Bug Summary

File:llvm/lib/Transforms/Scalar/LoopFlatten.cpp
Warning:line 185, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LoopFlatten.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/build-llvm/lib/Transforms/Scalar -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-03-15-022507-3198-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Transforms/Scalar/LoopFlatten.cpp

/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Transforms/Scalar/LoopFlatten.cpp

1//===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass flattens pairs nested loops into a single loop.
10//
11// The intention is to optimise loop nests like this, which together access an
12// array linearly:
13// for (int i = 0; i < N; ++i)
14// for (int j = 0; j < M; ++j)
15// f(A[i*M+j]);
16// into one loop:
17// for (int i = 0; i < (N*M); ++i)
18// f(A[i]);
19//
20// It can also flatten loops where the induction variables are not used in the
21// loop. This is only worth doing if the induction variables are only used in an
22// expression like i*M+j. If they had any other uses, we would have to insert a
23// div/mod to reconstruct the original values, so this wouldn't be profitable.
24//
25// We also need to prove that N*M will not overflow.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/Transforms/Scalar/LoopFlatten.h"
30#include "llvm/Analysis/AssumptionCache.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/Analysis/OptimizationRemarkEmitter.h"
33#include "llvm/Analysis/ScalarEvolution.h"
34#include "llvm/Analysis/TargetTransformInfo.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/IR/Dominators.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/IRBuilder.h"
39#include "llvm/IR/Module.h"
40#include "llvm/IR/PatternMatch.h"
41#include "llvm/IR/Verifier.h"
42#include "llvm/InitializePasses.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Transforms/Scalar.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/Transforms/Utils/LoopUtils.h"
49#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
50#include "llvm/Transforms/Utils/SimplifyIndVar.h"
51
52#define DEBUG_TYPE"loop-flatten" "loop-flatten"
53
54using namespace llvm;
55using namespace llvm::PatternMatch;
56
57static cl::opt<unsigned> RepeatedInstructionThreshold(
58 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
59 cl::desc("Limit on the cost of instructions that can be repeated due to "
60 "loop flattening"));
61
62static cl::opt<bool>
63 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
64 cl::init(false),
65 cl::desc("Assume that the product of the two iteration "
66 "limits will never overflow"));
67
68static cl::opt<bool>
69 WidenIV("loop-flatten-widen-iv", cl::Hidden,
70 cl::init(true),
71 cl::desc("Widen the loop induction variables, if possible, so "
72 "overflow checks won't reject flattening"));
73
74struct FlattenInfo {
75 Loop *OuterLoop = nullptr;
76 Loop *InnerLoop = nullptr;
77 PHINode *InnerInductionPHI = nullptr;
78 PHINode *OuterInductionPHI = nullptr;
79 Value *InnerLimit = nullptr;
80 Value *OuterLimit = nullptr;
81 BinaryOperator *InnerIncrement = nullptr;
82 BinaryOperator *OuterIncrement = nullptr;
83 BranchInst *InnerBranch = nullptr;
84 BranchInst *OuterBranch = nullptr;
85 SmallPtrSet<Value *, 4> LinearIVUses;
86 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
87
88 // Whether this holds the flatten info before or after widening.
89 bool Widened = false;
90
91 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
92};
93
94// Finds the induction variable, increment and limit for a simple loop that we
95// can flatten.
96static bool findLoopComponents(
97 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
98 PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment,
99 BranchInst *&BackBranch, ScalarEvolution *SE) {
100 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Finding components of loop: "
<< L->getName() << "\n"; } } while (false)
;
1
Assuming 'DebugFlag' is false
2
Loop condition is false. Exiting loop
101
102 if (!L->isLoopSimplifyForm()) {
3
Assuming the condition is false
4
Taking false branch
103 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop is not in normal form\n"
; } } while (false)
;
104 return false;
105 }
106
107 // There must be exactly one exiting block, and it must be the same at the
108 // latch.
109 BasicBlock *Latch = L->getLoopLatch();
110 if (L->getExitingBlock() != Latch) {
5
Assuming the condition is false
6
Taking false branch
111 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Exiting and latch block are different\n"
; } } while (false)
;
112 return false;
113 }
114 // Latch block must end in a conditional branch.
115 BackBranch = dyn_cast<BranchInst>(Latch->getTerminator());
7
Assuming the object is a 'BranchInst'
116 if (!BackBranch
7.1
'BackBranch' is non-null
7.1
'BackBranch' is non-null
7.1
'BackBranch' is non-null
|| !BackBranch->isConditional()) {
8
Calling 'BranchInst::isConditional'
11
Returning from 'BranchInst::isConditional'
12
Taking false branch
117 LLVM_DEBUG(dbgs() << "Could not find back-branch\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Could not find back-branch\n"
; } } while (false)
;
118 return false;
119 }
120 IterationInstructions.insert(BackBranch);
121 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found back branch: "; BackBranch
->dump(); } } while (false)
;
13
Assuming 'DebugFlag' is false
14
Loop condition is false. Exiting loop
122 bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0));
123
124 // Find the induction PHI. If there is no induction PHI, we can't do the
125 // transformation. TODO: could other variables trigger this? Do we have to
126 // search for the best one?
127 InductionPHI = nullptr;
128 for (PHINode &PHI : L->getHeader()->phis()) {
129 InductionDescriptor ID;
130 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) {
15
Assuming the condition is true
16
Taking true branch
131 InductionPHI = &PHI;
132 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found induction PHI: "; InductionPHI
->dump(); } } while (false)
;
17
Assuming 'DebugFlag' is false
18
Loop condition is false. Exiting loop
133 break;
19
Execution continues on line 136
134 }
135 }
136 if (!InductionPHI
19.1
'InductionPHI' is non-null
19.1
'InductionPHI' is non-null
19.1
'InductionPHI' is non-null
) {
20
Taking false branch
137 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Could not find induction PHI\n"
; } } while (false)
;
138 return false;
139 }
140
141 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
142 if (ContinueOnTrue)
23
Assuming 'ContinueOnTrue' is false
24
Taking false branch
143 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
144 else
145 return Pred == CmpInst::ICMP_EQ;
25
Assuming 'Pred' is equal to ICMP_EQ
26
Returning the value 1, which participates in a condition later
146 };
147
148 // Find Compare and make sure it is valid
149 ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition());
21
Assuming the object is a 'ICmpInst'
150 if (!Compare
21.1
'Compare' is non-null
21.1
'Compare' is non-null
21.1
'Compare' is non-null
|| !IsValidPredicate(Compare->getUnsignedPredicate()) ||
22
Calling 'operator()'
27
Returning from 'operator()'
29
Taking false branch
151 Compare->hasNUsesOrMore(2)) {
28
Assuming the condition is false
152 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Could not find valid comparison\n"
; } } while (false)
;
153 return false;
154 }
155 IterationInstructions.insert(Compare);
156 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found comparison: "; Compare
->dump(); } } while (false)
;
30
Assuming 'DebugFlag' is false
31
Loop condition is false. Exiting loop
157
158 // Find increment and limit from the compare
159 Increment = nullptr;
160 if (match(Compare->getOperand(0),
32
Calling 'match<llvm::Value, llvm::PatternMatch::BinaryOp_match<llvm::PatternMatch::specificval_ty, llvm::PatternMatch::constantint_match<1>, 13, true>>'
40
Returning from 'match<llvm::Value, llvm::PatternMatch::BinaryOp_match<llvm::PatternMatch::specificval_ty, llvm::PatternMatch::constantint_match<1>, 13, true>>'
41
Taking true branch
161 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
162 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0));
42
The object is a 'BinaryOperator'
163 Limit = Compare->getOperand(1);
164 } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE &&
165 match(Compare->getOperand(1),
166 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
167 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1));
168 Limit = Compare->getOperand(0);
169 }
170 if (!Increment
42.1
'Increment' is non-null
42.1
'Increment' is non-null
42.1
'Increment' is non-null
|| Increment->hasNUsesOrMore(3)) {
43
Assuming the condition is false
44
Taking false branch
171 LLVM_DEBUG(dbgs() << "Cound not find valid increment\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cound not find valid increment\n"
; } } while (false)
;
172 return false;
173 }
174 IterationInstructions.insert(Increment);
175 LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found increment: "; Increment
->dump(); } } while (false)
;
45
Assuming 'DebugFlag' is false
46
Loop condition is false. Exiting loop
176 LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found limit: "; Limit->
dump(); } } while (false)
;
47
Loop condition is false. Exiting loop
177
178 assert(InductionPHI->getNumIncomingValues() == 2)((InductionPHI->getNumIncomingValues() == 2) ? static_cast
<void> (0) : __assert_fail ("InductionPHI->getNumIncomingValues() == 2"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Transforms/Scalar/LoopFlatten.cpp"
, 178, __PRETTY_FUNCTION__))
;
48
Assuming the condition is true
49
'?' condition is true
179 assert(InductionPHI->getIncomingValueForBlock(Latch) == Increment &&((InductionPHI->getIncomingValueForBlock(Latch) == Increment
&& "PHI value is not increment inst") ? static_cast<
void> (0) : __assert_fail ("InductionPHI->getIncomingValueForBlock(Latch) == Increment && \"PHI value is not increment inst\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Transforms/Scalar/LoopFlatten.cpp"
, 180, __PRETTY_FUNCTION__))
50
Assuming the condition is true
51
'?' condition is true
180 "PHI value is not increment inst")((InductionPHI->getIncomingValueForBlock(Latch) == Increment
&& "PHI value is not increment inst") ? static_cast<
void> (0) : __assert_fail ("InductionPHI->getIncomingValueForBlock(Latch) == Increment && \"PHI value is not increment inst\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Transforms/Scalar/LoopFlatten.cpp"
, 180, __PRETTY_FUNCTION__))
;
181
182 auto *CI = dyn_cast<ConstantInt>(
52
Assuming the object is not a 'ConstantInt'
53
'CI' initialized to a null pointer value
183 InductionPHI->getIncomingValueForBlock(L->getLoopPreheader()));
184 if (!CI
53.1
'CI' is null
53.1
'CI' is null
53.1
'CI' is null
|| !CI->isZero()) {
185 LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "PHI value is not zero: "
; CI->dump(); } } while (false)
;
54
Assuming 'DebugFlag' is true
55
Assuming the condition is true
56
Taking true branch
57
Called C++ object pointer is null
186 return false;
187 }
188
189 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Successfully found all loop components\n"
; } } while (false)
;
190 return true;
191}
192
193static bool checkPHIs(struct FlattenInfo &FI,
194 const TargetTransformInfo *TTI) {
195 // All PHIs in the inner and outer headers must either be:
196 // - The induction PHI, which we are going to rewrite as one induction in
197 // the new loop. This is already checked by findLoopComponents.
198 // - An outer header PHI with all incoming values from outside the loop.
199 // LoopSimplify guarantees we have a pre-header, so we don't need to
200 // worry about that here.
201 // - Pairs of PHIs in the inner and outer headers, which implement a
202 // loop-carried dependency that will still be valid in the new loop. To
203 // be valid, this variable must be modified only in the inner loop.
204
205 // The set of PHI nodes in the outer loop header that we know will still be
206 // valid after the transformation. These will not need to be modified (with
207 // the exception of the induction variable), but we do need to check that
208 // there are no unsafe PHI nodes.
209 SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
210 SafeOuterPHIs.insert(FI.OuterInductionPHI);
211
212 // Check that all PHI nodes in the inner loop header match one of the valid
213 // patterns.
214 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
215 // The induction PHIs break these rules, and that's OK because we treat
216 // them specially when doing the transformation.
217 if (&InnerPHI == FI.InnerInductionPHI)
218 continue;
219
220 // Each inner loop PHI node must have two incoming values/blocks - one
221 // from the pre-header, and one from the latch.
222 assert(InnerPHI.getNumIncomingValues() == 2)((InnerPHI.getNumIncomingValues() == 2) ? static_cast<void
> (0) : __assert_fail ("InnerPHI.getNumIncomingValues() == 2"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Transforms/Scalar/LoopFlatten.cpp"
, 222, __PRETTY_FUNCTION__))
;
223 Value *PreHeaderValue =
224 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
225 Value *LatchValue =
226 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
227
228 // The incoming value from the outer loop must be the PHI node in the
229 // outer loop header, with no modifications made in the top of the outer
230 // loop.
231 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
232 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
233 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "value modified in top of outer loop\n"
; } } while (false)
;
234 return false;
235 }
236
237 // The other incoming value must come from the inner loop, without any
238 // modifications in the tail end of the outer loop. We are in LCSSA form,
239 // so this will actually be a PHI in the inner loop's exit block, which
240 // only uses values from inside the inner loop.
241 PHINode *LCSSAPHI = dyn_cast<PHINode>(
242 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
243 if (!LCSSAPHI) {
244 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "could not find LCSSA PHI\n"
; } } while (false)
;
245 return false;
246 }
247
248 // The value used by the LCSSA PHI must be the same one that the inner
249 // loop's PHI uses.
250 if (LCSSAPHI->hasConstantValue() != LatchValue) {
251 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "LCSSA PHI incoming value does not match latch value\n"
; } } while (false)
252 dbgs() << "LCSSA PHI incoming value does not match latch value\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "LCSSA PHI incoming value does not match latch value\n"
; } } while (false)
;
253 return false;
254 }
255
256 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "PHI pair is safe:\n"; } }
while (false)
;
257 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << " Inner: "; InnerPHI.dump
(); } } while (false)
;
258 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << " Outer: "; OuterPHI->
dump(); } } while (false)
;
259 SafeOuterPHIs.insert(OuterPHI);
260 FI.InnerPHIsToTransform.insert(&InnerPHI);
261 }
262
263 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
264 if (!SafeOuterPHIs.count(&OuterPHI)) {
265 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "found unsafe PHI in outer loop: "
; OuterPHI.dump(); } } while (false)
;
266 return false;
267 }
268 }
269
270 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkPHIs: OK\n"; } } while
(false)
;
271 return true;
272}
273
274static bool
275checkOuterLoopInsts(struct FlattenInfo &FI,
276 SmallPtrSetImpl<Instruction *> &IterationInstructions,
277 const TargetTransformInfo *TTI) {
278 // Check for instructions in the outer but not inner loop. If any of these
279 // have side-effects then this transformation is not legal, and if there is
280 // a significant amount of code here which can't be optimised out that it's
281 // not profitable (as these instructions would get executed for each
282 // iteration of the inner loop).
283 InstructionCost RepeatedInstrCost = 0;
284 for (auto *B : FI.OuterLoop->getBlocks()) {
285 if (FI.InnerLoop->contains(B))
286 continue;
287
288 for (auto &I : *B) {
289 if (!isa<PHINode>(&I) && !I.isTerminator() &&
290 !isSafeToSpeculativelyExecute(&I)) {
291 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cannot flatten because instruction may have "
"side effects: "; I.dump(); } } while (false)
292 "side effects: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cannot flatten because instruction may have "
"side effects: "; I.dump(); } } while (false)
293 I.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cannot flatten because instruction may have "
"side effects: "; I.dump(); } } while (false)
;
294 return false;
295 }
296 // The execution count of the outer loop's iteration instructions
297 // (increment, compare and branch) will be increased, but the
298 // equivalent instructions will be removed from the inner loop, so
299 // they make a net difference of zero.
300 if (IterationInstructions.count(&I))
301 continue;
302 // The uncoditional branch to the inner loop's header will turn into
303 // a fall-through, so adds no cost.
304 BranchInst *Br = dyn_cast<BranchInst>(&I);
305 if (Br && Br->isUnconditional() &&
306 Br->getSuccessor(0) == FI.InnerLoop->getHeader())
307 continue;
308 // Multiplies of the outer iteration variable and inner iteration
309 // count will be optimised out.
310 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
311 m_Specific(FI.InnerLimit))))
312 continue;
313 InstructionCost Cost =
314 TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
315 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cost " << Cost <<
": "; I.dump(); } } while (false)
;
316 RepeatedInstrCost += Cost;
317 }
318 }
319
320 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cost of instructions that will be repeated: "
<< RepeatedInstrCost << "\n"; } } while (false)
321 << RepeatedInstrCost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cost of instructions that will be repeated: "
<< RepeatedInstrCost << "\n"; } } while (false)
;
322 // Bail out if flattening the loops would cause instructions in the outer
323 // loop but not in the inner loop to be executed extra times.
324 if (RepeatedInstrCost > RepeatedInstructionThreshold) {
325 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"
; } } while (false)
;
326 return false;
327 }
328
329 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkOuterLoopInsts: OK\n"
; } } while (false)
;
330 return true;
331}
332
333static bool checkIVUsers(struct FlattenInfo &FI) {
334 // We require all uses of both induction variables to match this pattern:
335 //
336 // (OuterPHI * InnerLimit) + InnerPHI
337 //
338 // Any uses of the induction variables not matching that pattern would
339 // require a div/mod to reconstruct in the flattened loop, so the
340 // transformation wouldn't be profitable.
341
342 Value *InnerLimit = FI.InnerLimit;
343 if (FI.Widened &&
344 (isa<SExtInst>(InnerLimit) || isa<ZExtInst>(InnerLimit)))
345 InnerLimit = cast<Instruction>(InnerLimit)->getOperand(0);
346
347 // Check that all uses of the inner loop's induction variable match the
348 // expected pattern, recording the uses of the outer IV.
349 SmallPtrSet<Value *, 4> ValidOuterPHIUses;
350 for (User *U : FI.InnerInductionPHI->users()) {
351 if (U == FI.InnerIncrement)
352 continue;
353
354 // After widening the IVs, a trunc instruction might have been introduced, so
355 // look through truncs.
356 if (isa<TruncInst>(U)) {
357 if (!U->hasOneUse())
358 return false;
359 U = *U->user_begin();
360 }
361
362 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found use of inner induction variable: "
; U->dump(); } } while (false)
;
363
364 Value *MatchedMul;
365 Value *MatchedItCount;
366 bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
367 m_Value(MatchedMul))) &&
368 match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
369 m_Value(MatchedItCount)));
370
371 // Matches the same pattern as above, except it also looks for truncs
372 // on the phi, which can be the result of widening the induction variables.
373 bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
374 m_Value(MatchedMul))) &&
375 match(MatchedMul,
376 m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
377 m_Value(MatchedItCount)));
378
379 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerLimit) {
380 LLVM_DEBUG(dbgs() << "Use is optimisable\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Use is optimisable\n"; }
} while (false)
;
381 ValidOuterPHIUses.insert(MatchedMul);
382 FI.LinearIVUses.insert(U);
383 } else {
384 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Did not match expected pattern, bailing\n"
; } } while (false)
;
385 return false;
386 }
387 }
388
389 // Check that there are no uses of the outer IV other than the ones found
390 // as part of the pattern above.
391 for (User *U : FI.OuterInductionPHI->users()) {
392 if (U == FI.OuterIncrement)
393 continue;
394
395 auto IsValidOuterPHIUses = [&] (User *U) -> bool {
396 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found use of outer induction variable: "
; U->dump(); } } while (false)
;
397 if (!ValidOuterPHIUses.count(U)) {
398 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Did not match expected pattern, bailing\n"
; } } while (false)
;
399 return false;
400 }
401 LLVM_DEBUG(dbgs() << "Use is optimisable\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Use is optimisable\n"; }
} while (false)
;
402 return true;
403 };
404
405 if (auto *V = dyn_cast<TruncInst>(U)) {
406 for (auto *K : V->users()) {
407 if (!IsValidOuterPHIUses(K))
408 return false;
409 }
410 continue;
411 }
412
413 if (!IsValidOuterPHIUses(U))
414 return false;
415 }
416
417 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
418 dbgs() << "Found " << FI.LinearIVUses.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
419 << " value(s) that can be replaced:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
420 for (Value *V : FI.LinearIVUses) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
421 dbgs() << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
422 V->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
423 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
;
424 return true;
425}
426
427// Return an OverflowResult dependant on if overflow of the multiplication of
428// InnerLimit and OuterLimit can be assumed not to happen.
429static OverflowResult checkOverflow(struct FlattenInfo &FI,
430 DominatorTree *DT, AssumptionCache *AC) {
431 Function *F = FI.OuterLoop->getHeader()->getParent();
432 const DataLayout &DL = F->getParent()->getDataLayout();
433
434 // For debugging/testing.
435 if (AssumeNoOverflow)
436 return OverflowResult::NeverOverflows;
437
438 // Check if the multiply could not overflow due to known ranges of the
439 // input values.
440 OverflowResult OR = computeOverflowForUnsignedMul(
441 FI.InnerLimit, FI.OuterLimit, DL, AC,
442 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
443 if (OR != OverflowResult::MayOverflow)
444 return OR;
445
446 for (Value *V : FI.LinearIVUses) {
447 for (Value *U : V->users()) {
448 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
449 // The IV is used as the operand of a GEP, and the IV is at least as
450 // wide as the address space of the GEP. In this case, the GEP would
451 // wrap around the address space before the IV increment wraps, which
452 // would be UB.
453 if (GEP->isInBounds() &&
454 V->getType()->getIntegerBitWidth() >=
455 DL.getPointerTypeSizeInBits(GEP->getType())) {
456 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "use of linear IV would be UB if overflow occurred: "
; GEP->dump(); } } while (false)
457 dbgs() << "use of linear IV would be UB if overflow occurred: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "use of linear IV would be UB if overflow occurred: "
; GEP->dump(); } } while (false)
458 GEP->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "use of linear IV would be UB if overflow occurred: "
; GEP->dump(); } } while (false)
;
459 return OverflowResult::NeverOverflows;
460 }
461 }
462 }
463 }
464
465 return OverflowResult::MayOverflow;
466}
467
468static bool CanFlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT,
469 LoopInfo *LI, ScalarEvolution *SE,
470 AssumptionCache *AC, const TargetTransformInfo *TTI) {
471 SmallPtrSet<Instruction *, 8> IterationInstructions;
472 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI,
473 FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE))
474 return false;
475 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI,
476 FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE))
477 return false;
478
479 // Both of the loop limit values must be invariant in the outer loop
480 // (non-instructions are all inherently invariant).
481 if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) {
482 LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "inner loop limit not invariant\n"
; } } while (false)
;
483 return false;
484 }
485 if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) {
486 LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "outer loop limit not invariant\n"
; } } while (false)
;
487 return false;
488 }
489
490 if (!checkPHIs(FI, TTI))
491 return false;
492
493 // FIXME: it should be possible to handle different types correctly.
494 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
495 return false;
496
497 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
498 return false;
499
500 // Find the values in the loop that can be replaced with the linearized
501 // induction variable, and check that there are no other uses of the inner
502 // or outer induction variable. If there were, we could still do this
503 // transformation, but we'd have to insert a div/mod to calculate the
504 // original IVs, so it wouldn't be profitable.
505 if (!checkIVUsers(FI))
506 return false;
507
508 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "CanFlattenLoopPair: OK\n"
; } } while (false)
;
509 return true;
510}
511
512static bool DoFlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT,
513 LoopInfo *LI, ScalarEvolution *SE,
514 AssumptionCache *AC,
515 const TargetTransformInfo *TTI) {
516 Function *F = FI.OuterLoop->getHeader()->getParent();
517 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Checks all passed, doing the transformation\n"
; } } while (false)
;
518 {
519 using namespace ore;
520 OptimizationRemark Remark(DEBUG_TYPE"loop-flatten", "Flattened", FI.InnerLoop->getStartLoc(),
521 FI.InnerLoop->getHeader());
522 OptimizationRemarkEmitter ORE(F);
523 Remark << "Flattened into outer loop";
524 ORE.emit(Remark);
525 }
526
527 Value *NewTripCount =
528 BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount",
529 FI.OuterLoop->getLoopPreheader()->getTerminator());
530 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Created new trip count in preheader: "
; NewTripCount->dump(); } } while (false)
531 NewTripCount->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Created new trip count in preheader: "
; NewTripCount->dump(); } } while (false)
;
532
533 // Fix up PHI nodes that take values from the inner loop back-edge, which
534 // we are about to remove.
535 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
536
537 // The old Phi will be optimised away later, but for now we can't leave
538 // leave it in an invalid state, so are updating them too.
539 for (PHINode *PHI : FI.InnerPHIsToTransform)
540 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
541
542 // Modify the trip count of the outer loop to be the product of the two
543 // trip counts.
544 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
545
546 // Replace the inner loop backedge with an unconditional branch to the exit.
547 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
548 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
549 InnerExitingBlock->getTerminator()->eraseFromParent();
550 BranchInst::Create(InnerExitBlock, InnerExitingBlock);
551 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
552
553 // Replace all uses of the polynomial calculated from the two induction
554 // variables with the one new one.
555 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
556 for (Value *V : FI.LinearIVUses) {
557 Value *OuterValue = FI.OuterInductionPHI;
558 if (FI.Widened)
559 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
560 "flatten.trunciv");
561
562 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Replacing: "; V->dump
(); dbgs() << "with: "; OuterValue->dump(); } }
while (false)
563 dbgs() << "with: "; OuterValue->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Replacing: "; V->dump
(); dbgs() << "with: "; OuterValue->dump(); } }
while (false)
;
564 V->replaceAllUsesWith(OuterValue);
565 }
566
567 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
568 // deleted, and any information that have about the outer loop invalidated.
569 SE->forgetLoop(FI.OuterLoop);
570 SE->forgetLoop(FI.InnerLoop);
571 LI->erase(FI.InnerLoop);
572 return true;
573}
574
575static bool CanWidenIV(struct FlattenInfo &FI, DominatorTree *DT,
576 LoopInfo *LI, ScalarEvolution *SE,
577 AssumptionCache *AC, const TargetTransformInfo *TTI) {
578 if (!WidenIV) {
579 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Widening the IVs is disabled\n"
; } } while (false)
;
580 return false;
581 }
582
583 LLVM_DEBUG(dbgs() << "Try widening the IVs\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Try widening the IVs\n";
} } while (false)
;
584 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
585 auto &DL = M->getDataLayout();
586 auto *InnerType = FI.InnerInductionPHI->getType();
587 auto *OuterType = FI.OuterInductionPHI->getType();
588 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
589 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
590
591 // If both induction types are less than the maximum legal integer width,
592 // promote both to the widest type available so we know calculating
593 // (OuterLimit * InnerLimit) as the new trip count is safe.
594 if (InnerType != OuterType ||
595 InnerType->getScalarSizeInBits() >= MaxLegalSize ||
596 MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
597 LLVM_DEBUG(dbgs() << "Can't widen the IV\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Can't widen the IV\n"; }
} while (false)
;
598 return false;
599 }
600
601 SCEVExpander Rewriter(*SE, DL, "loopflatten");
602 SmallVector<WideIVInfo, 2> WideIVs;
603 SmallVector<WeakTrackingVH, 4> DeadInsts;
604 WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false });
605 WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false });
606 unsigned ElimExt;
607 unsigned Widened;
608
609 for (unsigned i = 0; i < WideIVs.size(); i++) {
610 PHINode *WidePhi = createWideIV(WideIVs[i], LI, SE, Rewriter, DT, DeadInsts,
611 ElimExt, Widened, true /* HasGuards */,
612 true /* UsePostIncrementRanges */);
613 if (!WidePhi)
614 return false;
615 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Created wide phi: "; WidePhi
->dump(); } } while (false)
;
616 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIVs[i].NarrowIV->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Deleting old phi: "; WideIVs
[i].NarrowIV->dump(); } } while (false)
;
617 RecursivelyDeleteDeadPHINode(WideIVs[i].NarrowIV);
618 }
619 // After widening, rediscover all the loop components.
620 assert(Widened && "Widenend IV expected")((Widened && "Widenend IV expected") ? static_cast<
void> (0) : __assert_fail ("Widened && \"Widenend IV expected\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/lib/Transforms/Scalar/LoopFlatten.cpp"
, 620, __PRETTY_FUNCTION__))
;
621 FI.Widened = true;
622 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
623}
624
625static bool FlattenLoopPair(struct FlattenInfo &FI, DominatorTree *DT,
626 LoopInfo *LI, ScalarEvolution *SE,
627 AssumptionCache *AC,
628 const TargetTransformInfo *TTI) {
629 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop flattening running on outer loop "
<< FI.OuterLoop->getHeader()->getName() <<
" and inner loop " << FI.InnerLoop->getHeader()->
getName() << " in " << FI.OuterLoop->getHeader
()->getParent()->getName() << "\n"; } } while (false
)
630 dbgs() << "Loop flattening running on outer loop "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop flattening running on outer loop "
<< FI.OuterLoop->getHeader()->getName() <<
" and inner loop " << FI.InnerLoop->getHeader()->
getName() << " in " << FI.OuterLoop->getHeader
()->getParent()->getName() << "\n"; } } while (false
)
631 << FI.OuterLoop->getHeader()->getName() << " and inner loop "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop flattening running on outer loop "
<< FI.OuterLoop->getHeader()->getName() <<
" and inner loop " << FI.InnerLoop->getHeader()->
getName() << " in " << FI.OuterLoop->getHeader
()->getParent()->getName() << "\n"; } } while (false
)
632 << FI.InnerLoop->getHeader()->getName() << " in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop flattening running on outer loop "
<< FI.OuterLoop->getHeader()->getName() <<
" and inner loop " << FI.InnerLoop->getHeader()->
getName() << " in " << FI.OuterLoop->getHeader
()->getParent()->getName() << "\n"; } } while (false
)
633 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop flattening running on outer loop "
<< FI.OuterLoop->getHeader()->getName() <<
" and inner loop " << FI.InnerLoop->getHeader()->
getName() << " in " << FI.OuterLoop->getHeader
()->getParent()->getName() << "\n"; } } while (false
)
;
634
635 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
636 return false;
637
638 // Check if we can widen the induction variables to avoid overflow checks.
639 if (CanWidenIV(FI, DT, LI, SE, AC, TTI))
640 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
641
642 // Check if the new iteration variable might overflow. In this case, we
643 // need to version the loop, and select the original version at runtime if
644 // the iteration space is too large.
645 // TODO: We currently don't version the loop.
646 OverflowResult OR = checkOverflow(FI, DT, AC);
647 if (OR == OverflowResult::AlwaysOverflowsHigh ||
648 OR == OverflowResult::AlwaysOverflowsLow) {
649 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Multiply would always overflow, so not profitable\n"
; } } while (false)
;
650 return false;
651 } else if (OR == OverflowResult::MayOverflow) {
652 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Multiply might overflow, not flattening\n"
; } } while (false)
;
653 return false;
654 }
655
656 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Multiply cannot overflow, modifying loop in-place\n"
; } } while (false)
;
657 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
658}
659
660bool Flatten(DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
661 AssumptionCache *AC, TargetTransformInfo *TTI) {
662 bool Changed = false;
663 for (auto *InnerLoop : LI->getLoopsInPreorder()) {
664 auto *OuterLoop = InnerLoop->getParentLoop();
665 if (!OuterLoop)
666 continue;
667 struct FlattenInfo FI(OuterLoop, InnerLoop);
668 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
669 }
670 return Changed;
671}
672
673PreservedAnalyses LoopFlattenPass::run(Function &F,
674 FunctionAnalysisManager &AM) {
675 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
676 auto *LI = &AM.getResult<LoopAnalysis>(F);
677 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
678 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
679 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
680
681 if (!Flatten(DT, LI, SE, AC, TTI))
682 return PreservedAnalyses::all();
683
684 PreservedAnalyses PA;
685 PA.preserveSet<CFGAnalyses>();
686 return PA;
687}
688
689namespace {
690class LoopFlattenLegacyPass : public FunctionPass {
691public:
692 static char ID; // Pass ID, replacement for typeid
693 LoopFlattenLegacyPass() : FunctionPass(ID) {
694 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
695 }
696
697 // Possibly flatten loop L into its child.
698 bool runOnFunction(Function &F) override;
699
700 void getAnalysisUsage(AnalysisUsage &AU) const override {
701 getLoopAnalysisUsage(AU);
702 AU.addRequired<TargetTransformInfoWrapperPass>();
703 AU.addPreserved<TargetTransformInfoWrapperPass>();
704 AU.addRequired<AssumptionCacheTracker>();
705 AU.addPreserved<AssumptionCacheTracker>();
706 }
707};
708} // namespace
709
710char LoopFlattenLegacyPass::ID = 0;
711INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",static void *initializeLoopFlattenLegacyPassPassOnce(PassRegistry
&Registry) {
712 false, false)static void *initializeLoopFlattenLegacyPassPassOnce(PassRegistry
&Registry) {
713INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
714INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
715INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",PassInfo *PI = new PassInfo( "Flattens loops", "loop-flatten"
, &LoopFlattenLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LoopFlattenLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLoopFlattenLegacyPassPassFlag
; void llvm::initializeLoopFlattenLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLoopFlattenLegacyPassPassFlag
, initializeLoopFlattenLegacyPassPassOnce, std::ref(Registry)
); }
716 false, false)PassInfo *PI = new PassInfo( "Flattens loops", "loop-flatten"
, &LoopFlattenLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LoopFlattenLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLoopFlattenLegacyPassPassFlag
; void llvm::initializeLoopFlattenLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLoopFlattenLegacyPassPassFlag
, initializeLoopFlattenLegacyPassPassOnce, std::ref(Registry)
); }
717
718FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
719
720bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
721 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
722 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
723 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
724 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
725 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
726 auto *TTI = &TTIP.getTTI(F);
727 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
728 return Flatten(DT, LI, SE, AC, TTI);
729}

/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/OperandTraits.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Use.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/ErrorHandling.h"
44#include <cassert>
45#include <cstddef>
46#include <cstdint>
47#include <iterator>
48
49namespace llvm {
50
51class APInt;
52class ConstantInt;
53class DataLayout;
54class LLVMContext;
55
56//===----------------------------------------------------------------------===//
57// AllocaInst Class
58//===----------------------------------------------------------------------===//
59
60/// an instruction to allocate memory on the stack
61class AllocaInst : public UnaryInstruction {
62 Type *AllocatedType;
63
64 using AlignmentField = AlignmentBitfieldElementT<0>;
65 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
66 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
67 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
68 SwiftErrorField>(),
69 "Bitfields must be contiguous");
70
71protected:
72 // Note: Instruction needs to be a friend here to call cloneImpl.
