Bug Summary

File:llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp
Warning:line 1538, column 48
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LoopIdiomRecognize.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Transforms/Scalar -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp

1//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements an idiom recognizer that transforms simple loops into a
10// non-loop form. In cases that this kicks in, it can be a significant
11// performance win.
12//
13// If compiling for code size we avoid idiom recognition if the resulting
14// code could be larger than the code for the original loop. One way this could
15// happen is if the loop is not removable after idiom recognition due to the
16// presence of non-idiom instructions. The initial implementation of the
17// heuristics applies to idioms in multi-block loops.
18//
19//===----------------------------------------------------------------------===//
20//
21// TODO List:
22//
23// Future loop memory idioms to recognize:
24// memcmp, memmove, strlen, etc.
25// Future floating point idioms to recognize in -ffast-math mode:
26// fpowi
27// Future integer operation idioms to recognize:
28// ctpop
29//
30// Beware that isel's default lowering for ctpop is highly inefficient for
31// i64 and larger types when i64 is legal and the value has few bits set. It
32// would be good to enhance isel to emit a loop for ctpop in this case.
33//
34// This could recognize common matrix multiplies and dot product idioms and
35// replace them with calls to BLAS (if linked in??).
36//
37//===----------------------------------------------------------------------===//
38
39#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
40#include "llvm/ADT/APInt.h"
41#include "llvm/ADT/ArrayRef.h"
42#include "llvm/ADT/DenseMap.h"
43#include "llvm/ADT/MapVector.h"
44#include "llvm/ADT/SetVector.h"
45#include "llvm/ADT/SmallPtrSet.h"
46#include "llvm/ADT/SmallVector.h"
47#include "llvm/ADT/Statistic.h"
48#include "llvm/ADT/StringRef.h"
49#include "llvm/Analysis/AliasAnalysis.h"
50#include "llvm/Analysis/LoopAccessAnalysis.h"
51#include "llvm/Analysis/LoopInfo.h"
52#include "llvm/Analysis/LoopPass.h"
53#include "llvm/Analysis/MemoryLocation.h"
54#include "llvm/Analysis/MemorySSA.h"
55#include "llvm/Analysis/MemorySSAUpdater.h"
56#include "llvm/Analysis/OptimizationRemarkEmitter.h"
57#include "llvm/Analysis/ScalarEvolution.h"
58#include "llvm/Analysis/ScalarEvolutionExpander.h"
59#include "llvm/Analysis/ScalarEvolutionExpressions.h"
60#include "llvm/Analysis/TargetLibraryInfo.h"
61#include "llvm/Analysis/TargetTransformInfo.h"
62#include "llvm/Analysis/ValueTracking.h"
63#include "llvm/IR/Attributes.h"
64#include "llvm/IR/BasicBlock.h"
65#include "llvm/IR/Constant.h"
66#include "llvm/IR/Constants.h"
67#include "llvm/IR/DataLayout.h"
68#include "llvm/IR/DebugLoc.h"
69#include "llvm/IR/DerivedTypes.h"
70#include "llvm/IR/Dominators.h"
71#include "llvm/IR/GlobalValue.h"
72#include "llvm/IR/GlobalVariable.h"
73#include "llvm/IR/IRBuilder.h"
74#include "llvm/IR/InstrTypes.h"
75#include "llvm/IR/Instruction.h"
76#include "llvm/IR/Instructions.h"
77#include "llvm/IR/IntrinsicInst.h"
78#include "llvm/IR/Intrinsics.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Module.h"
81#include "llvm/IR/PassManager.h"
82#include "llvm/IR/Type.h"
83#include "llvm/IR/User.h"
84#include "llvm/IR/Value.h"
85#include "llvm/IR/ValueHandle.h"
86#include "llvm/InitializePasses.h"
87#include "llvm/Pass.h"
88#include "llvm/Support/Casting.h"
89#include "llvm/Support/CommandLine.h"
90#include "llvm/Support/Debug.h"
91#include "llvm/Support/raw_ostream.h"
92#include "llvm/Transforms/Scalar.h"
93#include "llvm/Transforms/Utils/BuildLibCalls.h"
94#include "llvm/Transforms/Utils/Local.h"
95#include "llvm/Transforms/Utils/LoopUtils.h"
96#include <algorithm>
97#include <cassert>
98#include <cstdint>
99#include <utility>
100#include <vector>
101
102using namespace llvm;
103
104#define DEBUG_TYPE"loop-idiom" "loop-idiom"
105
106STATISTIC(NumMemSet, "Number of memset's formed from loop stores")static llvm::Statistic NumMemSet = {"loop-idiom", "NumMemSet"
, "Number of memset's formed from loop stores"}
;
107STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores")static llvm::Statistic NumMemCpy = {"loop-idiom", "NumMemCpy"
, "Number of memcpy's formed from loop load+stores"}
;
108
109static cl::opt<bool> UseLIRCodeSizeHeurs(
110 "use-lir-code-size-heurs",
111 cl::desc("Use loop idiom recognition code size heuristics when compiling"
112 "with -Os/-Oz"),
113 cl::init(true), cl::Hidden);
114
115namespace {
116
117class LoopIdiomRecognize {
118 Loop *CurLoop = nullptr;
119 AliasAnalysis *AA;
120 DominatorTree *DT;
121 LoopInfo *LI;
122 ScalarEvolution *SE;
123 TargetLibraryInfo *TLI;
124 const TargetTransformInfo *TTI;
125 const DataLayout *DL;
126 OptimizationRemarkEmitter &ORE;
127 bool ApplyCodeSizeHeuristics;
128 std::unique_ptr<MemorySSAUpdater> MSSAU;
129
130public:
131 explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
132 LoopInfo *LI, ScalarEvolution *SE,
133 TargetLibraryInfo *TLI,
134 const TargetTransformInfo *TTI, MemorySSA *MSSA,
135 const DataLayout *DL,
136 OptimizationRemarkEmitter &ORE)
137 : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {
138 if (MSSA)
139 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
140 }
141
142 bool runOnLoop(Loop *L);
143
144private:
145 using StoreList = SmallVector<StoreInst *, 8>;
146 using StoreListMap = MapVector<Value *, StoreList>;
147
148 StoreListMap StoreRefsForMemset;
149 StoreListMap StoreRefsForMemsetPattern;
150 StoreList StoreRefsForMemcpy;
151 bool HasMemset;
152 bool HasMemsetPattern;
153 bool HasMemcpy;
154
155 /// Return code for isLegalStore()
156 enum LegalStoreKind {
157 None = 0,
158 Memset,
159 MemsetPattern,
160 Memcpy,
161 UnorderedAtomicMemcpy,
162 DontUse // Dummy retval never to be used. Allows catching errors in retval
163 // handling.
164 };
165
166 /// \name Countable Loop Idiom Handling
167 /// @{
168
169 bool runOnCountableLoop();
170 bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
171 SmallVectorImpl<BasicBlock *> &ExitBlocks);
172
173 void collectStores(BasicBlock *BB);
174 LegalStoreKind isLegalStore(StoreInst *SI);
175 enum class ForMemset { No, Yes };
176 bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
177 ForMemset For);
178 bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
179
180 bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
181 MaybeAlign StoreAlignment, Value *StoredVal,
182 Instruction *TheStore,
183 SmallPtrSetImpl<Instruction *> &Stores,
184 const SCEVAddRecExpr *Ev, const SCEV *BECount,
185 bool NegStride, bool IsLoopMemset = false);
186 bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
187 bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
188 bool IsLoopMemset = false);
189
190 /// @}
191 /// \name Noncountable Loop Idiom Handling
192 /// @{
193
194 bool runOnNoncountableLoop();
195
196 bool recognizePopcount();
197 void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
198 PHINode *CntPhi, Value *Var);
199 bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz
200 void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
201 Instruction *CntInst, PHINode *CntPhi,
202 Value *Var, Instruction *DefX,
203 const DebugLoc &DL, bool ZeroCheck,
204 bool IsCntPhiUsedOutsideLoop);
205
206 /// @}
207};
208
209class LoopIdiomRecognizeLegacyPass : public LoopPass {
210public:
211 static char ID;
212
213 explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
214 initializeLoopIdiomRecognizeLegacyPassPass(
215 *PassRegistry::getPassRegistry());
216 }
217
218 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
219 if (skipLoop(L))
220 return false;
221
222 AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
223 DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
224 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
225 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
226 TargetLibraryInfo *TLI =
227 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
228 *L->getHeader()->getParent());
229 const TargetTransformInfo *TTI =
230 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
231 *L->getHeader()->getParent());
232 const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();
233 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
234 MemorySSA *MSSA = nullptr;
235 if (MSSAAnalysis)
236 MSSA = &MSSAAnalysis->getMSSA();
237
238 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
239 // pass. Function analyses need to be preserved across loop transformations
240 // but ORE cannot be preserved (see comment before the pass definition).
241 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
242
243 LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, MSSA, DL, ORE);
244 return LIR.runOnLoop(L);
245 }
246
247 /// This transformation requires natural loop information & requires that
248 /// loop preheaders be inserted into the CFG.
249 void getAnalysisUsage(AnalysisUsage &AU) const override {
250 AU.addRequired<TargetLibraryInfoWrapperPass>();
251 AU.addRequired<TargetTransformInfoWrapperPass>();
252 AU.addPreserved<MemorySSAWrapperPass>();
253 getLoopAnalysisUsage(AU);
254 }
255};
256
257} // end anonymous namespace
258
259char LoopIdiomRecognizeLegacyPass::ID = 0;
260
261PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
262 LoopStandardAnalysisResults &AR,
263 LPMUpdater &) {
264 const auto *DL = &L.getHeader()->getModule()->getDataLayout();
265
266 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
267 // pass. Function analyses need to be preserved across loop transformations
268 // but ORE cannot be preserved (see comment before the pass definition).
