Bug Summary

File:llvm/lib/Transforms/Scalar/LoopFlatten.cpp
Warning:line 189, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LoopFlatten.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/build-llvm/lib/Transforms/Scalar -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-07-19-021508-4797-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/lib/Transforms/Scalar/LoopFlatten.cpp

/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/lib/Transforms/Scalar/LoopFlatten.cpp

1//===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass flattens pairs nested loops into a single loop.
10//
11// The intention is to optimise loop nests like this, which together access an
12// array linearly:
13// for (int i = 0; i < N; ++i)
14// for (int j = 0; j < M; ++j)
15// f(A[i*M+j]);
16// into one loop:
17// for (int i = 0; i < (N*M); ++i)
18// f(A[i]);
19//
20// It can also flatten loops where the induction variables are not used in the
21// loop. This is only worth doing if the induction variables are only used in an
22// expression like i*M+j. If they had any other uses, we would have to insert a
23// div/mod to reconstruct the original values, so this wouldn't be profitable.
24//
25// We also need to prove that N*M will not overflow.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/Transforms/Scalar/LoopFlatten.h"
30#include "llvm/Analysis/AssumptionCache.h"
31#include "llvm/Analysis/LoopInfo.h"
32#include "llvm/Analysis/OptimizationRemarkEmitter.h"
33#include "llvm/Analysis/ScalarEvolution.h"
34#include "llvm/Analysis/TargetTransformInfo.h"
35#include "llvm/Analysis/ValueTracking.h"
36#include "llvm/IR/Dominators.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/IRBuilder.h"
39#include "llvm/IR/Module.h"
40#include "llvm/IR/PatternMatch.h"
41#include "llvm/IR/Verifier.h"
42#include "llvm/InitializePasses.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Transforms/Scalar.h"
47#include "llvm/Transforms/Utils/Local.h"
48#include "llvm/Transforms/Utils/LoopUtils.h"
49#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
50#include "llvm/Transforms/Utils/SimplifyIndVar.h"
51
52#define DEBUG_TYPE"loop-flatten" "loop-flatten"
53
54using namespace llvm;
55using namespace llvm::PatternMatch;
56
57static cl::opt<unsigned> RepeatedInstructionThreshold(
58 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
59 cl::desc("Limit on the cost of instructions that can be repeated due to "
60 "loop flattening"));
61
62static cl::opt<bool>
63 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
64 cl::init(false),
65 cl::desc("Assume that the product of the two iteration "
66 "limits will never overflow"));
67
68static cl::opt<bool>
69 WidenIV("loop-flatten-widen-iv", cl::Hidden,
70 cl::init(true),
71 cl::desc("Widen the loop induction variables, if possible, so "
72 "overflow checks won't reject flattening"));
73
74struct FlattenInfo {
75 Loop *OuterLoop = nullptr;
76 Loop *InnerLoop = nullptr;
77 PHINode *InnerInductionPHI = nullptr;
78 PHINode *OuterInductionPHI = nullptr;
79 Value *InnerLimit = nullptr;
80 Value *OuterLimit = nullptr;
81 BinaryOperator *InnerIncrement = nullptr;
82 BinaryOperator *OuterIncrement = nullptr;
83 BranchInst *InnerBranch = nullptr;
84 BranchInst *OuterBranch = nullptr;
85 SmallPtrSet<Value *, 4> LinearIVUses;
86 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
87
88 // Whether this holds the flatten info before or after widening.
89 bool Widened = false;
90
91 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
92};
93
94// Finds the induction variable, increment and limit for a simple loop that we
95// can flatten.
96static bool findLoopComponents(
97 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
98 PHINode *&InductionPHI, Value *&Limit, BinaryOperator *&Increment,
99 BranchInst *&BackBranch, ScalarEvolution *SE) {
100 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Finding components of loop: "
<< L->getName() << "\n"; } } while (false)
;
1
Assuming 'DebugFlag' is false
2
Loop condition is false. Exiting loop
101
102 if (!L->isLoopSimplifyForm()) {
3
Assuming the condition is false
4
Taking false branch
103 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop is not in normal form\n"
; } } while (false)
;
104 return false;
105 }
106
107 // There must be exactly one exiting block, and it must be the same at the
108 // latch.
109 BasicBlock *Latch = L->getLoopLatch();
110 if (L->getExitingBlock() != Latch) {
5
Assuming the condition is false
6
Taking false branch
111 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Exiting and latch block are different\n"
; } } while (false)
;
112 return false;
113 }
114 // Latch block must end in a conditional branch.
115 BackBranch = dyn_cast<BranchInst>(Latch->getTerminator());
7
Assuming the object is a 'BranchInst'
116 if (!BackBranch
7.1
'BackBranch' is non-null
7.1
'BackBranch' is non-null
7.1
'BackBranch' is non-null
|| !BackBranch->isConditional()) {
8
Calling 'BranchInst::isConditional'
11
Returning from 'BranchInst::isConditional'
12
Taking false branch
117 LLVM_DEBUG(dbgs() << "Could not find back-branch\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Could not find back-branch\n"
; } } while (false)
;
118 return false;
119 }
120 IterationInstructions.insert(BackBranch);
121 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found back branch: "; BackBranch
->dump(); } } while (false)
;
13
Assuming 'DebugFlag' is false
14
Loop condition is false. Exiting loop
122 bool ContinueOnTrue = L->contains(BackBranch->getSuccessor(0));
123
124 // Find the induction PHI. If there is no induction PHI, we can't do the
125 // transformation. TODO: could other variables trigger this? Do we have to
126 // search for the best one?
127 InductionPHI = nullptr;
128 for (PHINode &PHI : L->getHeader()->phis()) {
129 InductionDescriptor ID;
130 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) {
15
Assuming the condition is true
16
Taking true branch
131 InductionPHI = &PHI;
132 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found induction PHI: "; InductionPHI
->dump(); } } while (false)
;
17
Assuming 'DebugFlag' is false
18
Loop condition is false. Exiting loop
133 break;
19
Execution continues on line 136
134 }
135 }
136 if (!InductionPHI
19.1
'InductionPHI' is non-null
19.1
'InductionPHI' is non-null
19.1
'InductionPHI' is non-null
) {
20
Taking false branch
137 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Could not find induction PHI\n"
; } } while (false)
;
138 return false;
139 }
140
141 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
142 if (ContinueOnTrue)
23
Assuming 'ContinueOnTrue' is false
24
Taking false branch
143 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
144 else
145 return Pred == CmpInst::ICMP_EQ;
25
Assuming 'Pred' is equal to ICMP_EQ
26
Returning the value 1, which participates in a condition later
146 };
147
148 // Find Compare and make sure it is valid
149 ICmpInst *Compare = dyn_cast<ICmpInst>(BackBranch->getCondition());
21
Assuming the object is a 'ICmpInst'
150 if (!Compare
21.1
'Compare' is non-null
21.1
'Compare' is non-null
21.1
'Compare' is non-null
|| !IsValidPredicate(Compare->getUnsignedPredicate()) ||
22
Calling 'operator()'
27
Returning from 'operator()'
29
Taking false branch
151 Compare->hasNUsesOrMore(2)) {
28
Assuming the condition is false
152 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Could not find valid comparison\n"
; } } while (false)
;
153 return false;
154 }
155 IterationInstructions.insert(Compare);
156 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found comparison: "; Compare
->dump(); } } while (false)
;
30
Assuming 'DebugFlag' is false
31
Loop condition is false. Exiting loop
157
158 // Find increment and limit from the compare
159 Increment = nullptr;
160 if (match(Compare->getOperand(0),
32
Calling 'match<llvm::Value, llvm::PatternMatch::BinaryOp_match<llvm::PatternMatch::specificval_ty, llvm::PatternMatch::constantint_match<1>, 13, true>>'
40
Returning from 'match<llvm::Value, llvm::PatternMatch::BinaryOp_match<llvm::PatternMatch::specificval_ty, llvm::PatternMatch::constantint_match<1>, 13, true>>'
41
Taking true branch
161 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
162 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(0));
42
The object is a 'BinaryOperator'
163 Limit = Compare->getOperand(1);
164 } else if (Compare->getUnsignedPredicate() == CmpInst::ICMP_NE &&
165 match(Compare->getOperand(1),
166 m_c_Add(m_Specific(InductionPHI), m_ConstantInt<1>()))) {
167 Increment = dyn_cast<BinaryOperator>(Compare->getOperand(1));
168 Limit = Compare->getOperand(0);
169 }
170 if (!Increment
42.1
'Increment' is non-null
42.1
'Increment' is non-null
42.1
'Increment' is non-null
|| Increment->hasNUsesOrMore(3)) {
43
Assuming the condition is false
44
Taking false branch
171 LLVM_DEBUG(dbgs() << "Cound not find valid increment\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cound not find valid increment\n"
; } } while (false)
;
172 return false;
173 }
174 IterationInstructions.insert(Increment);
175 LLVM_DEBUG(dbgs() << "Found increment: "; Increment->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found increment: "; Increment
->dump(); } } while (false)
;
45
Assuming 'DebugFlag' is false
46
Loop condition is false. Exiting loop
176 LLVM_DEBUG(dbgs() << "Found limit: "; Limit->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found limit: "; Limit->
dump(); } } while (false)
;
47
Loop condition is false. Exiting loop
177
178 assert(InductionPHI->getNumIncomingValues() == 2)(static_cast <bool> (InductionPHI->getNumIncomingValues
() == 2) ? void (0) : __assert_fail ("InductionPHI->getNumIncomingValues() == 2"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/lib/Transforms/Scalar/LoopFlatten.cpp"
, 178, __extension__ __PRETTY_FUNCTION__))
;
48
Assuming the condition is true
49
'?' condition is true
179
180 if (InductionPHI->getIncomingValueForBlock(Latch) != Increment) {
50
Assuming the condition is false
51
Taking false branch
181 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Incoming value from latch is not the increment inst\n"
; } } while (false)
182 dbgs() << "Incoming value from latch is not the increment inst\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Incoming value from latch is not the increment inst\n"
; } } while (false)
;
183 return false;
184 }
185
186 auto *CI = dyn_cast<ConstantInt>(
52
Assuming the object is not a 'ConstantInt'
53
'CI' initialized to a null pointer value
187 InductionPHI->getIncomingValueForBlock(L->getLoopPreheader()));
188 if (!CI
53.1
'CI' is null
53.1
'CI' is null
53.1
'CI' is null
|| !CI->isZero()) {
189 LLVM_DEBUG(dbgs() << "PHI value is not zero: "; CI->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "PHI value is not zero: "
; CI->dump(); } } while (false)
;
54
Assuming 'DebugFlag' is true
55
Assuming the condition is true
56
Taking true branch
57
Called C++ object pointer is null
190 return false;
191 }
192
193 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Successfully found all loop components\n"
; } } while (false)
;
194 return true;
195}
196
197static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
198 // All PHIs in the inner and outer headers must either be:
199 // - The induction PHI, which we are going to rewrite as one induction in
200 // the new loop. This is already checked by findLoopComponents.
201 // - An outer header PHI with all incoming values from outside the loop.
202 // LoopSimplify guarantees we have a pre-header, so we don't need to
203 // worry about that here.
204 // - Pairs of PHIs in the inner and outer headers, which implement a
205 // loop-carried dependency that will still be valid in the new loop. To
206 // be valid, this variable must be modified only in the inner loop.
207
208 // The set of PHI nodes in the outer loop header that we know will still be
209 // valid after the transformation. These will not need to be modified (with
210 // the exception of the induction variable), but we do need to check that
211 // there are no unsafe PHI nodes.
212 SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
213 SafeOuterPHIs.insert(FI.OuterInductionPHI);
214
215 // Check that all PHI nodes in the inner loop header match one of the valid
216 // patterns.
217 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
218 // The induction PHIs break these rules, and that's OK because we treat
219 // them specially when doing the transformation.
220 if (&InnerPHI == FI.InnerInductionPHI)
221 continue;
222
223 // Each inner loop PHI node must have two incoming values/blocks - one
224 // from the pre-header, and one from the latch.
225 assert(InnerPHI.getNumIncomingValues() == 2)(static_cast <bool> (InnerPHI.getNumIncomingValues() ==
2) ? void (0) : __assert_fail ("InnerPHI.getNumIncomingValues() == 2"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/lib/Transforms/Scalar/LoopFlatten.cpp"
, 225, __extension__ __PRETTY_FUNCTION__))
;
226 Value *PreHeaderValue =
227 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
228 Value *LatchValue =
229 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
230
231 // The incoming value from the outer loop must be the PHI node in the
232 // outer loop header, with no modifications made in the top of the outer
233 // loop.
234 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
235 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
236 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "value modified in top of outer loop\n"
; } } while (false)
;
237 return false;
238 }
239
240 // The other incoming value must come from the inner loop, without any
241 // modifications in the tail end of the outer loop. We are in LCSSA form,
242 // so this will actually be a PHI in the inner loop's exit block, which
243 // only uses values from inside the inner loop.
244 PHINode *LCSSAPHI = dyn_cast<PHINode>(
245 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
246 if (!LCSSAPHI) {
247 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "could not find LCSSA PHI\n"
; } } while (false)
;
248 return false;
249 }
250
251 // The value used by the LCSSA PHI must be the same one that the inner
252 // loop's PHI uses.
253 if (LCSSAPHI->hasConstantValue() != LatchValue) {
254 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "LCSSA PHI incoming value does not match latch value\n"
; } } while (false)
255 dbgs() << "LCSSA PHI incoming value does not match latch value\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "LCSSA PHI incoming value does not match latch value\n"
; } } while (false)
;
256 return false;
257 }
258
259 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "PHI pair is safe:\n"; } }
while (false)
;
260 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << " Inner: "; InnerPHI.dump
(); } } while (false)
;
261 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << " Outer: "; OuterPHI->
dump(); } } while (false)
;
262 SafeOuterPHIs.insert(OuterPHI);
263 FI.InnerPHIsToTransform.insert(&InnerPHI);
264 }
265
266 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
267 if (!SafeOuterPHIs.count(&OuterPHI)) {
268 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "found unsafe PHI in outer loop: "
; OuterPHI.dump(); } } while (false)
;
269 return false;
270 }
271 }
272
273 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkPHIs: OK\n"; } } while
(false)
;
274 return true;
275}
276
277static bool
278checkOuterLoopInsts(FlattenInfo &FI,
279 SmallPtrSetImpl<Instruction *> &IterationInstructions,
280 const TargetTransformInfo *TTI) {
281 // Check for instructions in the outer but not inner loop. If any of these
282 // have side-effects then this transformation is not legal, and if there is
283 // a significant amount of code here which can't be optimised out that it's
284 // not profitable (as these instructions would get executed for each
285 // iteration of the inner loop).
286 InstructionCost RepeatedInstrCost = 0;
287 for (auto *B : FI.OuterLoop->getBlocks()) {
288 if (FI.InnerLoop->contains(B))
289 continue;
290
291 for (auto &I : *B) {
292 if (!isa<PHINode>(&I) && !I.isTerminator() &&
293 !isSafeToSpeculativelyExecute(&I)) {
294 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cannot flatten because instruction may have "
"side effects: "; I.dump(); } } while (false)
295 "side effects: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cannot flatten because instruction may have "
"side effects: "; I.dump(); } } while (false)
296 I.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cannot flatten because instruction may have "
"side effects: "; I.dump(); } } while (false)
;
297 return false;
298 }
299 // The execution count of the outer loop's iteration instructions
300 // (increment, compare and branch) will be increased, but the
301 // equivalent instructions will be removed from the inner loop, so
302 // they make a net difference of zero.
303 if (IterationInstructions.count(&I))
304 continue;
305 // The uncoditional branch to the inner loop's header will turn into
306 // a fall-through, so adds no cost.
307 BranchInst *Br = dyn_cast<BranchInst>(&I);
308 if (Br && Br->isUnconditional() &&
309 Br->getSuccessor(0) == FI.InnerLoop->getHeader())
310 continue;
311 // Multiplies of the outer iteration variable and inner iteration
312 // count will be optimised out.
313 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
314 m_Specific(FI.InnerLimit))))
315 continue;
316 InstructionCost Cost =
317 TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
318 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cost " << Cost <<
": "; I.dump(); } } while (false)
;
319 RepeatedInstrCost += Cost;
320 }
321 }
322
323 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cost of instructions that will be repeated: "
<< RepeatedInstrCost << "\n"; } } while (false)
324 << RepeatedInstrCost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Cost of instructions that will be repeated: "
<< RepeatedInstrCost << "\n"; } } while (false)
;
325 // Bail out if flattening the loops would cause instructions in the outer
326 // loop but not in the inner loop to be executed extra times.
327 if (RepeatedInstrCost > RepeatedInstructionThreshold) {
328 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n"
; } } while (false)
;
329 return false;
330 }
331
332 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkOuterLoopInsts: OK\n"
; } } while (false)
;
333 return true;
334}
335
336static bool checkIVUsers(FlattenInfo &FI) {
337 // We require all uses of both induction variables to match this pattern:
338 //
339 // (OuterPHI * InnerLimit) + InnerPHI
340 //
341 // Any uses of the induction variables not matching that pattern would
342 // require a div/mod to reconstruct in the flattened loop, so the
343 // transformation wouldn't be profitable.
344
345 Value *InnerLimit = FI.InnerLimit;
346 if (FI.Widened &&
347 (isa<SExtInst>(InnerLimit) || isa<ZExtInst>(InnerLimit)))
348 InnerLimit = cast<Instruction>(InnerLimit)->getOperand(0);
349
350 // Check that all uses of the inner loop's induction variable match the
351 // expected pattern, recording the uses of the outer IV.
352 SmallPtrSet<Value *, 4> ValidOuterPHIUses;
353 for (User *U : FI.InnerInductionPHI->users()) {
354 if (U == FI.InnerIncrement)
355 continue;
356
357 // After widening the IVs, a trunc instruction might have been introduced, so
358 // look through truncs.
359 if (isa<TruncInst>(U)) {
360 if (!U->hasOneUse())
361 return false;
362 U = *U->user_begin();
363 }
364
365 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found use of inner induction variable: "
; U->dump(); } } while (false)
;
366
367 Value *MatchedMul;
368 Value *MatchedItCount;
369 bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
370 m_Value(MatchedMul))) &&
371 match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
372 m_Value(MatchedItCount)));
373
374 // Matches the same pattern as above, except it also looks for truncs
375 // on the phi, which can be the result of widening the induction variables.
376 bool IsAddTrunc = match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
377 m_Value(MatchedMul))) &&
378 match(MatchedMul,
379 m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
380 m_Value(MatchedItCount)));
381
382 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerLimit) {
383 LLVM_DEBUG(dbgs() << "Use is optimisable\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Use is optimisable\n"; }
} while (false)
;
384 ValidOuterPHIUses.insert(MatchedMul);
385 FI.LinearIVUses.insert(U);
386 } else {
387 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Did not match expected pattern, bailing\n"
; } } while (false)
;
388 return false;
389 }
390 }
391
392 // Check that there are no uses of the outer IV other than the ones found
393 // as part of the pattern above.
394 for (User *U : FI.OuterInductionPHI->users()) {
395 if (U == FI.OuterIncrement)
396 continue;
397
398 auto IsValidOuterPHIUses = [&] (User *U) -> bool {
399 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Found use of outer induction variable: "
; U->dump(); } } while (false)
;
400 if (!ValidOuterPHIUses.count(U)) {
401 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Did not match expected pattern, bailing\n"
; } } while (false)
;
402 return false;
403 }
404 LLVM_DEBUG(dbgs() << "Use is optimisable\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Use is optimisable\n"; }
} while (false)
;
405 return true;
406 };
407
408 if (auto *V = dyn_cast<TruncInst>(U)) {
409 for (auto *K : V->users()) {
410 if (!IsValidOuterPHIUses(K))
411 return false;
412 }
413 continue;
414 }
415
416 if (!IsValidOuterPHIUses(U))
417 return false;
418 }
419
420 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
421 dbgs() << "Found " << FI.LinearIVUses.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
422 << " value(s) that can be replaced:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
423 for (Value *V : FI.LinearIVUses) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
424 dbgs() << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
425 V->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
426 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "checkIVUsers: OK\n"; dbgs
() << "Found " << FI.LinearIVUses.size() <<
" value(s) that can be replaced:\n"; for (Value *V : FI.LinearIVUses
) { dbgs() << " "; V->dump(); }; } } while (false)
;
427 return true;
428}
429
430// Return an OverflowResult dependant on if overflow of the multiplication of
431// InnerLimit and OuterLimit can be assumed not to happen.
432static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
433 AssumptionCache *AC) {
434 Function *F = FI.OuterLoop->getHeader()->getParent();
435 const DataLayout &DL = F->getParent()->getDataLayout();
436
437 // For debugging/testing.
438 if (AssumeNoOverflow)
439 return OverflowResult::NeverOverflows;
440
441 // Check if the multiply could not overflow due to known ranges of the
442 // input values.
443 OverflowResult OR = computeOverflowForUnsignedMul(
444 FI.InnerLimit, FI.OuterLimit, DL, AC,
445 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
446 if (OR != OverflowResult::MayOverflow)
447 return OR;
448
449 for (Value *V : FI.LinearIVUses) {
450 for (Value *U : V->users()) {
451 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
452 // The IV is used as the operand of a GEP, and the IV is at least as
453 // wide as the address space of the GEP. In this case, the GEP would
454 // wrap around the address space before the IV increment wraps, which
455 // would be UB.
456 if (GEP->isInBounds() &&
457 V->getType()->getIntegerBitWidth() >=
458 DL.getPointerTypeSizeInBits(GEP->getType())) {
459 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "use of linear IV would be UB if overflow occurred: "
; GEP->dump(); } } while (false)
460 dbgs() << "use of linear IV would be UB if overflow occurred: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "use of linear IV would be UB if overflow occurred: "
; GEP->dump(); } } while (false)
461 GEP->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "use of linear IV would be UB if overflow occurred: "
; GEP->dump(); } } while (false)
;
462 return OverflowResult::NeverOverflows;
463 }
464 }
465 }
466 }
467
468 return OverflowResult::MayOverflow;
469}
470
471static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
472 ScalarEvolution *SE, AssumptionCache *AC,
473 const TargetTransformInfo *TTI) {
474 SmallPtrSet<Instruction *, 8> IterationInstructions;
475 if (!findLoopComponents(FI.InnerLoop, IterationInstructions, FI.InnerInductionPHI,
476 FI.InnerLimit, FI.InnerIncrement, FI.InnerBranch, SE))
477 return false;
478 if (!findLoopComponents(FI.OuterLoop, IterationInstructions, FI.OuterInductionPHI,
479 FI.OuterLimit, FI.OuterIncrement, FI.OuterBranch, SE))
480 return false;
481
482 // Both of the loop limit values must be invariant in the outer loop
483 // (non-instructions are all inherently invariant).
484 if (!FI.OuterLoop->isLoopInvariant(FI.InnerLimit)) {
485 LLVM_DEBUG(dbgs() << "inner loop limit not invariant\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "inner loop limit not invariant\n"
; } } while (false)
;
486 return false;
487 }
488 if (!FI.OuterLoop->isLoopInvariant(FI.OuterLimit)) {
489 LLVM_DEBUG(dbgs() << "outer loop limit not invariant\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "outer loop limit not invariant\n"
; } } while (false)
;
490 return false;
491 }
492
493 if (!checkPHIs(FI, TTI))
494 return false;
495
496 // FIXME: it should be possible to handle different types correctly.
497 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
498 return false;
499
500 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
501 return false;
502
503 // Find the values in the loop that can be replaced with the linearized
504 // induction variable, and check that there are no other uses of the inner
505 // or outer induction variable. If there were, we could still do this
506 // transformation, but we'd have to insert a div/mod to calculate the
507 // original IVs, so it wouldn't be profitable.
508 if (!checkIVUsers(FI))
509 return false;
510
511 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "CanFlattenLoopPair: OK\n"
; } } while (false)
;
512 return true;
513}
514
515static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
516 ScalarEvolution *SE, AssumptionCache *AC,
517 const TargetTransformInfo *TTI) {
518 Function *F = FI.OuterLoop->getHeader()->getParent();
519 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Checks all passed, doing the transformation\n"
; } } while (false)
;
520 {
521 using namespace ore;
522 OptimizationRemark Remark(DEBUG_TYPE"loop-flatten", "Flattened", FI.InnerLoop->getStartLoc(),
523 FI.InnerLoop->getHeader());
524 OptimizationRemarkEmitter ORE(F);
525 Remark << "Flattened into outer loop";
526 ORE.emit(Remark);
527 }
528
529 Value *NewTripCount =
530 BinaryOperator::CreateMul(FI.InnerLimit, FI.OuterLimit, "flatten.tripcount",
531 FI.OuterLoop->getLoopPreheader()->getTerminator());
532 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Created new trip count in preheader: "
; NewTripCount->dump(); } } while (false)
533 NewTripCount->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Created new trip count in preheader: "
; NewTripCount->dump(); } } while (false)
;
534
535 // Fix up PHI nodes that take values from the inner loop back-edge, which
536 // we are about to remove.
537 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
538
539 // The old Phi will be optimised away later, but for now we can't leave
540 // leave it in an invalid state, so are updating them too.
541 for (PHINode *PHI : FI.InnerPHIsToTransform)
542 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
543
544 // Modify the trip count of the outer loop to be the product of the two
545 // trip counts.
546 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
547
548 // Replace the inner loop backedge with an unconditional branch to the exit.
549 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
550 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
551 InnerExitingBlock->getTerminator()->eraseFromParent();
552 BranchInst::Create(InnerExitBlock, InnerExitingBlock);
553 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
554
555 // Replace all uses of the polynomial calculated from the two induction
556 // variables with the one new one.
557 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
558 for (Value *V : FI.LinearIVUses) {
559 Value *OuterValue = FI.OuterInductionPHI;
560 if (FI.Widened)
561 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
562 "flatten.trunciv");
563
564 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Replacing: "; V->dump
(); dbgs() << "with: "; OuterValue->dump(); } }
while (false)
565 dbgs() << "with: "; OuterValue->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Replacing: "; V->dump
(); dbgs() << "with: "; OuterValue->dump(); } }
while (false)
;
566 V->replaceAllUsesWith(OuterValue);
567 }
568
569 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
570 // deleted, and any information that have about the outer loop invalidated.
571 SE->forgetLoop(FI.OuterLoop);
572 SE->forgetLoop(FI.InnerLoop);
573 LI->erase(FI.InnerLoop);
574 return true;
575}
576
577static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
578 ScalarEvolution *SE, AssumptionCache *AC,
579 const TargetTransformInfo *TTI) {
580 if (!WidenIV) {
581 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Widening the IVs is disabled\n"
; } } while (false)
;
582 return false;
583 }
584
585 LLVM_DEBUG(dbgs() << "Try widening the IVs\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Try widening the IVs\n";
} } while (false)
;
586 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
587 auto &DL = M->getDataLayout();
588 auto *InnerType = FI.InnerInductionPHI->getType();
589 auto *OuterType = FI.OuterInductionPHI->getType();
590 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
591 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
592
593 // If both induction types are less than the maximum legal integer width,
594 // promote both to the widest type available so we know calculating
595 // (OuterLimit * InnerLimit) as the new trip count is safe.
596 if (InnerType != OuterType ||
597 InnerType->getScalarSizeInBits() >= MaxLegalSize ||
598 MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
599 LLVM_DEBUG(dbgs() << "Can't widen the IV\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Can't widen the IV\n"; }
} while (false)
;
600 return false;
601 }
602
603 SCEVExpander Rewriter(*SE, DL, "loopflatten");
604 SmallVector<WideIVInfo, 2> WideIVs;
605 SmallVector<WeakTrackingVH, 4> DeadInsts;
606 WideIVs.push_back( {FI.InnerInductionPHI, MaxLegalType, false });
607 WideIVs.push_back( {FI.OuterInductionPHI, MaxLegalType, false });
608 unsigned ElimExt = 0;
609 unsigned Widened = 0;
610
611 for (const auto &WideIV : WideIVs) {
612 PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts,
613 ElimExt, Widened, true /* HasGuards */,
614 true /* UsePostIncrementRanges */);
615 if (!WidePhi)
616 return false;
617 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Created wide phi: "; WidePhi
->dump(); } } while (false)
;
618 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Deleting old phi: "; WideIV
.NarrowIV->dump(); } } while (false)
;
619 RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
620 }
621 // After widening, rediscover all the loop components.
622 assert(Widened && "Widened IV expected")(static_cast <bool> (Widened && "Widened IV expected"
) ? void (0) : __assert_fail ("Widened && \"Widened IV expected\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/lib/Transforms/Scalar/LoopFlatten.cpp"
, 622, __extension__ __PRETTY_FUNCTION__))
;
623 FI.Widened = true;
624 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
625}
626
627static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
628 ScalarEvolution *SE, AssumptionCache *AC,
629 const TargetTransformInfo *TTI) {
630 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop flattening running on outer loop "
<< FI.OuterLoop->getHeader()->getName() <<
" and inner loop " << FI.InnerLoop->getHeader()->
getName() << " in " << FI.OuterLoop->getHeader
()->getParent()->getName() << "\n"; } } while (false
)
631 dbgs() << "Loop flattening running on outer loop "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop flattening running on outer loop "
<< FI.OuterLoop->getHeader()->getName() <<
" and inner loop " << FI.InnerLoop->getHeader()->
getName() << " in " << FI.OuterLoop->getHeader
()->getParent()->getName() << "\n"; } } while (false
)
632 << FI.OuterLoop->getHeader()->getName() << " and inner loop "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop flattening running on outer loop "
<< FI.OuterLoop->getHeader()->getName() <<
" and inner loop " << FI.InnerLoop->getHeader()->
getName() << " in " << FI.OuterLoop->getHeader
()->getParent()->getName() << "\n"; } } while (false
)
633 << FI.InnerLoop->getHeader()->getName() << " in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop flattening running on outer loop "
<< FI.OuterLoop->getHeader()->getName() <<
" and inner loop " << FI.InnerLoop->getHeader()->
getName() << " in " << FI.OuterLoop->getHeader
()->getParent()->getName() << "\n"; } } while (false
)
634 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Loop flattening running on outer loop "
<< FI.OuterLoop->getHeader()->getName() <<
" and inner loop " << FI.InnerLoop->getHeader()->
getName() << " in " << FI.OuterLoop->getHeader
()->getParent()->getName() << "\n"; } } while (false
)
;
635
636 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
637 return false;
638
639 // Check if we can widen the induction variables to avoid overflow checks.
640 if (CanWidenIV(FI, DT, LI, SE, AC, TTI))
641 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
642
643 // Check if the new iteration variable might overflow. In this case, we
644 // need to version the loop, and select the original version at runtime if
645 // the iteration space is too large.
646 // TODO: We currently don't version the loop.
647 OverflowResult OR = checkOverflow(FI, DT, AC);
648 if (OR == OverflowResult::AlwaysOverflowsHigh ||
649 OR == OverflowResult::AlwaysOverflowsLow) {
650 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Multiply would always overflow, so not profitable\n"
; } } while (false)
;
651 return false;
652 } else if (OR == OverflowResult::MayOverflow) {
653 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Multiply might overflow, not flattening\n"
; } } while (false)
;
654 return false;
655 }
656
657 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-flatten")) { dbgs() << "Multiply cannot overflow, modifying loop in-place\n"
; } } while (false)
;
658 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
659}
660
661bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
662 AssumptionCache *AC, TargetTransformInfo *TTI) {
663 bool Changed = false;
664 for (Loop *InnerLoop : LN.getLoops()) {
665 auto *OuterLoop = InnerLoop->getParentLoop();
666 if (!OuterLoop)
667 continue;
668 FlattenInfo FI(OuterLoop, InnerLoop);
669 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
670 }
671 return Changed;
672}
673
674PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
675 LoopStandardAnalysisResults &AR,
676 LPMUpdater &U) {
677
678 bool Changed = false;
679
680 // The loop flattening pass requires loops to be
681 // in simplified form, and also needs LCSSA. Running
682 // this pass will simplify all loops that contain inner loops,
683 // regardless of whether anything ends up being flattened.
684 Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI);
685
686 if (!Changed)
687 return PreservedAnalyses::all();
688
689 return PreservedAnalyses::none();
690}
691
692namespace {
693class LoopFlattenLegacyPass : public FunctionPass {
694public:
695 static char ID; // Pass ID, replacement for typeid
696 LoopFlattenLegacyPass() : FunctionPass(ID) {
697 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
698 }
699
700 // Possibly flatten loop L into its child.
701 bool runOnFunction(Function &F) override;
702
703 void getAnalysisUsage(AnalysisUsage &AU) const override {
704 getLoopAnalysisUsage(AU);
705 AU.addRequired<TargetTransformInfoWrapperPass>();
706 AU.addPreserved<TargetTransformInfoWrapperPass>();
707 AU.addRequired<AssumptionCacheTracker>();
708 AU.addPreserved<AssumptionCacheTracker>();
709 }
710};
711} // namespace
712
713char LoopFlattenLegacyPass::ID = 0;
714INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",static void *initializeLoopFlattenLegacyPassPassOnce(PassRegistry
&Registry) {
715 false, false)static void *initializeLoopFlattenLegacyPassPassOnce(PassRegistry
&Registry) {
716INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
717INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
718INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",PassInfo *PI = new PassInfo( "Flattens loops", "loop-flatten"
, &LoopFlattenLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LoopFlattenLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLoopFlattenLegacyPassPassFlag
; void llvm::initializeLoopFlattenLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLoopFlattenLegacyPassPassFlag
, initializeLoopFlattenLegacyPassPassOnce, std::ref(Registry)
); }
719 false, false)PassInfo *PI = new PassInfo( "Flattens loops", "loop-flatten"
, &LoopFlattenLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LoopFlattenLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLoopFlattenLegacyPassPassFlag
; void llvm::initializeLoopFlattenLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLoopFlattenLegacyPassPassFlag
, initializeLoopFlattenLegacyPassPassOnce, std::ref(Registry)
); }
720
721FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
722
723bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
724 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
725 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
726 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
727 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
728 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
729 auto *TTI = &TTIP.getTTI(F);
730 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
731 bool Changed = false;
732 for (Loop *L : *LI) {
733 auto LN = LoopNest::getLoopNest(*L, *SE);
734 Changed |= Flatten(*LN, DT, LI, SE, AC, TTI);
735 }
736 return Changed;
737}

/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/MapVector.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/Twine.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/CFG.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/DerivedTypes.h"
34#include "llvm/IR/Function.h"
35#include "llvm/IR/InstrTypes.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/OperandTraits.h"
38#include "llvm/IR/Type.h"
39#include "llvm/IR/Use.h"
40#include "llvm/IR/User.h"
41#include "llvm/IR/Value.h"
42#include "llvm/Support/AtomicOrdering.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/ErrorHandling.h"
45#include <cassert>
46#include <cstddef>
47#include <cstdint>
48#include <iterator>
49
50namespace llvm {
51
52class APInt;
53class ConstantInt;
54class DataLayout;
55class LLVMContext;
56
57//===----------------------------------------------------------------------===//
58// AllocaInst Class
59//===----------------------------------------------------------------------===//
60
61/// an instruction to allocate memory on the stack
62class AllocaInst : public UnaryInstruction {
63 Type *AllocatedType;
64
65 using AlignmentField = AlignmentBitfieldElementT<0>;
66 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
67 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
68 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
69 SwiftErrorField>(),
70 "Bitfields must be contiguous");
71
72protected:
73 // Note: Instruction needs to be a friend here to call cloneImpl.
74 friend class Instruction;
75
76 AllocaInst *cloneImpl() const;
77
78public:
79 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
80 const Twine &Name, Instruction *InsertBefore);
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
82 const Twine &Name, BasicBlock *InsertAtEnd);
83
84 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
85 Instruction *InsertBefore);
86 AllocaInst(Type *Ty, unsigned AddrSpace,
87 const Twine &Name, BasicBlock *InsertAtEnd);
88
89 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
90 const Twine &Name = "", Instruction *InsertBefore = nullptr);
91 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
92 const Twine &Name, BasicBlock *InsertAtEnd);
93
94 /// Return true if there is an allocation size parameter to the allocation
95 /// instruction that is not 1.
