Bug Summary

File:clang/lib/Lex/LiteralSupport.cpp
Warning:line 881, column 11
Value stored to 'HasSize' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name LiteralSupport.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/build-llvm -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/Lex -I /build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex -I /build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-command-line-argument -Wno-unknown-warning-option -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/build-llvm -ferror-limit 19 -fvisibility-inlines-hidden -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-11-10-160236-22541-1 -x c++ /build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp
1//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the NumericLiteralParser, CharLiteralParser, and
10// StringLiteralParser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Lex/LiteralSupport.h"
15#include "clang/Basic/CharInfo.h"
16#include "clang/Basic/LangOptions.h"
17#include "clang/Basic/SourceLocation.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/Lex/LexDiagnostic.h"
20#include "clang/Lex/Lexer.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Lex/Token.h"
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/StringSwitch.h"
27#include "llvm/Support/ConvertUTF.h"
28#include "llvm/Support/Error.h"
29#include "llvm/Support/ErrorHandling.h"
30#include <algorithm>
31#include <cassert>
32#include <cstddef>
33#include <cstdint>
34#include <cstring>
35#include <string>
36
37using namespace clang;
38
39static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
40 switch (kind) {
41 default: llvm_unreachable("Unknown token type!")::llvm::llvm_unreachable_internal("Unknown token type!", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 41)
;
42 case tok::char_constant:
43 case tok::string_literal:
44 case tok::utf8_char_constant:
45 case tok::utf8_string_literal:
46 return Target.getCharWidth();
47 case tok::wide_char_constant:
48 case tok::wide_string_literal:
49 return Target.getWCharWidth();
50 case tok::utf16_char_constant:
51 case tok::utf16_string_literal:
52 return Target.getChar16Width();
53 case tok::utf32_char_constant:
54 case tok::utf32_string_literal:
55 return Target.getChar32Width();
56 }
57}
58
59static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
60 FullSourceLoc TokLoc,
61 const char *TokBegin,
62 const char *TokRangeBegin,
63 const char *TokRangeEnd) {
64 SourceLocation Begin =
65 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
66 TokLoc.getManager(), Features);
67 SourceLocation End =
68 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
69 TokLoc.getManager(), Features);
70 return CharSourceRange::getCharRange(Begin, End);
71}
72
73/// Produce a diagnostic highlighting some portion of a literal.
74///
75/// Emits the diagnostic \p DiagID, highlighting the range of characters from
76/// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
77/// a substring of a spelling buffer for the token beginning at \p TokBegin.
78static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
79 const LangOptions &Features, FullSourceLoc TokLoc,
80 const char *TokBegin, const char *TokRangeBegin,
81 const char *TokRangeEnd, unsigned DiagID) {
82 SourceLocation Begin =
83 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
84 TokLoc.getManager(), Features);
85 return Diags->Report(Begin, DiagID) <<
86 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
87}
88
89/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
90/// either a character or a string literal.
91static unsigned ProcessCharEscape(const char *ThisTokBegin,
92 const char *&ThisTokBuf,
93 const char *ThisTokEnd, bool &HadError,
94 FullSourceLoc Loc, unsigned CharWidth,
95 DiagnosticsEngine *Diags,
96 const LangOptions &Features) {
97 const char *EscapeBegin = ThisTokBuf;
98 bool Delimited = false;
99 bool EndDelimiterFound = false;
100
101 // Skip the '\' char.
102 ++ThisTokBuf;
103
104 // We know that this character can't be off the end of the buffer, because
105 // that would have been \", which would not have been the end of string.
106 unsigned ResultChar = *ThisTokBuf++;
107 switch (ResultChar) {
108 // These map to themselves.
109 case '\\': case '\'': case '"': case '?': break;
110
111 // These have fixed mappings.
112 case 'a':
113 // TODO: K&R: the meaning of '\\a' is different in traditional C
114 ResultChar = 7;
115 break;
116 case 'b':
117 ResultChar = 8;
118 break;
119 case 'e':
120 if (Diags)
121 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
122 diag::ext_nonstandard_escape) << "e";
123 ResultChar = 27;
124 break;
125 case 'E':
126 if (Diags)
127 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
128 diag::ext_nonstandard_escape) << "E";
129 ResultChar = 27;
130 break;
131 case 'f':
132 ResultChar = 12;
133 break;
134 case 'n':
135 ResultChar = 10;
136 break;
137 case 'r':
138 ResultChar = 13;
139 break;
140 case 't':
141 ResultChar = 9;
142 break;
143 case 'v':
144 ResultChar = 11;
145 break;
146 case 'x': { // Hex escape.
147 ResultChar = 0;
148 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
149 Delimited = true;
150 ThisTokBuf++;
151 if (*ThisTokBuf == '}') {
152 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
153 diag::err_delimited_escape_empty);
154 return ResultChar;
155 }
156 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
157 if (Diags)
158 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
159 diag::err_hex_escape_no_digits) << "x";
160 return ResultChar;
161 }
162
163 // Hex escapes are a maximal series of hex digits.
164 bool Overflow = false;
165 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
166 if (Delimited && *ThisTokBuf == '}') {
167 ThisTokBuf++;
168 EndDelimiterFound = true;
169 break;
170 }
171 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
172 if (CharVal == -1) {
173 // Non delimited hex escape sequences stop at the first non-hex digit.
174 if (!Delimited)
175 break;
176 HadError = true;
177 if (Diags)
178 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
179 diag::err_delimited_escape_invalid)
180 << StringRef(ThisTokBuf, 1);
181 continue;
182 }
183 // About to shift out a digit?
184 if (ResultChar & 0xF0000000)
185 Overflow = true;
186 ResultChar <<= 4;
187 ResultChar |= CharVal;
188 }
189 // See if any bits will be truncated when evaluated as a character.
190 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
191 Overflow = true;
192 ResultChar &= ~0U >> (32-CharWidth);
193 }
194
195 // Check for overflow.
196 if (!HadError && Overflow) { // Too many digits to fit in
197 HadError = true;
198 if (Diags)
199 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
200 diag::err_escape_too_large)
201 << 0;
202 }
203 break;
204 }
205 case '0': case '1': case '2': case '3':
206 case '4': case '5': case '6': case '7': {
207 // Octal escapes.
208 --ThisTokBuf;
209 ResultChar = 0;
210
211 // Octal escapes are a series of octal digits with maximum length 3.
212 // "\0123" is a two digit sequence equal to "\012" "3".
213 unsigned NumDigits = 0;
214 do {
215 ResultChar <<= 3;
216 ResultChar |= *ThisTokBuf++ - '0';
217 ++NumDigits;
218 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
219 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
220
221 // Check for overflow. Reject '\777', but not L'\777'.
222 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
223 if (Diags)
224 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
225 diag::err_escape_too_large) << 1;
226 ResultChar &= ~0U >> (32-CharWidth);
227 }
228 break;
229 }
230 case 'o': {
231 bool Overflow = false;
232 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
233 HadError = true;
234 if (Diags)
235 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
236 diag::err_delimited_escape_missing_brace);
237
238 break;
239 }
240 ResultChar = 0;
241 Delimited = true;
242 ++ThisTokBuf;
243 if (*ThisTokBuf == '}') {
244 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
245 diag::err_delimited_escape_empty);
246 return ResultChar;
247 }
248
249 while (ThisTokBuf != ThisTokEnd) {
250 if (*ThisTokBuf == '}') {
251 EndDelimiterFound = true;
252 ThisTokBuf++;
253 break;
254 }
255 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') {
256 HadError = true;
257 if (Diags)
258 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
259 diag::err_delimited_escape_invalid)
260 << StringRef(ThisTokBuf, 1);
261 ThisTokBuf++;
262 continue;
263 }
264 if (ResultChar & 0x020000000)
265 Overflow = true;
266
267 ResultChar <<= 3;
268 ResultChar |= *ThisTokBuf++ - '0';
269 }
270 // Check for overflow. Reject '\777', but not L'\777'.
271 if (!HadError &&
272 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) {
273 HadError = true;
274 if (Diags)
275 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
276 diag::err_escape_too_large)
277 << 1;
278 ResultChar &= ~0U >> (32 - CharWidth);
279 }
280 break;
281 }
282 // Otherwise, these are not valid escapes.
283 case '(': case '{': case '[': case '%':
284 // GCC accepts these as extensions. We warn about them as such though.
285 if (Diags)
286 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
287 diag::ext_nonstandard_escape)
288 << std::string(1, ResultChar);
289 break;
290 default:
291 if (!Diags)
292 break;
293
294 if (isPrintable(ResultChar))
295 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
296 diag::ext_unknown_escape)
297 << std::string(1, ResultChar);
298 else
299 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
300 diag::ext_unknown_escape)
301 << "x" + llvm::utohexstr(ResultChar);
302 break;
303 }
304
305 if (Delimited && Diags) {
306 if (!EndDelimiterFound)
307 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
308 diag::err_expected)
309 << tok::r_brace;
310 else if (!HadError) {
311 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
312 diag::ext_delimited_escape_sequence);
313 }
314 }
315
316 return ResultChar;
317}
318
319static void appendCodePoint(unsigned Codepoint,
320 llvm::SmallVectorImpl<char> &Str) {
321 char ResultBuf[4];
322 char *ResultPtr = ResultBuf;
323 bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
324 (void)Res;
325 assert(Res && "Unexpected conversion failure")(static_cast <bool> (Res && "Unexpected conversion failure"
) ? void (0) : __assert_fail ("Res && \"Unexpected conversion failure\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 325, __extension__ __PRETTY_FUNCTION__))
;
326 Str.append(ResultBuf, ResultPtr);
327}
328
329void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
330 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
331 if (*I != '\\') {
332 Buf.push_back(*I);
333 continue;
334 }
335
336 ++I;
337 char Kind = *I;
338 ++I;
339
340 assert(Kind == 'u' || Kind == 'U')(static_cast <bool> (Kind == 'u' || Kind == 'U') ? void
(0) : __assert_fail ("Kind == 'u' || Kind == 'U'", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 340, __extension__ __PRETTY_FUNCTION__))
;
341 uint32_t CodePoint = 0;
342
343 if (Kind == 'u' && *I == '{') {
344 for (++I; *I != '}'; ++I) {
345 unsigned Value = llvm::hexDigitValue(*I);
346 assert(Value != -1U)(static_cast <bool> (Value != -1U) ? void (0) : __assert_fail
("Value != -1U", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 346, __extension__ __PRETTY_FUNCTION__))
;
347 CodePoint <<= 4;
348 CodePoint += Value;
349 }
350 appendCodePoint(CodePoint, Buf);
351 continue;
352 }
353
354 unsigned NumHexDigits;
355 if (Kind == 'u')
356 NumHexDigits = 4;
357 else
358 NumHexDigits = 8;
359
360 assert(I + NumHexDigits <= E)(static_cast <bool> (I + NumHexDigits <= E) ? void (
0) : __assert_fail ("I + NumHexDigits <= E", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 360, __extension__ __PRETTY_FUNCTION__))
;
361
362 for (; NumHexDigits != 0; ++I, --NumHexDigits) {
363 unsigned Value = llvm::hexDigitValue(*I);
364 assert(Value != -1U)(static_cast <bool> (Value != -1U) ? void (0) : __assert_fail
("Value != -1U", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 364, __extension__ __PRETTY_FUNCTION__))
;
365
366 CodePoint <<= 4;
367 CodePoint += Value;
368 }
369
370 appendCodePoint(CodePoint, Buf);
371 --I;
372 }
373}
374
375/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
376/// return the UTF32.
