most specific vector type. |
1941 | /// |
1942 | VectorType *getType() const { |
1943 | return cast<VectorType>(Instruction::getType()); |
1944 | } |
1945 | |
1946 | /// Transparently provide more efficient getOperand methods. |
1947 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
1948 | |
1949 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
1950 | static bool classof(const Instruction *I) { |
1951 | return I->getOpcode() == Instruction::InsertElement; |
1952 | } |
1953 | static bool classof(const Value *V) { |
1954 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
1955 | } |
1956 | }; |
1957 | |
1958 | template <> |
1959 | struct OperandTraits<InsertElementInst> : |
1960 | public FixedNumOperandTraits<InsertElementInst, 3> { |
1961 | }; |
1962 | |
1963 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst >::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1963, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<InsertElementInst>::op_begin(const_cast <InsertElementInst*>(this))[i_nocapture].get()); } void InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((i_nocapture < OperandTraits<InsertElementInst> ::operands(this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 1963, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertElementInst::getNumOperands() const { return OperandTraits <InsertElementInst>::operands(this); } template <int Idx_nocapture> Use &InsertElementInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &InsertElementInst::Op() const { return this ->OpFrom<Idx_nocapture>(this); } |
1964 | |
1965 | //===----------------------------------------------------------------------===// |
1966 | // ShuffleVectorInst Class |
1967 | //===----------------------------------------------------------------------===// |
1968 | |
1969 | /// This instruction constructs a fixed permutation of two |
1970 | /// input vectors. |
1971 | /// |
1972 | class ShuffleVectorInst : public Instruction { |
1973 | protected: |
1974 | // Note: Instruction needs to be a friend here to call cloneImpl. |
1975 | friend class Instruction; |
1976 | |
1977 | ShuffleVectorInst *cloneImpl() const; |
1978 | |
1979 | public: |
1980 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
1981 | const Twine &NameStr = "", |
1982 | Instruction *InsertBefor = nullptr); |
1983 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
1984 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
1985 | |
1986 | // allocate space for exactly three operands |
1987 | void *operator new(size_t s) { |
1988 | return User::operator new(s, 3); |
1989 | } |
1990 | |
1991 | /// Swap the first 2 operands and adjust the mask to preserve the semantics |
1992 | /// of the instruction. |
1993 | void commute(); |
1994 | |
1995 | /// Return true if a shufflevector instruction can be |
1996 | /// formed with the specified operands. |
1997 | static bool isValidOperands(const Value *V1, const Value *V2, |
1998 | const Value *Mask); |
1999 | |
2000 | /// Overload to return most specific vector type. |
2001 | /// |
2002 | VectorType *getType() const { |
2003 | return cast<VectorType>(Instruction::getType()); |
2004 | } |
2005 | |
2006 | /// Transparently provide more efficient getOperand methods. |
2007 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2008 | |
2009 | Constant *getMask() const { |
2010 | return cast<Constant>(getOperand(2)); |
2011 | } |
2012 | |
2013 | /// Return the shuffle mask value for the specified element of the mask. |
2014 | /// Return -1 if the element is undef. |
2015 | static int getMaskValue(const Constant *Mask, unsigned Elt); |
2016 | |
2017 | /// Return the shuffle mask value of this instruction for the given element |
2018 | /// index. Return -1 if the element is undef. |
2019 | int getMaskValue(unsigned Elt) const { |
2020 | return getMaskValue(getMask(), Elt); |
2021 | } |
2022 | |
2023 | /// Convert the input shuffle mask operand to a vector of integers. Undefined |
2024 | /// elements of the mask are returned as -1. |
2025 | static void getShuffleMask(const Constant *Mask, |
2026 | SmallVectorImpl<int> &Result); |
2027 | |
2028 | /// Return the mask for this instruction as a vector of integers. Undefined |
2029 | /// elements of the mask are returned as -1. |
2030 | void getShuffleMask(SmallVectorImpl<int> &Result) const { |
2031 | return getShuffleMask(getMask(), Result); |
2032 | } |
2033 | |
2034 | SmallVector<int, 16> getShuffleMask() const { |
2035 | SmallVector<int, 16> Mask; |
2036 | getShuffleMask(Mask); |
2037 | return Mask; |
2038 | } |
2039 | |
2040 | /// Return true if this shuffle returns a vector with a different number of |
2041 | /// elements than its source vectors. |
2042 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> |
2043 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> |
2044 | bool changesLength() const { |
2045 | unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements(); |
2046 | unsigned NumMaskElts = getMask()->getType()->getVectorNumElements(); |
2047 | return NumSourceElts != NumMaskElts; |
2048 | } |
2049 | |
2050 | /// Return true if this shuffle returns a vector with a greater number of |
2051 | /// elements than its source vectors. |
2052 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> |
2053 | bool increasesLength() const { |
2054 | unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements(); |
2055 | unsigned NumMaskElts = getMask()->getType()->getVectorNumElements(); |
2056 | return NumSourceElts < NumMaskElts; |
2057 | } |
2058 | |
2059 | /// Return true if this shuffle mask chooses elements from exactly one source |
2060 | /// vector. |
2061 | /// Example: <7,5,undef,7> |
2062 | /// This assumes that vector operands are the same length as the mask. |
2063 | static bool isSingleSourceMask(ArrayRef<int> Mask); |
2064 | static bool isSingleSourceMask(const Constant *Mask) { |
2065 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2065, __PRETTY_FUNCTION__)); |
2066 | SmallVector<int, 16> MaskAsInts; |
2067 | getShuffleMask(Mask, MaskAsInts); |
2068 | return isSingleSourceMask(MaskAsInts); |
2069 | } |
2070 | |
2071 | /// Return true if this shuffle chooses elements from exactly one source |
2072 | /// vector without changing the length of that vector. |
2073 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> |
2074 | /// TODO: Optionally allow length-changing shuffles. |
2075 | bool isSingleSource() const { |
2076 | return !changesLength() && isSingleSourceMask(getMask()); |
2077 | } |
2078 | |
2079 | /// Return true if this shuffle mask chooses elements from exactly one source |
2080 | /// vector without lane crossings. A shuffle using this mask is not |
2081 | /// necessarily a no-op because it may change the number of elements from its |
2082 | /// input vectors or it may provide demanded bits knowledge via undef lanes. |
2083 | /// Example: <undef,undef,2,3> |
2084 | static bool isIdentityMask(ArrayRef<int> Mask); |
2085 | static bool isIdentityMask(const Constant *Mask) { |
2086 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2086, __PRETTY_FUNCTION__)); |
2087 | SmallVector<int, 16> MaskAsInts; |
2088 | getShuffleMask(Mask, MaskAsInts); |
2089 | return isIdentityMask(MaskAsInts); |
2090 | } |
2091 | |
2092 | /// Return true if this shuffle chooses elements from exactly one source |
2093 | /// vector without lane crossings and does not change the number of elements |
2094 | /// from its input vectors. |
2095 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> |
2096 | bool isIdentity() const { |
2097 | return !changesLength() && isIdentityMask(getShuffleMask()); |
2098 | } |
2099 | |
2100 | /// Return true if this shuffle lengthens exactly one source vector with |
2101 | /// undefs in the high elements. |
2102 | bool isIdentityWithPadding() const; |
2103 | |
2104 | /// Return true if this shuffle extracts the first N elements of exactly one |
2105 | /// source vector. |
2106 | bool isIdentityWithExtract() const; |
2107 | |
2108 | /// Return true if this shuffle concatenates its 2 source vectors. This |
2109 | /// returns false if either input is undefined. In that case, the shuffle is |
2110 | /// is better classified as an identity with padding operation. |
2111 | bool isConcat() const; |
2112 | |
2113 | /// Return true if this shuffle mask chooses elements from its source vectors |
2114 | /// without lane crossings. A shuffle using this mask would be |