73 friend class Instruction;
74
75 AllocaInst *cloneImpl() const;
76
77public:
78 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
79 const Twine &Name, Instruction *InsertBefore);
80 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
81 const Twine &Name, BasicBlock *InsertAtEnd);
82
83 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
84 Instruction *InsertBefore);
85 AllocaInst(Type *Ty, unsigned AddrSpace,
86 const Twine &Name, BasicBlock *InsertAtEnd);
87
88 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
89 const Twine &Name = "", Instruction *InsertBefore = nullptr);
90 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
91 const Twine &Name, BasicBlock *InsertAtEnd);
92
93 /// Return true if there is an allocation size parameter to the allocation
94 /// instruction that is not 1.
95 bool isArrayAllocation() const;
96
97 /// Get the number of elements allocated. For a simple allocation of a single
98 /// element, this will return a constant 1 value.
99 const Value *getArraySize() const { return getOperand(0); }
100 Value *getArraySize() { return getOperand(0); }
101
102 /// Overload to return most specific pointer type.
103 PointerType *getType() const {
104 return cast<PointerType>(Instruction::getType());
105 }
106
107 /// Get allocation size in bits. Returns None if size can't be determined,
108 /// e.g. in case of a VLA.
109 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
110
111 /// Return the type that is being allocated by the instruction.
112 Type *getAllocatedType() const { return AllocatedType; }
113 /// for use only in special circumstances that need to generically
114 /// transform a whole instruction (eg: IR linking and vectorization).
115 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
116
117 /// Return the alignment of the memory that is being allocated by the
118 /// instruction.
119 Align getAlign() const {
120 return Align(1ULL << getSubclassData<AlignmentField>());
121 }
122
123 void setAlignment(Align Align) {
124 setSubclassData<AlignmentField>(Log2(Align));
125 }
126
127 // FIXME: Remove this one transition to Align is over.
128 unsigned getAlignment() const { return getAlign().value(); }
129
130 /// Return true if this alloca is in the entry block of the function and is a
131 /// constant size. If so, the code generator will fold it into the
132 /// prolog/epilog code, so it is basically free.
133 bool isStaticAlloca() const;
134
135 /// Return true if this alloca is used as an inalloca argument to a call. Such
136 /// allocas are never considered static even if they are in the entry block.
137 bool isUsedWithInAlloca() const {
138 return getSubclassData<UsedWithInAllocaField>();
139 }
140
141 /// Specify whether this alloca is used to represent the arguments to a call.
142 void setUsedWithInAlloca(bool V) {
143 setSubclassData<UsedWithInAllocaField>(V);
144 }
145
146 /// Return true if this alloca is used as a swifterror argument to a call.
147 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
148 /// Specify whether this alloca is used to represent a swifterror.
149 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 template <typename Bitfield>
163 void setSubclassData(typename Bitfield::Type Value) {
164 Instruction::setSubclassData<Bitfield>(Value);
165 }
166};
167
168//===----------------------------------------------------------------------===//
169// LoadInst Class
170//===----------------------------------------------------------------------===//
171
172/// An instruction for reading from memory. This uses the SubclassData field in
173/// Value to store whether or not the load is volatile.
174class LoadInst : public UnaryInstruction {
175 using VolatileField = BoolBitfieldElementT<0>;
176 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
177 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
178 static_assert(
179 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
180 "Bitfields must be contiguous");
181
182 void AssertOK();
183
184protected:
185 // Note: Instruction needs to be a friend here to call cloneImpl.
186 friend class Instruction;
187
188 LoadInst *cloneImpl() const;
189
190public:
191 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
192 Instruction *InsertBefore);
193 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 Instruction *InsertBefore);
196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197 BasicBlock *InsertAtEnd);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 Align Align, Instruction *InsertBefore = nullptr);
200 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201 Align Align, BasicBlock *InsertAtEnd);
202 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203 Align Align, AtomicOrdering Order,
204 SyncScope::ID SSID = SyncScope::System,
205 Instruction *InsertBefore = nullptr);
206 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
207 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
208 BasicBlock *InsertAtEnd);
209
210 /// Return true if this is a load from a volatile memory location.
211 bool isVolatile() const { return getSubclassData<VolatileField>(); }
212
213 /// Specify whether this is a volatile load or not.
214 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
215
216 /// Return the alignment of the access that is being performed.
217 /// FIXME: Remove this function once transition to Align is over.
218 /// Use getAlign() instead.
219 unsigned getAlignment() const { return getAlign().value(); }
220
221 /// Return the alignment of the access that is being performed.
222 Align getAlign() const {
223 return Align(1ULL << (getSubclassData<AlignmentField>()));
224 }
225
226 void setAlignment(Align Align) {
227 setSubclassData<AlignmentField>(Log2(Align));
228 }
229
230 /// Returns the ordering constraint of this load instruction.
231 AtomicOrdering getOrdering() const {
232 return getSubclassData<OrderingField>();
233 }
234 /// Sets the ordering constraint of this load instruction. May not be Release
235 /// or AcquireRelease.
236 void setOrdering(AtomicOrdering Ordering) {
237 setSubclassData<OrderingField>(Ordering);
238 }
239
240 /// Returns the synchronization scope ID of this load instruction.
241 SyncScope::ID getSyncScopeID() const {
242 return SSID;
243 }
244
245 /// Sets the synchronization scope ID of this load instruction.
246 void setSyncScopeID(SyncScope::ID SSID) {
247 this->SSID = SSID;
248 }
249
250 /// Sets the ordering constraint and the synchronization scope ID of this load
251 /// instruction.
252 void setAtomic(AtomicOrdering Ordering,
253 SyncScope::ID SSID = SyncScope::System) {
254 setOrdering(Ordering);
255 setSyncScopeID(SSID);
256 }
257
258 bool isSimple() const { return !isAtomic() && !isVolatile(); }
259
260 bool isUnordered() const {
261 return (getOrdering() == AtomicOrdering::NotAtomic ||
262 getOrdering() == AtomicOrdering::Unordered) &&
263 !isVolatile();
264 }
265
266 Value *getPointerOperand() { return getOperand(0); }
267 const Value *getPointerOperand() const { return getOperand(0); }
268 static unsigned getPointerOperandIndex() { return 0U; }
269 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
270
271 /// Returns the address space of the pointer operand.
272 unsigned getPointerAddressSpace() const {
273 return getPointerOperandType()->getPointerAddressSpace();
274 }
275
276 // Methods for support type inquiry through isa, cast, and dyn_cast:
277 static bool classof(const Instruction *I) {
278 return I->getOpcode() == Instruction::Load;
279 }
280 static bool classof(const Value *V) {
281 return isa<Instruction>(V) && classof(cast<Instruction>(V));
282 }
283
284private:
285 // Shadow Instruction::setInstructionSubclassData with a private forwarding
286 // method so that subclasses cannot accidentally use it.
287 template <typename Bitfield>
288 void setSubclassData(typename Bitfield::Type Value) {
289 Instruction::setSubclassData<Bitfield>(Value);
290 }
291
292 /// The synchronization scope ID of this load instruction. Not quite enough
293 /// room in SubClassData for everything, so synchronization scope ID gets its
294 /// own field.
295 SyncScope::ID SSID;
296};
297
298//===----------------------------------------------------------------------===//
299// StoreInst Class
300//===----------------------------------------------------------------------===//
301
302/// An instruction for storing to memory.
303class StoreInst : public Instruction {
304 using VolatileField = BoolBitfieldElementT<0>;
305 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
306 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
307 static_assert(
308 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
309 "Bitfields must be contiguous");
310
311 void AssertOK();
312
313protected:
314 // Note: Instruction needs to be a friend here to call cloneImpl.
315 friend class Instruction;
316
317 StoreInst *cloneImpl() const;
318
319public:
320 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
321 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
322 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
325 Instruction *InsertBefore = nullptr);
326 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327 BasicBlock *InsertAtEnd);
328 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
329 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
330 Instruction *InsertBefore = nullptr);
331 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
332 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
333
334 // allocate space for exactly two operands
335 void *operator new(size_t s) {
336 return User::operator new(s, 2);
337 }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<StoreInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst
*>(this))[i_nocapture].get()); } void StoreInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 437, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst
::getNumOperands() const { return OperandTraits<StoreInst>
::operands(this); } template <int Idx_nocapture> Use &
StoreInst::Op() { return this->OpFrom<Idx_nocapture>
(this); } template <int Idx_nocapture> const Use &StoreInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t s) {
466 return User::operator new(s, 0);
467 }
468
469 /// Returns the ordering constraint of this fence instruction.
470 AtomicOrdering getOrdering() const {
471 return getSubclassData<OrderingField>();
472 }
473
474 /// Sets the ordering constraint of this fence instruction. May only be
475 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
476 void setOrdering(AtomicOrdering Ordering) {
477 setSubclassData<OrderingField>(Ordering);
478 }
479
480 /// Returns the synchronization scope ID of this fence instruction.
481 SyncScope::ID getSyncScopeID() const {
482 return SSID;
483 }
484
485 /// Sets the synchronization scope ID of this fence instruction.
486 void setSyncScopeID(SyncScope::ID SSID) {
487 this->SSID = SSID;
488 }
489
490 // Methods for support type inquiry through isa, cast, and dyn_cast:
491 static bool classof(const Instruction *I) {
492 return I->getOpcode() == Instruction::Fence;
493 }
494 static bool classof(const Value *V) {
495 return isa<Instruction>(V) && classof(cast<Instruction>(V));
496 }
497
498private:
499 // Shadow Instruction::setInstructionSubclassData with a private forwarding
500 // method so that subclasses cannot accidentally use it.
501 template <typename Bitfield>
502 void setSubclassData(typename Bitfield::Type Value) {
503 Instruction::setSubclassData<Bitfield>(Value);
504 }
505
506 /// The synchronization scope ID of this fence instruction. Not quite enough
507 /// room in SubClassData for everything, so synchronization scope ID gets its
508 /// own field.
509 SyncScope::ID SSID;
510};
511
512//===----------------------------------------------------------------------===//
513// AtomicCmpXchgInst Class
514//===----------------------------------------------------------------------===//
515
516/// An instruction that atomically checks whether a
517/// specified value is in a memory location, and, if it is, stores a new value
518/// there. The value returned by this instruction is a pair containing the
519/// original value as first element, and an i1 indicating success (true) or
520/// failure (false) as second element.
521///
522class AtomicCmpXchgInst : public Instruction {
523 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
524 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
525 SyncScope::ID SSID);
526
527 template <unsigned Offset>
528 using AtomicOrderingBitfieldElement =
529 typename Bitfield::Element<AtomicOrdering, Offset, 3,
530 AtomicOrdering::LAST>;
531
532protected:
533 // Note: Instruction needs to be a friend here to call cloneImpl.
534 friend class Instruction;
535
536 AtomicCmpXchgInst *cloneImpl() const;
537
538public:
539 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
540 AtomicOrdering SuccessOrdering,
541 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
542 Instruction *InsertBefore = nullptr);
543 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
544 AtomicOrdering SuccessOrdering,
545 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
546 BasicBlock *InsertAtEnd);
547
548 // allocate space for exactly three operands
549 void *operator new(size_t s) {
550 return User::operator new(s, 3);
551 }
552
553 using VolatileField = BoolBitfieldElementT<0>;
554 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
555 using SuccessOrderingField =
556 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
557 using FailureOrderingField =
558 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
559 using AlignmentField =
560 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
561 static_assert(
562 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
563 FailureOrderingField, AlignmentField>(),
564 "Bitfields must be contiguous");
565
566 /// Return the alignment of the memory that is being allocated by the
567 /// instruction.
568 Align getAlign() const {
569 return Align(1ULL << getSubclassData<AlignmentField>());
570 }
571
572 void setAlignment(Align Align) {
573 setSubclassData<AlignmentField>(Log2(Align));
574 }
575
576 /// Return true if this is a cmpxchg from a volatile memory
577 /// location.
578 ///
579 bool isVolatile() const { return getSubclassData<VolatileField>(); }
580
581 /// Specify whether this is a volatile cmpxchg.
582 ///
583 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
584
585 /// Return true if this cmpxchg may spuriously fail.
586 bool isWeak() const { return getSubclassData<WeakField>(); }
587
588 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
589
590 /// Transparently provide more efficient getOperand methods.
591 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
592
593 /// Returns the success ordering constraint of this cmpxchg instruction.
594 AtomicOrdering getSuccessOrdering() const {
595 return getSubclassData<SuccessOrderingField>();
596 }
597
598 /// Sets the success ordering constraint of this cmpxchg instruction.
599 void setSuccessOrdering(AtomicOrdering Ordering) {
600 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
601 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 601, __PRETTY_FUNCTION__))
;
602 setSubclassData<SuccessOrderingField>(Ordering);
603 }
604
605 /// Returns the failure ordering constraint of this cmpxchg instruction.
606 AtomicOrdering getFailureOrdering() const {
607 return getSubclassData<FailureOrderingField>();
608 }
609
610 /// Sets the failure ordering constraint of this cmpxchg instruction.
611 void setFailureOrdering(AtomicOrdering Ordering) {
612 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
613 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 613, __PRETTY_FUNCTION__))
;
614 setSubclassData<FailureOrderingField>(Ordering);
615 }
616
617 /// Returns the synchronization scope ID of this cmpxchg instruction.
618 SyncScope::ID getSyncScopeID() const {
619 return SSID;
620 }
621
622 /// Sets the synchronization scope ID of this cmpxchg instruction.
623 void setSyncScopeID(SyncScope::ID SSID) {
624 this->SSID = SSID;
625 }
626
627 Value *getPointerOperand() { return getOperand(0); }
628 const Value *getPointerOperand() const { return getOperand(0); }
629 static unsigned getPointerOperandIndex() { return 0U; }
630
631 Value *getCompareOperand() { return getOperand(1); }
632 const Value *getCompareOperand() const { return getOperand(1); }
633
634 Value *getNewValOperand() { return getOperand(2); }
635 const Value *getNewValOperand() const { return getOperand(2); }
636
637 /// Returns the address space of the pointer operand.
638 unsigned getPointerAddressSpace() const {
639 return getPointerOperand()->getType()->getPointerAddressSpace();
640 }
641
642 /// Returns the strongest permitted ordering on failure, given the
643 /// desired ordering on success.
644 ///
645 /// If the comparison in a cmpxchg operation fails, there is no atomic store
646 /// so release semantics cannot be provided. So this function drops explicit
647 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
648 /// operation would remain SequentiallyConsistent.
649 static AtomicOrdering
650 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
651 switch (SuccessOrdering) {
652 default:
653 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 653)
;
654 case AtomicOrdering::Release:
655 case AtomicOrdering::Monotonic:
656 return AtomicOrdering::Monotonic;
657 case AtomicOrdering::AcquireRelease:
658 case AtomicOrdering::Acquire:
659 return AtomicOrdering::Acquire;
660 case AtomicOrdering::SequentiallyConsistent:
661 return AtomicOrdering::SequentiallyConsistent;
662 }
663 }
664
665 // Methods for support type inquiry through isa, cast, and dyn_cast:
666 static bool classof(const Instruction *I) {
667 return I->getOpcode() == Instruction::AtomicCmpXchg;
668 }
669 static bool classof(const Value *V) {
670 return isa<Instruction>(V) && classof(cast<Instruction>(V));
671 }
672
673private:
674 // Shadow Instruction::setInstructionSubclassData with a private forwarding
675 // method so that subclasses cannot accidentally use it.
676 template <typename Bitfield>
677 void setSubclassData(typename Bitfield::Type Value) {
678 Instruction::setSubclassData<Bitfield>(Value);
679 }
680
681 /// The synchronization scope ID of this cmpxchg instruction. Not quite
682 /// enough room in SubClassData for everything, so synchronization scope ID
683 /// gets its own field.
684 SyncScope::ID SSID;
685};
686
687template <>
688struct OperandTraits<AtomicCmpXchgInst> :
689 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
690};
691
692DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 692, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
AtomicCmpXchgInst::getNumOperands() const { return OperandTraits
<AtomicCmpXchgInst>::operands(this); } template <int
Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &AtomicCmpXchgInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
693
694//===----------------------------------------------------------------------===//
695// AtomicRMWInst Class
696//===----------------------------------------------------------------------===//
697
698/// an instruction that atomically reads a memory location,
699/// combines it with another value, and then stores the result back. Returns
700/// the old value.
701///
702class AtomicRMWInst : public Instruction {
703protected:
704 // Note: Instruction needs to be a friend here to call cloneImpl.
705 friend class Instruction;
706
707 AtomicRMWInst *cloneImpl() const;
708
709public:
710 /// This enumeration lists the possible modifications atomicrmw can make. In
711 /// the descriptions, 'p' is the pointer to the instruction's memory location,
712 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
713 /// instruction. These instructions always return 'old'.
714 enum BinOp : unsigned {
715 /// *p = v
716 Xchg,
717 /// *p = old + v
718 Add,
719 /// *p = old - v
720 Sub,
721 /// *p = old & v
722 And,
723 /// *p = ~(old & v)
724 Nand,
725 /// *p = old | v
726 Or,
727 /// *p = old ^ v
728 Xor,
729 /// *p = old >signed v ? old : v
730 Max,
731 /// *p = old <signed v ? old : v
732 Min,
733 /// *p = old >unsigned v ? old : v
734 UMax,
735 /// *p = old <unsigned v ? old : v
736 UMin,
737
738 /// *p = old + v
739 FAdd,
740
741 /// *p = old - v
742 FSub,
743
744 FIRST_BINOP = Xchg,
745 LAST_BINOP = FSub,
746 BAD_BINOP
747 };
748
749private:
750 template <unsigned Offset>
751 using AtomicOrderingBitfieldElement =
752 typename Bitfield::Element<AtomicOrdering, Offset, 3,
753 AtomicOrdering::LAST>;
754
755 template <unsigned Offset>
756 using BinOpBitfieldElement =
757 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
758
759public:
760 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
761 AtomicOrdering Ordering, SyncScope::ID SSID,
762 Instruction *InsertBefore = nullptr);
763 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
764 AtomicOrdering Ordering, SyncScope::ID SSID,
765 BasicBlock *InsertAtEnd);
766
767 // allocate space for exactly two operands
768 void *operator new(size_t s) {
769 return User::operator new(s, 2);
770 }
771
772 using VolatileField = BoolBitfieldElementT<0>;
773 using AtomicOrderingField =
774 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
775 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
776 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
777 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
778 OperationField, AlignmentField>(),
779 "Bitfields must be contiguous");
780
781 BinOp getOperation() const { return getSubclassData<OperationField>(); }
782
783 static StringRef getOperationName(BinOp Op);
784
785 static bool isFPOperation(BinOp Op) {
786 switch (Op) {
787 case AtomicRMWInst::FAdd:
788 case AtomicRMWInst::FSub:
789 return true;
790 default:
791 return false;
792 }
793 }
794
795 void setOperation(BinOp Operation) {
796 setSubclassData<OperationField>(Operation);
797 }
798
799 /// Return the alignment of the memory that is being allocated by the
800 /// instruction.
801 Align getAlign() const {
802 return Align(1ULL << getSubclassData<AlignmentField>());
803 }
804
805 void setAlignment(Align Align) {
806 setSubclassData<AlignmentField>(Log2(Align));
807 }
808
809 /// Return true if this is a RMW on a volatile memory location.
810 ///
811 bool isVolatile() const { return getSubclassData<VolatileField>(); }
812
813 /// Specify whether this is a volatile RMW or not.
814 ///
815 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
816
817 /// Transparently provide more efficient getOperand methods.
818 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
819
820 /// Returns the ordering constraint of this rmw instruction.
821 AtomicOrdering getOrdering() const {
822 return getSubclassData<AtomicOrderingField>();
823 }
824
825 /// Sets the ordering constraint of this rmw instruction.
826 void setOrdering(AtomicOrdering Ordering) {
827 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
828 "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 828, __PRETTY_FUNCTION__))
;
829 setSubclassData<AtomicOrderingField>(Ordering);
830 }
831
832 /// Returns the synchronization scope ID of this rmw instruction.
833 SyncScope::ID getSyncScopeID() const {
834 return SSID;
835 }
836
837 /// Sets the synchronization scope ID of this rmw instruction.
838 void setSyncScopeID(SyncScope::ID SSID) {
839 this->SSID = SSID;
840 }
841
842 Value *getPointerOperand() { return getOperand(0); }
843 const Value *getPointerOperand() const { return getOperand(0); }
844 static unsigned getPointerOperandIndex() { return 0U; }
845
846 Value *getValOperand() { return getOperand(1); }
847 const Value *getValOperand() const { return getOperand(1); }
848
849 /// Returns the address space of the pointer operand.
850 unsigned getPointerAddressSpace() const {
851 return getPointerOperand()->getType()->getPointerAddressSpace();
852 }
853
854 bool isFloatingPointOperation() const {
855 return isFPOperation(getOperation());
856 }
857
858 // Methods for support type inquiry through isa, cast, and dyn_cast:
859 static bool classof(const Instruction *I) {
860 return I->getOpcode() == Instruction::AtomicRMW;
861 }
862 static bool classof(const Value *V) {
863 return isa<Instruction>(V) && classof(cast<Instruction>(V));
864 }
865
866private:
867 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
868 AtomicOrdering Ordering, SyncScope::ID SSID);
869
870 // Shadow Instruction::setInstructionSubclassData with a private forwarding
871 // method so that subclasses cannot accidentally use it.
872 template <typename Bitfield>
873 void setSubclassData(typename Bitfield::Type Value) {
874 Instruction::setSubclassData<Bitfield>(Value);
875 }
876
877 /// The synchronization scope ID of this rmw instruction. Not quite enough
878 /// room in SubClassData for everything, so synchronization scope ID gets its
879 /// own field.
880 SyncScope::ID SSID;
881};
882
883template <>
884struct OperandTraits<AtomicRMWInst>
885 : public FixedNumOperandTraits<AtomicRMWInst,2> {
886};
887
888DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<AtomicRMWInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicRMWInst>::op_begin(const_cast<
AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<AtomicRMWInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 888, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst
::getNumOperands() const { return OperandTraits<AtomicRMWInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
889
890//===----------------------------------------------------------------------===//
891// GetElementPtrInst Class
892//===----------------------------------------------------------------------===//
893
894// checkGEPType - Simple wrapper function to give a better assertion failure
895// message on bad indexes for a gep instruction.
896//
897inline Type *checkGEPType(Type *Ty) {
898 assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!"
) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 898, __PRETTY_FUNCTION__))
;
899 return Ty;
900}
901
902/// an instruction for type-safe pointer arithmetic to
903/// access elements of arrays and structs
904///
905class GetElementPtrInst : public Instruction {
906 Type *SourceElementType;
907 Type *ResultElementType;
908
909 GetElementPtrInst(const GetElementPtrInst &GEPI);
910
911 /// Constructors - Create a getelementptr instruction with a base pointer an
912 /// list of indices. The first ctor can optionally insert before an existing
913 /// instruction, the second appends the new instruction to the specified
914 /// BasicBlock.
915 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
916 ArrayRef<Value *> IdxList, unsigned Values,
917 const Twine &NameStr, Instruction *InsertBefore);
918 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
919 ArrayRef<Value *> IdxList, unsigned Values,
920 const Twine &NameStr, BasicBlock *InsertAtEnd);
921
922 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
923
924protected:
925 // Note: Instruction needs to be a friend here to call cloneImpl.
926 friend class Instruction;
927
928 GetElementPtrInst *cloneImpl() const;
929
930public:
931 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
932 ArrayRef<Value *> IdxList,
933 const Twine &NameStr = "",
934 Instruction *InsertBefore = nullptr) {
935 unsigned Values = 1 + unsigned(IdxList.size());
936 if (!PointeeType)
937 PointeeType =
938 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
939 else
940 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
941 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
942 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 942, __PRETTY_FUNCTION__))
;
943 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
944 NameStr, InsertBefore);
945 }
946
947 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
948 ArrayRef<Value *> IdxList,
949 const Twine &NameStr,
950 BasicBlock *InsertAtEnd) {
951 unsigned Values = 1 + unsigned(IdxList.size());
952 if (!PointeeType)
953 PointeeType =
954 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
955 else
956 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
957 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
958 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 958, __PRETTY_FUNCTION__))
;
959 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
960 NameStr, InsertAtEnd);
961 }
962
963 /// Create an "inbounds" getelementptr. See the documentation for the
964 /// "inbounds" flag in LangRef.html for details.
965 static GetElementPtrInst *CreateInBounds(Value *Ptr,
966 ArrayRef<Value *> IdxList,
967 const Twine &NameStr = "",
968 Instruction *InsertBefore = nullptr){
969 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
970 }
971
972 static GetElementPtrInst *
973 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
974 const Twine &NameStr = "",
975 Instruction *InsertBefore = nullptr) {
976 GetElementPtrInst *GEP =
977 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
978 GEP->setIsInBounds(true);
979 return GEP;
980 }
981
982 static GetElementPtrInst *CreateInBounds(Value *Ptr,
983 ArrayRef<Value *> IdxList,
984 const Twine &NameStr,
985 BasicBlock *InsertAtEnd) {
986 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
987 }
988
989 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
990 ArrayRef<Value *> IdxList,
991 const Twine &NameStr,
992 BasicBlock *InsertAtEnd) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 /// Transparently provide more efficient getOperand methods.
1000 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1001
1002 Type *getSourceElementType() const { return SourceElementType; }
1003
1004 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1005 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1006
1007 Type *getResultElementType() const {
1008 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
1009 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1009, __PRETTY_FUNCTION__))
;
1010 return ResultElementType;
1011 }
1012
1013 /// Returns the address space of this instruction's pointer type.
1014 unsigned getAddressSpace() const {
1015 // Note that this is always the same as the pointer operand's address space
1016 // and that is cheaper to compute, so cheat here.
1017 return getPointerAddressSpace();
1018 }
1019
1020 /// Returns the result type of a getelementptr with the given source
1021 /// element type and indexes.
1022 ///
1023 /// Null is returned if the indices are invalid for the specified
1024 /// source element type.
1025 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1026 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1027 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1028
1029 /// Return the type of the element at the given index of an indexable
1030 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1031 ///
1032 /// Returns null if the type can't be indexed, or the given index is not
1033 /// legal for the given type.
1034 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1035 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1036
1037 inline op_iterator idx_begin() { return op_begin()+1; }
1038 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1039 inline op_iterator idx_end() { return op_end(); }
1040 inline const_op_iterator idx_end() const { return op_end(); }
1041
1042 inline iterator_range<op_iterator> indices() {
1043 return make_range(idx_begin(), idx_end());
1044 }
1045
1046 inline iterator_range<const_op_iterator> indices() const {
1047 return make_range(idx_begin(), idx_end());
1048 }
1049
1050 Value *getPointerOperand() {
1051 return getOperand(0);
1052 }
1053 const Value *getPointerOperand() const {
1054 return getOperand(0);
1055 }
1056 static unsigned getPointerOperandIndex() {
1057 return 0U; // get index for modifying correct operand.
1058 }
1059
1060 /// Method to return the pointer operand as a
1061 /// PointerType.
1062 Type *getPointerOperandType() const {
1063 return getPointerOperand()->getType();
1064 }
1065
1066 /// Returns the address space of the pointer operand.
1067 unsigned getPointerAddressSpace() const {
1068 return getPointerOperandType()->getPointerAddressSpace();
1069 }
1070
1071 /// Returns the pointer type returned by the GEP
1072 /// instruction, which may be a vector of pointers.
1073 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1074 ArrayRef<Value *> IdxList) {
1075 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1076 Ptr->getType()->getPointerAddressSpace());
1077 // Vector GEP
1078 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1079 ElementCount EltCount = PtrVTy->getElementCount();
1080 return VectorType::get(PtrTy, EltCount);
1081 }
1082 for (Value *Index : IdxList)
1083 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1084 ElementCount EltCount = IndexVTy->getElementCount();
1085 return VectorType::get(PtrTy, EltCount);
1086 }
1087 // Scalar GEP
1088 return PtrTy;
1089 }
1090
1091 unsigned getNumIndices() const { // Note: always non-negative
1092 return getNumOperands() - 1;
1093 }
1094
1095 bool hasIndices() const {
1096 return getNumOperands() > 1;
1097 }
1098
1099 /// Return true if all of the indices of this GEP are
1100 /// zeros. If so, the result pointer and the first operand have the same
1101 /// value, just potentially different types.
1102 bool hasAllZeroIndices() const;
1103
1104 /// Return true if all of the indices of this GEP are
1105 /// constant integers. If so, the result pointer and the first operand have
1106 /// a constant offset between them.
1107 bool hasAllConstantIndices() const;
1108
1109 /// Set or clear the inbounds flag on this GEP instruction.
1110 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1111 void setIsInBounds(bool b = true);
1112
1113 /// Determine whether the GEP has the inbounds flag.
1114 bool isInBounds() const;
1115
1116 /// Accumulate the constant address offset of this GEP if possible.
1117 ///
1118 /// This routine accepts an APInt into which it will accumulate the constant
1119 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1120 /// all-constant, it returns false and the value of the offset APInt is
1121 /// undefined (it is *not* preserved!). The APInt passed into this routine
1122 /// must be at least as wide as the IntPtr type for the address space of
1123 /// the base GEP pointer.
1124 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1125
1126 // Methods for support type inquiry through isa, cast, and dyn_cast:
1127 static bool classof(const Instruction *I) {
1128 return (I->getOpcode() == Instruction::GetElementPtr);
1129 }
1130 static bool classof(const Value *V) {
1131 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1132 }
1133};
1134
1135template <>
1136struct OperandTraits<GetElementPtrInst> :
1137 public VariadicOperandTraits<GetElementPtrInst, 1> {
1138};
1139
1140GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1141 ArrayRef<Value *> IdxList, unsigned Values,
1142 const Twine &NameStr,
1143 Instruction *InsertBefore)
1144 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1145 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1146 Values, InsertBefore),
1147 SourceElementType(PointeeType),
1148 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1149 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
1150 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1150, __PRETTY_FUNCTION__))
;
1151 init(Ptr, IdxList, NameStr);
1152}
1153
1154GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1155 ArrayRef<Value *> IdxList, unsigned Values,
1156 const Twine &NameStr,
1157 BasicBlock *InsertAtEnd)
1158 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1159 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1160 Values, InsertAtEnd),
1161 SourceElementType(PointeeType),
1162 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1163 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
1164 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1164, __PRETTY_FUNCTION__))
;
1165 init(Ptr, IdxList, NameStr);
1166}
1167
1168DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<GetElementPtrInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1168, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
GetElementPtrInst::getNumOperands() const { return OperandTraits
<GetElementPtrInst>::operands(this); } template <int
Idx_nocapture> Use &GetElementPtrInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &GetElementPtrInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1169
1170//===----------------------------------------------------------------------===//
1171// ICmpInst Class
1172//===----------------------------------------------------------------------===//
1173
1174/// This instruction compares its operands according to the predicate given
1175/// to the constructor. It only operates on integers or pointers. The operands
1176/// must be identical types.
1177/// Represent an integer comparison operator.
1178class ICmpInst: public CmpInst {
1179 void AssertOK() {
1180 assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
1181 "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1181, __PRETTY_FUNCTION__))
;
1182 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
1183 "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1183, __PRETTY_FUNCTION__))
;
1184 // Check that the operands are the right type
1185 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1186 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
1187 "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1187, __PRETTY_FUNCTION__))
;
1188 }
1189
1190protected:
1191 // Note: Instruction needs to be a friend here to call cloneImpl.
1192 friend class Instruction;
1193
1194 /// Clone an identical ICmpInst
1195 ICmpInst *cloneImpl() const;
1196
1197public:
1198 /// Constructor with insert-before-instruction semantics.
1199 ICmpInst(
1200 Instruction *InsertBefore, ///< Where to insert
1201 Predicate pred, ///< The predicate to use for the comparison
1202 Value *LHS, ///< The left-hand-side of the expression
1203 Value *RHS, ///< The right-hand-side of the expression
1204 const Twine &NameStr = "" ///< Name of the instruction
1205 ) : CmpInst(makeCmpResultType(LHS->getType()),
1206 Instruction::ICmp, pred, LHS, RHS, NameStr,
1207 InsertBefore) {
1208#ifndef NDEBUG
1209 AssertOK();
1210#endif
1211 }
1212
1213 /// Constructor with insert-at-end semantics.
1214 ICmpInst(
1215 BasicBlock &InsertAtEnd, ///< Block to insert into.
1216 Predicate pred, ///< The predicate to use for the comparison
1217 Value *LHS, ///< The left-hand-side of the expression
1218 Value *RHS, ///< The right-hand-side of the expression
1219 const Twine &NameStr = "" ///< Name of the instruction
1220 ) : CmpInst(makeCmpResultType(LHS->getType()),
1221 Instruction::ICmp, pred, LHS, RHS, NameStr,
1222 &InsertAtEnd) {
1223#ifndef NDEBUG
1224 AssertOK();
1225#endif
1226 }
1227
1228 /// Constructor with no-insertion semantics
1229 ICmpInst(
1230 Predicate pred, ///< The predicate to use for the comparison
1231 Value *LHS, ///< The left-hand-side of the expression
1232 Value *RHS, ///< The right-hand-side of the expression
1233 const Twine &NameStr = "" ///< Name of the instruction
1234 ) : CmpInst(makeCmpResultType(LHS->getType()),
1235 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1236#ifndef NDEBUG
1237 AssertOK();
1238#endif
1239 }
1240
1241 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1242 /// @returns the predicate that would be the result if the operand were
1243 /// regarded as signed.