377static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
378 const char *ThisTokEnd,
379 uint32_t &UcnVal, unsigned short &UcnLen,
380 FullSourceLoc Loc, DiagnosticsEngine *Diags,
381 const LangOptions &Features,
382 bool in_char_string_literal = false) {
383 const char *UcnBegin = ThisTokBuf;
384
385 // Skip the '\u' char's.
386 ThisTokBuf += 2;
387
388 bool Delimited = false;
389 bool EndDelimiterFound = false;
390 bool HasError = false;
391
392 if (UcnBegin[1] == 'u' && in_char_string_literal &&
393 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
394 Delimited = true;
395 ThisTokBuf++;
396 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
397 if (Diags)
398 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
399 diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
400 return false;
401 }
402 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
403
404 bool Overflow = false;
405 unsigned short Count = 0;
406 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen);
407 ++ThisTokBuf) {
408 if (Delimited && *ThisTokBuf == '}') {
409 ++ThisTokBuf;
410 EndDelimiterFound = true;
411 break;
412 }
413 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
414 if (CharVal == -1) {
415 HasError = true;
416 if (!Delimited)
417 break;
418 if (Diags) {
419 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
420 diag::err_delimited_escape_invalid)
421 << StringRef(ThisTokBuf, 1);
422 }
423 Count++;
424 continue;
425 }
426 if (UcnVal & 0xF0000000) {
427 Overflow = true;
428 continue;
429 }
430 UcnVal <<= 4;
431 UcnVal |= CharVal;
432 Count++;
433 }
434
435 if (Overflow) {
436 if (Diags)
437 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
438 diag::err_escape_too_large)
439 << 0;
440 return false;
441 }
442
443 if (Delimited && !EndDelimiterFound) {
444 if (Diags) {
445 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
446 diag::err_expected)
447 << tok::r_brace;
448 }
449 return false;
450 }
451
452 // If we didn't consume the proper number of digits, there is a problem.
453 if (Count == 0 || (!Delimited && Count != UcnLen)) {
454 if (Diags)
455 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
456 Delimited ? diag::err_delimited_escape_empty
457 : diag::err_ucn_escape_incomplete);
458 return false;
459 }
460
461 if (HasError)
462 return false;
463
464 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
465 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
466 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
467 if (Diags)
468 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
469 diag::err_ucn_escape_invalid);
470 return false;
471 }
472
473 // C++11 allows UCNs that refer to control characters and basic source
474 // characters inside character and string literals
475 if (UcnVal < 0xa0 &&
476 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
477 bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
478 if (Diags) {
479 char BasicSCSChar = UcnVal;
480 if (UcnVal >= 0x20 && UcnVal < 0x7f)
481 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
482 IsError ? diag::err_ucn_escape_basic_scs :
483 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
484 << StringRef(&BasicSCSChar, 1);
485 else
486 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
487 IsError ? diag::err_ucn_control_character :
488 diag::warn_cxx98_compat_literal_ucn_control_character);
489 }
490 if (IsError)
491 return false;
492 }
493
494 if (!Features.CPlusPlus && !Features.C99 && Diags)
495 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
496 diag::warn_ucn_not_valid_in_c89_literal);
497
498 if (Delimited && Diags)
499 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
500 diag::ext_delimited_escape_sequence);
501
502 return true;
503}
504
505/// MeasureUCNEscape - Determine the number of bytes within the resulting string
506/// which this UCN will occupy.
507static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
508 const char *ThisTokEnd, unsigned CharByteWidth,
509 const LangOptions &Features, bool &HadError) {
510 // UTF-32: 4 bytes per escape.
511 if (CharByteWidth == 4)
512 return 4;
513
514 uint32_t UcnVal = 0;
515 unsigned short UcnLen = 0;
516 FullSourceLoc Loc;
517
518 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
519 UcnLen, Loc, nullptr, Features, true)) {
520 HadError = true;
521 return 0;
522 }
523
524 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
525 if (CharByteWidth == 2)
526 return UcnVal <= 0xFFFF ? 2 : 4;
527
528 // UTF-8.
529 if (UcnVal < 0x80)
530 return 1;
531 if (UcnVal < 0x800)
532 return 2;
533 if (UcnVal < 0x10000)
534 return 3;
535 return 4;
536}
537
538/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
539/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
540/// StringLiteralParser. When we decide to implement UCN's for identifiers,
541/// we will likely rework our support for UCN's.
542static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
543 const char *ThisTokEnd,
544 char *&ResultBuf, bool &HadError,
545 FullSourceLoc Loc, unsigned CharByteWidth,
546 DiagnosticsEngine *Diags,
547 const LangOptions &Features) {
548 typedef uint32_t UTF32;
549 UTF32 UcnVal = 0;
550 unsigned short UcnLen = 0;
551 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
552 Loc, Diags, Features, true)) {
553 HadError = true;
554 return;
555 }
556
557 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&(static_cast <bool> ((CharByteWidth == 1 || CharByteWidth
== 2 || CharByteWidth == 4) && "only character widths of 1, 2, or 4 bytes supported"
) ? void (0) : __assert_fail ("(CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && \"only character widths of 1, 2, or 4 bytes supported\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 558, __extension__ __PRETTY_FUNCTION__))
558 "only character widths of 1, 2, or 4 bytes supported")(static_cast <bool> ((CharByteWidth == 1 || CharByteWidth
== 2 || CharByteWidth == 4) && "only character widths of 1, 2, or 4 bytes supported"
) ? void (0) : __assert_fail ("(CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && \"only character widths of 1, 2, or 4 bytes supported\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 558, __extension__ __PRETTY_FUNCTION__))
;
559
560 (void)UcnLen;
561 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported")(static_cast <bool> ((UcnLen== 4 || UcnLen== 8) &&
"only ucn length of 4 or 8 supported") ? void (0) : __assert_fail
("(UcnLen== 4 || UcnLen== 8) && \"only ucn length of 4 or 8 supported\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 561, __extension__ __PRETTY_FUNCTION__))
;
562
563 if (CharByteWidth == 4) {
564 // FIXME: Make the type of the result buffer correct instead of
565 // using reinterpret_cast.
566 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
567 *ResultPtr = UcnVal;
568 ResultBuf += 4;
569 return;
570 }
571
572 if (CharByteWidth == 2) {
573 // FIXME: Make the type of the result buffer correct instead of
574 // using reinterpret_cast.
575 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
576
577 if (UcnVal <= (UTF32)0xFFFF) {
578 *ResultPtr = UcnVal;
579 ResultBuf += 2;
580 return;
581 }
582
583 // Convert to UTF16.
584 UcnVal -= 0x10000;
585 *ResultPtr = 0xD800 + (UcnVal >> 10);
586 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
587 ResultBuf += 4;
588 return;
589 }
590
591 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters")(static_cast <bool> (CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters"
) ? void (0) : __assert_fail ("CharByteWidth == 1 && \"UTF-8 encoding is only for 1 byte characters\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 591, __extension__ __PRETTY_FUNCTION__))
;
592
593 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
594 // The conversion below was inspired by:
595 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
596 // First, we determine how many bytes the result will require.
597 typedef uint8_t UTF8;
598
599 unsigned short bytesToWrite = 0;
600 if (UcnVal < (UTF32)0x80)
601 bytesToWrite = 1;
602 else if (UcnVal < (UTF32)0x800)
603 bytesToWrite = 2;
604 else if (UcnVal < (UTF32)0x10000)
605 bytesToWrite = 3;
606 else
607 bytesToWrite = 4;
608
609 const unsigned byteMask = 0xBF;
610 const unsigned byteMark = 0x80;
611
612 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
613 // into the first byte, depending on how many bytes follow.
614 static const UTF8 firstByteMark[5] = {
615 0x00, 0x00, 0xC0, 0xE0, 0xF0
616 };
617 // Finally, we write the bytes into ResultBuf.
618 ResultBuf += bytesToWrite;
619 switch (bytesToWrite) { // note: everything falls through.
620 case 4:
621 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
622 LLVM_FALLTHROUGH[[gnu::fallthrough]];
623 case 3:
624 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
625 LLVM_FALLTHROUGH[[gnu::fallthrough]];
626 case 2:
627 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
628 LLVM_FALLTHROUGH[[gnu::fallthrough]];
629 case 1:
630 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
631 }
632 // Update the buffer.
