Bug Summary

File:llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp
Warning:line 4083, column 7
Value stored to 'NumLeftover' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name LegalizerHelper.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220207111159+b8804557686f/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/CodeGen/GlobalISel -I /build/llvm-toolchain-snapshot-15~++20220207111159+b8804557686f/llvm/lib/CodeGen/GlobalISel -I include -I /build/llvm-toolchain-snapshot-15~++20220207111159+b8804557686f/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220207111159+b8804557686f/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220207111159+b8804557686f/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220207111159+b8804557686f/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220207111159+b8804557686f/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220207111159+b8804557686f/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220207111159+b8804557686f/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220207111159+b8804557686f/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-02-07-163825-15572-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220207111159+b8804557686f/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp
1//===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file This file implements the LegalizerHelper class to legalize
10/// individual instructions and the LegalizeMachineIR wrapper pass for the
11/// primary legalization.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
16#include "llvm/CodeGen/GlobalISel/CallLowering.h"
17#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
18#include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
19#include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h"
20#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
21#include "llvm/CodeGen/GlobalISel/Utils.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/TargetFrameLowering.h"
24#include "llvm/CodeGen/TargetInstrInfo.h"
25#include "llvm/CodeGen/TargetLowering.h"
26#include "llvm/CodeGen/TargetOpcodes.h"
27#include "llvm/CodeGen/TargetSubtargetInfo.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/MathExtras.h"
31#include "llvm/Support/raw_ostream.h"
32#include "llvm/Target/TargetMachine.h"
33
34#define DEBUG_TYPE"legalizer" "legalizer"
35
36using namespace llvm;
37using namespace LegalizeActions;
38using namespace MIPatternMatch;
39
40/// Try to break down \p OrigTy into \p NarrowTy sized pieces.
41///
42/// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy,
43/// with any leftover piece as type \p LeftoverTy
44///
45/// Returns -1 in the first element of the pair if the breakdown is not
46/// satisfiable.
47static std::pair<int, int>
48getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) {
49 assert(!LeftoverTy.isValid() && "this is an out argument")(static_cast <bool> (!LeftoverTy.isValid() && "this is an out argument"
) ? void (0) : __assert_fail ("!LeftoverTy.isValid() && \"this is an out argument\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 49, __extension__
__PRETTY_FUNCTION__))
;
50
51 unsigned Size = OrigTy.getSizeInBits();
52 unsigned NarrowSize = NarrowTy.getSizeInBits();
53 unsigned NumParts = Size / NarrowSize;
54 unsigned LeftoverSize = Size - NumParts * NarrowSize;
55 assert(Size > NarrowSize)(static_cast <bool> (Size > NarrowSize) ? void (0) :
__assert_fail ("Size > NarrowSize", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 55, __extension__ __PRETTY_FUNCTION__))
;
56
57 if (LeftoverSize == 0)
58 return {NumParts, 0};
59
60 if (NarrowTy.isVector()) {
61 unsigned EltSize = OrigTy.getScalarSizeInBits();
62 if (LeftoverSize % EltSize != 0)
63 return {-1, -1};
64 LeftoverTy = LLT::scalarOrVector(
65 ElementCount::getFixed(LeftoverSize / EltSize), EltSize);
66 } else {
67 LeftoverTy = LLT::scalar(LeftoverSize);
68 }
69
70 int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits();
71 return std::make_pair(NumParts, NumLeftover);
72}
73
74static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) {
75
76 if (!Ty.isScalar())
77 return nullptr;
78
79 switch (Ty.getSizeInBits()) {
80 case 16:
81 return Type::getHalfTy(Ctx);
82 case 32:
83 return Type::getFloatTy(Ctx);
84 case 64:
85 return Type::getDoubleTy(Ctx);
86 case 80:
87 return Type::getX86_FP80Ty(Ctx);
88 case 128:
89 return Type::getFP128Ty(Ctx);
90 default:
91 return nullptr;
92 }
93}
94
95LegalizerHelper::LegalizerHelper(MachineFunction &MF,
96 GISelChangeObserver &Observer,
97 MachineIRBuilder &Builder)
98 : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()),
99 LI(*MF.getSubtarget().getLegalizerInfo()),
100 TLI(*MF.getSubtarget().getTargetLowering()) { }
101
102LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI,
103 GISelChangeObserver &Observer,
104 MachineIRBuilder &B)
105 : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI),
106 TLI(*MF.getSubtarget().getTargetLowering()) { }
107
108LegalizerHelper::LegalizeResult
109LegalizerHelper::legalizeInstrStep(MachineInstr &MI,
110 LostDebugLocObserver &LocObserver) {
111 LLVM_DEBUG(dbgs() << "Legalizing: " << MI)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "Legalizing: " << MI; }
} while (false)
;
112
113 MIRBuilder.setInstrAndDebugLoc(MI);
114
115 if (MI.getOpcode() == TargetOpcode::G_INTRINSIC ||
116 MI.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
117 return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize;
118 auto Step = LI.getAction(MI, MRI);
119 switch (Step.Action) {
120 case Legal:
121 LLVM_DEBUG(dbgs() << ".. Already legal\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. Already legal\n"; } } while
(false)
;
122 return AlreadyLegal;
123 case Libcall:
124 LLVM_DEBUG(dbgs() << ".. Convert to libcall\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. Convert to libcall\n"; }
} while (false)
;
125 return libcall(MI, LocObserver);
126 case NarrowScalar:
127 LLVM_DEBUG(dbgs() << ".. Narrow scalar\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. Narrow scalar\n"; } } while
(false)
;
128 return narrowScalar(MI, Step.TypeIdx, Step.NewType);
129 case WidenScalar:
130 LLVM_DEBUG(dbgs() << ".. Widen scalar\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. Widen scalar\n"; } } while
(false)
;
131 return widenScalar(MI, Step.TypeIdx, Step.NewType);
132 case Bitcast:
133 LLVM_DEBUG(dbgs() << ".. Bitcast type\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. Bitcast type\n"; } } while
(false)
;
134 return bitcast(MI, Step.TypeIdx, Step.NewType);
135 case Lower:
136 LLVM_DEBUG(dbgs() << ".. Lower\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. Lower\n"; } } while (false
)
;
137 return lower(MI, Step.TypeIdx, Step.NewType);
138 case FewerElements:
139 LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. Reduce number of elements\n"
; } } while (false)
;
140 return fewerElementsVector(MI, Step.TypeIdx, Step.NewType);
141 case MoreElements:
142 LLVM_DEBUG(dbgs() << ".. Increase number of elements\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. Increase number of elements\n"
; } } while (false)
;
143 return moreElementsVector(MI, Step.TypeIdx, Step.NewType);
144 case Custom:
145 LLVM_DEBUG(dbgs() << ".. Custom legalization\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. Custom legalization\n"; }
} while (false)
;
146 return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize;
147 default:
148 LLVM_DEBUG(dbgs() << ".. Unable to legalize\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. Unable to legalize\n"; }
} while (false)
;
149 return UnableToLegalize;
150 }
151}
152
153void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts,
154 SmallVectorImpl<Register> &VRegs) {
155 for (int i = 0; i < NumParts; ++i)
156 VRegs.push_back(MRI.createGenericVirtualRegister(Ty));
157 MIRBuilder.buildUnmerge(VRegs, Reg);
158}
159
160bool LegalizerHelper::extractParts(Register Reg, LLT RegTy,
161 LLT MainTy, LLT &LeftoverTy,
162 SmallVectorImpl<Register> &VRegs,
163 SmallVectorImpl<Register> &LeftoverRegs) {
164 assert(!LeftoverTy.isValid() && "this is an out argument")(static_cast <bool> (!LeftoverTy.isValid() && "this is an out argument"
) ? void (0) : __assert_fail ("!LeftoverTy.isValid() && \"this is an out argument\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 164, __extension__
__PRETTY_FUNCTION__))
;
165
166 unsigned RegSize = RegTy.getSizeInBits();
167 unsigned MainSize = MainTy.getSizeInBits();
168 unsigned NumParts = RegSize / MainSize;
169 unsigned LeftoverSize = RegSize - NumParts * MainSize;
170
171 // Use an unmerge when possible.
172 if (LeftoverSize == 0) {
173 for (unsigned I = 0; I < NumParts; ++I)
174 VRegs.push_back(MRI.createGenericVirtualRegister(MainTy));
175 MIRBuilder.buildUnmerge(VRegs, Reg);
176 return true;
177 }
178
179 // Perform irregular split. Leftover is last element of RegPieces.
180 if (MainTy.isVector()) {
181 SmallVector<Register, 8> RegPieces;
182 extractVectorParts(Reg, MainTy.getNumElements(), RegPieces);
183 for (unsigned i = 0; i < RegPieces.size() - 1; ++i)
184 VRegs.push_back(RegPieces[i]);
185 LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]);
186 LeftoverTy = MRI.getType(LeftoverRegs[0]);
187 return true;
188 }
189
190 LeftoverTy = LLT::scalar(LeftoverSize);
191 // For irregular sizes, extract the individual parts.
192 for (unsigned I = 0; I != NumParts; ++I) {
193 Register NewReg = MRI.createGenericVirtualRegister(MainTy);
194 VRegs.push_back(NewReg);
195 MIRBuilder.buildExtract(NewReg, Reg, MainSize * I);
196 }
197
198 for (unsigned Offset = MainSize * NumParts; Offset < RegSize;
199 Offset += LeftoverSize) {
200 Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy);
201 LeftoverRegs.push_back(NewReg);
202 MIRBuilder.buildExtract(NewReg, Reg, Offset);
203 }
204
205 return true;
206}
207
208void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts,
209 SmallVectorImpl<Register> &VRegs) {
210 LLT RegTy = MRI.getType(Reg);
211 assert(RegTy.isVector() && "Expected a vector type")(static_cast <bool> (RegTy.isVector() && "Expected a vector type"
) ? void (0) : __assert_fail ("RegTy.isVector() && \"Expected a vector type\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 211, __extension__
__PRETTY_FUNCTION__))
;
212
213 LLT EltTy = RegTy.getElementType();
214 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
215 unsigned RegNumElts = RegTy.getNumElements();
216 unsigned LeftoverNumElts = RegNumElts % NumElts;
217 unsigned NumNarrowTyPieces = RegNumElts / NumElts;
218
219 // Perfect split without leftover
220 if (LeftoverNumElts == 0)
221 return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs);
222
223 // Irregular split. Provide direct access to all elements for artifact
224 // combiner using unmerge to elements. Then build vectors with NumElts
225 // elements. Remaining element(s) will be (used to build vector) Leftover.
226 SmallVector<Register, 8> Elts;
227 extractParts(Reg, EltTy, RegNumElts, Elts);
228
229 unsigned Offset = 0;
230 // Requested sub-vectors of NarrowTy.
231 for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) {
232 ArrayRef<Register> Pieces(&Elts[Offset], NumElts);
233 VRegs.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
234 }
235
236 // Leftover element(s).
237 if (LeftoverNumElts == 1) {
238 VRegs.push_back(Elts[Offset]);
239 } else {
240 LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy);
241 ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts);
242 VRegs.push_back(MIRBuilder.buildMerge(LeftoverTy, Pieces).getReg(0));
243 }
244}
245
246void LegalizerHelper::insertParts(Register DstReg,
247 LLT ResultTy, LLT PartTy,
248 ArrayRef<Register> PartRegs,
249 LLT LeftoverTy,
250 ArrayRef<Register> LeftoverRegs) {
251 if (!LeftoverTy.isValid()) {
252 assert(LeftoverRegs.empty())(static_cast <bool> (LeftoverRegs.empty()) ? void (0) :
__assert_fail ("LeftoverRegs.empty()", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 252, __extension__ __PRETTY_FUNCTION__))
;
253
254 if (!ResultTy.isVector()) {
255 MIRBuilder.buildMerge(DstReg, PartRegs);
256 return;
257 }
258
259 if (PartTy.isVector())
260 MIRBuilder.buildConcatVectors(DstReg, PartRegs);
261 else
262 MIRBuilder.buildBuildVector(DstReg, PartRegs);
263 return;
264 }
265
266 // Merge sub-vectors with different number of elements and insert into DstReg.
267 if (ResultTy.isVector()) {
268 assert(LeftoverRegs.size() == 1 && "Expected one leftover register")(static_cast <bool> (LeftoverRegs.size() == 1 &&
"Expected one leftover register") ? void (0) : __assert_fail
("LeftoverRegs.size() == 1 && \"Expected one leftover register\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 268, __extension__
__PRETTY_FUNCTION__))
;
269 SmallVector<Register, 8> AllRegs;
270 for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs))
271 AllRegs.push_back(Reg);
272 return mergeMixedSubvectors(DstReg, AllRegs);
273 }
274
275 SmallVector<Register> GCDRegs;
276 LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy);
277 for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs))
278 extractGCDType(GCDRegs, GCDTy, PartReg);
279 LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs);
280 buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs);
281}
282
283void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts,
284 Register Reg) {
285 LLT Ty = MRI.getType(Reg);
286 SmallVector<Register, 8> RegElts;
287 extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts);
288 Elts.append(RegElts);
289}
290
291/// Merge \p PartRegs with different types into \p DstReg.
292void LegalizerHelper::mergeMixedSubvectors(Register DstReg,
293 ArrayRef<Register> PartRegs) {
294 SmallVector<Register, 8> AllElts;
295 for (unsigned i = 0; i < PartRegs.size() - 1; ++i)
296 appendVectorElts(AllElts, PartRegs[i]);
297
298 Register Leftover = PartRegs[PartRegs.size() - 1];
299 if (MRI.getType(Leftover).isScalar())
300 AllElts.push_back(Leftover);
301 else
302 appendVectorElts(AllElts, Leftover);
303
304 MIRBuilder.buildMerge(DstReg, AllElts);
305}
306
307/// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs.
308static void getUnmergeResults(SmallVectorImpl<Register> &Regs,
309 const MachineInstr &MI) {
310 assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 310, __extension__
__PRETTY_FUNCTION__))
;
311
312 const int StartIdx = Regs.size();
313 const int NumResults = MI.getNumOperands() - 1;
314 Regs.resize(Regs.size() + NumResults);
315 for (int I = 0; I != NumResults; ++I)
316 Regs[StartIdx + I] = MI.getOperand(I).getReg();
317}
318
319void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts,
320 LLT GCDTy, Register SrcReg) {
321 LLT SrcTy = MRI.getType(SrcReg);
322 if (SrcTy == GCDTy) {
323 // If the source already evenly divides the result type, we don't need to do
324 // anything.
325 Parts.push_back(SrcReg);
326 } else {
327 // Need to split into common type sized pieces.
328 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
329 getUnmergeResults(Parts, *Unmerge);
330 }
331}
332
333LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy,
334 LLT NarrowTy, Register SrcReg) {
335 LLT SrcTy = MRI.getType(SrcReg);
336 LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy);
337 extractGCDType(Parts, GCDTy, SrcReg);
338 return GCDTy;
339}
340
341LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy,
342 SmallVectorImpl<Register> &VRegs,
343 unsigned PadStrategy) {
344 LLT LCMTy = getLCMType(DstTy, NarrowTy);
345
346 int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits();
347 int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits();
348 int NumOrigSrc = VRegs.size();
349
350 Register PadReg;
351
352 // Get a value we can use to pad the source value if the sources won't evenly
353 // cover the result type.
354 if (NumOrigSrc < NumParts * NumSubParts) {
355 if (PadStrategy == TargetOpcode::G_ZEXT)
356 PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0);
357 else if (PadStrategy == TargetOpcode::G_ANYEXT)
358 PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
359 else {
360 assert(PadStrategy == TargetOpcode::G_SEXT)(static_cast <bool> (PadStrategy == TargetOpcode::G_SEXT
) ? void (0) : __assert_fail ("PadStrategy == TargetOpcode::G_SEXT"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 360, __extension__
__PRETTY_FUNCTION__))
;
361
362 // Shift the sign bit of the low register through the high register.
363 auto ShiftAmt =
364 MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1);
365 PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0);
366 }
367 }
368
369 // Registers for the final merge to be produced.
370 SmallVector<Register, 4> Remerge(NumParts);
371
372 // Registers needed for intermediate merges, which will be merged into a
373 // source for Remerge.
374 SmallVector<Register, 4> SubMerge(NumSubParts);
375
376 // Once we've fully read off the end of the original source bits, we can reuse
377 // the same high bits for remaining padding elements.
378 Register AllPadReg;
379
380 // Build merges to the LCM type to cover the original result type.
381 for (int I = 0; I != NumParts; ++I) {
382 bool AllMergePartsArePadding = true;
383
384 // Build the requested merges to the requested type.
385 for (int J = 0; J != NumSubParts; ++J) {
386 int Idx = I * NumSubParts + J;
387 if (Idx >= NumOrigSrc) {
388 SubMerge[J] = PadReg;
389 continue;
390 }
391
392 SubMerge[J] = VRegs[Idx];
393
394 // There are meaningful bits here we can't reuse later.
395 AllMergePartsArePadding = false;
396 }
397
398 // If we've filled up a complete piece with padding bits, we can directly
399 // emit the natural sized constant if applicable, rather than a merge of
400 // smaller constants.
401 if (AllMergePartsArePadding && !AllPadReg) {
402 if (PadStrategy == TargetOpcode::G_ANYEXT)
403 AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0);
404 else if (PadStrategy == TargetOpcode::G_ZEXT)
405 AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0);
406
407 // If this is a sign extension, we can't materialize a trivial constant
408 // with the right type and have to produce a merge.
409 }
410
411 if (AllPadReg) {
412 // Avoid creating additional instructions if we're just adding additional
413 // copies of padding bits.
414 Remerge[I] = AllPadReg;
415 continue;
416 }
417
418 if (NumSubParts == 1)
419 Remerge[I] = SubMerge[0];
420 else
421 Remerge[I] = MIRBuilder.buildMerge(NarrowTy, SubMerge).getReg(0);
422
423 // In the sign extend padding case, re-use the first all-signbit merge.
424 if (AllMergePartsArePadding && !AllPadReg)
425 AllPadReg = Remerge[I];
426 }
427
428 VRegs = std::move(Remerge);
429 return LCMTy;
430}
431
432void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy,
433 ArrayRef<Register> RemergeRegs) {
434 LLT DstTy = MRI.getType(DstReg);
435
436 // Create the merge to the widened source, and extract the relevant bits into
437 // the result.
438
439 if (DstTy == LCMTy) {
440 MIRBuilder.buildMerge(DstReg, RemergeRegs);
441 return;
442 }
443
444 auto Remerge = MIRBuilder.buildMerge(LCMTy, RemergeRegs);
445 if (DstTy.isScalar() && LCMTy.isScalar()) {
446 MIRBuilder.buildTrunc(DstReg, Remerge);
447 return;
448 }
449
450 if (LCMTy.isVector()) {
451 unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits();
452 SmallVector<Register, 8> UnmergeDefs(NumDefs);
453 UnmergeDefs[0] = DstReg;
454 for (unsigned I = 1; I != NumDefs; ++I)
455 UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy);
456
457 MIRBuilder.buildUnmerge(UnmergeDefs,
458 MIRBuilder.buildMerge(LCMTy, RemergeRegs));
459 return;
460 }
461
462 llvm_unreachable("unhandled case")::llvm::llvm_unreachable_internal("unhandled case", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 462)
;
463}
464
465static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) {
466#define RTLIBCASE_INT(LibcallPrefix)do { switch (Size) { case 32: return RTLIB::LibcallPrefix32; case
64: return RTLIB::LibcallPrefix64; case 128: return RTLIB::LibcallPrefix128
; default: ::llvm::llvm_unreachable_internal("unexpected size"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 466); } }
while (0)
\
467 do { \
468 switch (Size) { \
469 case 32: \
470 return RTLIB::LibcallPrefix##32; \
471 case 64: \
472 return RTLIB::LibcallPrefix##64; \
473 case 128: \
474 return RTLIB::LibcallPrefix##128; \
475 default: \
476 llvm_unreachable("unexpected size")::llvm::llvm_unreachable_internal("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 476)
; \
477 } \
478 } while (0)
479
480#define RTLIBCASE(LibcallPrefix)do { switch (Size) { case 32: return RTLIB::LibcallPrefix32; case
64: return RTLIB::LibcallPrefix64; case 80: return RTLIB::LibcallPrefix80
; case 128: return RTLIB::LibcallPrefix128; default: ::llvm::
llvm_unreachable_internal("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 480); } } while (0)
\
481 do { \
482 switch (Size) { \
483 case 32: \
484 return RTLIB::LibcallPrefix##32; \
485 case 64: \
486 return RTLIB::LibcallPrefix##64; \
487 case 80: \
488 return RTLIB::LibcallPrefix##80; \
489 case 128: \
490 return RTLIB::LibcallPrefix##128; \
491 default: \
492 llvm_unreachable("unexpected size")::llvm::llvm_unreachable_internal("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 492)
; \
493 } \
494 } while (0)
495
496 switch (Opcode) {
497 case TargetOpcode::G_SDIV:
498 RTLIBCASE_INT(SDIV_I)do { switch (Size) { case 32: return RTLIB::SDIV_I32; case 64
: return RTLIB::SDIV_I64; case 128: return RTLIB::SDIV_I128; default
: ::llvm::llvm_unreachable_internal("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 498); } } while (0)
;
499 case TargetOpcode::G_UDIV:
500 RTLIBCASE_INT(UDIV_I)do { switch (Size) { case 32: return RTLIB::UDIV_I32; case 64
: return RTLIB::UDIV_I64; case 128: return RTLIB::UDIV_I128; default
: ::llvm::llvm_unreachable_internal("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 500); } } while (0)
;
501 case TargetOpcode::G_SREM:
502 RTLIBCASE_INT(SREM_I)do { switch (Size) { case 32: return RTLIB::SREM_I32; case 64
: return RTLIB::SREM_I64; case 128: return RTLIB::SREM_I128; default
: ::llvm::llvm_unreachable_internal("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 502); } } while (0)
;
503 case TargetOpcode::G_UREM:
504 RTLIBCASE_INT(UREM_I)do { switch (Size) { case 32: return RTLIB::UREM_I32; case 64
: return RTLIB::UREM_I64; case 128: return RTLIB::UREM_I128; default
: ::llvm::llvm_unreachable_internal("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 504); } } while (0)
;
505 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
506 RTLIBCASE_INT(CTLZ_I)do { switch (Size) { case 32: return RTLIB::CTLZ_I32; case 64
: return RTLIB::CTLZ_I64; case 128: return RTLIB::CTLZ_I128; default
: ::llvm::llvm_unreachable_internal("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 506); } } while (0)
;
507 case TargetOpcode::G_FADD:
508 RTLIBCASE(ADD_F)do { switch (Size) { case 32: return RTLIB::ADD_F32; case 64:
return RTLIB::ADD_F64; case 80: return RTLIB::ADD_F80; case 128
: return RTLIB::ADD_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 508); } } while (0)
;
509 case TargetOpcode::G_FSUB:
510 RTLIBCASE(SUB_F)do { switch (Size) { case 32: return RTLIB::SUB_F32; case 64:
return RTLIB::SUB_F64; case 80: return RTLIB::SUB_F80; case 128
: return RTLIB::SUB_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 510); } } while (0)
;
511 case TargetOpcode::G_FMUL:
512 RTLIBCASE(MUL_F)do { switch (Size) { case 32: return RTLIB::MUL_F32; case 64:
return RTLIB::MUL_F64; case 80: return RTLIB::MUL_F80; case 128
: return RTLIB::MUL_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 512); } } while (0)
;
513 case TargetOpcode::G_FDIV:
514 RTLIBCASE(DIV_F)do { switch (Size) { case 32: return RTLIB::DIV_F32; case 64:
return RTLIB::DIV_F64; case 80: return RTLIB::DIV_F80; case 128
: return RTLIB::DIV_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 514); } } while (0)
;
515 case TargetOpcode::G_FEXP:
516 RTLIBCASE(EXP_F)do { switch (Size) { case 32: return RTLIB::EXP_F32; case 64:
return RTLIB::EXP_F64; case 80: return RTLIB::EXP_F80; case 128
: return RTLIB::EXP_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 516); } } while (0)
;
517 case TargetOpcode::G_FEXP2:
518 RTLIBCASE(EXP2_F)do { switch (Size) { case 32: return RTLIB::EXP2_F32; case 64
: return RTLIB::EXP2_F64; case 80: return RTLIB::EXP2_F80; case
128: return RTLIB::EXP2_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 518); } } while (0)
;
519 case TargetOpcode::G_FREM:
520 RTLIBCASE(REM_F)do { switch (Size) { case 32: return RTLIB::REM_F32; case 64:
return RTLIB::REM_F64; case 80: return RTLIB::REM_F80; case 128
: return RTLIB::REM_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 520); } } while (0)
;
521 case TargetOpcode::G_FPOW:
522 RTLIBCASE(POW_F)do { switch (Size) { case 32: return RTLIB::POW_F32; case 64:
return RTLIB::POW_F64; case 80: return RTLIB::POW_F80; case 128
: return RTLIB::POW_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 522); } } while (0)
;
523 case TargetOpcode::G_FMA:
524 RTLIBCASE(FMA_F)do { switch (Size) { case 32: return RTLIB::FMA_F32; case 64:
return RTLIB::FMA_F64; case 80: return RTLIB::FMA_F80; case 128
: return RTLIB::FMA_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 524); } } while (0)
;
525 case TargetOpcode::G_FSIN:
526 RTLIBCASE(SIN_F)do { switch (Size) { case 32: return RTLIB::SIN_F32; case 64:
return RTLIB::SIN_F64; case 80: return RTLIB::SIN_F80; case 128
: return RTLIB::SIN_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 526); } } while (0)
;
527 case TargetOpcode::G_FCOS:
528 RTLIBCASE(COS_F)do { switch (Size) { case 32: return RTLIB::COS_F32; case 64:
return RTLIB::COS_F64; case 80: return RTLIB::COS_F80; case 128
: return RTLIB::COS_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 528); } } while (0)
;
529 case TargetOpcode::G_FLOG10:
530 RTLIBCASE(LOG10_F)do { switch (Size) { case 32: return RTLIB::LOG10_F32; case 64
: return RTLIB::LOG10_F64; case 80: return RTLIB::LOG10_F80; case
128: return RTLIB::LOG10_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 530); } } while (0)
;
531 case TargetOpcode::G_FLOG:
532 RTLIBCASE(LOG_F)do { switch (Size) { case 32: return RTLIB::LOG_F32; case 64:
return RTLIB::LOG_F64; case 80: return RTLIB::LOG_F80; case 128
: return RTLIB::LOG_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 532); } } while (0)
;
533 case TargetOpcode::G_FLOG2:
534 RTLIBCASE(LOG2_F)do { switch (Size) { case 32: return RTLIB::LOG2_F32; case 64
: return RTLIB::LOG2_F64; case 80: return RTLIB::LOG2_F80; case
128: return RTLIB::LOG2_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 534); } } while (0)
;
535 case TargetOpcode::G_FCEIL:
536 RTLIBCASE(CEIL_F)do { switch (Size) { case 32: return RTLIB::CEIL_F32; case 64
: return RTLIB::CEIL_F64; case 80: return RTLIB::CEIL_F80; case
128: return RTLIB::CEIL_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 536); } } while (0)
;
537 case TargetOpcode::G_FFLOOR:
538 RTLIBCASE(FLOOR_F)do { switch (Size) { case 32: return RTLIB::FLOOR_F32; case 64
: return RTLIB::FLOOR_F64; case 80: return RTLIB::FLOOR_F80; case
128: return RTLIB::FLOOR_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 538); } } while (0)
;
539 case TargetOpcode::G_FMINNUM:
540 RTLIBCASE(FMIN_F)do { switch (Size) { case 32: return RTLIB::FMIN_F32; case 64
: return RTLIB::FMIN_F64; case 80: return RTLIB::FMIN_F80; case
128: return RTLIB::FMIN_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 540); } } while (0)
;
541 case TargetOpcode::G_FMAXNUM:
542 RTLIBCASE(FMAX_F)do { switch (Size) { case 32: return RTLIB::FMAX_F32; case 64
: return RTLIB::FMAX_F64; case 80: return RTLIB::FMAX_F80; case
128: return RTLIB::FMAX_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 542); } } while (0)
;
543 case TargetOpcode::G_FSQRT:
544 RTLIBCASE(SQRT_F)do { switch (Size) { case 32: return RTLIB::SQRT_F32; case 64
: return RTLIB::SQRT_F64; case 80: return RTLIB::SQRT_F80; case
128: return RTLIB::SQRT_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 544); } } while (0)
;
545 case TargetOpcode::G_FRINT:
546 RTLIBCASE(RINT_F)do { switch (Size) { case 32: return RTLIB::RINT_F32; case 64
: return RTLIB::RINT_F64; case 80: return RTLIB::RINT_F80; case
128: return RTLIB::RINT_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 546); } } while (0)
;
547 case TargetOpcode::G_FNEARBYINT:
548 RTLIBCASE(NEARBYINT_F)do { switch (Size) { case 32: return RTLIB::NEARBYINT_F32; case
64: return RTLIB::NEARBYINT_F64; case 80: return RTLIB::NEARBYINT_F80
; case 128: return RTLIB::NEARBYINT_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 548); } } while (0)
;
549 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
550 RTLIBCASE(ROUNDEVEN_F)do { switch (Size) { case 32: return RTLIB::ROUNDEVEN_F32; case
64: return RTLIB::ROUNDEVEN_F64; case 80: return RTLIB::ROUNDEVEN_F80
; case 128: return RTLIB::ROUNDEVEN_F128; default: ::llvm::llvm_unreachable_internal
("unexpected size", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 550); } } while (0)
;
551 }
552 llvm_unreachable("Unknown libcall function")::llvm::llvm_unreachable_internal("Unknown libcall function",
"llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 552)
;
553}
554
555/// True if an instruction is in tail position in its caller. Intended for
556/// legalizing libcalls as tail calls when possible.
557static bool isLibCallInTailPosition(MachineInstr &MI,
558 const TargetInstrInfo &TII,
559 MachineRegisterInfo &MRI) {
560 MachineBasicBlock &MBB = *MI.getParent();
561 const Function &F = MBB.getParent()->getFunction();
562
563 // Conservatively require the attributes of the call to match those of
564 // the return. Ignore NoAlias and NonNull because they don't affect the
565 // call sequence.
566 AttributeList CallerAttrs = F.getAttributes();
567 if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs())
568 .removeAttribute(Attribute::NoAlias)
569 .removeAttribute(Attribute::NonNull)
570 .hasAttributes())
571 return false;
572
573 // It's not safe to eliminate the sign / zero extension of the return value.
574 if (CallerAttrs.hasRetAttr(Attribute::ZExt) ||
575 CallerAttrs.hasRetAttr(Attribute::SExt))
576 return false;
577
578 // Only tail call if the following instruction is a standard return or if we
579 // have a `thisreturn` callee, and a sequence like:
580 //
581 // G_MEMCPY %0, %1, %2
582 // $x0 = COPY %0
583 // RET_ReallyLR implicit $x0
584 auto Next = next_nodbg(MI.getIterator(), MBB.instr_end());
585 if (Next != MBB.instr_end() && Next->isCopy()) {
586 switch (MI.getOpcode()) {
587 default:
588 llvm_unreachable("unsupported opcode")::llvm::llvm_unreachable_internal("unsupported opcode", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 588)
;
589 case TargetOpcode::G_BZERO:
590 return false;
591 case TargetOpcode::G_MEMCPY:
592 case TargetOpcode::G_MEMMOVE:
593 case TargetOpcode::G_MEMSET:
594 break;
595 }
596
597 Register VReg = MI.getOperand(0).getReg();
598 if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg())
599 return false;
600
601 Register PReg = Next->getOperand(0).getReg();
602 if (!PReg.isPhysical())
603 return false;
604
605 auto Ret = next_nodbg(Next, MBB.instr_end());
606 if (Ret == MBB.instr_end() || !Ret->isReturn())
607 return false;
608
609 if (Ret->getNumImplicitOperands() != 1)
610 return false;
611
612 if (PReg != Ret->getOperand(0).getReg())
613 return false;
614
615 // Skip over the COPY that we just validated.
616 Next = Ret;
617 }
618
619 if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn())
620 return false;
621
622 return true;
623}
624
625LegalizerHelper::LegalizeResult
626llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name,
627 const CallLowering::ArgInfo &Result,
628 ArrayRef<CallLowering::ArgInfo> Args,
629 const CallingConv::ID CC) {
630 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
631
632 CallLowering::CallLoweringInfo Info;
633 Info.CallConv = CC;
634 Info.Callee = MachineOperand::CreateES(Name);
635 Info.OrigRet = Result;
636 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
637 if (!CLI.lowerCall(MIRBuilder, Info))
638 return LegalizerHelper::UnableToLegalize;
639
640 return LegalizerHelper::Legalized;
641}
642
643LegalizerHelper::LegalizeResult
644llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall,
645 const CallLowering::ArgInfo &Result,
646 ArrayRef<CallLowering::ArgInfo> Args) {
647 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
648 const char *Name = TLI.getLibcallName(Libcall);
649 const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall);
650 return createLibcall(MIRBuilder, Name, Result, Args, CC);
651}
652
653// Useful for libcalls where all operands have the same type.
654static LegalizerHelper::LegalizeResult
655simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size,
656 Type *OpType) {
657 auto Libcall = getRTLibDesc(MI.getOpcode(), Size);
658
659 // FIXME: What does the original arg index mean here?
660 SmallVector<CallLowering::ArgInfo, 3> Args;
661 for (const MachineOperand &MO : llvm::drop_begin(MI.operands()))
662 Args.push_back({MO.getReg(), OpType, 0});
663 return createLibcall(MIRBuilder, Libcall,
664 {MI.getOperand(0).getReg(), OpType, 0}, Args);
665}
666
667LegalizerHelper::LegalizeResult
668llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
669 MachineInstr &MI, LostDebugLocObserver &LocObserver) {
670 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
671
672 SmallVector<CallLowering::ArgInfo, 3> Args;
673 // Add all the args, except for the last which is an imm denoting 'tail'.
674 for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) {
675 Register Reg = MI.getOperand(i).getReg();
676
677 // Need derive an IR type for call lowering.
678 LLT OpLLT = MRI.getType(Reg);
679 Type *OpTy = nullptr;
680 if (OpLLT.isPointer())
681 OpTy = Type::getInt8PtrTy(Ctx, OpLLT.getAddressSpace());
682 else
683 OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits());
684 Args.push_back({Reg, OpTy, 0});
685 }
686
687 auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering();
688 auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering();
689 RTLIB::Libcall RTLibcall;
690 unsigned Opc = MI.getOpcode();
691 switch (Opc) {
692 case TargetOpcode::G_BZERO:
693 RTLibcall = RTLIB::BZERO;
694 break;
695 case TargetOpcode::G_MEMCPY:
696 RTLibcall = RTLIB::MEMCPY;
697 Args[0].Flags[0].setReturned();
698 break;
699 case TargetOpcode::G_MEMMOVE:
700 RTLibcall = RTLIB::MEMMOVE;
701 Args[0].Flags[0].setReturned();
702 break;
703 case TargetOpcode::G_MEMSET:
704 RTLibcall = RTLIB::MEMSET;
705 Args[0].Flags[0].setReturned();
706 break;
707 default:
708 llvm_unreachable("unsupported opcode")::llvm::llvm_unreachable_internal("unsupported opcode", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 708)
;
709 }
710 const char *Name = TLI.getLibcallName(RTLibcall);
711
712 // Unsupported libcall on the target.
713 if (!Name) {
714 LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. .. Could not find libcall name for "
<< MIRBuilder.getTII().getName(Opc) << "\n"; } }
while (false)
715 << MIRBuilder.getTII().getName(Opc) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << ".. .. Could not find libcall name for "
<< MIRBuilder.getTII().getName(Opc) << "\n"; } }
while (false)
;
716 return LegalizerHelper::UnableToLegalize;
717 }
718
719 CallLowering::CallLoweringInfo Info;
720 Info.CallConv = TLI.getLibcallCallingConv(RTLibcall);
721 Info.Callee = MachineOperand::CreateES(Name);
722 Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0);
723 Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() &&
724 isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI);
725
726 std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs));
727 if (!CLI.lowerCall(MIRBuilder, Info))
728 return LegalizerHelper::UnableToLegalize;
729
730 if (Info.LoweredTailCall) {
731 assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?")(static_cast <bool> (Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"
) ? void (0) : __assert_fail ("Info.IsTailCall && \"Lowered tail call when it wasn't a tail call?\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 731, __extension__
__PRETTY_FUNCTION__))
;
732
733 // Check debug locations before removing the return.
734 LocObserver.checkpoint(true);
735
736 // We must have a return following the call (or debug insts) to get past
737 // isLibCallInTailPosition.
738 do {
739 MachineInstr *Next = MI.getNextNode();
740 assert(Next &&(static_cast <bool> (Next && (Next->isCopy()
|| Next->isReturn() || Next->isDebugInstr()) &&
"Expected instr following MI to be return or debug inst?") ?
void (0) : __assert_fail ("Next && (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && \"Expected instr following MI to be return or debug inst?\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 742, __extension__
__PRETTY_FUNCTION__))
741 (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) &&(static_cast <bool> (Next && (Next->isCopy()
|| Next->isReturn() || Next->isDebugInstr()) &&
"Expected instr following MI to be return or debug inst?") ?
void (0) : __assert_fail ("Next && (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && \"Expected instr following MI to be return or debug inst?\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 742, __extension__
__PRETTY_FUNCTION__))
742 "Expected instr following MI to be return or debug inst?")(static_cast <bool> (Next && (Next->isCopy()
|| Next->isReturn() || Next->isDebugInstr()) &&
"Expected instr following MI to be return or debug inst?") ?
void (0) : __assert_fail ("Next && (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && \"Expected instr following MI to be return or debug inst?\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 742, __extension__
__PRETTY_FUNCTION__))
;
743 // We lowered a tail call, so the call is now the return from the block.
744 // Delete the old return.
745 Next->eraseFromParent();
746 } while (MI.getNextNode());
747
748 // We expect to lose the debug location from the return.