1244 /// Return the signed version of the predicate
1245 Predicate getSignedPredicate() const {
1246 return getSignedPredicate(getPredicate());
1247 }
1248
1249 /// This is a static version that you can use without an instruction.
1250 /// Return the signed version of the predicate.
1251 static Predicate getSignedPredicate(Predicate pred);
1252
1253 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1254 /// @returns the predicate that would be the result if the operand were
1255 /// regarded as unsigned.
1256 /// Return the unsigned version of the predicate
1257 Predicate getUnsignedPredicate() const {
1258 return getUnsignedPredicate(getPredicate());
1259 }
1260
1261 /// This is a static version that you can use without an instruction.
1262 /// Return the unsigned version of the predicate.
1263 static Predicate getUnsignedPredicate(Predicate pred);
1264
1265 /// Return true if this predicate is either EQ or NE. This also
1266 /// tests for commutativity.
1267 static bool isEquality(Predicate P) {
1268 return P == ICMP_EQ || P == ICMP_NE;
1269 }
1270
1271 /// Return true if this predicate is either EQ or NE. This also
1272 /// tests for commutativity.
1273 bool isEquality() const {
1274 return isEquality(getPredicate());
1275 }
1276
1277 /// @returns true if the predicate of this ICmpInst is commutative
1278 /// Determine if this relation is commutative.
1279 bool isCommutative() const { return isEquality(); }
1280
1281 /// Return true if the predicate is relational (not EQ or NE).
1282 ///
1283 bool isRelational() const {
1284 return !isEquality();
1285 }
1286
1287 /// Return true if the predicate is relational (not EQ or NE).
1288 ///
1289 static bool isRelational(Predicate P) {
1290 return !isEquality(P);
1291 }
1292
1293 /// Return true if the predicate is SGT or UGT.
1294 ///
1295 static bool isGT(Predicate P) {
1296 return P == ICMP_SGT || P == ICMP_UGT;
1297 }
1298
1299 /// Return true if the predicate is SLT or ULT.
1300 ///
1301 static bool isLT(Predicate P) {
1302 return P == ICMP_SLT || P == ICMP_ULT;
1303 }
1304
1305 /// Return true if the predicate is SGE or UGE.
1306 ///
1307 static bool isGE(Predicate P) {
1308 return P == ICMP_SGE || P == ICMP_UGE;
1309 }
1310
1311 /// Return true if the predicate is SLE or ULE.
1312 ///
1313 static bool isLE(Predicate P) {
1314 return P == ICMP_SLE || P == ICMP_ULE;
1315 }
1316
1317 /// Exchange the two operands to this instruction in such a way that it does
1318 /// not modify the semantics of the instruction. The predicate value may be
1319 /// changed to retain the same result if the predicate is order dependent
1320 /// (e.g. ult).
1321 /// Swap operands and adjust predicate.
1322 void swapOperands() {
1323 setPredicate(getSwappedPredicate());
1324 Op<0>().swap(Op<1>());
1325 }
1326
1327 // Methods for support type inquiry through isa, cast, and dyn_cast:
1328 static bool classof(const Instruction *I) {
1329 return I->getOpcode() == Instruction::ICmp;
1330 }
1331 static bool classof(const Value *V) {
1332 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1333 }
1334};
1335
1336//===----------------------------------------------------------------------===//
1337// FCmpInst Class
1338//===----------------------------------------------------------------------===//
1339
1340/// This instruction compares its operands according to the predicate given
1341/// to the constructor. It only operates on floating point values or packed
1342/// vectors of floating point values. The operands must be identical types.
1343/// Represents a floating point comparison operator.
1344class FCmpInst: public CmpInst {
1345 void AssertOK() {
1346 assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ?
static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1346, __PRETTY_FUNCTION__))
;
1347 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1348, __PRETTY_FUNCTION__))
1348 "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1348, __PRETTY_FUNCTION__))
;
1349 // Check that the operands are the right type
1350 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1351, __PRETTY_FUNCTION__))
1351 "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1351, __PRETTY_FUNCTION__))
;
1352 }
1353
1354protected:
1355 // Note: Instruction needs to be a friend here to call cloneImpl.
1356 friend class Instruction;
1357
1358 /// Clone an identical FCmpInst
1359 FCmpInst *cloneImpl() const;
1360
1361public:
1362 /// Constructor with insert-before-instruction semantics.
1363 FCmpInst(
1364 Instruction *InsertBefore, ///< Where to insert
1365 Predicate pred, ///< The predicate to use for the comparison
1366 Value *LHS, ///< The left-hand-side of the expression
1367 Value *RHS, ///< The right-hand-side of the expression
1368 const Twine &NameStr = "" ///< Name of the instruction
1369 ) : CmpInst(makeCmpResultType(LHS->getType()),
1370 Instruction::FCmp, pred, LHS, RHS, NameStr,
1371 InsertBefore) {
1372 AssertOK();
1373 }
1374
1375 /// Constructor with insert-at-end semantics.
1376 FCmpInst(
1377 BasicBlock &InsertAtEnd, ///< Block to insert into.
1378 Predicate pred, ///< The predicate to use for the comparison
1379 Value *LHS, ///< The left-hand-side of the expression
1380 Value *RHS, ///< The right-hand-side of the expression
1381 const Twine &NameStr = "" ///< Name of the instruction
1382 ) : CmpInst(makeCmpResultType(LHS->getType()),
1383 Instruction::FCmp, pred, LHS, RHS, NameStr,
1384 &InsertAtEnd) {
1385 AssertOK();
1386 }
1387
1388 /// Constructor with no-insertion semantics
1389 FCmpInst(
1390 Predicate Pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "", ///< Name of the instruction
1394 Instruction *FlagsSource = nullptr
1395 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1396 RHS, NameStr, nullptr, FlagsSource) {
1397 AssertOK();
1398 }
1399
1400 /// @returns true if the predicate of this instruction is EQ or NE.
1401 /// Determine if this is an equality predicate.
1402 static bool isEquality(Predicate Pred) {
1403 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1404 Pred == FCMP_UNE;
1405 }
1406
1407 /// @returns true if the predicate of this instruction is EQ or NE.
1408 /// Determine if this is an equality predicate.
1409 bool isEquality() const { return isEquality(getPredicate()); }
1410
1411 /// @returns true if the predicate of this instruction is commutative.
1412 /// Determine if this is a commutative predicate.
1413 bool isCommutative() const {
1414 return isEquality() ||
1415 getPredicate() == FCMP_FALSE ||
1416 getPredicate() == FCMP_TRUE ||
1417 getPredicate() == FCMP_ORD ||
1418 getPredicate() == FCMP_UNO;
1419 }
1420
1421 /// @returns true if the predicate is relational (not EQ or NE).
1422 /// Determine if this a relational predicate.
1423 bool isRelational() const { return !isEquality(); }
1424
1425 /// Exchange the two operands to this instruction in such a way that it does
1426 /// not modify the semantics of the instruction. The predicate value may be
1427 /// changed to retain the same result if the predicate is order dependent
1428 /// (e.g. ult).
1429 /// Swap operands and adjust predicate.
1430 void swapOperands() {
1431 setPredicate(getSwappedPredicate());
1432 Op<0>().swap(Op<1>());
1433 }
1434
1435 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1436 static bool classof(const Instruction *I) {
1437 return I->getOpcode() == Instruction::FCmp;
1438 }
1439 static bool classof(const Value *V) {
1440 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1441 }
1442};
1443
1444//===----------------------------------------------------------------------===//
1445/// This class represents a function call, abstracting a target
1446/// machine's calling convention. This class uses low bit of the SubClassData
1447/// field to indicate whether or not this is a tail call. The rest of the bits
1448/// hold the calling convention of the call.
1449///
1450class CallInst : public CallBase {
1451 CallInst(const CallInst &CI);
1452
1453 /// Construct a CallInst given a range of arguments.
1454 /// Construct a CallInst from a range of arguments
1455 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1456 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1457 Instruction *InsertBefore);
1458
1459 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1460 const Twine &NameStr, Instruction *InsertBefore)
1461 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1462
1463 /// Construct a CallInst given a range of arguments.
1464 /// Construct a CallInst from a range of arguments
1465 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1466 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1467 BasicBlock *InsertAtEnd);
1468
1469 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1470 Instruction *InsertBefore);
1471
1472 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1473 BasicBlock *InsertAtEnd);
1474
1475 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1476 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1477 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1478
1479 /// Compute the number of operands to allocate.
1480 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1481 // We need one operand for the called function, plus the input operand
1482 // counts provided.
1483 return 1 + NumArgs + NumBundleInputs;
1484 }
1485
1486protected:
1487 // Note: Instruction needs to be a friend here to call cloneImpl.
1488 friend class Instruction;
1489
1490 CallInst *cloneImpl() const;
1491
1492public:
1493 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1494 Instruction *InsertBefore = nullptr) {
1495 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1496 }
1497
1498 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1499 const Twine &NameStr,
1500 Instruction *InsertBefore = nullptr) {
1501 return new (ComputeNumOperands(Args.size()))
1502 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1503 }
1504
1505 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1506 ArrayRef<OperandBundleDef> Bundles = None,
1507 const Twine &NameStr = "",
1508 Instruction *InsertBefore = nullptr) {
1509 const int NumOperands =
1510 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1511 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1512
1513 return new (NumOperands, DescriptorBytes)
1514 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1515 }
1516
1517 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1518 BasicBlock *InsertAtEnd) {
1519 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1520 }
1521
1522 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1523 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1524 return new (ComputeNumOperands(Args.size()))
1525 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1526 }
1527
1528 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1529 ArrayRef<OperandBundleDef> Bundles,
1530 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1531 const int NumOperands =
1532 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1533 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1534
1535 return new (NumOperands, DescriptorBytes)
1536 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1537 }
1538
1539 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1540 Instruction *InsertBefore = nullptr) {
1541 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1542 InsertBefore);
1543 }
1544
1545 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1546 ArrayRef<OperandBundleDef> Bundles = None,
1547 const Twine &NameStr = "",
1548 Instruction *InsertBefore = nullptr) {
1549 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1550 NameStr, InsertBefore);
1551 }
1552
1553 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1554 const Twine &NameStr,
1555 Instruction *InsertBefore = nullptr) {
1556 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1557 InsertBefore);
1558 }
1559
1560 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1561 BasicBlock *InsertAtEnd) {
1562 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1563 InsertAtEnd);
1564 }
1565
1566 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1567 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1568 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1569 InsertAtEnd);
1570 }
1571
1572 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1573 ArrayRef<OperandBundleDef> Bundles,
1574 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1575 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1576 NameStr, InsertAtEnd);
1577 }
1578
1579 /// Create a clone of \p CI with a different set of operand bundles and
1580 /// insert it before \p InsertPt.
1581 ///
1582 /// The returned call instruction is identical \p CI in every way except that
1583 /// the operand bundles for the new instruction are set to the operand bundles
1584 /// in \p Bundles.
1585 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1586 Instruction *InsertPt = nullptr);
1587
1588 /// Generate the IR for a call to malloc:
1589 /// 1. Compute the malloc call's argument as the specified type's size,
1590 /// possibly multiplied by the array size if the array size is not
1591 /// constant 1.
1592 /// 2. Call malloc with that argument.
1593 /// 3. Bitcast the result of the malloc call to the specified type.
1594 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1595 Type *AllocTy, Value *AllocSize,
1596 Value *ArraySize = nullptr,
1597 Function *MallocF = nullptr,
1598 const Twine &Name = "");
1599 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1600 Type *AllocTy, Value *AllocSize,
1601 Value *ArraySize = nullptr,
1602 Function *MallocF = nullptr,
1603 const Twine &Name = "");
1604 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1605 Type *AllocTy, Value *AllocSize,
1606 Value *ArraySize = nullptr,
1607 ArrayRef<OperandBundleDef> Bundles = None,
1608 Function *MallocF = nullptr,
1609 const Twine &Name = "");
1610 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1611 Type *AllocTy, Value *AllocSize,
1612 Value *ArraySize = nullptr,
1613 ArrayRef<OperandBundleDef> Bundles = None,
1614 Function *MallocF = nullptr,
1615 const Twine &Name = "");
1616 /// Generate the IR for a call to the builtin free function.
1617 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1618 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1619 static Instruction *CreateFree(Value *Source,
1620 ArrayRef<OperandBundleDef> Bundles,
1621 Instruction *InsertBefore);
1622 static Instruction *CreateFree(Value *Source,
1623 ArrayRef<OperandBundleDef> Bundles,
1624 BasicBlock *InsertAtEnd);
1625
1626 // Note that 'musttail' implies 'tail'.
1627 enum TailCallKind : unsigned {
1628 TCK_None = 0,
1629 TCK_Tail = 1,
1630 TCK_MustTail = 2,
1631 TCK_NoTail = 3,
1632 TCK_LAST = TCK_NoTail
1633 };
1634
1635 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1636 static_assert(
1637 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1638 "Bitfields must be contiguous");
1639
1640 TailCallKind getTailCallKind() const {
1641 return getSubclassData<TailCallKindField>();
1642 }
1643
1644 bool isTailCall() const {
1645 TailCallKind Kind = getTailCallKind();
1646 return Kind == TCK_Tail || Kind == TCK_MustTail;
1647 }
1648
1649 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1650
1651 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1652
1653 void setTailCallKind(TailCallKind TCK) {
1654 setSubclassData<TailCallKindField>(TCK);
1655 }
1656
1657 void setTailCall(bool IsTc = true) {
1658 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1659 }
1660
1661 /// Return true if the call can return twice
1662 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1663 void setCanReturnTwice() {
1664 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1665 }
1666
1667 // Methods for support type inquiry through isa, cast, and dyn_cast:
1668 static bool classof(const Instruction *I) {
1669 return I->getOpcode() == Instruction::Call;
1670 }
1671 static bool classof(const Value *V) {
1672 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1673 }
1674
1675 /// Updates profile metadata by scaling it by \p S / \p T.
1676 void updateProfWeight(uint64_t S, uint64_t T);
1677
1678private:
1679 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1680 // method so that subclasses cannot accidentally use it.
1681 template <typename Bitfield>
1682 void setSubclassData(typename Bitfield::Type Value) {
1683 Instruction::setSubclassData<Bitfield>(Value);
1684 }
1685};
1686
1687CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1688 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1689 BasicBlock *InsertAtEnd)
1690 : CallBase(Ty->getReturnType(), Instruction::Call,
1691 OperandTraits<CallBase>::op_end(this) -
1692 (Args.size() + CountBundleInputs(Bundles) + 1),
1693 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1694 InsertAtEnd) {
1695 init(Ty, Func, Args, Bundles, NameStr);
1696}
1697
1698CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1699 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1700 Instruction *InsertBefore)
1701 : CallBase(Ty->getReturnType(), Instruction::Call,
1702 OperandTraits<CallBase>::op_end(this) -
1703 (Args.size() + CountBundleInputs(Bundles) + 1),
1704 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1705 InsertBefore) {
1706 init(Ty, Func, Args, Bundles, NameStr);
1707}
1708
1709//===----------------------------------------------------------------------===//
1710// SelectInst Class
1711//===----------------------------------------------------------------------===//
1712
1713/// This class represents the LLVM 'select' instruction.
1714///
1715class SelectInst : public Instruction {
1716 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1717 Instruction *InsertBefore)
1718 : Instruction(S1->getType(), Instruction::Select,
1719 &Op<0>(), 3, InsertBefore) {
1720 init(C, S1, S2);
1721 setName(NameStr);
1722 }
1723
1724 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1725 BasicBlock *InsertAtEnd)
1726 : Instruction(S1->getType(), Instruction::Select,
1727 &Op<0>(), 3, InsertAtEnd) {
1728 init(C, S1, S2);
1729 setName(NameStr);
1730 }
1731
1732 void init(Value *C, Value *S1, Value *S2) {
1733 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select"
) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1733, __PRETTY_FUNCTION__))
;
1734 Op<0>() = C;
1735 Op<1>() = S1;
1736 Op<2>() = S2;
1737 }
1738
1739protected:
1740 // Note: Instruction needs to be a friend here to call cloneImpl.
1741 friend class Instruction;
1742
1743 SelectInst *cloneImpl() const;
1744
1745public:
1746 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1747 const Twine &NameStr = "",
1748 Instruction *InsertBefore = nullptr,
1749 Instruction *MDFrom = nullptr) {
1750 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1751 if (MDFrom)
1752 Sel->copyMetadata(*MDFrom);
1753 return Sel;
1754 }
1755
1756 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1757 const Twine &NameStr,
1758 BasicBlock *InsertAtEnd) {
1759 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1760 }
1761
1762 const Value *getCondition() const { return Op<0>(); }
1763 const Value *getTrueValue() const { return Op<1>(); }
1764 const Value *getFalseValue() const { return Op<2>(); }
1765 Value *getCondition() { return Op<0>(); }
1766 Value *getTrueValue() { return Op<1>(); }
1767 Value *getFalseValue() { return Op<2>(); }
1768
1769 void setCondition(Value *V) { Op<0>() = V; }
1770 void setTrueValue(Value *V) { Op<1>() = V; }
1771 void setFalseValue(Value *V) { Op<2>() = V; }
1772
1773 /// Swap the true and false values of the select instruction.
1774 /// This doesn't swap prof metadata.
1775 void swapValues() { Op<1>().swap(Op<2>()); }
1776
1777 /// Return a string if the specified operands are invalid
1778 /// for a select operation, otherwise return null.
1779 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1780
1781 /// Transparently provide more efficient getOperand methods.
1782 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1783
1784 OtherOps getOpcode() const {
1785 return static_cast<OtherOps>(Instruction::getOpcode());
1786 }
1787
1788 // Methods for support type inquiry through isa, cast, and dyn_cast:
1789 static bool classof(const Instruction *I) {
1790 return I->getOpcode() == Instruction::Select;
1791 }
1792 static bool classof(const Value *V) {
1793 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1794 }
1795};
1796
1797template <>
1798struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1799};
1800
1801DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1801, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst
*>(this))[i_nocapture].get()); } void SelectInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1801, __PRETTY_FUNCTION__)); OperandTraits<SelectInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst
::getNumOperands() const { return OperandTraits<SelectInst
>::operands(this); } template <int Idx_nocapture> Use
&SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1802
1803//===----------------------------------------------------------------------===//
1804// VAArgInst Class
1805//===----------------------------------------------------------------------===//
1806
1807/// This class represents the va_arg llvm instruction, which returns
1808/// an argument of the specified type given a va_list and increments that list
1809///
1810class VAArgInst : public UnaryInstruction {
1811protected:
1812 // Note: Instruction needs to be a friend here to call cloneImpl.
1813 friend class Instruction;
1814
1815 VAArgInst *cloneImpl() const;
1816
1817public:
1818 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1819 Instruction *InsertBefore = nullptr)
1820 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1821 setName(NameStr);
1822 }
1823
1824 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1825 BasicBlock *InsertAtEnd)
1826 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1827 setName(NameStr);
1828 }
1829
1830 Value *getPointerOperand() { return getOperand(0); }
1831 const Value *getPointerOperand() const { return getOperand(0); }
1832 static unsigned getPointerOperandIndex() { return 0U; }
1833
1834 // Methods for support type inquiry through isa, cast, and dyn_cast:
1835 static bool classof(const Instruction *I) {
1836 return I->getOpcode() == VAArg;
1837 }
1838 static bool classof(const Value *V) {
1839 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1840 }
1841};
1842
1843//===----------------------------------------------------------------------===//
1844// ExtractElementInst Class
1845//===----------------------------------------------------------------------===//
1846
1847/// This instruction extracts a single (scalar)
1848/// element from a VectorType value
1849///
1850class ExtractElementInst : public Instruction {
1851 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1852 Instruction *InsertBefore = nullptr);
1853 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1854 BasicBlock *InsertAtEnd);
1855
1856protected:
1857 // Note: Instruction needs to be a friend here to call cloneImpl.
1858 friend class Instruction;
1859
1860 ExtractElementInst *cloneImpl() const;
1861
1862public:
1863 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1864 const Twine &NameStr = "",
1865 Instruction *InsertBefore = nullptr) {
1866 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1867 }
1868
1869 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1870 const Twine &NameStr,
1871 BasicBlock *InsertAtEnd) {
1872 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1873 }
1874
1875 /// Return true if an extractelement instruction can be
1876 /// formed with the specified operands.
1877 static bool isValidOperands(const Value *Vec, const Value *Idx);
1878
1879 Value *getVectorOperand() { return Op<0>(); }
1880 Value *getIndexOperand() { return Op<1>(); }
1881 const Value *getVectorOperand() const { return Op<0>(); }
1882 const Value *getIndexOperand() const { return Op<1>(); }
1883
1884 VectorType *getVectorOperandType() const {
1885 return cast<VectorType>(getVectorOperand()->getType());
1886 }
1887
1888 /// Transparently provide more efficient getOperand methods.
1889 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1890
1891 // Methods for support type inquiry through isa, cast, and dyn_cast:
1892 static bool classof(const Instruction *I) {
1893 return I->getOpcode() == Instruction::ExtractElement;
1894 }
1895 static bool classof(const Value *V) {
1896 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1897 }
1898};
1899
1900template <>
1901struct OperandTraits<ExtractElementInst> :
1902 public FixedNumOperandTraits<ExtractElementInst, 2> {
1903};
1904
1905DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((i_nocapture < OperandTraits<ExtractElementInst>::
operands(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1905, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ExtractElementInst>::op_begin(const_cast
<ExtractElementInst*>(this))[i_nocapture].get()); } void
ExtractElementInst::setOperand(unsigned i_nocapture, Value *
Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst
>::operands(this) && "setOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1905, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ExtractElementInst::getNumOperands() const { return OperandTraits
<ExtractElementInst>::operands(this); } template <int
Idx_nocapture> Use &ExtractElementInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ExtractElementInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
1906
1907//===----------------------------------------------------------------------===//
1908// InsertElementInst Class
1909//===----------------------------------------------------------------------===//
1910
1911/// This instruction inserts a single (scalar)
1912/// element into a VectorType value
1913///
1914class InsertElementInst : public Instruction {
1915 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1916 const Twine &NameStr = "",
1917 Instruction *InsertBefore = nullptr);
1918 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1919 BasicBlock *InsertAtEnd);
1920
1921protected:
1922 // Note: Instruction needs to be a friend here to call cloneImpl.
1923 friend class Instruction;
1924
1925 InsertElementInst *cloneImpl() const;
1926
1927public:
1928 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1929 const Twine &NameStr = "",
1930 Instruction *InsertBefore = nullptr) {
1931 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1932 }
1933
1934 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1935 const Twine &NameStr,
1936 BasicBlock *InsertAtEnd) {
1937 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1938 }
1939
1940 /// Return true if an insertelement instruction can be
1941 /// formed with the specified operands.
1942 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1943 const Value *Idx);
1944
1945 /// Overload to return most specific vector type.
1946 ///
1947 VectorType *getType() const {
1948 return cast<VectorType>(Instruction::getType());
1949 }
1950
1951 /// Transparently provide more efficient getOperand methods.
1952 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1953
1954 // Methods for support type inquiry through isa, cast, and dyn_cast:
1955 static bool classof(const Instruction *I) {
1956 return I->getOpcode() == Instruction::InsertElement;
1957 }
1958 static bool classof(const Value *V) {
1959 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1960 }
1961};
1962
1963template <>
1964struct OperandTraits<InsertElementInst> :
1965 public FixedNumOperandTraits<InsertElementInst, 3> {
1966};
1967
1968DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1968, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<InsertElementInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 1968, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertElementInst::getNumOperands() const { return OperandTraits
<InsertElementInst>::operands(this); } template <int
Idx_nocapture> Use &InsertElementInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &InsertElementInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1969
1970//===----------------------------------------------------------------------===//
1971// ShuffleVectorInst Class
1972//===----------------------------------------------------------------------===//
1973
1974constexpr int UndefMaskElem = -1;
1975
1976/// This instruction constructs a fixed permutation of two
1977/// input vectors.
1978///
1979/// For each element of the result vector, the shuffle mask selects an element
1980/// from one of the input vectors to copy to the result. Non-negative elements
1981/// in the mask represent an index into the concatenated pair of input vectors.
1982/// UndefMaskElem (-1) specifies that the result element is undefined.
1983///
1984/// For scalable vectors, all the elements of the mask must be 0 or -1. This
1985/// requirement may be relaxed in the future.
1986class ShuffleVectorInst : public Instruction {
1987 SmallVector<int, 4> ShuffleMask;
1988 Constant *ShuffleMaskForBitcode;
1989
1990protected:
1991 // Note: Instruction needs to be a friend here to call cloneImpl.
1992 friend class Instruction;
1993
1994 ShuffleVectorInst *cloneImpl() const;
1995
1996public:
1997 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1998 const Twine &NameStr = "",
1999 Instruction *InsertBefor = nullptr);
2000 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2001 const Twine &NameStr, BasicBlock *InsertAtEnd);
2002 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2003 const Twine &NameStr = "",
2004 Instruction *InsertBefor = nullptr);
2005 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2006 const Twine &NameStr, BasicBlock *InsertAtEnd);
2007
2008 void *operator new(size_t s) { return User::operator new(s, 2); }
2009
2010 /// Swap the operands and adjust the mask to preserve the semantics
2011 /// of the instruction.
2012 void commute();
2013
2014 /// Return true if a shufflevector instruction can be
2015 /// formed with the specified operands.
2016 static bool isValidOperands(const Value *V1, const Value *V2,
2017 const Value *Mask);
2018 static bool isValidOperands(const Value *V1, const Value *V2,
2019 ArrayRef<int> Mask);
2020
2021 /// Overload to return most specific vector type.
2022 ///
2023 VectorType *getType() const {
2024 return cast<VectorType>(Instruction::getType());
2025 }
2026
2027 /// Transparently provide more efficient getOperand methods.
2028 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2029
2030 /// Return the shuffle mask value of this instruction for the given element
2031 /// index. Return UndefMaskElem if the element is undef.
2032 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2033
2034 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2035 /// elements of the mask are returned as UndefMaskElem.
2036 static void getShuffleMask(const Constant *Mask,
2037 SmallVectorImpl<int> &Result);
2038
2039 /// Return the mask for this instruction as a vector of integers. Undefined
2040 /// elements of the mask are returned as UndefMaskElem.
2041 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2042 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2043 }
2044
2045 /// Return the mask for this instruction, for use in bitcode.
2046 ///
2047 /// TODO: This is temporary until we decide a new bitcode encoding for
2048 /// shufflevector.
2049 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2050
2051 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2052 Type *ResultTy);
2053
2054 void setShuffleMask(ArrayRef<int> Mask);
2055
2056 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2057
2058 /// Return true if this shuffle returns a vector with a different number of
2059 /// elements than its source vectors.
2060 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2061 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2062 bool changesLength() const {
2063 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2064 ->getElementCount()
2065 .getKnownMinValue();
2066 unsigned NumMaskElts = ShuffleMask.size();
2067 return NumSourceElts != NumMaskElts;
2068 }
2069
2070 /// Return true if this shuffle returns a vector with a greater number of
2071 /// elements than its source vectors.
2072 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2073 bool increasesLength() const {
2074 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2075 ->getElementCount()
2076 .getKnownMinValue();
2077 unsigned NumMaskElts = ShuffleMask.size();
2078 return NumSourceElts < NumMaskElts;
2079 }
2080
2081 /// Return true if this shuffle mask chooses elements from exactly one source
2082 /// vector.
2083 /// Example: <7,5,undef,7>
2084 /// This assumes that vector operands are the same length as the mask.
2085 static bool isSingleSourceMask(ArrayRef<int> Mask);
2086 static bool isSingleSourceMask(const Constant *Mask) {
2087 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2087, __PRETTY_FUNCTION__))
;
2088 SmallVector<int, 16> MaskAsInts;
2089 getShuffleMask(Mask, MaskAsInts);
2090 return isSingleSourceMask(MaskAsInts);
2091 }
2092
2093 /// Return true if this shuffle chooses elements from exactly one source
2094 /// vector without changing the length of that vector.
2095 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2096 /// TODO: Optionally allow length-changing shuffles.
2097 bool isSingleSource() const {
2098 return !changesLength() && isSingleSourceMask(ShuffleMask);
2099 }
2100
2101 /// Return true if this shuffle mask chooses elements from exactly one source
2102 /// vector without lane crossings. A shuffle using this mask is not
2103 /// necessarily a no-op because it may change the number of elements from its
2104 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2105 /// Example: <undef,undef,2,3>
2106 static bool isIdentityMask(ArrayRef<int> Mask);
2107 static bool isIdentityMask(const Constant *Mask) {
2108 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2108, __PRETTY_FUNCTION__))
;
2109 SmallVector<int, 16> MaskAsInts;
2110 getShuffleMask(Mask, MaskAsInts);
2111 return isIdentityMask(MaskAsInts);
2112 }
2113
2114 /// Return true if this shuffle chooses elements from exactly one source
2115 /// vector without lane crossings and does not change the number of elements
2116 /// from its input vectors.
2117 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2118 bool isIdentity() const {
2119 return !changesLength() && isIdentityMask(ShuffleMask);
2120 }
2121
2122 /// Return true if this shuffle lengthens exactly one source vector with
2123 /// undefs in the high elements.
2124 bool isIdentityWithPadding() const;
2125
2126 /// Return true if this shuffle extracts the first N elements of exactly one
2127 /// source vector.
2128 bool isIdentityWithExtract() const;
2129
2130 /// Return true if this shuffle concatenates its 2 source vectors. This
2131 /// returns false if either input is undefined. In that case, the shuffle is
2132 /// is better classified as an identity with padding operation.
2133 bool isConcat() const;
2134
2135 /// Return true if this shuffle mask chooses elements from its source vectors
2136 /// without lane crossings. A shuffle using this mask would be
2137 /// equivalent to a vector select with a constant condition operand.
2138 /// Example: <4,1,6,undef>
2139 /// This returns false if the mask does not choose from both input vectors.
2140 /// In that case, the shuffle is better classified as an identity shuffle.
2141 /// This assumes that vector operands are the same length as the mask
2142 /// (a length-changing shuffle can never be equivalent to a vector select).
2143 static bool isSelectMask(ArrayRef<int> Mask);
2144 static bool isSelectMask(const Constant *Mask) {
2145 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2145, __PRETTY_FUNCTION__))
;
2146 SmallVector<int, 16> MaskAsInts;
2147 getShuffleMask(Mask, MaskAsInts);
2148 return isSelectMask(MaskAsInts);
2149 }
2150
2151 /// Return true if this shuffle chooses elements from its source vectors
2152 /// without lane crossings and all operands have the same number of elements.
2153 /// In other words, this shuffle is equivalent to a vector select with a
2154 /// constant condition operand.
2155 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2156 /// This returns false if the mask does not choose from both input vectors.
2157 /// In that case, the shuffle is better classified as an identity shuffle.
2158 /// TODO: Optionally allow length-changing shuffles.
2159 bool isSelect() const {
2160 return !changesLength() && isSelectMask(ShuffleMask);
2161 }
2162
2163 /// Return true if this shuffle mask swaps the order of elements from exactly
2164 /// one source vector.
2165 /// Example: <7,6,undef,4>
2166 /// This assumes that vector operands are the same length as the mask.
2167 static bool isReverseMask(ArrayRef<int> Mask);
2168 static bool isReverseMask(const Constant *Mask) {
2169 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2169, __PRETTY_FUNCTION__))
;
2170 SmallVector<int, 16> MaskAsInts;
2171 getShuffleMask(Mask, MaskAsInts);
2172 return isReverseMask(MaskAsInts);
2173 }
2174
2175 /// Return true if this shuffle swaps the order of elements from exactly
2176 /// one source vector.
2177 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2178 /// TODO: Optionally allow length-changing shuffles.
2179 bool isReverse() const {
2180 return !changesLength() && isReverseMask(ShuffleMask);
2181 }
2182
2183 /// Return true if this shuffle mask chooses all elements with the same value
2184 /// as the first element of exactly one source vector.
2185 /// Example: <4,undef,undef,4>
2186 /// This assumes that vector operands are the same length as the mask.
2187 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2188 static bool isZeroEltSplatMask(const Constant *Mask) {
2189 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2189, __PRETTY_FUNCTION__))
;
2190 SmallVector<int, 16> MaskAsInts;
2191 getShuffleMask(Mask, MaskAsInts);
2192 return isZeroEltSplatMask(MaskAsInts);
2193 }
2194
2195 /// Return true if all elements of this shuffle are the same value as the
2196 /// first element of exactly one source vector without changing the length
2197 /// of that vector.
2198 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2199 /// TODO: Optionally allow length-changing shuffles.
2200 /// TODO: Optionally allow splats from other elements.
2201 bool isZeroEltSplat() const {
2202 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2203 }
2204
2205 /// Return true if this shuffle mask is a transpose mask.
2206 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2207 /// even- or odd-numbered vector elements from two n-dimensional source
2208 /// vectors and write each result into consecutive elements of an
2209 /// n-dimensional destination vector. Two shuffles are necessary to complete
2210 /// the transpose, one for the even elements and another for the odd elements.
2211 /// This description closely follows how the TRN1 and TRN2 AArch64
2212 /// instructions operate.