633 ResultBuf += bytesToWrite;
634}
635
636/// integer-constant: [C99 6.4.4.1]
637/// decimal-constant integer-suffix
638/// octal-constant integer-suffix
639/// hexadecimal-constant integer-suffix
640/// binary-literal integer-suffix [GNU, C++1y]
641/// user-defined-integer-literal: [C++11 lex.ext]
642/// decimal-literal ud-suffix
643/// octal-literal ud-suffix
644/// hexadecimal-literal ud-suffix
645/// binary-literal ud-suffix [GNU, C++1y]
646/// decimal-constant:
647/// nonzero-digit
648/// decimal-constant digit
649/// octal-constant:
650/// 0
651/// octal-constant octal-digit
652/// hexadecimal-constant:
653/// hexadecimal-prefix hexadecimal-digit
654/// hexadecimal-constant hexadecimal-digit
655/// hexadecimal-prefix: one of
656/// 0x 0X
657/// binary-literal:
658/// 0b binary-digit
659/// 0B binary-digit
660/// binary-literal binary-digit
661/// integer-suffix:
662/// unsigned-suffix [long-suffix]
663/// unsigned-suffix [long-long-suffix]
664/// long-suffix [unsigned-suffix]
665/// long-long-suffix [unsigned-sufix]
666/// nonzero-digit:
667/// 1 2 3 4 5 6 7 8 9
668/// octal-digit:
669/// 0 1 2 3 4 5 6 7
670/// hexadecimal-digit:
671/// 0 1 2 3 4 5 6 7 8 9
672/// a b c d e f
673/// A B C D E F
674/// binary-digit:
675/// 0
676/// 1
677/// unsigned-suffix: one of
678/// u U
679/// long-suffix: one of
680/// l L
681/// long-long-suffix: one of
682/// ll LL
683///
684/// floating-constant: [C99 6.4.4.2]
685/// TODO: add rules...
686///
687NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
688 SourceLocation TokLoc,
689 const SourceManager &SM,
690 const LangOptions &LangOpts,
691 const TargetInfo &Target,
692 DiagnosticsEngine &Diags)
693 : SM(SM), LangOpts(LangOpts), Diags(Diags),
694 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
695
696 // This routine assumes that the range begin/end matches the regex for integer
697 // and FP constants (specifically, the 'pp-number' regex), and assumes that
698 // the byte at "*end" is both valid and not part of the regex. Because of
699 // this, it doesn't have to check for 'overscan' in various places.
700 assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?")(static_cast <bool> (!isPreprocessingNumberBody(*ThisTokEnd
) && "didn't maximally munch?") ? void (0) : __assert_fail
("!isPreprocessingNumberBody(*ThisTokEnd) && \"didn't maximally munch?\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 700, __extension__ __PRETTY_FUNCTION__))
;
701
702 s = DigitsBegin = ThisTokBegin;
703 saw_exponent = false;
704 saw_period = false;
705 saw_ud_suffix = false;
706 saw_fixed_point_suffix = false;
707 isLong = false;
708 isUnsigned = false;
709 isLongLong = false;
710 isSizeT = false;
711 isHalf = false;
712 isFloat = false;
713 isImaginary = false;
714 isFloat16 = false;
715 isFloat128 = false;
716 MicrosoftInteger = 0;
717 isFract = false;
718 isAccum = false;
719 hadError = false;
720
721 if (*s == '0') { // parse radix
722 ParseNumberStartingWithZero(TokLoc);
723 if (hadError)
724 return;
725 } else { // the first digit is non-zero
726 radix = 10;
727 s = SkipDigits(s);
728 if (s == ThisTokEnd) {
729 // Done.
730 } else {
731 ParseDecimalOrOctalCommon(TokLoc);
732 if (hadError)
733 return;
734 }
735 }
736
737 SuffixBegin = s;
738 checkSeparator(TokLoc, s, CSK_AfterDigits);
739
740 // Initial scan to lookahead for fixed point suffix.
741 if (LangOpts.FixedPoint) {
742 for (const char *c = s; c != ThisTokEnd; ++c) {
743 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
744 saw_fixed_point_suffix = true;
745 break;
746 }
747 }
748 }
749
750 // Parse the suffix. At this point we can classify whether we have an FP or
751 // integer constant.
752 bool isFixedPointConstant = isFixedPointLiteral();
753 bool isFPConstant = isFloatingLiteral();
754 bool HasSize = false;
755
756 // Loop over all of the characters of the suffix. If we see something bad,
757 // we break out of the loop.
758 for (; s != ThisTokEnd; ++s) {
759 switch (*s) {
760 case 'R':
761 case 'r':
762 if (!LangOpts.FixedPoint)
763 break;
764 if (isFract || isAccum) break;
765 if (!(saw_period || saw_exponent)) break;
766 isFract = true;
767 continue;
768 case 'K':
769 case 'k':
770 if (!LangOpts.FixedPoint)
771 break;
772 if (isFract || isAccum) break;
773 if (!(saw_period || saw_exponent)) break;
774 isAccum = true;
775 continue;
776 case 'h': // FP Suffix for "half".
777 case 'H':
778 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
779 if (!(LangOpts.Half || LangOpts.FixedPoint))
780 break;
781 if (isIntegerLiteral()) break; // Error for integer constant.
782 if (HasSize)
783 break;
784 HasSize = true;
785 isHalf = true;
786 continue; // Success.
787 case 'f': // FP Suffix for "float"
788 case 'F':
789 if (!isFPConstant) break; // Error for integer constant.
790 if (HasSize)
791 break;
792 HasSize = true;
793
794 // CUDA host and device may have different _Float16 support, therefore
795 // allows f16 literals to avoid false alarm.
796 // ToDo: more precise check for CUDA.
797 if ((Target.hasFloat16Type() || LangOpts.CUDA) && s + 2 < ThisTokEnd &&
798 s[1] == '1' && s[2] == '6') {
799 s += 2; // success, eat up 2 characters.
800 isFloat16 = true;
801 continue;
802 }
803
804 isFloat = true;
805 continue; // Success.
806 case 'q': // FP Suffix for "__float128"
807 case 'Q':
808 if (!isFPConstant) break; // Error for integer constant.
809 if (HasSize)
810 break;
811 HasSize = true;
812 isFloat128 = true;
813 continue; // Success.
814 case 'u':
815 case 'U':
816 if (isFPConstant) break; // Error for floating constant.
817 if (isUnsigned) break; // Cannot be repeated.
818 isUnsigned = true;
819 continue; // Success.
820 case 'l':
821 case 'L':
822 if (HasSize)
823 break;
824 HasSize = true;
825
826 // Check for long long. The L's need to be adjacent and the same case.
827 if (s[1] == s[0]) {
828 assert(s + 1 < ThisTokEnd && "didn't maximally munch?")(static_cast <bool> (s + 1 < ThisTokEnd && "didn't maximally munch?"
) ? void (0) : __assert_fail ("s + 1 < ThisTokEnd && \"didn't maximally munch?\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 828, __extension__ __PRETTY_FUNCTION__))
;
829 if (isFPConstant) break; // long long invalid for floats.
830 isLongLong = true;
831 ++s; // Eat both of them.
832 } else {
833 isLong = true;
834 }
835 continue; // Success.
836 case 'z':
837 case 'Z':
838 if (isFPConstant)
839 break; // Invalid for floats.
840 if (HasSize)
841 break;
842 HasSize = true;
843 isSizeT = true;
844 continue;
845 case 'i':
846 case 'I':
847 if (LangOpts.MicrosoftExt && !isFPConstant) {
848 // Allow i8, i16, i32, and i64. First, look ahead and check if
849 // suffixes are Microsoft integers and not the imaginary unit.
850 uint8_t Bits = 0;
851 size_t ToSkip = 0;
852 switch (s[1]) {
853 case '8': // i8 suffix
854 Bits = 8;
855 ToSkip = 2;
856 break;
857 case '1':
858 if (s[2] == '6') { // i16 suffix
859 Bits = 16;
860 ToSkip = 3;
861 }
862 break;
863 case '3':
864 if (s[2] == '2') { // i32 suffix
865 Bits = 32;
866 ToSkip = 3;
867 }
868 break;
869 case '6':
870 if (s[2] == '4') { // i64 suffix
871 Bits = 64;
872 ToSkip = 3;
873 }
874 break;
875 default:
876 break;
877 }
878 if (Bits) {
879 if (HasSize)
880 break;
881 HasSize = true;
Value stored to 'HasSize' is never read
882 MicrosoftInteger = Bits;
883 s += ToSkip;
884 assert(s <= ThisTokEnd && "didn't maximally munch?")(static_cast <bool> (s <= ThisTokEnd && "didn't maximally munch?"
) ? void (0) : __assert_fail ("s <= ThisTokEnd && \"didn't maximally munch?\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 884, __extension__ __PRETTY_FUNCTION__))
;
885 break;
886 }
887 }
888 LLVM_FALLTHROUGH[[gnu::fallthrough]];
889 case 'j':
890 case 'J':
891 if (isImaginary) break; // Cannot be repeated.
892 isImaginary = true;
893 continue; // Success.
894 }
895 // If we reached here, there was an error or a ud-suffix.
896 break;
897 }
898
899 // "i", "if", and "il" are user-defined suffixes in C++1y.
900 if (s != ThisTokEnd || isImaginary) {
901 // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
902 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
903 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) {
904 if (!isImaginary) {
905 // Any suffix pieces we might have parsed are actually part of the
906 // ud-suffix.
907 isLong = false;
908 isUnsigned = false;
909 isLongLong = false;
910 isSizeT = false;
911 isFloat = false;
912 isFloat16 = false;
913 isHalf = false;
914 isImaginary = false;
915 MicrosoftInteger = 0;
916 saw_fixed_point_suffix = false;
917 isFract = false;
918 isAccum = false;
919 }
920
921 saw_ud_suffix = true;
922 return;
923 }
924
925 if (s != ThisTokEnd) {
926 // Report an error if there are any.