2115 | /// equivalent to a vector select with a constant condition operand. |
2116 | /// Example: <4,1,6,undef> |
2117 | /// This returns false if the mask does not choose from both input vectors. |
2118 | /// In that case, the shuffle is better classified as an identity shuffle. |
2119 | /// This assumes that vector operands are the same length as the mask |
2120 | /// (a length-changing shuffle can never be equivalent to a vector select). |
2121 | static bool isSelectMask(ArrayRef<int> Mask); |
2122 | static bool isSelectMask(const Constant *Mask) { |
2123 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2123, __PRETTY_FUNCTION__)); |
2124 | SmallVector<int, 16> MaskAsInts; |
2125 | getShuffleMask(Mask, MaskAsInts); |
2126 | return isSelectMask(MaskAsInts); |
2127 | } |
2128 | |
2129 | /// Return true if this shuffle chooses elements from its source vectors |
2130 | /// without lane crossings and all operands have the same number of elements. |
2131 | /// In other words, this shuffle is equivalent to a vector select with a |
2132 | /// constant condition operand. |
2133 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> |
2134 | /// This returns false if the mask does not choose from both input vectors. |
2135 | /// In that case, the shuffle is better classified as an identity shuffle. |
2136 | /// TODO: Optionally allow length-changing shuffles. |
2137 | bool isSelect() const { |
2138 | return !changesLength() && isSelectMask(getMask()); |
2139 | } |
2140 | |
2141 | /// Return true if this shuffle mask swaps the order of elements from exactly |
2142 | /// one source vector. |
2143 | /// Example: <7,6,undef,4> |
2144 | /// This assumes that vector operands are the same length as the mask. |
2145 | static bool isReverseMask(ArrayRef<int> Mask); |
2146 | static bool isReverseMask(const Constant *Mask) { |
2147 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2147, __PRETTY_FUNCTION__)); |
2148 | SmallVector<int, 16> MaskAsInts; |
2149 | getShuffleMask(Mask, MaskAsInts); |
2150 | return isReverseMask(MaskAsInts); |
2151 | } |
2152 | |
2153 | /// Return true if this shuffle swaps the order of elements from exactly |
2154 | /// one source vector. |
2155 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> |
2156 | /// TODO: Optionally allow length-changing shuffles. |
2157 | bool isReverse() const { |
2158 | return !changesLength() && isReverseMask(getMask()); |
2159 | } |
2160 | |
2161 | /// Return true if this shuffle mask chooses all elements with the same value |
2162 | /// as the first element of exactly one source vector. |
2163 | /// Example: <4,undef,undef,4> |
2164 | /// This assumes that vector operands are the same length as the mask. |
2165 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); |
2166 | static bool isZeroEltSplatMask(const Constant *Mask) { |
2167 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2167, __PRETTY_FUNCTION__)); |
2168 | SmallVector<int, 16> MaskAsInts; |
2169 | getShuffleMask(Mask, MaskAsInts); |
2170 | return isZeroEltSplatMask(MaskAsInts); |
2171 | } |
2172 | |
2173 | /// Return true if all elements of this shuffle are the same value as the |
2174 | /// first element of exactly one source vector without changing the length |
2175 | /// of that vector. |
2176 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> |
2177 | /// TODO: Optionally allow length-changing shuffles. |
2178 | /// TODO: Optionally allow splats from other elements. |
2179 | bool isZeroEltSplat() const { |
2180 | return !changesLength() && isZeroEltSplatMask(getMask()); |
2181 | } |
2182 | |
2183 | /// Return true if this shuffle mask is a transpose mask. |
2184 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding |
2185 | /// even- or odd-numbered vector elements from two n-dimensional source |
2186 | /// vectors and write each result into consecutive elements of an |
2187 | /// n-dimensional destination vector. Two shuffles are necessary to complete |
2188 | /// the transpose, one for the even elements and another for the odd elements. |
2189 | /// This description closely follows how the TRN1 and TRN2 AArch64 |
2190 | /// instructions operate. |
2191 | /// |
2192 | /// For example, a simple 2x2 matrix can be transposed with: |
2193 | /// |
2194 | /// ; Original matrix |
2195 | /// m0 = < a, b > |
2196 | /// m1 = < c, d > |
2197 | /// |
2198 | /// ; Transposed matrix |
2199 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > |
2200 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > |
2201 | /// |
2202 | /// For matrices having greater than n columns, the resulting nx2 transposed |
2203 | /// matrix is stored in two result vectors such that one vector contains |
2204 | /// interleaved elements from all the even-numbered rows and the other vector |
2205 | /// contains interleaved elements from all the odd-numbered rows. For example, |
2206 | /// a 2x4 matrix can be transposed with: |
2207 | /// |
2208 | /// ; Original matrix |
2209 | /// m0 = < a, b, c, d > |
2210 | /// m1 = < e, f, g, h > |
2211 | /// |
2212 | /// ; Transposed matrix |
2213 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > |
2214 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > |
2215 | static bool isTransposeMask(ArrayRef<int> Mask); |
2216 | static bool isTransposeMask(const Constant *Mask) { |
2217 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2217, __PRETTY_FUNCTION__)); |
2218 | SmallVector<int, 16> MaskAsInts; |
2219 | getShuffleMask(Mask, MaskAsInts); |
2220 | return isTransposeMask(MaskAsInts); |
2221 | } |
2222 | |
2223 | /// Return true if this shuffle transposes the elements of its inputs without |
2224 | /// changing the length of the vectors. This operation may also be known as a |
2225 | /// merge or interleave. See the description for isTransposeMask() for the |
2226 | /// exact specification. |
2227 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> |
2228 | bool isTranspose() const { |
2229 | return !changesLength() && isTransposeMask(getMask()); |
2230 | } |
2231 | |
2232 | /// Return true if this shuffle mask is an extract subvector mask. |
2233 | /// A valid extract subvector mask returns a smaller vector from a single |
2234 | /// source operand. The base extraction index is returned as well. |
2235 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
2236 | int &Index); |
2237 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, |
2238 | int &Index) { |
2239 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant." ) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2239, __PRETTY_FUNCTION__)); |
2240 | SmallVector<int, 16> MaskAsInts; |
2241 | getShuffleMask(Mask, MaskAsInts); |
2242 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); |
2243 | } |
2244 | |
2245 | /// Return true if this shuffle mask is an extract subvector mask. |
2246 | bool isExtractSubvectorMask(int &Index) const { |
2247 | int NumSrcElts = Op<0>()->getType()->getVectorNumElements(); |
2248 | return isExtractSubvectorMask(getMask(), NumSrcElts, Index); |
2249 | } |
2250 | |
2251 | /// Change values in a shuffle permute mask assuming the two vector operands |
2252 | /// of length InVecNumElts have swapped position. |
2253 | static void commuteShuffleMask(MutableArrayRef<int> Mask, |
2254 | unsigned InVecNumElts) { |
2255 | for (int &Idx : Mask) { |
2256 | if (Idx == -1) |
2257 | continue; |
2258 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; |
2259 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 && "shufflevector mask index out of range") ? static_cast<void > (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2260, __PRETTY_FUNCTION__)) |
2260 | "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 && "shufflevector mask index out of range") ? static_cast<void > (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2260, __PRETTY_FUNCTION__)); |
2261 | } |
2262 | } |
2263 | |
2264 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2265 | static bool classof(const Instruction *I) { |
2266 | return I->getOpcode() == Instruction::ShuffleVector; |
2267 | } |
2268 | static bool classof(const Value *V) { |
2269 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2270 | } |
2271 | }; |
2272 | |
2273 | template <> |
2274 | struct OperandTraits<ShuffleVectorInst> : |
2275 | public FixedNumOperandTraits<ShuffleVectorInst, 3> { |
2276 | }; |
