Bug Summary

File:llvm/lib/Analysis/LazyValueInfo.cpp
Warning:line 1417, column 34
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LazyValueInfo.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Analysis -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Analysis -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp

1//===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interface for lazy computation of value constraint
10// information.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Analysis/LazyValueInfo.h"
15#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/Analysis/AssumptionCache.h"
19#include "llvm/Analysis/ConstantFolding.h"
20#include "llvm/Analysis/InstructionSimplify.h"
21#include "llvm/Analysis/TargetLibraryInfo.h"
22#include "llvm/Analysis/ValueLattice.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/IR/AssemblyAnnotationWriter.h"
25#include "llvm/IR/CFG.h"
26#include "llvm/IR/ConstantRange.h"
27#include "llvm/IR/Constants.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Dominators.h"
30#include "llvm/IR/Instructions.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/PatternMatch.h"
35#include "llvm/IR/ValueHandle.h"
36#include "llvm/InitializePasses.h"
37#include "llvm/Support/Debug.h"
38#include "llvm/Support/FormattedStream.h"
39#include "llvm/Support/raw_ostream.h"
40#include <map>
41using namespace llvm;
42using namespace PatternMatch;
43
44#define DEBUG_TYPE"lazy-value-info" "lazy-value-info"
45
46// This is the number of worklist items we will process to try to discover an
47// answer for a given value.
48static const unsigned MaxProcessedPerValue = 500;
49
50char LazyValueInfoWrapperPass::ID = 0;
51LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) {
52 initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry());
53}
54INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info",static void *initializeLazyValueInfoWrapperPassPassOnce(PassRegistry
&Registry) {
55 "Lazy Value Information Analysis", false, true)static void *initializeLazyValueInfoWrapperPassPassOnce(PassRegistry
&Registry) {
56INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
57INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
58INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info",PassInfo *PI = new PassInfo( "Lazy Value Information Analysis"
, "lazy-value-info", &LazyValueInfoWrapperPass::ID, PassInfo
::NormalCtor_t(callDefaultCtor<LazyValueInfoWrapperPass>
), false, true); Registry.registerPass(*PI, true); return PI;
} static llvm::once_flag InitializeLazyValueInfoWrapperPassPassFlag
; void llvm::initializeLazyValueInfoWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLazyValueInfoWrapperPassPassFlag
, initializeLazyValueInfoWrapperPassPassOnce, std::ref(Registry
)); }
59 "Lazy Value Information Analysis", false, true)PassInfo *PI = new PassInfo( "Lazy Value Information Analysis"
, "lazy-value-info", &LazyValueInfoWrapperPass::ID, PassInfo
::NormalCtor_t(callDefaultCtor<LazyValueInfoWrapperPass>
), false, true); Registry.registerPass(*PI, true); return PI;
} static llvm::once_flag InitializeLazyValueInfoWrapperPassPassFlag
; void llvm::initializeLazyValueInfoWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLazyValueInfoWrapperPassPassFlag
, initializeLazyValueInfoWrapperPassPassOnce, std::ref(Registry
)); }
60
61namespace llvm {
62 FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); }
63}
64
65AnalysisKey LazyValueAnalysis::Key;
66
67/// Returns true if this lattice value represents at most one possible value.
68/// This is as precise as any lattice value can get while still representing
69/// reachable code.
70static bool hasSingleValue(const ValueLatticeElement &Val) {
71 if (Val.isConstantRange() &&
72 Val.getConstantRange().isSingleElement())
73 // Integer constants are single element ranges
74 return true;
75 if (Val.isConstant())
76 // Non integer constants
77 return true;
78 return false;
79}
80
81/// Combine two sets of facts about the same value into a single set of
82/// facts. Note that this method is not suitable for merging facts along
83/// different paths in a CFG; that's what the mergeIn function is for. This
84/// is for merging facts gathered about the same value at the same location
85/// through two independent means.
86/// Notes:
87/// * This method does not promise to return the most precise possible lattice
88/// value implied by A and B. It is allowed to return any lattice element
89/// which is at least as strong as *either* A or B (unless our facts
90/// conflict, see below).
91/// * Due to unreachable code, the intersection of two lattice values could be
92/// contradictory. If this happens, we return some valid lattice value so as
93/// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
94/// we do not make this guarantee. TODO: This would be a useful enhancement.
95static ValueLatticeElement intersect(const ValueLatticeElement &A,
96 const ValueLatticeElement &B) {
97 // Undefined is the strongest state. It means the value is known to be along
98 // an unreachable path.
99 if (A.isUndefined())
100 return A;
101 if (B.isUndefined())
102 return B;
103
104 // If we gave up for one, but got a useable fact from the other, use it.
105 if (A.isOverdefined())
106 return B;
107 if (B.isOverdefined())
108 return A;
109
110 // Can't get any more precise than constants.
111 if (hasSingleValue(A))
112 return A;
113 if (hasSingleValue(B))
114 return B;
115
116 // Could be either constant range or not constant here.
117 if (!A.isConstantRange() || !B.isConstantRange()) {
118 // TODO: Arbitrary choice, could be improved
119 return A;
120 }
121
122 // Intersect two constant ranges
123 ConstantRange Range =
124 A.getConstantRange().intersectWith(B.getConstantRange());
125 // Note: An empty range is implicitly converted to overdefined internally.
126 // TODO: We could instead use Undefined here since we've proven a conflict
127 // and thus know this path must be unreachable.
128 return ValueLatticeElement::getRange(std::move(Range));
129}
130
131//===----------------------------------------------------------------------===//
132// LazyValueInfoCache Decl
133//===----------------------------------------------------------------------===//
134
135namespace {
136 /// A callback value handle updates the cache when values are erased.
137 class LazyValueInfoCache;
138 struct LVIValueHandle final : public CallbackVH {
139 // Needs to access getValPtr(), which is protected.
140 friend struct DenseMapInfo<LVIValueHandle>;
141
142 LazyValueInfoCache *Parent;
143
144 LVIValueHandle(Value *V, LazyValueInfoCache *P)
145 : CallbackVH(V), Parent(P) { }
146
147 void deleted() override;
148 void allUsesReplacedWith(Value *V) override {
149 deleted();
150 }
151 };
152} // end anonymous namespace
153
154namespace {
155 /// This is the cache kept by LazyValueInfo which
156 /// maintains information about queries across the clients' queries.
157 class LazyValueInfoCache {
158 /// This is all of the cached block information for exactly one Value*.
159 /// The entries are sorted by the BasicBlock* of the
160 /// entries, allowing us to do a lookup with a binary search.
161 /// Over-defined lattice values are recorded in OverDefinedCache to reduce
162 /// memory overhead.
163 struct ValueCacheEntryTy {
164 ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {}
165 LVIValueHandle Handle;
166 SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals;
167 };
168
169 /// This tracks, on a per-block basis, the set of values that are
170 /// over-defined at the end of that block.
171 typedef DenseMap<PoisoningVH<BasicBlock>, SmallPtrSet<Value *, 4>>
172 OverDefinedCacheTy;
173 /// Keep track of all blocks that we have ever seen, so we
174 /// don't spend time removing unused blocks from our caches.
175 DenseSet<PoisoningVH<BasicBlock> > SeenBlocks;
176
177 /// This is all of the cached information for all values,
178 /// mapped from Value* to key information.
179 DenseMap<Value *, std::unique_ptr<ValueCacheEntryTy>> ValueCache;
180 OverDefinedCacheTy OverDefinedCache;
181
182
183 public:
184 void insertResult(Value *Val, BasicBlock *BB,
185 const ValueLatticeElement &Result) {
186 SeenBlocks.insert(BB);
187
188 // Insert over-defined values into their own cache to reduce memory
189 // overhead.
190 if (Result.isOverdefined())
191 OverDefinedCache[BB].insert(Val);
192 else {
193 auto It = ValueCache.find_as(Val);
194 if (It == ValueCache.end()) {
195 ValueCache[Val] = std::make_unique<ValueCacheEntryTy>(Val, this);
196 It = ValueCache.find_as(Val);
197 assert(It != ValueCache.end() && "Val was just added to the map!")((It != ValueCache.end() && "Val was just added to the map!"
) ? static_cast<void> (0) : __assert_fail ("It != ValueCache.end() && \"Val was just added to the map!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 197, __PRETTY_FUNCTION__))
;
198 }
199 It->second->BlockVals[BB] = Result;
200 }
201 }
202
203 bool isOverdefined(Value *V, BasicBlock *BB) const {
204 auto ODI = OverDefinedCache.find(BB);
205
206 if (ODI == OverDefinedCache.end())
207 return false;
208
209 return ODI->second.count(V);
210 }
211
212 bool hasCachedValueInfo(Value *V, BasicBlock *BB) const {
213 if (isOverdefined(V, BB))
214 return true;
215
216 auto I = ValueCache.find_as(V);
217 if (I == ValueCache.end())
218 return false;
219
220 return I->second->BlockVals.count(BB);
221 }
222
223 ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const {
224 if (isOverdefined(V, BB))
225 return ValueLatticeElement::getOverdefined();
226
227 auto I = ValueCache.find_as(V);
228 if (I == ValueCache.end())
229 return ValueLatticeElement();
230 auto BBI = I->second->BlockVals.find(BB);
231 if (BBI == I->second->BlockVals.end())
232 return ValueLatticeElement();
233 return BBI->second;
234 }
235
236 /// clear - Empty the cache.
237 void clear() {
238 SeenBlocks.clear();
239 ValueCache.clear();
240 OverDefinedCache.clear();
241 }
242
243 /// Inform the cache that a given value has been deleted.
244 void eraseValue(Value *V);
245
246 /// This is part of the update interface to inform the cache
247 /// that a block has been deleted.
248 void eraseBlock(BasicBlock *BB);
249
250 /// Updates the cache to remove any influence an overdefined value in
251 /// OldSucc might have (unless also overdefined in NewSucc). This just
252 /// flushes elements from the cache and does not add any.
253 void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc);
254
255 friend struct LVIValueHandle;
256 };
257}
258
259void LazyValueInfoCache::eraseValue(Value *V) {
260 for (auto I = OverDefinedCache.begin(), E = OverDefinedCache.end(); I != E;) {
261 // Copy and increment the iterator immediately so we can erase behind
262 // ourselves.
263 auto Iter = I++;
264 SmallPtrSetImpl<Value *> &ValueSet = Iter->second;
265 ValueSet.erase(V);
266 if (ValueSet.empty())
267 OverDefinedCache.erase(Iter);
268 }
269
270 ValueCache.erase(V);
271}
272
273void LVIValueHandle::deleted() {
274 // This erasure deallocates *this, so it MUST happen after we're done
275 // using any and all members of *this.
276 Parent->eraseValue(*this);
277}
278
279void LazyValueInfoCache::eraseBlock(BasicBlock *BB) {
280 // Shortcut if we have never seen this block.
281 DenseSet<PoisoningVH<BasicBlock> >::iterator I = SeenBlocks.find(BB);
282 if (I == SeenBlocks.end())
283 return;
284 SeenBlocks.erase(I);
285
286 auto ODI = OverDefinedCache.find(BB);
287 if (ODI != OverDefinedCache.end())
288 OverDefinedCache.erase(ODI);
289
290 for (auto &I : ValueCache)
291 I.second->BlockVals.erase(BB);
292}
293
294void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc,
295 BasicBlock *NewSucc) {
296 // When an edge in the graph has been threaded, values that we could not
297 // determine a value for before (i.e. were marked overdefined) may be
298 // possible to solve now. We do NOT try to proactively update these values.
299 // Instead, we clear their entries from the cache, and allow lazy updating to
300 // recompute them when needed.
301
302 // The updating process is fairly simple: we need to drop cached info
303 // for all values that were marked overdefined in OldSucc, and for those same
304 // values in any successor of OldSucc (except NewSucc) in which they were
305 // also marked overdefined.
306 std::vector<BasicBlock*> worklist;
307 worklist.push_back(OldSucc);
308
309 auto I = OverDefinedCache.find(OldSucc);
310 if (I == OverDefinedCache.end())
311 return; // Nothing to process here.
312 SmallVector<Value *, 4> ValsToClear(I->second.begin(), I->second.end());
313
314 // Use a worklist to perform a depth-first search of OldSucc's successors.
315 // NOTE: We do not need a visited list since any blocks we have already
316 // visited will have had their overdefined markers cleared already, and we
317 // thus won't loop to their successors.
318 while (!worklist.empty()) {
319 BasicBlock *ToUpdate = worklist.back();
320 worklist.pop_back();
321
322 // Skip blocks only accessible through NewSucc.
323 if (ToUpdate == NewSucc) continue;
324
325 // If a value was marked overdefined in OldSucc, and is here too...
326 auto OI = OverDefinedCache.find(ToUpdate);
327 if (OI == OverDefinedCache.end())
328 continue;
329 SmallPtrSetImpl<Value *> &ValueSet = OI->second;
330
331 bool changed = false;
332 for (Value *V : ValsToClear) {
333 if (!ValueSet.erase(V))
334 continue;
335
336 // If we removed anything, then we potentially need to update
337 // blocks successors too.
338 changed = true;
339
340 if (ValueSet.empty()) {
341 OverDefinedCache.erase(OI);
342 break;
343 }
344 }
345
346 if (!changed) continue;
347
348 worklist.insert(worklist.end(), succ_begin(ToUpdate), succ_end(ToUpdate));
349 }
350}
351
352
353namespace {
354/// An assembly annotator class to print LazyValueCache information in
355/// comments.
356class LazyValueInfoImpl;
357class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter {
358 LazyValueInfoImpl *LVIImpl;
359 // While analyzing which blocks we can solve values for, we need the dominator
360 // information. Since this is an optional parameter in LVI, we require this
361 // DomTreeAnalysis pass in the printer pass, and pass the dominator
362 // tree to the LazyValueInfoAnnotatedWriter.
363 DominatorTree &DT;
364
365public:
366 LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree)
367 : LVIImpl(L), DT(DTree) {}
368
369 virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
370 formatted_raw_ostream &OS);
371
372 virtual void emitInstructionAnnot(const Instruction *I,
373 formatted_raw_ostream &OS);
374};
375}
376namespace {
377 // The actual implementation of the lazy analysis and update. Note that the
378 // inheritance from LazyValueInfoCache is intended to be temporary while
379 // splitting the code and then transitioning to a has-a relationship.
380 class LazyValueInfoImpl {
381
382 /// Cached results from previous queries
383 LazyValueInfoCache TheCache;
384
385 /// This stack holds the state of the value solver during a query.
386 /// It basically emulates the callstack of the naive
387 /// recursive value lookup process.
388 SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack;
389
390 /// Keeps track of which block-value pairs are in BlockValueStack.
391 DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet;
392
393 /// Push BV onto BlockValueStack unless it's already in there.
394 /// Returns true on success.
395 bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) {
396 if (!BlockValueSet.insert(BV).second)
397 return false; // It's already in the stack.
398
399 LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "PUSH: " << *BV.
second << " in " << BV.first->getName() <<
"\n"; } } while (false)
400 << BV.first->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "PUSH: " << *BV.
second << " in " << BV.first->getName() <<
"\n"; } } while (false)
;
401 BlockValueStack.push_back(BV);
402 return true;
403 }
404
405 AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls.
406 const DataLayout &DL; ///< A mandatory DataLayout
407 DominatorTree *DT; ///< An optional DT pointer.
408 DominatorTree *DisabledDT; ///< Stores DT if it's disabled.
409
410 ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB);
411 bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
412 ValueLatticeElement &Result, Instruction *CxtI = nullptr);
413 bool hasBlockValue(Value *Val, BasicBlock *BB);
414
415 // These methods process one work item and may add more. A false value
416 // returned means that the work item was not completely processed and must
417 // be revisited after going through the new items.
418 bool solveBlockValue(Value *Val, BasicBlock *BB);
419 bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val,
420 BasicBlock *BB);
421 bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val,
422 BasicBlock *BB);
423 bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN,
424 BasicBlock *BB);
425 bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S,
426 BasicBlock *BB);
427 Optional<ConstantRange> getRangeForOperand(unsigned Op, Instruction *I,
428 BasicBlock *BB);
429 bool solveBlockValueBinaryOpImpl(
430 ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB,
431 std::function<ConstantRange(const ConstantRange &,
432 const ConstantRange &)> OpFn);
433 bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI,
434 BasicBlock *BB);
435 bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI,
436 BasicBlock *BB);
437 bool solveBlockValueOverflowIntrinsic(
438 ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB);
439 bool solveBlockValueSaturatingIntrinsic(ValueLatticeElement &BBLV,
440 SaturatingInst *SI, BasicBlock *BB);
441 bool solveBlockValueIntrinsic(ValueLatticeElement &BBLV, IntrinsicInst *II,
442 BasicBlock *BB);
443 bool solveBlockValueExtractValue(ValueLatticeElement &BBLV,
444 ExtractValueInst *EVI, BasicBlock *BB);
445 void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
446 ValueLatticeElement &BBLV,
447 Instruction *BBI);
448
449 void solve();
450
451 public:
452 /// This is the query interface to determine the lattice
453 /// value for the specified Value* at the end of the specified block.
454 ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
455 Instruction *CxtI = nullptr);
456
457 /// This is the query interface to determine the lattice
458 /// value for the specified Value* at the specified instruction (generally
459 /// from an assume intrinsic).
460 ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
461
462 /// This is the query interface to determine the lattice
463 /// value for the specified Value* that is true on the specified edge.
464 ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
465 BasicBlock *ToBB,
466 Instruction *CxtI = nullptr);
467
468 /// Complete flush all previously computed values
469 void clear() {
470 TheCache.clear();
471 }
472
473 /// Printing the LazyValueInfo Analysis.
474 void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
475 LazyValueInfoAnnotatedWriter Writer(this, DTree);
476 F.print(OS, &Writer);
477 }
478
479 /// This is part of the update interface to inform the cache
480 /// that a block has been deleted.
481 void eraseBlock(BasicBlock *BB) {
482 TheCache.eraseBlock(BB);
483 }
484
485 /// Disables use of the DominatorTree within LVI.
486 void disableDT() {
487 if (DT) {
488 assert(!DisabledDT && "Both DT and DisabledDT are not nullptr!")((!DisabledDT && "Both DT and DisabledDT are not nullptr!"
) ? static_cast<void> (0) : __assert_fail ("!DisabledDT && \"Both DT and DisabledDT are not nullptr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 488, __PRETTY_FUNCTION__))
;
489 std::swap(DT, DisabledDT);
490 }
491 }
492
493 /// Enables use of the DominatorTree within LVI. Does nothing if the class
494 /// instance was initialized without a DT pointer.
495 void enableDT() {
496 if (DisabledDT) {
497 assert(!DT && "Both DT and DisabledDT are not nullptr!")((!DT && "Both DT and DisabledDT are not nullptr!") ?
static_cast<void> (0) : __assert_fail ("!DT && \"Both DT and DisabledDT are not nullptr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 497, __PRETTY_FUNCTION__))
;
498 std::swap(DT, DisabledDT);
499 }
500 }
501
502 /// This is the update interface to inform the cache that an edge from
503 /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc.
504 void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc);
505
506 LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL,
507 DominatorTree *DT = nullptr)
508 : AC(AC), DL(DL), DT(DT), DisabledDT(nullptr) {}
509 };
510} // end anonymous namespace
511
512
513void LazyValueInfoImpl::solve() {
514 SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack(
515 BlockValueStack.begin(), BlockValueStack.end());
516
517 unsigned processedCount = 0;
518 while (!BlockValueStack.empty()) {
519 processedCount++;
520 // Abort if we have to process too many values to get a result for this one.
521 // Because of the design of the overdefined cache currently being per-block
522 // to avoid naming-related issues (IE it wants to try to give different
523 // results for the same name in different blocks), overdefined results don't
524 // get cached globally, which in turn means we will often try to rediscover
525 // the same overdefined result again and again. Once something like
526 // PredicateInfo is used in LVI or CVP, we should be able to make the
527 // overdefined cache global, and remove this throttle.
528 if (processedCount > MaxProcessedPerValue) {
529 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "Giving up on stack because we are getting too deep\n"
; } } while (false)
530 dbgs() << "Giving up on stack because we are getting too deep\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "Giving up on stack because we are getting too deep\n"
; } } while (false)
;
531 // Fill in the original values
532 while (!StartingStack.empty()) {
533 std::pair<BasicBlock *, Value *> &e = StartingStack.back();
534 TheCache.insertResult(e.second, e.first,
535 ValueLatticeElement::getOverdefined());
536 StartingStack.pop_back();
537 }
538 BlockValueSet.clear();
539 BlockValueStack.clear();
540 return;
541 }
542 std::pair<BasicBlock *, Value *> e = BlockValueStack.back();
543 assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!")((BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"
) ? static_cast<void> (0) : __assert_fail ("BlockValueSet.count(e) && \"Stack value should be in BlockValueSet!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 543, __PRETTY_FUNCTION__))
;
544
545 if (solveBlockValue(e.second, e.first)) {
546 // The work item was completely processed.
547 assert(BlockValueStack.back() == e && "Nothing should have been pushed!")((BlockValueStack.back() == e && "Nothing should have been pushed!"
) ? static_cast<void> (0) : __assert_fail ("BlockValueStack.back() == e && \"Nothing should have been pushed!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 547, __PRETTY_FUNCTION__))
;
548 assert(TheCache.hasCachedValueInfo(e.second, e.first) &&((TheCache.hasCachedValueInfo(e.second, e.first) && "Result should be in cache!"
) ? static_cast<void> (0) : __assert_fail ("TheCache.hasCachedValueInfo(e.second, e.first) && \"Result should be in cache!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 549, __PRETTY_FUNCTION__))
549 "Result should be in cache!")((TheCache.hasCachedValueInfo(e.second, e.first) && "Result should be in cache!"
) ? static_cast<void> (0) : __assert_fail ("TheCache.hasCachedValueInfo(e.second, e.first) && \"Result should be in cache!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 549, __PRETTY_FUNCTION__))
;
550
551 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "POP " << *e.second
<< " in " << e.first->getName() << " = "
<< TheCache.getCachedValueInfo(e.second, e.first) <<
"\n"; } } while (false)
552 dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "POP " << *e.second
<< " in " << e.first->getName() << " = "
<< TheCache.getCachedValueInfo(e.second, e.first) <<
"\n"; } } while (false)
553 << TheCache.getCachedValueInfo(e.second, e.first) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "POP " << *e.second
<< " in " << e.first->getName() << " = "
<< TheCache.getCachedValueInfo(e.second, e.first) <<
"\n"; } } while (false)
;
554
555 BlockValueStack.pop_back();
556 BlockValueSet.erase(e);
557 } else {
558 // More work needs to be done before revisiting.
559 assert(BlockValueStack.back() != e && "Stack should have been pushed!")((BlockValueStack.back() != e && "Stack should have been pushed!"
) ? static_cast<void> (0) : __assert_fail ("BlockValueStack.back() != e && \"Stack should have been pushed!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 559, __PRETTY_FUNCTION__))
;
560 }
561 }
562}
563
564bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) {
565 // If already a constant, there is nothing to compute.
566 if (isa<Constant>(Val))
567 return true;
568
569 return TheCache.hasCachedValueInfo(Val, BB);
570}
571
572ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val,
573 BasicBlock *BB) {
574 // If already a constant, there is nothing to compute.
575 if (Constant *VC = dyn_cast<Constant>(Val))
576 return ValueLatticeElement::get(VC);
577
578 return TheCache.getCachedValueInfo(Val, BB);
579}
580
581static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
582 switch (BBI->getOpcode()) {
583 default: break;
584 case Instruction::Load:
585 case Instruction::Call:
586 case Instruction::Invoke:
587 if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
588 if (isa<IntegerType>(BBI->getType())) {
589 return ValueLatticeElement::getRange(
590 getConstantRangeFromMetadata(*Ranges));
591 }
592 break;
593 };
594 // Nothing known - will be intersected with other facts
595 return ValueLatticeElement::getOverdefined();
596}
597
598bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
599 if (isa<Constant>(Val))
600 return true;
601
602 if (TheCache.hasCachedValueInfo(Val, BB)) {
603 // If we have a cached value, use that.
604 LLVM_DEBUG(dbgs() << " reuse BB '" << BB->getName() << "' val="do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " reuse BB '" <<
BB->getName() << "' val=" << TheCache.getCachedValueInfo
(Val, BB) << '\n'; } } while (false)
605 << TheCache.getCachedValueInfo(Val, BB) << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " reuse BB '" <<
BB->getName() << "' val=" << TheCache.getCachedValueInfo
(Val, BB) << '\n'; } } while (false)
;
606
607 // Since we're reusing a cached value, we don't need to update the
608 // OverDefinedCache. The cache will have been properly updated whenever the
609 // cached value was inserted.
610 return true;
611 }
612
613 // Hold off inserting this value into the Cache in case we have to return
614 // false and come back later.