96 bool isArrayAllocation() const;
97
98 /// Get the number of elements allocated. For a simple allocation of a single
99 /// element, this will return a constant 1 value.
100 const Value *getArraySize() const { return getOperand(0); }
101 Value *getArraySize() { return getOperand(0); }
102
103 /// Overload to return most specific pointer type.
104 PointerType *getType() const {
105 return cast<PointerType>(Instruction::getType());
106 }
107
108 /// Get allocation size in bits. Returns None if size can't be determined,
109 /// e.g. in case of a VLA.
110 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
111
112 /// Return the type that is being allocated by the instruction.
113 Type *getAllocatedType() const { return AllocatedType; }
114 /// for use only in special circumstances that need to generically
115 /// transform a whole instruction (eg: IR linking and vectorization).
116 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
117
118 /// Return the alignment of the memory that is being allocated by the
119 /// instruction.
120 Align getAlign() const {
121 return Align(1ULL << getSubclassData<AlignmentField>());
122 }
123
124 void setAlignment(Align Align) {
125 setSubclassData<AlignmentField>(Log2(Align));
126 }
127
128 // FIXME: Remove this one transition to Align is over.
129 unsigned getAlignment() const { return getAlign().value(); }
130
131 /// Return true if this alloca is in the entry block of the function and is a
132 /// constant size. If so, the code generator will fold it into the
133 /// prolog/epilog code, so it is basically free.
134 bool isStaticAlloca() const;
135
136 /// Return true if this alloca is used as an inalloca argument to a call. Such
137 /// allocas are never considered static even if they are in the entry block.
138 bool isUsedWithInAlloca() const {
139 return getSubclassData<UsedWithInAllocaField>();
140 }
141
142 /// Specify whether this alloca is used to represent the arguments to a call.
143 void setUsedWithInAlloca(bool V) {
144 setSubclassData<UsedWithInAllocaField>(V);
145 }
146
147 /// Return true if this alloca is used as a swifterror argument to a call.
148 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
149 /// Specify whether this alloca is used to represent a swifterror.
150 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
151
152 // Methods for support type inquiry through isa, cast, and dyn_cast:
153 static bool classof(const Instruction *I) {
154 return (I->getOpcode() == Instruction::Alloca);
155 }
156 static bool classof(const Value *V) {
157 return isa<Instruction>(V) && classof(cast<Instruction>(V));
158 }
159
160private:
161 // Shadow Instruction::setInstructionSubclassData with a private forwarding
162 // method so that subclasses cannot accidentally use it.
163 template <typename Bitfield>
164 void setSubclassData(typename Bitfield::Type Value) {
165 Instruction::setSubclassData<Bitfield>(Value);
166 }
167};
168
169//===----------------------------------------------------------------------===//
170// LoadInst Class
171//===----------------------------------------------------------------------===//
172
173/// An instruction for reading from memory. This uses the SubclassData field in
174/// Value to store whether or not the load is volatile.
175class LoadInst : public UnaryInstruction {
176 using VolatileField = BoolBitfieldElementT<0>;
177 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
178 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
179 static_assert(
180 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
181 "Bitfields must be contiguous");
182
183 void AssertOK();
184
185protected:
186 // Note: Instruction needs to be a friend here to call cloneImpl.
187 friend class Instruction;
188
189 LoadInst *cloneImpl() const;
190
191public:
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
193 Instruction *InsertBefore);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
195 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
196 Instruction *InsertBefore);
197 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
198 BasicBlock *InsertAtEnd);
199 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
200 Align Align, Instruction *InsertBefore = nullptr);
201 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
202 Align Align, BasicBlock *InsertAtEnd);
203 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
204 Align Align, AtomicOrdering Order,
205 SyncScope::ID SSID = SyncScope::System,
206 Instruction *InsertBefore = nullptr);
207 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
208 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
209 BasicBlock *InsertAtEnd);
210
211 /// Return true if this is a load from a volatile memory location.
212 bool isVolatile() const { return getSubclassData<VolatileField>(); }
213
214 /// Specify whether this is a volatile load or not.
215 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
216
217 /// Return the alignment of the access that is being performed.
218 /// FIXME: Remove this function once transition to Align is over.
219 /// Use getAlign() instead.
220 unsigned getAlignment() const { return getAlign().value(); }
221
222 /// Return the alignment of the access that is being performed.
223 Align getAlign() const {
224 return Align(1ULL << (getSubclassData<AlignmentField>()));
225 }
226
227 void setAlignment(Align Align) {
228 setSubclassData<AlignmentField>(Log2(Align));
229 }
230
231 /// Returns the ordering constraint of this load instruction.
232 AtomicOrdering getOrdering() const {
233 return getSubclassData<OrderingField>();
234 }
235 /// Sets the ordering constraint of this load instruction. May not be Release
236 /// or AcquireRelease.
237 void setOrdering(AtomicOrdering Ordering) {
238 setSubclassData<OrderingField>(Ordering);
239 }
240
241 /// Returns the synchronization scope ID of this load instruction.
242 SyncScope::ID getSyncScopeID() const {
243 return SSID;
244 }
245
246 /// Sets the synchronization scope ID of this load instruction.
247 void setSyncScopeID(SyncScope::ID SSID) {
248 this->SSID = SSID;
249 }
250
251 /// Sets the ordering constraint and the synchronization scope ID of this load
252 /// instruction.
253 void setAtomic(AtomicOrdering Ordering,
254 SyncScope::ID SSID = SyncScope::System) {
255 setOrdering(Ordering);
256 setSyncScopeID(SSID);
257 }
258
259 bool isSimple() const { return !isAtomic() && !isVolatile(); }
260
261 bool isUnordered() const {
262 return (getOrdering() == AtomicOrdering::NotAtomic ||
263 getOrdering() == AtomicOrdering::Unordered) &&
264 !isVolatile();
265 }
266
267 Value *getPointerOperand() { return getOperand(0); }
268 const Value *getPointerOperand() const { return getOperand(0); }
269 static unsigned getPointerOperandIndex() { return 0U; }
270 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
271
272 /// Returns the address space of the pointer operand.
273 unsigned getPointerAddressSpace() const {
274 return getPointerOperandType()->getPointerAddressSpace();
275 }
276
277 // Methods for support type inquiry through isa, cast, and dyn_cast:
278 static bool classof(const Instruction *I) {
279 return I->getOpcode() == Instruction::Load;
280 }
281 static bool classof(const Value *V) {
282 return isa<Instruction>(V) && classof(cast<Instruction>(V));
283 }
284
285private:
286 // Shadow Instruction::setInstructionSubclassData with a private forwarding
287 // method so that subclasses cannot accidentally use it.
288 template <typename Bitfield>
289 void setSubclassData(typename Bitfield::Type Value) {
290 Instruction::setSubclassData<Bitfield>(Value);
291 }
292
293 /// The synchronization scope ID of this load instruction. Not quite enough
294 /// room in SubClassData for everything, so synchronization scope ID gets its
295 /// own field.
296 SyncScope::ID SSID;
297};
298
299//===----------------------------------------------------------------------===//
300// StoreInst Class
301//===----------------------------------------------------------------------===//
302
303/// An instruction for storing to memory.
304class StoreInst : public Instruction {
305 using VolatileField = BoolBitfieldElementT<0>;
306 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
307 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
308 static_assert(
309 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
310 "Bitfields must be contiguous");
311
312 void AssertOK();
313
314protected:
315 // Note: Instruction needs to be a friend here to call cloneImpl.
316 friend class Instruction;
317
318 StoreInst *cloneImpl() const;
319
320public:
321 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
322 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
325 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
326 Instruction *InsertBefore = nullptr);
327 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
328 BasicBlock *InsertAtEnd);
329 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
330 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
331 Instruction *InsertBefore = nullptr);
332 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
333 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
334
335 // allocate space for exactly two operands
336 void *operator new(size_t S) { return User::operator new(S, 2); }
337 void operator delete(void *Ptr) { User::operator delete(Ptr); }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<StoreInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 437, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<StoreInst>::op_begin(const_cast
<StoreInst*>(this))[i_nocapture].get()); } void StoreInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<StoreInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 437, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
StoreInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned StoreInst::getNumOperands() const { return OperandTraits
<StoreInst>::operands(this); } template <int Idx_nocapture
> Use &StoreInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
StoreInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t S) { return User::operator new(S, 0); }
466 void operator delete(void *Ptr) { User::operator delete(Ptr); }
467
468 /// Returns the ordering constraint of this fence instruction.
469 AtomicOrdering getOrdering() const {
470 return getSubclassData<OrderingField>();
471 }
472
473 /// Sets the ordering constraint of this fence instruction. May only be
474 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
475 void setOrdering(AtomicOrdering Ordering) {
476 setSubclassData<OrderingField>(Ordering);
477 }
478
479 /// Returns the synchronization scope ID of this fence instruction.
480 SyncScope::ID getSyncScopeID() const {
481 return SSID;
482 }
483
484 /// Sets the synchronization scope ID of this fence instruction.
485 void setSyncScopeID(SyncScope::ID SSID) {
486 this->SSID = SSID;
487 }
488
489 // Methods for support type inquiry through isa, cast, and dyn_cast:
490 static bool classof(const Instruction *I) {
491 return I->getOpcode() == Instruction::Fence;
492 }
493 static bool classof(const Value *V) {
494 return isa<Instruction>(V) && classof(cast<Instruction>(V));
495 }
496
497private:
498 // Shadow Instruction::setInstructionSubclassData with a private forwarding
499 // method so that subclasses cannot accidentally use it.
500 template <typename Bitfield>
501 void setSubclassData(typename Bitfield::Type Value) {
502 Instruction::setSubclassData<Bitfield>(Value);
503 }
504
505 /// The synchronization scope ID of this fence instruction. Not quite enough
506 /// room in SubClassData for everything, so synchronization scope ID gets its
507 /// own field.
508 SyncScope::ID SSID;
509};
510
511//===----------------------------------------------------------------------===//
512// AtomicCmpXchgInst Class
513//===----------------------------------------------------------------------===//
514
515/// An instruction that atomically checks whether a
516/// specified value is in a memory location, and, if it is, stores a new value
517/// there. The value returned by this instruction is a pair containing the
518/// original value as first element, and an i1 indicating success (true) or
519/// failure (false) as second element.
520///
521class AtomicCmpXchgInst : public Instruction {
522 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
523 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
524 SyncScope::ID SSID);
525
526 template <unsigned Offset>
527 using AtomicOrderingBitfieldElement =
528 typename Bitfield::Element<AtomicOrdering, Offset, 3,
529 AtomicOrdering::LAST>;
530
531protected:
532 // Note: Instruction needs to be a friend here to call cloneImpl.
533 friend class Instruction;
534
535 AtomicCmpXchgInst *cloneImpl() const;
536
537public:
538 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
539 AtomicOrdering SuccessOrdering,
540 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
541 Instruction *InsertBefore = nullptr);
542 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
543 AtomicOrdering SuccessOrdering,
544 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
545 BasicBlock *InsertAtEnd);
546
547 // allocate space for exactly three operands
548 void *operator new(size_t S) { return User::operator new(S, 3); }
549 void operator delete(void *Ptr) { User::operator delete(Ptr); }
550
551 using VolatileField = BoolBitfieldElementT<0>;
552 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
553 using SuccessOrderingField =
554 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
555 using FailureOrderingField =
556 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
557 using AlignmentField =
558 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
559 static_assert(
560 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
561 FailureOrderingField, AlignmentField>(),
562 "Bitfields must be contiguous");
563
564 /// Return the alignment of the memory that is being allocated by the
565 /// instruction.
566 Align getAlign() const {
567 return Align(1ULL << getSubclassData<AlignmentField>());
568 }
569
570 void setAlignment(Align Align) {
571 setSubclassData<AlignmentField>(Log2(Align));
572 }
573
574 /// Return true if this is a cmpxchg from a volatile memory
575 /// location.
576 ///
577 bool isVolatile() const { return getSubclassData<VolatileField>(); }
578
579 /// Specify whether this is a volatile cmpxchg.
580 ///
581 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
582
583 /// Return true if this cmpxchg may spuriously fail.
584 bool isWeak() const { return getSubclassData<WeakField>(); }
585
586 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
587
588 /// Transparently provide more efficient getOperand methods.
589 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
590
591 static bool isValidSuccessOrdering(AtomicOrdering Ordering) {
592 return Ordering != AtomicOrdering::NotAtomic &&
593 Ordering != AtomicOrdering::Unordered;
594 }
595
596 static bool isValidFailureOrdering(AtomicOrdering Ordering) {
597 return Ordering != AtomicOrdering::NotAtomic &&
598 Ordering != AtomicOrdering::Unordered &&
599 Ordering != AtomicOrdering::AcquireRelease &&
600 Ordering != AtomicOrdering::Release;
601 }
602
603 /// Returns the success ordering constraint of this cmpxchg instruction.
604 AtomicOrdering getSuccessOrdering() const {
605 return getSubclassData<SuccessOrderingField>();
606 }
607
608 /// Sets the success ordering constraint of this cmpxchg instruction.
609 void setSuccessOrdering(AtomicOrdering Ordering) {
610 assert(isValidSuccessOrdering(Ordering) &&(static_cast <bool> (isValidSuccessOrdering(Ordering) &&
"invalid CmpXchg success ordering") ? void (0) : __assert_fail
("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 611, __extension__ __PRETTY_FUNCTION__))
611 "invalid CmpXchg success ordering")(static_cast <bool> (isValidSuccessOrdering(Ordering) &&
"invalid CmpXchg success ordering") ? void (0) : __assert_fail
("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 611, __extension__ __PRETTY_FUNCTION__))
;
612 setSubclassData<SuccessOrderingField>(Ordering);
613 }
614
615 /// Returns the failure ordering constraint of this cmpxchg instruction.
616 AtomicOrdering getFailureOrdering() const {
617 return getSubclassData<FailureOrderingField>();
618 }
619
620 /// Sets the failure ordering constraint of this cmpxchg instruction.
621 void setFailureOrdering(AtomicOrdering Ordering) {
622 assert(isValidFailureOrdering(Ordering) &&(static_cast <bool> (isValidFailureOrdering(Ordering) &&
"invalid CmpXchg failure ordering") ? void (0) : __assert_fail
("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 623, __extension__ __PRETTY_FUNCTION__))
623 "invalid CmpXchg failure ordering")(static_cast <bool> (isValidFailureOrdering(Ordering) &&
"invalid CmpXchg failure ordering") ? void (0) : __assert_fail
("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 623, __extension__ __PRETTY_FUNCTION__))
;
624 setSubclassData<FailureOrderingField>(Ordering);
625 }
626
627 /// Returns a single ordering which is at least as strong as both the
628 /// success and failure orderings for this cmpxchg.
629 AtomicOrdering getMergedOrdering() const {
630 if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent)
631 return AtomicOrdering::SequentiallyConsistent;
632 if (getFailureOrdering() == AtomicOrdering::Acquire) {
633 if (getSuccessOrdering() == AtomicOrdering::Monotonic)
634 return AtomicOrdering::Acquire;
635 if (getSuccessOrdering() == AtomicOrdering::Release)
636 return AtomicOrdering::AcquireRelease;
637 }
638 return getSuccessOrdering();
639 }
640
641 /// Returns the synchronization scope ID of this cmpxchg instruction.
642 SyncScope::ID getSyncScopeID() const {
643 return SSID;
644 }
645
646 /// Sets the synchronization scope ID of this cmpxchg instruction.
647 void setSyncScopeID(SyncScope::ID SSID) {
648 this->SSID = SSID;
649 }
650
651 Value *getPointerOperand() { return getOperand(0); }
652 const Value *getPointerOperand() const { return getOperand(0); }
653 static unsigned getPointerOperandIndex() { return 0U; }
654
655 Value *getCompareOperand() { return getOperand(1); }
656 const Value *getCompareOperand() const { return getOperand(1); }
657
658 Value *getNewValOperand() { return getOperand(2); }
659 const Value *getNewValOperand() const { return getOperand(2); }
660
661 /// Returns the address space of the pointer operand.
662 unsigned getPointerAddressSpace() const {
663 return getPointerOperand()->getType()->getPointerAddressSpace();
664 }
665
666 /// Returns the strongest permitted ordering on failure, given the
667 /// desired ordering on success.
668 ///
669 /// If the comparison in a cmpxchg operation fails, there is no atomic store
670 /// so release semantics cannot be provided. So this function drops explicit
671 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
672 /// operation would remain SequentiallyConsistent.
673 static AtomicOrdering
674 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
675 switch (SuccessOrdering) {
676 default:
677 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 677)
;
678 case AtomicOrdering::Release:
679 case AtomicOrdering::Monotonic:
680 return AtomicOrdering::Monotonic;
681 case AtomicOrdering::AcquireRelease:
682 case AtomicOrdering::Acquire:
683 return AtomicOrdering::Acquire;
684 case AtomicOrdering::SequentiallyConsistent:
685 return AtomicOrdering::SequentiallyConsistent;
686 }
687 }
688
689 // Methods for support type inquiry through isa, cast, and dyn_cast:
690 static bool classof(const Instruction *I) {
691 return I->getOpcode() == Instruction::AtomicCmpXchg;
692 }
693 static bool classof(const Value *V) {
694 return isa<Instruction>(V) && classof(cast<Instruction>(V));
695 }
696
697private:
698 // Shadow Instruction::setInstructionSubclassData with a private forwarding
699 // method so that subclasses cannot accidentally use it.
700 template <typename Bitfield>
701 void setSubclassData(typename Bitfield::Type Value) {
702 Instruction::setSubclassData<Bitfield>(Value);
703 }
704
705 /// The synchronization scope ID of this cmpxchg instruction. Not quite
706 /// enough room in SubClassData for everything, so synchronization scope ID
707 /// gets its own field.
708 SyncScope::ID SSID;
709};
710
711template <>
712struct OperandTraits<AtomicCmpXchgInst> :
713 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
714};
715
716DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 716, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<AtomicCmpXchgInst>::op_begin
(const_cast<AtomicCmpXchgInst*>(this))[i_nocapture].get
()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicCmpXchgInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 716, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
AtomicCmpXchgInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned AtomicCmpXchgInst::getNumOperands() const { return
OperandTraits<AtomicCmpXchgInst>::operands(this); } template
<int Idx_nocapture> Use &AtomicCmpXchgInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &AtomicCmpXchgInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
717
718//===----------------------------------------------------------------------===//
719// AtomicRMWInst Class
720//===----------------------------------------------------------------------===//
721
722/// an instruction that atomically reads a memory location,
723/// combines it with another value, and then stores the result back. Returns
724/// the old value.
725///
726class AtomicRMWInst : public Instruction {
727protected:
728 // Note: Instruction needs to be a friend here to call cloneImpl.
729 friend class Instruction;
730
731 AtomicRMWInst *cloneImpl() const;
732
733public:
734 /// This enumeration lists the possible modifications atomicrmw can make. In
735 /// the descriptions, 'p' is the pointer to the instruction's memory location,
736 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
737 /// instruction. These instructions always return 'old'.
738 enum BinOp : unsigned {
739 /// *p = v
740 Xchg,
741 /// *p = old + v
742 Add,
743 /// *p = old - v
744 Sub,
745 /// *p = old & v
746 And,
747 /// *p = ~(old & v)
748 Nand,
749 /// *p = old | v
750 Or,
751 /// *p = old ^ v
752 Xor,
753 /// *p = old >signed v ? old : v
754 Max,
755 /// *p = old <signed v ? old : v
756 Min,
757 /// *p = old >unsigned v ? old : v
758 UMax,
759 /// *p = old <unsigned v ? old : v
760 UMin,
761
762 /// *p = old + v
763 FAdd,
764
765 /// *p = old - v
766 FSub,
767
768 FIRST_BINOP = Xchg,
769 LAST_BINOP = FSub,
770 BAD_BINOP
771 };
772
773private:
774 template <unsigned Offset>
775 using AtomicOrderingBitfieldElement =
776 typename Bitfield::Element<AtomicOrdering, Offset, 3,
777 AtomicOrdering::LAST>;
778
779 template <unsigned Offset>
780 using BinOpBitfieldElement =
781 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
782
783public:
784 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
785 AtomicOrdering Ordering, SyncScope::ID SSID,
786 Instruction *InsertBefore = nullptr);
787 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
788 AtomicOrdering Ordering, SyncScope::ID SSID,
789 BasicBlock *InsertAtEnd);
790
791 // allocate space for exactly two operands
792 void *operator new(size_t S) { return User::operator new(S, 2); }
793 void operator delete(void *Ptr) { User::operator delete(Ptr); }
794
795 using VolatileField = BoolBitfieldElementT<0>;
796 using AtomicOrderingField =
797 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
798 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
799 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
800 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
801 OperationField, AlignmentField>(),
802 "Bitfields must be contiguous");
803
804 BinOp getOperation() const { return getSubclassData<OperationField>(); }
805
806 static StringRef getOperationName(BinOp Op);
807
808 static bool isFPOperation(BinOp Op) {
809 switch (Op) {
810 case AtomicRMWInst::FAdd:
811 case AtomicRMWInst::FSub:
812 return true;
813 default:
814 return false;
815 }
816 }
817
818 void setOperation(BinOp Operation) {
819 setSubclassData<OperationField>(Operation);
820 }
821
822 /// Return the alignment of the memory that is being allocated by the
823 /// instruction.
824 Align getAlign() const {
825 return Align(1ULL << getSubclassData<AlignmentField>());
826 }
827
828 void setAlignment(Align Align) {
829 setSubclassData<AlignmentField>(Log2(Align));
830 }
831
832 /// Return true if this is a RMW on a volatile memory location.
833 ///
834 bool isVolatile() const { return getSubclassData<VolatileField>(); }
835
836 /// Specify whether this is a volatile RMW or not.
837 ///
838 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
839
840 /// Transparently provide more efficient getOperand methods.
841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
842
843 /// Returns the ordering constraint of this rmw instruction.
844 AtomicOrdering getOrdering() const {
845 return getSubclassData<AtomicOrderingField>();
846 }
847
848 /// Sets the ordering constraint of this rmw instruction.
849 void setOrdering(AtomicOrdering Ordering) {
850 assert(Ordering != AtomicOrdering::NotAtomic &&(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 851, __extension__ __PRETTY_FUNCTION__))
851 "atomicrmw instructions can only be atomic.")(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic
&& "atomicrmw instructions can only be atomic.") ? void
(0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 851, __extension__ __PRETTY_FUNCTION__))
;
852 setSubclassData<AtomicOrderingField>(Ordering);
853 }
854
855 /// Returns the synchronization scope ID of this rmw instruction.
856 SyncScope::ID getSyncScopeID() const {
857 return SSID;
858 }
859
860 /// Sets the synchronization scope ID of this rmw instruction.
861 void setSyncScopeID(SyncScope::ID SSID) {
862 this->SSID = SSID;
863 }
864
865 Value *getPointerOperand() { return getOperand(0); }
866 const Value *getPointerOperand() const { return getOperand(0); }
867 static unsigned getPointerOperandIndex() { return 0U; }
868
869 Value *getValOperand() { return getOperand(1); }
870 const Value *getValOperand() const { return getOperand(1); }
871
872 /// Returns the address space of the pointer operand.
873 unsigned getPointerAddressSpace() const {
874 return getPointerOperand()->getType()->getPointerAddressSpace();
875 }
876
877 bool isFloatingPointOperation() const {
878 return isFPOperation(getOperation());
879 }
880
881 // Methods for support type inquiry through isa, cast, and dyn_cast:
882 static bool classof(const Instruction *I) {
883 return I->getOpcode() == Instruction::AtomicRMW;
884 }
885 static bool classof(const Value *V) {
886 return isa<Instruction>(V) && classof(cast<Instruction>(V));
887 }
888
889private:
890 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
891 AtomicOrdering Ordering, SyncScope::ID SSID);
892
893 // Shadow Instruction::setInstructionSubclassData with a private forwarding
894 // method so that subclasses cannot accidentally use it.
895 template <typename Bitfield>
896 void setSubclassData(typename Bitfield::Type Value) {
897 Instruction::setSubclassData<Bitfield>(Value);
898 }
899
900 /// The synchronization scope ID of this rmw instruction. Not quite enough
901 /// room in SubClassData for everything, so synchronization scope ID gets its
902 /// own field.
903 SyncScope::ID SSID;
904};
905
906template <>
907struct OperandTraits<AtomicRMWInst>
908 : public FixedNumOperandTraits<AtomicRMWInst,2> {
909};
910
911DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture
< OperandTraits<AtomicRMWInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 911, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<AtomicRMWInst>::op_begin(const_cast
<AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<AtomicRMWInst
>::operands(this) && "setOperand() out of range!")
? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 911, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
AtomicRMWInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits
<AtomicRMWInst>::operands(this); } template <int Idx_nocapture
> Use &AtomicRMWInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &AtomicRMWInst::Op() const { return this->OpFrom
<Idx_nocapture>(this); }
912
913//===----------------------------------------------------------------------===//
914// GetElementPtrInst Class
915//===----------------------------------------------------------------------===//
916
917// checkGEPType - Simple wrapper function to give a better assertion failure
918// message on bad indexes for a gep instruction.
919//
920inline Type *checkGEPType(Type *Ty) {
921 assert(Ty && "Invalid GetElementPtrInst indices for type!")(static_cast <bool> (Ty && "Invalid GetElementPtrInst indices for type!"
) ? void (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 921, __extension__ __PRETTY_FUNCTION__))
;
922 return Ty;
923}
924
925/// an instruction for type-safe pointer arithmetic to
926/// access elements of arrays and structs
927///
928class GetElementPtrInst : public Instruction {
929 Type *SourceElementType;
930 Type *ResultElementType;
931
932 GetElementPtrInst(const GetElementPtrInst &GEPI);
933
934 /// Constructors - Create a getelementptr instruction with a base pointer an
935 /// list of indices. The first ctor can optionally insert before an existing
936 /// instruction, the second appends the new instruction to the specified
937 /// BasicBlock.
938 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList, unsigned Values,
940 const Twine &NameStr, Instruction *InsertBefore);
941 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
942 ArrayRef<Value *> IdxList, unsigned Values,
943 const Twine &NameStr, BasicBlock *InsertAtEnd);
944
945 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
946
947protected:
948 // Note: Instruction needs to be a friend here to call cloneImpl.
949 friend class Instruction;
950
951 GetElementPtrInst *cloneImpl() const;
952
953public:
954 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
955 ArrayRef<Value *> IdxList,
956 const Twine &NameStr = "",
957 Instruction *InsertBefore = nullptr) {
958 unsigned Values = 1 + unsigned(IdxList.size());
959 assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type"
) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 959, __extension__ __PRETTY_FUNCTION__))
;
960 assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 961, __extension__ __PRETTY_FUNCTION__))
961 ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 961, __extension__ __PRETTY_FUNCTION__))
;
962 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
963 NameStr, InsertBefore);
964 }
965
966 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
967 ArrayRef<Value *> IdxList,
968 const Twine &NameStr,
969 BasicBlock *InsertAtEnd) {
970 unsigned Values = 1 + unsigned(IdxList.size());
971 assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type"
) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 971, __extension__ __PRETTY_FUNCTION__))
;
972 assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 973, __extension__ __PRETTY_FUNCTION__))
973 ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType
()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType
)) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 973, __extension__ __PRETTY_FUNCTION__))
;
974 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
975 NameStr, InsertAtEnd);
976 }
977
978 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
979 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr = "",[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
980 Instruction *InsertBefore = nullptr),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
981 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr = "", Instruction
*InsertBefore = nullptr)
{
982 return CreateInBounds(
983 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
984 NameStr, InsertBefore);
985 }
986
987 /// Create an "inbounds" getelementptr. See the documentation for the
988 /// "inbounds" flag in LangRef.html for details.
989 static GetElementPtrInst *
990 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
991 const Twine &NameStr = "",
992 Instruction *InsertBefore = nullptr) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 LLVM_ATTRIBUTE_DEPRECATED(static GetElementPtrInst *CreateInBounds([[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1000 Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr,[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1001 BasicBlock *InsertAtEnd),[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
1002 "Use the version with explicit element type instead")[[deprecated("Use the version with explicit element type instead"
)]] static GetElementPtrInst *CreateInBounds( Value *Ptr, ArrayRef
<Value *> IdxList, const Twine &NameStr, BasicBlock
*InsertAtEnd)
{
1003 return CreateInBounds(
1004 Ptr->getType()->getScalarType()->getPointerElementType(), Ptr, IdxList,
1005 NameStr, InsertAtEnd);
1006 }
1007
1008 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
1009 ArrayRef<Value *> IdxList,
1010 const Twine &NameStr,
1011 BasicBlock *InsertAtEnd) {
1012 GetElementPtrInst *GEP =
1013 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
1014 GEP->setIsInBounds(true);
1015 return GEP;
1016 }
1017
1018 /// Transparently provide more efficient getOperand methods.
1019 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1020
1021 Type *getSourceElementType() const { return SourceElementType; }
1022
1023 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1024 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1025
1026 Type *getResultElementType() const {
1027 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1028, __extension__ __PRETTY_FUNCTION__))
1028 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1028, __extension__ __PRETTY_FUNCTION__))
;
1029 return ResultElementType;
1030 }
1031
1032 /// Returns the address space of this instruction's pointer type.
1033 unsigned getAddressSpace() const {
1034 // Note that this is always the same as the pointer operand's address space
1035 // and that is cheaper to compute, so cheat here.
1036 return getPointerAddressSpace();
1037 }
1038
1039 /// Returns the result type of a getelementptr with the given source
1040 /// element type and indexes.
1041 ///
1042 /// Null is returned if the indices are invalid for the specified
1043 /// source element type.
1044 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1045 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1046 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1047
1048 /// Return the type of the element at the given index of an indexable
1049 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1050 ///
1051 /// Returns null if the type can't be indexed, or the given index is not
1052 /// legal for the given type.
1053 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1054 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1055
1056 inline op_iterator idx_begin() { return op_begin()+1; }
1057 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1058 inline op_iterator idx_end() { return op_end(); }
1059 inline const_op_iterator idx_end() const { return op_end(); }
1060
1061 inline iterator_range<op_iterator> indices() {
1062 return make_range(idx_begin(), idx_end());
1063 }
1064
1065 inline iterator_range<const_op_iterator> indices() const {
1066 return make_range(idx_begin(), idx_end());
1067 }
1068
1069 Value *getPointerOperand() {
1070 return getOperand(0);
1071 }
1072 const Value *getPointerOperand() const {
1073 return getOperand(0);
1074 }
1075 static unsigned getPointerOperandIndex() {
1076 return 0U; // get index for modifying correct operand.
1077 }
1078
1079 /// Method to return the pointer operand as a
1080 /// PointerType.
1081 Type *getPointerOperandType() const {
1082 return getPointerOperand()->getType();
1083 }
1084
1085 /// Returns the address space of the pointer operand.
1086 unsigned getPointerAddressSpace() const {
1087 return getPointerOperandType()->getPointerAddressSpace();
1088 }
1089
1090 /// Returns the pointer type returned by the GEP
1091 /// instruction, which may be a vector of pointers.
1092 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1093 ArrayRef<Value *> IdxList) {
1094 PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1095 unsigned AddrSpace = OrigPtrTy->getAddressSpace();
1096 Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList));
1097 Type *PtrTy = OrigPtrTy->isOpaque()
1098 ? PointerType::get(OrigPtrTy->getContext(), AddrSpace)
1099 : PointerType::get(ResultElemTy, AddrSpace);
1100 // Vector GEP
1101 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1102 ElementCount EltCount = PtrVTy->getElementCount();
1103 return VectorType::get(PtrTy, EltCount);
1104 }
1105 for (Value *Index : IdxList)
1106 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1107 ElementCount EltCount = IndexVTy->getElementCount();
1108 return VectorType::get(PtrTy, EltCount);
1109 }
1110 // Scalar GEP
1111 return PtrTy;
1112 }
1113
1114 unsigned getNumIndices() const { // Note: always non-negative
1115 return getNumOperands() - 1;
1116 }
1117
1118 bool hasIndices() const {
1119 return getNumOperands() > 1;
1120 }
1121
1122 /// Return true if all of the indices of this GEP are
1123 /// zeros. If so, the result pointer and the first operand have the same
1124 /// value, just potentially different types.
1125 bool hasAllZeroIndices() const;
1126
1127 /// Return true if all of the indices of this GEP are
1128 /// constant integers. If so, the result pointer and the first operand have
1129 /// a constant offset between them.
1130 bool hasAllConstantIndices() const;
1131
1132 /// Set or clear the inbounds flag on this GEP instruction.
1133 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1134 void setIsInBounds(bool b = true);
1135
1136 /// Determine whether the GEP has the inbounds flag.
1137 bool isInBounds() const;
1138
1139 /// Accumulate the constant address offset of this GEP if possible.
1140 ///
1141 /// This routine accepts an APInt into which it will accumulate the constant
1142 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1143 /// all-constant, it returns false and the value of the offset APInt is
1144 /// undefined (it is *not* preserved!). The APInt passed into this routine
1145 /// must be at least as wide as the IntPtr type for the address space of
1146 /// the base GEP pointer.
1147 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1148 bool collectOffset(const DataLayout &DL, unsigned BitWidth,
1149 MapVector<Value *, APInt> &VariableOffsets,
1150 APInt &ConstantOffset) const;
1151 // Methods for support type inquiry through isa, cast, and dyn_cast:
1152 static bool classof(const Instruction *I) {
1153 return (I->getOpcode() == Instruction::GetElementPtr);
1154 }
1155 static bool classof(const Value *V) {
1156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1157 }
1158};
1159
1160template <>
1161struct OperandTraits<GetElementPtrInst> :
1162 public VariadicOperandTraits<GetElementPtrInst, 1> {
1163};
1164
1165GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1166 ArrayRef<Value *> IdxList, unsigned Values,
1167 const Twine &NameStr,
1168 Instruction *InsertBefore)
1169 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1170 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1171 Values, InsertBefore),
1172 SourceElementType(PointeeType),
1173 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1174 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1175, __extension__ __PRETTY_FUNCTION__))
1175 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1175, __extension__ __PRETTY_FUNCTION__))
;
1176 init(Ptr, IdxList, NameStr);
1177}
1178
1179GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1180 ArrayRef<Value *> IdxList, unsigned Values,
1181 const Twine &NameStr,
1182 BasicBlock *InsertAtEnd)
1183 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1184 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1185 Values, InsertAtEnd),
1186 SourceElementType(PointeeType),
1187 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1188 assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1189, __extension__ __PRETTY_FUNCTION__))
1189 ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()->
getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType
)) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1189, __extension__ __PRETTY_FUNCTION__))
;
1190 init(Ptr, IdxList, NameStr);
1191}
1192
1193DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<GetElementPtrInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1193, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<GetElementPtrInst>::op_begin
(const_cast<GetElementPtrInst*>(this))[i_nocapture].get
()); } void GetElementPtrInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<GetElementPtrInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1193, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
GetElementPtrInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned GetElementPtrInst::getNumOperands() const { return
OperandTraits<GetElementPtrInst>::operands(this); } template
<int Idx_nocapture> Use &GetElementPtrInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &GetElementPtrInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1194
1195//===----------------------------------------------------------------------===//
1196// ICmpInst Class
1197//===----------------------------------------------------------------------===//
1198
1199/// This instruction compares its operands according to the predicate given
1200/// to the constructor. It only operates on integers or pointers. The operands
1201/// must be identical types.
1202/// Represent an integer comparison operator.