2277 | |
2278 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst >::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2278, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<ShuffleVectorInst>::op_begin(const_cast <ShuffleVectorInst*>(this))[i_nocapture].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture ) { ((i_nocapture < OperandTraits<ShuffleVectorInst> ::operands(this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2278, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ShuffleVectorInst::getNumOperands() const { return OperandTraits <ShuffleVectorInst>::operands(this); } template <int Idx_nocapture> Use &ShuffleVectorInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &ShuffleVectorInst::Op() const { return this ->OpFrom<Idx_nocapture>(this); } |
2279 | |
2280 | //===----------------------------------------------------------------------===// |
2281 | // ExtractValueInst Class |
2282 | //===----------------------------------------------------------------------===// |
2283 | |
2284 | /// This instruction extracts a struct member or array |
2285 | /// element value from an aggregate value. |
2286 | /// |
2287 | class ExtractValueInst : public UnaryInstruction { |
2288 | SmallVector<unsigned, 4> Indices; |
2289 | |
2290 | ExtractValueInst(const ExtractValueInst &EVI); |
2291 | |
2292 | /// Constructors - Create a extractvalue instruction with a base aggregate |
2293 | /// value and a list of indices. The first ctor can optionally insert before |
2294 | /// an existing instruction, the second appends the new instruction to the |
2295 | /// specified BasicBlock. |
2296 | inline ExtractValueInst(Value *Agg, |
2297 | ArrayRef<unsigned> Idxs, |
2298 | const Twine &NameStr, |
2299 | Instruction *InsertBefore); |
2300 | inline ExtractValueInst(Value *Agg, |
2301 | ArrayRef<unsigned> Idxs, |
2302 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2303 | |
2304 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); |
2305 | |
2306 | protected: |
2307 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2308 | friend class Instruction; |
2309 | |
2310 | ExtractValueInst *cloneImpl() const; |
2311 | |
2312 | public: |
2313 | static ExtractValueInst *Create(Value *Agg, |
2314 | ArrayRef<unsigned> Idxs, |
2315 | const Twine &NameStr = "", |
2316 | Instruction *InsertBefore = nullptr) { |
2317 | return new |
2318 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); |
2319 | } |
2320 | |
2321 | static ExtractValueInst *Create(Value *Agg, |
2322 | ArrayRef<unsigned> Idxs, |
2323 | const Twine &NameStr, |
2324 | BasicBlock *InsertAtEnd) { |
2325 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); |
2326 | } |
2327 | |
2328 | /// Returns the type of the element that would be extracted |
2329 | /// with an extractvalue instruction with the specified parameters. |
2330 | /// |
2331 | /// Null is returned if the indices are invalid for the specified type. |
2332 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); |
2333 | |
2334 | using idx_iterator = const unsigned*; |
2335 | |
2336 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
2337 | inline idx_iterator idx_end() const { return Indices.end(); } |
2338 | inline iterator_range<idx_iterator> indices() const { |
2339 | return make_range(idx_begin(), idx_end()); |
2340 | } |
2341 | |
2342 | Value *getAggregateOperand() { |
2343 | return getOperand(0); |
2344 | } |
2345 | const Value *getAggregateOperand() const { |
2346 | return getOperand(0); |
2347 | } |
2348 | static unsigned getAggregateOperandIndex() { |
2349 | return 0U; // get index for modifying correct operand |
2350 | } |
2351 | |
2352 | ArrayRef<unsigned> getIndices() const { |
2353 | return Indices; |
2354 | } |
2355 | |
2356 | unsigned getNumIndices() const { |
2357 | return (unsigned)Indices.size(); |
2358 | } |
2359 | |
2360 | bool hasIndices() const { |
2361 | return true; |
2362 | } |
2363 | |
2364 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2365 | static bool classof(const Instruction *I) { |
2366 | return I->getOpcode() == Instruction::ExtractValue; |
2367 | } |
2368 | static bool classof(const Value *V) { |
2369 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2370 | } |
2371 | }; |
2372 | |
2373 | ExtractValueInst::ExtractValueInst(Value *Agg, |
2374 | ArrayRef<unsigned> Idxs, |
2375 | const Twine &NameStr, |
2376 | Instruction *InsertBefore) |
2377 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
2378 | ExtractValue, Agg, InsertBefore) { |
2379 | init(Idxs, NameStr); |
2380 | } |
2381 | |
2382 | ExtractValueInst::ExtractValueInst(Value *Agg, |
2383 | ArrayRef<unsigned> Idxs, |
2384 | const Twine &NameStr, |
2385 | BasicBlock *InsertAtEnd) |
2386 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
2387 | ExtractValue, Agg, InsertAtEnd) { |
2388 | init(Idxs, NameStr); |
2389 | } |
2390 | |
2391 | //===----------------------------------------------------------------------===// |
2392 | // InsertValueInst Class |
2393 | //===----------------------------------------------------------------------===// |
2394 | |
2395 | /// This instruction inserts a struct field of array element |
2396 | /// value into an aggregate value. |
2397 | /// |
2398 | class InsertValueInst : public Instruction { |
2399 | SmallVector<unsigned, 4> Indices; |
2400 | |
2401 | InsertValueInst(const InsertValueInst &IVI); |
2402 | |
2403 | /// Constructors - Create a insertvalue instruction with a base aggregate |
2404 | /// value, a value to insert, and a list of indices. The first ctor can |
2405 | /// optionally insert before an existing instruction, the second appends |
2406 | /// the new instruction to the specified BasicBlock. |
2407 | inline InsertValueInst(Value *Agg, Value *Val, |
2408 | ArrayRef<unsigned> Idxs, |
2409 | const Twine &NameStr, |
2410 | Instruction *InsertBefore); |
2411 | inline InsertValueInst(Value *Agg, Value *Val, |
2412 | ArrayRef<unsigned> Idxs, |
2413 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2414 | |
2415 | /// Constructors - These two constructors are convenience methods because one |
2416 | /// and two index insertvalue instructions are so common. |
2417 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, |
2418 | const Twine &NameStr = "", |
2419 | Instruction *InsertBefore = nullptr); |
2420 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, |
2421 | BasicBlock *InsertAtEnd); |
2422 | |
2423 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
2424 | const Twine &NameStr); |
2425 | |
2426 | protected: |
2427 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2428 | friend class Instruction; |
2429 | |
2430 | InsertValueInst *cloneImpl() const; |
2431 | |
2432 | public: |
2433 | // allocate space for exactly two operands |
2434 | void *operator new(size_t s) { |
2435 | return User::operator new(s, 2); |
2436 | } |
2437 | |
2438 | static InsertValueInst *Create(Value *Agg, Value *Val, |
2439 | ArrayRef<unsigned> Idxs, |
2440 | const Twine &NameStr = "", |
2441 | Instruction *InsertBefore = nullptr) { |
2442 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); |
2443 | } |
2444 | |
2445 | static InsertValueInst *Create(Value *Agg, Value *Val, |
2446 | ArrayRef<unsigned> Idxs, |
2447 | const Twine &NameStr, |
2448 | BasicBlock *InsertAtEnd) { |
2449 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); |
2450 | } |
2451 | |
2452 | /// Transparently provide more efficient getOperand methods. |
2453 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2454 | |
2455 | using idx_iterator = const unsigned*; |
2456 | |
2457 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
2458 | inline idx_iterator idx_end() const { return Indices.end(); } |
2459 | inline iterator_range<idx_iterator> indices() const { |
2460 | return make_range(idx_begin(), idx_end()); |
2461 | } |
2462 | |
2463 | Value *getAggregateOperand() { |
2464 | return getOperand(0); |
2465 | } |
2466 | const Value *getAggregateOperand() const { |
2467 | return getOperand(0); |
2468 | } |
2469 | static unsigned getAggregateOperandIndex() { |
2470 | return 0U; // get index for modifying correct operand |
2471 | } |
2472 | |
2473 | Value *getInsertedValueOperand() { |
2474 | return getOperand(1); |
2475 | } |
2476 | const Value *getInsertedValueOperand() const { |
2477 | return getOperand(1); |
2478 | } |
2479 | static unsigned getInsertedValueOperandIndex() { |