615 ValueLatticeElement Res;
616 if (!solveBlockValueImpl(Res, Val, BB))
617 // Work pushed, will revisit
618 return false;
619
620 TheCache.insertResult(Val, BB, Res);
621 return true;
622}
623
624bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res,
625 Value *Val, BasicBlock *BB) {
626
627 Instruction *BBI = dyn_cast<Instruction>(Val);
628 if (!BBI || BBI->getParent() != BB)
629 return solveBlockValueNonLocal(Res, Val, BB);
630
631 if (PHINode *PN = dyn_cast<PHINode>(BBI))
632 return solveBlockValuePHINode(Res, PN, BB);
633
634 if (auto *SI = dyn_cast<SelectInst>(BBI))
635 return solveBlockValueSelect(Res, SI, BB);
636
637 // If this value is a nonnull pointer, record it's range and bailout. Note
638 // that for all other pointer typed values, we terminate the search at the
639 // definition. We could easily extend this to look through geps, bitcasts,
640 // and the like to prove non-nullness, but it's not clear that's worth it
641 // compile time wise. The context-insensitive value walk done inside
642 // isKnownNonZero gets most of the profitable cases at much less expense.
643 // This does mean that we have a sensitivity to where the defining
644 // instruction is placed, even if it could legally be hoisted much higher.
645 // That is unfortunate.
646 PointerType *PT = dyn_cast<PointerType>(BBI->getType());
647 if (PT && isKnownNonZero(BBI, DL)) {
648 Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
649 return true;
650 }
651 if (BBI->getType()->isIntegerTy()) {
652 if (auto *CI = dyn_cast<CastInst>(BBI))
653 return solveBlockValueCast(Res, CI, BB);
654
655 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI))
656 return solveBlockValueBinaryOp(Res, BO, BB);
657
658 if (auto *EVI = dyn_cast<ExtractValueInst>(BBI))
659 return solveBlockValueExtractValue(Res, EVI, BB);
660
661 if (auto *II = dyn_cast<IntrinsicInst>(BBI))
662 return solveBlockValueIntrinsic(Res, II, BB);
663 }
664
665 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - unknown inst def found.\n"; }
} while (false)
666 << "' - unknown inst def found.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - unknown inst def found.\n"; }
} while (false)
;
667 Res = getFromRangeMetadata(BBI);
668 return true;
669}
670
671static bool InstructionDereferencesPointer(Instruction *I, Value *Ptr) {
672 if (LoadInst *L = dyn_cast<LoadInst>(I)) {
673 return L->getPointerAddressSpace() == 0 &&
674 GetUnderlyingObject(L->getPointerOperand(),
675 L->getModule()->getDataLayout()) == Ptr;
676 }
677 if (StoreInst *S = dyn_cast<StoreInst>(I)) {
678 return S->getPointerAddressSpace() == 0 &&
679 GetUnderlyingObject(S->getPointerOperand(),
680 S->getModule()->getDataLayout()) == Ptr;
681 }
682 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
683 if (MI->isVolatile()) return false;
684
685 // FIXME: check whether it has a valuerange that excludes zero?
686 ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength());
687 if (!Len || Len->isZero()) return false;
688
689 if (MI->getDestAddressSpace() == 0)
690 if (GetUnderlyingObject(MI->getRawDest(),
691 MI->getModule()->getDataLayout()) == Ptr)
692 return true;
693 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI))
694 if (MTI->getSourceAddressSpace() == 0)
695 if (GetUnderlyingObject(MTI->getRawSource(),
696 MTI->getModule()->getDataLayout()) == Ptr)
697 return true;
698 }
699 return false;
700}
701
702/// Return true if the allocation associated with Val is ever dereferenced
703/// within the given basic block. This establishes the fact Val is not null,
704/// but does not imply that the memory at Val is dereferenceable. (Val may
705/// point off the end of the dereferenceable part of the object.)
706static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) {
707 assert(Val->getType()->isPointerTy())((Val->getType()->isPointerTy()) ? static_cast<void>
(0) : __assert_fail ("Val->getType()->isPointerTy()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 707, __PRETTY_FUNCTION__))
;
708
709 const DataLayout &DL = BB->getModule()->getDataLayout();
710 Value *UnderlyingVal = GetUnderlyingObject(Val, DL);
711 // If 'GetUnderlyingObject' didn't converge, skip it. It won't converge
712 // inside InstructionDereferencesPointer either.
713 if (UnderlyingVal == GetUnderlyingObject(UnderlyingVal, DL, 1))
714 for (Instruction &I : *BB)
715 if (InstructionDereferencesPointer(&I, UnderlyingVal))
716 return true;
717 return false;
718}
719
720bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV,
721 Value *Val, BasicBlock *BB) {
722 ValueLatticeElement Result; // Start Undefined.
723
724 // If this is the entry block, we must be asking about an argument. The
725 // value is overdefined.
726 if (BB == &BB->getParent()->getEntryBlock()) {
727 assert(isa<Argument>(Val) && "Unknown live-in to the entry block")((isa<Argument>(Val) && "Unknown live-in to the entry block"
) ? static_cast<void> (0) : __assert_fail ("isa<Argument>(Val) && \"Unknown live-in to the entry block\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 727, __PRETTY_FUNCTION__))
;
728 // Before giving up, see if we can prove the pointer non-null local to
729 // this particular block.
730 PointerType *PTy = dyn_cast<PointerType>(Val->getType());
731 if (PTy &&
732 (isKnownNonZero(Val, DL) ||
733 (isObjectDereferencedInBlock(Val, BB) &&
734 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())))) {
735 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
736 } else {
737 Result = ValueLatticeElement::getOverdefined();
738 }
739 BBLV = Result;
740 return true;
741 }
742
743 // Loop over all of our predecessors, merging what we know from them into
744 // result. If we encounter an unexplored predecessor, we eagerly explore it
745 // in a depth first manner. In practice, this has the effect of discovering
746 // paths we can't analyze eagerly without spending compile times analyzing
747 // other paths. This heuristic benefits from the fact that predecessors are
748 // frequently arranged such that dominating ones come first and we quickly
749 // find a path to function entry. TODO: We should consider explicitly
750 // canonicalizing to make this true rather than relying on this happy
751 // accident.
752 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
753 ValueLatticeElement EdgeResult;
754 if (!getEdgeValue(Val, *PI, BB, EdgeResult))
755 // Explore that input, then return here
756 return false;
757
758 Result.mergeIn(EdgeResult, DL);
759
760 // If we hit overdefined, exit early. The BlockVals entry is already set
761 // to overdefined.
762 if (Result.isOverdefined()) {
763 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined because of pred (non local).\n"
; } } while (false)
764 << "' - overdefined because of pred (non local).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined because of pred (non local).\n"
; } } while (false)
;
765 // Before giving up, see if we can prove the pointer non-null local to
766 // this particular block.
767 PointerType *PTy = dyn_cast<PointerType>(Val->getType());
768 if (PTy && isObjectDereferencedInBlock(Val, BB) &&
769 !NullPointerIsDefined(BB->getParent(), PTy->getAddressSpace())) {
770 Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
771 }
772
773 BBLV = Result;
774 return true;
775 }
776 }
777
778 // Return the merged value, which is more precise than 'overdefined'.
779 assert(!Result.isOverdefined())((!Result.isOverdefined()) ? static_cast<void> (0) : __assert_fail
("!Result.isOverdefined()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 779, __PRETTY_FUNCTION__))
;
780 BBLV = Result;
781 return true;
782}
783
784bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV,
785 PHINode *PN, BasicBlock *BB) {
786 ValueLatticeElement Result; // Start Undefined.
787
788 // Loop over all of our predecessors, merging what we know from them into
789 // result. See the comment about the chosen traversal order in
790 // solveBlockValueNonLocal; the same reasoning applies here.
791 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
792 BasicBlock *PhiBB = PN->getIncomingBlock(i);
793 Value *PhiVal = PN->getIncomingValue(i);
794 ValueLatticeElement EdgeResult;
795 // Note that we can provide PN as the context value to getEdgeValue, even
796 // though the results will be cached, because PN is the value being used as
797 // the cache key in the caller.
798 if (!getEdgeValue(PhiVal, PhiBB, BB, EdgeResult, PN))
799 // Explore that input, then return here
800 return false;
801
802 Result.mergeIn(EdgeResult, DL);
803
804 // If we hit overdefined, exit early. The BlockVals entry is already set
805 // to overdefined.
806 if (Result.isOverdefined()) {
807 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined because of pred (local).\n"
; } } while (false)
808 << "' - overdefined because of pred (local).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined because of pred (local).\n"
; } } while (false)
;
809
810 BBLV = Result;
811 return true;
812 }
813 }
814
815 // Return the merged value, which is more precise than 'overdefined'.
816 assert(!Result.isOverdefined() && "Possible PHI in entry block?")((!Result.isOverdefined() && "Possible PHI in entry block?"
) ? static_cast<void> (0) : __assert_fail ("!Result.isOverdefined() && \"Possible PHI in entry block?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 816, __PRETTY_FUNCTION__))
;
817 BBLV = Result;
818 return true;
819}
820
821static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
822 bool isTrueDest = true);
823
824// If we can determine a constraint on the value given conditions assumed by
825// the program, intersect those constraints with BBLV
826void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
827 Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
828 BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
829 if (!BBI)
830 return;
831
832 for (auto &AssumeVH : AC->assumptionsFor(Val)) {
833 if (!AssumeVH)
834 continue;
835 auto *I = cast<CallInst>(AssumeVH);
836 if (!isValidAssumeForContext(I, BBI, DT))
837 continue;
838
839 BBLV = intersect(BBLV, getValueFromCondition(Val, I->getArgOperand(0)));
840 }
841
842 // If guards are not used in the module, don't spend time looking for them
843 auto *GuardDecl = BBI->getModule()->getFunction(
844 Intrinsic::getName(Intrinsic::experimental_guard));
845 if (!GuardDecl || GuardDecl->use_empty())
846 return;
847
848 if (BBI->getIterator() == BBI->getParent()->begin())
849 return;
850 for (Instruction &I : make_range(std::next(BBI->getIterator().getReverse()),
851 BBI->getParent()->rend())) {
852 Value *Cond = nullptr;
853 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond))))
854 BBLV = intersect(BBLV, getValueFromCondition(Val, Cond));
855 }
856}
857
858bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV,
859 SelectInst *SI, BasicBlock *BB) {
860
861 // Recurse on our inputs if needed
862 if (!hasBlockValue(SI->getTrueValue(), BB)) {
863 if (pushBlockValue(std::make_pair(BB, SI->getTrueValue())))
864 return false;
865 BBLV = ValueLatticeElement::getOverdefined();
866 return true;
867 }
868 ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB);
869 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
870 // extra slots in the table if we can.
871 if (TrueVal.isOverdefined()) {
872 BBLV = ValueLatticeElement::getOverdefined();
873 return true;
874 }
875
876 if (!hasBlockValue(SI->getFalseValue(), BB)) {
877 if (pushBlockValue(std::make_pair(BB, SI->getFalseValue())))
878 return false;
879 BBLV = ValueLatticeElement::getOverdefined();
880 return true;
881 }
882 ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB);
883 // If we hit overdefined, don't ask more queries. We want to avoid poisoning
884 // extra slots in the table if we can.
885 if (FalseVal.isOverdefined()) {
886 BBLV = ValueLatticeElement::getOverdefined();
887 return true;
888 }
889
890 if (TrueVal.isConstantRange() && FalseVal.isConstantRange()) {
891 const ConstantRange &TrueCR = TrueVal.getConstantRange();
892 const ConstantRange &FalseCR = FalseVal.getConstantRange();
893 Value *LHS = nullptr;
894 Value *RHS = nullptr;
895 SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS);
896 // Is this a min specifically of our two inputs? (Avoid the risk of
897 // ValueTracking getting smarter looking back past our immediate inputs.)
898 if (SelectPatternResult::isMinOrMax(SPR.Flavor) &&
899 LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) {
900 ConstantRange ResultCR = [&]() {
901 switch (SPR.Flavor) {
902 default:
903 llvm_unreachable("unexpected minmax type!")::llvm::llvm_unreachable_internal("unexpected minmax type!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 903)
;
904 case SPF_SMIN: /// Signed minimum
905 return TrueCR.smin(FalseCR);
906 case SPF_UMIN: /// Unsigned minimum
907 return TrueCR.umin(FalseCR);
908 case SPF_SMAX: /// Signed maximum
909 return TrueCR.smax(FalseCR);
910 case SPF_UMAX: /// Unsigned maximum
911 return TrueCR.umax(FalseCR);
912 };
913 }();
914 BBLV = ValueLatticeElement::getRange(ResultCR);
915 return true;
916 }
917
918 if (SPR.Flavor == SPF_ABS) {
919 if (LHS == SI->getTrueValue()) {
920 BBLV = ValueLatticeElement::getRange(TrueCR.abs());
921 return true;
922 }
923 if (LHS == SI->getFalseValue()) {
924 BBLV = ValueLatticeElement::getRange(FalseCR.abs());
925 return true;
926 }
927 }
928
929 if (SPR.Flavor == SPF_NABS) {
930 ConstantRange Zero(APInt::getNullValue(TrueCR.getBitWidth()));
931 if (LHS == SI->getTrueValue()) {
932 BBLV = ValueLatticeElement::getRange(Zero.sub(TrueCR.abs()));
933 return true;
934 }
935 if (LHS == SI->getFalseValue()) {
936 BBLV = ValueLatticeElement::getRange(Zero.sub(FalseCR.abs()));
937 return true;
938 }
939 }
940 }
941
942 // Can we constrain the facts about the true and false values by using the
943 // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5).
944 // TODO: We could potentially refine an overdefined true value above.
945 Value *Cond = SI->getCondition();
946 TrueVal = intersect(TrueVal,
947 getValueFromCondition(SI->getTrueValue(), Cond, true));
948 FalseVal = intersect(FalseVal,
949 getValueFromCondition(SI->getFalseValue(), Cond, false));
950
951 // Handle clamp idioms such as:
952 // %24 = constantrange<0, 17>
953 // %39 = icmp eq i32 %24, 0
954 // %40 = add i32 %24, -1
955 // %siv.next = select i1 %39, i32 16, i32 %40
956 // %siv.next = constantrange<0, 17> not <-1, 17>
957 // In general, this can handle any clamp idiom which tests the edge
958 // condition via an equality or inequality.
959 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
960 ICmpInst::Predicate Pred = ICI->getPredicate();
961 Value *A = ICI->getOperand(0);
962 if (ConstantInt *CIBase = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
963 auto addConstants = [](ConstantInt *A, ConstantInt *B) {
964 assert(A->getType() == B->getType())((A->getType() == B->getType()) ? static_cast<void>
(0) : __assert_fail ("A->getType() == B->getType()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 964, __PRETTY_FUNCTION__))
;
965 return ConstantInt::get(A->getType(), A->getValue() + B->getValue());
966 };
967 // See if either input is A + C2, subject to the constraint from the
968 // condition that A != C when that input is used. We can assume that
969 // that input doesn't include C + C2.
970 ConstantInt *CIAdded;
971 switch (Pred) {
972 default: break;
973 case ICmpInst::ICMP_EQ:
974 if (match(SI->getFalseValue(), m_Add(m_Specific(A),
975 m_ConstantInt(CIAdded)))) {
976 auto ResNot = addConstants(CIBase, CIAdded);
977 FalseVal = intersect(FalseVal,
978 ValueLatticeElement::getNot(ResNot));
979 }
980 break;
981 case ICmpInst::ICMP_NE:
982 if (match(SI->getTrueValue(), m_Add(m_Specific(A),
983 m_ConstantInt(CIAdded)))) {
984 auto ResNot = addConstants(CIBase, CIAdded);
985 TrueVal = intersect(TrueVal,
986 ValueLatticeElement::getNot(ResNot));
987 }
988 break;
989 };
990 }
991 }
992
993 ValueLatticeElement Result; // Start Undefined.
994 Result.mergeIn(TrueVal, DL);
995 Result.mergeIn(FalseVal, DL);
996 BBLV = Result;
997 return true;
998}
999
1000Optional<ConstantRange> LazyValueInfoImpl::getRangeForOperand(unsigned Op,
1001 Instruction *I,
1002 BasicBlock *BB) {
1003 if (!hasBlockValue(I->getOperand(Op), BB))
1004 if (pushBlockValue(std::make_pair(BB, I->getOperand(Op))))
1005 return None;
1006
1007 const unsigned OperandBitWidth =
1008 DL.getTypeSizeInBits(I->getOperand(Op)->getType());
1009 ConstantRange Range = ConstantRange::getFull(OperandBitWidth);
1010 if (hasBlockValue(I->getOperand(Op), BB)) {
1011 ValueLatticeElement Val = getBlockValue(I->getOperand(Op), BB);
1012 intersectAssumeOrGuardBlockValueConstantRange(I->getOperand(Op), Val, I);
1013 if (Val.isConstantRange())
1014 Range = Val.getConstantRange();
1015 }
1016 return Range;
1017}
1018
1019bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV,
1020 CastInst *CI,
1021 BasicBlock *BB) {
1022 if (!CI->getOperand(0)->getType()->isSized()) {
1023 // Without knowing how wide the input is, we can't analyze it in any useful
1024 // way.
1025 BBLV = ValueLatticeElement::getOverdefined();
1026 return true;
1027 }
1028
1029 // Filter out casts we don't know how to reason about before attempting to
1030 // recurse on our operand. This can cut a long search short if we know we're
1031 // not going to be able to get any useful information anways.
1032 switch (CI->getOpcode()) {
1033 case Instruction::Trunc:
1034 case Instruction::SExt:
1035 case Instruction::ZExt:
1036 case Instruction::BitCast:
1037 break;
1038 default:
1039 // Unhandled instructions are overdefined.
1040 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown cast).\n"
; } } while (false)
1041 << "' - overdefined (unknown cast).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown cast).\n"
; } } while (false)
;
1042 BBLV = ValueLatticeElement::getOverdefined();
1043 return true;
1044 }
1045
1046 // Figure out the range of the LHS. If that fails, we still apply the
1047 // transfer rule on the full set since we may be able to locally infer
1048 // interesting facts.
1049 Optional<ConstantRange> LHSRes = getRangeForOperand(0, CI, BB);
1050 if (!LHSRes.hasValue())
1051 // More work to do before applying this transfer rule.
1052 return false;
1053 ConstantRange LHSRange = LHSRes.getValue();
1054
1055 const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth();
1056
1057 // NOTE: We're currently limited by the set of operations that ConstantRange
1058 // can evaluate symbolically. Enhancing that set will allows us to analyze
1059 // more definitions.
1060 BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
1061 ResultBitWidth));
1062 return true;
1063}
1064
1065bool LazyValueInfoImpl::solveBlockValueBinaryOpImpl(
1066 ValueLatticeElement &BBLV, Instruction *I, BasicBlock *BB,
1067 std::function<ConstantRange(const ConstantRange &,
1068 const ConstantRange &)> OpFn) {
1069 // Figure out the ranges of the operands. If that fails, use a
1070 // conservative range, but apply the transfer rule anyways. This
1071 // lets us pick up facts from expressions like "and i32 (call i32
1072 // @foo()), 32"
1073 Optional<ConstantRange> LHSRes = getRangeForOperand(0, I, BB);
1074 Optional<ConstantRange> RHSRes = getRangeForOperand(1, I, BB);
1075 if (!LHSRes.hasValue() || !RHSRes.hasValue())
1076 // More work to do before applying this transfer rule.
1077 return false;
1078
1079 ConstantRange LHSRange = LHSRes.getValue();
1080 ConstantRange RHSRange = RHSRes.getValue();
1081 BBLV = ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange));
1082 return true;
1083}
1084
1085bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV,
1086 BinaryOperator *BO,
1087 BasicBlock *BB) {
1088
1089 assert(BO->getOperand(0)->getType()->isSized() &&((BO->getOperand(0)->getType()->isSized() &&
"all operands to binary operators are sized") ? static_cast<
void> (0) : __assert_fail ("BO->getOperand(0)->getType()->isSized() && \"all operands to binary operators are sized\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1090, __PRETTY_FUNCTION__))
1090 "all operands to binary operators are sized")((BO->getOperand(0)->getType()->isSized() &&
"all operands to binary operators are sized") ? static_cast<
void> (0) : __assert_fail ("BO->getOperand(0)->getType()->isSized() && \"all operands to binary operators are sized\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1090, __PRETTY_FUNCTION__))
;
1091 if (BO->getOpcode() == Instruction::Xor) {
1092 // Xor is the only operation not supported by ConstantRange::binaryOp().
1093 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown binary operator).\n"
; } } while (false)
1094 << "' - overdefined (unknown binary operator).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown binary operator).\n"
; } } while (false)
;
1095 BBLV = ValueLatticeElement::getOverdefined();
1096 return true;
1097 }
1098
1099 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) {
1100 unsigned NoWrapKind = 0;
1101 if (OBO->hasNoUnsignedWrap())
1102 NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap;
1103 if (OBO->hasNoSignedWrap())
1104 NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap;
1105
1106 return solveBlockValueBinaryOpImpl(
1107 BBLV, BO, BB,
1108 [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) {
1109 return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind);
1110 });
1111 }
1112
1113 return solveBlockValueBinaryOpImpl(
1114 BBLV, BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) {
1115 return CR1.binaryOp(BO->getOpcode(), CR2);
1116 });
1117}
1118
1119bool LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(
1120 ValueLatticeElement &BBLV, WithOverflowInst *WO, BasicBlock *BB) {
1121 return solveBlockValueBinaryOpImpl(BBLV, WO, BB,
1122 [WO](const ConstantRange &CR1, const ConstantRange &CR2) {
1123 return CR1.binaryOp(WO->getBinaryOp(), CR2);
1124 });
1125}
1126
1127bool LazyValueInfoImpl::solveBlockValueSaturatingIntrinsic(
1128 ValueLatticeElement &BBLV, SaturatingInst *SI, BasicBlock *BB) {
1129 switch (SI->getIntrinsicID()) {
1130 case Intrinsic::uadd_sat:
1131 return solveBlockValueBinaryOpImpl(
1132 BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
1133 return CR1.uadd_sat(CR2);
1134 });
1135 case Intrinsic::usub_sat:
1136 return solveBlockValueBinaryOpImpl(
1137 BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
1138 return CR1.usub_sat(CR2);
1139 });
1140 case Intrinsic::sadd_sat:
1141 return solveBlockValueBinaryOpImpl(
1142 BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
1143 return CR1.sadd_sat(CR2);
1144 });
1145 case Intrinsic::ssub_sat:
1146 return solveBlockValueBinaryOpImpl(
1147 BBLV, SI, BB, [](const ConstantRange &CR1, const ConstantRange &CR2) {
1148 return CR1.ssub_sat(CR2);
1149 });
1150 default:
1151 llvm_unreachable("All llvm.sat intrinsic are handled.")::llvm::llvm_unreachable_internal("All llvm.sat intrinsic are handled."
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1151)
;
1152 }
1153}
1154
1155bool LazyValueInfoImpl::solveBlockValueIntrinsic(ValueLatticeElement &BBLV,
1156 IntrinsicInst *II,
1157 BasicBlock *BB) {
1158 if (auto *SI = dyn_cast<SaturatingInst>(II))
1159 return solveBlockValueSaturatingIntrinsic(BBLV, SI, BB);
1160
1161 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown intrinsic).\n"
; } } while (false)
1162 << "' - overdefined (unknown intrinsic).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown intrinsic).\n"
; } } while (false)
;
1163 BBLV = ValueLatticeElement::getOverdefined();
1164 return true;
1165}
1166
1167bool LazyValueInfoImpl::solveBlockValueExtractValue(
1168 ValueLatticeElement &BBLV, ExtractValueInst *EVI, BasicBlock *BB) {
1169 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1170 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0)
1171 return solveBlockValueOverflowIntrinsic(BBLV, WO, BB);
1172
1173 // Handle extractvalue of insertvalue to allow further simplification
1174 // based on replaced with.overflow intrinsics.
1175 if (Value *V = SimplifyExtractValueInst(
1176 EVI->getAggregateOperand(), EVI->getIndices(),
1177 EVI->getModule()->getDataLayout())) {
1178 if (!hasBlockValue(V, BB)) {
1179 if (pushBlockValue({ BB, V }))
1180 return false;
1181 BBLV = ValueLatticeElement::getOverdefined();
1182 return true;
1183 }
1184 BBLV = getBlockValue(V, BB);
1185 return true;
1186 }
1187
1188 LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown extractvalue).\n"
; } } while (false)
1189 << "' - overdefined (unknown extractvalue).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " compute BB '" <<
BB->getName() << "' - overdefined (unknown extractvalue).\n"
; } } while (false)
;
1190 BBLV = ValueLatticeElement::getOverdefined();
1191 return true;
1192}
1193
1194static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
1195 bool isTrueDest) {
1196 Value *LHS = ICI->getOperand(0);
1197 Value *RHS = ICI->getOperand(1);
1198 CmpInst::Predicate Predicate = ICI->getPredicate();
1199
1200 if (isa<Constant>(RHS)) {
1201 if (ICI->isEquality() && LHS == Val) {
1202 // We know that V has the RHS constant if this is a true SETEQ or
1203 // false SETNE.
