Bug Summary

File:build/source/clang/lib/Lex/LiteralSupport.cpp
Warning:line 1031, column 11
Value stored to 'HasSize' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name LiteralSupport.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-16/lib/clang/16 -I tools/clang/lib/Lex -I /build/source/clang/lib/Lex -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D CLANG_REPOSITORY_STRING="++20230112100753+3c5b1f2d94d0-1~exp1~20230112220902.1029" -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1673561342 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-01-13-042150-16221-1 -x c++ /build/source/clang/lib/Lex/LiteralSupport.cpp
1//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the NumericLiteralParser, CharLiteralParser, and
10// StringLiteralParser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Lex/LiteralSupport.h"
15#include "clang/Basic/CharInfo.h"
16#include "clang/Basic/LangOptions.h"
17#include "clang/Basic/SourceLocation.h"
18#include "clang/Basic/TargetInfo.h"
19#include "clang/Lex/LexDiagnostic.h"
20#include "clang/Lex/Lexer.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Lex/Token.h"
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/ADT/StringSwitch.h"
27#include "llvm/Support/ConvertUTF.h"
28#include "llvm/Support/Error.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/Unicode.h"
31#include <algorithm>
32#include <cassert>
33#include <cstddef>
34#include <cstdint>
35#include <cstring>
36#include <string>
37
38using namespace clang;
39
40static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
41 switch (kind) {
42 default: llvm_unreachable("Unknown token type!")::llvm::llvm_unreachable_internal("Unknown token type!", "clang/lib/Lex/LiteralSupport.cpp"
, 42)
;
43 case tok::char_constant:
44 case tok::string_literal:
45 case tok::utf8_char_constant:
46 case tok::utf8_string_literal:
47 return Target.getCharWidth();
48 case tok::wide_char_constant:
49 case tok::wide_string_literal:
50 return Target.getWCharWidth();
51 case tok::utf16_char_constant:
52 case tok::utf16_string_literal:
53 return Target.getChar16Width();
54 case tok::utf32_char_constant:
55 case tok::utf32_string_literal:
56 return Target.getChar32Width();
57 }
58}
59
60static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
61 FullSourceLoc TokLoc,
62 const char *TokBegin,
63 const char *TokRangeBegin,
64 const char *TokRangeEnd) {
65 SourceLocation Begin =
66 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
67 TokLoc.getManager(), Features);
68 SourceLocation End =
69 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
70 TokLoc.getManager(), Features);
71 return CharSourceRange::getCharRange(Begin, End);
72}
73
74/// Produce a diagnostic highlighting some portion of a literal.
75///
76/// Emits the diagnostic \p DiagID, highlighting the range of characters from
77/// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
78/// a substring of a spelling buffer for the token beginning at \p TokBegin.
79static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
80 const LangOptions &Features, FullSourceLoc TokLoc,
81 const char *TokBegin, const char *TokRangeBegin,
82 const char *TokRangeEnd, unsigned DiagID) {
83 SourceLocation Begin =
84 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
85 TokLoc.getManager(), Features);
86 return Diags->Report(Begin, DiagID) <<
87 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
88}
89
90/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
91/// either a character or a string literal.
92static unsigned ProcessCharEscape(const char *ThisTokBegin,
93 const char *&ThisTokBuf,
94 const char *ThisTokEnd, bool &HadError,
95 FullSourceLoc Loc, unsigned CharWidth,
96 DiagnosticsEngine *Diags,
97 const LangOptions &Features) {
98 const char *EscapeBegin = ThisTokBuf;
99 bool Delimited = false;
100 bool EndDelimiterFound = false;
101
102 // Skip the '\' char.
103 ++ThisTokBuf;
104
105 // We know that this character can't be off the end of the buffer, because
106 // that would have been \", which would not have been the end of string.
107 unsigned ResultChar = *ThisTokBuf++;
108 switch (ResultChar) {
109 // These map to themselves.
110 case '\\': case '\'': case '"': case '?': break;
111
112 // These have fixed mappings.
113 case 'a':
114 // TODO: K&R: the meaning of '\\a' is different in traditional C
115 ResultChar = 7;
116 break;
117 case 'b':
118 ResultChar = 8;
119 break;
120 case 'e':
121 if (Diags)
122 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
123 diag::ext_nonstandard_escape) << "e";
124 ResultChar = 27;
125 break;
126 case 'E':
127 if (Diags)
128 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
129 diag::ext_nonstandard_escape) << "E";
130 ResultChar = 27;
131 break;
132 case 'f':
133 ResultChar = 12;
134 break;
135 case 'n':
136 ResultChar = 10;
137 break;
138 case 'r':
139 ResultChar = 13;
140 break;
141 case 't':
142 ResultChar = 9;
143 break;
144 case 'v':
145 ResultChar = 11;
146 break;
147 case 'x': { // Hex escape.
148 ResultChar = 0;
149 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
150 Delimited = true;
151 ThisTokBuf++;
152 if (*ThisTokBuf == '}') {
153 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
154 diag::err_delimited_escape_empty);
155 return ResultChar;
156 }
157 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
158 if (Diags)
159 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
160 diag::err_hex_escape_no_digits) << "x";
161 return ResultChar;
162 }
163
164 // Hex escapes are a maximal series of hex digits.
165 bool Overflow = false;
166 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
167 if (Delimited && *ThisTokBuf == '}') {
168 ThisTokBuf++;
169 EndDelimiterFound = true;
170 break;
171 }
172 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
173 if (CharVal == -1) {
174 // Non delimited hex escape sequences stop at the first non-hex digit.
175 if (!Delimited)
176 break;
177 HadError = true;
178 if (Diags)
179 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
180 diag::err_delimited_escape_invalid)
181 << StringRef(ThisTokBuf, 1);
182 continue;
183 }
184 // About to shift out a digit?
185 if (ResultChar & 0xF0000000)
186 Overflow = true;
187 ResultChar <<= 4;
188 ResultChar |= CharVal;
189 }
190 // See if any bits will be truncated when evaluated as a character.
191 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
192 Overflow = true;
193 ResultChar &= ~0U >> (32-CharWidth);
194 }
195
196 // Check for overflow.
197 if (!HadError && Overflow) { // Too many digits to fit in
198 HadError = true;
199 if (Diags)
200 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
201 diag::err_escape_too_large)
202 << 0;
203 }
204 break;
205 }
206 case '0': case '1': case '2': case '3':
207 case '4': case '5': case '6': case '7': {
208 // Octal escapes.
209 --ThisTokBuf;
210 ResultChar = 0;
211
212 // Octal escapes are a series of octal digits with maximum length 3.
213 // "\0123" is a two digit sequence equal to "\012" "3".
214 unsigned NumDigits = 0;
215 do {
216 ResultChar <<= 3;
217 ResultChar |= *ThisTokBuf++ - '0';
218 ++NumDigits;
219 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
220 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
221
222 // Check for overflow. Reject '\777', but not L'\777'.
223 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
224 if (Diags)
225 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
226 diag::err_escape_too_large) << 1;
227 ResultChar &= ~0U >> (32-CharWidth);
228 }
229 break;
230 }
231 case 'o': {
232 bool Overflow = false;
233 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
234 HadError = true;
235 if (Diags)
236 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
237 diag::err_delimited_escape_missing_brace)
238 << "o";
239
240 break;
241 }
242 ResultChar = 0;
243 Delimited = true;
244 ++ThisTokBuf;
245 if (*ThisTokBuf == '}') {
246 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
247 diag::err_delimited_escape_empty);
248 return ResultChar;
249 }
250
251 while (ThisTokBuf != ThisTokEnd) {
252 if (*ThisTokBuf == '}') {
253 EndDelimiterFound = true;
254 ThisTokBuf++;
255 break;
256 }
257 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') {
258 HadError = true;
259 if (Diags)
260 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
261 diag::err_delimited_escape_invalid)
262 << StringRef(ThisTokBuf, 1);
263 ThisTokBuf++;
264 continue;
265 }
266 if (ResultChar & 0x020000000)
267 Overflow = true;
268
269 ResultChar <<= 3;
270 ResultChar |= *ThisTokBuf++ - '0';
271 }
272 // Check for overflow. Reject '\777', but not L'\777'.
273 if (!HadError &&
274 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) {
275 HadError = true;
276 if (Diags)
277 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
278 diag::err_escape_too_large)
279 << 1;
280 ResultChar &= ~0U >> (32 - CharWidth);
281 }
282 break;
283 }
284 // Otherwise, these are not valid escapes.
285 case '(': case '{': case '[': case '%':
286 // GCC accepts these as extensions. We warn about them as such though.
287 if (Diags)
288 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
289 diag::ext_nonstandard_escape)
290 << std::string(1, ResultChar);
291 break;
292 default:
293 if (!Diags)
294 break;
295
296 if (isPrintable(ResultChar))
297 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
298 diag::ext_unknown_escape)
299 << std::string(1, ResultChar);
300 else
301 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
302 diag::ext_unknown_escape)
303 << "x" + llvm::utohexstr(ResultChar);
304 break;
305 }
306
307 if (Delimited && Diags) {
308 if (!EndDelimiterFound)
309 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
310 diag::err_expected)
311 << tok::r_brace;
312 else if (!HadError) {
313 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
314 Features.CPlusPlus2b ? diag::warn_cxx2b_delimited_escape_sequence
315 : diag::ext_delimited_escape_sequence)
316 << /*delimited*/ 0 << (Features.CPlusPlus ? 1 : 0);
317 }
318 }
319
320 return ResultChar;
321}
322
323static void appendCodePoint(unsigned Codepoint,
324 llvm::SmallVectorImpl<char> &Str) {
325 char ResultBuf[4];
326 char *ResultPtr = ResultBuf;
327 if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr))
328 Str.append(ResultBuf, ResultPtr);
329}
330
331void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
332 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
333 if (*I != '\\') {
334 Buf.push_back(*I);
335 continue;
336 }
337
338 ++I;
339 char Kind = *I;
340 ++I;
341
342 assert(Kind == 'u' || Kind == 'U' || Kind == 'N')(static_cast <bool> (Kind == 'u' || Kind == 'U' || Kind
== 'N') ? void (0) : __assert_fail ("Kind == 'u' || Kind == 'U' || Kind == 'N'"
, "clang/lib/Lex/LiteralSupport.cpp", 342, __extension__ __PRETTY_FUNCTION__
))
;
343 uint32_t CodePoint = 0;
344
345 if (Kind == 'u' && *I == '{') {
346 for (++I; *I != '}'; ++I) {
347 unsigned Value = llvm::hexDigitValue(*I);
348 assert(Value != -1U)(static_cast <bool> (Value != -1U) ? void (0) : __assert_fail
("Value != -1U", "clang/lib/Lex/LiteralSupport.cpp", 348, __extension__
__PRETTY_FUNCTION__))
;
349 CodePoint <<= 4;
350 CodePoint += Value;
351 }
352 appendCodePoint(CodePoint, Buf);
353 continue;
354 }
355
356 if (Kind == 'N') {
357 assert(*I == '{')(static_cast <bool> (*I == '{') ? void (0) : __assert_fail
("*I == '{'", "clang/lib/Lex/LiteralSupport.cpp", 357, __extension__
__PRETTY_FUNCTION__))
;
358 ++I;
359 auto Delim = std::find(I, Input.end(), '}');
360 assert(Delim != Input.end())(static_cast <bool> (Delim != Input.end()) ? void (0) :
__assert_fail ("Delim != Input.end()", "clang/lib/Lex/LiteralSupport.cpp"
, 360, __extension__ __PRETTY_FUNCTION__))
;
361 std::optional<llvm::sys::unicode::LooseMatchingResult> Res =
362 llvm::sys::unicode::nameToCodepointLooseMatching(
363 StringRef(I, std::distance(I, Delim)));
364 assert(Res)(static_cast <bool> (Res) ? void (0) : __assert_fail ("Res"
, "clang/lib/Lex/LiteralSupport.cpp", 364, __extension__ __PRETTY_FUNCTION__
))
;
365 CodePoint = Res->CodePoint;
366 assert(CodePoint != 0xFFFFFFFF)(static_cast <bool> (CodePoint != 0xFFFFFFFF) ? void (0
) : __assert_fail ("CodePoint != 0xFFFFFFFF", "clang/lib/Lex/LiteralSupport.cpp"
, 366, __extension__ __PRETTY_FUNCTION__))
;
367 appendCodePoint(CodePoint, Buf);
368 I = Delim;
369 continue;
370 }
371
372 unsigned NumHexDigits;
373 if (Kind == 'u')
374 NumHexDigits = 4;
375 else
376 NumHexDigits = 8;
377
378 assert(I + NumHexDigits <= E)(static_cast <bool> (I + NumHexDigits <= E) ? void (
0) : __assert_fail ("I + NumHexDigits <= E", "clang/lib/Lex/LiteralSupport.cpp"
, 378, __extension__ __PRETTY_FUNCTION__))
;
379
380 for (; NumHexDigits != 0; ++I, --NumHexDigits) {
381 unsigned Value = llvm::hexDigitValue(*I);
382 assert(Value != -1U)(static_cast <bool> (Value != -1U) ? void (0) : __assert_fail
("Value != -1U", "clang/lib/Lex/LiteralSupport.cpp", 382, __extension__
__PRETTY_FUNCTION__))
;
383
384 CodePoint <<= 4;
385 CodePoint += Value;
386 }
387
388 appendCodePoint(CodePoint, Buf);
389 --I;
390 }
391}
392
393static bool ProcessNumericUCNEscape(const char *ThisTokBegin,
394 const char *&ThisTokBuf,
395 const char *ThisTokEnd, uint32_t &UcnVal,
396 unsigned short &UcnLen, bool &Delimited,
397 FullSourceLoc Loc, DiagnosticsEngine *Diags,
398 const LangOptions &Features,
399 bool in_char_string_literal = false) {
400 const char *UcnBegin = ThisTokBuf;
401 bool HasError = false;
402 bool EndDelimiterFound = false;
403
404 // Skip the '\u' char's.