269 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
270
271 LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI,
272 AR.MSSA, DL, ORE);
273 if (!LIR.runOnLoop(&L))
1
Calling 'LoopIdiomRecognize::runOnLoop'
274 return PreservedAnalyses::all();
275
276 auto PA = getLoopPassPreservedAnalyses();
277 if (AR.MSSA)
278 PA.preserve<MemorySSAAnalysis>();
279 return PA;
280}
281
282INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",static void *initializeLoopIdiomRecognizeLegacyPassPassOnce(PassRegistry
&Registry) {
283 "Recognize loop idioms", false, false)static void *initializeLoopIdiomRecognizeLegacyPassPassOnce(PassRegistry
&Registry) {
284INITIALIZE_PASS_DEPENDENCY(LoopPass)initializeLoopPassPass(Registry);
285INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
286INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
287INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",PassInfo *PI = new PassInfo( "Recognize loop idioms", "loop-idiom"
, &LoopIdiomRecognizeLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<LoopIdiomRecognizeLegacyPass>), false,
false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeLoopIdiomRecognizeLegacyPassPassFlag
; void llvm::initializeLoopIdiomRecognizeLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLoopIdiomRecognizeLegacyPassPassFlag
, initializeLoopIdiomRecognizeLegacyPassPassOnce, std::ref(Registry
)); }
288 "Recognize loop idioms", false, false)PassInfo *PI = new PassInfo( "Recognize loop idioms", "loop-idiom"
, &LoopIdiomRecognizeLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<LoopIdiomRecognizeLegacyPass>), false,
false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeLoopIdiomRecognizeLegacyPassPassFlag
; void llvm::initializeLoopIdiomRecognizeLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeLoopIdiomRecognizeLegacyPassPassFlag
, initializeLoopIdiomRecognizeLegacyPassPassOnce, std::ref(Registry
)); }
289
290Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }
291
292static void deleteDeadInstruction(Instruction *I) {
293 I->replaceAllUsesWith(UndefValue::get(I->getType()));
294 I->eraseFromParent();
295}
296
297//===----------------------------------------------------------------------===//
298//
299// Implementation of LoopIdiomRecognize
300//
301//===----------------------------------------------------------------------===//
302
303bool LoopIdiomRecognize::runOnLoop(Loop *L) {
304 CurLoop = L;
305 // If the loop could not be converted to canonical form, it must have an
306 // indirectbr in it, just give up.
307 if (!L->getLoopPreheader())
2
Assuming the condition is false
3
Taking false branch
308 return false;
309
310 // Disable loop idiom recognition if the function's name is a common idiom.
311 StringRef Name = L->getHeader()->getParent()->getName();
312 if (Name == "memset" || Name == "memcpy")
4
Assuming the condition is false
5
Assuming the condition is false
6
Taking false branch
313 return false;
314
315 // Determine if code size heuristics need to be applied.
316 ApplyCodeSizeHeuristics =
317 L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;
7
Assuming the condition is false
318
319 HasMemset = TLI->has(LibFunc_memset);
320 HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
321 HasMemcpy = TLI->has(LibFunc_memcpy);
322
323 if (HasMemset
7.1
Field 'HasMemset' is false
7.1
Field 'HasMemset' is false
|| HasMemsetPattern
7.2
Field 'HasMemsetPattern' is false
7.2
Field 'HasMemsetPattern' is false
|| HasMemcpy
7.3
Field 'HasMemcpy' is false
7.3
Field 'HasMemcpy' is false
)
8
Taking false branch
324 if (SE->hasLoopInvariantBackedgeTakenCount(L))
325 return runOnCountableLoop();
326
327 return runOnNoncountableLoop();
9
Calling 'LoopIdiomRecognize::runOnNoncountableLoop'
328}
329
330bool LoopIdiomRecognize::runOnCountableLoop() {
331 const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
332 assert(!isa<SCEVCouldNotCompute>(BECount) &&((!isa<SCEVCouldNotCompute>(BECount) && "runOnCountableLoop() called on a loop without a predictable"
"backedge-taken count") ? static_cast<void> (0) : __assert_fail
("!isa<SCEVCouldNotCompute>(BECount) && \"runOnCountableLoop() called on a loop without a predictable\" \"backedge-taken count\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 334, __PRETTY_FUNCTION__))
333 "runOnCountableLoop() called on a loop without a predictable"((!isa<SCEVCouldNotCompute>(BECount) && "runOnCountableLoop() called on a loop without a predictable"
"backedge-taken count") ? static_cast<void> (0) : __assert_fail
("!isa<SCEVCouldNotCompute>(BECount) && \"runOnCountableLoop() called on a loop without a predictable\" \"backedge-taken count\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 334, __PRETTY_FUNCTION__))
334 "backedge-taken count")((!isa<SCEVCouldNotCompute>(BECount) && "runOnCountableLoop() called on a loop without a predictable"
"backedge-taken count") ? static_cast<void> (0) : __assert_fail
("!isa<SCEVCouldNotCompute>(BECount) && \"runOnCountableLoop() called on a loop without a predictable\" \"backedge-taken count\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 334, __PRETTY_FUNCTION__))
;
335
336 // If this loop executes exactly one time, then it should be peeled, not
337 // optimized by this pass.
338 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
339 if (BECst->getAPInt() == 0)
340 return false;
341
342 SmallVector<BasicBlock *, 8> ExitBlocks;
343 CurLoop->getUniqueExitBlocks(ExitBlocks);
344
345 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F["
<< CurLoop->getHeader()->getParent()->getName
() << "] Countable Loop %" << CurLoop->getHeader
()->getName() << "\n"; } } while (false)
346 << CurLoop->getHeader()->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F["
<< CurLoop->getHeader()->getParent()->getName
() << "] Countable Loop %" << CurLoop->getHeader
()->getName() << "\n"; } } while (false)
347 << "] Countable Loop %" << CurLoop->getHeader()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F["
<< CurLoop->getHeader()->getParent()->getName
() << "] Countable Loop %" << CurLoop->getHeader
()->getName() << "\n"; } } while (false)
348 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F["
<< CurLoop->getHeader()->getParent()->getName
() << "] Countable Loop %" << CurLoop->getHeader
()->getName() << "\n"; } } while (false)
;
349
350 // The following transforms hoist stores/memsets into the loop pre-header.
351 // Give up if the loop has instructions that may throw.
352 SimpleLoopSafetyInfo SafetyInfo;
353 SafetyInfo.computeLoopSafetyInfo(CurLoop);
354 if (SafetyInfo.anyBlockMayThrow())
355 return false;
356
357 bool MadeChange = false;
358
359 // Scan all the blocks in the loop that are not in subloops.
360 for (auto *BB : CurLoop->getBlocks()) {
361 // Ignore blocks in subloops.
362 if (LI->getLoopFor(BB) != CurLoop)
363 continue;
364
365 MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
366 }
367 return MadeChange;
368}
369
370static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
371 const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
372 return ConstStride->getAPInt();
373}
374
375/// getMemSetPatternValue - If a strided store of the specified value is safe to
376/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
377/// be passed in. Otherwise, return null.
378///
379/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
380/// just replicate their input array and then pass on to memset_pattern16.
381static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
382 // FIXME: This could check for UndefValue because it can be merged into any
383 // other valid pattern.
384
385 // If the value isn't a constant, we can't promote it to being in a constant
386 // array. We could theoretically do a store to an alloca or something, but
387 // that doesn't seem worthwhile.
388 Constant *C = dyn_cast<Constant>(V);
389 if (!C)
390 return nullptr;
391
392 // Only handle simple values that are a power of two bytes in size.
393 uint64_t Size = DL->getTypeSizeInBits(V->getType());
394 if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
395 return nullptr;
396
397 // Don't care enough about darwin/ppc to implement this.
398 if (DL->isBigEndian())
399 return nullptr;
400
401 // Convert to size in bytes.
402 Size /= 8;
403
404 // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
405 // if the top and bottom are the same (e.g. for vectors and large integers).
406 if (Size > 16)
407 return nullptr;
408
409 // If the constant is exactly 16 bytes, just use it.
410 if (Size == 16)
411 return C;
412
413 // Otherwise, we'll use an array of the constants.
414 unsigned ArraySize = 16 / Size;
415 ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
416 return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
417}
418
419LoopIdiomRecognize::LegalStoreKind
420LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
421 // Don't touch volatile stores.
422 if (SI->isVolatile())
423 return LegalStoreKind::None;
424 // We only want simple or unordered-atomic stores.
425 if (!SI->isUnordered())
426 return LegalStoreKind::None;
427
428 // Don't convert stores of non-integral pointer types to memsets (which stores
429 // integers).
430 if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
431 return LegalStoreKind::None;
432
433 // Avoid merging nontemporal stores.
434 if (SI->getMetadata(LLVMContext::MD_nontemporal))
435 return LegalStoreKind::None;
436
437 Value *StoredVal = SI->getValueOperand();
438 Value *StorePtr = SI->getPointerOperand();
439
440 // Reject stores that are so large that they overflow an unsigned.
441 uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
442 if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
443 return LegalStoreKind::None;
444
445 // See if the pointer expression is an AddRec like {base,+,1} on the current
446 // loop, which indicates a strided store. If we have something else, it's a
447 // random store we can't handle.
448 const SCEVAddRecExpr *StoreEv =
449 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
450 if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
451 return LegalStoreKind::None;
452
453 // Check to see if we have a constant stride.
454 if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
455 return LegalStoreKind::None;
456
457 // See if the store can be turned into a memset.
458
459 // If the stored value is a byte-wise value (like i32 -1), then it may be
460 // turned into a memset of i8 -1, assuming that all the consecutive bytes
461 // are stored. A store of i32 0x01020304 can never be turned into a memset,
462 // but it can be turned into memset_pattern if the target supports it.
463 Value *SplatValue = isBytewiseValue(StoredVal, *DL);
464 Constant *PatternValue = nullptr;
465
466 // Note: memset and memset_pattern on unordered-atomic is yet not supported
467 bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();
468
469 // If we're allowed to form a memset, and the stored value would be
470 // acceptable for memset, use it.
471 if (!UnorderedAtomic && HasMemset && SplatValue &&
472 // Verify that the stored value is loop invariant. If not, we can't
473 // promote the memset.
474 CurLoop->isLoopInvariant(SplatValue)) {
475 // It looks like we can use SplatValue.
476 return LegalStoreKind::Memset;
477 } else if (!UnorderedAtomic && HasMemsetPattern &&
478 // Don't create memset_pattern16s with address spaces.
479 StorePtr->getType()->getPointerAddressSpace() == 0 &&
480 (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
481 // It looks like we can use PatternValue!
482 return LegalStoreKind::MemsetPattern;
483 }
484
485 // Otherwise, see if the store can be turned into a memcpy.
486 if (HasMemcpy) {
487 // Check to see if the stride matches the size of the store. If so, then we
488 // know that every byte is touched in the loop.
489 APInt Stride = getStoreStride(StoreEv);
490 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
491 if (StoreSize != Stride && StoreSize != -Stride)
492 return LegalStoreKind::None;
493
494 // The store must be feeding a non-volatile load.