927 Diags.Report(Lexer::AdvanceToTokenCharacter(
928 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts),
929 diag::err_invalid_suffix_constant)
930 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)
931 << (isFixedPointConstant ? 2 : isFPConstant);
932 hadError = true;
933 }
934 }
935
936 if (!hadError && saw_fixed_point_suffix) {
937 assert(isFract || isAccum)(static_cast <bool> (isFract || isAccum) ? void (0) : __assert_fail
("isFract || isAccum", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 937, __extension__ __PRETTY_FUNCTION__))
;
938 }
939}
940
941/// ParseDecimalOrOctalCommon - This method is called for decimal or octal
942/// numbers. It issues an error for illegal digits, and handles floating point
943/// parsing. If it detects a floating point number, the radix is set to 10.
944void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
945 assert((radix == 8 || radix == 10) && "Unexpected radix")(static_cast <bool> ((radix == 8 || radix == 10) &&
"Unexpected radix") ? void (0) : __assert_fail ("(radix == 8 || radix == 10) && \"Unexpected radix\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 945, __extension__ __PRETTY_FUNCTION__))
;
946
947 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
948 // the code is using an incorrect base.
949 if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
950 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
951 Diags.Report(
952 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts),
953 diag::err_invalid_digit)
954 << StringRef(s, 1) << (radix == 8 ? 1 : 0);
955 hadError = true;
956 return;
957 }
958
959 if (*s == '.') {
960 checkSeparator(TokLoc, s, CSK_AfterDigits);
961 s++;
962 radix = 10;
963 saw_period = true;
964 checkSeparator(TokLoc, s, CSK_BeforeDigits);
965 s = SkipDigits(s); // Skip suffix.
966 }
967 if (*s == 'e' || *s == 'E') { // exponent
968 checkSeparator(TokLoc, s, CSK_AfterDigits);
969 const char *Exponent = s;
970 s++;
971 radix = 10;
972 saw_exponent = true;
973 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
974 const char *first_non_digit = SkipDigits(s);
975 if (containsDigits(s, first_non_digit)) {
976 checkSeparator(TokLoc, s, CSK_BeforeDigits);
977 s = first_non_digit;
978 } else {
979 if (!hadError) {
980 Diags.Report(Lexer::AdvanceToTokenCharacter(
981 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
982 diag::err_exponent_has_no_digits);
983 hadError = true;
984 }
985 return;
986 }
987 }
988}
989
990/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
991/// suffixes as ud-suffixes, because the diagnostic experience is better if we
992/// treat it as an invalid suffix.
993bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
994 StringRef Suffix) {
995 if (!LangOpts.CPlusPlus11 || Suffix.empty())
996 return false;
997
998 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
999 if (Suffix[0] == '_')
1000 return true;
1001
1002 // In C++11, there are no library suffixes.
1003 if (!LangOpts.CPlusPlus14)
1004 return false;
1005
1006 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1007 // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1008 // In C++2a "d" and "y" are used in the library.
1009 return llvm::StringSwitch<bool>(Suffix)
1010 .Cases("h", "min", "s", true)
1011 .Cases("ms", "us", "ns", true)
1012 .Cases("il", "i", "if", true)
1013 .Cases("d", "y", LangOpts.CPlusPlus20)
1014 .Default(false);
1015}
1016
1017void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
1018 const char *Pos,
1019 CheckSeparatorKind IsAfterDigits) {
1020 if (IsAfterDigits == CSK_AfterDigits) {
1021 if (Pos == ThisTokBegin)
1022 return;
1023 --Pos;
1024 } else if (Pos == ThisTokEnd)
1025 return;
1026
1027 if (isDigitSeparator(*Pos)) {
1028 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM,
1029 LangOpts),
1030 diag::err_digit_separator_not_between_digits)
1031 << IsAfterDigits;
1032 hadError = true;
1033 }
1034}
1035
1036/// ParseNumberStartingWithZero - This method is called when the first character
1037/// of the number is found to be a zero. This means it is either an octal
1038/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1039/// a floating point number (01239.123e4). Eat the prefix, determining the
1040/// radix etc.
1041void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
1042 assert(s[0] == '0' && "Invalid method call")(static_cast <bool> (s[0] == '0' && "Invalid method call"
) ? void (0) : __assert_fail ("s[0] == '0' && \"Invalid method call\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1042, __extension__ __PRETTY_FUNCTION__))
;
1043 s++;
1044
1045 int c1 = s[0];
1046
1047 // Handle a hex number like 0x1234.
1048 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
1049 s++;
1050 assert(s < ThisTokEnd && "didn't maximally munch?")(static_cast <bool> (s < ThisTokEnd && "didn't maximally munch?"
) ? void (0) : __assert_fail ("s < ThisTokEnd && \"didn't maximally munch?\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1050, __extension__ __PRETTY_FUNCTION__))
;
1051 radix = 16;
1052 DigitsBegin = s;
1053 s = SkipHexDigits(s);
1054 bool HasSignificandDigits = containsDigits(DigitsBegin, s);
1055 if (s == ThisTokEnd) {
1056 // Done.
1057 } else if (*s == '.') {
1058 s++;
1059 saw_period = true;
1060 const char *floatDigitsBegin = s;
1061 s = SkipHexDigits(s);
1062 if (containsDigits(floatDigitsBegin, s))
1063 HasSignificandDigits = true;
1064 if (HasSignificandDigits)
1065 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
1066 }
1067
1068 if (!HasSignificandDigits) {
1069 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1070 LangOpts),
1071 diag::err_hex_constant_requires)
1072 << LangOpts.CPlusPlus << 1;
1073 hadError = true;
1074 return;
1075 }
1076
1077 // A binary exponent can appear with or with a '.'. If dotted, the
1078 // binary exponent is required.
1079 if (*s == 'p' || *s == 'P') {
1080 checkSeparator(TokLoc, s, CSK_AfterDigits);
1081 const char *Exponent = s;
1082 s++;
1083 saw_exponent = true;
1084 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1085 const char *first_non_digit = SkipDigits(s);
1086 if (!containsDigits(s, first_non_digit)) {
1087 if (!hadError) {
1088 Diags.Report(Lexer::AdvanceToTokenCharacter(
1089 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1090 diag::err_exponent_has_no_digits);
1091 hadError = true;
1092 }
1093 return;
1094 }
1095 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1096 s = first_non_digit;
1097
1098 if (!LangOpts.HexFloats)
1099 Diags.Report(TokLoc, LangOpts.CPlusPlus
1100 ? diag::ext_hex_literal_invalid
1101 : diag::ext_hex_constant_invalid);
1102 else if (LangOpts.CPlusPlus17)
1103 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal);
1104 } else if (saw_period) {
1105 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1106 LangOpts),
1107 diag::err_hex_constant_requires)
1108 << LangOpts.CPlusPlus << 0;
1109 hadError = true;
1110 }
1111 return;
1112 }
1113
1114 // Handle simple binary numbers 0b01010
1115 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
1116 // 0b101010 is a C++1y / GCC extension.
1117 Diags.Report(TokLoc, LangOpts.CPlusPlus14
1118 ? diag::warn_cxx11_compat_binary_literal
1119 : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14
1120 : diag::ext_binary_literal);
1121 ++s;
1122 assert(s < ThisTokEnd && "didn't maximally munch?")(static_cast <bool> (s < ThisTokEnd && "didn't maximally munch?"
) ? void (0) : __assert_fail ("s < ThisTokEnd && \"didn't maximally munch?\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1122, __extension__ __PRETTY_FUNCTION__))
;
1123 radix = 2;
1124 DigitsBegin = s;
1125 s = SkipBinaryDigits(s);
1126 if (s == ThisTokEnd) {
1127 // Done.
1128 } else if (isHexDigit(*s) &&
1129 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1130 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1131 LangOpts),
1132 diag::err_invalid_digit)
1133 << StringRef(s, 1) << 2;
1134 hadError = true;
1135 }
1136 // Other suffixes will be diagnosed by the caller.
1137 return;
1138 }
1139
1140 // For now, the radix is set to 8. If we discover that we have a
1141 // floating point constant, the radix will change to 10. Octal floating
1142 // point constants are not permitted (only decimal and hexadecimal).
1143 radix = 8;
1144 DigitsBegin = s;
1145 s = SkipOctalDigits(s);
1146 if (s == ThisTokEnd)
1147 return; // Done, simple octal number like 01234
1148
1149 // If we have some other non-octal digit that *is* a decimal digit, see if
1150 // this is part of a floating point number like 094.123 or 09e1.
1151 if (isDigit(*s)) {
1152 const char *EndDecimal = SkipDigits(s);
1153 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
1154 s = EndDecimal;
1155 radix = 10;
1156 }
1157 }
1158
1159 ParseDecimalOrOctalCommon(TokLoc);
1160}
1161
1162static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
1163 switch (Radix) {
1164 case 2:
1165 return NumDigits <= 64;
1166 case 8:
1167 return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
1168 case 10:
1169 return NumDigits <= 19; // floor(log10(2^64))
1170 case 16:
1171 return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
1172 default:
1173 llvm_unreachable("impossible Radix")::llvm::llvm_unreachable_internal("impossible Radix", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1173)
;
1174 }
1175}
1176
1177/// GetIntegerValue - Convert this numeric literal value to an APInt that
1178/// matches Val's input width. If there is an overflow, set Val to the low bits
1179/// of the result and return true. Otherwise, return false.
1180bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
1181 // Fast path: Compute a conservative bound on the maximum number of
1182 // bits per digit in this radix. If we can't possibly overflow a
1183 // uint64 based on that bound then do the simple conversion to
1184 // integer. This avoids the expensive overflow checking below, and
1185 // handles the common cases that matter (small decimal integers and
1186 // hex/octal values which don't overflow).
1187 const unsigned NumDigits = SuffixBegin - DigitsBegin;
1188 if (alwaysFitsInto64Bits(radix, NumDigits)) {
1189 uint64_t N = 0;
1190 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
1191 if (!isDigitSeparator(*Ptr))
1192 N = N * radix + llvm::hexDigitValue(*Ptr);
1193
1194 // This will truncate the value to Val's input width. Simply check
1195 // for overflow by comparing.