749 LocObserver.checkpoint(false);
750 }
751
752 return LegalizerHelper::Legalized;
753}
754
755static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType,
756 Type *FromType) {
757 auto ToMVT = MVT::getVT(ToType);
758 auto FromMVT = MVT::getVT(FromType);
759
760 switch (Opcode) {
761 case TargetOpcode::G_FPEXT:
762 return RTLIB::getFPEXT(FromMVT, ToMVT);
763 case TargetOpcode::G_FPTRUNC:
764 return RTLIB::getFPROUND(FromMVT, ToMVT);
765 case TargetOpcode::G_FPTOSI:
766 return RTLIB::getFPTOSINT(FromMVT, ToMVT);
767 case TargetOpcode::G_FPTOUI:
768 return RTLIB::getFPTOUINT(FromMVT, ToMVT);
769 case TargetOpcode::G_SITOFP:
770 return RTLIB::getSINTTOFP(FromMVT, ToMVT);
771 case TargetOpcode::G_UITOFP:
772 return RTLIB::getUINTTOFP(FromMVT, ToMVT);
773 }
774 llvm_unreachable("Unsupported libcall function")::llvm::llvm_unreachable_internal("Unsupported libcall function"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 774)
;
775}
776
777static LegalizerHelper::LegalizeResult
778conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType,
779 Type *FromType) {
780 RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType);
781 return createLibcall(MIRBuilder, Libcall,
782 {MI.getOperand(0).getReg(), ToType, 0},
783 {{MI.getOperand(1).getReg(), FromType, 0}});
784}
785
786LegalizerHelper::LegalizeResult
787LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) {
788 LLT LLTy = MRI.getType(MI.getOperand(0).getReg());
789 unsigned Size = LLTy.getSizeInBits();
790 auto &Ctx = MIRBuilder.getMF().getFunction().getContext();
791
792 switch (MI.getOpcode()) {
793 default:
794 return UnableToLegalize;
795 case TargetOpcode::G_SDIV:
796 case TargetOpcode::G_UDIV:
797 case TargetOpcode::G_SREM:
798 case TargetOpcode::G_UREM:
799 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
800 Type *HLTy = IntegerType::get(Ctx, Size);
801 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
802 if (Status != Legalized)
803 return Status;
804 break;
805 }
806 case TargetOpcode::G_FADD:
807 case TargetOpcode::G_FSUB:
808 case TargetOpcode::G_FMUL:
809 case TargetOpcode::G_FDIV:
810 case TargetOpcode::G_FMA:
811 case TargetOpcode::G_FPOW:
812 case TargetOpcode::G_FREM:
813 case TargetOpcode::G_FCOS:
814 case TargetOpcode::G_FSIN:
815 case TargetOpcode::G_FLOG10:
816 case TargetOpcode::G_FLOG:
817 case TargetOpcode::G_FLOG2:
818 case TargetOpcode::G_FEXP:
819 case TargetOpcode::G_FEXP2:
820 case TargetOpcode::G_FCEIL:
821 case TargetOpcode::G_FFLOOR:
822 case TargetOpcode::G_FMINNUM:
823 case TargetOpcode::G_FMAXNUM:
824 case TargetOpcode::G_FSQRT:
825 case TargetOpcode::G_FRINT:
826 case TargetOpcode::G_FNEARBYINT:
827 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
828 Type *HLTy = getFloatTypeForLLT(Ctx, LLTy);
829 if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) {
830 LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "No libcall available for type "
<< LLTy << ".\n"; } } while (false)
;
831 return UnableToLegalize;
832 }
833 auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy);
834 if (Status != Legalized)
835 return Status;
836 break;
837 }
838 case TargetOpcode::G_FPEXT:
839 case TargetOpcode::G_FPTRUNC: {
840 Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg()));
841 Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg()));
842 if (!FromTy || !ToTy)
843 return UnableToLegalize;
844 LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy );
845 if (Status != Legalized)
846 return Status;
847 break;
848 }
849 case TargetOpcode::G_FPTOSI:
850 case TargetOpcode::G_FPTOUI: {
851 // FIXME: Support other types
852 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
853 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
854 if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64))
855 return UnableToLegalize;
856 LegalizeResult Status = conversionLibcall(
857 MI, MIRBuilder,
858 ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx),
859 FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx));
860 if (Status != Legalized)
861 return Status;
862 break;
863 }
864 case TargetOpcode::G_SITOFP:
865 case TargetOpcode::G_UITOFP: {
866 // FIXME: Support other types
867 unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
868 unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
869 if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64))
870 return UnableToLegalize;
871 LegalizeResult Status = conversionLibcall(
872 MI, MIRBuilder,
873 ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx),
874 FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx));
875 if (Status != Legalized)
876 return Status;
877 break;
878 }
879 case TargetOpcode::G_BZERO:
880 case TargetOpcode::G_MEMCPY:
881 case TargetOpcode::G_MEMMOVE:
882 case TargetOpcode::G_MEMSET: {
883 LegalizeResult Result =
884 createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver);
885 if (Result != Legalized)
886 return Result;
887 MI.eraseFromParent();
888 return Result;
889 }
890 }
891
892 MI.eraseFromParent();
893 return Legalized;
894}
895
896LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI,
897 unsigned TypeIdx,
898 LLT NarrowTy) {
899 uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
900 uint64_t NarrowSize = NarrowTy.getSizeInBits();
901
902 switch (MI.getOpcode()) {
903 default:
904 return UnableToLegalize;
905 case TargetOpcode::G_IMPLICIT_DEF: {
906 Register DstReg = MI.getOperand(0).getReg();
907 LLT DstTy = MRI.getType(DstReg);
908
909 // If SizeOp0 is not an exact multiple of NarrowSize, emit
910 // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed.
911 // FIXME: Although this would also be legal for the general case, it causes
912 // a lot of regressions in the emitted code (superfluous COPYs, artifact
913 // combines not being hit). This seems to be a problem related to the
914 // artifact combiner.
915 if (SizeOp0 % NarrowSize != 0) {
916 LLT ImplicitTy = NarrowTy;
917 if (DstTy.isVector())
918 ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy);
919
920 Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0);
921 MIRBuilder.buildAnyExt(DstReg, ImplicitReg);
922
923 MI.eraseFromParent();
924 return Legalized;
925 }
926
927 int NumParts = SizeOp0 / NarrowSize;
928
929 SmallVector<Register, 2> DstRegs;
930 for (int i = 0; i < NumParts; ++i)
931 DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0));
932
933 if (DstTy.isVector())
934 MIRBuilder.buildBuildVector(DstReg, DstRegs);
935 else
936 MIRBuilder.buildMerge(DstReg, DstRegs);
937 MI.eraseFromParent();
938 return Legalized;
939 }
940 case TargetOpcode::G_CONSTANT: {
941 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
942 const APInt &Val = MI.getOperand(1).getCImm()->getValue();
943 unsigned TotalSize = Ty.getSizeInBits();
944 unsigned NarrowSize = NarrowTy.getSizeInBits();
945 int NumParts = TotalSize / NarrowSize;
946
947 SmallVector<Register, 4> PartRegs;
948 for (int I = 0; I != NumParts; ++I) {
949 unsigned Offset = I * NarrowSize;
950 auto K = MIRBuilder.buildConstant(NarrowTy,
951 Val.lshr(Offset).trunc(NarrowSize));
952 PartRegs.push_back(K.getReg(0));
953 }
954
955 LLT LeftoverTy;
956 unsigned LeftoverBits = TotalSize - NumParts * NarrowSize;
957 SmallVector<Register, 1> LeftoverRegs;
958 if (LeftoverBits != 0) {
959 LeftoverTy = LLT::scalar(LeftoverBits);
960 auto K = MIRBuilder.buildConstant(
961 LeftoverTy,
962 Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits));
963 LeftoverRegs.push_back(K.getReg(0));
964 }
965
966 insertParts(MI.getOperand(0).getReg(),
967 Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs);
968
969 MI.eraseFromParent();
970 return Legalized;
971 }
972 case TargetOpcode::G_SEXT:
973 case TargetOpcode::G_ZEXT:
974 case TargetOpcode::G_ANYEXT:
975 return narrowScalarExt(MI, TypeIdx, NarrowTy);
976 case TargetOpcode::G_TRUNC: {
977 if (TypeIdx != 1)
978 return UnableToLegalize;
979
980 uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
981 if (NarrowTy.getSizeInBits() * 2 != SizeOp1) {
982 LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "Can't narrow trunc to type "
<< NarrowTy << "\n"; } } while (false)
;
983 return UnableToLegalize;
984 }
985
986 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
987 MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0));
988 MI.eraseFromParent();
989 return Legalized;
990 }
991
992 case TargetOpcode::G_FREEZE: {
993 if (TypeIdx != 0)
994 return UnableToLegalize;
995
996 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
997 // Should widen scalar first
998 if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0)
999 return UnableToLegalize;
1000
1001 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg());
1002 SmallVector<Register, 8> Parts;
1003 for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) {
1004 Parts.push_back(
1005 MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0));
1006 }
1007
1008 MIRBuilder.buildMerge(MI.getOperand(0).getReg(), Parts);
1009 MI.eraseFromParent();
1010 return Legalized;
1011 }
1012 case TargetOpcode::G_ADD:
1013 case TargetOpcode::G_SUB:
1014 case TargetOpcode::G_SADDO:
1015 case TargetOpcode::G_SSUBO:
1016 case TargetOpcode::G_SADDE:
1017 case TargetOpcode::G_SSUBE:
1018 case TargetOpcode::G_UADDO:
1019 case TargetOpcode::G_USUBO:
1020 case TargetOpcode::G_UADDE:
1021 case TargetOpcode::G_USUBE:
1022 return narrowScalarAddSub(MI, TypeIdx, NarrowTy);
1023 case TargetOpcode::G_MUL:
1024 case TargetOpcode::G_UMULH:
1025 return narrowScalarMul(MI, NarrowTy);
1026 case TargetOpcode::G_EXTRACT:
1027 return narrowScalarExtract(MI, TypeIdx, NarrowTy);
1028 case TargetOpcode::G_INSERT:
1029 return narrowScalarInsert(MI, TypeIdx, NarrowTy);
1030 case TargetOpcode::G_LOAD: {
1031 auto &LoadMI = cast<GLoad>(MI);
1032 Register DstReg = LoadMI.getDstReg();
1033 LLT DstTy = MRI.getType(DstReg);
1034 if (DstTy.isVector())
1035 return UnableToLegalize;
1036
1037 if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) {
1038 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1039 MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO());
1040 MIRBuilder.buildAnyExt(DstReg, TmpReg);
1041 LoadMI.eraseFromParent();
1042 return Legalized;
1043 }
1044
1045 return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy);
1046 }
1047 case TargetOpcode::G_ZEXTLOAD:
1048 case TargetOpcode::G_SEXTLOAD: {
1049 auto &LoadMI = cast<GExtLoad>(MI);
1050 Register DstReg = LoadMI.getDstReg();
1051 Register PtrReg = LoadMI.getPointerReg();
1052
1053 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1054 auto &MMO = LoadMI.getMMO();
1055 unsigned MemSize = MMO.getSizeInBits();
1056
1057 if (MemSize == NarrowSize) {
1058 MIRBuilder.buildLoad(TmpReg, PtrReg, MMO);
1059 } else if (MemSize < NarrowSize) {
1060 MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO);
1061 } else if (MemSize > NarrowSize) {
1062 // FIXME: Need to split the load.
1063 return UnableToLegalize;
1064 }
1065
1066 if (isa<GZExtLoad>(LoadMI))
1067 MIRBuilder.buildZExt(DstReg, TmpReg);
1068 else
1069 MIRBuilder.buildSExt(DstReg, TmpReg);
1070
1071 LoadMI.eraseFromParent();
1072 return Legalized;
1073 }
1074 case TargetOpcode::G_STORE: {
1075 auto &StoreMI = cast<GStore>(MI);
1076
1077 Register SrcReg = StoreMI.getValueReg();
1078 LLT SrcTy = MRI.getType(SrcReg);
1079 if (SrcTy.isVector())
1080 return UnableToLegalize;
1081
1082 int NumParts = SizeOp0 / NarrowSize;
1083 unsigned HandledSize = NumParts * NarrowTy.getSizeInBits();
1084 unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize;
1085 if (SrcTy.isVector() && LeftoverBits != 0)
1086 return UnableToLegalize;
1087
1088 if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) {
1089 Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy);
1090 MIRBuilder.buildTrunc(TmpReg, SrcReg);
1091 MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO());
1092 StoreMI.eraseFromParent();
1093 return Legalized;
1094 }
1095
1096 return reduceLoadStoreWidth(StoreMI, 0, NarrowTy);
1097 }
1098 case TargetOpcode::G_SELECT:
1099 return narrowScalarSelect(MI, TypeIdx, NarrowTy);
1100 case TargetOpcode::G_AND:
1101 case TargetOpcode::G_OR:
1102 case TargetOpcode::G_XOR: {
1103 // Legalize bitwise operation:
1104 // A = BinOp<Ty> B, C
1105 // into:
1106 // B1, ..., BN = G_UNMERGE_VALUES B
1107 // C1, ..., CN = G_UNMERGE_VALUES C
1108 // A1 = BinOp<Ty/N> B1, C2
1109 // ...
1110 // AN = BinOp<Ty/N> BN, CN
1111 // A = G_MERGE_VALUES A1, ..., AN
1112 return narrowScalarBasic(MI, TypeIdx, NarrowTy);
1113 }
1114 case TargetOpcode::G_SHL:
1115 case TargetOpcode::G_LSHR:
1116 case TargetOpcode::G_ASHR:
1117 return narrowScalarShift(MI, TypeIdx, NarrowTy);
1118 case TargetOpcode::G_CTLZ:
1119 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1120 case TargetOpcode::G_CTTZ:
1121 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1122 case TargetOpcode::G_CTPOP:
1123 if (TypeIdx == 1)
1124 switch (MI.getOpcode()) {
1125 case TargetOpcode::G_CTLZ:
1126 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
1127 return narrowScalarCTLZ(MI, TypeIdx, NarrowTy);
1128 case TargetOpcode::G_CTTZ:
1129 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
1130 return narrowScalarCTTZ(MI, TypeIdx, NarrowTy);
1131 case TargetOpcode::G_CTPOP:
1132 return narrowScalarCTPOP(MI, TypeIdx, NarrowTy);
1133 default:
1134 return UnableToLegalize;
1135 }
1136
1137 Observer.changingInstr(MI);
1138 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1139 Observer.changedInstr(MI);
1140 return Legalized;
1141 case TargetOpcode::G_INTTOPTR:
1142 if (TypeIdx != 1)
1143 return UnableToLegalize;
1144
1145 Observer.changingInstr(MI);
1146 narrowScalarSrc(MI, NarrowTy, 1);
1147 Observer.changedInstr(MI);
1148 return Legalized;
1149 case TargetOpcode::G_PTRTOINT:
1150 if (TypeIdx != 0)
1151 return UnableToLegalize;
1152
1153 Observer.changingInstr(MI);
1154 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT);
1155 Observer.changedInstr(MI);
1156 return Legalized;
1157 case TargetOpcode::G_PHI: {
1158 // FIXME: add support for when SizeOp0 isn't an exact multiple of
1159 // NarrowSize.
1160 if (SizeOp0 % NarrowSize != 0)
1161 return UnableToLegalize;
1162
1163 unsigned NumParts = SizeOp0 / NarrowSize;
1164 SmallVector<Register, 2> DstRegs(NumParts);
1165 SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2);
1166 Observer.changingInstr(MI);
1167 for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
1168 MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB();
1169 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
1170 extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts,
1171 SrcRegs[i / 2]);
1172 }
1173 MachineBasicBlock &MBB = *MI.getParent();
1174 MIRBuilder.setInsertPt(MBB, MI);
1175 for (unsigned i = 0; i < NumParts; ++i) {
1176 DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy);
1177 MachineInstrBuilder MIB =
1178 MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]);
1179 for (unsigned j = 1; j < MI.getNumOperands(); j += 2)
1180 MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1));
1181 }
1182 MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI());
1183 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1184 Observer.changedInstr(MI);
1185 MI.eraseFromParent();
1186 return Legalized;
1187 }
1188 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1189 case TargetOpcode::G_INSERT_VECTOR_ELT: {
1190 if (TypeIdx != 2)
1191 return UnableToLegalize;
1192
1193 int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3;
1194 Observer.changingInstr(MI);
1195 narrowScalarSrc(MI, NarrowTy, OpIdx);
1196 Observer.changedInstr(MI);
1197 return Legalized;
1198 }
1199 case TargetOpcode::G_ICMP: {
1200 Register LHS = MI.getOperand(2).getReg();
1201 LLT SrcTy = MRI.getType(LHS);
1202 uint64_t SrcSize = SrcTy.getSizeInBits();
1203 CmpInst::Predicate Pred =
1204 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
1205
1206 // TODO: Handle the non-equality case for weird sizes.
1207 if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred))
1208 return UnableToLegalize;
1209
1210 LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover)
1211 SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs;
1212 if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs,
1213 LHSLeftoverRegs))
1214 return UnableToLegalize;
1215
1216 LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type.
1217 SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs;
1218 if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused,
1219 RHSPartRegs, RHSLeftoverRegs))
1220 return UnableToLegalize;
1221
1222 // We now have the LHS and RHS of the compare split into narrow-type
1223 // registers, plus potentially some leftover type.
1224 Register Dst = MI.getOperand(0).getReg();
1225 LLT ResTy = MRI.getType(Dst);
1226 if (ICmpInst::isEquality(Pred)) {
1227 // For each part on the LHS and RHS, keep track of the result of XOR-ing
1228 // them together. For each equal part, the result should be all 0s. For
1229 // each non-equal part, we'll get at least one 1.
1230 auto Zero = MIRBuilder.buildConstant(NarrowTy, 0);
1231 SmallVector<Register, 4> Xors;
1232 for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) {
1233 auto LHS = std::get<0>(LHSAndRHS);
1234 auto RHS = std::get<1>(LHSAndRHS);
1235 auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0);
1236 Xors.push_back(Xor);
1237 }
1238
1239 // Build a G_XOR for each leftover register. Each G_XOR must be widened
1240 // to the desired narrow type so that we can OR them together later.
1241 SmallVector<Register, 4> WidenedXors;
1242 for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) {
1243 auto LHS = std::get<0>(LHSAndRHS);
1244 auto RHS = std::get<1>(LHSAndRHS);
1245 auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0);
1246 LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor);
1247 buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors,
1248 /* PadStrategy = */ TargetOpcode::G_ZEXT);
1249 Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end());
1250 }
1251
1252 // Now, for each part we broke up, we know if they are equal/not equal
1253 // based off the G_XOR. We can OR these all together and compare against
1254 // 0 to get the result.
1255 assert(Xors.size() >= 2 && "Should have gotten at least two Xors?")(static_cast <bool> (Xors.size() >= 2 && "Should have gotten at least two Xors?"
) ? void (0) : __assert_fail ("Xors.size() >= 2 && \"Should have gotten at least two Xors?\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 1255, __extension__
__PRETTY_FUNCTION__))
;
1256 auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]);
1257 for (unsigned I = 2, E = Xors.size(); I < E; ++I)
1258 Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]);
1259 MIRBuilder.buildICmp(Pred, Dst, Or, Zero);
1260 } else {
1261 // TODO: Handle non-power-of-two types.
1262 assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?")(static_cast <bool> (LHSPartRegs.size() == 2 &&
"Expected exactly 2 LHS part regs?") ? void (0) : __assert_fail
("LHSPartRegs.size() == 2 && \"Expected exactly 2 LHS part regs?\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 1262, __extension__
__PRETTY_FUNCTION__))
;
1263 assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?")(static_cast <bool> (RHSPartRegs.size() == 2 &&
"Expected exactly 2 RHS part regs?") ? void (0) : __assert_fail
("RHSPartRegs.size() == 2 && \"Expected exactly 2 RHS part regs?\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 1263, __extension__
__PRETTY_FUNCTION__))
;
1264 Register LHSL = LHSPartRegs[0];
1265 Register LHSH = LHSPartRegs[1];
1266 Register RHSL = RHSPartRegs[0];
1267 Register RHSH = RHSPartRegs[1];
1268 MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH);
1269 MachineInstrBuilder CmpHEQ =
1270 MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH);
1271 MachineInstrBuilder CmpLU = MIRBuilder.buildICmp(
1272 ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL);
1273 MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH);
1274 }
1275 MI.eraseFromParent();
1276 return Legalized;
1277 }
1278 case TargetOpcode::G_SEXT_INREG: {
1279 if (TypeIdx != 0)
1280 return UnableToLegalize;
1281
1282 int64_t SizeInBits = MI.getOperand(2).getImm();
1283
1284 // So long as the new type has more bits than the bits we're extending we
1285 // don't need to break it apart.
1286 if (NarrowTy.getScalarSizeInBits() >= SizeInBits) {
1287 Observer.changingInstr(MI);
1288 // We don't lose any non-extension bits by truncating the src and
1289 // sign-extending the dst.
1290 MachineOperand &MO1 = MI.getOperand(1);
1291 auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1);
1292 MO1.setReg(TruncMIB.getReg(0));
1293
1294 MachineOperand &MO2 = MI.getOperand(0);
1295 Register DstExt = MRI.createGenericVirtualRegister(NarrowTy);
1296 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1297 MIRBuilder.buildSExt(MO2, DstExt);
1298 MO2.setReg(DstExt);
1299 Observer.changedInstr(MI);
1300 return Legalized;
1301 }
1302
1303 // Break it apart. Components below the extension point are unmodified. The
1304 // component containing the extension point becomes a narrower SEXT_INREG.
1305 // Components above it are ashr'd from the component containing the
1306 // extension point.
1307 if (SizeOp0 % NarrowSize != 0)
1308 return UnableToLegalize;
1309 int NumParts = SizeOp0 / NarrowSize;
1310
1311 // List the registers where the destination will be scattered.
1312 SmallVector<Register, 2> DstRegs;
1313 // List the registers where the source will be split.
1314 SmallVector<Register, 2> SrcRegs;
1315
1316 // Create all the temporary registers.
1317 for (int i = 0; i < NumParts; ++i) {
1318 Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
1319
1320 SrcRegs.push_back(SrcReg);
1321 }
1322
1323 // Explode the big arguments into smaller chunks.
1324 MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1));
1325
1326 Register AshrCstReg =
1327 MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1)
1328 .getReg(0);
1329 Register FullExtensionReg = 0;
1330 Register PartialExtensionReg = 0;
1331
1332 // Do the operation on each small part.
1333 for (int i = 0; i < NumParts; ++i) {
1334 if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits)
1335 DstRegs.push_back(SrcRegs[i]);
1336 else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) {
1337 assert(PartialExtensionReg &&(static_cast <bool> (PartialExtensionReg && "Expected to visit partial extension before full"
) ? void (0) : __assert_fail ("PartialExtensionReg && \"Expected to visit partial extension before full\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 1338, __extension__
__PRETTY_FUNCTION__))
1338 "Expected to visit partial extension before full")(static_cast <bool> (PartialExtensionReg && "Expected to visit partial extension before full"
) ? void (0) : __assert_fail ("PartialExtensionReg && \"Expected to visit partial extension before full\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 1338, __extension__
__PRETTY_FUNCTION__))
;
1339 if (FullExtensionReg) {
1340 DstRegs.push_back(FullExtensionReg);
1341 continue;
1342 }
1343 DstRegs.push_back(
1344 MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg)
1345 .getReg(0));
1346 FullExtensionReg = DstRegs.back();
1347 } else {
1348 DstRegs.push_back(
1349 MIRBuilder
1350 .buildInstr(
1351 TargetOpcode::G_SEXT_INREG, {NarrowTy},
1352 {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()})
1353 .getReg(0));
1354 PartialExtensionReg = DstRegs.back();
1355 }
1356 }
1357
1358 // Gather the destination registers into the final destination.
1359 Register DstReg = MI.getOperand(0).getReg();
1360 MIRBuilder.buildMerge(DstReg, DstRegs);
1361 MI.eraseFromParent();
1362 return Legalized;
1363 }
1364 case TargetOpcode::G_BSWAP:
1365 case TargetOpcode::G_BITREVERSE: {
1366 if (SizeOp0 % NarrowSize != 0)
1367 return UnableToLegalize;
1368
1369 Observer.changingInstr(MI);
1370 SmallVector<Register, 2> SrcRegs, DstRegs;
1371 unsigned NumParts = SizeOp0 / NarrowSize;
1372 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
1373
1374 for (unsigned i = 0; i < NumParts; ++i) {
1375 auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
1376 {SrcRegs[NumParts - 1 - i]});
1377 DstRegs.push_back(DstPart.getReg(0));
1378 }
1379
1380 MIRBuilder.buildMerge(MI.getOperand(0), DstRegs);
1381
1382 Observer.changedInstr(MI);
1383 MI.eraseFromParent();
1384 return Legalized;
1385 }
1386 case TargetOpcode::G_PTR_ADD:
1387 case TargetOpcode::G_PTRMASK: {
1388 if (TypeIdx != 1)
1389 return UnableToLegalize;
1390 Observer.changingInstr(MI);
1391 narrowScalarSrc(MI, NarrowTy, 2);
1392 Observer.changedInstr(MI);
1393 return Legalized;
1394 }
1395 case TargetOpcode::G_FPTOUI:
1396 case TargetOpcode::G_FPTOSI:
1397 return narrowScalarFPTOI(MI, TypeIdx, NarrowTy);
1398 case TargetOpcode::G_FPEXT:
1399 if (TypeIdx != 0)
1400 return UnableToLegalize;
1401 Observer.changingInstr(MI);
1402 narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT);
1403 Observer.changedInstr(MI);
1404 return Legalized;
1405 }
1406}
1407
1408Register LegalizerHelper::coerceToScalar(Register Val) {
1409 LLT Ty = MRI.getType(Val);
1410 if (Ty.isScalar())
1411 return Val;
1412
1413 const DataLayout &DL = MIRBuilder.getDataLayout();
1414 LLT NewTy = LLT::scalar(Ty.getSizeInBits());
1415 if (Ty.isPointer()) {
1416 if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
1417 return Register();
1418 return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0);
1419 }
1420
1421 Register NewVal = Val;
1422
1423 assert(Ty.isVector())(static_cast <bool> (Ty.isVector()) ? void (0) : __assert_fail
("Ty.isVector()", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 1423, __extension__ __PRETTY_FUNCTION__))
;
1424 LLT EltTy = Ty.getElementType();
1425 if (EltTy.isPointer())
1426 NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0);
1427 return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0);
1428}
1429
1430void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy,
1431 unsigned OpIdx, unsigned ExtOpcode) {
1432 MachineOperand &MO = MI.getOperand(OpIdx);
1433 auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO});
1434 MO.setReg(ExtB.getReg(0));
1435}
1436
1437void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy,
1438 unsigned OpIdx) {
1439 MachineOperand &MO = MI.getOperand(OpIdx);
1440 auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO);
1441 MO.setReg(ExtB.getReg(0));
1442}
1443
1444void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy,
1445 unsigned OpIdx, unsigned TruncOpcode) {
1446 MachineOperand &MO = MI.getOperand(OpIdx);
1447 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1448 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1449 MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt});
1450 MO.setReg(DstExt);
1451}
1452
1453void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy,
1454 unsigned OpIdx, unsigned ExtOpcode) {
1455 MachineOperand &MO = MI.getOperand(OpIdx);
1456 Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy);
1457 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1458 MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc});
1459 MO.setReg(DstTrunc);
1460}
1461
1462void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy,
1463 unsigned OpIdx) {
1464 MachineOperand &MO = MI.getOperand(OpIdx);
1465 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1466 Register Dst = MO.getReg();
1467 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
1468 MO.setReg(DstExt);
1469 MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt);
1470}
1471
1472void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy,
1473 unsigned OpIdx) {
1474 MachineOperand &MO = MI.getOperand(OpIdx);
1475 SmallVector<Register, 8> Regs;
1476 MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0));
1477}
1478
1479void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1480 MachineOperand &Op = MI.getOperand(OpIdx);
1481 Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0));
1482}
1483
1484void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) {
1485 MachineOperand &MO = MI.getOperand(OpIdx);
1486 Register CastDst = MRI.createGenericVirtualRegister(CastTy);
1487 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
1488 MIRBuilder.buildBitcast(MO, CastDst);
1489 MO.setReg(CastDst);
1490}
1491
1492LegalizerHelper::LegalizeResult
1493LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx,
1494 LLT WideTy) {
1495 if (TypeIdx != 1)
1496 return UnableToLegalize;
1497
1498 Register DstReg = MI.getOperand(0).getReg();
1499 LLT DstTy = MRI.getType(DstReg);
1500 if (DstTy.isVector())
1501 return UnableToLegalize;
1502
1503 Register Src1 = MI.getOperand(1).getReg();
1504 LLT SrcTy = MRI.getType(Src1);
1505 const int DstSize = DstTy.getSizeInBits();
1506 const int SrcSize = SrcTy.getSizeInBits();
1507 const int WideSize = WideTy.getSizeInBits();
1508 const int NumMerge = (DstSize + WideSize - 1) / WideSize;
1509
1510 unsigned NumOps = MI.getNumOperands();
1511 unsigned NumSrc = MI.getNumOperands() - 1;
1512 unsigned PartSize = DstTy.getSizeInBits() / NumSrc;
1513
1514 if (WideSize >= DstSize) {
1515 // Directly pack the bits in the target type.
1516 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1).getReg(0);
1517
1518 for (unsigned I = 2; I != NumOps; ++I) {
1519 const unsigned Offset = (I - 1) * PartSize;
1520
1521 Register SrcReg = MI.getOperand(I).getReg();
1522 assert(MRI.getType(SrcReg) == LLT::scalar(PartSize))(static_cast <bool> (MRI.getType(SrcReg) == LLT::scalar
(PartSize)) ? void (0) : __assert_fail ("MRI.getType(SrcReg) == LLT::scalar(PartSize)"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 1522, __extension__
__PRETTY_FUNCTION__))
;
1523
1524 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
1525
1526 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
1527 MRI.createGenericVirtualRegister(WideTy);
1528
1529 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
1530 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
1531 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
1532 ResultReg = NextResult;
1533 }
1534
1535 if (WideSize > DstSize)
1536 MIRBuilder.buildTrunc(DstReg, ResultReg);
1537 else if (DstTy.isPointer())
1538 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
1539
1540 MI.eraseFromParent();
1541 return Legalized;
1542 }
1543
1544 // Unmerge the original values to the GCD type, and recombine to the next
1545 // multiple greater than the original type.
1546 //
1547 // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6
1548 // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0
1549 // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1
1550 // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2
1551 // %10:_(s6) = G_MERGE_VALUES %4, %5, %6
1552 // %11:_(s6) = G_MERGE_VALUES %7, %8, %9
1553 // %12:_(s12) = G_MERGE_VALUES %10, %11
1554 //
1555 // Padding with undef if necessary:
1556 //
1557 // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6
1558 // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0
1559 // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1
1560 // %7:_(s2) = G_IMPLICIT_DEF
1561 // %8:_(s6) = G_MERGE_VALUES %3, %4, %5
1562 // %9:_(s6) = G_MERGE_VALUES %6, %7, %7
1563 // %10:_(s12) = G_MERGE_VALUES %8, %9
1564
1565 const int GCD = greatestCommonDivisor(SrcSize, WideSize);
1566 LLT GCDTy = LLT::scalar(GCD);
1567
1568 SmallVector<Register, 8> Parts;
1569 SmallVector<Register, 8> NewMergeRegs;
1570 SmallVector<Register, 8> Unmerges;
1571 LLT WideDstTy = LLT::scalar(NumMerge * WideSize);
1572
1573 // Decompose the original operands if they don't evenly divide.
1574 for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) {
1575 Register SrcReg = MO.getReg();
1576 if (GCD == SrcSize) {
1577 Unmerges.push_back(SrcReg);
1578 } else {
1579 auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg);
1580 for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J)
1581 Unmerges.push_back(Unmerge.getReg(J));
1582 }
1583 }
1584
1585 // Pad with undef to the next size that is a multiple of the requested size.
1586 if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) {
1587 Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0);
1588 for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I)
1589 Unmerges.push_back(UndefReg);
1590 }
1591
1592 const int PartsPerGCD = WideSize / GCD;
1593
1594 // Build merges of each piece.
1595 ArrayRef<Register> Slicer(Unmerges);
1596 for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) {
1597 auto Merge = MIRBuilder.buildMerge(WideTy, Slicer.take_front(PartsPerGCD));
1598 NewMergeRegs.push_back(Merge.getReg(0));
1599 }
1600
1601 // A truncate may be necessary if the requested type doesn't evenly divide the
1602 // original result type.
1603 if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) {
1604 MIRBuilder.buildMerge(DstReg, NewMergeRegs);
1605 } else {
1606 auto FinalMerge = MIRBuilder.buildMerge(WideDstTy, NewMergeRegs);
1607 MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0));
1608 }
1609
1610 MI.eraseFromParent();
1611 return Legalized;
1612}
1613
1614Register LegalizerHelper::widenWithUnmerge(LLT WideTy, Register OrigReg) {
1615 Register WideReg = MRI.createGenericVirtualRegister(WideTy);
1616 LLT OrigTy = MRI.getType(OrigReg);
1617 LLT LCMTy = getLCMType(WideTy, OrigTy);
1618
1619 const int NumMergeParts = LCMTy.getSizeInBits() / WideTy.getSizeInBits();
1620 const int NumUnmergeParts = LCMTy.getSizeInBits() / OrigTy.getSizeInBits();
1621
1622 Register UnmergeSrc = WideReg;
1623
1624 // Create a merge to the LCM type, padding with undef
1625 // %0:_(<3 x s32>) = G_FOO => <4 x s32>
1626 // =>
1627 // %1:_(<4 x s32>) = G_FOO
1628 // %2:_(<4 x s32>) = G_IMPLICIT_DEF
1629 // %3:_(<12 x s32>) = G_CONCAT_VECTORS %1, %2, %2
1630 // %0:_(<3 x s32>), %4:_, %5:_, %6:_ = G_UNMERGE_VALUES %3
1631 if (NumMergeParts > 1) {
1632 Register Undef = MIRBuilder.buildUndef(WideTy).getReg(0);
1633 SmallVector<Register, 8> MergeParts(NumMergeParts, Undef);
1634 MergeParts[0] = WideReg;
1635 UnmergeSrc = MIRBuilder.buildMerge(LCMTy, MergeParts).getReg(0);
1636 }
1637
1638 // Unmerge to the original register and pad with dead defs.
1639 SmallVector<Register, 8> UnmergeResults(NumUnmergeParts);
1640 UnmergeResults[0] = OrigReg;
1641 for (int I = 1; I != NumUnmergeParts; ++I)
1642 UnmergeResults[I] = MRI.createGenericVirtualRegister(OrigTy);
1643
1644 MIRBuilder.buildUnmerge(UnmergeResults, UnmergeSrc);
1645 return WideReg;
1646}
1647
1648LegalizerHelper::LegalizeResult
1649LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx,
1650 LLT WideTy) {
1651 if (TypeIdx != 0)
1652 return UnableToLegalize;
1653
1654 int NumDst = MI.getNumOperands() - 1;
1655 Register SrcReg = MI.getOperand(NumDst).getReg();
1656 LLT SrcTy = MRI.getType(SrcReg);
1657 if (SrcTy.isVector())
1658 return UnableToLegalize;
1659
1660 Register Dst0Reg = MI.getOperand(0).getReg();
1661 LLT DstTy = MRI.getType(Dst0Reg);
1662 if (!DstTy.isScalar())
1663 return UnableToLegalize;
1664
1665 if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) {
1666 if (SrcTy.isPointer()) {
1667 const DataLayout &DL = MIRBuilder.getDataLayout();
1668 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) {
1669 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "Not casting non-integral address space integer\n"
; } } while (false)
1670 dbgs() << "Not casting non-integral address space integer\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "Not casting non-integral address space integer\n"
; } } while (false)
;
1671 return UnableToLegalize;
1672 }
1673
1674 SrcTy = LLT::scalar(SrcTy.getSizeInBits());
1675 SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0);
1676 }
1677
1678 // Widen SrcTy to WideTy. This does not affect the result, but since the
1679 // user requested this size, it is probably better handled than SrcTy and
1680 // should reduce the total number of legalization artifacts.
1681 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1682 SrcTy = WideTy;
1683 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
1684 }
1685
1686 // Theres no unmerge type to target. Directly extract the bits from the
1687 // source type
1688 unsigned DstSize = DstTy.getSizeInBits();
1689
1690 MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
1691 for (int I = 1; I != NumDst; ++I) {
1692 auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I);
1693 auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt);
1694 MIRBuilder.buildTrunc(MI.getOperand(I), Shr);
1695 }
1696
1697 MI.eraseFromParent();
1698 return Legalized;
1699 }
1700
1701 // Extend the source to a wider type.
1702 LLT LCMTy = getLCMType(SrcTy, WideTy);
1703
1704 Register WideSrc = SrcReg;
1705 if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) {
1706 // TODO: If this is an integral address space, cast to integer and anyext.
1707 if (SrcTy.isPointer()) {
1708 LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "Widening pointer source types not implemented\n"
; } } while (false)
;
1709 return UnableToLegalize;
1710 }
1711
1712 WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0);
1713 }
1714
1715 auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc);
1716
1717 // Create a sequence of unmerges and merges to the original results. Since we
1718 // may have widened the source, we will need to pad the results with dead defs
1719 // to cover the source register.
1720 // e.g. widen s48 to s64:
1721 // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96)
1722 //
1723 // =>
1724 // %4:_(s192) = G_ANYEXT %0:_(s96)
1725 // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge
1726 // ; unpack to GCD type, with extra dead defs
1727 // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64)
1728 // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64)
1729 // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64)
1730 // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination
1731 // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination
1732 const LLT GCDTy = getGCDType(WideTy, DstTy);
1733 const int NumUnmerge = Unmerge->getNumOperands() - 1;
1734 const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits();
1735
1736 // Directly unmerge to the destination without going through a GCD type
1737 // if possible
1738 if (PartsPerRemerge == 1) {
1739 const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits();
1740
1741 for (int I = 0; I != NumUnmerge; ++I) {
1742 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
1743
1744 for (int J = 0; J != PartsPerUnmerge; ++J) {
1745 int Idx = I * PartsPerUnmerge + J;
1746 if (Idx < NumDst)
1747 MIB.addDef(MI.getOperand(Idx).getReg());
1748 else {
1749 // Create dead def for excess components.
1750 MIB.addDef(MRI.createGenericVirtualRegister(DstTy));
1751 }
1752 }
1753
1754 MIB.addUse(Unmerge.getReg(I));
1755 }
1756 } else {
1757 SmallVector<Register, 16> Parts;
1758 for (int J = 0; J != NumUnmerge; ++J)
1759 extractGCDType(Parts, GCDTy, Unmerge.getReg(J));
1760
1761 SmallVector<Register, 8> RemergeParts;
1762 for (int I = 0; I != NumDst; ++I) {
1763 for (int J = 0; J < PartsPerRemerge; ++J) {
1764 const int Idx = I * PartsPerRemerge + J;
1765 RemergeParts.emplace_back(Parts[Idx]);
1766 }
1767
1768 MIRBuilder.buildMerge(MI.getOperand(I).getReg(), RemergeParts);
1769 RemergeParts.clear();
1770 }
1771 }
1772
1773 MI.eraseFromParent();
1774 return Legalized;
1775}
1776
1777LegalizerHelper::LegalizeResult
1778LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx,
1779 LLT WideTy) {
1780 Register DstReg = MI.getOperand(0).getReg();
1781 Register SrcReg = MI.getOperand(1).getReg();
1782 LLT SrcTy = MRI.getType(SrcReg);
1783
1784 LLT DstTy = MRI.getType(DstReg);
1785 unsigned Offset = MI.getOperand(2).getImm();
1786
1787 if (TypeIdx == 0) {
1788 if (SrcTy.isVector() || DstTy.isVector())
1789 return UnableToLegalize;
1790
1791 SrcOp Src(SrcReg);
1792 if (SrcTy.isPointer()) {
1793 // Extracts from pointers can be handled only if they are really just
1794 // simple integers.