2480 | return 1U; // get index for modifying correct operand |
2481 | } |
2482 | |
2483 | ArrayRef<unsigned> getIndices() const { |
2484 | return Indices; |
2485 | } |
2486 | |
2487 | unsigned getNumIndices() const { |
2488 | return (unsigned)Indices.size(); |
2489 | } |
2490 | |
2491 | bool hasIndices() const { |
2492 | return true; |
2493 | } |
2494 | |
2495 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2496 | static bool classof(const Instruction *I) { |
2497 | return I->getOpcode() == Instruction::InsertValue; |
2498 | } |
2499 | static bool classof(const Value *V) { |
2500 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2501 | } |
2502 | }; |
2503 | |
2504 | template <> |
2505 | struct OperandTraits<InsertValueInst> : |
2506 | public FixedNumOperandTraits<InsertValueInst, 2> { |
2507 | }; |
2508 | |
2509 | InsertValueInst::InsertValueInst(Value *Agg, |
2510 | Value *Val, |
2511 | ArrayRef<unsigned> Idxs, |
2512 | const Twine &NameStr, |
2513 | Instruction *InsertBefore) |
2514 | : Instruction(Agg->getType(), InsertValue, |
2515 | OperandTraits<InsertValueInst>::op_begin(this), |
2516 | 2, InsertBefore) { |
2517 | init(Agg, Val, Idxs, NameStr); |
2518 | } |
2519 | |
2520 | InsertValueInst::InsertValueInst(Value *Agg, |
2521 | Value *Val, |
2522 | ArrayRef<unsigned> Idxs, |
2523 | const Twine &NameStr, |
2524 | BasicBlock *InsertAtEnd) |
2525 | : Instruction(Agg->getType(), InsertValue, |
2526 | OperandTraits<InsertValueInst>::op_begin(this), |
2527 | 2, InsertAtEnd) { |
2528 | init(Agg, Val, Idxs, NameStr); |
2529 | } |
2530 | |
2531 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<InsertValueInst>::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2531, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( i_nocapture < OperandTraits<InsertValueInst>::operands (this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2531, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned InsertValueInst::getNumOperands() const { return OperandTraits <InsertValueInst>::operands(this); } template <int Idx_nocapture > Use &InsertValueInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
2532 | |
2533 | //===----------------------------------------------------------------------===// |
2534 | // PHINode Class |
2535 | //===----------------------------------------------------------------------===// |
2536 | |
2537 | // PHINode - The PHINode class is used to represent the magical mystical PHI |
2538 | // node, that can not exist in nature, but can be synthesized in a computer |
2539 | // scientist's overactive imagination. |
2540 | // |
2541 | class PHINode : public Instruction { |
2542 | /// The number of operands actually allocated. NumOperands is |
2543 | /// the number actually in use. |
2544 | unsigned ReservedSpace; |
2545 | |
2546 | PHINode(const PHINode &PN); |
2547 | |
2548 | explicit PHINode(Type *Ty, unsigned NumReservedValues, |
2549 | const Twine &NameStr = "", |
2550 | Instruction *InsertBefore = nullptr) |
2551 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), |
2552 | ReservedSpace(NumReservedValues) { |
2553 | setName(NameStr); |
2554 | allocHungoffUses(ReservedSpace); |
2555 | } |
2556 | |
2557 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, |
2558 | BasicBlock *InsertAtEnd) |
2559 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), |
2560 | ReservedSpace(NumReservedValues) { |
2561 | setName(NameStr); |
2562 | allocHungoffUses(ReservedSpace); |
2563 | } |
2564 | |
2565 | protected: |
2566 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2567 | friend class Instruction; |
2568 | |
2569 | PHINode *cloneImpl() const; |
2570 | |
2571 | // allocHungoffUses - this is more complicated than the generic |
2572 | // User::allocHungoffUses, because we have to allocate Uses for the incoming |
2573 | // values and pointers to the incoming blocks, all in one allocation. |
2574 | void allocHungoffUses(unsigned N) { |
2575 | User::allocHungoffUses(N, /* IsPhi */ true); |
2576 | } |
2577 | |
2578 | public: |
2579 | /// Constructors - NumReservedValues is a hint for the number of incoming |
2580 | /// edges that this phi node will have (use 0 if you really have no idea). |
2581 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
2582 | const Twine &NameStr = "", |
2583 | Instruction *InsertBefore = nullptr) { |
2584 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); |
2585 | } |
2586 | |
2587 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
2588 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
2589 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); |
2590 | } |
2591 | |
2592 | /// Provide fast operand accessors |
2593 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2594 | |
2595 | // Block iterator interface. This provides access to the list of incoming |
2596 | // basic blocks, which parallels the list of incoming values. |
2597 | |
2598 | using block_iterator = BasicBlock **; |
2599 | using const_block_iterator = BasicBlock * const *; |
2600 | |
2601 | block_iterator block_begin() { |
2602 | Use::UserRef *ref = |
2603 | reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace); |
2604 | return reinterpret_cast<block_iterator>(ref + 1); |
2605 | } |
2606 | |
2607 | const_block_iterator block_begin() const { |
2608 | const Use::UserRef *ref = |
2609 | reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace); |
2610 | return reinterpret_cast<const_block_iterator>(ref + 1); |
2611 | } |
2612 | |
2613 | block_iterator block_end() { |
2614 | return block_begin() + getNumOperands(); |
2615 | } |
2616 | |
2617 | const_block_iterator block_end() const { |
2618 | return block_begin() + getNumOperands(); |
2619 | } |
2620 | |
2621 | iterator_range<block_iterator> blocks() { |
2622 | return make_range(block_begin(), block_end()); |
2623 | } |
2624 | |
2625 | iterator_range<const_block_iterator> blocks() const { |
2626 | return make_range(block_begin(), block_end()); |
2627 | } |
2628 | |
2629 | op_range incoming_values() { return operands(); } |
2630 | |
2631 | const_op_range incoming_values() const { return operands(); } |
2632 | |
2633 | /// Return the number of incoming edges |
2634 | /// |
2635 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
2636 | |
2637 | /// Return incoming value number x |
2638 | /// |
2639 | Value *getIncomingValue(unsigned i) const { |
2640 | return getOperand(i); |
2641 | } |
2642 | void setIncomingValue(unsigned i, Value *V) { |
2643 | assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast< void> (0) : __assert_fail ("V && \"PHI node got a null value!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2643, __PRETTY_FUNCTION__)); |
2644 | assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!" ) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2645, __PRETTY_FUNCTION__)) |
2645 | "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!" ) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2645, __PRETTY_FUNCTION__)); |
2646 | setOperand(i, V); |
2647 | } |
2648 | |
2649 | static unsigned getOperandNumForIncomingValue(unsigned i) { |
2650 | return i; |
2651 | } |
2652 | |
2653 | static unsigned getIncomingValueNumForOperand(unsigned i) { |
2654 | return i; |
2655 | } |
2656 | |
2657 | /// Return incoming basic block number @p i. |
2658 | /// |
2659 | BasicBlock *getIncomingBlock(unsigned i) const { |
2660 | return block_begin()[i]; |
2661 | } |
2662 | |
2663 | /// Return incoming basic block corresponding |
2664 | /// to an operand of the PHI. |
2665 | /// |
2666 | BasicBlock *getIncomingBlock(const Use &U) const { |
2667 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?" ) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2667, __PRETTY_FUNCTION__)); |
2668 | return getIncomingBlock(unsigned(&U - op_begin())); |
2669 | } |
2670 | |
2671 | /// Return incoming basic block corresponding |
2672 | /// to value use iterator. |
2673 | /// |
2674 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { |
2675 | return getIncomingBlock(I.getUse()); |
2676 | } |
2677 | |
2678 | void setIncomingBlock(unsigned i, BasicBlock *BB) { |
2679 | assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast <void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2679, __PRETTY_FUNCTION__)); |
2680 | block_begin()[i] = BB; |
2681 | } |
2682 | |
2683 | /// Replace every incoming basic block \p Old to basic block \p New. |