1196 Val = N;
1197 return Val.getZExtValue() != N;
1198 }
1199
1200 Val = 0;
1201 const char *Ptr = DigitsBegin;
1202
1203 llvm::APInt RadixVal(Val.getBitWidth(), radix);
1204 llvm::APInt CharVal(Val.getBitWidth(), 0);
1205 llvm::APInt OldVal = Val;
1206
1207 bool OverflowOccurred = false;
1208 while (Ptr < SuffixBegin) {
1209 if (isDigitSeparator(*Ptr)) {
1210 ++Ptr;
1211 continue;
1212 }
1213
1214 unsigned C = llvm::hexDigitValue(*Ptr++);
1215
1216 // If this letter is out of bound for this radix, reject it.
1217 assert(C < radix && "NumericLiteralParser ctor should have rejected this")(static_cast <bool> (C < radix && "NumericLiteralParser ctor should have rejected this"
) ? void (0) : __assert_fail ("C < radix && \"NumericLiteralParser ctor should have rejected this\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1217, __extension__ __PRETTY_FUNCTION__))
;
1218
1219 CharVal = C;
1220
1221 // Add the digit to the value in the appropriate radix. If adding in digits
1222 // made the value smaller, then this overflowed.
1223 OldVal = Val;
1224
1225 // Multiply by radix, did overflow occur on the multiply?
1226 Val *= RadixVal;
1227 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
1228
1229 // Add value, did overflow occur on the value?
1230 // (a + b) ult b <=> overflow
1231 Val += CharVal;
1232 OverflowOccurred |= Val.ult(CharVal);
1233 }
1234 return OverflowOccurred;
1235}
1236
1237llvm::APFloat::opStatus
1238NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
1239 using llvm::APFloat;
1240
1241 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
1242
1243 llvm::SmallString<16> Buffer;
1244 StringRef Str(ThisTokBegin, n);
1245 if (Str.contains('\'')) {
1246 Buffer.reserve(n);
1247 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
1248 &isDigitSeparator);
1249 Str = Buffer;
1250 }
1251
1252 auto StatusOrErr =
1253 Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
1254 assert(StatusOrErr && "Invalid floating point representation")(static_cast <bool> (StatusOrErr && "Invalid floating point representation"
) ? void (0) : __assert_fail ("StatusOrErr && \"Invalid floating point representation\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1254, __extension__ __PRETTY_FUNCTION__))
;
1255 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr
1256 : APFloat::opInvalidOp;
1257}
1258
1259static inline bool IsExponentPart(char c) {
1260 return c == 'p' || c == 'P' || c == 'e' || c == 'E';
1261}
1262
1263bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
1264 assert(radix == 16 || radix == 10)(static_cast <bool> (radix == 16 || radix == 10) ? void
(0) : __assert_fail ("radix == 16 || radix == 10", "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1264, __extension__ __PRETTY_FUNCTION__))
;
1265
1266 // Find how many digits are needed to store the whole literal.
1267 unsigned NumDigits = SuffixBegin - DigitsBegin;
1268 if (saw_period) --NumDigits;
1269
1270 // Initial scan of the exponent if it exists
1271 bool ExpOverflowOccurred = false;
1272 bool NegativeExponent = false;
1273 const char *ExponentBegin;
1274 uint64_t Exponent = 0;
1275 int64_t BaseShift = 0;
1276 if (saw_exponent) {
1277 const char *Ptr = DigitsBegin;
1278
1279 while (!IsExponentPart(*Ptr)) ++Ptr;
1280 ExponentBegin = Ptr;
1281 ++Ptr;
1282 NegativeExponent = *Ptr == '-';
1283 if (NegativeExponent) ++Ptr;
1284
1285 unsigned NumExpDigits = SuffixBegin - Ptr;
1286 if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
1287 llvm::StringRef ExpStr(Ptr, NumExpDigits);
1288 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
1289 Exponent = ExpInt.getZExtValue();
1290 } else {
1291 ExpOverflowOccurred = true;
1292 }
1293
1294 if (NegativeExponent) BaseShift -= Exponent;
1295 else BaseShift += Exponent;
1296 }
1297
1298 // Number of bits needed for decimal literal is
1299 // ceil(NumDigits * log2(10)) Integral part
1300 // + Scale Fractional part
1301 // + ceil(Exponent * log2(10)) Exponent
1302 // --------------------------------------------------
1303 // ceil((NumDigits + Exponent) * log2(10)) + Scale
1304 //
1305 // But for simplicity in handling integers, we can round up log2(10) to 4,
1306 // making:
1307 // 4 * (NumDigits + Exponent) + Scale
1308 //
1309 // Number of digits needed for hexadecimal literal is
1310 // 4 * NumDigits Integral part
1311 // + Scale Fractional part
1312 // + Exponent Exponent
1313 // --------------------------------------------------
1314 // (4 * NumDigits) + Scale + Exponent
1315 uint64_t NumBitsNeeded;
1316 if (radix == 10)
1317 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
1318 else
1319 NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
1320
1321 if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
1322 ExpOverflowOccurred = true;
1323 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
1324
1325 bool FoundDecimal = false;
1326
1327 int64_t FractBaseShift = 0;
1328 const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
1329 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
1330 if (*Ptr == '.') {
1331 FoundDecimal = true;
1332 continue;
1333 }
1334
1335 // Normal reading of an integer
1336 unsigned C = llvm::hexDigitValue(*Ptr);
1337 assert(C < radix && "NumericLiteralParser ctor should have rejected this")(static_cast <bool> (C < radix && "NumericLiteralParser ctor should have rejected this"
) ? void (0) : __assert_fail ("C < radix && \"NumericLiteralParser ctor should have rejected this\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1337, __extension__ __PRETTY_FUNCTION__))
;
1338
1339 Val *= radix;
1340 Val += C;
1341
1342 if (FoundDecimal)
1343 // Keep track of how much we will need to adjust this value by from the
1344 // number of digits past the radix point.
1345 --FractBaseShift;
1346 }
1347
1348 // For a radix of 16, we will be multiplying by 2 instead of 16.
1349 if (radix == 16) FractBaseShift *= 4;
1350 BaseShift += FractBaseShift;
1351
1352 Val <<= Scale;
1353
1354 uint64_t Base = (radix == 16) ? 2 : 10;
1355 if (BaseShift > 0) {
1356 for (int64_t i = 0; i < BaseShift; ++i) {
1357 Val *= Base;
1358 }
1359 } else if (BaseShift < 0) {
1360 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i)
1361 Val = Val.udiv(Base);
1362 }
1363
1364 bool IntOverflowOccurred = false;
1365 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
1366 if (Val.getBitWidth() > StoreVal.getBitWidth()) {
1367 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
1368 StoreVal = Val.trunc(StoreVal.getBitWidth());
1369 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
1370 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
1371 StoreVal = Val.zext(StoreVal.getBitWidth());
1372 } else {
1373 StoreVal = Val;
1374 }
1375
1376 return IntOverflowOccurred || ExpOverflowOccurred;
1377}
1378
1379/// \verbatim
1380/// user-defined-character-literal: [C++11 lex.ext]
1381/// character-literal ud-suffix
1382/// ud-suffix:
1383/// identifier
1384/// character-literal: [C++11 lex.ccon]
1385/// ' c-char-sequence '
1386/// u' c-char-sequence '
1387/// U' c-char-sequence '
1388/// L' c-char-sequence '
1389/// u8' c-char-sequence ' [C++1z lex.ccon]
1390/// c-char-sequence:
1391/// c-char
1392/// c-char-sequence c-char
1393/// c-char:
1394/// any member of the source character set except the single-quote ',
1395/// backslash \, or new-line character
1396/// escape-sequence
1397/// universal-character-name
1398/// escape-sequence:
1399/// simple-escape-sequence
1400/// octal-escape-sequence
1401/// hexadecimal-escape-sequence
1402/// simple-escape-sequence:
1403/// one of \' \" \? \\ \a \b \f \n \r \t \v
1404/// octal-escape-sequence:
1405/// \ octal-digit
1406/// \ octal-digit octal-digit
1407/// \ octal-digit octal-digit octal-digit
1408/// hexadecimal-escape-sequence:
1409/// \x hexadecimal-digit
1410/// hexadecimal-escape-sequence hexadecimal-digit
1411/// universal-character-name: [C++11 lex.charset]
1412/// \u hex-quad
1413/// \U hex-quad hex-quad
1414/// hex-quad:
1415/// hex-digit hex-digit hex-digit hex-digit
1416/// \endverbatim
1417///
1418CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1419 SourceLocation Loc, Preprocessor &PP,
1420 tok::TokenKind kind) {
1421 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1422 HadError = false;
1423
1424 Kind = kind;
1425
1426 const char *TokBegin = begin;
1427
1428 // Skip over wide character determinant.
1429 if (Kind != tok::char_constant)
1430 ++begin;
1431 if (Kind == tok::utf8_char_constant)
1432 ++begin;
1433
1434 // Skip over the entry quote.
1435 assert(begin[0] == '\'' && "Invalid token lexed")(static_cast <bool> (begin[0] == '\'' && "Invalid token lexed"
) ? void (0) : __assert_fail ("begin[0] == '\\'' && \"Invalid token lexed\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1435, __extension__ __PRETTY_FUNCTION__))
;
1436 ++begin;
1437
1438 // Remove an optional ud-suffix.
1439 if (end[-1] != '\'') {
1440 const char *UDSuffixEnd = end;
1441 do {
1442 --end;
1443 } while (end[-1] != '\'');
1444 // FIXME: Don't bother with this if !tok.hasUCN().
1445 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1446 UDSuffixOffset = end - TokBegin;
1447 }
1448
1449 // Trim the ending quote.
1450 assert(end != begin && "Invalid token lexed")(static_cast <bool> (end != begin && "Invalid token lexed"
) ? void (0) : __assert_fail ("end != begin && \"Invalid token lexed\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1450, __extension__ __PRETTY_FUNCTION__))
;
1451 --end;
1452
1453 // FIXME: The "Value" is an uint64_t so we can handle char literals of
1454 // up to 64-bits.