2213 ///
2214 /// For example, a simple 2x2 matrix can be transposed with:
2215 ///
2216 /// ; Original matrix
2217 /// m0 = < a, b >
2218 /// m1 = < c, d >
2219 ///
2220 /// ; Transposed matrix
2221 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2222 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2223 ///
2224 /// For matrices having greater than n columns, the resulting nx2 transposed
2225 /// matrix is stored in two result vectors such that one vector contains
2226 /// interleaved elements from all the even-numbered rows and the other vector
2227 /// contains interleaved elements from all the odd-numbered rows. For example,
2228 /// a 2x4 matrix can be transposed with:
2229 ///
2230 /// ; Original matrix
2231 /// m0 = < a, b, c, d >
2232 /// m1 = < e, f, g, h >
2233 ///
2234 /// ; Transposed matrix
2235 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2236 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2237 static bool isTransposeMask(ArrayRef<int> Mask);
2238 static bool isTransposeMask(const Constant *Mask) {
2239 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2239, __PRETTY_FUNCTION__))
;
2240 SmallVector<int, 16> MaskAsInts;
2241 getShuffleMask(Mask, MaskAsInts);
2242 return isTransposeMask(MaskAsInts);
2243 }
2244
2245 /// Return true if this shuffle transposes the elements of its inputs without
2246 /// changing the length of the vectors. This operation may also be known as a
2247 /// merge or interleave. See the description for isTransposeMask() for the
2248 /// exact specification.
2249 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2250 bool isTranspose() const {
2251 return !changesLength() && isTransposeMask(ShuffleMask);
2252 }
2253
2254 /// Return true if this shuffle mask is an extract subvector mask.
2255 /// A valid extract subvector mask returns a smaller vector from a single
2256 /// source operand. The base extraction index is returned as well.
2257 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2258 int &Index);
2259 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2260 int &Index) {
2261 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2261, __PRETTY_FUNCTION__))
;
2262 // Not possible to express a shuffle mask for a scalable vector for this
2263 // case.
2264 if (isa<ScalableVectorType>(Mask->getType()))
2265 return false;
2266 SmallVector<int, 16> MaskAsInts;
2267 getShuffleMask(Mask, MaskAsInts);
2268 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2269 }
2270
2271 /// Return true if this shuffle mask is an extract subvector mask.
2272 bool isExtractSubvectorMask(int &Index) const {
2273 // Not possible to express a shuffle mask for a scalable vector for this
2274 // case.
2275 if (isa<ScalableVectorType>(getType()))
2276 return false;
2277
2278 int NumSrcElts =
2279 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2280 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2281 }
2282
2283 /// Change values in a shuffle permute mask assuming the two vector operands
2284 /// of length InVecNumElts have swapped position.
2285 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2286 unsigned InVecNumElts) {
2287 for (int &Idx : Mask) {
2288 if (Idx == -1)
2289 continue;
2290 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2291 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2292, __PRETTY_FUNCTION__))
2292 "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2292, __PRETTY_FUNCTION__))
;
2293 }
2294 }
2295
2296 // Methods for support type inquiry through isa, cast, and dyn_cast:
2297 static bool classof(const Instruction *I) {
2298 return I->getOpcode() == Instruction::ShuffleVector;
2299 }
2300 static bool classof(const Value *V) {
2301 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2302 }
2303};
2304
2305template <>
2306struct OperandTraits<ShuffleVectorInst>
2307 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2308
2309DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2309, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<ShuffleVectorInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2309, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ShuffleVectorInst::getNumOperands() const { return OperandTraits
<ShuffleVectorInst>::operands(this); } template <int
Idx_nocapture> Use &ShuffleVectorInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ShuffleVectorInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
2310
2311//===----------------------------------------------------------------------===//
2312// ExtractValueInst Class
2313//===----------------------------------------------------------------------===//
2314
2315/// This instruction extracts a struct member or array
2316/// element value from an aggregate value.
2317///
2318class ExtractValueInst : public UnaryInstruction {
2319 SmallVector<unsigned, 4> Indices;
2320
2321 ExtractValueInst(const ExtractValueInst &EVI);
2322
2323 /// Constructors - Create a extractvalue instruction with a base aggregate
2324 /// value and a list of indices. The first ctor can optionally insert before
2325 /// an existing instruction, the second appends the new instruction to the
2326 /// specified BasicBlock.
2327 inline ExtractValueInst(Value *Agg,
2328 ArrayRef<unsigned> Idxs,
2329 const Twine &NameStr,
2330 Instruction *InsertBefore);
2331 inline ExtractValueInst(Value *Agg,
2332 ArrayRef<unsigned> Idxs,
2333 const Twine &NameStr, BasicBlock *InsertAtEnd);
2334
2335 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2336
2337protected:
2338 // Note: Instruction needs to be a friend here to call cloneImpl.
2339 friend class Instruction;
2340
2341 ExtractValueInst *cloneImpl() const;
2342
2343public:
2344 static ExtractValueInst *Create(Value *Agg,
2345 ArrayRef<unsigned> Idxs,
2346 const Twine &NameStr = "",
2347 Instruction *InsertBefore = nullptr) {
2348 return new
2349 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2350 }
2351
2352 static ExtractValueInst *Create(Value *Agg,
2353 ArrayRef<unsigned> Idxs,
2354 const Twine &NameStr,
2355 BasicBlock *InsertAtEnd) {
2356 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2357 }
2358
2359 /// Returns the type of the element that would be extracted
2360 /// with an extractvalue instruction with the specified parameters.
2361 ///
2362 /// Null is returned if the indices are invalid for the specified type.
2363 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2364
2365 using idx_iterator = const unsigned*;
2366
2367 inline idx_iterator idx_begin() const { return Indices.begin(); }
2368 inline idx_iterator idx_end() const { return Indices.end(); }
2369 inline iterator_range<idx_iterator> indices() const {
2370 return make_range(idx_begin(), idx_end());
2371 }
2372
2373 Value *getAggregateOperand() {
2374 return getOperand(0);
2375 }
2376 const Value *getAggregateOperand() const {
2377 return getOperand(0);
2378 }
2379 static unsigned getAggregateOperandIndex() {
2380 return 0U; // get index for modifying correct operand
2381 }
2382
2383 ArrayRef<unsigned> getIndices() const {
2384 return Indices;
2385 }
2386
2387 unsigned getNumIndices() const {
2388 return (unsigned)Indices.size();
2389 }
2390
2391 bool hasIndices() const {
2392 return true;
2393 }
2394
2395 // Methods for support type inquiry through isa, cast, and dyn_cast:
2396 static bool classof(const Instruction *I) {
2397 return I->getOpcode() == Instruction::ExtractValue;
2398 }
2399 static bool classof(const Value *V) {
2400 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2401 }
2402};
2403
2404ExtractValueInst::ExtractValueInst(Value *Agg,
2405 ArrayRef<unsigned> Idxs,
2406 const Twine &NameStr,
2407 Instruction *InsertBefore)
2408 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2409 ExtractValue, Agg, InsertBefore) {
2410 init(Idxs, NameStr);
2411}
2412
2413ExtractValueInst::ExtractValueInst(Value *Agg,
2414 ArrayRef<unsigned> Idxs,
2415 const Twine &NameStr,
2416 BasicBlock *InsertAtEnd)
2417 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2418 ExtractValue, Agg, InsertAtEnd) {
2419 init(Idxs, NameStr);
2420}
2421
2422//===----------------------------------------------------------------------===//
2423// InsertValueInst Class
2424//===----------------------------------------------------------------------===//
2425
2426/// This instruction inserts a struct field of array element
2427/// value into an aggregate value.
2428///
2429class InsertValueInst : public Instruction {
2430 SmallVector<unsigned, 4> Indices;
2431
2432 InsertValueInst(const InsertValueInst &IVI);
2433
2434 /// Constructors - Create a insertvalue instruction with a base aggregate
2435 /// value, a value to insert, and a list of indices. The first ctor can
2436 /// optionally insert before an existing instruction, the second appends
2437 /// the new instruction to the specified BasicBlock.
2438 inline InsertValueInst(Value *Agg, Value *Val,
2439 ArrayRef<unsigned> Idxs,
2440 const Twine &NameStr,
2441 Instruction *InsertBefore);
2442 inline InsertValueInst(Value *Agg, Value *Val,
2443 ArrayRef<unsigned> Idxs,
2444 const Twine &NameStr, BasicBlock *InsertAtEnd);
2445
2446 /// Constructors - These two constructors are convenience methods because one
2447 /// and two index insertvalue instructions are so common.
2448 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2449 const Twine &NameStr = "",
2450 Instruction *InsertBefore = nullptr);
2451 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2452 BasicBlock *InsertAtEnd);
2453
2454 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2455 const Twine &NameStr);
2456
2457protected:
2458 // Note: Instruction needs to be a friend here to call cloneImpl.
2459 friend class Instruction;
2460
2461 InsertValueInst *cloneImpl() const;
2462
2463public:
2464 // allocate space for exactly two operands
2465 void *operator new(size_t s) {
2466 return User::operator new(s, 2);
2467 }
2468
2469 static InsertValueInst *Create(Value *Agg, Value *Val,
2470 ArrayRef<unsigned> Idxs,
2471 const Twine &NameStr = "",
2472 Instruction *InsertBefore = nullptr) {
2473 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2474 }
2475
2476 static InsertValueInst *Create(Value *Agg, Value *Val,
2477 ArrayRef<unsigned> Idxs,
2478 const Twine &NameStr,
2479 BasicBlock *InsertAtEnd) {
2480 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2481 }
2482
2483 /// Transparently provide more efficient getOperand methods.
2484 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2485
2486 using idx_iterator = const unsigned*;
2487
2488 inline idx_iterator idx_begin() const { return Indices.begin(); }
2489 inline idx_iterator idx_end() const { return Indices.end(); }
2490 inline iterator_range<idx_iterator> indices() const {
2491 return make_range(idx_begin(), idx_end());
2492 }
2493
2494 Value *getAggregateOperand() {
2495 return getOperand(0);
2496 }
2497 const Value *getAggregateOperand() const {
2498 return getOperand(0);
2499 }
2500 static unsigned getAggregateOperandIndex() {
2501 return 0U; // get index for modifying correct operand
2502 }
2503
2504 Value *getInsertedValueOperand() {
2505 return getOperand(1);
2506 }
2507 const Value *getInsertedValueOperand() const {
2508 return getOperand(1);
2509 }
2510 static unsigned getInsertedValueOperandIndex() {
2511 return 1U; // get index for modifying correct operand
2512 }
2513
2514 ArrayRef<unsigned> getIndices() const {
2515 return Indices;
2516 }
2517
2518 unsigned getNumIndices() const {
2519 return (unsigned)Indices.size();
2520 }
2521
2522 bool hasIndices() const {
2523 return true;
2524 }
2525
2526 // Methods for support type inquiry through isa, cast, and dyn_cast:
2527 static bool classof(const Instruction *I) {
2528 return I->getOpcode() == Instruction::InsertValue;
2529 }
2530 static bool classof(const Value *V) {
2531 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2532 }
2533};
2534
2535template <>
2536struct OperandTraits<InsertValueInst> :
2537 public FixedNumOperandTraits<InsertValueInst, 2> {
2538};
2539
2540InsertValueInst::InsertValueInst(Value *Agg,
2541 Value *Val,
2542 ArrayRef<unsigned> Idxs,
2543 const Twine &NameStr,
2544 Instruction *InsertBefore)
2545 : Instruction(Agg->getType(), InsertValue,
2546 OperandTraits<InsertValueInst>::op_begin(this),
2547 2, InsertBefore) {
2548 init(Agg, Val, Idxs, NameStr);
2549}
2550
2551InsertValueInst::InsertValueInst(Value *Agg,
2552 Value *Val,
2553 ArrayRef<unsigned> Idxs,
2554 const Twine &NameStr,
2555 BasicBlock *InsertAtEnd)
2556 : Instruction(Agg->getType(), InsertValue,
2557 OperandTraits<InsertValueInst>::op_begin(this),
2558 2, InsertAtEnd) {
2559 init(Agg, Val, Idxs, NameStr);
2560}
2561
2562DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2562, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<InsertValueInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2562, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2563
2564//===----------------------------------------------------------------------===//
2565// PHINode Class
2566//===----------------------------------------------------------------------===//
2567
2568// PHINode - The PHINode class is used to represent the magical mystical PHI
2569// node, that can not exist in nature, but can be synthesized in a computer
2570// scientist's overactive imagination.
2571//
2572class PHINode : public Instruction {
2573 /// The number of operands actually allocated. NumOperands is
2574 /// the number actually in use.
2575 unsigned ReservedSpace;
2576
2577 PHINode(const PHINode &PN);
2578
2579 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2580 const Twine &NameStr = "",
2581 Instruction *InsertBefore = nullptr)
2582 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2583 ReservedSpace(NumReservedValues) {
2584 setName(NameStr);
2585 allocHungoffUses(ReservedSpace);
2586 }
2587
2588 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2589 BasicBlock *InsertAtEnd)
2590 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2591 ReservedSpace(NumReservedValues) {
2592 setName(NameStr);
2593 allocHungoffUses(ReservedSpace);
2594 }
2595
2596protected:
2597 // Note: Instruction needs to be a friend here to call cloneImpl.
2598 friend class Instruction;
2599
2600 PHINode *cloneImpl() const;
2601
2602 // allocHungoffUses - this is more complicated than the generic
2603 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2604 // values and pointers to the incoming blocks, all in one allocation.
2605 void allocHungoffUses(unsigned N) {
2606 User::allocHungoffUses(N, /* IsPhi */ true);
2607 }
2608
2609public:
2610 /// Constructors - NumReservedValues is a hint for the number of incoming
2611 /// edges that this phi node will have (use 0 if you really have no idea).
2612 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2613 const Twine &NameStr = "",
2614 Instruction *InsertBefore = nullptr) {
2615 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2616 }
2617
2618 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2619 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2620 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2621 }
2622
2623 /// Provide fast operand accessors
2624 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2625
2626 // Block iterator interface. This provides access to the list of incoming
2627 // basic blocks, which parallels the list of incoming values.
2628
2629 using block_iterator = BasicBlock **;
2630 using const_block_iterator = BasicBlock * const *;
2631
2632 block_iterator block_begin() {
2633 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2634 }
2635
2636 const_block_iterator block_begin() const {
2637 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2638 }
2639
2640 block_iterator block_end() {
2641 return block_begin() + getNumOperands();
2642 }
2643
2644 const_block_iterator block_end() const {
2645 return block_begin() + getNumOperands();
2646 }
2647
2648 iterator_range<block_iterator> blocks() {
2649 return make_range(block_begin(), block_end());
2650 }
2651
2652 iterator_range<const_block_iterator> blocks() const {
2653 return make_range(block_begin(), block_end());
2654 }
2655
2656 op_range incoming_values() { return operands(); }
2657
2658 const_op_range incoming_values() const { return operands(); }
2659
2660 /// Return the number of incoming edges
2661 ///
2662 unsigned getNumIncomingValues() const { return getNumOperands(); }
2663
2664 /// Return incoming value number x
2665 ///
2666 Value *getIncomingValue(unsigned i) const {
2667 return getOperand(i);
2668 }
2669 void setIncomingValue(unsigned i, Value *V) {
2670 assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast<
void> (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2670, __PRETTY_FUNCTION__))
;
2671 assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2672, __PRETTY_FUNCTION__))
2672 "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2672, __PRETTY_FUNCTION__))
;
2673 setOperand(i, V);
2674 }
2675
2676 static unsigned getOperandNumForIncomingValue(unsigned i) {
2677 return i;
2678 }
2679
2680 static unsigned getIncomingValueNumForOperand(unsigned i) {
2681 return i;
2682 }
2683
2684 /// Return incoming basic block number @p i.
2685 ///
2686 BasicBlock *getIncomingBlock(unsigned i) const {
2687 return block_begin()[i];
2688 }
2689
2690 /// Return incoming basic block corresponding
2691 /// to an operand of the PHI.
2692 ///
2693 BasicBlock *getIncomingBlock(const Use &U) const {
2694 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2694, __PRETTY_FUNCTION__))
;
2695 return getIncomingBlock(unsigned(&U - op_begin()));
2696 }
2697
2698 /// Return incoming basic block corresponding
2699 /// to value use iterator.
2700 ///
2701 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2702 return getIncomingBlock(I.getUse());
2703 }
2704
2705 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2706 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2706, __PRETTY_FUNCTION__))
;
2707 block_begin()[i] = BB;
2708 }
2709
2710 /// Replace every incoming basic block \p Old to basic block \p New.
2711 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2712 assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!"
) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2712, __PRETTY_FUNCTION__))
;
2713 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2714 if (getIncomingBlock(Op) == Old)
2715 setIncomingBlock(Op, New);
2716 }
2717
2718 /// Add an incoming value to the end of the PHI list
2719 ///
2720 void addIncoming(Value *V, BasicBlock *BB) {
2721 if (getNumOperands() == ReservedSpace)
2722 growOperands(); // Get more space!
2723 // Initialize some new operands.
2724 setNumHungOffUseOperands(getNumOperands() + 1);
2725 setIncomingValue(getNumOperands() - 1, V);
2726 setIncomingBlock(getNumOperands() - 1, BB);
2727 }
2728
2729 /// Remove an incoming value. This is useful if a
2730 /// predecessor basic block is deleted. The value removed is returned.
2731 ///
2732 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2733 /// is true), the PHI node is destroyed and any uses of it are replaced with
2734 /// dummy values. The only time there should be zero incoming values to a PHI
2735 /// node is when the block is dead, so this strategy is sound.
2736 ///
2737 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2738
2739 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2740 int Idx = getBasicBlockIndex(BB);
2741 assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!"
) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2741, __PRETTY_FUNCTION__))
;
2742 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2743 }
2744
2745 /// Return the first index of the specified basic
2746 /// block in the value list for this PHI. Returns -1 if no instance.
2747 ///
2748 int getBasicBlockIndex(const BasicBlock *BB) const {
2749 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2750 if (block_begin()[i] == BB)
2751 return i;
2752 return -1;
2753 }
2754
2755 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2756 int Idx = getBasicBlockIndex(BB);
2757 assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast
<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2757, __PRETTY_FUNCTION__))
;
2758 return getIncomingValue(Idx);
2759 }
2760
2761 /// Set every incoming value(s) for block \p BB to \p V.
2762 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2763 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2763, __PRETTY_FUNCTION__))
;
2764 bool Found = false;
2765 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2766 if (getIncomingBlock(Op) == BB) {
2767 Found = true;
2768 setIncomingValue(Op, V);
2769 }
2770 (void)Found;
2771 assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast
<void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2771, __PRETTY_FUNCTION__))
;
2772 }
2773
2774 /// If the specified PHI node always merges together the
2775 /// same value, return the value, otherwise return null.
2776 Value *hasConstantValue() const;
2777
2778 /// Whether the specified PHI node always merges
2779 /// together the same value, assuming undefs are equal to a unique
2780 /// non-undef value.
2781 bool hasConstantOrUndefValue() const;
2782
2783 /// If the PHI node is complete which means all of its parent's predecessors
2784 /// have incoming value in this PHI, return true, otherwise return false.
2785 bool isComplete() const {
2786 return llvm::all_of(predecessors(getParent()),
2787 [this](const BasicBlock *Pred) {
2788 return getBasicBlockIndex(Pred) >= 0;
2789 });
2790 }
2791
2792 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2793 static bool classof(const Instruction *I) {
2794 return I->getOpcode() == Instruction::PHI;
2795 }
2796 static bool classof(const Value *V) {
2797 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2798 }
2799
2800private:
2801 void growOperands();
2802};
2803
2804template <>
2805struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2806};
2807
2808DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<PHINode>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2808, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<PHINode>::op_begin(const_cast<PHINode
*>(this))[i_nocapture].get()); } void PHINode::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2808, __PRETTY_FUNCTION__)); OperandTraits<PHINode>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode
::getNumOperands() const { return OperandTraits<PHINode>
::operands(this); } template <int Idx_nocapture> Use &
PHINode::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &PHINode
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2809
2810//===----------------------------------------------------------------------===//
2811// LandingPadInst Class
2812//===----------------------------------------------------------------------===//
2813
2814//===---------------------------------------------------------------------------
2815/// The landingpad instruction holds all of the information
2816/// necessary to generate correct exception handling. The landingpad instruction
2817/// cannot be moved from the top of a landing pad block, which itself is
2818/// accessible only from the 'unwind' edge of an invoke. This uses the
2819/// SubclassData field in Value to store whether or not the landingpad is a
2820/// cleanup.
2821///
2822class LandingPadInst : public Instruction {
2823 using CleanupField = BoolBitfieldElementT<0>;
2824
2825 /// The number of operands actually allocated. NumOperands is
2826 /// the number actually in use.
2827 unsigned ReservedSpace;
2828
2829 LandingPadInst(const LandingPadInst &LP);
2830
2831public:
2832 enum ClauseType { Catch, Filter };
2833
2834private:
2835 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2836 const Twine &NameStr, Instruction *InsertBefore);
2837 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2838 const Twine &NameStr, BasicBlock *InsertAtEnd);
2839
2840 // Allocate space for exactly zero operands.
2841 void *operator new(size_t s) {
2842 return User::operator new(s);
2843 }
2844
2845 void growOperands(unsigned Size);
2846 void init(unsigned NumReservedValues, const Twine &NameStr);
2847
2848protected:
2849 // Note: Instruction needs to be a friend here to call cloneImpl.
2850 friend class Instruction;
2851
2852 LandingPadInst *cloneImpl() const;
2853
2854public:
2855 /// Constructors - NumReservedClauses is a hint for the number of incoming
2856 /// clauses that this landingpad will have (use 0 if you really have no idea).
2857 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2858 const Twine &NameStr = "",
2859 Instruction *InsertBefore = nullptr);
2860 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2861 const Twine &NameStr, BasicBlock *InsertAtEnd);
2862
2863 /// Provide fast operand accessors
2864 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2865
2866 /// Return 'true' if this landingpad instruction is a
2867 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2868 /// doesn't catch the exception.
2869 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2870
2871 /// Indicate that this landingpad instruction is a cleanup.
2872 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2873
2874 /// Add a catch or filter clause to the landing pad.
2875 void addClause(Constant *ClauseVal);
2876
2877 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2878 /// determine what type of clause this is.
2879 Constant *getClause(unsigned Idx) const {
2880 return cast<Constant>(getOperandList()[Idx]);
2881 }
2882
2883 /// Return 'true' if the clause and index Idx is a catch clause.
2884 bool isCatch(unsigned Idx) const {
2885 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2886 }
2887
2888 /// Return 'true' if the clause and index Idx is a filter clause.
2889 bool isFilter(unsigned Idx) const {
2890 return isa<ArrayType>(getOperandList()[Idx]->getType());
2891 }
2892
2893 /// Get the number of clauses for this landing pad.
2894 unsigned getNumClauses() const { return getNumOperands(); }
2895
2896 /// Grow the size of the operand list to accommodate the new
2897 /// number of clauses.
2898 void reserveClauses(unsigned Size) { growOperands(Size); }
2899
2900 // Methods for support type inquiry through isa, cast, and dyn_cast:
2901 static bool classof(const Instruction *I) {
2902 return I->getOpcode() == Instruction::LandingPad;
2903 }
2904 static bool classof(const Value *V) {
2905 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2906 }
2907};
2908
2909template <>
2910struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2911};
2912
2913DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2913, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2913, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2914
2915//===----------------------------------------------------------------------===//
2916// ReturnInst Class
2917//===----------------------------------------------------------------------===//
2918
2919//===---------------------------------------------------------------------------
2920/// Return a value (possibly void), from a function. Execution
2921/// does not continue in this function any longer.
2922///
2923class ReturnInst : public Instruction {
2924 ReturnInst(const ReturnInst &RI);
2925
2926private:
2927 // ReturnInst constructors:
2928 // ReturnInst() - 'ret void' instruction
2929 // ReturnInst( null) - 'ret void' instruction
2930 // ReturnInst(Value* X) - 'ret X' instruction
2931 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2932 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2933 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2934 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2935 //
2936 // NOTE: If the Value* passed is of type void then the constructor behaves as
2937 // if it was passed NULL.
2938 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2939 Instruction *InsertBefore = nullptr);
2940 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2941 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2942
2943protected:
2944 // Note: Instruction needs to be a friend here to call cloneImpl.
2945 friend class Instruction;
2946
2947 ReturnInst *cloneImpl() const;
2948
2949public:
2950 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2951 Instruction *InsertBefore = nullptr) {
2952 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2953 }
2954
2955 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2956 BasicBlock *InsertAtEnd) {
2957 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2958 }
2959
2960 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2961 return new(0) ReturnInst(C, InsertAtEnd);
2962 }
2963
2964 /// Provide fast operand accessors
2965 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2966
2967 /// Convenience accessor. Returns null if there is no return value.
2968 Value *getReturnValue() const {
2969 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2970 }
2971
2972 unsigned getNumSuccessors() const { return 0; }
2973
2974 // Methods for support type inquiry through isa, cast, and dyn_cast:
2975 static bool classof(const Instruction *I) {
2976 return (I->getOpcode() == Instruction::Ret);
2977 }
2978 static bool classof(const Value *V) {
2979 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2980 }
2981
2982private:
2983 BasicBlock *getSuccessor(unsigned idx) const {
2984 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2984)
;
2985 }
2986
2987 void setSuccessor(unsigned idx, BasicBlock *B) {
2988 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2988)
;
2989 }
2990};
2991
2992template <>
2993struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2994};
2995
2996DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2996, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst
*>(this))[i_nocapture].get()); } void ReturnInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 2996, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst
::getNumOperands() const { return OperandTraits<ReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2997
2998//===----------------------------------------------------------------------===//
2999// BranchInst Class
3000//===----------------------------------------------------------------------===//
3001
3002//===---------------------------------------------------------------------------
3003/// Conditional or Unconditional Branch instruction.
3004///
3005class BranchInst : public Instruction {
3006 /// Ops list - Branches are strange. The operands are ordered:
3007 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3008 /// they don't have to check for cond/uncond branchness. These are mostly
3009 /// accessed relative from op_end().
3010 BranchInst(const BranchInst &BI);
3011 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3012 // BranchInst(BB *B) - 'br B'
3013 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3014 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3015 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3016 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3017 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3018 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3019 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3020 Instruction *InsertBefore = nullptr);
3021 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3022 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3023 BasicBlock *InsertAtEnd);
3024
3025 void AssertOK();
3026
3027protected:
3028 // Note: Instruction needs to be a friend here to call cloneImpl.
3029 friend class Instruction;
3030
3031 BranchInst *cloneImpl() const;
3032
3033public:
3034 /// Iterator type that casts an operand to a basic block.
3035 ///
3036 /// This only makes sense because the successors are stored as adjacent
3037 /// operands for branch instructions.
3038 struct succ_op_iterator
3039 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3040 std::random_access_iterator_tag, BasicBlock *,
3041 ptrdiff_t, BasicBlock *, BasicBlock *> {
3042 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3043
3044 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3045 BasicBlock *operator->() const { return operator*(); }
3046 };
3047
3048 /// The const version of `succ_op_iterator`.
3049 struct const_succ_op_iterator
3050 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3051 std::random_access_iterator_tag,
3052 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3053 const BasicBlock *> {
3054 explicit const_succ_op_iterator(const_value_op_iterator I)
3055 : iterator_adaptor_base(I) {}
3056
3057 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3058 const BasicBlock *operator->() const { return operator*(); }
3059 };
3060
3061 static BranchInst *Create(BasicBlock *IfTrue,
3062 Instruction *InsertBefore = nullptr) {
3063 return new(1) BranchInst(IfTrue, InsertBefore);
3064 }
3065
3066 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3067 Value *Cond, Instruction *InsertBefore = nullptr) {
3068 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3069 }
3070
3071 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3072 return new(1) BranchInst(IfTrue, InsertAtEnd);
3073 }
3074
3075 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3076 Value *Cond, BasicBlock *InsertAtEnd) {
3077 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3078 }
3079
3080 /// Transparently provide more efficient getOperand methods.
3081 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3082
3083 bool isUnconditional() const { return getNumOperands() == 1; }
3084 bool isConditional() const { return getNumOperands() == 3; }
9
Assuming the condition is true
10
Returning the value 1, which participates in a condition later
3085
3086 Value *getCondition() const {
3087 assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3087, __PRETTY_FUNCTION__))
;
3088 return Op<-3>();
3089 }
3090
3091 void setCondition(Value *V) {
3092 assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3092, __PRETTY_FUNCTION__))
;
3093 Op<-3>() = V;
3094 }
3095
3096 unsigned getNumSuccessors() const { return 1+isConditional(); }
3097
3098 BasicBlock *getSuccessor(unsigned i) const {
3099 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3099, __PRETTY_FUNCTION__))
;
3100 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3101 }
3102
3103 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3104 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3104, __PRETTY_FUNCTION__))
;
3105 *(&Op<-1>() - idx) = NewSucc;
3106 }
3107
3108 /// Swap the successors of this branch instruction.
3109 ///
3110 /// Swaps the successors of the branch instruction. This also swaps any
3111 /// branch weight metadata associated with the instruction so that it
3112 /// continues to map correctly to each operand.
3113 void swapSuccessors();
3114
3115 iterator_range<succ_op_iterator> successors() {
3116 return make_range(
3117 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3118 succ_op_iterator(value_op_end()));
3119 }
3120
3121 iterator_range<const_succ_op_iterator> successors() const {
3122 return make_range(const_succ_op_iterator(
3123 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3124 const_succ_op_iterator(value_op_end()));
3125 }
3126
3127 // Methods for support type inquiry through isa, cast, and dyn_cast:
3128 static bool classof(const Instruction *I) {
3129 return (I->getOpcode() == Instruction::Br);
3130 }
3131 static bool classof(const Value *V) {
3132 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3133 }
3134};
3135
3136template <>
3137struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3138};
3139
3140DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3140, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst
*>(this))[i_nocapture].get()); } void BranchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3140, __PRETTY_FUNCTION__)); OperandTraits<BranchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst
::getNumOperands() const { return OperandTraits<BranchInst
>::operands(this); } template <int Idx_nocapture> Use
&BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3141
3142//===----------------------------------------------------------------------===//
3143// SwitchInst Class
3144//===----------------------------------------------------------------------===//
3145
3146//===---------------------------------------------------------------------------
3147/// Multiway switch
3148///
3149class SwitchInst : public Instruction {
3150 unsigned ReservedSpace;
3151
3152 // Operand[0] = Value to switch on
3153 // Operand[1] = Default basic block destination
3154 // Operand[2n ] = Value to match
3155 // Operand[2n+1] = BasicBlock to go to on match
3156 SwitchInst(const SwitchInst &SI);
3157
3158 /// Create a new switch instruction, specifying a value to switch on and a
3159 /// default destination. The number of additional cases can be specified here
3160 /// to make memory allocation more efficient. This constructor can also
3161 /// auto-insert before another instruction.
3162 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3163 Instruction *InsertBefore);
3164
3165 /// Create a new switch instruction, specifying a value to switch on and a
3166 /// default destination. The number of additional cases can be specified here
3167 /// to make memory allocation more efficient. This constructor also
3168 /// auto-inserts at the end of the specified BasicBlock.
3169 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3170 BasicBlock *InsertAtEnd);
3171
3172 // allocate space for exactly zero operands
3173 void *operator new(size_t s) {
3174 return User::operator new(s);
3175 }
3176
3177 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3178 void growOperands();
3179
3180protected:
3181 // Note: Instruction needs to be a friend here to call cloneImpl.
3182 friend class Instruction;
3183
3184 SwitchInst *cloneImpl() const;
3185
3186public:
3187 // -2
3188 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3189
3190 template <typename CaseHandleT> class CaseIteratorImpl;
3191
3192 /// A handle to a particular switch case. It exposes a convenient interface
3193 /// to both the case value and the successor block.
3194 ///
3195 /// We define this as a template and instantiate it to form both a const and
3196 /// non-const handle.
3197 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3198 class CaseHandleImpl {
3199 // Directly befriend both const and non-const iterators.
3200 friend class SwitchInst::CaseIteratorImpl<
3201 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3202
3203 protected:
3204 // Expose the switch type we're parameterized with to the iterator.
3205 using SwitchInstType = SwitchInstT;
3206
3207 SwitchInstT *SI;
3208 ptrdiff_t Index;
3209
3210 CaseHandleImpl() = default;
3211 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3212
3213 public:
3214 /// Resolves case value for current case.
3215 ConstantIntT *getCaseValue() const {
3216 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3217, __PRETTY_FUNCTION__))
3217 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3217, __PRETTY_FUNCTION__))
;
3218 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3219 }
3220
3221 /// Resolves successor for current case.
3222 BasicBlockT *getCaseSuccessor() const {
3223 assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3225, __PRETTY_FUNCTION__))
3224 (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3225, __PRETTY_FUNCTION__))
3225 "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3225, __PRETTY_FUNCTION__))
;
3226 return SI->getSuccessor(getSuccessorIndex());
3227 }
3228
3229 /// Returns number of current case.
3230 unsigned getCaseIndex() const { return Index; }
3231
3232 /// Returns successor index for current case successor.
3233 unsigned getSuccessorIndex() const {
3234 assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3236, __PRETTY_FUNCTION__))
3235 (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3236, __PRETTY_FUNCTION__))
3236 "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3236, __PRETTY_FUNCTION__))
;
3237 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3238 }
3239
3240 bool operator==(const CaseHandleImpl &RHS) const {
3241 assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast
<void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3241, __PRETTY_FUNCTION__))
;
3242 return Index == RHS.Index;
3243 }
3244 };
3245
3246 using ConstCaseHandle =
3247 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3248
3249 class CaseHandle
3250 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3251 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3252
3253 public:
3254 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3255
3256 /// Sets the new value for current case.