1204 if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ))
1205 return ValueLatticeElement::get(cast<Constant>(RHS));
1206 else
1207 return ValueLatticeElement::getNot(cast<Constant>(RHS));
1208 }
1209 }
1210
1211 if (!Val->getType()->isIntegerTy())
1212 return ValueLatticeElement::getOverdefined();
1213
1214 // Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
1215 // range of Val guaranteed by the condition. Recognize comparisons in the from
1216 // of:
1217 // icmp <pred> Val, ...
1218 // icmp <pred> (add Val, Offset), ...
1219 // The latter is the range checking idiom that InstCombine produces. Subtract
1220 // the offset from the allowed range for RHS in this case.
1221
1222 // Val or (add Val, Offset) can be on either hand of the comparison
1223 if (LHS != Val && !match(LHS, m_Add(m_Specific(Val), m_ConstantInt()))) {
1224 std::swap(LHS, RHS);
1225 Predicate = CmpInst::getSwappedPredicate(Predicate);
1226 }
1227
1228 ConstantInt *Offset = nullptr;
1229 if (LHS != Val)
1230 match(LHS, m_Add(m_Specific(Val), m_ConstantInt(Offset)));
1231
1232 if (LHS == Val || Offset) {
1233 // Calculate the range of values that are allowed by the comparison
1234 ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(),
1235 /*isFullSet=*/true);
1236 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS))
1237 RHSRange = ConstantRange(CI->getValue());
1238 else if (Instruction *I = dyn_cast<Instruction>(RHS))
1239 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
1240 RHSRange = getConstantRangeFromMetadata(*Ranges);
1241
1242 // If we're interested in the false dest, invert the condition
1243 CmpInst::Predicate Pred =
1244 isTrueDest ? Predicate : CmpInst::getInversePredicate(Predicate);
1245 ConstantRange TrueValues =
1246 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
1247
1248 if (Offset) // Apply the offset from above.
1249 TrueValues = TrueValues.subtract(Offset->getValue());
1250
1251 return ValueLatticeElement::getRange(std::move(TrueValues));
1252 }
1253
1254 return ValueLatticeElement::getOverdefined();
1255}
1256
1257// Handle conditions of the form
1258// extractvalue(op.with.overflow(%x, C), 1).
1259static ValueLatticeElement getValueFromOverflowCondition(
1260 Value *Val, WithOverflowInst *WO, bool IsTrueDest) {
1261 // TODO: This only works with a constant RHS for now. We could also compute
1262 // the range of the RHS, but this doesn't fit into the current structure of
1263 // the edge value calculation.
1264 const APInt *C;
1265 if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C)))
1266 return ValueLatticeElement::getOverdefined();
1267
1268 // Calculate the possible values of %x for which no overflow occurs.
1269 ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
1270 WO->getBinaryOp(), *C, WO->getNoWrapKind());
1271
1272 // If overflow is false, %x is constrained to NWR. If overflow is true, %x is
1273 // constrained to it's inverse (all values that might cause overflow).
1274 if (IsTrueDest)
1275 NWR = NWR.inverse();
1276 return ValueLatticeElement::getRange(NWR);
1277}
1278
1279static ValueLatticeElement
1280getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1281 DenseMap<Value*, ValueLatticeElement> &Visited);
1282
1283static ValueLatticeElement
1284getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
1285 DenseMap<Value*, ValueLatticeElement> &Visited) {
1286 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
1287 return getValueFromICmpCondition(Val, ICI, isTrueDest);
1288
1289 if (auto *EVI = dyn_cast<ExtractValueInst>(Cond))
1290 if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()))
1291 if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1)
1292 return getValueFromOverflowCondition(Val, WO, isTrueDest);
1293
1294 // Handle conditions in the form of (cond1 && cond2), we know that on the
1295 // true dest path both of the conditions hold. Similarly for conditions of
1296 // the form (cond1 || cond2), we know that on the false dest path neither
1297 // condition holds.
1298 BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
1299 if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
1300 (!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
1301 return ValueLatticeElement::getOverdefined();
1302
1303 // Prevent infinite recursion if Cond references itself as in this example:
1304 // Cond: "%tmp4 = and i1 %tmp4, undef"
1305 // BL: "%tmp4 = and i1 %tmp4, undef"
1306 // BR: "i1 undef"
1307 Value *BL = BO->getOperand(0);
1308 Value *BR = BO->getOperand(1);
1309 if (BL == Cond || BR == Cond)
1310 return ValueLatticeElement::getOverdefined();
1311
1312 return intersect(getValueFromCondition(Val, BL, isTrueDest, Visited),
1313 getValueFromCondition(Val, BR, isTrueDest, Visited));
1314}
1315
1316static ValueLatticeElement
1317getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
1318 DenseMap<Value*, ValueLatticeElement> &Visited) {
1319 auto I = Visited.find(Cond);
1320 if (I != Visited.end())
1321 return I->second;
1322
1323 auto Result = getValueFromConditionImpl(Val, Cond, isTrueDest, Visited);
1324 Visited[Cond] = Result;
1325 return Result;
1326}
1327
1328ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
1329 bool isTrueDest) {
1330 assert(Cond && "precondition")((Cond && "precondition") ? static_cast<void> (
0) : __assert_fail ("Cond && \"precondition\"", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1330, __PRETTY_FUNCTION__))
;
1331 DenseMap<Value*, ValueLatticeElement> Visited;
1332 return getValueFromCondition(Val, Cond, isTrueDest, Visited);
1333}
1334
1335// Return true if Usr has Op as an operand, otherwise false.
1336static bool usesOperand(User *Usr, Value *Op) {
1337 return find(Usr->operands(), Op) != Usr->op_end();
1338}
1339
1340// Return true if the instruction type of Val is supported by
1341// constantFoldUser(). Currently CastInst and BinaryOperator only. Call this
1342// before calling constantFoldUser() to find out if it's even worth attempting
1343// to call it.
1344static bool isOperationFoldable(User *Usr) {
1345 return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr);
1346}
1347
1348// Check if Usr can be simplified to an integer constant when the value of one
1349// of its operands Op is an integer constant OpConstVal. If so, return it as an
1350// lattice value range with a single element or otherwise return an overdefined
1351// lattice value.
1352static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
1353 const APInt &OpConstVal,
1354 const DataLayout &DL) {
1355 assert(isOperationFoldable(Usr) && "Precondition")((isOperationFoldable(Usr) && "Precondition") ? static_cast
<void> (0) : __assert_fail ("isOperationFoldable(Usr) && \"Precondition\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1355, __PRETTY_FUNCTION__))
;
1356 Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
1357 // Check if Usr can be simplified to a constant.
1358 if (auto *CI = dyn_cast<CastInst>(Usr)) {
1359 assert(CI->getOperand(0) == Op && "Operand 0 isn't Op")((CI->getOperand(0) == Op && "Operand 0 isn't Op")
? static_cast<void> (0) : __assert_fail ("CI->getOperand(0) == Op && \"Operand 0 isn't Op\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1359, __PRETTY_FUNCTION__))
;
1360 if (auto *C = dyn_cast_or_null<ConstantInt>(
1361 SimplifyCastInst(CI->getOpcode(), OpConst,
1362 CI->getDestTy(), DL))) {
1363 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1364 }
1365 } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
1366 bool Op0Match = BO->getOperand(0) == Op;
1367 bool Op1Match = BO->getOperand(1) == Op;
1368 assert((Op0Match || Op1Match) &&(((Op0Match || Op1Match) && "Operand 0 nor Operand 1 isn't a match"
) ? static_cast<void> (0) : __assert_fail ("(Op0Match || Op1Match) && \"Operand 0 nor Operand 1 isn't a match\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1369, __PRETTY_FUNCTION__))
1369 "Operand 0 nor Operand 1 isn't a match")(((Op0Match || Op1Match) && "Operand 0 nor Operand 1 isn't a match"
) ? static_cast<void> (0) : __assert_fail ("(Op0Match || Op1Match) && \"Operand 0 nor Operand 1 isn't a match\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1369, __PRETTY_FUNCTION__))
;
1370 Value *LHS = Op0Match ? OpConst : BO->getOperand(0);
1371 Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
1372 if (auto *C = dyn_cast_or_null<ConstantInt>(
1373 SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
1374 return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
1375 }
1376 }
1377 return ValueLatticeElement::getOverdefined();
1378}
1379
1380/// Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
1381/// Val is not constrained on the edge. Result is unspecified if return value
1382/// is false.
1383static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
1384 BasicBlock *BBTo, ValueLatticeElement &Result) {
1385 // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
1386 // know that v != 0.
1387 if (BranchInst *BI
11.1
'BI' is non-null
11.1
'BI' is non-null
11.1
'BI' is non-null
= dyn_cast<BranchInst>(BBFrom->getTerminator())) {
11
Assuming the object is a 'BranchInst'
12
Taking true branch
1388 // If this is a conditional branch and only one successor goes to BBTo, then
1389 // we may be able to infer something from the condition.
1390 if (BI->isConditional() &&
13
Calling 'BranchInst::isConditional'
16
Returning from 'BranchInst::isConditional'
17
Taking true branch
1391 BI->getSuccessor(0) != BI->getSuccessor(1)) {
1392 bool isTrueDest = BI->getSuccessor(0) == BBTo;
18
Assuming pointer value is null
1393 assert(BI->getSuccessor(!isTrueDest) == BBTo &&((BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom"
) ? static_cast<void> (0) : __assert_fail ("BI->getSuccessor(!isTrueDest) == BBTo && \"BBTo isn't a successor of BBFrom\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1394, __PRETTY_FUNCTION__))
19
'?' condition is true
1394 "BBTo isn't a successor of BBFrom")((BI->getSuccessor(!isTrueDest) == BBTo && "BBTo isn't a successor of BBFrom"
) ? static_cast<void> (0) : __assert_fail ("BI->getSuccessor(!isTrueDest) == BBTo && \"BBTo isn't a successor of BBFrom\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1394, __PRETTY_FUNCTION__))
;
1395 Value *Condition = BI->getCondition();
1396
1397 // If V is the condition of the branch itself, then we know exactly what
1398 // it is.
1399 if (Condition == Val) {
20
Assuming 'Condition' is not equal to 'Val'
21
Taking false branch
1400 Result = ValueLatticeElement::get(ConstantInt::get(
1401 Type::getInt1Ty(Val->getContext()), isTrueDest));
1402 return true;
1403 }
1404
1405 // If the condition of the branch is an equality comparison, we may be
1406 // able to infer the value.
1407 Result = getValueFromCondition(Val, Condition, isTrueDest);
1408 if (!Result.isOverdefined())
22
Calling 'ValueLatticeElement::isOverdefined'
25
Returning from 'ValueLatticeElement::isOverdefined'
26
Taking false branch
1409 return true;
1410
1411 if (User *Usr
27.1
'Usr' is non-null
27.1
'Usr' is non-null
27.1
'Usr' is non-null
= dyn_cast<User>(Val)) {
27
Assuming 'Val' is a 'User'
28
Taking true branch
1412 assert(Result.isOverdefined() && "Result isn't overdefined")((Result.isOverdefined() && "Result isn't overdefined"
) ? static_cast<void> (0) : __assert_fail ("Result.isOverdefined() && \"Result isn't overdefined\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1412, __PRETTY_FUNCTION__))
;
29
'?' condition is true
1413 // Check with isOperationFoldable() first to avoid linearly iterating
1414 // over the operands unnecessarily which can be expensive for
1415 // instructions with many operands.
1416 if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) {
30
Assuming the object is a 'IntegerType'
31
Taking true branch
1417 const DataLayout &DL = BBTo->getModule()->getDataLayout();
32
Called C++ object pointer is null
1418 if (usesOperand(Usr, Condition)) {
1419 // If Val has Condition as an operand and Val can be folded into a
1420 // constant with either Condition == true or Condition == false,
1421 // propagate the constant.
1422 // eg.
1423 // ; %Val is true on the edge to %then.
1424 // %Val = and i1 %Condition, true.
1425 // br %Condition, label %then, label %else
1426 APInt ConditionVal(1, isTrueDest ? 1 : 0);
1427 Result = constantFoldUser(Usr, Condition, ConditionVal, DL);
1428 } else {
1429 // If one of Val's operand has an inferred value, we may be able to
1430 // infer the value of Val.
1431 // eg.
1432 // ; %Val is 94 on the edge to %then.
1433 // %Val = add i8 %Op, 1
1434 // %Condition = icmp eq i8 %Op, 93
1435 // br i1 %Condition, label %then, label %else
1436 for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
1437 Value *Op = Usr->getOperand(i);
1438 ValueLatticeElement OpLatticeVal =
1439 getValueFromCondition(Op, Condition, isTrueDest);
1440 if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
1441 Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
1442 break;
1443 }
1444 }
1445 }
1446 }
1447 }
1448 if (!Result.isOverdefined())
1449 return true;
1450 }
1451 }
1452
1453 // If the edge was formed by a switch on the value, then we may know exactly
1454 // what it is.
1455 if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) {
1456 Value *Condition = SI->getCondition();
1457 if (!isa<IntegerType>(Val->getType()))
1458 return false;
1459 bool ValUsesConditionAndMayBeFoldable = false;
1460 if (Condition != Val) {
1461 // Check if Val has Condition as an operand.
1462 if (User *Usr = dyn_cast<User>(Val))
1463 ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) &&
1464 usesOperand(Usr, Condition);
1465 if (!ValUsesConditionAndMayBeFoldable)
1466 return false;
1467 }
1468 assert((Condition == Val || ValUsesConditionAndMayBeFoldable) &&(((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
"Condition != Val nor Val doesn't use Condition") ? static_cast
<void> (0) : __assert_fail ("(Condition == Val || ValUsesConditionAndMayBeFoldable) && \"Condition != Val nor Val doesn't use Condition\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1469, __PRETTY_FUNCTION__))
1469 "Condition != Val nor Val doesn't use Condition")(((Condition == Val || ValUsesConditionAndMayBeFoldable) &&
"Condition != Val nor Val doesn't use Condition") ? static_cast
<void> (0) : __assert_fail ("(Condition == Val || ValUsesConditionAndMayBeFoldable) && \"Condition != Val nor Val doesn't use Condition\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1469, __PRETTY_FUNCTION__))
;
1470
1471 bool DefaultCase = SI->getDefaultDest() == BBTo;
1472 unsigned BitWidth = Val->getType()->getIntegerBitWidth();
1473 ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/);
1474
1475 for (auto Case : SI->cases()) {
1476 APInt CaseValue = Case.getCaseValue()->getValue();
1477 ConstantRange EdgeVal(CaseValue);
1478 if (ValUsesConditionAndMayBeFoldable) {
1479 User *Usr = cast<User>(Val);
1480 const DataLayout &DL = BBTo->getModule()->getDataLayout();
1481 ValueLatticeElement EdgeLatticeVal =
1482 constantFoldUser(Usr, Condition, CaseValue, DL);
1483 if (EdgeLatticeVal.isOverdefined())
1484 return false;
1485 EdgeVal = EdgeLatticeVal.getConstantRange();
1486 }
1487 if (DefaultCase) {
1488 // It is possible that the default destination is the destination of
1489 // some cases. We cannot perform difference for those cases.
1490 // We know Condition != CaseValue in BBTo. In some cases we can use
1491 // this to infer Val == f(Condition) is != f(CaseValue). For now, we
1492 // only do this when f is identity (i.e. Val == Condition), but we
1493 // should be able to do this for any injective f.
1494 if (Case.getCaseSuccessor() != BBTo && Condition == Val)
1495 EdgesVals = EdgesVals.difference(EdgeVal);
1496 } else if (Case.getCaseSuccessor() == BBTo)
1497 EdgesVals = EdgesVals.unionWith(EdgeVal);
1498 }
1499 Result = ValueLatticeElement::getRange(std::move(EdgesVals));
1500 return true;
1501 }
1502 return false;
1503}
1504
1505/// Compute the value of Val on the edge BBFrom -> BBTo or the value at
1506/// the basic block if the edge does not constrain Val.
1507bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
1508 BasicBlock *BBTo,
1509 ValueLatticeElement &Result,
1510 Instruction *CxtI) {
1511 // If already a constant, there is nothing to compute.
1512 if (Constant *VC
7.1
'VC' is null
7.1
'VC' is null
7.1
'VC' is null
= dyn_cast<Constant>(Val)) {
7
Assuming 'Val' is not a 'Constant'
8
Taking false branch
1513 Result = ValueLatticeElement::get(VC);
1514 return true;
1515 }
1516
1517 ValueLatticeElement LocalResult;
1518 if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult))
9
Passing value via 3rd parameter 'BBTo'
10
Calling 'getEdgeValueLocal'
1519 // If we couldn't constrain the value on the edge, LocalResult doesn't
1520 // provide any information.
1521 LocalResult = ValueLatticeElement::getOverdefined();
1522
1523 if (hasSingleValue(LocalResult)) {
1524 // Can't get any more precise here
1525 Result = LocalResult;
1526 return true;
1527 }
1528
1529 if (!hasBlockValue(Val, BBFrom)) {
1530 if (pushBlockValue(std::make_pair(BBFrom, Val)))
1531 return false;
1532 // No new information.
1533 Result = LocalResult;
1534 return true;
1535 }
1536
1537 // Try to intersect ranges of the BB and the constraint on the edge.
1538 ValueLatticeElement InBlock = getBlockValue(Val, BBFrom);
1539 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
1540 BBFrom->getTerminator());
1541 // We can use the context instruction (generically the ultimate instruction
1542 // the calling pass is trying to simplify) here, even though the result of
1543 // this function is generally cached when called from the solve* functions
1544 // (and that cached result might be used with queries using a different
1545 // context instruction), because when this function is called from the solve*
1546 // functions, the context instruction is not provided. When called from
1547 // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided,
1548 // but then the result is not cached.
1549 intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI);
1550
1551 Result = intersect(LocalResult, InBlock);
1552 return true;
1553}
1554
1555ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
1556 Instruction *CxtI) {
1557 LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting block end value "
<< *V << " at '" << BB->getName() <<
"'\n"; } } while (false)
1558 << BB->getName() << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting block end value "
<< *V << " at '" << BB->getName() <<
"'\n"; } } while (false)
;
1559
1560 assert(BlockValueStack.empty() && BlockValueSet.empty())((BlockValueStack.empty() && BlockValueSet.empty()) ?
static_cast<void> (0) : __assert_fail ("BlockValueStack.empty() && BlockValueSet.empty()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1560, __PRETTY_FUNCTION__))
;
1561 if (!hasBlockValue(V, BB)) {
1562 pushBlockValue(std::make_pair(BB, V));
1563 solve();
1564 }
1565 ValueLatticeElement Result = getBlockValue(V, BB);
1566 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1567
1568 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " Result = " <<
Result << "\n"; } } while (false)
;
1569 return Result;
1570}
1571
1572ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
1573 LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting value " <<
*V << " at '" << CxtI->getName() << "'\n"
; } } while (false)
1574 << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting value " <<
*V << " at '" << CxtI->getName() << "'\n"
; } } while (false)
;
1575
1576 if (auto *C = dyn_cast<Constant>(V))
1577 return ValueLatticeElement::get(C);
1578
1579 ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
1580 if (auto *I = dyn_cast<Instruction>(V))
1581 Result = getFromRangeMetadata(I);
1582 intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
1583
1584 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " Result = " <<
Result << "\n"; } } while (false)
;
1585 return Result;
1586}
1587
1588ValueLatticeElement LazyValueInfoImpl::
1589getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
1590 Instruction *CxtI) {
1591 LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting edge value "
<< *V << " from '" << FromBB->getName()
<< "' to '" << ToBB->getName() << "'\n"
; } } while (false)
3
Assuming 'DebugFlag' is false
4
Loop condition is false. Exiting loop
1592 << FromBB->getName() << "' to '" << ToBB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting edge value "
<< *V << " from '" << FromBB->getName()
<< "' to '" << ToBB->getName() << "'\n"
; } } while (false)
1593 << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << "LVI Getting edge value "
<< *V << " from '" << FromBB->getName()
<< "' to '" << ToBB->getName() << "'\n"
; } } while (false)
;
1594
1595 ValueLatticeElement Result;
1596 if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
5
Passing value via 3rd parameter 'BBTo'
6
Calling 'LazyValueInfoImpl::getEdgeValue'
1597 solve();
1598 bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
1599 (void)WasFastQuery;
1600 assert(WasFastQuery && "More work to do after problem solved?")((WasFastQuery && "More work to do after problem solved?"
) ? static_cast<void> (0) : __assert_fail ("WasFastQuery && \"More work to do after problem solved?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1600, __PRETTY_FUNCTION__))
;
1601 }
1602
1603 LLVM_DEBUG(dbgs() << " Result = " << Result << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("lazy-value-info")) { dbgs() << " Result = " <<
Result << "\n"; } } while (false)
;
1604 return Result;
1605}
1606
1607void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1608 BasicBlock *NewSucc) {
1609 TheCache.threadEdgeImpl(OldSucc, NewSucc);
1610}
1611
1612//===----------------------------------------------------------------------===//
1613// LazyValueInfo Impl
1614//===----------------------------------------------------------------------===//
1615
1616/// This lazily constructs the LazyValueInfoImpl.
1617static LazyValueInfoImpl &getImpl(void *&PImpl, AssumptionCache *AC,
1618 const DataLayout *DL,
1619 DominatorTree *DT = nullptr) {
1620 if (!PImpl) {
1621 assert(DL && "getCache() called with a null DataLayout")((DL && "getCache() called with a null DataLayout") ?
static_cast<void> (0) : __assert_fail ("DL && \"getCache() called with a null DataLayout\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1621, __PRETTY_FUNCTION__))
;
1622 PImpl = new LazyValueInfoImpl(AC, *DL, DT);
1623 }
1624 return *static_cast<LazyValueInfoImpl*>(PImpl);
1625}
1626
1627bool LazyValueInfoWrapperPass::runOnFunction(Function &F) {
1628 Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1629 const DataLayout &DL = F.getParent()->getDataLayout();
1630
1631 DominatorTreeWrapperPass *DTWP =
1632 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1633 Info.DT = DTWP ? &DTWP->getDomTree() : nullptr;
1634 Info.TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1635
1636 if (Info.PImpl)
1637 getImpl(Info.PImpl, Info.AC, &DL, Info.DT).clear();
1638
1639 // Fully lazy.
1640 return false;
1641}
1642
1643void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1644 AU.setPreservesAll();
1645 AU.addRequired<AssumptionCacheTracker>();
1646 AU.addRequired<TargetLibraryInfoWrapperPass>();
1647}
1648
1649LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; }
1650
1651LazyValueInfo::~LazyValueInfo() { releaseMemory(); }
1652
1653void LazyValueInfo::releaseMemory() {
1654 // If the cache was allocated, free it.
1655 if (PImpl) {
1656 delete &getImpl(PImpl, AC, nullptr);
1657 PImpl = nullptr;
1658 }
1659}
1660
1661bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
1662 FunctionAnalysisManager::Invalidator &Inv) {
1663 // We need to invalidate if we have either failed to preserve this analyses
1664 // result directly or if any of its dependencies have been invalidated.
1665 auto PAC = PA.getChecker<LazyValueAnalysis>();
1666 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
1667 (DT && Inv.invalidate<DominatorTreeAnalysis>(F, PA)))
1668 return true;
1669
1670 return false;
1671}
1672
1673void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
1674
1675LazyValueInfo LazyValueAnalysis::run(Function &F,
1676 FunctionAnalysisManager &FAM) {
1677 auto &AC = FAM.getResult<AssumptionAnalysis>(F);
1678 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1679 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
1680
1681 return LazyValueInfo(&AC, &F.getParent()->getDataLayout(), &TLI, DT);
1682}
1683
1684/// Returns true if we can statically tell that this value will never be a
1685/// "useful" constant. In practice, this means we've got something like an
1686/// alloca or a malloc call for which a comparison against a constant can
1687/// only be guarding dead code. Note that we are potentially giving up some
1688/// precision in dead code (a constant result) in favour of avoiding a
1689/// expensive search for a easily answered common query.
1690static bool isKnownNonConstant(Value *V) {
1691 V = V->stripPointerCasts();
1692 // The return val of alloc cannot be a Constant.
1693 if (isa<AllocaInst>(V))
1694 return true;
1695 return false;
1696}
1697
1698Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
1699 Instruction *CxtI) {
1700 // Bail out early if V is known not to be a Constant.
1701 if (isKnownNonConstant(V))
1702 return nullptr;
1703
1704 const DataLayout &DL = BB->getModule()->getDataLayout();
1705 ValueLatticeElement Result =
1706 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1707
1708 if (Result.isConstant())
1709 return Result.getConstant();
1710 if (Result.isConstantRange()) {
1711 const ConstantRange &CR = Result.getConstantRange();
1712 if (const APInt *SingleVal = CR.getSingleElement())
1713 return ConstantInt::get(V->getContext(), *SingleVal);
1714 }
1715 return nullptr;
1716}
1717
1718ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB,
1719 Instruction *CxtI) {
1720 assert(V->getType()->isIntegerTy())((V->getType()->isIntegerTy()) ? static_cast<void>
(0) : __assert_fail ("V->getType()->isIntegerTy()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1720, __PRETTY_FUNCTION__))
;
1721 unsigned Width = V->getType()->getIntegerBitWidth();
1722 const DataLayout &DL = BB->getModule()->getDataLayout();
1723 ValueLatticeElement Result =
1724 getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
1725 if (Result.isUndefined())
1726 return ConstantRange::getEmpty(Width);
1727 if (Result.isConstantRange())
1728 return Result.getConstantRange();
1729 // We represent ConstantInt constants as constant ranges but other kinds
1730 // of integer constants, i.e. ConstantExpr will be tagged as constants
1731 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&((!(Result.isConstant() && isa<ConstantInt>(Result
.getConstant())) && "ConstantInt value must be represented as constantrange"
) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1732, __PRETTY_FUNCTION__))
1732 "ConstantInt value must be represented as constantrange")((!(Result.isConstant() && isa<ConstantInt>(Result
.getConstant())) && "ConstantInt value must be represented as constantrange"
) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1732, __PRETTY_FUNCTION__))
;
1733 return ConstantRange::getFull(Width);
1734}
1735
1736/// Determine whether the specified value is known to be a
1737/// constant on the specified edge. Return null if not.