495 LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
496
497 // Only allow non-volatile loads
498 if (!LI || LI->isVolatile())
499 return LegalStoreKind::None;
500 // Only allow simple or unordered-atomic loads
501 if (!LI->isUnordered())
502 return LegalStoreKind::None;
503
504 // See if the pointer expression is an AddRec like {base,+,1} on the current
505 // loop, which indicates a strided load. If we have something else, it's a
506 // random load we can't handle.
507 const SCEVAddRecExpr *LoadEv =
508 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
509 if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
510 return LegalStoreKind::None;
511
512 // The store and load must share the same stride.
513 if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
514 return LegalStoreKind::None;
515
516 // Success. This store can be converted into a memcpy.
517 UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
518 return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
519 : LegalStoreKind::Memcpy;
520 }
521 // This store can't be transformed into a memset/memcpy.
522 return LegalStoreKind::None;
523}
524
525void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
526 StoreRefsForMemset.clear();
527 StoreRefsForMemsetPattern.clear();
528 StoreRefsForMemcpy.clear();
529 for (Instruction &I : *BB) {
530 StoreInst *SI = dyn_cast<StoreInst>(&I);
531 if (!SI)
532 continue;
533
534 // Make sure this is a strided store with a constant stride.
535 switch (isLegalStore(SI)) {
536 case LegalStoreKind::None:
537 // Nothing to do
538 break;
539 case LegalStoreKind::Memset: {
540 // Find the base pointer.
541 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
542 StoreRefsForMemset[Ptr].push_back(SI);
543 } break;
544 case LegalStoreKind::MemsetPattern: {
545 // Find the base pointer.
546 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
547 StoreRefsForMemsetPattern[Ptr].push_back(SI);
548 } break;
549 case LegalStoreKind::Memcpy:
550 case LegalStoreKind::UnorderedAtomicMemcpy:
551 StoreRefsForMemcpy.push_back(SI);
552 break;
553 default:
554 assert(false && "unhandled return value")((false && "unhandled return value") ? static_cast<
void> (0) : __assert_fail ("false && \"unhandled return value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 554, __PRETTY_FUNCTION__))
;
555 break;
556 }
557 }
558}
559
560/// runOnLoopBlock - Process the specified block, which lives in a counted loop
561/// with the specified backedge count. This block is known to be in the current
562/// loop and not in any subloops.
563bool LoopIdiomRecognize::runOnLoopBlock(
564 BasicBlock *BB, const SCEV *BECount,
565 SmallVectorImpl<BasicBlock *> &ExitBlocks) {
566 // We can only promote stores in this block if they are unconditionally
567 // executed in the loop. For a block to be unconditionally executed, it has
568 // to dominate all the exit blocks of the loop. Verify this now.
569 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
570 if (!DT->dominates(BB, ExitBlocks[i]))
571 return false;
572
573 bool MadeChange = false;
574 // Look for store instructions, which may be optimized to memset/memcpy.
575 collectStores(BB);
576
577 // Look for a single store or sets of stores with a common base, which can be
578 // optimized into a memset (memset_pattern). The latter most commonly happens
579 // with structs and handunrolled loops.
580 for (auto &SL : StoreRefsForMemset)
581 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);
582
583 for (auto &SL : StoreRefsForMemsetPattern)
584 MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);
585
586 // Optimize the store into a memcpy, if it feeds an similarly strided load.
587 for (auto &SI : StoreRefsForMemcpy)
588 MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
589
590 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
591 Instruction *Inst = &*I++;
592 // Look for memset instructions, which may be optimized to a larger memset.
593 if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
594 WeakTrackingVH InstPtr(&*I);
595 if (!processLoopMemSet(MSI, BECount))
596 continue;
597 MadeChange = true;
598
599 // If processing the memset invalidated our iterator, start over from the
600 // top of the block.
601 if (!InstPtr)
602 I = BB->begin();
603 continue;
604 }
605 }
606
607 return MadeChange;
608}
609
610/// See if this store(s) can be promoted to a memset.
611bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
612 const SCEV *BECount, ForMemset For) {
613 // Try to find consecutive stores that can be transformed into memsets.
614 SetVector<StoreInst *> Heads, Tails;
615 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
616
617 // Do a quadratic search on all of the given stores and find
618 // all of the pairs of stores that follow each other.
619 SmallVector<unsigned, 16> IndexQueue;
620 for (unsigned i = 0, e = SL.size(); i < e; ++i) {
621 assert(SL[i]->isSimple() && "Expected only non-volatile stores.")((SL[i]->isSimple() && "Expected only non-volatile stores."
) ? static_cast<void> (0) : __assert_fail ("SL[i]->isSimple() && \"Expected only non-volatile stores.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 621, __PRETTY_FUNCTION__))
;
622
623 Value *FirstStoredVal = SL[i]->getValueOperand();
624 Value *FirstStorePtr = SL[i]->getPointerOperand();
625 const SCEVAddRecExpr *FirstStoreEv =
626 cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
627 APInt FirstStride = getStoreStride(FirstStoreEv);
628 unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());
629
630 // See if we can optimize just this store in isolation.
631 if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
632 Heads.insert(SL[i]);
633 continue;
634 }
635
636 Value *FirstSplatValue = nullptr;
637 Constant *FirstPatternValue = nullptr;
638
639 if (For == ForMemset::Yes)
640 FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
641 else
642 FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);
643
644 assert((FirstSplatValue || FirstPatternValue) &&(((FirstSplatValue || FirstPatternValue) && "Expected either splat value or pattern value."
) ? static_cast<void> (0) : __assert_fail ("(FirstSplatValue || FirstPatternValue) && \"Expected either splat value or pattern value.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 645, __PRETTY_FUNCTION__))
645 "Expected either splat value or pattern value.")(((FirstSplatValue || FirstPatternValue) && "Expected either splat value or pattern value."
) ? static_cast<void> (0) : __assert_fail ("(FirstSplatValue || FirstPatternValue) && \"Expected either splat value or pattern value.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 645, __PRETTY_FUNCTION__))
;
646
647 IndexQueue.clear();
648 // If a store has multiple consecutive store candidates, search Stores
649 // array according to the sequence: from i+1 to e, then from i-1 to 0.
650 // This is because usually pairing with immediate succeeding or preceding
651 // candidate create the best chance to find memset opportunity.
652 unsigned j = 0;
653 for (j = i + 1; j < e; ++j)
654 IndexQueue.push_back(j);
655 for (j = i; j > 0; --j)
656 IndexQueue.push_back(j - 1);
657
658 for (auto &k : IndexQueue) {
659 assert(SL[k]->isSimple() && "Expected only non-volatile stores.")((SL[k]->isSimple() && "Expected only non-volatile stores."
) ? static_cast<void> (0) : __assert_fail ("SL[k]->isSimple() && \"Expected only non-volatile stores.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 659, __PRETTY_FUNCTION__))
;
660 Value *SecondStorePtr = SL[k]->getPointerOperand();
661 const SCEVAddRecExpr *SecondStoreEv =
662 cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
663 APInt SecondStride = getStoreStride(SecondStoreEv);
664
665 if (FirstStride != SecondStride)
666 continue;
667
668 Value *SecondStoredVal = SL[k]->getValueOperand();
669 Value *SecondSplatValue = nullptr;
670 Constant *SecondPatternValue = nullptr;
671
672 if (For == ForMemset::Yes)
673 SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
674 else
675 SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);
676
677 assert((SecondSplatValue || SecondPatternValue) &&(((SecondSplatValue || SecondPatternValue) && "Expected either splat value or pattern value."
) ? static_cast<void> (0) : __assert_fail ("(SecondSplatValue || SecondPatternValue) && \"Expected either splat value or pattern value.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 678, __PRETTY_FUNCTION__))
678 "Expected either splat value or pattern value.")(((SecondSplatValue || SecondPatternValue) && "Expected either splat value or pattern value."
) ? static_cast<void> (0) : __assert_fail ("(SecondSplatValue || SecondPatternValue) && \"Expected either splat value or pattern value.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 678, __PRETTY_FUNCTION__))
;
679
680 if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
681 if (For == ForMemset::Yes) {
682 if (isa<UndefValue>(FirstSplatValue))
683 FirstSplatValue = SecondSplatValue;
684 if (FirstSplatValue != SecondSplatValue)
685 continue;
686 } else {
687 if (isa<UndefValue>(FirstPatternValue))
688 FirstPatternValue = SecondPatternValue;
689 if (FirstPatternValue != SecondPatternValue)
690 continue;
691 }
692 Tails.insert(SL[k]);
693 Heads.insert(SL[i]);
694 ConsecutiveChain[SL[i]] = SL[k];
695 break;
696 }
697 }
698 }
699
700 // We may run into multiple chains that merge into a single chain. We mark the
701 // stores that we transformed so that we don't visit the same store twice.
702 SmallPtrSet<Value *, 16> TransformedStores;
703 bool Changed = false;
704
705 // For stores that start but don't end a link in the chain:
706 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
707 it != e; ++it) {
708 if (Tails.count(*it))
709 continue;
710
711 // We found a store instr that starts a chain. Now follow the chain and try
712 // to transform it.
713 SmallPtrSet<Instruction *, 8> AdjacentStores;
714 StoreInst *I = *it;
715
716 StoreInst *HeadStore = I;
717 unsigned StoreSize = 0;
718
719 // Collect the chain into a list.
720 while (Tails.count(I) || Heads.count(I)) {
721 if (TransformedStores.count(I))
722 break;
723 AdjacentStores.insert(I);
724
725 StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
726 // Move to the next value in the chain.
727 I = ConsecutiveChain[I];
728 }
729
730 Value *StoredVal = HeadStore->getValueOperand();
731 Value *StorePtr = HeadStore->getPointerOperand();
732 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
733 APInt Stride = getStoreStride(StoreEv);
734
735 // Check to see if the stride matches the size of the stores. If so, then
736 // we know that every byte is touched in the loop.
737 if (StoreSize != Stride && StoreSize != -Stride)
738 continue;
739
740 bool NegStride = StoreSize == -Stride;
741
742 if (processLoopStridedStore(StorePtr, StoreSize,
743 MaybeAlign(HeadStore->getAlignment()),
744 StoredVal, HeadStore, AdjacentStores, StoreEv,
745 BECount, NegStride)) {
746 TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
747 Changed = true;
748 }
749 }
750
751 return Changed;
752}
753
754/// processLoopMemSet - See if this memset can be promoted to a large memset.
755bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
756 const SCEV *BECount) {
757 // We can only handle non-volatile memsets with a constant size.
758 if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
759 return false;
760
761 // If we're not allowed to hack on memset, we fail.