1203class ICmpInst: public CmpInst {
1204 void AssertOK() {
1205 assert(isIntPredicate() &&(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1206, __extension__ __PRETTY_FUNCTION__))
1206 "Invalid ICmp predicate value")(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value"
) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1206, __extension__ __PRETTY_FUNCTION__))
;
1207 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1208, __extension__ __PRETTY_FUNCTION__))
1208 "Both operands to ICmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to ICmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1208, __extension__ __PRETTY_FUNCTION__))
;
1209 // Check that the operands are the right type
1210 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1212, __extension__ __PRETTY_FUNCTION__))
1211 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1212, __extension__ __PRETTY_FUNCTION__))
1212 "Invalid operand types for ICmp instruction")(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy
() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
"Invalid operand types for ICmp instruction") ? void (0) : __assert_fail
("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1212, __extension__ __PRETTY_FUNCTION__))
;
1213 }
1214
1215protected:
1216 // Note: Instruction needs to be a friend here to call cloneImpl.
1217 friend class Instruction;
1218
1219 /// Clone an identical ICmpInst
1220 ICmpInst *cloneImpl() const;
1221
1222public:
1223 /// Constructor with insert-before-instruction semantics.
1224 ICmpInst(
1225 Instruction *InsertBefore, ///< Where to insert
1226 Predicate pred, ///< The predicate to use for the comparison
1227 Value *LHS, ///< The left-hand-side of the expression
1228 Value *RHS, ///< The right-hand-side of the expression
1229 const Twine &NameStr = "" ///< Name of the instruction
1230 ) : CmpInst(makeCmpResultType(LHS->getType()),
1231 Instruction::ICmp, pred, LHS, RHS, NameStr,
1232 InsertBefore) {
1233#ifndef NDEBUG
1234 AssertOK();
1235#endif
1236 }
1237
1238 /// Constructor with insert-at-end semantics.
1239 ICmpInst(
1240 BasicBlock &InsertAtEnd, ///< Block to insert into.
1241 Predicate pred, ///< The predicate to use for the comparison
1242 Value *LHS, ///< The left-hand-side of the expression
1243 Value *RHS, ///< The right-hand-side of the expression
1244 const Twine &NameStr = "" ///< Name of the instruction
1245 ) : CmpInst(makeCmpResultType(LHS->getType()),
1246 Instruction::ICmp, pred, LHS, RHS, NameStr,
1247 &InsertAtEnd) {
1248#ifndef NDEBUG
1249 AssertOK();
1250#endif
1251 }
1252
1253 /// Constructor with no-insertion semantics
1254 ICmpInst(
1255 Predicate pred, ///< The predicate to use for the comparison
1256 Value *LHS, ///< The left-hand-side of the expression
1257 Value *RHS, ///< The right-hand-side of the expression
1258 const Twine &NameStr = "" ///< Name of the instruction
1259 ) : CmpInst(makeCmpResultType(LHS->getType()),
1260 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1261#ifndef NDEBUG
1262 AssertOK();
1263#endif
1264 }
1265
1266 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1267 /// @returns the predicate that would be the result if the operand were
1268 /// regarded as signed.
1269 /// Return the signed version of the predicate
1270 Predicate getSignedPredicate() const {
1271 return getSignedPredicate(getPredicate());
1272 }
1273
1274 /// This is a static version that you can use without an instruction.
1275 /// Return the signed version of the predicate.
1276 static Predicate getSignedPredicate(Predicate pred);
1277
1278 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1279 /// @returns the predicate that would be the result if the operand were
1280 /// regarded as unsigned.
1281 /// Return the unsigned version of the predicate
1282 Predicate getUnsignedPredicate() const {
1283 return getUnsignedPredicate(getPredicate());
1284 }
1285
1286 /// This is a static version that you can use without an instruction.
1287 /// Return the unsigned version of the predicate.
1288 static Predicate getUnsignedPredicate(Predicate pred);
1289
1290 /// Return true if this predicate is either EQ or NE. This also
1291 /// tests for commutativity.
1292 static bool isEquality(Predicate P) {
1293 return P == ICMP_EQ || P == ICMP_NE;
1294 }
1295
1296 /// Return true if this predicate is either EQ or NE. This also
1297 /// tests for commutativity.
1298 bool isEquality() const {
1299 return isEquality(getPredicate());
1300 }
1301
1302 /// @returns true if the predicate of this ICmpInst is commutative
1303 /// Determine if this relation is commutative.
1304 bool isCommutative() const { return isEquality(); }
1305
1306 /// Return true if the predicate is relational (not EQ or NE).
1307 ///
1308 bool isRelational() const {
1309 return !isEquality();
1310 }
1311
1312 /// Return true if the predicate is relational (not EQ or NE).
1313 ///
1314 static bool isRelational(Predicate P) {
1315 return !isEquality(P);
1316 }
1317
1318 /// Return true if the predicate is SGT or UGT.
1319 ///
1320 static bool isGT(Predicate P) {
1321 return P == ICMP_SGT || P == ICMP_UGT;
1322 }
1323
1324 /// Return true if the predicate is SLT or ULT.
1325 ///
1326 static bool isLT(Predicate P) {
1327 return P == ICMP_SLT || P == ICMP_ULT;
1328 }
1329
1330 /// Return true if the predicate is SGE or UGE.
1331 ///
1332 static bool isGE(Predicate P) {
1333 return P == ICMP_SGE || P == ICMP_UGE;
1334 }
1335
1336 /// Return true if the predicate is SLE or ULE.
1337 ///
1338 static bool isLE(Predicate P) {
1339 return P == ICMP_SLE || P == ICMP_ULE;
1340 }
1341
1342 /// Exchange the two operands to this instruction in such a way that it does
1343 /// not modify the semantics of the instruction. The predicate value may be
1344 /// changed to retain the same result if the predicate is order dependent
1345 /// (e.g. ult).
1346 /// Swap operands and adjust predicate.
1347 void swapOperands() {
1348 setPredicate(getSwappedPredicate());
1349 Op<0>().swap(Op<1>());
1350 }
1351
1352 // Methods for support type inquiry through isa, cast, and dyn_cast:
1353 static bool classof(const Instruction *I) {
1354 return I->getOpcode() == Instruction::ICmp;
1355 }
1356 static bool classof(const Value *V) {
1357 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1358 }
1359};
1360
1361//===----------------------------------------------------------------------===//
1362// FCmpInst Class
1363//===----------------------------------------------------------------------===//
1364
1365/// This instruction compares its operands according to the predicate given
1366/// to the constructor. It only operates on floating point values or packed
1367/// vectors of floating point values. The operands must be identical types.
1368/// Represents a floating point comparison operator.
1369class FCmpInst: public CmpInst {
1370 void AssertOK() {
1371 assert(isFPPredicate() && "Invalid FCmp predicate value")(static_cast <bool> (isFPPredicate() && "Invalid FCmp predicate value"
) ? void (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1371, __extension__ __PRETTY_FUNCTION__))
;
1372 assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1373, __extension__ __PRETTY_FUNCTION__))
1373 "Both operands to FCmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand
(1)->getType() && "Both operands to FCmp instruction are not of the same type!"
) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1373, __extension__ __PRETTY_FUNCTION__))
;
1374 // Check that the operands are the right type
1375 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1376, __extension__ __PRETTY_FUNCTION__))
1376 "Invalid operand types for FCmp instruction")(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy
() && "Invalid operand types for FCmp instruction") ?
void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1376, __extension__ __PRETTY_FUNCTION__))
;
1377 }
1378
1379protected:
1380 // Note: Instruction needs to be a friend here to call cloneImpl.
1381 friend class Instruction;
1382
1383 /// Clone an identical FCmpInst
1384 FCmpInst *cloneImpl() const;
1385
1386public:
1387 /// Constructor with insert-before-instruction semantics.
1388 FCmpInst(
1389 Instruction *InsertBefore, ///< Where to insert
1390 Predicate pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "" ///< Name of the instruction
1394 ) : CmpInst(makeCmpResultType(LHS->getType()),
1395 Instruction::FCmp, pred, LHS, RHS, NameStr,
1396 InsertBefore) {
1397 AssertOK();
1398 }
1399
1400 /// Constructor with insert-at-end semantics.
1401 FCmpInst(
1402 BasicBlock &InsertAtEnd, ///< Block to insert into.
1403 Predicate pred, ///< The predicate to use for the comparison
1404 Value *LHS, ///< The left-hand-side of the expression
1405 Value *RHS, ///< The right-hand-side of the expression
1406 const Twine &NameStr = "" ///< Name of the instruction
1407 ) : CmpInst(makeCmpResultType(LHS->getType()),
1408 Instruction::FCmp, pred, LHS, RHS, NameStr,
1409 &InsertAtEnd) {
1410 AssertOK();
1411 }
1412
1413 /// Constructor with no-insertion semantics
1414 FCmpInst(
1415 Predicate Pred, ///< The predicate to use for the comparison
1416 Value *LHS, ///< The left-hand-side of the expression
1417 Value *RHS, ///< The right-hand-side of the expression
1418 const Twine &NameStr = "", ///< Name of the instruction
1419 Instruction *FlagsSource = nullptr
1420 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1421 RHS, NameStr, nullptr, FlagsSource) {
1422 AssertOK();
1423 }
1424
1425 /// @returns true if the predicate of this instruction is EQ or NE.
1426 /// Determine if this is an equality predicate.
1427 static bool isEquality(Predicate Pred) {
1428 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1429 Pred == FCMP_UNE;
1430 }
1431
1432 /// @returns true if the predicate of this instruction is EQ or NE.
1433 /// Determine if this is an equality predicate.
1434 bool isEquality() const { return isEquality(getPredicate()); }
1435
1436 /// @returns true if the predicate of this instruction is commutative.
1437 /// Determine if this is a commutative predicate.
1438 bool isCommutative() const {
1439 return isEquality() ||
1440 getPredicate() == FCMP_FALSE ||
1441 getPredicate() == FCMP_TRUE ||
1442 getPredicate() == FCMP_ORD ||
1443 getPredicate() == FCMP_UNO;
1444 }
1445
1446 /// @returns true if the predicate is relational (not EQ or NE).
1447 /// Determine if this a relational predicate.
1448 bool isRelational() const { return !isEquality(); }
1449
1450 /// Exchange the two operands to this instruction in such a way that it does
1451 /// not modify the semantics of the instruction. The predicate value may be
1452 /// changed to retain the same result if the predicate is order dependent
1453 /// (e.g. ult).
1454 /// Swap operands and adjust predicate.
1455 void swapOperands() {
1456 setPredicate(getSwappedPredicate());
1457 Op<0>().swap(Op<1>());
1458 }
1459
1460 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1461 static bool classof(const Instruction *I) {
1462 return I->getOpcode() == Instruction::FCmp;
1463 }
1464 static bool classof(const Value *V) {
1465 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1466 }
1467};
1468
1469//===----------------------------------------------------------------------===//
1470/// This class represents a function call, abstracting a target
1471/// machine's calling convention. This class uses low bit of the SubClassData
1472/// field to indicate whether or not this is a tail call. The rest of the bits
1473/// hold the calling convention of the call.
1474///
1475class CallInst : public CallBase {
1476 CallInst(const CallInst &CI);
1477
1478 /// Construct a CallInst given a range of arguments.
1479 /// Construct a CallInst from a range of arguments
1480 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1481 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1482 Instruction *InsertBefore);
1483
1484 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1485 const Twine &NameStr, Instruction *InsertBefore)
1486 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1487
1488 /// Construct a CallInst given a range of arguments.
1489 /// Construct a CallInst from a range of arguments
1490 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1491 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1492 BasicBlock *InsertAtEnd);
1493
1494 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1495 Instruction *InsertBefore);
1496
1497 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1498 BasicBlock *InsertAtEnd);
1499
1500 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1501 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1502 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1503
1504 /// Compute the number of operands to allocate.
1505 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1506 // We need one operand for the called function, plus the input operand
1507 // counts provided.
1508 return 1 + NumArgs + NumBundleInputs;
1509 }
1510
1511protected:
1512 // Note: Instruction needs to be a friend here to call cloneImpl.
1513 friend class Instruction;
1514
1515 CallInst *cloneImpl() const;
1516
1517public:
1518 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1519 Instruction *InsertBefore = nullptr) {
1520 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1521 }
1522
1523 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1524 const Twine &NameStr,
1525 Instruction *InsertBefore = nullptr) {
1526 return new (ComputeNumOperands(Args.size()))
1527 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1528 }
1529
1530 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1531 ArrayRef<OperandBundleDef> Bundles = None,
1532 const Twine &NameStr = "",
1533 Instruction *InsertBefore = nullptr) {
1534 const int NumOperands =
1535 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1536 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1537
1538 return new (NumOperands, DescriptorBytes)
1539 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1540 }
1541
1542 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1543 BasicBlock *InsertAtEnd) {
1544 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1545 }
1546
1547 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1548 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1549 return new (ComputeNumOperands(Args.size()))
1550 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1551 }
1552
1553 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1554 ArrayRef<OperandBundleDef> Bundles,
1555 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1556 const int NumOperands =
1557 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1558 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1559
1560 return new (NumOperands, DescriptorBytes)
1561 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1562 }
1563
1564 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1565 Instruction *InsertBefore = nullptr) {
1566 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1567 InsertBefore);
1568 }
1569
1570 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1571 ArrayRef<OperandBundleDef> Bundles = None,
1572 const Twine &NameStr = "",
1573 Instruction *InsertBefore = nullptr) {
1574 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1575 NameStr, InsertBefore);
1576 }
1577
1578 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1579 const Twine &NameStr,
1580 Instruction *InsertBefore = nullptr) {
1581 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1582 InsertBefore);
1583 }
1584
1585 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1586 BasicBlock *InsertAtEnd) {
1587 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1588 InsertAtEnd);
1589 }
1590
1591 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1592 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1593 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1594 InsertAtEnd);
1595 }
1596
1597 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1598 ArrayRef<OperandBundleDef> Bundles,
1599 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1600 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1601 NameStr, InsertAtEnd);
1602 }
1603
1604 /// Create a clone of \p CI with a different set of operand bundles and
1605 /// insert it before \p InsertPt.
1606 ///
1607 /// The returned call instruction is identical \p CI in every way except that
1608 /// the operand bundles for the new instruction are set to the operand bundles
1609 /// in \p Bundles.
1610 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1611 Instruction *InsertPt = nullptr);
1612
1613 /// Generate the IR for a call to malloc:
1614 /// 1. Compute the malloc call's argument as the specified type's size,
1615 /// possibly multiplied by the array size if the array size is not
1616 /// constant 1.
1617 /// 2. Call malloc with that argument.
1618 /// 3. Bitcast the result of the malloc call to the specified type.
1619 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1620 Type *AllocTy, Value *AllocSize,
1621 Value *ArraySize = nullptr,
1622 Function *MallocF = nullptr,
1623 const Twine &Name = "");
1624 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1625 Type *AllocTy, Value *AllocSize,
1626 Value *ArraySize = nullptr,
1627 Function *MallocF = nullptr,
1628 const Twine &Name = "");
1629 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1630 Type *AllocTy, Value *AllocSize,
1631 Value *ArraySize = nullptr,
1632 ArrayRef<OperandBundleDef> Bundles = None,
1633 Function *MallocF = nullptr,
1634 const Twine &Name = "");
1635 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1636 Type *AllocTy, Value *AllocSize,
1637 Value *ArraySize = nullptr,
1638 ArrayRef<OperandBundleDef> Bundles = None,
1639 Function *MallocF = nullptr,
1640 const Twine &Name = "");
1641 /// Generate the IR for a call to the builtin free function.
1642 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1643 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1644 static Instruction *CreateFree(Value *Source,
1645 ArrayRef<OperandBundleDef> Bundles,
1646 Instruction *InsertBefore);
1647 static Instruction *CreateFree(Value *Source,
1648 ArrayRef<OperandBundleDef> Bundles,
1649 BasicBlock *InsertAtEnd);
1650
1651 // Note that 'musttail' implies 'tail'.
1652 enum TailCallKind : unsigned {
1653 TCK_None = 0,
1654 TCK_Tail = 1,
1655 TCK_MustTail = 2,
1656 TCK_NoTail = 3,
1657 TCK_LAST = TCK_NoTail
1658 };
1659
1660 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1661 static_assert(
1662 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1663 "Bitfields must be contiguous");
1664
1665 TailCallKind getTailCallKind() const {
1666 return getSubclassData<TailCallKindField>();
1667 }
1668
1669 bool isTailCall() const {
1670 TailCallKind Kind = getTailCallKind();
1671 return Kind == TCK_Tail || Kind == TCK_MustTail;
1672 }
1673
1674 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1675
1676 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1677
1678 void setTailCallKind(TailCallKind TCK) {
1679 setSubclassData<TailCallKindField>(TCK);
1680 }
1681
1682 void setTailCall(bool IsTc = true) {
1683 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1684 }
1685
1686 /// Return true if the call can return twice
1687 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1688 void setCanReturnTwice() {
1689 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1690 }
1691
1692 // Methods for support type inquiry through isa, cast, and dyn_cast:
1693 static bool classof(const Instruction *I) {
1694 return I->getOpcode() == Instruction::Call;
1695 }
1696 static bool classof(const Value *V) {
1697 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1698 }
1699
1700 /// Updates profile metadata by scaling it by \p S / \p T.
1701 void updateProfWeight(uint64_t S, uint64_t T);
1702
1703private:
1704 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1705 // method so that subclasses cannot accidentally use it.
1706 template <typename Bitfield>
1707 void setSubclassData(typename Bitfield::Type Value) {
1708 Instruction::setSubclassData<Bitfield>(Value);
1709 }
1710};
1711
1712CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1713 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1714 BasicBlock *InsertAtEnd)
1715 : CallBase(Ty->getReturnType(), Instruction::Call,
1716 OperandTraits<CallBase>::op_end(this) -
1717 (Args.size() + CountBundleInputs(Bundles) + 1),
1718 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1719 InsertAtEnd) {
1720 init(Ty, Func, Args, Bundles, NameStr);
1721}
1722
1723CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1724 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1725 Instruction *InsertBefore)
1726 : CallBase(Ty->getReturnType(), Instruction::Call,
1727 OperandTraits<CallBase>::op_end(this) -
1728 (Args.size() + CountBundleInputs(Bundles) + 1),
1729 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1730 InsertBefore) {
1731 init(Ty, Func, Args, Bundles, NameStr);
1732}
1733
1734//===----------------------------------------------------------------------===//
1735// SelectInst Class
1736//===----------------------------------------------------------------------===//
1737
1738/// This class represents the LLVM 'select' instruction.
1739///
1740class SelectInst : public Instruction {
1741 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1742 Instruction *InsertBefore)
1743 : Instruction(S1->getType(), Instruction::Select,
1744 &Op<0>(), 3, InsertBefore) {
1745 init(C, S1, S2);
1746 setName(NameStr);
1747 }
1748
1749 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1750 BasicBlock *InsertAtEnd)
1751 : Instruction(S1->getType(), Instruction::Select,
1752 &Op<0>(), 3, InsertAtEnd) {
1753 init(C, S1, S2);
1754 setName(NameStr);
1755 }
1756
1757 void init(Value *C, Value *S1, Value *S2) {
1758 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")(static_cast <bool> (!areInvalidOperands(C, S1, S2) &&
"Invalid operands for select") ? void (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1758, __extension__ __PRETTY_FUNCTION__))
;
1759 Op<0>() = C;
1760 Op<1>() = S1;
1761 Op<2>() = S2;
1762 }
1763
1764protected:
1765 // Note: Instruction needs to be a friend here to call cloneImpl.
1766 friend class Instruction;
1767
1768 SelectInst *cloneImpl() const;
1769
1770public:
1771 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1772 const Twine &NameStr = "",
1773 Instruction *InsertBefore = nullptr,
1774 Instruction *MDFrom = nullptr) {
1775 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1776 if (MDFrom)
1777 Sel->copyMetadata(*MDFrom);
1778 return Sel;
1779 }
1780
1781 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1782 const Twine &NameStr,
1783 BasicBlock *InsertAtEnd) {
1784 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1785 }
1786
1787 const Value *getCondition() const { return Op<0>(); }
1788 const Value *getTrueValue() const { return Op<1>(); }
1789 const Value *getFalseValue() const { return Op<2>(); }
1790 Value *getCondition() { return Op<0>(); }
1791 Value *getTrueValue() { return Op<1>(); }
1792 Value *getFalseValue() { return Op<2>(); }
1793
1794 void setCondition(Value *V) { Op<0>() = V; }
1795 void setTrueValue(Value *V) { Op<1>() = V; }
1796 void setFalseValue(Value *V) { Op<2>() = V; }
1797
1798 /// Swap the true and false values of the select instruction.
1799 /// This doesn't swap prof metadata.
1800 void swapValues() { Op<1>().swap(Op<2>()); }
1801
1802 /// Return a string if the specified operands are invalid
1803 /// for a select operation, otherwise return null.
1804 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1805
1806 /// Transparently provide more efficient getOperand methods.
1807 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1808
1809 OtherOps getOpcode() const {
1810 return static_cast<OtherOps>(Instruction::getOpcode());
1811 }
1812
1813 // Methods for support type inquiry through isa, cast, and dyn_cast:
1814 static bool classof(const Instruction *I) {
1815 return I->getOpcode() == Instruction::Select;
1816 }
1817 static bool classof(const Value *V) {
1818 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1819 }
1820};
1821
1822template <>
1823struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1824};
1825
1826DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<SelectInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1826, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<SelectInst>::op_begin(const_cast
<SelectInst*>(this))[i_nocapture].get()); } void SelectInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<SelectInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1826, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
SelectInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned SelectInst::getNumOperands() const { return OperandTraits
<SelectInst>::operands(this); } template <int Idx_nocapture
> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1827
1828//===----------------------------------------------------------------------===//
1829// VAArgInst Class
1830//===----------------------------------------------------------------------===//
1831
1832/// This class represents the va_arg llvm instruction, which returns
1833/// an argument of the specified type given a va_list and increments that list
1834///
1835class VAArgInst : public UnaryInstruction {
1836protected:
1837 // Note: Instruction needs to be a friend here to call cloneImpl.
1838 friend class Instruction;
1839
1840 VAArgInst *cloneImpl() const;
1841
1842public:
1843 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1844 Instruction *InsertBefore = nullptr)
1845 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1846 setName(NameStr);
1847 }
1848
1849 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1850 BasicBlock *InsertAtEnd)
1851 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1852 setName(NameStr);
1853 }
1854
1855 Value *getPointerOperand() { return getOperand(0); }
1856 const Value *getPointerOperand() const { return getOperand(0); }
1857 static unsigned getPointerOperandIndex() { return 0U; }
1858
1859 // Methods for support type inquiry through isa, cast, and dyn_cast:
1860 static bool classof(const Instruction *I) {
1861 return I->getOpcode() == VAArg;
1862 }
1863 static bool classof(const Value *V) {
1864 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1865 }
1866};
1867
1868//===----------------------------------------------------------------------===//
1869// ExtractElementInst Class
1870//===----------------------------------------------------------------------===//
1871
1872/// This instruction extracts a single (scalar)
1873/// element from a VectorType value
1874///
1875class ExtractElementInst : public Instruction {
1876 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1877 Instruction *InsertBefore = nullptr);
1878 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1879 BasicBlock *InsertAtEnd);
1880
1881protected:
1882 // Note: Instruction needs to be a friend here to call cloneImpl.
1883 friend class Instruction;
1884
1885 ExtractElementInst *cloneImpl() const;
1886
1887public:
1888 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1889 const Twine &NameStr = "",
1890 Instruction *InsertBefore = nullptr) {
1891 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1892 }
1893
1894 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1895 const Twine &NameStr,
1896 BasicBlock *InsertAtEnd) {
1897 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1898 }
1899
1900 /// Return true if an extractelement instruction can be
1901 /// formed with the specified operands.
1902 static bool isValidOperands(const Value *Vec, const Value *Idx);
1903
1904 Value *getVectorOperand() { return Op<0>(); }
1905 Value *getIndexOperand() { return Op<1>(); }
1906 const Value *getVectorOperand() const { return Op<0>(); }
1907 const Value *getIndexOperand() const { return Op<1>(); }
1908
1909 VectorType *getVectorOperandType() const {
1910 return cast<VectorType>(getVectorOperand()->getType());
1911 }
1912
1913 /// Transparently provide more efficient getOperand methods.
1914 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1915
1916 // Methods for support type inquiry through isa, cast, and dyn_cast:
1917 static bool classof(const Instruction *I) {
1918 return I->getOpcode() == Instruction::ExtractElement;
1919 }
1920 static bool classof(const Value *V) {
1921 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1922 }
1923};
1924
1925template <>
1926struct OperandTraits<ExtractElementInst> :
1927 public FixedNumOperandTraits<ExtractElementInst, 2> {
1928};
1929
1930DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
(static_cast <bool> (i_nocapture < OperandTraits<
ExtractElementInst>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1930, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ExtractElementInst>::op_begin
(const_cast<ExtractElementInst*>(this))[i_nocapture].get
()); } void ExtractElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ExtractElementInst>::operands(this)
&& "setOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1930, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ExtractElementInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned ExtractElementInst::getNumOperands() const { return
OperandTraits<ExtractElementInst>::operands(this); } template
<int Idx_nocapture> Use &ExtractElementInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &ExtractElementInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1931
1932//===----------------------------------------------------------------------===//
1933// InsertElementInst Class
1934//===----------------------------------------------------------------------===//
1935
1936/// This instruction inserts a single (scalar)
1937/// element into a VectorType value
1938///
1939class InsertElementInst : public Instruction {
1940 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1941 const Twine &NameStr = "",
1942 Instruction *InsertBefore = nullptr);
1943 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1944 BasicBlock *InsertAtEnd);
1945
1946protected:
1947 // Note: Instruction needs to be a friend here to call cloneImpl.
1948 friend class Instruction;
1949
1950 InsertElementInst *cloneImpl() const;
1951
1952public:
1953 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1954 const Twine &NameStr = "",
1955 Instruction *InsertBefore = nullptr) {
1956 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1957 }
1958
1959 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1960 const Twine &NameStr,
1961 BasicBlock *InsertAtEnd) {
1962 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1963 }
1964
1965 /// Return true if an insertelement instruction can be
1966 /// formed with the specified operands.
1967 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1968 const Value *Idx);
1969
1970 /// Overload to return most specific vector type.
1971 ///
1972 VectorType *getType() const {
1973 return cast<VectorType>(Instruction::getType());
1974 }
1975
1976 /// Transparently provide more efficient getOperand methods.
1977 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1978
1979 // Methods for support type inquiry through isa, cast, and dyn_cast:
1980 static bool classof(const Instruction *I) {
1981 return I->getOpcode() == Instruction::InsertElement;
1982 }
1983 static bool classof(const Value *V) {
1984 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1985 }
1986};
1987
1988template <>
1989struct OperandTraits<InsertElementInst> :
1990 public FixedNumOperandTraits<InsertElementInst, 3> {
1991};
1992
1993DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<InsertElementInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1993, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<InsertElementInst>::op_begin
(const_cast<InsertElementInst*>(this))[i_nocapture].get
()); } void InsertElementInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<InsertElementInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 1993, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
InsertElementInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned InsertElementInst::getNumOperands() const { return
OperandTraits<InsertElementInst>::operands(this); } template
<int Idx_nocapture> Use &InsertElementInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &InsertElementInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
1994
1995//===----------------------------------------------------------------------===//
1996// ShuffleVectorInst Class
1997//===----------------------------------------------------------------------===//
1998
1999constexpr int UndefMaskElem = -1;
2000
2001/// This instruction constructs a fixed permutation of two
2002/// input vectors.
2003///
2004/// For each element of the result vector, the shuffle mask selects an element
2005/// from one of the input vectors to copy to the result. Non-negative elements
2006/// in the mask represent an index into the concatenated pair of input vectors.
2007/// UndefMaskElem (-1) specifies that the result element is undefined.
2008///
2009/// For scalable vectors, all the elements of the mask must be 0 or -1. This
2010/// requirement may be relaxed in the future.
2011class ShuffleVectorInst : public Instruction {
2012 SmallVector<int, 4> ShuffleMask;
2013 Constant *ShuffleMaskForBitcode;
2014
2015protected:
2016 // Note: Instruction needs to be a friend here to call cloneImpl.
2017 friend class Instruction;
2018
2019 ShuffleVectorInst *cloneImpl() const;
2020
2021public:
2022 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2023 const Twine &NameStr = "",
2024 Instruction *InsertBefor = nullptr);
2025 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2026 const Twine &NameStr, BasicBlock *InsertAtEnd);
2027 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2028 const Twine &NameStr = "",
2029 Instruction *InsertBefor = nullptr);
2030 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2031 const Twine &NameStr, BasicBlock *InsertAtEnd);
2032
2033 void *operator new(size_t S) { return User::operator new(S, 2); }
2034 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
2035
2036 /// Swap the operands and adjust the mask to preserve the semantics
2037 /// of the instruction.
2038 void commute();
2039
2040 /// Return true if a shufflevector instruction can be
2041 /// formed with the specified operands.
2042 static bool isValidOperands(const Value *V1, const Value *V2,
2043 const Value *Mask);
2044 static bool isValidOperands(const Value *V1, const Value *V2,
2045 ArrayRef<int> Mask);
2046
2047 /// Overload to return most specific vector type.
2048 ///
2049 VectorType *getType() const {
2050 return cast<VectorType>(Instruction::getType());
2051 }
2052
2053 /// Transparently provide more efficient getOperand methods.
2054 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2055
2056 /// Return the shuffle mask value of this instruction for the given element
2057 /// index. Return UndefMaskElem if the element is undef.
2058 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2059
2060 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2061 /// elements of the mask are returned as UndefMaskElem.
2062 static void getShuffleMask(const Constant *Mask,
2063 SmallVectorImpl<int> &Result);
2064
2065 /// Return the mask for this instruction as a vector of integers. Undefined
2066 /// elements of the mask are returned as UndefMaskElem.
2067 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2068 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2069 }
2070
2071 /// Return the mask for this instruction, for use in bitcode.
2072 ///
2073 /// TODO: This is temporary until we decide a new bitcode encoding for
2074 /// shufflevector.
2075 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2076
2077 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2078 Type *ResultTy);
2079
2080 void setShuffleMask(ArrayRef<int> Mask);
2081
2082 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2083
2084 /// Return true if this shuffle returns a vector with a different number of
2085 /// elements than its source vectors.
2086 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2087 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2088 bool changesLength() const {
2089 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2090 ->getElementCount()
2091 .getKnownMinValue();
2092 unsigned NumMaskElts = ShuffleMask.size();
2093 return NumSourceElts != NumMaskElts;
2094 }
2095
2096 /// Return true if this shuffle returns a vector with a greater number of
2097 /// elements than its source vectors.
2098 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2099 bool increasesLength() const {
2100 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2101 ->getElementCount()
2102 .getKnownMinValue();
2103 unsigned NumMaskElts = ShuffleMask.size();
2104 return NumSourceElts < NumMaskElts;
2105 }
2106
2107 /// Return true if this shuffle mask chooses elements from exactly one source
2108 /// vector.
2109 /// Example: <7,5,undef,7>
2110 /// This assumes that vector operands are the same length as the mask.
2111 static bool isSingleSourceMask(ArrayRef<int> Mask);
2112 static bool isSingleSourceMask(const Constant *Mask) {
2113 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2113, __extension__ __PRETTY_FUNCTION__))
;
2114 SmallVector<int, 16> MaskAsInts;
2115 getShuffleMask(Mask, MaskAsInts);
2116 return isSingleSourceMask(MaskAsInts);
2117 }
2118
2119 /// Return true if this shuffle chooses elements from exactly one source
2120 /// vector without changing the length of that vector.
2121 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2122 /// TODO: Optionally allow length-changing shuffles.
2123 bool isSingleSource() const {
2124 return !changesLength() && isSingleSourceMask(ShuffleMask);
2125 }
2126
2127 /// Return true if this shuffle mask chooses elements from exactly one source
2128 /// vector without lane crossings. A shuffle using this mask is not
2129 /// necessarily a no-op because it may change the number of elements from its
2130 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2131 /// Example: <undef,undef,2,3>
2132 static bool isIdentityMask(ArrayRef<int> Mask);
2133 static bool isIdentityMask(const Constant *Mask) {
2134 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2134, __extension__ __PRETTY_FUNCTION__))
;
2135 SmallVector<int, 16> MaskAsInts;
2136 getShuffleMask(Mask, MaskAsInts);
2137 return isIdentityMask(MaskAsInts);
2138 }
2139
2140 /// Return true if this shuffle chooses elements from exactly one source
2141 /// vector without lane crossings and does not change the number of elements
2142 /// from its input vectors.
2143 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2144 bool isIdentity() const {
2145 return !changesLength() && isIdentityMask(ShuffleMask);
2146 }
2147
2148 /// Return true if this shuffle lengthens exactly one source vector with
2149 /// undefs in the high elements.
2150 bool isIdentityWithPadding() const;
2151
2152 /// Return true if this shuffle extracts the first N elements of exactly one
2153 /// source vector.
2154 bool isIdentityWithExtract() const;
2155
2156 /// Return true if this shuffle concatenates its 2 source vectors. This
2157 /// returns false if either input is undefined. In that case, the shuffle is
2158 /// is better classified as an identity with padding operation.
2159 bool isConcat() const;
2160
2161 /// Return true if this shuffle mask chooses elements from its source vectors
2162 /// without lane crossings. A shuffle using this mask would be
2163 /// equivalent to a vector select with a constant condition operand.
2164 /// Example: <4,1,6,undef>
2165 /// This returns false if the mask does not choose from both input vectors.
2166 /// In that case, the shuffle is better classified as an identity shuffle.
2167 /// This assumes that vector operands are the same length as the mask
2168 /// (a length-changing shuffle can never be equivalent to a vector select).
2169 static bool isSelectMask(ArrayRef<int> Mask);
2170 static bool isSelectMask(const Constant *Mask) {
2171 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2171, __extension__ __PRETTY_FUNCTION__))
;
2172 SmallVector<int, 16> MaskAsInts;
2173 getShuffleMask(Mask, MaskAsInts);
2174 return isSelectMask(MaskAsInts);
2175 }
2176
2177 /// Return true if this shuffle chooses elements from its source vectors
2178 /// without lane crossings and all operands have the same number of elements.
2179 /// In other words, this shuffle is equivalent to a vector select with a
2180 /// constant condition operand.
2181 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2182 /// This returns false if the mask does not choose from both input vectors.
2183 /// In that case, the shuffle is better classified as an identity shuffle.
2184 /// TODO: Optionally allow length-changing shuffles.
2185 bool isSelect() const {
2186 return !changesLength() && isSelectMask(ShuffleMask);
2187 }
2188
2189 /// Return true if this shuffle mask swaps the order of elements from exactly
2190 /// one source vector.
2191 /// Example: <7,6,undef,4>
2192 /// This assumes that vector operands are the same length as the mask.
2193 static bool isReverseMask(ArrayRef<int> Mask);
2194 static bool isReverseMask(const Constant *Mask) {
2195 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2195, __extension__ __PRETTY_FUNCTION__))
;
2196 SmallVector<int, 16> MaskAsInts;
2197 getShuffleMask(Mask, MaskAsInts);
2198 return isReverseMask(MaskAsInts);
2199 }
2200
2201 /// Return true if this shuffle swaps the order of elements from exactly
2202 /// one source vector.
2203 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2204 /// TODO: Optionally allow length-changing shuffles.
2205 bool isReverse() const {
2206 return !changesLength() && isReverseMask(ShuffleMask);
2207 }
2208
2209 /// Return true if this shuffle mask chooses all elements with the same value
2210 /// as the first element of exactly one source vector.
2211 /// Example: <4,undef,undef,4>
2212 /// This assumes that vector operands are the same length as the mask.
2213 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2214 static bool isZeroEltSplatMask(const Constant *Mask) {
2215 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2215, __extension__ __PRETTY_FUNCTION__))
;
2216 SmallVector<int, 16> MaskAsInts;
2217 getShuffleMask(Mask, MaskAsInts);
2218 return isZeroEltSplatMask(MaskAsInts);
2219 }
2220
2221 /// Return true if all elements of this shuffle are the same value as the
2222 /// first element of exactly one source vector without changing the length
2223 /// of that vector.