3257 void setValue(ConstantInt *V) {
3258 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3259, __PRETTY_FUNCTION__))
3259 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3259, __PRETTY_FUNCTION__))
;
3260 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3261 }
3262
3263 /// Sets the new successor for current case.
3264 void setSuccessor(BasicBlock *S) {
3265 SI->setSuccessor(getSuccessorIndex(), S);
3266 }
3267 };
3268
3269 template <typename CaseHandleT>
3270 class CaseIteratorImpl
3271 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3272 std::random_access_iterator_tag,
3273 CaseHandleT> {
3274 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3275
3276 CaseHandleT Case;
3277
3278 public:
3279 /// Default constructed iterator is in an invalid state until assigned to
3280 /// a case for a particular switch.
3281 CaseIteratorImpl() = default;
3282
3283 /// Initializes case iterator for given SwitchInst and for given
3284 /// case number.
3285 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3286
3287 /// Initializes case iterator for given SwitchInst and for given
3288 /// successor index.
3289 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3290 unsigned SuccessorIndex) {
3291 assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3292, __PRETTY_FUNCTION__))
3292 "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3292, __PRETTY_FUNCTION__))
;
3293 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3294 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3295 }
3296
3297 /// Support converting to the const variant. This will be a no-op for const
3298 /// variant.
3299 operator CaseIteratorImpl<ConstCaseHandle>() const {
3300 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3301 }
3302
3303 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3304 // Check index correctness after addition.
3305 // Note: Index == getNumCases() means end().
3306 assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3308, __PRETTY_FUNCTION__))
3307 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3308, __PRETTY_FUNCTION__))
3308 "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3308, __PRETTY_FUNCTION__))
;
3309 Case.Index += N;
3310 return *this;
3311 }
3312 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3313 // Check index correctness after subtraction.
3314 // Note: Case.Index == getNumCases() means end().
3315 assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3317, __PRETTY_FUNCTION__))
3316 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3317, __PRETTY_FUNCTION__))
3317 "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3317, __PRETTY_FUNCTION__))
;
3318 Case.Index -= N;
3319 return *this;
3320 }
3321 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3322 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3322, __PRETTY_FUNCTION__))
;
3323 return Case.Index - RHS.Case.Index;
3324 }
3325 bool operator==(const CaseIteratorImpl &RHS) const {
3326 return Case == RHS.Case;
3327 }
3328 bool operator<(const CaseIteratorImpl &RHS) const {
3329 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3329, __PRETTY_FUNCTION__))
;
3330 return Case.Index < RHS.Case.Index;
3331 }
3332 CaseHandleT &operator*() { return Case; }
3333 const CaseHandleT &operator*() const { return Case; }
3334 };
3335
3336 using CaseIt = CaseIteratorImpl<CaseHandle>;
3337 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3338
3339 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3340 unsigned NumCases,
3341 Instruction *InsertBefore = nullptr) {
3342 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3343 }
3344
3345 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3346 unsigned NumCases, BasicBlock *InsertAtEnd) {
3347 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3348 }
3349
3350 /// Provide fast operand accessors
3351 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3352
3353 // Accessor Methods for Switch stmt
3354 Value *getCondition() const { return getOperand(0); }
3355 void setCondition(Value *V) { setOperand(0, V); }
3356
3357 BasicBlock *getDefaultDest() const {
3358 return cast<BasicBlock>(getOperand(1));
3359 }
3360
3361 void setDefaultDest(BasicBlock *DefaultCase) {
3362 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3363 }
3364
3365 /// Return the number of 'cases' in this switch instruction, excluding the
3366 /// default case.
3367 unsigned getNumCases() const {
3368 return getNumOperands()/2 - 1;
3369 }
3370
3371 /// Returns a read/write iterator that points to the first case in the
3372 /// SwitchInst.
3373 CaseIt case_begin() {
3374 return CaseIt(this, 0);
3375 }
3376
3377 /// Returns a read-only iterator that points to the first case in the
3378 /// SwitchInst.
3379 ConstCaseIt case_begin() const {
3380 return ConstCaseIt(this, 0);
3381 }
3382
3383 /// Returns a read/write iterator that points one past the last in the
3384 /// SwitchInst.
3385 CaseIt case_end() {
3386 return CaseIt(this, getNumCases());
3387 }
3388
3389 /// Returns a read-only iterator that points one past the last in the
3390 /// SwitchInst.
3391 ConstCaseIt case_end() const {
3392 return ConstCaseIt(this, getNumCases());
3393 }
3394
3395 /// Iteration adapter for range-for loops.
3396 iterator_range<CaseIt> cases() {
3397 return make_range(case_begin(), case_end());
3398 }
3399
3400 /// Constant iteration adapter for range-for loops.
3401 iterator_range<ConstCaseIt> cases() const {
3402 return make_range(case_begin(), case_end());
3403 }
3404
3405 /// Returns an iterator that points to the default case.
3406 /// Note: this iterator allows to resolve successor only. Attempt
3407 /// to resolve case value causes an assertion.
3408 /// Also note, that increment and decrement also causes an assertion and
3409 /// makes iterator invalid.
3410 CaseIt case_default() {
3411 return CaseIt(this, DefaultPseudoIndex);
3412 }
3413 ConstCaseIt case_default() const {
3414 return ConstCaseIt(this, DefaultPseudoIndex);
3415 }
3416
3417 /// Search all of the case values for the specified constant. If it is
3418 /// explicitly handled, return the case iterator of it, otherwise return
3419 /// default case iterator to indicate that it is handled by the default
3420 /// handler.
3421 CaseIt findCaseValue(const ConstantInt *C) {
3422 CaseIt I = llvm::find_if(
3423 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3424 if (I != case_end())
3425 return I;
3426
3427 return case_default();
3428 }
3429 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3430 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3431 return Case.getCaseValue() == C;
3432 });
3433 if (I != case_end())
3434 return I;
3435
3436 return case_default();
3437 }
3438
3439 /// Finds the unique case value for a given successor. Returns null if the
3440 /// successor is not found, not unique, or is the default case.
3441 ConstantInt *findCaseDest(BasicBlock *BB) {
3442 if (BB == getDefaultDest())
3443 return nullptr;
3444
3445 ConstantInt *CI = nullptr;
3446 for (auto Case : cases()) {
3447 if (Case.getCaseSuccessor() != BB)
3448 continue;
3449
3450 if (CI)
3451 return nullptr; // Multiple cases lead to BB.
3452
3453 CI = Case.getCaseValue();
3454 }
3455
3456 return CI;
3457 }
3458
3459 /// Add an entry to the switch instruction.
3460 /// Note:
3461 /// This action invalidates case_end(). Old case_end() iterator will
3462 /// point to the added case.
3463 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3464
3465 /// This method removes the specified case and its successor from the switch
3466 /// instruction. Note that this operation may reorder the remaining cases at
3467 /// index idx and above.
3468 /// Note:
3469 /// This action invalidates iterators for all cases following the one removed,
3470 /// including the case_end() iterator. It returns an iterator for the next
3471 /// case.
3472 CaseIt removeCase(CaseIt I);
3473
3474 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3475 BasicBlock *getSuccessor(unsigned idx) const {
3476 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((idx < getNumSuccessors() &&"Successor idx out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3476, __PRETTY_FUNCTION__))
;
3477 return cast<BasicBlock>(getOperand(idx*2+1));
3478 }
3479 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3480 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((idx < getNumSuccessors() && "Successor # out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3480, __PRETTY_FUNCTION__))
;
3481 setOperand(idx * 2 + 1, NewSucc);
3482 }
3483
3484 // Methods for support type inquiry through isa, cast, and dyn_cast:
3485 static bool classof(const Instruction *I) {
3486 return I->getOpcode() == Instruction::Switch;
3487 }
3488 static bool classof(const Value *V) {
3489 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3490 }
3491};
3492
3493/// A wrapper class to simplify modification of SwitchInst cases along with
3494/// their prof branch_weights metadata.
3495class SwitchInstProfUpdateWrapper {
3496 SwitchInst &SI;
3497 Optional<SmallVector<uint32_t, 8> > Weights = None;
3498 bool Changed = false;
3499
3500protected:
3501 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3502
3503 MDNode *buildProfBranchWeightsMD();
3504
3505 void init();
3506
3507public:
3508 using CaseWeightOpt = Optional<uint32_t>;
3509 SwitchInst *operator->() { return &SI; }
3510 SwitchInst &operator*() { return SI; }
3511 operator SwitchInst *() { return &SI; }
3512
3513 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3514
3515 ~SwitchInstProfUpdateWrapper() {
3516 if (Changed)
3517 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3518 }
3519
3520 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3521 /// correspondent branch weight.
3522 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3523
3524 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3525 /// specified branch weight for the added case.
3526 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3527
3528 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3529 /// this object to not touch the underlying SwitchInst in destructor.
3530 SymbolTableList<Instruction>::iterator eraseFromParent();
3531
3532 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3533 CaseWeightOpt getSuccessorWeight(unsigned idx);
3534
3535 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3536};
3537
3538template <>
3539struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3540};
3541
3542DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3542, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SwitchInst>::op_begin(const_cast<SwitchInst
*>(this))[i_nocapture].get()); } void SwitchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3542, __PRETTY_FUNCTION__)); OperandTraits<SwitchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SwitchInst
::getNumOperands() const { return OperandTraits<SwitchInst
>::operands(this); } template <int Idx_nocapture> Use
&SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3543
3544//===----------------------------------------------------------------------===//
3545// IndirectBrInst Class
3546//===----------------------------------------------------------------------===//
3547
3548//===---------------------------------------------------------------------------
3549/// Indirect Branch Instruction.
3550///
3551class IndirectBrInst : public Instruction {
3552 unsigned ReservedSpace;
3553
3554 // Operand[0] = Address to jump to
3555 // Operand[n+1] = n-th destination
3556 IndirectBrInst(const IndirectBrInst &IBI);
3557
3558 /// Create a new indirectbr instruction, specifying an
3559 /// Address to jump to. The number of expected destinations can be specified
3560 /// here to make memory allocation more efficient. This constructor can also
3561 /// autoinsert before another instruction.
3562 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3563
3564 /// Create a new indirectbr instruction, specifying an
3565 /// Address to jump to. The number of expected destinations can be specified
3566 /// here to make memory allocation more efficient. This constructor also
3567 /// autoinserts at the end of the specified BasicBlock.
3568 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3569
3570 // allocate space for exactly zero operands
3571 void *operator new(size_t s) {
3572 return User::operator new(s);
3573 }
3574
3575 void init(Value *Address, unsigned NumDests);
3576 void growOperands();
3577
3578protected:
3579 // Note: Instruction needs to be a friend here to call cloneImpl.
3580 friend class Instruction;
3581
3582 IndirectBrInst *cloneImpl() const;
3583
3584public:
3585 /// Iterator type that casts an operand to a basic block.
3586 ///
3587 /// This only makes sense because the successors are stored as adjacent
3588 /// operands for indirectbr instructions.
3589 struct succ_op_iterator
3590 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3591 std::random_access_iterator_tag, BasicBlock *,
3592 ptrdiff_t, BasicBlock *, BasicBlock *> {
3593 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3594
3595 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3596 BasicBlock *operator->() const { return operator*(); }
3597 };
3598
3599 /// The const version of `succ_op_iterator`.
3600 struct const_succ_op_iterator
3601 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3602 std::random_access_iterator_tag,
3603 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3604 const BasicBlock *> {
3605 explicit const_succ_op_iterator(const_value_op_iterator I)
3606 : iterator_adaptor_base(I) {}
3607
3608 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3609 const BasicBlock *operator->() const { return operator*(); }
3610 };
3611
3612 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3613 Instruction *InsertBefore = nullptr) {
3614 return new IndirectBrInst(Address, NumDests, InsertBefore);
3615 }
3616
3617 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3618 BasicBlock *InsertAtEnd) {
3619 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3620 }
3621
3622 /// Provide fast operand accessors.
3623 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3624
3625 // Accessor Methods for IndirectBrInst instruction.
3626 Value *getAddress() { return getOperand(0); }
3627 const Value *getAddress() const { return getOperand(0); }
3628 void setAddress(Value *V) { setOperand(0, V); }
3629
3630 /// return the number of possible destinations in this
3631 /// indirectbr instruction.
3632 unsigned getNumDestinations() const { return getNumOperands()-1; }
3633
3634 /// Return the specified destination.
3635 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3636 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3637
3638 /// Add a destination.
3639 ///
3640 void addDestination(BasicBlock *Dest);
3641
3642 /// This method removes the specified successor from the
3643 /// indirectbr instruction.
3644 void removeDestination(unsigned i);
3645
3646 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3647 BasicBlock *getSuccessor(unsigned i) const {
3648 return cast<BasicBlock>(getOperand(i+1));
3649 }
3650 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3651 setOperand(i + 1, NewSucc);
3652 }
3653
3654 iterator_range<succ_op_iterator> successors() {
3655 return make_range(succ_op_iterator(std::next(value_op_begin())),
3656 succ_op_iterator(value_op_end()));
3657 }
3658
3659 iterator_range<const_succ_op_iterator> successors() const {
3660 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3661 const_succ_op_iterator(value_op_end()));
3662 }
3663
3664 // Methods for support type inquiry through isa, cast, and dyn_cast:
3665 static bool classof(const Instruction *I) {
3666 return I->getOpcode() == Instruction::IndirectBr;
3667 }
3668 static bool classof(const Value *V) {
3669 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3670 }
3671};
3672
3673template <>
3674struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3675};
3676
3677DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<IndirectBrInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3677, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3677, __PRETTY_FUNCTION__)); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3678
3679//===----------------------------------------------------------------------===//
3680// InvokeInst Class
3681//===----------------------------------------------------------------------===//
3682
3683/// Invoke instruction. The SubclassData field is used to hold the
3684/// calling convention of the call.
3685///
3686class InvokeInst : public CallBase {
3687 /// The number of operands for this call beyond the called function,
3688 /// arguments, and operand bundles.
3689 static constexpr int NumExtraOperands = 2;
3690
3691 /// The index from the end of the operand array to the normal destination.
3692 static constexpr int NormalDestOpEndIdx = -3;
3693
3694 /// The index from the end of the operand array to the unwind destination.
3695 static constexpr int UnwindDestOpEndIdx = -2;
3696
3697 InvokeInst(const InvokeInst &BI);
3698
3699 /// Construct an InvokeInst given a range of arguments.
3700 ///
3701 /// Construct an InvokeInst from a range of arguments
3702 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3703 BasicBlock *IfException, ArrayRef<Value *> Args,
3704 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3705 const Twine &NameStr, Instruction *InsertBefore);
3706
3707 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3708 BasicBlock *IfException, ArrayRef<Value *> Args,
3709 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3710 const Twine &NameStr, BasicBlock *InsertAtEnd);
3711
3712 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3713 BasicBlock *IfException, ArrayRef<Value *> Args,
3714 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3715
3716 /// Compute the number of operands to allocate.
3717 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3718 // We need one operand for the called function, plus our extra operands and
3719 // the input operand counts provided.
3720 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3721 }
3722
3723protected:
3724 // Note: Instruction needs to be a friend here to call cloneImpl.
3725 friend class Instruction;
3726
3727 InvokeInst *cloneImpl() const;
3728
3729public:
3730 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3731 BasicBlock *IfException, ArrayRef<Value *> Args,
3732 const Twine &NameStr,
3733 Instruction *InsertBefore = nullptr) {
3734 int NumOperands = ComputeNumOperands(Args.size());
3735 return new (NumOperands)
3736 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3737 NameStr, InsertBefore);
3738 }
3739
3740 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3741 BasicBlock *IfException, ArrayRef<Value *> Args,
3742 ArrayRef<OperandBundleDef> Bundles = None,
3743 const Twine &NameStr = "",
3744 Instruction *InsertBefore = nullptr) {
3745 int NumOperands =
3746 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3747 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3748
3749 return new (NumOperands, DescriptorBytes)
3750 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3751 NameStr, InsertBefore);
3752 }
3753
3754 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3755 BasicBlock *IfException, ArrayRef<Value *> Args,
3756 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3757 int NumOperands = ComputeNumOperands(Args.size());
3758 return new (NumOperands)
3759 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3760 NameStr, InsertAtEnd);
3761 }
3762
3763 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3764 BasicBlock *IfException, ArrayRef<Value *> Args,
3765 ArrayRef<OperandBundleDef> Bundles,
3766 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3767 int NumOperands =
3768 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3769 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3770
3771 return new (NumOperands, DescriptorBytes)
3772 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3773 NameStr, InsertAtEnd);
3774 }
3775
3776 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3777 BasicBlock *IfException, ArrayRef<Value *> Args,
3778 const Twine &NameStr,
3779 Instruction *InsertBefore = nullptr) {
3780 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3781 IfException, Args, None, NameStr, InsertBefore);
3782 }
3783
3784 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3785 BasicBlock *IfException, ArrayRef<Value *> Args,
3786 ArrayRef<OperandBundleDef> Bundles = None,
3787 const Twine &NameStr = "",
3788 Instruction *InsertBefore = nullptr) {
3789 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3790 IfException, Args, Bundles, NameStr, InsertBefore);
3791 }
3792
3793 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3794 BasicBlock *IfException, ArrayRef<Value *> Args,
3795 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3796 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3797 IfException, Args, NameStr, InsertAtEnd);
3798 }
3799
3800 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3801 BasicBlock *IfException, ArrayRef<Value *> Args,
3802 ArrayRef<OperandBundleDef> Bundles,
3803 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3804 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3805 IfException, Args, Bundles, NameStr, InsertAtEnd);
3806 }
3807
3808 /// Create a clone of \p II with a different set of operand bundles and
3809 /// insert it before \p InsertPt.
3810 ///
3811 /// The returned invoke instruction is identical to \p II in every way except
3812 /// that the operand bundles for the new instruction are set to the operand
3813 /// bundles in \p Bundles.
3814 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3815 Instruction *InsertPt = nullptr);
3816
3817 // get*Dest - Return the destination basic blocks...
3818 BasicBlock *getNormalDest() const {
3819 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3820 }
3821 BasicBlock *getUnwindDest() const {
3822 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3823 }
3824 void setNormalDest(BasicBlock *B) {
3825 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3826 }
3827 void setUnwindDest(BasicBlock *B) {
3828 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3829 }
3830
3831 /// Get the landingpad instruction from the landing pad
3832 /// block (the unwind destination).
3833 LandingPadInst *getLandingPadInst() const;
3834
3835 BasicBlock *getSuccessor(unsigned i) const {
3836 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3836, __PRETTY_FUNCTION__))
;
3837 return i == 0 ? getNormalDest() : getUnwindDest();
3838 }
3839
3840 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3841 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 3841, __PRETTY_FUNCTION__))
;
3842 if (i == 0)
3843 setNormalDest(NewSucc);
3844 else
3845 setUnwindDest(NewSucc);
3846 }
3847
3848 unsigned getNumSuccessors() const { return 2; }
3849
3850 // Methods for support type inquiry through isa, cast, and dyn_cast:
3851 static bool classof(const Instruction *I) {
3852 return (I->getOpcode() == Instruction::Invoke);
3853 }
3854 static bool classof(const Value *V) {
3855 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3856 }
3857
3858private:
3859 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3860 // method so that subclasses cannot accidentally use it.
3861 template <typename Bitfield>
3862 void setSubclassData(typename Bitfield::Type Value) {
3863 Instruction::setSubclassData<Bitfield>(Value);
3864 }
3865};
3866
3867InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3868 BasicBlock *IfException, ArrayRef<Value *> Args,
3869 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3870 const Twine &NameStr, Instruction *InsertBefore)
3871 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3872 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3873 InsertBefore) {
3874 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3875}
3876
3877InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3878 BasicBlock *IfException, ArrayRef<Value *> Args,
3879 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3880 const Twine &NameStr, BasicBlock *InsertAtEnd)
3881 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3882 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3883 InsertAtEnd) {
3884 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3885}
3886
3887//===----------------------------------------------------------------------===//
3888// CallBrInst Class
3889//===----------------------------------------------------------------------===//
3890
3891/// CallBr instruction, tracking function calls that may not return control but
3892/// instead transfer it to a third location. The SubclassData field is used to
3893/// hold the calling convention of the call.
3894///
3895class CallBrInst : public CallBase {
3896
3897 unsigned NumIndirectDests;
3898
3899 CallBrInst(const CallBrInst &BI);
3900
3901 /// Construct a CallBrInst given a range of arguments.
3902 ///
3903 /// Construct a CallBrInst from a range of arguments
3904 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3905 ArrayRef<BasicBlock *> IndirectDests,
3906 ArrayRef<Value *> Args,
3907 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3908 const Twine &NameStr, Instruction *InsertBefore);
3909
3910 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3911 ArrayRef<BasicBlock *> IndirectDests,
3912 ArrayRef<Value *> Args,
3913 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3914 const Twine &NameStr, BasicBlock *InsertAtEnd);
3915
3916 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3917 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3918 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3919
3920 /// Should the Indirect Destinations change, scan + update the Arg list.
3921 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3922
3923 /// Compute the number of operands to allocate.
3924 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3925 int NumBundleInputs = 0) {
3926 // We need one operand for the called function, plus our extra operands and
3927 // the input operand counts provided.
3928 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3929 }
3930
3931protected:
3932 // Note: Instruction needs to be a friend here to call cloneImpl.
3933 friend class Instruction;
3934
3935 CallBrInst *cloneImpl() const;
3936
3937public:
3938 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3939 BasicBlock *DefaultDest,
3940 ArrayRef<BasicBlock *> IndirectDests,
3941 ArrayRef<Value *> Args, const Twine &NameStr,
3942 Instruction *InsertBefore = nullptr) {
3943 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3944 return new (NumOperands)
3945 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3946 NumOperands, NameStr, InsertBefore);
3947 }
3948
3949 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3950 BasicBlock *DefaultDest,
3951 ArrayRef<BasicBlock *> IndirectDests,
3952 ArrayRef<Value *> Args,
3953 ArrayRef<OperandBundleDef> Bundles = None,
3954 const Twine &NameStr = "",
3955 Instruction *InsertBefore = nullptr) {
3956 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3957 CountBundleInputs(Bundles));
3958 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3959
3960 return new (NumOperands, DescriptorBytes)
3961 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3962 NumOperands, NameStr, InsertBefore);
3963 }
3964
3965 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3966 BasicBlock *DefaultDest,
3967 ArrayRef<BasicBlock *> IndirectDests,
3968 ArrayRef<Value *> Args, const Twine &NameStr,
3969 BasicBlock *InsertAtEnd) {
3970 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3971 return new (NumOperands)
3972 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3973 NumOperands, NameStr, InsertAtEnd);
3974 }
3975
3976 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3977 BasicBlock *DefaultDest,
3978 ArrayRef<BasicBlock *> IndirectDests,
3979 ArrayRef<Value *> Args,
3980 ArrayRef<OperandBundleDef> Bundles,
3981 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3982 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3983 CountBundleInputs(Bundles));
3984 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3985
3986 return new (NumOperands, DescriptorBytes)
3987 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3988 NumOperands, NameStr, InsertAtEnd);
3989 }
3990
3991 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
3992 ArrayRef<BasicBlock *> IndirectDests,
3993 ArrayRef<Value *> Args, const Twine &NameStr,
3994 Instruction *InsertBefore = nullptr) {
3995 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
3996 IndirectDests, Args, NameStr, InsertBefore);
3997 }
3998
3999 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4000 ArrayRef<BasicBlock *> IndirectDests,
4001 ArrayRef<Value *> Args,
4002 ArrayRef<OperandBundleDef> Bundles = None,
4003 const Twine &NameStr = "",
4004 Instruction *InsertBefore = nullptr) {
4005 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4006 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4007 }
4008
4009 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4010 ArrayRef<BasicBlock *> IndirectDests,
4011 ArrayRef<Value *> Args, const Twine &NameStr,
4012 BasicBlock *InsertAtEnd) {
4013 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4014 IndirectDests, Args, NameStr, InsertAtEnd);
4015 }
4016
4017 static CallBrInst *Create(FunctionCallee Func,
4018 BasicBlock *DefaultDest,
4019 ArrayRef<BasicBlock *> IndirectDests,
4020 ArrayRef<Value *> Args,
4021 ArrayRef<OperandBundleDef> Bundles,
4022 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4023 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4024 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4025 }
4026
4027 /// Create a clone of \p CBI with a different set of operand bundles and
4028 /// insert it before \p InsertPt.
4029 ///
4030 /// The returned callbr instruction is identical to \p CBI in every way
4031 /// except that the operand bundles for the new instruction are set to the
4032 /// operand bundles in \p Bundles.
4033 static CallBrInst *Create(CallBrInst *CBI,
4034 ArrayRef<OperandBundleDef> Bundles,
4035 Instruction *InsertPt = nullptr);
4036
4037 /// Return the number of callbr indirect dest labels.
4038 ///
4039 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4040
4041 /// getIndirectDestLabel - Return the i-th indirect dest label.
4042 ///
4043 Value *getIndirectDestLabel(unsigned i) const {
4044 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4044, __PRETTY_FUNCTION__))
;
4045 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4046 1);
4047 }
4048
4049 Value *getIndirectDestLabelUse(unsigned i) const {
4050 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4050, __PRETTY_FUNCTION__))
;
4051 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4052 1);
4053 }
4054
4055 // Return the destination basic blocks...
4056 BasicBlock *getDefaultDest() const {
4057 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4058 }
4059 BasicBlock *getIndirectDest(unsigned i) const {
4060 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4061 }
4062 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4063 SmallVector<BasicBlock *, 16> IndirectDests;
4064 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4065 IndirectDests.push_back(getIndirectDest(i));
4066 return IndirectDests;
4067 }
4068 void setDefaultDest(BasicBlock *B) {
4069 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4070 }
4071 void setIndirectDest(unsigned i, BasicBlock *B) {
4072 updateArgBlockAddresses(i, B);
4073 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4074 }
4075
4076 BasicBlock *getSuccessor(unsigned i) const {
4077 assert(i < getNumSuccessors() + 1 &&((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4078, __PRETTY_FUNCTION__))
4078 "Successor # out of range for callbr!")((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4078, __PRETTY_FUNCTION__))
;
4079 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4080 }
4081
4082 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4083 assert(i < getNumIndirectDests() + 1 &&((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4084, __PRETTY_FUNCTION__))
4084 "Successor # out of range for callbr!")((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4084, __PRETTY_FUNCTION__))
;
4085 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4086 }
4087
4088 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4089
4090 // Methods for support type inquiry through isa, cast, and dyn_cast:
4091 static bool classof(const Instruction *I) {
4092 return (I->getOpcode() == Instruction::CallBr);
4093 }
4094 static bool classof(const Value *V) {
4095 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4096 }
4097
4098private:
4099 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4100 // method so that subclasses cannot accidentally use it.
4101 template <typename Bitfield>
4102 void setSubclassData(typename Bitfield::Type Value) {
4103 Instruction::setSubclassData<Bitfield>(Value);
4104 }
4105};
4106
4107CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4108 ArrayRef<BasicBlock *> IndirectDests,
4109 ArrayRef<Value *> Args,
4110 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4111 const Twine &NameStr, Instruction *InsertBefore)
4112 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4113 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4114 InsertBefore) {
4115 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4116}
4117
4118CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4119 ArrayRef<BasicBlock *> IndirectDests,
4120 ArrayRef<Value *> Args,
4121 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4122 const Twine &NameStr, BasicBlock *InsertAtEnd)
4123 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4124 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4125 InsertAtEnd) {
4126 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4127}
4128
4129//===----------------------------------------------------------------------===//
4130// ResumeInst Class
4131//===----------------------------------------------------------------------===//
4132
4133//===---------------------------------------------------------------------------
4134/// Resume the propagation of an exception.
4135///
4136class ResumeInst : public Instruction {
4137 ResumeInst(const ResumeInst &RI);
4138
4139 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4140 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4141
4142protected:
4143 // Note: Instruction needs to be a friend here to call cloneImpl.
4144 friend class Instruction;
4145
4146 ResumeInst *cloneImpl() const;
4147
4148public:
4149 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4150 return new(1) ResumeInst(Exn, InsertBefore);
4151 }
4152
4153 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4154 return new(1) ResumeInst(Exn, InsertAtEnd);
4155 }
4156
4157 /// Provide fast operand accessors
4158 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4159
4160 /// Convenience accessor.
4161 Value *getValue() const { return Op<0>(); }
4162
4163 unsigned getNumSuccessors() const { return 0; }
4164
4165 // Methods for support type inquiry through isa, cast, and dyn_cast:
4166 static bool classof(const Instruction *I) {
4167 return I->getOpcode() == Instruction::Resume;
4168 }
4169 static bool classof(const Value *V) {
4170 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4171 }
4172
4173private:
4174 BasicBlock *getSuccessor(unsigned idx) const {
4175 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4175)
;
4176 }
4177
4178 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4179 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4179)
;
4180 }
4181};
4182
4183template <>
4184struct OperandTraits<ResumeInst> :
4185 public FixedNumOperandTraits<ResumeInst, 1> {
4186};
4187
4188DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4188, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ResumeInst>::op_begin(const_cast<ResumeInst
*>(this))[i_nocapture].get()); } void ResumeInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4188, __PRETTY_FUNCTION__)); OperandTraits<ResumeInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ResumeInst
::getNumOperands() const { return OperandTraits<ResumeInst
>::operands(this); } template <int Idx_nocapture> Use
&ResumeInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ResumeInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4189
4190//===----------------------------------------------------------------------===//
4191// CatchSwitchInst Class
4192//===----------------------------------------------------------------------===//
4193class CatchSwitchInst : public Instruction {
4194 using UnwindDestField = BoolBitfieldElementT<0>;
4195
4196 /// The number of operands actually allocated. NumOperands is
4197 /// the number actually in use.
4198 unsigned ReservedSpace;
4199
4200 // Operand[0] = Outer scope
4201 // Operand[1] = Unwind block destination
4202 // Operand[n] = BasicBlock to go to on match
4203 CatchSwitchInst(const CatchSwitchInst &CSI);
4204
4205 /// Create a new switch instruction, specifying a
4206 /// default destination. The number of additional handlers can be specified
4207 /// here to make memory allocation more efficient.
4208 /// This constructor can also autoinsert before another instruction.
4209 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4210 unsigned NumHandlers, const Twine &NameStr,
4211 Instruction *InsertBefore);
4212
4213 /// Create a new switch instruction, specifying a
4214 /// default destination. The number of additional handlers can be specified
4215 /// here to make memory allocation more efficient.
4216 /// This constructor also autoinserts at the end of the specified BasicBlock.
4217 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4218 unsigned NumHandlers, const Twine &NameStr,
4219 BasicBlock *InsertAtEnd);
4220
4221 // allocate space for exactly zero operands
4222 void *operator new(size_t s) { return User::operator new(s); }
4223
4224 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4225 void growOperands(unsigned Size);
4226
4227protected:
4228 // Note: Instruction needs to be a friend here to call cloneImpl.
4229 friend class Instruction;
4230
4231 CatchSwitchInst *cloneImpl() const;
4232
4233public:
4234 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4235 unsigned NumHandlers,
4236 const Twine &NameStr = "",
4237 Instruction *InsertBefore = nullptr) {
4238 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4239 InsertBefore);
4240 }
4241
4242 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4243 unsigned NumHandlers, const Twine &NameStr,
4244 BasicBlock *InsertAtEnd) {
4245 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4246 InsertAtEnd);
4247 }
4248
4249 /// Provide fast operand accessors
4250 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4251
4252 // Accessor Methods for CatchSwitch stmt
4253 Value *getParentPad() const { return getOperand(0); }
4254 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4255
4256 // Accessor Methods for CatchSwitch stmt
4257 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4258 bool unwindsToCaller() const { return !hasUnwindDest(); }
4259 BasicBlock *getUnwindDest() const {
4260 if (hasUnwindDest())
4261 return cast<BasicBlock>(getOperand(1));
4262 return nullptr;
4263 }
4264 void setUnwindDest(BasicBlock *UnwindDest) {
4265 assert(UnwindDest)((UnwindDest) ? static_cast<void> (0) : __assert_fail (
"UnwindDest", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4265, __PRETTY_FUNCTION__))
;
4266 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4266, __PRETTY_FUNCTION__))
;
4267 setOperand(1, UnwindDest);
4268 }
4269
4270 /// return the number of 'handlers' in this catchswitch
4271 /// instruction, except the default handler
4272 unsigned getNumHandlers() const {
4273 if (hasUnwindDest())
4274 return getNumOperands() - 2;
4275 return getNumOperands() - 1;
4276 }
4277
4278private:
4279 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4280 static const BasicBlock *handler_helper(const Value *V) {
4281 return cast<BasicBlock>(V);
4282 }
4283
4284public:
4285 using DerefFnTy = BasicBlock *(*)(Value *);
4286 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4287 using handler_range = iterator_range<handler_iterator>;
4288 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4289 using const_handler_iterator =
4290 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4291 using const_handler_range = iterator_range<const_handler_iterator>;
4292
4293 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4294 handler_iterator handler_begin() {
4295 op_iterator It = op_begin() + 1;
4296 if (hasUnwindDest())
4297 ++It;
4298 return handler_iterator(It, DerefFnTy(handler_helper));
4299 }
4300
4301 /// Returns an iterator that points to the first handler in the
4302 /// CatchSwitchInst.
4303 const_handler_iterator handler_begin() const {
4304 const_op_iterator It = op_begin() + 1;
4305 if (hasUnwindDest())
4306 ++It;
4307 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4308 }
4309
4310 /// Returns a read-only iterator that points one past the last
4311 /// handler in the CatchSwitchInst.
4312 handler_iterator handler_end() {
4313 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4314 }
4315
4316 /// Returns an iterator that points one past the last handler in the
4317 /// CatchSwitchInst.