762 if (!HasMemset)
763 return false;
764
765 Value *Pointer = MSI->getDest();
766
767 // See if the pointer expression is an AddRec like {base,+,1} on the current
768 // loop, which indicates a strided store. If we have something else, it's a
769 // random store we can't handle.
770 const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
771 if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
772 return false;
773
774 // Reject memsets that are so large that they overflow an unsigned.
775 uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
776 if ((SizeInBytes >> 32) != 0)
777 return false;
778
779 // Check to see if the stride matches the size of the memset. If so, then we
780 // know that every byte is touched in the loop.
781 const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
782 if (!ConstStride)
783 return false;
784
785 APInt Stride = ConstStride->getAPInt();
786 if (SizeInBytes != Stride && SizeInBytes != -Stride)
787 return false;
788
789 // Verify that the memset value is loop invariant. If not, we can't promote
790 // the memset.
791 Value *SplatValue = MSI->getValue();
792 if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
793 return false;
794
795 SmallPtrSet<Instruction *, 1> MSIs;
796 MSIs.insert(MSI);
797 bool NegStride = SizeInBytes == -Stride;
798 return processLoopStridedStore(
799 Pointer, (unsigned)SizeInBytes, MaybeAlign(MSI->getDestAlignment()),
800 SplatValue, MSI, MSIs, Ev, BECount, NegStride, /*IsLoopMemset=*/true);
801}
802
803/// mayLoopAccessLocation - Return true if the specified loop might access the
804/// specified pointer location, which is a loop-strided access. The 'Access'
805/// argument specifies what the verboten forms of access are (read or write).
806static bool
807mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
808 const SCEV *BECount, unsigned StoreSize,
809 AliasAnalysis &AA,
810 SmallPtrSetImpl<Instruction *> &IgnoredStores) {
811 // Get the location that may be stored across the loop. Since the access is
812 // strided positively through memory, we say that the modified location starts
813 // at the pointer and has infinite size.
814 LocationSize AccessSize = LocationSize::unknown();
815
816 // If the loop iterates a fixed number of times, we can refine the access size
817 // to be exactly the size of the memset, which is (BECount+1)*StoreSize
818 if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
819 AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
820 StoreSize);
821
822 // TODO: For this to be really effective, we have to dive into the pointer
823 // operand in the store. Store to &A[i] of 100 will always return may alias
824 // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
825 // which will then no-alias a store to &A[100].
826 MemoryLocation StoreLoc(Ptr, AccessSize);
827
828 for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
829 ++BI)
830 for (Instruction &I : **BI)
831 if (IgnoredStores.count(&I) == 0 &&
832 isModOrRefSet(
833 intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
834 return true;
835
836 return false;
837}
838
839// If we have a negative stride, Start refers to the end of the memory location
840// we're trying to memset. Therefore, we need to recompute the base pointer,
841// which is just Start - BECount*Size.
842static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
843 Type *IntPtr, unsigned StoreSize,
844 ScalarEvolution *SE) {
845 const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
846 if (StoreSize != 1)
847 Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
848 SCEV::FlagNUW);
849 return SE->getMinusSCEV(Start, Index);
850}
851
852/// Compute the number of bytes as a SCEV from the backedge taken count.
853///
854/// This also maps the SCEV into the provided type and tries to handle the
855/// computation in a way that will fold cleanly.
856static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
857 unsigned StoreSize, Loop *CurLoop,
858 const DataLayout *DL, ScalarEvolution *SE) {
859 const SCEV *NumBytesS;
860 // The # stored bytes is (BECount+1)*Size. Expand the trip count out to
861 // pointer size if it isn't already.
862 //
863 // If we're going to need to zero extend the BE count, check if we can add
864 // one to it prior to zero extending without overflow. Provided this is safe,
865 // it allows better simplification of the +1.
866 if (DL->getTypeSizeInBits(BECount->getType()) <
867 DL->getTypeSizeInBits(IntPtr) &&
868 SE->isLoopEntryGuardedByCond(
869 CurLoop, ICmpInst::ICMP_NE, BECount,
870 SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
871 NumBytesS = SE->getZeroExtendExpr(
872 SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
873 IntPtr);
874 } else {
875 NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
876 SE->getOne(IntPtr), SCEV::FlagNUW);
877 }
878
879 // And scale it based on the store size.
880 if (StoreSize != 1) {
881 NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
882 SCEV::FlagNUW);
883 }
884 return NumBytesS;
885}
886
887/// processLoopStridedStore - We see a strided store of some value. If we can
888/// transform this into a memset or memset_pattern in the loop preheader, do so.
889bool LoopIdiomRecognize::processLoopStridedStore(
890 Value *DestPtr, unsigned StoreSize, MaybeAlign StoreAlignment,
891 Value *StoredVal, Instruction *TheStore,
892 SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
893 const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
894 Value *SplatValue = isBytewiseValue(StoredVal, *DL);
895 Constant *PatternValue = nullptr;
896
897 if (!SplatValue)
898 PatternValue = getMemSetPatternValue(StoredVal, DL);
899
900 assert((SplatValue || PatternValue) &&(((SplatValue || PatternValue) && "Expected either splat value or pattern value."
) ? static_cast<void> (0) : __assert_fail ("(SplatValue || PatternValue) && \"Expected either splat value or pattern value.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 901, __PRETTY_FUNCTION__))
901 "Expected either splat value or pattern value.")(((SplatValue || PatternValue) && "Expected either splat value or pattern value."
) ? static_cast<void> (0) : __assert_fail ("(SplatValue || PatternValue) && \"Expected either splat value or pattern value.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 901, __PRETTY_FUNCTION__))
;
902
903 // The trip count of the loop and the base pointer of the addrec SCEV is
904 // guaranteed to be loop invariant, which means that it should dominate the
905 // header. This allows us to insert code for it in the preheader.
906 unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
907 BasicBlock *Preheader = CurLoop->getLoopPreheader();
908 IRBuilder<> Builder(Preheader->getTerminator());
909 SCEVExpander Expander(*SE, *DL, "loop-idiom");
910
911 Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
912 Type *IntIdxTy = DL->getIndexType(DestPtr->getType());
913
914 const SCEV *Start = Ev->getStart();
915 // Handle negative strided loops.
916 if (NegStride)
917 Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSize, SE);
918
919 // TODO: ideally we should still be able to generate memset if SCEV expander
920 // is taught to generate the dependencies at the latest point.
921 if (!isSafeToExpand(Start, *SE))
922 return false;
923
924 // Okay, we have a strided store "p[i]" of a splattable value. We can turn
925 // this into a memset in the loop preheader now if we want. However, this
926 // would be unsafe to do if there is anything else in the loop that may read
927 // or write to the aliased location. Check for any overlap by generating the
928 // base pointer and checking the region.
929 Value *BasePtr =
930 Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
931 if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
932 StoreSize, *AA, Stores)) {
933 Expander.clear();
934 // If we generated new code for the base pointer, clean up.
935 RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
936 return false;
937 }
938
939 if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
940 return false;
941
942 // Okay, everything looks good, insert the memset.
943
944 const SCEV *NumBytesS =
945 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
946
947 // TODO: ideally we should still be able to generate memset if SCEV expander
948 // is taught to generate the dependencies at the latest point.
949 if (!isSafeToExpand(NumBytesS, *SE))
950 return false;
951
952 Value *NumBytes =
953 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
954
955 CallInst *NewCall;
956 if (SplatValue) {
957 NewCall = Builder.CreateMemSet(BasePtr, SplatValue, NumBytes,
958 MaybeAlign(StoreAlignment));
959 } else {
960 // Everything is emitted in default address space
961 Type *Int8PtrTy = DestInt8PtrTy;
962
963 Module *M = TheStore->getModule();
964 StringRef FuncName = "memset_pattern16";
965 FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
966 Int8PtrTy, Int8PtrTy, IntIdxTy);
967 inferLibFuncAttributes(M, FuncName, *TLI);
968
969 // Otherwise we should form a memset_pattern16. PatternValue is known to be
970 // an constant array of 16-bytes. Plop the value into a mergable global.
971 GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
972 GlobalValue::PrivateLinkage,
973 PatternValue, ".memset_pattern");
974 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
975 GV->setAlignment(Align(16));
976 Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
977 NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
978 }
979 NewCall->setDebugLoc(TheStore->getDebugLoc());
980
981 if (MSSAU) {
982 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
983 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
984 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
985 }
986
987 LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << " Formed memset: " <<
*NewCall << "\n" << " from store to: " <<
*Ev << " at: " << *TheStore << "\n"; } } while
(false)
988 << " from store to: " << *Ev << " at: " << *TheStoredo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << " Formed memset: " <<
*NewCall << "\n" << " from store to: " <<
*Ev << " at: " << *TheStore << "\n"; } } while
(false)
989 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << " Formed memset: " <<
*NewCall << "\n" << " from store to: " <<
*Ev << " at: " << *TheStore << "\n"; } } while
(false)
;
990
991 ORE.emit([&]() {
992 return OptimizationRemark(DEBUG_TYPE"loop-idiom", "ProcessLoopStridedStore",
993 NewCall->getDebugLoc(), Preheader)
994 << "Transformed loop-strided store into a call to "
995 << ore::NV("NewFunction", NewCall->getCalledFunction())
996 << "() function";
997 });
998
999 // Okay, the memset has been formed. Zap the original store and anything that
1000 // feeds into it.
1001 for (auto *I : Stores) {
1002 if (MSSAU)
1003 MSSAU->removeMemoryAccess(I, true);
1004 deleteDeadInstruction(I);
1005 }
1006 if (MSSAU && VerifyMemorySSA)
1007 MSSAU->getMemorySSA()->verifyMemorySSA();
1008 ++NumMemSet;
1009 return true;
1010}
1011
1012/// If the stored value is a strided load in the same loop with the same stride
1013/// this may be transformable into a memcpy. This kicks in for stuff like
1014/// for (i) A[i] = B[i];
1015bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
1016 const SCEV *BECount) {
1017 assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.")((SI->isUnordered() && "Expected only non-volatile non-ordered stores."
) ? static_cast<void> (0) : __assert_fail ("SI->isUnordered() && \"Expected only non-volatile non-ordered stores.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 1017, __PRETTY_FUNCTION__))
;
1018
1019 Value *StorePtr = SI->getPointerOperand();
1020 const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
1021 APInt Stride = getStoreStride(StoreEv);
1022 unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
1023 bool NegStride = StoreSize == -Stride;
1024
1025 // The store must be feeding a non-volatile load.