405 ThisTokBuf += 2;
406 Delimited = false;
407 if (UcnBegin[1] == 'u' && in_char_string_literal &&
408 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
409 Delimited = true;
410 ThisTokBuf++;
411 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
412 if (Diags)
413 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
414 diag::err_hex_escape_no_digits)
415 << StringRef(&ThisTokBuf[-1], 1);
416 return false;
417 }
418 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
419
420 bool Overflow = false;
421 unsigned short Count = 0;
422 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen);
423 ++ThisTokBuf) {
424 if (Delimited && *ThisTokBuf == '}') {
425 ++ThisTokBuf;
426 EndDelimiterFound = true;
427 break;
428 }
429 int CharVal = llvm::hexDigitValue(*ThisTokBuf);
430 if (CharVal == -1) {
431 HasError = true;
432 if (!Delimited)
433 break;
434 if (Diags) {
435 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
436 diag::err_delimited_escape_invalid)
437 << StringRef(ThisTokBuf, 1);
438 }
439 Count++;
440 continue;
441 }
442 if (UcnVal & 0xF0000000) {
443 Overflow = true;
444 continue;
445 }
446 UcnVal <<= 4;
447 UcnVal |= CharVal;
448 Count++;
449 }
450
451 if (Overflow) {
452 if (Diags)
453 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
454 diag::err_escape_too_large)
455 << 0;
456 return false;
457 }
458
459 if (Delimited && !EndDelimiterFound) {
460 if (Diags) {
461 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
462 diag::err_expected)
463 << tok::r_brace;
464 }
465 return false;
466 }
467
468 // If we didn't consume the proper number of digits, there is a problem.
469 if (Count == 0 || (!Delimited && Count != UcnLen)) {
470 if (Diags)
471 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
472 Delimited ? diag::err_delimited_escape_empty
473 : diag::err_ucn_escape_incomplete);
474 return false;
475 }
476 return !HasError;
477}
478
479static void DiagnoseInvalidUnicodeCharacterName(
480 DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc,
481 const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd,
482 llvm::StringRef Name) {
483
484 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
485 diag::err_invalid_ucn_name)
486 << Name;
487
488 namespace u = llvm::sys::unicode;
489
490 std::optional<u::LooseMatchingResult> Res =
491 u::nameToCodepointLooseMatching(Name);
492 if (Res) {
493 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
494 diag::note_invalid_ucn_name_loose_matching)
495 << FixItHint::CreateReplacement(
496 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
497 TokRangeEnd),
498 Res->Name);
499 return;
500 }
501
502 unsigned Distance = 0;
503 SmallVector<u::MatchForCodepointName> Matches =
504 u::nearestMatchesForCodepointName(Name, 5);
505 assert(!Matches.empty() && "No unicode characters found")(static_cast <bool> (!Matches.empty() && "No unicode characters found"
) ? void (0) : __assert_fail ("!Matches.empty() && \"No unicode characters found\""
, "clang/lib/Lex/LiteralSupport.cpp", 505, __extension__ __PRETTY_FUNCTION__
))
;
506
507 for (const auto &Match : Matches) {
508 if (Distance == 0)
509 Distance = Match.Distance;
510 if (std::max(Distance, Match.Distance) -
511 std::min(Distance, Match.Distance) >
512 3)
513 break;
514 Distance = Match.Distance;
515
516 std::string Str;
517 llvm::UTF32 V = Match.Value;
518 bool Converted =
519 llvm::convertUTF32ToUTF8String(llvm::ArrayRef<llvm::UTF32>(&V, 1), Str);
520 (void)Converted;
521 assert(Converted && "Found a match wich is not a unicode character")(static_cast <bool> (Converted && "Found a match wich is not a unicode character"
) ? void (0) : __assert_fail ("Converted && \"Found a match wich is not a unicode character\""
, "clang/lib/Lex/LiteralSupport.cpp", 521, __extension__ __PRETTY_FUNCTION__
))
;
522
523 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
524 diag::note_invalid_ucn_name_candidate)
525 << Match.Name << llvm::utohexstr(Match.Value)
526 << Str // FIXME: Fix the rendering of non printable characters
527 << FixItHint::CreateReplacement(
528 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
529 TokRangeEnd),
530 Match.Name);
531 }
532}
533
534static bool ProcessNamedUCNEscape(const char *ThisTokBegin,
535 const char *&ThisTokBuf,
536 const char *ThisTokEnd, uint32_t &UcnVal,
537 unsigned short &UcnLen, FullSourceLoc Loc,
538 DiagnosticsEngine *Diags,
539 const LangOptions &Features) {
540 const char *UcnBegin = ThisTokBuf;
541 assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N')(static_cast <bool> (UcnBegin[0] == '\\' && UcnBegin
[1] == 'N') ? void (0) : __assert_fail ("UcnBegin[0] == '\\\\' && UcnBegin[1] == 'N'"
, "clang/lib/Lex/LiteralSupport.cpp", 541, __extension__ __PRETTY_FUNCTION__
))
;
542 ThisTokBuf += 2;
543 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
544 if (Diags) {
545 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
546 diag::err_delimited_escape_missing_brace)
547 << StringRef(&ThisTokBuf[-1], 1);
548 }
549 return false;
550 }
551 ThisTokBuf++;
552 const char *ClosingBrace = std::find_if(ThisTokBuf, ThisTokEnd, [](char C) {
553 return C == '}' || isVerticalWhitespace(C);
554 });
555 bool Incomplete = ClosingBrace == ThisTokEnd;
556 bool Empty = ClosingBrace == ThisTokBuf;
557 if (Incomplete || Empty) {
558 if (Diags) {
559 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
560 Incomplete ? diag::err_ucn_escape_incomplete
561 : diag::err_delimited_escape_empty)
562 << StringRef(&UcnBegin[1], 1);
563 }
564 ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1;
565 return false;
566 }
567 StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf);
568 ThisTokBuf = ClosingBrace + 1;
569 std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name);
570 if (!Res) {
571 if (Diags)
572 DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, ThisTokBegin,
573 &UcnBegin[3], ClosingBrace, Name);
574 return false;
575 }
576 UcnVal = *Res;
577 UcnLen = UcnVal > 0xFFFF ? 8 : 4;
578 return true;
579}
580
581/// ProcessUCNEscape - Read the Universal Character Name, check constraints and
582/// return the UTF32.
583static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
584 const char *ThisTokEnd, uint32_t &UcnVal,
585 unsigned short &UcnLen, FullSourceLoc Loc,
586 DiagnosticsEngine *Diags,
587 const LangOptions &Features,
588 bool in_char_string_literal = false) {
589
590 bool HasError;
591 const char *UcnBegin = ThisTokBuf;
592 bool IsDelimitedEscapeSequence = false;
593 bool IsNamedEscapeSequence = false;
594 if (ThisTokBuf[1] == 'N') {
595 IsNamedEscapeSequence = true;
596 HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
597 UcnVal, UcnLen, Loc, Diags, Features);
598 } else {
599 HasError =
600 !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
601 UcnLen, IsDelimitedEscapeSequence, Loc, Diags,
602 Features, in_char_string_literal);
603 }
604 if (HasError)
605 return false;
606
607 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
608 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
609 UcnVal > 0x10FFFF) { // maximum legal UTF32 value
610 if (Diags)
611 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
612 diag::err_ucn_escape_invalid);
613 return false;
614 }
615
616 // C++11 allows UCNs that refer to control characters and basic source
617 // characters inside character and string literals
618 if (UcnVal < 0xa0 &&
619 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, `
620 bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
621 if (Diags) {
622 char BasicSCSChar = UcnVal;
623 if (UcnVal >= 0x20 && UcnVal < 0x7f)
624 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
625 IsError ? diag::err_ucn_escape_basic_scs :
626 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
627 << StringRef(&BasicSCSChar, 1);
628 else
629 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
630 IsError ? diag::err_ucn_control_character :
631 diag::warn_cxx98_compat_literal_ucn_control_character);
632 }
633 if (IsError)
634 return false;
635 }
636
637 if (!Features.CPlusPlus && !Features.C99 && Diags)
638 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
639 diag::warn_ucn_not_valid_in_c89_literal);
640
641 if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags)
642 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
643 Features.CPlusPlus2b ? diag::warn_cxx2b_delimited_escape_sequence
644 : diag::ext_delimited_escape_sequence)
645 << (IsNamedEscapeSequence ? 1 : 0) << (Features.CPlusPlus ? 1 : 0);
646
647 return true;
648}
649
650/// MeasureUCNEscape - Determine the number of bytes within the resulting string
651/// which this UCN will occupy.
652static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
653 const char *ThisTokEnd, unsigned CharByteWidth,
654 const LangOptions &Features, bool &HadError) {
655 // UTF-32: 4 bytes per escape.