2684 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { |
2685 | assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!" ) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2685, __PRETTY_FUNCTION__)); |
2686 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
2687 | if (getIncomingBlock(Op) == Old) |
2688 | setIncomingBlock(Op, New); |
2689 | } |
2690 | |
2691 | /// Add an incoming value to the end of the PHI list |
2692 | /// |
2693 | void addIncoming(Value *V, BasicBlock *BB) { |
2694 | if (getNumOperands() == ReservedSpace) |
2695 | growOperands(); // Get more space! |
2696 | // Initialize some new operands. |
2697 | setNumHungOffUseOperands(getNumOperands() + 1); |
2698 | setIncomingValue(getNumOperands() - 1, V); |
2699 | setIncomingBlock(getNumOperands() - 1, BB); |
2700 | } |
2701 | |
2702 | /// Remove an incoming value. This is useful if a |
2703 | /// predecessor basic block is deleted. The value removed is returned. |
2704 | /// |
2705 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty |
2706 | /// is true), the PHI node is destroyed and any uses of it are replaced with |
2707 | /// dummy values. The only time there should be zero incoming values to a PHI |
2708 | /// node is when the block is dead, so this strategy is sound. |
2709 | /// |
2710 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); |
2711 | |
2712 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { |
2713 | int Idx = getBasicBlockIndex(BB); |
2714 | assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!" ) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2714, __PRETTY_FUNCTION__)); |
2715 | return removeIncomingValue(Idx, DeletePHIIfEmpty); |
2716 | } |
2717 | |
2718 | /// Return the first index of the specified basic |
2719 | /// block in the value list for this PHI. Returns -1 if no instance. |
2720 | /// |
2721 | int getBasicBlockIndex(const BasicBlock *BB) const { |
2722 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
2723 | if (block_begin()[i] == BB) |
2724 | return i; |
2725 | return -1; |
2726 | } |
2727 | |
2728 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { |
2729 | int Idx = getBasicBlockIndex(BB); |
2730 | assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast <void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2730, __PRETTY_FUNCTION__)); |
2731 | return getIncomingValue(Idx); |
2732 | } |
2733 | |
2734 | /// Set every incoming value(s) for block \p BB to \p V. |
2735 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { |
2736 | assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast <void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2736, __PRETTY_FUNCTION__)); |
2737 | bool Found = false; |
2738 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
2739 | if (getIncomingBlock(Op) == BB) { |
2740 | Found = true; |
2741 | setIncomingValue(Op, V); |
2742 | } |
2743 | (void)Found; |
2744 | assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast <void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2744, __PRETTY_FUNCTION__)); |
2745 | } |
2746 | |
2747 | /// If the specified PHI node always merges together the |
2748 | /// same value, return the value, otherwise return null. |
2749 | Value *hasConstantValue() const; |
2750 | |
2751 | /// Whether the specified PHI node always merges |
2752 | /// together the same value, assuming undefs are equal to a unique |
2753 | /// non-undef value. |
2754 | bool hasConstantOrUndefValue() const; |
2755 | |
2756 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
2757 | static bool classof(const Instruction *I) { |
2758 | return I->getOpcode() == Instruction::PHI; |
2759 | } |
2760 | static bool classof(const Value *V) { |
2761 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2762 | } |
2763 | |
2764 | private: |
2765 | void growOperands(); |
2766 | }; |
2767 | |
2768 | template <> |
2769 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { |
2770 | }; |
2771 | |
2772 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { ((i_nocapture < OperandTraits<PHINode>::operands (this) && "getOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2772, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<PHINode>::op_begin(const_cast<PHINode *>(this))[i_nocapture].get()); } void PHINode::setOperand( unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture < OperandTraits<PHINode>::operands(this) && "setOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2772, __PRETTY_FUNCTION__)); OperandTraits<PHINode>:: op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode ::getNumOperands() const { return OperandTraits<PHINode> ::operands(this); } template <int Idx_nocapture> Use & PHINode::Op() { return this->OpFrom<Idx_nocapture>(this ); } template <int Idx_nocapture> const Use &PHINode ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
2773 | |
2774 | //===----------------------------------------------------------------------===// |
2775 | // LandingPadInst Class |
2776 | //===----------------------------------------------------------------------===// |
2777 | |
2778 | //===--------------------------------------------------------------------------- |
2779 | /// The landingpad instruction holds all of the information |
2780 | /// necessary to generate correct exception handling. The landingpad instruction |
2781 | /// cannot be moved from the top of a landing pad block, which itself is |
2782 | /// accessible only from the 'unwind' edge of an invoke. This uses the |
2783 | /// SubclassData field in Value to store whether or not the landingpad is a |
2784 | /// cleanup. |
2785 | /// |
2786 | class LandingPadInst : public Instruction { |
2787 | /// The number of operands actually allocated. NumOperands is |
2788 | /// the number actually in use. |
2789 | unsigned ReservedSpace; |
2790 | |
2791 | LandingPadInst(const LandingPadInst &LP); |
2792 | |
2793 | public: |
2794 | enum ClauseType { Catch, Filter }; |
2795 | |
2796 | private: |
2797 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
2798 | const Twine &NameStr, Instruction *InsertBefore); |
2799 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
2800 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2801 | |
2802 | // Allocate space for exactly zero operands. |
2803 | void *operator new(size_t s) { |
2804 | return User::operator new(s); |
2805 | } |
2806 | |
2807 | void growOperands(unsigned Size); |
2808 | void init(unsigned NumReservedValues, const Twine &NameStr); |
2809 | |
2810 | protected: |
2811 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2812 | friend class Instruction; |
2813 | |
2814 | LandingPadInst *cloneImpl() const; |
2815 | |
2816 | public: |
2817 | /// Constructors - NumReservedClauses is a hint for the number of incoming |
2818 | /// clauses that this landingpad will have (use 0 if you really have no idea). |
2819 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
2820 | const Twine &NameStr = "", |
2821 | Instruction *InsertBefore = nullptr); |
2822 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
2823 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
2824 | |
2825 | /// Provide fast operand accessors |
2826 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2827 | |
2828 | /// Return 'true' if this landingpad instruction is a |
2829 | /// cleanup. I.e., it should be run when unwinding even if its landing pad |
2830 | /// doesn't catch the exception. |
2831 | bool isCleanup() const { return getSubclassDataFromInstruction() & 1; } |
2832 | |
2833 | /// Indicate that this landingpad instruction is a cleanup. |
2834 | void setCleanup(bool V) { |
2835 | setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | |
2836 | (V ? 1 : 0)); |
2837 | } |
2838 | |
2839 | /// Add a catch or filter clause to the landing pad. |
2840 | void addClause(Constant *ClauseVal); |
2841 | |
2842 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to |
2843 | /// determine what type of clause this is. |
2844 | Constant *getClause(unsigned Idx) const { |
2845 | return cast<Constant>(getOperandList()[Idx]); |
2846 | } |
2847 | |
2848 | /// Return 'true' if the clause and index Idx is a catch clause. |
2849 | bool isCatch(unsigned Idx) const { |
2850 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); |
2851 | } |
2852 | |
2853 | /// Return 'true' if the clause and index Idx is a filter clause. |
2854 | bool isFilter(unsigned Idx) const { |