1795 const DataLayout &DL = MIRBuilder.getDataLayout();
1796 if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace()))
1797 return UnableToLegalize;
1798
1799 LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits());
1800 Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src);
1801 SrcTy = SrcAsIntTy;
1802 }
1803
1804 if (DstTy.isPointer())
1805 return UnableToLegalize;
1806
1807 if (Offset == 0) {
1808 // Avoid a shift in the degenerate case.
1809 MIRBuilder.buildTrunc(DstReg,
1810 MIRBuilder.buildAnyExtOrTrunc(WideTy, Src));
1811 MI.eraseFromParent();
1812 return Legalized;
1813 }
1814
1815 // Do a shift in the source type.
1816 LLT ShiftTy = SrcTy;
1817 if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) {
1818 Src = MIRBuilder.buildAnyExt(WideTy, Src);
1819 ShiftTy = WideTy;
1820 }
1821
1822 auto LShr = MIRBuilder.buildLShr(
1823 ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset));
1824 MIRBuilder.buildTrunc(DstReg, LShr);
1825 MI.eraseFromParent();
1826 return Legalized;
1827 }
1828
1829 if (SrcTy.isScalar()) {
1830 Observer.changingInstr(MI);
1831 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1832 Observer.changedInstr(MI);
1833 return Legalized;
1834 }
1835
1836 if (!SrcTy.isVector())
1837 return UnableToLegalize;
1838
1839 if (DstTy != SrcTy.getElementType())
1840 return UnableToLegalize;
1841
1842 if (Offset % SrcTy.getScalarSizeInBits() != 0)
1843 return UnableToLegalize;
1844
1845 Observer.changingInstr(MI);
1846 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1847
1848 MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) *
1849 Offset);
1850 widenScalarDst(MI, WideTy.getScalarType(), 0);
1851 Observer.changedInstr(MI);
1852 return Legalized;
1853}
1854
1855LegalizerHelper::LegalizeResult
1856LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx,
1857 LLT WideTy) {
1858 if (TypeIdx != 0 || WideTy.isVector())
1859 return UnableToLegalize;
1860 Observer.changingInstr(MI);
1861 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
1862 widenScalarDst(MI, WideTy);
1863 Observer.changedInstr(MI);
1864 return Legalized;
1865}
1866
1867LegalizerHelper::LegalizeResult
1868LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx,
1869 LLT WideTy) {
1870 if (TypeIdx == 1)
1871 return UnableToLegalize; // TODO
1872
1873 unsigned Opcode;
1874 unsigned ExtOpcode;
1875 Optional<Register> CarryIn = None;
1876 switch (MI.getOpcode()) {
1877 default:
1878 llvm_unreachable("Unexpected opcode!")::llvm::llvm_unreachable_internal("Unexpected opcode!", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 1878)
;
1879 case TargetOpcode::G_SADDO:
1880 Opcode = TargetOpcode::G_ADD;
1881 ExtOpcode = TargetOpcode::G_SEXT;
1882 break;
1883 case TargetOpcode::G_SSUBO:
1884 Opcode = TargetOpcode::G_SUB;
1885 ExtOpcode = TargetOpcode::G_SEXT;
1886 break;
1887 case TargetOpcode::G_UADDO:
1888 Opcode = TargetOpcode::G_ADD;
1889 ExtOpcode = TargetOpcode::G_ZEXT;
1890 break;
1891 case TargetOpcode::G_USUBO:
1892 Opcode = TargetOpcode::G_SUB;
1893 ExtOpcode = TargetOpcode::G_ZEXT;
1894 break;
1895 case TargetOpcode::G_SADDE:
1896 Opcode = TargetOpcode::G_UADDE;
1897 ExtOpcode = TargetOpcode::G_SEXT;
1898 CarryIn = MI.getOperand(4).getReg();
1899 break;
1900 case TargetOpcode::G_SSUBE:
1901 Opcode = TargetOpcode::G_USUBE;
1902 ExtOpcode = TargetOpcode::G_SEXT;
1903 CarryIn = MI.getOperand(4).getReg();
1904 break;
1905 case TargetOpcode::G_UADDE:
1906 Opcode = TargetOpcode::G_UADDE;
1907 ExtOpcode = TargetOpcode::G_ZEXT;
1908 CarryIn = MI.getOperand(4).getReg();
1909 break;
1910 case TargetOpcode::G_USUBE:
1911 Opcode = TargetOpcode::G_USUBE;
1912 ExtOpcode = TargetOpcode::G_ZEXT;
1913 CarryIn = MI.getOperand(4).getReg();
1914 break;
1915 }
1916
1917 auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)});
1918 auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)});
1919 // Do the arithmetic in the larger type.
1920 Register NewOp;
1921 if (CarryIn) {
1922 LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg());
1923 NewOp = MIRBuilder
1924 .buildInstr(Opcode, {WideTy, CarryOutTy},
1925 {LHSExt, RHSExt, *CarryIn})
1926 .getReg(0);
1927 } else {
1928 NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0);
1929 }
1930 LLT OrigTy = MRI.getType(MI.getOperand(0).getReg());
1931 auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp);
1932 auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp});
1933 // There is no overflow if the ExtOp is the same as NewOp.
1934 MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp);
1935 // Now trunc the NewOp to the original result.
1936 MIRBuilder.buildTrunc(MI.getOperand(0), NewOp);
1937 MI.eraseFromParent();
1938 return Legalized;
1939}
1940
1941LegalizerHelper::LegalizeResult
1942LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx,
1943 LLT WideTy) {
1944 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT ||
1945 MI.getOpcode() == TargetOpcode::G_SSUBSAT ||
1946 MI.getOpcode() == TargetOpcode::G_SSHLSAT;
1947 bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT ||
1948 MI.getOpcode() == TargetOpcode::G_USHLSAT;
1949 // We can convert this to:
1950 // 1. Any extend iN to iM
1951 // 2. SHL by M-N
1952 // 3. [US][ADD|SUB|SHL]SAT
1953 // 4. L/ASHR by M-N
1954 //
1955 // It may be more efficient to lower this to a min and a max operation in
1956 // the higher precision arithmetic if the promoted operation isn't legal,
1957 // but this decision is up to the target's lowering request.
1958 Register DstReg = MI.getOperand(0).getReg();
1959
1960 unsigned NewBits = WideTy.getScalarSizeInBits();
1961 unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits();
1962
1963 // Shifts must zero-extend the RHS to preserve the unsigned quantity, and
1964 // must not left shift the RHS to preserve the shift amount.
1965 auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1));
1966 auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2))
1967 : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2));
1968 auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount);
1969 auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK);
1970 auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK);
1971
1972 auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy},
1973 {ShiftL, ShiftR}, MI.getFlags());
1974
1975 // Use a shift that will preserve the number of sign bits when the trunc is
1976 // folded away.
1977 auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK)
1978 : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK);
1979
1980 MIRBuilder.buildTrunc(DstReg, Result);
1981 MI.eraseFromParent();
1982 return Legalized;
1983}
1984
1985LegalizerHelper::LegalizeResult
1986LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx,
1987 LLT WideTy) {
1988 if (TypeIdx == 1)
1989 return UnableToLegalize;
1990
1991 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO;
1992 Register Result = MI.getOperand(0).getReg();
1993 Register OriginalOverflow = MI.getOperand(1).getReg();
1994 Register LHS = MI.getOperand(2).getReg();
1995 Register RHS = MI.getOperand(3).getReg();
1996 LLT SrcTy = MRI.getType(LHS);
1997 LLT OverflowTy = MRI.getType(OriginalOverflow);
1998 unsigned SrcBitWidth = SrcTy.getScalarSizeInBits();
1999
2000 // To determine if the result overflowed in the larger type, we extend the
2001 // input to the larger type, do the multiply (checking if it overflows),
2002 // then also check the high bits of the result to see if overflow happened
2003 // there.
2004 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2005 auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS});
2006 auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS});
2007
2008 auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy},
2009 {LeftOperand, RightOperand});
2010 auto Mul = Mulo->getOperand(0);
2011 MIRBuilder.buildTrunc(Result, Mul);
2012
2013 MachineInstrBuilder ExtResult;
2014 // Overflow occurred if it occurred in the larger type, or if the high part
2015 // of the result does not zero/sign-extend the low part. Check this second
2016 // possibility first.
2017 if (IsSigned) {
2018 // For signed, overflow occurred when the high part does not sign-extend
2019 // the low part.
2020 ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth);
2021 } else {
2022 // Unsigned overflow occurred when the high part does not zero-extend the
2023 // low part.
2024 ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth);
2025 }
2026
2027 // Multiplication cannot overflow if the WideTy is >= 2 * original width,
2028 // so we don't need to check the overflow result of larger type Mulo.
2029 if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) {
2030 auto Overflow =
2031 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult);
2032 // Finally check if the multiplication in the larger type itself overflowed.
2033 MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow);
2034 } else {
2035 MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult);
2036 }
2037 MI.eraseFromParent();
2038 return Legalized;
2039}
2040
2041LegalizerHelper::LegalizeResult
2042LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) {
2043 switch (MI.getOpcode()) {
2044 default:
2045 return UnableToLegalize;
2046 case TargetOpcode::G_ATOMICRMW_XCHG:
2047 case TargetOpcode::G_ATOMICRMW_ADD:
2048 case TargetOpcode::G_ATOMICRMW_SUB:
2049 case TargetOpcode::G_ATOMICRMW_AND:
2050 case TargetOpcode::G_ATOMICRMW_OR:
2051 case TargetOpcode::G_ATOMICRMW_XOR:
2052 case TargetOpcode::G_ATOMICRMW_MIN:
2053 case TargetOpcode::G_ATOMICRMW_MAX:
2054 case TargetOpcode::G_ATOMICRMW_UMIN:
2055 case TargetOpcode::G_ATOMICRMW_UMAX:
2056 assert(TypeIdx == 0 && "atomicrmw with second scalar type")(static_cast <bool> (TypeIdx == 0 && "atomicrmw with second scalar type"
) ? void (0) : __assert_fail ("TypeIdx == 0 && \"atomicrmw with second scalar type\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 2056, __extension__
__PRETTY_FUNCTION__))
;
2057 Observer.changingInstr(MI);
2058 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2059 widenScalarDst(MI, WideTy, 0);
2060 Observer.changedInstr(MI);
2061 return Legalized;
2062 case TargetOpcode::G_ATOMIC_CMPXCHG:
2063 assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type")(static_cast <bool> (TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"
) ? void (0) : __assert_fail ("TypeIdx == 0 && \"G_ATOMIC_CMPXCHG with second scalar type\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 2063, __extension__
__PRETTY_FUNCTION__))
;
2064 Observer.changingInstr(MI);
2065 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2066 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2067 widenScalarDst(MI, WideTy, 0);
2068 Observer.changedInstr(MI);
2069 return Legalized;
2070 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS:
2071 if (TypeIdx == 0) {
2072 Observer.changingInstr(MI);
2073 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2074 widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT);
2075 widenScalarDst(MI, WideTy, 0);
2076 Observer.changedInstr(MI);
2077 return Legalized;
2078 }
2079 assert(TypeIdx == 1 &&(static_cast <bool> (TypeIdx == 1 && "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"
) ? void (0) : __assert_fail ("TypeIdx == 1 && \"G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 2080, __extension__
__PRETTY_FUNCTION__))
2080 "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type")(static_cast <bool> (TypeIdx == 1 && "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"
) ? void (0) : __assert_fail ("TypeIdx == 1 && \"G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 2080, __extension__
__PRETTY_FUNCTION__))
;
2081 Observer.changingInstr(MI);
2082 widenScalarDst(MI, WideTy, 1);
2083 Observer.changedInstr(MI);
2084 return Legalized;
2085 case TargetOpcode::G_EXTRACT:
2086 return widenScalarExtract(MI, TypeIdx, WideTy);
2087 case TargetOpcode::G_INSERT:
2088 return widenScalarInsert(MI, TypeIdx, WideTy);
2089 case TargetOpcode::G_MERGE_VALUES:
2090 return widenScalarMergeValues(MI, TypeIdx, WideTy);
2091 case TargetOpcode::G_UNMERGE_VALUES:
2092 return widenScalarUnmergeValues(MI, TypeIdx, WideTy);
2093 case TargetOpcode::G_SADDO:
2094 case TargetOpcode::G_SSUBO:
2095 case TargetOpcode::G_UADDO:
2096 case TargetOpcode::G_USUBO:
2097 case TargetOpcode::G_SADDE:
2098 case TargetOpcode::G_SSUBE:
2099 case TargetOpcode::G_UADDE:
2100 case TargetOpcode::G_USUBE:
2101 return widenScalarAddSubOverflow(MI, TypeIdx, WideTy);
2102 case TargetOpcode::G_UMULO:
2103 case TargetOpcode::G_SMULO:
2104 return widenScalarMulo(MI, TypeIdx, WideTy);
2105 case TargetOpcode::G_SADDSAT:
2106 case TargetOpcode::G_SSUBSAT:
2107 case TargetOpcode::G_SSHLSAT:
2108 case TargetOpcode::G_UADDSAT:
2109 case TargetOpcode::G_USUBSAT:
2110 case TargetOpcode::G_USHLSAT:
2111 return widenScalarAddSubShlSat(MI, TypeIdx, WideTy);
2112 case TargetOpcode::G_CTTZ:
2113 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
2114 case TargetOpcode::G_CTLZ:
2115 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
2116 case TargetOpcode::G_CTPOP: {
2117 if (TypeIdx == 0) {
2118 Observer.changingInstr(MI);
2119 widenScalarDst(MI, WideTy, 0);
2120 Observer.changedInstr(MI);
2121 return Legalized;
2122 }
2123
2124 Register SrcReg = MI.getOperand(1).getReg();
2125
2126 // First extend the input.
2127 unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ ||
2128 MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF
2129 ? TargetOpcode::G_ANYEXT
2130 : TargetOpcode::G_ZEXT;
2131 auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg});
2132 LLT CurTy = MRI.getType(SrcReg);
2133 unsigned NewOpc = MI.getOpcode();
2134 if (NewOpc == TargetOpcode::G_CTTZ) {
2135 // The count is the same in the larger type except if the original
2136 // value was zero. This can be handled by setting the bit just off
2137 // the top of the original type.
2138 auto TopBit =
2139 APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits());
2140 MIBSrc = MIRBuilder.buildOr(
2141 WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit));
2142 // Now we know the operand is non-zero, use the more relaxed opcode.
2143 NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF;
2144 }
2145
2146 // Perform the operation at the larger size.
2147 auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc});
2148 // This is already the correct result for CTPOP and CTTZs
2149 if (MI.getOpcode() == TargetOpcode::G_CTLZ ||
2150 MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) {
2151 // The correct result is NewOp - (Difference in widety and current ty).
2152 unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits();
2153 MIBNewOp = MIRBuilder.buildSub(
2154 WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff));
2155 }
2156
2157 MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp);
2158 MI.eraseFromParent();
2159 return Legalized;
2160 }
2161 case TargetOpcode::G_BSWAP: {
2162 Observer.changingInstr(MI);
2163 Register DstReg = MI.getOperand(0).getReg();
2164
2165 Register ShrReg = MRI.createGenericVirtualRegister(WideTy);
2166 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2167 Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy);
2168 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2169
2170 MI.getOperand(0).setReg(DstExt);
2171
2172 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2173
2174 LLT Ty = MRI.getType(DstReg);
2175 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2176 MIRBuilder.buildConstant(ShiftAmtReg, DiffBits);
2177 MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg);
2178
2179 MIRBuilder.buildTrunc(DstReg, ShrReg);
2180 Observer.changedInstr(MI);
2181 return Legalized;
2182 }
2183 case TargetOpcode::G_BITREVERSE: {
2184 Observer.changingInstr(MI);
2185
2186 Register DstReg = MI.getOperand(0).getReg();
2187 LLT Ty = MRI.getType(DstReg);
2188 unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits();
2189
2190 Register DstExt = MRI.createGenericVirtualRegister(WideTy);
2191 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2192 MI.getOperand(0).setReg(DstExt);
2193 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
2194
2195 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits);
2196 auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt);
2197 MIRBuilder.buildTrunc(DstReg, Shift);
2198 Observer.changedInstr(MI);
2199 return Legalized;
2200 }
2201 case TargetOpcode::G_FREEZE:
2202 Observer.changingInstr(MI);
2203 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2204 widenScalarDst(MI, WideTy);
2205 Observer.changedInstr(MI);
2206 return Legalized;
2207
2208 case TargetOpcode::G_ABS:
2209 Observer.changingInstr(MI);
2210 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2211 widenScalarDst(MI, WideTy);
2212 Observer.changedInstr(MI);
2213 return Legalized;
2214
2215 case TargetOpcode::G_ADD:
2216 case TargetOpcode::G_AND:
2217 case TargetOpcode::G_MUL:
2218 case TargetOpcode::G_OR:
2219 case TargetOpcode::G_XOR:
2220 case TargetOpcode::G_SUB:
2221 // Perform operation at larger width (any extension is fines here, high bits
2222 // don't affect the result) and then truncate the result back to the
2223 // original type.
2224 Observer.changingInstr(MI);
2225 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2226 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2227 widenScalarDst(MI, WideTy);
2228 Observer.changedInstr(MI);
2229 return Legalized;
2230
2231 case TargetOpcode::G_SBFX:
2232 case TargetOpcode::G_UBFX:
2233 Observer.changingInstr(MI);
2234
2235 if (TypeIdx == 0) {
2236 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2237 widenScalarDst(MI, WideTy);
2238 } else {
2239 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2240 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2241 }
2242
2243 Observer.changedInstr(MI);
2244 return Legalized;
2245
2246 case TargetOpcode::G_SHL:
2247 Observer.changingInstr(MI);
2248
2249 if (TypeIdx == 0) {
2250 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2251 widenScalarDst(MI, WideTy);
2252 } else {
2253 assert(TypeIdx == 1)(static_cast <bool> (TypeIdx == 1) ? void (0) : __assert_fail
("TypeIdx == 1", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 2253, __extension__ __PRETTY_FUNCTION__))
;
2254 // The "number of bits to shift" operand must preserve its value as an
2255 // unsigned integer:
2256 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2257 }
2258
2259 Observer.changedInstr(MI);
2260 return Legalized;
2261
2262 case TargetOpcode::G_SDIV:
2263 case TargetOpcode::G_SREM:
2264 case TargetOpcode::G_SMIN:
2265 case TargetOpcode::G_SMAX:
2266 Observer.changingInstr(MI);
2267 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2268 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2269 widenScalarDst(MI, WideTy);
2270 Observer.changedInstr(MI);
2271 return Legalized;
2272
2273 case TargetOpcode::G_SDIVREM:
2274 Observer.changingInstr(MI);
2275 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2276 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2277 widenScalarDst(MI, WideTy);
2278 widenScalarDst(MI, WideTy, 1);
2279 Observer.changedInstr(MI);
2280 return Legalized;
2281
2282 case TargetOpcode::G_ASHR:
2283 case TargetOpcode::G_LSHR:
2284 Observer.changingInstr(MI);
2285
2286 if (TypeIdx == 0) {
2287 unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ?
2288 TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
2289
2290 widenScalarSrc(MI, WideTy, 1, CvtOp);
2291 widenScalarDst(MI, WideTy);
2292 } else {
2293 assert(TypeIdx == 1)(static_cast <bool> (TypeIdx == 1) ? void (0) : __assert_fail
("TypeIdx == 1", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 2293, __extension__ __PRETTY_FUNCTION__))
;
2294 // The "number of bits to shift" operand must preserve its value as an
2295 // unsigned integer:
2296 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2297 }
2298
2299 Observer.changedInstr(MI);
2300 return Legalized;
2301 case TargetOpcode::G_UDIV:
2302 case TargetOpcode::G_UREM:
2303 case TargetOpcode::G_UMIN:
2304 case TargetOpcode::G_UMAX:
2305 Observer.changingInstr(MI);
2306 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2307 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2308 widenScalarDst(MI, WideTy);
2309 Observer.changedInstr(MI);
2310 return Legalized;
2311
2312 case TargetOpcode::G_UDIVREM:
2313 Observer.changingInstr(MI);
2314 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2315 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT);
2316 widenScalarDst(MI, WideTy);
2317 widenScalarDst(MI, WideTy, 1);
2318 Observer.changedInstr(MI);
2319 return Legalized;
2320
2321 case TargetOpcode::G_SELECT:
2322 Observer.changingInstr(MI);
2323 if (TypeIdx == 0) {
2324 // Perform operation at larger width (any extension is fine here, high
2325 // bits don't affect the result) and then truncate the result back to the
2326 // original type.
2327 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2328 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT);
2329 widenScalarDst(MI, WideTy);
2330 } else {
2331 bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector();
2332 // Explicit extension is required here since high bits affect the result.
2333 widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false));
2334 }
2335 Observer.changedInstr(MI);
2336 return Legalized;
2337
2338 case TargetOpcode::G_FPTOSI:
2339 case TargetOpcode::G_FPTOUI:
2340 Observer.changingInstr(MI);
2341
2342 if (TypeIdx == 0)
2343 widenScalarDst(MI, WideTy);
2344 else
2345 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2346
2347 Observer.changedInstr(MI);
2348 return Legalized;
2349 case TargetOpcode::G_SITOFP:
2350 Observer.changingInstr(MI);
2351
2352 if (TypeIdx == 0)
2353 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2354 else
2355 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT);
2356
2357 Observer.changedInstr(MI);
2358 return Legalized;
2359 case TargetOpcode::G_UITOFP:
2360 Observer.changingInstr(MI);
2361
2362 if (TypeIdx == 0)
2363 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2364 else
2365 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2366
2367 Observer.changedInstr(MI);
2368 return Legalized;
2369 case TargetOpcode::G_LOAD:
2370 case TargetOpcode::G_SEXTLOAD:
2371 case TargetOpcode::G_ZEXTLOAD:
2372 Observer.changingInstr(MI);
2373 widenScalarDst(MI, WideTy);
2374 Observer.changedInstr(MI);
2375 return Legalized;
2376
2377 case TargetOpcode::G_STORE: {
2378 if (TypeIdx != 0)
2379 return UnableToLegalize;
2380
2381 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2382 if (!Ty.isScalar())
2383 return UnableToLegalize;
2384
2385 Observer.changingInstr(MI);
2386
2387 unsigned ExtType = Ty.getScalarSizeInBits() == 1 ?
2388 TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT;
2389 widenScalarSrc(MI, WideTy, 0, ExtType);
2390
2391 Observer.changedInstr(MI);
2392 return Legalized;
2393 }
2394 case TargetOpcode::G_CONSTANT: {
2395 MachineOperand &SrcMO = MI.getOperand(1);
2396 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2397 unsigned ExtOpc = LI.getExtOpcodeForWideningConstant(
2398 MRI.getType(MI.getOperand(0).getReg()));
2399 assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT ||(static_cast <bool> ((ExtOpc == TargetOpcode::G_ZEXT ||
ExtOpc == TargetOpcode::G_SEXT || ExtOpc == TargetOpcode::G_ANYEXT
) && "Illegal Extend") ? void (0) : __assert_fail ("(ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || ExtOpc == TargetOpcode::G_ANYEXT) && \"Illegal Extend\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 2401, __extension__
__PRETTY_FUNCTION__))
2400 ExtOpc == TargetOpcode::G_ANYEXT) &&(static_cast <bool> ((ExtOpc == TargetOpcode::G_ZEXT ||
ExtOpc == TargetOpcode::G_SEXT || ExtOpc == TargetOpcode::G_ANYEXT
) && "Illegal Extend") ? void (0) : __assert_fail ("(ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || ExtOpc == TargetOpcode::G_ANYEXT) && \"Illegal Extend\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 2401, __extension__
__PRETTY_FUNCTION__))
2401 "Illegal Extend")(static_cast <bool> ((ExtOpc == TargetOpcode::G_ZEXT ||
ExtOpc == TargetOpcode::G_SEXT || ExtOpc == TargetOpcode::G_ANYEXT
) && "Illegal Extend") ? void (0) : __assert_fail ("(ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || ExtOpc == TargetOpcode::G_ANYEXT) && \"Illegal Extend\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 2401, __extension__
__PRETTY_FUNCTION__))
;
2402 const APInt &SrcVal = SrcMO.getCImm()->getValue();
2403 const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT)
2404 ? SrcVal.sext(WideTy.getSizeInBits())
2405 : SrcVal.zext(WideTy.getSizeInBits());
2406 Observer.changingInstr(MI);
2407 SrcMO.setCImm(ConstantInt::get(Ctx, Val));
2408
2409 widenScalarDst(MI, WideTy);
2410 Observer.changedInstr(MI);
2411 return Legalized;
2412 }
2413 case TargetOpcode::G_FCONSTANT: {
2414 MachineOperand &SrcMO = MI.getOperand(1);
2415 LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
2416 APFloat Val = SrcMO.getFPImm()->getValueAPF();
2417 bool LosesInfo;
2418 switch (WideTy.getSizeInBits()) {
2419 case 32:
2420 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
2421 &LosesInfo);
2422 break;
2423 case 64:
2424 Val.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
2425 &LosesInfo);
2426 break;
2427 default:
2428 return UnableToLegalize;
2429 }
2430
2431 assert(!LosesInfo && "extend should always be lossless")(static_cast <bool> (!LosesInfo && "extend should always be lossless"
) ? void (0) : __assert_fail ("!LosesInfo && \"extend should always be lossless\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 2431, __extension__
__PRETTY_FUNCTION__))
;
2432
2433 Observer.changingInstr(MI);
2434 SrcMO.setFPImm(ConstantFP::get(Ctx, Val));
2435
2436 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2437 Observer.changedInstr(MI);
2438 return Legalized;
2439 }
2440 case TargetOpcode::G_IMPLICIT_DEF: {
2441 Observer.changingInstr(MI);
2442 widenScalarDst(MI, WideTy);
2443 Observer.changedInstr(MI);
2444 return Legalized;
2445 }
2446 case TargetOpcode::G_BRCOND:
2447 Observer.changingInstr(MI);
2448 widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false));
2449 Observer.changedInstr(MI);
2450 return Legalized;
2451
2452 case TargetOpcode::G_FCMP:
2453 Observer.changingInstr(MI);
2454 if (TypeIdx == 0)
2455 widenScalarDst(MI, WideTy);
2456 else {
2457 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT);
2458 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT);
2459 }
2460 Observer.changedInstr(MI);
2461 return Legalized;
2462
2463 case TargetOpcode::G_ICMP:
2464 Observer.changingInstr(MI);
2465 if (TypeIdx == 0)
2466 widenScalarDst(MI, WideTy);
2467 else {
2468 unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>(
2469 MI.getOperand(1).getPredicate()))
2470 ? TargetOpcode::G_SEXT
2471 : TargetOpcode::G_ZEXT;
2472 widenScalarSrc(MI, WideTy, 2, ExtOpcode);
2473 widenScalarSrc(MI, WideTy, 3, ExtOpcode);
2474 }
2475 Observer.changedInstr(MI);
2476 return Legalized;
2477
2478 case TargetOpcode::G_PTR_ADD:
2479 assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD")(static_cast <bool> (TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"
) ? void (0) : __assert_fail ("TypeIdx == 1 && \"unable to legalize pointer of G_PTR_ADD\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 2479, __extension__
__PRETTY_FUNCTION__))
;
2480 Observer.changingInstr(MI);
2481 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2482 Observer.changedInstr(MI);
2483 return Legalized;
2484
2485 case TargetOpcode::G_PHI: {
2486 assert(TypeIdx == 0 && "Expecting only Idx 0")(static_cast <bool> (TypeIdx == 0 && "Expecting only Idx 0"
) ? void (0) : __assert_fail ("TypeIdx == 0 && \"Expecting only Idx 0\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 2486, __extension__
__PRETTY_FUNCTION__))
;
2487
2488 Observer.changingInstr(MI);
2489 for (unsigned I = 1; I < MI.getNumOperands(); I += 2) {
2490 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
2491 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
2492 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT);
2493 }
2494
2495 MachineBasicBlock &MBB = *MI.getParent();
2496 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
2497 widenScalarDst(MI, WideTy);
2498 Observer.changedInstr(MI);
2499 return Legalized;
2500 }
2501 case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
2502 if (TypeIdx == 0) {
2503 Register VecReg = MI.getOperand(1).getReg();
2504 LLT VecTy = MRI.getType(VecReg);
2505 Observer.changingInstr(MI);
2506
2507 widenScalarSrc(
2508 MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1,
2509 TargetOpcode::G_ANYEXT);
2510
2511 widenScalarDst(MI, WideTy, 0);
2512 Observer.changedInstr(MI);
2513 return Legalized;
2514 }
2515
2516 if (TypeIdx != 2)
2517 return UnableToLegalize;
2518 Observer.changingInstr(MI);
2519 // TODO: Probably should be zext
2520 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT);
2521 Observer.changedInstr(MI);
2522 return Legalized;
2523 }
2524 case TargetOpcode::G_INSERT_VECTOR_ELT: {
2525 if (TypeIdx == 1) {
2526 Observer.changingInstr(MI);
2527
2528 Register VecReg = MI.getOperand(1).getReg();
2529 LLT VecTy = MRI.getType(VecReg);
2530 LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy);
2531
2532 widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT);
2533 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT);
2534 widenScalarDst(MI, WideVecTy, 0);
2535 Observer.changedInstr(MI);
2536 return Legalized;
2537 }
2538
2539 if (TypeIdx == 2) {
2540 Observer.changingInstr(MI);
2541 // TODO: Probably should be zext
2542 widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT);
2543 Observer.changedInstr(MI);
2544 return Legalized;
2545 }
2546
2547 return UnableToLegalize;
2548 }
2549 case TargetOpcode::G_FADD:
2550 case TargetOpcode::G_FMUL:
2551 case TargetOpcode::G_FSUB:
2552 case TargetOpcode::G_FMA:
2553 case TargetOpcode::G_FMAD:
2554 case TargetOpcode::G_FNEG:
2555 case TargetOpcode::G_FABS:
2556 case TargetOpcode::G_FCANONICALIZE:
2557 case TargetOpcode::G_FMINNUM:
2558 case TargetOpcode::G_FMAXNUM:
2559 case TargetOpcode::G_FMINNUM_IEEE:
2560 case TargetOpcode::G_FMAXNUM_IEEE:
2561 case TargetOpcode::G_FMINIMUM:
2562 case TargetOpcode::G_FMAXIMUM:
2563 case TargetOpcode::G_FDIV:
2564 case TargetOpcode::G_FREM:
2565 case TargetOpcode::G_FCEIL:
2566 case TargetOpcode::G_FFLOOR:
2567 case TargetOpcode::G_FCOS:
2568 case TargetOpcode::G_FSIN:
2569 case TargetOpcode::G_FLOG10:
2570 case TargetOpcode::G_FLOG:
2571 case TargetOpcode::G_FLOG2:
2572 case TargetOpcode::G_FRINT:
2573 case TargetOpcode::G_FNEARBYINT:
2574 case TargetOpcode::G_FSQRT:
2575 case TargetOpcode::G_FEXP:
2576 case TargetOpcode::G_FEXP2:
2577 case TargetOpcode::G_FPOW:
2578 case TargetOpcode::G_INTRINSIC_TRUNC:
2579 case TargetOpcode::G_INTRINSIC_ROUND:
2580 case TargetOpcode::G_INTRINSIC_ROUNDEVEN:
2581 assert(TypeIdx == 0)(static_cast <bool> (TypeIdx == 0) ? void (0) : __assert_fail
("TypeIdx == 0", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 2581, __extension__ __PRETTY_FUNCTION__))
;
2582 Observer.changingInstr(MI);
2583
2584 for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I)
2585 widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT);
2586
2587 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2588 Observer.changedInstr(MI);
2589 return Legalized;
2590 case TargetOpcode::G_FPOWI: {
2591 if (TypeIdx != 0)
2592 return UnableToLegalize;
2593 Observer.changingInstr(MI);
2594 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT);
2595 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC);
2596 Observer.changedInstr(MI);
2597 return Legalized;
2598 }
2599 case TargetOpcode::G_INTTOPTR:
2600 if (TypeIdx != 1)
2601 return UnableToLegalize;
2602
2603 Observer.changingInstr(MI);
2604 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT);
2605 Observer.changedInstr(MI);
2606 return Legalized;
2607 case TargetOpcode::G_PTRTOINT:
2608 if (TypeIdx != 0)
2609 return UnableToLegalize;
2610
2611 Observer.changingInstr(MI);
2612 widenScalarDst(MI, WideTy, 0);
2613 Observer.changedInstr(MI);
2614 return Legalized;
2615 case TargetOpcode::G_BUILD_VECTOR: {
2616 Observer.changingInstr(MI);
2617
2618 const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType();
2619 for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
2620 widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT);
2621
2622 // Avoid changing the result vector type if the source element type was
2623 // requested.
2624 if (TypeIdx == 1) {
2625 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC));
2626 } else {
2627 widenScalarDst(MI, WideTy, 0);
2628 }
2629
2630 Observer.changedInstr(MI);
2631 return Legalized;
2632 }
2633 case TargetOpcode::G_SEXT_INREG:
2634 if (TypeIdx != 0)
2635 return UnableToLegalize;
2636
2637 Observer.changingInstr(MI);
2638 widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT);
2639 widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC);
2640 Observer.changedInstr(MI);
2641 return Legalized;
2642 case TargetOpcode::G_PTRMASK: {
2643 if (TypeIdx != 1)
2644 return UnableToLegalize;
2645 Observer.changingInstr(MI);
2646 widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT);
2647 Observer.changedInstr(MI);
2648 return Legalized;
2649 }
2650 }
2651}
2652
2653static void getUnmergePieces(SmallVectorImpl<Register> &Pieces,
2654 MachineIRBuilder &B, Register Src, LLT Ty) {
2655 auto Unmerge = B.buildUnmerge(Ty, Src);
2656 for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
2657 Pieces.push_back(Unmerge.getReg(I));
2658}
2659
2660LegalizerHelper::LegalizeResult
2661LegalizerHelper::lowerBitcast(MachineInstr &MI) {
2662 Register Dst = MI.getOperand(0).getReg();
2663 Register Src = MI.getOperand(1).getReg();
2664 LLT DstTy = MRI.getType(Dst);
2665 LLT SrcTy = MRI.getType(Src);
2666
2667 if (SrcTy.isVector()) {
2668 LLT SrcEltTy = SrcTy.getElementType();
2669 SmallVector<Register, 8> SrcRegs;
2670
2671 if (DstTy.isVector()) {
2672 int NumDstElt = DstTy.getNumElements();
2673 int NumSrcElt = SrcTy.getNumElements();
2674
2675 LLT DstEltTy = DstTy.getElementType();
2676 LLT DstCastTy = DstEltTy; // Intermediate bitcast result type
2677 LLT SrcPartTy = SrcEltTy; // Original unmerge result type.
2678
2679 // If there's an element size mismatch, insert intermediate casts to match
2680 // the result element type.
2681 if (NumSrcElt < NumDstElt) { // Source element type is larger.
2682 // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>)
2683 //
2684 // =>
2685 //
2686 // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0
2687 // %3:_(<2 x s8>) = G_BITCAST %2
2688 // %4:_(<2 x s8>) = G_BITCAST %3
2689 // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4
2690 DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy);
2691 SrcPartTy = SrcEltTy;
2692 } else if (NumSrcElt > NumDstElt) { // Source element type is smaller.
2693 //
2694 // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>)
2695 //
2696 // =>
2697 //
2698 // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0
2699 // %3:_(s16) = G_BITCAST %2
2700 // %4:_(s16) = G_BITCAST %3
2701 // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4
2702 SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy);
2703 DstCastTy = DstEltTy;
2704 }
2705
2706 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy);
2707 for (Register &SrcReg : SrcRegs)
2708 SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0);
2709 } else
2710 getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy);
2711
2712 MIRBuilder.buildMerge(Dst, SrcRegs);
2713 MI.eraseFromParent();
2714 return Legalized;
2715 }
2716
2717 if (DstTy.isVector()) {
2718 SmallVector<Register, 8> SrcRegs;
2719 getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType());
2720 MIRBuilder.buildMerge(Dst, SrcRegs);
2721 MI.eraseFromParent();
2722 return Legalized;
2723 }
2724
2725 return UnableToLegalize;
2726}
2727
2728/// Figure out the bit offset into a register when coercing a vector index for
2729/// the wide element type. This is only for the case when promoting vector to
2730/// one with larger elements.
2731//
2732///
2733/// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2734/// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2735static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B,
2736 Register Idx,
2737 unsigned NewEltSize,
2738 unsigned OldEltSize) {
2739 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2740 LLT IdxTy = B.getMRI()->getType(Idx);
2741
2742 // Now figure out the amount we need to shift to get the target bits.
2743 auto OffsetMask = B.buildConstant(
2744 IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio));
2745 auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask);
2746 return B.buildShl(IdxTy, OffsetIdx,
2747 B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0);
2748}
2749
2750/// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this
2751/// is casting to a vector with a smaller element size, perform multiple element
2752/// extracts and merge the results. If this is coercing to a vector with larger
2753/// elements, index the bitcasted vector and extract the target element with bit
2754/// operations. This is intended to force the indexing in the native register
2755/// size for architectures that can dynamically index the register file.
2756LegalizerHelper::LegalizeResult
2757LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx,
2758 LLT CastTy) {
2759 if (TypeIdx != 1)
2760 return UnableToLegalize;
2761
2762 Register Dst = MI.getOperand(0).getReg();
2763 Register SrcVec = MI.getOperand(1).getReg();
2764 Register Idx = MI.getOperand(2).getReg();
2765 LLT SrcVecTy = MRI.getType(SrcVec);
2766 LLT IdxTy = MRI.getType(Idx);
2767
2768 LLT SrcEltTy = SrcVecTy.getElementType();
2769 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2770 unsigned OldNumElts = SrcVecTy.getNumElements();
2771
2772 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2773 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2774
2775 const unsigned NewEltSize = NewEltTy.getSizeInBits();
2776 const unsigned OldEltSize = SrcEltTy.getSizeInBits();
2777 if (NewNumElts > OldNumElts) {
2778 // Decreasing the vector element size
2779 //
2780 // e.g. i64 = extract_vector_elt x:v2i64, y:i32
2781 // =>
2782 // v4i32:castx = bitcast x:v2i64
2783 //
2784 // i64 = bitcast
2785 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))),
2786 // (i32 (extract_vector_elt castx, (2 * y + 1)))
2787 //
2788 if (NewNumElts % OldNumElts != 0)
2789 return UnableToLegalize;
2790
2791 // Type of the intermediate result vector.