656 if (CharByteWidth == 4)
657 return 4;
658
659 uint32_t UcnVal = 0;
660 unsigned short UcnLen = 0;
661 FullSourceLoc Loc;
662
663 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
664 UcnLen, Loc, nullptr, Features, true)) {
665 HadError = true;
666 return 0;
667 }
668
669 // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
670 if (CharByteWidth == 2)
671 return UcnVal <= 0xFFFF ? 2 : 4;
672
673 // UTF-8.
674 if (UcnVal < 0x80)
675 return 1;
676 if (UcnVal < 0x800)
677 return 2;
678 if (UcnVal < 0x10000)
679 return 3;
680 return 4;
681}
682
683/// EncodeUCNEscape - Read the Universal Character Name, check constraints and
684/// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
685/// StringLiteralParser. When we decide to implement UCN's for identifiers,
686/// we will likely rework our support for UCN's.
687static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
688 const char *ThisTokEnd,
689 char *&ResultBuf, bool &HadError,
690 FullSourceLoc Loc, unsigned CharByteWidth,
691 DiagnosticsEngine *Diags,
692 const LangOptions &Features) {
693 typedef uint32_t UTF32;
694 UTF32 UcnVal = 0;
695 unsigned short UcnLen = 0;
696 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
697 Loc, Diags, Features, true)) {
698 HadError = true;
699 return;
700 }
701
702 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&(static_cast <bool> ((CharByteWidth == 1 || CharByteWidth
== 2 || CharByteWidth == 4) && "only character widths of 1, 2, or 4 bytes supported"
) ? void (0) : __assert_fail ("(CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && \"only character widths of 1, 2, or 4 bytes supported\""
, "clang/lib/Lex/LiteralSupport.cpp", 703, __extension__ __PRETTY_FUNCTION__
))
703 "only character widths of 1, 2, or 4 bytes supported")(static_cast <bool> ((CharByteWidth == 1 || CharByteWidth
== 2 || CharByteWidth == 4) && "only character widths of 1, 2, or 4 bytes supported"
) ? void (0) : __assert_fail ("(CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && \"only character widths of 1, 2, or 4 bytes supported\""
, "clang/lib/Lex/LiteralSupport.cpp", 703, __extension__ __PRETTY_FUNCTION__
))
;
704
705 (void)UcnLen;
706 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported")(static_cast <bool> ((UcnLen== 4 || UcnLen== 8) &&
"only ucn length of 4 or 8 supported") ? void (0) : __assert_fail
("(UcnLen== 4 || UcnLen== 8) && \"only ucn length of 4 or 8 supported\""
, "clang/lib/Lex/LiteralSupport.cpp", 706, __extension__ __PRETTY_FUNCTION__
))
;
707
708 if (CharByteWidth == 4) {
709 // FIXME: Make the type of the result buffer correct instead of
710 // using reinterpret_cast.
711 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
712 *ResultPtr = UcnVal;
713 ResultBuf += 4;
714 return;
715 }
716
717 if (CharByteWidth == 2) {
718 // FIXME: Make the type of the result buffer correct instead of
719 // using reinterpret_cast.
720 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
721
722 if (UcnVal <= (UTF32)0xFFFF) {
723 *ResultPtr = UcnVal;
724 ResultBuf += 2;
725 return;
726 }
727
728 // Convert to UTF16.
729 UcnVal -= 0x10000;
730 *ResultPtr = 0xD800 + (UcnVal >> 10);
731 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
732 ResultBuf += 4;
733 return;
734 }
735
736 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters")(static_cast <bool> (CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters"
) ? void (0) : __assert_fail ("CharByteWidth == 1 && \"UTF-8 encoding is only for 1 byte characters\""
, "clang/lib/Lex/LiteralSupport.cpp", 736, __extension__ __PRETTY_FUNCTION__
))
;
737
738 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
739 // The conversion below was inspired by:
740 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
741 // First, we determine how many bytes the result will require.
742 typedef uint8_t UTF8;
743
744 unsigned short bytesToWrite = 0;
745 if (UcnVal < (UTF32)0x80)
746 bytesToWrite = 1;
747 else if (UcnVal < (UTF32)0x800)
748 bytesToWrite = 2;
749 else if (UcnVal < (UTF32)0x10000)
750 bytesToWrite = 3;
751 else
752 bytesToWrite = 4;
753
754 const unsigned byteMask = 0xBF;
755 const unsigned byteMark = 0x80;
756
757 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
758 // into the first byte, depending on how many bytes follow.
759 static const UTF8 firstByteMark[5] = {
760 0x00, 0x00, 0xC0, 0xE0, 0xF0
761 };
762 // Finally, we write the bytes into ResultBuf.
763 ResultBuf += bytesToWrite;
764 switch (bytesToWrite) { // note: everything falls through.
765 case 4:
766 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
767 [[fallthrough]];
768 case 3:
769 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
770 [[fallthrough]];
771 case 2:
772 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
773 [[fallthrough]];
774 case 1:
775 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
776 }
777 // Update the buffer.
778 ResultBuf += bytesToWrite;
779}
780
781/// integer-constant: [C99 6.4.4.1]
782/// decimal-constant integer-suffix
783/// octal-constant integer-suffix
784/// hexadecimal-constant integer-suffix
785/// binary-literal integer-suffix [GNU, C++1y]
786/// user-defined-integer-literal: [C++11 lex.ext]
787/// decimal-literal ud-suffix
788/// octal-literal ud-suffix
789/// hexadecimal-literal ud-suffix
790/// binary-literal ud-suffix [GNU, C++1y]
791/// decimal-constant:
792/// nonzero-digit
793/// decimal-constant digit
794/// octal-constant:
795/// 0
796/// octal-constant octal-digit
797/// hexadecimal-constant:
798/// hexadecimal-prefix hexadecimal-digit
799/// hexadecimal-constant hexadecimal-digit
800/// hexadecimal-prefix: one of
801/// 0x 0X
802/// binary-literal:
803/// 0b binary-digit
804/// 0B binary-digit
805/// binary-literal binary-digit
806/// integer-suffix:
807/// unsigned-suffix [long-suffix]
808/// unsigned-suffix [long-long-suffix]
809/// long-suffix [unsigned-suffix]
810/// long-long-suffix [unsigned-sufix]
811/// nonzero-digit:
812/// 1 2 3 4 5 6 7 8 9
813/// octal-digit:
814/// 0 1 2 3 4 5 6 7
815/// hexadecimal-digit:
816/// 0 1 2 3 4 5 6 7 8 9
817/// a b c d e f
818/// A B C D E F
819/// binary-digit:
820/// 0
821/// 1
822/// unsigned-suffix: one of
823/// u U
824/// long-suffix: one of
825/// l L
826/// long-long-suffix: one of
827/// ll LL
828///
829/// floating-constant: [C99 6.4.4.2]
830/// TODO: add rules...
831///
832NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
833 SourceLocation TokLoc,
834 const SourceManager &SM,
835 const LangOptions &LangOpts,
836 const TargetInfo &Target,
837 DiagnosticsEngine &Diags)
838 : SM(SM), LangOpts(LangOpts), Diags(Diags),
839 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
840
841 s = DigitsBegin = ThisTokBegin;
842 saw_exponent = false;
843 saw_period = false;
844 saw_ud_suffix = false;
845 saw_fixed_point_suffix = false;
846 isLong = false;
847 isUnsigned = false;
848 isLongLong = false;
849 isSizeT = false;
850 isHalf = false;
851 isFloat = false;
852 isImaginary = false;
853 isFloat16 = false;
854 isFloat128 = false;
855 MicrosoftInteger = 0;
856 isFract = false;
857 isAccum = false;
858 hadError = false;
859 isBitInt = false;
860
861 // This routine assumes that the range begin/end matches the regex for integer
862 // and FP constants (specifically, the 'pp-number' regex), and assumes that
863 // the byte at "*end" is both valid and not part of the regex. Because of
864 // this, it doesn't have to check for 'overscan' in various places.
865 if (isPreprocessingNumberBody(*ThisTokEnd)) {
866 Diags.Report(TokLoc, diag::err_lexing_numeric);
867 hadError = true;
868 return;
869 }
870
871 if (*s == '0') { // parse radix
872 ParseNumberStartingWithZero(TokLoc);
873 if (hadError)
874 return;
875 } else { // the first digit is non-zero
876 radix = 10;
877 s = SkipDigits(s);
878 if (s == ThisTokEnd) {
879 // Done.
880 } else {
881 ParseDecimalOrOctalCommon(TokLoc);
882 if (hadError)
883 return;
884 }
885 }
886
887 SuffixBegin = s;
888 checkSeparator(TokLoc, s, CSK_AfterDigits);
889
890 // Initial scan to lookahead for fixed point suffix.
891 if (LangOpts.FixedPoint) {
892 for (const char *c = s; c != ThisTokEnd; ++c) {
893 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
894 saw_fixed_point_suffix = true;
895 break;
896 }
897 }
898 }
899
900 // Parse the suffix. At this point we can classify whether we have an FP or
901 // integer constant.
902 bool isFixedPointConstant = isFixedPointLiteral();
903 bool isFPConstant = isFloatingLiteral();
904 bool HasSize = false;
905
906 // Loop over all of the characters of the suffix. If we see something bad,
907 // we break out of the loop.
908 for (; s != ThisTokEnd; ++s) {
909 switch (*s) {
910 case 'R':
911 case 'r':
912 if (!LangOpts.FixedPoint)
913 break;
914 if (isFract || isAccum) break;
915 if (!(saw_period || saw_exponent)) break;
916 isFract = true;
917 continue;
918 case 'K':
919 case 'k':
920 if (!LangOpts.FixedPoint)
921 break;
922 if (isFract || isAccum) break;
923 if (!(saw_period || saw_exponent)) break;
924 isAccum = true;
925 continue;
926 case 'h': // FP Suffix for "half".
927 case 'H':
928 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
929 if (!(LangOpts.Half || LangOpts.FixedPoint))
930 break;
931 if (isIntegerLiteral()) break; // Error for integer constant.
932 if (HasSize)
933 break;
934 HasSize = true;
935 isHalf = true;
936 continue; // Success.
937 case 'f': // FP Suffix for "float"
938 case 'F':
939 if (!isFPConstant) break; // Error for integer constant.
940 if (HasSize)
941 break;
942 HasSize = true;
943
944 // CUDA host and device may have different _Float16 support, therefore
945 // allows f16 literals to avoid false alarm.
946 // ToDo: more precise check for CUDA.
947 if ((Target.hasFloat16Type() || LangOpts.CUDA) && s + 2 < ThisTokEnd &&
948 s[1] == '1' && s[2] == '6') {
949 s += 2; // success, eat up 2 characters.
950 isFloat16 = true;
951 continue;
952 }
953
954 isFloat = true;
955 continue; // Success.
956 case 'q': // FP Suffix for "__float128"
957 case 'Q':
958 if (!isFPConstant) break; // Error for integer constant.
959 if (HasSize)
960 break;
961 HasSize = true;
962 isFloat128 = true;
963 continue; // Success.
964 case 'u':
965 case 'U':
966 if (isFPConstant) break; // Error for floating constant.
967 if (isUnsigned) break; // Cannot be repeated.
968 isUnsigned = true;
969 continue; // Success.
970 case 'l':
971 case 'L':
972 if (HasSize)
973 break;
974 HasSize = true;
975
976 // Check for long long. The L's need to be adjacent and the same case.