1738Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
1739 BasicBlock *ToBB,
1740 Instruction *CxtI) {
1741 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1742 ValueLatticeElement Result =
1743 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1744
1745 if (Result.isConstant())
1746 return Result.getConstant();
1747 if (Result.isConstantRange()) {
1748 const ConstantRange &CR = Result.getConstantRange();
1749 if (const APInt *SingleVal = CR.getSingleElement())
1750 return ConstantInt::get(V->getContext(), *SingleVal);
1751 }
1752 return nullptr;
1753}
1754
1755ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
1756 BasicBlock *FromBB,
1757 BasicBlock *ToBB,
1758 Instruction *CxtI) {
1759 unsigned Width = V->getType()->getIntegerBitWidth();
1760 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1761 ValueLatticeElement Result =
1762 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1
Passing value via 3rd parameter 'ToBB'
2
Calling 'LazyValueInfoImpl::getValueOnEdge'
1763
1764 if (Result.isUndefined())
1765 return ConstantRange::getEmpty(Width);
1766 if (Result.isConstantRange())
1767 return Result.getConstantRange();
1768 // We represent ConstantInt constants as constant ranges but other kinds
1769 // of integer constants, i.e. ConstantExpr will be tagged as constants
1770 assert(!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) &&((!(Result.isConstant() && isa<ConstantInt>(Result
.getConstant())) && "ConstantInt value must be represented as constantrange"
) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1771, __PRETTY_FUNCTION__))
1771 "ConstantInt value must be represented as constantrange")((!(Result.isConstant() && isa<ConstantInt>(Result
.getConstant())) && "ConstantInt value must be represented as constantrange"
) ? static_cast<void> (0) : __assert_fail ("!(Result.isConstant() && isa<ConstantInt>(Result.getConstant())) && \"ConstantInt value must be represented as constantrange\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Analysis/LazyValueInfo.cpp"
, 1771, __PRETTY_FUNCTION__))
;
1772 return ConstantRange::getFull(Width);
1773}
1774
1775static LazyValueInfo::Tristate
1776getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
1777 const DataLayout &DL, TargetLibraryInfo *TLI) {
1778 // If we know the value is a constant, evaluate the conditional.
1779 Constant *Res = nullptr;
1780 if (Val.isConstant()) {
1781 Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL, TLI);
1782 if (ConstantInt *ResCI = dyn_cast<ConstantInt>(Res))
1783 return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True;
1784 return LazyValueInfo::Unknown;
1785 }
1786
1787 if (Val.isConstantRange()) {
1788 ConstantInt *CI = dyn_cast<ConstantInt>(C);
1789 if (!CI) return LazyValueInfo::Unknown;
1790
1791 const ConstantRange &CR = Val.getConstantRange();
1792 if (Pred == ICmpInst::ICMP_EQ) {
1793 if (!CR.contains(CI->getValue()))
1794 return LazyValueInfo::False;
1795
1796 if (CR.isSingleElement())
1797 return LazyValueInfo::True;
1798 } else if (Pred == ICmpInst::ICMP_NE) {
1799 if (!CR.contains(CI->getValue()))
1800 return LazyValueInfo::True;
1801
1802 if (CR.isSingleElement())
1803 return LazyValueInfo::False;
1804 } else {
1805 // Handle more complex predicates.
1806 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(
1807 (ICmpInst::Predicate)Pred, CI->getValue());
1808 if (TrueValues.contains(CR))
1809 return LazyValueInfo::True;
1810 if (TrueValues.inverse().contains(CR))
1811 return LazyValueInfo::False;
1812 }
1813 return LazyValueInfo::Unknown;
1814 }
1815
1816 if (Val.isNotConstant()) {
1817 // If this is an equality comparison, we can try to fold it knowing that
1818 // "V != C1".
1819 if (Pred == ICmpInst::ICMP_EQ) {
1820 // !C1 == C -> false iff C1 == C.
1821 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1822 Val.getNotConstant(), C, DL,
1823 TLI);
1824 if (Res->isNullValue())
1825 return LazyValueInfo::False;
1826 } else if (Pred == ICmpInst::ICMP_NE) {
1827 // !C1 != C -> true iff C1 == C.
1828 Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE,
1829 Val.getNotConstant(), C, DL,
1830 TLI);
1831 if (Res->isNullValue())
1832 return LazyValueInfo::True;
1833 }
1834 return LazyValueInfo::Unknown;
1835 }
1836
1837 return LazyValueInfo::Unknown;
1838}
1839
1840/// Determine whether the specified value comparison with a constant is known to
1841/// be true or false on the specified CFG edge. Pred is a CmpInst predicate.
1842LazyValueInfo::Tristate
1843LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
1844 BasicBlock *FromBB, BasicBlock *ToBB,
1845 Instruction *CxtI) {
1846 const DataLayout &DL = FromBB->getModule()->getDataLayout();
1847 ValueLatticeElement Result =
1848 getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
1849
1850 return getPredicateResult(Pred, C, Result, DL, TLI);
1851}
1852
1853LazyValueInfo::Tristate
1854LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
1855 Instruction *CxtI) {
1856 // Is or is not NonNull are common predicates being queried. If
1857 // isKnownNonZero can tell us the result of the predicate, we can
1858 // return it quickly. But this is only a fastpath, and falling
1859 // through would still be correct.
1860 const DataLayout &DL = CxtI->getModule()->getDataLayout();
1861 if (V->getType()->isPointerTy() && C->isNullValue() &&
1862 isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) {
1863 if (Pred == ICmpInst::ICMP_EQ)
1864 return LazyValueInfo::False;
1865 else if (Pred == ICmpInst::ICMP_NE)
1866 return LazyValueInfo::True;
1867 }
1868 ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
1869 Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
1870 if (Ret != Unknown)
1871 return Ret;
1872
1873 // Note: The following bit of code is somewhat distinct from the rest of LVI;
1874 // LVI as a whole tries to compute a lattice value which is conservatively
1875 // correct at a given location. In this case, we have a predicate which we
1876 // weren't able to prove about the merged result, and we're pushing that
1877 // predicate back along each incoming edge to see if we can prove it
1878 // separately for each input. As a motivating example, consider:
1879 // bb1:
1880 // %v1 = ... ; constantrange<1, 5>
1881 // br label %merge
1882 // bb2:
1883 // %v2 = ... ; constantrange<10, 20>
1884 // br label %merge
1885 // merge:
1886 // %phi = phi [%v1, %v2] ; constantrange<1,20>
1887 // %pred = icmp eq i32 %phi, 8
1888 // We can't tell from the lattice value for '%phi' that '%pred' is false
1889 // along each path, but by checking the predicate over each input separately,
1890 // we can.
1891 // We limit the search to one step backwards from the current BB and value.
1892 // We could consider extending this to search further backwards through the
1893 // CFG and/or value graph, but there are non-obvious compile time vs quality
1894 // tradeoffs.
1895 if (CxtI) {
1896 BasicBlock *BB = CxtI->getParent();
1897
1898 // Function entry or an unreachable block. Bail to avoid confusing
1899 // analysis below.
1900 pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
1901 if (PI == PE)
1902 return Unknown;
1903
1904 // If V is a PHI node in the same block as the context, we need to ask
1905 // questions about the predicate as applied to the incoming value along
1906 // each edge. This is useful for eliminating cases where the predicate is
1907 // known along all incoming edges.
1908 if (auto *PHI = dyn_cast<PHINode>(V))
1909 if (PHI->getParent() == BB) {
1910 Tristate Baseline = Unknown;
1911 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) {
1912 Value *Incoming = PHI->getIncomingValue(i);
1913 BasicBlock *PredBB = PHI->getIncomingBlock(i);
1914 // Note that PredBB may be BB itself.
1915 Tristate Result = getPredicateOnEdge(Pred, Incoming, C, PredBB, BB,
1916 CxtI);
1917
1918 // Keep going as long as we've seen a consistent known result for
1919 // all inputs.
1920 Baseline = (i == 0) ? Result /* First iteration */
1921 : (Baseline == Result ? Baseline : Unknown); /* All others */
1922 if (Baseline == Unknown)
1923 break;
1924 }
1925 if (Baseline != Unknown)
1926 return Baseline;
1927 }
1928
1929 // For a comparison where the V is outside this block, it's possible
1930 // that we've branched on it before. Look to see if the value is known
1931 // on all incoming edges.
1932 if (!isa<Instruction>(V) ||
1933 cast<Instruction>(V)->getParent() != BB) {
1934 // For predecessor edge, determine if the comparison is true or false
1935 // on that edge. If they're all true or all false, we can conclude
1936 // the value of the comparison in this block.
1937 Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1938 if (Baseline != Unknown) {
1939 // Check that all remaining incoming values match the first one.
1940 while (++PI != PE) {
1941 Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI);
1942 if (Ret != Baseline) break;
1943 }
1944 // If we terminated early, then one of the values didn't match.
1945 if (PI == PE) {
1946 return Baseline;
1947 }
1948 }
1949 }
1950 }
1951 return Unknown;
1952}
1953
1954void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc,
1955 BasicBlock *NewSucc) {
1956 if (PImpl) {
1957 const DataLayout &DL = PredBB->getModule()->getDataLayout();
1958 getImpl(PImpl, AC, &DL, DT).threadEdge(PredBB, OldSucc, NewSucc);
1959 }
1960}
1961
1962void LazyValueInfo::eraseBlock(BasicBlock *BB) {
1963 if (PImpl) {
1964 const DataLayout &DL = BB->getModule()->getDataLayout();
1965 getImpl(PImpl, AC, &DL, DT).eraseBlock(BB);
1966 }
1967}
1968
1969
1970void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) {
1971 if (PImpl) {
1972 getImpl(PImpl, AC, DL, DT).printLVI(F, DTree, OS);
1973 }
1974}
1975
1976void LazyValueInfo::disableDT() {
1977 if (PImpl)
1978 getImpl(PImpl, AC, DL, DT).disableDT();
1979}
1980
1981void LazyValueInfo::enableDT() {
1982 if (PImpl)
1983 getImpl(PImpl, AC, DL, DT).enableDT();
1984}
1985
1986// Print the LVI for the function arguments at the start of each basic block.
1987void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
1988 const BasicBlock *BB, formatted_raw_ostream &OS) {
1989 // Find if there are latticevalues defined for arguments of the function.
1990 auto *F = BB->getParent();
1991 for (auto &Arg : F->args()) {
1992 ValueLatticeElement Result = LVIImpl->getValueInBlock(
1993 const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
1994 if (Result.isUndefined())
1995 continue;
1996 OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n";
1997 }
1998}
1999
2000// This function prints the LVI analysis for the instruction I at the beginning
2001// of various basic blocks. It relies on calculated values that are stored in
2002// the LazyValueInfoCache, and in the absence of cached values, recalculate the
2003// LazyValueInfo for `I`, and print that info.
2004void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
2005 const Instruction *I, formatted_raw_ostream &OS) {
2006
2007 auto *ParentBB = I->getParent();
2008 SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI;
2009 // We can generate (solve) LVI values only for blocks that are dominated by
2010 // the I's parent. However, to avoid generating LVI for all dominating blocks,
2011 // that contain redundant/uninteresting information, we print LVI for
2012 // blocks that may use this LVI information (such as immediate successor
2013 // blocks, and blocks that contain uses of `I`).
2014 auto printResult = [&](const BasicBlock *BB) {
2015 if (!BlocksContainingLVI.insert(BB).second)
2016 return;
2017 ValueLatticeElement Result = LVIImpl->getValueInBlock(
2018 const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
2019 OS << "; LatticeVal for: '" << *I << "' in BB: '";
2020 BB->printAsOperand(OS, false);
2021 OS << "' is: " << Result << "\n";
2022 };
2023
2024 printResult(ParentBB);
2025 // Print the LVI analysis results for the immediate successor blocks, that
2026 // are dominated by `ParentBB`.
2027 for (auto *BBSucc : successors(ParentBB))
2028 if (DT.dominates(ParentBB, BBSucc))
2029 printResult(BBSucc);
2030
2031 // Print LVI in blocks where `I` is used.
2032 for (auto *U : I->users())
2033 if (auto *UseI = dyn_cast<Instruction>(U))
2034 if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent()))
2035 printResult(UseI->getParent());
2036
2037}
2038
2039namespace {
2040// Printer class for LazyValueInfo results.
2041class LazyValueInfoPrinter : public FunctionPass {
2042public:
2043 static char ID; // Pass identification, replacement for typeid
2044 LazyValueInfoPrinter() : FunctionPass(ID) {
2045 initializeLazyValueInfoPrinterPass(*PassRegistry::getPassRegistry());
2046 }
2047
2048 void getAnalysisUsage(AnalysisUsage &AU) const override {
2049 AU.setPreservesAll();
2050 AU.addRequired<LazyValueInfoWrapperPass>();
2051 AU.addRequired<DominatorTreeWrapperPass>();
2052 }
2053
2054 // Get the mandatory dominator tree analysis and pass this in to the
2055 // LVIPrinter. We cannot rely on the LVI's DT, since it's optional.
2056 bool runOnFunction(Function &F) override {
2057 dbgs() << "LVI for function '" << F.getName() << "':\n";
2058 auto &LVI = getAnalysis<LazyValueInfoWrapperPass>().getLVI();
2059 auto &DTree = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2060 LVI.printLVI(F, DTree, dbgs());
2061 return false;
2062 }
2063};
2064}
2065
2066char LazyValueInfoPrinter::ID = 0;
2067INITIALIZE_PASS_BEGIN(LazyValueInfoPrinter, "print-lazy-value-info",static void *initializeLazyValueInfoPrinterPassOnce(PassRegistry
&Registry) {
2068 "Lazy Value Info Printer Pass", false, false)static void *initializeLazyValueInfoPrinterPassOnce(PassRegistry
&Registry) {
2069INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)initializeLazyValueInfoWrapperPassPass(Registry);
2070INITIALIZE_PASS_END(LazyValueInfoPrinter, "print-lazy-value-info",PassInfo *PI = new PassInfo( "Lazy Value Info Printer Pass", "print-lazy-value-info"
, &LazyValueInfoPrinter::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LazyValueInfoPrinter>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoPrinterPassFlag
; void llvm::initializeLazyValueInfoPrinterPass(PassRegistry &
Registry) { llvm::call_once(InitializeLazyValueInfoPrinterPassFlag
, initializeLazyValueInfoPrinterPassOnce, std::ref(Registry))
; }
2071 "Lazy Value Info Printer Pass", false, false)PassInfo *PI = new PassInfo( "Lazy Value Info Printer Pass", "print-lazy-value-info"
, &LazyValueInfoPrinter::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LazyValueInfoPrinter>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLazyValueInfoPrinterPassFlag
; void llvm::initializeLazyValueInfoPrinterPass(PassRegistry &
Registry) { llvm::call_once(InitializeLazyValueInfoPrinterPassFlag
, initializeLazyValueInfoPrinterPassOnce, std::ref(Registry))
; }

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/ADT/iterator.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/InstrTypes.h"
33#include "llvm/IR/Instruction.h"
34#include "llvm/IR/OperandTraits.h"
35#include "llvm/IR/Type.h"
36#include "llvm/IR/Use.h"
37#include "llvm/IR/User.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Support/AtomicOrdering.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <cassert>
43#include <cstddef>
44#include <cstdint>
45#include <iterator>
46
47namespace llvm {
48
49class APInt;
50class ConstantInt;
51class DataLayout;
52class LLVMContext;
53
54//===----------------------------------------------------------------------===//
55// AllocaInst Class
56//===----------------------------------------------------------------------===//
57
58/// an instruction to allocate memory on the stack
59class AllocaInst : public UnaryInstruction {
60 Type *AllocatedType;
61
62protected:
63 // Note: Instruction needs to be a friend here to call cloneImpl.
64 friend class Instruction;
65
66 AllocaInst *cloneImpl() const;
67
68public:
69 explicit AllocaInst(Type *Ty, unsigned AddrSpace,
70 Value *ArraySize = nullptr,
71 const Twine &Name = "",
72 Instruction *InsertBefore = nullptr);
73 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
74 const Twine &Name, BasicBlock *InsertAtEnd);
75
76 AllocaInst(Type *Ty, unsigned AddrSpace,
77 const Twine &Name, Instruction *InsertBefore = nullptr);
78 AllocaInst(Type *Ty, unsigned AddrSpace,
79 const Twine &Name, BasicBlock *InsertAtEnd);
80
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, MaybeAlign Align,
82 const Twine &Name = "", Instruction *InsertBefore = nullptr);
83 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, MaybeAlign Align,
84 const Twine &Name, BasicBlock *InsertAtEnd);
85
86 /// Return true if there is an allocation size parameter to the allocation
87 /// instruction that is not 1.
88 bool isArrayAllocation() const;
89
90 /// Get the number of elements allocated. For a simple allocation of a single
91 /// element, this will return a constant 1 value.
92 const Value *getArraySize() const { return getOperand(0); }
93 Value *getArraySize() { return getOperand(0); }
94
95 /// Overload to return most specific pointer type.
96 PointerType *getType() const {
97 return cast<PointerType>(Instruction::getType());
98 }
99
100 /// Get allocation size in bits. Returns None if size can't be determined,
101 /// e.g. in case of a VLA.
102 Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const;
103
104 /// Return the type that is being allocated by the instruction.
105 Type *getAllocatedType() const { return AllocatedType; }
106 /// for use only in special circumstances that need to generically
107 /// transform a whole instruction (eg: IR linking and vectorization).
108 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
109
110 /// Return the alignment of the memory that is being allocated by the
111 /// instruction.
112 MaybeAlign getAlign() const {
113 return decodeMaybeAlign(getSubclassDataFromInstruction() & 31);
114 }
115 // FIXME: Remove this one transition to Align is over.
116 unsigned getAlignment() const {
117 if (const auto MA = getAlign())
118 return MA->value();
119 return 0;
120 }
121 void setAlignment(MaybeAlign Align);
122
123 /// Return true if this alloca is in the entry block of the function and is a
124 /// constant size. If so, the code generator will fold it into the
125 /// prolog/epilog code, so it is basically free.
126 bool isStaticAlloca() const;
127
128 /// Return true if this alloca is used as an inalloca argument to a call. Such
129 /// allocas are never considered static even if they are in the entry block.
130 bool isUsedWithInAlloca() const {
131 return getSubclassDataFromInstruction() & 32;
132 }
133
134 /// Specify whether this alloca is used to represent the arguments to a call.
135 void setUsedWithInAlloca(bool V) {
136 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
137 (V ? 32 : 0));
138 }
139
140 /// Return true if this alloca is used as a swifterror argument to a call.
141 bool isSwiftError() const {
142 return getSubclassDataFromInstruction() & 64;
143 }
144
145 /// Specify whether this alloca is used to represent a swifterror.
146 void setSwiftError(bool V) {
147 setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
148 (V ? 64 : 0));
149 }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 void setInstructionSubclassData(unsigned short D) {
163 Instruction::setInstructionSubclassData(D);
164 }
165};
166
167//===----------------------------------------------------------------------===//
168// LoadInst Class
169//===----------------------------------------------------------------------===//
170
171/// An instruction for reading from memory. This uses the SubclassData field in
172/// Value to store whether or not the load is volatile.
173class LoadInst : public UnaryInstruction {
174 void AssertOK();
175
176protected:
177 // Note: Instruction needs to be a friend here to call cloneImpl.
178 friend class Instruction;
179
180 LoadInst *cloneImpl() const;
181
182public:
183 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr = "",
184 Instruction *InsertBefore = nullptr);
185 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
186 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
187 Instruction *InsertBefore = nullptr);
188 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
189 BasicBlock *InsertAtEnd);
190 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
191 MaybeAlign Align, Instruction *InsertBefore = nullptr);
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
193 MaybeAlign Align, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 MaybeAlign Align, AtomicOrdering Order,
196 SyncScope::ID SSID = SyncScope::System,
197 Instruction *InsertBefore = nullptr);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID,
200 BasicBlock *InsertAtEnd);
201
202 // Deprecated [opaque pointer types]
203 explicit LoadInst(Value *Ptr, const Twine &NameStr = "",
204 Instruction *InsertBefore = nullptr)
205 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
206 InsertBefore) {}
207 LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd)
208 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
209 InsertAtEnd) {}
210 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
211 Instruction *InsertBefore = nullptr)
212 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
213 isVolatile, InsertBefore) {}
214 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
215 BasicBlock *InsertAtEnd)
216 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
217 isVolatile, InsertAtEnd) {}
218 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
219 Instruction *InsertBefore = nullptr)
220 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
221 isVolatile, Align, InsertBefore) {}
222 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
223 BasicBlock *InsertAtEnd)
224 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
225 isVolatile, Align, InsertAtEnd) {}
226 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
227 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
228 Instruction *InsertBefore = nullptr)
229 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
230 isVolatile, Align, Order, SSID, InsertBefore) {}
231 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
232 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd)
233 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
234 isVolatile, Align, Order, SSID, InsertAtEnd) {}
235
236 /// Return true if this is a load from a volatile memory location.
237 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
238
239 /// Specify whether this is a volatile load or not.
240 void setVolatile(bool V) {
241 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
242 (V ? 1 : 0));
243 }
244
245 /// Return the alignment of the access that is being performed.
246 /// FIXME: Remove this function once transition to Align is over.
247 /// Use getAlign() instead.
248 unsigned getAlignment() const {
249 if (const auto MA = getAlign())
250 return MA->value();
251 return 0;
252 }
253
254 /// Return the alignment of the access that is being performed.
255 MaybeAlign getAlign() const {
256 return decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31);
257 }
258
259 void setAlignment(MaybeAlign Alignment);
260
261 /// Returns the ordering constraint of this load instruction.
262 AtomicOrdering getOrdering() const {
263 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
264 }
265
266 /// Sets the ordering constraint of this load instruction. May not be Release
267 /// or AcquireRelease.
268 void setOrdering(AtomicOrdering Ordering) {
269 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
270 ((unsigned)Ordering << 7));
271 }
272
273 /// Returns the synchronization scope ID of this load instruction.
274 SyncScope::ID getSyncScopeID() const {
275 return SSID;
276 }
277
278 /// Sets the synchronization scope ID of this load instruction.
279 void setSyncScopeID(SyncScope::ID SSID) {
280 this->SSID = SSID;
281 }
282
283 /// Sets the ordering constraint and the synchronization scope ID of this load
284 /// instruction.
285 void setAtomic(AtomicOrdering Ordering,
286 SyncScope::ID SSID = SyncScope::System) {
287 setOrdering(Ordering);
288 setSyncScopeID(SSID);
289 }
290
291 bool isSimple() const { return !isAtomic() && !isVolatile(); }
292
293 bool isUnordered() const {
294 return (getOrdering() == AtomicOrdering::NotAtomic ||
295 getOrdering() == AtomicOrdering::Unordered) &&
296 !isVolatile();
297 }
298
299 Value *getPointerOperand() { return getOperand(0); }
300 const Value *getPointerOperand() const { return getOperand(0); }
301 static unsigned getPointerOperandIndex() { return 0U; }
302 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
303
304 /// Returns the address space of the pointer operand.
305 unsigned getPointerAddressSpace() const {
306 return getPointerOperandType()->getPointerAddressSpace();
307 }
308
309 // Methods for support type inquiry through isa, cast, and dyn_cast:
310 static bool classof(const Instruction *I) {
311 return I->getOpcode() == Instruction::Load;
312 }
313 static bool classof(const Value *V) {
314 return isa<Instruction>(V) && classof(cast<Instruction>(V));
315 }
316
317private:
318 // Shadow Instruction::setInstructionSubclassData with a private forwarding
319 // method so that subclasses cannot accidentally use it.
320 void setInstructionSubclassData(unsigned short D) {
321 Instruction::setInstructionSubclassData(D);
322 }
323
324 /// The synchronization scope ID of this load instruction. Not quite enough
325 /// room in SubClassData for everything, so synchronization scope ID gets its
326 /// own field.
327 SyncScope::ID SSID;
328};
329
330//===----------------------------------------------------------------------===//
331// StoreInst Class
332//===----------------------------------------------------------------------===//
333
334/// An instruction for storing to memory.
335class StoreInst : public Instruction {
336 void AssertOK();
337
338protected:
339 // Note: Instruction needs to be a friend here to call cloneImpl.