1026 LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
1027 assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.")((LI->isUnordered() && "Expected only non-volatile non-ordered loads."
) ? static_cast<void> (0) : __assert_fail ("LI->isUnordered() && \"Expected only non-volatile non-ordered loads.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 1027, __PRETTY_FUNCTION__))
;
1028
1029 // See if the pointer expression is an AddRec like {base,+,1} on the current
1030 // loop, which indicates a strided load. If we have something else, it's a
1031 // random load we can't handle.
1032 const SCEVAddRecExpr *LoadEv =
1033 cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
1034
1035 // The trip count of the loop and the base pointer of the addrec SCEV is
1036 // guaranteed to be loop invariant, which means that it should dominate the
1037 // header. This allows us to insert code for it in the preheader.
1038 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1039 IRBuilder<> Builder(Preheader->getTerminator());
1040 SCEVExpander Expander(*SE, *DL, "loop-idiom");
1041
1042 const SCEV *StrStart = StoreEv->getStart();
1043 unsigned StrAS = SI->getPointerAddressSpace();
1044 Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS));
1045
1046 // Handle negative strided loops.
1047 if (NegStride)
1048 StrStart = getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSize, SE);
1049
1050 // Okay, we have a strided store "p[i]" of a loaded value. We can turn
1051 // this into a memcpy in the loop preheader now if we want. However, this
1052 // would be unsafe to do if there is anything else in the loop that may read
1053 // or write the memory region we're storing to. This includes the load that
1054 // feeds the stores. Check for an alias by generating the base address and
1055 // checking everything.
1056 Value *StoreBasePtr = Expander.expandCodeFor(
1057 StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());
1058
1059 SmallPtrSet<Instruction *, 1> Stores;
1060 Stores.insert(SI);
1061 if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
1062 StoreSize, *AA, Stores)) {
1063 Expander.clear();
1064 // If we generated new code for the base pointer, clean up.
1065 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1066 return false;
1067 }
1068
1069 const SCEV *LdStart = LoadEv->getStart();
1070 unsigned LdAS = LI->getPointerAddressSpace();
1071
1072 // Handle negative strided loops.
1073 if (NegStride)
1074 LdStart = getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSize, SE);
1075
1076 // For a memcpy, we have to make sure that the input array is not being
1077 // mutated by the loop.
1078 Value *LoadBasePtr = Expander.expandCodeFor(
1079 LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());
1080
1081 if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
1082 StoreSize, *AA, Stores)) {
1083 Expander.clear();
1084 // If we generated new code for the base pointer, clean up.
1085 RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
1086 RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
1087 return false;
1088 }
1089
1090 if (avoidLIRForMultiBlockLoop())
1091 return false;
1092
1093 // Okay, everything is safe, we can transform this!
1094
1095 const SCEV *NumBytesS =
1096 getNumBytes(BECount, IntIdxTy, StoreSize, CurLoop, DL, SE);
1097
1098 Value *NumBytes =
1099 Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator());
1100
1101 CallInst *NewCall = nullptr;
1102 // Check whether to generate an unordered atomic memcpy:
1103 // If the load or store are atomic, then they must necessarily be unordered
1104 // by previous checks.
1105 if (!SI->isAtomic() && !LI->isAtomic())
1106 NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlign(), LoadBasePtr,
1107 LI->getAlign(), NumBytes);
1108 else {
1109 // We cannot allow unaligned ops for unordered load/store, so reject
1110 // anything where the alignment isn't at least the element size.
1111 const MaybeAlign StoreAlign = SI->getAlign();
1112 const MaybeAlign LoadAlign = LI->getAlign();
1113 if (StoreAlign == None || LoadAlign == None)
1114 return false;
1115 if (*StoreAlign < StoreSize || *LoadAlign < StoreSize)
1116 return false;
1117
1118 // If the element.atomic memcpy is not lowered into explicit
1119 // loads/stores later, then it will be lowered into an element-size
1120 // specific lib call. If the lib call doesn't exist for our store size, then
1121 // we shouldn't generate the memcpy.
1122 if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
1123 return false;
1124
1125 // Create the call.
1126 // Note that unordered atomic loads/stores are *required* by the spec to
1127 // have an alignment but non-atomic loads/stores may not.
1128 NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
1129 StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes,
1130 StoreSize);
1131 }
1132 NewCall->setDebugLoc(SI->getDebugLoc());
1133
1134 if (MSSAU) {
1135 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1136 NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator);
1137 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1138 }
1139
1140 LLVM_DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << " Formed memcpy: " <<
*NewCall << "\n" << " from load ptr=" <<
*LoadEv << " at: " << *LI << "\n" <<
" from store ptr=" << *StoreEv << " at: " <<
*SI << "\n"; } } while (false)
1141 << " from load ptr=" << *LoadEv << " at: " << *LI << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << " Formed memcpy: " <<
*NewCall << "\n" << " from load ptr=" <<
*LoadEv << " at: " << *LI << "\n" <<
" from store ptr=" << *StoreEv << " at: " <<
*SI << "\n"; } } while (false)
1142 << " from store ptr=" << *StoreEv << " at: " << *SIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << " Formed memcpy: " <<
*NewCall << "\n" << " from load ptr=" <<
*LoadEv << " at: " << *LI << "\n" <<
" from store ptr=" << *StoreEv << " at: " <<
*SI << "\n"; } } while (false)
1143 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << " Formed memcpy: " <<
*NewCall << "\n" << " from load ptr=" <<
*LoadEv << " at: " << *LI << "\n" <<
" from store ptr=" << *StoreEv << " at: " <<
*SI << "\n"; } } while (false)
;
1144
1145 ORE.emit([&]() {
1146 return OptimizationRemark(DEBUG_TYPE"loop-idiom", "ProcessLoopStoreOfLoopLoad",
1147 NewCall->getDebugLoc(), Preheader)
1148 << "Formed a call to "
1149 << ore::NV("NewFunction", NewCall->getCalledFunction())
1150 << "() function";
1151 });
1152
1153 // Okay, the memcpy has been formed. Zap the original store and anything that
1154 // feeds into it.
1155 if (MSSAU)
1156 MSSAU->removeMemoryAccess(SI, true);
1157 deleteDeadInstruction(SI);
1158 if (MSSAU && VerifyMemorySSA)
1159 MSSAU->getMemorySSA()->verifyMemorySSA();
1160 ++NumMemCpy;
1161 return true;
1162}
1163
1164// When compiling for codesize we avoid idiom recognition for a multi-block loop
1165// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
1166//
1167bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
1168 bool IsLoopMemset) {
1169 if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
1170 if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
1171 LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << " " << CurLoop->getHeader
()->getParent()->getName() << " : LIR " << (
IsMemset ? "Memset" : "Memcpy") << " avoided: multi-block top-level loop\n"
; } } while (false)
1172 << " : LIR " << (IsMemset ? "Memset" : "Memcpy")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << " " << CurLoop->getHeader
()->getParent()->getName() << " : LIR " << (
IsMemset ? "Memset" : "Memcpy") << " avoided: multi-block top-level loop\n"
; } } while (false)
1173 << " avoided: multi-block top-level loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << " " << CurLoop->getHeader
()->getParent()->getName() << " : LIR " << (
IsMemset ? "Memset" : "Memcpy") << " avoided: multi-block top-level loop\n"
; } } while (false)
;
1174 return true;
1175 }
1176 }
1177
1178 return false;
1179}
1180
1181bool LoopIdiomRecognize::runOnNoncountableLoop() {
1182 LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F["
<< CurLoop->getHeader()->getParent()->getName
() << "] Noncountable Loop %" << CurLoop->getHeader
()->getName() << "\n"; } } while (false)
10
Assuming 'DebugFlag' is false
11
Loop condition is false. Exiting loop
1183 << CurLoop->getHeader()->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F["
<< CurLoop->getHeader()->getParent()->getName
() << "] Noncountable Loop %" << CurLoop->getHeader
()->getName() << "\n"; } } while (false)
1184 << "] Noncountable Loop %"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F["
<< CurLoop->getHeader()->getParent()->getName
() << "] Noncountable Loop %" << CurLoop->getHeader
()->getName() << "\n"; } } while (false)
1185 << CurLoop->getHeader()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F["
<< CurLoop->getHeader()->getParent()->getName
() << "] Noncountable Loop %" << CurLoop->getHeader
()->getName() << "\n"; } } while (false)
;
1186
1187 return recognizePopcount() || recognizeAndInsertFFS();
12
Calling 'LoopIdiomRecognize::recognizeAndInsertFFS'
1188}
1189
1190/// Check if the given conditional branch is based on the comparison between
1191/// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
1192/// true), the control yields to the loop entry. If the branch matches the
1193/// behavior, the variable involved in the comparison is returned. This function
1194/// will be called to see if the precondition and postcondition of the loop are
1195/// in desirable form.
1196static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
1197 bool JmpOnZero = false) {
1198 if (!BI || !BI->isConditional())
1199 return nullptr;
1200
1201 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1202 if (!Cond)
1203 return nullptr;
1204
1205 ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
1206 if (!CmpZero || !CmpZero->isZero())
1207 return nullptr;
1208
1209 BasicBlock *TrueSucc = BI->getSuccessor(0);
1210 BasicBlock *FalseSucc = BI->getSuccessor(1);
1211 if (JmpOnZero)
1212 std::swap(TrueSucc, FalseSucc);
1213
1214 ICmpInst::Predicate Pred = Cond->getPredicate();
1215 if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
1216 (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
1217 return Cond->getOperand(0);
1218
1219 return nullptr;
1220}
1221
1222// Check if the recurrence variable `VarX` is in the right form to create
1223// the idiom. Returns the value coerced to a PHINode if so.
1224static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
1225 BasicBlock *LoopEntry) {
1226 auto *PhiX = dyn_cast<PHINode>(VarX);
1227 if (PhiX && PhiX->getParent() == LoopEntry &&
1228 (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
1229 return PhiX;
1230 return nullptr;
1231}
1232
1233/// Return true iff the idiom is detected in the loop.
1234///
1235/// Additionally:
1236/// 1) \p CntInst is set to the instruction counting the population bit.
1237/// 2) \p CntPhi is set to the corresponding phi node.
1238/// 3) \p Var is set to the value whose population bits are being counted.
1239///
1240/// The core idiom we are trying to detect is:
1241/// \code
1242/// if (x0 != 0)
1243/// goto loop-exit // the precondition of the loop
1244/// cnt0 = init-val;
1245/// do {
1246/// x1 = phi (x0, x2);
1247/// cnt1 = phi(cnt0, cnt2);
1248///
1249/// cnt2 = cnt1 + 1;
1250/// ...