1455 // FIXME: This extensively assumes that 'char' is 8-bits.
1456 assert(PP.getTargetInfo().getCharWidth() == 8 &&(static_cast <bool> (PP.getTargetInfo().getCharWidth() ==
8 && "Assumes char is 8 bits") ? void (0) : __assert_fail
("PP.getTargetInfo().getCharWidth() == 8 && \"Assumes char is 8 bits\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1457, __extension__ __PRETTY_FUNCTION__))
1457 "Assumes char is 8 bits")(static_cast <bool> (PP.getTargetInfo().getCharWidth() ==
8 && "Assumes char is 8 bits") ? void (0) : __assert_fail
("PP.getTargetInfo().getCharWidth() == 8 && \"Assumes char is 8 bits\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1457, __extension__ __PRETTY_FUNCTION__))
;
1458 assert(PP.getTargetInfo().getIntWidth() <= 64 &&(static_cast <bool> (PP.getTargetInfo().getIntWidth() <=
64 && (PP.getTargetInfo().getIntWidth() & 7) == 0
&& "Assumes sizeof(int) on target is <= 64 and a multiple of char"
) ? void (0) : __assert_fail ("PP.getTargetInfo().getIntWidth() <= 64 && (PP.getTargetInfo().getIntWidth() & 7) == 0 && \"Assumes sizeof(int) on target is <= 64 and a multiple of char\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1460, __extension__ __PRETTY_FUNCTION__))
1459 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&(static_cast <bool> (PP.getTargetInfo().getIntWidth() <=
64 && (PP.getTargetInfo().getIntWidth() & 7) == 0
&& "Assumes sizeof(int) on target is <= 64 and a multiple of char"
) ? void (0) : __assert_fail ("PP.getTargetInfo().getIntWidth() <= 64 && (PP.getTargetInfo().getIntWidth() & 7) == 0 && \"Assumes sizeof(int) on target is <= 64 and a multiple of char\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1460, __extension__ __PRETTY_FUNCTION__))
1460 "Assumes sizeof(int) on target is <= 64 and a multiple of char")(static_cast <bool> (PP.getTargetInfo().getIntWidth() <=
64 && (PP.getTargetInfo().getIntWidth() & 7) == 0
&& "Assumes sizeof(int) on target is <= 64 and a multiple of char"
) ? void (0) : __assert_fail ("PP.getTargetInfo().getIntWidth() <= 64 && (PP.getTargetInfo().getIntWidth() & 7) == 0 && \"Assumes sizeof(int) on target is <= 64 and a multiple of char\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1460, __extension__ __PRETTY_FUNCTION__))
;
1461 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&(static_cast <bool> (PP.getTargetInfo().getWCharWidth()
<= 64 && "Assumes sizeof(wchar) on target is <= 64"
) ? void (0) : __assert_fail ("PP.getTargetInfo().getWCharWidth() <= 64 && \"Assumes sizeof(wchar) on target is <= 64\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1462, __extension__ __PRETTY_FUNCTION__))
1462 "Assumes sizeof(wchar) on target is <= 64")(static_cast <bool> (PP.getTargetInfo().getWCharWidth()
<= 64 && "Assumes sizeof(wchar) on target is <= 64"
) ? void (0) : __assert_fail ("PP.getTargetInfo().getWCharWidth() <= 64 && \"Assumes sizeof(wchar) on target is <= 64\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1462, __extension__ __PRETTY_FUNCTION__))
;
1463
1464 SmallVector<uint32_t, 4> codepoint_buffer;
1465 codepoint_buffer.resize(end - begin);
1466 uint32_t *buffer_begin = &codepoint_buffer.front();
1467 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1468
1469 // Unicode escapes representing characters that cannot be correctly
1470 // represented in a single code unit are disallowed in character literals
1471 // by this implementation.
1472 uint32_t largest_character_for_kind;
1473 if (tok::wide_char_constant == Kind) {
1474 largest_character_for_kind =
1475 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1476 } else if (tok::utf8_char_constant == Kind) {
1477 largest_character_for_kind = 0x7F;
1478 } else if (tok::utf16_char_constant == Kind) {
1479 largest_character_for_kind = 0xFFFF;
1480 } else if (tok::utf32_char_constant == Kind) {
1481 largest_character_for_kind = 0x10FFFF;
1482 } else {
1483 largest_character_for_kind = 0x7Fu;
1484 }
1485
1486 while (begin != end) {
1487 // Is this a span of non-escape characters?
1488 if (begin[0] != '\\') {
1489 char const *start = begin;
1490 do {
1491 ++begin;
1492 } while (begin != end && *begin != '\\');
1493
1494 char const *tmp_in_start = start;
1495 uint32_t *tmp_out_start = buffer_begin;
1496 llvm::ConversionResult res =
1497 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
1498 reinterpret_cast<llvm::UTF8 const *>(begin),
1499 &buffer_begin, buffer_end, llvm::strictConversion);
1500 if (res != llvm::conversionOK) {
1501 // If we see bad encoding for unprefixed character literals, warn and
1502 // simply copy the byte values, for compatibility with gcc and
1503 // older versions of clang.
1504 bool NoErrorOnBadEncoding = isAscii();
1505 unsigned Msg = diag::err_bad_character_encoding;
1506 if (NoErrorOnBadEncoding)
1507 Msg = diag::warn_bad_character_encoding;
1508 PP.Diag(Loc, Msg);
1509 if (NoErrorOnBadEncoding) {
1510 start = tmp_in_start;
1511 buffer_begin = tmp_out_start;
1512 for (; start != begin; ++start, ++buffer_begin)
1513 *buffer_begin = static_cast<uint8_t>(*start);
1514 } else {
1515 HadError = true;
1516 }
1517 } else {
1518 for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1519 if (*tmp_out_start > largest_character_for_kind) {
1520 HadError = true;
1521 PP.Diag(Loc, diag::err_character_too_large);
1522 }
1523 }
1524 }
1525
1526 continue;
1527 }
1528 // Is this a Universal Character Name escape?
1529 if (begin[1] == 'u' || begin[1] == 'U') {
1530 unsigned short UcnLen = 0;
1531 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1532 FullSourceLoc(Loc, PP.getSourceManager()),
1533 &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1534 HadError = true;
1535 } else if (*buffer_begin > largest_character_for_kind) {
1536 HadError = true;
1537 PP.Diag(Loc, diag::err_character_too_large);
1538 }
1539
1540 ++buffer_begin;
1541 continue;
1542 }
1543 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1544 uint64_t result =
1545 ProcessCharEscape(TokBegin, begin, end, HadError,
1546 FullSourceLoc(Loc,PP.getSourceManager()),
1547 CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1548 *buffer_begin++ = result;
1549 }
1550
1551 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1552
1553 if (NumCharsSoFar > 1) {
1554 if (isAscii() && NumCharsSoFar == 4)
1555 PP.Diag(Loc, diag::warn_four_char_character_literal);
1556 else if (isAscii())
1557 PP.Diag(Loc, diag::warn_multichar_character_literal);
1558 else {
1559 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1);
1560 HadError = true;
1561 }
1562 IsMultiChar = true;
1563 } else {
1564 IsMultiChar = false;
1565 }
1566
1567 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1568
1569 // Narrow character literals act as though their value is concatenated
1570 // in this implementation, but warn on overflow.
1571 bool multi_char_too_long = false;
1572 if (isAscii() && isMultiChar()) {
1573 LitVal = 0;
1574 for (size_t i = 0; i < NumCharsSoFar; ++i) {
1575 // check for enough leading zeros to shift into
1576 multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1577 LitVal <<= 8;
1578 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1579 }
1580 } else if (NumCharsSoFar > 0) {
1581 // otherwise just take the last character
1582 LitVal = buffer_begin[-1];
1583 }
1584
1585 if (!HadError && multi_char_too_long) {
1586 PP.Diag(Loc, diag::warn_char_constant_too_large);
1587 }
1588
1589 // Transfer the value from APInt to uint64_t
1590 Value = LitVal.getZExtValue();
1591
1592 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1593 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1594 // character constants are not sign extended in the this implementation:
1595 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1596 if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
1597 PP.getLangOpts().CharIsSigned)
1598 Value = (signed char)Value;
1599}
1600
1601/// \verbatim
1602/// string-literal: [C++0x lex.string]
1603/// encoding-prefix " [s-char-sequence] "
1604/// encoding-prefix R raw-string
1605/// encoding-prefix:
1606/// u8
1607/// u
1608/// U
1609/// L
1610/// s-char-sequence:
1611/// s-char
1612/// s-char-sequence s-char
1613/// s-char:
1614/// any member of the source character set except the double-quote ",
1615/// backslash \, or new-line character
1616/// escape-sequence
1617/// universal-character-name
1618/// raw-string:
1619/// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1620/// r-char-sequence:
1621/// r-char
1622/// r-char-sequence r-char
1623/// r-char:
1624/// any member of the source character set, except a right parenthesis )
1625/// followed by the initial d-char-sequence (which may be empty)
1626/// followed by a double quote ".
1627/// d-char-sequence:
1628/// d-char
1629/// d-char-sequence d-char
1630/// d-char:
1631/// any member of the basic source character set except:
1632/// space, the left parenthesis (, the right parenthesis ),
1633/// the backslash \, and the control characters representing horizontal
1634/// tab, vertical tab, form feed, and newline.