340 friend class Instruction;
341
342 StoreInst *cloneImpl() const;
343
344public:
345 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
346 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
347 StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
348 Instruction *InsertBefore = nullptr);
349 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
350 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
351 Instruction *InsertBefore = nullptr);
352 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
353 BasicBlock *InsertAtEnd);
354 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
355 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
356 Instruction *InsertBefore = nullptr);
357 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
358 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
359
360 // allocate space for exactly two operands
361 void *operator new(size_t s) {
362 return User::operator new(s, 2);
363 }
364
365 /// Return true if this is a store to a volatile memory location.
366 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
367
368 /// Specify whether this is a volatile store or not.
369 void setVolatile(bool V) {
370 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
371 (V ? 1 : 0));
372 }
373
374 /// Transparently provide more efficient getOperand methods.
375 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
376
377 /// Return the alignment of the access that is being performed
378 /// FIXME: Remove this function once transition to Align is over.
379 /// Use getAlign() instead.
380 unsigned getAlignment() const {
381 if (const auto MA = getAlign())
382 return MA->value();
383 return 0;
384 }
385
386 MaybeAlign getAlign() const {
387 return decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31);
388 }
389
390 void setAlignment(MaybeAlign Alignment);
391
392 /// Returns the ordering constraint of this store instruction.
393 AtomicOrdering getOrdering() const {
394 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
395 }
396
397 /// Sets the ordering constraint of this store instruction. May not be
398 /// Acquire or AcquireRelease.
399 void setOrdering(AtomicOrdering Ordering) {
400 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
401 ((unsigned)Ordering << 7));
402 }
403
404 /// Returns the synchronization scope ID of this store instruction.
405 SyncScope::ID getSyncScopeID() const {
406 return SSID;
407 }
408
409 /// Sets the synchronization scope ID of this store instruction.
410 void setSyncScopeID(SyncScope::ID SSID) {
411 this->SSID = SSID;
412 }
413
414 /// Sets the ordering constraint and the synchronization scope ID of this
415 /// store instruction.
416 void setAtomic(AtomicOrdering Ordering,
417 SyncScope::ID SSID = SyncScope::System) {
418 setOrdering(Ordering);
419 setSyncScopeID(SSID);
420 }
421
422 bool isSimple() const { return !isAtomic() && !isVolatile(); }
423
424 bool isUnordered() const {
425 return (getOrdering() == AtomicOrdering::NotAtomic ||
426 getOrdering() == AtomicOrdering::Unordered) &&
427 !isVolatile();
428 }
429
430 Value *getValueOperand() { return getOperand(0); }
431 const Value *getValueOperand() const { return getOperand(0); }
432
433 Value *getPointerOperand() { return getOperand(1); }
434 const Value *getPointerOperand() const { return getOperand(1); }
435 static unsigned getPointerOperandIndex() { return 1U; }
436 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
437
438 /// Returns the address space of the pointer operand.
439 unsigned getPointerAddressSpace() const {
440 return getPointerOperandType()->getPointerAddressSpace();
441 }
442
443 // Methods for support type inquiry through isa, cast, and dyn_cast:
444 static bool classof(const Instruction *I) {
445 return I->getOpcode() == Instruction::Store;
446 }
447 static bool classof(const Value *V) {
448 return isa<Instruction>(V) && classof(cast<Instruction>(V));
449 }
450
451private:
452 // Shadow Instruction::setInstructionSubclassData with a private forwarding
453 // method so that subclasses cannot accidentally use it.
454 void setInstructionSubclassData(unsigned short D) {
455 Instruction::setInstructionSubclassData(D);
456 }
457
458 /// The synchronization scope ID of this store instruction. Not quite enough
459 /// room in SubClassData for everything, so synchronization scope ID gets its
460 /// own field.
461 SyncScope::ID SSID;
462};
463
464template <>
465struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
466};
467
468DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<StoreInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 468, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst
*>(this))[i_nocapture].get()); } void StoreInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 468, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst
::getNumOperands() const { return OperandTraits<StoreInst>
::operands(this); } template <int Idx_nocapture> Use &
StoreInst::Op() { return this->OpFrom<Idx_nocapture>
(this); } template <int Idx_nocapture> const Use &StoreInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
469
470//===----------------------------------------------------------------------===//
471// FenceInst Class
472//===----------------------------------------------------------------------===//
473
474/// An instruction for ordering other memory operations.
475class FenceInst : public Instruction {
476 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
477
478protected:
479 // Note: Instruction needs to be a friend here to call cloneImpl.
480 friend class Instruction;
481
482 FenceInst *cloneImpl() const;
483
484public:
485 // Ordering may only be Acquire, Release, AcquireRelease, or
486 // SequentiallyConsistent.
487 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
488 SyncScope::ID SSID = SyncScope::System,
489 Instruction *InsertBefore = nullptr);
490 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
491 BasicBlock *InsertAtEnd);
492
493 // allocate space for exactly zero operands
494 void *operator new(size_t s) {
495 return User::operator new(s, 0);
496 }
497
498 /// Returns the ordering constraint of this fence instruction.
499 AtomicOrdering getOrdering() const {
500 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
501 }
502
503 /// Sets the ordering constraint of this fence instruction. May only be
504 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
505 void setOrdering(AtomicOrdering Ordering) {
506 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
507 ((unsigned)Ordering << 1));
508 }
509
510 /// Returns the synchronization scope ID of this fence instruction.
511 SyncScope::ID getSyncScopeID() const {
512 return SSID;
513 }
514
515 /// Sets the synchronization scope ID of this fence instruction.
516 void setSyncScopeID(SyncScope::ID SSID) {
517 this->SSID = SSID;
518 }
519
520 // Methods for support type inquiry through isa, cast, and dyn_cast:
521 static bool classof(const Instruction *I) {
522 return I->getOpcode() == Instruction::Fence;
523 }
524 static bool classof(const Value *V) {
525 return isa<Instruction>(V) && classof(cast<Instruction>(V));
526 }
527
528private:
529 // Shadow Instruction::setInstructionSubclassData with a private forwarding
530 // method so that subclasses cannot accidentally use it.
531 void setInstructionSubclassData(unsigned short D) {
532 Instruction::setInstructionSubclassData(D);
533 }
534
535 /// The synchronization scope ID of this fence instruction. Not quite enough
536 /// room in SubClassData for everything, so synchronization scope ID gets its
537 /// own field.
538 SyncScope::ID SSID;
539};
540
541//===----------------------------------------------------------------------===//
542// AtomicCmpXchgInst Class
543//===----------------------------------------------------------------------===//
544
545/// An instruction that atomically checks whether a
546/// specified value is in a memory location, and, if it is, stores a new value
547/// there. The value returned by this instruction is a pair containing the
548/// original value as first element, and an i1 indicating success (true) or
549/// failure (false) as second element.
550///
551class AtomicCmpXchgInst : public Instruction {
552 void Init(Value *Ptr, Value *Cmp, Value *NewVal,
553 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
554 SyncScope::ID SSID);
555
556protected:
557 // Note: Instruction needs to be a friend here to call cloneImpl.
558 friend class Instruction;
559
560 AtomicCmpXchgInst *cloneImpl() const;
561
562public:
563 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
564 AtomicOrdering SuccessOrdering,
565 AtomicOrdering FailureOrdering,
566 SyncScope::ID SSID, Instruction *InsertBefore = nullptr);
567 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
568 AtomicOrdering SuccessOrdering,
569 AtomicOrdering FailureOrdering,
570 SyncScope::ID SSID, BasicBlock *InsertAtEnd);
571
572 // allocate space for exactly three operands
573 void *operator new(size_t s) {
574 return User::operator new(s, 3);
575 }
576
577 /// Return true if this is a cmpxchg from a volatile memory
578 /// location.
579 ///
580 bool isVolatile() const {
581 return getSubclassDataFromInstruction() & 1;
582 }
583
584 /// Specify whether this is a volatile cmpxchg.
585 ///
586 void setVolatile(bool V) {
587 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
588 (unsigned)V);
589 }
590
591 /// Return true if this cmpxchg may spuriously fail.
592 bool isWeak() const {
593 return getSubclassDataFromInstruction() & 0x100;
594 }
595
596 void setWeak(bool IsWeak) {
597 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
598 (IsWeak << 8));
599 }
600
601 /// Transparently provide more efficient getOperand methods.
602 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
603
604 /// Returns the success ordering constraint of this cmpxchg instruction.
605 AtomicOrdering getSuccessOrdering() const {
606 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
607 }
608
609 /// Sets the success ordering constraint of this cmpxchg instruction.
610 void setSuccessOrdering(AtomicOrdering Ordering) {
611 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 612, __PRETTY_FUNCTION__))
612 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 612, __PRETTY_FUNCTION__))
;
613 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
614 ((unsigned)Ordering << 2));
615 }
616
617 /// Returns the failure ordering constraint of this cmpxchg instruction.
618 AtomicOrdering getFailureOrdering() const {
619 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
620 }
621
622 /// Sets the failure ordering constraint of this cmpxchg instruction.
623 void setFailureOrdering(AtomicOrdering Ordering) {
624 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 625, __PRETTY_FUNCTION__))
625 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 625, __PRETTY_FUNCTION__))
;
626 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
627 ((unsigned)Ordering << 5));
628 }
629
630 /// Returns the synchronization scope ID of this cmpxchg instruction.
631 SyncScope::ID getSyncScopeID() const {
632 return SSID;
633 }
634
635 /// Sets the synchronization scope ID of this cmpxchg instruction.
636 void setSyncScopeID(SyncScope::ID SSID) {
637 this->SSID = SSID;
638 }
639
640 Value *getPointerOperand() { return getOperand(0); }
641 const Value *getPointerOperand() const { return getOperand(0); }
642 static unsigned getPointerOperandIndex() { return 0U; }
643
644 Value *getCompareOperand() { return getOperand(1); }
645 const Value *getCompareOperand() const { return getOperand(1); }
646
647 Value *getNewValOperand() { return getOperand(2); }
648 const Value *getNewValOperand() const { return getOperand(2); }
649
650 /// Returns the address space of the pointer operand.
651 unsigned getPointerAddressSpace() const {
652 return getPointerOperand()->getType()->getPointerAddressSpace();
653 }
654
655 /// Returns the strongest permitted ordering on failure, given the
656 /// desired ordering on success.
657 ///
658 /// If the comparison in a cmpxchg operation fails, there is no atomic store
659 /// so release semantics cannot be provided. So this function drops explicit
660 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
661 /// operation would remain SequentiallyConsistent.
662 static AtomicOrdering
663 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
664 switch (SuccessOrdering) {
665 default:
666 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 666)
;
667 case AtomicOrdering::Release:
668 case AtomicOrdering::Monotonic:
669 return AtomicOrdering::Monotonic;
670 case AtomicOrdering::AcquireRelease:
671 case AtomicOrdering::Acquire:
672 return AtomicOrdering::Acquire;
673 case AtomicOrdering::SequentiallyConsistent:
674 return AtomicOrdering::SequentiallyConsistent;
675 }
676 }
677
678 // Methods for support type inquiry through isa, cast, and dyn_cast:
679 static bool classof(const Instruction *I) {
680 return I->getOpcode() == Instruction::AtomicCmpXchg;
681 }
682 static bool classof(const Value *V) {
683 return isa<Instruction>(V) && classof(cast<Instruction>(V));
684 }
685
686private:
687 // Shadow Instruction::setInstructionSubclassData with a private forwarding
688 // method so that subclasses cannot accidentally use it.
689 void setInstructionSubclassData(unsigned short D) {
690 Instruction::setInstructionSubclassData(D);
691 }
692
693 /// The synchronization scope ID of this cmpxchg instruction. Not quite
694 /// enough room in SubClassData for everything, so synchronization scope ID
695 /// gets its own field.
696 SyncScope::ID SSID;
697};
698
699template <>
700struct OperandTraits<AtomicCmpXchgInst> :
701 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
702};
703
704DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 704, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 704, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
AtomicCmpXchgInst::getNumOperands() const { return OperandTraits
<AtomicCmpXchgInst>::operands(this); } template <int
Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &AtomicCmpXchgInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
705
706//===----------------------------------------------------------------------===//
707// AtomicRMWInst Class
708//===----------------------------------------------------------------------===//
709
710/// an instruction that atomically reads a memory location,
711/// combines it with another value, and then stores the result back. Returns
712/// the old value.
713///
714class AtomicRMWInst : public Instruction {
715protected:
716 // Note: Instruction needs to be a friend here to call cloneImpl.
717 friend class Instruction;
718
719 AtomicRMWInst *cloneImpl() const;
720
721public:
722 /// This enumeration lists the possible modifications atomicrmw can make. In
723 /// the descriptions, 'p' is the pointer to the instruction's memory location,
724 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
725 /// instruction. These instructions always return 'old'.
726 enum BinOp {
727 /// *p = v
728 Xchg,
729 /// *p = old + v
730 Add,
731 /// *p = old - v
732 Sub,
733 /// *p = old & v
734 And,
735 /// *p = ~(old & v)
736 Nand,
737 /// *p = old | v
738 Or,
739 /// *p = old ^ v
740 Xor,
741 /// *p = old >signed v ? old : v
742 Max,
743 /// *p = old <signed v ? old : v
744 Min,
745 /// *p = old >unsigned v ? old : v
746 UMax,
747 /// *p = old <unsigned v ? old : v
748 UMin,
749
750 /// *p = old + v
751 FAdd,
752
753 /// *p = old - v
754 FSub,
755
756 FIRST_BINOP = Xchg,
757 LAST_BINOP = FSub,
758 BAD_BINOP
759 };
760
761 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
762 AtomicOrdering Ordering, SyncScope::ID SSID,
763 Instruction *InsertBefore = nullptr);
764 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
765 AtomicOrdering Ordering, SyncScope::ID SSID,
766 BasicBlock *InsertAtEnd);
767
768 // allocate space for exactly two operands
769 void *operator new(size_t s) {
770 return User::operator new(s, 2);
771 }
772
773 BinOp getOperation() const {
774 return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
775 }
776
777 static StringRef getOperationName(BinOp Op);
778
779 static bool isFPOperation(BinOp Op) {
780 switch (Op) {
781 case AtomicRMWInst::FAdd:
782 case AtomicRMWInst::FSub:
783 return true;
784 default:
785 return false;
786 }
787 }
788
789 void setOperation(BinOp Operation) {
790 unsigned short SubclassData = getSubclassDataFromInstruction();
791 setInstructionSubclassData((SubclassData & 31) |
792 (Operation << 5));
793 }
794
795 /// Return true if this is a RMW on a volatile memory location.
796 ///
797 bool isVolatile() const {
798 return getSubclassDataFromInstruction() & 1;
799 }
800
801 /// Specify whether this is a volatile RMW or not.
802 ///
803 void setVolatile(bool V) {
804 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
805 (unsigned)V);
806 }
807
808 /// Transparently provide more efficient getOperand methods.
809 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
810
811 /// Returns the ordering constraint of this rmw instruction.
812 AtomicOrdering getOrdering() const {
813 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
814 }
815
816 /// Sets the ordering constraint of this rmw instruction.
817 void setOrdering(AtomicOrdering Ordering) {
818 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 819, __PRETTY_FUNCTION__))
819 "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 819, __PRETTY_FUNCTION__))
;
820 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
821 ((unsigned)Ordering << 2));
822 }
823
824 /// Returns the synchronization scope ID of this rmw instruction.
825 SyncScope::ID getSyncScopeID() const {
826 return SSID;
827 }
828
829 /// Sets the synchronization scope ID of this rmw instruction.
830 void setSyncScopeID(SyncScope::ID SSID) {
831 this->SSID = SSID;
832 }
833
834 Value *getPointerOperand() { return getOperand(0); }
835 const Value *getPointerOperand() const { return getOperand(0); }
836 static unsigned getPointerOperandIndex() { return 0U; }
837
838 Value *getValOperand() { return getOperand(1); }
839 const Value *getValOperand() const { return getOperand(1); }
840
841 /// Returns the address space of the pointer operand.
842 unsigned getPointerAddressSpace() const {
843 return getPointerOperand()->getType()->getPointerAddressSpace();
844 }
845
846 bool isFloatingPointOperation() const {
847 return isFPOperation(getOperation());
848 }
849
850 // Methods for support type inquiry through isa, cast, and dyn_cast:
851 static bool classof(const Instruction *I) {
852 return I->getOpcode() == Instruction::AtomicRMW;
853 }
854 static bool classof(const Value *V) {
855 return isa<Instruction>(V) && classof(cast<Instruction>(V));
856 }
857
858private:
859 void Init(BinOp Operation, Value *Ptr, Value *Val,
860 AtomicOrdering Ordering, SyncScope::ID SSID);
861
862 // Shadow Instruction::setInstructionSubclassData with a private forwarding
863 // method so that subclasses cannot accidentally use it.
864 void setInstructionSubclassData(unsigned short D) {
865 Instruction::setInstructionSubclassData(D);
866 }
867
868 /// The synchronization scope ID of this rmw instruction. Not quite enough
869 /// room in SubClassData for everything, so synchronization scope ID gets its
870 /// own field.
871 SyncScope::ID SSID;
872};
873
874template <>
875struct OperandTraits<AtomicRMWInst>
876 : public FixedNumOperandTraits<AtomicRMWInst,2> {
877};
878
879DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<AtomicRMWInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 879, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicRMWInst>::op_begin(const_cast<
AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<AtomicRMWInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 879, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst
::getNumOperands() const { return OperandTraits<AtomicRMWInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
880
881//===----------------------------------------------------------------------===//
882// GetElementPtrInst Class
883//===----------------------------------------------------------------------===//
884
885// checkGEPType - Simple wrapper function to give a better assertion failure
886// message on bad indexes for a gep instruction.
887//
888inline Type *checkGEPType(Type *Ty) {
889 assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!"
) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 889, __PRETTY_FUNCTION__))
;
890 return Ty;
891}
892
893/// an instruction for type-safe pointer arithmetic to
894/// access elements of arrays and structs
895///
896class GetElementPtrInst : public Instruction {
897 Type *SourceElementType;
898 Type *ResultElementType;
899
900 GetElementPtrInst(const GetElementPtrInst &GEPI);
901
902 /// Constructors - Create a getelementptr instruction with a base pointer an
903 /// list of indices. The first ctor can optionally insert before an existing
904 /// instruction, the second appends the new instruction to the specified
905 /// BasicBlock.
906 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
907 ArrayRef<Value *> IdxList, unsigned Values,
908 const Twine &NameStr, Instruction *InsertBefore);
909 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
910 ArrayRef<Value *> IdxList, unsigned Values,
911 const Twine &NameStr, BasicBlock *InsertAtEnd);
912
913 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
914
915protected:
916 // Note: Instruction needs to be a friend here to call cloneImpl.
917 friend class Instruction;
918
919 GetElementPtrInst *cloneImpl() const;
920
921public:
922 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
923 ArrayRef<Value *> IdxList,
924 const Twine &NameStr = "",
925 Instruction *InsertBefore = nullptr) {
926 unsigned Values = 1 + unsigned(IdxList.size());
927 if (!PointeeType)
928 PointeeType =
929 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
930 else
931 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
932 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
933 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
;
934 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
935 NameStr, InsertBefore);
936 }
937
938 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList,
940 const Twine &NameStr,
941 BasicBlock *InsertAtEnd) {
942 unsigned Values = 1 + unsigned(IdxList.size());
943 if (!PointeeType)
944 PointeeType =
945 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
946 else
947 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
948 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
949 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
;
950 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
951 NameStr, InsertAtEnd);
952 }
953
954 /// Create an "inbounds" getelementptr. See the documentation for the
955 /// "inbounds" flag in LangRef.html for details.
956 static GetElementPtrInst *CreateInBounds(Value *Ptr,
957 ArrayRef<Value *> IdxList,
958 const Twine &NameStr = "",
959 Instruction *InsertBefore = nullptr){
960 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
961 }
962
963 static GetElementPtrInst *
964 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
965 const Twine &NameStr = "",
966 Instruction *InsertBefore = nullptr) {
967 GetElementPtrInst *GEP =
968 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
969 GEP->setIsInBounds(true);
970 return GEP;
971 }
972
973 static GetElementPtrInst *CreateInBounds(Value *Ptr,
974 ArrayRef<Value *> IdxList,
975 const Twine &NameStr,
976 BasicBlock *InsertAtEnd) {
977 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
978 }
979
980 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
981 ArrayRef<Value *> IdxList,
982 const Twine &NameStr,
983 BasicBlock *InsertAtEnd) {
984 GetElementPtrInst *GEP =
985 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
986 GEP->setIsInBounds(true);
987 return GEP;
988 }
989
990 /// Transparently provide more efficient getOperand methods.
991 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
992
993 Type *getSourceElementType() const { return SourceElementType; }
994
995 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
996 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
997
998 Type *getResultElementType() const {
999 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1000, __PRETTY_FUNCTION__))
1000 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1000, __PRETTY_FUNCTION__))
;
1001 return ResultElementType;
1002 }
1003
1004 /// Returns the address space of this instruction's pointer type.
1005 unsigned getAddressSpace() const {
1006 // Note that this is always the same as the pointer operand's address space
1007 // and that is cheaper to compute, so cheat here.
1008 return getPointerAddressSpace();
1009 }
1010
1011 /// Returns the type of the element that would be loaded with
1012 /// a load instruction with the specified parameters.
1013 ///
1014 /// Null is returned if the indices are invalid for the specified
1015 /// pointer type.
1016 ///
1017 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1018 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1019 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1020
1021 inline op_iterator idx_begin() { return op_begin()+1; }
1022 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1023 inline op_iterator idx_end() { return op_end(); }
1024 inline const_op_iterator idx_end() const { return op_end(); }
1025
1026 inline iterator_range<op_iterator> indices() {
1027 return make_range(idx_begin(), idx_end());
1028 }
1029
1030 inline iterator_range<const_op_iterator> indices() const {
1031 return make_range(idx_begin(), idx_end());
1032 }
1033
1034 Value *getPointerOperand() {
1035 return getOperand(0);
1036 }
1037 const Value *getPointerOperand() const {
1038 return getOperand(0);
1039 }
1040 static unsigned getPointerOperandIndex() {
1041 return 0U; // get index for modifying correct operand.
1042 }
1043
1044 /// Method to return the pointer operand as a
1045 /// PointerType.
1046 Type *getPointerOperandType() const {
1047 return getPointerOperand()->getType();
1048 }
1049
1050 /// Returns the address space of the pointer operand.
1051 unsigned getPointerAddressSpace() const {
1052 return getPointerOperandType()->getPointerAddressSpace();
1053 }
1054
1055 /// Returns the pointer type returned by the GEP
1056 /// instruction, which may be a vector of pointers.
1057 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1058 ArrayRef<Value *> IdxList) {
1059 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1060 Ptr->getType()->getPointerAddressSpace());
1061 // Vector GEP
1062 if (Ptr->getType()->isVectorTy()) {
1063 ElementCount EltCount = Ptr->getType()->getVectorElementCount();
1064 return VectorType::get(PtrTy, EltCount);
1065 }
1066 for (Value *Index : IdxList)
1067 if (Index->getType()->isVectorTy()) {
1068 ElementCount EltCount = Index->getType()->getVectorElementCount();
1069 return VectorType::get(PtrTy, EltCount);
1070 }
1071 // Scalar GEP
1072 return PtrTy;
1073 }
1074
1075 unsigned getNumIndices() const { // Note: always non-negative
1076 return getNumOperands() - 1;
1077 }
1078
1079 bool hasIndices() const {
1080 return getNumOperands() > 1;
1081 }
1082
1083 /// Return true if all of the indices of this GEP are
1084 /// zeros. If so, the result pointer and the first operand have the same
1085 /// value, just potentially different types.
1086 bool hasAllZeroIndices() const;
1087
1088 /// Return true if all of the indices of this GEP are
1089 /// constant integers. If so, the result pointer and the first operand have
1090 /// a constant offset between them.
1091 bool hasAllConstantIndices() const;
1092
1093 /// Set or clear the inbounds flag on this GEP instruction.
1094 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1095 void setIsInBounds(bool b = true);
1096
1097 /// Determine whether the GEP has the inbounds flag.
1098 bool isInBounds() const;
1099
1100 /// Accumulate the constant address offset of this GEP if possible.
1101 ///
1102 /// This routine accepts an APInt into which it will accumulate the constant
1103 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1104 /// all-constant, it returns false and the value of the offset APInt is
1105 /// undefined (it is *not* preserved!). The APInt passed into this routine
1106 /// must be at least as wide as the IntPtr type for the address space of
1107 /// the base GEP pointer.