977 if (s[1] == s[0]) {
978 assert(s + 1 < ThisTokEnd && "didn't maximally munch?")(static_cast <bool> (s + 1 < ThisTokEnd && "didn't maximally munch?"
) ? void (0) : __assert_fail ("s + 1 < ThisTokEnd && \"didn't maximally munch?\""
, "clang/lib/Lex/LiteralSupport.cpp", 978, __extension__ __PRETTY_FUNCTION__
))
;
979 if (isFPConstant) break; // long long invalid for floats.
980 isLongLong = true;
981 ++s; // Eat both of them.
982 } else {
983 isLong = true;
984 }
985 continue; // Success.
986 case 'z':
987 case 'Z':
988 if (isFPConstant)
989 break; // Invalid for floats.
990 if (HasSize)
991 break;
992 HasSize = true;
993 isSizeT = true;
994 continue;
995 case 'i':
996 case 'I':
997 if (LangOpts.MicrosoftExt && !isFPConstant) {
998 // Allow i8, i16, i32, and i64. First, look ahead and check if
999 // suffixes are Microsoft integers and not the imaginary unit.
1000 uint8_t Bits = 0;
1001 size_t ToSkip = 0;
1002 switch (s[1]) {
1003 case '8': // i8 suffix
1004 Bits = 8;
1005 ToSkip = 2;
1006 break;
1007 case '1':
1008 if (s[2] == '6') { // i16 suffix
1009 Bits = 16;
1010 ToSkip = 3;
1011 }
1012 break;
1013 case '3':
1014 if (s[2] == '2') { // i32 suffix
1015 Bits = 32;
1016 ToSkip = 3;
1017 }
1018 break;
1019 case '6':
1020 if (s[2] == '4') { // i64 suffix
1021 Bits = 64;
1022 ToSkip = 3;
1023 }
1024 break;
1025 default:
1026 break;
1027 }
1028 if (Bits) {
1029 if (HasSize)
1030 break;
1031 HasSize = true;
Value stored to 'HasSize' is never read
1032 MicrosoftInteger = Bits;
1033 s += ToSkip;
1034 assert(s <= ThisTokEnd && "didn't maximally munch?")(static_cast <bool> (s <= ThisTokEnd && "didn't maximally munch?"
) ? void (0) : __assert_fail ("s <= ThisTokEnd && \"didn't maximally munch?\""
, "clang/lib/Lex/LiteralSupport.cpp", 1034, __extension__ __PRETTY_FUNCTION__
))
;
1035 break;
1036 }
1037 }
1038 [[fallthrough]];
1039 case 'j':
1040 case 'J':
1041 if (isImaginary) break; // Cannot be repeated.
1042 isImaginary = true;
1043 continue; // Success.
1044 case 'w':
1045 case 'W':
1046 if (isFPConstant)
1047 break; // Invalid for floats.
1048 if (HasSize)
1049 break; // Invalid if we already have a size for the literal.
1050
1051 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We
1052 // explicitly do not support the suffix in C++ as an extension because a
1053 // library-based UDL that resolves to a library type may be more
1054 // appropriate there.
1055 if (!LangOpts.CPlusPlus && ((s[0] == 'w' && s[1] == 'b') ||
1056 (s[0] == 'W' && s[1] == 'B'))) {
1057 isBitInt = true;
1058 HasSize = true;
1059 ++s; // Skip both characters (2nd char skipped on continue).
1060 continue; // Success.
1061 }
1062 }
1063 // If we reached here, there was an error or a ud-suffix.
1064 break;
1065 }
1066
1067 // "i", "if", and "il" are user-defined suffixes in C++1y.
1068 if (s != ThisTokEnd || isImaginary) {
1069 // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
1070 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
1071 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) {
1072 if (!isImaginary) {
1073 // Any suffix pieces we might have parsed are actually part of the
1074 // ud-suffix.
1075 isLong = false;
1076 isUnsigned = false;
1077 isLongLong = false;
1078 isSizeT = false;
1079 isFloat = false;
1080 isFloat16 = false;
1081 isHalf = false;
1082 isImaginary = false;
1083 isBitInt = false;
1084 MicrosoftInteger = 0;
1085 saw_fixed_point_suffix = false;
1086 isFract = false;
1087 isAccum = false;
1088 }
1089
1090 saw_ud_suffix = true;
1091 return;
1092 }
1093
1094 if (s != ThisTokEnd) {
1095 // Report an error if there are any.
1096 Diags.Report(Lexer::AdvanceToTokenCharacter(
1097 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts),
1098 diag::err_invalid_suffix_constant)
1099 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)
1100 << (isFixedPointConstant ? 2 : isFPConstant);
1101 hadError = true;
1102 }
1103 }
1104
1105 if (!hadError && saw_fixed_point_suffix) {
1106 assert(isFract || isAccum)(static_cast <bool> (isFract || isAccum) ? void (0) : __assert_fail
("isFract || isAccum", "clang/lib/Lex/LiteralSupport.cpp", 1106
, __extension__ __PRETTY_FUNCTION__))
;
1107 }
1108}
1109
1110/// ParseDecimalOrOctalCommon - This method is called for decimal or octal
1111/// numbers. It issues an error for illegal digits, and handles floating point
1112/// parsing. If it detects a floating point number, the radix is set to 10.
1113void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
1114 assert((radix == 8 || radix == 10) && "Unexpected radix")(static_cast <bool> ((radix == 8 || radix == 10) &&
"Unexpected radix") ? void (0) : __assert_fail ("(radix == 8 || radix == 10) && \"Unexpected radix\""
, "clang/lib/Lex/LiteralSupport.cpp", 1114, __extension__ __PRETTY_FUNCTION__
))
;
1115
1116 // If we have a hex digit other than 'e' (which denotes a FP exponent) then
1117 // the code is using an incorrect base.
1118 if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
1119 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1120 Diags.Report(
1121 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts),
1122 diag::err_invalid_digit)
1123 << StringRef(s, 1) << (radix == 8 ? 1 : 0);
1124 hadError = true;
1125 return;
1126 }
1127
1128 if (*s == '.') {
1129 checkSeparator(TokLoc, s, CSK_AfterDigits);
1130 s++;
1131 radix = 10;
1132 saw_period = true;
1133 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1134 s = SkipDigits(s); // Skip suffix.
1135 }
1136 if (*s == 'e' || *s == 'E') { // exponent
1137 checkSeparator(TokLoc, s, CSK_AfterDigits);
1138 const char *Exponent = s;
1139 s++;
1140 radix = 10;
1141 saw_exponent = true;
1142 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1143 const char *first_non_digit = SkipDigits(s);
1144 if (containsDigits(s, first_non_digit)) {
1145 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1146 s = first_non_digit;
1147 } else {
1148 if (!hadError) {
1149 Diags.Report(Lexer::AdvanceToTokenCharacter(
1150 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1151 diag::err_exponent_has_no_digits);
1152 hadError = true;
1153 }
1154 return;
1155 }
1156 }
1157}
1158
1159/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
1160/// suffixes as ud-suffixes, because the diagnostic experience is better if we
1161/// treat it as an invalid suffix.
1162bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
1163 StringRef Suffix) {
1164 if (!LangOpts.CPlusPlus11 || Suffix.empty())
1165 return false;
1166
1167 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
1168 if (Suffix[0] == '_')
1169 return true;
1170
1171 // In C++11, there are no library suffixes.
1172 if (!LangOpts.CPlusPlus14)
1173 return false;
1174
1175 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1176 // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1177 // In C++2a "d" and "y" are used in the library.
1178 return llvm::StringSwitch<bool>(Suffix)
1179 .Cases("h", "min", "s", true)
1180 .Cases("ms", "us", "ns", true)
1181 .Cases("il", "i", "if", true)
1182 .Cases("d", "y", LangOpts.CPlusPlus20)
1183 .Default(false);
1184}
1185
1186void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
1187 const char *Pos,
1188 CheckSeparatorKind IsAfterDigits) {
1189 if (IsAfterDigits == CSK_AfterDigits) {
1190 if (Pos == ThisTokBegin)
1191 return;
1192 --Pos;
1193 } else if (Pos == ThisTokEnd)
1194 return;
1195
1196 if (isDigitSeparator(*Pos)) {
1197 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM,
1198 LangOpts),
1199 diag::err_digit_separator_not_between_digits)
1200 << IsAfterDigits;
1201 hadError = true;
1202 }
1203}
1204
1205/// ParseNumberStartingWithZero - This method is called when the first character
1206/// of the number is found to be a zero. This means it is either an octal
1207/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1208/// a floating point number (01239.123e4). Eat the prefix, determining the
1209/// radix etc.
1210void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
1211 assert(s[0] == '0' && "Invalid method call")(static_cast <bool> (s[0] == '0' && "Invalid method call"
) ? void (0) : __assert_fail ("s[0] == '0' && \"Invalid method call\""
, "clang/lib/Lex/LiteralSupport.cpp", 1211, __extension__ __PRETTY_FUNCTION__
))
;
1212 s++;
1213
1214 int c1 = s[0];
1215
1216 // Handle a hex number like 0x1234.
1217 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
1218 s++;
1219 assert(s < ThisTokEnd && "didn't maximally munch?")(static_cast <bool> (s < ThisTokEnd && "didn't maximally munch?"
) ? void (0) : __assert_fail ("s < ThisTokEnd && \"didn't maximally munch?\""
, "clang/lib/Lex/LiteralSupport.cpp", 1219, __extension__ __PRETTY_FUNCTION__
))
;
1220 radix = 16;
1221 DigitsBegin = s;
1222 s = SkipHexDigits(s);
1223 bool HasSignificandDigits = containsDigits(DigitsBegin, s);
1224 if (s == ThisTokEnd) {
1225 // Done.
1226 } else if (*s == '.') {
1227 s++;
1228 saw_period = true;
1229 const char *floatDigitsBegin = s;
1230 s = SkipHexDigits(s);
1231 if (containsDigits(floatDigitsBegin, s))
1232 HasSignificandDigits = true;
1233 if (HasSignificandDigits)
1234 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
1235 }
1236
1237 if (!HasSignificandDigits) {
1238 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1239 LangOpts),
1240 diag::err_hex_constant_requires)
1241 << LangOpts.CPlusPlus << 1;
1242 hadError = true;
1243 return;
1244 }
1245
1246 // A binary exponent can appear with or with a '.'. If dotted, the
1247 // binary exponent is required.
1248 if (*s == 'p' || *s == 'P') {
1249 checkSeparator(TokLoc, s, CSK_AfterDigits);
1250 const char *Exponent = s;
1251 s++;
1252 saw_exponent = true;
1253 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign
1254 const char *first_non_digit = SkipDigits(s);
1255 if (!containsDigits(s, first_non_digit)) {
1256 if (!hadError) {
1257 Diags.Report(Lexer::AdvanceToTokenCharacter(
1258 TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1259 diag::err_exponent_has_no_digits);
1260 hadError = true;
1261 }
1262 return;
1263 }
1264 checkSeparator(TokLoc, s, CSK_BeforeDigits);
1265 s = first_non_digit;
1266
1267 if (!LangOpts.HexFloats)
1268 Diags.Report(TokLoc, LangOpts.CPlusPlus
1269 ? diag::ext_hex_literal_invalid
1270 : diag::ext_hex_constant_invalid);
1271 else if (LangOpts.CPlusPlus17)
1272 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal);
1273 } else if (saw_period) {
1274 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1275 LangOpts),
1276 diag::err_hex_constant_requires)
1277 << LangOpts.CPlusPlus << 0;
1278 hadError = true;
1279 }
1280 return;
1281 }
1282
1283 // Handle simple binary numbers 0b01010
1284 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
1285 // 0b101010 is a C++1y / GCC extension.