1635/// escape-sequence: [C++0x lex.ccon]
1636/// simple-escape-sequence
1637/// octal-escape-sequence
1638/// hexadecimal-escape-sequence
1639/// simple-escape-sequence:
1640/// one of \' \" \? \\ \a \b \f \n \r \t \v
1641/// octal-escape-sequence:
1642/// \ octal-digit
1643/// \ octal-digit octal-digit
1644/// \ octal-digit octal-digit octal-digit
1645/// hexadecimal-escape-sequence:
1646/// \x hexadecimal-digit
1647/// hexadecimal-escape-sequence hexadecimal-digit
1648/// universal-character-name:
1649/// \u hex-quad
1650/// \U hex-quad hex-quad
1651/// hex-quad:
1652/// hex-digit hex-digit hex-digit hex-digit
1653/// \endverbatim
1654///
1655StringLiteralParser::
1656StringLiteralParser(ArrayRef<Token> StringToks,
1657 Preprocessor &PP)
1658 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1659 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()),
1660 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1661 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1662 init(StringToks);
1663}
1664
1665void StringLiteralParser::init(ArrayRef<Token> StringToks){
1666 // The literal token may have come from an invalid source location (e.g. due
1667 // to a PCH error), in which case the token length will be 0.
1668 if (StringToks.empty() || StringToks[0].getLength() < 2)
1669 return DiagnoseLexingError(SourceLocation());
1670
1671 // Scan all of the string portions, remember the max individual token length,
1672 // computing a bound on the concatenated string length, and see whether any
1673 // piece is a wide-string. If any of the string portions is a wide-string
1674 // literal, the result is a wide-string literal [C99 6.4.5p4].
1675 assert(!StringToks.empty() && "expected at least one token")(static_cast <bool> (!StringToks.empty() && "expected at least one token"
) ? void (0) : __assert_fail ("!StringToks.empty() && \"expected at least one token\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1675, __extension__ __PRETTY_FUNCTION__))
;
1676 MaxTokenLength = StringToks[0].getLength();
1677 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!")(static_cast <bool> (StringToks[0].getLength() >= 2 &&
"literal token is invalid!") ? void (0) : __assert_fail ("StringToks[0].getLength() >= 2 && \"literal token is invalid!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1677, __extension__ __PRETTY_FUNCTION__))
;
1678 SizeBound = StringToks[0].getLength()-2; // -2 for "".
1679 Kind = StringToks[0].getKind();
1680
1681 hadError = false;
1682
1683 // Implement Translation Phase #6: concatenation of string literals
1684 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1685 for (unsigned i = 1; i != StringToks.size(); ++i) {
1686 if (StringToks[i].getLength() < 2)
1687 return DiagnoseLexingError(StringToks[i].getLocation());
1688
1689 // The string could be shorter than this if it needs cleaning, but this is a
1690 // reasonable bound, which is all we need.
1691 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!")(static_cast <bool> (StringToks[i].getLength() >= 2 &&
"literal token is invalid!") ? void (0) : __assert_fail ("StringToks[i].getLength() >= 2 && \"literal token is invalid!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1691, __extension__ __PRETTY_FUNCTION__))
;
1692 SizeBound += StringToks[i].getLength()-2; // -2 for "".
1693
1694 // Remember maximum string piece length.
1695 if (StringToks[i].getLength() > MaxTokenLength)
1696 MaxTokenLength = StringToks[i].getLength();
1697
1698 // Remember if we see any wide or utf-8/16/32 strings.
1699 // Also check for illegal concatenations.
1700 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1701 if (isAscii()) {
1702 Kind = StringToks[i].getKind();
1703 } else {
1704 if (Diags)
1705 Diags->Report(StringToks[i].getLocation(),
1706 diag::err_unsupported_string_concat);
1707 hadError = true;
1708 }
1709 }
1710 }
1711
1712 // Include space for the null terminator.
1713 ++SizeBound;
1714
1715 // TODO: K&R warning: "traditional C rejects string constant concatenation"
1716
1717 // Get the width in bytes of char/wchar_t/char16_t/char32_t
1718 CharByteWidth = getCharWidth(Kind, Target);
1719 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple")(static_cast <bool> ((CharByteWidth & 7) == 0 &&
"Assumes character size is byte multiple") ? void (0) : __assert_fail
("(CharByteWidth & 7) == 0 && \"Assumes character size is byte multiple\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1719, __extension__ __PRETTY_FUNCTION__))
;
1720 CharByteWidth /= 8;
1721
1722 // The output buffer size needs to be large enough to hold wide characters.
1723 // This is a worst-case assumption which basically corresponds to L"" "long".
1724 SizeBound *= CharByteWidth;
1725
1726 // Size the temporary buffer to hold the result string data.
1727 ResultBuf.resize(SizeBound);
1728
1729 // Likewise, but for each string piece.
1730 SmallString<512> TokenBuf;
1731 TokenBuf.resize(MaxTokenLength);
1732
1733 // Loop over all the strings, getting their spelling, and expanding them to
1734 // wide strings as appropriate.
1735 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
1736
1737 Pascal = false;
1738
1739 SourceLocation UDSuffixTokLoc;
1740
1741 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
1742 const char *ThisTokBuf = &TokenBuf[0];
1743 // Get the spelling of the token, which eliminates trigraphs, etc. We know
1744 // that ThisTokBuf points to a buffer that is big enough for the whole token
1745 // and 'spelled' tokens can only shrink.
1746 bool StringInvalid = false;
1747 unsigned ThisTokLen =
1748 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1749 &StringInvalid);
1750 if (StringInvalid)
1751 return DiagnoseLexingError(StringToks[i].getLocation());
1752
1753 const char *ThisTokBegin = ThisTokBuf;
1754 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1755
1756 // Remove an optional ud-suffix.
1757 if (ThisTokEnd[-1] != '"') {
1758 const char *UDSuffixEnd = ThisTokEnd;
1759 do {
1760 --ThisTokEnd;
1761 } while (ThisTokEnd[-1] != '"');
1762
1763 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1764
1765 if (UDSuffixBuf.empty()) {
1766 if (StringToks[i].hasUCN())
1767 expandUCNs(UDSuffixBuf, UDSuffix);
1768 else
1769 UDSuffixBuf.assign(UDSuffix);
1770 UDSuffixToken = i;
1771 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1772 UDSuffixTokLoc = StringToks[i].getLocation();
1773 } else {
1774 SmallString<32> ExpandedUDSuffix;
1775 if (StringToks[i].hasUCN()) {
1776 expandUCNs(ExpandedUDSuffix, UDSuffix);
1777 UDSuffix = ExpandedUDSuffix;
1778 }
1779
1780 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1781 // result of a concatenation involving at least one user-defined-string-
1782 // literal, all the participating user-defined-string-literals shall
1783 // have the same ud-suffix.
1784 if (UDSuffixBuf != UDSuffix) {
1785 if (Diags) {
1786 SourceLocation TokLoc = StringToks[i].getLocation();
1787 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1788 << UDSuffixBuf << UDSuffix
1789 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1790 << SourceRange(TokLoc, TokLoc);
1791 }
1792 hadError = true;
1793 }
1794 }
1795 }
1796
1797 // Strip the end quote.
1798 --ThisTokEnd;
1799
1800 // TODO: Input character set mapping support.
1801
1802 // Skip marker for wide or unicode strings.
1803 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1804 ++ThisTokBuf;
1805 // Skip 8 of u8 marker for utf8 strings.
1806 if (ThisTokBuf[0] == '8')
1807 ++ThisTokBuf;
1808 }
1809
1810 // Check for raw string
1811 if (ThisTokBuf[0] == 'R') {
1812 if (ThisTokBuf[1] != '"') {
1813 // The file may have come from PCH and then changed after loading the
1814 // PCH; Fail gracefully.
1815 return DiagnoseLexingError(StringToks[i].getLocation());
1816 }
1817 ThisTokBuf += 2; // skip R"
1818
1819 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
1820 // characters.
1821 constexpr unsigned MaxRawStrDelimLen = 16;
1822
1823 const char *Prefix = ThisTokBuf;
1824 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen &&
1825 ThisTokBuf[0] != '(')
1826 ++ThisTokBuf;
1827 if (ThisTokBuf[0] != '(')
1828 return DiagnoseLexingError(StringToks[i].getLocation());
1829 ++ThisTokBuf; // skip '('
1830
1831 // Remove same number of characters from the end
1832 ThisTokEnd -= ThisTokBuf - Prefix;
1833 if (ThisTokEnd < ThisTokBuf)
1834 return DiagnoseLexingError(StringToks[i].getLocation());
1835
1836 // C++14 [lex.string]p4: A source-file new-line in a raw string literal
1837 // results in a new-line in the resulting execution string-literal.
1838 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
1839 while (!RemainingTokenSpan.empty()) {
1840 // Split the string literal on \r\n boundaries.
1841 size_t CRLFPos = RemainingTokenSpan.find("\r\n");
1842 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
1843 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
1844
1845 // Copy everything before the \r\n sequence into the string literal.
1846 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
1847 hadError = true;
1848
1849 // Point into the \n inside the \r\n sequence and operate on the
1850 // remaining portion of the literal.
1851 RemainingTokenSpan = AfterCRLF.substr(1);
1852 }
1853 } else {
1854 if (ThisTokBuf[0] != '"') {
1855 // The file may have come from PCH and then changed after loading the
1856 // PCH; Fail gracefully.
1857 return DiagnoseLexingError(StringToks[i].getLocation());
1858 }
1859 ++ThisTokBuf; // skip "
1860
1861 // Check if this is a pascal string
1862 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
1863 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
1864
1865 // If the \p sequence is found in the first token, we have a pascal string
1866 // Otherwise, if we already have a pascal string, ignore the first \p
1867 if (i == 0) {
1868 ++ThisTokBuf;
1869 Pascal = true;
1870 } else if (Pascal)
1871 ThisTokBuf += 2;
1872 }
1873
1874 while (ThisTokBuf != ThisTokEnd) {
1875 // Is this a span of non-escape characters?
1876 if (ThisTokBuf[0] != '\\') {
1877 const char *InStart = ThisTokBuf;
1878 do {
1879 ++ThisTokBuf;
1880 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
1881
1882 // Copy the character span over.
1883 if (CopyStringFragment(StringToks[i], ThisTokBegin,
1884 StringRef(InStart, ThisTokBuf - InStart)))
1885 hadError = true;
1886 continue;
1887 }
1888 // Is this a Universal Character Name escape?