4318 const_handler_iterator handler_end() const {
4319 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4320 }
4321
4322 /// iteration adapter for range-for loops.
4323 handler_range handlers() {
4324 return make_range(handler_begin(), handler_end());
4325 }
4326
4327 /// iteration adapter for range-for loops.
4328 const_handler_range handlers() const {
4329 return make_range(handler_begin(), handler_end());
4330 }
4331
4332 /// Add an entry to the switch instruction...
4333 /// Note:
4334 /// This action invalidates handler_end(). Old handler_end() iterator will
4335 /// point to the added handler.
4336 void addHandler(BasicBlock *Dest);
4337
4338 void removeHandler(handler_iterator HI);
4339
4340 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4341 BasicBlock *getSuccessor(unsigned Idx) const {
4342 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4343, __PRETTY_FUNCTION__))
4343 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4343, __PRETTY_FUNCTION__))
;
4344 return cast<BasicBlock>(getOperand(Idx + 1));
4345 }
4346 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4347 assert(Idx < getNumSuccessors() &&((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4348, __PRETTY_FUNCTION__))
4348 "Successor # out of range for catchswitch!")((Idx < getNumSuccessors() && "Successor # out of range for catchswitch!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4348, __PRETTY_FUNCTION__))
;
4349 setOperand(Idx + 1, NewSucc);
4350 }
4351
4352 // Methods for support type inquiry through isa, cast, and dyn_cast:
4353 static bool classof(const Instruction *I) {
4354 return I->getOpcode() == Instruction::CatchSwitch;
4355 }
4356 static bool classof(const Value *V) {
4357 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4358 }
4359};
4360
4361template <>
4362struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4363
4364DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchSwitchInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4364, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this))[i_nocapture].get()); } void CatchSwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchSwitchInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4364, __PRETTY_FUNCTION__)); OperandTraits<CatchSwitchInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchSwitchInst::getNumOperands() const { return OperandTraits
<CatchSwitchInst>::operands(this); } template <int Idx_nocapture
> Use &CatchSwitchInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchSwitchInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4365
4366//===----------------------------------------------------------------------===//
4367// CleanupPadInst Class
4368//===----------------------------------------------------------------------===//
4369class CleanupPadInst : public FuncletPadInst {
4370private:
4371 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4372 unsigned Values, const Twine &NameStr,
4373 Instruction *InsertBefore)
4374 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4375 NameStr, InsertBefore) {}
4376 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4377 unsigned Values, const Twine &NameStr,
4378 BasicBlock *InsertAtEnd)
4379 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4380 NameStr, InsertAtEnd) {}
4381
4382public:
4383 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4384 const Twine &NameStr = "",
4385 Instruction *InsertBefore = nullptr) {
4386 unsigned Values = 1 + Args.size();
4387 return new (Values)
4388 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4389 }
4390
4391 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4392 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4393 unsigned Values = 1 + Args.size();
4394 return new (Values)
4395 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4396 }
4397
4398 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4399 static bool classof(const Instruction *I) {
4400 return I->getOpcode() == Instruction::CleanupPad;
4401 }
4402 static bool classof(const Value *V) {
4403 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4404 }
4405};
4406
4407//===----------------------------------------------------------------------===//
4408// CatchPadInst Class
4409//===----------------------------------------------------------------------===//
4410class CatchPadInst : public FuncletPadInst {
4411private:
4412 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4413 unsigned Values, const Twine &NameStr,
4414 Instruction *InsertBefore)
4415 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4416 NameStr, InsertBefore) {}
4417 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4418 unsigned Values, const Twine &NameStr,
4419 BasicBlock *InsertAtEnd)
4420 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4421 NameStr, InsertAtEnd) {}
4422
4423public:
4424 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4425 const Twine &NameStr = "",
4426 Instruction *InsertBefore = nullptr) {
4427 unsigned Values = 1 + Args.size();
4428 return new (Values)
4429 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4430 }
4431
4432 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4433 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4434 unsigned Values = 1 + Args.size();
4435 return new (Values)
4436 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4437 }
4438
4439 /// Convenience accessors
4440 CatchSwitchInst *getCatchSwitch() const {
4441 return cast<CatchSwitchInst>(Op<-1>());
4442 }
4443 void setCatchSwitch(Value *CatchSwitch) {
4444 assert(CatchSwitch)((CatchSwitch) ? static_cast<void> (0) : __assert_fail (
"CatchSwitch", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4444, __PRETTY_FUNCTION__))
;
4445 Op<-1>() = CatchSwitch;
4446 }
4447
4448 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4449 static bool classof(const Instruction *I) {
4450 return I->getOpcode() == Instruction::CatchPad;
4451 }
4452 static bool classof(const Value *V) {
4453 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4454 }
4455};
4456
4457//===----------------------------------------------------------------------===//
4458// CatchReturnInst Class
4459//===----------------------------------------------------------------------===//
4460
4461class CatchReturnInst : public Instruction {
4462 CatchReturnInst(const CatchReturnInst &RI);
4463 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4464 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4465
4466 void init(Value *CatchPad, BasicBlock *BB);
4467
4468protected:
4469 // Note: Instruction needs to be a friend here to call cloneImpl.
4470 friend class Instruction;
4471
4472 CatchReturnInst *cloneImpl() const;
4473
4474public:
4475 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4476 Instruction *InsertBefore = nullptr) {
4477 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4477, __PRETTY_FUNCTION__))
;
4478 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4478, __PRETTY_FUNCTION__))
;
4479 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4480 }
4481
4482 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4483 BasicBlock *InsertAtEnd) {
4484 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4484, __PRETTY_FUNCTION__))
;
4485 assert(BB)((BB) ? static_cast<void> (0) : __assert_fail ("BB", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4485, __PRETTY_FUNCTION__))
;
4486 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4487 }
4488
4489 /// Provide fast operand accessors
4490 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4491
4492 /// Convenience accessors.
4493 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4494 void setCatchPad(CatchPadInst *CatchPad) {
4495 assert(CatchPad)((CatchPad) ? static_cast<void> (0) : __assert_fail ("CatchPad"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4495, __PRETTY_FUNCTION__))
;
4496 Op<0>() = CatchPad;
4497 }
4498
4499 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4500 void setSuccessor(BasicBlock *NewSucc) {
4501 assert(NewSucc)((NewSucc) ? static_cast<void> (0) : __assert_fail ("NewSucc"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4501, __PRETTY_FUNCTION__))
;
4502 Op<1>() = NewSucc;
4503 }
4504 unsigned getNumSuccessors() const { return 1; }
4505
4506 /// Get the parentPad of this catchret's catchpad's catchswitch.
4507 /// The successor block is implicitly a member of this funclet.
4508 Value *getCatchSwitchParentPad() const {
4509 return getCatchPad()->getCatchSwitch()->getParentPad();
4510 }
4511
4512 // Methods for support type inquiry through isa, cast, and dyn_cast:
4513 static bool classof(const Instruction *I) {
4514 return (I->getOpcode() == Instruction::CatchRet);
4515 }
4516 static bool classof(const Value *V) {
4517 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4518 }
4519
4520private:
4521 BasicBlock *getSuccessor(unsigned Idx) const {
4522 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4522, __PRETTY_FUNCTION__))
;
4523 return getSuccessor();
4524 }
4525
4526 void setSuccessor(unsigned Idx, BasicBlock *B) {
4527 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")((Idx < getNumSuccessors() && "Successor # out of range for catchret!"
) ? static_cast<void> (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4527, __PRETTY_FUNCTION__))
;
4528 setSuccessor(B);
4529 }
4530};
4531
4532template <>
4533struct OperandTraits<CatchReturnInst>
4534 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4535
4536DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<CatchReturnInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4536, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this))[i_nocapture].get()); } void CatchReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<CatchReturnInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4536, __PRETTY_FUNCTION__)); OperandTraits<CatchReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CatchReturnInst::getNumOperands() const { return OperandTraits
<CatchReturnInst>::operands(this); } template <int Idx_nocapture
> Use &CatchReturnInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &CatchReturnInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
4537
4538//===----------------------------------------------------------------------===//
4539// CleanupReturnInst Class
4540//===----------------------------------------------------------------------===//
4541
4542class CleanupReturnInst : public Instruction {
4543 using UnwindDestField = BoolBitfieldElementT<0>;
4544
4545private:
4546 CleanupReturnInst(const CleanupReturnInst &RI);
4547 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4548 Instruction *InsertBefore = nullptr);
4549 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4550 BasicBlock *InsertAtEnd);
4551
4552 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4553
4554protected:
4555 // Note: Instruction needs to be a friend here to call cloneImpl.
4556 friend class Instruction;
4557
4558 CleanupReturnInst *cloneImpl() const;
4559
4560public:
4561 static CleanupReturnInst *Create(Value *CleanupPad,
4562 BasicBlock *UnwindBB = nullptr,
4563 Instruction *InsertBefore = nullptr) {
4564 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4564, __PRETTY_FUNCTION__))
;
4565 unsigned Values = 1;
4566 if (UnwindBB)
4567 ++Values;
4568 return new (Values)
4569 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4570 }
4571
4572 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4573 BasicBlock *InsertAtEnd) {
4574 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4574, __PRETTY_FUNCTION__))
;
4575 unsigned Values = 1;
4576 if (UnwindBB)
4577 ++Values;
4578 return new (Values)
4579 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4580 }
4581
4582 /// Provide fast operand accessors
4583 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4584
4585 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4586 bool unwindsToCaller() const { return !hasUnwindDest(); }
4587
4588 /// Convenience accessor.
4589 CleanupPadInst *getCleanupPad() const {
4590 return cast<CleanupPadInst>(Op<0>());
4591 }
4592 void setCleanupPad(CleanupPadInst *CleanupPad) {
4593 assert(CleanupPad)((CleanupPad) ? static_cast<void> (0) : __assert_fail (
"CleanupPad", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4593, __PRETTY_FUNCTION__))
;
4594 Op<0>() = CleanupPad;
4595 }
4596
4597 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4598
4599 BasicBlock *getUnwindDest() const {
4600 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4601 }
4602 void setUnwindDest(BasicBlock *NewDest) {
4603 assert(NewDest)((NewDest) ? static_cast<void> (0) : __assert_fail ("NewDest"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4603, __PRETTY_FUNCTION__))
;
4604 assert(hasUnwindDest())((hasUnwindDest()) ? static_cast<void> (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4604, __PRETTY_FUNCTION__))
;
4605 Op<1>() = NewDest;
4606 }
4607
4608 // Methods for support type inquiry through isa, cast, and dyn_cast:
4609 static bool classof(const Instruction *I) {
4610 return (I->getOpcode() == Instruction::CleanupRet);
4611 }
4612 static bool classof(const Value *V) {
4613 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4614 }
4615
4616private:
4617 BasicBlock *getSuccessor(unsigned Idx) const {
4618 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4618, __PRETTY_FUNCTION__))
;
4619 return getUnwindDest();
4620 }
4621
4622 void setSuccessor(unsigned Idx, BasicBlock *B) {
4623 assert(Idx == 0)((Idx == 0) ? static_cast<void> (0) : __assert_fail ("Idx == 0"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4623, __PRETTY_FUNCTION__))
;
4624 setUnwindDest(B);
4625 }
4626
4627 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4628 // method so that subclasses cannot accidentally use it.
4629 template <typename Bitfield>
4630 void setSubclassData(typename Bitfield::Type Value) {
4631 Instruction::setSubclassData<Bitfield>(Value);
4632 }
4633};
4634
4635template <>
4636struct OperandTraits<CleanupReturnInst>
4637 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4638
4639DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<CleanupReturnInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4639, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<CleanupReturnInst>::op_begin(const_cast
<CleanupReturnInst*>(this))[i_nocapture].get()); } void
CleanupReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<CleanupReturnInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4639, __PRETTY_FUNCTION__)); OperandTraits<CleanupReturnInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
CleanupReturnInst::getNumOperands() const { return OperandTraits
<CleanupReturnInst>::operands(this); } template <int
Idx_nocapture> Use &CleanupReturnInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &CleanupReturnInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
4640
4641//===----------------------------------------------------------------------===//
4642// UnreachableInst Class
4643//===----------------------------------------------------------------------===//
4644
4645//===---------------------------------------------------------------------------
4646/// This function has undefined behavior. In particular, the
4647/// presence of this instruction indicates some higher level knowledge that the
4648/// end of the block cannot be reached.
4649///
4650class UnreachableInst : public Instruction {
4651protected:
4652 // Note: Instruction needs to be a friend here to call cloneImpl.
4653 friend class Instruction;
4654
4655 UnreachableInst *cloneImpl() const;
4656
4657public:
4658 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4659 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4660
4661 // allocate space for exactly zero operands
4662 void *operator new(size_t s) {
4663 return User::operator new(s, 0);
4664 }
4665
4666 unsigned getNumSuccessors() const { return 0; }
4667
4668 // Methods for support type inquiry through isa, cast, and dyn_cast:
4669 static bool classof(const Instruction *I) {
4670 return I->getOpcode() == Instruction::Unreachable;
4671 }
4672 static bool classof(const Value *V) {
4673 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4674 }
4675
4676private:
4677 BasicBlock *getSuccessor(unsigned idx) const {
4678 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4678)
;
4679 }
4680
4681 void setSuccessor(unsigned idx, BasicBlock *B) {
4682 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 4682)
;
4683 }
4684};
4685
4686//===----------------------------------------------------------------------===//
4687// TruncInst Class
4688//===----------------------------------------------------------------------===//
4689
4690/// This class represents a truncation of integer types.
4691class TruncInst : public CastInst {
4692protected:
4693 // Note: Instruction needs to be a friend here to call cloneImpl.
4694 friend class Instruction;
4695
4696 /// Clone an identical TruncInst
4697 TruncInst *cloneImpl() const;
4698
4699public:
4700 /// Constructor with insert-before-instruction semantics
4701 TruncInst(
4702 Value *S, ///< The value to be truncated
4703 Type *Ty, ///< The (smaller) type to truncate to
4704 const Twine &NameStr = "", ///< A name for the new instruction
4705 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4706 );
4707
4708 /// Constructor with insert-at-end-of-block semantics
4709 TruncInst(
4710 Value *S, ///< The value to be truncated
4711 Type *Ty, ///< The (smaller) type to truncate to
4712 const Twine &NameStr, ///< A name for the new instruction
4713 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4714 );
4715
4716 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4717 static bool classof(const Instruction *I) {
4718 return I->getOpcode() == Trunc;
4719 }
4720 static bool classof(const Value *V) {
4721 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4722 }
4723};
4724
4725//===----------------------------------------------------------------------===//
4726// ZExtInst Class
4727//===----------------------------------------------------------------------===//
4728
4729/// This class represents zero extension of integer types.
4730class ZExtInst : public CastInst {
4731protected:
4732 // Note: Instruction needs to be a friend here to call cloneImpl.
4733 friend class Instruction;
4734
4735 /// Clone an identical ZExtInst
4736 ZExtInst *cloneImpl() const;
4737
4738public:
4739 /// Constructor with insert-before-instruction semantics
4740 ZExtInst(
4741 Value *S, ///< The value to be zero extended
4742 Type *Ty, ///< The type to zero extend to
4743 const Twine &NameStr = "", ///< A name for the new instruction
4744 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4745 );
4746
4747 /// Constructor with insert-at-end semantics.
4748 ZExtInst(
4749 Value *S, ///< The value to be zero extended
4750 Type *Ty, ///< The type to zero extend to
4751 const Twine &NameStr, ///< A name for the new instruction
4752 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4753 );
4754
4755 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4756 static bool classof(const Instruction *I) {
4757 return I->getOpcode() == ZExt;
4758 }
4759 static bool classof(const Value *V) {
4760 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4761 }
4762};
4763
4764//===----------------------------------------------------------------------===//
4765// SExtInst Class
4766//===----------------------------------------------------------------------===//
4767
4768/// This class represents a sign extension of integer types.
4769class SExtInst : public CastInst {
4770protected:
4771 // Note: Instruction needs to be a friend here to call cloneImpl.
4772 friend class Instruction;
4773
4774 /// Clone an identical SExtInst
4775 SExtInst *cloneImpl() const;
4776
4777public:
4778 /// Constructor with insert-before-instruction semantics
4779 SExtInst(
4780 Value *S, ///< The value to be sign extended
4781 Type *Ty, ///< The type to sign extend to
4782 const Twine &NameStr = "", ///< A name for the new instruction
4783 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4784 );
4785
4786 /// Constructor with insert-at-end-of-block semantics
4787 SExtInst(
4788 Value *S, ///< The value to be sign extended
4789 Type *Ty, ///< The type to sign extend to
4790 const Twine &NameStr, ///< A name for the new instruction
4791 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4792 );
4793
4794 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4795 static bool classof(const Instruction *I) {
4796 return I->getOpcode() == SExt;
4797 }
4798 static bool classof(const Value *V) {
4799 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4800 }
4801};
4802
4803//===----------------------------------------------------------------------===//
4804// FPTruncInst Class
4805//===----------------------------------------------------------------------===//
4806
4807/// This class represents a truncation of floating point types.
4808class FPTruncInst : public CastInst {
4809protected:
4810 // Note: Instruction needs to be a friend here to call cloneImpl.
4811 friend class Instruction;
4812
4813 /// Clone an identical FPTruncInst
4814 FPTruncInst *cloneImpl() const;
4815
4816public:
4817 /// Constructor with insert-before-instruction semantics
4818 FPTruncInst(
4819 Value *S, ///< The value to be truncated
4820 Type *Ty, ///< The type to truncate to
4821 const Twine &NameStr = "", ///< A name for the new instruction
4822 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4823 );
4824
4825 /// Constructor with insert-before-instruction semantics
4826 FPTruncInst(
4827 Value *S, ///< The value to be truncated
4828 Type *Ty, ///< The type to truncate to
4829 const Twine &NameStr, ///< A name for the new instruction
4830 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4831 );
4832
4833 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4834 static bool classof(const Instruction *I) {
4835 return I->getOpcode() == FPTrunc;
4836 }
4837 static bool classof(const Value *V) {
4838 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4839 }
4840};
4841
4842//===----------------------------------------------------------------------===//
4843// FPExtInst Class
4844//===----------------------------------------------------------------------===//
4845
4846/// This class represents an extension of floating point types.
4847class FPExtInst : public CastInst {
4848protected:
4849 // Note: Instruction needs to be a friend here to call cloneImpl.
4850 friend class Instruction;
4851
4852 /// Clone an identical FPExtInst
4853 FPExtInst *cloneImpl() const;
4854
4855public:
4856 /// Constructor with insert-before-instruction semantics
4857 FPExtInst(
4858 Value *S, ///< The value to be extended
4859 Type *Ty, ///< The type to extend to
4860 const Twine &NameStr = "", ///< A name for the new instruction
4861 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4862 );
4863
4864 /// Constructor with insert-at-end-of-block semantics
4865 FPExtInst(
4866 Value *S, ///< The value to be extended
4867 Type *Ty, ///< The type to extend to
4868 const Twine &NameStr, ///< A name for the new instruction
4869 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4870 );
4871
4872 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4873 static bool classof(const Instruction *I) {
4874 return I->getOpcode() == FPExt;
4875 }
4876 static bool classof(const Value *V) {
4877 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4878 }
4879};
4880
4881//===----------------------------------------------------------------------===//
4882// UIToFPInst Class
4883//===----------------------------------------------------------------------===//
4884
4885/// This class represents a cast unsigned integer to floating point.
4886class UIToFPInst : public CastInst {
4887protected:
4888 // Note: Instruction needs to be a friend here to call cloneImpl.
4889 friend class Instruction;
4890
4891 /// Clone an identical UIToFPInst
4892 UIToFPInst *cloneImpl() const;
4893
4894public:
4895 /// Constructor with insert-before-instruction semantics
4896 UIToFPInst(
4897 Value *S, ///< The value to be converted
4898 Type *Ty, ///< The type to convert to
4899 const Twine &NameStr = "", ///< A name for the new instruction
4900 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4901 );
4902
4903 /// Constructor with insert-at-end-of-block semantics
4904 UIToFPInst(
4905 Value *S, ///< The value to be converted
4906 Type *Ty, ///< The type to convert to
4907 const Twine &NameStr, ///< A name for the new instruction
4908 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4909 );
4910
4911 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4912 static bool classof(const Instruction *I) {
4913 return I->getOpcode() == UIToFP;
4914 }
4915 static bool classof(const Value *V) {
4916 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4917 }
4918};
4919
4920//===----------------------------------------------------------------------===//
4921// SIToFPInst Class
4922//===----------------------------------------------------------------------===//
4923
4924/// This class represents a cast from signed integer to floating point.
4925class SIToFPInst : public CastInst {
4926protected:
4927 // Note: Instruction needs to be a friend here to call cloneImpl.
4928 friend class Instruction;
4929
4930 /// Clone an identical SIToFPInst
4931 SIToFPInst *cloneImpl() const;
4932
4933public:
4934 /// Constructor with insert-before-instruction semantics
4935 SIToFPInst(
4936 Value *S, ///< The value to be converted
4937 Type *Ty, ///< The type to convert to
4938 const Twine &NameStr = "", ///< A name for the new instruction
4939 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4940 );
4941
4942 /// Constructor with insert-at-end-of-block semantics
4943 SIToFPInst(
4944 Value *S, ///< The value to be converted
4945 Type *Ty, ///< The type to convert to
4946 const Twine &NameStr, ///< A name for the new instruction
4947 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4948 );
4949
4950 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4951 static bool classof(const Instruction *I) {
4952 return I->getOpcode() == SIToFP;
4953 }
4954 static bool classof(const Value *V) {
4955 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4956 }
4957};
4958
4959//===----------------------------------------------------------------------===//
4960// FPToUIInst Class
4961//===----------------------------------------------------------------------===//
4962
4963/// This class represents a cast from floating point to unsigned integer
4964class FPToUIInst : public CastInst {
4965protected:
4966 // Note: Instruction needs to be a friend here to call cloneImpl.
4967 friend class Instruction;
4968
4969 /// Clone an identical FPToUIInst
4970 FPToUIInst *cloneImpl() const;
4971
4972public:
4973 /// Constructor with insert-before-instruction semantics
4974 FPToUIInst(
4975 Value *S, ///< The value to be converted
4976 Type *Ty, ///< The type to convert to
4977 const Twine &NameStr = "", ///< A name for the new instruction
4978 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4979 );
4980
4981 /// Constructor with insert-at-end-of-block semantics
4982 FPToUIInst(
4983 Value *S, ///< The value to be converted
4984 Type *Ty, ///< The type to convert to
4985 const Twine &NameStr, ///< A name for the new instruction
4986 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
4987 );
4988
4989 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4990 static bool classof(const Instruction *I) {
4991 return I->getOpcode() == FPToUI;
4992 }
4993 static bool classof(const Value *V) {
4994 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4995 }
4996};
4997
4998//===----------------------------------------------------------------------===//
4999// FPToSIInst Class
5000//===----------------------------------------------------------------------===//
5001
5002/// This class represents a cast from floating point to signed integer.
5003class FPToSIInst : public CastInst {
5004protected:
5005 // Note: Instruction needs to be a friend here to call cloneImpl.
5006 friend class Instruction;
5007
5008 /// Clone an identical FPToSIInst
5009 FPToSIInst *cloneImpl() const;
5010
5011public:
5012 /// Constructor with insert-before-instruction semantics
5013 FPToSIInst(
5014 Value *S, ///< The value to be converted
5015 Type *Ty, ///< The type to convert to
5016 const Twine &NameStr = "", ///< A name for the new instruction
5017 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5018 );
5019
5020 /// Constructor with insert-at-end-of-block semantics
5021 FPToSIInst(
5022 Value *S, ///< The value to be converted
5023 Type *Ty, ///< The type to convert to
5024 const Twine &NameStr, ///< A name for the new instruction
5025 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5026 );
5027
5028 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5029 static bool classof(const Instruction *I) {
5030 return I->getOpcode() == FPToSI;
5031 }
5032 static bool classof(const Value *V) {
5033 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5034 }
5035};
5036
5037//===----------------------------------------------------------------------===//
5038// IntToPtrInst Class
5039//===----------------------------------------------------------------------===//
5040
5041/// This class represents a cast from an integer to a pointer.
5042class IntToPtrInst : public CastInst {
5043public:
5044 // Note: Instruction needs to be a friend here to call cloneImpl.
5045 friend class Instruction;
5046
5047 /// Constructor with insert-before-instruction semantics
5048 IntToPtrInst(
5049 Value *S, ///< The value to be converted
5050 Type *Ty, ///< The type to convert to
5051 const Twine &NameStr = "", ///< A name for the new instruction
5052 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5053 );
5054
5055 /// Constructor with insert-at-end-of-block semantics
5056 IntToPtrInst(
5057 Value *S, ///< The value to be converted
5058 Type *Ty, ///< The type to convert to
5059 const Twine &NameStr, ///< A name for the new instruction
5060 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5061 );
5062
5063 /// Clone an identical IntToPtrInst.
5064 IntToPtrInst *cloneImpl() const;
5065
5066 /// Returns the address space of this instruction's pointer type.
5067 unsigned getAddressSpace() const {
5068 return getType()->getPointerAddressSpace();
5069 }
5070
5071 // Methods for support type inquiry through isa, cast, and dyn_cast:
5072 static bool classof(const Instruction *I) {
5073 return I->getOpcode() == IntToPtr;
5074 }
5075 static bool classof(const Value *V) {
5076 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5077 }
5078};
5079
5080//===----------------------------------------------------------------------===//
5081// PtrToIntInst Class
5082//===----------------------------------------------------------------------===//
5083
5084/// This class represents a cast from a pointer to an integer.
5085class PtrToIntInst : public CastInst {
5086protected:
5087 // Note: Instruction needs to be a friend here to call cloneImpl.
5088 friend class Instruction;
5089
5090 /// Clone an identical PtrToIntInst.
5091 PtrToIntInst *cloneImpl() const;
5092
5093public:
5094 /// Constructor with insert-before-instruction semantics
5095 PtrToIntInst(
5096 Value *S, ///< The value to be converted
5097 Type *Ty, ///< The type to convert to
5098 const Twine &NameStr = "", ///< A name for the new instruction
5099 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5100 );
5101
5102 /// Constructor with insert-at-end-of-block semantics
5103 PtrToIntInst(
5104 Value *S, ///< The value to be converted
5105 Type *Ty, ///< The type to convert to
5106 const Twine &NameStr, ///< A name for the new instruction
5107 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5108 );
5109
5110 /// Gets the pointer operand.
5111 Value *getPointerOperand() { return getOperand(0); }
5112 /// Gets the pointer operand.
5113 const Value *getPointerOperand() const { return getOperand(0); }
5114 /// Gets the operand index of the pointer operand.
5115 static unsigned getPointerOperandIndex() { return 0U; }
5116
5117 /// Returns the address space of the pointer operand.
5118 unsigned getPointerAddressSpace() const {
5119 return getPointerOperand()->getType()->getPointerAddressSpace();
5120 }
5121
5122 // Methods for support type inquiry through isa, cast, and dyn_cast:
5123 static bool classof(const Instruction *I) {
5124 return I->getOpcode() == PtrToInt;
5125 }
5126 static bool classof(const Value *V) {
5127 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5128 }
5129};
5130
5131//===----------------------------------------------------------------------===//
5132// BitCastInst Class
5133//===----------------------------------------------------------------------===//
5134
5135/// This class represents a no-op cast from one type to another.
5136class BitCastInst : public CastInst {
5137protected:
5138 // Note: Instruction needs to be a friend here to call cloneImpl.
5139 friend class Instruction;
5140
5141 /// Clone an identical BitCastInst.
5142 BitCastInst *cloneImpl() const;
5143
5144public:
5145 /// Constructor with insert-before-instruction semantics
5146 BitCastInst(
5147 Value *S, ///< The value to be casted
5148 Type *Ty, ///< The type to casted to
5149 const Twine &NameStr = "", ///< A name for the new instruction
5150 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5151 );
5152
5153 /// Constructor with insert-at-end-of-block semantics
5154 BitCastInst(
5155 Value *S, ///< The value to be casted
5156 Type *Ty, ///< The type to casted to
5157 const Twine &NameStr, ///< A name for the new instruction
5158 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5159 );
5160
5161 // Methods for support type inquiry through isa, cast, and dyn_cast:
5162 static bool classof(const Instruction *I) {
5163 return I->getOpcode() == BitCast;
5164 }
5165 static bool classof(const Value *V) {
5166 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5167 }
5168};
5169
5170//===----------------------------------------------------------------------===//
5171// AddrSpaceCastInst Class
5172//===----------------------------------------------------------------------===//
5173
5174/// This class represents a conversion between pointers from one address space
5175/// to another.
5176class AddrSpaceCastInst : public CastInst {
5177protected:
5178 // Note: Instruction needs to be a friend here to call cloneImpl.
5179 friend class Instruction;
5180
5181 /// Clone an identical AddrSpaceCastInst.
5182 AddrSpaceCastInst *cloneImpl() const;
5183
5184public:
5185 /// Constructor with insert-before-instruction semantics
5186 AddrSpaceCastInst(
5187 Value *S, ///< The value to be casted
5188 Type *Ty, ///< The type to casted to
5189 const Twine &NameStr = "", ///< A name for the new instruction
5190 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5191 );
5192
5193 /// Constructor with insert-at-end-of-block semantics
5194 AddrSpaceCastInst(
5195 Value *S, ///< The value to be casted
5196 Type *Ty, ///< The type to casted to
5197 const Twine &NameStr, ///< A name for the new instruction
5198 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5199 );
5200
5201 // Methods for support type inquiry through isa, cast, and dyn_cast:
5202 static bool classof(const Instruction *I) {
5203 return I->getOpcode() == AddrSpaceCast;
5204 }
5205 static bool classof(const Value *V) {
5206 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5207 }
5208
5209 /// Gets the pointer operand.
5210 Value *getPointerOperand() {
5211 return getOperand(0);
5212 }
5213
5214 /// Gets the pointer operand.
5215 const Value *getPointerOperand() const {
5216 return getOperand(0);
5217 }
5218
5219 /// Gets the operand index of the pointer operand.
5220 static unsigned getPointerOperandIndex() {
5221 return 0U;
5222 }
5223
5224 /// Returns the address space of the pointer operand.
5225 unsigned getSrcAddressSpace() const {
5226 return getPointerOperand()->getType()->getPointerAddressSpace();
5227 }
5228
5229 /// Returns the address space of the result.
5230 unsigned getDestAddressSpace() const {
5231 return getType()->getPointerAddressSpace();
5232 }
5233};
5234
5235/// A helper function that returns the pointer operand of a load or store
5236/// instruction. Returns nullptr if not load or store.
5237inline const Value *getLoadStorePointerOperand(const Value *V) {
5238 if (auto *Load = dyn_cast<LoadInst>(V))
5239 return Load->getPointerOperand();
5240 if (auto *Store = dyn_cast<StoreInst>(V))
5241 return Store->getPointerOperand();
5242 return nullptr;
5243}
5244inline Value *getLoadStorePointerOperand(Value *V) {
5245 return const_cast<Value *>(
5246 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5247}
5248
5249/// A helper function that returns the pointer operand of a load, store
5250/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5251inline const Value *getPointerOperand(const Value *V) {
5252 if (auto *Ptr = getLoadStorePointerOperand(V))
5253 return Ptr;
5254 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5255 return Gep->getPointerOperand();
5256 return nullptr;
5257}
5258inline Value *getPointerOperand(Value *V) {
5259 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5260}
5261
5262/// A helper function that returns the alignment of load or store instruction.
5263inline Align getLoadStoreAlignment(Value *I) {
5264 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 5265, __PRETTY_FUNCTION__))
5265 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 5265, __PRETTY_FUNCTION__))
;
5266 if (auto *LI = dyn_cast<LoadInst>(I))
5267 return LI->getAlign();
5268 return cast<StoreInst>(I)->getAlign();
5269}
5270
5271/// A helper function that returns the address space of the pointer operand of
5272/// load or store instruction.
5273inline unsigned getLoadStoreAddressSpace(Value *I) {
5274 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 5275, __PRETTY_FUNCTION__))
5275 "Expected Load or Store instruction")(((isa<LoadInst>(I) || isa<StoreInst>(I)) &&
"Expected Load or Store instruction") ? static_cast<void>
(0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/Instructions.h"
, 5275, __PRETTY_FUNCTION__))
;
5276 if (auto *LI = dyn_cast<LoadInst>(I))
5277 return LI->getPointerAddressSpace();
5278 return cast<StoreInst>(I)->getPointerAddressSpace();
5279}
5280
5281//===----------------------------------------------------------------------===//
5282// FreezeInst Class
5283//===----------------------------------------------------------------------===//
5284
5285/// This class represents a freeze function that returns random concrete
5286/// value if an operand is either a poison value or an undef value
5287class FreezeInst : public UnaryInstruction {
5288protected:
5289 // Note: Instruction needs to be a friend here to call cloneImpl.
5290 friend class Instruction;
5291
5292 /// Clone an identical FreezeInst
5293 FreezeInst *cloneImpl() const;
5294
5295public:
5296 explicit FreezeInst(Value *S,
5297 const Twine &NameStr = "",
5298 Instruction *InsertBefore = nullptr);
5299 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5300
5301 // Methods for support type inquiry through isa, cast, and dyn_cast:
5302 static inline bool classof(const Instruction *I) {
5303 return I->getOpcode() == Freeze;
5304 }
5305 static inline bool classof(const Value *V) {
5306 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5307 }
5308};
5309
5310} // end namespace llvm
5311
5312#endif // LLVM_IR_INSTRUCTIONS_H

/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/PatternMatch.h

1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InstrTypes.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Value.h"
43#include "llvm/Support/Casting.h"
44#include <cstdint>
45
46namespace llvm {
47namespace PatternMatch {
48
49template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
33
Calling 'BinaryOp_match::match'
38
Returning from 'BinaryOp_match::match'
39
Returning the value 1, which participates in a condition later
51}
52
53template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55}
56
57template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65};
66
67template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69}
70
71template <typename Class> struct class_match {
72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73};
74
75/// Match an arbitrary value and ignore it.