2855 | return isa<ArrayType>(getOperandList()[Idx]->getType()); |
2856 | } |
2857 | |
2858 | /// Get the number of clauses for this landing pad. |
2859 | unsigned getNumClauses() const { return getNumOperands(); } |
2860 | |
2861 | /// Grow the size of the operand list to accommodate the new |
2862 | /// number of clauses. |
2863 | void reserveClauses(unsigned Size) { growOperands(Size); } |
2864 | |
2865 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2866 | static bool classof(const Instruction *I) { |
2867 | return I->getOpcode() == Instruction::LandingPad; |
2868 | } |
2869 | static bool classof(const Value *V) { |
2870 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2871 | } |
2872 | }; |
2873 | |
2874 | template <> |
2875 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { |
2876 | }; |
2877 | |
2878 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<LandingPadInst>::operands(this) && "getOperand() out of range!") ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2878, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst ::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (( i_nocapture < OperandTraits<LandingPadInst>::operands (this) && "setOperand() out of range!") ? static_cast <void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2878, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst >::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits <LandingPadInst>::operands(this); } template <int Idx_nocapture > Use &LandingPadInst::Op() { return this->OpFrom< Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst::Op() const { return this-> OpFrom<Idx_nocapture>(this); } |
2879 | |
2880 | //===----------------------------------------------------------------------===// |
2881 | // ReturnInst Class |
2882 | //===----------------------------------------------------------------------===// |
2883 | |
2884 | //===--------------------------------------------------------------------------- |
2885 | /// Return a value (possibly void), from a function. Execution |
2886 | /// does not continue in this function any longer. |
2887 | /// |
2888 | class ReturnInst : public Instruction { |
2889 | ReturnInst(const ReturnInst &RI); |
2890 | |
2891 | private: |
2892 | // ReturnInst constructors: |
2893 | // ReturnInst() - 'ret void' instruction |
2894 | // ReturnInst( null) - 'ret void' instruction |
2895 | // ReturnInst(Value* X) - 'ret X' instruction |
2896 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I |
2897 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I |
2898 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B |
2899 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B |
2900 | // |
2901 | // NOTE: If the Value* passed is of type void then the constructor behaves as |
2902 | // if it was passed NULL. |
2903 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, |
2904 | Instruction *InsertBefore = nullptr); |
2905 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); |
2906 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
2907 | |
2908 | protected: |
2909 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2910 | friend class Instruction; |
2911 | |
2912 | ReturnInst *cloneImpl() const; |
2913 | |
2914 | public: |
2915 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, |
2916 | Instruction *InsertBefore = nullptr) { |
2917 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); |
2918 | } |
2919 | |
2920 | static ReturnInst* Create(LLVMContext &C, Value *retVal, |
2921 | BasicBlock *InsertAtEnd) { |
2922 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); |
2923 | } |
2924 | |
2925 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { |
2926 | return new(0) ReturnInst(C, InsertAtEnd); |
2927 | } |
2928 | |
2929 | /// Provide fast operand accessors |
2930 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
2931 | |
2932 | /// Convenience accessor. Returns null if there is no return value. |
2933 | Value *getReturnValue() const { |
2934 | return getNumOperands() != 0 ? getOperand(0) : nullptr; |
2935 | } |
2936 | |
2937 | unsigned getNumSuccessors() const { return 0; } |
2938 | |
2939 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
2940 | static bool classof(const Instruction *I) { |
2941 | return (I->getOpcode() == Instruction::Ret); |
2942 | } |
2943 | static bool classof(const Value *V) { |
2944 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
2945 | } |
2946 | |
2947 | private: |
2948 | BasicBlock *getSuccessor(unsigned idx) const { |
2949 | llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2949); |
2950 | } |
2951 | |
2952 | void setSuccessor(unsigned idx, BasicBlock *B) { |
2953 | llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2953); |
2954 | } |
2955 | }; |
2956 | |
2957 | template <> |
2958 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { |
2959 | }; |
2960 | |
2961 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2961, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst *>(this))[i_nocapture].get()); } void ReturnInst::setOperand (unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture < OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 2961, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst> ::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst ::getNumOperands() const { return OperandTraits<ReturnInst >::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & ReturnInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
2962 | |
2963 | //===----------------------------------------------------------------------===// |
2964 | // BranchInst Class |
2965 | //===----------------------------------------------------------------------===// |
2966 | |
2967 | //===--------------------------------------------------------------------------- |
2968 | /// Conditional or Unconditional Branch instruction. |
2969 | /// |
2970 | class BranchInst : public Instruction { |
2971 | /// Ops list - Branches are strange. The operands are ordered: |
2972 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because |
2973 | /// they don't have to check for cond/uncond branchness. These are mostly |
2974 | /// accessed relative from op_end(). |
2975 | BranchInst(const BranchInst &BI); |
2976 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): |
2977 | // BranchInst(BB *B) - 'br B' |
2978 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' |
2979 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I |
2980 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I |
2981 | // BranchInst(BB* B, BB *I) - 'br B' insert at end |
2982 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end |
2983 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); |
2984 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
2985 | Instruction *InsertBefore = nullptr); |
2986 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); |
2987 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
2988 | BasicBlock *InsertAtEnd); |
2989 | |
2990 | void AssertOK(); |
2991 | |
2992 | protected: |
2993 | // Note: Instruction needs to be a friend here to call cloneImpl. |
2994 | friend class Instruction; |
2995 | |
2996 | BranchInst *cloneImpl() const; |
2997 | |
2998 | public: |
2999 | /// Iterator type that casts an operand to a basic block. |
3000 | /// |
3001 | /// This only makes sense because the successors are stored as adjacent |
3002 | /// operands for branch instructions. |
3003 | struct succ_op_iterator |
3004 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
3005 | std::random_access_iterator_tag, BasicBlock *, |
3006 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
3007 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
3008 | |
3009 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3010 | BasicBlock *operator->() const { return operator*(); } |
3011 | }; |
3012 | |
3013 | /// The const version of `succ_op_iterator`. |
3014 | struct const_succ_op_iterator |
3015 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
3016 | std::random_access_iterator_tag, |
3017 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
3018 | const BasicBlock *> { |
3019 | explicit const_succ_op_iterator(const_value_op_iterator I) |
3020 | : iterator_adaptor_base(I) {} |
3021 | |
3022 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
3023 | const BasicBlock *operator->() const { return operator*(); } |
3024 | }; |
3025 | |