1251/// x2 = x1 & (x1 - 1);
1252/// ...
1253/// } while(x != 0);
1254///
1255/// loop-exit:
1256/// \endcode
1257static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
1258 Instruction *&CntInst, PHINode *&CntPhi,
1259 Value *&Var) {
1260 // step 1: Check to see if the look-back branch match this pattern:
1261 // "if (a!=0) goto loop-entry".
1262 BasicBlock *LoopEntry;
1263 Instruction *DefX2, *CountInst;
1264 Value *VarX1, *VarX0;
1265 PHINode *PhiX, *CountPhi;
1266
1267 DefX2 = CountInst = nullptr;
1268 VarX1 = VarX0 = nullptr;
1269 PhiX = CountPhi = nullptr;
1270 LoopEntry = *(CurLoop->block_begin());
1271
1272 // step 1: Check if the loop-back branch is in desirable form.
1273 {
1274 if (Value *T = matchCondition(
1275 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
1276 DefX2 = dyn_cast<Instruction>(T);
1277 else
1278 return false;
1279 }
1280
1281 // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
1282 {
1283 if (!DefX2 || DefX2->getOpcode() != Instruction::And)
1284 return false;
1285
1286 BinaryOperator *SubOneOp;
1287
1288 if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
1289 VarX1 = DefX2->getOperand(1);
1290 else {
1291 VarX1 = DefX2->getOperand(0);
1292 SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
1293 }
1294 if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
1295 return false;
1296
1297 ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
1298 if (!Dec ||
1299 !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
1300 (SubOneOp->getOpcode() == Instruction::Add &&
1301 Dec->isMinusOne()))) {
1302 return false;
1303 }
1304 }
1305
1306 // step 3: Check the recurrence of variable X
1307 PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
1308 if (!PhiX)
1309 return false;
1310
1311 // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
1312 {
1313 CountInst = nullptr;
1314 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
1315 IterE = LoopEntry->end();
1316 Iter != IterE; Iter++) {
1317 Instruction *Inst = &*Iter;
1318 if (Inst->getOpcode() != Instruction::Add)
1319 continue;
1320
1321 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
1322 if (!Inc || !Inc->isOne())
1323 continue;
1324
1325 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1326 if (!Phi)
1327 continue;
1328
1329 // Check if the result of the instruction is live of the loop.
1330 bool LiveOutLoop = false;
1331 for (User *U : Inst->users()) {
1332 if ((cast<Instruction>(U))->getParent() != LoopEntry) {
1333 LiveOutLoop = true;
1334 break;
1335 }
1336 }
1337
1338 if (LiveOutLoop) {
1339 CountInst = Inst;
1340 CountPhi = Phi;
1341 break;
1342 }
1343 }
1344
1345 if (!CountInst)
1346 return false;
1347 }
1348
1349 // step 5: check if the precondition is in this form:
1350 // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
1351 {
1352 auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1353 Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
1354 if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
1355 return false;
1356
1357 CntInst = CountInst;
1358 CntPhi = CountPhi;
1359 Var = T;
1360 }
1361
1362 return true;
1363}
1364
1365/// Return true if the idiom is detected in the loop.
1366///
1367/// Additionally:
1368/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
1369/// or nullptr if there is no such.
1370/// 2) \p CntPhi is set to the corresponding phi node
1371/// or nullptr if there is no such.
1372/// 3) \p Var is set to the value whose CTLZ could be used.
1373/// 4) \p DefX is set to the instruction calculating Loop exit condition.
1374///
1375/// The core idiom we are trying to detect is:
1376/// \code
1377/// if (x0 == 0)
1378/// goto loop-exit // the precondition of the loop
1379/// cnt0 = init-val;
1380/// do {
1381/// x = phi (x0, x.next); //PhiX
1382/// cnt = phi(cnt0, cnt.next);
1383///
1384/// cnt.next = cnt + 1;
1385/// ...
1386/// x.next = x >> 1; // DefX
1387/// ...
1388/// } while(x.next != 0);
1389///
1390/// loop-exit:
1391/// \endcode
1392static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
1393 Intrinsic::ID &IntrinID, Value *&InitX,
1394 Instruction *&CntInst, PHINode *&CntPhi,
1395 Instruction *&DefX) {
1396 BasicBlock *LoopEntry;
1397 Value *VarX = nullptr;
1398
1399 DefX = nullptr;
1400 CntInst = nullptr;
1401 CntPhi = nullptr;
1402 LoopEntry = *(CurLoop->block_begin());
1403
1404 // step 1: Check if the loop-back branch is in desirable form.
1405 if (Value *T = matchCondition(
18
Assuming 'T' is non-null, which participates in a condition later
19
Taking true branch
1406 dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
17
Assuming the object is not a 'BranchInst'
1407 DefX = dyn_cast<Instruction>(T);
20
Assuming 'T' is a 'Instruction'
1408 else
1409 return false;
1410
1411 // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
1412 if (!DefX
20.1
'DefX' is non-null
20.1
'DefX' is non-null
|| !DefX->isShift())
21
Assuming the condition is false
22
Taking false branch
1413 return false;
1414 IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
23
Assuming the condition is false
24
'?' condition is false
1415 Intrinsic::ctlz;
1416 ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
25
Assuming the object is a 'ConstantInt'
1417 if (!Shft
25.1
'Shft' is non-null, which participates in a condition later
25.1
'Shft' is non-null, which participates in a condition later
|| !Shft->isOne())
26
Assuming the condition is false
27
Taking false branch
1418 return false;
1419 VarX = DefX->getOperand(0);
1420
1421 // step 3: Check the recurrence of variable X
1422 PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
1423 if (!PhiX)
28
Assuming 'PhiX' is non-null, which participates in a condition later
29
Taking false branch
1424 return false;
1425
1426 InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());
30
Value assigned to 'InitX'
1427
1428 // Make sure the initial value can't be negative otherwise the ashr in the
1429 // loop might never reach zero which would make the loop infinite.
1430 if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
31
Assuming the condition is false
1431 return false;
1432
1433 // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
1434 // TODO: We can skip the step. If loop trip count is known (CTLZ),
1435 // then all uses of "cnt.next" could be optimized to the trip count
1436 // plus "cnt0". Currently it is not optimized.
1437 // This step could be used to detect POPCNT instruction:
1438 // cnt.next = cnt + (x.next & 1)
1439 for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
36
Loop condition is true. Entering loop body
1440 IterE = LoopEntry->end();
1441 Iter != IterE; Iter++) {
32
Calling 'operator!='
35
Returning from 'operator!='
1442 Instruction *Inst = &*Iter;
1443 if (Inst->getOpcode() != Instruction::Add)
37
Assuming the condition is false
38
Taking false branch
1444 continue;
1445
1446 ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
39
Assuming the object is a 'ConstantInt'
1447 if (!Inc
39.1
'Inc' is non-null, which participates in a condition later
39.1
'Inc' is non-null, which participates in a condition later
|| !Inc->isOne())
40
Assuming the condition is false
41
Taking false branch
1448 continue;
1449
1450 PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
1451 if (!Phi)
42
Assuming 'Phi' is non-null, which participates in a condition later
43
Taking false branch
1452 continue;
1453
1454 CntInst = Inst;
1455 CntPhi = Phi;
1456 break;
44
Execution continues on line 1458
1457 }
1458 if (!CntInst
44.1
'CntInst' is non-null
44.1
'CntInst' is non-null
)
45
Taking false branch
1459 return false;
1460
1461 return true;
46
Returning the value 1, which participates in a condition later
1462}
1463
1464/// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
1465/// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
1466/// trip count returns true; otherwise, returns false.
1467bool LoopIdiomRecognize::recognizeAndInsertFFS() {
1468 // Give up if the loop has multiple blocks or multiple backedges.
1469 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
13
Assuming the condition is false
14
Assuming the condition is false
15
Taking false branch
1470 return false;
1471
1472 Intrinsic::ID IntrinID;
1473 Value *InitX;
1474 Instruction *DefX = nullptr;
1475 PHINode *CntPhi = nullptr;
1476 Instruction *CntInst = nullptr;
1477 // Help decide if transformation is profitable. For ShiftUntilZero idiom,
1478 // this is always 6.
1479 size_t IdiomCanonicalSize = 6;
1480
1481 if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
16
Calling 'detectShiftUntilZeroIdiom'
47
Returning from 'detectShiftUntilZeroIdiom'
48
Taking false branch
1482 CntInst, CntPhi, DefX))
1483 return false;
1484
1485 bool IsCntPhiUsedOutsideLoop = false;
1486 for (User *U : CntPhi->users())
1487 if (!CurLoop->contains(cast<Instruction>(U))) {
1488 IsCntPhiUsedOutsideLoop = true;
1489 break;
1490 }
1491 bool IsCntInstUsedOutsideLoop = false;
1492 for (User *U : CntInst->users())
1493 if (!CurLoop->contains(cast<Instruction>(U))) {
1494 IsCntInstUsedOutsideLoop = true;
1495 break;
1496 }
1497 // If both CntInst and CntPhi are used outside the loop the profitability
1498 // is questionable.
1499 if (IsCntInstUsedOutsideLoop
48.1
'IsCntInstUsedOutsideLoop' is false
48.1
'IsCntInstUsedOutsideLoop' is false
&& IsCntPhiUsedOutsideLoop)
1500 return false;
1501
1502 // For some CPUs result of CTLZ(X) intrinsic is undefined
1503 // when X is 0. If we can not guarantee X != 0, we need to check this
1504 // when expand.
1505 bool ZeroCheck = false;
1506 // It is safe to assume Preheader exist as it was checked in
1507 // parent function RunOnLoop.
1508 BasicBlock *PH = CurLoop->getLoopPreheader();
1509
1510 // If we are using the count instruction outside the loop, make sure we
1511 // have a zero check as a precondition. Without the check the loop would run
1512 // one iteration for before any check of the input value. This means 0 and 1
1513 // would have identical behavior in the original loop and thus
1514 if (!IsCntPhiUsedOutsideLoop
48.2
'IsCntPhiUsedOutsideLoop' is false
48.2
'IsCntPhiUsedOutsideLoop' is false
) {
49
Taking true branch
1515 auto *PreCondBB = PH->getSinglePredecessor();
1516 if (!PreCondBB)
50
Assuming 'PreCondBB' is non-null
51
Taking false branch
1517 return false;
1518 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
52
Assuming the object is a 'BranchInst'
1519 if (!PreCondBI
52.1
'PreCondBI' is non-null
52.1
'PreCondBI' is non-null
)
53
Taking false branch
1520 return false;
1521 if (matchCondition(PreCondBI, PH) != InitX)
54
Assuming the condition is false
55
Assuming pointer value is null
56
Taking false branch
1522 return false;
1523 ZeroCheck = true;
1524 }
1525
1526 // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
1527 // profitable if we delete the loop.