76inline class_match<Value> m_Value() { return class_match<Value>(); }
77
78/// Match an arbitrary unary operation and ignore it.
79inline class_match<UnaryOperator> m_UnOp() {
80 return class_match<UnaryOperator>();
81}
82
83/// Match an arbitrary binary operation and ignore it.
84inline class_match<BinaryOperator> m_BinOp() {
85 return class_match<BinaryOperator>();
86}
87
88/// Matches any compare instruction and ignore it.
89inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90
91/// Match an arbitrary undef constant.
92inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
93
94/// Match an arbitrary poison constant.
95inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
96
97/// Match an arbitrary Constant and ignore it.
98inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
99
100/// Match an arbitrary ConstantInt and ignore it.
101inline class_match<ConstantInt> m_ConstantInt() {
102 return class_match<ConstantInt>();
103}
104
105/// Match an arbitrary ConstantFP and ignore it.
106inline class_match<ConstantFP> m_ConstantFP() {
107 return class_match<ConstantFP>();
108}
109
110/// Match an arbitrary ConstantExpr and ignore it.
111inline class_match<ConstantExpr> m_ConstantExpr() {
112 return class_match<ConstantExpr>();
113}
114
115/// Match an arbitrary basic block value and ignore it.
116inline class_match<BasicBlock> m_BasicBlock() {
117 return class_match<BasicBlock>();
118}
119
120/// Inverting matcher
121template <typename Ty> struct match_unless {
122 Ty M;
123
124 match_unless(const Ty &Matcher) : M(Matcher) {}
125
126 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
127};
128
129/// Match if the inner matcher does *NOT* match.
130template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
131 return match_unless<Ty>(M);
132}
133
134/// Matching combinators
135template <typename LTy, typename RTy> struct match_combine_or {
136 LTy L;
137 RTy R;
138
139 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
140
141 template <typename ITy> bool match(ITy *V) {
142 if (L.match(V))
143 return true;
144 if (R.match(V))
145 return true;
146 return false;
147 }
148};
149
150template <typename LTy, typename RTy> struct match_combine_and {
151 LTy L;
152 RTy R;
153
154 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
155
156 template <typename ITy> bool match(ITy *V) {
157 if (L.match(V))
158 if (R.match(V))
159 return true;
160 return false;
161 }
162};
163
164/// Combine two pattern matchers matching L || R
165template <typename LTy, typename RTy>
166inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
167 return match_combine_or<LTy, RTy>(L, R);
168}
169
170/// Combine two pattern matchers matching L && R
171template <typename LTy, typename RTy>
172inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
173 return match_combine_and<LTy, RTy>(L, R);
174}
175
176struct apint_match {
177 const APInt *&Res;
178 bool AllowUndef;
179
180 apint_match(const APInt *&Res, bool AllowUndef)
181 : Res(Res), AllowUndef(AllowUndef) {}
182
183 template <typename ITy> bool match(ITy *V) {
184 if (auto *CI = dyn_cast<ConstantInt>(V)) {
185 Res = &CI->getValue();
186 return true;
187 }
188 if (V->getType()->isVectorTy())
189 if (const auto *C = dyn_cast<Constant>(V))
190 if (auto *CI = dyn_cast_or_null<ConstantInt>(
191 C->getSplatValue(AllowUndef))) {
192 Res = &CI->getValue();
193 return true;
194 }
195 return false;
196 }
197};
198// Either constexpr if or renaming ConstantFP::getValueAPF to
199// ConstantFP::getValue is needed to do it via single template
200// function for both apint/apfloat.
201struct apfloat_match {
202 const APFloat *&Res;
203 bool AllowUndef;
204
205 apfloat_match(const APFloat *&Res, bool AllowUndef)
206 : Res(Res), AllowUndef(AllowUndef) {}
207
208 template <typename ITy> bool match(ITy *V) {
209 if (auto *CI = dyn_cast<ConstantFP>(V)) {
210 Res = &CI->getValueAPF();
211 return true;
212 }
213 if (V->getType()->isVectorTy())
214 if (const auto *C = dyn_cast<Constant>(V))
215 if (auto *CI = dyn_cast_or_null<ConstantFP>(
216 C->getSplatValue(AllowUndef))) {
217 Res = &CI->getValueAPF();
218 return true;
219 }
220 return false;
221 }
222};
223
224/// Match a ConstantInt or splatted ConstantVector, binding the
225/// specified pointer to the contained APInt.
226inline apint_match m_APInt(const APInt *&Res) {
227 // Forbid undefs by default to maintain previous behavior.
228 return apint_match(Res, /* AllowUndef */ false);
229}
230
231/// Match APInt while allowing undefs in splat vector constants.
232inline apint_match m_APIntAllowUndef(const APInt *&Res) {
233 return apint_match(Res, /* AllowUndef */ true);
234}
235
236/// Match APInt while forbidding undefs in splat vector constants.
237inline apint_match m_APIntForbidUndef(const APInt *&Res) {
238 return apint_match(Res, /* AllowUndef */ false);
239}
240
241/// Match a ConstantFP or splatted ConstantVector, binding the
242/// specified pointer to the contained APFloat.
243inline apfloat_match m_APFloat(const APFloat *&Res) {
244 // Forbid undefs by default to maintain previous behavior.
245 return apfloat_match(Res, /* AllowUndef */ false);
246}
247
248/// Match APFloat while allowing undefs in splat vector constants.
249inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
250 return apfloat_match(Res, /* AllowUndef */ true);
251}
252
253/// Match APFloat while forbidding undefs in splat vector constants.
254inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
255 return apfloat_match(Res, /* AllowUndef */ false);
256}
257
258template <int64_t Val> struct constantint_match {
259 template <typename ITy> bool match(ITy *V) {
260 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
261 const APInt &CIV = CI->getValue();
262 if (Val >= 0)
263 return CIV == static_cast<uint64_t>(Val);
264 // If Val is negative, and CI is shorter than it, truncate to the right
265 // number of bits. If it is larger, then we have to sign extend. Just
266 // compare their negated values.
267 return -CIV == -Val;
268 }
269 return false;
270 }
271};
272
273/// Match a ConstantInt with a specific value.
274template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
275 return constantint_match<Val>();
276}
277
278/// This helper class is used to match constant scalars, vector splats,
279/// and fixed width vectors that satisfy a specified predicate.
280/// For fixed width vector constants, undefined elements are ignored.
281template <typename Predicate, typename ConstantVal>
282struct cstval_pred_ty : public Predicate {
283 template <typename ITy> bool match(ITy *V) {
284 if (const auto *CV = dyn_cast<ConstantVal>(V))
285 return this->isValue(CV->getValue());
286 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
287 if (const auto *C = dyn_cast<Constant>(V)) {
288 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
289 return this->isValue(CV->getValue());
290
291 // Number of elements of a scalable vector unknown at compile time
292 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
293 if (!FVTy)
294 return false;
295
296 // Non-splat vector constant: check each element for a match.
297 unsigned NumElts = FVTy->getNumElements();
298 assert(NumElts != 0 && "Constant vector with no elements?")((NumElts != 0 && "Constant vector with no elements?"
) ? static_cast<void> (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/PatternMatch.h"
, 298, __PRETTY_FUNCTION__))
;
299 bool HasNonUndefElements = false;
300 for (unsigned i = 0; i != NumElts; ++i) {
301 Constant *Elt = C->getAggregateElement(i);
302 if (!Elt)
303 return false;
304 if (isa<UndefValue>(Elt))
305 continue;
306 auto *CV = dyn_cast<ConstantVal>(Elt);
307 if (!CV || !this->isValue(CV->getValue()))
308 return false;
309 HasNonUndefElements = true;
310 }
311 return HasNonUndefElements;
312 }
313 }
314 return false;
315 }
316};
317
318/// specialization of cstval_pred_ty for ConstantInt
319template <typename Predicate>
320using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
321
322/// specialization of cstval_pred_ty for ConstantFP
323template <typename Predicate>
324using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
325
326/// This helper class is used to match scalar and vector constants that
327/// satisfy a specified predicate, and bind them to an APInt.
328template <typename Predicate> struct api_pred_ty : public Predicate {
329 const APInt *&Res;
330
331 api_pred_ty(const APInt *&R) : Res(R) {}
332
333 template <typename ITy> bool match(ITy *V) {
334 if (const auto *CI = dyn_cast<ConstantInt>(V))
335 if (this->isValue(CI->getValue())) {
336 Res = &CI->getValue();
337 return true;
338 }
339 if (V->getType()->isVectorTy())
340 if (const auto *C = dyn_cast<Constant>(V))
341 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
342 if (this->isValue(CI->getValue())) {
343 Res = &CI->getValue();
344 return true;
345 }
346
347 return false;
348 }
349};
350
351/// This helper class is used to match scalar and vector constants that
352/// satisfy a specified predicate, and bind them to an APFloat.
353/// Undefs are allowed in splat vector constants.
354template <typename Predicate> struct apf_pred_ty : public Predicate {
355 const APFloat *&Res;
356
357 apf_pred_ty(const APFloat *&R) : Res(R) {}
358
359 template <typename ITy> bool match(ITy *V) {
360 if (const auto *CI = dyn_cast<ConstantFP>(V))
361 if (this->isValue(CI->getValue())) {
362 Res = &CI->getValue();
363 return true;
364 }
365 if (V->getType()->isVectorTy())
366 if (const auto *C = dyn_cast<Constant>(V))
367 if (auto *CI = dyn_cast_or_null<ConstantFP>(
368 C->getSplatValue(/* AllowUndef */ true)))
369 if (this->isValue(CI->getValue())) {
370 Res = &CI->getValue();
371 return true;
372 }
373
374 return false;
375 }
376};
377
378///////////////////////////////////////////////////////////////////////////////
379//
380// Encapsulate constant value queries for use in templated predicate matchers.
381// This allows checking if constants match using compound predicates and works
382// with vector constants, possibly with relaxed constraints. For example, ignore
383// undef values.
384//
385///////////////////////////////////////////////////////////////////////////////
386
387struct is_any_apint {
388 bool isValue(const APInt &C) { return true; }
389};
390/// Match an integer or vector with any integral constant.
391/// For vectors, this includes constants with undefined elements.
392inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
393 return cst_pred_ty<is_any_apint>();
394}
395
396struct is_all_ones {
397 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
398};
399/// Match an integer or vector with all bits set.
400/// For vectors, this includes constants with undefined elements.
401inline cst_pred_ty<is_all_ones> m_AllOnes() {
402 return cst_pred_ty<is_all_ones>();
403}
404
405struct is_maxsignedvalue {
406 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
407};
408/// Match an integer or vector with values having all bits except for the high
409/// bit set (0x7f...).
410/// For vectors, this includes constants with undefined elements.
411inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
412 return cst_pred_ty<is_maxsignedvalue>();
413}
414inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
415 return V;
416}
417
418struct is_negative {
419 bool isValue(const APInt &C) { return C.isNegative(); }
420};
421/// Match an integer or vector of negative values.
422/// For vectors, this includes constants with undefined elements.
423inline cst_pred_ty<is_negative> m_Negative() {
424 return cst_pred_ty<is_negative>();
425}
426inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
427 return V;
428}
429
430struct is_nonnegative {
431 bool isValue(const APInt &C) { return C.isNonNegative(); }
432};
433/// Match an integer or vector of non-negative values.
434/// For vectors, this includes constants with undefined elements.
435inline cst_pred_ty<is_nonnegative> m_NonNegative() {
436 return cst_pred_ty<is_nonnegative>();
437}
438inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
439 return V;
440}
441
442struct is_strictlypositive {
443 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
444};
445/// Match an integer or vector of strictly positive values.
446/// For vectors, this includes constants with undefined elements.
447inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
448 return cst_pred_ty<is_strictlypositive>();
449}
450inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
451 return V;
452}
453
454struct is_nonpositive {
455 bool isValue(const APInt &C) { return C.isNonPositive(); }
456};
457/// Match an integer or vector of non-positive values.
458/// For vectors, this includes constants with undefined elements.
459inline cst_pred_ty<is_nonpositive> m_NonPositive() {
460 return cst_pred_ty<is_nonpositive>();
461}
462inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
463
464struct is_one {
465 bool isValue(const APInt &C) { return C.isOneValue(); }
466};
467/// Match an integer 1 or a vector with all elements equal to 1.
468/// For vectors, this includes constants with undefined elements.
469inline cst_pred_ty<is_one> m_One() {
470 return cst_pred_ty<is_one>();
471}
472
473struct is_zero_int {
474 bool isValue(const APInt &C) { return C.isNullValue(); }
475};
476/// Match an integer 0 or a vector with all elements equal to 0.
477/// For vectors, this includes constants with undefined elements.
478inline cst_pred_ty<is_zero_int> m_ZeroInt() {
479 return cst_pred_ty<is_zero_int>();
480}
481
482struct is_zero {
483 template <typename ITy> bool match(ITy *V) {
484 auto *C = dyn_cast<Constant>(V);
485 // FIXME: this should be able to do something for scalable vectors
486 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
487 }
488};
489/// Match any null constant or a vector with all elements equal to 0.
490/// For vectors, this includes constants with undefined elements.
491inline is_zero m_Zero() {
492 return is_zero();
493}
494
495struct is_power2 {
496 bool isValue(const APInt &C) { return C.isPowerOf2(); }
497};
498/// Match an integer or vector power-of-2.
499/// For vectors, this includes constants with undefined elements.
500inline cst_pred_ty<is_power2> m_Power2() {
501 return cst_pred_ty<is_power2>();
502}
503inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
504 return V;
505}
506
507struct is_negated_power2 {
508 bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
509};
510/// Match a integer or vector negated power-of-2.
511/// For vectors, this includes constants with undefined elements.
512inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
513 return cst_pred_ty<is_negated_power2>();
514}
515inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
516 return V;
517}
518
519struct is_power2_or_zero {
520 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
521};
522/// Match an integer or vector of 0 or power-of-2 values.
523/// For vectors, this includes constants with undefined elements.
524inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
525 return cst_pred_ty<is_power2_or_zero>();
526}
527inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
528 return V;
529}
530
531struct is_sign_mask {
532 bool isValue(const APInt &C) { return C.isSignMask(); }
533};
534/// Match an integer or vector with only the sign bit(s) set.
535/// For vectors, this includes constants with undefined elements.
536inline cst_pred_ty<is_sign_mask> m_SignMask() {
537 return cst_pred_ty<is_sign_mask>();
538}
539
540struct is_lowbit_mask {
541 bool isValue(const APInt &C) { return C.isMask(); }
542};
543/// Match an integer or vector with only the low bit(s) set.
544/// For vectors, this includes constants with undefined elements.
545inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
546 return cst_pred_ty<is_lowbit_mask>();
547}
548
549struct icmp_pred_with_threshold {
550 ICmpInst::Predicate Pred;
551 const APInt *Thr;
552 bool isValue(const APInt &C) {
553 switch (Pred) {
554 case ICmpInst::Predicate::ICMP_EQ:
555 return C.eq(*Thr);
556 case ICmpInst::Predicate::ICMP_NE:
557 return C.ne(*Thr);
558 case ICmpInst::Predicate::ICMP_UGT:
559 return C.ugt(*Thr);
560 case ICmpInst::Predicate::ICMP_UGE:
561 return C.uge(*Thr);
562 case ICmpInst::Predicate::ICMP_ULT:
563 return C.ult(*Thr);
564 case ICmpInst::Predicate::ICMP_ULE:
565 return C.ule(*Thr);
566 case ICmpInst::Predicate::ICMP_SGT:
567 return C.sgt(*Thr);
568 case ICmpInst::Predicate::ICMP_SGE:
569 return C.sge(*Thr);
570 case ICmpInst::Predicate::ICMP_SLT:
571 return C.slt(*Thr);
572 case ICmpInst::Predicate::ICMP_SLE:
573 return C.sle(*Thr);
574 default:
575 llvm_unreachable("Unhandled ICmp predicate")::llvm::llvm_unreachable_internal("Unhandled ICmp predicate",
"/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/PatternMatch.h"
, 575)
;
576 }
577 }
578};
579/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
580/// to Threshold. For vectors, this includes constants with undefined elements.
581inline cst_pred_ty<icmp_pred_with_threshold>
582m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
583 cst_pred_ty<icmp_pred_with_threshold> P;
584 P.Pred = Predicate;
585 P.Thr = &Threshold;
586 return P;
587}
588
589struct is_nan {
590 bool isValue(const APFloat &C) { return C.isNaN(); }
591};
592/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
593/// For vectors, this includes constants with undefined elements.
594inline cstfp_pred_ty<is_nan> m_NaN() {
595 return cstfp_pred_ty<is_nan>();
596}
597
598struct is_nonnan {
599 bool isValue(const APFloat &C) { return !C.isNaN(); }
600};
601/// Match a non-NaN FP constant.
602/// For vectors, this includes constants with undefined elements.
603inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
604 return cstfp_pred_ty<is_nonnan>();
605}
606
607struct is_inf {
608 bool isValue(const APFloat &C) { return C.isInfinity(); }
609};
610/// Match a positive or negative infinity FP constant.
611/// For vectors, this includes constants with undefined elements.
612inline cstfp_pred_ty<is_inf> m_Inf() {
613 return cstfp_pred_ty<is_inf>();
614}
615
616struct is_noninf {
617 bool isValue(const APFloat &C) { return !C.isInfinity(); }
618};
619/// Match a non-infinity FP constant, i.e. finite or NaN.
620/// For vectors, this includes constants with undefined elements.
621inline cstfp_pred_ty<is_noninf> m_NonInf() {
622 return cstfp_pred_ty<is_noninf>();
623}
624
625struct is_finite {
626 bool isValue(const APFloat &C) { return C.isFinite(); }
627};
628/// Match a finite FP constant, i.e. not infinity or NaN.
629/// For vectors, this includes constants with undefined elements.
630inline cstfp_pred_ty<is_finite> m_Finite() {
631 return cstfp_pred_ty<is_finite>();
632}
633inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
634
635struct is_finitenonzero {
636 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
637};
638/// Match a finite non-zero FP constant.
639/// For vectors, this includes constants with undefined elements.
640inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
641 return cstfp_pred_ty<is_finitenonzero>();
642}
643inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
644 return V;
645}
646
647struct is_any_zero_fp {
648 bool isValue(const APFloat &C) { return C.isZero(); }
649};
650/// Match a floating-point negative zero or positive zero.
651/// For vectors, this includes constants with undefined elements.
652inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
653 return cstfp_pred_ty<is_any_zero_fp>();
654}
655
656struct is_pos_zero_fp {
657 bool isValue(const APFloat &C) { return C.isPosZero(); }
658};
659/// Match a floating-point positive zero.
660/// For vectors, this includes constants with undefined elements.
661inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
662 return cstfp_pred_ty<is_pos_zero_fp>();
663}
664
665struct is_neg_zero_fp {
666 bool isValue(const APFloat &C) { return C.isNegZero(); }
667};
668/// Match a floating-point negative zero.
669/// For vectors, this includes constants with undefined elements.
670inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
671 return cstfp_pred_ty<is_neg_zero_fp>();
672}
673
674struct is_non_zero_fp {
675 bool isValue(const APFloat &C) { return C.isNonZero(); }
676};
677/// Match a floating-point non-zero.
678/// For vectors, this includes constants with undefined elements.
679inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
680 return cstfp_pred_ty<is_non_zero_fp>();
681}
682
683///////////////////////////////////////////////////////////////////////////////
684
685template <typename Class> struct bind_ty {
686 Class *&VR;
687
688 bind_ty(Class *&V) : VR(V) {}
689
690 template <typename ITy> bool match(ITy *V) {
691 if (auto *CV = dyn_cast<Class>(V)) {
692 VR = CV;
693 return true;
694 }
695 return false;
696 }
697};
698
699/// Match a value, capturing it if we match.
700inline bind_ty<Value> m_Value(Value *&V) { return V; }
701inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
702
703/// Match an instruction, capturing it if we match.
704inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
705/// Match a unary operator, capturing it if we match.
706inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
707/// Match a binary operator, capturing it if we match.
708inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
709/// Match a with overflow intrinsic, capturing it if we match.
710inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
711inline bind_ty<const WithOverflowInst>
712m_WithOverflowInst(const WithOverflowInst *&I) {
713 return I;
714}
715
716/// Match a Constant, capturing the value if we match.
717inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
718
719/// Match a ConstantInt, capturing the value if we match.
720inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
721
722/// Match a ConstantFP, capturing the value if we match.
723inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
724
725/// Match a ConstantExpr, capturing the value if we match.
726inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
727
728/// Match a basic block value, capturing it if we match.
729inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
730inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
731 return V;
732}
733
734/// Match an arbitrary immediate Constant and ignore it.
735inline match_combine_and<class_match<Constant>,
736 match_unless<class_match<ConstantExpr>>>
737m_ImmConstant() {
738 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
739}
740
741/// Match an immediate Constant, capturing the value if we match.
742inline match_combine_and<bind_ty<Constant>,
743 match_unless<class_match<ConstantExpr>>>
744m_ImmConstant(Constant *&C) {
745 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
746}
747
748/// Match a specified Value*.
749struct specificval_ty {
750 const Value *Val;
751
752 specificval_ty(const Value *V) : Val(V) {}
753
754 template <typename ITy> bool match(ITy *V) { return V == Val; }
755};
756
757/// Match if we have a specific specified value.
758inline specificval_ty m_Specific(const Value *V) { return V; }
759
760/// Stores a reference to the Value *, not the Value * itself,
761/// thus can be used in commutative matchers.
762template <typename Class> struct deferredval_ty {
763 Class *const &Val;
764
765 deferredval_ty(Class *const &V) : Val(V) {}
766
767 template <typename ITy> bool match(ITy *const V) { return V == Val; }
768};
769
770/// A commutative-friendly version of m_Specific().
771inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
772inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
773 return V;
774}
775
776/// Match a specified floating point value or vector of all elements of
777/// that value.
778struct specific_fpval {
779 double Val;
780
781 specific_fpval(double V) : Val(V) {}
782
783 template <typename ITy> bool match(ITy *V) {
784 if (const auto *CFP = dyn_cast<ConstantFP>(V))
785 return CFP->isExactlyValue(Val);
786 if (V->getType()->isVectorTy())
787 if (const auto *C = dyn_cast<Constant>(V))
788 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
789 return CFP->isExactlyValue(Val);
790 return false;
791 }
792};
793
794/// Match a specific floating point value or vector with all elements
795/// equal to the value.
796inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
797
798/// Match a float 1.0 or vector with all elements equal to 1.0.
799inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
800
801struct bind_const_intval_ty {
802 uint64_t &VR;
803
804 bind_const_intval_ty(uint64_t &V) : VR(V) {}
805
806 template <typename ITy> bool match(ITy *V) {
807 if (const auto *CV = dyn_cast<ConstantInt>(V))
808 if (CV->getValue().ule(UINT64_MAX(18446744073709551615UL))) {
809 VR = CV->getZExtValue();
810 return true;
811 }
812 return false;
813 }
814};
815
816/// Match a specified integer value or vector of all elements of that
817/// value.
818template <bool AllowUndefs>
819struct specific_intval {
820 APInt Val;
821
822 specific_intval(APInt V) : Val(std::move(V)) {}
823
824 template <typename ITy> bool match(ITy *V) {
825 const auto *CI = dyn_cast<ConstantInt>(V);
826 if (!CI && V->getType()->isVectorTy())
827 if (const auto *C = dyn_cast<Constant>(V))
828 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
829
830 return CI && APInt::isSameValue(CI->getValue(), Val);
831 }
832};
833
834/// Match a specific integer value or vector with all elements equal to
835/// the value.
836inline specific_intval<false> m_SpecificInt(APInt V) {
837 return specific_intval<false>(std::move(V));
838}
839
840inline specific_intval<false> m_SpecificInt(uint64_t V) {
841 return m_SpecificInt(APInt(64, V));
842}
843
844inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
845 return specific_intval<true>(std::move(V));
846}
847
848inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
849 return m_SpecificIntAllowUndef(APInt(64, V));
850}
851
852/// Match a ConstantInt and bind to its value. This does not match
853/// ConstantInts wider than 64-bits.
854inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
855
856/// Match a specified basic block value.
857struct specific_bbval {
858 BasicBlock *Val;
859
860 specific_bbval(BasicBlock *Val) : Val(Val) {}
861
862 template <typename ITy> bool match(ITy *V) {
863 const auto *BB = dyn_cast<BasicBlock>(V);
864 return BB && BB == Val;
865 }
866};
867
868/// Match a specific basic block value.
869inline specific_bbval m_SpecificBB(BasicBlock *BB) {
870 return specific_bbval(BB);
871}
872
873/// A commutative-friendly version of m_Specific().
874inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
875 return BB;
876}
877inline deferredval_ty<const BasicBlock>
878m_Deferred(const BasicBlock *const &BB) {
879 return BB;
880}
881
882//===----------------------------------------------------------------------===//
883// Matcher for any binary operator.
884//
885template <typename LHS_t, typename RHS_t, bool Commutable = false>
886struct AnyBinaryOp_match {
887 LHS_t L;
888 RHS_t R;
889
890 // The evaluation order is always stable, regardless of Commutability.
891 // The LHS is always matched first.
892 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
893
894 template <typename OpTy> bool match(OpTy *V) {
895 if (auto *I = dyn_cast<BinaryOperator>(V))
896 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
897 (Commutable && L.match(I->getOperand(1)) &&
898 R.match(I->getOperand(0)));
899 return false;
900 }
901};
902
903template <typename LHS, typename RHS>
904inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
905 return AnyBinaryOp_match<LHS, RHS>(L, R);
906}
907
908//===----------------------------------------------------------------------===//
909// Matcher for any unary operator.
910// TODO fuse unary, binary matcher into n-ary matcher
911//
912template <typename OP_t> struct AnyUnaryOp_match {
913 OP_t X;
914
915 AnyUnaryOp_match(const OP_t &X) : X(X) {}
916
917 template <typename OpTy> bool match(OpTy *V) {
918 if (auto *I = dyn_cast<UnaryOperator>(V))
919 return X.match(I->getOperand(0));
920 return false;
921 }
922};
923
924template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
925 return AnyUnaryOp_match<OP_t>(X);
926}
927
928//===----------------------------------------------------------------------===//
929// Matchers for specific binary operators.
930//
931
932template <typename LHS_t, typename RHS_t, unsigned Opcode,
933 bool Commutable = false>
934struct BinaryOp_match {
935 LHS_t L;
936 RHS_t R;
937
938 // The evaluation order is always stable, regardless of Commutability.
939 // The LHS is always matched first.
940 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
941
942 template <typename OpTy> bool match(OpTy *V) {
943 if (V->getValueID() == Value::InstructionVal + Opcode) {
34
Assuming the condition is true
35
Taking true branch
944 auto *I = cast<BinaryOperator>(V);
36
'V' is a 'BinaryOperator'
945 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
37
Returning the value 1, which participates in a condition later
946 (Commutable && L.match(I->getOperand(1)) &&
947 R.match(I->getOperand(0)));
948 }
949 if (auto *CE = dyn_cast<ConstantExpr>(V))
950 return CE->getOpcode() == Opcode &&
951 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
952 (Commutable && L.match(CE->getOperand(1)) &&
953 R.match(CE->getOperand(0))));
954 return false;
955 }
956};
957
958template <typename LHS, typename RHS>
959inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
960 const RHS &R) {
961 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
962}
963
964template <typename LHS, typename RHS>
965inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
966 const RHS &R) {
967 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
968}
969
970template <typename LHS, typename RHS>
971inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
972 const RHS &R) {
973 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
974}
975
976template <typename LHS, typename RHS>
977inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
978 const RHS &R) {
979 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
980}
981
982template <typename Op_t> struct FNeg_match {
983 Op_t X;
984
985 FNeg_match(const Op_t &Op) : X(Op) {}
986 template <typename OpTy> bool match(OpTy *V) {
987 auto *FPMO = dyn_cast<FPMathOperator>(V);
988 if (!FPMO) return false;
989
990 if (FPMO->getOpcode() == Instruction::FNeg)
991 return X.match(FPMO->getOperand(0));
992
993 if (FPMO->getOpcode() == Instruction::FSub) {
994 if (FPMO->hasNoSignedZeros()) {
995 // With 'nsz', any zero goes.
996 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
997 return false;
998 } else {
999 // Without 'nsz', we need fsub -0.0, X exactly.
1000 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1001 return false;
1002 }
1003
1004 return X.match(FPMO->getOperand(1));
1005 }
1006
1007 return false;
1008 }
1009};
1010
1011/// Match 'fneg X' as 'fsub -0.0, X'.
1012template <typename OpTy>
1013inline FNeg_match<OpTy>
1014m_FNeg(const OpTy &X) {
1015 return FNeg_match<OpTy>(X);
1016}
1017
1018/// Match 'fneg X' as 'fsub +-0.0, X'.
1019template <typename RHS>
1020inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1021m_FNegNSZ(const RHS &X) {
1022 return m_FSub(m_AnyZeroFP(), X);
1023}
1024
1025template <typename LHS, typename RHS>
1026inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1027 const RHS &R) {
1028 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1029}
1030
1031template <typename LHS, typename RHS>
1032inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1033 const RHS &R) {
1034 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1035}
1036
1037template <typename LHS, typename RHS>
1038inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1039 const RHS &R) {
1040 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1041}
1042
1043template <typename LHS, typename RHS>
1044inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1045 const RHS &R) {
1046 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1047}
1048
1049template <typename LHS, typename RHS>
1050inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1051 const RHS &R) {
1052 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1053}
1054
1055template <typename LHS, typename RHS>
1056inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1057 const RHS &R) {
1058 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1059}
1060
1061template <typename LHS, typename RHS>
1062inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1063 const RHS &R) {
1064 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1065}
1066
1067template <typename LHS, typename RHS>
1068inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1069 const RHS &R) {
1070 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1071}
1072
1073template <typename LHS, typename RHS>
1074inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1075 const RHS &R) {
1076 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1077}
1078
1079template <typename LHS, typename RHS>
1080inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1081 const RHS &R) {
1082 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1083}
1084
1085template <typename LHS, typename RHS>
1086inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1087 const RHS &R) {
1088 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1089}
1090
1091template <typename LHS, typename RHS>
1092inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1093 const RHS &R) {
1094 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1095}
1096
1097template <typename LHS, typename RHS>
1098inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1099 const RHS &R) {
1100 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1101}
1102
1103template <typename LHS, typename RHS>
1104inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1105 const RHS &R) {
1106 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1107}
1108
1109template <typename LHS_t, typename RHS_t, unsigned Opcode,
1110 unsigned WrapFlags = 0>
1111struct OverflowingBinaryOp_match {
1112 LHS_t L;
1113 RHS_t R;
1114
1115 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1116 : L(LHS), R(RHS) {}
1117
1118 template <typename OpTy> bool match(OpTy *V) {
1119 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1120 if (Op->getOpcode() != Opcode)
1121 return false;
1122 if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
1123 !Op->hasNoUnsignedWrap())
1124 return false;
1125 if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
1126 !Op->hasNoSignedWrap())
1127 return false;
1128 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1129 }
1130 return false;
1131 }
1132};
1133
1134template <typename LHS, typename RHS>
1135inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1136 OverflowingBinaryOperator::NoSignedWrap>
1137m_NSWAdd(const LHS &L, const RHS &R) {
1138 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1139 OverflowingBinaryOperator::NoSignedWrap>(
1140 L, R);
1141}
1142template <typename LHS, typename RHS>
1143inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1144 OverflowingBinaryOperator::NoSignedWrap>
1145m_NSWSub(const LHS &L, const RHS &R) {
1146 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1147 OverflowingBinaryOperator::NoSignedWrap>(
1148 L, R);
1149}
1150template <typename LHS, typename RHS>
1151inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1152 OverflowingBinaryOperator::NoSignedWrap>
1153m_NSWMul(const LHS &L, const RHS &R) {
1154 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1155 OverflowingBinaryOperator::NoSignedWrap>(
1156 L, R);
1157}
1158template <typename LHS, typename RHS>
1159inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1160 OverflowingBinaryOperator::NoSignedWrap>
1161m_NSWShl(const LHS &L, const RHS &R) {
1162 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1163 OverflowingBinaryOperator::NoSignedWrap>(
1164 L, R);
1165}
1166
1167template <typename LHS, typename RHS>
1168inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1169 OverflowingBinaryOperator::NoUnsignedWrap>
1170m_NUWAdd(const LHS &L, const RHS &R) {
1171 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1172 OverflowingBinaryOperator::NoUnsignedWrap>(
1173 L, R);
1174}
1175template <typename LHS, typename RHS>
1176inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1177 OverflowingBinaryOperator::NoUnsignedWrap>
1178m_NUWSub(const LHS &L, const RHS &R) {
1179 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1180 OverflowingBinaryOperator::NoUnsignedWrap>(
1181 L, R);
1182}
1183template <typename LHS, typename RHS>
1184inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1185 OverflowingBinaryOperator::NoUnsignedWrap>
1186m_NUWMul(const LHS &L, const RHS &R) {
1187 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1188 OverflowingBinaryOperator::NoUnsignedWrap>(
1189 L, R);
1190}
1191template <typename LHS, typename RHS>
1192inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1193 OverflowingBinaryOperator::NoUnsignedWrap>
1194m_NUWShl(const LHS &L, const RHS &R) {
1195 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1196 OverflowingBinaryOperator::NoUnsignedWrap>(
1197 L, R);
1198}
1199
1200//===----------------------------------------------------------------------===//
1201// Class that matches a group of binary opcodes.