2224 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2225 /// TODO: Optionally allow length-changing shuffles.
2226 /// TODO: Optionally allow splats from other elements.
2227 bool isZeroEltSplat() const {
2228 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2229 }
2230
2231 /// Return true if this shuffle mask is a transpose mask.
2232 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2233 /// even- or odd-numbered vector elements from two n-dimensional source
2234 /// vectors and write each result into consecutive elements of an
2235 /// n-dimensional destination vector. Two shuffles are necessary to complete
2236 /// the transpose, one for the even elements and another for the odd elements.
2237 /// This description closely follows how the TRN1 and TRN2 AArch64
2238 /// instructions operate.
2239 ///
2240 /// For example, a simple 2x2 matrix can be transposed with:
2241 ///
2242 /// ; Original matrix
2243 /// m0 = < a, b >
2244 /// m1 = < c, d >
2245 ///
2246 /// ; Transposed matrix
2247 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2248 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2249 ///
2250 /// For matrices having greater than n columns, the resulting nx2 transposed
2251 /// matrix is stored in two result vectors such that one vector contains
2252 /// interleaved elements from all the even-numbered rows and the other vector
2253 /// contains interleaved elements from all the odd-numbered rows. For example,
2254 /// a 2x4 matrix can be transposed with:
2255 ///
2256 /// ; Original matrix
2257 /// m0 = < a, b, c, d >
2258 /// m1 = < e, f, g, h >
2259 ///
2260 /// ; Transposed matrix
2261 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2262 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2263 static bool isTransposeMask(ArrayRef<int> Mask);
2264 static bool isTransposeMask(const Constant *Mask) {
2265 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2265, __extension__ __PRETTY_FUNCTION__))
;
2266 SmallVector<int, 16> MaskAsInts;
2267 getShuffleMask(Mask, MaskAsInts);
2268 return isTransposeMask(MaskAsInts);
2269 }
2270
2271 /// Return true if this shuffle transposes the elements of its inputs without
2272 /// changing the length of the vectors. This operation may also be known as a
2273 /// merge or interleave. See the description for isTransposeMask() for the
2274 /// exact specification.
2275 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2276 bool isTranspose() const {
2277 return !changesLength() && isTransposeMask(ShuffleMask);
2278 }
2279
2280 /// Return true if this shuffle mask is an extract subvector mask.
2281 /// A valid extract subvector mask returns a smaller vector from a single
2282 /// source operand. The base extraction index is returned as well.
2283 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2284 int &Index);
2285 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2286 int &Index) {
2287 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy(
) && "Shuffle needs vector constant.") ? void (0) : __assert_fail
("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2287, __extension__ __PRETTY_FUNCTION__))
;
2288 // Not possible to express a shuffle mask for a scalable vector for this
2289 // case.
2290 if (isa<ScalableVectorType>(Mask->getType()))
2291 return false;
2292 SmallVector<int, 16> MaskAsInts;
2293 getShuffleMask(Mask, MaskAsInts);
2294 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2295 }
2296
2297 /// Return true if this shuffle mask is an extract subvector mask.
2298 bool isExtractSubvectorMask(int &Index) const {
2299 // Not possible to express a shuffle mask for a scalable vector for this
2300 // case.
2301 if (isa<ScalableVectorType>(getType()))
2302 return false;
2303
2304 int NumSrcElts =
2305 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2306 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2307 }
2308
2309 /// Change values in a shuffle permute mask assuming the two vector operands
2310 /// of length InVecNumElts have swapped position.
2311 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2312 unsigned InVecNumElts) {
2313 for (int &Idx : Mask) {
2314 if (Idx == -1)
2315 continue;
2316 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2317 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2318, __extension__ __PRETTY_FUNCTION__))
2318 "shufflevector mask index out of range")(static_cast <bool> (Idx >= 0 && Idx < (int
)InVecNumElts * 2 && "shufflevector mask index out of range"
) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2318, __extension__ __PRETTY_FUNCTION__))
;
2319 }
2320 }
2321
2322 // Methods for support type inquiry through isa, cast, and dyn_cast:
2323 static bool classof(const Instruction *I) {
2324 return I->getOpcode() == Instruction::ShuffleVector;
2325 }
2326 static bool classof(const Value *V) {
2327 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2328 }
2329};
2330
2331template <>
2332struct OperandTraits<ShuffleVectorInst>
2333 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2334
2335DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<ShuffleVectorInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2335, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ShuffleVectorInst>::op_begin
(const_cast<ShuffleVectorInst*>(this))[i_nocapture].get
()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<ShuffleVectorInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2335, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ShuffleVectorInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned ShuffleVectorInst::getNumOperands() const { return
OperandTraits<ShuffleVectorInst>::operands(this); } template
<int Idx_nocapture> Use &ShuffleVectorInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &ShuffleVectorInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2336
2337//===----------------------------------------------------------------------===//
2338// ExtractValueInst Class
2339//===----------------------------------------------------------------------===//
2340
2341/// This instruction extracts a struct member or array
2342/// element value from an aggregate value.
2343///
2344class ExtractValueInst : public UnaryInstruction {
2345 SmallVector<unsigned, 4> Indices;
2346
2347 ExtractValueInst(const ExtractValueInst &EVI);
2348
2349 /// Constructors - Create a extractvalue instruction with a base aggregate
2350 /// value and a list of indices. The first ctor can optionally insert before
2351 /// an existing instruction, the second appends the new instruction to the
2352 /// specified BasicBlock.
2353 inline ExtractValueInst(Value *Agg,
2354 ArrayRef<unsigned> Idxs,
2355 const Twine &NameStr,
2356 Instruction *InsertBefore);
2357 inline ExtractValueInst(Value *Agg,
2358 ArrayRef<unsigned> Idxs,
2359 const Twine &NameStr, BasicBlock *InsertAtEnd);
2360
2361 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2362
2363protected:
2364 // Note: Instruction needs to be a friend here to call cloneImpl.
2365 friend class Instruction;
2366
2367 ExtractValueInst *cloneImpl() const;
2368
2369public:
2370 static ExtractValueInst *Create(Value *Agg,
2371 ArrayRef<unsigned> Idxs,
2372 const Twine &NameStr = "",
2373 Instruction *InsertBefore = nullptr) {
2374 return new
2375 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2376 }
2377
2378 static ExtractValueInst *Create(Value *Agg,
2379 ArrayRef<unsigned> Idxs,
2380 const Twine &NameStr,
2381 BasicBlock *InsertAtEnd) {
2382 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2383 }
2384
2385 /// Returns the type of the element that would be extracted
2386 /// with an extractvalue instruction with the specified parameters.
2387 ///
2388 /// Null is returned if the indices are invalid for the specified type.
2389 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2390
2391 using idx_iterator = const unsigned*;
2392
2393 inline idx_iterator idx_begin() const { return Indices.begin(); }
2394 inline idx_iterator idx_end() const { return Indices.end(); }
2395 inline iterator_range<idx_iterator> indices() const {
2396 return make_range(idx_begin(), idx_end());
2397 }
2398
2399 Value *getAggregateOperand() {
2400 return getOperand(0);
2401 }
2402 const Value *getAggregateOperand() const {
2403 return getOperand(0);
2404 }
2405 static unsigned getAggregateOperandIndex() {
2406 return 0U; // get index for modifying correct operand
2407 }
2408
2409 ArrayRef<unsigned> getIndices() const {
2410 return Indices;
2411 }
2412
2413 unsigned getNumIndices() const {
2414 return (unsigned)Indices.size();
2415 }
2416
2417 bool hasIndices() const {
2418 return true;
2419 }
2420
2421 // Methods for support type inquiry through isa, cast, and dyn_cast:
2422 static bool classof(const Instruction *I) {
2423 return I->getOpcode() == Instruction::ExtractValue;
2424 }
2425 static bool classof(const Value *V) {
2426 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2427 }
2428};
2429
2430ExtractValueInst::ExtractValueInst(Value *Agg,
2431 ArrayRef<unsigned> Idxs,
2432 const Twine &NameStr,
2433 Instruction *InsertBefore)
2434 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2435 ExtractValue, Agg, InsertBefore) {
2436 init(Idxs, NameStr);
2437}
2438
2439ExtractValueInst::ExtractValueInst(Value *Agg,
2440 ArrayRef<unsigned> Idxs,
2441 const Twine &NameStr,
2442 BasicBlock *InsertAtEnd)
2443 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2444 ExtractValue, Agg, InsertAtEnd) {
2445 init(Idxs, NameStr);
2446}
2447
2448//===----------------------------------------------------------------------===//
2449// InsertValueInst Class
2450//===----------------------------------------------------------------------===//
2451
2452/// This instruction inserts a struct field of array element
2453/// value into an aggregate value.
2454///
2455class InsertValueInst : public Instruction {
2456 SmallVector<unsigned, 4> Indices;
2457
2458 InsertValueInst(const InsertValueInst &IVI);
2459
2460 /// Constructors - Create a insertvalue instruction with a base aggregate
2461 /// value, a value to insert, and a list of indices. The first ctor can
2462 /// optionally insert before an existing instruction, the second appends
2463 /// the new instruction to the specified BasicBlock.
2464 inline InsertValueInst(Value *Agg, Value *Val,
2465 ArrayRef<unsigned> Idxs,
2466 const Twine &NameStr,
2467 Instruction *InsertBefore);
2468 inline InsertValueInst(Value *Agg, Value *Val,
2469 ArrayRef<unsigned> Idxs,
2470 const Twine &NameStr, BasicBlock *InsertAtEnd);
2471
2472 /// Constructors - These two constructors are convenience methods because one
2473 /// and two index insertvalue instructions are so common.
2474 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2475 const Twine &NameStr = "",
2476 Instruction *InsertBefore = nullptr);
2477 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2478 BasicBlock *InsertAtEnd);
2479
2480 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2481 const Twine &NameStr);
2482
2483protected:
2484 // Note: Instruction needs to be a friend here to call cloneImpl.
2485 friend class Instruction;
2486
2487 InsertValueInst *cloneImpl() const;
2488
2489public:
2490 // allocate space for exactly two operands
2491 void *operator new(size_t S) { return User::operator new(S, 2); }
2492 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2493
2494 static InsertValueInst *Create(Value *Agg, Value *Val,
2495 ArrayRef<unsigned> Idxs,
2496 const Twine &NameStr = "",
2497 Instruction *InsertBefore = nullptr) {
2498 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2499 }
2500
2501 static InsertValueInst *Create(Value *Agg, Value *Val,
2502 ArrayRef<unsigned> Idxs,
2503 const Twine &NameStr,
2504 BasicBlock *InsertAtEnd) {
2505 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2506 }
2507
2508 /// Transparently provide more efficient getOperand methods.
2509 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2510
2511 using idx_iterator = const unsigned*;
2512
2513 inline idx_iterator idx_begin() const { return Indices.begin(); }
2514 inline idx_iterator idx_end() const { return Indices.end(); }
2515 inline iterator_range<idx_iterator> indices() const {
2516 return make_range(idx_begin(), idx_end());
2517 }
2518
2519 Value *getAggregateOperand() {
2520 return getOperand(0);
2521 }
2522 const Value *getAggregateOperand() const {
2523 return getOperand(0);
2524 }
2525 static unsigned getAggregateOperandIndex() {
2526 return 0U; // get index for modifying correct operand
2527 }
2528
2529 Value *getInsertedValueOperand() {
2530 return getOperand(1);
2531 }
2532 const Value *getInsertedValueOperand() const {
2533 return getOperand(1);
2534 }
2535 static unsigned getInsertedValueOperandIndex() {
2536 return 1U; // get index for modifying correct operand
2537 }
2538
2539 ArrayRef<unsigned> getIndices() const {
2540 return Indices;
2541 }
2542
2543 unsigned getNumIndices() const {
2544 return (unsigned)Indices.size();
2545 }
2546
2547 bool hasIndices() const {
2548 return true;
2549 }
2550
2551 // Methods for support type inquiry through isa, cast, and dyn_cast:
2552 static bool classof(const Instruction *I) {
2553 return I->getOpcode() == Instruction::InsertValue;
2554 }
2555 static bool classof(const Value *V) {
2556 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2557 }
2558};
2559
2560template <>
2561struct OperandTraits<InsertValueInst> :
2562 public FixedNumOperandTraits<InsertValueInst, 2> {
2563};
2564
2565InsertValueInst::InsertValueInst(Value *Agg,
2566 Value *Val,
2567 ArrayRef<unsigned> Idxs,
2568 const Twine &NameStr,
2569 Instruction *InsertBefore)
2570 : Instruction(Agg->getType(), InsertValue,
2571 OperandTraits<InsertValueInst>::op_begin(this),
2572 2, InsertBefore) {
2573 init(Agg, Val, Idxs, NameStr);
2574}
2575
2576InsertValueInst::InsertValueInst(Value *Agg,
2577 Value *Val,
2578 ArrayRef<unsigned> Idxs,
2579 const Twine &NameStr,
2580 BasicBlock *InsertAtEnd)
2581 : Instruction(Agg->getType(), InsertValue,
2582 OperandTraits<InsertValueInst>::op_begin(this),
2583 2, InsertAtEnd) {
2584 init(Agg, Val, Idxs, NameStr);
2585}
2586
2587DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<InsertValueInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2587, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<InsertValueInst>::op_begin
(const_cast<InsertValueInst*>(this))[i_nocapture].get()
); } void InsertValueInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2587, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
InsertValueInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned InsertValueInst::getNumOperands() const { return
OperandTraits<InsertValueInst>::operands(this); } template
<int Idx_nocapture> Use &InsertValueInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &InsertValueInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
2588
2589//===----------------------------------------------------------------------===//
2590// PHINode Class
2591//===----------------------------------------------------------------------===//
2592
2593// PHINode - The PHINode class is used to represent the magical mystical PHI
2594// node, that can not exist in nature, but can be synthesized in a computer
2595// scientist's overactive imagination.
2596//
2597class PHINode : public Instruction {
2598 /// The number of operands actually allocated. NumOperands is
2599 /// the number actually in use.
2600 unsigned ReservedSpace;
2601
2602 PHINode(const PHINode &PN);
2603
2604 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2605 const Twine &NameStr = "",
2606 Instruction *InsertBefore = nullptr)
2607 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2608 ReservedSpace(NumReservedValues) {
2609 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2609, __extension__ __PRETTY_FUNCTION__))
;
2610 setName(NameStr);
2611 allocHungoffUses(ReservedSpace);
2612 }
2613
2614 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2615 BasicBlock *InsertAtEnd)
2616 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2617 ReservedSpace(NumReservedValues) {
2618 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!"
) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2618, __extension__ __PRETTY_FUNCTION__))
;
2619 setName(NameStr);
2620 allocHungoffUses(ReservedSpace);
2621 }
2622
2623protected:
2624 // Note: Instruction needs to be a friend here to call cloneImpl.
2625 friend class Instruction;
2626
2627 PHINode *cloneImpl() const;
2628
2629 // allocHungoffUses - this is more complicated than the generic
2630 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2631 // values and pointers to the incoming blocks, all in one allocation.
2632 void allocHungoffUses(unsigned N) {
2633 User::allocHungoffUses(N, /* IsPhi */ true);
2634 }
2635
2636public:
2637 /// Constructors - NumReservedValues is a hint for the number of incoming
2638 /// edges that this phi node will have (use 0 if you really have no idea).
2639 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2640 const Twine &NameStr = "",
2641 Instruction *InsertBefore = nullptr) {
2642 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2643 }
2644
2645 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2646 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2647 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2648 }
2649
2650 /// Provide fast operand accessors
2651 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2652
2653 // Block iterator interface. This provides access to the list of incoming
2654 // basic blocks, which parallels the list of incoming values.
2655
2656 using block_iterator = BasicBlock **;
2657 using const_block_iterator = BasicBlock * const *;
2658
2659 block_iterator block_begin() {
2660 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2661 }
2662
2663 const_block_iterator block_begin() const {
2664 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2665 }
2666
2667 block_iterator block_end() {
2668 return block_begin() + getNumOperands();
2669 }
2670
2671 const_block_iterator block_end() const {
2672 return block_begin() + getNumOperands();
2673 }
2674
2675 iterator_range<block_iterator> blocks() {
2676 return make_range(block_begin(), block_end());
2677 }
2678
2679 iterator_range<const_block_iterator> blocks() const {
2680 return make_range(block_begin(), block_end());
2681 }
2682
2683 op_range incoming_values() { return operands(); }
2684
2685 const_op_range incoming_values() const { return operands(); }
2686
2687 /// Return the number of incoming edges
2688 ///
2689 unsigned getNumIncomingValues() const { return getNumOperands(); }
2690
2691 /// Return incoming value number x
2692 ///
2693 Value *getIncomingValue(unsigned i) const {
2694 return getOperand(i);
2695 }
2696 void setIncomingValue(unsigned i, Value *V) {
2697 assert(V && "PHI node got a null value!")(static_cast <bool> (V && "PHI node got a null value!"
) ? void (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2697, __extension__ __PRETTY_FUNCTION__))
;
2698 assert(getType() == V->getType() &&(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2699, __extension__ __PRETTY_FUNCTION__))
2699 "All operands to PHI node must be the same type as the PHI node!")(static_cast <bool> (getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!"
) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2699, __extension__ __PRETTY_FUNCTION__))
;
2700 setOperand(i, V);
2701 }
2702
2703 static unsigned getOperandNumForIncomingValue(unsigned i) {
2704 return i;
2705 }
2706
2707 static unsigned getIncomingValueNumForOperand(unsigned i) {
2708 return i;
2709 }
2710
2711 /// Return incoming basic block number @p i.
2712 ///
2713 BasicBlock *getIncomingBlock(unsigned i) const {
2714 return block_begin()[i];
2715 }
2716
2717 /// Return incoming basic block corresponding
2718 /// to an operand of the PHI.
2719 ///
2720 BasicBlock *getIncomingBlock(const Use &U) const {
2721 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")(static_cast <bool> (this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? void (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2721, __extension__ __PRETTY_FUNCTION__))
;
2722 return getIncomingBlock(unsigned(&U - op_begin()));
2723 }
2724
2725 /// Return incoming basic block corresponding
2726 /// to value use iterator.
2727 ///
2728 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2729 return getIncomingBlock(I.getUse());
2730 }
2731
2732 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2733 assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2733, __extension__ __PRETTY_FUNCTION__))
;
2734 block_begin()[i] = BB;
2735 }
2736
2737 /// Replace every incoming basic block \p Old to basic block \p New.
2738 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2739 assert(New && Old && "PHI node got a null basic block!")(static_cast <bool> (New && Old && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2739, __extension__ __PRETTY_FUNCTION__))
;
2740 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2741 if (getIncomingBlock(Op) == Old)
2742 setIncomingBlock(Op, New);
2743 }
2744
2745 /// Add an incoming value to the end of the PHI list
2746 ///
2747 void addIncoming(Value *V, BasicBlock *BB) {
2748 if (getNumOperands() == ReservedSpace)
2749 growOperands(); // Get more space!
2750 // Initialize some new operands.
2751 setNumHungOffUseOperands(getNumOperands() + 1);
2752 setIncomingValue(getNumOperands() - 1, V);
2753 setIncomingBlock(getNumOperands() - 1, BB);
2754 }
2755
2756 /// Remove an incoming value. This is useful if a
2757 /// predecessor basic block is deleted. The value removed is returned.
2758 ///
2759 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2760 /// is true), the PHI node is destroyed and any uses of it are replaced with
2761 /// dummy values. The only time there should be zero incoming values to a PHI
2762 /// node is when the block is dead, so this strategy is sound.
2763 ///
2764 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2765
2766 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2767 int Idx = getBasicBlockIndex(BB);
2768 assert(Idx >= 0 && "Invalid basic block argument to remove!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument to remove!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2768, __extension__ __PRETTY_FUNCTION__))
;
2769 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2770 }
2771
2772 /// Return the first index of the specified basic
2773 /// block in the value list for this PHI. Returns -1 if no instance.
2774 ///
2775 int getBasicBlockIndex(const BasicBlock *BB) const {
2776 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2777 if (block_begin()[i] == BB)
2778 return i;
2779 return -1;
2780 }
2781
2782 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2783 int Idx = getBasicBlockIndex(BB);
2784 assert(Idx >= 0 && "Invalid basic block argument!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument!"
) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2784, __extension__ __PRETTY_FUNCTION__))
;
2785 return getIncomingValue(Idx);
2786 }
2787
2788 /// Set every incoming value(s) for block \p BB to \p V.
2789 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2790 assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!"
) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2790, __extension__ __PRETTY_FUNCTION__))
;
2791 bool Found = false;
2792 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2793 if (getIncomingBlock(Op) == BB) {
2794 Found = true;
2795 setIncomingValue(Op, V);
2796 }
2797 (void)Found;
2798 assert(Found && "Invalid basic block argument to set!")(static_cast <bool> (Found && "Invalid basic block argument to set!"
) ? void (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2798, __extension__ __PRETTY_FUNCTION__))
;
2799 }
2800
2801 /// If the specified PHI node always merges together the
2802 /// same value, return the value, otherwise return null.
2803 Value *hasConstantValue() const;
2804
2805 /// Whether the specified PHI node always merges
2806 /// together the same value, assuming undefs are equal to a unique
2807 /// non-undef value.
2808 bool hasConstantOrUndefValue() const;
2809
2810 /// If the PHI node is complete which means all of its parent's predecessors
2811 /// have incoming value in this PHI, return true, otherwise return false.
2812 bool isComplete() const {
2813 return llvm::all_of(predecessors(getParent()),
2814 [this](const BasicBlock *Pred) {
2815 return getBasicBlockIndex(Pred) >= 0;
2816 });
2817 }
2818
2819 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2820 static bool classof(const Instruction *I) {
2821 return I->getOpcode() == Instruction::PHI;
2822 }
2823 static bool classof(const Value *V) {
2824 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2825 }
2826
2827private:
2828 void growOperands();
2829};
2830
2831template <>
2832struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2833};
2834
2835DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { (static_cast <bool> (i_nocapture < OperandTraits
<PHINode>::operands(this) && "getOperand() out of range!"
) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2835, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<PHINode>::op_begin(const_cast
<PHINode*>(this))[i_nocapture].get()); } void PHINode::
setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<PHINode>::
operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2835, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
PHINode>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
PHINode::getNumOperands() const { return OperandTraits<PHINode
>::operands(this); } template <int Idx_nocapture> Use
&PHINode::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
PHINode::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2836
2837//===----------------------------------------------------------------------===//
2838// LandingPadInst Class
2839//===----------------------------------------------------------------------===//
2840
2841//===---------------------------------------------------------------------------
2842/// The landingpad instruction holds all of the information
2843/// necessary to generate correct exception handling. The landingpad instruction
2844/// cannot be moved from the top of a landing pad block, which itself is
2845/// accessible only from the 'unwind' edge of an invoke. This uses the
2846/// SubclassData field in Value to store whether or not the landingpad is a
2847/// cleanup.
2848///
2849class LandingPadInst : public Instruction {
2850 using CleanupField = BoolBitfieldElementT<0>;
2851
2852 /// The number of operands actually allocated. NumOperands is
2853 /// the number actually in use.
2854 unsigned ReservedSpace;
2855
2856 LandingPadInst(const LandingPadInst &LP);
2857
2858public:
2859 enum ClauseType { Catch, Filter };
2860
2861private:
2862 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2863 const Twine &NameStr, Instruction *InsertBefore);
2864 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2865 const Twine &NameStr, BasicBlock *InsertAtEnd);
2866
2867 // Allocate space for exactly zero operands.
2868 void *operator new(size_t S) { return User::operator new(S); }
2869
2870 void growOperands(unsigned Size);
2871 void init(unsigned NumReservedValues, const Twine &NameStr);
2872
2873protected:
2874 // Note: Instruction needs to be a friend here to call cloneImpl.
2875 friend class Instruction;
2876
2877 LandingPadInst *cloneImpl() const;
2878
2879public:
2880 void operator delete(void *Ptr) { User::operator delete(Ptr); }
2881
2882 /// Constructors - NumReservedClauses is a hint for the number of incoming
2883 /// clauses that this landingpad will have (use 0 if you really have no idea).
2884 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2885 const Twine &NameStr = "",
2886 Instruction *InsertBefore = nullptr);
2887 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2888 const Twine &NameStr, BasicBlock *InsertAtEnd);
2889
2890 /// Provide fast operand accessors
2891 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2892
2893 /// Return 'true' if this landingpad instruction is a
2894 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2895 /// doesn't catch the exception.
2896 bool isCleanup() const { return getSubclassData<CleanupField>(); }
2897
2898 /// Indicate that this landingpad instruction is a cleanup.
2899 void setCleanup(bool V) { setSubclassData<CleanupField>(V); }
2900
2901 /// Add a catch or filter clause to the landing pad.
2902 void addClause(Constant *ClauseVal);
2903
2904 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2905 /// determine what type of clause this is.
2906 Constant *getClause(unsigned Idx) const {
2907 return cast<Constant>(getOperandList()[Idx]);
2908 }
2909
2910 /// Return 'true' if the clause and index Idx is a catch clause.
2911 bool isCatch(unsigned Idx) const {
2912 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2913 }
2914
2915 /// Return 'true' if the clause and index Idx is a filter clause.
2916 bool isFilter(unsigned Idx) const {
2917 return isa<ArrayType>(getOperandList()[Idx]->getType());
2918 }
2919
2920 /// Get the number of clauses for this landing pad.
2921 unsigned getNumClauses() const { return getNumOperands(); }
2922
2923 /// Grow the size of the operand list to accommodate the new
2924 /// number of clauses.
2925 void reserveClauses(unsigned Size) { growOperands(Size); }
2926
2927 // Methods for support type inquiry through isa, cast, and dyn_cast:
2928 static bool classof(const Instruction *I) {
2929 return I->getOpcode() == Instruction::LandingPad;
2930 }
2931 static bool classof(const Value *V) {
2932 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2933 }
2934};
2935
2936template <>
2937struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2938};
2939
2940DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2940, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<LandingPadInst>::op_begin(
const_cast<LandingPadInst*>(this))[i_nocapture].get());
} void LandingPadInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 2940, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
LandingPadInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2941
2942//===----------------------------------------------------------------------===//
2943// ReturnInst Class
2944//===----------------------------------------------------------------------===//
2945
2946//===---------------------------------------------------------------------------
2947/// Return a value (possibly void), from a function. Execution
2948/// does not continue in this function any longer.
2949///
2950class ReturnInst : public Instruction {
2951 ReturnInst(const ReturnInst &RI);
2952
2953private:
2954 // ReturnInst constructors:
2955 // ReturnInst() - 'ret void' instruction
2956 // ReturnInst( null) - 'ret void' instruction
2957 // ReturnInst(Value* X) - 'ret X' instruction
2958 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2959 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2960 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2961 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2962 //
2963 // NOTE: If the Value* passed is of type void then the constructor behaves as
2964 // if it was passed NULL.
2965 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2966 Instruction *InsertBefore = nullptr);
2967 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2968 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2969
2970protected:
2971 // Note: Instruction needs to be a friend here to call cloneImpl.
2972 friend class Instruction;
2973
2974 ReturnInst *cloneImpl() const;
2975
2976public:
2977 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2978 Instruction *InsertBefore = nullptr) {
2979 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2980 }
2981
2982 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2983 BasicBlock *InsertAtEnd) {
2984 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2985 }
2986
2987 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2988 return new(0) ReturnInst(C, InsertAtEnd);
2989 }
2990
2991 /// Provide fast operand accessors
2992 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2993
2994 /// Convenience accessor. Returns null if there is no return value.
2995 Value *getReturnValue() const {
2996 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2997 }
2998
2999 unsigned getNumSuccessors() const { return 0; }
3000
3001 // Methods for support type inquiry through isa, cast, and dyn_cast:
3002 static bool classof(const Instruction *I) {
3003 return (I->getOpcode() == Instruction::Ret);
3004 }
3005 static bool classof(const Value *V) {
3006 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3007 }
3008
3009private:
3010 BasicBlock *getSuccessor(unsigned idx) const {
3011 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3011)
;
3012 }
3013
3014 void setSuccessor(unsigned idx, BasicBlock *B) {
3015 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3015)
;
3016 }
3017};
3018
3019template <>
3020struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
3021};
3022
3023DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<ReturnInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3023, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ReturnInst>::op_begin(const_cast
<ReturnInst*>(this))[i_nocapture].get()); } void ReturnInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<ReturnInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3023, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ReturnInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned ReturnInst::getNumOperands() const { return OperandTraits
<ReturnInst>::operands(this); } template <int Idx_nocapture
> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3024
3025//===----------------------------------------------------------------------===//
3026// BranchInst Class
3027//===----------------------------------------------------------------------===//
3028
3029//===---------------------------------------------------------------------------
3030/// Conditional or Unconditional Branch instruction.
3031///
3032class BranchInst : public Instruction {
3033 /// Ops list - Branches are strange. The operands are ordered:
3034 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3035 /// they don't have to check for cond/uncond branchness. These are mostly
3036 /// accessed relative from op_end().
3037 BranchInst(const BranchInst &BI);
3038 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3039 // BranchInst(BB *B) - 'br B'
3040 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3041 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3042 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3043 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3044 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3045 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
3046 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3047 Instruction *InsertBefore = nullptr);
3048 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3049 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3050 BasicBlock *InsertAtEnd);
3051
3052 void AssertOK();
3053
3054protected:
3055 // Note: Instruction needs to be a friend here to call cloneImpl.
3056 friend class Instruction;
3057
3058 BranchInst *cloneImpl() const;
3059
3060public:
3061 /// Iterator type that casts an operand to a basic block.
3062 ///
3063 /// This only makes sense because the successors are stored as adjacent
3064 /// operands for branch instructions.
3065 struct succ_op_iterator
3066 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3067 std::random_access_iterator_tag, BasicBlock *,
3068 ptrdiff_t, BasicBlock *, BasicBlock *> {
3069 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3070
3071 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3072 BasicBlock *operator->() const { return operator*(); }
3073 };
3074
3075 /// The const version of `succ_op_iterator`.
3076 struct const_succ_op_iterator
3077 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3078 std::random_access_iterator_tag,
3079 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3080 const BasicBlock *> {
3081 explicit const_succ_op_iterator(const_value_op_iterator I)
3082 : iterator_adaptor_base(I) {}
3083
3084 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3085 const BasicBlock *operator->() const { return operator*(); }
3086 };
3087
3088 static BranchInst *Create(BasicBlock *IfTrue,
3089 Instruction *InsertBefore = nullptr) {
3090 return new(1) BranchInst(IfTrue, InsertBefore);
3091 }
3092
3093 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3094 Value *Cond, Instruction *InsertBefore = nullptr) {
3095 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3096 }
3097
3098 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3099 return new(1) BranchInst(IfTrue, InsertAtEnd);
3100 }
3101
3102 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3103 Value *Cond, BasicBlock *InsertAtEnd) {
3104 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3105 }
3106
3107 /// Transparently provide more efficient getOperand methods.
3108 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3109
3110 bool isUnconditional() const { return getNumOperands() == 1; }
3111 bool isConditional() const { return getNumOperands() == 3; }
9
Assuming the condition is true
10
Returning the value 1, which participates in a condition later
3112
3113 Value *getCondition() const {
3114 assert(isConditional() && "Cannot get condition of an uncond branch!")(static_cast <bool> (isConditional() && "Cannot get condition of an uncond branch!"
) ? void (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3114, __extension__ __PRETTY_FUNCTION__))
;
3115 return Op<-3>();
3116 }
3117
3118 void setCondition(Value *V) {
3119 assert(isConditional() && "Cannot set condition of unconditional branch!")(static_cast <bool> (isConditional() && "Cannot set condition of unconditional branch!"
) ? void (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3119, __extension__ __PRETTY_FUNCTION__))
;
3120 Op<-3>() = V;
3121 }
3122
3123 unsigned getNumSuccessors() const { return 1+isConditional(); }
3124
3125 BasicBlock *getSuccessor(unsigned i) const {
3126 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (i < getNumSuccessors() &&
"Successor # out of range for Branch!") ? void (0) : __assert_fail
("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3126, __extension__ __PRETTY_FUNCTION__))
;
3127 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3128 }
3129
3130 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3131 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor # out of range for Branch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3131, __extension__ __PRETTY_FUNCTION__))
;
3132 *(&Op<-1>() - idx) = NewSucc;
3133 }
3134
3135 /// Swap the successors of this branch instruction.
3136 ///
3137 /// Swaps the successors of the branch instruction. This also swaps any
3138 /// branch weight metadata associated with the instruction so that it
3139 /// continues to map correctly to each operand.
3140 void swapSuccessors();
3141
3142 iterator_range<succ_op_iterator> successors() {
3143 return make_range(
3144 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3145 succ_op_iterator(value_op_end()));
3146 }
3147
3148 iterator_range<const_succ_op_iterator> successors() const {
3149 return make_range(const_succ_op_iterator(
3150 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3151 const_succ_op_iterator(value_op_end()));
3152 }
3153
3154 // Methods for support type inquiry through isa, cast, and dyn_cast:
3155 static bool classof(const Instruction *I) {
3156 return (I->getOpcode() == Instruction::Br);
3157 }
3158 static bool classof(const Value *V) {
3159 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3160 }
3161};
3162
3163template <>
3164struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3165};
3166
3167DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<BranchInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3167, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<BranchInst>::op_begin(const_cast
<BranchInst*>(this))[i_nocapture].get()); } void BranchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<BranchInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3167, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
BranchInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned BranchInst::getNumOperands() const { return OperandTraits
<BranchInst>::operands(this); } template <int Idx_nocapture
> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3168
3169//===----------------------------------------------------------------------===//
3170// SwitchInst Class
3171//===----------------------------------------------------------------------===//
3172
3173//===---------------------------------------------------------------------------
3174/// Multiway switch
3175///
3176class SwitchInst : public Instruction {
3177 unsigned ReservedSpace;
3178
3179 // Operand[0] = Value to switch on
3180 // Operand[1] = Default basic block destination
3181 // Operand[2n ] = Value to match
3182 // Operand[2n+1] = BasicBlock to go to on match
3183 SwitchInst(const SwitchInst &SI);
3184
3185 /// Create a new switch instruction, specifying a value to switch on and a
3186 /// default destination. The number of additional cases can be specified here
3187 /// to make memory allocation more efficient. This constructor can also
3188 /// auto-insert before another instruction.
3189 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3190 Instruction *InsertBefore);
3191
3192 /// Create a new switch instruction, specifying a value to switch on and a
3193 /// default destination. The number of additional cases can be specified here
3194 /// to make memory allocation more efficient. This constructor also
3195 /// auto-inserts at the end of the specified BasicBlock.
3196 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3197 BasicBlock *InsertAtEnd);
3198
3199 // allocate space for exactly zero operands
3200 void *operator new(size_t S) { return User::operator new(S); }
3201
3202 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3203 void growOperands();
3204
3205protected:
3206 // Note: Instruction needs to be a friend here to call cloneImpl.
3207 friend class Instruction;
3208
3209 SwitchInst *cloneImpl() const;
3210
3211public:
3212 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3213
3214 // -2
3215 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3216
3217 template <typename CaseHandleT> class CaseIteratorImpl;
3218
3219 /// A handle to a particular switch case. It exposes a convenient interface
3220 /// to both the case value and the successor block.
3221 ///
3222 /// We define this as a template and instantiate it to form both a const and
3223 /// non-const handle.
3224 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3225 class CaseHandleImpl {
3226 // Directly befriend both const and non-const iterators.
3227 friend class SwitchInst::CaseIteratorImpl<
3228 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3229
3230 protected:
3231 // Expose the switch type we're parameterized with to the iterator.
3232 using SwitchInstType = SwitchInstT;
3233
3234 SwitchInstT *SI;
3235 ptrdiff_t Index;
3236
3237 CaseHandleImpl() = default;
3238 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3239
3240 public:
3241 /// Resolves case value for current case.