1528
1529 // the loop has only 6 instructions:
1530 // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
1531 // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
1532 // %shr = ashr %n.addr.0, 1
1533 // %tobool = icmp eq %shr, 0
1534 // %inc = add nsw %i.0, 1
1535 // br i1 %tobool
1536
1537 const Value *Args[] =
1538 {InitX, ZeroCheck
56.1
'ZeroCheck' is true
56.1
'ZeroCheck' is true
? ConstantInt::getTrue(InitX->getContext())
57
'?' condition is true
58
Called C++ object pointer is null
1539 : ConstantInt::getFalse(InitX->getContext())};
1540
1541 // @llvm.dbg doesn't count as they have no semantic effect.
1542 auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
1543 uint32_t HeaderSize =
1544 std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());
1545
1546 if (HeaderSize != IdiomCanonicalSize &&
1547 TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) >
1548 TargetTransformInfo::TCC_Basic)
1549 return false;
1550
1551 transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
1552 DefX->getDebugLoc(), ZeroCheck,
1553 IsCntPhiUsedOutsideLoop);
1554 return true;
1555}
1556
1557/// Recognizes a population count idiom in a non-countable loop.
1558///
1559/// If detected, transforms the relevant code to issue the popcount intrinsic
1560/// function call, and returns true; otherwise, returns false.
1561bool LoopIdiomRecognize::recognizePopcount() {
1562 if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
1563 return false;
1564
1565 // Counting population are usually conducted by few arithmetic instructions.
1566 // Such instructions can be easily "absorbed" by vacant slots in a
1567 // non-compact loop. Therefore, recognizing popcount idiom only makes sense
1568 // in a compact loop.
1569
1570 // Give up if the loop has multiple blocks or multiple backedges.
1571 if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
1572 return false;
1573
1574 BasicBlock *LoopBody = *(CurLoop->block_begin());
1575 if (LoopBody->size() >= 20) {
1576 // The loop is too big, bail out.
1577 return false;
1578 }
1579
1580 // It should have a preheader containing nothing but an unconditional branch.
1581 BasicBlock *PH = CurLoop->getLoopPreheader();
1582 if (!PH || &PH->front() != PH->getTerminator())
1583 return false;
1584 auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
1585 if (!EntryBI || EntryBI->isConditional())
1586 return false;
1587
1588 // It should have a precondition block where the generated popcount intrinsic
1589 // function can be inserted.
1590 auto *PreCondBB = PH->getSinglePredecessor();
1591 if (!PreCondBB)
1592 return false;
1593 auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
1594 if (!PreCondBI || PreCondBI->isUnconditional())
1595 return false;
1596
1597 Instruction *CntInst;
1598 PHINode *CntPhi;
1599 Value *Val;
1600 if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
1601 return false;
1602
1603 transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
1604 return true;
1605}
1606
1607static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1608 const DebugLoc &DL) {
1609 Value *Ops[] = {Val};
1610 Type *Tys[] = {Val->getType()};
1611
1612 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1613 Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
1614 CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1615 CI->setDebugLoc(DL);
1616
1617 return CI;
1618}
1619
1620static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
1621 const DebugLoc &DL, bool ZeroCheck,
1622 Intrinsic::ID IID) {
1623 Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
1624 Type *Tys[] = {Val->getType()};
1625
1626 Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
1627 Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
1628 CallInst *CI = IRBuilder.CreateCall(Func, Ops);
1629 CI->setDebugLoc(DL);
1630
1631 return CI;
1632}
1633
1634/// Transform the following loop (Using CTLZ, CTTZ is similar):
1635/// loop:
1636/// CntPhi = PHI [Cnt0, CntInst]
1637/// PhiX = PHI [InitX, DefX]
1638/// CntInst = CntPhi + 1
1639/// DefX = PhiX >> 1
1640/// LOOP_BODY
1641/// Br: loop if (DefX != 0)
1642/// Use(CntPhi) or Use(CntInst)
1643///
1644/// Into:
1645/// If CntPhi used outside the loop:
1646/// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
1647/// Count = CountPrev + 1
1648/// else
1649/// Count = BitWidth(InitX) - CTLZ(InitX)
1650/// loop:
1651/// CntPhi = PHI [Cnt0, CntInst]
1652/// PhiX = PHI [InitX, DefX]
1653/// PhiCount = PHI [Count, Dec]
1654/// CntInst = CntPhi + 1
1655/// DefX = PhiX >> 1
1656/// Dec = PhiCount - 1
1657/// LOOP_BODY
1658/// Br: loop if (Dec != 0)
1659/// Use(CountPrev + Cnt0) // Use(CntPhi)
1660/// or
1661/// Use(Count + Cnt0) // Use(CntInst)
1662///
1663/// If LOOP_BODY is empty the loop will be deleted.
1664/// If CntInst and DefX are not used in LOOP_BODY they will be removed.
1665void LoopIdiomRecognize::transformLoopToCountable(
1666 Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
1667 PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
1668 bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
1669 BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());
1670
1671 // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
1672 IRBuilder<> Builder(PreheaderBr);
1673 Builder.SetCurrentDebugLocation(DL);
1674 Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;
1675
1676 // Count = BitWidth - CTLZ(InitX);
1677 // If there are uses of CntPhi create:
1678 // CountPrev = BitWidth - CTLZ(InitX >> 1);
1679 if (IsCntPhiUsedOutsideLoop) {
1680 if (DefX->getOpcode() == Instruction::AShr)
1681 InitXNext =
1682 Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
1683 else if (DefX->getOpcode() == Instruction::LShr)
1684 InitXNext =
1685 Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
1686 else if (DefX->getOpcode() == Instruction::Shl) // cttz
1687 InitXNext =
1688 Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
1689 else
1690 llvm_unreachable("Unexpected opcode!")::llvm::llvm_unreachable_internal("Unexpected opcode!", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp"
, 1690)
;
1691 } else
1692 InitXNext = InitX;
1693 FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
1694 Count = Builder.CreateSub(
1695 ConstantInt::get(FFS->getType(),
1696 FFS->getType()->getIntegerBitWidth()),
1697 FFS);
1698 if (IsCntPhiUsedOutsideLoop) {
1699 CountPrev = Count;
1700 Count = Builder.CreateAdd(
1701 CountPrev,
1702 ConstantInt::get(CountPrev->getType(), 1));
1703 }
1704
1705 NewCount = Builder.CreateZExtOrTrunc(
1706 IsCntPhiUsedOutsideLoop ? CountPrev : Count,
1707 cast<IntegerType>(CntInst->getType()));
1708
1709 // If the counter's initial value is not zero, insert Add Inst.
1710 Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
1711 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1712 if (!InitConst || !InitConst->isZero())
1713 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1714
1715 // Step 2: Insert new IV and loop condition:
1716 // loop:
1717 // ...
1718 // PhiCount = PHI [Count, Dec]
1719 // ...
1720 // Dec = PhiCount - 1
1721 // ...
1722 // Br: loop if (Dec != 0)
1723 BasicBlock *Body = *(CurLoop->block_begin());
1724 auto *LbBr = cast<BranchInst>(Body->getTerminator());
1725 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1726 Type *Ty = Count->getType();
1727
1728 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1729
1730 Builder.SetInsertPoint(LbCond);
1731 Instruction *TcDec = cast<Instruction>(
1732 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1733 "tcdec", false, true));
1734
1735 TcPhi->addIncoming(Count, Preheader);
1736 TcPhi->addIncoming(TcDec, Body);
1737
1738 CmpInst::Predicate Pred =
1739 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
1740 LbCond->setPredicate(Pred);
1741 LbCond->setOperand(0, TcDec);
1742 LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1743
1744 // Step 3: All the references to the original counter outside
1745 // the loop are replaced with the NewCount
1746 if (IsCntPhiUsedOutsideLoop)
1747 CntPhi->replaceUsesOutsideBlock(NewCount, Body);
1748 else
1749 CntInst->replaceUsesOutsideBlock(NewCount, Body);
1750
1751 // step 4: Forget the "non-computable" trip-count SCEV associated with the
1752 // loop. The loop would otherwise not be deleted even if it becomes empty.
1753 SE->forgetLoop(CurLoop);
1754}
1755
1756void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
1757 Instruction *CntInst,
1758 PHINode *CntPhi, Value *Var) {
1759 BasicBlock *PreHead = CurLoop->getLoopPreheader();
1760 auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
1761 const DebugLoc &DL = CntInst->getDebugLoc();
1762
1763 // Assuming before transformation, the loop is following:
1764 // if (x) // the precondition
1765 // do { cnt++; x &= x - 1; } while(x);
1766
1767 // Step 1: Insert the ctpop instruction at the end of the precondition block
1768 IRBuilder<> Builder(PreCondBr);
1769 Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
1770 {
1771 PopCnt = createPopcntIntrinsic(Builder, Var, DL);
1772 NewCount = PopCntZext =
1773 Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));
1774
1775 if (NewCount != PopCnt)
1776 (cast<Instruction>(NewCount))->setDebugLoc(DL);
1777
1778 // TripCnt is exactly the number of iterations the loop has
1779 TripCnt = NewCount;
1780
1781 // If the population counter's initial value is not zero, insert Add Inst.
1782 Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
1783 ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
1784 if (!InitConst || !InitConst->isZero()) {
1785 NewCount = Builder.CreateAdd(NewCount, CntInitVal);
1786 (cast<Instruction>(NewCount))->setDebugLoc(DL);
1787 }
1788 }
1789
1790 // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
1791 // "if (NewCount == 0) loop-exit". Without this change, the intrinsic
1792 // function would be partial dead code, and downstream passes will drag
1793 // it back from the precondition block to the preheader.
1794 {
1795 ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());
1796
1797 Value *Opnd0 = PopCntZext;
1798 Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
1799 if (PreCond->getOperand(0) != Var)
1800 std::swap(Opnd0, Opnd1);
1801
1802 ICmpInst *NewPreCond = cast<ICmpInst>(
1803 Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
1804 PreCondBr->setCondition(NewPreCond);
1805
1806 RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
1807 }
1808
1809 // Step 3: Note that the population count is exactly the trip count of the
1810 // loop in question, which enable us to convert the loop from noncountable
1811 // loop into a countable one. The benefit is twofold:
1812 //
1813 // - If the loop only counts population, the entire loop becomes dead after
1814 // the transformation. It is a lot easier to prove a countable loop dead
1815 // than to prove a noncountable one. (In some C dialects, an infinite loop
1816 // isn't dead even if it computes nothing useful. In general, DCE needs
1817 // to prove a noncountable loop finite before safely delete it.)