1202//
1203template <typename LHS_t, typename RHS_t, typename Predicate>
1204struct BinOpPred_match : Predicate {
1205 LHS_t L;
1206 RHS_t R;
1207
1208 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1209
1210 template <typename OpTy> bool match(OpTy *V) {
1211 if (auto *I = dyn_cast<Instruction>(V))
1212 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1213 R.match(I->getOperand(1));
1214 if (auto *CE = dyn_cast<ConstantExpr>(V))
1215 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1216 R.match(CE->getOperand(1));
1217 return false;
1218 }
1219};
1220
1221struct is_shift_op {
1222 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1223};
1224
1225struct is_right_shift_op {
1226 bool isOpType(unsigned Opcode) {
1227 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1228 }
1229};
1230
1231struct is_logical_shift_op {
1232 bool isOpType(unsigned Opcode) {
1233 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1234 }
1235};
1236
1237struct is_bitwiselogic_op {
1238 bool isOpType(unsigned Opcode) {
1239 return Instruction::isBitwiseLogicOp(Opcode);
1240 }
1241};
1242
1243struct is_idiv_op {
1244 bool isOpType(unsigned Opcode) {
1245 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1246 }
1247};
1248
1249struct is_irem_op {
1250 bool isOpType(unsigned Opcode) {
1251 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1252 }
1253};
1254
1255/// Matches shift operations.
1256template <typename LHS, typename RHS>
1257inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1258 const RHS &R) {
1259 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1260}
1261
1262/// Matches logical shift operations.
1263template <typename LHS, typename RHS>
1264inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1265 const RHS &R) {
1266 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1267}
1268
1269/// Matches logical shift operations.
1270template <typename LHS, typename RHS>
1271inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1272m_LogicalShift(const LHS &L, const RHS &R) {
1273 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1274}
1275
1276/// Matches bitwise logic operations.
1277template <typename LHS, typename RHS>
1278inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1279m_BitwiseLogic(const LHS &L, const RHS &R) {
1280 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1281}
1282
1283/// Matches integer division operations.
1284template <typename LHS, typename RHS>
1285inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1286 const RHS &R) {
1287 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1288}
1289
1290/// Matches integer remainder operations.
1291template <typename LHS, typename RHS>
1292inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1293 const RHS &R) {
1294 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1295}
1296
1297//===----------------------------------------------------------------------===//
1298// Class that matches exact binary ops.
1299//
1300template <typename SubPattern_t> struct Exact_match {
1301 SubPattern_t SubPattern;
1302
1303 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1304
1305 template <typename OpTy> bool match(OpTy *V) {
1306 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1307 return PEO->isExact() && SubPattern.match(V);
1308 return false;
1309 }
1310};
1311
1312template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1313 return SubPattern;
1314}
1315
1316//===----------------------------------------------------------------------===//
1317// Matchers for CmpInst classes
1318//
1319
1320template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1321 bool Commutable = false>
1322struct CmpClass_match {
1323 PredicateTy &Predicate;
1324 LHS_t L;
1325 RHS_t R;
1326
1327 // The evaluation order is always stable, regardless of Commutability.
1328 // The LHS is always matched first.
1329 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1330 : Predicate(Pred), L(LHS), R(RHS) {}
1331
1332 template <typename OpTy> bool match(OpTy *V) {
1333 if (auto *I = dyn_cast<Class>(V)) {
1334 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1335 Predicate = I->getPredicate();
1336 return true;
1337 } else if (Commutable && L.match(I->getOperand(1)) &&
1338 R.match(I->getOperand(0))) {
1339 Predicate = I->getSwappedPredicate();
1340 return true;
1341 }
1342 }
1343 return false;
1344 }
1345};
1346
1347template <typename LHS, typename RHS>
1348inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1349m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1350 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1351}
1352
1353template <typename LHS, typename RHS>
1354inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1355m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1356 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1357}
1358
1359template <typename LHS, typename RHS>
1360inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1361m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1362 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1363}
1364
1365//===----------------------------------------------------------------------===//
1366// Matchers for instructions with a given opcode and number of operands.
1367//
1368
1369/// Matches instructions with Opcode and three operands.
1370template <typename T0, unsigned Opcode> struct OneOps_match {
1371 T0 Op1;
1372
1373 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1374
1375 template <typename OpTy> bool match(OpTy *V) {
1376 if (V->getValueID() == Value::InstructionVal + Opcode) {
1377 auto *I = cast<Instruction>(V);
1378 return Op1.match(I->getOperand(0));
1379 }
1380 return false;
1381 }
1382};
1383
1384/// Matches instructions with Opcode and three operands.
1385template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1386 T0 Op1;
1387 T1 Op2;
1388
1389 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1390
1391 template <typename OpTy> bool match(OpTy *V) {
1392 if (V->getValueID() == Value::InstructionVal + Opcode) {
1393 auto *I = cast<Instruction>(V);
1394 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1395 }
1396 return false;
1397 }
1398};
1399
1400/// Matches instructions with Opcode and three operands.
1401template <typename T0, typename T1, typename T2, unsigned Opcode>
1402struct ThreeOps_match {
1403 T0 Op1;
1404 T1 Op2;
1405 T2 Op3;
1406
1407 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1408 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1409
1410 template <typename OpTy> bool match(OpTy *V) {
1411 if (V->getValueID() == Value::InstructionVal + Opcode) {
1412 auto *I = cast<Instruction>(V);
1413 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1414 Op3.match(I->getOperand(2));
1415 }
1416 return false;
1417 }
1418};
1419
1420/// Matches SelectInst.
1421template <typename Cond, typename LHS, typename RHS>
1422inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1423m_Select(const Cond &C, const LHS &L, const RHS &R) {
1424 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1425}
1426
1427/// This matches a select of two constants, e.g.:
1428/// m_SelectCst<-1, 0>(m_Value(V))
1429template <int64_t L, int64_t R, typename Cond>
1430inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1431 Instruction::Select>
1432m_SelectCst(const Cond &C) {
1433 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1434}
1435
1436/// Matches FreezeInst.
1437template <typename OpTy>
1438inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1439 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1440}
1441
1442/// Matches InsertElementInst.
1443template <typename Val_t, typename Elt_t, typename Idx_t>
1444inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1445m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1446 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1447 Val, Elt, Idx);
1448}
1449
1450/// Matches ExtractElementInst.
1451template <typename Val_t, typename Idx_t>
1452inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1453m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1454 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1455}
1456
1457/// Matches shuffle.
1458template <typename T0, typename T1, typename T2> struct Shuffle_match {
1459 T0 Op1;
1460 T1 Op2;
1461 T2 Mask;
1462
1463 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1464 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1465
1466 template <typename OpTy> bool match(OpTy *V) {
1467 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1468 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1469 Mask.match(I->getShuffleMask());
1470 }
1471 return false;
1472 }
1473};
1474
1475struct m_Mask {
1476 ArrayRef<int> &MaskRef;
1477 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1478 bool match(ArrayRef<int> Mask) {
1479 MaskRef = Mask;
1480 return true;
1481 }
1482};
1483
1484struct m_ZeroMask {
1485 bool match(ArrayRef<int> Mask) {
1486 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1487 }
1488};
1489
1490struct m_SpecificMask {
1491 ArrayRef<int> &MaskRef;
1492 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1493 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1494};
1495
1496struct m_SplatOrUndefMask {
1497 int &SplatIndex;
1498 m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1499 bool match(ArrayRef<int> Mask) {
1500 auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1501 if (First == Mask.end())
1502 return false;
1503 SplatIndex = *First;
1504 return all_of(Mask,
1505 [First](int Elem) { return Elem == *First || Elem == -1; });
1506 }
1507};
1508
1509/// Matches ShuffleVectorInst independently of mask value.
1510template <typename V1_t, typename V2_t>
1511inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1512m_Shuffle(const V1_t &v1, const V2_t &v2) {
1513 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1514}
1515
1516template <typename V1_t, typename V2_t, typename Mask_t>
1517inline Shuffle_match<V1_t, V2_t, Mask_t>
1518m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1519 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1520}
1521
1522/// Matches LoadInst.
1523template <typename OpTy>
1524inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1525 return OneOps_match<OpTy, Instruction::Load>(Op);
1526}
1527
1528/// Matches StoreInst.
1529template <typename ValueOpTy, typename PointerOpTy>
1530inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1531m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1532 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1533 PointerOp);
1534}
1535
1536//===----------------------------------------------------------------------===//
1537// Matchers for CastInst classes
1538//
1539
1540template <typename Op_t, unsigned Opcode> struct CastClass_match {
1541 Op_t Op;
1542
1543 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1544
1545 template <typename OpTy> bool match(OpTy *V) {
1546 if (auto *O = dyn_cast<Operator>(V))
1547 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1548 return false;
1549 }
1550};
1551
1552/// Matches BitCast.
1553template <typename OpTy>
1554inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1555 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1556}
1557
1558/// Matches PtrToInt.
1559template <typename OpTy>
1560inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1561 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1562}
1563
1564/// Matches IntToPtr.
1565template <typename OpTy>
1566inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1567 return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1568}
1569
1570/// Matches Trunc.
1571template <typename OpTy>
1572inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1573 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1574}
1575
1576template <typename OpTy>
1577inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1578m_TruncOrSelf(const OpTy &Op) {
1579 return m_CombineOr(m_Trunc(Op), Op);
1580}
1581
1582/// Matches SExt.
1583template <typename OpTy>
1584inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1585 return CastClass_match<OpTy, Instruction::SExt>(Op);
1586}
1587
1588/// Matches ZExt.
1589template <typename OpTy>
1590inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1591 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1592}
1593
1594template <typename OpTy>
1595inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1596m_ZExtOrSelf(const OpTy &Op) {
1597 return m_CombineOr(m_ZExt(Op), Op);
1598}
1599
1600template <typename OpTy>
1601inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1602m_SExtOrSelf(const OpTy &Op) {
1603 return m_CombineOr(m_SExt(Op), Op);
1604}
1605
1606template <typename OpTy>
1607inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1608 CastClass_match<OpTy, Instruction::SExt>>
1609m_ZExtOrSExt(const OpTy &Op) {
1610 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1611}
1612
1613template <typename OpTy>
1614inline match_combine_or<
1615 match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1616 CastClass_match<OpTy, Instruction::SExt>>,
1617 OpTy>
1618m_ZExtOrSExtOrSelf(const OpTy &Op) {
1619 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1620}
1621
1622template <typename OpTy>
1623inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1624 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1625}
1626
1627template <typename OpTy>
1628inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1629 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1630}
1631
1632template <typename OpTy>
1633inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1634 return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1635}
1636
1637template <typename OpTy>
1638inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1639 return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1640}
1641
1642template <typename OpTy>
1643inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1644 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1645}
1646
1647template <typename OpTy>
1648inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1649 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1650}
1651
1652//===----------------------------------------------------------------------===//
1653// Matchers for control flow.
1654//
1655
1656struct br_match {
1657 BasicBlock *&Succ;
1658
1659 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1660
1661 template <typename OpTy> bool match(OpTy *V) {
1662 if (auto *BI = dyn_cast<BranchInst>(V))
1663 if (BI->isUnconditional()) {
1664 Succ = BI->getSuccessor(0);
1665 return true;
1666 }
1667 return false;
1668 }
1669};
1670
1671inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1672
1673template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1674struct brc_match {
1675 Cond_t Cond;
1676 TrueBlock_t T;
1677 FalseBlock_t F;
1678
1679 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1680 : Cond(C), T(t), F(f) {}
1681
1682 template <typename OpTy> bool match(OpTy *V) {
1683 if (auto *BI = dyn_cast<BranchInst>(V))
1684 if (BI->isConditional() && Cond.match(BI->getCondition()))
1685 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1686 return false;
1687 }
1688};
1689
1690template <typename Cond_t>
1691inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1692m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1693 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1694 C, m_BasicBlock(T), m_BasicBlock(F));
1695}
1696
1697template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1698inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1699m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1700 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1701}
1702
1703//===----------------------------------------------------------------------===//
1704// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1705//
1706
1707template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1708 bool Commutable = false>
1709struct MaxMin_match {
1710 LHS_t L;
1711 RHS_t R;
1712
1713 // The evaluation order is always stable, regardless of Commutability.
1714 // The LHS is always matched first.
1715 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1716
1717 template <typename OpTy> bool match(OpTy *V) {
1718 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1719 Intrinsic::ID IID = II->getIntrinsicID();
1720 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1721 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1722 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1723 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1724 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1725 return (L.match(LHS) && R.match(RHS)) ||
1726 (Commutable && L.match(RHS) && R.match(LHS));
1727 }
1728 }
1729 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1730 auto *SI = dyn_cast<SelectInst>(V);
1731 if (!SI)
1732 return false;
1733 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1734 if (!Cmp)
1735 return false;
1736 // At this point we have a select conditioned on a comparison. Check that
1737 // it is the values returned by the select that are being compared.
1738 Value *TrueVal = SI->getTrueValue();
1739 Value *FalseVal = SI->getFalseValue();
1740 Value *LHS = Cmp->getOperand(0);
1741 Value *RHS = Cmp->getOperand(1);
1742 if ((TrueVal != LHS || FalseVal != RHS) &&
1743 (TrueVal != RHS || FalseVal != LHS))
1744 return false;
1745 typename CmpInst_t::Predicate Pred =
1746 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1747 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1748 if (!Pred_t::match(Pred))
1749 return false;
1750 // It does! Bind the operands.
1751 return (L.match(LHS) && R.match(RHS)) ||
1752 (Commutable && L.match(RHS) && R.match(LHS));
1753 }
1754};
1755
1756/// Helper class for identifying signed max predicates.
1757struct smax_pred_ty {
1758 static bool match(ICmpInst::Predicate Pred) {
1759 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1760 }
1761};
1762
1763/// Helper class for identifying signed min predicates.
1764struct smin_pred_ty {
1765 static bool match(ICmpInst::Predicate Pred) {
1766 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1767 }
1768};
1769
1770/// Helper class for identifying unsigned max predicates.
1771struct umax_pred_ty {
1772 static bool match(ICmpInst::Predicate Pred) {
1773 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1774 }
1775};
1776
1777/// Helper class for identifying unsigned min predicates.
1778struct umin_pred_ty {
1779 static bool match(ICmpInst::Predicate Pred) {
1780 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1781 }
1782};
1783
1784/// Helper class for identifying ordered max predicates.
1785struct ofmax_pred_ty {
1786 static bool match(FCmpInst::Predicate Pred) {
1787 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1788 }
1789};
1790
1791/// Helper class for identifying ordered min predicates.
1792struct ofmin_pred_ty {
1793 static bool match(FCmpInst::Predicate Pred) {
1794 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1795 }
1796};
1797
1798/// Helper class for identifying unordered max predicates.
1799struct ufmax_pred_ty {
1800 static bool match(FCmpInst::Predicate Pred) {
1801 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1802 }
1803};
1804
1805/// Helper class for identifying unordered min predicates.
1806struct ufmin_pred_ty {
1807 static bool match(FCmpInst::Predicate Pred) {
1808 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1809 }
1810};
1811
1812template <typename LHS, typename RHS>
1813inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1814 const RHS &R) {
1815 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1816}
1817
1818template <typename LHS, typename RHS>
1819inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1820 const RHS &R) {
1821 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1822}
1823
1824template <typename LHS, typename RHS>
1825inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1826 const RHS &R) {
1827 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1828}
1829
1830template <typename LHS, typename RHS>
1831inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1832 const RHS &R) {
1833 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1834}
1835
1836template <typename LHS, typename RHS>
1837inline match_combine_or<
1838 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1839 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1840 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1841 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
1842m_MaxOrMin(const LHS &L, const RHS &R) {
1843 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1844 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1845}
1846
1847/// Match an 'ordered' floating point maximum function.
1848/// Floating point has one special value 'NaN'. Therefore, there is no total
1849/// order. However, if we can ignore the 'NaN' value (for example, because of a
1850/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1851/// semantics. In the presence of 'NaN' we have to preserve the original
1852/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1853///
1854/// max(L, R) iff L and R are not NaN
1855/// m_OrdFMax(L, R) = R iff L or R are NaN
1856template <typename LHS, typename RHS>
1857inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1858 const RHS &R) {
1859 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1860}
1861
1862/// Match an 'ordered' floating point minimum function.
1863/// Floating point has one special value 'NaN'. Therefore, there is no total
1864/// order. However, if we can ignore the 'NaN' value (for example, because of a
1865/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1866/// semantics. In the presence of 'NaN' we have to preserve the original
1867/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1868///
1869/// min(L, R) iff L and R are not NaN
1870/// m_OrdFMin(L, R) = R iff L or R are NaN
1871template <typename LHS, typename RHS>
1872inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1873 const RHS &R) {
1874 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1875}
1876
1877/// Match an 'unordered' floating point maximum function.
1878/// Floating point has one special value 'NaN'. Therefore, there is no total
1879/// order. However, if we can ignore the 'NaN' value (for example, because of a
1880/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1881/// semantics. In the presence of 'NaN' we have to preserve the original
1882/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1883///
1884/// max(L, R) iff L and R are not NaN
1885/// m_UnordFMax(L, R) = L iff L or R are NaN
1886template <typename LHS, typename RHS>
1887inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1888m_UnordFMax(const LHS &L, const RHS &R) {
1889 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1890}
1891
1892/// Match an 'unordered' floating point minimum function.
1893/// Floating point has one special value 'NaN'. Therefore, there is no total
1894/// order. However, if we can ignore the 'NaN' value (for example, because of a
1895/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1896/// semantics. In the presence of 'NaN' we have to preserve the original
1897/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1898///
1899/// min(L, R) iff L and R are not NaN
1900/// m_UnordFMin(L, R) = L iff L or R are NaN
1901template <typename LHS, typename RHS>
1902inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1903m_UnordFMin(const LHS &L, const RHS &R) {
1904 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1905}
1906
1907//===----------------------------------------------------------------------===//
1908// Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1909// Note that S might be matched to other instructions than AddInst.
1910//
1911
1912template <typename LHS_t, typename RHS_t, typename Sum_t>
1913struct UAddWithOverflow_match {
1914 LHS_t L;
1915 RHS_t R;
1916 Sum_t S;
1917
1918 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1919 : L(L), R(R), S(S) {}
1920
1921 template <typename OpTy> bool match(OpTy *V) {
1922 Value *ICmpLHS, *ICmpRHS;
1923 ICmpInst::Predicate Pred;
1924 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1925 return false;
1926
1927 Value *AddLHS, *AddRHS;
1928 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1929
1930 // (a + b) u< a, (a + b) u< b
1931 if (Pred == ICmpInst::ICMP_ULT)
1932 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1933 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1934
1935 // a >u (a + b), b >u (a + b)
1936 if (Pred == ICmpInst::ICMP_UGT)
1937 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1938 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1939
1940 Value *Op1;
1941 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1942 // (a ^ -1) <u b
1943 if (Pred == ICmpInst::ICMP_ULT) {
1944 if (XorExpr.match(ICmpLHS))
1945 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1946 }
1947 // b > u (a ^ -1)
1948 if (Pred == ICmpInst::ICMP_UGT) {
1949 if (XorExpr.match(ICmpRHS))
1950 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
1951 }
1952
1953 // Match special-case for increment-by-1.
1954 if (Pred == ICmpInst::ICMP_EQ) {
1955 // (a + 1) == 0
1956 // (1 + a) == 0
1957 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1958 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1959 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1960 // 0 == (a + 1)
1961 // 0 == (1 + a)
1962 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1963 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1964 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1965 }
1966
1967 return false;
1968 }
1969};
1970
1971/// Match an icmp instruction checking for unsigned overflow on addition.
1972///
1973/// S is matched to the addition whose result is being checked for overflow, and
1974/// L and R are matched to the LHS and RHS of S.
1975template <typename LHS_t, typename RHS_t, typename Sum_t>
1976UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1977m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1978 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1979}
1980
1981template <typename Opnd_t> struct Argument_match {
1982 unsigned OpI;
1983 Opnd_t Val;
1984
1985 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1986
1987 template <typename OpTy> bool match(OpTy *V) {
1988 // FIXME: Should likely be switched to use `CallBase`.
1989 if (const auto *CI = dyn_cast<CallInst>(V))
1990 return Val.match(CI->getArgOperand(OpI));
1991 return false;
1992 }
1993};
1994
1995/// Match an argument.
1996template <unsigned OpI, typename Opnd_t>
1997inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1998 return Argument_match<Opnd_t>(OpI, Op);
1999}
2000
2001/// Intrinsic matchers.
2002struct IntrinsicID_match {
2003 unsigned ID;
2004
2005 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2006
2007 template <typename OpTy> bool match(OpTy *V) {
2008 if (const auto *CI = dyn_cast<CallInst>(V))
2009 if (const auto *F = CI->getCalledFunction())
2010 return F->getIntrinsicID() == ID;
2011 return false;
2012 }
2013};
2014
2015/// Intrinsic matches are combinations of ID matchers, and argument
2016/// matchers. Higher arity matcher are defined recursively in terms of and-ing
2017/// them with lower arity matchers. Here's some convenient typedefs for up to
2018/// several arguments, and more can be added as needed
2019template <typename T0 = void, typename T1 = void, typename T2 = void,
2020 typename T3 = void, typename T4 = void, typename T5 = void,
2021 typename T6 = void, typename T7 = void, typename T8 = void,
2022 typename T9 = void, typename T10 = void>
2023struct m_Intrinsic_Ty;
2024template <typename T0> struct m_Intrinsic_Ty<T0> {
2025 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2026};
2027template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2028 using Ty =
2029 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2030};
2031template <typename T0, typename T1, typename T2>
2032struct m_Intrinsic_Ty<T0, T1, T2> {
2033 using Ty =
2034 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2035 Argument_match<T2>>;
2036};
2037template <typename T0, typename T1, typename T2, typename T3>
2038struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2039 using Ty =
2040 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2041 Argument_match<T3>>;
2042};
2043
2044template <typename T0, typename T1, typename T2, typename T3, typename T4>
2045struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2046 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2047 Argument_match<T4>>;
2048};
2049
2050template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
2051struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2052 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2053 Argument_match<T5>>;
2054};
2055
2056/// Match intrinsic calls like this:
2057/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2058template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2059 return IntrinsicID_match(IntrID);
2060}
2061
2062template <Intrinsic::ID IntrID, typename T0>
2063inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2064 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2065}
2066
2067template <Intrinsic::ID IntrID, typename T0, typename T1>
2068inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2069 const T1 &Op1) {
2070 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2071}
2072
2073template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2074inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2075m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2076 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2077}
2078
2079template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2080 typename T3>
2081inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2082m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2083 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2084}
2085
2086template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2087 typename T3, typename T4>
2088inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2089m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2090 const T4 &Op4) {
2091 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2092 m_Argument<4>(Op4));
2093}
2094
2095template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2096 typename T3, typename T4, typename T5>
2097inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2098m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2099 const T4 &Op4, const T5 &Op5) {
2100 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2101 m_Argument<5>(Op5));
2102}
2103
2104// Helper intrinsic matching specializations.
2105template <typename Opnd0>
2106inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2107 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2108}
2109
2110template <typename Opnd0>
2111inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2112 return m_Intrinsic<Intrinsic::bswap>(Op0);
2113}
2114
2115template <typename Opnd0>
2116inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2117 return m_Intrinsic<Intrinsic::fabs>(Op0);
2118}
2119
2120template <typename Opnd0>
2121inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2122 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2123}
2124
2125template <typename Opnd0, typename Opnd1>
2126inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2127 const Opnd1 &Op1) {
2128 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2129}
2130
2131template <typename Opnd0, typename Opnd1>
2132inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2133 const Opnd1 &Op1) {
2134 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2135}
2136
2137template <typename Opnd0, typename Opnd1, typename Opnd2>
2138inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2139m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2140 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2141}
2142
2143template <typename Opnd0, typename Opnd1, typename Opnd2>
2144inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2145m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2146 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2147}
2148
2149//===----------------------------------------------------------------------===//
2150// Matchers for two-operands operators with the operators in either order
2151//
2152
2153/// Matches a BinaryOperator with LHS and RHS in either order.
2154template <typename LHS, typename RHS>
2155inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2156 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2157}
2158
2159/// Matches an ICmp with a predicate over LHS and RHS in either order.
2160/// Swaps the predicate if operands are commuted.
2161template <typename LHS, typename RHS>
2162inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2163m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2164 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2165 R);
2166}
2167
2168/// Matches a Add with LHS and RHS in either order.
2169template <typename LHS, typename RHS>
2170inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2171 const RHS &R) {
2172 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2173}
2174
2175/// Matches a Mul with LHS and RHS in either order.
2176template <typename LHS, typename RHS>
2177inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2178 const RHS &R) {
2179 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2180}
2181
2182/// Matches an And with LHS and RHS in either order.
2183template <typename LHS, typename RHS>
2184inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2185 const RHS &R) {
2186 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2187}
2188
2189/// Matches an Or with LHS and RHS in either order.
2190template <typename LHS, typename RHS>
2191inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2192 const RHS &R) {
2193 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2194}
2195
2196/// Matches an Xor with LHS and RHS in either order.
2197template <typename LHS, typename RHS>
2198inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2199 const RHS &R) {
2200 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2201}
2202
2203/// Matches a 'Neg' as 'sub 0, V'.
2204template <typename ValTy>
2205inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2206m_Neg(const ValTy &V) {
2207 return m_Sub(m_ZeroInt(), V);
2208}
2209
2210/// Matches a 'Neg' as 'sub nsw 0, V'.
2211template <typename ValTy>
2212inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2213 Instruction::Sub,
2214 OverflowingBinaryOperator::NoSignedWrap>
2215m_NSWNeg(const ValTy &V) {
2216 return m_NSWSub(m_ZeroInt(), V);
2217}
2218
2219/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2220template <typename ValTy>
2221inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
2222m_Not(const ValTy &V) {
2223 return m_c_Xor(V, m_AllOnes());
2224}
2225
2226/// Matches an SMin with LHS and RHS in either order.
2227template <typename LHS, typename RHS>
2228inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2229m_c_SMin(const LHS &L, const RHS &R) {
2230 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2231}
2232/// Matches an SMax with LHS and RHS in either order.
2233template <typename LHS, typename RHS>
2234inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2235m_c_SMax(const LHS &L, const RHS &R) {
2236 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2237}
2238/// Matches a UMin with LHS and RHS in either order.
2239template <typename LHS, typename RHS>
2240inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2241m_c_UMin(const LHS &L, const RHS &R) {
2242 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2243}
2244/// Matches a UMax with LHS and RHS in either order.
2245template <typename LHS, typename RHS>
2246inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2247m_c_UMax(const LHS &L, const RHS &R) {
2248 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2249}
2250
2251template <typename LHS, typename RHS>
2252inline match_combine_or<
2253 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2254 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2255 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2256 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2257m_c_MaxOrMin(const LHS &L, const RHS &R) {
2258 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2259 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2260}
2261
2262/// Matches FAdd with LHS and RHS in either order.
2263template <typename LHS, typename RHS>
2264inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2265m_c_FAdd(const LHS &L, const RHS &R) {
2266 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2267}
2268
2269/// Matches FMul with LHS and RHS in either order.
2270template <typename LHS, typename RHS>
2271inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2272m_c_FMul(const LHS &L, const RHS &R) {
2273 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2274}
2275
2276template <typename Opnd_t> struct Signum_match {
2277 Opnd_t Val;
2278 Signum_match(const Opnd_t &V) : Val(V) {}
2279
2280 template <typename OpTy> bool match(OpTy *V) {
2281 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2282 if (TypeSize == 0)
2283 return false;
2284
2285 unsigned ShiftWidth = TypeSize - 1;
2286 Value *OpL = nullptr, *OpR = nullptr;
2287
2288 // This is the representation of signum we match:
2289 //
2290 // signum(x) == (x >> 63) | (-x >>u 63)
2291 //
2292 // An i1 value is its own signum, so it's correct to match
2293 //
2294 // signum(x) == (x >> 0) | (-x >>u 0)
2295 //
2296 // for i1 values.
2297
2298 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2299 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2300 auto Signum = m_Or(LHS, RHS);
2301
2302 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2303 }
2304};
2305
2306/// Matches a signum pattern.
2307///
2308/// signum(x) =
2309/// x > 0 -> 1
2310/// x == 0 -> 0
2311/// x < 0 -> -1
2312template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2313 return Signum_match<Val_t>(V);
2314}
2315
2316template <int Ind, typename Opnd_t> struct ExtractValue_match {
2317 Opnd_t Val;
2318 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2319
2320 template <typename OpTy> bool match(OpTy *V) {
2321 if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2322 // If Ind is -1, don't inspect indices
2323 if (Ind != -1 &&
2324 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2325 return false;
2326 return Val.match(I->getAggregateOperand());
2327 }
2328 return false;
2329 }
2330};
2331
2332/// Match a single index ExtractValue instruction.
2333/// For example m_ExtractValue<1>(...)
2334template <int Ind, typename Val_t>
2335inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2336 return ExtractValue_match<Ind, Val_t>(V);
2337}
2338
2339/// Match an ExtractValue instruction with any index.
2340/// For example m_ExtractValue(...)
2341template <typename Val_t>
2342inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2343 return ExtractValue_match<-1, Val_t>(V);
2344}
2345
2346/// Matcher for a single index InsertValue instruction.
2347template <int Ind, typename T0, typename T1> struct InsertValue_match {
2348 T0 Op0;
2349 T1 Op1;
2350
2351 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2352
2353 template <typename OpTy> bool match(OpTy *V) {
2354 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2355 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2356 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2357 }
2358 return false;
2359 }
2360};
2361
2362/// Matches a single index InsertValue instruction.
2363template <int Ind, typename Val_t, typename Elt_t>
2364inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2365 const Elt_t &Elt) {
2366 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2367}
2368
2369/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2370/// the constant expression
2371/// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2372/// under the right conditions determined by DataLayout.
2373struct VScaleVal_match {
2374private:
2375 template <typename Base, typename Offset>
2376 inline BinaryOp_match<Base, Offset, Instruction::GetElementPtr>
2377 m_OffsetGep(const Base &B, const Offset &O) {
2378 return BinaryOp_match<Base, Offset, Instruction::GetElementPtr>(B, O);
2379 }
2380
2381public:
2382 const DataLayout &DL;
2383 VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2384
2385 template <typename ITy> bool match(ITy *V) {
2386 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2387 return true;
2388
2389 if (m_PtrToInt(m_OffsetGep(m_Zero(), m_SpecificInt(1))).match(V)) {
2390 Type *PtrTy = cast<Operator>(V)->getOperand(0)->getType();
2391 auto *DerefTy = PtrTy->getPointerElementType();
2392 if (isa<ScalableVectorType>(DerefTy) &&
2393 DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
2394 return true;
2395 }
2396
2397 return false;
2398 }
2399};
2400
2401inline VScaleVal_match m_VScale(const DataLayout &DL) {
2402 return VScaleVal_match(DL);
2403}
2404
2405template <typename LHS, typename RHS, unsigned Opcode>
2406struct LogicalOp_match {
2407 LHS L;
2408 RHS R;
2409
2410 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2411
2412 template <typename T> bool match(T *V) {
2413 if (auto *I = dyn_cast<Instruction>(V)) {
2414 if (!I->getType()->isIntOrIntVectorTy(1))
2415 return false;
2416
2417 if (I->getOpcode() == Opcode && L.match(I->getOperand(0)) &&
2418 R.match(I->getOperand(1)))
2419 return true;
2420
2421 if (auto *SI = dyn_cast<SelectInst>(I)) {
2422 if (Opcode == Instruction::And) {
2423 if (const auto *C = dyn_cast<Constant>(SI->getFalseValue()))
2424 if (C->isNullValue() && L.match(SI->getCondition()) &&
2425 R.match(SI->getTrueValue()))
2426 return true;
2427 } else {
2428 assert(Opcode == Instruction::Or)((Opcode == Instruction::Or) ? static_cast<void> (0) : __assert_fail
("Opcode == Instruction::Or", "/build/llvm-toolchain-snapshot-13~++20210314100619+a28facba1ccd/llvm/include/llvm/IR/PatternMatch.h"
, 2428, __PRETTY_FUNCTION__))
;
2429 if (const auto *C = dyn_cast<Constant>(SI->getTrueValue()))
2430 if (C->isOneValue() && L.match(SI->getCondition()) &&
2431 R.match(SI->getFalseValue()))
2432 return true;
2433 }
2434 }
2435 }
2436
2437 return false;
2438 }
2439};
2440
2441/// Matches L && R either in the form of L & R or L ? R : false.
2442/// Note that the latter form is poison-blocking.
2443template <typename LHS, typename RHS>
2444inline LogicalOp_match<LHS, RHS, Instruction::And>
2445m_LogicalAnd(const LHS &L, const RHS &R) {
2446 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2447}
2448
2449/// Matches L && R where L and R are arbitrary values.
2450inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2451
2452/// Matches L || R either in the form of L | R or L ? true : R.
2453/// Note that the latter form is poison-blocking.
2454template <typename LHS, typename RHS>
2455inline LogicalOp_match<LHS, RHS, Instruction::Or>
2456m_LogicalOr(const LHS &L, const RHS &R) {
2457 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2458}
2459
2460/// Matches L || R where L and R are arbitrary values.
2461inline auto m_LogicalOr() {
2462 return m_LogicalOr(m_Value(), m_Value());
2463}
2464
2465} // end namespace PatternMatch
2466} // end namespace llvm
2467
2468#endif // LLVM_IR_PATTERNMATCH_H