1108 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1109
1110 // Methods for support type inquiry through isa, cast, and dyn_cast:
1111 static bool classof(const Instruction *I) {
1112 return (I->getOpcode() == Instruction::GetElementPtr);
1113 }
1114 static bool classof(const Value *V) {
1115 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1116 }
1117};
1118
1119template <>
1120struct OperandTraits<GetElementPtrInst> :
1121 public VariadicOperandTraits<GetElementPtrInst, 1> {
1122};
1123
1124GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1125 ArrayRef<Value *> IdxList, unsigned Values,
1126 const Twine &NameStr,
1127 Instruction *InsertBefore)
1128 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1129 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1130 Values, InsertBefore),
1131 SourceElementType(PointeeType),
1132 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1133 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1134, __PRETTY_FUNCTION__))
1134 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1134, __PRETTY_FUNCTION__))
;
1135 init(Ptr, IdxList, NameStr);
1136}
1137
1138GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1139 ArrayRef<Value *> IdxList, unsigned Values,
1140 const Twine &NameStr,
1141 BasicBlock *InsertAtEnd)
1142 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1143 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1144 Values, InsertAtEnd),
1145 SourceElementType(PointeeType),
1146 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1147 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1148, __PRETTY_FUNCTION__))
1148 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1148, __PRETTY_FUNCTION__))
;
1149 init(Ptr, IdxList, NameStr);
1150}
1151
1152DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1152, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<GetElementPtrInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1152, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
GetElementPtrInst::getNumOperands() const { return OperandTraits
<GetElementPtrInst>::operands(this); } template <int
Idx_nocapture> Use &GetElementPtrInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &GetElementPtrInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1153
1154//===----------------------------------------------------------------------===//
1155// ICmpInst Class
1156//===----------------------------------------------------------------------===//
1157
1158/// This instruction compares its operands according to the predicate given
1159/// to the constructor. It only operates on integers or pointers. The operands
1160/// must be identical types.
1161/// Represent an integer comparison operator.
1162class ICmpInst: public CmpInst {
1163 void AssertOK() {
1164 assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1165, __PRETTY_FUNCTION__))
1165 "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1165, __PRETTY_FUNCTION__))
;
1166 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1167, __PRETTY_FUNCTION__))
1167 "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1167, __PRETTY_FUNCTION__))
;
1168 // Check that the operands are the right type
1169 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
1170 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
1171 "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
;
1172 }
1173
1174protected:
1175 // Note: Instruction needs to be a friend here to call cloneImpl.
1176 friend class Instruction;
1177
1178 /// Clone an identical ICmpInst
1179 ICmpInst *cloneImpl() const;
1180
1181public:
1182 /// Constructor with insert-before-instruction semantics.
1183 ICmpInst(
1184 Instruction *InsertBefore, ///< Where to insert
1185 Predicate pred, ///< The predicate to use for the comparison
1186 Value *LHS, ///< The left-hand-side of the expression
1187 Value *RHS, ///< The right-hand-side of the expression
1188 const Twine &NameStr = "" ///< Name of the instruction
1189 ) : CmpInst(makeCmpResultType(LHS->getType()),
1190 Instruction::ICmp, pred, LHS, RHS, NameStr,
1191 InsertBefore) {
1192#ifndef NDEBUG
1193 AssertOK();
1194#endif
1195 }
1196
1197 /// Constructor with insert-at-end semantics.
1198 ICmpInst(
1199 BasicBlock &InsertAtEnd, ///< Block to insert into.
1200 Predicate pred, ///< The predicate to use for the comparison
1201 Value *LHS, ///< The left-hand-side of the expression
1202 Value *RHS, ///< The right-hand-side of the expression
1203 const Twine &NameStr = "" ///< Name of the instruction
1204 ) : CmpInst(makeCmpResultType(LHS->getType()),
1205 Instruction::ICmp, pred, LHS, RHS, NameStr,
1206 &InsertAtEnd) {
1207#ifndef NDEBUG
1208 AssertOK();
1209#endif
1210 }
1211
1212 /// Constructor with no-insertion semantics
1213 ICmpInst(
1214 Predicate pred, ///< The predicate to use for the comparison
1215 Value *LHS, ///< The left-hand-side of the expression
1216 Value *RHS, ///< The right-hand-side of the expression
1217 const Twine &NameStr = "" ///< Name of the instruction
1218 ) : CmpInst(makeCmpResultType(LHS->getType()),
1219 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1220#ifndef NDEBUG
1221 AssertOK();
1222#endif
1223 }
1224
1225 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1226 /// @returns the predicate that would be the result if the operand were
1227 /// regarded as signed.
1228 /// Return the signed version of the predicate
1229 Predicate getSignedPredicate() const {
1230 return getSignedPredicate(getPredicate());
1231 }
1232
1233 /// This is a static version that you can use without an instruction.
1234 /// Return the signed version of the predicate.
1235 static Predicate getSignedPredicate(Predicate pred);
1236
1237 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1238 /// @returns the predicate that would be the result if the operand were
1239 /// regarded as unsigned.
1240 /// Return the unsigned version of the predicate
1241 Predicate getUnsignedPredicate() const {
1242 return getUnsignedPredicate(getPredicate());
1243 }
1244
1245 /// This is a static version that you can use without an instruction.
1246 /// Return the unsigned version of the predicate.
1247 static Predicate getUnsignedPredicate(Predicate pred);
1248
1249 /// Return true if this predicate is either EQ or NE. This also
1250 /// tests for commutativity.
1251 static bool isEquality(Predicate P) {
1252 return P == ICMP_EQ || P == ICMP_NE;
1253 }
1254
1255 /// Return true if this predicate is either EQ or NE. This also
1256 /// tests for commutativity.
1257 bool isEquality() const {
1258 return isEquality(getPredicate());
1259 }
1260
1261 /// @returns true if the predicate of this ICmpInst is commutative
1262 /// Determine if this relation is commutative.
1263 bool isCommutative() const { return isEquality(); }
1264
1265 /// Return true if the predicate is relational (not EQ or NE).
1266 ///
1267 bool isRelational() const {
1268 return !isEquality();
1269 }
1270
1271 /// Return true if the predicate is relational (not EQ or NE).
1272 ///
1273 static bool isRelational(Predicate P) {
1274 return !isEquality(P);
1275 }
1276
1277 /// Exchange the two operands to this instruction in such a way that it does
1278 /// not modify the semantics of the instruction. The predicate value may be
1279 /// changed to retain the same result if the predicate is order dependent
1280 /// (e.g. ult).
1281 /// Swap operands and adjust predicate.
1282 void swapOperands() {
1283 setPredicate(getSwappedPredicate());
1284 Op<0>().swap(Op<1>());
1285 }
1286
1287 // Methods for support type inquiry through isa, cast, and dyn_cast:
1288 static bool classof(const Instruction *I) {
1289 return I->getOpcode() == Instruction::ICmp;
1290 }
1291 static bool classof(const Value *V) {
1292 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1293 }
1294};
1295
1296//===----------------------------------------------------------------------===//
1297// FCmpInst Class
1298//===----------------------------------------------------------------------===//
1299
1300/// This instruction compares its operands according to the predicate given
1301/// to the constructor. It only operates on floating point values or packed
1302/// vectors of floating point values. The operands must be identical types.
1303/// Represents a floating point comparison operator.
1304class FCmpInst: public CmpInst {
1305 void AssertOK() {
1306 assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ?
static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1306, __PRETTY_FUNCTION__))
;
1307 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1308, __PRETTY_FUNCTION__))
1308 "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1308, __PRETTY_FUNCTION__))
;
1309 // Check that the operands are the right type
1310 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1311, __PRETTY_FUNCTION__))
1311 "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1311, __PRETTY_FUNCTION__))
;
1312 }
1313
1314protected:
1315 // Note: Instruction needs to be a friend here to call cloneImpl.
1316 friend class Instruction;
1317
1318 /// Clone an identical FCmpInst
1319 FCmpInst *cloneImpl() const;
1320
1321public:
1322 /// Constructor with insert-before-instruction semantics.
1323 FCmpInst(
1324 Instruction *InsertBefore, ///< Where to insert
1325 Predicate pred, ///< The predicate to use for the comparison
1326 Value *LHS, ///< The left-hand-side of the expression
1327 Value *RHS, ///< The right-hand-side of the expression
1328 const Twine &NameStr = "" ///< Name of the instruction
1329 ) : CmpInst(makeCmpResultType(LHS->getType()),
1330 Instruction::FCmp, pred, LHS, RHS, NameStr,
1331 InsertBefore) {
1332 AssertOK();
1333 }
1334
1335 /// Constructor with insert-at-end semantics.
1336 FCmpInst(
1337 BasicBlock &InsertAtEnd, ///< Block to insert into.
1338 Predicate pred, ///< The predicate to use for the comparison
1339 Value *LHS, ///< The left-hand-side of the expression
1340 Value *RHS, ///< The right-hand-side of the expression
1341 const Twine &NameStr = "" ///< Name of the instruction
1342 ) : CmpInst(makeCmpResultType(LHS->getType()),
1343 Instruction::FCmp, pred, LHS, RHS, NameStr,
1344 &InsertAtEnd) {
1345 AssertOK();
1346 }
1347
1348 /// Constructor with no-insertion semantics
1349 FCmpInst(
1350 Predicate Pred, ///< The predicate to use for the comparison
1351 Value *LHS, ///< The left-hand-side of the expression
1352 Value *RHS, ///< The right-hand-side of the expression
1353 const Twine &NameStr = "", ///< Name of the instruction
1354 Instruction *FlagsSource = nullptr
1355 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1356 RHS, NameStr, nullptr, FlagsSource) {
1357 AssertOK();
1358 }
1359
1360 /// @returns true if the predicate of this instruction is EQ or NE.
1361 /// Determine if this is an equality predicate.
1362 static bool isEquality(Predicate Pred) {
1363 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1364 Pred == FCMP_UNE;
1365 }
1366
1367 /// @returns true if the predicate of this instruction is EQ or NE.
1368 /// Determine if this is an equality predicate.
1369 bool isEquality() const { return isEquality(getPredicate()); }
1370
1371 /// @returns true if the predicate of this instruction is commutative.
1372 /// Determine if this is a commutative predicate.
1373 bool isCommutative() const {
1374 return isEquality() ||
1375 getPredicate() == FCMP_FALSE ||
1376 getPredicate() == FCMP_TRUE ||
1377 getPredicate() == FCMP_ORD ||
1378 getPredicate() == FCMP_UNO;
1379 }
1380
1381 /// @returns true if the predicate is relational (not EQ or NE).
1382 /// Determine if this a relational predicate.
1383 bool isRelational() const { return !isEquality(); }
1384
1385 /// Exchange the two operands to this instruction in such a way that it does
1386 /// not modify the semantics of the instruction. The predicate value may be
1387 /// changed to retain the same result if the predicate is order dependent
1388 /// (e.g. ult).
1389 /// Swap operands and adjust predicate.
1390 void swapOperands() {
1391 setPredicate(getSwappedPredicate());
1392 Op<0>().swap(Op<1>());
1393 }
1394
1395 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1396 static bool classof(const Instruction *I) {
1397 return I->getOpcode() == Instruction::FCmp;
1398 }
1399 static bool classof(const Value *V) {
1400 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1401 }
1402};
1403
1404//===----------------------------------------------------------------------===//
1405/// This class represents a function call, abstracting a target
1406/// machine's calling convention. This class uses low bit of the SubClassData
1407/// field to indicate whether or not this is a tail call. The rest of the bits
1408/// hold the calling convention of the call.
1409///
1410class CallInst : public CallBase {
1411 CallInst(const CallInst &CI);
1412
1413 /// Construct a CallInst given a range of arguments.
1414 /// Construct a CallInst from a range of arguments
1415 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1416 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1417 Instruction *InsertBefore);
1418
1419 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1420 const Twine &NameStr, Instruction *InsertBefore)
1421 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1422
1423 /// Construct a CallInst given a range of arguments.
1424 /// Construct a CallInst from a range of arguments
1425 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1426 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1427 BasicBlock *InsertAtEnd);
1428
1429 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1430 Instruction *InsertBefore);
1431
1432 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1433 BasicBlock *InsertAtEnd);
1434
1435 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1436 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1437 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1438
1439 /// Compute the number of operands to allocate.
1440 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1441 // We need one operand for the called function, plus the input operand
1442 // counts provided.
1443 return 1 + NumArgs + NumBundleInputs;
1444 }
1445
1446protected:
1447 // Note: Instruction needs to be a friend here to call cloneImpl.
1448 friend class Instruction;
1449
1450 CallInst *cloneImpl() const;
1451
1452public:
1453 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1454 Instruction *InsertBefore = nullptr) {
1455 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1456 }
1457
1458 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1459 const Twine &NameStr,
1460 Instruction *InsertBefore = nullptr) {
1461 return new (ComputeNumOperands(Args.size()))
1462 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1463 }
1464
1465 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1466 ArrayRef<OperandBundleDef> Bundles = None,
1467 const Twine &NameStr = "",
1468 Instruction *InsertBefore = nullptr) {
1469 const int NumOperands =
1470 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1471 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1472
1473 return new (NumOperands, DescriptorBytes)
1474 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1475 }
1476
1477 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1478 BasicBlock *InsertAtEnd) {
1479 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1480 }
1481
1482 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1483 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1484 return new (ComputeNumOperands(Args.size()))
1485 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1486 }
1487
1488 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1489 ArrayRef<OperandBundleDef> Bundles,
1490 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1491 const int NumOperands =
1492 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1493 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1494
1495 return new (NumOperands, DescriptorBytes)
1496 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1497 }
1498
1499 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1500 Instruction *InsertBefore = nullptr) {
1501 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1502 InsertBefore);
1503 }
1504
1505 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1506 ArrayRef<OperandBundleDef> Bundles = None,
1507 const Twine &NameStr = "",
1508 Instruction *InsertBefore = nullptr) {
1509 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1510 NameStr, InsertBefore);
1511 }
1512
1513 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1514 const Twine &NameStr,
1515 Instruction *InsertBefore = nullptr) {
1516 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1517 InsertBefore);
1518 }
1519
1520 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1521 BasicBlock *InsertAtEnd) {
1522 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1523 InsertAtEnd);
1524 }
1525
1526 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1527 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1528 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1529 InsertAtEnd);
1530 }
1531
1532 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1533 ArrayRef<OperandBundleDef> Bundles,
1534 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1535 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1536 NameStr, InsertAtEnd);
1537 }
1538
1539 // Deprecated [opaque pointer types]
1540 static CallInst *Create(Value *Func, const Twine &NameStr = "",
1541 Instruction *InsertBefore = nullptr) {
1542 return Create(cast<FunctionType>(
1543 cast<PointerType>(Func->getType())->getElementType()),
1544 Func, NameStr, InsertBefore);
1545 }
1546
1547 // Deprecated [opaque pointer types]
1548 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1549 const Twine &NameStr,
1550 Instruction *InsertBefore = nullptr) {
1551 return Create(cast<FunctionType>(
1552 cast<PointerType>(Func->getType())->getElementType()),
1553 Func, Args, NameStr, InsertBefore);
1554 }
1555
1556 // Deprecated [opaque pointer types]
1557 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1558 ArrayRef<OperandBundleDef> Bundles = None,
1559 const Twine &NameStr = "",
1560 Instruction *InsertBefore = nullptr) {
1561 return Create(cast<FunctionType>(
1562 cast<PointerType>(Func->getType())->getElementType()),
1563 Func, Args, Bundles, NameStr, InsertBefore);
1564 }
1565
1566 // Deprecated [opaque pointer types]
1567 static CallInst *Create(Value *Func, const Twine &NameStr,
1568 BasicBlock *InsertAtEnd) {
1569 return Create(cast<FunctionType>(
1570 cast<PointerType>(Func->getType())->getElementType()),
1571 Func, NameStr, InsertAtEnd);
1572 }
1573
1574 // Deprecated [opaque pointer types]
1575 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1576 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1577 return Create(cast<FunctionType>(
1578 cast<PointerType>(Func->getType())->getElementType()),
1579 Func, Args, NameStr, InsertAtEnd);
1580 }
1581
1582 // Deprecated [opaque pointer types]
1583 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1584 ArrayRef<OperandBundleDef> Bundles,
1585 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1586 return Create(cast<FunctionType>(
1587 cast<PointerType>(Func->getType())->getElementType()),
1588 Func, Args, Bundles, NameStr, InsertAtEnd);
1589 }
1590
1591 /// Create a clone of \p CI with a different set of operand bundles and
1592 /// insert it before \p InsertPt.
1593 ///
1594 /// The returned call instruction is identical \p CI in every way except that
1595 /// the operand bundles for the new instruction are set to the operand bundles
1596 /// in \p Bundles.
1597 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1598 Instruction *InsertPt = nullptr);
1599
1600 /// Generate the IR for a call to malloc:
1601 /// 1. Compute the malloc call's argument as the specified type's size,
1602 /// possibly multiplied by the array size if the array size is not
1603 /// constant 1.
1604 /// 2. Call malloc with that argument.
1605 /// 3. Bitcast the result of the malloc call to the specified type.
1606 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1607 Type *AllocTy, Value *AllocSize,
1608 Value *ArraySize = nullptr,
1609 Function *MallocF = nullptr,
1610 const Twine &Name = "");
1611 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1612 Type *AllocTy, Value *AllocSize,
1613 Value *ArraySize = nullptr,
1614 Function *MallocF = nullptr,
1615 const Twine &Name = "");
1616 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1617 Type *AllocTy, Value *AllocSize,
1618 Value *ArraySize = nullptr,
1619 ArrayRef<OperandBundleDef> Bundles = None,
1620 Function *MallocF = nullptr,
1621 const Twine &Name = "");
1622 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1623 Type *AllocTy, Value *AllocSize,
1624 Value *ArraySize = nullptr,
1625 ArrayRef<OperandBundleDef> Bundles = None,
1626 Function *MallocF = nullptr,
1627 const Twine &Name = "");
1628 /// Generate the IR for a call to the builtin free function.
1629 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1630 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1631 static Instruction *CreateFree(Value *Source,
1632 ArrayRef<OperandBundleDef> Bundles,
1633 Instruction *InsertBefore);
1634 static Instruction *CreateFree(Value *Source,
1635 ArrayRef<OperandBundleDef> Bundles,
1636 BasicBlock *InsertAtEnd);
1637
1638 // Note that 'musttail' implies 'tail'.
1639 enum TailCallKind {
1640 TCK_None = 0,
1641 TCK_Tail = 1,
1642 TCK_MustTail = 2,
1643 TCK_NoTail = 3
1644 };
1645 TailCallKind getTailCallKind() const {
1646 return TailCallKind(getSubclassDataFromInstruction() & 3);
1647 }
1648
1649 bool isTailCall() const {
1650 unsigned Kind = getSubclassDataFromInstruction() & 3;
1651 return Kind == TCK_Tail || Kind == TCK_MustTail;
1652 }
1653
1654 bool isMustTailCall() const {
1655 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
1656 }
1657
1658 bool isNoTailCall() const {
1659 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail;
1660 }
1661
1662 void setTailCall(bool isTC = true) {
1663 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1664 unsigned(isTC ? TCK_Tail : TCK_None));
1665 }
1666
1667 void setTailCallKind(TailCallKind TCK) {
1668 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1669 unsigned(TCK));
1670 }
1671
1672 /// Return true if the call can return twice
1673 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1674 void setCanReturnTwice() {
1675 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1676 }
1677
1678 // Methods for support type inquiry through isa, cast, and dyn_cast:
1679 static bool classof(const Instruction *I) {
1680 return I->getOpcode() == Instruction::Call;
1681 }
1682 static bool classof(const Value *V) {
1683 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1684 }
1685
1686 /// Updates profile metadata by scaling it by \p S / \p T.
1687 void updateProfWeight(uint64_t S, uint64_t T);
1688
1689private:
1690 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1691 // method so that subclasses cannot accidentally use it.
1692 void setInstructionSubclassData(unsigned short D) {
1693 Instruction::setInstructionSubclassData(D);
1694 }
1695};
1696
1697CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1698 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1699 BasicBlock *InsertAtEnd)
1700 : CallBase(Ty->getReturnType(), Instruction::Call,
1701 OperandTraits<CallBase>::op_end(this) -
1702 (Args.size() + CountBundleInputs(Bundles) + 1),
1703 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1704 InsertAtEnd) {
1705 init(Ty, Func, Args, Bundles, NameStr);
1706}
1707
1708CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1709 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1710 Instruction *InsertBefore)
1711 : CallBase(Ty->getReturnType(), Instruction::Call,
1712 OperandTraits<CallBase>::op_end(this) -
1713 (Args.size() + CountBundleInputs(Bundles) + 1),
1714 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1715 InsertBefore) {
1716 init(Ty, Func, Args, Bundles, NameStr);
1717}
1718
1719//===----------------------------------------------------------------------===//
1720// SelectInst Class
1721//===----------------------------------------------------------------------===//
1722
1723/// This class represents the LLVM 'select' instruction.
1724///
1725class SelectInst : public Instruction {
1726 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1727 Instruction *InsertBefore)
1728 : Instruction(S1->getType(), Instruction::Select,
1729 &Op<0>(), 3, InsertBefore) {
1730 init(C, S1, S2);
1731 setName(NameStr);
1732 }
1733
1734 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1735 BasicBlock *InsertAtEnd)
1736 : Instruction(S1->getType(), Instruction::Select,
1737 &Op<0>(), 3, InsertAtEnd) {
1738 init(C, S1, S2);
1739 setName(NameStr);
1740 }
1741
1742 void init(Value *C, Value *S1, Value *S2) {
1743 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select"
) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1743, __PRETTY_FUNCTION__))
;
1744 Op<0>() = C;
1745 Op<1>() = S1;
1746 Op<2>() = S2;
1747 }
1748
1749protected:
1750 // Note: Instruction needs to be a friend here to call cloneImpl.
1751 friend class Instruction;
1752
1753 SelectInst *cloneImpl() const;
1754
1755public:
1756 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1757 const Twine &NameStr = "",
1758 Instruction *InsertBefore = nullptr,
1759 Instruction *MDFrom = nullptr) {
1760 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1761 if (MDFrom)
1762 Sel->copyMetadata(*MDFrom);
1763 return Sel;
1764 }
1765
1766 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1767 const Twine &NameStr,
1768 BasicBlock *InsertAtEnd) {
1769 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1770 }
1771
1772 const Value *getCondition() const { return Op<0>(); }
1773 const Value *getTrueValue() const { return Op<1>(); }
1774 const Value *getFalseValue() const { return Op<2>(); }
1775 Value *getCondition() { return Op<0>(); }
1776 Value *getTrueValue() { return Op<1>(); }
1777 Value *getFalseValue() { return Op<2>(); }
1778
1779 void setCondition(Value *V) { Op<0>() = V; }
1780 void setTrueValue(Value *V) { Op<1>() = V; }
1781 void setFalseValue(Value *V) { Op<2>() = V; }
1782
1783 /// Swap the true and false values of the select instruction.
1784 /// This doesn't swap prof metadata.
1785 void swapValues() { Op<1>().swap(Op<2>()); }
1786
1787 /// Return a string if the specified operands are invalid
1788 /// for a select operation, otherwise return null.
1789 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1790
1791 /// Transparently provide more efficient getOperand methods.
1792 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1793
1794 OtherOps getOpcode() const {
1795 return static_cast<OtherOps>(Instruction::getOpcode());
1796 }
1797
1798 // Methods for support type inquiry through isa, cast, and dyn_cast:
1799 static bool classof(const Instruction *I) {
1800 return I->getOpcode() == Instruction::Select;
1801 }
1802 static bool classof(const Value *V) {
1803 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1804 }
1805};
1806
1807template <>
1808struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1809};
1810
1811DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst
*>(this))[i_nocapture].get()); } void SelectInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); OperandTraits<SelectInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst
::getNumOperands() const { return OperandTraits<SelectInst
>::operands(this); } template <int Idx_nocapture> Use
&SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1812
1813//===----------------------------------------------------------------------===//
1814// VAArgInst Class
1815//===----------------------------------------------------------------------===//
1816
1817/// This class represents the va_arg llvm instruction, which returns
1818/// an argument of the specified type given a va_list and increments that list
1819///
1820class VAArgInst : public UnaryInstruction {
1821protected:
1822 // Note: Instruction needs to be a friend here to call cloneImpl.
1823 friend class Instruction;
1824
1825 VAArgInst *cloneImpl() const;
1826
1827public:
1828 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1829 Instruction *InsertBefore = nullptr)
1830 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1831 setName(NameStr);
1832 }
1833
1834 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1835 BasicBlock *InsertAtEnd)
1836 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1837 setName(NameStr);
1838 }
1839
1840 Value *getPointerOperand() { return getOperand(0); }
1841 const Value *getPointerOperand() const { return getOperand(0); }
1842 static unsigned getPointerOperandIndex() { return 0U; }
1843
1844 // Methods for support type inquiry through isa, cast, and dyn_cast:
1845 static bool classof(const Instruction *I) {
1846 return I->getOpcode() == VAArg;
1847 }
1848 static bool classof(const Value *V) {
1849 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1850 }
1851};
1852
1853//===----------------------------------------------------------------------===//
1854// ExtractElementInst Class
1855//===----------------------------------------------------------------------===//
1856
1857/// This instruction extracts a single (scalar)
1858/// element from a VectorType value
1859///
1860class ExtractElementInst : public Instruction {
1861 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1862 Instruction *InsertBefore = nullptr);
1863 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1864 BasicBlock *InsertAtEnd);
1865
1866protected:
1867 // Note: Instruction needs to be a friend here to call cloneImpl.