3242 ConstantIntT *getCaseValue() const {
3243 assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3244, __extension__ __PRETTY_FUNCTION__))
3244 "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3244, __extension__ __PRETTY_FUNCTION__))
;
3245 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3246 }
3247
3248 /// Resolves successor for current case.
3249 BasicBlockT *getCaseSuccessor() const {
3250 assert(((unsigned)Index < SI->getNumCases() ||(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3252, __extension__ __PRETTY_FUNCTION__))
3251 (unsigned)Index == DefaultPseudoIndex) &&(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3252, __extension__ __PRETTY_FUNCTION__))
3252 "Index out the number of cases.")(static_cast <bool> (((unsigned)Index < SI->getNumCases
() || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3252, __extension__ __PRETTY_FUNCTION__))
;
3253 return SI->getSuccessor(getSuccessorIndex());
3254 }
3255
3256 /// Returns number of current case.
3257 unsigned getCaseIndex() const { return Index; }
3258
3259 /// Returns successor index for current case successor.
3260 unsigned getSuccessorIndex() const {
3261 assert(((unsigned)Index == DefaultPseudoIndex ||(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3263, __extension__ __PRETTY_FUNCTION__))
3262 (unsigned)Index < SI->getNumCases()) &&(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3263, __extension__ __PRETTY_FUNCTION__))
3263 "Index out the number of cases.")(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex
|| (unsigned)Index < SI->getNumCases()) && "Index out the number of cases."
) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3263, __extension__ __PRETTY_FUNCTION__))
;
3264 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3265 }
3266
3267 bool operator==(const CaseHandleImpl &RHS) const {
3268 assert(SI == RHS.SI && "Incompatible operators.")(static_cast <bool> (SI == RHS.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3268, __extension__ __PRETTY_FUNCTION__))
;
3269 return Index == RHS.Index;
3270 }
3271 };
3272
3273 using ConstCaseHandle =
3274 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3275
3276 class CaseHandle
3277 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3278 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3279
3280 public:
3281 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3282
3283 /// Sets the new value for current case.
3284 void setValue(ConstantInt *V) {
3285 assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3286, __extension__ __PRETTY_FUNCTION__))
3286 "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases
() && "Index out the number of cases.") ? void (0) : __assert_fail
("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3286, __extension__ __PRETTY_FUNCTION__))
;
3287 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3288 }
3289
3290 /// Sets the new successor for current case.
3291 void setSuccessor(BasicBlock *S) {
3292 SI->setSuccessor(getSuccessorIndex(), S);
3293 }
3294 };
3295
3296 template <typename CaseHandleT>
3297 class CaseIteratorImpl
3298 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3299 std::random_access_iterator_tag,
3300 CaseHandleT> {
3301 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3302
3303 CaseHandleT Case;
3304
3305 public:
3306 /// Default constructed iterator is in an invalid state until assigned to
3307 /// a case for a particular switch.
3308 CaseIteratorImpl() = default;
3309
3310 /// Initializes case iterator for given SwitchInst and for given
3311 /// case number.
3312 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3313
3314 /// Initializes case iterator for given SwitchInst and for given
3315 /// successor index.
3316 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3317 unsigned SuccessorIndex) {
3318 assert(SuccessorIndex < SI->getNumSuccessors() &&(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors
() && "Successor index # out of range!") ? void (0) :
__assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3319, __extension__ __PRETTY_FUNCTION__))
3319 "Successor index # out of range!")(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors
() && "Successor index # out of range!") ? void (0) :
__assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3319, __extension__ __PRETTY_FUNCTION__))
;
3320 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3321 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3322 }
3323
3324 /// Support converting to the const variant. This will be a no-op for const
3325 /// variant.
3326 operator CaseIteratorImpl<ConstCaseHandle>() const {
3327 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3328 }
3329
3330 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3331 // Check index correctness after addition.
3332 // Note: Index == getNumCases() means end().
3333 assert(Case.Index + N >= 0 &&(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3335, __extension__ __PRETTY_FUNCTION__))
3334 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3335, __extension__ __PRETTY_FUNCTION__))
3335 "Case.Index out the number of cases.")(static_cast <bool> (Case.Index + N >= 0 && (
unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3335, __extension__ __PRETTY_FUNCTION__))
;
3336 Case.Index += N;
3337 return *this;
3338 }
3339 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3340 // Check index correctness after subtraction.
3341 // Note: Case.Index == getNumCases() means end().
3342 assert(Case.Index - N >= 0 &&(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3344, __extension__ __PRETTY_FUNCTION__))
3343 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3344, __extension__ __PRETTY_FUNCTION__))
3344 "Case.Index out the number of cases.")(static_cast <bool> (Case.Index - N >= 0 && (
unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&
"Case.Index out the number of cases.") ? void (0) : __assert_fail
("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3344, __extension__ __PRETTY_FUNCTION__))
;
3345 Case.Index -= N;
3346 return *this;
3347 }
3348 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3349 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3349, __extension__ __PRETTY_FUNCTION__))
;
3350 return Case.Index - RHS.Case.Index;
3351 }
3352 bool operator==(const CaseIteratorImpl &RHS) const {
3353 return Case == RHS.Case;
3354 }
3355 bool operator<(const CaseIteratorImpl &RHS) const {
3356 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators."
) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3356, __extension__ __PRETTY_FUNCTION__))
;
3357 return Case.Index < RHS.Case.Index;
3358 }
3359 CaseHandleT &operator*() { return Case; }
3360 const CaseHandleT &operator*() const { return Case; }
3361 };
3362
3363 using CaseIt = CaseIteratorImpl<CaseHandle>;
3364 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3365
3366 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3367 unsigned NumCases,
3368 Instruction *InsertBefore = nullptr) {
3369 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3370 }
3371
3372 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3373 unsigned NumCases, BasicBlock *InsertAtEnd) {
3374 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3375 }
3376
3377 /// Provide fast operand accessors
3378 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3379
3380 // Accessor Methods for Switch stmt
3381 Value *getCondition() const { return getOperand(0); }
3382 void setCondition(Value *V) { setOperand(0, V); }
3383
3384 BasicBlock *getDefaultDest() const {
3385 return cast<BasicBlock>(getOperand(1));
3386 }
3387
3388 void setDefaultDest(BasicBlock *DefaultCase) {
3389 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3390 }
3391
3392 /// Return the number of 'cases' in this switch instruction, excluding the
3393 /// default case.
3394 unsigned getNumCases() const {
3395 return getNumOperands()/2 - 1;
3396 }
3397
3398 /// Returns a read/write iterator that points to the first case in the
3399 /// SwitchInst.
3400 CaseIt case_begin() {
3401 return CaseIt(this, 0);
3402 }
3403
3404 /// Returns a read-only iterator that points to the first case in the
3405 /// SwitchInst.
3406 ConstCaseIt case_begin() const {
3407 return ConstCaseIt(this, 0);
3408 }
3409
3410 /// Returns a read/write iterator that points one past the last in the
3411 /// SwitchInst.
3412 CaseIt case_end() {
3413 return CaseIt(this, getNumCases());
3414 }
3415
3416 /// Returns a read-only iterator that points one past the last in the
3417 /// SwitchInst.
3418 ConstCaseIt case_end() const {
3419 return ConstCaseIt(this, getNumCases());
3420 }
3421
3422 /// Iteration adapter for range-for loops.
3423 iterator_range<CaseIt> cases() {
3424 return make_range(case_begin(), case_end());
3425 }
3426
3427 /// Constant iteration adapter for range-for loops.
3428 iterator_range<ConstCaseIt> cases() const {
3429 return make_range(case_begin(), case_end());
3430 }
3431
3432 /// Returns an iterator that points to the default case.
3433 /// Note: this iterator allows to resolve successor only. Attempt
3434 /// to resolve case value causes an assertion.
3435 /// Also note, that increment and decrement also causes an assertion and
3436 /// makes iterator invalid.
3437 CaseIt case_default() {
3438 return CaseIt(this, DefaultPseudoIndex);
3439 }
3440 ConstCaseIt case_default() const {
3441 return ConstCaseIt(this, DefaultPseudoIndex);
3442 }
3443
3444 /// Search all of the case values for the specified constant. If it is
3445 /// explicitly handled, return the case iterator of it, otherwise return
3446 /// default case iterator to indicate that it is handled by the default
3447 /// handler.
3448 CaseIt findCaseValue(const ConstantInt *C) {
3449 CaseIt I = llvm::find_if(
3450 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3451 if (I != case_end())
3452 return I;
3453
3454 return case_default();
3455 }
3456 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3457 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3458 return Case.getCaseValue() == C;
3459 });
3460 if (I != case_end())
3461 return I;
3462
3463 return case_default();
3464 }
3465
3466 /// Finds the unique case value for a given successor. Returns null if the
3467 /// successor is not found, not unique, or is the default case.
3468 ConstantInt *findCaseDest(BasicBlock *BB) {
3469 if (BB == getDefaultDest())
3470 return nullptr;
3471
3472 ConstantInt *CI = nullptr;
3473 for (auto Case : cases()) {
3474 if (Case.getCaseSuccessor() != BB)
3475 continue;
3476
3477 if (CI)
3478 return nullptr; // Multiple cases lead to BB.
3479
3480 CI = Case.getCaseValue();
3481 }
3482
3483 return CI;
3484 }
3485
3486 /// Add an entry to the switch instruction.
3487 /// Note:
3488 /// This action invalidates case_end(). Old case_end() iterator will
3489 /// point to the added case.
3490 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3491
3492 /// This method removes the specified case and its successor from the switch
3493 /// instruction. Note that this operation may reorder the remaining cases at
3494 /// index idx and above.
3495 /// Note:
3496 /// This action invalidates iterators for all cases following the one removed,
3497 /// including the case_end() iterator. It returns an iterator for the next
3498 /// case.
3499 CaseIt removeCase(CaseIt I);
3500
3501 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3502 BasicBlock *getSuccessor(unsigned idx) const {
3503 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor idx out of range for switch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3503, __extension__ __PRETTY_FUNCTION__))
;
3504 return cast<BasicBlock>(getOperand(idx*2+1));
3505 }
3506 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3507 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() &&
"Successor # out of range for switch!") ? void (0) : __assert_fail
("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3507, __extension__ __PRETTY_FUNCTION__))
;
3508 setOperand(idx * 2 + 1, NewSucc);
3509 }
3510
3511 // Methods for support type inquiry through isa, cast, and dyn_cast:
3512 static bool classof(const Instruction *I) {
3513 return I->getOpcode() == Instruction::Switch;
3514 }
3515 static bool classof(const Value *V) {
3516 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3517 }
3518};
3519
3520/// A wrapper class to simplify modification of SwitchInst cases along with
3521/// their prof branch_weights metadata.
3522class SwitchInstProfUpdateWrapper {
3523 SwitchInst &SI;
3524 Optional<SmallVector<uint32_t, 8> > Weights = None;
3525 bool Changed = false;
3526
3527protected:
3528 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3529
3530 MDNode *buildProfBranchWeightsMD();
3531
3532 void init();
3533
3534public:
3535 using CaseWeightOpt = Optional<uint32_t>;
3536 SwitchInst *operator->() { return &SI; }
3537 SwitchInst &operator*() { return SI; }
3538 operator SwitchInst *() { return &SI; }
3539
3540 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3541
3542 ~SwitchInstProfUpdateWrapper() {
3543 if (Changed)
3544 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3545 }
3546
3547 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3548 /// correspondent branch weight.
3549 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3550
3551 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3552 /// specified branch weight for the added case.
3553 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3554
3555 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3556 /// this object to not touch the underlying SwitchInst in destructor.
3557 SymbolTableList<Instruction>::iterator eraseFromParent();
3558
3559 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3560 CaseWeightOpt getSuccessorWeight(unsigned idx);
3561
3562 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3563};
3564
3565template <>
3566struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3567};
3568
3569DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<SwitchInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3569, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<SwitchInst>::op_begin(const_cast
<SwitchInst*>(this))[i_nocapture].get()); } void SwitchInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<SwitchInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3569, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
SwitchInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned SwitchInst::getNumOperands() const { return OperandTraits
<SwitchInst>::operands(this); } template <int Idx_nocapture
> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3570
3571//===----------------------------------------------------------------------===//
3572// IndirectBrInst Class
3573//===----------------------------------------------------------------------===//
3574
3575//===---------------------------------------------------------------------------
3576/// Indirect Branch Instruction.
3577///
3578class IndirectBrInst : public Instruction {
3579 unsigned ReservedSpace;
3580
3581 // Operand[0] = Address to jump to
3582 // Operand[n+1] = n-th destination
3583 IndirectBrInst(const IndirectBrInst &IBI);
3584
3585 /// Create a new indirectbr instruction, specifying an
3586 /// Address to jump to. The number of expected destinations can be specified
3587 /// here to make memory allocation more efficient. This constructor can also
3588 /// autoinsert before another instruction.
3589 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3590
3591 /// Create a new indirectbr instruction, specifying an
3592 /// Address to jump to. The number of expected destinations can be specified
3593 /// here to make memory allocation more efficient. This constructor also
3594 /// autoinserts at the end of the specified BasicBlock.
3595 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3596
3597 // allocate space for exactly zero operands
3598 void *operator new(size_t S) { return User::operator new(S); }
3599
3600 void init(Value *Address, unsigned NumDests);
3601 void growOperands();
3602
3603protected:
3604 // Note: Instruction needs to be a friend here to call cloneImpl.
3605 friend class Instruction;
3606
3607 IndirectBrInst *cloneImpl() const;
3608
3609public:
3610 void operator delete(void *Ptr) { User::operator delete(Ptr); }
3611
3612 /// Iterator type that casts an operand to a basic block.
3613 ///
3614 /// This only makes sense because the successors are stored as adjacent
3615 /// operands for indirectbr instructions.
3616 struct succ_op_iterator
3617 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3618 std::random_access_iterator_tag, BasicBlock *,
3619 ptrdiff_t, BasicBlock *, BasicBlock *> {
3620 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3621
3622 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3623 BasicBlock *operator->() const { return operator*(); }
3624 };
3625
3626 /// The const version of `succ_op_iterator`.
3627 struct const_succ_op_iterator
3628 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3629 std::random_access_iterator_tag,
3630 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3631 const BasicBlock *> {
3632 explicit const_succ_op_iterator(const_value_op_iterator I)
3633 : iterator_adaptor_base(I) {}
3634
3635 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3636 const BasicBlock *operator->() const { return operator*(); }
3637 };
3638
3639 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3640 Instruction *InsertBefore = nullptr) {
3641 return new IndirectBrInst(Address, NumDests, InsertBefore);
3642 }
3643
3644 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3645 BasicBlock *InsertAtEnd) {
3646 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3647 }
3648
3649 /// Provide fast operand accessors.
3650 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3651
3652 // Accessor Methods for IndirectBrInst instruction.
3653 Value *getAddress() { return getOperand(0); }
3654 const Value *getAddress() const { return getOperand(0); }
3655 void setAddress(Value *V) { setOperand(0, V); }
3656
3657 /// return the number of possible destinations in this
3658 /// indirectbr instruction.
3659 unsigned getNumDestinations() const { return getNumOperands()-1; }
3660
3661 /// Return the specified destination.
3662 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3663 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3664
3665 /// Add a destination.
3666 ///
3667 void addDestination(BasicBlock *Dest);
3668
3669 /// This method removes the specified successor from the
3670 /// indirectbr instruction.
3671 void removeDestination(unsigned i);
3672
3673 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3674 BasicBlock *getSuccessor(unsigned i) const {
3675 return cast<BasicBlock>(getOperand(i+1));
3676 }
3677 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3678 setOperand(i + 1, NewSucc);
3679 }
3680
3681 iterator_range<succ_op_iterator> successors() {
3682 return make_range(succ_op_iterator(std::next(value_op_begin())),
3683 succ_op_iterator(value_op_end()));
3684 }
3685
3686 iterator_range<const_succ_op_iterator> successors() const {
3687 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3688 const_succ_op_iterator(value_op_end()));
3689 }
3690
3691 // Methods for support type inquiry through isa, cast, and dyn_cast:
3692 static bool classof(const Instruction *I) {
3693 return I->getOpcode() == Instruction::IndirectBr;
3694 }
3695 static bool classof(const Value *V) {
3696 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3697 }
3698};
3699
3700template <>
3701struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3702};
3703
3704DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3704, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<IndirectBrInst>::op_begin(
const_cast<IndirectBrInst*>(this))[i_nocapture].get());
} void IndirectBrInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<IndirectBrInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3704, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
IndirectBrInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3705
3706//===----------------------------------------------------------------------===//
3707// InvokeInst Class
3708//===----------------------------------------------------------------------===//
3709
3710/// Invoke instruction. The SubclassData field is used to hold the
3711/// calling convention of the call.
3712///
3713class InvokeInst : public CallBase {
3714 /// The number of operands for this call beyond the called function,
3715 /// arguments, and operand bundles.
3716 static constexpr int NumExtraOperands = 2;
3717
3718 /// The index from the end of the operand array to the normal destination.
3719 static constexpr int NormalDestOpEndIdx = -3;
3720
3721 /// The index from the end of the operand array to the unwind destination.
3722 static constexpr int UnwindDestOpEndIdx = -2;
3723
3724 InvokeInst(const InvokeInst &BI);
3725
3726 /// Construct an InvokeInst given a range of arguments.
3727 ///
3728 /// Construct an InvokeInst from a range of arguments
3729 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3730 BasicBlock *IfException, ArrayRef<Value *> Args,
3731 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3732 const Twine &NameStr, Instruction *InsertBefore);
3733
3734 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3735 BasicBlock *IfException, ArrayRef<Value *> Args,
3736 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3737 const Twine &NameStr, BasicBlock *InsertAtEnd);
3738
3739 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3740 BasicBlock *IfException, ArrayRef<Value *> Args,
3741 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3742
3743 /// Compute the number of operands to allocate.
3744 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3745 // We need one operand for the called function, plus our extra operands and
3746 // the input operand counts provided.
3747 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3748 }
3749
3750protected:
3751 // Note: Instruction needs to be a friend here to call cloneImpl.
3752 friend class Instruction;
3753
3754 InvokeInst *cloneImpl() const;
3755
3756public:
3757 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3758 BasicBlock *IfException, ArrayRef<Value *> Args,
3759 const Twine &NameStr,
3760 Instruction *InsertBefore = nullptr) {
3761 int NumOperands = ComputeNumOperands(Args.size());
3762 return new (NumOperands)
3763 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3764 NameStr, InsertBefore);
3765 }
3766
3767 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3768 BasicBlock *IfException, ArrayRef<Value *> Args,
3769 ArrayRef<OperandBundleDef> Bundles = None,
3770 const Twine &NameStr = "",
3771 Instruction *InsertBefore = nullptr) {
3772 int NumOperands =
3773 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3774 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3775
3776 return new (NumOperands, DescriptorBytes)
3777 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3778 NameStr, InsertBefore);
3779 }
3780
3781 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3782 BasicBlock *IfException, ArrayRef<Value *> Args,
3783 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3784 int NumOperands = ComputeNumOperands(Args.size());
3785 return new (NumOperands)
3786 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3787 NameStr, InsertAtEnd);
3788 }
3789
3790 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3791 BasicBlock *IfException, ArrayRef<Value *> Args,
3792 ArrayRef<OperandBundleDef> Bundles,
3793 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3794 int NumOperands =
3795 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3796 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3797
3798 return new (NumOperands, DescriptorBytes)
3799 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3800 NameStr, InsertAtEnd);
3801 }
3802
3803 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3804 BasicBlock *IfException, ArrayRef<Value *> Args,
3805 const Twine &NameStr,
3806 Instruction *InsertBefore = nullptr) {
3807 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3808 IfException, Args, None, NameStr, InsertBefore);
3809 }
3810
3811 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3812 BasicBlock *IfException, ArrayRef<Value *> Args,
3813 ArrayRef<OperandBundleDef> Bundles = None,
3814 const Twine &NameStr = "",
3815 Instruction *InsertBefore = nullptr) {
3816 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3817 IfException, Args, Bundles, NameStr, InsertBefore);
3818 }
3819
3820 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3821 BasicBlock *IfException, ArrayRef<Value *> Args,
3822 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3823 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3824 IfException, Args, NameStr, InsertAtEnd);
3825 }
3826
3827 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3828 BasicBlock *IfException, ArrayRef<Value *> Args,
3829 ArrayRef<OperandBundleDef> Bundles,
3830 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3831 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3832 IfException, Args, Bundles, NameStr, InsertAtEnd);
3833 }
3834
3835 /// Create a clone of \p II with a different set of operand bundles and
3836 /// insert it before \p InsertPt.
3837 ///
3838 /// The returned invoke instruction is identical to \p II in every way except
3839 /// that the operand bundles for the new instruction are set to the operand
3840 /// bundles in \p Bundles.
3841 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3842 Instruction *InsertPt = nullptr);
3843
3844 // get*Dest - Return the destination basic blocks...
3845 BasicBlock *getNormalDest() const {
3846 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3847 }
3848 BasicBlock *getUnwindDest() const {
3849 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3850 }
3851 void setNormalDest(BasicBlock *B) {
3852 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3853 }
3854 void setUnwindDest(BasicBlock *B) {
3855 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3856 }
3857
3858 /// Get the landingpad instruction from the landing pad
3859 /// block (the unwind destination).
3860 LandingPadInst *getLandingPadInst() const;
3861
3862 BasicBlock *getSuccessor(unsigned i) const {
3863 assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!"
) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3863, __extension__ __PRETTY_FUNCTION__))
;
3864 return i == 0 ? getNormalDest() : getUnwindDest();
3865 }
3866
3867 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3868 assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!"
) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 3868, __extension__ __PRETTY_FUNCTION__))
;
3869 if (i == 0)
3870 setNormalDest(NewSucc);
3871 else
3872 setUnwindDest(NewSucc);
3873 }
3874
3875 unsigned getNumSuccessors() const { return 2; }
3876
3877 // Methods for support type inquiry through isa, cast, and dyn_cast:
3878 static bool classof(const Instruction *I) {
3879 return (I->getOpcode() == Instruction::Invoke);
3880 }
3881 static bool classof(const Value *V) {
3882 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3883 }
3884
3885private:
3886 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3887 // method so that subclasses cannot accidentally use it.
3888 template <typename Bitfield>
3889 void setSubclassData(typename Bitfield::Type Value) {
3890 Instruction::setSubclassData<Bitfield>(Value);
3891 }
3892};
3893
3894InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3895 BasicBlock *IfException, ArrayRef<Value *> Args,
3896 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3897 const Twine &NameStr, Instruction *InsertBefore)
3898 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3899 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3900 InsertBefore) {
3901 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3902}
3903
3904InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3905 BasicBlock *IfException, ArrayRef<Value *> Args,
3906 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3907 const Twine &NameStr, BasicBlock *InsertAtEnd)
3908 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3909 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3910 InsertAtEnd) {
3911 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3912}
3913
3914//===----------------------------------------------------------------------===//
3915// CallBrInst Class
3916//===----------------------------------------------------------------------===//
3917
3918/// CallBr instruction, tracking function calls that may not return control but
3919/// instead transfer it to a third location. The SubclassData field is used to
3920/// hold the calling convention of the call.
3921///
3922class CallBrInst : public CallBase {
3923
3924 unsigned NumIndirectDests;
3925
3926 CallBrInst(const CallBrInst &BI);
3927
3928 /// Construct a CallBrInst given a range of arguments.
3929 ///
3930 /// Construct a CallBrInst from a range of arguments
3931 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3932 ArrayRef<BasicBlock *> IndirectDests,
3933 ArrayRef<Value *> Args,
3934 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3935 const Twine &NameStr, Instruction *InsertBefore);
3936
3937 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3938 ArrayRef<BasicBlock *> IndirectDests,
3939 ArrayRef<Value *> Args,
3940 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3941 const Twine &NameStr, BasicBlock *InsertAtEnd);
3942
3943 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3944 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3945 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3946
3947 /// Should the Indirect Destinations change, scan + update the Arg list.
3948 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3949
3950 /// Compute the number of operands to allocate.
3951 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3952 int NumBundleInputs = 0) {
3953 // We need one operand for the called function, plus our extra operands and
3954 // the input operand counts provided.
3955 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3956 }
3957
3958protected:
3959 // Note: Instruction needs to be a friend here to call cloneImpl.
3960 friend class Instruction;
3961
3962 CallBrInst *cloneImpl() const;
3963
3964public:
3965 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3966 BasicBlock *DefaultDest,
3967 ArrayRef<BasicBlock *> IndirectDests,
3968 ArrayRef<Value *> Args, const Twine &NameStr,
3969 Instruction *InsertBefore = nullptr) {
3970 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3971 return new (NumOperands)
3972 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3973 NumOperands, NameStr, InsertBefore);
3974 }
3975
3976 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3977 BasicBlock *DefaultDest,
3978 ArrayRef<BasicBlock *> IndirectDests,
3979 ArrayRef<Value *> Args,
3980 ArrayRef<OperandBundleDef> Bundles = None,
3981 const Twine &NameStr = "",
3982 Instruction *InsertBefore = nullptr) {
3983 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3984 CountBundleInputs(Bundles));
3985 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3986
3987 return new (NumOperands, DescriptorBytes)
3988 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3989 NumOperands, NameStr, InsertBefore);
3990 }
3991
3992 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3993 BasicBlock *DefaultDest,
3994 ArrayRef<BasicBlock *> IndirectDests,
3995 ArrayRef<Value *> Args, const Twine &NameStr,
3996 BasicBlock *InsertAtEnd) {
3997 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3998 return new (NumOperands)
3999 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4000 NumOperands, NameStr, InsertAtEnd);
4001 }
4002
4003 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4004 BasicBlock *DefaultDest,
4005 ArrayRef<BasicBlock *> IndirectDests,
4006 ArrayRef<Value *> Args,
4007 ArrayRef<OperandBundleDef> Bundles,
4008 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4009 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4010 CountBundleInputs(Bundles));
4011 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4012
4013 return new (NumOperands, DescriptorBytes)
4014 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4015 NumOperands, NameStr, InsertAtEnd);
4016 }
4017
4018 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4019 ArrayRef<BasicBlock *> IndirectDests,
4020 ArrayRef<Value *> Args, const Twine &NameStr,
4021 Instruction *InsertBefore = nullptr) {
4022 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4023 IndirectDests, Args, NameStr, InsertBefore);
4024 }
4025
4026 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4027 ArrayRef<BasicBlock *> IndirectDests,
4028 ArrayRef<Value *> Args,
4029 ArrayRef<OperandBundleDef> Bundles = None,
4030 const Twine &NameStr = "",
4031 Instruction *InsertBefore = nullptr) {
4032 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4033 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4034 }
4035
4036 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4037 ArrayRef<BasicBlock *> IndirectDests,
4038 ArrayRef<Value *> Args, const Twine &NameStr,
4039 BasicBlock *InsertAtEnd) {
4040 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4041 IndirectDests, Args, NameStr, InsertAtEnd);
4042 }
4043
4044 static CallBrInst *Create(FunctionCallee Func,
4045 BasicBlock *DefaultDest,
4046 ArrayRef<BasicBlock *> IndirectDests,
4047 ArrayRef<Value *> Args,
4048 ArrayRef<OperandBundleDef> Bundles,
4049 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4050 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4051 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4052 }
4053
4054 /// Create a clone of \p CBI with a different set of operand bundles and
4055 /// insert it before \p InsertPt.
4056 ///
4057 /// The returned callbr instruction is identical to \p CBI in every way
4058 /// except that the operand bundles for the new instruction are set to the
4059 /// operand bundles in \p Bundles.
4060 static CallBrInst *Create(CallBrInst *CBI,
4061 ArrayRef<OperandBundleDef> Bundles,
4062 Instruction *InsertPt = nullptr);
4063
4064 /// Return the number of callbr indirect dest labels.
4065 ///
4066 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4067
4068 /// getIndirectDestLabel - Return the i-th indirect dest label.
4069 ///
4070 Value *getIndirectDestLabel(unsigned i) const {
4071 assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() &&
"Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4071, __extension__ __PRETTY_FUNCTION__))
;
4072 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4073 1);
4074 }
4075
4076 Value *getIndirectDestLabelUse(unsigned i) const {
4077 assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() &&
"Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4077, __extension__ __PRETTY_FUNCTION__))
;
4078 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4079 1);
4080 }
4081
4082 // Return the destination basic blocks...
4083 BasicBlock *getDefaultDest() const {
4084 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4085 }
4086 BasicBlock *getIndirectDest(unsigned i) const {
4087 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4088 }
4089 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4090 SmallVector<BasicBlock *, 16> IndirectDests;
4091 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4092 IndirectDests.push_back(getIndirectDest(i));
4093 return IndirectDests;
4094 }
4095 void setDefaultDest(BasicBlock *B) {
4096 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4097 }
4098 void setIndirectDest(unsigned i, BasicBlock *B) {
4099 updateArgBlockAddresses(i, B);
4100 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4101 }
4102
4103 BasicBlock *getSuccessor(unsigned i) const {
4104 assert(i < getNumSuccessors() + 1 &&(static_cast <bool> (i < getNumSuccessors() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4105, __extension__ __PRETTY_FUNCTION__))
4105 "Successor # out of range for callbr!")(static_cast <bool> (i < getNumSuccessors() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4105, __extension__ __PRETTY_FUNCTION__))
;
4106 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4107 }
4108
4109 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4110 assert(i < getNumIndirectDests() + 1 &&(static_cast <bool> (i < getNumIndirectDests() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4111, __extension__ __PRETTY_FUNCTION__))
4111 "Successor # out of range for callbr!")(static_cast <bool> (i < getNumIndirectDests() + 1 &&
"Successor # out of range for callbr!") ? void (0) : __assert_fail
("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4111, __extension__ __PRETTY_FUNCTION__))
;
4112 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4113 }
4114
4115 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4116
4117 // Methods for support type inquiry through isa, cast, and dyn_cast:
4118 static bool classof(const Instruction *I) {
4119 return (I->getOpcode() == Instruction::CallBr);
4120 }
4121 static bool classof(const Value *V) {
4122 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4123 }
4124
4125private:
4126 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4127 // method so that subclasses cannot accidentally use it.
4128 template <typename Bitfield>
4129 void setSubclassData(typename Bitfield::Type Value) {
4130 Instruction::setSubclassData<Bitfield>(Value);
4131 }
4132};
4133
4134CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4135 ArrayRef<BasicBlock *> IndirectDests,
4136 ArrayRef<Value *> Args,
4137 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4138 const Twine &NameStr, Instruction *InsertBefore)
4139 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4140 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4141 InsertBefore) {
4142 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4143}
4144
4145CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4146 ArrayRef<BasicBlock *> IndirectDests,
4147 ArrayRef<Value *> Args,
4148 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4149 const Twine &NameStr, BasicBlock *InsertAtEnd)
4150 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4151 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4152 InsertAtEnd) {
4153 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4154}
4155
4156//===----------------------------------------------------------------------===//
4157// ResumeInst Class
4158//===----------------------------------------------------------------------===//
4159
4160//===---------------------------------------------------------------------------
4161/// Resume the propagation of an exception.
4162///
4163class ResumeInst : public Instruction {
4164 ResumeInst(const ResumeInst &RI);
4165
4166 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4167 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4168
4169protected:
4170 // Note: Instruction needs to be a friend here to call cloneImpl.
4171 friend class Instruction;
4172
4173 ResumeInst *cloneImpl() const;
4174
4175public:
4176 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4177 return new(1) ResumeInst(Exn, InsertBefore);
4178 }
4179
4180 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4181 return new(1) ResumeInst(Exn, InsertAtEnd);
4182 }
4183
4184 /// Provide fast operand accessors
4185 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4186
4187 /// Convenience accessor.
4188 Value *getValue() const { return Op<0>(); }
4189
4190 unsigned getNumSuccessors() const { return 0; }
4191
4192 // Methods for support type inquiry through isa, cast, and dyn_cast:
4193 static bool classof(const Instruction *I) {
4194 return I->getOpcode() == Instruction::Resume;
4195 }
4196 static bool classof(const Value *V) {
4197 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4198 }
4199
4200private:
4201 BasicBlock *getSuccessor(unsigned idx) const {
4202 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4202)
;
4203 }
4204
4205 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4206 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4206)
;
4207 }
4208};
4209
4210template <>
4211struct OperandTraits<ResumeInst> :
4212 public FixedNumOperandTraits<ResumeInst, 1> {
4213};
4214
4215DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<ResumeInst>::operands
(this) && "getOperand() out of range!") ? void (0) : __assert_fail
("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4215, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<ResumeInst>::op_begin(const_cast
<ResumeInst*>(this))[i_nocapture].get()); } void ResumeInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast
<bool> (i_nocapture < OperandTraits<ResumeInst>
::operands(this) && "setOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4215, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
ResumeInst>::op_begin(this)[i_nocapture] = Val_nocapture; }
unsigned ResumeInst::getNumOperands() const { return OperandTraits
<ResumeInst>::operands(this); } template <int Idx_nocapture
> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ResumeInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4216
4217//===----------------------------------------------------------------------===//
4218// CatchSwitchInst Class
4219//===----------------------------------------------------------------------===//
4220class CatchSwitchInst : public Instruction {
4221 using UnwindDestField = BoolBitfieldElementT<0>;
4222
4223 /// The number of operands actually allocated. NumOperands is
4224 /// the number actually in use.
4225 unsigned ReservedSpace;
4226
4227 // Operand[0] = Outer scope
4228 // Operand[1] = Unwind block destination
4229 // Operand[n] = BasicBlock to go to on match
4230 CatchSwitchInst(const CatchSwitchInst &CSI);
4231
4232 /// Create a new switch instruction, specifying a
4233 /// default destination. The number of additional handlers can be specified
4234 /// here to make memory allocation more efficient.
4235 /// This constructor can also autoinsert before another instruction.
4236 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4237 unsigned NumHandlers, const Twine &NameStr,
4238 Instruction *InsertBefore);
4239
4240 /// Create a new switch instruction, specifying a
4241 /// default destination. The number of additional handlers can be specified
4242 /// here to make memory allocation more efficient.
4243 /// This constructor also autoinserts at the end of the specified BasicBlock.
4244 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4245 unsigned NumHandlers, const Twine &NameStr,
4246 BasicBlock *InsertAtEnd);
4247
4248 // allocate space for exactly zero operands
4249 void *operator new(size_t S) { return User::operator new(S); }
4250
4251 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4252 void growOperands(unsigned Size);
4253
4254protected:
4255 // Note: Instruction needs to be a friend here to call cloneImpl.
4256 friend class Instruction;
4257
4258 CatchSwitchInst *cloneImpl() const;
4259
4260public:
4261 void operator delete(void *Ptr) { return User::operator delete(Ptr); }
4262
4263 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4264 unsigned NumHandlers,
4265 const Twine &NameStr = "",
4266 Instruction *InsertBefore = nullptr) {
4267 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4268 InsertBefore);
4269 }
4270
4271 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4272 unsigned NumHandlers, const Twine &NameStr,
4273 BasicBlock *InsertAtEnd) {
4274 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr,
4275 InsertAtEnd);
4276 }
4277
4278 /// Provide fast operand accessors
4279 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4280
4281 // Accessor Methods for CatchSwitch stmt
4282 Value *getParentPad() const { return getOperand(0); }
4283 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); }
4284
4285 // Accessor Methods for CatchSwitch stmt
4286 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4287 bool unwindsToCaller() const { return !hasUnwindDest(); }
4288 BasicBlock *getUnwindDest() const {
4289 if (hasUnwindDest())
4290 return cast<BasicBlock>(getOperand(1));
4291 return nullptr;
4292 }
4293 void setUnwindDest(BasicBlock *UnwindDest) {
4294 assert(UnwindDest)(static_cast <bool> (UnwindDest) ? void (0) : __assert_fail
("UnwindDest", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4294, __extension__ __PRETTY_FUNCTION__))
;
4295 assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4295, __extension__ __PRETTY_FUNCTION__))
;
4296 setOperand(1, UnwindDest);
4297 }
4298
4299 /// return the number of 'handlers' in this catchswitch
4300 /// instruction, except the default handler
4301 unsigned getNumHandlers() const {
4302 if (hasUnwindDest())
4303 return getNumOperands() - 2;
4304 return getNumOperands() - 1;
4305 }
4306
4307private:
4308 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); }
4309 static const BasicBlock *handler_helper(const Value *V) {
4310 return cast<BasicBlock>(V);
4311 }
4312
4313public:
4314 using DerefFnTy = BasicBlock *(*)(Value *);
4315 using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>;
4316 using handler_range = iterator_range<handler_iterator>;
4317 using ConstDerefFnTy = const BasicBlock *(*)(const Value *);
4318 using const_handler_iterator =
4319 mapped_iterator<const_op_iterator, ConstDerefFnTy>;
4320 using const_handler_range = iterator_range<const_handler_iterator>;
4321
4322 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4323 handler_iterator handler_begin() {
4324 op_iterator It = op_begin() + 1;
4325 if (hasUnwindDest())
4326 ++It;
4327 return handler_iterator(It, DerefFnTy(handler_helper));
4328 }
4329
4330 /// Returns an iterator that points to the first handler in the
4331 /// CatchSwitchInst.