2792 const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts;
2793 LLT MidTy =
2794 LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy);
2795
2796 auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt);
2797
2798 SmallVector<Register, 8> NewOps(NewEltsPerOldElt);
2799 auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK);
2800
2801 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) {
2802 auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I);
2803 auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset);
2804 auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx);
2805 NewOps[I] = Elt.getReg(0);
2806 }
2807
2808 auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps);
2809 MIRBuilder.buildBitcast(Dst, NewVec);
2810 MI.eraseFromParent();
2811 return Legalized;
2812 }
2813
2814 if (NewNumElts < OldNumElts) {
2815 if (NewEltSize % OldEltSize != 0)
2816 return UnableToLegalize;
2817
2818 // This only depends on powers of 2 because we use bit tricks to figure out
2819 // the bit offset we need to shift to get the target element. A general
2820 // expansion could emit division/multiply.
2821 if (!isPowerOf2_32(NewEltSize / OldEltSize))
2822 return UnableToLegalize;
2823
2824 // Increasing the vector element size.
2825 // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx
2826 //
2827 // =>
2828 //
2829 // %cast = G_BITCAST %vec
2830 // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize)
2831 // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx
2832 // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize))
2833 // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize)
2834 // %elt_bits = G_LSHR %wide_elt, %offset_bits
2835 // %elt = G_TRUNC %elt_bits
2836
2837 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2838 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2839
2840 // Divide to get the index in the wider element type.
2841 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2842
2843 Register WideElt = CastVec;
2844 if (CastTy.isVector()) {
2845 WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2846 ScaledIdx).getReg(0);
2847 }
2848
2849 // Compute the bit offset into the register of the target element.
2850 Register OffsetBits = getBitcastWiderVectorElementOffset(
2851 MIRBuilder, Idx, NewEltSize, OldEltSize);
2852
2853 // Shift the wide element to get the target element.
2854 auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits);
2855 MIRBuilder.buildTrunc(Dst, ExtractedBits);
2856 MI.eraseFromParent();
2857 return Legalized;
2858 }
2859
2860 return UnableToLegalize;
2861}
2862
2863/// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p
2864/// TargetReg, while preserving other bits in \p TargetReg.
2865///
2866/// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset)
2867static Register buildBitFieldInsert(MachineIRBuilder &B,
2868 Register TargetReg, Register InsertReg,
2869 Register OffsetBits) {
2870 LLT TargetTy = B.getMRI()->getType(TargetReg);
2871 LLT InsertTy = B.getMRI()->getType(InsertReg);
2872 auto ZextVal = B.buildZExt(TargetTy, InsertReg);
2873 auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits);
2874
2875 // Produce a bitmask of the value to insert
2876 auto EltMask = B.buildConstant(
2877 TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(),
2878 InsertTy.getSizeInBits()));
2879 // Shift it into position
2880 auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits);
2881 auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask);
2882
2883 // Clear out the bits in the wide element
2884 auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask);
2885
2886 // The value to insert has all zeros already, so stick it into the masked
2887 // wide element.
2888 return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0);
2889}
2890
2891/// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this
2892/// is increasing the element size, perform the indexing in the target element
2893/// type, and use bit operations to insert at the element position. This is
2894/// intended for architectures that can dynamically index the register file and
2895/// want to force indexing in the native register size.
2896LegalizerHelper::LegalizeResult
2897LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx,
2898 LLT CastTy) {
2899 if (TypeIdx != 0)
2900 return UnableToLegalize;
2901
2902 Register Dst = MI.getOperand(0).getReg();
2903 Register SrcVec = MI.getOperand(1).getReg();
2904 Register Val = MI.getOperand(2).getReg();
2905 Register Idx = MI.getOperand(3).getReg();
2906
2907 LLT VecTy = MRI.getType(Dst);
2908 LLT IdxTy = MRI.getType(Idx);
2909
2910 LLT VecEltTy = VecTy.getElementType();
2911 LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy;
2912 const unsigned NewEltSize = NewEltTy.getSizeInBits();
2913 const unsigned OldEltSize = VecEltTy.getSizeInBits();
2914
2915 unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1;
2916 unsigned OldNumElts = VecTy.getNumElements();
2917
2918 Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0);
2919 if (NewNumElts < OldNumElts) {
2920 if (NewEltSize % OldEltSize != 0)
2921 return UnableToLegalize;
2922
2923 // This only depends on powers of 2 because we use bit tricks to figure out
2924 // the bit offset we need to shift to get the target element. A general
2925 // expansion could emit division/multiply.
2926 if (!isPowerOf2_32(NewEltSize / OldEltSize))
2927 return UnableToLegalize;
2928
2929 const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize);
2930 auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio);
2931
2932 // Divide to get the index in the wider element type.
2933 auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio);
2934
2935 Register ExtractedElt = CastVec;
2936 if (CastTy.isVector()) {
2937 ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec,
2938 ScaledIdx).getReg(0);
2939 }
2940
2941 // Compute the bit offset into the register of the target element.
2942 Register OffsetBits = getBitcastWiderVectorElementOffset(
2943 MIRBuilder, Idx, NewEltSize, OldEltSize);
2944
2945 Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt,
2946 Val, OffsetBits);
2947 if (CastTy.isVector()) {
2948 InsertedElt = MIRBuilder.buildInsertVectorElement(
2949 CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0);
2950 }
2951
2952 MIRBuilder.buildBitcast(Dst, InsertedElt);
2953 MI.eraseFromParent();
2954 return Legalized;
2955 }
2956
2957 return UnableToLegalize;
2958}
2959
2960LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) {
2961 // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT
2962 Register DstReg = LoadMI.getDstReg();
2963 Register PtrReg = LoadMI.getPointerReg();
2964 LLT DstTy = MRI.getType(DstReg);
2965 MachineMemOperand &MMO = LoadMI.getMMO();
2966 LLT MemTy = MMO.getMemoryType();
2967 MachineFunction &MF = MIRBuilder.getMF();
2968
2969 unsigned MemSizeInBits = MemTy.getSizeInBits();
2970 unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes();
2971
2972 if (MemSizeInBits != MemStoreSizeInBits) {
2973 if (MemTy.isVector())
2974 return UnableToLegalize;
2975
2976 // Promote to a byte-sized load if not loading an integral number of
2977 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
2978 LLT WideMemTy = LLT::scalar(MemStoreSizeInBits);
2979 MachineMemOperand *NewMMO =
2980 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy);
2981
2982 Register LoadReg = DstReg;
2983 LLT LoadTy = DstTy;
2984
2985 // If this wasn't already an extending load, we need to widen the result
2986 // register to avoid creating a load with a narrower result than the source.
2987 if (MemStoreSizeInBits > DstTy.getSizeInBits()) {
2988 LoadTy = WideMemTy;
2989 LoadReg = MRI.createGenericVirtualRegister(WideMemTy);
2990 }
2991
2992 if (isa<GSExtLoad>(LoadMI)) {
2993 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2994 MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits);
2995 } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == DstTy) {
2996 auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO);
2997 // The extra bits are guaranteed to be zero, since we stored them that
2998 // way. A zext load from Wide thus automatically gives zext from MemVT.
2999 MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits);
3000 } else {
3001 MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO);
3002 }
3003
3004 if (DstTy != LoadTy)
3005 MIRBuilder.buildTrunc(DstReg, LoadReg);
3006
3007 LoadMI.eraseFromParent();
3008 return Legalized;
3009 }
3010
3011 // Big endian lowering not implemented.
3012 if (MIRBuilder.getDataLayout().isBigEndian())
3013 return UnableToLegalize;
3014
3015 // This load needs splitting into power of 2 sized loads.
3016 //
3017 // Our strategy here is to generate anyextending loads for the smaller
3018 // types up to next power-2 result type, and then combine the two larger
3019 // result values together, before truncating back down to the non-pow-2
3020 // type.
3021 // E.g. v1 = i24 load =>
3022 // v2 = i32 zextload (2 byte)
3023 // v3 = i32 load (1 byte)
3024 // v4 = i32 shl v3, 16
3025 // v5 = i32 or v4, v2
3026 // v1 = i24 trunc v5
3027 // By doing this we generate the correct truncate which should get
3028 // combined away as an artifact with a matching extend.
3029
3030 uint64_t LargeSplitSize, SmallSplitSize;
3031
3032 if (!isPowerOf2_32(MemSizeInBits)) {
3033 // This load needs splitting into power of 2 sized loads.
3034 LargeSplitSize = PowerOf2Floor(MemSizeInBits);
3035 SmallSplitSize = MemSizeInBits - LargeSplitSize;
3036 } else {
3037 // This is already a power of 2, but we still need to split this in half.
3038 //
3039 // Assume we're being asked to decompose an unaligned load.
3040 // TODO: If this requires multiple splits, handle them all at once.
3041 auto &Ctx = MF.getFunction().getContext();
3042 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3043 return UnableToLegalize;
3044
3045 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3046 }
3047
3048 if (MemTy.isVector()) {
3049 // TODO: Handle vector extloads
3050 if (MemTy != DstTy)
3051 return UnableToLegalize;
3052
3053 // TODO: We can do better than scalarizing the vector and at least split it
3054 // in half.
3055 return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType());
3056 }
3057
3058 MachineMemOperand *LargeMMO =
3059 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3060 MachineMemOperand *SmallMMO =
3061 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3062
3063 LLT PtrTy = MRI.getType(PtrReg);
3064 unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits());
3065 LLT AnyExtTy = LLT::scalar(AnyExtSize);
3066 auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy,
3067 PtrReg, *LargeMMO);
3068
3069 auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()),
3070 LargeSplitSize / 8);
3071 Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy);
3072 auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst);
3073 auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy,
3074 SmallPtr, *SmallMMO);
3075
3076 auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize);
3077 auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt);
3078
3079 if (AnyExtTy == DstTy)
3080 MIRBuilder.buildOr(DstReg, Shift, LargeLoad);
3081 else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) {
3082 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3083 MIRBuilder.buildTrunc(DstReg, {Or});
3084 } else {
3085 assert(DstTy.isPointer() && "expected pointer")(static_cast <bool> (DstTy.isPointer() && "expected pointer"
) ? void (0) : __assert_fail ("DstTy.isPointer() && \"expected pointer\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3085, __extension__
__PRETTY_FUNCTION__))
;
3086 auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad);
3087
3088 // FIXME: We currently consider this to be illegal for non-integral address
3089 // spaces, but we need still need a way to reinterpret the bits.
3090 MIRBuilder.buildIntToPtr(DstReg, Or);
3091 }
3092
3093 LoadMI.eraseFromParent();
3094 return Legalized;
3095}
3096
3097LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) {
3098 // Lower a non-power of 2 store into multiple pow-2 stores.
3099 // E.g. split an i24 store into an i16 store + i8 store.
3100 // We do this by first extending the stored value to the next largest power
3101 // of 2 type, and then using truncating stores to store the components.
3102 // By doing this, likewise with G_LOAD, generate an extend that can be
3103 // artifact-combined away instead of leaving behind extracts.
3104 Register SrcReg = StoreMI.getValueReg();
3105 Register PtrReg = StoreMI.getPointerReg();
3106 LLT SrcTy = MRI.getType(SrcReg);
3107 MachineFunction &MF = MIRBuilder.getMF();
3108 MachineMemOperand &MMO = **StoreMI.memoperands_begin();
3109 LLT MemTy = MMO.getMemoryType();
3110
3111 unsigned StoreWidth = MemTy.getSizeInBits();
3112 unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes();
3113
3114 if (StoreWidth != StoreSizeInBits) {
3115 if (SrcTy.isVector())
3116 return UnableToLegalize;
3117
3118 // Promote to a byte-sized store with upper bits zero if not
3119 // storing an integral number of bytes. For example, promote
3120 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
3121 LLT WideTy = LLT::scalar(StoreSizeInBits);
3122
3123 if (StoreSizeInBits > SrcTy.getSizeInBits()) {
3124 // Avoid creating a store with a narrower source than result.
3125 SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0);
3126 SrcTy = WideTy;
3127 }
3128
3129 auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth);
3130
3131 MachineMemOperand *NewMMO =
3132 MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy);
3133 MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO);
3134 StoreMI.eraseFromParent();
3135 return Legalized;
3136 }
3137
3138 if (MemTy.isVector()) {
3139 // TODO: Handle vector trunc stores
3140 if (MemTy != SrcTy)
3141 return UnableToLegalize;
3142
3143 // TODO: We can do better than scalarizing the vector and at least split it
3144 // in half.
3145 return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType());
3146 }
3147
3148 unsigned MemSizeInBits = MemTy.getSizeInBits();
3149 uint64_t LargeSplitSize, SmallSplitSize;
3150
3151 if (!isPowerOf2_32(MemSizeInBits)) {
3152 LargeSplitSize = PowerOf2Floor(MemTy.getSizeInBits());
3153 SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize;
3154 } else {
3155 auto &Ctx = MF.getFunction().getContext();
3156 if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO))
3157 return UnableToLegalize; // Don't know what we're being asked to do.
3158
3159 SmallSplitSize = LargeSplitSize = MemSizeInBits / 2;
3160 }
3161
3162 // Extend to the next pow-2. If this store was itself the result of lowering,
3163 // e.g. an s56 store being broken into s32 + s24, we might have a stored type
3164 // that's wider than the stored size.
3165 unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits());
3166 const LLT NewSrcTy = LLT::scalar(AnyExtSize);
3167
3168 if (SrcTy.isPointer()) {
3169 const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits());
3170 SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0);
3171 }
3172
3173 auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg);
3174
3175 // Obtain the smaller value by shifting away the larger value.
3176 auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize);
3177 auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt);
3178
3179 // Generate the PtrAdd and truncating stores.
3180 LLT PtrTy = MRI.getType(PtrReg);
3181 auto OffsetCst = MIRBuilder.buildConstant(
3182 LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8);
3183 auto SmallPtr =
3184 MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst);
3185
3186 MachineMemOperand *LargeMMO =
3187 MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8);
3188 MachineMemOperand *SmallMMO =
3189 MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8);
3190 MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO);
3191 MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO);
3192 StoreMI.eraseFromParent();
3193 return Legalized;
3194}
3195
3196LegalizerHelper::LegalizeResult
3197LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) {
3198 switch (MI.getOpcode()) {
3199 case TargetOpcode::G_LOAD: {
3200 if (TypeIdx != 0)
3201 return UnableToLegalize;
3202 MachineMemOperand &MMO = **MI.memoperands_begin();
3203
3204 // Not sure how to interpret a bitcast of an extending load.
3205 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3206 return UnableToLegalize;
3207
3208 Observer.changingInstr(MI);
3209 bitcastDst(MI, CastTy, 0);
3210 MMO.setType(CastTy);
3211 Observer.changedInstr(MI);
3212 return Legalized;
3213 }
3214 case TargetOpcode::G_STORE: {
3215 if (TypeIdx != 0)
3216 return UnableToLegalize;
3217
3218 MachineMemOperand &MMO = **MI.memoperands_begin();
3219
3220 // Not sure how to interpret a bitcast of a truncating store.
3221 if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits())
3222 return UnableToLegalize;
3223
3224 Observer.changingInstr(MI);
3225 bitcastSrc(MI, CastTy, 0);
3226 MMO.setType(CastTy);
3227 Observer.changedInstr(MI);
3228 return Legalized;
3229 }
3230 case TargetOpcode::G_SELECT: {
3231 if (TypeIdx != 0)
3232 return UnableToLegalize;
3233
3234 if (MRI.getType(MI.getOperand(1).getReg()).isVector()) {
3235 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "bitcast action not implemented for vector select\n"
; } } while (false)
3236 dbgs() << "bitcast action not implemented for vector select\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "bitcast action not implemented for vector select\n"
; } } while (false)
;
3237 return UnableToLegalize;
3238 }
3239
3240 Observer.changingInstr(MI);
3241 bitcastSrc(MI, CastTy, 2);
3242 bitcastSrc(MI, CastTy, 3);
3243 bitcastDst(MI, CastTy, 0);
3244 Observer.changedInstr(MI);
3245 return Legalized;
3246 }
3247 case TargetOpcode::G_AND:
3248 case TargetOpcode::G_OR:
3249 case TargetOpcode::G_XOR: {
3250 Observer.changingInstr(MI);
3251 bitcastSrc(MI, CastTy, 1);
3252 bitcastSrc(MI, CastTy, 2);
3253 bitcastDst(MI, CastTy, 0);
3254 Observer.changedInstr(MI);
3255 return Legalized;
3256 }
3257 case TargetOpcode::G_EXTRACT_VECTOR_ELT:
3258 return bitcastExtractVectorElt(MI, TypeIdx, CastTy);
3259 case TargetOpcode::G_INSERT_VECTOR_ELT:
3260 return bitcastInsertVectorElt(MI, TypeIdx, CastTy);
3261 default:
3262 return UnableToLegalize;
3263 }
3264}
3265
3266// Legalize an instruction by changing the opcode in place.
3267void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) {
3268 Observer.changingInstr(MI);
3269 MI.setDesc(MIRBuilder.getTII().get(NewOpcode));
3270 Observer.changedInstr(MI);
3271}
3272
3273LegalizerHelper::LegalizeResult
3274LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) {
3275 using namespace TargetOpcode;
3276
3277 switch(MI.getOpcode()) {
3278 default:
3279 return UnableToLegalize;
3280 case TargetOpcode::G_BITCAST:
3281 return lowerBitcast(MI);
3282 case TargetOpcode::G_SREM:
3283 case TargetOpcode::G_UREM: {
3284 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3285 auto Quot =
3286 MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty},
3287 {MI.getOperand(1), MI.getOperand(2)});
3288
3289 auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2));
3290 MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod);
3291 MI.eraseFromParent();
3292 return Legalized;
3293 }
3294 case TargetOpcode::G_SADDO:
3295 case TargetOpcode::G_SSUBO:
3296 return lowerSADDO_SSUBO(MI);
3297 case TargetOpcode::G_UMULH:
3298 case TargetOpcode::G_SMULH:
3299 return lowerSMULH_UMULH(MI);
3300 case TargetOpcode::G_SMULO:
3301 case TargetOpcode::G_UMULO: {
3302 // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the
3303 // result.
3304 Register Res = MI.getOperand(0).getReg();
3305 Register Overflow = MI.getOperand(1).getReg();
3306 Register LHS = MI.getOperand(2).getReg();
3307 Register RHS = MI.getOperand(3).getReg();
3308 LLT Ty = MRI.getType(Res);
3309
3310 unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO
3311 ? TargetOpcode::G_SMULH
3312 : TargetOpcode::G_UMULH;
3313
3314 Observer.changingInstr(MI);
3315 const auto &TII = MIRBuilder.getTII();
3316 MI.setDesc(TII.get(TargetOpcode::G_MUL));
3317 MI.RemoveOperand(1);
3318 Observer.changedInstr(MI);
3319
3320 auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS});
3321 auto Zero = MIRBuilder.buildConstant(Ty, 0);
3322
3323 // Move insert point forward so we can use the Res register if needed.
3324 MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt());
3325
3326 // For *signed* multiply, overflow is detected by checking:
3327 // (hi != (lo >> bitwidth-1))
3328 if (Opcode == TargetOpcode::G_SMULH) {
3329 auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1);
3330 auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt);
3331 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted);
3332 } else {
3333 MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero);
3334 }
3335 return Legalized;
3336 }
3337 case TargetOpcode::G_FNEG: {
3338 Register Res = MI.getOperand(0).getReg();
3339 LLT Ty = MRI.getType(Res);
3340
3341 // TODO: Handle vector types once we are able to
3342 // represent them.
3343 if (Ty.isVector())
3344 return UnableToLegalize;
3345 auto SignMask =
3346 MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits()));
3347 Register SubByReg = MI.getOperand(1).getReg();
3348 MIRBuilder.buildXor(Res, SubByReg, SignMask);
3349 MI.eraseFromParent();
3350 return Legalized;
3351 }
3352 case TargetOpcode::G_FSUB: {
3353 Register Res = MI.getOperand(0).getReg();
3354 LLT Ty = MRI.getType(Res);
3355
3356 // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)).
3357 // First, check if G_FNEG is marked as Lower. If so, we may
3358 // end up with an infinite loop as G_FSUB is used to legalize G_FNEG.
3359 if (LI.getAction({G_FNEG, {Ty}}).Action == Lower)
3360 return UnableToLegalize;
3361 Register LHS = MI.getOperand(1).getReg();
3362 Register RHS = MI.getOperand(2).getReg();
3363 Register Neg = MRI.createGenericVirtualRegister(Ty);
3364 MIRBuilder.buildFNeg(Neg, RHS);
3365 MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags());
3366 MI.eraseFromParent();
3367 return Legalized;
3368 }
3369 case TargetOpcode::G_FMAD:
3370 return lowerFMad(MI);
3371 case TargetOpcode::G_FFLOOR:
3372 return lowerFFloor(MI);
3373 case TargetOpcode::G_INTRINSIC_ROUND:
3374 return lowerIntrinsicRound(MI);
3375 case TargetOpcode::G_INTRINSIC_ROUNDEVEN: {
3376 // Since round even is the assumed rounding mode for unconstrained FP
3377 // operations, rint and roundeven are the same operation.
3378 changeOpcode(MI, TargetOpcode::G_FRINT);
3379 return Legalized;
3380 }
3381 case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: {
3382 Register OldValRes = MI.getOperand(0).getReg();
3383 Register SuccessRes = MI.getOperand(1).getReg();
3384 Register Addr = MI.getOperand(2).getReg();
3385 Register CmpVal = MI.getOperand(3).getReg();
3386 Register NewVal = MI.getOperand(4).getReg();
3387 MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal,
3388 **MI.memoperands_begin());
3389 MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal);
3390 MI.eraseFromParent();
3391 return Legalized;
3392 }
3393 case TargetOpcode::G_LOAD:
3394 case TargetOpcode::G_SEXTLOAD:
3395 case TargetOpcode::G_ZEXTLOAD:
3396 return lowerLoad(cast<GAnyLoad>(MI));
3397 case TargetOpcode::G_STORE:
3398 return lowerStore(cast<GStore>(MI));
3399 case TargetOpcode::G_CTLZ_ZERO_UNDEF:
3400 case TargetOpcode::G_CTTZ_ZERO_UNDEF:
3401 case TargetOpcode::G_CTLZ:
3402 case TargetOpcode::G_CTTZ:
3403 case TargetOpcode::G_CTPOP:
3404 return lowerBitCount(MI);
3405 case G_UADDO: {
3406 Register Res = MI.getOperand(0).getReg();
3407 Register CarryOut = MI.getOperand(1).getReg();
3408 Register LHS = MI.getOperand(2).getReg();
3409 Register RHS = MI.getOperand(3).getReg();
3410
3411 MIRBuilder.buildAdd(Res, LHS, RHS);
3412 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS);
3413
3414 MI.eraseFromParent();
3415 return Legalized;
3416 }
3417 case G_UADDE: {
3418 Register Res = MI.getOperand(0).getReg();
3419 Register CarryOut = MI.getOperand(1).getReg();
3420 Register LHS = MI.getOperand(2).getReg();
3421 Register RHS = MI.getOperand(3).getReg();
3422 Register CarryIn = MI.getOperand(4).getReg();
3423 LLT Ty = MRI.getType(Res);
3424
3425 auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS);
3426 auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn);
3427 MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn);
3428 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, LHS);
3429
3430 MI.eraseFromParent();
3431 return Legalized;
3432 }
3433 case G_USUBO: {
3434 Register Res = MI.getOperand(0).getReg();
3435 Register BorrowOut = MI.getOperand(1).getReg();
3436 Register LHS = MI.getOperand(2).getReg();
3437 Register RHS = MI.getOperand(3).getReg();
3438
3439 MIRBuilder.buildSub(Res, LHS, RHS);
3440 MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS);
3441
3442 MI.eraseFromParent();
3443 return Legalized;
3444 }
3445 case G_USUBE: {
3446 Register Res = MI.getOperand(0).getReg();
3447 Register BorrowOut = MI.getOperand(1).getReg();
3448 Register LHS = MI.getOperand(2).getReg();
3449 Register RHS = MI.getOperand(3).getReg();
3450 Register BorrowIn = MI.getOperand(4).getReg();
3451 const LLT CondTy = MRI.getType(BorrowOut);
3452 const LLT Ty = MRI.getType(Res);
3453
3454 auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS);
3455 auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn);
3456 MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn);
3457
3458 auto LHS_EQ_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, LHS, RHS);
3459 auto LHS_ULT_RHS = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, LHS, RHS);
3460 MIRBuilder.buildSelect(BorrowOut, LHS_EQ_RHS, BorrowIn, LHS_ULT_RHS);
3461
3462 MI.eraseFromParent();
3463 return Legalized;
3464 }
3465 case G_UITOFP:
3466 return lowerUITOFP(MI);
3467 case G_SITOFP:
3468 return lowerSITOFP(MI);
3469 case G_FPTOUI:
3470 return lowerFPTOUI(MI);
3471 case G_FPTOSI:
3472 return lowerFPTOSI(MI);
3473 case G_FPTRUNC:
3474 return lowerFPTRUNC(MI);
3475 case G_FPOWI:
3476 return lowerFPOWI(MI);
3477 case G_SMIN:
3478 case G_SMAX:
3479 case G_UMIN:
3480 case G_UMAX:
3481 return lowerMinMax(MI);
3482 case G_FCOPYSIGN:
3483 return lowerFCopySign(MI);
3484 case G_FMINNUM:
3485 case G_FMAXNUM:
3486 return lowerFMinNumMaxNum(MI);
3487 case G_MERGE_VALUES:
3488 return lowerMergeValues(MI);
3489 case G_UNMERGE_VALUES:
3490 return lowerUnmergeValues(MI);
3491 case TargetOpcode::G_SEXT_INREG: {
3492 assert(MI.getOperand(2).isImm() && "Expected immediate")(static_cast <bool> (MI.getOperand(2).isImm() &&
"Expected immediate") ? void (0) : __assert_fail ("MI.getOperand(2).isImm() && \"Expected immediate\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3492, __extension__
__PRETTY_FUNCTION__))
;
3493 int64_t SizeInBits = MI.getOperand(2).getImm();
3494
3495 Register DstReg = MI.getOperand(0).getReg();
3496 Register SrcReg = MI.getOperand(1).getReg();
3497 LLT DstTy = MRI.getType(DstReg);
3498 Register TmpRes = MRI.createGenericVirtualRegister(DstTy);
3499
3500 auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits);
3501 MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0));
3502 MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0));
3503 MI.eraseFromParent();
3504 return Legalized;
3505 }
3506 case G_EXTRACT_VECTOR_ELT:
3507 case G_INSERT_VECTOR_ELT:
3508 return lowerExtractInsertVectorElt(MI);
3509 case G_SHUFFLE_VECTOR:
3510 return lowerShuffleVector(MI);
3511 case G_DYN_STACKALLOC:
3512 return lowerDynStackAlloc(MI);
3513 case G_EXTRACT:
3514 return lowerExtract(MI);
3515 case G_INSERT:
3516 return lowerInsert(MI);
3517 case G_BSWAP:
3518 return lowerBswap(MI);
3519 case G_BITREVERSE:
3520 return lowerBitreverse(MI);
3521 case G_READ_REGISTER:
3522 case G_WRITE_REGISTER:
3523 return lowerReadWriteRegister(MI);
3524 case G_UADDSAT:
3525 case G_USUBSAT: {
3526 // Try to make a reasonable guess about which lowering strategy to use. The
3527 // target can override this with custom lowering and calling the
3528 // implementation functions.
3529 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3530 if (LI.isLegalOrCustom({G_UMIN, Ty}))
3531 return lowerAddSubSatToMinMax(MI);
3532 return lowerAddSubSatToAddoSubo(MI);
3533 }
3534 case G_SADDSAT:
3535 case G_SSUBSAT: {
3536 LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3537
3538 // FIXME: It would probably make more sense to see if G_SADDO is preferred,
3539 // since it's a shorter expansion. However, we would need to figure out the
3540 // preferred boolean type for the carry out for the query.
3541 if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty}))
3542 return lowerAddSubSatToMinMax(MI);
3543 return lowerAddSubSatToAddoSubo(MI);
3544 }
3545 case G_SSHLSAT:
3546 case G_USHLSAT:
3547 return lowerShlSat(MI);
3548 case G_ABS:
3549 return lowerAbsToAddXor(MI);
3550 case G_SELECT:
3551 return lowerSelect(MI);
3552 case G_SDIVREM:
3553 case G_UDIVREM:
3554 return lowerDIVREM(MI);
3555 case G_FSHL:
3556 case G_FSHR:
3557 return lowerFunnelShift(MI);
3558 case G_ROTL:
3559 case G_ROTR:
3560 return lowerRotate(MI);
3561 case G_MEMSET:
3562 case G_MEMCPY:
3563 case G_MEMMOVE:
3564 return lowerMemCpyFamily(MI);
3565 case G_MEMCPY_INLINE:
3566 return lowerMemcpyInline(MI);
3567 GISEL_VECREDUCE_CASES_NONSEQcase TargetOpcode::G_VECREDUCE_FADD: case TargetOpcode::G_VECREDUCE_FMUL
: case TargetOpcode::G_VECREDUCE_FMAX: case TargetOpcode::G_VECREDUCE_FMIN
: case TargetOpcode::G_VECREDUCE_ADD: case TargetOpcode::G_VECREDUCE_MUL
: case TargetOpcode::G_VECREDUCE_AND: case TargetOpcode::G_VECREDUCE_OR
: case TargetOpcode::G_VECREDUCE_XOR: case TargetOpcode::G_VECREDUCE_SMAX
: case TargetOpcode::G_VECREDUCE_SMIN: case TargetOpcode::G_VECREDUCE_UMAX
: case TargetOpcode::G_VECREDUCE_UMIN:
3568 return lowerVectorReduction(MI);
3569 }
3570}
3571
3572Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty,
3573 Align MinAlign) const {
3574 // FIXME: We're missing a way to go back from LLT to llvm::Type to query the
3575 // datalayout for the preferred alignment. Also there should be a target hook
3576 // for this to allow targets to reduce the alignment and ignore the
3577 // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of
3578 // the type.
3579 return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign);
3580}
3581
3582MachineInstrBuilder
3583LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment,
3584 MachinePointerInfo &PtrInfo) {
3585 MachineFunction &MF = MIRBuilder.getMF();
3586 const DataLayout &DL = MIRBuilder.getDataLayout();
3587 int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false);
3588
3589 unsigned AddrSpace = DL.getAllocaAddrSpace();
3590 LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace));
3591
3592 PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx);
3593 return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx);
3594}
3595
3596static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg,
3597 LLT VecTy) {
3598 int64_t IdxVal;
3599 if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal)))
3600 return IdxReg;
3601
3602 LLT IdxTy = B.getMRI()->getType(IdxReg);
3603 unsigned NElts = VecTy.getNumElements();
3604 if (isPowerOf2_32(NElts)) {
3605 APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts));
3606 return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0);
3607 }
3608
3609 return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1))
3610 .getReg(0);
3611}
3612
3613Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy,
3614 Register Index) {
3615 LLT EltTy = VecTy.getElementType();
3616
3617 // Calculate the element offset and add it to the pointer.
3618 unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size.
3619 assert(EltSize * 8 == EltTy.getSizeInBits() &&(static_cast <bool> (EltSize * 8 == EltTy.getSizeInBits
() && "Converting bits to bytes lost precision") ? void
(0) : __assert_fail ("EltSize * 8 == EltTy.getSizeInBits() && \"Converting bits to bytes lost precision\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3620, __extension__
__PRETTY_FUNCTION__))
3620 "Converting bits to bytes lost precision")(static_cast <bool> (EltSize * 8 == EltTy.getSizeInBits
() && "Converting bits to bytes lost precision") ? void
(0) : __assert_fail ("EltSize * 8 == EltTy.getSizeInBits() && \"Converting bits to bytes lost precision\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3620, __extension__
__PRETTY_FUNCTION__))
;
3621
3622 Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy);
3623
3624 LLT IdxTy = MRI.getType(Index);
3625 auto Mul = MIRBuilder.buildMul(IdxTy, Index,
3626 MIRBuilder.buildConstant(IdxTy, EltSize));
3627
3628 LLT PtrTy = MRI.getType(VecPtr);
3629 return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0);
3630}
3631
3632#ifndef NDEBUG
3633/// Check that all vector operands have same number of elements. Other operands
3634/// should be listed in NonVecOp.
3635static bool hasSameNumEltsOnAllVectorOperands(
3636 GenericMachineInstr &MI, MachineRegisterInfo &MRI,
3637 std::initializer_list<unsigned> NonVecOpIndices) {
3638 if (MI.getNumMemOperands() != 0)
3639 return false;
3640
3641 LLT VecTy = MRI.getType(MI.getReg(0));
3642 if (!VecTy.isVector())
3643 return false;
3644 unsigned NumElts = VecTy.getNumElements();
3645
3646 for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) {
3647 MachineOperand &Op = MI.getOperand(OpIdx);
3648 if (!Op.isReg()) {
3649 if (!is_contained(NonVecOpIndices, OpIdx))
3650 return false;
3651 continue;
3652 }
3653
3654 LLT Ty = MRI.getType(Op.getReg());
3655 if (!Ty.isVector()) {
3656 if (!is_contained(NonVecOpIndices, OpIdx))
3657 return false;
3658 continue;
3659 }
3660
3661 if (Ty.getNumElements() != NumElts)
3662 return false;
3663 }
3664
3665 return true;
3666}
3667#endif
3668
3669/// Fill \p DstOps with DstOps that have same number of elements combined as
3670/// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are
3671/// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple
3672/// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements.
3673static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty,
3674 unsigned NumElts) {
3675 LLT LeftoverTy;
3676 assert(Ty.isVector() && "Expected vector type")(static_cast <bool> (Ty.isVector() && "Expected vector type"
) ? void (0) : __assert_fail ("Ty.isVector() && \"Expected vector type\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3676, __extension__
__PRETTY_FUNCTION__))
;
3677 LLT EltTy = Ty.getElementType();
3678 LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy);
3679 int NumParts, NumLeftover;
3680 std::tie(NumParts, NumLeftover) =
3681 getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy);
3682
3683 assert(NumParts > 0 && "Error in getNarrowTypeBreakDown")(static_cast <bool> (NumParts > 0 && "Error in getNarrowTypeBreakDown"
) ? void (0) : __assert_fail ("NumParts > 0 && \"Error in getNarrowTypeBreakDown\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3683, __extension__
__PRETTY_FUNCTION__))
;
3684 for (int i = 0; i < NumParts; ++i) {
3685 DstOps.push_back(NarrowTy);
3686 }
3687
3688 if (LeftoverTy.isValid()) {
3689 assert(NumLeftover == 1 && "expected exactly one leftover")(static_cast <bool> (NumLeftover == 1 && "expected exactly one leftover"
) ? void (0) : __assert_fail ("NumLeftover == 1 && \"expected exactly one leftover\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3689, __extension__
__PRETTY_FUNCTION__))
;
3690 DstOps.push_back(LeftoverTy);
3691 }
3692}
3693
3694/// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps
3695/// made from \p Op depending on operand type.
3696static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N,
3697 MachineOperand &Op) {
3698 for (unsigned i = 0; i < N; ++i) {
3699 if (Op.isReg())
3700 Ops.push_back(Op.getReg());
3701 else if (Op.isImm())
3702 Ops.push_back(Op.getImm());
3703 else if (Op.isPredicate())
3704 Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate()));
3705 else
3706 llvm_unreachable("Unsupported type")::llvm::llvm_unreachable_internal("Unsupported type", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 3706)
;
3707 }
3708}
3709
3710// Handle splitting vector operations which need to have the same number of
3711// elements in each type index, but each type index may have a different element
3712// type.
3713//
3714// e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> ->
3715// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3716// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3717//
3718// Also handles some irregular breakdown cases, e.g.
3719// e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> ->
3720// <2 x s64> = G_SHL <2 x s64>, <2 x s32>
3721// s64 = G_SHL s64, s32
3722LegalizerHelper::LegalizeResult
3723LegalizerHelper::fewerElementsVectorMultiEltType(
3724 GenericMachineInstr &MI, unsigned NumElts,
3725 std::initializer_list<unsigned> NonVecOpIndices) {
3726 assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) &&(static_cast <bool> (hasSameNumEltsOnAllVectorOperands(
MI, MRI, NonVecOpIndices) && "Non-compatible opcode or not specified non-vector operands"
) ? void (0) : __assert_fail ("hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && \"Non-compatible opcode or not specified non-vector operands\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3727, __extension__
__PRETTY_FUNCTION__))
3727 "Non-compatible opcode or not specified non-vector operands")(static_cast <bool> (hasSameNumEltsOnAllVectorOperands(
MI, MRI, NonVecOpIndices) && "Non-compatible opcode or not specified non-vector operands"
) ? void (0) : __assert_fail ("hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && \"Non-compatible opcode or not specified non-vector operands\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3727, __extension__
__PRETTY_FUNCTION__))
;
3728 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3729
3730 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3731 unsigned NumDefs = MI.getNumDefs();
3732
3733 // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output.
3734 // Build instructions with DstOps to use instruction found by CSE directly.
3735 // CSE copies found instruction into given vreg when building with vreg dest.
3736 SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs);
3737 // Output registers will be taken from created instructions.
3738 SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs);
3739 for (unsigned i = 0; i < NumDefs; ++i) {
3740 makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts);
3741 }
3742
3743 // Split vector input operands into sub-vectors with NumElts elts + Leftover.
3744 // Operands listed in NonVecOpIndices will be used as is without splitting;
3745 // examples: compare predicate in icmp and fcmp (op 1), vector select with i1
3746 // scalar condition (op 1), immediate in sext_inreg (op 2).
3747 SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs);
3748 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3749 ++UseIdx, ++UseNo) {
3750 if (is_contained(NonVecOpIndices, UseIdx)) {
3751 broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(),
3752 MI.getOperand(UseIdx));
3753 } else {
3754 SmallVector<Register, 8> SplitPieces;
3755 extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces);
3756 for (auto Reg : SplitPieces)
3757 InputOpsPieces[UseNo].push_back(Reg);
3758 }
3759 }
3760
3761 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3762
3763 // Take i-th piece of each input operand split and build sub-vector/scalar
3764 // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s).
3765 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3766 SmallVector<DstOp, 2> Defs;
3767 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3768 Defs.push_back(OutputOpsPieces[DstNo][i]);
3769
3770 SmallVector<SrcOp, 3> Uses;
3771 for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo)
3772 Uses.push_back(InputOpsPieces[InputNo][i]);
3773
3774 auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags());
3775 for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo)
3776 OutputRegs[DstNo].push_back(I.getReg(DstNo));
3777 }
3778
3779 // Merge small outputs into MI's output for each def operand.
3780 if (NumLeftovers) {
3781 for (unsigned i = 0; i < NumDefs; ++i)
3782 mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]);
3783 } else {
3784 for (unsigned i = 0; i < NumDefs; ++i)
3785 MIRBuilder.buildMerge(MI.getReg(i), OutputRegs[i]);
3786 }
3787
3788 MI.eraseFromParent();
3789 return Legalized;
3790}
3791
3792LegalizerHelper::LegalizeResult
3793LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI,
3794 unsigned NumElts) {
3795 unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements();
3796
3797 unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs();
3798 unsigned NumDefs = MI.getNumDefs();
3799
3800 SmallVector<DstOp, 8> OutputOpsPieces;
3801 SmallVector<Register, 8> OutputRegs;
3802 makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts);
3803
3804 // Instructions that perform register split will be inserted in basic block
3805 // where register is defined (basic block is in the next operand).