1286 Diags.Report(TokLoc, LangOpts.CPlusPlus14
1287 ? diag::warn_cxx11_compat_binary_literal
1288 : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14
1289 : diag::ext_binary_literal);
1290 ++s;
1291 assert(s < ThisTokEnd && "didn't maximally munch?")(static_cast <bool> (s < ThisTokEnd && "didn't maximally munch?"
) ? void (0) : __assert_fail ("s < ThisTokEnd && \"didn't maximally munch?\""
, "clang/lib/Lex/LiteralSupport.cpp", 1291, __extension__ __PRETTY_FUNCTION__
))
;
1292 radix = 2;
1293 DigitsBegin = s;
1294 s = SkipBinaryDigits(s);
1295 if (s == ThisTokEnd) {
1296 // Done.
1297 } else if (isHexDigit(*s) &&
1298 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1299 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1300 LangOpts),
1301 diag::err_invalid_digit)
1302 << StringRef(s, 1) << 2;
1303 hadError = true;
1304 }
1305 // Other suffixes will be diagnosed by the caller.
1306 return;
1307 }
1308
1309 // For now, the radix is set to 8. If we discover that we have a
1310 // floating point constant, the radix will change to 10. Octal floating
1311 // point constants are not permitted (only decimal and hexadecimal).
1312 radix = 8;
1313 const char *PossibleNewDigitStart = s;
1314 s = SkipOctalDigits(s);
1315 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0
1316 // as the start of the digits. So if skipping octal digits does not skip
1317 // anything, we leave the digit start where it was.
1318 if (s != PossibleNewDigitStart)
1319 DigitsBegin = PossibleNewDigitStart;
1320
1321 if (s == ThisTokEnd)
1322 return; // Done, simple octal number like 01234
1323
1324 // If we have some other non-octal digit that *is* a decimal digit, see if
1325 // this is part of a floating point number like 094.123 or 09e1.
1326 if (isDigit(*s)) {
1327 const char *EndDecimal = SkipDigits(s);
1328 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
1329 s = EndDecimal;
1330 radix = 10;
1331 }
1332 }
1333
1334 ParseDecimalOrOctalCommon(TokLoc);
1335}
1336
1337static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
1338 switch (Radix) {
1339 case 2:
1340 return NumDigits <= 64;
1341 case 8:
1342 return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
1343 case 10:
1344 return NumDigits <= 19; // floor(log10(2^64))
1345 case 16:
1346 return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
1347 default:
1348 llvm_unreachable("impossible Radix")::llvm::llvm_unreachable_internal("impossible Radix", "clang/lib/Lex/LiteralSupport.cpp"
, 1348)
;
1349 }
1350}
1351
1352/// GetIntegerValue - Convert this numeric literal value to an APInt that
1353/// matches Val's input width. If there is an overflow, set Val to the low bits
1354/// of the result and return true. Otherwise, return false.
1355bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
1356 // Fast path: Compute a conservative bound on the maximum number of
1357 // bits per digit in this radix. If we can't possibly overflow a
1358 // uint64 based on that bound then do the simple conversion to
1359 // integer. This avoids the expensive overflow checking below, and
1360 // handles the common cases that matter (small decimal integers and
1361 // hex/octal values which don't overflow).
1362 const unsigned NumDigits = SuffixBegin - DigitsBegin;
1363 if (alwaysFitsInto64Bits(radix, NumDigits)) {
1364 uint64_t N = 0;
1365 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
1366 if (!isDigitSeparator(*Ptr))
1367 N = N * radix + llvm::hexDigitValue(*Ptr);
1368
1369 // This will truncate the value to Val's input width. Simply check
1370 // for overflow by comparing.
1371 Val = N;
1372 return Val.getZExtValue() != N;
1373 }
1374
1375 Val = 0;
1376 const char *Ptr = DigitsBegin;
1377
1378 llvm::APInt RadixVal(Val.getBitWidth(), radix);
1379 llvm::APInt CharVal(Val.getBitWidth(), 0);
1380 llvm::APInt OldVal = Val;
1381
1382 bool OverflowOccurred = false;
1383 while (Ptr < SuffixBegin) {
1384 if (isDigitSeparator(*Ptr)) {
1385 ++Ptr;
1386 continue;
1387 }
1388
1389 unsigned C = llvm::hexDigitValue(*Ptr++);
1390
1391 // If this letter is out of bound for this radix, reject it.
1392 assert(C < radix && "NumericLiteralParser ctor should have rejected this")(static_cast <bool> (C < radix && "NumericLiteralParser ctor should have rejected this"
) ? void (0) : __assert_fail ("C < radix && \"NumericLiteralParser ctor should have rejected this\""
, "clang/lib/Lex/LiteralSupport.cpp", 1392, __extension__ __PRETTY_FUNCTION__
))
;
1393
1394 CharVal = C;
1395
1396 // Add the digit to the value in the appropriate radix. If adding in digits
1397 // made the value smaller, then this overflowed.
1398 OldVal = Val;
1399
1400 // Multiply by radix, did overflow occur on the multiply?
1401 Val *= RadixVal;
1402 OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
1403
1404 // Add value, did overflow occur on the value?
1405 // (a + b) ult b <=> overflow
1406 Val += CharVal;
1407 OverflowOccurred |= Val.ult(CharVal);
1408 }
1409 return OverflowOccurred;
1410}
1411
1412llvm::APFloat::opStatus
1413NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
1414 using llvm::APFloat;
1415
1416 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
1417
1418 llvm::SmallString<16> Buffer;
1419 StringRef Str(ThisTokBegin, n);
1420 if (Str.contains('\'')) {
1421 Buffer.reserve(n);
1422 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
1423 &isDigitSeparator);
1424 Str = Buffer;
1425 }
1426
1427 auto StatusOrErr =
1428 Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
1429 assert(StatusOrErr && "Invalid floating point representation")(static_cast <bool> (StatusOrErr && "Invalid floating point representation"
) ? void (0) : __assert_fail ("StatusOrErr && \"Invalid floating point representation\""
, "clang/lib/Lex/LiteralSupport.cpp", 1429, __extension__ __PRETTY_FUNCTION__
))
;
1430 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr
1431 : APFloat::opInvalidOp;
1432}
1433
1434static inline bool IsExponentPart(char c) {
1435 return c == 'p' || c == 'P' || c == 'e' || c == 'E';
1436}
1437
1438bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
1439 assert(radix == 16 || radix == 10)(static_cast <bool> (radix == 16 || radix == 10) ? void
(0) : __assert_fail ("radix == 16 || radix == 10", "clang/lib/Lex/LiteralSupport.cpp"
, 1439, __extension__ __PRETTY_FUNCTION__))
;
1440
1441 // Find how many digits are needed to store the whole literal.
1442 unsigned NumDigits = SuffixBegin - DigitsBegin;
1443 if (saw_period) --NumDigits;
1444
1445 // Initial scan of the exponent if it exists
1446 bool ExpOverflowOccurred = false;
1447 bool NegativeExponent = false;
1448 const char *ExponentBegin;
1449 uint64_t Exponent = 0;
1450 int64_t BaseShift = 0;
1451 if (saw_exponent) {
1452 const char *Ptr = DigitsBegin;
1453
1454 while (!IsExponentPart(*Ptr)) ++Ptr;
1455 ExponentBegin = Ptr;
1456 ++Ptr;
1457 NegativeExponent = *Ptr == '-';
1458 if (NegativeExponent) ++Ptr;
1459
1460 unsigned NumExpDigits = SuffixBegin - Ptr;
1461 if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
1462 llvm::StringRef ExpStr(Ptr, NumExpDigits);
1463 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
1464 Exponent = ExpInt.getZExtValue();
1465 } else {
1466 ExpOverflowOccurred = true;
1467 }
1468
1469 if (NegativeExponent) BaseShift -= Exponent;
1470 else BaseShift += Exponent;
1471 }
1472
1473 // Number of bits needed for decimal literal is
1474 // ceil(NumDigits * log2(10)) Integral part
1475 // + Scale Fractional part
1476 // + ceil(Exponent * log2(10)) Exponent
1477 // --------------------------------------------------
1478 // ceil((NumDigits + Exponent) * log2(10)) + Scale
1479 //
1480 // But for simplicity in handling integers, we can round up log2(10) to 4,
1481 // making:
1482 // 4 * (NumDigits + Exponent) + Scale
1483 //
1484 // Number of digits needed for hexadecimal literal is
1485 // 4 * NumDigits Integral part
1486 // + Scale Fractional part
1487 // + Exponent Exponent
1488 // --------------------------------------------------
1489 // (4 * NumDigits) + Scale + Exponent
1490 uint64_t NumBitsNeeded;
1491 if (radix == 10)
1492 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
1493 else
1494 NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
1495
1496 if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
1497 ExpOverflowOccurred = true;
1498 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
1499
1500 bool FoundDecimal = false;
1501
1502 int64_t FractBaseShift = 0;
1503 const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
1504 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
1505 if (*Ptr == '.') {
1506 FoundDecimal = true;
1507 continue;
1508 }
1509
1510 // Normal reading of an integer
1511 unsigned C = llvm::hexDigitValue(*Ptr);
1512 assert(C < radix && "NumericLiteralParser ctor should have rejected this")(static_cast <bool> (C < radix && "NumericLiteralParser ctor should have rejected this"
) ? void (0) : __assert_fail ("C < radix && \"NumericLiteralParser ctor should have rejected this\""
, "clang/lib/Lex/LiteralSupport.cpp", 1512, __extension__ __PRETTY_FUNCTION__
))
;
1513
1514 Val *= radix;
1515 Val += C;
1516
1517 if (FoundDecimal)
1518 // Keep track of how much we will need to adjust this value by from the
1519 // number of digits past the radix point.
1520 --FractBaseShift;
1521 }
1522
1523 // For a radix of 16, we will be multiplying by 2 instead of 16.