4332 const_handler_iterator handler_begin() const {
4333 const_op_iterator It = op_begin() + 1;
4334 if (hasUnwindDest())
4335 ++It;
4336 return const_handler_iterator(It, ConstDerefFnTy(handler_helper));
4337 }
4338
4339 /// Returns a read-only iterator that points one past the last
4340 /// handler in the CatchSwitchInst.
4341 handler_iterator handler_end() {
4342 return handler_iterator(op_end(), DerefFnTy(handler_helper));
4343 }
4344
4345 /// Returns an iterator that points one past the last handler in the
4346 /// CatchSwitchInst.
4347 const_handler_iterator handler_end() const {
4348 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper));
4349 }
4350
4351 /// iteration adapter for range-for loops.
4352 handler_range handlers() {
4353 return make_range(handler_begin(), handler_end());
4354 }
4355
4356 /// iteration adapter for range-for loops.
4357 const_handler_range handlers() const {
4358 return make_range(handler_begin(), handler_end());
4359 }
4360
4361 /// Add an entry to the switch instruction...
4362 /// Note:
4363 /// This action invalidates handler_end(). Old handler_end() iterator will
4364 /// point to the added handler.
4365 void addHandler(BasicBlock *Dest);
4366
4367 void removeHandler(handler_iterator HI);
4368
4369 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4370 BasicBlock *getSuccessor(unsigned Idx) const {
4371 assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4372, __extension__ __PRETTY_FUNCTION__))
4372 "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4372, __extension__ __PRETTY_FUNCTION__))
;
4373 return cast<BasicBlock>(getOperand(Idx + 1));
4374 }
4375 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) {
4376 assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4377, __extension__ __PRETTY_FUNCTION__))
4377 "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchswitch!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4377, __extension__ __PRETTY_FUNCTION__))
;
4378 setOperand(Idx + 1, NewSucc);
4379 }
4380
4381 // Methods for support type inquiry through isa, cast, and dyn_cast:
4382 static bool classof(const Instruction *I) {
4383 return I->getOpcode() == Instruction::CatchSwitch;
4384 }
4385 static bool classof(const Value *V) {
4386 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4387 }
4388};
4389
4390template <>
4391struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {};
4392
4393DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return
OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst
::const_op_iterator CatchSwitchInst::op_begin() const { return
OperandTraits<CatchSwitchInst>::op_begin(const_cast<
CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst
::op_end() { return OperandTraits<CatchSwitchInst>::op_end
(this); } CatchSwitchInst::const_op_iterator CatchSwitchInst::
op_end() const { return OperandTraits<CatchSwitchInst>::
op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<CatchSwitchInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4393, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<CatchSwitchInst>::op_begin
(const_cast<CatchSwitchInst*>(this))[i_nocapture].get()
); } void CatchSwitchInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<CatchSwitchInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4393, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
CatchSwitchInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned CatchSwitchInst::getNumOperands() const { return
OperandTraits<CatchSwitchInst>::operands(this); } template
<int Idx_nocapture> Use &CatchSwitchInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &CatchSwitchInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
4394
4395//===----------------------------------------------------------------------===//
4396// CleanupPadInst Class
4397//===----------------------------------------------------------------------===//
4398class CleanupPadInst : public FuncletPadInst {
4399private:
4400 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4401 unsigned Values, const Twine &NameStr,
4402 Instruction *InsertBefore)
4403 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4404 NameStr, InsertBefore) {}
4405 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args,
4406 unsigned Values, const Twine &NameStr,
4407 BasicBlock *InsertAtEnd)
4408 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values,
4409 NameStr, InsertAtEnd) {}
4410
4411public:
4412 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None,
4413 const Twine &NameStr = "",
4414 Instruction *InsertBefore = nullptr) {
4415 unsigned Values = 1 + Args.size();
4416 return new (Values)
4417 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore);
4418 }
4419
4420 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args,
4421 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4422 unsigned Values = 1 + Args.size();
4423 return new (Values)
4424 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd);
4425 }
4426
4427 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4428 static bool classof(const Instruction *I) {
4429 return I->getOpcode() == Instruction::CleanupPad;
4430 }
4431 static bool classof(const Value *V) {
4432 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4433 }
4434};
4435
4436//===----------------------------------------------------------------------===//
4437// CatchPadInst Class
4438//===----------------------------------------------------------------------===//
4439class CatchPadInst : public FuncletPadInst {
4440private:
4441 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4442 unsigned Values, const Twine &NameStr,
4443 Instruction *InsertBefore)
4444 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4445 NameStr, InsertBefore) {}
4446 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args,
4447 unsigned Values, const Twine &NameStr,
4448 BasicBlock *InsertAtEnd)
4449 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values,
4450 NameStr, InsertAtEnd) {}
4451
4452public:
4453 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4454 const Twine &NameStr = "",
4455 Instruction *InsertBefore = nullptr) {
4456 unsigned Values = 1 + Args.size();
4457 return new (Values)
4458 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore);
4459 }
4460
4461 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args,
4462 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4463 unsigned Values = 1 + Args.size();
4464 return new (Values)
4465 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd);
4466 }
4467
4468 /// Convenience accessors
4469 CatchSwitchInst *getCatchSwitch() const {
4470 return cast<CatchSwitchInst>(Op<-1>());
4471 }
4472 void setCatchSwitch(Value *CatchSwitch) {
4473 assert(CatchSwitch)(static_cast <bool> (CatchSwitch) ? void (0) : __assert_fail
("CatchSwitch", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4473, __extension__ __PRETTY_FUNCTION__))
;
4474 Op<-1>() = CatchSwitch;
4475 }
4476
4477 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4478 static bool classof(const Instruction *I) {
4479 return I->getOpcode() == Instruction::CatchPad;
4480 }
4481 static bool classof(const Value *V) {
4482 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4483 }
4484};
4485
4486//===----------------------------------------------------------------------===//
4487// CatchReturnInst Class
4488//===----------------------------------------------------------------------===//
4489
4490class CatchReturnInst : public Instruction {
4491 CatchReturnInst(const CatchReturnInst &RI);
4492 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore);
4493 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd);
4494
4495 void init(Value *CatchPad, BasicBlock *BB);
4496
4497protected:
4498 // Note: Instruction needs to be a friend here to call cloneImpl.
4499 friend class Instruction;
4500
4501 CatchReturnInst *cloneImpl() const;
4502
4503public:
4504 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4505 Instruction *InsertBefore = nullptr) {
4506 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4506, __extension__ __PRETTY_FUNCTION__))
;
4507 assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4507, __extension__ __PRETTY_FUNCTION__))
;
4508 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore);
4509 }
4510
4511 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB,
4512 BasicBlock *InsertAtEnd) {
4513 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4513, __extension__ __PRETTY_FUNCTION__))
;
4514 assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4514, __extension__ __PRETTY_FUNCTION__))
;
4515 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd);
4516 }
4517
4518 /// Provide fast operand accessors
4519 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4520
4521 /// Convenience accessors.
4522 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); }
4523 void setCatchPad(CatchPadInst *CatchPad) {
4524 assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail
("CatchPad", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4524, __extension__ __PRETTY_FUNCTION__))
;
4525 Op<0>() = CatchPad;
4526 }
4527
4528 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); }
4529 void setSuccessor(BasicBlock *NewSucc) {
4530 assert(NewSucc)(static_cast <bool> (NewSucc) ? void (0) : __assert_fail
("NewSucc", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4530, __extension__ __PRETTY_FUNCTION__))
;
4531 Op<1>() = NewSucc;
4532 }
4533 unsigned getNumSuccessors() const { return 1; }
4534
4535 /// Get the parentPad of this catchret's catchpad's catchswitch.
4536 /// The successor block is implicitly a member of this funclet.
4537 Value *getCatchSwitchParentPad() const {
4538 return getCatchPad()->getCatchSwitch()->getParentPad();
4539 }
4540
4541 // Methods for support type inquiry through isa, cast, and dyn_cast:
4542 static bool classof(const Instruction *I) {
4543 return (I->getOpcode() == Instruction::CatchRet);
4544 }
4545 static bool classof(const Value *V) {
4546 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4547 }
4548
4549private:
4550 BasicBlock *getSuccessor(unsigned Idx) const {
4551 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchret!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4551, __extension__ __PRETTY_FUNCTION__))
;
4552 return getSuccessor();
4553 }
4554
4555 void setSuccessor(unsigned Idx, BasicBlock *B) {
4556 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() &&
"Successor # out of range for catchret!") ? void (0) : __assert_fail
("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4556, __extension__ __PRETTY_FUNCTION__))
;
4557 setSuccessor(B);
4558 }
4559};
4560
4561template <>
4562struct OperandTraits<CatchReturnInst>
4563 : public FixedNumOperandTraits<CatchReturnInst, 2> {};
4564
4565DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return
OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst
::const_op_iterator CatchReturnInst::op_begin() const { return
OperandTraits<CatchReturnInst>::op_begin(const_cast<
CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst
::op_end() { return OperandTraits<CatchReturnInst>::op_end
(this); } CatchReturnInst::const_op_iterator CatchReturnInst::
op_end() const { return OperandTraits<CatchReturnInst>::
op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst
::getOperand(unsigned i_nocapture) const { (static_cast <bool
> (i_nocapture < OperandTraits<CatchReturnInst>::
operands(this) && "getOperand() out of range!") ? void
(0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4565, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<CatchReturnInst>::op_begin
(const_cast<CatchReturnInst*>(this))[i_nocapture].get()
); } void CatchReturnInst::setOperand(unsigned i_nocapture, Value
*Val_nocapture) { (static_cast <bool> (i_nocapture <
OperandTraits<CatchReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4565, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
CatchReturnInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned CatchReturnInst::getNumOperands() const { return
OperandTraits<CatchReturnInst>::operands(this); } template
<int Idx_nocapture> Use &CatchReturnInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &CatchReturnInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
4566
4567//===----------------------------------------------------------------------===//
4568// CleanupReturnInst Class
4569//===----------------------------------------------------------------------===//
4570
4571class CleanupReturnInst : public Instruction {
4572 using UnwindDestField = BoolBitfieldElementT<0>;
4573
4574private:
4575 CleanupReturnInst(const CleanupReturnInst &RI);
4576 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4577 Instruction *InsertBefore = nullptr);
4578 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values,
4579 BasicBlock *InsertAtEnd);
4580
4581 void init(Value *CleanupPad, BasicBlock *UnwindBB);
4582
4583protected:
4584 // Note: Instruction needs to be a friend here to call cloneImpl.
4585 friend class Instruction;
4586
4587 CleanupReturnInst *cloneImpl() const;
4588
4589public:
4590 static CleanupReturnInst *Create(Value *CleanupPad,
4591 BasicBlock *UnwindBB = nullptr,
4592 Instruction *InsertBefore = nullptr) {
4593 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4593, __extension__ __PRETTY_FUNCTION__))
;
4594 unsigned Values = 1;
4595 if (UnwindBB)
4596 ++Values;
4597 return new (Values)
4598 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore);
4599 }
4600
4601 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB,
4602 BasicBlock *InsertAtEnd) {
4603 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4603, __extension__ __PRETTY_FUNCTION__))
;
4604 unsigned Values = 1;
4605 if (UnwindBB)
4606 ++Values;
4607 return new (Values)
4608 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd);
4609 }
4610
4611 /// Provide fast operand accessors
4612 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4613
4614 bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); }
4615 bool unwindsToCaller() const { return !hasUnwindDest(); }
4616
4617 /// Convenience accessor.
4618 CleanupPadInst *getCleanupPad() const {
4619 return cast<CleanupPadInst>(Op<0>());
4620 }
4621 void setCleanupPad(CleanupPadInst *CleanupPad) {
4622 assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail
("CleanupPad", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4622, __extension__ __PRETTY_FUNCTION__))
;
4623 Op<0>() = CleanupPad;
4624 }
4625
4626 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4627
4628 BasicBlock *getUnwindDest() const {
4629 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr;
4630 }
4631 void setUnwindDest(BasicBlock *NewDest) {
4632 assert(NewDest)(static_cast <bool> (NewDest) ? void (0) : __assert_fail
("NewDest", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4632, __extension__ __PRETTY_FUNCTION__))
;
4633 assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail
("hasUnwindDest()", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4633, __extension__ __PRETTY_FUNCTION__))
;
4634 Op<1>() = NewDest;
4635 }
4636
4637 // Methods for support type inquiry through isa, cast, and dyn_cast:
4638 static bool classof(const Instruction *I) {
4639 return (I->getOpcode() == Instruction::CleanupRet);
4640 }
4641 static bool classof(const Value *V) {
4642 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4643 }
4644
4645private:
4646 BasicBlock *getSuccessor(unsigned Idx) const {
4647 assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail
("Idx == 0", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4647, __extension__ __PRETTY_FUNCTION__))
;
4648 return getUnwindDest();
4649 }
4650
4651 void setSuccessor(unsigned Idx, BasicBlock *B) {
4652 assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail
("Idx == 0", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4652, __extension__ __PRETTY_FUNCTION__))
;
4653 setUnwindDest(B);
4654 }
4655
4656 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4657 // method so that subclasses cannot accidentally use it.
4658 template <typename Bitfield>
4659 void setSubclassData(typename Bitfield::Type Value) {
4660 Instruction::setSubclassData<Bitfield>(Value);
4661 }
4662};
4663
4664template <>
4665struct OperandTraits<CleanupReturnInst>
4666 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {};
4667
4668DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() {
return OperandTraits<CleanupReturnInst>::op_begin(this
); } CleanupReturnInst::const_op_iterator CleanupReturnInst::
op_begin() const { return OperandTraits<CleanupReturnInst>
::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst
::op_iterator CleanupReturnInst::op_end() { return OperandTraits
<CleanupReturnInst>::op_end(this); } CleanupReturnInst::
const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits
<CleanupReturnInst>::op_end(const_cast<CleanupReturnInst
*>(this)); } Value *CleanupReturnInst::getOperand(unsigned
i_nocapture) const { (static_cast <bool> (i_nocapture <
OperandTraits<CleanupReturnInst>::operands(this) &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4668, __extension__ __PRETTY_FUNCTION__)); return cast_or_null
<Value>( OperandTraits<CleanupReturnInst>::op_begin
(const_cast<CleanupReturnInst*>(this))[i_nocapture].get
()); } void CleanupReturnInst::setOperand(unsigned i_nocapture
, Value *Val_nocapture) { (static_cast <bool> (i_nocapture
< OperandTraits<CleanupReturnInst>::operands(this) &&
"setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4668, __extension__ __PRETTY_FUNCTION__)); OperandTraits<
CleanupReturnInst>::op_begin(this)[i_nocapture] = Val_nocapture
; } unsigned CleanupReturnInst::getNumOperands() const { return
OperandTraits<CleanupReturnInst>::operands(this); } template
<int Idx_nocapture> Use &CleanupReturnInst::Op() {
return this->OpFrom<Idx_nocapture>(this); } template
<int Idx_nocapture> const Use &CleanupReturnInst::
Op() const { return this->OpFrom<Idx_nocapture>(this
); }
4669
4670//===----------------------------------------------------------------------===//
4671// UnreachableInst Class
4672//===----------------------------------------------------------------------===//
4673
4674//===---------------------------------------------------------------------------
4675/// This function has undefined behavior. In particular, the
4676/// presence of this instruction indicates some higher level knowledge that the
4677/// end of the block cannot be reached.
4678///
4679class UnreachableInst : public Instruction {
4680protected:
4681 // Note: Instruction needs to be a friend here to call cloneImpl.
4682 friend class Instruction;
4683
4684 UnreachableInst *cloneImpl() const;
4685
4686public:
4687 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
4688 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
4689
4690 // allocate space for exactly zero operands
4691 void *operator new(size_t S) { return User::operator new(S, 0); }
4692 void operator delete(void *Ptr) { User::operator delete(Ptr); }
4693
4694 unsigned getNumSuccessors() const { return 0; }
4695
4696 // Methods for support type inquiry through isa, cast, and dyn_cast:
4697 static bool classof(const Instruction *I) {
4698 return I->getOpcode() == Instruction::Unreachable;
4699 }
4700 static bool classof(const Value *V) {
4701 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4702 }
4703
4704private:
4705 BasicBlock *getSuccessor(unsigned idx) const {
4706 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4706)
;
4707 }
4708
4709 void setSuccessor(unsigned idx, BasicBlock *B) {
4710 llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!"
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 4710)
;
4711 }
4712};
4713
4714//===----------------------------------------------------------------------===//
4715// TruncInst Class
4716//===----------------------------------------------------------------------===//
4717
4718/// This class represents a truncation of integer types.
4719class TruncInst : public CastInst {
4720protected:
4721 // Note: Instruction needs to be a friend here to call cloneImpl.
4722 friend class Instruction;
4723
4724 /// Clone an identical TruncInst
4725 TruncInst *cloneImpl() const;
4726
4727public:
4728 /// Constructor with insert-before-instruction semantics
4729 TruncInst(
4730 Value *S, ///< The value to be truncated
4731 Type *Ty, ///< The (smaller) type to truncate to
4732 const Twine &NameStr = "", ///< A name for the new instruction
4733 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4734 );
4735
4736 /// Constructor with insert-at-end-of-block semantics
4737 TruncInst(
4738 Value *S, ///< The value to be truncated
4739 Type *Ty, ///< The (smaller) type to truncate to
4740 const Twine &NameStr, ///< A name for the new instruction
4741 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4742 );
4743
4744 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4745 static bool classof(const Instruction *I) {
4746 return I->getOpcode() == Trunc;
4747 }
4748 static bool classof(const Value *V) {
4749 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4750 }
4751};
4752
4753//===----------------------------------------------------------------------===//
4754// ZExtInst Class
4755//===----------------------------------------------------------------------===//
4756
4757/// This class represents zero extension of integer types.
4758class ZExtInst : public CastInst {
4759protected:
4760 // Note: Instruction needs to be a friend here to call cloneImpl.
4761 friend class Instruction;
4762
4763 /// Clone an identical ZExtInst
4764 ZExtInst *cloneImpl() const;
4765
4766public:
4767 /// Constructor with insert-before-instruction semantics
4768 ZExtInst(
4769 Value *S, ///< The value to be zero extended
4770 Type *Ty, ///< The type to zero extend to
4771 const Twine &NameStr = "", ///< A name for the new instruction
4772 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4773 );
4774
4775 /// Constructor with insert-at-end semantics.
4776 ZExtInst(
4777 Value *S, ///< The value to be zero extended
4778 Type *Ty, ///< The type to zero extend to
4779 const Twine &NameStr, ///< A name for the new instruction
4780 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4781 );
4782
4783 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4784 static bool classof(const Instruction *I) {
4785 return I->getOpcode() == ZExt;
4786 }
4787 static bool classof(const Value *V) {
4788 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4789 }
4790};
4791
4792//===----------------------------------------------------------------------===//
4793// SExtInst Class
4794//===----------------------------------------------------------------------===//
4795
4796/// This class represents a sign extension of integer types.
4797class SExtInst : public CastInst {
4798protected:
4799 // Note: Instruction needs to be a friend here to call cloneImpl.
4800 friend class Instruction;
4801
4802 /// Clone an identical SExtInst
4803 SExtInst *cloneImpl() const;
4804
4805public:
4806 /// Constructor with insert-before-instruction semantics
4807 SExtInst(
4808 Value *S, ///< The value to be sign extended
4809 Type *Ty, ///< The type to sign extend to
4810 const Twine &NameStr = "", ///< A name for the new instruction
4811 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4812 );
4813
4814 /// Constructor with insert-at-end-of-block semantics
4815 SExtInst(
4816 Value *S, ///< The value to be sign extended
4817 Type *Ty, ///< The type to sign extend to
4818 const Twine &NameStr, ///< A name for the new instruction
4819 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4820 );
4821
4822 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4823 static bool classof(const Instruction *I) {
4824 return I->getOpcode() == SExt;
4825 }
4826 static bool classof(const Value *V) {
4827 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4828 }
4829};
4830
4831//===----------------------------------------------------------------------===//
4832// FPTruncInst Class
4833//===----------------------------------------------------------------------===//
4834
4835/// This class represents a truncation of floating point types.
4836class FPTruncInst : public CastInst {
4837protected:
4838 // Note: Instruction needs to be a friend here to call cloneImpl.
4839 friend class Instruction;
4840
4841 /// Clone an identical FPTruncInst
4842 FPTruncInst *cloneImpl() const;
4843
4844public:
4845 /// Constructor with insert-before-instruction semantics
4846 FPTruncInst(
4847 Value *S, ///< The value to be truncated
4848 Type *Ty, ///< The type to truncate to
4849 const Twine &NameStr = "", ///< A name for the new instruction
4850 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4851 );
4852
4853 /// Constructor with insert-before-instruction semantics
4854 FPTruncInst(
4855 Value *S, ///< The value to be truncated
4856 Type *Ty, ///< The type to truncate to
4857 const Twine &NameStr, ///< A name for the new instruction
4858 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4859 );
4860
4861 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4862 static bool classof(const Instruction *I) {
4863 return I->getOpcode() == FPTrunc;
4864 }
4865 static bool classof(const Value *V) {
4866 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4867 }
4868};
4869
4870//===----------------------------------------------------------------------===//
4871// FPExtInst Class
4872//===----------------------------------------------------------------------===//
4873
4874/// This class represents an extension of floating point types.
4875class FPExtInst : public CastInst {
4876protected:
4877 // Note: Instruction needs to be a friend here to call cloneImpl.
4878 friend class Instruction;
4879
4880 /// Clone an identical FPExtInst
4881 FPExtInst *cloneImpl() const;
4882
4883public:
4884 /// Constructor with insert-before-instruction semantics
4885 FPExtInst(
4886 Value *S, ///< The value to be extended
4887 Type *Ty, ///< The type to extend to
4888 const Twine &NameStr = "", ///< A name for the new instruction
4889 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4890 );
4891
4892 /// Constructor with insert-at-end-of-block semantics
4893 FPExtInst(
4894 Value *S, ///< The value to be extended
4895 Type *Ty, ///< The type to extend to
4896 const Twine &NameStr, ///< A name for the new instruction
4897 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4898 );
4899
4900 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4901 static bool classof(const Instruction *I) {
4902 return I->getOpcode() == FPExt;
4903 }
4904 static bool classof(const Value *V) {
4905 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4906 }
4907};
4908
4909//===----------------------------------------------------------------------===//
4910// UIToFPInst Class
4911//===----------------------------------------------------------------------===//
4912
4913/// This class represents a cast unsigned integer to floating point.
4914class UIToFPInst : public CastInst {
4915protected:
4916 // Note: Instruction needs to be a friend here to call cloneImpl.
4917 friend class Instruction;
4918
4919 /// Clone an identical UIToFPInst
4920 UIToFPInst *cloneImpl() const;
4921
4922public:
4923 /// Constructor with insert-before-instruction semantics
4924 UIToFPInst(
4925 Value *S, ///< The value to be converted
4926 Type *Ty, ///< The type to convert to
4927 const Twine &NameStr = "", ///< A name for the new instruction
4928 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4929 );
4930
4931 /// Constructor with insert-at-end-of-block semantics
4932 UIToFPInst(
4933 Value *S, ///< The value to be converted
4934 Type *Ty, ///< The type to convert to
4935 const Twine &NameStr, ///< A name for the new instruction
4936 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4937 );
4938
4939 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4940 static bool classof(const Instruction *I) {
4941 return I->getOpcode() == UIToFP;
4942 }
4943 static bool classof(const Value *V) {
4944 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4945 }
4946};
4947
4948//===----------------------------------------------------------------------===//
4949// SIToFPInst Class
4950//===----------------------------------------------------------------------===//
4951
4952/// This class represents a cast from signed integer to floating point.
4953class SIToFPInst : public CastInst {
4954protected:
4955 // Note: Instruction needs to be a friend here to call cloneImpl.
4956 friend class Instruction;
4957
4958 /// Clone an identical SIToFPInst
4959 SIToFPInst *cloneImpl() const;
4960
4961public:
4962 /// Constructor with insert-before-instruction semantics
4963 SIToFPInst(
4964 Value *S, ///< The value to be converted
4965 Type *Ty, ///< The type to convert to
4966 const Twine &NameStr = "", ///< A name for the new instruction
4967 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
4968 );
4969
4970 /// Constructor with insert-at-end-of-block semantics
4971 SIToFPInst(
4972 Value *S, ///< The value to be converted
4973 Type *Ty, ///< The type to convert to
4974 const Twine &NameStr, ///< A name for the new instruction
4975 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
4976 );
4977
4978 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4979 static bool classof(const Instruction *I) {
4980 return I->getOpcode() == SIToFP;
4981 }
4982 static bool classof(const Value *V) {
4983 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4984 }
4985};
4986
4987//===----------------------------------------------------------------------===//
4988// FPToUIInst Class
4989//===----------------------------------------------------------------------===//
4990
4991/// This class represents a cast from floating point to unsigned integer
4992class FPToUIInst : public CastInst {
4993protected:
4994 // Note: Instruction needs to be a friend here to call cloneImpl.
4995 friend class Instruction;
4996
4997 /// Clone an identical FPToUIInst
4998 FPToUIInst *cloneImpl() const;
4999
5000public:
5001 /// Constructor with insert-before-instruction semantics
5002 FPToUIInst(
5003 Value *S, ///< The value to be converted
5004 Type *Ty, ///< The type to convert to
5005 const Twine &NameStr = "", ///< A name for the new instruction
5006 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5007 );
5008
5009 /// Constructor with insert-at-end-of-block semantics
5010 FPToUIInst(
5011 Value *S, ///< The value to be converted
5012 Type *Ty, ///< The type to convert to
5013 const Twine &NameStr, ///< A name for the new instruction
5014 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
5015 );
5016
5017 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5018 static bool classof(const Instruction *I) {
5019 return I->getOpcode() == FPToUI;
5020 }
5021 static bool classof(const Value *V) {
5022 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5023 }
5024};
5025
5026//===----------------------------------------------------------------------===//
5027// FPToSIInst Class
5028//===----------------------------------------------------------------------===//
5029
5030/// This class represents a cast from floating point to signed integer.
5031class FPToSIInst : public CastInst {
5032protected:
5033 // Note: Instruction needs to be a friend here to call cloneImpl.
5034 friend class Instruction;
5035
5036 /// Clone an identical FPToSIInst
5037 FPToSIInst *cloneImpl() const;
5038
5039public:
5040 /// Constructor with insert-before-instruction semantics
5041 FPToSIInst(
5042 Value *S, ///< The value to be converted
5043 Type *Ty, ///< The type to convert to
5044 const Twine &NameStr = "", ///< A name for the new instruction
5045 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5046 );
5047
5048 /// Constructor with insert-at-end-of-block semantics
5049 FPToSIInst(
5050 Value *S, ///< The value to be converted
5051 Type *Ty, ///< The type to convert to
5052 const Twine &NameStr, ///< A name for the new instruction
5053 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5054 );
5055
5056 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5057 static bool classof(const Instruction *I) {
5058 return I->getOpcode() == FPToSI;
5059 }
5060 static bool classof(const Value *V) {
5061 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5062 }
5063};
5064
5065//===----------------------------------------------------------------------===//
5066// IntToPtrInst Class
5067//===----------------------------------------------------------------------===//
5068
5069/// This class represents a cast from an integer to a pointer.
5070class IntToPtrInst : public CastInst {
5071public:
5072 // Note: Instruction needs to be a friend here to call cloneImpl.
5073 friend class Instruction;
5074
5075 /// Constructor with insert-before-instruction semantics
5076 IntToPtrInst(
5077 Value *S, ///< The value to be converted
5078 Type *Ty, ///< The type to convert to
5079 const Twine &NameStr = "", ///< A name for the new instruction
5080 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5081 );
5082
5083 /// Constructor with insert-at-end-of-block semantics
5084 IntToPtrInst(
5085 Value *S, ///< The value to be converted
5086 Type *Ty, ///< The type to convert to
5087 const Twine &NameStr, ///< A name for the new instruction
5088 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5089 );
5090
5091 /// Clone an identical IntToPtrInst.
5092 IntToPtrInst *cloneImpl() const;
5093
5094 /// Returns the address space of this instruction's pointer type.
5095 unsigned getAddressSpace() const {
5096 return getType()->getPointerAddressSpace();
5097 }
5098
5099 // Methods for support type inquiry through isa, cast, and dyn_cast:
5100 static bool classof(const Instruction *I) {
5101 return I->getOpcode() == IntToPtr;
5102 }
5103 static bool classof(const Value *V) {
5104 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5105 }
5106};
5107
5108//===----------------------------------------------------------------------===//
5109// PtrToIntInst Class
5110//===----------------------------------------------------------------------===//
5111
5112/// This class represents a cast from a pointer to an integer.
5113class PtrToIntInst : public CastInst {
5114protected:
5115 // Note: Instruction needs to be a friend here to call cloneImpl.
5116 friend class Instruction;
5117
5118 /// Clone an identical PtrToIntInst.
5119 PtrToIntInst *cloneImpl() const;
5120
5121public:
5122 /// Constructor with insert-before-instruction semantics
5123 PtrToIntInst(
5124 Value *S, ///< The value to be converted
5125 Type *Ty, ///< The type to convert to
5126 const Twine &NameStr = "", ///< A name for the new instruction
5127 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5128 );
5129
5130 /// Constructor with insert-at-end-of-block semantics
5131 PtrToIntInst(
5132 Value *S, ///< The value to be converted
5133 Type *Ty, ///< The type to convert to
5134 const Twine &NameStr, ///< A name for the new instruction
5135 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5136 );
5137
5138 /// Gets the pointer operand.
5139 Value *getPointerOperand() { return getOperand(0); }
5140 /// Gets the pointer operand.
5141 const Value *getPointerOperand() const { return getOperand(0); }
5142 /// Gets the operand index of the pointer operand.
5143 static unsigned getPointerOperandIndex() { return 0U; }
5144
5145 /// Returns the address space of the pointer operand.
5146 unsigned getPointerAddressSpace() const {
5147 return getPointerOperand()->getType()->getPointerAddressSpace();
5148 }
5149
5150 // Methods for support type inquiry through isa, cast, and dyn_cast:
5151 static bool classof(const Instruction *I) {
5152 return I->getOpcode() == PtrToInt;
5153 }
5154 static bool classof(const Value *V) {
5155 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5156 }
5157};
5158
5159//===----------------------------------------------------------------------===//
5160// BitCastInst Class
5161//===----------------------------------------------------------------------===//
5162
5163/// This class represents a no-op cast from one type to another.
5164class BitCastInst : public CastInst {
5165protected:
5166 // Note: Instruction needs to be a friend here to call cloneImpl.
5167 friend class Instruction;
5168
5169 /// Clone an identical BitCastInst.
5170 BitCastInst *cloneImpl() const;
5171
5172public:
5173 /// Constructor with insert-before-instruction semantics
5174 BitCastInst(
5175 Value *S, ///< The value to be casted
5176 Type *Ty, ///< The type to casted to
5177 const Twine &NameStr = "", ///< A name for the new instruction
5178 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5179 );
5180
5181 /// Constructor with insert-at-end-of-block semantics
5182 BitCastInst(
5183 Value *S, ///< The value to be casted
5184 Type *Ty, ///< The type to casted to
5185 const Twine &NameStr, ///< A name for the new instruction
5186 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5187 );
5188
5189 // Methods for support type inquiry through isa, cast, and dyn_cast:
5190 static bool classof(const Instruction *I) {
5191 return I->getOpcode() == BitCast;
5192 }
5193 static bool classof(const Value *V) {
5194 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5195 }
5196};
5197
5198//===----------------------------------------------------------------------===//
5199// AddrSpaceCastInst Class
5200//===----------------------------------------------------------------------===//
5201
5202/// This class represents a conversion between pointers from one address space
5203/// to another.
5204class AddrSpaceCastInst : public CastInst {
5205protected:
5206 // Note: Instruction needs to be a friend here to call cloneImpl.
5207 friend class Instruction;
5208
5209 /// Clone an identical AddrSpaceCastInst.
5210 AddrSpaceCastInst *cloneImpl() const;
5211
5212public:
5213 /// Constructor with insert-before-instruction semantics
5214 AddrSpaceCastInst(
5215 Value *S, ///< The value to be casted
5216 Type *Ty, ///< The type to casted to
5217 const Twine &NameStr = "", ///< A name for the new instruction
5218 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
5219 );
5220
5221 /// Constructor with insert-at-end-of-block semantics
5222 AddrSpaceCastInst(
5223 Value *S, ///< The value to be casted
5224 Type *Ty, ///< The type to casted to
5225 const Twine &NameStr, ///< A name for the new instruction
5226 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
5227 );
5228
5229 // Methods for support type inquiry through isa, cast, and dyn_cast:
5230 static bool classof(const Instruction *I) {
5231 return I->getOpcode() == AddrSpaceCast;
5232 }
5233 static bool classof(const Value *V) {
5234 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5235 }
5236
5237 /// Gets the pointer operand.
5238 Value *getPointerOperand() {
5239 return getOperand(0);
5240 }
5241
5242 /// Gets the pointer operand.
5243 const Value *getPointerOperand() const {
5244 return getOperand(0);
5245 }
5246
5247 /// Gets the operand index of the pointer operand.
5248 static unsigned getPointerOperandIndex() {
5249 return 0U;
5250 }
5251
5252 /// Returns the address space of the pointer operand.
5253 unsigned getSrcAddressSpace() const {
5254 return getPointerOperand()->getType()->getPointerAddressSpace();
5255 }
5256
5257 /// Returns the address space of the result.
5258 unsigned getDestAddressSpace() const {
5259 return getType()->getPointerAddressSpace();
5260 }
5261};
5262
5263/// A helper function that returns the pointer operand of a load or store
5264/// instruction. Returns nullptr if not load or store.
5265inline const Value *getLoadStorePointerOperand(const Value *V) {
5266 if (auto *Load = dyn_cast<LoadInst>(V))
5267 return Load->getPointerOperand();
5268 if (auto *Store = dyn_cast<StoreInst>(V))
5269 return Store->getPointerOperand();
5270 return nullptr;
5271}
5272inline Value *getLoadStorePointerOperand(Value *V) {
5273 return const_cast<Value *>(
5274 getLoadStorePointerOperand(static_cast<const Value *>(V)));
5275}
5276
5277/// A helper function that returns the pointer operand of a load, store
5278/// or GEP instruction. Returns nullptr if not load, store, or GEP.
5279inline const Value *getPointerOperand(const Value *V) {
5280 if (auto *Ptr = getLoadStorePointerOperand(V))
5281 return Ptr;
5282 if (auto *Gep = dyn_cast<GetElementPtrInst>(V))
5283 return Gep->getPointerOperand();
5284 return nullptr;
5285}
5286inline Value *getPointerOperand(Value *V) {
5287 return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V)));
5288}
5289
5290/// A helper function that returns the alignment of load or store instruction.