3026 | static BranchInst *Create(BasicBlock *IfTrue, |
3027 | Instruction *InsertBefore = nullptr) { |
3028 | return new(1) BranchInst(IfTrue, InsertBefore); |
3029 | } |
3030 | |
3031 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
3032 | Value *Cond, Instruction *InsertBefore = nullptr) { |
3033 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); |
3034 | } |
3035 | |
3036 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { |
3037 | return new(1) BranchInst(IfTrue, InsertAtEnd); |
3038 | } |
3039 | |
3040 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
3041 | Value *Cond, BasicBlock *InsertAtEnd) { |
3042 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); |
3043 | } |
3044 | |
3045 | /// Transparently provide more efficient getOperand methods. |
3046 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
3047 | |
3048 | bool isUnconditional() const { return getNumOperands() == 1; } |
3049 | bool isConditional() const { return getNumOperands() == 3; } |
3050 | |
3051 | Value *getCondition() const { |
3052 | assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!" ) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3052, __PRETTY_FUNCTION__)); |
3053 | return Op<-3>(); |
3054 | } |
3055 | |
3056 | void setCondition(Value *V) { |
3057 | assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!" ) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3057, __PRETTY_FUNCTION__)); |
3058 | Op<-3>() = V; |
3059 | } |
3060 | |
3061 | unsigned getNumSuccessors() const { return 1+isConditional(); } |
3062 | |
3063 | BasicBlock *getSuccessor(unsigned i) const { |
3064 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!" ) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3064, __PRETTY_FUNCTION__)); |
3065 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); |
3066 | } |
3067 | |
3068 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
3069 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!" ) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3069, __PRETTY_FUNCTION__)); |
3070 | *(&Op<-1>() - idx) = NewSucc; |
3071 | } |
3072 | |
3073 | /// Swap the successors of this branch instruction. |
3074 | /// |
3075 | /// Swaps the successors of the branch instruction. This also swaps any |
3076 | /// branch weight metadata associated with the instruction so that it |
3077 | /// continues to map correctly to each operand. |
3078 | void swapSuccessors(); |
3079 | |
3080 | iterator_range<succ_op_iterator> successors() { |
3081 | return make_range( |
3082 | succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), |
3083 | succ_op_iterator(value_op_end())); |
3084 | } |
3085 | |
3086 | iterator_range<const_succ_op_iterator> successors() const { |
3087 | return make_range(const_succ_op_iterator( |
3088 | std::next(value_op_begin(), isConditional() ? 1 : 0)), |
3089 | const_succ_op_iterator(value_op_end())); |
3090 | } |
3091 | |
3092 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
3093 | static bool classof(const Instruction *I) { |
3094 | return (I->getOpcode() == Instruction::Br); |
3095 | } |
3096 | static bool classof(const Value *V) { |
3097 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
3098 | } |
3099 | }; |
3100 | |
3101 | template <> |
3102 | struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { |
3103 | }; |
3104 | |
3105 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits <BranchInst>::op_begin(this); } BranchInst::const_op_iterator BranchInst::op_begin() const { return OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this)); } BranchInst ::op_iterator BranchInst::op_end() { return OperandTraits< BranchInst>::op_end(this); } BranchInst::const_op_iterator BranchInst::op_end() const { return OperandTraits<BranchInst >::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst ::getOperand(unsigned i_nocapture) const { ((i_nocapture < OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3105, __PRETTY_FUNCTION__)); return cast_or_null<Value> ( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst *>(this))[i_nocapture].get()); } void BranchInst::setOperand (unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture < OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!" ) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3105, __PRETTY_FUNCTION__)); OperandTraits<BranchInst> ::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst ::getNumOperands() const { return OperandTraits<BranchInst >::operands(this); } template <int Idx_nocapture> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture >(this); } template <int Idx_nocapture> const Use & BranchInst::Op() const { return this->OpFrom<Idx_nocapture >(this); } |
3106 | |
3107 | //===----------------------------------------------------------------------===// |
3108 | // SwitchInst Class |
3109 | //===----------------------------------------------------------------------===// |
3110 | |
3111 | //===--------------------------------------------------------------------------- |
3112 | /// Multiway switch |
3113 | /// |
3114 | class SwitchInst : public Instruction { |
3115 | unsigned ReservedSpace; |
3116 | |
3117 | // Operand[0] = Value to switch on |
3118 | // Operand[1] = Default basic block destination |
3119 | // Operand[2n ] = Value to match |
3120 | // Operand[2n+1] = BasicBlock to go to on match |
3121 | SwitchInst(const SwitchInst &SI); |
3122 | |
3123 | /// Create a new switch instruction, specifying a value to switch on and a |
3124 | /// default destination. The number of additional cases can be specified here |
3125 | /// to make memory allocation more efficient. This constructor can also |
3126 | /// auto-insert before another instruction. |
3127 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
3128 | Instruction *InsertBefore); |
3129 | |
3130 | /// Create a new switch instruction, specifying a value to switch on and a |
3131 | /// default destination. The number of additional cases can be specified here |
3132 | /// to make memory allocation more efficient. This constructor also |
3133 | /// auto-inserts at the end of the specified BasicBlock. |
3134 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
3135 | BasicBlock *InsertAtEnd); |
3136 | |
3137 | // allocate space for exactly zero operands |
3138 | void *operator new(size_t s) { |
3139 | return User::operator new(s); |
3140 | } |
3141 | |
3142 | void init(Value *Value, BasicBlock *Default, unsigned NumReserved); |
3143 | void growOperands(); |
3144 | |
3145 | protected: |
3146 | // Note: Instruction needs to be a friend here to call cloneImpl. |
3147 | friend class Instruction; |
3148 | |
3149 | SwitchInst *cloneImpl() const; |
3150 | |
3151 | public: |
3152 | // -2 |
3153 | static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); |
3154 | |
3155 | template <typename CaseHandleT> class CaseIteratorImpl; |
3156 | |
3157 | /// A handle to a particular switch case. It exposes a convenient interface |
3158 | /// to both the case value and the successor block. |
3159 | /// |
3160 | /// We define this as a template and instantiate it to form both a const and |
3161 | /// non-const handle. |
3162 | template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> |
3163 | class CaseHandleImpl { |
3164 | // Directly befriend both const and non-const iterators. |
3165 | friend class SwitchInst::CaseIteratorImpl< |
3166 | CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; |
3167 | |
3168 | protected: |
3169 | // Expose the switch type we're parameterized with to the iterator. |
3170 | using SwitchInstType = SwitchInstT; |
3171 | |
3172 | SwitchInstT *SI; |
3173 | ptrdiff_t Index; |
3174 | |
3175 | CaseHandleImpl() = default; |
3176 | CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} |
3177 | |
3178 | public: |
3179 | /// Resolves case value for current case. |
3180 | ConstantIntT *getCaseValue() const { |
3181 | assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3182, __PRETTY_FUNCTION__)) |
3182 | "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3182, __PRETTY_FUNCTION__)); |
3183 | return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); |
3184 | } |
3185 | |
3186 | /// Resolves successor for current case. |
3187 | BasicBlockT *getCaseSuccessor() const { |
3188 | assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3190, __PRETTY_FUNCTION__)) |
3189 | (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3190, __PRETTY_FUNCTION__)) |