1889 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
1890 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
1891 ResultPtr, hadError,
1892 FullSourceLoc(StringToks[i].getLocation(), SM),
1893 CharByteWidth, Diags, Features);
1894 continue;
1895 }
1896 // Otherwise, this is a non-UCN escape character. Process it.
1897 unsigned ResultChar =
1898 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
1899 FullSourceLoc(StringToks[i].getLocation(), SM),
1900 CharByteWidth*8, Diags, Features);
1901
1902 if (CharByteWidth == 4) {
1903 // FIXME: Make the type of the result buffer correct instead of
1904 // using reinterpret_cast.
1905 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
1906 *ResultWidePtr = ResultChar;
1907 ResultPtr += 4;
1908 } else if (CharByteWidth == 2) {
1909 // FIXME: Make the type of the result buffer correct instead of
1910 // using reinterpret_cast.
1911 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
1912 *ResultWidePtr = ResultChar & 0xFFFF;
1913 ResultPtr += 2;
1914 } else {
1915 assert(CharByteWidth == 1 && "Unexpected char width")(static_cast <bool> (CharByteWidth == 1 && "Unexpected char width"
) ? void (0) : __assert_fail ("CharByteWidth == 1 && \"Unexpected char width\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1915, __extension__ __PRETTY_FUNCTION__))
;
1916 *ResultPtr++ = ResultChar & 0xFF;
1917 }
1918 }
1919 }
1920 }
1921
1922 if (Pascal) {
1923 if (CharByteWidth == 4) {
1924 // FIXME: Make the type of the result buffer correct instead of
1925 // using reinterpret_cast.
1926 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
1927 ResultWidePtr[0] = GetNumStringChars() - 1;
1928 } else if (CharByteWidth == 2) {
1929 // FIXME: Make the type of the result buffer correct instead of
1930 // using reinterpret_cast.
1931 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
1932 ResultWidePtr[0] = GetNumStringChars() - 1;
1933 } else {
1934 assert(CharByteWidth == 1 && "Unexpected char width")(static_cast <bool> (CharByteWidth == 1 && "Unexpected char width"
) ? void (0) : __assert_fail ("CharByteWidth == 1 && \"Unexpected char width\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 1934, __extension__ __PRETTY_FUNCTION__))
;
1935 ResultBuf[0] = GetNumStringChars() - 1;
1936 }
1937
1938 // Verify that pascal strings aren't too large.
1939 if (GetStringLength() > 256) {
1940 if (Diags)
1941 Diags->Report(StringToks.front().getLocation(),
1942 diag::err_pascal_string_too_long)
1943 << SourceRange(StringToks.front().getLocation(),
1944 StringToks.back().getLocation());
1945 hadError = true;
1946 return;
1947 }
1948 } else if (Diags) {
1949 // Complain if this string literal has too many characters.
1950 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1951
1952 if (GetNumStringChars() > MaxChars)
1953 Diags->Report(StringToks.front().getLocation(),
1954 diag::ext_string_too_long)
1955 << GetNumStringChars() << MaxChars
1956 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1957 << SourceRange(StringToks.front().getLocation(),
1958 StringToks.back().getLocation());
1959 }
1960}
1961
1962static const char *resyncUTF8(const char *Err, const char *End) {
1963 if (Err == End)
1964 return End;
1965 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
1966 while (++Err != End && (*Err & 0xC0) == 0x80)
1967 ;
1968 return Err;
1969}
1970
1971/// This function copies from Fragment, which is a sequence of bytes
1972/// within Tok's contents (which begin at TokBegin) into ResultPtr.
1973/// Performs widening for multi-byte characters.
1974bool StringLiteralParser::CopyStringFragment(const Token &Tok,
1975 const char *TokBegin,
1976 StringRef Fragment) {
1977 const llvm::UTF8 *ErrorPtrTmp;
1978 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
1979 return false;
1980
1981 // If we see bad encoding for unprefixed string literals, warn and
1982 // simply copy the byte values, for compatibility with gcc and older
1983 // versions of clang.
1984 bool NoErrorOnBadEncoding = isAscii();
1985 if (NoErrorOnBadEncoding) {
1986 memcpy(ResultPtr, Fragment.data(), Fragment.size());
1987 ResultPtr += Fragment.size();
1988 }
1989
1990 if (Diags) {
1991 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
1992
1993 FullSourceLoc SourceLoc(Tok.getLocation(), SM);
1994 const DiagnosticBuilder &Builder =
1995 Diag(Diags, Features, SourceLoc, TokBegin,
1996 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
1997 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
1998 : diag::err_bad_string_encoding);
1999
2000 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2001 StringRef NextFragment(NextStart, Fragment.end()-NextStart);
2002
2003 // Decode into a dummy buffer.
2004 SmallString<512> Dummy;
2005 Dummy.reserve(Fragment.size() * CharByteWidth);
2006 char *Ptr = Dummy.data();
2007
2008 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
2009 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2010 NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2011 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
2012 ErrorPtr, NextStart);
2013 NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
2014 }
2015 }
2016 return !NoErrorOnBadEncoding;
2017}
2018
2019void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
2020 hadError = true;
2021 if (Diags)
2022 Diags->Report(Loc, diag::err_lexing_string);
2023}
2024
2025/// getOffsetOfStringByte - This function returns the offset of the
2026/// specified byte of the string data represented by Token. This handles
2027/// advancing over escape sequences in the string.
2028unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
2029 unsigned ByteNo) const {
2030 // Get the spelling of the token.
2031 SmallString<32> SpellingBuffer;
2032 SpellingBuffer.resize(Tok.getLength());
2033
2034 bool StringInvalid = false;
2035 const char *SpellingPtr = &SpellingBuffer[0];
2036 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
2037 &StringInvalid);
2038 if (StringInvalid)
2039 return 0;
2040
2041 const char *SpellingStart = SpellingPtr;
2042 const char *SpellingEnd = SpellingPtr+TokLen;
2043
2044 // Handle UTF-8 strings just like narrow strings.
2045 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
2046 SpellingPtr += 2;
2047
2048 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&(static_cast <bool> (SpellingPtr[0] != 'L' && SpellingPtr
[0] != 'u' && SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"
) ? void (0) : __assert_fail ("SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && SpellingPtr[0] != 'U' && \"Doesn't handle wide or utf strings yet\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 2049, __extension__ __PRETTY_FUNCTION__))
2049 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet")(static_cast <bool> (SpellingPtr[0] != 'L' && SpellingPtr
[0] != 'u' && SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"
) ? void (0) : __assert_fail ("SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && SpellingPtr[0] != 'U' && \"Doesn't handle wide or utf strings yet\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 2049, __extension__ __PRETTY_FUNCTION__))
;
2050
2051 // For raw string literals, this is easy.
2052 if (SpellingPtr[0] == 'R') {
2053 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!")(static_cast <bool> (SpellingPtr[1] == '"' && "Should be a raw string literal!"
) ? void (0) : __assert_fail ("SpellingPtr[1] == '\"' && \"Should be a raw string literal!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 2053, __extension__ __PRETTY_FUNCTION__))
;
2054 // Skip 'R"'.
2055 SpellingPtr += 2;
2056 while (*SpellingPtr != '(') {
2057 ++SpellingPtr;
2058 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal")(static_cast <bool> (SpellingPtr < SpellingEnd &&
"Missing ( for raw string literal") ? void (0) : __assert_fail
("SpellingPtr < SpellingEnd && \"Missing ( for raw string literal\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 2058, __extension__ __PRETTY_FUNCTION__))
;
2059 }
2060 // Skip '('.
2061 ++SpellingPtr;
2062 return SpellingPtr - SpellingStart + ByteNo;
2063 }
2064
2065 // Skip over the leading quote
2066 assert(SpellingPtr[0] == '"' && "Should be a string literal!")(static_cast <bool> (SpellingPtr[0] == '"' && "Should be a string literal!"
) ? void (0) : __assert_fail ("SpellingPtr[0] == '\"' && \"Should be a string literal!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 2066, __extension__ __PRETTY_FUNCTION__))
;
2067 ++SpellingPtr;
2068
2069 // Skip over bytes until we find the offset we're looking for.
2070 while (ByteNo) {
2071 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!")(static_cast <bool> (SpellingPtr < SpellingEnd &&
"Didn't find byte offset!") ? void (0) : __assert_fail ("SpellingPtr < SpellingEnd && \"Didn't find byte offset!\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 2071, __extension__ __PRETTY_FUNCTION__))
;
2072
2073 // Step over non-escapes simply.
2074 if (*SpellingPtr != '\\') {
2075 ++SpellingPtr;
2076 --ByteNo;
2077 continue;
2078 }
2079
2080 // Otherwise, this is an escape character. Advance over it.
2081 bool HadError = false;
2082 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
2083 const char *EscapePtr = SpellingPtr;
2084 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
2085 1, Features, HadError);
2086 if (Len > ByteNo) {
2087 // ByteNo is somewhere within the escape sequence.
2088 SpellingPtr = EscapePtr;
2089 break;
2090 }
2091 ByteNo -= Len;
2092 } else {
2093 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
2094 FullSourceLoc(Tok.getLocation(), SM),
2095 CharByteWidth*8, Diags, Features);
2096 --ByteNo;
2097 }
2098 assert(!HadError && "This method isn't valid on erroneous strings")(static_cast <bool> (!HadError && "This method isn't valid on erroneous strings"
) ? void (0) : __assert_fail ("!HadError && \"This method isn't valid on erroneous strings\""
, "/build/llvm-toolchain-snapshot-14~++20211110111138+cffbfd01e37b/clang/lib/Lex/LiteralSupport.cpp"
, 2098, __extension__ __PRETTY_FUNCTION__))
;
2099 }
2100
2101 return SpellingPtr-SpellingStart;
2102}
2103
2104/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2105/// suffixes as ud-suffixes, because the diagnostic experience is better if we
2106/// treat it as an invalid suffix.
2107bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
2108 StringRef Suffix) {
2109 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
2110 Suffix == "sv";
2111}