3806 SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2);
3807 for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands();
3808 UseIdx += 2, ++UseNo) {
3809 MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB();
3810 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
3811 extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]);
3812 }
3813
3814 // Build PHIs with fewer elements.
3815 unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0;
3816 MIRBuilder.setInsertPt(*MI.getParent(), MI);
3817 for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) {
3818 auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI);
3819 Phi.addDef(
3820 MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI)));
3821 OutputRegs.push_back(Phi.getReg(0));
3822
3823 for (unsigned j = 0; j < NumInputs / 2; ++j) {
3824 Phi.addUse(InputOpsPieces[j][i]);
3825 Phi.add(MI.getOperand(1 + j * 2 + 1));
3826 }
3827 }
3828
3829 // Merge small outputs into MI's def.
3830 if (NumLeftovers) {
3831 mergeMixedSubvectors(MI.getReg(0), OutputRegs);
3832 } else {
3833 MIRBuilder.buildMerge(MI.getReg(0), OutputRegs);
3834 }
3835
3836 MI.eraseFromParent();
3837 return Legalized;
3838}
3839
3840LegalizerHelper::LegalizeResult
3841LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI,
3842 unsigned TypeIdx,
3843 LLT NarrowTy) {
3844 const int NumDst = MI.getNumOperands() - 1;
3845 const Register SrcReg = MI.getOperand(NumDst).getReg();
3846 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
3847 LLT SrcTy = MRI.getType(SrcReg);
3848
3849 if (TypeIdx != 1 || NarrowTy == DstTy)
3850 return UnableToLegalize;
3851
3852 // Requires compatible types. Otherwise SrcReg should have been defined by
3853 // merge-like instruction that would get artifact combined. Most likely
3854 // instruction that defines SrcReg has to perform more/fewer elements
3855 // legalization compatible with NarrowTy.
3856 assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types")(static_cast <bool> (SrcTy.isVector() && NarrowTy
.isVector() && "Expected vector types") ? void (0) : __assert_fail
("SrcTy.isVector() && NarrowTy.isVector() && \"Expected vector types\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3856, __extension__
__PRETTY_FUNCTION__))
;
3857 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type")(static_cast <bool> ((SrcTy.getScalarType() == NarrowTy
.getScalarType()) && "bad type") ? void (0) : __assert_fail
("(SrcTy.getScalarType() == NarrowTy.getScalarType()) && \"bad type\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3857, __extension__
__PRETTY_FUNCTION__))
;
3858
3859 if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3860 (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0))
3861 return UnableToLegalize;
3862
3863 // This is most likely DstTy (smaller then register size) packed in SrcTy
3864 // (larger then register size) and since unmerge was not combined it will be
3865 // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy
3866 // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy.
3867
3868 // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy)
3869 //
3870 // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence
3871 // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg
3872 // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy)
3873 auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg);
3874 const int NumUnmerge = Unmerge->getNumOperands() - 1;
3875 const int PartsPerUnmerge = NumDst / NumUnmerge;
3876
3877 for (int I = 0; I != NumUnmerge; ++I) {
3878 auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES);
3879
3880 for (int J = 0; J != PartsPerUnmerge; ++J)
3881 MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg());
3882 MIB.addUse(Unmerge.getReg(I));
3883 }
3884
3885 MI.eraseFromParent();
3886 return Legalized;
3887}
3888
3889LegalizerHelper::LegalizeResult
3890LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx,
3891 LLT NarrowTy) {
3892 Register DstReg = MI.getOperand(0).getReg();
3893 LLT DstTy = MRI.getType(DstReg);
3894 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
3895 // Requires compatible types. Otherwise user of DstReg did not perform unmerge
3896 // that should have been artifact combined. Most likely instruction that uses
3897 // DstReg has to do more/fewer elements legalization compatible with NarrowTy.
3898 assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types")(static_cast <bool> (DstTy.isVector() && NarrowTy
.isVector() && "Expected vector types") ? void (0) : __assert_fail
("DstTy.isVector() && NarrowTy.isVector() && \"Expected vector types\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3898, __extension__
__PRETTY_FUNCTION__))
;
3899 assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type")(static_cast <bool> ((DstTy.getScalarType() == NarrowTy
.getScalarType()) && "bad type") ? void (0) : __assert_fail
("(DstTy.getScalarType() == NarrowTy.getScalarType()) && \"bad type\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3899, __extension__
__PRETTY_FUNCTION__))
;
3900 if (NarrowTy == SrcTy)
3901 return UnableToLegalize;
3902
3903 // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use
3904 // is for old mir tests. Since the changes to more/fewer elements it should no
3905 // longer be possible to generate MIR like this when starting from llvm-ir
3906 // because LCMTy approach was replaced with merge/unmerge to vector elements.
3907 if (TypeIdx == 1) {
3908 assert(SrcTy.isVector() && "Expected vector types")(static_cast <bool> (SrcTy.isVector() && "Expected vector types"
) ? void (0) : __assert_fail ("SrcTy.isVector() && \"Expected vector types\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3908, __extension__
__PRETTY_FUNCTION__))
;
3909 assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type")(static_cast <bool> ((SrcTy.getScalarType() == NarrowTy
.getScalarType()) && "bad type") ? void (0) : __assert_fail
("(SrcTy.getScalarType() == NarrowTy.getScalarType()) && \"bad type\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3909, __extension__
__PRETTY_FUNCTION__))
;
3910 if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) ||
3911 (NarrowTy.getNumElements() >= SrcTy.getNumElements()))
3912 return UnableToLegalize;
3913 // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy)
3914 //
3915 // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy)
3916 // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy)
3917 // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4
3918 // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6
3919 // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8
3920 // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11
3921
3922 SmallVector<Register, 8> Elts;
3923 LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType();
3924 for (unsigned i = 1; i < MI.getNumOperands(); ++i) {
3925 auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg());
3926 for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j)
3927 Elts.push_back(Unmerge.getReg(j));
3928 }
3929
3930 SmallVector<Register, 8> NarrowTyElts;
3931 unsigned NumNarrowTyElts = NarrowTy.getNumElements();
3932 unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts;
3933 for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces;
3934 ++i, Offset += NumNarrowTyElts) {
3935 ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts);
3936 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Pieces).getReg(0));
3937 }
3938
3939 MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3940 MI.eraseFromParent();
3941 return Legalized;
3942 }
3943
3944 assert(TypeIdx == 0 && "Bad type index")(static_cast <bool> (TypeIdx == 0 && "Bad type index"
) ? void (0) : __assert_fail ("TypeIdx == 0 && \"Bad type index\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3944, __extension__
__PRETTY_FUNCTION__))
;
3945 if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) ||
3946 (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0))
3947 return UnableToLegalize;
3948
3949 // This is most likely SrcTy (smaller then register size) packed in DstTy
3950 // (larger then register size) and since merge was not combined it will be
3951 // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy
3952 // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy.
3953
3954 // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4
3955 //
3956 // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg
3957 // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4
3958 // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence
3959 SmallVector<Register, 8> NarrowTyElts;
3960 unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements();
3961 unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1;
3962 unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts;
3963 for (unsigned i = 0; i < NumParts; ++i) {
3964 SmallVector<Register, 8> Sources;
3965 for (unsigned j = 0; j < NumElts; ++j)
3966 Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg());
3967 NarrowTyElts.push_back(MIRBuilder.buildMerge(NarrowTy, Sources).getReg(0));
3968 }
3969
3970 MIRBuilder.buildMerge(DstReg, NarrowTyElts);
3971 MI.eraseFromParent();
3972 return Legalized;
3973}
3974
3975LegalizerHelper::LegalizeResult
3976LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI,
3977 unsigned TypeIdx,
3978 LLT NarrowVecTy) {
3979 Register DstReg = MI.getOperand(0).getReg();
3980 Register SrcVec = MI.getOperand(1).getReg();
3981 Register InsertVal;
3982 bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT;
3983
3984 assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index")(static_cast <bool> ((IsInsert ? TypeIdx == 0 : TypeIdx
== 1) && "not a vector type index") ? void (0) : __assert_fail
("(IsInsert ? TypeIdx == 0 : TypeIdx == 1) && \"not a vector type index\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 3984, __extension__
__PRETTY_FUNCTION__))
;
3985 if (IsInsert)
3986 InsertVal = MI.getOperand(2).getReg();
3987
3988 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
3989
3990 // TODO: Handle total scalarization case.
3991 if (!NarrowVecTy.isVector())
3992 return UnableToLegalize;
3993
3994 LLT VecTy = MRI.getType(SrcVec);
3995
3996 // If the index is a constant, we can really break this down as you would
3997 // expect, and index into the target size pieces.
3998 int64_t IdxVal;
3999 auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI);
4000 if (MaybeCst) {
4001 IdxVal = MaybeCst->Value.getSExtValue();
4002 // Avoid out of bounds indexing the pieces.
4003 if (IdxVal >= VecTy.getNumElements()) {
4004 MIRBuilder.buildUndef(DstReg);
4005 MI.eraseFromParent();
4006 return Legalized;
4007 }
4008
4009 SmallVector<Register, 8> VecParts;
4010 LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec);
4011
4012 // Build a sequence of NarrowTy pieces in VecParts for this operand.
4013 LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts,
4014 TargetOpcode::G_ANYEXT);
4015
4016 unsigned NewNumElts = NarrowVecTy.getNumElements();
4017
4018 LLT IdxTy = MRI.getType(Idx);
4019 int64_t PartIdx = IdxVal / NewNumElts;
4020 auto NewIdx =
4021 MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx);
4022
4023 if (IsInsert) {
4024 LLT PartTy = MRI.getType(VecParts[PartIdx]);
4025
4026 // Use the adjusted index to insert into one of the subvectors.
4027 auto InsertPart = MIRBuilder.buildInsertVectorElement(
4028 PartTy, VecParts[PartIdx], InsertVal, NewIdx);
4029 VecParts[PartIdx] = InsertPart.getReg(0);
4030
4031 // Recombine the inserted subvector with the others to reform the result
4032 // vector.
4033 buildWidenedRemergeToDst(DstReg, LCMTy, VecParts);
4034 } else {
4035 MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx);
4036 }
4037
4038 MI.eraseFromParent();
4039 return Legalized;
4040 }
4041
4042 // With a variable index, we can't perform the operation in a smaller type, so
4043 // we're forced to expand this.
4044 //
4045 // TODO: We could emit a chain of compare/select to figure out which piece to
4046 // index.
4047 return lowerExtractInsertVectorElt(MI);
4048}
4049
4050LegalizerHelper::LegalizeResult
4051LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx,
4052 LLT NarrowTy) {
4053 // FIXME: Don't know how to handle secondary types yet.
4054 if (TypeIdx != 0)
4055 return UnableToLegalize;
4056
4057 // This implementation doesn't work for atomics. Give up instead of doing
4058 // something invalid.
4059 if (LdStMI.isAtomic())
4060 return UnableToLegalize;
4061
4062 bool IsLoad = isa<GLoad>(LdStMI);
4063 Register ValReg = LdStMI.getReg(0);
4064 Register AddrReg = LdStMI.getPointerReg();
4065 LLT ValTy = MRI.getType(ValReg);
4066
4067 // FIXME: Do we need a distinct NarrowMemory legalize action?
4068 if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) {
4069 LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "Can't narrow extload/truncstore\n"
; } } while (false)
;
4070 return UnableToLegalize;
4071 }
4072
4073 int NumParts = -1;
4074 int NumLeftover = -1;
4075 LLT LeftoverTy;
4076 SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs;
4077 if (IsLoad) {
4078 std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy);
4079 } else {
4080 if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs,
4081 NarrowLeftoverRegs)) {
4082 NumParts = NarrowRegs.size();
4083 NumLeftover = NarrowLeftoverRegs.size();
Value stored to 'NumLeftover' is never read
4084 }
4085 }
4086
4087 if (NumParts == -1)
4088 return UnableToLegalize;
4089
4090 LLT PtrTy = MRI.getType(AddrReg);
4091 const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits());
4092
4093 unsigned TotalSize = ValTy.getSizeInBits();
4094
4095 // Split the load/store into PartTy sized pieces starting at Offset. If this
4096 // is a load, return the new registers in ValRegs. For a store, each elements
4097 // of ValRegs should be PartTy. Returns the next offset that needs to be
4098 // handled.
4099 auto MMO = LdStMI.getMMO();
4100 auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs,
4101 unsigned Offset) -> unsigned {
4102 MachineFunction &MF = MIRBuilder.getMF();
4103 unsigned PartSize = PartTy.getSizeInBits();
4104 for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize;
4105 Offset += PartSize, ++Idx) {
4106 unsigned ByteOffset = Offset / 8;
4107 Register NewAddrReg;
4108
4109 MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset);
4110
4111 MachineMemOperand *NewMMO =
4112 MF.getMachineMemOperand(&MMO, ByteOffset, PartTy);
4113
4114 if (IsLoad) {
4115 Register Dst = MRI.createGenericVirtualRegister(PartTy);
4116 ValRegs.push_back(Dst);
4117 MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO);
4118 } else {
4119 MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO);
4120 }
4121 }
4122
4123 return Offset;
4124 };
4125
4126 unsigned HandledOffset = splitTypePieces(NarrowTy, NarrowRegs, 0);
4127
4128 // Handle the rest of the register if this isn't an even type breakdown.
4129 if (LeftoverTy.isValid())
4130 splitTypePieces(LeftoverTy, NarrowLeftoverRegs, HandledOffset);
4131
4132 if (IsLoad) {
4133 insertParts(ValReg, ValTy, NarrowTy, NarrowRegs,
4134 LeftoverTy, NarrowLeftoverRegs);
4135 }
4136
4137 LdStMI.eraseFromParent();
4138 return Legalized;
4139}
4140
4141LegalizerHelper::LegalizeResult
4142LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx,
4143 LLT NarrowTy) {
4144 using namespace TargetOpcode;
4145 GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI);
4146 unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1;
4147
4148 switch (MI.getOpcode()) {
4149 case G_IMPLICIT_DEF:
4150 case G_TRUNC:
4151 case G_AND:
4152 case G_OR:
4153 case G_XOR:
4154 case G_ADD:
4155 case G_SUB:
4156 case G_MUL:
4157 case G_PTR_ADD:
4158 case G_SMULH:
4159 case G_UMULH:
4160 case G_FADD:
4161 case G_FMUL:
4162 case G_FSUB:
4163 case G_FNEG:
4164 case G_FABS:
4165 case G_FCANONICALIZE:
4166 case G_FDIV:
4167 case G_FREM:
4168 case G_FMA:
4169 case G_FMAD:
4170 case G_FPOW:
4171 case G_FEXP:
4172 case G_FEXP2:
4173 case G_FLOG:
4174 case G_FLOG2:
4175 case G_FLOG10:
4176 case G_FNEARBYINT:
4177 case G_FCEIL:
4178 case G_FFLOOR:
4179 case G_FRINT:
4180 case G_INTRINSIC_ROUND:
4181 case G_INTRINSIC_ROUNDEVEN:
4182 case G_INTRINSIC_TRUNC:
4183 case G_FCOS:
4184 case G_FSIN:
4185 case G_FSQRT:
4186 case G_BSWAP:
4187 case G_BITREVERSE:
4188 case G_SDIV:
4189 case G_UDIV:
4190 case G_SREM:
4191 case G_UREM:
4192 case G_SDIVREM:
4193 case G_UDIVREM:
4194 case G_SMIN:
4195 case G_SMAX:
4196 case G_UMIN:
4197 case G_UMAX:
4198 case G_ABS:
4199 case G_FMINNUM:
4200 case G_FMAXNUM:
4201 case G_FMINNUM_IEEE:
4202 case G_FMAXNUM_IEEE:
4203 case G_FMINIMUM:
4204 case G_FMAXIMUM:
4205 case G_FSHL:
4206 case G_FSHR:
4207 case G_ROTL:
4208 case G_ROTR:
4209 case G_FREEZE:
4210 case G_SADDSAT:
4211 case G_SSUBSAT:
4212 case G_UADDSAT:
4213 case G_USUBSAT:
4214 case G_UMULO:
4215 case G_SMULO:
4216 case G_SHL:
4217 case G_LSHR:
4218 case G_ASHR:
4219 case G_SSHLSAT:
4220 case G_USHLSAT:
4221 case G_CTLZ:
4222 case G_CTLZ_ZERO_UNDEF:
4223 case G_CTTZ:
4224 case G_CTTZ_ZERO_UNDEF:
4225 case G_CTPOP:
4226 case G_FCOPYSIGN:
4227 case G_ZEXT:
4228 case G_SEXT:
4229 case G_ANYEXT:
4230 case G_FPEXT:
4231 case G_FPTRUNC:
4232 case G_SITOFP:
4233 case G_UITOFP:
4234 case G_FPTOSI:
4235 case G_FPTOUI:
4236 case G_INTTOPTR:
4237 case G_PTRTOINT:
4238 case G_ADDRSPACE_CAST:
4239 return fewerElementsVectorMultiEltType(GMI, NumElts);
4240 case G_ICMP:
4241 case G_FCMP:
4242 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/});
4243 case G_SELECT:
4244 if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4245 return fewerElementsVectorMultiEltType(GMI, NumElts);
4246 return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/});
4247 case G_PHI:
4248 return fewerElementsVectorPhi(GMI, NumElts);
4249 case G_UNMERGE_VALUES:
4250 return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy);
4251 case G_BUILD_VECTOR:
4252 assert(TypeIdx == 0 && "not a vector type index")(static_cast <bool> (TypeIdx == 0 && "not a vector type index"
) ? void (0) : __assert_fail ("TypeIdx == 0 && \"not a vector type index\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 4252, __extension__
__PRETTY_FUNCTION__))
;
4253 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4254 case G_CONCAT_VECTORS:
4255 if (TypeIdx != 1) // TODO: This probably does work as expected already.
4256 return UnableToLegalize;
4257 return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy);
4258 case G_EXTRACT_VECTOR_ELT:
4259 case G_INSERT_VECTOR_ELT:
4260 return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy);
4261 case G_LOAD:
4262 case G_STORE:
4263 return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy);
4264 case G_SEXT_INREG:
4265 return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/});
4266 GISEL_VECREDUCE_CASES_NONSEQcase TargetOpcode::G_VECREDUCE_FADD: case TargetOpcode::G_VECREDUCE_FMUL
: case TargetOpcode::G_VECREDUCE_FMAX: case TargetOpcode::G_VECREDUCE_FMIN
: case TargetOpcode::G_VECREDUCE_ADD: case TargetOpcode::G_VECREDUCE_MUL
: case TargetOpcode::G_VECREDUCE_AND: case TargetOpcode::G_VECREDUCE_OR
: case TargetOpcode::G_VECREDUCE_XOR: case TargetOpcode::G_VECREDUCE_SMAX
: case TargetOpcode::G_VECREDUCE_SMIN: case TargetOpcode::G_VECREDUCE_UMAX
: case TargetOpcode::G_VECREDUCE_UMIN:
4267 return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy);
4268 case G_SHUFFLE_VECTOR:
4269 return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy);
4270 default:
4271 return UnableToLegalize;
4272 }
4273}
4274
4275LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle(
4276 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4277 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 4277, __extension__
__PRETTY_FUNCTION__))
;
4278 if (TypeIdx != 0)
4279 return UnableToLegalize;
4280
4281 Register DstReg = MI.getOperand(0).getReg();
4282 Register Src1Reg = MI.getOperand(1).getReg();
4283 Register Src2Reg = MI.getOperand(2).getReg();
4284 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4285 LLT DstTy = MRI.getType(DstReg);
4286 LLT Src1Ty = MRI.getType(Src1Reg);
4287 LLT Src2Ty = MRI.getType(Src2Reg);
4288 // The shuffle should be canonicalized by now.
4289 if (DstTy != Src1Ty)
4290 return UnableToLegalize;
4291 if (DstTy != Src2Ty)
4292 return UnableToLegalize;
4293
4294 if (!isPowerOf2_32(DstTy.getNumElements()))
4295 return UnableToLegalize;
4296
4297 // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly.
4298 // Further legalization attempts will be needed to do split further.
4299 NarrowTy =
4300 DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2));
4301 unsigned NewElts = NarrowTy.getNumElements();
4302
4303 SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs;
4304 extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs);
4305 extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs);
4306 Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0],
4307 SplitSrc2Regs[1]};
4308
4309 Register Hi, Lo;
4310
4311 // If Lo or Hi uses elements from at most two of the four input vectors, then
4312 // express it as a vector shuffle of those two inputs. Otherwise extract the
4313 // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR.
4314 SmallVector<int, 16> Ops;
4315 for (unsigned High = 0; High < 2; ++High) {
4316 Register &Output = High ? Hi : Lo;
4317
4318 // Build a shuffle mask for the output, discovering on the fly which
4319 // input vectors to use as shuffle operands (recorded in InputUsed).
4320 // If building a suitable shuffle vector proves too hard, then bail
4321 // out with useBuildVector set.
4322 unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered.
4323 unsigned FirstMaskIdx = High * NewElts;
4324 bool UseBuildVector = false;
4325 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4326 // The mask element. This indexes into the input.
4327 int Idx = Mask[FirstMaskIdx + MaskOffset];
4328
4329 // The input vector this mask element indexes into.
4330 unsigned Input = (unsigned)Idx / NewElts;
4331
4332 if (Input >= array_lengthof(Inputs)) {
4333 // The mask element does not index into any input vector.
4334 Ops.push_back(-1);
4335 continue;
4336 }
4337
4338 // Turn the index into an offset from the start of the input vector.
4339 Idx -= Input * NewElts;
4340
4341 // Find or create a shuffle vector operand to hold this input.
4342 unsigned OpNo;
4343 for (OpNo = 0; OpNo < array_lengthof(InputUsed); ++OpNo) {
4344 if (InputUsed[OpNo] == Input) {
4345 // This input vector is already an operand.
4346 break;
4347 } else if (InputUsed[OpNo] == -1U) {
4348 // Create a new operand for this input vector.
4349 InputUsed[OpNo] = Input;
4350 break;
4351 }
4352 }
4353
4354 if (OpNo >= array_lengthof(InputUsed)) {
4355 // More than two input vectors used! Give up on trying to create a
4356 // shuffle vector. Insert all elements into a BUILD_VECTOR instead.
4357 UseBuildVector = true;
4358 break;
4359 }
4360
4361 // Add the mask index for the new shuffle vector.
4362 Ops.push_back(Idx + OpNo * NewElts);
4363 }
4364
4365 if (UseBuildVector) {
4366 LLT EltTy = NarrowTy.getElementType();
4367 SmallVector<Register, 16> SVOps;
4368
4369 // Extract the input elements by hand.
4370 for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) {
4371 // The mask element. This indexes into the input.
4372 int Idx = Mask[FirstMaskIdx + MaskOffset];
4373
4374 // The input vector this mask element indexes into.
4375 unsigned Input = (unsigned)Idx / NewElts;
4376
4377 if (Input >= array_lengthof(Inputs)) {
4378 // The mask element is "undef" or indexes off the end of the input.
4379 SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0));
4380 continue;
4381 }
4382
4383 // Turn the index into an offset from the start of the input vector.
4384 Idx -= Input * NewElts;
4385
4386 // Extract the vector element by hand.
4387 SVOps.push_back(MIRBuilder
4388 .buildExtractVectorElement(
4389 EltTy, Inputs[Input],
4390 MIRBuilder.buildConstant(LLT::scalar(32), Idx))
4391 .getReg(0));
4392 }
4393
4394 // Construct the Lo/Hi output using a G_BUILD_VECTOR.
4395 Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0);
4396 } else if (InputUsed[0] == -1U) {
4397 // No input vectors were used! The result is undefined.
4398 Output = MIRBuilder.buildUndef(NarrowTy).getReg(0);
4399 } else {
4400 Register Op0 = Inputs[InputUsed[0]];
4401 // If only one input was used, use an undefined vector for the other.
4402 Register Op1 = InputUsed[1] == -1U
4403 ? MIRBuilder.buildUndef(NarrowTy).getReg(0)
4404 : Inputs[InputUsed[1]];
4405 // At least one input vector was used. Create a new shuffle vector.
4406 Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0);
4407 }
4408
4409 Ops.clear();
4410 }
4411
4412 MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi});
4413 MI.eraseFromParent();
4414 return Legalized;
4415}
4416
4417static unsigned getScalarOpcForReduction(unsigned Opc) {
4418 unsigned ScalarOpc;
4419 switch (Opc) {
4420 case TargetOpcode::G_VECREDUCE_FADD:
4421 ScalarOpc = TargetOpcode::G_FADD;
4422 break;
4423 case TargetOpcode::G_VECREDUCE_FMUL:
4424 ScalarOpc = TargetOpcode::G_FMUL;
4425 break;
4426 case TargetOpcode::G_VECREDUCE_FMAX:
4427 ScalarOpc = TargetOpcode::G_FMAXNUM;
4428 break;
4429 case TargetOpcode::G_VECREDUCE_FMIN:
4430 ScalarOpc = TargetOpcode::G_FMINNUM;
4431 break;
4432 case TargetOpcode::G_VECREDUCE_ADD:
4433 ScalarOpc = TargetOpcode::G_ADD;
4434 break;
4435 case TargetOpcode::G_VECREDUCE_MUL:
4436 ScalarOpc = TargetOpcode::G_MUL;
4437 break;
4438 case TargetOpcode::G_VECREDUCE_AND:
4439 ScalarOpc = TargetOpcode::G_AND;
4440 break;
4441 case TargetOpcode::G_VECREDUCE_OR:
4442 ScalarOpc = TargetOpcode::G_OR;
4443 break;
4444 case TargetOpcode::G_VECREDUCE_XOR:
4445 ScalarOpc = TargetOpcode::G_XOR;
4446 break;
4447 case TargetOpcode::G_VECREDUCE_SMAX:
4448 ScalarOpc = TargetOpcode::G_SMAX;
4449 break;
4450 case TargetOpcode::G_VECREDUCE_SMIN:
4451 ScalarOpc = TargetOpcode::G_SMIN;
4452 break;
4453 case TargetOpcode::G_VECREDUCE_UMAX:
4454 ScalarOpc = TargetOpcode::G_UMAX;
4455 break;
4456 case TargetOpcode::G_VECREDUCE_UMIN:
4457 ScalarOpc = TargetOpcode::G_UMIN;
4458 break;
4459 default:
4460 llvm_unreachable("Unhandled reduction")::llvm::llvm_unreachable_internal("Unhandled reduction", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 4460)
;
4461 }
4462 return ScalarOpc;
4463}
4464
4465LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions(
4466 MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) {
4467 unsigned Opc = MI.getOpcode();
4468 assert(Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD &&(static_cast <bool> (Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD
&& Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
"Sequential reductions not expected") ? void (0) : __assert_fail
("Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && \"Sequential reductions not expected\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 4470, __extension__
__PRETTY_FUNCTION__))
4469 Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&(static_cast <bool> (Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD
&& Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
"Sequential reductions not expected") ? void (0) : __assert_fail
("Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && \"Sequential reductions not expected\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 4470, __extension__
__PRETTY_FUNCTION__))
4470 "Sequential reductions not expected")(static_cast <bool> (Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD
&& Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL &&
"Sequential reductions not expected") ? void (0) : __assert_fail
("Opc != TargetOpcode::G_VECREDUCE_SEQ_FADD && Opc != TargetOpcode::G_VECREDUCE_SEQ_FMUL && \"Sequential reductions not expected\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 4470, __extension__
__PRETTY_FUNCTION__))
;
4471
4472 if (TypeIdx != 1)
4473 return UnableToLegalize;
4474
4475 // The semantics of the normal non-sequential reductions allow us to freely
4476 // re-associate the operation.
4477 Register SrcReg = MI.getOperand(1).getReg();
4478 LLT SrcTy = MRI.getType(SrcReg);
4479 Register DstReg = MI.getOperand(0).getReg();
4480 LLT DstTy = MRI.getType(DstReg);
4481
4482 if (NarrowTy.isVector() &&
4483 (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0))
4484 return UnableToLegalize;
4485
4486 unsigned ScalarOpc = getScalarOpcForReduction(Opc);
4487 SmallVector<Register> SplitSrcs;
4488 // If NarrowTy is a scalar then we're being asked to scalarize.
4489 const unsigned NumParts =
4490 NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements()
4491 : SrcTy.getNumElements();
4492
4493 extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs);
4494 if (NarrowTy.isScalar()) {
4495 if (DstTy != NarrowTy)
4496 return UnableToLegalize; // FIXME: handle implicit extensions.
4497
4498 if (isPowerOf2_32(NumParts)) {
4499 // Generate a tree of scalar operations to reduce the critical path.
4500 SmallVector<Register> PartialResults;
4501 unsigned NumPartsLeft = NumParts;
4502 while (NumPartsLeft > 1) {
4503 for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) {
4504 PartialResults.emplace_back(
4505 MIRBuilder
4506 .buildInstr(ScalarOpc, {NarrowTy},
4507 {SplitSrcs[Idx], SplitSrcs[Idx + 1]})
4508 .getReg(0));
4509 }
4510 SplitSrcs = PartialResults;
4511 PartialResults.clear();
4512 NumPartsLeft = SplitSrcs.size();
4513 }
4514 assert(SplitSrcs.size() == 1)(static_cast <bool> (SplitSrcs.size() == 1) ? void (0) :
__assert_fail ("SplitSrcs.size() == 1", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 4514, __extension__ __PRETTY_FUNCTION__))
;
4515 MIRBuilder.buildCopy(DstReg, SplitSrcs[0]);
4516 MI.eraseFromParent();
4517 return Legalized;
4518 }
4519 // If we can't generate a tree, then just do sequential operations.
4520 Register Acc = SplitSrcs[0];
4521 for (unsigned Idx = 1; Idx < NumParts; ++Idx)
4522 Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]})
4523 .getReg(0);
4524 MIRBuilder.buildCopy(DstReg, Acc);
4525 MI.eraseFromParent();
4526 return Legalized;
4527 }
4528 SmallVector<Register> PartialReductions;
4529 for (unsigned Part = 0; Part < NumParts; ++Part) {
4530 PartialReductions.push_back(
4531 MIRBuilder.buildInstr(Opc, {DstTy}, {SplitSrcs[Part]}).getReg(0));
4532 }
4533
4534
4535 // If the types involved are powers of 2, we can generate intermediate vector
4536 // ops, before generating a final reduction operation.
4537 if (isPowerOf2_32(SrcTy.getNumElements()) &&
4538 isPowerOf2_32(NarrowTy.getNumElements())) {
4539 return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc);
4540 }
4541
4542 Register Acc = PartialReductions[0];
4543 for (unsigned Part = 1; Part < NumParts; ++Part) {
4544 if (Part == NumParts - 1) {
4545 MIRBuilder.buildInstr(ScalarOpc, {DstReg},
4546 {Acc, PartialReductions[Part]});
4547 } else {
4548 Acc = MIRBuilder
4549 .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]})
4550 .getReg(0);
4551 }
4552 }
4553 MI.eraseFromParent();
4554 return Legalized;
4555}
4556
4557LegalizerHelper::LegalizeResult
4558LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg,
4559 LLT SrcTy, LLT NarrowTy,
4560 unsigned ScalarOpc) {
4561 SmallVector<Register> SplitSrcs;
4562 // Split the sources into NarrowTy size pieces.
4563 extractParts(SrcReg, NarrowTy,
4564 SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs);
4565 // We're going to do a tree reduction using vector operations until we have
4566 // one NarrowTy size value left.
4567 while (SplitSrcs.size() > 1) {
4568 SmallVector<Register> PartialRdxs;
4569 for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) {
4570 Register LHS = SplitSrcs[Idx];
4571 Register RHS = SplitSrcs[Idx + 1];
4572 // Create the intermediate vector op.
4573 Register Res =
4574 MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0);
4575 PartialRdxs.push_back(Res);
4576 }
4577 SplitSrcs = std::move(PartialRdxs);
4578 }
4579 // Finally generate the requested NarrowTy based reduction.
4580 Observer.changingInstr(MI);
4581 MI.getOperand(1).setReg(SplitSrcs[0]);
4582 Observer.changedInstr(MI);
4583 return Legalized;
4584}
4585
4586LegalizerHelper::LegalizeResult
4587LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt,
4588 const LLT HalfTy, const LLT AmtTy) {
4589
4590 Register InL = MRI.createGenericVirtualRegister(HalfTy);
4591 Register InH = MRI.createGenericVirtualRegister(HalfTy);
4592 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4593
4594 if (Amt.isZero()) {
4595 MIRBuilder.buildMerge(MI.getOperand(0), {InL, InH});
4596 MI.eraseFromParent();
4597 return Legalized;
4598 }
4599
4600 LLT NVT = HalfTy;
4601 unsigned NVTBits = HalfTy.getSizeInBits();
4602 unsigned VTBits = 2 * NVTBits;
4603
4604 SrcOp Lo(Register(0)), Hi(Register(0));
4605 if (MI.getOpcode() == TargetOpcode::G_SHL) {
4606 if (Amt.ugt(VTBits)) {
4607 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4608 } else if (Amt.ugt(NVTBits)) {
4609 Lo = MIRBuilder.buildConstant(NVT, 0);
4610 Hi = MIRBuilder.buildShl(NVT, InL,
4611 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4612 } else if (Amt == NVTBits) {
4613 Lo = MIRBuilder.buildConstant(NVT, 0);
4614 Hi = InL;
4615 } else {
4616 Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt));
4617 auto OrLHS =
4618 MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt));
4619 auto OrRHS = MIRBuilder.buildLShr(
4620 NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4621 Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4622 }
4623 } else if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4624 if (Amt.ugt(VTBits)) {
4625 Lo = Hi = MIRBuilder.buildConstant(NVT, 0);
4626 } else if (Amt.ugt(NVTBits)) {
4627 Lo = MIRBuilder.buildLShr(NVT, InH,
4628 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4629 Hi = MIRBuilder.buildConstant(NVT, 0);
4630 } else if (Amt == NVTBits) {
4631 Lo = InH;
4632 Hi = MIRBuilder.buildConstant(NVT, 0);
4633 } else {
4634 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4635
4636 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4637 auto OrRHS = MIRBuilder.buildShl(
4638 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4639
4640 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4641 Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst);
4642 }
4643 } else {
4644 if (Amt.ugt(VTBits)) {
4645 Hi = Lo = MIRBuilder.buildAShr(
4646 NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4647 } else if (Amt.ugt(NVTBits)) {
4648 Lo = MIRBuilder.buildAShr(NVT, InH,
4649 MIRBuilder.buildConstant(AmtTy, Amt - NVTBits));
4650 Hi = MIRBuilder.buildAShr(NVT, InH,
4651 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4652 } else if (Amt == NVTBits) {
4653 Lo = InH;
4654 Hi = MIRBuilder.buildAShr(NVT, InH,
4655 MIRBuilder.buildConstant(AmtTy, NVTBits - 1));
4656 } else {
4657 auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt);
4658
4659 auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst);
4660 auto OrRHS = MIRBuilder.buildShl(
4661 NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits));
4662
4663 Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS);
4664 Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst);
4665 }
4666 }
4667
4668 MIRBuilder.buildMerge(MI.getOperand(0), {Lo, Hi});
4669 MI.eraseFromParent();
4670
4671 return Legalized;
4672}
4673
4674// TODO: Optimize if constant shift amount.
4675LegalizerHelper::LegalizeResult
4676LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx,
4677 LLT RequestedTy) {
4678 if (TypeIdx == 1) {
4679 Observer.changingInstr(MI);
4680 narrowScalarSrc(MI, RequestedTy, 2);
4681 Observer.changedInstr(MI);
4682 return Legalized;
4683 }
4684
4685 Register DstReg = MI.getOperand(0).getReg();
4686 LLT DstTy = MRI.getType(DstReg);
4687 if (DstTy.isVector())
4688 return UnableToLegalize;
4689
4690 Register Amt = MI.getOperand(2).getReg();
4691 LLT ShiftAmtTy = MRI.getType(Amt);
4692 const unsigned DstEltSize = DstTy.getScalarSizeInBits();
4693 if (DstEltSize % 2 != 0)
4694 return UnableToLegalize;
4695
4696 // Ignore the input type. We can only go to exactly half the size of the
4697 // input. If that isn't small enough, the resulting pieces will be further
4698 // legalized.
4699 const unsigned NewBitSize = DstEltSize / 2;
4700 const LLT HalfTy = LLT::scalar(NewBitSize);
4701 const LLT CondTy = LLT::scalar(1);
4702
4703 if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) {
4704 return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy,
4705 ShiftAmtTy);
4706 }
4707
4708 // TODO: Expand with known bits.
4709
4710 // Handle the fully general expansion by an unknown amount.
4711 auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize);
4712
4713 Register InL = MRI.createGenericVirtualRegister(HalfTy);
4714 Register InH = MRI.createGenericVirtualRegister(HalfTy);
4715 MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1));
4716
4717 auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits);
4718 auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt);
4719
4720 auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0);
4721 auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits);
4722 auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero);
4723
4724 Register ResultRegs[2];
4725 switch (MI.getOpcode()) {
4726 case TargetOpcode::G_SHL: {
4727 // Short: ShAmt < NewBitSize
4728 auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt);
4729
4730 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack);
4731 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt);
4732 auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4733
4734 // Long: ShAmt >= NewBitSize
4735 auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero.
4736 auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part.
4737
4738 auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL);
4739 auto Hi = MIRBuilder.buildSelect(
4740 HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL));
4741
4742 ResultRegs[0] = Lo.getReg(0);
4743 ResultRegs[1] = Hi.getReg(0);
4744 break;
4745 }
4746 case TargetOpcode::G_LSHR:
4747 case TargetOpcode::G_ASHR: {
4748 // Short: ShAmt < NewBitSize
4749 auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt});
4750
4751 auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt);
4752 auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack);
4753 auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr);
4754
4755 // Long: ShAmt >= NewBitSize
4756 MachineInstrBuilder HiL;
4757 if (MI.getOpcode() == TargetOpcode::G_LSHR) {
4758 HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero.
4759 } else {
4760 auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1);
4761 HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part.
4762 }
4763 auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy},
4764 {InH, AmtExcess}); // Lo from Hi part.