1868 friend class Instruction;
1869
1870 ExtractElementInst *cloneImpl() const;
1871
1872public:
1873 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1874 const Twine &NameStr = "",
1875 Instruction *InsertBefore = nullptr) {
1876 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1877 }
1878
1879 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1880 const Twine &NameStr,
1881 BasicBlock *InsertAtEnd) {
1882 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1883 }
1884
1885 /// Return true if an extractelement instruction can be
1886 /// formed with the specified operands.
1887 static bool isValidOperands(const Value *Vec, const Value *Idx);
1888
1889 Value *getVectorOperand() { return Op<0>(); }
1890 Value *getIndexOperand() { return Op<1>(); }
1891 const Value *getVectorOperand() const { return Op<0>(); }
1892 const Value *getIndexOperand() const { return Op<1>(); }
1893
1894 VectorType *getVectorOperandType() const {
1895 return cast<VectorType>(getVectorOperand()->getType());
1896 }
1897
1898 /// Transparently provide more efficient getOperand methods.
1899 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1900
1901 // Methods for support type inquiry through isa, cast, and dyn_cast:
1902 static bool classof(const Instruction *I) {
1903 return I->getOpcode() == Instruction::ExtractElement;
1904 }
1905 static bool classof(const Value *V) {
1906 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1907 }
1908};
1909
1910template <>
1911struct OperandTraits<ExtractElementInst> :
1912 public FixedNumOperandTraits<ExtractElementInst, 2> {
1913};
1914
1915DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((i_nocapture < OperandTraits<ExtractElementInst>::
operands(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ExtractElementInst>::op_begin(const_cast
<ExtractElementInst*>(this))[i_nocapture].get()); } void
ExtractElementInst::setOperand(unsigned i_nocapture, Value *
Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst
>::operands(this) && "setOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ExtractElementInst::getNumOperands() const { return OperandTraits
<ExtractElementInst>::operands(this); } template <int
Idx_nocapture> Use &ExtractElementInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ExtractElementInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
1916
1917//===----------------------------------------------------------------------===//
1918// InsertElementInst Class
1919//===----------------------------------------------------------------------===//
1920
1921/// This instruction inserts a single (scalar)
1922/// element into a VectorType value
1923///
1924class InsertElementInst : public Instruction {
1925 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1926 const Twine &NameStr = "",
1927 Instruction *InsertBefore = nullptr);
1928 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1929 BasicBlock *InsertAtEnd);
1930
1931protected:
1932 // Note: Instruction needs to be a friend here to call cloneImpl.
1933 friend class Instruction;
1934
1935 InsertElementInst *cloneImpl() const;
1936
1937public:
1938 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1939 const Twine &NameStr = "",
1940 Instruction *InsertBefore = nullptr) {
1941 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1942 }
1943
1944 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1945 const Twine &NameStr,
1946 BasicBlock *InsertAtEnd) {
1947 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1948 }
1949
1950 /// Return true if an insertelement instruction can be
1951 /// formed with the specified operands.
1952 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1953 const Value *Idx);
1954
1955 /// Overload to return most specific vector type.
1956 ///
1957 VectorType *getType() const {
1958 return cast<VectorType>(Instruction::getType());
1959 }
1960
1961 /// Transparently provide more efficient getOperand methods.
1962 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1963
1964 // Methods for support type inquiry through isa, cast, and dyn_cast:
1965 static bool classof(const Instruction *I) {
1966 return I->getOpcode() == Instruction::InsertElement;
1967 }
1968 static bool classof(const Value *V) {
1969 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1970 }
1971};
1972
1973template <>
1974struct OperandTraits<InsertElementInst> :
1975 public FixedNumOperandTraits<InsertElementInst, 3> {
1976};
1977
1978DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<InsertElementInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertElementInst::getNumOperands() const { return OperandTraits
<InsertElementInst>::operands(this); } template <int
Idx_nocapture> Use &InsertElementInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &InsertElementInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1979
1980//===----------------------------------------------------------------------===//
1981// ShuffleVectorInst Class
1982//===----------------------------------------------------------------------===//
1983
1984/// This instruction constructs a fixed permutation of two
1985/// input vectors.
1986///
1987class ShuffleVectorInst : public Instruction {
1988protected:
1989 // Note: Instruction needs to be a friend here to call cloneImpl.
1990 friend class Instruction;
1991
1992 ShuffleVectorInst *cloneImpl() const;
1993
1994public:
1995 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1996 const Twine &NameStr = "",
1997 Instruction *InsertBefor = nullptr);
1998 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1999 const Twine &NameStr, BasicBlock *InsertAtEnd);
2000
2001 // allocate space for exactly three operands
2002 void *operator new(size_t s) {
2003 return User::operator new(s, 3);
2004 }
2005
2006 /// Swap the first 2 operands and adjust the mask to preserve the semantics
2007 /// of the instruction.
2008 void commute();
2009
2010 /// Return true if a shufflevector instruction can be
2011 /// formed with the specified operands.
2012 static bool isValidOperands(const Value *V1, const Value *V2,
2013 const Value *Mask);
2014
2015 /// Overload to return most specific vector type.
2016 ///
2017 VectorType *getType() const {
2018 return cast<VectorType>(Instruction::getType());
2019 }
2020
2021 /// Transparently provide more efficient getOperand methods.
2022 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2023
2024 Constant *getMask() const {
2025 return cast<Constant>(getOperand(2));
2026 }
2027
2028 /// Return the shuffle mask value for the specified element of the mask.
2029 /// Return -1 if the element is undef.
2030 static int getMaskValue(const Constant *Mask, unsigned Elt);
2031
2032 /// Return the shuffle mask value of this instruction for the given element
2033 /// index. Return -1 if the element is undef.
2034 int getMaskValue(unsigned Elt) const {
2035 return getMaskValue(getMask(), Elt);
2036 }
2037
2038 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2039 /// elements of the mask are returned as -1.
2040 static void getShuffleMask(const Constant *Mask,
2041 SmallVectorImpl<int> &Result);
2042
2043 /// Return the mask for this instruction as a vector of integers. Undefined
2044 /// elements of the mask are returned as -1.
2045 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2046 return getShuffleMask(getMask(), Result);
2047 }
2048
2049 SmallVector<int, 16> getShuffleMask() const {
2050 SmallVector<int, 16> Mask;
2051 getShuffleMask(Mask);
2052 return Mask;
2053 }
2054
2055 /// Return true if this shuffle returns a vector with a different number of
2056 /// elements than its source vectors.
2057 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2058 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2059 bool changesLength() const {
2060 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2061 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2062 return NumSourceElts != NumMaskElts;
2063 }
2064
2065 /// Return true if this shuffle returns a vector with a greater number of
2066 /// elements than its source vectors.
2067 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2068 bool increasesLength() const {
2069 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2070 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2071 return NumSourceElts < NumMaskElts;
2072 }
2073
2074 /// Return true if this shuffle mask chooses elements from exactly one source
2075 /// vector.
2076 /// Example: <7,5,undef,7>
2077 /// This assumes that vector operands are the same length as the mask.
2078 static bool isSingleSourceMask(ArrayRef<int> Mask);
2079 static bool isSingleSourceMask(const Constant *Mask) {
2080 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2080, __PRETTY_FUNCTION__))
;
2081 SmallVector<int, 16> MaskAsInts;
2082 getShuffleMask(Mask, MaskAsInts);
2083 return isSingleSourceMask(MaskAsInts);
2084 }
2085
2086 /// Return true if this shuffle chooses elements from exactly one source
2087 /// vector without changing the length of that vector.
2088 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2089 /// TODO: Optionally allow length-changing shuffles.
2090 bool isSingleSource() const {
2091 return !changesLength() && isSingleSourceMask(getMask());
2092 }
2093
2094 /// Return true if this shuffle mask chooses elements from exactly one source
2095 /// vector without lane crossings. A shuffle using this mask is not
2096 /// necessarily a no-op because it may change the number of elements from its
2097 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2098 /// Example: <undef,undef,2,3>
2099 static bool isIdentityMask(ArrayRef<int> Mask);
2100 static bool isIdentityMask(const Constant *Mask) {
2101 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2101, __PRETTY_FUNCTION__))
;
2102 SmallVector<int, 16> MaskAsInts;
2103 getShuffleMask(Mask, MaskAsInts);
2104 return isIdentityMask(MaskAsInts);
2105 }
2106
2107 /// Return true if this shuffle chooses elements from exactly one source
2108 /// vector without lane crossings and does not change the number of elements
2109 /// from its input vectors.
2110 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2111 bool isIdentity() const {
2112 return !changesLength() && isIdentityMask(getShuffleMask());
2113 }
2114
2115 /// Return true if this shuffle lengthens exactly one source vector with
2116 /// undefs in the high elements.
2117 bool isIdentityWithPadding() const;
2118
2119 /// Return true if this shuffle extracts the first N elements of exactly one
2120 /// source vector.
2121 bool isIdentityWithExtract() const;
2122
2123 /// Return true if this shuffle concatenates its 2 source vectors. This
2124 /// returns false if either input is undefined. In that case, the shuffle is
2125 /// is better classified as an identity with padding operation.
2126 bool isConcat() const;
2127
2128 /// Return true if this shuffle mask chooses elements from its source vectors
2129 /// without lane crossings. A shuffle using this mask would be
2130 /// equivalent to a vector select with a constant condition operand.
2131 /// Example: <4,1,6,undef>
2132 /// This returns false if the mask does not choose from both input vectors.
2133 /// In that case, the shuffle is better classified as an identity shuffle.
2134 /// This assumes that vector operands are the same length as the mask
2135 /// (a length-changing shuffle can never be equivalent to a vector select).
2136 static bool isSelectMask(ArrayRef<int> Mask);
2137 static bool isSelectMask(const Constant *Mask) {
2138 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2138, __PRETTY_FUNCTION__))
;
2139 SmallVector<int, 16> MaskAsInts;
2140 getShuffleMask(Mask, MaskAsInts);
2141 return isSelectMask(MaskAsInts);
2142 }
2143
2144 /// Return true if this shuffle chooses elements from its source vectors
2145 /// without lane crossings and all operands have the same number of elements.
2146 /// In other words, this shuffle is equivalent to a vector select with a
2147 /// constant condition operand.
2148 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2149 /// This returns false if the mask does not choose from both input vectors.
2150 /// In that case, the shuffle is better classified as an identity shuffle.
2151 /// TODO: Optionally allow length-changing shuffles.
2152 bool isSelect() const {
2153 return !changesLength() && isSelectMask(getMask());
2154 }
2155
2156 /// Return true if this shuffle mask swaps the order of elements from exactly
2157 /// one source vector.
2158 /// Example: <7,6,undef,4>
2159 /// This assumes that vector operands are the same length as the mask.
2160 static bool isReverseMask(ArrayRef<int> Mask);
2161 static bool isReverseMask(const Constant *Mask) {
2162 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2162, __PRETTY_FUNCTION__))
;
2163 SmallVector<int, 16> MaskAsInts;
2164 getShuffleMask(Mask, MaskAsInts);
2165 return isReverseMask(MaskAsInts);
2166 }
2167
2168 /// Return true if this shuffle swaps the order of elements from exactly
2169 /// one source vector.
2170 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2171 /// TODO: Optionally allow length-changing shuffles.
2172 bool isReverse() const {
2173 return !changesLength() && isReverseMask(getMask());
2174 }
2175
2176 /// Return true if this shuffle mask chooses all elements with the same value
2177 /// as the first element of exactly one source vector.
2178 /// Example: <4,undef,undef,4>
2179 /// This assumes that vector operands are the same length as the mask.
2180 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2181 static bool isZeroEltSplatMask(const Constant *Mask) {
2182 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2182, __PRETTY_FUNCTION__))
;
2183 SmallVector<int, 16> MaskAsInts;
2184 getShuffleMask(Mask, MaskAsInts);
2185 return isZeroEltSplatMask(MaskAsInts);
2186 }
2187
2188 /// Return true if all elements of this shuffle are the same value as the
2189 /// first element of exactly one source vector without changing the length
2190 /// of that vector.
2191 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2192 /// TODO: Optionally allow length-changing shuffles.
2193 /// TODO: Optionally allow splats from other elements.
2194 bool isZeroEltSplat() const {
2195 return !changesLength() && isZeroEltSplatMask(getMask());
2196 }
2197
2198 /// Return true if this shuffle mask is a transpose mask.
2199 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2200 /// even- or odd-numbered vector elements from two n-dimensional source
2201 /// vectors and write each result into consecutive elements of an
2202 /// n-dimensional destination vector. Two shuffles are necessary to complete
2203 /// the transpose, one for the even elements and another for the odd elements.
2204 /// This description closely follows how the TRN1 and TRN2 AArch64
2205 /// instructions operate.
2206 ///
2207 /// For example, a simple 2x2 matrix can be transposed with:
2208 ///
2209 /// ; Original matrix
2210 /// m0 = < a, b >
2211 /// m1 = < c, d >
2212 ///
2213 /// ; Transposed matrix
2214 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2215 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2216 ///
2217 /// For matrices having greater than n columns, the resulting nx2 transposed
2218 /// matrix is stored in two result vectors such that one vector contains
2219 /// interleaved elements from all the even-numbered rows and the other vector
2220 /// contains interleaved elements from all the odd-numbered rows. For example,
2221 /// a 2x4 matrix can be transposed with:
2222 ///
2223 /// ; Original matrix
2224 /// m0 = < a, b, c, d >
2225 /// m1 = < e, f, g, h >
2226 ///
2227 /// ; Transposed matrix
2228 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2229 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2230 static bool isTransposeMask(ArrayRef<int> Mask);
2231 static bool isTransposeMask(const Constant *Mask) {
2232 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2232, __PRETTY_FUNCTION__))
;
2233 SmallVector<int, 16> MaskAsInts;
2234 getShuffleMask(Mask, MaskAsInts);
2235 return isTransposeMask(MaskAsInts);
2236 }
2237
2238 /// Return true if this shuffle transposes the elements of its inputs without
2239 /// changing the length of the vectors. This operation may also be known as a
2240 /// merge or interleave. See the description for isTransposeMask() for the
2241 /// exact specification.
2242 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2243 bool isTranspose() const {
2244 return !changesLength() && isTransposeMask(getMask());
2245 }
2246
2247 /// Return true if this shuffle mask is an extract subvector mask.
2248 /// A valid extract subvector mask returns a smaller vector from a single
2249 /// source operand. The base extraction index is returned as well.
2250 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2251 int &Index);
2252 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2253 int &Index) {
2254 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2254, __PRETTY_FUNCTION__))
;
2255 SmallVector<int, 16> MaskAsInts;
2256 getShuffleMask(Mask, MaskAsInts);
2257 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2258 }
2259
2260 /// Return true if this shuffle mask is an extract subvector mask.
2261 bool isExtractSubvectorMask(int &Index) const {
2262 int NumSrcElts = Op<0>()->getType()->getVectorNumElements();
2263 return isExtractSubvectorMask(getMask(), NumSrcElts, Index);
2264 }
2265
2266 /// Change values in a shuffle permute mask assuming the two vector operands
2267 /// of length InVecNumElts have swapped position.
2268 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2269 unsigned InVecNumElts) {
2270 for (int &Idx : Mask) {
2271 if (Idx == -1)
2272 continue;
2273 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2274 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2275, __PRETTY_FUNCTION__))
2275 "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2275, __PRETTY_FUNCTION__))
;
2276 }
2277 }
2278
2279 // Methods for support type inquiry through isa, cast, and dyn_cast:
2280 static bool classof(const Instruction *I) {
2281 return I->getOpcode() == Instruction::ShuffleVector;
2282 }
2283 static bool classof(const Value *V) {
2284 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2285 }
2286};
2287
2288template <>
2289struct OperandTraits<ShuffleVectorInst> :
2290 public FixedNumOperandTraits<ShuffleVectorInst, 3> {
2291};
2292
2293DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2293, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<ShuffleVectorInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2293, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ShuffleVectorInst::getNumOperands() const { return OperandTraits
<ShuffleVectorInst>::operands(this); } template <int
Idx_nocapture> Use &ShuffleVectorInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ShuffleVectorInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
2294
2295//===----------------------------------------------------------------------===//
2296// ExtractValueInst Class
2297//===----------------------------------------------------------------------===//
2298
2299/// This instruction extracts a struct member or array
2300/// element value from an aggregate value.
2301///
2302class ExtractValueInst : public UnaryInstruction {
2303 SmallVector<unsigned, 4> Indices;
2304
2305 ExtractValueInst(const ExtractValueInst &EVI);
2306
2307 /// Constructors - Create a extractvalue instruction with a base aggregate
2308 /// value and a list of indices. The first ctor can optionally insert before
2309 /// an existing instruction, the second appends the new instruction to the
2310 /// specified BasicBlock.
2311 inline ExtractValueInst(Value *Agg,
2312 ArrayRef<unsigned> Idxs,
2313 const Twine &NameStr,
2314 Instruction *InsertBefore);
2315 inline ExtractValueInst(Value *Agg,
2316 ArrayRef<unsigned> Idxs,
2317 const Twine &NameStr, BasicBlock *InsertAtEnd);
2318
2319 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2320
2321protected:
2322 // Note: Instruction needs to be a friend here to call cloneImpl.
2323 friend class Instruction;
2324
2325 ExtractValueInst *cloneImpl() const;
2326
2327public:
2328 static ExtractValueInst *Create(Value *Agg,
2329 ArrayRef<unsigned> Idxs,
2330 const Twine &NameStr = "",
2331 Instruction *InsertBefore = nullptr) {
2332 return new
2333 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2334 }
2335
2336 static ExtractValueInst *Create(Value *Agg,
2337 ArrayRef<unsigned> Idxs,
2338 const Twine &NameStr,
2339 BasicBlock *InsertAtEnd) {
2340 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2341 }
2342
2343 /// Returns the type of the element that would be extracted
2344 /// with an extractvalue instruction with the specified parameters.
2345 ///
2346 /// Null is returned if the indices are invalid for the specified type.
2347 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2348
2349 using idx_iterator = const unsigned*;
2350
2351 inline idx_iterator idx_begin() const { return Indices.begin(); }
2352 inline idx_iterator idx_end() const { return Indices.end(); }
2353 inline iterator_range<idx_iterator> indices() const {
2354 return make_range(idx_begin(), idx_end());
2355 }
2356
2357 Value *getAggregateOperand() {
2358 return getOperand(0);
2359 }
2360 const Value *getAggregateOperand() const {
2361 return getOperand(0);
2362 }
2363 static unsigned getAggregateOperandIndex() {
2364 return 0U; // get index for modifying correct operand
2365 }
2366
2367 ArrayRef<unsigned> getIndices() const {
2368 return Indices;
2369 }
2370
2371 unsigned getNumIndices() const {
2372 return (unsigned)Indices.size();
2373 }
2374
2375 bool hasIndices() const {
2376 return true;
2377 }
2378
2379 // Methods for support type inquiry through isa, cast, and dyn_cast:
2380 static bool classof(const Instruction *I) {
2381 return I->getOpcode() == Instruction::ExtractValue;
2382 }
2383 static bool classof(const Value *V) {
2384 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2385 }
2386};
2387
2388ExtractValueInst::ExtractValueInst(Value *Agg,
2389 ArrayRef<unsigned> Idxs,
2390 const Twine &NameStr,
2391 Instruction *InsertBefore)
2392 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2393 ExtractValue, Agg, InsertBefore) {
2394 init(Idxs, NameStr);
2395}
2396
2397ExtractValueInst::ExtractValueInst(Value *Agg,
2398 ArrayRef<unsigned> Idxs,
2399 const Twine &NameStr,
2400 BasicBlock *InsertAtEnd)
2401 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2402 ExtractValue, Agg, InsertAtEnd) {
2403 init(Idxs, NameStr);
2404}
2405
2406//===----------------------------------------------------------------------===//
2407// InsertValueInst Class
2408//===----------------------------------------------------------------------===//
2409
2410/// This instruction inserts a struct field of array element
2411/// value into an aggregate value.
2412///
2413class InsertValueInst : public Instruction {
2414 SmallVector<unsigned, 4> Indices;
2415
2416 InsertValueInst(const InsertValueInst &IVI);
2417
2418 /// Constructors - Create a insertvalue instruction with a base aggregate
2419 /// value, a value to insert, and a list of indices. The first ctor can
2420 /// optionally insert before an existing instruction, the second appends
2421 /// the new instruction to the specified BasicBlock.
2422 inline InsertValueInst(Value *Agg, Value *Val,
2423 ArrayRef<unsigned> Idxs,
2424 const Twine &NameStr,
2425 Instruction *InsertBefore);
2426 inline InsertValueInst(Value *Agg, Value *Val,
2427 ArrayRef<unsigned> Idxs,
2428 const Twine &NameStr, BasicBlock *InsertAtEnd);
2429
2430 /// Constructors - These two constructors are convenience methods because one
2431 /// and two index insertvalue instructions are so common.
2432 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2433 const Twine &NameStr = "",
2434 Instruction *InsertBefore = nullptr);
2435 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2436 BasicBlock *InsertAtEnd);
2437
2438 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2439 const Twine &NameStr);
2440
2441protected:
2442 // Note: Instruction needs to be a friend here to call cloneImpl.
2443 friend class Instruction;
2444
2445 InsertValueInst *cloneImpl() const;
2446
2447public:
2448 // allocate space for exactly two operands
2449 void *operator new(size_t s) {
2450 return User::operator new(s, 2);
2451 }
2452
2453 static InsertValueInst *Create(Value *Agg, Value *Val,
2454 ArrayRef<unsigned> Idxs,
2455 const Twine &NameStr = "",
2456 Instruction *InsertBefore = nullptr) {
2457 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2458 }
2459
2460 static InsertValueInst *Create(Value *Agg, Value *Val,
2461 ArrayRef<unsigned> Idxs,
2462 const Twine &NameStr,
2463 BasicBlock *InsertAtEnd) {
2464 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2465 }
2466
2467 /// Transparently provide more efficient getOperand methods.
2468 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2469
2470 using idx_iterator = const unsigned*;
2471
2472 inline idx_iterator idx_begin() const { return Indices.begin(); }
2473 inline idx_iterator idx_end() const { return Indices.end(); }
2474 inline iterator_range<idx_iterator> indices() const {
2475 return make_range(idx_begin(), idx_end());
2476 }
2477
2478 Value *getAggregateOperand() {
2479 return getOperand(0);
2480 }
2481 const Value *getAggregateOperand() const {
2482 return getOperand(0);
2483 }
2484 static unsigned getAggregateOperandIndex() {
2485 return 0U; // get index for modifying correct operand
2486 }
2487
2488 Value *getInsertedValueOperand() {
2489 return getOperand(1);
2490 }
2491 const Value *getInsertedValueOperand() const {
2492 return getOperand(1);
2493 }
2494 static unsigned getInsertedValueOperandIndex() {
2495 return 1U; // get index for modifying correct operand
2496 }
2497
2498 ArrayRef<unsigned> getIndices() const {
2499 return Indices;
2500 }
2501
2502 unsigned getNumIndices() const {
2503 return (unsigned)Indices.size();
2504 }
2505
2506 bool hasIndices() const {
2507 return true;
2508 }
2509
2510 // Methods for support type inquiry through isa, cast, and dyn_cast:
2511 static bool classof(const Instruction *I) {
2512 return I->getOpcode() == Instruction::InsertValue;
2513 }
2514 static bool classof(const Value *V) {
2515 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2516 }
2517};
2518
2519template <>
2520struct OperandTraits<InsertValueInst> :
2521 public FixedNumOperandTraits<InsertValueInst, 2> {
2522};
2523
2524InsertValueInst::InsertValueInst(Value *Agg,
2525 Value *Val,
2526 ArrayRef<unsigned> Idxs,
2527 const Twine &NameStr,
2528 Instruction *InsertBefore)
2529 : Instruction(Agg->getType(), InsertValue,
2530 OperandTraits<InsertValueInst>::op_begin(this),
2531 2, InsertBefore) {
2532 init(Agg, Val, Idxs, NameStr);
2533}
2534
2535InsertValueInst::InsertValueInst(Value *Agg,
2536 Value *Val,
2537 ArrayRef<unsigned> Idxs,
2538 const Twine &NameStr,
2539 BasicBlock *InsertAtEnd)
2540 : Instruction(Agg->getType(), InsertValue,
2541 OperandTraits<InsertValueInst>::op_begin(this),
2542 2, InsertAtEnd) {
2543 init(Agg, Val, Idxs, NameStr);
2544}
2545
2546DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2546, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<InsertValueInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2546, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2547
2548//===----------------------------------------------------------------------===//
2549// PHINode Class
2550//===----------------------------------------------------------------------===//
2551
2552// PHINode - The PHINode class is used to represent the magical mystical PHI
2553// node, that can not exist in nature, but can be synthesized in a computer
2554// scientist's overactive imagination.
2555//
2556class PHINode : public Instruction {
2557 /// The number of operands actually allocated. NumOperands is
2558 /// the number actually in use.