3190 | "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3190, __PRETTY_FUNCTION__)); |
3191 | return SI->getSuccessor(getSuccessorIndex()); |
3192 | } |
3193 | |
3194 | /// Returns number of current case. |
3195 | unsigned getCaseIndex() const { return Index; } |
3196 | |
3197 | /// Returns successor index for current case successor. |
3198 | unsigned getSuccessorIndex() const { |
3199 | assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3201, __PRETTY_FUNCTION__)) |
3200 | (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3201, __PRETTY_FUNCTION__)) |
3201 | "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3201, __PRETTY_FUNCTION__)); |
3202 | return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; |
3203 | } |
3204 | |
3205 | bool operator==(const CaseHandleImpl &RHS) const { |
3206 | assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast <void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3206, __PRETTY_FUNCTION__)); |
3207 | return Index == RHS.Index; |
3208 | } |
3209 | }; |
3210 | |
3211 | using ConstCaseHandle = |
3212 | CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; |
3213 | |
3214 | class CaseHandle |
3215 | : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { |
3216 | friend class SwitchInst::CaseIteratorImpl<CaseHandle>; |
3217 | |
3218 | public: |
3219 | CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} |
3220 | |
3221 | /// Sets the new value for current case. |
3222 | void setValue(ConstantInt *V) { |
3223 | assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3224, __PRETTY_FUNCTION__)) |
3224 | "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3224, __PRETTY_FUNCTION__)); |
3225 | SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); |
3226 | } |
3227 | |
3228 | /// Sets the new successor for current case. |
3229 | void setSuccessor(BasicBlock *S) { |
3230 | SI->setSuccessor(getSuccessorIndex(), S); |
3231 | } |
3232 | }; |
3233 | |
3234 | template <typename CaseHandleT> |
3235 | class CaseIteratorImpl |
3236 | : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, |
3237 | std::random_access_iterator_tag, |
3238 | CaseHandleT> { |
3239 | using SwitchInstT = typename CaseHandleT::SwitchInstType; |
3240 | |
3241 | CaseHandleT Case; |
3242 | |
3243 | public: |
3244 | /// Default constructed iterator is in an invalid state until assigned to |
3245 | /// a case for a particular switch. |
3246 | CaseIteratorImpl() = default; |
3247 | |
3248 | /// Initializes case iterator for given SwitchInst and for given |
3249 | /// case number. |
3250 | CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} |
3251 | |
3252 | /// Initializes case iterator for given SwitchInst and for given |
3253 | /// successor index. |
3254 | static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, |
3255 | unsigned SuccessorIndex) { |
3256 | assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!" ) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3257, __PRETTY_FUNCTION__)) |
3257 | "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!" ) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3257, __PRETTY_FUNCTION__)); |
3258 | return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) |
3259 | : CaseIteratorImpl(SI, DefaultPseudoIndex); |
3260 | } |
3261 | |
3262 | /// Support converting to the const variant. This will be a no-op for const |
3263 | /// variant. |
3264 | operator CaseIteratorImpl<ConstCaseHandle>() const { |
3265 | return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); |
3266 | } |
3267 | |
3268 | CaseIteratorImpl &operator+=(ptrdiff_t N) { |
3269 | // Check index correctness after addition. |
3270 | // Note: Index == getNumCases() means end(). |
3271 | assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3273, __PRETTY_FUNCTION__)) |
3272 | (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3273, __PRETTY_FUNCTION__)) |
3273 | "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3273, __PRETTY_FUNCTION__)); |
3274 | Case.Index += N; |
3275 | return *this; |
3276 | } |
3277 | CaseIteratorImpl &operator-=(ptrdiff_t N) { |
3278 | // Check index correctness after subtraction. |
3279 | // Note: Case.Index == getNumCases() means end(). |
3280 | assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3282, __PRETTY_FUNCTION__)) |
3281 | (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3282, __PRETTY_FUNCTION__)) |
3282 | "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N ) <= Case.SI->getNumCases() && "Case.Index out the number of cases." ) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3282, __PRETTY_FUNCTION__)); |
3283 | Case.Index -= N; |
3284 | return *this; |
3285 | } |
3286 | ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { |
3287 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators." ) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3287, __PRETTY_FUNCTION__)); |
3288 | return Case.Index - RHS.Case.Index; |
3289 | } |
3290 | bool operator==(const CaseIteratorImpl &RHS) const { |
3291 | return Case == RHS.Case; |
3292 | } |
3293 | bool operator<(const CaseIteratorImpl &RHS) const { |
3294 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators." ) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/llvm/include/llvm/IR/Instructions.h" , 3294, __PRETTY_FUNCTION__)); |
3295 | return Case.Index < RHS.Case.Index; |
3296 | } |
3297 | CaseHandleT &operator*() { return Case; } |
3298 | const CaseHandleT &operator*() const { return Case; } |
3299 | }; |
3300 | |
3301 | using CaseIt = CaseIteratorImpl<CaseHandle>; |
3302 | using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; |
3303 | |
3304 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
3305 | unsigned NumCases, |
3306 | Instruction *InsertBefore = nullptr) { |
3307 | return new SwitchInst(Value, Default, NumCases, InsertBefore); |
3308 | } |
3309 | |
3310 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
3311 | unsigned NumCases, BasicBlock *InsertAtEnd) { |
3312 | return new SwitchInst(Value, Default, NumCases, InsertAtEnd); |
3313 | } |
3314 | |
3315 | /// Provide fast operand accessors |
3316 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
3317 | |
3318 | // Accessor Methods for Switch stmt |
3319 | Value *getCondition() const { return getOperand(0); } |
3320 | void setCondition(Value *V) { setOperand(0, V); } |
3321 | |
3322 | BasicBlock *getDefaultDest() const { |
3323 | return cast<BasicBlock>(getOperand(1)); |
3324 | } |
3325 | |
3326 | void setDefaultDest(BasicBlock *DefaultCase) { |
3327 | setOperand(1, reinterpret_cast<Value*>(DefaultCase)); |
3328 | } |
3329 | |
3330 | /// Return the number of 'cases' in this switch instruction, excluding the |
3331 | /// default case. |
3332 | unsigned getNumCases() const { |
3333 | return getNumOperands()/2 - 1; |
3334 | } |
3335 | |
3336 | /// Returns a read/write iterator that points to the first case in the |
3337 | /// SwitchInst. |
3338 | CaseIt case_begin() { |
3339 | return CaseIt(this, 0); |
3340 | } |
3341 | |
3342 | /// Returns a read-only iterator that points to the first case in the |
3343 | /// SwitchInst. |
3344 | ConstCaseIt case_begin() const { |
3345 | return ConstCaseIt(this, 0); |
3346 | } |
3347 | |
3348 | /// Returns a read/write iterator that points one past the last in the |
3349 | /// SwitchInst. |
3350 | CaseIt case_end() { |
3351 | return CaseIt(this, getNumCases()); |
3352 | } |
3353 | |
3354 | /// Returns a read-only iterator that points one past the last in the |
3355 | /// SwitchInst. |
3356 | ConstCaseIt case_end() const { |
3357 | return ConstCaseIt(this, getNumCases()); |
3358 | } |
3359 | |
3360 | /// Iteration adapter for range-for loops. |
3361 | iterator_range<CaseIt> cases() { |
3362 | return make_range(case_begin(), case_end()); |
3363 | } |
3364 | |
3365 | /// Constant iteration adapter for range-for loops. |
3366 | iterator_range<ConstCaseIt> cases() const { |
3367 | return make_range(case_begin(), case_end()); |
3368 | } |
3369 | |
3370 | /// Returns an iterator that points to the default case. |
3371 | /// Note: this iterator allows to resolve successor only. Attempt |
3372 | /// to resolve case value causes an assertion. |
3373 | /// Also note, that increment and decrement also causes an assertion and |
3374 | /// makes iterator invalid. |
3375 | CaseIt case_default() { |
3376 | return CaseIt(this, DefaultPseudoIndex); |
3377 | } |