5291inline Align getLoadStoreAlignment(Value *I) {
5292 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 5293, __extension__ __PRETTY_FUNCTION__))
5293 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 5293, __extension__ __PRETTY_FUNCTION__))
;
5294 if (auto *LI = dyn_cast<LoadInst>(I))
5295 return LI->getAlign();
5296 return cast<StoreInst>(I)->getAlign();
5297}
5298
5299/// A helper function that returns the address space of the pointer operand of
5300/// load or store instruction.
5301inline unsigned getLoadStoreAddressSpace(Value *I) {
5302 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 5303, __extension__ __PRETTY_FUNCTION__))
5303 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 5303, __extension__ __PRETTY_FUNCTION__))
;
5304 if (auto *LI = dyn_cast<LoadInst>(I))
5305 return LI->getPointerAddressSpace();
5306 return cast<StoreInst>(I)->getPointerAddressSpace();
5307}
5308
5309/// A helper function that returns the type of a load or store instruction.
5310inline Type *getLoadStoreType(Value *I) {
5311 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 5312, __extension__ __PRETTY_FUNCTION__))
5312 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/Instructions.h"
, 5312, __extension__ __PRETTY_FUNCTION__))
;
5313 if (auto *LI = dyn_cast<LoadInst>(I))
5314 return LI->getType();
5315 return cast<StoreInst>(I)->getValueOperand()->getType();
5316}
5317
5318//===----------------------------------------------------------------------===//
5319// FreezeInst Class
5320//===----------------------------------------------------------------------===//
5321
5322/// This class represents a freeze function that returns random concrete
5323/// value if an operand is either a poison value or an undef value
5324class FreezeInst : public UnaryInstruction {
5325protected:
5326 // Note: Instruction needs to be a friend here to call cloneImpl.
5327 friend class Instruction;
5328
5329 /// Clone an identical FreezeInst
5330 FreezeInst *cloneImpl() const;
5331
5332public:
5333 explicit FreezeInst(Value *S,
5334 const Twine &NameStr = "",
5335 Instruction *InsertBefore = nullptr);
5336 FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd);
5337
5338 // Methods for support type inquiry through isa, cast, and dyn_cast:
5339 static inline bool classof(const Instruction *I) {
5340 return I->getOpcode() == Freeze;
5341 }
5342 static inline bool classof(const Value *V) {
5343 return isa<Instruction>(V) && classof(cast<Instruction>(V));
5344 }
5345};
5346
5347} // end namespace llvm
5348
5349#endif // LLVM_IR_INSTRUCTIONS_H

/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/PatternMatch.h

1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InstrTypes.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Value.h"
43#include "llvm/Support/Casting.h"
44#include <cstdint>
45
46namespace llvm {
47namespace PatternMatch {
48
49template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
33
Calling 'BinaryOp_match::match'
38
Returning from 'BinaryOp_match::match'
39
Returning the value 1, which participates in a condition later
51}
52
53template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55}
56
57template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65};
66
67template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69}
70
71template <typename Class> struct class_match {
72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73};
74
75/// Match an arbitrary value and ignore it.
76inline class_match<Value> m_Value() { return class_match<Value>(); }
77
78/// Match an arbitrary unary operation and ignore it.
79inline class_match<UnaryOperator> m_UnOp() {
80 return class_match<UnaryOperator>();
81}
82
83/// Match an arbitrary binary operation and ignore it.
84inline class_match<BinaryOperator> m_BinOp() {
85 return class_match<BinaryOperator>();
86}
87
88/// Matches any compare instruction and ignore it.
89inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90
91struct undef_match {
92 static bool check(const Value *V) {
93 if (isa<UndefValue>(V))
94 return true;
95
96 const auto *CA = dyn_cast<ConstantAggregate>(V);
97 if (!CA)
98 return false;
99
100 SmallPtrSet<const ConstantAggregate *, 8> Seen;
101 SmallVector<const ConstantAggregate *, 8> Worklist;
102
103 // Either UndefValue, PoisonValue, or an aggregate that only contains
104 // these is accepted by matcher.
105 // CheckValue returns false if CA cannot satisfy this constraint.
106 auto CheckValue = [&](const ConstantAggregate *CA) {
107 for (const Value *Op : CA->operand_values()) {
108 if (isa<UndefValue>(Op))
109 continue;
110
111 const auto *CA = dyn_cast<ConstantAggregate>(Op);
112 if (!CA)
113 return false;
114 if (Seen.insert(CA).second)
115 Worklist.emplace_back(CA);
116 }
117
118 return true;
119 };
120
121 if (!CheckValue(CA))
122 return false;
123
124 while (!Worklist.empty()) {
125 if (!CheckValue(Worklist.pop_back_val()))
126 return false;
127 }
128 return true;
129 }
130 template <typename ITy> bool match(ITy *V) { return check(V); }
131};
132
133/// Match an arbitrary undef constant. This matches poison as well.
134/// If this is an aggregate and contains a non-aggregate element that is
135/// neither undef nor poison, the aggregate is not matched.
136inline auto m_Undef() { return undef_match(); }
137
138/// Match an arbitrary poison constant.
139inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
140
141/// Match an arbitrary Constant and ignore it.
142inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
143
144/// Match an arbitrary ConstantInt and ignore it.
145inline class_match<ConstantInt> m_ConstantInt() {
146 return class_match<ConstantInt>();
147}
148
149/// Match an arbitrary ConstantFP and ignore it.
150inline class_match<ConstantFP> m_ConstantFP() {
151 return class_match<ConstantFP>();
152}
153
154/// Match an arbitrary ConstantExpr and ignore it.
155inline class_match<ConstantExpr> m_ConstantExpr() {
156 return class_match<ConstantExpr>();
157}
158
159/// Match an arbitrary basic block value and ignore it.
160inline class_match<BasicBlock> m_BasicBlock() {
161 return class_match<BasicBlock>();
162}
163
164/// Inverting matcher
165template <typename Ty> struct match_unless {
166 Ty M;
167
168 match_unless(const Ty &Matcher) : M(Matcher) {}
169
170 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
171};
172
173/// Match if the inner matcher does *NOT* match.
174template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
175 return match_unless<Ty>(M);
176}
177
178/// Matching combinators
179template <typename LTy, typename RTy> struct match_combine_or {
180 LTy L;
181 RTy R;
182
183 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
184
185 template <typename ITy> bool match(ITy *V) {
186 if (L.match(V))
187 return true;
188 if (R.match(V))
189 return true;
190 return false;
191 }
192};
193
194template <typename LTy, typename RTy> struct match_combine_and {
195 LTy L;
196 RTy R;
197
198 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
199
200 template <typename ITy> bool match(ITy *V) {
201 if (L.match(V))
202 if (R.match(V))
203 return true;
204 return false;
205 }
206};
207
208/// Combine two pattern matchers matching L || R
209template <typename LTy, typename RTy>
210inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
211 return match_combine_or<LTy, RTy>(L, R);
212}
213
214/// Combine two pattern matchers matching L && R
215template <typename LTy, typename RTy>
216inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
217 return match_combine_and<LTy, RTy>(L, R);
218}
219
220struct apint_match {
221 const APInt *&Res;
222 bool AllowUndef;
223
224 apint_match(const APInt *&Res, bool AllowUndef)
225 : Res(Res), AllowUndef(AllowUndef) {}
226
227 template <typename ITy> bool match(ITy *V) {
228 if (auto *CI = dyn_cast<ConstantInt>(V)) {
229 Res = &CI->getValue();
230 return true;
231 }
232 if (V->getType()->isVectorTy())
233 if (const auto *C = dyn_cast<Constant>(V))
234 if (auto *CI = dyn_cast_or_null<ConstantInt>(
235 C->getSplatValue(AllowUndef))) {
236 Res = &CI->getValue();
237 return true;
238 }
239 return false;
240 }
241};
242// Either constexpr if or renaming ConstantFP::getValueAPF to
243// ConstantFP::getValue is needed to do it via single template
244// function for both apint/apfloat.
245struct apfloat_match {
246 const APFloat *&Res;
247 bool AllowUndef;
248
249 apfloat_match(const APFloat *&Res, bool AllowUndef)
250 : Res(Res), AllowUndef(AllowUndef) {}
251
252 template <typename ITy> bool match(ITy *V) {
253 if (auto *CI = dyn_cast<ConstantFP>(V)) {
254 Res = &CI->getValueAPF();
255 return true;
256 }
257 if (V->getType()->isVectorTy())
258 if (const auto *C = dyn_cast<Constant>(V))
259 if (auto *CI = dyn_cast_or_null<ConstantFP>(
260 C->getSplatValue(AllowUndef))) {
261 Res = &CI->getValueAPF();
262 return true;
263 }
264 return false;
265 }
266};
267
268/// Match a ConstantInt or splatted ConstantVector, binding the
269/// specified pointer to the contained APInt.
270inline apint_match m_APInt(const APInt *&Res) {
271 // Forbid undefs by default to maintain previous behavior.
272 return apint_match(Res, /* AllowUndef */ false);
273}
274
275/// Match APInt while allowing undefs in splat vector constants.
276inline apint_match m_APIntAllowUndef(const APInt *&Res) {
277 return apint_match(Res, /* AllowUndef */ true);
278}
279
280/// Match APInt while forbidding undefs in splat vector constants.
281inline apint_match m_APIntForbidUndef(const APInt *&Res) {
282 return apint_match(Res, /* AllowUndef */ false);
283}
284
285/// Match a ConstantFP or splatted ConstantVector, binding the
286/// specified pointer to the contained APFloat.
287inline apfloat_match m_APFloat(const APFloat *&Res) {
288 // Forbid undefs by default to maintain previous behavior.
289 return apfloat_match(Res, /* AllowUndef */ false);
290}
291
292/// Match APFloat while allowing undefs in splat vector constants.
293inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
294 return apfloat_match(Res, /* AllowUndef */ true);
295}
296
297/// Match APFloat while forbidding undefs in splat vector constants.
298inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
299 return apfloat_match(Res, /* AllowUndef */ false);
300}
301
302template <int64_t Val> struct constantint_match {
303 template <typename ITy> bool match(ITy *V) {
304 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
305 const APInt &CIV = CI->getValue();
306 if (Val >= 0)
307 return CIV == static_cast<uint64_t>(Val);
308 // If Val is negative, and CI is shorter than it, truncate to the right
309 // number of bits. If it is larger, then we have to sign extend. Just
310 // compare their negated values.
311 return -CIV == -Val;
312 }
313 return false;
314 }
315};
316
317/// Match a ConstantInt with a specific value.
318template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
319 return constantint_match<Val>();
320}
321
322/// This helper class is used to match constant scalars, vector splats,
323/// and fixed width vectors that satisfy a specified predicate.
324/// For fixed width vector constants, undefined elements are ignored.
325template <typename Predicate, typename ConstantVal>
326struct cstval_pred_ty : public Predicate {
327 template <typename ITy> bool match(ITy *V) {
328 if (const auto *CV = dyn_cast<ConstantVal>(V))
329 return this->isValue(CV->getValue());
330 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
331 if (const auto *C = dyn_cast<Constant>(V)) {
332 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
333 return this->isValue(CV->getValue());
334
335 // Number of elements of a scalable vector unknown at compile time
336 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
337 if (!FVTy)
338 return false;
339
340 // Non-splat vector constant: check each element for a match.
341 unsigned NumElts = FVTy->getNumElements();
342 assert(NumElts != 0 && "Constant vector with no elements?")(static_cast <bool> (NumElts != 0 && "Constant vector with no elements?"
) ? void (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/PatternMatch.h"
, 342, __extension__ __PRETTY_FUNCTION__))
;
343 bool HasNonUndefElements = false;
344 for (unsigned i = 0; i != NumElts; ++i) {
345 Constant *Elt = C->getAggregateElement(i);
346 if (!Elt)
347 return false;
348 if (isa<UndefValue>(Elt))
349 continue;
350 auto *CV = dyn_cast<ConstantVal>(Elt);
351 if (!CV || !this->isValue(CV->getValue()))
352 return false;
353 HasNonUndefElements = true;
354 }
355 return HasNonUndefElements;
356 }
357 }
358 return false;
359 }
360};
361
362/// specialization of cstval_pred_ty for ConstantInt
363template <typename Predicate>
364using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
365
366/// specialization of cstval_pred_ty for ConstantFP
367template <typename Predicate>
368using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
369
370/// This helper class is used to match scalar and vector constants that
371/// satisfy a specified predicate, and bind them to an APInt.
372template <typename Predicate> struct api_pred_ty : public Predicate {
373 const APInt *&Res;
374
375 api_pred_ty(const APInt *&R) : Res(R) {}
376
377 template <typename ITy> bool match(ITy *V) {
378 if (const auto *CI = dyn_cast<ConstantInt>(V))
379 if (this->isValue(CI->getValue())) {
380 Res = &CI->getValue();
381 return true;
382 }
383 if (V->getType()->isVectorTy())
384 if (const auto *C = dyn_cast<Constant>(V))
385 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
386 if (this->isValue(CI->getValue())) {
387 Res = &CI->getValue();
388 return true;
389 }
390
391 return false;
392 }
393};
394
395/// This helper class is used to match scalar and vector constants that
396/// satisfy a specified predicate, and bind them to an APFloat.
397/// Undefs are allowed in splat vector constants.
398template <typename Predicate> struct apf_pred_ty : public Predicate {
399 const APFloat *&Res;
400
401 apf_pred_ty(const APFloat *&R) : Res(R) {}
402
403 template <typename ITy> bool match(ITy *V) {
404 if (const auto *CI = dyn_cast<ConstantFP>(V))
405 if (this->isValue(CI->getValue())) {
406 Res = &CI->getValue();
407 return true;
408 }
409 if (V->getType()->isVectorTy())
410 if (const auto *C = dyn_cast<Constant>(V))
411 if (auto *CI = dyn_cast_or_null<ConstantFP>(
412 C->getSplatValue(/* AllowUndef */ true)))
413 if (this->isValue(CI->getValue())) {
414 Res = &CI->getValue();
415 return true;
416 }
417
418 return false;
419 }
420};
421
422///////////////////////////////////////////////////////////////////////////////
423//
424// Encapsulate constant value queries for use in templated predicate matchers.
425// This allows checking if constants match using compound predicates and works
426// with vector constants, possibly with relaxed constraints. For example, ignore
427// undef values.
428//
429///////////////////////////////////////////////////////////////////////////////
430
431struct is_any_apint {
432 bool isValue(const APInt &C) { return true; }
433};
434/// Match an integer or vector with any integral constant.
435/// For vectors, this includes constants with undefined elements.
436inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
437 return cst_pred_ty<is_any_apint>();
438}
439
440struct is_all_ones {
441 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
442};
443/// Match an integer or vector with all bits set.
444/// For vectors, this includes constants with undefined elements.
445inline cst_pred_ty<is_all_ones> m_AllOnes() {
446 return cst_pred_ty<is_all_ones>();
447}
448
449struct is_maxsignedvalue {
450 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
451};
452/// Match an integer or vector with values having all bits except for the high
453/// bit set (0x7f...).
454/// For vectors, this includes constants with undefined elements.
455inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
456 return cst_pred_ty<is_maxsignedvalue>();
457}
458inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
459 return V;
460}
461
462struct is_negative {
463 bool isValue(const APInt &C) { return C.isNegative(); }
464};
465/// Match an integer or vector of negative values.
466/// For vectors, this includes constants with undefined elements.
467inline cst_pred_ty<is_negative> m_Negative() {
468 return cst_pred_ty<is_negative>();
469}
470inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
471 return V;
472}
473
474struct is_nonnegative {
475 bool isValue(const APInt &C) { return C.isNonNegative(); }
476};
477/// Match an integer or vector of non-negative values.
478/// For vectors, this includes constants with undefined elements.
479inline cst_pred_ty<is_nonnegative> m_NonNegative() {
480 return cst_pred_ty<is_nonnegative>();
481}
482inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
483 return V;
484}
485
486struct is_strictlypositive {
487 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
488};
489/// Match an integer or vector of strictly positive values.
490/// For vectors, this includes constants with undefined elements.
491inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
492 return cst_pred_ty<is_strictlypositive>();
493}
494inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
495 return V;
496}
497
498struct is_nonpositive {
499 bool isValue(const APInt &C) { return C.isNonPositive(); }
500};
501/// Match an integer or vector of non-positive values.
502/// For vectors, this includes constants with undefined elements.
503inline cst_pred_ty<is_nonpositive> m_NonPositive() {
504 return cst_pred_ty<is_nonpositive>();
505}
506inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
507
508struct is_one {
509 bool isValue(const APInt &C) { return C.isOneValue(); }
510};
511/// Match an integer 1 or a vector with all elements equal to 1.
512/// For vectors, this includes constants with undefined elements.
513inline cst_pred_ty<is_one> m_One() {
514 return cst_pred_ty<is_one>();
515}
516
517struct is_zero_int {
518 bool isValue(const APInt &C) { return C.isNullValue(); }
519};
520/// Match an integer 0 or a vector with all elements equal to 0.
521/// For vectors, this includes constants with undefined elements.
522inline cst_pred_ty<is_zero_int> m_ZeroInt() {
523 return cst_pred_ty<is_zero_int>();
524}
525
526struct is_zero {
527 template <typename ITy> bool match(ITy *V) {
528 auto *C = dyn_cast<Constant>(V);
529 // FIXME: this should be able to do something for scalable vectors
530 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
531 }
532};
533/// Match any null constant or a vector with all elements equal to 0.
534/// For vectors, this includes constants with undefined elements.
535inline is_zero m_Zero() {
536 return is_zero();
537}
538
539struct is_power2 {
540 bool isValue(const APInt &C) { return C.isPowerOf2(); }
541};
542/// Match an integer or vector power-of-2.
543/// For vectors, this includes constants with undefined elements.
544inline cst_pred_ty<is_power2> m_Power2() {
545 return cst_pred_ty<is_power2>();
546}
547inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
548 return V;
549}
550
551struct is_negated_power2 {
552 bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
553};
554/// Match a integer or vector negated power-of-2.
555/// For vectors, this includes constants with undefined elements.
556inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
557 return cst_pred_ty<is_negated_power2>();
558}
559inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
560 return V;
561}
562
563struct is_power2_or_zero {
564 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
565};
566/// Match an integer or vector of 0 or power-of-2 values.
567/// For vectors, this includes constants with undefined elements.
568inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
569 return cst_pred_ty<is_power2_or_zero>();
570}
571inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
572 return V;
573}
574
575struct is_sign_mask {
576 bool isValue(const APInt &C) { return C.isSignMask(); }
577};
578/// Match an integer or vector with only the sign bit(s) set.
579/// For vectors, this includes constants with undefined elements.
580inline cst_pred_ty<is_sign_mask> m_SignMask() {
581 return cst_pred_ty<is_sign_mask>();
582}
583
584struct is_lowbit_mask {
585 bool isValue(const APInt &C) { return C.isMask(); }
586};
587/// Match an integer or vector with only the low bit(s) set.
588/// For vectors, this includes constants with undefined elements.
589inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
590 return cst_pred_ty<is_lowbit_mask>();
591}
592
593struct icmp_pred_with_threshold {
594 ICmpInst::Predicate Pred;
595 const APInt *Thr;
596 bool isValue(const APInt &C) {
597 switch (Pred) {
598 case ICmpInst::Predicate::ICMP_EQ:
599 return C.eq(*Thr);
600 case ICmpInst::Predicate::ICMP_NE:
601 return C.ne(*Thr);
602 case ICmpInst::Predicate::ICMP_UGT:
603 return C.ugt(*Thr);
604 case ICmpInst::Predicate::ICMP_UGE:
605 return C.uge(*Thr);
606 case ICmpInst::Predicate::ICMP_ULT:
607 return C.ult(*Thr);
608 case ICmpInst::Predicate::ICMP_ULE:
609 return C.ule(*Thr);
610 case ICmpInst::Predicate::ICMP_SGT:
611 return C.sgt(*Thr);
612 case ICmpInst::Predicate::ICMP_SGE:
613 return C.sge(*Thr);
614 case ICmpInst::Predicate::ICMP_SLT:
615 return C.slt(*Thr);
616 case ICmpInst::Predicate::ICMP_SLE:
617 return C.sle(*Thr);
618 default:
619 llvm_unreachable("Unhandled ICmp predicate")::llvm::llvm_unreachable_internal("Unhandled ICmp predicate",
"/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/PatternMatch.h"
, 619)
;
620 }
621 }
622};
623/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
624/// to Threshold. For vectors, this includes constants with undefined elements.
625inline cst_pred_ty<icmp_pred_with_threshold>
626m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
627 cst_pred_ty<icmp_pred_with_threshold> P;
628 P.Pred = Predicate;
629 P.Thr = &Threshold;
630 return P;
631}
632
633struct is_nan {
634 bool isValue(const APFloat &C) { return C.isNaN(); }
635};
636/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
637/// For vectors, this includes constants with undefined elements.
638inline cstfp_pred_ty<is_nan> m_NaN() {
639 return cstfp_pred_ty<is_nan>();
640}
641
642struct is_nonnan {
643 bool isValue(const APFloat &C) { return !C.isNaN(); }
644};
645/// Match a non-NaN FP constant.
646/// For vectors, this includes constants with undefined elements.
647inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
648 return cstfp_pred_ty<is_nonnan>();
649}
650
651struct is_inf {
652 bool isValue(const APFloat &C) { return C.isInfinity(); }
653};
654/// Match a positive or negative infinity FP constant.
655/// For vectors, this includes constants with undefined elements.
656inline cstfp_pred_ty<is_inf> m_Inf() {
657 return cstfp_pred_ty<is_inf>();
658}
659
660struct is_noninf {
661 bool isValue(const APFloat &C) { return !C.isInfinity(); }
662};
663/// Match a non-infinity FP constant, i.e. finite or NaN.
664/// For vectors, this includes constants with undefined elements.
665inline cstfp_pred_ty<is_noninf> m_NonInf() {
666 return cstfp_pred_ty<is_noninf>();
667}
668
669struct is_finite {
670 bool isValue(const APFloat &C) { return C.isFinite(); }
671};
672/// Match a finite FP constant, i.e. not infinity or NaN.
673/// For vectors, this includes constants with undefined elements.
674inline cstfp_pred_ty<is_finite> m_Finite() {
675 return cstfp_pred_ty<is_finite>();
676}
677inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
678
679struct is_finitenonzero {
680 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
681};
682/// Match a finite non-zero FP constant.
683/// For vectors, this includes constants with undefined elements.
684inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
685 return cstfp_pred_ty<is_finitenonzero>();
686}
687inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
688 return V;
689}
690
691struct is_any_zero_fp {
692 bool isValue(const APFloat &C) { return C.isZero(); }
693};
694/// Match a floating-point negative zero or positive zero.
695/// For vectors, this includes constants with undefined elements.
696inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
697 return cstfp_pred_ty<is_any_zero_fp>();
698}
699
700struct is_pos_zero_fp {
701 bool isValue(const APFloat &C) { return C.isPosZero(); }
702};
703/// Match a floating-point positive zero.
704/// For vectors, this includes constants with undefined elements.
705inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
706 return cstfp_pred_ty<is_pos_zero_fp>();
707}
708
709struct is_neg_zero_fp {
710 bool isValue(const APFloat &C) { return C.isNegZero(); }
711};
712/// Match a floating-point negative zero.
713/// For vectors, this includes constants with undefined elements.
714inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
715 return cstfp_pred_ty<is_neg_zero_fp>();
716}
717
718struct is_non_zero_fp {
719 bool isValue(const APFloat &C) { return C.isNonZero(); }
720};
721/// Match a floating-point non-zero.
722/// For vectors, this includes constants with undefined elements.
723inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
724 return cstfp_pred_ty<is_non_zero_fp>();
725}
726
727///////////////////////////////////////////////////////////////////////////////
728
729template <typename Class> struct bind_ty {
730 Class *&VR;
731
732 bind_ty(Class *&V) : VR(V) {}
733
734 template <typename ITy> bool match(ITy *V) {
735 if (auto *CV = dyn_cast<Class>(V)) {
736 VR = CV;
737 return true;
738 }
739 return false;
740 }
741};
742
743/// Match a value, capturing it if we match.
744inline bind_ty<Value> m_Value(Value *&V) { return V; }
745inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
746
747/// Match an instruction, capturing it if we match.
748inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
749/// Match a unary operator, capturing it if we match.
750inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
751/// Match a binary operator, capturing it if we match.
752inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
753/// Match a with overflow intrinsic, capturing it if we match.
754inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
755inline bind_ty<const WithOverflowInst>
756m_WithOverflowInst(const WithOverflowInst *&I) {
757 return I;
758}
759
760/// Match a Constant, capturing the value if we match.
761inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
762
763/// Match a ConstantInt, capturing the value if we match.
764inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
765
766/// Match a ConstantFP, capturing the value if we match.
767inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
768
769/// Match a ConstantExpr, capturing the value if we match.
770inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
771
772/// Match a basic block value, capturing it if we match.
773inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
774inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
775 return V;
776}
777
778/// Match an arbitrary immediate Constant and ignore it.
779inline match_combine_and<class_match<Constant>,
780 match_unless<class_match<ConstantExpr>>>
781m_ImmConstant() {
782 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
783}
784
785/// Match an immediate Constant, capturing the value if we match.
786inline match_combine_and<bind_ty<Constant>,
787 match_unless<class_match<ConstantExpr>>>
788m_ImmConstant(Constant *&C) {
789 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
790}
791
792/// Match a specified Value*.
793struct specificval_ty {
794 const Value *Val;
795
796 specificval_ty(const Value *V) : Val(V) {}
797
798 template <typename ITy> bool match(ITy *V) { return V == Val; }
799};
800
801/// Match if we have a specific specified value.
802inline specificval_ty m_Specific(const Value *V) { return V; }
803
804/// Stores a reference to the Value *, not the Value * itself,
805/// thus can be used in commutative matchers.
806template <typename Class> struct deferredval_ty {
807 Class *const &Val;
808
809 deferredval_ty(Class *const &V) : Val(V) {}
810
811 template <typename ITy> bool match(ITy *const V) { return V == Val; }
812};
813
814/// Like m_Specific(), but works if the specific value to match is determined
815/// as part of the same match() expression. For example:
816/// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
817/// bind X before the pattern match starts.
818/// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
819/// whichever value m_Value(X) populated.
820inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
821inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
822 return V;
823}
824
825/// Match a specified floating point value or vector of all elements of
826/// that value.
827struct specific_fpval {
828 double Val;
829
830 specific_fpval(double V) : Val(V) {}
831
832 template <typename ITy> bool match(ITy *V) {
833 if (const auto *CFP = dyn_cast<ConstantFP>(V))
834 return CFP->isExactlyValue(Val);
835 if (V->getType()->isVectorTy())
836 if (const auto *C = dyn_cast<Constant>(V))
837 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
838 return CFP->isExactlyValue(Val);
839 return false;
840 }
841};
842
843/// Match a specific floating point value or vector with all elements
844/// equal to the value.
845inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
846
847/// Match a float 1.0 or vector with all elements equal to 1.0.
848inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
849
850struct bind_const_intval_ty {
851 uint64_t &VR;
852
853 bind_const_intval_ty(uint64_t &V) : VR(V) {}
854
855 template <typename ITy> bool match(ITy *V) {
856 if (const auto *CV = dyn_cast<ConstantInt>(V))
857 if (CV->getValue().ule(UINT64_MAX(18446744073709551615UL))) {
858 VR = CV->getZExtValue();
859 return true;
860 }
861 return false;
862 }
863};
864
865/// Match a specified integer value or vector of all elements of that
866/// value.
867template <bool AllowUndefs>
868struct specific_intval {
869 APInt Val;
870
871 specific_intval(APInt V) : Val(std::move(V)) {}
872
873 template <typename ITy> bool match(ITy *V) {
874 const auto *CI = dyn_cast<ConstantInt>(V);
875 if (!CI && V->getType()->isVectorTy())
876 if (const auto *C = dyn_cast<Constant>(V))
877 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
878
879 return CI && APInt::isSameValue(CI->getValue(), Val);
880 }
881};
882
883/// Match a specific integer value or vector with all elements equal to
884/// the value.
885inline specific_intval<false> m_SpecificInt(APInt V) {
886 return specific_intval<false>(std::move(V));
887}
888
889inline specific_intval<false> m_SpecificInt(uint64_t V) {
890 return m_SpecificInt(APInt(64, V));
891}
892
893inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
894 return specific_intval<true>(std::move(V));
895}
896
897inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
898 return m_SpecificIntAllowUndef(APInt(64, V));
899}
900
901/// Match a ConstantInt and bind to its value. This does not match
902/// ConstantInts wider than 64-bits.
903inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
904
905/// Match a specified basic block value.
906struct specific_bbval {
907 BasicBlock *Val;
908
909 specific_bbval(BasicBlock *Val) : Val(Val) {}
910
911 template <typename ITy> bool match(ITy *V) {
912 const auto *BB = dyn_cast<BasicBlock>(V);
913 return BB && BB == Val;
914 }
915};
916
917/// Match a specific basic block value.
918inline specific_bbval m_SpecificBB(BasicBlock *BB) {
919 return specific_bbval(BB);
920}
921
922/// A commutative-friendly version of m_Specific().
923inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
924 return BB;
925}
926inline deferredval_ty<const BasicBlock>
927m_Deferred(const BasicBlock *const &BB) {
928 return BB;
929}
930
931//===----------------------------------------------------------------------===//
932// Matcher for any binary operator.
933//
934template <typename LHS_t, typename RHS_t, bool Commutable = false>
935struct AnyBinaryOp_match {
936 LHS_t L;
937 RHS_t R;
938
939 // The evaluation order is always stable, regardless of Commutability.
940 // The LHS is always matched first.
941 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
942
943 template <typename OpTy> bool match(OpTy *V) {
944 if (auto *I = dyn_cast<BinaryOperator>(V))
945 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
946 (Commutable && L.match(I->getOperand(1)) &&
947 R.match(I->getOperand(0)));
948 return false;
949 }
950};
951
952template <typename LHS, typename RHS>
953inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
954 return AnyBinaryOp_match<LHS, RHS>(L, R);
955}
956
957//===----------------------------------------------------------------------===//
958// Matcher for any unary operator.
959// TODO fuse unary, binary matcher into n-ary matcher
960//
961template <typename OP_t> struct AnyUnaryOp_match {
962 OP_t X;
963
964 AnyUnaryOp_match(const OP_t &X) : X(X) {}
965
966 template <typename OpTy> bool match(OpTy *V) {
967 if (auto *I = dyn_cast<UnaryOperator>(V))
968 return X.match(I->getOperand(0));
969 return false;
970 }
971};
972
973template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
974 return AnyUnaryOp_match<OP_t>(X);
975}
976
977//===----------------------------------------------------------------------===//
978// Matchers for specific binary operators.
979//
980
981template <typename LHS_t, typename RHS_t, unsigned Opcode,
982 bool Commutable = false>
983struct BinaryOp_match {
984 LHS_t L;
985 RHS_t R;
986
987 // The evaluation order is always stable, regardless of Commutability.
988 // The LHS is always matched first.
989 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
990
991 template <typename OpTy> bool match(OpTy *V) {
992 if (V->getValueID() == Value::InstructionVal + Opcode) {
34
Assuming the condition is true
35
Taking true branch
993 auto *I = cast<BinaryOperator>(V);
36
'V' is a 'BinaryOperator'
994 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
37
Returning the value 1, which participates in a condition later
995 (Commutable && L.match(I->getOperand(1)) &&
996 R.match(I->getOperand(0)));
997 }
998 if (auto *CE = dyn_cast<ConstantExpr>(V))
999 return CE->getOpcode() == Opcode &&
1000 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
1001 (Commutable && L.match(CE->getOperand(1)) &&
1002 R.match(CE->getOperand(0))));
1003 return false;
1004 }
1005};
1006
1007template <typename LHS, typename RHS>
1008inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
1009 const RHS &R) {
1010 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
1011}
1012
1013template <typename LHS, typename RHS>
1014inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
1015 const RHS &R) {
1016 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
1017}
1018
1019template <typename LHS, typename RHS>
1020inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
1021 const RHS &R) {
1022 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
1023}
1024
1025template <typename LHS, typename RHS>
1026inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
1027 const RHS &R) {
1028 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1029}
1030
1031template <typename Op_t> struct FNeg_match {
1032 Op_t X;
1033
1034 FNeg_match(const Op_t &Op) : X(Op) {}
1035 template <typename OpTy> bool match(OpTy *V) {
1036 auto *FPMO = dyn_cast<FPMathOperator>(V);
1037 if (!FPMO) return false;
1038
1039 if (FPMO->getOpcode() == Instruction::FNeg)
1040 return X.match(FPMO->getOperand(0));
1041
1042 if (FPMO->getOpcode() == Instruction::FSub) {
1043 if (FPMO->hasNoSignedZeros()) {
1044 // With 'nsz', any zero goes.
1045 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1046 return false;
1047 } else {
1048 // Without 'nsz', we need fsub -0.0, X exactly.
1049 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1050 return false;
1051 }
1052
1053 return X.match(FPMO->getOperand(1));
1054 }
1055
1056 return false;
1057 }
1058};
1059
1060/// Match 'fneg X' as 'fsub -0.0, X'.
1061template <typename OpTy>
1062inline FNeg_match<OpTy>
1063m_FNeg(const OpTy &X) {
1064 return FNeg_match<OpTy>(X);
1065}
1066
1067/// Match 'fneg X' as 'fsub +-0.0, X'.