1524 if (radix == 16) FractBaseShift *= 4;
1525 BaseShift += FractBaseShift;
1526
1527 Val <<= Scale;
1528
1529 uint64_t Base = (radix == 16) ? 2 : 10;
1530 if (BaseShift > 0) {
1531 for (int64_t i = 0; i < BaseShift; ++i) {
1532 Val *= Base;
1533 }
1534 } else if (BaseShift < 0) {
1535 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i)
1536 Val = Val.udiv(Base);
1537 }
1538
1539 bool IntOverflowOccurred = false;
1540 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
1541 if (Val.getBitWidth() > StoreVal.getBitWidth()) {
1542 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
1543 StoreVal = Val.trunc(StoreVal.getBitWidth());
1544 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
1545 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
1546 StoreVal = Val.zext(StoreVal.getBitWidth());
1547 } else {
1548 StoreVal = Val;
1549 }
1550
1551 return IntOverflowOccurred || ExpOverflowOccurred;
1552}
1553
1554/// \verbatim
1555/// user-defined-character-literal: [C++11 lex.ext]
1556/// character-literal ud-suffix
1557/// ud-suffix:
1558/// identifier
1559/// character-literal: [C++11 lex.ccon]
1560/// ' c-char-sequence '
1561/// u' c-char-sequence '
1562/// U' c-char-sequence '
1563/// L' c-char-sequence '
1564/// u8' c-char-sequence ' [C++1z lex.ccon]
1565/// c-char-sequence:
1566/// c-char
1567/// c-char-sequence c-char
1568/// c-char:
1569/// any member of the source character set except the single-quote ',
1570/// backslash \, or new-line character
1571/// escape-sequence
1572/// universal-character-name
1573/// escape-sequence:
1574/// simple-escape-sequence
1575/// octal-escape-sequence
1576/// hexadecimal-escape-sequence
1577/// simple-escape-sequence:
1578/// one of \' \" \? \\ \a \b \f \n \r \t \v
1579/// octal-escape-sequence:
1580/// \ octal-digit
1581/// \ octal-digit octal-digit
1582/// \ octal-digit octal-digit octal-digit
1583/// hexadecimal-escape-sequence:
1584/// \x hexadecimal-digit
1585/// hexadecimal-escape-sequence hexadecimal-digit
1586/// universal-character-name: [C++11 lex.charset]
1587/// \u hex-quad
1588/// \U hex-quad hex-quad
1589/// hex-quad:
1590/// hex-digit hex-digit hex-digit hex-digit
1591/// \endverbatim
1592///
1593CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1594 SourceLocation Loc, Preprocessor &PP,
1595 tok::TokenKind kind) {
1596 // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1597 HadError = false;
1598
1599 Kind = kind;
1600
1601 const char *TokBegin = begin;
1602
1603 // Skip over wide character determinant.
1604 if (Kind != tok::char_constant)
1605 ++begin;
1606 if (Kind == tok::utf8_char_constant)
1607 ++begin;
1608
1609 // Skip over the entry quote.
1610 if (begin[0] != '\'') {
1611 PP.Diag(Loc, diag::err_lexing_char);
1612 HadError = true;
1613 return;
1614 }
1615
1616 ++begin;
1617
1618 // Remove an optional ud-suffix.
1619 if (end[-1] != '\'') {
1620 const char *UDSuffixEnd = end;
1621 do {
1622 --end;
1623 } while (end[-1] != '\'');
1624 // FIXME: Don't bother with this if !tok.hasUCN().
1625 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1626 UDSuffixOffset = end - TokBegin;
1627 }
1628
1629 // Trim the ending quote.
1630 assert(end != begin && "Invalid token lexed")(static_cast <bool> (end != begin && "Invalid token lexed"
) ? void (0) : __assert_fail ("end != begin && \"Invalid token lexed\""
, "clang/lib/Lex/LiteralSupport.cpp", 1630, __extension__ __PRETTY_FUNCTION__
))
;
1631 --end;
1632
1633 // FIXME: The "Value" is an uint64_t so we can handle char literals of
1634 // up to 64-bits.
1635 // FIXME: This extensively assumes that 'char' is 8-bits.
1636 assert(PP.getTargetInfo().getCharWidth() == 8 &&(static_cast <bool> (PP.getTargetInfo().getCharWidth() ==
8 && "Assumes char is 8 bits") ? void (0) : __assert_fail
("PP.getTargetInfo().getCharWidth() == 8 && \"Assumes char is 8 bits\""
, "clang/lib/Lex/LiteralSupport.cpp", 1637, __extension__ __PRETTY_FUNCTION__
))
1637 "Assumes char is 8 bits")(static_cast <bool> (PP.getTargetInfo().getCharWidth() ==
8 && "Assumes char is 8 bits") ? void (0) : __assert_fail
("PP.getTargetInfo().getCharWidth() == 8 && \"Assumes char is 8 bits\""
, "clang/lib/Lex/LiteralSupport.cpp", 1637, __extension__ __PRETTY_FUNCTION__
))
;
1638 assert(PP.getTargetInfo().getIntWidth() <= 64 &&(static_cast <bool> (PP.getTargetInfo().getIntWidth() <=
64 && (PP.getTargetInfo().getIntWidth() & 7) == 0
&& "Assumes sizeof(int) on target is <= 64 and a multiple of char"
) ? void (0) : __assert_fail ("PP.getTargetInfo().getIntWidth() <= 64 && (PP.getTargetInfo().getIntWidth() & 7) == 0 && \"Assumes sizeof(int) on target is <= 64 and a multiple of char\""
, "clang/lib/Lex/LiteralSupport.cpp", 1640, __extension__ __PRETTY_FUNCTION__
))
1639 (PP.getTargetInfo().getIntWidth() & 7) == 0 &&(static_cast <bool> (PP.getTargetInfo().getIntWidth() <=
64 && (PP.getTargetInfo().getIntWidth() & 7) == 0
&& "Assumes sizeof(int) on target is <= 64 and a multiple of char"
) ? void (0) : __assert_fail ("PP.getTargetInfo().getIntWidth() <= 64 && (PP.getTargetInfo().getIntWidth() & 7) == 0 && \"Assumes sizeof(int) on target is <= 64 and a multiple of char\""
, "clang/lib/Lex/LiteralSupport.cpp", 1640, __extension__ __PRETTY_FUNCTION__
))
1640 "Assumes sizeof(int) on target is <= 64 and a multiple of char")(static_cast <bool> (PP.getTargetInfo().getIntWidth() <=
64 && (PP.getTargetInfo().getIntWidth() & 7) == 0
&& "Assumes sizeof(int) on target is <= 64 and a multiple of char"
) ? void (0) : __assert_fail ("PP.getTargetInfo().getIntWidth() <= 64 && (PP.getTargetInfo().getIntWidth() & 7) == 0 && \"Assumes sizeof(int) on target is <= 64 and a multiple of char\""
, "clang/lib/Lex/LiteralSupport.cpp", 1640, __extension__ __PRETTY_FUNCTION__
))
;
1641 assert(PP.getTargetInfo().getWCharWidth() <= 64 &&(static_cast <bool> (PP.getTargetInfo().getWCharWidth()
<= 64 && "Assumes sizeof(wchar) on target is <= 64"
) ? void (0) : __assert_fail ("PP.getTargetInfo().getWCharWidth() <= 64 && \"Assumes sizeof(wchar) on target is <= 64\""
, "clang/lib/Lex/LiteralSupport.cpp", 1642, __extension__ __PRETTY_FUNCTION__
))
1642 "Assumes sizeof(wchar) on target is <= 64")(static_cast <bool> (PP.getTargetInfo().getWCharWidth()
<= 64 && "Assumes sizeof(wchar) on target is <= 64"
) ? void (0) : __assert_fail ("PP.getTargetInfo().getWCharWidth() <= 64 && \"Assumes sizeof(wchar) on target is <= 64\""
, "clang/lib/Lex/LiteralSupport.cpp", 1642, __extension__ __PRETTY_FUNCTION__
))
;
1643
1644 SmallVector<uint32_t, 4> codepoint_buffer;
1645 codepoint_buffer.resize(end - begin);
1646 uint32_t *buffer_begin = &codepoint_buffer.front();
1647 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1648
1649 // Unicode escapes representing characters that cannot be correctly
1650 // represented in a single code unit are disallowed in character literals
1651 // by this implementation.
1652 uint32_t largest_character_for_kind;
1653 if (tok::wide_char_constant == Kind) {
1654 largest_character_for_kind =
1655 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1656 } else if (tok::utf8_char_constant == Kind) {
1657 largest_character_for_kind = 0x7F;
1658 } else if (tok::utf16_char_constant == Kind) {
1659 largest_character_for_kind = 0xFFFF;
1660 } else if (tok::utf32_char_constant == Kind) {
1661 largest_character_for_kind = 0x10FFFF;
1662 } else {
1663 largest_character_for_kind = 0x7Fu;
1664 }
1665
1666 while (begin != end) {
1667 // Is this a span of non-escape characters?
1668 if (begin[0] != '\\') {
1669 char const *start = begin;
1670 do {
1671 ++begin;
1672 } while (begin != end && *begin != '\\');
1673
1674 char const *tmp_in_start = start;
1675 uint32_t *tmp_out_start = buffer_begin;
1676 llvm::ConversionResult res =
1677 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
1678 reinterpret_cast<llvm::UTF8 const *>(begin),
1679 &buffer_begin, buffer_end, llvm::strictConversion);
1680 if (res != llvm::conversionOK) {
1681 // If we see bad encoding for unprefixed character literals, warn and
1682 // simply copy the byte values, for compatibility with gcc and
1683 // older versions of clang.
1684 bool NoErrorOnBadEncoding = isOrdinary();
1685 unsigned Msg = diag::err_bad_character_encoding;
1686 if (NoErrorOnBadEncoding)
1687 Msg = diag::warn_bad_character_encoding;
1688 PP.Diag(Loc, Msg);
1689 if (NoErrorOnBadEncoding) {
1690 start = tmp_in_start;
1691 buffer_begin = tmp_out_start;
1692 for (; start != begin; ++start, ++buffer_begin)
1693 *buffer_begin = static_cast<uint8_t>(*start);
1694 } else {
1695 HadError = true;
1696 }
1697 } else {
1698 for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1699 if (*tmp_out_start > largest_character_for_kind) {
1700 HadError = true;
1701 PP.Diag(Loc, diag::err_character_too_large);
1702 }
1703 }
1704 }
1705
1706 continue;
1707 }
1708 // Is this a Universal Character Name escape?
1709 if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') {
1710 unsigned short UcnLen = 0;
1711 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1712 FullSourceLoc(Loc, PP.getSourceManager()),
1713 &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1714 HadError = true;
1715 } else if (*buffer_begin > largest_character_for_kind) {
1716 HadError = true;
1717 PP.Diag(Loc, diag::err_character_too_large);
1718 }
1719
1720 ++buffer_begin;
1721 continue;
1722 }
1723 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1724 uint64_t result =
1725 ProcessCharEscape(TokBegin, begin, end, HadError,
1726 FullSourceLoc(Loc,PP.getSourceManager()),
1727 CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1728 *buffer_begin++ = result;
1729 }
1730
1731 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1732
1733 if (NumCharsSoFar > 1) {
1734 if (isOrdinary() && NumCharsSoFar == 4)
1735 PP.Diag(Loc, diag::warn_four_char_character_literal);
1736 else if (isOrdinary())
1737 PP.Diag(Loc, diag::warn_multichar_character_literal);
1738 else {
1739 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1);
1740 HadError = true;
1741 }
1742 IsMultiChar = true;
1743 } else {
1744 IsMultiChar = false;
1745 }
1746
1747 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1748
1749 // Narrow character literals act as though their value is concatenated
1750 // in this implementation, but warn on overflow.