4765
4766 auto Lo = MIRBuilder.buildSelect(
4767 HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL));
4768
4769 auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL);
4770
4771 ResultRegs[0] = Lo.getReg(0);
4772 ResultRegs[1] = Hi.getReg(0);
4773 break;
4774 }
4775 default:
4776 llvm_unreachable("not a shift")::llvm::llvm_unreachable_internal("not a shift", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 4776)
;
4777 }
4778
4779 MIRBuilder.buildMerge(DstReg, ResultRegs);
4780 MI.eraseFromParent();
4781 return Legalized;
4782}
4783
4784LegalizerHelper::LegalizeResult
4785LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx,
4786 LLT MoreTy) {
4787 assert(TypeIdx == 0 && "Expecting only Idx 0")(static_cast <bool> (TypeIdx == 0 && "Expecting only Idx 0"
) ? void (0) : __assert_fail ("TypeIdx == 0 && \"Expecting only Idx 0\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 4787, __extension__
__PRETTY_FUNCTION__))
;
4788
4789 Observer.changingInstr(MI);
4790 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
4791 MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB();
4792 MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator());
4793 moreElementsVectorSrc(MI, MoreTy, I);
4794 }
4795
4796 MachineBasicBlock &MBB = *MI.getParent();
4797 MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI());
4798 moreElementsVectorDst(MI, MoreTy, 0);
4799 Observer.changedInstr(MI);
4800 return Legalized;
4801}
4802
4803LegalizerHelper::LegalizeResult
4804LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx,
4805 LLT MoreTy) {
4806 unsigned Opc = MI.getOpcode();
4807 switch (Opc) {
4808 case TargetOpcode::G_IMPLICIT_DEF:
4809 case TargetOpcode::G_LOAD: {
4810 if (TypeIdx != 0)
4811 return UnableToLegalize;
4812 Observer.changingInstr(MI);
4813 moreElementsVectorDst(MI, MoreTy, 0);
4814 Observer.changedInstr(MI);
4815 return Legalized;
4816 }
4817 case TargetOpcode::G_STORE:
4818 if (TypeIdx != 0)
4819 return UnableToLegalize;
4820 Observer.changingInstr(MI);
4821 moreElementsVectorSrc(MI, MoreTy, 0);
4822 Observer.changedInstr(MI);
4823 return Legalized;
4824 case TargetOpcode::G_AND:
4825 case TargetOpcode::G_OR:
4826 case TargetOpcode::G_XOR:
4827 case TargetOpcode::G_ADD:
4828 case TargetOpcode::G_SUB:
4829 case TargetOpcode::G_MUL:
4830 case TargetOpcode::G_FADD:
4831 case TargetOpcode::G_FMUL:
4832 case TargetOpcode::G_UADDSAT:
4833 case TargetOpcode::G_USUBSAT:
4834 case TargetOpcode::G_SADDSAT:
4835 case TargetOpcode::G_SSUBSAT:
4836 case TargetOpcode::G_SMIN:
4837 case TargetOpcode::G_SMAX:
4838 case TargetOpcode::G_UMIN:
4839 case TargetOpcode::G_UMAX:
4840 case TargetOpcode::G_FMINNUM:
4841 case TargetOpcode::G_FMAXNUM:
4842 case TargetOpcode::G_FMINNUM_IEEE:
4843 case TargetOpcode::G_FMAXNUM_IEEE:
4844 case TargetOpcode::G_FMINIMUM:
4845 case TargetOpcode::G_FMAXIMUM: {
4846 Observer.changingInstr(MI);
4847 moreElementsVectorSrc(MI, MoreTy, 1);
4848 moreElementsVectorSrc(MI, MoreTy, 2);
4849 moreElementsVectorDst(MI, MoreTy, 0);
4850 Observer.changedInstr(MI);
4851 return Legalized;
4852 }
4853 case TargetOpcode::G_FMA:
4854 case TargetOpcode::G_FSHR:
4855 case TargetOpcode::G_FSHL: {
4856 Observer.changingInstr(MI);
4857 moreElementsVectorSrc(MI, MoreTy, 1);
4858 moreElementsVectorSrc(MI, MoreTy, 2);
4859 moreElementsVectorSrc(MI, MoreTy, 3);
4860 moreElementsVectorDst(MI, MoreTy, 0);
4861 Observer.changedInstr(MI);
4862 return Legalized;
4863 }
4864 case TargetOpcode::G_EXTRACT:
4865 if (TypeIdx != 1)
4866 return UnableToLegalize;
4867 Observer.changingInstr(MI);
4868 moreElementsVectorSrc(MI, MoreTy, 1);
4869 Observer.changedInstr(MI);
4870 return Legalized;
4871 case TargetOpcode::G_INSERT:
4872 case TargetOpcode::G_FREEZE:
4873 case TargetOpcode::G_FNEG:
4874 case TargetOpcode::G_FABS:
4875 case TargetOpcode::G_BSWAP:
4876 case TargetOpcode::G_FCANONICALIZE:
4877 case TargetOpcode::G_SEXT_INREG:
4878 if (TypeIdx != 0)
4879 return UnableToLegalize;
4880 Observer.changingInstr(MI);
4881 moreElementsVectorSrc(MI, MoreTy, 1);
4882 moreElementsVectorDst(MI, MoreTy, 0);
4883 Observer.changedInstr(MI);
4884 return Legalized;
4885 case TargetOpcode::G_SELECT:
4886 if (TypeIdx != 0)
4887 return UnableToLegalize;
4888 if (MRI.getType(MI.getOperand(1).getReg()).isVector())
4889 return UnableToLegalize;
4890
4891 Observer.changingInstr(MI);
4892 moreElementsVectorSrc(MI, MoreTy, 2);
4893 moreElementsVectorSrc(MI, MoreTy, 3);
4894 moreElementsVectorDst(MI, MoreTy, 0);
4895 Observer.changedInstr(MI);
4896 return Legalized;
4897 case TargetOpcode::G_UNMERGE_VALUES:
4898 return UnableToLegalize;
4899 case TargetOpcode::G_PHI:
4900 return moreElementsVectorPhi(MI, TypeIdx, MoreTy);
4901 case TargetOpcode::G_SHUFFLE_VECTOR:
4902 return moreElementsVectorShuffle(MI, TypeIdx, MoreTy);
4903 case TargetOpcode::G_BUILD_VECTOR: {
4904 SmallVector<SrcOp, 8> Elts;
4905 for (auto Op : MI.uses()) {
4906 Elts.push_back(Op.getReg());
4907 }
4908
4909 for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) {
4910 Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType()));
4911 }
4912
4913 MIRBuilder.buildDeleteTrailingVectorElements(
4914 MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts));
4915 MI.eraseFromParent();
4916 return Legalized;
4917 }
4918 case TargetOpcode::G_TRUNC: {
4919 Observer.changingInstr(MI);
4920 moreElementsVectorSrc(MI, MoreTy, 1);
4921 moreElementsVectorDst(MI, MoreTy, 0);
4922 Observer.changedInstr(MI);
4923 return Legalized;
4924 }
4925 default:
4926 return UnableToLegalize;
4927 }
4928}
4929
4930LegalizerHelper::LegalizeResult
4931LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI,
4932 unsigned int TypeIdx, LLT MoreTy) {
4933 if (TypeIdx != 0)
4934 return UnableToLegalize;
4935
4936 Register DstReg = MI.getOperand(0).getReg();
4937 Register Src1Reg = MI.getOperand(1).getReg();
4938 Register Src2Reg = MI.getOperand(2).getReg();
4939 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
4940 LLT DstTy = MRI.getType(DstReg);
4941 LLT Src1Ty = MRI.getType(Src1Reg);
4942 LLT Src2Ty = MRI.getType(Src2Reg);
4943 unsigned NumElts = DstTy.getNumElements();
4944 unsigned WidenNumElts = MoreTy.getNumElements();
4945
4946 // Expect a canonicalized shuffle.
4947 if (DstTy != Src1Ty || DstTy != Src2Ty)
4948 return UnableToLegalize;
4949
4950 moreElementsVectorSrc(MI, MoreTy, 1);
4951 moreElementsVectorSrc(MI, MoreTy, 2);
4952
4953 // Adjust mask based on new input vector length.
4954 SmallVector<int, 16> NewMask;
4955 for (unsigned I = 0; I != NumElts; ++I) {
4956 int Idx = Mask[I];
4957 if (Idx < static_cast<int>(NumElts))
4958 NewMask.push_back(Idx);
4959 else
4960 NewMask.push_back(Idx - NumElts + WidenNumElts);
4961 }
4962 for (unsigned I = NumElts; I != WidenNumElts; ++I)
4963 NewMask.push_back(-1);
4964 moreElementsVectorDst(MI, MoreTy, 0);
4965 MIRBuilder.setInstrAndDebugLoc(MI);
4966 MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(),
4967 MI.getOperand(1).getReg(),
4968 MI.getOperand(2).getReg(), NewMask);
4969 MI.eraseFromParent();
4970 return Legalized;
4971}
4972
4973void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs,
4974 ArrayRef<Register> Src1Regs,
4975 ArrayRef<Register> Src2Regs,
4976 LLT NarrowTy) {
4977 MachineIRBuilder &B = MIRBuilder;
4978 unsigned SrcParts = Src1Regs.size();
4979 unsigned DstParts = DstRegs.size();
4980
4981 unsigned DstIdx = 0; // Low bits of the result.
4982 Register FactorSum =
4983 B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0);
4984 DstRegs[DstIdx] = FactorSum;
4985
4986 unsigned CarrySumPrevDstIdx;
4987 SmallVector<Register, 4> Factors;
4988
4989 for (DstIdx = 1; DstIdx < DstParts; DstIdx++) {
4990 // Collect low parts of muls for DstIdx.
4991 for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1;
4992 i <= std::min(DstIdx, SrcParts - 1); ++i) {
4993 MachineInstrBuilder Mul =
4994 B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]);
4995 Factors.push_back(Mul.getReg(0));
4996 }
4997 // Collect high parts of muls from previous DstIdx.
4998 for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts;
4999 i <= std::min(DstIdx - 1, SrcParts - 1); ++i) {
5000 MachineInstrBuilder Umulh =
5001 B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]);
5002 Factors.push_back(Umulh.getReg(0));
5003 }
5004 // Add CarrySum from additions calculated for previous DstIdx.
5005 if (DstIdx != 1) {
5006 Factors.push_back(CarrySumPrevDstIdx);
5007 }
5008
5009 Register CarrySum;
5010 // Add all factors and accumulate all carries into CarrySum.
5011 if (DstIdx != DstParts - 1) {
5012 MachineInstrBuilder Uaddo =
5013 B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]);
5014 FactorSum = Uaddo.getReg(0);
5015 CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0);
5016 for (unsigned i = 2; i < Factors.size(); ++i) {
5017 MachineInstrBuilder Uaddo =
5018 B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]);
5019 FactorSum = Uaddo.getReg(0);
5020 MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1));
5021 CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0);
5022 }
5023 } else {
5024 // Since value for the next index is not calculated, neither is CarrySum.
5025 FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0);
5026 for (unsigned i = 2; i < Factors.size(); ++i)
5027 FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0);
5028 }
5029
5030 CarrySumPrevDstIdx = CarrySum;
5031 DstRegs[DstIdx] = FactorSum;
5032 Factors.clear();
5033 }
5034}
5035
5036LegalizerHelper::LegalizeResult
5037LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx,
5038 LLT NarrowTy) {
5039 if (TypeIdx != 0)
5040 return UnableToLegalize;
5041
5042 Register DstReg = MI.getOperand(0).getReg();
5043 LLT DstType = MRI.getType(DstReg);
5044 // FIXME: add support for vector types
5045 if (DstType.isVector())
5046 return UnableToLegalize;
5047
5048 unsigned Opcode = MI.getOpcode();
5049 unsigned OpO, OpE, OpF;
5050 switch (Opcode) {
5051 case TargetOpcode::G_SADDO:
5052 case TargetOpcode::G_SADDE:
5053 case TargetOpcode::G_UADDO:
5054 case TargetOpcode::G_UADDE:
5055 case TargetOpcode::G_ADD:
5056 OpO = TargetOpcode::G_UADDO;
5057 OpE = TargetOpcode::G_UADDE;
5058 OpF = TargetOpcode::G_UADDE;
5059 if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE)
5060 OpF = TargetOpcode::G_SADDE;
5061 break;
5062 case TargetOpcode::G_SSUBO:
5063 case TargetOpcode::G_SSUBE:
5064 case TargetOpcode::G_USUBO:
5065 case TargetOpcode::G_USUBE:
5066 case TargetOpcode::G_SUB:
5067 OpO = TargetOpcode::G_USUBO;
5068 OpE = TargetOpcode::G_USUBE;
5069 OpF = TargetOpcode::G_USUBE;
5070 if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE)
5071 OpF = TargetOpcode::G_SSUBE;
5072 break;
5073 default:
5074 llvm_unreachable("Unexpected add/sub opcode!")::llvm::llvm_unreachable_internal("Unexpected add/sub opcode!"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 5074)
;
5075 }
5076
5077 // 1 for a plain add/sub, 2 if this is an operation with a carry-out.
5078 unsigned NumDefs = MI.getNumExplicitDefs();
5079 Register Src1 = MI.getOperand(NumDefs).getReg();
5080 Register Src2 = MI.getOperand(NumDefs + 1).getReg();
5081 Register CarryDst, CarryIn;
5082 if (NumDefs == 2)
5083 CarryDst = MI.getOperand(1).getReg();
5084 if (MI.getNumOperands() == NumDefs + 3)
5085 CarryIn = MI.getOperand(NumDefs + 2).getReg();
5086
5087 LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5088 LLT LeftoverTy, DummyTy;
5089 SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs;
5090 extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left);
5091 extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left);
5092
5093 int NarrowParts = Src1Regs.size();
5094 for (int I = 0, E = Src1Left.size(); I != E; ++I) {
5095 Src1Regs.push_back(Src1Left[I]);
5096 Src2Regs.push_back(Src2Left[I]);
5097 }
5098 DstRegs.reserve(Src1Regs.size());
5099
5100 for (int i = 0, e = Src1Regs.size(); i != e; ++i) {
5101 Register DstReg =
5102 MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i]));
5103 Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1));
5104 // Forward the final carry-out to the destination register
5105 if (i == e - 1 && CarryDst)
5106 CarryOut = CarryDst;
5107
5108 if (!CarryIn) {
5109 MIRBuilder.buildInstr(OpO, {DstReg, CarryOut},
5110 {Src1Regs[i], Src2Regs[i]});
5111 } else if (i == e - 1) {
5112 MIRBuilder.buildInstr(OpF, {DstReg, CarryOut},
5113 {Src1Regs[i], Src2Regs[i], CarryIn});
5114 } else {
5115 MIRBuilder.buildInstr(OpE, {DstReg, CarryOut},
5116 {Src1Regs[i], Src2Regs[i], CarryIn});
5117 }
5118
5119 DstRegs.push_back(DstReg);
5120 CarryIn = CarryOut;
5121 }
5122 insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy,
5123 makeArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy,
5124 makeArrayRef(DstRegs).drop_front(NarrowParts));
5125
5126 MI.eraseFromParent();
5127 return Legalized;
5128}
5129
5130LegalizerHelper::LegalizeResult
5131LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) {
5132 Register DstReg = MI.getOperand(0).getReg();
5133 Register Src1 = MI.getOperand(1).getReg();
5134 Register Src2 = MI.getOperand(2).getReg();
5135
5136 LLT Ty = MRI.getType(DstReg);
5137 if (Ty.isVector())
5138 return UnableToLegalize;
5139
5140 unsigned Size = Ty.getSizeInBits();
5141 unsigned NarrowSize = NarrowTy.getSizeInBits();
5142 if (Size % NarrowSize != 0)
5143 return UnableToLegalize;
5144
5145 unsigned NumParts = Size / NarrowSize;
5146 bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH;
5147 unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1);
5148
5149 SmallVector<Register, 2> Src1Parts, Src2Parts;
5150 SmallVector<Register, 2> DstTmpRegs(DstTmpParts);
5151 extractParts(Src1, NarrowTy, NumParts, Src1Parts);
5152 extractParts(Src2, NarrowTy, NumParts, Src2Parts);
5153 multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy);
5154
5155 // Take only high half of registers if this is high mul.
5156 ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts);
5157 MIRBuilder.buildMerge(DstReg, DstRegs);
5158 MI.eraseFromParent();
5159 return Legalized;
5160}
5161
5162LegalizerHelper::LegalizeResult
5163LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx,
5164 LLT NarrowTy) {
5165 if (TypeIdx != 0)
5166 return UnableToLegalize;
5167
5168 bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI;
5169
5170 Register Src = MI.getOperand(1).getReg();
5171 LLT SrcTy = MRI.getType(Src);
5172
5173 // If all finite floats fit into the narrowed integer type, we can just swap
5174 // out the result type. This is practically only useful for conversions from
5175 // half to at least 16-bits, so just handle the one case.
5176 if (SrcTy.getScalarType() != LLT::scalar(16) ||
5177 NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u))
5178 return UnableToLegalize;
5179
5180 Observer.changingInstr(MI);
5181 narrowScalarDst(MI, NarrowTy, 0,
5182 IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT);
5183 Observer.changedInstr(MI);
5184 return Legalized;
5185}
5186
5187LegalizerHelper::LegalizeResult
5188LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx,
5189 LLT NarrowTy) {
5190 if (TypeIdx != 1)
5191 return UnableToLegalize;
5192
5193 uint64_t NarrowSize = NarrowTy.getSizeInBits();
5194
5195 int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
5196 // FIXME: add support for when SizeOp1 isn't an exact multiple of
5197 // NarrowSize.
5198 if (SizeOp1 % NarrowSize != 0)
5199 return UnableToLegalize;
5200 int NumParts = SizeOp1 / NarrowSize;
5201
5202 SmallVector<Register, 2> SrcRegs, DstRegs;
5203 SmallVector<uint64_t, 2> Indexes;
5204 extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs);
5205
5206 Register OpReg = MI.getOperand(0).getReg();
5207 uint64_t OpStart = MI.getOperand(2).getImm();
5208 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5209 for (int i = 0; i < NumParts; ++i) {
5210 unsigned SrcStart = i * NarrowSize;
5211
5212 if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) {
5213 // No part of the extract uses this subregister, ignore it.
5214 continue;
5215 } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5216 // The entire subregister is extracted, forward the value.
5217 DstRegs.push_back(SrcRegs[i]);
5218 continue;
5219 }
5220
5221 // OpSegStart is where this destination segment would start in OpReg if it
5222 // extended infinitely in both directions.
5223 int64_t ExtractOffset;
5224 uint64_t SegSize;
5225 if (OpStart < SrcStart) {
5226 ExtractOffset = 0;
5227 SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart);
5228 } else {
5229 ExtractOffset = OpStart - SrcStart;
5230 SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize);
5231 }
5232
5233 Register SegReg = SrcRegs[i];
5234 if (ExtractOffset != 0 || SegSize != NarrowSize) {
5235 // A genuine extract is needed.
5236 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5237 MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset);
5238 }
5239
5240 DstRegs.push_back(SegReg);
5241 }
5242
5243 Register DstReg = MI.getOperand(0).getReg();
5244 if (MRI.getType(DstReg).isVector())
5245 MIRBuilder.buildBuildVector(DstReg, DstRegs);
5246 else if (DstRegs.size() > 1)
5247 MIRBuilder.buildMerge(DstReg, DstRegs);
5248 else
5249 MIRBuilder.buildCopy(DstReg, DstRegs[0]);
5250 MI.eraseFromParent();
5251 return Legalized;
5252}
5253
5254LegalizerHelper::LegalizeResult
5255LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx,
5256 LLT NarrowTy) {
5257 // FIXME: Don't know how to handle secondary types yet.
5258 if (TypeIdx != 0)
5259 return UnableToLegalize;
5260
5261 SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs;
5262 SmallVector<uint64_t, 2> Indexes;
5263 LLT RegTy = MRI.getType(MI.getOperand(0).getReg());
5264 LLT LeftoverTy;
5265 extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs,
5266 LeftoverRegs);
5267
5268 for (Register Reg : LeftoverRegs)
5269 SrcRegs.push_back(Reg);
5270
5271 uint64_t NarrowSize = NarrowTy.getSizeInBits();
5272 Register OpReg = MI.getOperand(2).getReg();
5273 uint64_t OpStart = MI.getOperand(3).getImm();
5274 uint64_t OpSize = MRI.getType(OpReg).getSizeInBits();
5275 for (int I = 0, E = SrcRegs.size(); I != E; ++I) {
5276 unsigned DstStart = I * NarrowSize;
5277
5278 if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) {
5279 // The entire subregister is defined by this insert, forward the new
5280 // value.
5281 DstRegs.push_back(OpReg);
5282 continue;
5283 }
5284
5285 Register SrcReg = SrcRegs[I];
5286 if (MRI.getType(SrcRegs[I]) == LeftoverTy) {
5287 // The leftover reg is smaller than NarrowTy, so we need to extend it.
5288 SrcReg = MRI.createGenericVirtualRegister(NarrowTy);
5289 MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]);
5290 }
5291
5292 if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) {
5293 // No part of the insert affects this subregister, forward the original.
5294 DstRegs.push_back(SrcReg);
5295 continue;
5296 }
5297
5298 // OpSegStart is where this destination segment would start in OpReg if it
5299 // extended infinitely in both directions.
5300 int64_t ExtractOffset, InsertOffset;
5301 uint64_t SegSize;
5302 if (OpStart < DstStart) {
5303 InsertOffset = 0;
5304 ExtractOffset = DstStart - OpStart;
5305 SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart);
5306 } else {
5307 InsertOffset = OpStart - DstStart;
5308 ExtractOffset = 0;
5309 SegSize =
5310 std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart);
5311 }
5312
5313 Register SegReg = OpReg;
5314 if (ExtractOffset != 0 || SegSize != OpSize) {
5315 // A genuine extract is needed.
5316 SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize));
5317 MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset);
5318 }
5319
5320 Register DstReg = MRI.createGenericVirtualRegister(NarrowTy);
5321 MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset);
5322 DstRegs.push_back(DstReg);
5323 }
5324
5325 uint64_t WideSize = DstRegs.size() * NarrowSize;
5326 Register DstReg = MI.getOperand(0).getReg();
5327 if (WideSize > RegTy.getSizeInBits()) {
5328 Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize));
5329 MIRBuilder.buildMerge(MergeReg, DstRegs);
5330 MIRBuilder.buildTrunc(DstReg, MergeReg);
5331 } else
5332 MIRBuilder.buildMerge(DstReg, DstRegs);
5333
5334 MI.eraseFromParent();
5335 return Legalized;
5336}
5337
5338LegalizerHelper::LegalizeResult
5339LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx,
5340 LLT NarrowTy) {
5341 Register DstReg = MI.getOperand(0).getReg();
5342 LLT DstTy = MRI.getType(DstReg);
5343
5344 assert(MI.getNumOperands() == 3 && TypeIdx == 0)(static_cast <bool> (MI.getNumOperands() == 3 &&
TypeIdx == 0) ? void (0) : __assert_fail ("MI.getNumOperands() == 3 && TypeIdx == 0"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 5344, __extension__
__PRETTY_FUNCTION__))
;
5345
5346 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5347 SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs;
5348 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5349 LLT LeftoverTy;
5350 if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy,
5351 Src0Regs, Src0LeftoverRegs))
5352 return UnableToLegalize;
5353
5354 LLT Unused;
5355 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused,
5356 Src1Regs, Src1LeftoverRegs))
5357 llvm_unreachable("inconsistent extractParts result")::llvm::llvm_unreachable_internal("inconsistent extractParts result"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 5357)
;
5358
5359 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5360 auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy},
5361 {Src0Regs[I], Src1Regs[I]});
5362 DstRegs.push_back(Inst.getReg(0));
5363 }
5364
5365 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5366 auto Inst = MIRBuilder.buildInstr(
5367 MI.getOpcode(),
5368 {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]});
5369 DstLeftoverRegs.push_back(Inst.getReg(0));
5370 }
5371
5372 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5373 LeftoverTy, DstLeftoverRegs);
5374
5375 MI.eraseFromParent();
5376 return Legalized;
5377}
5378
5379LegalizerHelper::LegalizeResult
5380LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx,
5381 LLT NarrowTy) {
5382 if (TypeIdx != 0)
5383 return UnableToLegalize;
5384
5385 Register DstReg = MI.getOperand(0).getReg();
5386 Register SrcReg = MI.getOperand(1).getReg();
5387
5388 LLT DstTy = MRI.getType(DstReg);
5389 if (DstTy.isVector())
5390 return UnableToLegalize;
5391
5392 SmallVector<Register, 8> Parts;
5393 LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg);
5394 LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode());
5395 buildWidenedRemergeToDst(DstReg, LCMTy, Parts);
5396
5397 MI.eraseFromParent();
5398 return Legalized;
5399}
5400
5401LegalizerHelper::LegalizeResult
5402LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx,
5403 LLT NarrowTy) {
5404 if (TypeIdx != 0)
5405 return UnableToLegalize;
5406
5407 Register CondReg = MI.getOperand(1).getReg();
5408 LLT CondTy = MRI.getType(CondReg);
5409 if (CondTy.isVector()) // TODO: Handle vselect
5410 return UnableToLegalize;
5411
5412 Register DstReg = MI.getOperand(0).getReg();
5413 LLT DstTy = MRI.getType(DstReg);
5414
5415 SmallVector<Register, 4> DstRegs, DstLeftoverRegs;
5416 SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs;
5417 SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs;
5418 LLT LeftoverTy;
5419 if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy,
5420 Src1Regs, Src1LeftoverRegs))
5421 return UnableToLegalize;
5422
5423 LLT Unused;
5424 if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused,
5425 Src2Regs, Src2LeftoverRegs))
5426 llvm_unreachable("inconsistent extractParts result")::llvm::llvm_unreachable_internal("inconsistent extractParts result"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 5426)
;
5427
5428 for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) {
5429 auto Select = MIRBuilder.buildSelect(NarrowTy,
5430 CondReg, Src1Regs[I], Src2Regs[I]);
5431 DstRegs.push_back(Select.getReg(0));
5432 }
5433
5434 for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) {
5435 auto Select = MIRBuilder.buildSelect(
5436 LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]);
5437 DstLeftoverRegs.push_back(Select.getReg(0));
5438 }
5439
5440 insertParts(DstReg, DstTy, NarrowTy, DstRegs,
5441 LeftoverTy, DstLeftoverRegs);
5442
5443 MI.eraseFromParent();
5444 return Legalized;
5445}
5446
5447LegalizerHelper::LegalizeResult
5448LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx,
5449 LLT NarrowTy) {
5450 if (TypeIdx != 1)
5451 return UnableToLegalize;
5452
5453 Register DstReg = MI.getOperand(0).getReg();
5454 Register SrcReg = MI.getOperand(1).getReg();
5455 LLT DstTy = MRI.getType(DstReg);
5456 LLT SrcTy = MRI.getType(SrcReg);
5457 unsigned NarrowSize = NarrowTy.getSizeInBits();
5458
5459 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5460 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF;
5461
5462 MachineIRBuilder &B = MIRBuilder;
5463 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5464 // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi)
5465 auto C_0 = B.buildConstant(NarrowTy, 0);
5466 auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5467 UnmergeSrc.getReg(1), C_0);
5468 auto LoCTLZ = IsUndef ?
5469 B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) :
5470 B.buildCTLZ(DstTy, UnmergeSrc.getReg(0));
5471 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5472 auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize);
5473 auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1));
5474 B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ);
5475
5476 MI.eraseFromParent();
5477 return Legalized;
5478 }
5479
5480 return UnableToLegalize;
5481}
5482
5483LegalizerHelper::LegalizeResult
5484LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx,
5485 LLT NarrowTy) {
5486 if (TypeIdx != 1)
5487 return UnableToLegalize;
5488
5489 Register DstReg = MI.getOperand(0).getReg();
5490 Register SrcReg = MI.getOperand(1).getReg();
5491 LLT DstTy = MRI.getType(DstReg);
5492 LLT SrcTy = MRI.getType(SrcReg);
5493 unsigned NarrowSize = NarrowTy.getSizeInBits();
5494
5495 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5496 const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF;
5497
5498 MachineIRBuilder &B = MIRBuilder;
5499 auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg);
5500 // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo)
5501 auto C_0 = B.buildConstant(NarrowTy, 0);
5502 auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1),
5503 UnmergeSrc.getReg(0), C_0);
5504 auto HiCTTZ = IsUndef ?
5505 B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) :
5506 B.buildCTTZ(DstTy, UnmergeSrc.getReg(1));
5507 auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize);
5508 auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize);
5509 auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0));
5510 B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ);
5511
5512 MI.eraseFromParent();
5513 return Legalized;
5514 }
5515
5516 return UnableToLegalize;
5517}
5518
5519LegalizerHelper::LegalizeResult
5520LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx,
5521 LLT NarrowTy) {
5522 if (TypeIdx != 1)
5523 return UnableToLegalize;
5524
5525 Register DstReg = MI.getOperand(0).getReg();
5526 LLT DstTy = MRI.getType(DstReg);
5527 LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
5528 unsigned NarrowSize = NarrowTy.getSizeInBits();
5529
5530 if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) {
5531 auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1));
5532
5533 auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0));
5534 auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1));
5535 MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP);
5536
5537 MI.eraseFromParent();
5538 return Legalized;
5539 }
5540
5541 return UnableToLegalize;
5542}
5543
5544LegalizerHelper::LegalizeResult
5545LegalizerHelper::lowerBitCount(MachineInstr &MI) {
5546 unsigned Opc = MI.getOpcode();
5547 const auto &TII = MIRBuilder.getTII();
5548 auto isSupported = [this](const LegalityQuery &Q) {
5549 auto QAction = LI.getAction(Q).Action;
5550 return QAction == Legal || QAction == Libcall || QAction == Custom;
5551 };
5552 switch (Opc) {
5553 default:
5554 return UnableToLegalize;
5555 case TargetOpcode::G_CTLZ_ZERO_UNDEF: {
5556 // This trivially expands to CTLZ.
5557 Observer.changingInstr(MI);
5558 MI.setDesc(TII.get(TargetOpcode::G_CTLZ));
5559 Observer.changedInstr(MI);
5560 return Legalized;
5561 }
5562 case TargetOpcode::G_CTLZ: {
5563 Register DstReg = MI.getOperand(0).getReg();
5564 Register SrcReg = MI.getOperand(1).getReg();
5565 LLT DstTy = MRI.getType(DstReg);
5566 LLT SrcTy = MRI.getType(SrcReg);
5567 unsigned Len = SrcTy.getSizeInBits();
5568
5569 if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5570 // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero.
5571 auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg);
5572 auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0);
5573 auto ICmp = MIRBuilder.buildICmp(
5574 CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc);
5575 auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5576 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU);
5577 MI.eraseFromParent();
5578 return Legalized;
5579 }
5580 // for now, we do this:
5581 // NewLen = NextPowerOf2(Len);
5582 // x = x | (x >> 1);
5583 // x = x | (x >> 2);
5584 // ...
5585 // x = x | (x >>16);
5586 // x = x | (x >>32); // for 64-bit input
5587 // Upto NewLen/2
5588 // return Len - popcount(x);
5589 //
5590 // Ref: "Hacker's Delight" by Henry Warren
5591 Register Op = SrcReg;
5592 unsigned NewLen = PowerOf2Ceil(Len);
5593 for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) {
5594 auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i);
5595 auto MIBOp = MIRBuilder.buildOr(
5596 SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt));
5597 Op = MIBOp.getReg(0);
5598 }
5599 auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op);
5600 MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len),
5601 MIBPop);
5602 MI.eraseFromParent();
5603 return Legalized;
5604 }
5605 case TargetOpcode::G_CTTZ_ZERO_UNDEF: {
5606 // This trivially expands to CTTZ.
5607 Observer.changingInstr(MI);
5608 MI.setDesc(TII.get(TargetOpcode::G_CTTZ));
5609 Observer.changedInstr(MI);
5610 return Legalized;
5611 }
5612 case TargetOpcode::G_CTTZ: {
5613 Register DstReg = MI.getOperand(0).getReg();
5614 Register SrcReg = MI.getOperand(1).getReg();
5615 LLT DstTy = MRI.getType(DstReg);
5616 LLT SrcTy = MRI.getType(SrcReg);
5617
5618 unsigned Len = SrcTy.getSizeInBits();
5619 if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) {
5620 // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with
5621 // zero.
5622 auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg);
5623 auto Zero = MIRBuilder.buildConstant(SrcTy, 0);
5624 auto ICmp = MIRBuilder.buildICmp(
5625 CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero);
5626 auto LenConst = MIRBuilder.buildConstant(DstTy, Len);
5627 MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU);
5628 MI.eraseFromParent();
5629 return Legalized;
5630 }
5631 // for now, we use: { return popcount(~x & (x - 1)); }
5632 // unless the target has ctlz but not ctpop, in which case we use:
5633 // { return 32 - nlz(~x & (x-1)); }
5634 // Ref: "Hacker's Delight" by Henry Warren
5635 auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1);
5636 auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1);
5637 auto MIBTmp = MIRBuilder.buildAnd(
5638 SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1));
5639 if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) &&
5640 isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) {
5641 auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len);
5642 MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen,
5643 MIRBuilder.buildCTLZ(SrcTy, MIBTmp));
5644 MI.eraseFromParent();
5645 return Legalized;
5646 }
5647 MI.setDesc(TII.get(TargetOpcode::G_CTPOP));
5648 MI.getOperand(1).setReg(MIBTmp.getReg(0));
5649 return Legalized;
5650 }
5651 case TargetOpcode::G_CTPOP: {
5652 Register SrcReg = MI.getOperand(1).getReg();
5653 LLT Ty = MRI.getType(SrcReg);
5654 unsigned Size = Ty.getSizeInBits();
5655 MachineIRBuilder &B = MIRBuilder;
5656
5657 // Count set bits in blocks of 2 bits. Default approach would be
5658 // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 }
5659 // We use following formula instead:
5660 // B2Count = val - { (val >> 1) & 0x55555555 }
5661 // since it gives same result in blocks of 2 with one instruction less.
5662 auto C_1 = B.buildConstant(Ty, 1);
5663 auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1);
5664 APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55));
5665 auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0);
5666 auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0);
5667 auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi);
5668
5669 // In order to get count in blocks of 4 add values from adjacent block of 2.
5670 // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 }
5671 auto C_2 = B.buildConstant(Ty, 2);
5672 auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2);
5673 APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33));
5674 auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0);
5675 auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0);
5676 auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0);
5677 auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count);
5678
5679 // For count in blocks of 8 bits we don't have to mask high 4 bits before
5680 // addition since count value sits in range {0,...,8} and 4 bits are enough
5681 // to hold such binary values. After addition high 4 bits still hold count
5682 // of set bits in high 4 bit block, set them to zero and get 8 bit result.
5683 // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F
5684 auto C_4 = B.buildConstant(Ty, 4);
5685 auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4);
5686 auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count);
5687 APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F));
5688 auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0);
5689 auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0);
5690
5691 assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm")(static_cast <bool> (Size<=128 && "Scalar size is too large for CTPOP lower algorithm"
) ? void (0) : __assert_fail ("Size<=128 && \"Scalar size is too large for CTPOP lower algorithm\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 5691, __extension__
__PRETTY_FUNCTION__))
;
5692 // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this
5693 // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks.
5694 auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01)));
5695 auto ResTmp = B.buildMul(Ty, B8Count, MulMask);
5696
5697 // Shift count result from 8 high bits to low bits.
5698 auto C_SizeM8 = B.buildConstant(Ty, Size - 8);
5699 B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8);
5700
5701 MI.eraseFromParent();
5702 return Legalized;
5703 }
5704 }
5705}
5706
5707// Check that (every element of) Reg is undef or not an exact multiple of BW.
5708static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI,
5709 Register Reg, unsigned BW) {
5710 return matchUnaryPredicate(
5711 MRI, Reg,
5712 [=](const Constant *C) {
5713 // Null constant here means an undef.
5714 const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C);
5715 return !CI || CI->getValue().urem(BW) != 0;
5716 },
5717 /*AllowUndefs*/ true);
5718}
5719
5720LegalizerHelper::LegalizeResult
5721LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) {
5722 Register Dst = MI.getOperand(0).getReg();
5723 Register X = MI.getOperand(1).getReg();
5724 Register Y = MI.getOperand(2).getReg();
5725 Register Z = MI.getOperand(3).getReg();
5726 LLT Ty = MRI.getType(Dst);
5727 LLT ShTy = MRI.getType(Z);
5728
5729 unsigned BW = Ty.getScalarSizeInBits();
5730
5731 if (!isPowerOf2_32(BW))
5732 return UnableToLegalize;
5733
5734 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5735 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5736
5737 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5738 // fshl X, Y, Z -> fshr X, Y, -Z
5739 // fshr X, Y, Z -> fshl X, Y, -Z
5740 auto Zero = MIRBuilder.buildConstant(ShTy, 0);
5741 Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0);
5742 } else {
5743 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
5744 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
5745 auto One = MIRBuilder.buildConstant(ShTy, 1);
5746 if (IsFSHL) {
5747 Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5748 X = MIRBuilder.buildLShr(Ty, X, One).getReg(0);
5749 } else {
5750 X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0);
5751 Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0);
5752 }
5753
5754 Z = MIRBuilder.buildNot(ShTy, Z).getReg(0);
5755 }
5756
5757 MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z});
5758 MI.eraseFromParent();
5759 return Legalized;
5760}
5761
5762LegalizerHelper::LegalizeResult
5763LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) {
5764 Register Dst = MI.getOperand(0).getReg();
5765 Register X = MI.getOperand(1).getReg();
5766 Register Y = MI.getOperand(2).getReg();
5767 Register Z = MI.getOperand(3).getReg();
5768 LLT Ty = MRI.getType(Dst);
5769 LLT ShTy = MRI.getType(Z);
5770
5771 const unsigned BW = Ty.getScalarSizeInBits();
5772 const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5773
5774 Register ShX, ShY;
5775 Register ShAmt, InvShAmt;
5776
5777 // FIXME: Emit optimized urem by constant instead of letting it expand later.
5778 if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) {
5779 // fshl: X << C | Y >> (BW - C)
5780 // fshr: X << (BW - C) | Y >> C
5781 // where C = Z % BW is not zero
5782 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5783 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5784 InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0);
5785 ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0);
5786 ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0);
5787 } else {
5788 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5789 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5790 auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1);
5791 if (isPowerOf2_32(BW)) {
5792 // Z % BW -> Z & (BW - 1)
5793 ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0);
5794 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
5795 auto NotZ = MIRBuilder.buildNot(ShTy, Z);
5796 InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0);
5797 } else {
5798 auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW);
5799 ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0);
5800 InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0);
5801 }
5802
5803 auto One = MIRBuilder.buildConstant(ShTy, 1);
5804 if (IsFSHL) {
5805 ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0);
5806 auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One);
5807 ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0);
5808 } else {
5809 auto ShX1 = MIRBuilder.buildShl(Ty, X, One);
5810 ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0);
5811 ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0);
5812 }
5813 }
5814
5815 MIRBuilder.buildOr(Dst, ShX, ShY);
5816 MI.eraseFromParent();
5817 return Legalized;
5818}
5819
5820LegalizerHelper::LegalizeResult
5821LegalizerHelper::lowerFunnelShift(MachineInstr &MI) {
5822 // These operations approximately do the following (while avoiding undefined
5823 // shifts by BW):
5824 // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5825 // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5826 Register Dst = MI.getOperand(0).getReg();
5827 LLT Ty = MRI.getType(Dst);
5828 LLT ShTy = MRI.getType(MI.getOperand(3).getReg());
5829
5830 bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL;
5831 unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL;
5832
5833 // TODO: Use smarter heuristic that accounts for vector legalization.