2559 unsigned ReservedSpace;
2560
2561 PHINode(const PHINode &PN);
2562
2563 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2564 const Twine &NameStr = "",
2565 Instruction *InsertBefore = nullptr)
2566 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2567 ReservedSpace(NumReservedValues) {
2568 setName(NameStr);
2569 allocHungoffUses(ReservedSpace);
2570 }
2571
2572 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2573 BasicBlock *InsertAtEnd)
2574 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2575 ReservedSpace(NumReservedValues) {
2576 setName(NameStr);
2577 allocHungoffUses(ReservedSpace);
2578 }
2579
2580protected:
2581 // Note: Instruction needs to be a friend here to call cloneImpl.
2582 friend class Instruction;
2583
2584 PHINode *cloneImpl() const;
2585
2586 // allocHungoffUses - this is more complicated than the generic
2587 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2588 // values and pointers to the incoming blocks, all in one allocation.
2589 void allocHungoffUses(unsigned N) {
2590 User::allocHungoffUses(N, /* IsPhi */ true);
2591 }
2592
2593public:
2594 /// Constructors - NumReservedValues is a hint for the number of incoming
2595 /// edges that this phi node will have (use 0 if you really have no idea).
2596 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2597 const Twine &NameStr = "",
2598 Instruction *InsertBefore = nullptr) {
2599 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2600 }
2601
2602 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2603 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2604 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2605 }
2606
2607 /// Provide fast operand accessors
2608 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2609
2610 // Block iterator interface. This provides access to the list of incoming
2611 // basic blocks, which parallels the list of incoming values.
2612
2613 using block_iterator = BasicBlock **;
2614 using const_block_iterator = BasicBlock * const *;
2615
2616 block_iterator block_begin() {
2617 Use::UserRef *ref =
2618 reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
2619 return reinterpret_cast<block_iterator>(ref + 1);
2620 }
2621
2622 const_block_iterator block_begin() const {
2623 const Use::UserRef *ref =
2624 reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
2625 return reinterpret_cast<const_block_iterator>(ref + 1);
2626 }
2627
2628 block_iterator block_end() {
2629 return block_begin() + getNumOperands();
2630 }
2631
2632 const_block_iterator block_end() const {
2633 return block_begin() + getNumOperands();
2634 }
2635
2636 iterator_range<block_iterator> blocks() {
2637 return make_range(block_begin(), block_end());
2638 }
2639
2640 iterator_range<const_block_iterator> blocks() const {
2641 return make_range(block_begin(), block_end());
2642 }
2643
2644 op_range incoming_values() { return operands(); }
2645
2646 const_op_range incoming_values() const { return operands(); }
2647
2648 /// Return the number of incoming edges
2649 ///
2650 unsigned getNumIncomingValues() const { return getNumOperands(); }
2651
2652 /// Return incoming value number x
2653 ///
2654 Value *getIncomingValue(unsigned i) const {
2655 return getOperand(i);
2656 }
2657 void setIncomingValue(unsigned i, Value *V) {
2658 assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast<
void> (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2658, __PRETTY_FUNCTION__))
;
2659 assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2660, __PRETTY_FUNCTION__))
2660 "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2660, __PRETTY_FUNCTION__))
;
2661 setOperand(i, V);
2662 }
2663
2664 static unsigned getOperandNumForIncomingValue(unsigned i) {
2665 return i;
2666 }
2667
2668 static unsigned getIncomingValueNumForOperand(unsigned i) {
2669 return i;
2670 }
2671
2672 /// Return incoming basic block number @p i.
2673 ///
2674 BasicBlock *getIncomingBlock(unsigned i) const {
2675 return block_begin()[i];
2676 }
2677
2678 /// Return incoming basic block corresponding
2679 /// to an operand of the PHI.
2680 ///
2681 BasicBlock *getIncomingBlock(const Use &U) const {
2682 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2682, __PRETTY_FUNCTION__))
;
2683 return getIncomingBlock(unsigned(&U - op_begin()));
2684 }
2685
2686 /// Return incoming basic block corresponding
2687 /// to value use iterator.
2688 ///
2689 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2690 return getIncomingBlock(I.getUse());
2691 }
2692
2693 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2694 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2694, __PRETTY_FUNCTION__))
;
2695 block_begin()[i] = BB;
2696 }
2697
2698 /// Replace every incoming basic block \p Old to basic block \p New.
2699 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2700 assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!"
) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2700, __PRETTY_FUNCTION__))
;
2701 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2702 if (getIncomingBlock(Op) == Old)
2703 setIncomingBlock(Op, New);
2704 }
2705
2706 /// Add an incoming value to the end of the PHI list
2707 ///
2708 void addIncoming(Value *V, BasicBlock *BB) {
2709 if (getNumOperands() == ReservedSpace)
2710 growOperands(); // Get more space!
2711 // Initialize some new operands.
2712 setNumHungOffUseOperands(getNumOperands() + 1);
2713 setIncomingValue(getNumOperands() - 1, V);
2714 setIncomingBlock(getNumOperands() - 1, BB);
2715 }
2716
2717 /// Remove an incoming value. This is useful if a
2718 /// predecessor basic block is deleted. The value removed is returned.
2719 ///
2720 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2721 /// is true), the PHI node is destroyed and any uses of it are replaced with
2722 /// dummy values. The only time there should be zero incoming values to a PHI
2723 /// node is when the block is dead, so this strategy is sound.
2724 ///
2725 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2726
2727 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2728 int Idx = getBasicBlockIndex(BB);
2729 assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!"
) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2729, __PRETTY_FUNCTION__))
;
2730 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2731 }
2732
2733 /// Return the first index of the specified basic
2734 /// block in the value list for this PHI. Returns -1 if no instance.
2735 ///
2736 int getBasicBlockIndex(const BasicBlock *BB) const {
2737 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2738 if (block_begin()[i] == BB)
2739 return i;
2740 return -1;
2741 }
2742
2743 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2744 int Idx = getBasicBlockIndex(BB);
2745 assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast
<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2745, __PRETTY_FUNCTION__))
;
2746 return getIncomingValue(Idx);
2747 }
2748
2749 /// Set every incoming value(s) for block \p BB to \p V.
2750 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2751 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2751, __PRETTY_FUNCTION__))
;
2752 bool Found = false;
2753 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2754 if (getIncomingBlock(Op) == BB) {
2755 Found = true;
2756 setIncomingValue(Op, V);
2757 }
2758 (void)Found;
2759 assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast
<void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2759, __PRETTY_FUNCTION__))
;
2760 }
2761
2762 /// If the specified PHI node always merges together the
2763 /// same value, return the value, otherwise return null.
2764 Value *hasConstantValue() const;
2765
2766 /// Whether the specified PHI node always merges
2767 /// together the same value, assuming undefs are equal to a unique
2768 /// non-undef value.
2769 bool hasConstantOrUndefValue() const;
2770
2771 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2772 static bool classof(const Instruction *I) {
2773 return I->getOpcode() == Instruction::PHI;
2774 }
2775 static bool classof(const Value *V) {
2776 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2777 }
2778
2779private:
2780 void growOperands();
2781};
2782
2783template <>
2784struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2785};
2786
2787DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<PHINode>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2787, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<PHINode>::op_begin(const_cast<PHINode
*>(this))[i_nocapture].get()); } void PHINode::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2787, __PRETTY_FUNCTION__)); OperandTraits<PHINode>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode
::getNumOperands() const { return OperandTraits<PHINode>
::operands(this); } template <int Idx_nocapture> Use &
PHINode::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &PHINode
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2788
2789//===----------------------------------------------------------------------===//
2790// LandingPadInst Class
2791//===----------------------------------------------------------------------===//
2792
2793//===---------------------------------------------------------------------------
2794/// The landingpad instruction holds all of the information
2795/// necessary to generate correct exception handling. The landingpad instruction
2796/// cannot be moved from the top of a landing pad block, which itself is
2797/// accessible only from the 'unwind' edge of an invoke. This uses the
2798/// SubclassData field in Value to store whether or not the landingpad is a
2799/// cleanup.
2800///
2801class LandingPadInst : public Instruction {
2802 /// The number of operands actually allocated. NumOperands is
2803 /// the number actually in use.
2804 unsigned ReservedSpace;
2805
2806 LandingPadInst(const LandingPadInst &LP);
2807
2808public:
2809 enum ClauseType { Catch, Filter };
2810
2811private:
2812 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2813 const Twine &NameStr, Instruction *InsertBefore);
2814 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2815 const Twine &NameStr, BasicBlock *InsertAtEnd);
2816
2817 // Allocate space for exactly zero operands.
2818 void *operator new(size_t s) {
2819 return User::operator new(s);
2820 }
2821
2822 void growOperands(unsigned Size);
2823 void init(unsigned NumReservedValues, const Twine &NameStr);
2824
2825protected:
2826 // Note: Instruction needs to be a friend here to call cloneImpl.
2827 friend class Instruction;
2828
2829 LandingPadInst *cloneImpl() const;
2830
2831public:
2832 /// Constructors - NumReservedClauses is a hint for the number of incoming
2833 /// clauses that this landingpad will have (use 0 if you really have no idea).
2834 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2835 const Twine &NameStr = "",
2836 Instruction *InsertBefore = nullptr);
2837 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2838 const Twine &NameStr, BasicBlock *InsertAtEnd);
2839
2840 /// Provide fast operand accessors
2841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2842
2843 /// Return 'true' if this landingpad instruction is a
2844 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2845 /// doesn't catch the exception.
2846 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2847
2848 /// Indicate that this landingpad instruction is a cleanup.
2849 void setCleanup(bool V) {
2850 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2851 (V ? 1 : 0));
2852 }
2853
2854 /// Add a catch or filter clause to the landing pad.
2855 void addClause(Constant *ClauseVal);
2856
2857 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2858 /// determine what type of clause this is.
2859 Constant *getClause(unsigned Idx) const {
2860 return cast<Constant>(getOperandList()[Idx]);
2861 }
2862
2863 /// Return 'true' if the clause and index Idx is a catch clause.
2864 bool isCatch(unsigned Idx) const {
2865 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2866 }
2867
2868 /// Return 'true' if the clause and index Idx is a filter clause.
2869 bool isFilter(unsigned Idx) const {
2870 return isa<ArrayType>(getOperandList()[Idx]->getType());
2871 }
2872
2873 /// Get the number of clauses for this landing pad.
2874 unsigned getNumClauses() const { return getNumOperands(); }
2875
2876 /// Grow the size of the operand list to accommodate the new
2877 /// number of clauses.
2878 void reserveClauses(unsigned Size) { growOperands(Size); }
2879
2880 // Methods for support type inquiry through isa, cast, and dyn_cast:
2881 static bool classof(const Instruction *I) {
2882 return I->getOpcode() == Instruction::LandingPad;
2883 }
2884 static bool classof(const Value *V) {
2885 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2886 }
2887};
2888
2889template <>
2890struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2891};
2892
2893DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2893, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2893, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2894
2895//===----------------------------------------------------------------------===//
2896// ReturnInst Class
2897//===----------------------------------------------------------------------===//
2898
2899//===---------------------------------------------------------------------------
2900/// Return a value (possibly void), from a function. Execution
2901/// does not continue in this function any longer.
2902///
2903class ReturnInst : public Instruction {
2904 ReturnInst(const ReturnInst &RI);
2905
2906private:
2907 // ReturnInst constructors:
2908 // ReturnInst() - 'ret void' instruction
2909 // ReturnInst( null) - 'ret void' instruction
2910 // ReturnInst(Value* X) - 'ret X' instruction
2911 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2912 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2913 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2914 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2915 //
2916 // NOTE: If the Value* passed is of type void then the constructor behaves as
2917 // if it was passed NULL.
2918 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2919 Instruction *InsertBefore = nullptr);
2920 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2921 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2922
2923protected:
2924 // Note: Instruction needs to be a friend here to call cloneImpl.
2925 friend class Instruction;
2926
2927 ReturnInst *cloneImpl() const;
2928
2929public:
2930 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2931 Instruction *InsertBefore = nullptr) {
2932 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2933 }
2934
2935 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2936 BasicBlock *InsertAtEnd) {
2937 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2938 }
2939
2940 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2941 return new(0) ReturnInst(C, InsertAtEnd);
2942 }
2943
2944 /// Provide fast operand accessors
2945 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2946
2947 /// Convenience accessor. Returns null if there is no return value.
2948 Value *getReturnValue() const {
2949 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2950 }
2951
2952 unsigned getNumSuccessors() const { return 0; }
2953
2954 // Methods for support type inquiry through isa, cast, and dyn_cast:
2955 static bool classof(const Instruction *I) {
2956 return (I->getOpcode() == Instruction::Ret);
2957 }
2958 static bool classof(const Value *V) {
2959 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2960 }
2961
2962private:
2963 BasicBlock *getSuccessor(unsigned idx) const {
2964 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2964)
;
2965 }
2966
2967 void setSuccessor(unsigned idx, BasicBlock *B) {
2968 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2968)
;
2969 }
2970};
2971
2972template <>
2973struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2974};
2975
2976DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2976, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst
*>(this))[i_nocapture].get()); } void ReturnInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2976, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst
::getNumOperands() const { return OperandTraits<ReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2977
2978//===----------------------------------------------------------------------===//
2979// BranchInst Class
2980//===----------------------------------------------------------------------===//
2981
2982//===---------------------------------------------------------------------------
2983/// Conditional or Unconditional Branch instruction.
2984///
2985class BranchInst : public Instruction {
2986 /// Ops list - Branches are strange. The operands are ordered:
2987 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2988 /// they don't have to check for cond/uncond branchness. These are mostly
2989 /// accessed relative from op_end().
2990 BranchInst(const BranchInst &BI);
2991 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2992 // BranchInst(BB *B) - 'br B'
2993 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2994 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2995 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2996 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2997 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2998 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2999 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3000 Instruction *InsertBefore = nullptr);
3001 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3002 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3003 BasicBlock *InsertAtEnd);
3004
3005 void AssertOK();
3006
3007protected:
3008 // Note: Instruction needs to be a friend here to call cloneImpl.
3009 friend class Instruction;
3010
3011 BranchInst *cloneImpl() const;
3012
3013public:
3014 /// Iterator type that casts an operand to a basic block.
3015 ///
3016 /// This only makes sense because the successors are stored as adjacent
3017 /// operands for branch instructions.
3018 struct succ_op_iterator
3019 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3020 std::random_access_iterator_tag, BasicBlock *,
3021 ptrdiff_t, BasicBlock *, BasicBlock *> {
3022 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3023
3024 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3025 BasicBlock *operator->() const { return operator*(); }
3026 };
3027
3028 /// The const version of `succ_op_iterator`.
3029 struct const_succ_op_iterator
3030 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3031 std::random_access_iterator_tag,
3032 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3033 const BasicBlock *> {
3034 explicit const_succ_op_iterator(const_value_op_iterator I)
3035 : iterator_adaptor_base(I) {}
3036
3037 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3038 const BasicBlock *operator->() const { return operator*(); }
3039 };
3040
3041 static BranchInst *Create(BasicBlock *IfTrue,
3042 Instruction *InsertBefore = nullptr) {
3043 return new(1) BranchInst(IfTrue, InsertBefore);
3044 }
3045
3046 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3047 Value *Cond, Instruction *InsertBefore = nullptr) {
3048 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3049 }
3050
3051 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3052 return new(1) BranchInst(IfTrue, InsertAtEnd);
3053 }
3054
3055 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3056 Value *Cond, BasicBlock *InsertAtEnd) {
3057 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3058 }
3059
3060 /// Transparently provide more efficient getOperand methods.
3061 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3062
3063 bool isUnconditional() const { return getNumOperands() == 1; }
3064 bool isConditional() const { return getNumOperands() == 3; }
14
Assuming the condition is true
15
Returning the value 1, which participates in a condition later
3065
3066 Value *getCondition() const {
3067 assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3067, __PRETTY_FUNCTION__))
;
3068 return Op<-3>();
3069 }
3070
3071 void setCondition(Value *V) {
3072 assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3072, __PRETTY_FUNCTION__))
;
3073 Op<-3>() = V;
3074 }
3075
3076 unsigned getNumSuccessors() const { return 1+isConditional(); }
3077
3078 BasicBlock *getSuccessor(unsigned i) const {
3079 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3079, __PRETTY_FUNCTION__))
;
3080 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3081 }
3082
3083 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3084 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3084, __PRETTY_FUNCTION__))
;
3085 *(&Op<-1>() - idx) = NewSucc;
3086 }
3087
3088 /// Swap the successors of this branch instruction.
3089 ///
3090 /// Swaps the successors of the branch instruction. This also swaps any
3091 /// branch weight metadata associated with the instruction so that it
3092 /// continues to map correctly to each operand.
3093 void swapSuccessors();
3094
3095 iterator_range<succ_op_iterator> successors() {
3096 return make_range(
3097 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3098 succ_op_iterator(value_op_end()));
3099 }
3100
3101 iterator_range<const_succ_op_iterator> successors() const {
3102 return make_range(const_succ_op_iterator(
3103 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3104 const_succ_op_iterator(value_op_end()));
3105 }
3106
3107 // Methods for support type inquiry through isa, cast, and dyn_cast:
3108 static bool classof(const Instruction *I) {
3109 return (I->getOpcode() == Instruction::Br);
3110 }
3111 static bool classof(const Value *V) {
3112 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3113 }
3114};
3115
3116template <>
3117struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3118};
3119
3120DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3120, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst
*>(this))[i_nocapture].get()); } void BranchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3120, __PRETTY_FUNCTION__)); OperandTraits<BranchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst
::getNumOperands() const { return OperandTraits<BranchInst
>::operands(this); } template <int Idx_nocapture> Use
&BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3121
3122//===----------------------------------------------------------------------===//
3123// SwitchInst Class
3124//===----------------------------------------------------------------------===//
3125
3126//===---------------------------------------------------------------------------
3127/// Multiway switch
3128///
3129class SwitchInst : public Instruction {
3130 unsigned ReservedSpace;
3131
3132 // Operand[0] = Value to switch on
3133 // Operand[1] = Default basic block destination
3134 // Operand[2n ] = Value to match
3135 // Operand[2n+1] = BasicBlock to go to on match
3136 SwitchInst(const SwitchInst &SI);
3137
3138 /// Create a new switch instruction, specifying a value to switch on and a
3139 /// default destination. The number of additional cases can be specified here
3140 /// to make memory allocation more efficient. This constructor can also
3141 /// auto-insert before another instruction.
3142 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3143 Instruction *InsertBefore);
3144
3145 /// Create a new switch instruction, specifying a value to switch on and a
3146 /// default destination. The number of additional cases can be specified here
3147 /// to make memory allocation more efficient. This constructor also
3148 /// auto-inserts at the end of the specified BasicBlock.
3149 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3150 BasicBlock *InsertAtEnd);
3151
3152 // allocate space for exactly zero operands
3153 void *operator new(size_t s) {
3154 return User::operator new(s);
3155 }
3156
3157 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3158 void growOperands();
3159
3160protected:
3161 // Note: Instruction needs to be a friend here to call cloneImpl.
3162 friend class Instruction;
3163
3164 SwitchInst *cloneImpl() const;
3165
3166public:
3167 // -2
3168 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3169
3170 template <typename CaseHandleT> class CaseIteratorImpl;
3171
3172 /// A handle to a particular switch case. It exposes a convenient interface
3173 /// to both the case value and the successor block.
3174 ///
3175 /// We define this as a template and instantiate it to form both a const and
3176 /// non-const handle.
3177 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3178 class CaseHandleImpl {
3179 // Directly befriend both const and non-const iterators.
3180 friend class SwitchInst::CaseIteratorImpl<
3181 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3182
3183 protected:
3184 // Expose the switch type we're parameterized with to the iterator.
3185 using SwitchInstType = SwitchInstT;
3186
3187 SwitchInstT *SI;
3188 ptrdiff_t Index;
3189
3190 CaseHandleImpl() = default;
3191 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3192
3193 public:
3194 /// Resolves case value for current case.
3195 ConstantIntT *getCaseValue() const {
3196 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3197, __PRETTY_FUNCTION__))
3197 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3197, __PRETTY_FUNCTION__))
;
3198 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3199 }
3200
3201 /// Resolves successor for current case.
3202 BasicBlockT *getCaseSuccessor() const {
3203 assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
3204 (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
3205 "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
;
3206 return SI->getSuccessor(getSuccessorIndex());
3207 }
3208
3209 /// Returns number of current case.
3210 unsigned getCaseIndex() const { return Index; }
3211
3212 /// Returns successor index for current case successor.
3213 unsigned getSuccessorIndex() const {
3214 assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
3215 (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
3216 "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
;
3217 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3218 }
3219
3220 bool operator==(const CaseHandleImpl &RHS) const {
3221 assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast
<void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3221, __PRETTY_FUNCTION__))
;
3222 return Index == RHS.Index;
3223 }
3224 };
3225
3226 using ConstCaseHandle =
3227 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3228
3229 class CaseHandle
3230 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3231 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3232
3233 public:
3234 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3235
3236 /// Sets the new value for current case.
3237 void setValue(ConstantInt *V) {
3238 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3239, __PRETTY_FUNCTION__))
3239 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3239, __PRETTY_FUNCTION__))
;
3240 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3241 }
3242
3243 /// Sets the new successor for current case.
3244 void setSuccessor(BasicBlock *S) {
3245 SI->setSuccessor(getSuccessorIndex(), S);
3246 }
3247 };
3248
3249 template <typename CaseHandleT>
3250 class CaseIteratorImpl
3251 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3252 std::random_access_iterator_tag,
3253 CaseHandleT> {
3254 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3255
3256 CaseHandleT Case;
3257
3258 public:
3259 /// Default constructed iterator is in an invalid state until assigned to
3260 /// a case for a particular switch.
3261 CaseIteratorImpl() = default;
3262
3263 /// Initializes case iterator for given SwitchInst and for given
3264 /// case number.
3265 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3266
3267 /// Initializes case iterator for given SwitchInst and for given
3268 /// successor index.
3269 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3270 unsigned SuccessorIndex) {
3271 assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3272, __PRETTY_FUNCTION__))
3272 "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3272, __PRETTY_FUNCTION__))
;
3273 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3274 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3275 }
3276
3277 /// Support converting to the const variant. This will be a no-op for const
3278 /// variant.
3279 operator CaseIteratorImpl<ConstCaseHandle>() const {
3280 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3281 }
3282
3283 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3284 // Check index correctness after addition.
3285 // Note: Index == getNumCases() means end().
3286 assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
3287 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
3288 "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
;
3289 Case.Index += N;
3290 return *this;
3291 }
3292 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3293 // Check index correctness after subtraction.
3294 // Note: Case.Index == getNumCases() means end().
3295 assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
3296 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
3297 "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
;
3298 Case.Index -= N;
3299 return *this;
3300 }
3301 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3302 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3302, __PRETTY_FUNCTION__))
;
3303 return Case.Index - RHS.Case.Index;
3304 }
3305 bool operator==(const CaseIteratorImpl &RHS) const {
3306 return Case == RHS.Case;
3307 }
3308 bool operator<(const CaseIteratorImpl &RHS) const {
3309 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3309, __PRETTY_FUNCTION__))
;
3310 return Case.Index < RHS.Case.Index;
3311 }
3312 CaseHandleT &operator*() { return Case; }
3313 const CaseHandleT &operator*() const { return Case; }
3314 };
3315
3316 using CaseIt = CaseIteratorImpl<CaseHandle>;
3317 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3318
3319 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3320 unsigned NumCases,
3321 Instruction *InsertBefore = nullptr) {
3322 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3323 }
3324
3325 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3326 unsigned NumCases, BasicBlock *InsertAtEnd) {
3327 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3328 }
3329
3330 /// Provide fast operand accessors
3331 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3332
3333 // Accessor Methods for Switch stmt
3334 Value *getCondition() const { return getOperand(0); }
3335 void setCondition(Value *V) { setOperand(0, V); }
3336
3337 BasicBlock *getDefaultDest() const {
3338 return cast<BasicBlock>(getOperand(1));
3339 }
3340
3341 void setDefaultDest(BasicBlock *DefaultCase) {
3342 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3343 }
3344
3345 /// Return the number of 'cases' in this switch instruction, excluding the
3346 /// default case.
3347 unsigned getNumCases() const {
3348 return getNumOperands()/2 - 1;
3349 }
3350
3351 /// Returns a read/write iterator that points to the first case in the
3352 /// SwitchInst.
3353 CaseIt case_begin() {
3354 return CaseIt(this, 0);
3355 }
3356
3357 /// Returns a read-only iterator that points to the first case in the
3358 /// SwitchInst.
3359 ConstCaseIt case_begin() const {
3360 return ConstCaseIt(this, 0);
3361 }
3362
3363 /// Returns a read/write iterator that points one past the last in the
3364 /// SwitchInst.
3365 CaseIt case_end() {
3366 return CaseIt(this, getNumCases());
3367 }
3368
3369 /// Returns a read-only iterator that points one past the last in the
3370 /// SwitchInst.
3371 ConstCaseIt case_end() const {
3372 return ConstCaseIt(this, getNumCases());
3373 }
3374
3375 /// Iteration adapter for range-for loops.
3376 iterator_range<CaseIt> cases() {
3377 return make_range(case_begin(), case_end());