1751 bool multi_char_too_long = false;
1752 if (isOrdinary() && isMultiChar()) {
1753 LitVal = 0;
1754 for (size_t i = 0; i < NumCharsSoFar; ++i) {
1755 // check for enough leading zeros to shift into
1756 multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1757 LitVal <<= 8;
1758 LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1759 }
1760 } else if (NumCharsSoFar > 0) {
1761 // otherwise just take the last character
1762 LitVal = buffer_begin[-1];
1763 }
1764
1765 if (!HadError && multi_char_too_long) {
1766 PP.Diag(Loc, diag::warn_char_constant_too_large);
1767 }
1768
1769 // Transfer the value from APInt to uint64_t
1770 Value = LitVal.getZExtValue();
1771
1772 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1773 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple
1774 // character constants are not sign extended in the this implementation:
1775 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1776 if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) &&
1777 PP.getLangOpts().CharIsSigned)
1778 Value = (signed char)Value;
1779}
1780
1781/// \verbatim
1782/// string-literal: [C++0x lex.string]
1783/// encoding-prefix " [s-char-sequence] "
1784/// encoding-prefix R raw-string
1785/// encoding-prefix:
1786/// u8
1787/// u
1788/// U
1789/// L
1790/// s-char-sequence:
1791/// s-char
1792/// s-char-sequence s-char
1793/// s-char:
1794/// any member of the source character set except the double-quote ",
1795/// backslash \, or new-line character
1796/// escape-sequence
1797/// universal-character-name
1798/// raw-string:
1799/// " d-char-sequence ( r-char-sequence ) d-char-sequence "
1800/// r-char-sequence:
1801/// r-char
1802/// r-char-sequence r-char
1803/// r-char:
1804/// any member of the source character set, except a right parenthesis )
1805/// followed by the initial d-char-sequence (which may be empty)
1806/// followed by a double quote ".
1807/// d-char-sequence:
1808/// d-char
1809/// d-char-sequence d-char
1810/// d-char:
1811/// any member of the basic source character set except:
1812/// space, the left parenthesis (, the right parenthesis ),
1813/// the backslash \, and the control characters representing horizontal
1814/// tab, vertical tab, form feed, and newline.
1815/// escape-sequence: [C++0x lex.ccon]
1816/// simple-escape-sequence
1817/// octal-escape-sequence
1818/// hexadecimal-escape-sequence
1819/// simple-escape-sequence:
1820/// one of \' \" \? \\ \a \b \f \n \r \t \v
1821/// octal-escape-sequence:
1822/// \ octal-digit
1823/// \ octal-digit octal-digit
1824/// \ octal-digit octal-digit octal-digit
1825/// hexadecimal-escape-sequence:
1826/// \x hexadecimal-digit
1827/// hexadecimal-escape-sequence hexadecimal-digit
1828/// universal-character-name:
1829/// \u hex-quad
1830/// \U hex-quad hex-quad
1831/// hex-quad:
1832/// hex-digit hex-digit hex-digit hex-digit
1833/// \endverbatim
1834///
1835StringLiteralParser::
1836StringLiteralParser(ArrayRef<Token> StringToks,
1837 Preprocessor &PP)
1838 : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1839 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()),
1840 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1841 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1842 init(StringToks);
1843}
1844
1845void StringLiteralParser::init(ArrayRef<Token> StringToks){
1846 // The literal token may have come from an invalid source location (e.g. due
1847 // to a PCH error), in which case the token length will be 0.
1848 if (StringToks.empty() || StringToks[0].getLength() < 2)
1849 return DiagnoseLexingError(SourceLocation());
1850
1851 // Scan all of the string portions, remember the max individual token length,
1852 // computing a bound on the concatenated string length, and see whether any
1853 // piece is a wide-string. If any of the string portions is a wide-string
1854 // literal, the result is a wide-string literal [C99 6.4.5p4].
1855 assert(!StringToks.empty() && "expected at least one token")(static_cast <bool> (!StringToks.empty() && "expected at least one token"
) ? void (0) : __assert_fail ("!StringToks.empty() && \"expected at least one token\""
, "clang/lib/Lex/LiteralSupport.cpp", 1855, __extension__ __PRETTY_FUNCTION__
))
;
1856 MaxTokenLength = StringToks[0].getLength();
1857 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!")(static_cast <bool> (StringToks[0].getLength() >= 2 &&
"literal token is invalid!") ? void (0) : __assert_fail ("StringToks[0].getLength() >= 2 && \"literal token is invalid!\""
, "clang/lib/Lex/LiteralSupport.cpp", 1857, __extension__ __PRETTY_FUNCTION__
))
;
1858 SizeBound = StringToks[0].getLength()-2; // -2 for "".
1859 Kind = StringToks[0].getKind();
1860
1861 hadError = false;
1862
1863 // Implement Translation Phase #6: concatenation of string literals
1864 /// (C99 5.1.1.2p1). The common case is only one string fragment.
1865 for (unsigned i = 1; i != StringToks.size(); ++i) {
1866 if (StringToks[i].getLength() < 2)
1867 return DiagnoseLexingError(StringToks[i].getLocation());
1868
1869 // The string could be shorter than this if it needs cleaning, but this is a
1870 // reasonable bound, which is all we need.
1871 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!")(static_cast <bool> (StringToks[i].getLength() >= 2 &&
"literal token is invalid!") ? void (0) : __assert_fail ("StringToks[i].getLength() >= 2 && \"literal token is invalid!\""
, "clang/lib/Lex/LiteralSupport.cpp", 1871, __extension__ __PRETTY_FUNCTION__
))
;
1872 SizeBound += StringToks[i].getLength()-2; // -2 for "".
1873
1874 // Remember maximum string piece length.
1875 if (StringToks[i].getLength() > MaxTokenLength)
1876 MaxTokenLength = StringToks[i].getLength();
1877
1878 // Remember if we see any wide or utf-8/16/32 strings.
1879 // Also check for illegal concatenations.
1880 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1881 if (isOrdinary()) {
1882 Kind = StringToks[i].getKind();
1883 } else {
1884 if (Diags)
1885 Diags->Report(StringToks[i].getLocation(),
1886 diag::err_unsupported_string_concat);
1887 hadError = true;
1888 }
1889 }
1890 }
1891
1892 // Include space for the null terminator.
1893 ++SizeBound;
1894
1895 // TODO: K&R warning: "traditional C rejects string constant concatenation"
1896
1897 // Get the width in bytes of char/wchar_t/char16_t/char32_t
1898 CharByteWidth = getCharWidth(Kind, Target);
1899 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple")(static_cast <bool> ((CharByteWidth & 7) == 0 &&
"Assumes character size is byte multiple") ? void (0) : __assert_fail
("(CharByteWidth & 7) == 0 && \"Assumes character size is byte multiple\""
, "clang/lib/Lex/LiteralSupport.cpp", 1899, __extension__ __PRETTY_FUNCTION__
))
;
1900 CharByteWidth /= 8;
1901
1902 // The output buffer size needs to be large enough to hold wide characters.
1903 // This is a worst-case assumption which basically corresponds to L"" "long".
1904 SizeBound *= CharByteWidth;
1905
1906 // Size the temporary buffer to hold the result string data.
1907 ResultBuf.resize(SizeBound);
1908
1909 // Likewise, but for each string piece.
1910 SmallString<512> TokenBuf;
1911 TokenBuf.resize(MaxTokenLength);
1912
1913 // Loop over all the strings, getting their spelling, and expanding them to
1914 // wide strings as appropriate.
1915 ResultPtr = &ResultBuf[0]; // Next byte to fill in.
1916
1917 Pascal = false;
1918
1919 SourceLocation UDSuffixTokLoc;
1920
1921 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
1922 const char *ThisTokBuf = &TokenBuf[0];
1923 // Get the spelling of the token, which eliminates trigraphs, etc. We know
1924 // that ThisTokBuf points to a buffer that is big enough for the whole token
1925 // and 'spelled' tokens can only shrink.
1926 bool StringInvalid = false;
1927 unsigned ThisTokLen =
1928 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1929 &StringInvalid);
1930 if (StringInvalid)
1931 return DiagnoseLexingError(StringToks[i].getLocation());
1932
1933 const char *ThisTokBegin = ThisTokBuf;
1934 const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1935
1936 // Remove an optional ud-suffix.
1937 if (ThisTokEnd[-1] != '"') {
1938 const char *UDSuffixEnd = ThisTokEnd;
1939 do {
1940 --ThisTokEnd;
1941 } while (ThisTokEnd[-1] != '"');
1942
1943 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1944
1945 if (UDSuffixBuf.empty()) {
1946 if (StringToks[i].hasUCN())
1947 expandUCNs(UDSuffixBuf, UDSuffix);
1948 else
1949 UDSuffixBuf.assign(UDSuffix);
1950 UDSuffixToken = i;
1951 UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1952 UDSuffixTokLoc = StringToks[i].getLocation();
1953 } else {
1954 SmallString<32> ExpandedUDSuffix;
1955 if (StringToks[i].hasUCN()) {
1956 expandUCNs(ExpandedUDSuffix, UDSuffix);
1957 UDSuffix = ExpandedUDSuffix;
1958 }
1959
1960 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1961 // result of a concatenation involving at least one user-defined-string-
1962 // literal, all the participating user-defined-string-literals shall
1963 // have the same ud-suffix.
1964 if (UDSuffixBuf != UDSuffix) {
1965 if (Diags) {
1966 SourceLocation TokLoc = StringToks[i].getLocation();
1967 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1968 << UDSuffixBuf << UDSuffix
1969 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1970 << SourceRange(TokLoc, TokLoc);
1971 }
1972 hadError = true;
1973 }
1974 }
1975 }
1976
1977 // Strip the end quote.
1978 --ThisTokEnd;
1979
1980 // TODO: Input character set mapping support.
1981
1982 // Skip marker for wide or unicode strings.
1983 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1984 ++ThisTokBuf;
1985 // Skip 8 of u8 marker for utf8 strings.
1986 if (ThisTokBuf[0] == '8')
1987 ++ThisTokBuf;
1988 }
1989
1990 // Check for raw string
1991 if (ThisTokBuf[0] == 'R') {
1992 if (ThisTokBuf[1] != '"') {
1993 // The file may have come from PCH and then changed after loading the
1994 // PCH; Fail gracefully.
1995 return DiagnoseLexingError(StringToks[i].getLocation());
1996 }
1997 ThisTokBuf += 2; // skip R"
1998
1999 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
2000 // characters.
2001 constexpr unsigned MaxRawStrDelimLen = 16;
2002
2003 const char *Prefix = ThisTokBuf;
2004 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen &&
2005 ThisTokBuf[0] != '(')
2006 ++ThisTokBuf;
2007 if (ThisTokBuf[0] != '(')
2008 return DiagnoseLexingError(StringToks[i].getLocation());
2009 ++ThisTokBuf; // skip '('
2010
2011 // Remove same number of characters from the end
2012 ThisTokEnd -= ThisTokBuf - Prefix;
2013 if (ThisTokEnd < ThisTokBuf)
2014 return DiagnoseLexingError(StringToks[i].getLocation());
2015
2016 // C++14 [lex.string]p4: A source-file new-line in a raw string literal
2017 // results in a new-line in the resulting execution string-literal.
2018 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
2019 while (!RemainingTokenSpan.empty()) {
2020 // Split the string literal on \r\n boundaries.
2021 size_t CRLFPos = RemainingTokenSpan.find("\r\n");
2022 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
2023 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
2024
2025 // Copy everything before the \r\n sequence into the string literal.
2026 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
2027 hadError = true;
2028
2029 // Point into the \n inside the \r\n sequence and operate on the
2030 // remaining portion of the literal.
2031 RemainingTokenSpan = AfterCRLF.substr(1);
2032 }
2033 } else {
2034 if (ThisTokBuf[0] != '"') {
2035 // The file may have come from PCH and then changed after loading the
2036 // PCH; Fail gracefully.