5834 if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower)
5835 return lowerFunnelShiftAsShifts(MI);
5836
5837 // This only works for powers of 2, fallback to shifts if it fails.
5838 LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI);
5839 if (Result == UnableToLegalize)
5840 return lowerFunnelShiftAsShifts(MI);
5841 return Result;
5842}
5843
5844LegalizerHelper::LegalizeResult
5845LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) {
5846 Register Dst = MI.getOperand(0).getReg();
5847 Register Src = MI.getOperand(1).getReg();
5848 Register Amt = MI.getOperand(2).getReg();
5849 LLT AmtTy = MRI.getType(Amt);
5850 auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5851 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5852 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5853 auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5854 MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg});
5855 MI.eraseFromParent();
5856 return Legalized;
5857}
5858
5859LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) {
5860 Register Dst = MI.getOperand(0).getReg();
5861 Register Src = MI.getOperand(1).getReg();
5862 Register Amt = MI.getOperand(2).getReg();
5863 LLT DstTy = MRI.getType(Dst);
5864 LLT SrcTy = MRI.getType(Src);
5865 LLT AmtTy = MRI.getType(Amt);
5866
5867 unsigned EltSizeInBits = DstTy.getScalarSizeInBits();
5868 bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL;
5869
5870 MIRBuilder.setInstrAndDebugLoc(MI);
5871
5872 // If a rotate in the other direction is supported, use it.
5873 unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL;
5874 if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) &&
5875 isPowerOf2_32(EltSizeInBits))
5876 return lowerRotateWithReverseRotate(MI);
5877
5878 // If a funnel shift is supported, use it.
5879 unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5880 unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR;
5881 bool IsFShLegal = false;
5882 if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) ||
5883 LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) {
5884 auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2,
5885 Register R3) {
5886 MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3});
5887 MI.eraseFromParent();
5888 return Legalized;
5889 };
5890 // If a funnel shift in the other direction is supported, use it.
5891 if (IsFShLegal) {
5892 return buildFunnelShift(FShOpc, Dst, Src, Amt);
5893 } else if (isPowerOf2_32(EltSizeInBits)) {
5894 Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0);
5895 return buildFunnelShift(RevFsh, Dst, Src, Amt);
5896 }
5897 }
5898
5899 auto Zero = MIRBuilder.buildConstant(AmtTy, 0);
5900 unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR;
5901 unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL;
5902 auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1);
5903 Register ShVal;
5904 Register RevShiftVal;
5905 if (isPowerOf2_32(EltSizeInBits)) {
5906 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
5907 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
5908 auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt);
5909 auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC);
5910 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5911 auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC);
5912 RevShiftVal =
5913 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0);
5914 } else {
5915 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
5916 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
5917 auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits);
5918 auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC);
5919 ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0);
5920 auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt);
5921 auto One = MIRBuilder.buildConstant(AmtTy, 1);
5922 auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One});
5923 RevShiftVal =
5924 MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0);
5925 }
5926 MIRBuilder.buildOr(Dst, ShVal, RevShiftVal);
5927 MI.eraseFromParent();
5928 return Legalized;
5929}
5930
5931// Expand s32 = G_UITOFP s64 using bit operations to an IEEE float
5932// representation.
5933LegalizerHelper::LegalizeResult
5934LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) {
5935 Register Dst = MI.getOperand(0).getReg();
5936 Register Src = MI.getOperand(1).getReg();
5937 const LLT S64 = LLT::scalar(64);
5938 const LLT S32 = LLT::scalar(32);
5939 const LLT S1 = LLT::scalar(1);
5940
5941 assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32)(static_cast <bool> (MRI.getType(Src) == S64 &&
MRI.getType(Dst) == S32) ? void (0) : __assert_fail ("MRI.getType(Src) == S64 && MRI.getType(Dst) == S32"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 5941, __extension__
__PRETTY_FUNCTION__))
;
5942
5943 // unsigned cul2f(ulong u) {
5944 // uint lz = clz(u);
5945 // uint e = (u != 0) ? 127U + 63U - lz : 0;
5946 // u = (u << lz) & 0x7fffffffffffffffUL;
5947 // ulong t = u & 0xffffffffffUL;
5948 // uint v = (e << 23) | (uint)(u >> 40);
5949 // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U);
5950 // return as_float(v + r);
5951 // }
5952
5953 auto Zero32 = MIRBuilder.buildConstant(S32, 0);
5954 auto Zero64 = MIRBuilder.buildConstant(S64, 0);
5955
5956 auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src);
5957
5958 auto K = MIRBuilder.buildConstant(S32, 127U + 63U);
5959 auto Sub = MIRBuilder.buildSub(S32, K, LZ);
5960
5961 auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64);
5962 auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32);
5963
5964 auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1);
5965 auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ);
5966
5967 auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0);
5968
5969 auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL);
5970 auto T = MIRBuilder.buildAnd(S64, U, Mask1);
5971
5972 auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40));
5973 auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23));
5974 auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl));
5975
5976 auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL);
5977 auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C);
5978 auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C);
5979 auto One = MIRBuilder.buildConstant(S32, 1);
5980
5981 auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One);
5982 auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32);
5983 auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0);
5984 MIRBuilder.buildAdd(Dst, V, R);
5985
5986 MI.eraseFromParent();
5987 return Legalized;
5988}
5989
5990LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) {
5991 Register Dst = MI.getOperand(0).getReg();
5992 Register Src = MI.getOperand(1).getReg();
5993 LLT DstTy = MRI.getType(Dst);
5994 LLT SrcTy = MRI.getType(Src);
5995
5996 if (SrcTy == LLT::scalar(1)) {
5997 auto True = MIRBuilder.buildFConstant(DstTy, 1.0);
5998 auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
5999 MIRBuilder.buildSelect(Dst, Src, True, False);
6000 MI.eraseFromParent();
6001 return Legalized;
6002 }
6003
6004 if (SrcTy != LLT::scalar(64))
6005 return UnableToLegalize;
6006
6007 if (DstTy == LLT::scalar(32)) {
6008 // TODO: SelectionDAG has several alternative expansions to port which may
6009 // be more reasonble depending on the available instructions. If a target
6010 // has sitofp, does not have CTLZ, or can efficiently use f64 as an
6011 // intermediate type, this is probably worse.
6012 return lowerU64ToF32BitOps(MI);
6013 }
6014
6015 return UnableToLegalize;
6016}
6017
6018LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) {
6019 Register Dst = MI.getOperand(0).getReg();
6020 Register Src = MI.getOperand(1).getReg();
6021 LLT DstTy = MRI.getType(Dst);
6022 LLT SrcTy = MRI.getType(Src);
6023
6024 const LLT S64 = LLT::scalar(64);
6025 const LLT S32 = LLT::scalar(32);
6026 const LLT S1 = LLT::scalar(1);
6027
6028 if (SrcTy == S1) {
6029 auto True = MIRBuilder.buildFConstant(DstTy, -1.0);
6030 auto False = MIRBuilder.buildFConstant(DstTy, 0.0);
6031 MIRBuilder.buildSelect(Dst, Src, True, False);
6032 MI.eraseFromParent();
6033 return Legalized;
6034 }
6035
6036 if (SrcTy != S64)
6037 return UnableToLegalize;
6038
6039 if (DstTy == S32) {
6040 // signed cl2f(long l) {
6041 // long s = l >> 63;
6042 // float r = cul2f((l + s) ^ s);
6043 // return s ? -r : r;
6044 // }
6045 Register L = Src;
6046 auto SignBit = MIRBuilder.buildConstant(S64, 63);
6047 auto S = MIRBuilder.buildAShr(S64, L, SignBit);
6048
6049 auto LPlusS = MIRBuilder.buildAdd(S64, L, S);
6050 auto Xor = MIRBuilder.buildXor(S64, LPlusS, S);
6051 auto R = MIRBuilder.buildUITOFP(S32, Xor);
6052
6053 auto RNeg = MIRBuilder.buildFNeg(S32, R);
6054 auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S,
6055 MIRBuilder.buildConstant(S64, 0));
6056 MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R);
6057 MI.eraseFromParent();
6058 return Legalized;
6059 }
6060
6061 return UnableToLegalize;
6062}
6063
6064LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) {
6065 Register Dst = MI.getOperand(0).getReg();
6066 Register Src = MI.getOperand(1).getReg();
6067 LLT DstTy = MRI.getType(Dst);
6068 LLT SrcTy = MRI.getType(Src);
6069 const LLT S64 = LLT::scalar(64);
6070 const LLT S32 = LLT::scalar(32);
6071
6072 if (SrcTy != S64 && SrcTy != S32)
6073 return UnableToLegalize;
6074 if (DstTy != S32 && DstTy != S64)
6075 return UnableToLegalize;
6076
6077 // FPTOSI gives same result as FPTOUI for positive signed integers.
6078 // FPTOUI needs to deal with fp values that convert to unsigned integers
6079 // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp.
6080
6081 APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits());
6082 APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle()
6083 : APFloat::IEEEdouble(),
6084 APInt::getZero(SrcTy.getSizeInBits()));
6085 TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven);
6086
6087 MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src);
6088
6089 MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP);
6090 // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on
6091 // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1.
6092 MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold);
6093 MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub);
6094 MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt);
6095 MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit);
6096
6097 const LLT S1 = LLT::scalar(1);
6098
6099 MachineInstrBuilder FCMP =
6100 MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold);
6101 MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res);
6102
6103 MI.eraseFromParent();
6104 return Legalized;
6105}
6106
6107LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) {
6108 Register Dst = MI.getOperand(0).getReg();
6109 Register Src = MI.getOperand(1).getReg();
6110 LLT DstTy = MRI.getType(Dst);
6111 LLT SrcTy = MRI.getType(Src);
6112 const LLT S64 = LLT::scalar(64);
6113 const LLT S32 = LLT::scalar(32);
6114
6115 // FIXME: Only f32 to i64 conversions are supported.
6116 if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64)
6117 return UnableToLegalize;
6118
6119 // Expand f32 -> i64 conversion
6120 // This algorithm comes from compiler-rt's implementation of fixsfdi:
6121 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6122
6123 unsigned SrcEltBits = SrcTy.getScalarSizeInBits();
6124
6125 auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000);
6126 auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23);
6127
6128 auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask);
6129 auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit);
6130
6131 auto SignMask = MIRBuilder.buildConstant(SrcTy,
6132 APInt::getSignMask(SrcEltBits));
6133 auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask);
6134 auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1);
6135 auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit);
6136 Sign = MIRBuilder.buildSExt(DstTy, Sign);
6137
6138 auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF);
6139 auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask);
6140 auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000);
6141
6142 auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K);
6143 R = MIRBuilder.buildZExt(DstTy, R);
6144
6145 auto Bias = MIRBuilder.buildConstant(SrcTy, 127);
6146 auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias);
6147 auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit);
6148 auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent);
6149
6150 auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent);
6151 auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub);
6152
6153 const LLT S1 = LLT::scalar(1);
6154 auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT,
6155 S1, Exponent, ExponentLoBit);
6156
6157 R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl);
6158
6159 auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign);
6160 auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign);
6161
6162 auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0);
6163
6164 auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT,
6165 S1, Exponent, ZeroSrcTy);
6166
6167 auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0);
6168 MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret);
6169
6170 MI.eraseFromParent();
6171 return Legalized;
6172}
6173
6174// f64 -> f16 conversion using round-to-nearest-even rounding mode.
6175LegalizerHelper::LegalizeResult
6176LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) {
6177 Register Dst = MI.getOperand(0).getReg();
6178 Register Src = MI.getOperand(1).getReg();
6179
6180 if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly.
6181 return UnableToLegalize;
6182
6183 const unsigned ExpMask = 0x7ff;
6184 const unsigned ExpBiasf64 = 1023;
6185 const unsigned ExpBiasf16 = 15;
6186 const LLT S32 = LLT::scalar(32);
6187 const LLT S1 = LLT::scalar(1);
6188
6189 auto Unmerge = MIRBuilder.buildUnmerge(S32, Src);
6190 Register U = Unmerge.getReg(0);
6191 Register UH = Unmerge.getReg(1);
6192
6193 auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20));
6194 E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask));
6195
6196 // Subtract the fp64 exponent bias (1023) to get the real exponent and
6197 // add the f16 bias (15) to get the biased exponent for the f16 format.
6198 E = MIRBuilder.buildAdd(
6199 S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16));
6200
6201 auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8));
6202 M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe));
6203
6204 auto MaskedSig = MIRBuilder.buildAnd(S32, UH,
6205 MIRBuilder.buildConstant(S32, 0x1ff));
6206 MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U);
6207
6208 auto Zero = MIRBuilder.buildConstant(S32, 0);
6209 auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero);
6210 auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0);
6211 M = MIRBuilder.buildOr(S32, M, Lo40Set);
6212
6213 // (M != 0 ? 0x0200 : 0) | 0x7c00;
6214 auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200);
6215 auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero);
6216 auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero);
6217
6218 auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00);
6219 auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00);
6220
6221 // N = M | (E << 12);
6222 auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12));
6223 auto N = MIRBuilder.buildOr(S32, M, EShl12);
6224
6225 // B = clamp(1-E, 0, 13);
6226 auto One = MIRBuilder.buildConstant(S32, 1);
6227 auto OneSubExp = MIRBuilder.buildSub(S32, One, E);
6228 auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero);
6229 B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13));
6230
6231 auto SigSetHigh = MIRBuilder.buildOr(S32, M,
6232 MIRBuilder.buildConstant(S32, 0x1000));
6233
6234 auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B);
6235 auto D0 = MIRBuilder.buildShl(S32, D, B);
6236
6237 auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1,
6238 D0, SigSetHigh);
6239 auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh);
6240 D = MIRBuilder.buildOr(S32, D, D1);
6241
6242 auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One);
6243 auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N);
6244
6245 auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7));
6246 V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2));
6247
6248 auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3,
6249 MIRBuilder.buildConstant(S32, 3));
6250 auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3);
6251
6252 auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3,
6253 MIRBuilder.buildConstant(S32, 5));
6254 auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5);
6255
6256 V1 = MIRBuilder.buildOr(S32, V0, V1);
6257 V = MIRBuilder.buildAdd(S32, V, V1);
6258
6259 auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1,
6260 E, MIRBuilder.buildConstant(S32, 30));
6261 V = MIRBuilder.buildSelect(S32, CmpEGt30,
6262 MIRBuilder.buildConstant(S32, 0x7c00), V);
6263
6264 auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1,
6265 E, MIRBuilder.buildConstant(S32, 1039));
6266 V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V);
6267
6268 // Extract the sign bit.
6269 auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16));
6270 Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000));
6271
6272 // Insert the sign bit
6273 V = MIRBuilder.buildOr(S32, Sign, V);
6274
6275 MIRBuilder.buildTrunc(Dst, V);
6276 MI.eraseFromParent();
6277 return Legalized;
6278}
6279
6280LegalizerHelper::LegalizeResult
6281LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) {
6282 Register Dst = MI.getOperand(0).getReg();
6283 Register Src = MI.getOperand(1).getReg();
6284
6285 LLT DstTy = MRI.getType(Dst);
6286 LLT SrcTy = MRI.getType(Src);
6287 const LLT S64 = LLT::scalar(64);
6288 const LLT S16 = LLT::scalar(16);
6289
6290 if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64)
6291 return lowerFPTRUNC_F64_TO_F16(MI);
6292
6293 return UnableToLegalize;
6294}
6295
6296// TODO: If RHS is a constant SelectionDAGBuilder expands this into a
6297// multiplication tree.
6298LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) {
6299 Register Dst = MI.getOperand(0).getReg();
6300 Register Src0 = MI.getOperand(1).getReg();
6301 Register Src1 = MI.getOperand(2).getReg();
6302 LLT Ty = MRI.getType(Dst);
6303
6304 auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1);
6305 MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags());
6306 MI.eraseFromParent();
6307 return Legalized;
6308}
6309
6310static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
6311 switch (Opc) {
6312 case TargetOpcode::G_SMIN:
6313 return CmpInst::ICMP_SLT;
6314 case TargetOpcode::G_SMAX:
6315 return CmpInst::ICMP_SGT;
6316 case TargetOpcode::G_UMIN:
6317 return CmpInst::ICMP_ULT;
6318 case TargetOpcode::G_UMAX:
6319 return CmpInst::ICMP_UGT;
6320 default:
6321 llvm_unreachable("not in integer min/max")::llvm::llvm_unreachable_internal("not in integer min/max", "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp"
, 6321)
;
6322 }
6323}
6324
6325LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) {
6326 Register Dst = MI.getOperand(0).getReg();
6327 Register Src0 = MI.getOperand(1).getReg();
6328 Register Src1 = MI.getOperand(2).getReg();
6329
6330 const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
6331 LLT CmpType = MRI.getType(Dst).changeElementSize(1);
6332
6333 auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1);
6334 MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1);
6335
6336 MI.eraseFromParent();
6337 return Legalized;
6338}
6339
6340LegalizerHelper::LegalizeResult
6341LegalizerHelper::lowerFCopySign(MachineInstr &MI) {
6342 Register Dst = MI.getOperand(0).getReg();
6343 Register Src0 = MI.getOperand(1).getReg();
6344 Register Src1 = MI.getOperand(2).getReg();
6345
6346 const LLT Src0Ty = MRI.getType(Src0);
6347 const LLT Src1Ty = MRI.getType(Src1);
6348
6349 const int Src0Size = Src0Ty.getScalarSizeInBits();
6350 const int Src1Size = Src1Ty.getScalarSizeInBits();
6351
6352 auto SignBitMask = MIRBuilder.buildConstant(
6353 Src0Ty, APInt::getSignMask(Src0Size));
6354
6355 auto NotSignBitMask = MIRBuilder.buildConstant(
6356 Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1));
6357
6358 Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0);
6359 Register And1;
6360 if (Src0Ty == Src1Ty) {
6361 And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0);
6362 } else if (Src0Size > Src1Size) {
6363 auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size);
6364 auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1);
6365 auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt);
6366 And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0);
6367 } else {
6368 auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size);
6369 auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt);
6370 auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift);
6371 And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0);
6372 }
6373
6374 // Be careful about setting nsz/nnan/ninf on every instruction, since the
6375 // constants are a nan and -0.0, but the final result should preserve
6376 // everything.
6377 unsigned Flags = MI.getFlags();
6378 MIRBuilder.buildOr(Dst, And0, And1, Flags);
6379
6380 MI.eraseFromParent();
6381 return Legalized;
6382}
6383
6384LegalizerHelper::LegalizeResult
6385LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) {
6386 unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ?
6387 TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE;
6388
6389 Register Dst = MI.getOperand(0).getReg();
6390 Register Src0 = MI.getOperand(1).getReg();
6391 Register Src1 = MI.getOperand(2).getReg();
6392 LLT Ty = MRI.getType(Dst);
6393
6394 if (!MI.getFlag(MachineInstr::FmNoNans)) {
6395 // Insert canonicalizes if it's possible we need to quiet to get correct
6396 // sNaN behavior.
6397
6398 // Note this must be done here, and not as an optimization combine in the
6399 // absence of a dedicate quiet-snan instruction as we're using an
6400 // omni-purpose G_FCANONICALIZE.
6401 if (!isKnownNeverSNaN(Src0, MRI))
6402 Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0);
6403
6404 if (!isKnownNeverSNaN(Src1, MRI))
6405 Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0);
6406 }
6407
6408 // If there are no nans, it's safe to simply replace this with the non-IEEE
6409 // version.
6410 MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags());
6411 MI.eraseFromParent();
6412 return Legalized;
6413}
6414
6415LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) {
6416 // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c
6417 Register DstReg = MI.getOperand(0).getReg();
6418 LLT Ty = MRI.getType(DstReg);
6419 unsigned Flags = MI.getFlags();
6420
6421 auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2),
6422 Flags);
6423 MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags);
6424 MI.eraseFromParent();
6425 return Legalized;
6426}
6427
6428LegalizerHelper::LegalizeResult
6429LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) {
6430 Register DstReg = MI.getOperand(0).getReg();
6431 Register X = MI.getOperand(1).getReg();
6432 const unsigned Flags = MI.getFlags();
6433 const LLT Ty = MRI.getType(DstReg);
6434 const LLT CondTy = Ty.changeElementSize(1);
6435
6436 // round(x) =>
6437 // t = trunc(x);
6438 // d = fabs(x - t);
6439 // o = copysign(1.0f, x);
6440 // return t + (d >= 0.5 ? o : 0.0);
6441
6442 auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags);
6443
6444 auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags);
6445 auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags);
6446 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6447 auto One = MIRBuilder.buildFConstant(Ty, 1.0);
6448 auto Half = MIRBuilder.buildFConstant(Ty, 0.5);
6449 auto SignOne = MIRBuilder.buildFCopysign(Ty, One, X);
6450
6451 auto Cmp = MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half,
6452 Flags);
6453 auto Sel = MIRBuilder.buildSelect(Ty, Cmp, SignOne, Zero, Flags);
6454
6455 MIRBuilder.buildFAdd(DstReg, T, Sel, Flags);
6456
6457 MI.eraseFromParent();
6458 return Legalized;
6459}
6460
6461LegalizerHelper::LegalizeResult
6462LegalizerHelper::lowerFFloor(MachineInstr &MI) {
6463 Register DstReg = MI.getOperand(0).getReg();
6464 Register SrcReg = MI.getOperand(1).getReg();
6465 unsigned Flags = MI.getFlags();
6466 LLT Ty = MRI.getType(DstReg);
6467 const LLT CondTy = Ty.changeElementSize(1);
6468
6469 // result = trunc(src);
6470 // if (src < 0.0 && src != result)
6471 // result += -1.0.
6472
6473 auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags);
6474 auto Zero = MIRBuilder.buildFConstant(Ty, 0.0);
6475
6476 auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy,
6477 SrcReg, Zero, Flags);
6478 auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy,
6479 SrcReg, Trunc, Flags);
6480 auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc);
6481 auto AddVal = MIRBuilder.buildSITOFP(Ty, And);
6482
6483 MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags);
6484 MI.eraseFromParent();
6485 return Legalized;
6486}
6487
6488LegalizerHelper::LegalizeResult
6489LegalizerHelper::lowerMergeValues(MachineInstr &MI) {
6490 const unsigned NumOps = MI.getNumOperands();
6491 Register DstReg = MI.getOperand(0).getReg();
6492 Register Src0Reg = MI.getOperand(1).getReg();
6493 LLT DstTy = MRI.getType(DstReg);
6494 LLT SrcTy = MRI.getType(Src0Reg);
6495 unsigned PartSize = SrcTy.getSizeInBits();
6496
6497 LLT WideTy = LLT::scalar(DstTy.getSizeInBits());
6498 Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0);
6499
6500 for (unsigned I = 2; I != NumOps; ++I) {
6501 const unsigned Offset = (I - 1) * PartSize;
6502
6503 Register SrcReg = MI.getOperand(I).getReg();
6504 auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg);
6505
6506 Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg :
6507 MRI.createGenericVirtualRegister(WideTy);
6508
6509 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset);
6510 auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt);
6511 MIRBuilder.buildOr(NextResult, ResultReg, Shl);
6512 ResultReg = NextResult;
6513 }
6514
6515 if (DstTy.isPointer()) {
6516 if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace(
6517 DstTy.getAddressSpace())) {
6518 LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "Not casting nonintegral address space\n"
; } } while (false)
;
6519 return UnableToLegalize;
6520 }
6521
6522 MIRBuilder.buildIntToPtr(DstReg, ResultReg);
6523 }
6524
6525 MI.eraseFromParent();
6526 return Legalized;
6527}
6528
6529LegalizerHelper::LegalizeResult
6530LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) {
6531 const unsigned NumDst = MI.getNumOperands() - 1;
6532 Register SrcReg = MI.getOperand(NumDst).getReg();
6533 Register Dst0Reg = MI.getOperand(0).getReg();
6534 LLT DstTy = MRI.getType(Dst0Reg);
6535 if (DstTy.isPointer())
6536 return UnableToLegalize; // TODO
6537
6538 SrcReg = coerceToScalar(SrcReg);
6539 if (!SrcReg)
6540 return UnableToLegalize;
6541
6542 // Expand scalarizing unmerge as bitcast to integer and shift.
6543 LLT IntTy = MRI.getType(SrcReg);
6544
6545 MIRBuilder.buildTrunc(Dst0Reg, SrcReg);
6546
6547 const unsigned DstSize = DstTy.getSizeInBits();
6548 unsigned Offset = DstSize;
6549 for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) {
6550 auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset);
6551 auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt);
6552 MIRBuilder.buildTrunc(MI.getOperand(I), Shift);
6553 }
6554
6555 MI.eraseFromParent();
6556 return Legalized;
6557}
6558
6559/// Lower a vector extract or insert by writing the vector to a stack temporary
6560/// and reloading the element or vector.
6561///
6562/// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx
6563/// =>
6564/// %stack_temp = G_FRAME_INDEX
6565/// G_STORE %vec, %stack_temp
6566/// %idx = clamp(%idx, %vec.getNumElements())
6567/// %element_ptr = G_PTR_ADD %stack_temp, %idx
6568/// %dst = G_LOAD %element_ptr
6569LegalizerHelper::LegalizeResult
6570LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) {
6571 Register DstReg = MI.getOperand(0).getReg();
6572 Register SrcVec = MI.getOperand(1).getReg();
6573 Register InsertVal;
6574 if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT)
6575 InsertVal = MI.getOperand(2).getReg();
6576
6577 Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg();
6578
6579 LLT VecTy = MRI.getType(SrcVec);
6580 LLT EltTy = VecTy.getElementType();
6581 unsigned NumElts = VecTy.getNumElements();
6582
6583 int64_t IdxVal;
6584 if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) {
6585 SmallVector<Register, 8> SrcRegs;
6586 extractParts(SrcVec, EltTy, NumElts, SrcRegs);
6587
6588 if (InsertVal) {
6589 SrcRegs[IdxVal] = MI.getOperand(2).getReg();
6590 MIRBuilder.buildMerge(DstReg, SrcRegs);
6591 } else {
6592 MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]);
6593 }
6594
6595 MI.eraseFromParent();
6596 return Legalized;
6597 }
6598
6599 if (!EltTy.isByteSized()) { // Not implemented.
6600 LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "Can't handle non-byte element vectors yet\n"
; } } while (false)
;
6601 return UnableToLegalize;
6602 }
6603
6604 unsigned EltBytes = EltTy.getSizeInBytes();
6605 Align VecAlign = getStackTemporaryAlignment(VecTy);
6606 Align EltAlign;
6607
6608 MachinePointerInfo PtrInfo;
6609 auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()),
6610 VecAlign, PtrInfo);
6611 MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign);
6612
6613 // Get the pointer to the element, and be sure not to hit undefined behavior
6614 // if the index is out of bounds.
6615 Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx);
6616
6617 if (mi_match(Idx, MRI, m_ICst(IdxVal))) {
6618 int64_t Offset = IdxVal * EltBytes;
6619 PtrInfo = PtrInfo.getWithOffset(Offset);
6620 EltAlign = commonAlignment(VecAlign, Offset);
6621 } else {
6622 // We lose information with a variable offset.
6623 EltAlign = getStackTemporaryAlignment(EltTy);
6624 PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace());
6625 }
6626
6627 if (InsertVal) {
6628 // Write the inserted element
6629 MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign);
6630
6631 // Reload the whole vector.
6632 MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign);
6633 } else {
6634 MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign);
6635 }
6636
6637 MI.eraseFromParent();
6638 return Legalized;
6639}
6640
6641LegalizerHelper::LegalizeResult
6642LegalizerHelper::lowerShuffleVector(MachineInstr &MI) {
6643 Register DstReg = MI.getOperand(0).getReg();
6644 Register Src0Reg = MI.getOperand(1).getReg();
6645 Register Src1Reg = MI.getOperand(2).getReg();
6646 LLT Src0Ty = MRI.getType(Src0Reg);
6647 LLT DstTy = MRI.getType(DstReg);
6648 LLT IdxTy = LLT::scalar(32);
6649
6650 ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask();
6651
6652 if (DstTy.isScalar()) {
6653 if (Src0Ty.isVector())
6654 return UnableToLegalize;
6655
6656 // This is just a SELECT.
6657 assert(Mask.size() == 1 && "Expected a single mask element")(static_cast <bool> (Mask.size() == 1 && "Expected a single mask element"
) ? void (0) : __assert_fail ("Mask.size() == 1 && \"Expected a single mask element\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 6657, __extension__
__PRETTY_FUNCTION__))
;
6658 Register Val;
6659 if (Mask[0] < 0 || Mask[0] > 1)
6660 Val = MIRBuilder.buildUndef(DstTy).getReg(0);
6661 else
6662 Val = Mask[0] == 0 ? Src0Reg : Src1Reg;
6663 MIRBuilder.buildCopy(DstReg, Val);
6664 MI.eraseFromParent();
6665 return Legalized;
6666 }
6667
6668 Register Undef;
6669 SmallVector<Register, 32> BuildVec;
6670 LLT EltTy = DstTy.getElementType();
6671
6672 for (int Idx : Mask) {
6673 if (Idx < 0) {
6674 if (!Undef.isValid())
6675 Undef = MIRBuilder.buildUndef(EltTy).getReg(0);
6676 BuildVec.push_back(Undef);
6677 continue;
6678 }
6679
6680 if (Src0Ty.isScalar()) {
6681 BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg);
6682 } else {
6683 int NumElts = Src0Ty.getNumElements();
6684 Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg;
6685 int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts;
6686 auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx);
6687 auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK);
6688 BuildVec.push_back(Extract.getReg(0));
6689 }
6690 }
6691
6692 MIRBuilder.buildBuildVector(DstReg, BuildVec);
6693 MI.eraseFromParent();
6694 return Legalized;
6695}
6696
6697LegalizerHelper::LegalizeResult
6698LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) {
6699 const auto &MF = *MI.getMF();
6700 const auto &TFI = *MF.getSubtarget().getFrameLowering();
6701 if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp)
6702 return UnableToLegalize;
6703
6704 Register Dst = MI.getOperand(0).getReg();
6705 Register AllocSize = MI.getOperand(1).getReg();
6706 Align Alignment = assumeAligned(MI.getOperand(2).getImm());
6707
6708 LLT PtrTy = MRI.getType(Dst);
6709 LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
6710
6711 Register SPReg = TLI.getStackPointerRegisterToSaveRestore();
6712 auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg);
6713 SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp);
6714
6715 // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't
6716 // have to generate an extra instruction to negate the alloc and then use
6717 // G_PTR_ADD to add the negative offset.
6718 auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize);
6719 if (Alignment > Align(1)) {
6720 APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true);
6721 AlignMask.negate();
6722 auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask);
6723 Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst);
6724 }
6725
6726 SPTmp = MIRBuilder.buildCast(PtrTy, Alloc);
6727 MIRBuilder.buildCopy(SPReg, SPTmp);
6728 MIRBuilder.buildCopy(Dst, SPTmp);
6729
6730 MI.eraseFromParent();
6731 return Legalized;
6732}
6733
6734LegalizerHelper::LegalizeResult
6735LegalizerHelper::lowerExtract(MachineInstr &MI) {
6736 Register Dst = MI.getOperand(0).getReg();
6737 Register Src = MI.getOperand(1).getReg();
6738 unsigned Offset = MI.getOperand(2).getImm();
6739
6740 LLT DstTy = MRI.getType(Dst);
6741 LLT SrcTy = MRI.getType(Src);
6742
6743 // Extract sub-vector or one element
6744 if (SrcTy.isVector()) {
6745 unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits();
6746 unsigned DstSize = DstTy.getSizeInBits();
6747
6748 if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) &&
6749 (Offset + DstSize <= SrcTy.getSizeInBits())) {
6750 // Unmerge and allow access to each Src element for the artifact combiner.
6751 auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), Src);
6752
6753 // Take element(s) we need to extract and copy it (merge them).
6754 SmallVector<Register, 8> SubVectorElts;
6755 for (unsigned Idx = Offset / SrcEltSize;
6756 Idx < (Offset + DstSize) / SrcEltSize; ++Idx) {
6757 SubVectorElts.push_back(Unmerge.getReg(Idx));
6758 }
6759 if (SubVectorElts.size() == 1)
6760 MIRBuilder.buildCopy(Dst, SubVectorElts[0]);
6761 else
6762 MIRBuilder.buildMerge(Dst, SubVectorElts);
6763
6764 MI.eraseFromParent();
6765 return Legalized;
6766 }
6767 }
6768
6769 if (DstTy.isScalar() &&
6770 (SrcTy.isScalar() ||
6771 (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) {
6772 LLT SrcIntTy = SrcTy;
6773 if (!SrcTy.isScalar()) {
6774 SrcIntTy = LLT::scalar(SrcTy.getSizeInBits());
6775 Src = MIRBuilder.buildBitcast(SrcIntTy, Src).getReg(0);
6776 }
6777
6778 if (Offset == 0)
6779 MIRBuilder.buildTrunc(Dst, Src);
6780 else {
6781 auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset);
6782 auto Shr = MIRBuilder.buildLShr(SrcIntTy, Src, ShiftAmt);
6783 MIRBuilder.buildTrunc(Dst, Shr);
6784 }
6785
6786 MI.eraseFromParent();
6787 return Legalized;
6788 }
6789
6790 return UnableToLegalize;
6791}
6792
6793LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) {
6794 Register Dst = MI.getOperand(0).getReg();
6795 Register Src = MI.getOperand(1).getReg();
6796 Register InsertSrc = MI.getOperand(2).getReg();
6797 uint64_t Offset = MI.getOperand(3).getImm();
6798
6799 LLT DstTy = MRI.getType(Src);
6800 LLT InsertTy = MRI.getType(InsertSrc);
6801
6802 // Insert sub-vector or one element
6803 if (DstTy.isVector() && !InsertTy.isPointer()) {
6804 LLT EltTy = DstTy.getElementType();
6805 unsigned EltSize = EltTy.getSizeInBits();
6806 unsigned InsertSize = InsertTy.getSizeInBits();
6807
6808 if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) &&
6809 (Offset + InsertSize <= DstTy.getSizeInBits())) {
6810 auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src);
6811 SmallVector<Register, 8> DstElts;
6812 unsigned Idx = 0;
6813 // Elements from Src before insert start Offset
6814 for (; Idx < Offset / EltSize; ++Idx) {
6815 DstElts.push_back(UnmergeSrc.getReg(Idx));
6816 }
6817
6818 // Replace elements in Src with elements from InsertSrc
6819 if (InsertTy.getSizeInBits() > EltSize) {
6820 auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc);
6821 for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize;
6822 ++Idx, ++i) {
6823 DstElts.push_back(UnmergeInsertSrc.getReg(i));
6824 }
6825 } else {
6826 DstElts.push_back(InsertSrc);
6827 ++Idx;
6828 }
6829
6830 // Remaining elements from Src after insert
6831 for (; Idx < DstTy.getNumElements(); ++Idx) {
6832 DstElts.push_back(UnmergeSrc.getReg(Idx));
6833 }
6834
6835 MIRBuilder.buildMerge(Dst, DstElts);
6836 MI.eraseFromParent();
6837 return Legalized;
6838 }
6839 }
6840
6841 if (InsertTy.isVector() ||
6842 (DstTy.isVector() && DstTy.getElementType() != InsertTy))
6843 return UnableToLegalize;
6844
6845 const DataLayout &DL = MIRBuilder.getDataLayout();
6846 if ((DstTy.isPointer() &&
6847 DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) ||
6848 (InsertTy.isPointer() &&
6849 DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) {
6850 LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "Not casting non-integral address space integer\n"
; } } while (false)
;
6851 return UnableToLegalize;
6852 }
6853
6854 LLT IntDstTy = DstTy;
6855
6856 if (!DstTy.isScalar()) {
6857 IntDstTy = LLT::scalar(DstTy.getSizeInBits());
6858 Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0);
6859 }
6860
6861 if (!InsertTy.isScalar()) {
6862 const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits());
6863 InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0);
6864 }
6865
6866 Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0);
6867 if (Offset != 0) {
6868 auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset);
6869 ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0);
6870 }
6871
6872 APInt MaskVal = APInt::getBitsSetWithWrap(
6873 DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset);
6874
6875 auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal);
6876 auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask);
6877 auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc);
6878
6879 MIRBuilder.buildCast(Dst, Or);
6880 MI.eraseFromParent();
6881 return Legalized;
6882}
6883
6884LegalizerHelper::LegalizeResult
6885LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) {
6886 Register Dst0 = MI.getOperand(0).getReg();
6887 Register Dst1 = MI.getOperand(1).getReg();
6888 Register LHS = MI.getOperand(2).getReg();
6889 Register RHS = MI.getOperand(3).getReg();
6890 const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO;
6891
6892 LLT Ty = MRI.getType(Dst0);
6893 LLT BoolTy = MRI.getType(Dst1);
6894
6895 if (IsAdd)
6896 MIRBuilder.buildAdd(Dst0, LHS, RHS);
6897 else
6898 MIRBuilder.buildSub(Dst0, LHS, RHS);
6899
6900 // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6901
6902 auto Zero = MIRBuilder.buildConstant(Ty, 0);
6903
6904 // For an addition, the result should be less than one of the operands (LHS)
6905 // if and only if the other operand (RHS) is negative, otherwise there will
6906 // be overflow.
6907 // For a subtraction, the result should be less than one of the operands
6908 // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
6909 // otherwise there will be overflow.