1818 //
1819 // - If the loop also performs something else, it remains alive.
1820 // Since it is transformed to countable form, it can be aggressively
1821 // optimized by some optimizations which are in general not applicable
1822 // to a noncountable loop.
1823 //
1824 // After this step, this loop (conceptually) would look like following:
1825 // newcnt = __builtin_ctpop(x);
1826 // t = newcnt;
1827 // if (x)
1828 // do { cnt++; x &= x-1; t--) } while (t > 0);
1829 BasicBlock *Body = *(CurLoop->block_begin());
1830 {
1831 auto *LbBr = cast<BranchInst>(Body->getTerminator());
1832 ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
1833 Type *Ty = TripCnt->getType();
1834
1835 PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());
1836
1837 Builder.SetInsertPoint(LbCond);
1838 Instruction *TcDec = cast<Instruction>(
1839 Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
1840 "tcdec", false, true));
1841
1842 TcPhi->addIncoming(TripCnt, PreHead);
1843 TcPhi->addIncoming(TcDec, Body);
1844
1845 CmpInst::Predicate Pred =
1846 (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
1847 LbCond->setPredicate(Pred);
1848 LbCond->setOperand(0, TcDec);
1849 LbCond->setOperand(1, ConstantInt::get(Ty, 0));
1850 }
1851
1852 // Step 4: All the references to the original population counter outside
1853 // the loop are replaced with the NewCount -- the value returned from
1854 // __builtin_ctpop().
1855 CntInst->replaceUsesOutsideBlock(NewCount, Body);
1856
1857 // step 5: Forget the "non-computable" trip-count SCEV associated with the
1858 // loop. The loop would otherwise not be deleted even if it becomes empty.
1859 SE->forgetLoop(CurLoop);
1860}

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/ilist_iterator.h

1//===- llvm/ADT/ilist_iterator.h - Intrusive List Iterator ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_ADT_ILIST_ITERATOR_H
10#define LLVM_ADT_ILIST_ITERATOR_H
11
12#include "llvm/ADT/ilist_node.h"
13#include <cassert>
14#include <cstddef>
15#include <iterator>
16#include <type_traits>
17
18namespace llvm {
19
20namespace ilist_detail {
21
22/// Find const-correct node types.
23template <class OptionsT, bool IsConst> struct IteratorTraits;
24template <class OptionsT> struct IteratorTraits<OptionsT, false> {
25 using value_type = typename OptionsT::value_type;
26 using pointer = typename OptionsT::pointer;
27 using reference = typename OptionsT::reference;
28 using node_pointer = ilist_node_impl<OptionsT> *;
29 using node_reference = ilist_node_impl<OptionsT> &;
30};
31template <class OptionsT> struct IteratorTraits<OptionsT, true> {
32 using value_type = const typename OptionsT::value_type;
33 using pointer = typename OptionsT::const_pointer;
34 using reference = typename OptionsT::const_reference;
35 using node_pointer = const ilist_node_impl<OptionsT> *;
36 using node_reference = const ilist_node_impl<OptionsT> &;
37};
38
39template <bool IsReverse> struct IteratorHelper;
40template <> struct IteratorHelper<false> : ilist_detail::NodeAccess {
41 using Access = ilist_detail::NodeAccess;
42
43 template <class T> static void increment(T *&I) { I = Access::getNext(*I); }
44 template <class T> static void decrement(T *&I) { I = Access::getPrev(*I); }
45};
46template <> struct IteratorHelper<true> : ilist_detail::NodeAccess {
47 using Access = ilist_detail::NodeAccess;
48
49 template <class T> static void increment(T *&I) { I = Access::getPrev(*I); }
50 template <class T> static void decrement(T *&I) { I = Access::getNext(*I); }
51};
52
53} // end namespace ilist_detail
54
55/// Iterator for intrusive lists based on ilist_node.
56template <class OptionsT, bool IsReverse, bool IsConst>
57class ilist_iterator : ilist_detail::SpecificNodeAccess<OptionsT> {
58 friend ilist_iterator<OptionsT, IsReverse, !IsConst>;
59 friend ilist_iterator<OptionsT, !IsReverse, IsConst>;
60 friend ilist_iterator<OptionsT, !IsReverse, !IsConst>;
61
62 using Traits = ilist_detail::IteratorTraits<OptionsT, IsConst>;
63 using Access = ilist_detail::SpecificNodeAccess<OptionsT>;
64
65public:
66 using value_type = typename Traits::value_type;
67 using pointer = typename Traits::pointer;
68 using reference = typename Traits::reference;
69 using difference_type = ptrdiff_t;
70 using iterator_category = std::bidirectional_iterator_tag;
71 using const_pointer = typename OptionsT::const_pointer;
72 using const_reference = typename OptionsT::const_reference;
73
74private:
75 using node_pointer = typename Traits::node_pointer;
76 using node_reference = typename Traits::node_reference;
77
78 node_pointer NodePtr = nullptr;
79
80public:
81 /// Create from an ilist_node.
82 explicit ilist_iterator(node_reference N) : NodePtr(&N) {}
83
84 explicit ilist_iterator(pointer NP) : NodePtr(Access::getNodePtr(NP)) {}
85 explicit ilist_iterator(reference NR) : NodePtr(Access::getNodePtr(&NR)) {}
86 ilist_iterator() = default;
87
88 // This is templated so that we can allow constructing a const iterator from
89 // a nonconst iterator...
90 template <bool RHSIsConst>
91 ilist_iterator(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS,
92 std::enable_if_t<IsConst || !RHSIsConst, void *> = nullptr)
93 : NodePtr(RHS.NodePtr) {}
94
95 // This is templated so that we can allow assigning to a const iterator from
96 // a nonconst iterator...
97 template <bool RHSIsConst>
98 std::enable_if_t<IsConst || !RHSIsConst, ilist_iterator &>
99 operator=(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS) {
100 NodePtr = RHS.NodePtr;
101 return *this;
102 }
103
104 /// Explicit conversion between forward/reverse iterators.
105 ///
106 /// Translate between forward and reverse iterators without changing range
107 /// boundaries. The resulting iterator will dereference (and have a handle)
108 /// to the previous node, which is somewhat unexpected; but converting the
109 /// two endpoints in a range will give the same range in reverse.
110 ///
111 /// This matches std::reverse_iterator conversions.
112 explicit ilist_iterator(
113 const ilist_iterator<OptionsT, !IsReverse, IsConst> &RHS)
114 : ilist_iterator(++RHS.getReverse()) {}
115
116 /// Get a reverse iterator to the same node.
117 ///
118 /// Gives a reverse iterator that will dereference (and have a handle) to the
119 /// same node. Converting the endpoint iterators in a range will give a
120 /// different range; for range operations, use the explicit conversions.
121 ilist_iterator<OptionsT, !IsReverse, IsConst> getReverse() const {
122 if (NodePtr)
123 return ilist_iterator<OptionsT, !IsReverse, IsConst>(*NodePtr);
124 return ilist_iterator<OptionsT, !IsReverse, IsConst>();
125 }
126
127 /// Const-cast.
128 ilist_iterator<OptionsT, IsReverse, false> getNonConst() const {
129 if (NodePtr)
130 return ilist_iterator<OptionsT, IsReverse, false>(
131 const_cast<typename ilist_iterator<OptionsT, IsReverse,
132 false>::node_reference>(*NodePtr));
133 return ilist_iterator<OptionsT, IsReverse, false>();
134 }
135
136 // Accessors...
137 reference operator*() const {
138 assert(!NodePtr->isKnownSentinel())((!NodePtr->isKnownSentinel()) ? static_cast<void> (
0) : __assert_fail ("!NodePtr->isKnownSentinel()", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/ADT/ilist_iterator.h"
, 138, __PRETTY_FUNCTION__))
;
139 return *Access::getValuePtr(NodePtr);
140 }
141 pointer operator->() const { return &operator*(); }
142
143 // Comparison operators
144 friend bool operator==(const ilist_iterator &LHS, const ilist_iterator &RHS) {
145 return LHS.NodePtr == RHS.NodePtr;
146 }
147 friend bool operator!=(const ilist_iterator &LHS, const ilist_iterator &RHS) {
148 return LHS.NodePtr != RHS.NodePtr;
33
Assuming 'LHS.NodePtr' is not equal to 'RHS.NodePtr'
34
Returning the value 1, which participates in a condition later
149 }
150
151 // Increment and decrement operators...
152 ilist_iterator &operator--() {
153 NodePtr = IsReverse ? NodePtr->getNext() : NodePtr->getPrev();
154 return *this;
155 }
156 ilist_iterator &operator++() {
157 NodePtr = IsReverse ? NodePtr->getPrev() : NodePtr->getNext();
158 return *this;
159 }
160 ilist_iterator operator--(int) {
161 ilist_iterator tmp = *this;
162 --*this;
163 return tmp;
164 }
165 ilist_iterator operator++(int) {
166 ilist_iterator tmp = *this;
167 ++*this;
168 return tmp;
169 }
170
171 /// Get the underlying ilist_node.
172 node_pointer getNodePtr() const { return static_cast<node_pointer>(NodePtr); }
173
174 /// Check for end. Only valid if ilist_sentinel_tracking<true>.
175 bool isEnd() const { return NodePtr ? NodePtr->isSentinel() : false; }
176};
177
178template <typename From> struct simplify_type;
179
180/// Allow ilist_iterators to convert into pointers to a node automatically when
181/// used by the dyn_cast, cast, isa mechanisms...
182///
183/// FIXME: remove this, since there is no implicit conversion to NodeTy.
184template <class OptionsT, bool IsConst>
185struct simplify_type<ilist_iterator<OptionsT, false, IsConst>> {
186 using iterator = ilist_iterator<OptionsT, false, IsConst>;
187 using SimpleType = typename iterator::pointer;
188
189 static SimpleType getSimplifiedValue(const iterator &Node) { return &*Node; }
190};
191template <class OptionsT, bool IsConst>
192struct simplify_type<const ilist_iterator<OptionsT, false, IsConst>>
193 : simplify_type<ilist_iterator<OptionsT, false, IsConst>> {};
194
195} // end namespace llvm
196
197#endif // LLVM_ADT_ILIST_ITERATOR_H