2037 return DiagnoseLexingError(StringToks[i].getLocation());
2038 }
2039 ++ThisTokBuf; // skip "
2040
2041 // Check if this is a pascal string
2042 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
2043 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
2044
2045 // If the \p sequence is found in the first token, we have a pascal string
2046 // Otherwise, if we already have a pascal string, ignore the first \p
2047 if (i == 0) {
2048 ++ThisTokBuf;
2049 Pascal = true;
2050 } else if (Pascal)
2051 ThisTokBuf += 2;
2052 }
2053
2054 while (ThisTokBuf != ThisTokEnd) {
2055 // Is this a span of non-escape characters?
2056 if (ThisTokBuf[0] != '\\') {
2057 const char *InStart = ThisTokBuf;
2058 do {
2059 ++ThisTokBuf;
2060 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
2061
2062 // Copy the character span over.
2063 if (CopyStringFragment(StringToks[i], ThisTokBegin,
2064 StringRef(InStart, ThisTokBuf - InStart)))
2065 hadError = true;
2066 continue;
2067 }
2068 // Is this a Universal Character Name escape?
2069 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' ||
2070 ThisTokBuf[1] == 'N') {
2071 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
2072 ResultPtr, hadError,
2073 FullSourceLoc(StringToks[i].getLocation(), SM),
2074 CharByteWidth, Diags, Features);
2075 continue;
2076 }
2077 // Otherwise, this is a non-UCN escape character. Process it.
2078 unsigned ResultChar =
2079 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
2080 FullSourceLoc(StringToks[i].getLocation(), SM),
2081 CharByteWidth*8, Diags, Features);
2082
2083 if (CharByteWidth == 4) {
2084 // FIXME: Make the type of the result buffer correct instead of
2085 // using reinterpret_cast.
2086 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
2087 *ResultWidePtr = ResultChar;
2088 ResultPtr += 4;
2089 } else if (CharByteWidth == 2) {
2090 // FIXME: Make the type of the result buffer correct instead of
2091 // using reinterpret_cast.
2092 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
2093 *ResultWidePtr = ResultChar & 0xFFFF;
2094 ResultPtr += 2;
2095 } else {
2096 assert(CharByteWidth == 1 && "Unexpected char width")(static_cast <bool> (CharByteWidth == 1 && "Unexpected char width"
) ? void (0) : __assert_fail ("CharByteWidth == 1 && \"Unexpected char width\""
, "clang/lib/Lex/LiteralSupport.cpp", 2096, __extension__ __PRETTY_FUNCTION__
))
;
2097 *ResultPtr++ = ResultChar & 0xFF;
2098 }
2099 }
2100 }
2101 }
2102
2103 if (Pascal) {
2104 if (CharByteWidth == 4) {
2105 // FIXME: Make the type of the result buffer correct instead of
2106 // using reinterpret_cast.
2107 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
2108 ResultWidePtr[0] = GetNumStringChars() - 1;
2109 } else if (CharByteWidth == 2) {
2110 // FIXME: Make the type of the result buffer correct instead of
2111 // using reinterpret_cast.
2112 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
2113 ResultWidePtr[0] = GetNumStringChars() - 1;
2114 } else {
2115 assert(CharByteWidth == 1 && "Unexpected char width")(static_cast <bool> (CharByteWidth == 1 && "Unexpected char width"
) ? void (0) : __assert_fail ("CharByteWidth == 1 && \"Unexpected char width\""
, "clang/lib/Lex/LiteralSupport.cpp", 2115, __extension__ __PRETTY_FUNCTION__
))
;
2116 ResultBuf[0] = GetNumStringChars() - 1;
2117 }
2118
2119 // Verify that pascal strings aren't too large.
2120 if (GetStringLength() > 256) {
2121 if (Diags)
2122 Diags->Report(StringToks.front().getLocation(),
2123 diag::err_pascal_string_too_long)
2124 << SourceRange(StringToks.front().getLocation(),
2125 StringToks.back().getLocation());
2126 hadError = true;
2127 return;
2128 }
2129 } else if (Diags) {
2130 // Complain if this string literal has too many characters.
2131 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
2132
2133 if (GetNumStringChars() > MaxChars)
2134 Diags->Report(StringToks.front().getLocation(),
2135 diag::ext_string_too_long)
2136 << GetNumStringChars() << MaxChars
2137 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
2138 << SourceRange(StringToks.front().getLocation(),
2139 StringToks.back().getLocation());
2140 }
2141}
2142
2143static const char *resyncUTF8(const char *Err, const char *End) {
2144 if (Err == End)
2145 return End;
2146 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
2147 while (++Err != End && (*Err & 0xC0) == 0x80)
2148 ;
2149 return Err;
2150}
2151
2152/// This function copies from Fragment, which is a sequence of bytes
2153/// within Tok's contents (which begin at TokBegin) into ResultPtr.
2154/// Performs widening for multi-byte characters.
2155bool StringLiteralParser::CopyStringFragment(const Token &Tok,
2156 const char *TokBegin,
2157 StringRef Fragment) {
2158 const llvm::UTF8 *ErrorPtrTmp;
2159 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
2160 return false;
2161
2162 // If we see bad encoding for unprefixed string literals, warn and
2163 // simply copy the byte values, for compatibility with gcc and older
2164 // versions of clang.
2165 bool NoErrorOnBadEncoding = isOrdinary();
2166 if (NoErrorOnBadEncoding) {
2167 memcpy(ResultPtr, Fragment.data(), Fragment.size());
2168 ResultPtr += Fragment.size();
2169 }
2170
2171 if (Diags) {
2172 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2173
2174 FullSourceLoc SourceLoc(Tok.getLocation(), SM);
2175 const DiagnosticBuilder &Builder =
2176 Diag(Diags, Features, SourceLoc, TokBegin,
2177 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
2178 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
2179 : diag::err_bad_string_encoding);
2180
2181 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2182 StringRef NextFragment(NextStart, Fragment.end()-NextStart);
2183
2184 // Decode into a dummy buffer.
2185 SmallString<512> Dummy;
2186 Dummy.reserve(Fragment.size() * CharByteWidth);
2187 char *Ptr = Dummy.data();
2188
2189 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
2190 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2191 NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2192 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
2193 ErrorPtr, NextStart);
2194 NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
2195 }
2196 }
2197 return !NoErrorOnBadEncoding;
2198}
2199
2200void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
2201 hadError = true;
2202 if (Diags)
2203 Diags->Report(Loc, diag::err_lexing_string);
2204}
2205
2206/// getOffsetOfStringByte - This function returns the offset of the
2207/// specified byte of the string data represented by Token. This handles
2208/// advancing over escape sequences in the string.
2209unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
2210 unsigned ByteNo) const {
2211 // Get the spelling of the token.
2212 SmallString<32> SpellingBuffer;
2213 SpellingBuffer.resize(Tok.getLength());
2214
2215 bool StringInvalid = false;
2216 const char *SpellingPtr = &SpellingBuffer[0];
2217 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
2218 &StringInvalid);
2219 if (StringInvalid)
2220 return 0;
2221
2222 const char *SpellingStart = SpellingPtr;
2223 const char *SpellingEnd = SpellingPtr+TokLen;
2224
2225 // Handle UTF-8 strings just like narrow strings.
2226 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
2227 SpellingPtr += 2;
2228
2229 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&(static_cast <bool> (SpellingPtr[0] != 'L' && SpellingPtr
[0] != 'u' && SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"
) ? void (0) : __assert_fail ("SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && SpellingPtr[0] != 'U' && \"Doesn't handle wide or utf strings yet\""
, "clang/lib/Lex/LiteralSupport.cpp", 2230, __extension__ __PRETTY_FUNCTION__
))
2230 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet")(static_cast <bool> (SpellingPtr[0] != 'L' && SpellingPtr
[0] != 'u' && SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"
) ? void (0) : __assert_fail ("SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && SpellingPtr[0] != 'U' && \"Doesn't handle wide or utf strings yet\""
, "clang/lib/Lex/LiteralSupport.cpp", 2230, __extension__ __PRETTY_FUNCTION__
))
;
2231
2232 // For raw string literals, this is easy.
2233 if (SpellingPtr[0] == 'R') {
2234 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!")(static_cast <bool> (SpellingPtr[1] == '"' && "Should be a raw string literal!"
) ? void (0) : __assert_fail ("SpellingPtr[1] == '\"' && \"Should be a raw string literal!\""
, "clang/lib/Lex/LiteralSupport.cpp", 2234, __extension__ __PRETTY_FUNCTION__
))
;
2235 // Skip 'R"'.
2236 SpellingPtr += 2;
2237 while (*SpellingPtr != '(') {
2238 ++SpellingPtr;
2239 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal")(static_cast <bool> (SpellingPtr < SpellingEnd &&
"Missing ( for raw string literal") ? void (0) : __assert_fail
("SpellingPtr < SpellingEnd && \"Missing ( for raw string literal\""
, "clang/lib/Lex/LiteralSupport.cpp", 2239, __extension__ __PRETTY_FUNCTION__
))
;
2240 }
2241 // Skip '('.
2242 ++SpellingPtr;
2243 return SpellingPtr - SpellingStart + ByteNo;
2244 }
2245
2246 // Skip over the leading quote
2247 assert(SpellingPtr[0] == '"' && "Should be a string literal!")(static_cast <bool> (SpellingPtr[0] == '"' && "Should be a string literal!"
) ? void (0) : __assert_fail ("SpellingPtr[0] == '\"' && \"Should be a string literal!\""
, "clang/lib/Lex/LiteralSupport.cpp", 2247, __extension__ __PRETTY_FUNCTION__
))
;
2248 ++SpellingPtr;
2249
2250 // Skip over bytes until we find the offset we're looking for.
2251 while (ByteNo) {
2252 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!")(static_cast <bool> (SpellingPtr < SpellingEnd &&
"Didn't find byte offset!") ? void (0) : __assert_fail ("SpellingPtr < SpellingEnd && \"Didn't find byte offset!\""
, "clang/lib/Lex/LiteralSupport.cpp", 2252, __extension__ __PRETTY_FUNCTION__
))
;
2253
2254 // Step over non-escapes simply.
2255 if (*SpellingPtr != '\\') {
2256 ++SpellingPtr;
2257 --ByteNo;
2258 continue;
2259 }
2260
2261 // Otherwise, this is an escape character. Advance over it.
2262 bool HadError = false;
2263 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' ||
2264 SpellingPtr[1] == 'N') {
2265 const char *EscapePtr = SpellingPtr;
2266 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
2267 1, Features, HadError);
2268 if (Len > ByteNo) {
2269 // ByteNo is somewhere within the escape sequence.
2270 SpellingPtr = EscapePtr;
2271 break;
2272 }
2273 ByteNo -= Len;
2274 } else {
2275 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
2276 FullSourceLoc(Tok.getLocation(), SM),
2277 CharByteWidth*8, Diags, Features);
2278 --ByteNo;
2279 }
2280 assert(!HadError && "This method isn't valid on erroneous strings")(static_cast <bool> (!HadError && "This method isn't valid on erroneous strings"
) ? void (0) : __assert_fail ("!HadError && \"This method isn't valid on erroneous strings\""
, "clang/lib/Lex/LiteralSupport.cpp", 2280, __extension__ __PRETTY_FUNCTION__
))
;
2281 }
2282
2283 return SpellingPtr-SpellingStart;
2284}
2285
2286/// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2287/// suffixes as ud-suffixes, because the diagnostic experience is better if we
2288/// treat it as an invalid suffix.
2289bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
2290 StringRef Suffix) {
2291 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
2292 Suffix == "sv";
2293}