1068template <typename RHS>
1069inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1070m_FNegNSZ(const RHS &X) {
1071 return m_FSub(m_AnyZeroFP(), X);
1072}
1073
1074template <typename LHS, typename RHS>
1075inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1076 const RHS &R) {
1077 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1078}
1079
1080template <typename LHS, typename RHS>
1081inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1082 const RHS &R) {
1083 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1084}
1085
1086template <typename LHS, typename RHS>
1087inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1088 const RHS &R) {
1089 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1090}
1091
1092template <typename LHS, typename RHS>
1093inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1094 const RHS &R) {
1095 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1096}
1097
1098template <typename LHS, typename RHS>
1099inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1100 const RHS &R) {
1101 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1102}
1103
1104template <typename LHS, typename RHS>
1105inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1106 const RHS &R) {
1107 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1108}
1109
1110template <typename LHS, typename RHS>
1111inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1112 const RHS &R) {
1113 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1114}
1115
1116template <typename LHS, typename RHS>
1117inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1118 const RHS &R) {
1119 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1120}
1121
1122template <typename LHS, typename RHS>
1123inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1124 const RHS &R) {
1125 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1126}
1127
1128template <typename LHS, typename RHS>
1129inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1130 const RHS &R) {
1131 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1132}
1133
1134template <typename LHS, typename RHS>
1135inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1136 const RHS &R) {
1137 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1138}
1139
1140template <typename LHS, typename RHS>
1141inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1142 const RHS &R) {
1143 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1144}
1145
1146template <typename LHS, typename RHS>
1147inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1148 const RHS &R) {
1149 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1150}
1151
1152template <typename LHS, typename RHS>
1153inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1154 const RHS &R) {
1155 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1156}
1157
1158template <typename LHS_t, typename RHS_t, unsigned Opcode,
1159 unsigned WrapFlags = 0>
1160struct OverflowingBinaryOp_match {
1161 LHS_t L;
1162 RHS_t R;
1163
1164 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1165 : L(LHS), R(RHS) {}
1166
1167 template <typename OpTy> bool match(OpTy *V) {
1168 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1169 if (Op->getOpcode() != Opcode)
1170 return false;
1171 if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1172 !Op->hasNoUnsignedWrap())
1173 return false;
1174 if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1175 !Op->hasNoSignedWrap())
1176 return false;
1177 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1178 }
1179 return false;
1180 }
1181};
1182
1183template <typename LHS, typename RHS>
1184inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1185 OverflowingBinaryOperator::NoSignedWrap>
1186m_NSWAdd(const LHS &L, const RHS &R) {
1187 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1188 OverflowingBinaryOperator::NoSignedWrap>(
1189 L, R);
1190}
1191template <typename LHS, typename RHS>
1192inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1193 OverflowingBinaryOperator::NoSignedWrap>
1194m_NSWSub(const LHS &L, const RHS &R) {
1195 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1196 OverflowingBinaryOperator::NoSignedWrap>(
1197 L, R);
1198}
1199template <typename LHS, typename RHS>
1200inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1201 OverflowingBinaryOperator::NoSignedWrap>
1202m_NSWMul(const LHS &L, const RHS &R) {
1203 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1204 OverflowingBinaryOperator::NoSignedWrap>(
1205 L, R);
1206}
1207template <typename LHS, typename RHS>
1208inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1209 OverflowingBinaryOperator::NoSignedWrap>
1210m_NSWShl(const LHS &L, const RHS &R) {
1211 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1212 OverflowingBinaryOperator::NoSignedWrap>(
1213 L, R);
1214}
1215
1216template <typename LHS, typename RHS>
1217inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1218 OverflowingBinaryOperator::NoUnsignedWrap>
1219m_NUWAdd(const LHS &L, const RHS &R) {
1220 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1221 OverflowingBinaryOperator::NoUnsignedWrap>(
1222 L, R);
1223}
1224template <typename LHS, typename RHS>
1225inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1226 OverflowingBinaryOperator::NoUnsignedWrap>
1227m_NUWSub(const LHS &L, const RHS &R) {
1228 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1229 OverflowingBinaryOperator::NoUnsignedWrap>(
1230 L, R);
1231}
1232template <typename LHS, typename RHS>
1233inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1234 OverflowingBinaryOperator::NoUnsignedWrap>
1235m_NUWMul(const LHS &L, const RHS &R) {
1236 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1237 OverflowingBinaryOperator::NoUnsignedWrap>(
1238 L, R);
1239}
1240template <typename LHS, typename RHS>
1241inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1242 OverflowingBinaryOperator::NoUnsignedWrap>
1243m_NUWShl(const LHS &L, const RHS &R) {
1244 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1245 OverflowingBinaryOperator::NoUnsignedWrap>(
1246 L, R);
1247}
1248
1249//===----------------------------------------------------------------------===//
1250// Class that matches a group of binary opcodes.
1251//
1252template <typename LHS_t, typename RHS_t, typename Predicate>
1253struct BinOpPred_match : Predicate {
1254 LHS_t L;
1255 RHS_t R;
1256
1257 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1258
1259 template <typename OpTy> bool match(OpTy *V) {
1260 if (auto *I = dyn_cast<Instruction>(V))
1261 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1262 R.match(I->getOperand(1));
1263 if (auto *CE = dyn_cast<ConstantExpr>(V))
1264 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1265 R.match(CE->getOperand(1));
1266 return false;
1267 }
1268};
1269
1270struct is_shift_op {
1271 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1272};
1273
1274struct is_right_shift_op {
1275 bool isOpType(unsigned Opcode) {
1276 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1277 }
1278};
1279
1280struct is_logical_shift_op {
1281 bool isOpType(unsigned Opcode) {
1282 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1283 }
1284};
1285
1286struct is_bitwiselogic_op {
1287 bool isOpType(unsigned Opcode) {
1288 return Instruction::isBitwiseLogicOp(Opcode);
1289 }
1290};
1291
1292struct is_idiv_op {
1293 bool isOpType(unsigned Opcode) {
1294 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1295 }
1296};
1297
1298struct is_irem_op {
1299 bool isOpType(unsigned Opcode) {
1300 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1301 }
1302};
1303
1304/// Matches shift operations.
1305template <typename LHS, typename RHS>
1306inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1307 const RHS &R) {
1308 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1309}
1310
1311/// Matches logical shift operations.
1312template <typename LHS, typename RHS>
1313inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1314 const RHS &R) {
1315 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1316}
1317
1318/// Matches logical shift operations.
1319template <typename LHS, typename RHS>
1320inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1321m_LogicalShift(const LHS &L, const RHS &R) {
1322 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1323}
1324
1325/// Matches bitwise logic operations.
1326template <typename LHS, typename RHS>
1327inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1328m_BitwiseLogic(const LHS &L, const RHS &R) {
1329 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1330}
1331
1332/// Matches integer division operations.
1333template <typename LHS, typename RHS>
1334inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1335 const RHS &R) {
1336 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1337}
1338
1339/// Matches integer remainder operations.
1340template <typename LHS, typename RHS>
1341inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1342 const RHS &R) {
1343 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1344}
1345
1346//===----------------------------------------------------------------------===//
1347// Class that matches exact binary ops.
1348//
1349template <typename SubPattern_t> struct Exact_match {
1350 SubPattern_t SubPattern;
1351
1352 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1353
1354 template <typename OpTy> bool match(OpTy *V) {
1355 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1356 return PEO->isExact() && SubPattern.match(V);
1357 return false;
1358 }
1359};
1360
1361template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1362 return SubPattern;
1363}
1364
1365//===----------------------------------------------------------------------===//
1366// Matchers for CmpInst classes
1367//
1368
1369template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1370 bool Commutable = false>
1371struct CmpClass_match {
1372 PredicateTy &Predicate;
1373 LHS_t L;
1374 RHS_t R;
1375
1376 // The evaluation order is always stable, regardless of Commutability.
1377 // The LHS is always matched first.
1378 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1379 : Predicate(Pred), L(LHS), R(RHS) {}
1380
1381 template <typename OpTy> bool match(OpTy *V) {
1382 if (auto *I = dyn_cast<Class>(V)) {
1383 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1384 Predicate = I->getPredicate();
1385 return true;
1386 } else if (Commutable && L.match(I->getOperand(1)) &&
1387 R.match(I->getOperand(0))) {
1388 Predicate = I->getSwappedPredicate();
1389 return true;
1390 }
1391 }
1392 return false;
1393 }
1394};
1395
1396template <typename LHS, typename RHS>
1397inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1398m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1399 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1400}
1401
1402template <typename LHS, typename RHS>
1403inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1404m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1405 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1406}
1407
1408template <typename LHS, typename RHS>
1409inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1410m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1411 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1412}
1413
1414//===----------------------------------------------------------------------===//
1415// Matchers for instructions with a given opcode and number of operands.
1416//
1417
1418/// Matches instructions with Opcode and three operands.
1419template <typename T0, unsigned Opcode> struct OneOps_match {
1420 T0 Op1;
1421
1422 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1423
1424 template <typename OpTy> bool match(OpTy *V) {
1425 if (V->getValueID() == Value::InstructionVal + Opcode) {
1426 auto *I = cast<Instruction>(V);
1427 return Op1.match(I->getOperand(0));
1428 }
1429 return false;
1430 }
1431};
1432
1433/// Matches instructions with Opcode and three operands.
1434template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1435 T0 Op1;
1436 T1 Op2;
1437
1438 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1439
1440 template <typename OpTy> bool match(OpTy *V) {
1441 if (V->getValueID() == Value::InstructionVal + Opcode) {
1442 auto *I = cast<Instruction>(V);
1443 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1444 }
1445 return false;
1446 }
1447};
1448
1449/// Matches instructions with Opcode and three operands.
1450template <typename T0, typename T1, typename T2, unsigned Opcode>
1451struct ThreeOps_match {
1452 T0 Op1;
1453 T1 Op2;
1454 T2 Op3;
1455
1456 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1457 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1458
1459 template <typename OpTy> bool match(OpTy *V) {
1460 if (V->getValueID() == Value::InstructionVal + Opcode) {
1461 auto *I = cast<Instruction>(V);
1462 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1463 Op3.match(I->getOperand(2));
1464 }
1465 return false;
1466 }
1467};
1468
1469/// Matches SelectInst.
1470template <typename Cond, typename LHS, typename RHS>
1471inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1472m_Select(const Cond &C, const LHS &L, const RHS &R) {
1473 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1474}
1475
1476/// This matches a select of two constants, e.g.:
1477/// m_SelectCst<-1, 0>(m_Value(V))
1478template <int64_t L, int64_t R, typename Cond>
1479inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1480 Instruction::Select>
1481m_SelectCst(const Cond &C) {
1482 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1483}
1484
1485/// Matches FreezeInst.
1486template <typename OpTy>
1487inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1488 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1489}
1490
1491/// Matches InsertElementInst.
1492template <typename Val_t, typename Elt_t, typename Idx_t>
1493inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1494m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1495 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1496 Val, Elt, Idx);
1497}
1498
1499/// Matches ExtractElementInst.
1500template <typename Val_t, typename Idx_t>
1501inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1502m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1503 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1504}
1505
1506/// Matches shuffle.
1507template <typename T0, typename T1, typename T2> struct Shuffle_match {
1508 T0 Op1;
1509 T1 Op2;
1510 T2 Mask;
1511
1512 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1513 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1514
1515 template <typename OpTy> bool match(OpTy *V) {
1516 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1517 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1518 Mask.match(I->getShuffleMask());
1519 }
1520 return false;
1521 }
1522};
1523
1524struct m_Mask {
1525 ArrayRef<int> &MaskRef;
1526 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1527 bool match(ArrayRef<int> Mask) {
1528 MaskRef = Mask;
1529 return true;
1530 }
1531};
1532
1533struct m_ZeroMask {
1534 bool match(ArrayRef<int> Mask) {
1535 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1536 }
1537};
1538
1539struct m_SpecificMask {
1540 ArrayRef<int> &MaskRef;
1541 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1542 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1543};
1544
1545struct m_SplatOrUndefMask {
1546 int &SplatIndex;
1547 m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1548 bool match(ArrayRef<int> Mask) {
1549 auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1550 if (First == Mask.end())
1551 return false;
1552 SplatIndex = *First;
1553 return all_of(Mask,
1554 [First](int Elem) { return Elem == *First || Elem == -1; });
1555 }
1556};
1557
1558/// Matches ShuffleVectorInst independently of mask value.
1559template <typename V1_t, typename V2_t>
1560inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1561m_Shuffle(const V1_t &v1, const V2_t &v2) {
1562 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1563}
1564
1565template <typename V1_t, typename V2_t, typename Mask_t>
1566inline Shuffle_match<V1_t, V2_t, Mask_t>
1567m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1568 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1569}
1570
1571/// Matches LoadInst.
1572template <typename OpTy>
1573inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1574 return OneOps_match<OpTy, Instruction::Load>(Op);
1575}
1576
1577/// Matches StoreInst.
1578template <typename ValueOpTy, typename PointerOpTy>
1579inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1580m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1581 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1582 PointerOp);
1583}
1584
1585//===----------------------------------------------------------------------===//
1586// Matchers for CastInst classes
1587//
1588
1589template <typename Op_t, unsigned Opcode> struct CastClass_match {
1590 Op_t Op;
1591
1592 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1593
1594 template <typename OpTy> bool match(OpTy *V) {
1595 if (auto *O = dyn_cast<Operator>(V))
1596 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1597 return false;
1598 }
1599};
1600
1601/// Matches BitCast.
1602template <typename OpTy>
1603inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1604 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1605}
1606
1607/// Matches PtrToInt.
1608template <typename OpTy>
1609inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1610 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1611}
1612
1613/// Matches IntToPtr.
1614template <typename OpTy>
1615inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1616 return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1617}
1618
1619/// Matches Trunc.
1620template <typename OpTy>
1621inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1622 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1623}
1624
1625template <typename OpTy>
1626inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1627m_TruncOrSelf(const OpTy &Op) {
1628 return m_CombineOr(m_Trunc(Op), Op);
1629}
1630
1631/// Matches SExt.
1632template <typename OpTy>
1633inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1634 return CastClass_match<OpTy, Instruction::SExt>(Op);
1635}
1636
1637/// Matches ZExt.
1638template <typename OpTy>
1639inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1640 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1641}
1642
1643template <typename OpTy>
1644inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1645m_ZExtOrSelf(const OpTy &Op) {
1646 return m_CombineOr(m_ZExt(Op), Op);
1647}
1648
1649template <typename OpTy>
1650inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1651m_SExtOrSelf(const OpTy &Op) {
1652 return m_CombineOr(m_SExt(Op), Op);
1653}
1654
1655template <typename OpTy>
1656inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1657 CastClass_match<OpTy, Instruction::SExt>>
1658m_ZExtOrSExt(const OpTy &Op) {
1659 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1660}
1661
1662template <typename OpTy>
1663inline match_combine_or<
1664 match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1665 CastClass_match<OpTy, Instruction::SExt>>,
1666 OpTy>
1667m_ZExtOrSExtOrSelf(const OpTy &Op) {
1668 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1669}
1670
1671template <typename OpTy>
1672inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1673 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1674}
1675
1676template <typename OpTy>
1677inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1678 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1679}
1680
1681template <typename OpTy>
1682inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1683 return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1684}
1685
1686template <typename OpTy>
1687inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1688 return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1689}
1690
1691template <typename OpTy>
1692inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1693 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1694}
1695
1696template <typename OpTy>
1697inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1698 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1699}
1700
1701//===----------------------------------------------------------------------===//
1702// Matchers for control flow.
1703//
1704
1705struct br_match {
1706 BasicBlock *&Succ;
1707
1708 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1709
1710 template <typename OpTy> bool match(OpTy *V) {
1711 if (auto *BI = dyn_cast<BranchInst>(V))
1712 if (BI->isUnconditional()) {
1713 Succ = BI->getSuccessor(0);
1714 return true;
1715 }
1716 return false;
1717 }
1718};
1719
1720inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1721
1722template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1723struct brc_match {
1724 Cond_t Cond;
1725 TrueBlock_t T;
1726 FalseBlock_t F;
1727
1728 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1729 : Cond(C), T(t), F(f) {}
1730
1731 template <typename OpTy> bool match(OpTy *V) {
1732 if (auto *BI = dyn_cast<BranchInst>(V))
1733 if (BI->isConditional() && Cond.match(BI->getCondition()))
1734 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1735 return false;
1736 }
1737};
1738
1739template <typename Cond_t>
1740inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1741m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1742 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1743 C, m_BasicBlock(T), m_BasicBlock(F));
1744}
1745
1746template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1747inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1748m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1749 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1750}
1751
1752//===----------------------------------------------------------------------===//
1753// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1754//
1755
1756template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1757 bool Commutable = false>
1758struct MaxMin_match {
1759 using PredType = Pred_t;
1760 LHS_t L;
1761 RHS_t R;
1762
1763 // The evaluation order is always stable, regardless of Commutability.
1764 // The LHS is always matched first.
1765 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1766
1767 template <typename OpTy> bool match(OpTy *V) {
1768 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1769 Intrinsic::ID IID = II->getIntrinsicID();
1770 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1771 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1772 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1773 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1774 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1775 return (L.match(LHS) && R.match(RHS)) ||
1776 (Commutable && L.match(RHS) && R.match(LHS));
1777 }
1778 }
1779 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1780 auto *SI = dyn_cast<SelectInst>(V);
1781 if (!SI)
1782 return false;
1783 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1784 if (!Cmp)
1785 return false;
1786 // At this point we have a select conditioned on a comparison. Check that
1787 // it is the values returned by the select that are being compared.
1788 auto *TrueVal = SI->getTrueValue();
1789 auto *FalseVal = SI->getFalseValue();
1790 auto *LHS = Cmp->getOperand(0);
1791 auto *RHS = Cmp->getOperand(1);
1792 if ((TrueVal != LHS || FalseVal != RHS) &&
1793 (TrueVal != RHS || FalseVal != LHS))
1794 return false;
1795 typename CmpInst_t::Predicate Pred =
1796 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1797 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1798 if (!Pred_t::match(Pred))
1799 return false;
1800 // It does! Bind the operands.
1801 return (L.match(LHS) && R.match(RHS)) ||
1802 (Commutable && L.match(RHS) && R.match(LHS));
1803 }
1804};
1805
1806/// Helper class for identifying signed max predicates.
1807struct smax_pred_ty {
1808 static bool match(ICmpInst::Predicate Pred) {
1809 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1810 }
1811};
1812
1813/// Helper class for identifying signed min predicates.
1814struct smin_pred_ty {
1815 static bool match(ICmpInst::Predicate Pred) {
1816 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1817 }
1818};
1819
1820/// Helper class for identifying unsigned max predicates.
1821struct umax_pred_ty {
1822 static bool match(ICmpInst::Predicate Pred) {
1823 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1824 }
1825};
1826
1827/// Helper class for identifying unsigned min predicates.
1828struct umin_pred_ty {
1829 static bool match(ICmpInst::Predicate Pred) {
1830 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1831 }
1832};
1833
1834/// Helper class for identifying ordered max predicates.
1835struct ofmax_pred_ty {
1836 static bool match(FCmpInst::Predicate Pred) {
1837 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1838 }
1839};
1840
1841/// Helper class for identifying ordered min predicates.
1842struct ofmin_pred_ty {
1843 static bool match(FCmpInst::Predicate Pred) {
1844 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1845 }
1846};
1847
1848/// Helper class for identifying unordered max predicates.
1849struct ufmax_pred_ty {
1850 static bool match(FCmpInst::Predicate Pred) {
1851 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1852 }
1853};
1854
1855/// Helper class for identifying unordered min predicates.
1856struct ufmin_pred_ty {
1857 static bool match(FCmpInst::Predicate Pred) {
1858 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1859 }
1860};
1861
1862template <typename LHS, typename RHS>
1863inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1864 const RHS &R) {
1865 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1866}
1867
1868template <typename LHS, typename RHS>
1869inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1870 const RHS &R) {
1871 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1872}
1873
1874template <typename LHS, typename RHS>
1875inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1876 const RHS &R) {
1877 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1878}
1879
1880template <typename LHS, typename RHS>
1881inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1882 const RHS &R) {
1883 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1884}
1885
1886template <typename LHS, typename RHS>
1887inline match_combine_or<
1888 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1889 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1890 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1891 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
1892m_MaxOrMin(const LHS &L, const RHS &R) {
1893 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1894 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1895}
1896
1897/// Match an 'ordered' floating point maximum function.
1898/// Floating point has one special value 'NaN'. Therefore, there is no total
1899/// order. However, if we can ignore the 'NaN' value (for example, because of a
1900/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1901/// semantics. In the presence of 'NaN' we have to preserve the original
1902/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1903///
1904/// max(L, R) iff L and R are not NaN
1905/// m_OrdFMax(L, R) = R iff L or R are NaN
1906template <typename LHS, typename RHS>
1907inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1908 const RHS &R) {
1909 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1910}
1911
1912/// Match an 'ordered' floating point minimum function.
1913/// Floating point has one special value 'NaN'. Therefore, there is no total
1914/// order. However, if we can ignore the 'NaN' value (for example, because of a
1915/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1916/// semantics. In the presence of 'NaN' we have to preserve the original
1917/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1918///
1919/// min(L, R) iff L and R are not NaN
1920/// m_OrdFMin(L, R) = R iff L or R are NaN
1921template <typename LHS, typename RHS>
1922inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1923 const RHS &R) {
1924 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1925}
1926
1927/// Match an 'unordered' floating point maximum function.
1928/// Floating point has one special value 'NaN'. Therefore, there is no total
1929/// order. However, if we can ignore the 'NaN' value (for example, because of a
1930/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1931/// semantics. In the presence of 'NaN' we have to preserve the original
1932/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1933///
1934/// max(L, R) iff L and R are not NaN
1935/// m_UnordFMax(L, R) = L iff L or R are NaN
1936template <typename LHS, typename RHS>
1937inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1938m_UnordFMax(const LHS &L, const RHS &R) {
1939 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1940}
1941
1942/// Match an 'unordered' floating point minimum function.
1943/// Floating point has one special value 'NaN'. Therefore, there is no total
1944/// order. However, if we can ignore the 'NaN' value (for example, because of a
1945/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1946/// semantics. In the presence of 'NaN' we have to preserve the original
1947/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1948///
1949/// min(L, R) iff L and R are not NaN
1950/// m_UnordFMin(L, R) = L iff L or R are NaN
1951template <typename LHS, typename RHS>
1952inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1953m_UnordFMin(const LHS &L, const RHS &R) {
1954 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1955}
1956
1957//===----------------------------------------------------------------------===//
1958// Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1959// Note that S might be matched to other instructions than AddInst.
1960//
1961
1962template <typename LHS_t, typename RHS_t, typename Sum_t>
1963struct UAddWithOverflow_match {
1964 LHS_t L;
1965 RHS_t R;
1966 Sum_t S;
1967
1968 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1969 : L(L), R(R), S(S) {}
1970
1971 template <typename OpTy> bool match(OpTy *V) {
1972 Value *ICmpLHS, *ICmpRHS;
1973 ICmpInst::Predicate Pred;
1974 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1975 return false;
1976
1977 Value *AddLHS, *AddRHS;
1978 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1979
1980 // (a + b) u< a, (a + b) u< b
1981 if (Pred == ICmpInst::ICMP_ULT)
1982 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1983 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1984
1985 // a >u (a + b), b >u (a + b)
1986 if (Pred == ICmpInst::ICMP_UGT)
1987 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1988 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1989
1990 Value *Op1;
1991 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1992 // (a ^ -1) <u b
1993 if (Pred == ICmpInst::ICMP_ULT) {
1994 if (XorExpr.match(ICmpLHS))
1995 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1996 }
1997 // b > u (a ^ -1)
1998 if (Pred == ICmpInst::ICMP_UGT) {
1999 if (XorExpr.match(ICmpRHS))
2000 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
2001 }
2002
2003 // Match special-case for increment-by-1.
2004 if (Pred == ICmpInst::ICMP_EQ) {
2005 // (a + 1) == 0
2006 // (1 + a) == 0
2007 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
2008 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2009 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2010 // 0 == (a + 1)
2011 // 0 == (1 + a)
2012 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2013 (m_One().match(AddLHS) || m_One().match(AddRHS)))
2014 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2015 }
2016
2017 return false;
2018 }
2019};
2020
2021/// Match an icmp instruction checking for unsigned overflow on addition.
2022///
2023/// S is matched to the addition whose result is being checked for overflow, and
2024/// L and R are matched to the LHS and RHS of S.
2025template <typename LHS_t, typename RHS_t, typename Sum_t>
2026UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
2027m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2028 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2029}
2030
2031template <typename Opnd_t> struct Argument_match {
2032 unsigned OpI;
2033 Opnd_t Val;
2034
2035 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2036
2037 template <typename OpTy> bool match(OpTy *V) {
2038 // FIXME: Should likely be switched to use `CallBase`.
2039 if (const auto *CI = dyn_cast<CallInst>(V))
2040 return Val.match(CI->getArgOperand(OpI));
2041 return false;
2042 }
2043};
2044
2045/// Match an argument.
2046template <unsigned OpI, typename Opnd_t>
2047inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2048 return Argument_match<Opnd_t>(OpI, Op);
2049}
2050
2051/// Intrinsic matchers.
2052struct IntrinsicID_match {
2053 unsigned ID;
2054
2055 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2056
2057 template <typename OpTy> bool match(OpTy *V) {
2058 if (const auto *CI = dyn_cast<CallInst>(V))
2059 if (const auto *F = CI->getCalledFunction())
2060 return F->getIntrinsicID() == ID;
2061 return false;
2062 }
2063};
2064
2065/// Intrinsic matches are combinations of ID matchers, and argument
2066/// matchers. Higher arity matcher are defined recursively in terms of and-ing
2067/// them with lower arity matchers. Here's some convenient typedefs for up to
2068/// several arguments, and more can be added as needed
2069template <typename T0 = void, typename T1 = void, typename T2 = void,
2070 typename T3 = void, typename T4 = void, typename T5 = void,
2071 typename T6 = void, typename T7 = void, typename T8 = void,
2072 typename T9 = void, typename T10 = void>
2073struct m_Intrinsic_Ty;
2074template <typename T0> struct m_Intrinsic_Ty<T0> {
2075 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2076};
2077template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2078 using Ty =
2079 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2080};
2081template <typename T0, typename T1, typename T2>
2082struct m_Intrinsic_Ty<T0, T1, T2> {
2083 using Ty =
2084 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2085 Argument_match<T2>>;
2086};
2087template <typename T0, typename T1, typename T2, typename T3>
2088struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2089 using Ty =
2090 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2091 Argument_match<T3>>;
2092};
2093
2094template <typename T0, typename T1, typename T2, typename T3, typename T4>
2095struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2096 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2097 Argument_match<T4>>;
2098};
2099
2100template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
2101struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2102 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2103 Argument_match<T5>>;
2104};
2105
2106/// Match intrinsic calls like this:
2107/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2108template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2109 return IntrinsicID_match(IntrID);
2110}
2111
2112template <Intrinsic::ID IntrID, typename T0>
2113inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2114 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2115}
2116
2117template <Intrinsic::ID IntrID, typename T0, typename T1>
2118inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2119 const T1 &Op1) {
2120 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2121}
2122
2123template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2124inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2125m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2126 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2127}
2128
2129template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2130 typename T3>
2131inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2132m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2133 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2134}
2135
2136template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2137 typename T3, typename T4>
2138inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2139m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2140 const T4 &Op4) {
2141 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2142 m_Argument<4>(Op4));
2143}
2144
2145template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2146 typename T3, typename T4, typename T5>
2147inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2148m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2149 const T4 &Op4, const T5 &Op5) {
2150 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2151 m_Argument<5>(Op5));
2152}
2153
2154// Helper intrinsic matching specializations.
2155template <typename Opnd0>
2156inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2157 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2158}
2159
2160template <typename Opnd0>
2161inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2162 return m_Intrinsic<Intrinsic::bswap>(Op0);
2163}
2164
2165template <typename Opnd0>
2166inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2167 return m_Intrinsic<Intrinsic::fabs>(Op0);
2168}
2169
2170template <typename Opnd0>
2171inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2172 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2173}
2174
2175template <typename Opnd0, typename Opnd1>
2176inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2177 const Opnd1 &Op1) {
2178 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2179}
2180
2181template <typename Opnd0, typename Opnd1>
2182inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2183 const Opnd1 &Op1) {
2184 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2185}
2186
2187template <typename Opnd0, typename Opnd1, typename Opnd2>
2188inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2189m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2190 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2191}
2192
2193template <typename Opnd0, typename Opnd1, typename Opnd2>
2194inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2195m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2196 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2197}
2198
2199//===----------------------------------------------------------------------===//
2200// Matchers for two-operands operators with the operators in either order
2201//
2202
2203/// Matches a BinaryOperator with LHS and RHS in either order.
2204template <typename LHS, typename RHS>
2205inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2206 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2207}
2208
2209/// Matches an ICmp with a predicate over LHS and RHS in either order.
2210/// Swaps the predicate if operands are commuted.
2211template <typename LHS, typename RHS>
2212inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2213m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2214 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2215 R);
2216}
2217
2218/// Matches a Add with LHS and RHS in either order.
2219template <typename LHS, typename RHS>
2220inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2221 const RHS &R) {
2222 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2223}
2224
2225/// Matches a Mul with LHS and RHS in either order.
2226template <typename LHS, typename RHS>
2227inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2228 const RHS &R) {
2229 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2230}
2231
2232/// Matches an And with LHS and RHS in either order.
2233template <typename LHS, typename RHS>
2234inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2235 const RHS &R) {
2236 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2237}
2238
2239/// Matches an Or with LHS and RHS in either order.
2240template <typename LHS, typename RHS>
2241inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2242 const RHS &R) {
2243 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2244}
2245
2246/// Matches an Xor with LHS and RHS in either order.
2247template <typename LHS, typename RHS>
2248inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2249 const RHS &R) {
2250 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2251}
2252
2253/// Matches a 'Neg' as 'sub 0, V'.
2254template <typename ValTy>
2255inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2256m_Neg(const ValTy &V) {
2257 return m_Sub(m_ZeroInt(), V);
2258}
2259
2260/// Matches a 'Neg' as 'sub nsw 0, V'.
2261template <typename ValTy>
2262inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2263 Instruction::Sub,
2264 OverflowingBinaryOperator::NoSignedWrap>
2265m_NSWNeg(const ValTy &V) {
2266 return m_NSWSub(m_ZeroInt(), V);
2267}
2268
2269/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2270template <typename ValTy>
2271inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
2272m_Not(const ValTy &V) {
2273 return m_c_Xor(V, m_AllOnes());
2274}
2275
2276/// Matches an SMin with LHS and RHS in either order.
2277template <typename LHS, typename RHS>
2278inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2279m_c_SMin(const LHS &L, const RHS &R) {
2280 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2281}
2282/// Matches an SMax with LHS and RHS in either order.
2283template <typename LHS, typename RHS>
2284inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2285m_c_SMax(const LHS &L, const RHS &R) {
2286 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2287}
2288/// Matches a UMin with LHS and RHS in either order.
2289template <typename LHS, typename RHS>
2290inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2291m_c_UMin(const LHS &L, const RHS &R) {
2292 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2293}
2294/// Matches a UMax with LHS and RHS in either order.
2295template <typename LHS, typename RHS>
2296inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2297m_c_UMax(const LHS &L, const RHS &R) {
2298 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2299}
2300
2301template <typename LHS, typename RHS>
2302inline match_combine_or<
2303 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2304 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2305 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2306 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2307m_c_MaxOrMin(const LHS &L, const RHS &R) {
2308 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2309 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2310}
2311
2312/// Matches FAdd with LHS and RHS in either order.
2313template <typename LHS, typename RHS>
2314inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2315m_c_FAdd(const LHS &L, const RHS &R) {
2316 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2317}
2318
2319/// Matches FMul with LHS and RHS in either order.
2320template <typename LHS, typename RHS>
2321inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2322m_c_FMul(const LHS &L, const RHS &R) {
2323 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2324}
2325
2326template <typename Opnd_t> struct Signum_match {
2327 Opnd_t Val;
2328 Signum_match(const Opnd_t &V) : Val(V) {}
2329
2330 template <typename OpTy> bool match(OpTy *V) {
2331 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2332 if (TypeSize == 0)
2333 return false;
2334
2335 unsigned ShiftWidth = TypeSize - 1;
2336 Value *OpL = nullptr, *OpR = nullptr;
2337
2338 // This is the representation of signum we match:
2339 //
2340 // signum(x) == (x >> 63) | (-x >>u 63)
2341 //
2342 // An i1 value is its own signum, so it's correct to match
2343 //
2344 // signum(x) == (x >> 0) | (-x >>u 0)
2345 //
2346 // for i1 values.
2347
2348 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2349 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2350 auto Signum = m_Or(LHS, RHS);
2351
2352 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2353 }
2354};
2355
2356/// Matches a signum pattern.
2357///
2358/// signum(x) =
2359/// x > 0 -> 1
2360/// x == 0 -> 0
2361/// x < 0 -> -1
2362template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2363 return Signum_match<Val_t>(V);
2364}
2365
2366template <int Ind, typename Opnd_t> struct ExtractValue_match {
2367 Opnd_t Val;
2368 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2369
2370 template <typename OpTy> bool match(OpTy *V) {
2371 if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2372 // If Ind is -1, don't inspect indices
2373 if (Ind != -1 &&
2374 !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2375 return false;
2376 return Val.match(I->getAggregateOperand());
2377 }
2378 return false;
2379 }
2380};
2381
2382/// Match a single index ExtractValue instruction.
2383/// For example m_ExtractValue<1>(...)
2384template <int Ind, typename Val_t>
2385inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2386 return ExtractValue_match<Ind, Val_t>(V);
2387}
2388
2389/// Match an ExtractValue instruction with any index.
2390/// For example m_ExtractValue(...)
2391template <typename Val_t>
2392inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2393 return ExtractValue_match<-1, Val_t>(V);
2394}
2395
2396/// Matcher for a single index InsertValue instruction.
2397template <int Ind, typename T0, typename T1> struct InsertValue_match {
2398 T0 Op0;
2399 T1 Op1;
2400
2401 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2402
2403 template <typename OpTy> bool match(OpTy *V) {
2404 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2405 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2406 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2407 }
2408 return false;
2409 }
2410};
2411
2412/// Matches a single index InsertValue instruction.
2413template <int Ind, typename Val_t, typename Elt_t>
2414inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2415 const Elt_t &Elt) {
2416 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2417}
2418
2419/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2420/// the constant expression
2421/// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2422/// under the right conditions determined by DataLayout.
2423struct VScaleVal_match {
2424private:
2425 template <typename Base, typename Offset>
2426 inline BinaryOp_match<Base, Offset, Instruction::GetElementPtr>
2427 m_OffsetGep(const Base &B, const Offset &O) {
2428 return BinaryOp_match<Base, Offset, Instruction::GetElementPtr>(B, O);
2429 }
2430
2431public:
2432 const DataLayout &DL;
2433 VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2434
2435 template <typename ITy> bool match(ITy *V) {
2436 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2437 return true;
2438
2439 if (m_PtrToInt(m_OffsetGep(m_Zero(), m_SpecificInt(1))).match(V)) {
2440 auto *GEP = cast<GEPOperator>(cast<Operator>(V)->getOperand(0));
2441 auto *DerefTy = GEP->getSourceElementType();
2442 if (isa<ScalableVectorType>(DerefTy) &&
2443 DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
2444 return true;
2445 }
2446
2447 return false;
2448 }
2449};
2450
2451inline VScaleVal_match m_VScale(const DataLayout &DL) {
2452 return VScaleVal_match(DL);
2453}
2454
2455template <typename LHS, typename RHS, unsigned Opcode>
2456struct LogicalOp_match {
2457 LHS L;
2458 RHS R;
2459
2460 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2461
2462 template <typename T> bool match(T *V) {
2463 if (auto *I = dyn_cast<Instruction>(V)) {
2464 if (!I->getType()->isIntOrIntVectorTy(1))
2465 return false;
2466
2467 if (I->getOpcode() == Opcode && L.match(I->getOperand(0)) &&
2468 R.match(I->getOperand(1)))
2469 return true;
2470
2471 if (auto *SI = dyn_cast<SelectInst>(I)) {
2472 if (Opcode == Instruction::And) {
2473 if (const auto *C = dyn_cast<Constant>(SI->getFalseValue()))
2474 if (C->isNullValue() && L.match(SI->getCondition()) &&
2475 R.match(SI->getTrueValue()))
2476 return true;
2477 } else {
2478 assert(Opcode == Instruction::Or)(static_cast <bool> (Opcode == Instruction::Or) ? void (
0) : __assert_fail ("Opcode == Instruction::Or", "/build/llvm-toolchain-snapshot-13~++20210718111111+0cd98bef1b6f/llvm/include/llvm/IR/PatternMatch.h"
, 2478, __extension__ __PRETTY_FUNCTION__))
;
2479 if (const auto *C = dyn_cast<Constant>(SI->getTrueValue()))
2480 if (C->isOneValue() && L.match(SI->getCondition()) &&
2481 R.match(SI->getFalseValue()))
2482 return true;
2483 }
2484 }
2485 }
2486
2487 return false;
2488 }
2489};
2490
2491/// Matches L && R either in the form of L & R or L ? R : false.
2492/// Note that the latter form is poison-blocking.
2493template <typename LHS, typename RHS>
2494inline LogicalOp_match<LHS, RHS, Instruction::And>
2495m_LogicalAnd(const LHS &L, const RHS &R) {
2496 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2497}
2498
2499/// Matches L && R where L and R are arbitrary values.
2500inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2501
2502/// Matches L || R either in the form of L | R or L ? true : R.
2503/// Note that the latter form is poison-blocking.
2504template <typename LHS, typename RHS>
2505inline LogicalOp_match<LHS, RHS, Instruction::Or>
2506m_LogicalOr(const LHS &L, const RHS &R) {
2507 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2508}
2509
2510/// Matches L || R where L and R are arbitrary values.
2511inline auto m_LogicalOr() {
2512 return m_LogicalOr(m_Value(), m_Value());
2513}
2514
2515} // end namespace PatternMatch
2516} // end namespace llvm
2517
2518#endif // LLVM_IR_PATTERNMATCH_H