6910 auto ResultLowerThanLHS =
6911 MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS);
6912 auto ConditionRHS = MIRBuilder.buildICmp(
6913 IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero);
6914
6915 MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS);
6916 MI.eraseFromParent();
6917 return Legalized;
6918}
6919
6920LegalizerHelper::LegalizeResult
6921LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) {
6922 Register Res = MI.getOperand(0).getReg();
6923 Register LHS = MI.getOperand(1).getReg();
6924 Register RHS = MI.getOperand(2).getReg();
6925 LLT Ty = MRI.getType(Res);
6926 bool IsSigned;
6927 bool IsAdd;
6928 unsigned BaseOp;
6929 switch (MI.getOpcode()) {
6930 default:
6931 llvm_unreachable("unexpected addsat/subsat opcode")::llvm::llvm_unreachable_internal("unexpected addsat/subsat opcode"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 6931)
;
6932 case TargetOpcode::G_UADDSAT:
6933 IsSigned = false;
6934 IsAdd = true;
6935 BaseOp = TargetOpcode::G_ADD;
6936 break;
6937 case TargetOpcode::G_SADDSAT:
6938 IsSigned = true;
6939 IsAdd = true;
6940 BaseOp = TargetOpcode::G_ADD;
6941 break;
6942 case TargetOpcode::G_USUBSAT:
6943 IsSigned = false;
6944 IsAdd = false;
6945 BaseOp = TargetOpcode::G_SUB;
6946 break;
6947 case TargetOpcode::G_SSUBSAT:
6948 IsSigned = true;
6949 IsAdd = false;
6950 BaseOp = TargetOpcode::G_SUB;
6951 break;
6952 }
6953
6954 if (IsSigned) {
6955 // sadd.sat(a, b) ->
6956 // hi = 0x7fffffff - smax(a, 0)
6957 // lo = 0x80000000 - smin(a, 0)
6958 // a + smin(smax(lo, b), hi)
6959 // ssub.sat(a, b) ->
6960 // lo = smax(a, -1) - 0x7fffffff
6961 // hi = smin(a, -1) - 0x80000000
6962 // a - smin(smax(lo, b), hi)
6963 // TODO: AMDGPU can use a "median of 3" instruction here:
6964 // a +/- med3(lo, b, hi)
6965 uint64_t NumBits = Ty.getScalarSizeInBits();
6966 auto MaxVal =
6967 MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits));
6968 auto MinVal =
6969 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
6970 MachineInstrBuilder Hi, Lo;
6971 if (IsAdd) {
6972 auto Zero = MIRBuilder.buildConstant(Ty, 0);
6973 Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero));
6974 Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero));
6975 } else {
6976 auto NegOne = MIRBuilder.buildConstant(Ty, -1);
6977 Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne),
6978 MaxVal);
6979 Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne),
6980 MinVal);
6981 }
6982 auto RHSClamped =
6983 MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi);
6984 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped});
6985 } else {
6986 // uadd.sat(a, b) -> a + umin(~a, b)
6987 // usub.sat(a, b) -> a - umin(a, b)
6988 Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS;
6989 auto Min = MIRBuilder.buildUMin(Ty, Not, RHS);
6990 MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min});
6991 }
6992
6993 MI.eraseFromParent();
6994 return Legalized;
6995}
6996
6997LegalizerHelper::LegalizeResult
6998LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) {
6999 Register Res = MI.getOperand(0).getReg();
7000 Register LHS = MI.getOperand(1).getReg();
7001 Register RHS = MI.getOperand(2).getReg();
7002 LLT Ty = MRI.getType(Res);
7003 LLT BoolTy = Ty.changeElementSize(1);
7004 bool IsSigned;
7005 bool IsAdd;
7006 unsigned OverflowOp;
7007 switch (MI.getOpcode()) {
7008 default:
7009 llvm_unreachable("unexpected addsat/subsat opcode")::llvm::llvm_unreachable_internal("unexpected addsat/subsat opcode"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7009)
;
7010 case TargetOpcode::G_UADDSAT:
7011 IsSigned = false;
7012 IsAdd = true;
7013 OverflowOp = TargetOpcode::G_UADDO;
7014 break;
7015 case TargetOpcode::G_SADDSAT:
7016 IsSigned = true;
7017 IsAdd = true;
7018 OverflowOp = TargetOpcode::G_SADDO;
7019 break;
7020 case TargetOpcode::G_USUBSAT:
7021 IsSigned = false;
7022 IsAdd = false;
7023 OverflowOp = TargetOpcode::G_USUBO;
7024 break;
7025 case TargetOpcode::G_SSUBSAT:
7026 IsSigned = true;
7027 IsAdd = false;
7028 OverflowOp = TargetOpcode::G_SSUBO;
7029 break;
7030 }
7031
7032 auto OverflowRes =
7033 MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS});
7034 Register Tmp = OverflowRes.getReg(0);
7035 Register Ov = OverflowRes.getReg(1);
7036 MachineInstrBuilder Clamp;
7037 if (IsSigned) {
7038 // sadd.sat(a, b) ->
7039 // {tmp, ov} = saddo(a, b)
7040 // ov ? (tmp >>s 31) + 0x80000000 : r
7041 // ssub.sat(a, b) ->
7042 // {tmp, ov} = ssubo(a, b)
7043 // ov ? (tmp >>s 31) + 0x80000000 : r
7044 uint64_t NumBits = Ty.getScalarSizeInBits();
7045 auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1);
7046 auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount);
7047 auto MinVal =
7048 MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits));
7049 Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal);
7050 } else {
7051 // uadd.sat(a, b) ->
7052 // {tmp, ov} = uaddo(a, b)
7053 // ov ? 0xffffffff : tmp
7054 // usub.sat(a, b) ->
7055 // {tmp, ov} = usubo(a, b)
7056 // ov ? 0 : tmp
7057 Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0);
7058 }
7059 MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp);
7060
7061 MI.eraseFromParent();
7062 return Legalized;
7063}
7064
7065LegalizerHelper::LegalizeResult
7066LegalizerHelper::lowerShlSat(MachineInstr &MI) {
7067 assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT ||(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_SSHLSAT
|| MI.getOpcode() == TargetOpcode::G_USHLSAT) && "Expected shlsat opcode!"
) ? void (0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_SSHLSAT || MI.getOpcode() == TargetOpcode::G_USHLSAT) && \"Expected shlsat opcode!\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7069, __extension__
__PRETTY_FUNCTION__))
7068 MI.getOpcode() == TargetOpcode::G_USHLSAT) &&(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_SSHLSAT
|| MI.getOpcode() == TargetOpcode::G_USHLSAT) && "Expected shlsat opcode!"
) ? void (0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_SSHLSAT || MI.getOpcode() == TargetOpcode::G_USHLSAT) && \"Expected shlsat opcode!\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7069, __extension__
__PRETTY_FUNCTION__))
7069 "Expected shlsat opcode!")(static_cast <bool> ((MI.getOpcode() == TargetOpcode::G_SSHLSAT
|| MI.getOpcode() == TargetOpcode::G_USHLSAT) && "Expected shlsat opcode!"
) ? void (0) : __assert_fail ("(MI.getOpcode() == TargetOpcode::G_SSHLSAT || MI.getOpcode() == TargetOpcode::G_USHLSAT) && \"Expected shlsat opcode!\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7069, __extension__
__PRETTY_FUNCTION__))
;
7070 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT;
7071 Register Res = MI.getOperand(0).getReg();
7072 Register LHS = MI.getOperand(1).getReg();
7073 Register RHS = MI.getOperand(2).getReg();
7074 LLT Ty = MRI.getType(Res);
7075 LLT BoolTy = Ty.changeElementSize(1);
7076
7077 unsigned BW = Ty.getScalarSizeInBits();
7078 auto Result = MIRBuilder.buildShl(Ty, LHS, RHS);
7079 auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS)
7080 : MIRBuilder.buildLShr(Ty, Result, RHS);
7081
7082 MachineInstrBuilder SatVal;
7083 if (IsSigned) {
7084 auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW));
7085 auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW));
7086 auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS,
7087 MIRBuilder.buildConstant(Ty, 0));
7088 SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax);
7089 } else {
7090 SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW));
7091 }
7092 auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig);
7093 MIRBuilder.buildSelect(Res, Ov, SatVal, Result);
7094
7095 MI.eraseFromParent();
7096 return Legalized;
7097}
7098
7099LegalizerHelper::LegalizeResult
7100LegalizerHelper::lowerBswap(MachineInstr &MI) {
7101 Register Dst = MI.getOperand(0).getReg();
7102 Register Src = MI.getOperand(1).getReg();
7103 const LLT Ty = MRI.getType(Src);
7104 unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8;
7105 unsigned BaseShiftAmt = (SizeInBytes - 1) * 8;
7106
7107 // Swap most and least significant byte, set remaining bytes in Res to zero.
7108 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt);
7109 auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt);
7110 auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7111 auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft);
7112
7113 // Set i-th high/low byte in Res to i-th low/high byte from Src.
7114 for (unsigned i = 1; i < SizeInBytes / 2; ++i) {
7115 // AND with Mask leaves byte i unchanged and sets remaining bytes to 0.
7116 APInt APMask(SizeInBytes * 8, 0xFF << (i * 8));
7117 auto Mask = MIRBuilder.buildConstant(Ty, APMask);
7118 auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i);
7119 // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt.
7120 auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask);
7121 auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt);
7122 Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft);
7123 // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask.
7124 auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt);
7125 auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask);
7126 Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight);
7127 }
7128 Res.getInstr()->getOperand(0).setReg(Dst);
7129
7130 MI.eraseFromParent();
7131 return Legalized;
7132}
7133
7134//{ (Src & Mask) >> N } | { (Src << N) & Mask }
7135static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B,
7136 MachineInstrBuilder Src, APInt Mask) {
7137 const LLT Ty = Dst.getLLTTy(*B.getMRI());
7138 MachineInstrBuilder C_N = B.buildConstant(Ty, N);
7139 MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask);
7140 auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N);
7141 auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0);
7142 return B.buildOr(Dst, LHS, RHS);
7143}
7144
7145LegalizerHelper::LegalizeResult
7146LegalizerHelper::lowerBitreverse(MachineInstr &MI) {
7147 Register Dst = MI.getOperand(0).getReg();
7148 Register Src = MI.getOperand(1).getReg();
7149 const LLT Ty = MRI.getType(Src);
7150 unsigned Size = Ty.getSizeInBits();
7151
7152 MachineInstrBuilder BSWAP =
7153 MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src});
7154
7155 // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654
7156 // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4]
7157 // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0]
7158 MachineInstrBuilder Swap4 =
7159 SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0)));
7160
7161 // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76
7162 // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2]
7163 // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC]
7164 MachineInstrBuilder Swap2 =
7165 SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC)));
7166
7167 // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7
7168 // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1]
7169 // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA]
7170 SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA)));
7171
7172 MI.eraseFromParent();
7173 return Legalized;
7174}
7175
7176LegalizerHelper::LegalizeResult
7177LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) {
7178 MachineFunction &MF = MIRBuilder.getMF();
7179
7180 bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER;
7181 int NameOpIdx = IsRead ? 1 : 0;
7182 int ValRegIndex = IsRead ? 0 : 1;
7183
7184 Register ValReg = MI.getOperand(ValRegIndex).getReg();
7185 const LLT Ty = MRI.getType(ValReg);
7186 const MDString *RegStr = cast<MDString>(
7187 cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0));
7188
7189 Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF);
7190 if (!PhysReg.isValid())
7191 return UnableToLegalize;
7192
7193 if (IsRead)
7194 MIRBuilder.buildCopy(ValReg, PhysReg);
7195 else
7196 MIRBuilder.buildCopy(PhysReg, ValReg);
7197
7198 MI.eraseFromParent();
7199 return Legalized;
7200}
7201
7202LegalizerHelper::LegalizeResult
7203LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) {
7204 bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH;
7205 unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
7206 Register Result = MI.getOperand(0).getReg();
7207 LLT OrigTy = MRI.getType(Result);
7208 auto SizeInBits = OrigTy.getScalarSizeInBits();
7209 LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2);
7210
7211 auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)});
7212 auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)});
7213 auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS);
7214 unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR;
7215
7216 auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits);
7217 auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt});
7218 MIRBuilder.buildTrunc(Result, Shifted);
7219
7220 MI.eraseFromParent();
7221 return Legalized;
7222}
7223
7224LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) {
7225 // Implement vector G_SELECT in terms of XOR, AND, OR.
7226 Register DstReg = MI.getOperand(0).getReg();
7227 Register MaskReg = MI.getOperand(1).getReg();
7228 Register Op1Reg = MI.getOperand(2).getReg();
7229 Register Op2Reg = MI.getOperand(3).getReg();
7230 LLT DstTy = MRI.getType(DstReg);
7231 LLT MaskTy = MRI.getType(MaskReg);
7232 LLT Op1Ty = MRI.getType(Op1Reg);
7233 if (!DstTy.isVector())
7234 return UnableToLegalize;
7235
7236 // Vector selects can have a scalar predicate. If so, splat into a vector and
7237 // finish for later legalization attempts to try again.
7238 if (MaskTy.isScalar()) {
7239 Register MaskElt = MaskReg;
7240 if (MaskTy.getSizeInBits() < DstTy.getScalarSizeInBits())
7241 MaskElt = MIRBuilder.buildSExt(DstTy.getElementType(), MaskElt).getReg(0);
7242 // Generate a vector splat idiom to be pattern matched later.
7243 auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt);
7244 Observer.changingInstr(MI);
7245 MI.getOperand(1).setReg(ShufSplat.getReg(0));
7246 Observer.changedInstr(MI);
7247 return Legalized;
7248 }
7249
7250 if (MaskTy.getSizeInBits() != Op1Ty.getSizeInBits()) {
7251 return UnableToLegalize;
7252 }
7253
7254 auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg);
7255 auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg);
7256 auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask);
7257 MIRBuilder.buildOr(DstReg, NewOp1, NewOp2);
7258 MI.eraseFromParent();
7259 return Legalized;
7260}
7261
7262LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) {
7263 // Split DIVREM into individual instructions.
7264 unsigned Opcode = MI.getOpcode();
7265
7266 MIRBuilder.buildInstr(
7267 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV
7268 : TargetOpcode::G_UDIV,
7269 {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7270 MIRBuilder.buildInstr(
7271 Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM
7272 : TargetOpcode::G_UREM,
7273 {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)});
7274 MI.eraseFromParent();
7275 return Legalized;
7276}
7277
7278LegalizerHelper::LegalizeResult
7279LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) {
7280 // Expand %res = G_ABS %a into:
7281 // %v1 = G_ASHR %a, scalar_size-1
7282 // %v2 = G_ADD %a, %v1
7283 // %res = G_XOR %v2, %v1
7284 LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
7285 Register OpReg = MI.getOperand(1).getReg();
7286 auto ShiftAmt =
7287 MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1);
7288 auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt);
7289 auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift);
7290 MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift);
7291 MI.eraseFromParent();
7292 return Legalized;
7293}
7294
7295LegalizerHelper::LegalizeResult
7296LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) {
7297 // Expand %res = G_ABS %a into:
7298 // %v1 = G_CONSTANT 0
7299 // %v2 = G_SUB %v1, %a
7300 // %res = G_SMAX %a, %v2
7301 Register SrcReg = MI.getOperand(1).getReg();
7302 LLT Ty = MRI.getType(SrcReg);
7303 auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0);
7304 auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0);
7305 MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub);
7306 MI.eraseFromParent();
7307 return Legalized;
7308}
7309
7310LegalizerHelper::LegalizeResult
7311LegalizerHelper::lowerVectorReduction(MachineInstr &MI) {
7312 Register SrcReg = MI.getOperand(1).getReg();
7313 LLT SrcTy = MRI.getType(SrcReg);
7314 LLT DstTy = MRI.getType(SrcReg);
7315
7316 // The source could be a scalar if the IR type was <1 x sN>.
7317 if (SrcTy.isScalar()) {
7318 if (DstTy.getSizeInBits() > SrcTy.getSizeInBits())
7319 return UnableToLegalize; // FIXME: handle extension.
7320 // This can be just a plain copy.
7321 Observer.changingInstr(MI);
7322 MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY));
7323 Observer.changedInstr(MI);
7324 return Legalized;
7325 }
7326 return UnableToLegalize;;
7327}
7328
7329static bool shouldLowerMemFuncForSize(const MachineFunction &MF) {
7330 // On Darwin, -Os means optimize for size without hurting performance, so
7331 // only really optimize for size when -Oz (MinSize) is used.
7332 if (MF.getTarget().getTargetTriple().isOSDarwin())
7333 return MF.getFunction().hasMinSize();
7334 return MF.getFunction().hasOptSize();
7335}
7336
7337// Returns a list of types to use for memory op lowering in MemOps. A partial
7338// port of findOptimalMemOpLowering in TargetLowering.
7339static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps,
7340 unsigned Limit, const MemOp &Op,
7341 unsigned DstAS, unsigned SrcAS,
7342 const AttributeList &FuncAttributes,
7343 const TargetLowering &TLI) {
7344 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
7345 return false;
7346
7347 LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes);
7348
7349 if (Ty == LLT()) {
7350 // Use the largest scalar type whose alignment constraints are satisfied.
7351 // We only need to check DstAlign here as SrcAlign is always greater or
7352 // equal to DstAlign (or zero).
7353 Ty = LLT::scalar(64);
7354 if (Op.isFixedDstAlign())
7355 while (Op.getDstAlign() < Ty.getSizeInBytes() &&
7356 !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign()))
7357 Ty = LLT::scalar(Ty.getSizeInBytes());
7358 assert(Ty.getSizeInBits() > 0 && "Could not find valid type")(static_cast <bool> (Ty.getSizeInBits() > 0 &&
"Could not find valid type") ? void (0) : __assert_fail ("Ty.getSizeInBits() > 0 && \"Could not find valid type\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7358, __extension__
__PRETTY_FUNCTION__))
;
7359 // FIXME: check for the largest legal type we can load/store to.
7360 }
7361
7362 unsigned NumMemOps = 0;
7363 uint64_t Size = Op.size();
7364 while (Size) {
7365 unsigned TySize = Ty.getSizeInBytes();
7366 while (TySize > Size) {
7367 // For now, only use non-vector load / store's for the left-over pieces.
7368 LLT NewTy = Ty;
7369 // FIXME: check for mem op safety and legality of the types. Not all of
7370 // SDAGisms map cleanly to GISel concepts.
7371 if (NewTy.isVector())
7372 NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32);
7373 NewTy = LLT::scalar(PowerOf2Floor(NewTy.getSizeInBits() - 1));
7374 unsigned NewTySize = NewTy.getSizeInBytes();
7375 assert(NewTySize > 0 && "Could not find appropriate type")(static_cast <bool> (NewTySize > 0 && "Could not find appropriate type"
) ? void (0) : __assert_fail ("NewTySize > 0 && \"Could not find appropriate type\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7375, __extension__
__PRETTY_FUNCTION__))
;
7376
7377 // If the new LLT cannot cover all of the remaining bits, then consider
7378 // issuing a (or a pair of) unaligned and overlapping load / store.
7379 bool Fast;
7380 // Need to get a VT equivalent for allowMisalignedMemoryAccesses().
7381 MVT VT = getMVTForLLT(Ty);
7382 if (NumMemOps && Op.allowOverlap() && NewTySize < Size &&
7383 TLI.allowsMisalignedMemoryAccesses(
7384 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
7385 MachineMemOperand::MONone, &Fast) &&
7386 Fast)
7387 TySize = Size;
7388 else {
7389 Ty = NewTy;
7390 TySize = NewTySize;
7391 }
7392 }
7393
7394 if (++NumMemOps > Limit)
7395 return false;
7396
7397 MemOps.push_back(Ty);
7398 Size -= TySize;
7399 }
7400
7401 return true;
7402}
7403
7404static Type *getTypeForLLT(LLT Ty, LLVMContext &C) {
7405 if (Ty.isVector())
7406 return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()),
7407 Ty.getNumElements());
7408 return IntegerType::get(C, Ty.getSizeInBits());
7409}
7410
7411// Get a vectorized representation of the memset value operand, GISel edition.
7412static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) {
7413 MachineRegisterInfo &MRI = *MIB.getMRI();
7414 unsigned NumBits = Ty.getScalarSizeInBits();
7415 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7416 if (!Ty.isVector() && ValVRegAndVal) {
7417 APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8);
7418 APInt SplatVal = APInt::getSplat(NumBits, Scalar);
7419 return MIB.buildConstant(Ty, SplatVal).getReg(0);
7420 }
7421
7422 // Extend the byte value to the larger type, and then multiply by a magic
7423 // value 0x010101... in order to replicate it across every byte.
7424 // Unless it's zero, in which case just emit a larger G_CONSTANT 0.
7425 if (ValVRegAndVal && ValVRegAndVal->Value == 0) {
7426 return MIB.buildConstant(Ty, 0).getReg(0);
7427 }
7428
7429 LLT ExtType = Ty.getScalarType();
7430 auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val);
7431 if (NumBits > 8) {
7432 APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01));
7433 auto MagicMI = MIB.buildConstant(ExtType, Magic);
7434 Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0);
7435 }
7436
7437 // For vector types create a G_BUILD_VECTOR.
7438 if (Ty.isVector())
7439 Val = MIB.buildSplatVector(Ty, Val).getReg(0);
7440
7441 return Val;
7442}
7443
7444LegalizerHelper::LegalizeResult
7445LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val,
7446 uint64_t KnownLen, Align Alignment,
7447 bool IsVolatile) {
7448 auto &MF = *MI.getParent()->getParent();
7449 const auto &TLI = *MF.getSubtarget().getTargetLowering();
7450 auto &DL = MF.getDataLayout();
7451 LLVMContext &C = MF.getFunction().getContext();
7452
7453 assert(KnownLen != 0 && "Have a zero length memset length!")(static_cast <bool> (KnownLen != 0 && "Have a zero length memset length!"
) ? void (0) : __assert_fail ("KnownLen != 0 && \"Have a zero length memset length!\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7453, __extension__
__PRETTY_FUNCTION__))
;
7454
7455 bool DstAlignCanChange = false;
7456 MachineFrameInfo &MFI = MF.getFrameInfo();
7457 bool OptSize = shouldLowerMemFuncForSize(MF);
7458
7459 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7460 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7461 DstAlignCanChange = true;
7462
7463 unsigned Limit = TLI.getMaxStoresPerMemset(OptSize);
7464 std::vector<LLT> MemOps;
7465
7466 const auto &DstMMO = **MI.memoperands_begin();
7467 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7468
7469 auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI);
7470 bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0;
7471
7472 if (!findGISelOptimalMemOpLowering(MemOps, Limit,
7473 MemOp::Set(KnownLen, DstAlignCanChange,
7474 Alignment,
7475 /*IsZeroMemset=*/IsZeroVal,
7476 /*IsVolatile=*/IsVolatile),
7477 DstPtrInfo.getAddrSpace(), ~0u,
7478 MF.getFunction().getAttributes(), TLI))
7479 return UnableToLegalize;
7480
7481 if (DstAlignCanChange) {
7482 // Get an estimate of the type from the LLT.
7483 Type *IRTy = getTypeForLLT(MemOps[0], C);
7484 Align NewAlign = DL.getABITypeAlign(IRTy);
7485 if (NewAlign > Alignment) {
7486 Alignment = NewAlign;
7487 unsigned FI = FIDef->getOperand(1).getIndex();
7488 // Give the stack frame object a larger alignment if needed.
7489 if (MFI.getObjectAlign(FI) < Alignment)
7490 MFI.setObjectAlignment(FI, Alignment);
7491 }
7492 }
7493
7494 MachineIRBuilder MIB(MI);
7495 // Find the largest store and generate the bit pattern for it.
7496 LLT LargestTy = MemOps[0];
7497 for (unsigned i = 1; i < MemOps.size(); i++)
7498 if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits())
7499 LargestTy = MemOps[i];
7500
7501 // The memset stored value is always defined as an s8, so in order to make it
7502 // work with larger store types we need to repeat the bit pattern across the
7503 // wider type.
7504 Register MemSetValue = getMemsetValue(Val, LargestTy, MIB);
7505
7506 if (!MemSetValue)
7507 return UnableToLegalize;
7508
7509 // Generate the stores. For each store type in the list, we generate the
7510 // matching store of that type to the destination address.
7511 LLT PtrTy = MRI.getType(Dst);
7512 unsigned DstOff = 0;
7513 unsigned Size = KnownLen;
7514 for (unsigned I = 0; I < MemOps.size(); I++) {
7515 LLT Ty = MemOps[I];
7516 unsigned TySize = Ty.getSizeInBytes();
7517 if (TySize > Size) {
7518 // Issuing an unaligned load / store pair that overlaps with the previous
7519 // pair. Adjust the offset accordingly.
7520 assert(I == MemOps.size() - 1 && I != 0)(static_cast <bool> (I == MemOps.size() - 1 && I
!= 0) ? void (0) : __assert_fail ("I == MemOps.size() - 1 && I != 0"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7520, __extension__
__PRETTY_FUNCTION__))
;
7521 DstOff -= TySize - Size;
7522 }
7523
7524 // If this store is smaller than the largest store see whether we can get
7525 // the smaller value for free with a truncate.
7526 Register Value = MemSetValue;
7527 if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) {
7528 MVT VT = getMVTForLLT(Ty);
7529 MVT LargestVT = getMVTForLLT(LargestTy);
7530 if (!LargestTy.isVector() && !Ty.isVector() &&
7531 TLI.isTruncateFree(LargestVT, VT))
7532 Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0);
7533 else
7534 Value = getMemsetValue(Val, Ty, MIB);
7535 if (!Value)
7536 return UnableToLegalize;
7537 }
7538
7539 auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty);
7540
7541 Register Ptr = Dst;
7542 if (DstOff != 0) {
7543 auto Offset =
7544 MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff);
7545 Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0);
7546 }
7547
7548 MIB.buildStore(Value, Ptr, *StoreMMO);
7549 DstOff += Ty.getSizeInBytes();
7550 Size -= TySize;
7551 }
7552
7553 MI.eraseFromParent();
7554 return Legalized;
7555}
7556
7557LegalizerHelper::LegalizeResult
7558LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) {
7559 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7559, __extension__
__PRETTY_FUNCTION__))
;
7560
7561 Register Dst = MI.getOperand(0).getReg();
7562 Register Src = MI.getOperand(1).getReg();
7563 Register Len = MI.getOperand(2).getReg();
7564
7565 const auto *MMOIt = MI.memoperands_begin();
7566 const MachineMemOperand *MemOp = *MMOIt;
7567 bool IsVolatile = MemOp->isVolatile();
7568
7569 // See if this is a constant length copy
7570 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7571 // FIXME: support dynamically sized G_MEMCPY_INLINE
7572 assert(LenVRegAndVal.hasValue() &&(static_cast <bool> (LenVRegAndVal.hasValue() &&
"inline memcpy with dynamic size is not yet supported") ? void
(0) : __assert_fail ("LenVRegAndVal.hasValue() && \"inline memcpy with dynamic size is not yet supported\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7573, __extension__
__PRETTY_FUNCTION__))
7573 "inline memcpy with dynamic size is not yet supported")(static_cast <bool> (LenVRegAndVal.hasValue() &&
"inline memcpy with dynamic size is not yet supported") ? void
(0) : __assert_fail ("LenVRegAndVal.hasValue() && \"inline memcpy with dynamic size is not yet supported\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7573, __extension__
__PRETTY_FUNCTION__))
;
7574 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7575 if (KnownLen == 0) {
7576 MI.eraseFromParent();
7577 return Legalized;
7578 }
7579
7580 const auto &DstMMO = **MI.memoperands_begin();
7581 const auto &SrcMMO = **std::next(MI.memoperands_begin());
7582 Align DstAlign = DstMMO.getBaseAlign();
7583 Align SrcAlign = SrcMMO.getBaseAlign();
7584
7585 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7586 IsVolatile);
7587}
7588
7589LegalizerHelper::LegalizeResult
7590LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src,
7591 uint64_t KnownLen, Align DstAlign,
7592 Align SrcAlign, bool IsVolatile) {
7593 assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE)(static_cast <bool> (MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE
) ? void (0) : __assert_fail ("MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE"
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7593, __extension__
__PRETTY_FUNCTION__))
;
7594 return lowerMemcpy(MI, Dst, Src, KnownLen,
7595 std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign,
7596 IsVolatile);
7597}
7598
7599LegalizerHelper::LegalizeResult
7600LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src,
7601 uint64_t KnownLen, uint64_t Limit, Align DstAlign,
7602 Align SrcAlign, bool IsVolatile) {
7603 auto &MF = *MI.getParent()->getParent();
7604 const auto &TLI = *MF.getSubtarget().getTargetLowering();
7605 auto &DL = MF.getDataLayout();
7606 LLVMContext &C = MF.getFunction().getContext();
7607
7608 assert(KnownLen != 0 && "Have a zero length memcpy length!")(static_cast <bool> (KnownLen != 0 && "Have a zero length memcpy length!"
) ? void (0) : __assert_fail ("KnownLen != 0 && \"Have a zero length memcpy length!\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7608, __extension__
__PRETTY_FUNCTION__))
;
7609
7610 bool DstAlignCanChange = false;
7611 MachineFrameInfo &MFI = MF.getFrameInfo();
7612 Align Alignment = commonAlignment(DstAlign, SrcAlign);
7613
7614 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7615 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7616 DstAlignCanChange = true;
7617
7618 // FIXME: infer better src pointer alignment like SelectionDAG does here.
7619 // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining
7620 // if the memcpy is in a tail call position.
7621
7622 std::vector<LLT> MemOps;
7623
7624 const auto &DstMMO = **MI.memoperands_begin();
7625 const auto &SrcMMO = **std::next(MI.memoperands_begin());
7626 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7627 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7628
7629 if (!findGISelOptimalMemOpLowering(
7630 MemOps, Limit,
7631 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7632 IsVolatile),
7633 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7634 MF.getFunction().getAttributes(), TLI))
7635 return UnableToLegalize;
7636
7637 if (DstAlignCanChange) {
7638 // Get an estimate of the type from the LLT.
7639 Type *IRTy = getTypeForLLT(MemOps[0], C);
7640 Align NewAlign = DL.getABITypeAlign(IRTy);
7641
7642 // Don't promote to an alignment that would require dynamic stack
7643 // realignment.
7644 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7645 if (!TRI->hasStackRealignment(MF))
7646 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7647 NewAlign = NewAlign / 2;
7648
7649 if (NewAlign > Alignment) {
7650 Alignment = NewAlign;
7651 unsigned FI = FIDef->getOperand(1).getIndex();
7652 // Give the stack frame object a larger alignment if needed.
7653 if (MFI.getObjectAlign(FI) < Alignment)
7654 MFI.setObjectAlignment(FI, Alignment);
7655 }
7656 }
7657
7658 LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "Inlining memcpy: " <<
MI << " into loads & stores\n"; } } while (false)
;
7659
7660 MachineIRBuilder MIB(MI);
7661 // Now we need to emit a pair of load and stores for each of the types we've
7662 // collected. I.e. for each type, generate a load from the source pointer of
7663 // that type width, and then generate a corresponding store to the dest buffer
7664 // of that value loaded. This can result in a sequence of loads and stores
7665 // mixed types, depending on what the target specifies as good types to use.
7666 unsigned CurrOffset = 0;
7667 unsigned Size = KnownLen;
7668 for (auto CopyTy : MemOps) {
7669 // Issuing an unaligned load / store pair that overlaps with the previous
7670 // pair. Adjust the offset accordingly.
7671 if (CopyTy.getSizeInBytes() > Size)
7672 CurrOffset -= CopyTy.getSizeInBytes() - Size;
7673
7674 // Construct MMOs for the accesses.
7675 auto *LoadMMO =
7676 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7677 auto *StoreMMO =
7678 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7679
7680 // Create the load.
7681 Register LoadPtr = Src;
7682 Register Offset;
7683 if (CurrOffset != 0) {
7684 LLT SrcTy = MRI.getType(Src);
7685 Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset)
7686 .getReg(0);
7687 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7688 }
7689 auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO);
7690
7691 // Create the store.
7692 Register StorePtr = Dst;
7693 if (CurrOffset != 0) {
7694 LLT DstTy = MRI.getType(Dst);
7695 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7696 }
7697 MIB.buildStore(LdVal, StorePtr, *StoreMMO);
7698 CurrOffset += CopyTy.getSizeInBytes();
7699 Size -= CopyTy.getSizeInBytes();
7700 }
7701
7702 MI.eraseFromParent();
7703 return Legalized;
7704}
7705
7706LegalizerHelper::LegalizeResult
7707LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src,
7708 uint64_t KnownLen, Align DstAlign, Align SrcAlign,
7709 bool IsVolatile) {
7710 auto &MF = *MI.getParent()->getParent();
7711 const auto &TLI = *MF.getSubtarget().getTargetLowering();
7712 auto &DL = MF.getDataLayout();
7713 LLVMContext &C = MF.getFunction().getContext();
7714
7715 assert(KnownLen != 0 && "Have a zero length memmove length!")(static_cast <bool> (KnownLen != 0 && "Have a zero length memmove length!"
) ? void (0) : __assert_fail ("KnownLen != 0 && \"Have a zero length memmove length!\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7715, __extension__
__PRETTY_FUNCTION__))
;
7716
7717 bool DstAlignCanChange = false;
7718 MachineFrameInfo &MFI = MF.getFrameInfo();
7719 bool OptSize = shouldLowerMemFuncForSize(MF);
7720 Align Alignment = commonAlignment(DstAlign, SrcAlign);
7721
7722 MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI);
7723 if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex()))
7724 DstAlignCanChange = true;
7725
7726 unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize);
7727 std::vector<LLT> MemOps;
7728
7729 const auto &DstMMO = **MI.memoperands_begin();
7730 const auto &SrcMMO = **std::next(MI.memoperands_begin());
7731 MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo();
7732 MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo();
7733
7734 // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due
7735 // to a bug in it's findOptimalMemOpLowering implementation. For now do the
7736 // same thing here.
7737 if (!findGISelOptimalMemOpLowering(
7738 MemOps, Limit,
7739 MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign,
7740 /*IsVolatile*/ true),
7741 DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(),
7742 MF.getFunction().getAttributes(), TLI))
7743 return UnableToLegalize;
7744
7745 if (DstAlignCanChange) {
7746 // Get an estimate of the type from the LLT.
7747 Type *IRTy = getTypeForLLT(MemOps[0], C);
7748 Align NewAlign = DL.getABITypeAlign(IRTy);
7749
7750 // Don't promote to an alignment that would require dynamic stack
7751 // realignment.
7752 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
7753 if (!TRI->hasStackRealignment(MF))
7754 while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign))
7755 NewAlign = NewAlign / 2;
7756
7757 if (NewAlign > Alignment) {
7758 Alignment = NewAlign;
7759 unsigned FI = FIDef->getOperand(1).getIndex();
7760 // Give the stack frame object a larger alignment if needed.
7761 if (MFI.getObjectAlign(FI) < Alignment)
7762 MFI.setObjectAlignment(FI, Alignment);
7763 }
7764 }
7765
7766 LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("legalizer")) { dbgs() << "Inlining memmove: " <<
MI << " into loads & stores\n"; } } while (false)
;
7767
7768 MachineIRBuilder MIB(MI);
7769 // Memmove requires that we perform the loads first before issuing the stores.
7770 // Apart from that, this loop is pretty much doing the same thing as the
7771 // memcpy codegen function.
7772 unsigned CurrOffset = 0;
7773 SmallVector<Register, 16> LoadVals;
7774 for (auto CopyTy : MemOps) {
7775 // Construct MMO for the load.
7776 auto *LoadMMO =
7777 MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes());
7778
7779 // Create the load.
7780 Register LoadPtr = Src;
7781 if (CurrOffset != 0) {
7782 LLT SrcTy = MRI.getType(Src);
7783 auto Offset =
7784 MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset);
7785 LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0);
7786 }
7787 LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0));
7788 CurrOffset += CopyTy.getSizeInBytes();
7789 }
7790
7791 CurrOffset = 0;
7792 for (unsigned I = 0; I < MemOps.size(); ++I) {
7793 LLT CopyTy = MemOps[I];
7794 // Now store the values loaded.
7795 auto *StoreMMO =
7796 MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes());
7797
7798 Register StorePtr = Dst;
7799 if (CurrOffset != 0) {
7800 LLT DstTy = MRI.getType(Dst);
7801 auto Offset =
7802 MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset);
7803 StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0);
7804 }
7805 MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO);
7806 CurrOffset += CopyTy.getSizeInBytes();
7807 }
7808 MI.eraseFromParent();
7809 return Legalized;
7810}
7811
7812LegalizerHelper::LegalizeResult
7813LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) {
7814 const unsigned Opc = MI.getOpcode();
7815 // This combine is fairly complex so it's not written with a separate
7816 // matcher function.
7817 assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE ||(static_cast <bool> ((Opc == TargetOpcode::G_MEMCPY || Opc
== TargetOpcode::G_MEMMOVE || Opc == TargetOpcode::G_MEMSET)
&& "Expected memcpy like instruction") ? void (0) : __assert_fail
("(Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || Opc == TargetOpcode::G_MEMSET) && \"Expected memcpy like instruction\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7819, __extension__
__PRETTY_FUNCTION__))
7818 Opc == TargetOpcode::G_MEMSET) &&(static_cast <bool> ((Opc == TargetOpcode::G_MEMCPY || Opc
== TargetOpcode::G_MEMMOVE || Opc == TargetOpcode::G_MEMSET)
&& "Expected memcpy like instruction") ? void (0) : __assert_fail
("(Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || Opc == TargetOpcode::G_MEMSET) && \"Expected memcpy like instruction\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7819, __extension__
__PRETTY_FUNCTION__))
7819 "Expected memcpy like instruction")(static_cast <bool> ((Opc == TargetOpcode::G_MEMCPY || Opc
== TargetOpcode::G_MEMMOVE || Opc == TargetOpcode::G_MEMSET)
&& "Expected memcpy like instruction") ? void (0) : __assert_fail
("(Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || Opc == TargetOpcode::G_MEMSET) && \"Expected memcpy like instruction\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7819, __extension__
__PRETTY_FUNCTION__))
;
7820
7821 auto MMOIt = MI.memoperands_begin();
7822 const MachineMemOperand *MemOp = *MMOIt;
7823
7824 Align DstAlign = MemOp->getBaseAlign();
7825 Align SrcAlign;
7826 Register Dst = MI.getOperand(0).getReg();
7827 Register Src = MI.getOperand(1).getReg();
7828 Register Len = MI.getOperand(2).getReg();
7829
7830 if (Opc != TargetOpcode::G_MEMSET) {
7831 assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI")(static_cast <bool> (MMOIt != MI.memoperands_end() &&
"Expected a second MMO on MI") ? void (0) : __assert_fail ("MMOIt != MI.memoperands_end() && \"Expected a second MMO on MI\""
, "llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp", 7831, __extension__
__PRETTY_FUNCTION__))
;
7832 MemOp = *(++MMOIt);
7833 SrcAlign = MemOp->getBaseAlign();
7834 }
7835
7836 // See if this is a constant length copy
7837 auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI);
7838 if (!LenVRegAndVal)
7839 return UnableToLegalize;
7840 uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue();
7841
7842 if (KnownLen == 0) {
7843 MI.eraseFromParent();
7844 return Legalized;
7845 }
7846
7847 bool IsVolatile = MemOp->isVolatile();
7848 if (Opc == TargetOpcode::G_MEMCPY_INLINE)
7849 return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign,
7850 IsVolatile);
7851
7852 // Don't try to optimize volatile.
7853 if (IsVolatile)
7854 return UnableToLegalize;
7855
7856 if (MaxLen && KnownLen > MaxLen)
7857 return UnableToLegalize;
7858
7859 if (Opc == TargetOpcode::G_MEMCPY) {
7860 auto &MF = *MI.getParent()->getParent();
7861 const auto &TLI = *MF.getSubtarget().getTargetLowering();
7862 bool OptSize = shouldLowerMemFuncForSize(MF);
7863 uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize);
7864 return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign,
7865 IsVolatile);
7866 }
7867 if (Opc == TargetOpcode::G_MEMMOVE)
7868 return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile);
7869 if (Opc == TargetOpcode::G_MEMSET)
7870 return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile);
7871 return UnableToLegalize;
7872}