| File: | build/source/llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp |
| Warning: | line 1824, column 47 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===// | ||||||
| 2 | // | ||||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||
| 6 | // | ||||||
| 7 | //===----------------------------------------------------------------------===// | ||||||
| 8 | // | ||||||
| 9 | // This pass implements an idiom recognizer that transforms simple loops into a | ||||||
| 10 | // non-loop form. In cases that this kicks in, it can be a significant | ||||||
| 11 | // performance win. | ||||||
| 12 | // | ||||||
| 13 | // If compiling for code size we avoid idiom recognition if the resulting | ||||||
| 14 | // code could be larger than the code for the original loop. One way this could | ||||||
| 15 | // happen is if the loop is not removable after idiom recognition due to the | ||||||
| 16 | // presence of non-idiom instructions. The initial implementation of the | ||||||
| 17 | // heuristics applies to idioms in multi-block loops. | ||||||
| 18 | // | ||||||
| 19 | //===----------------------------------------------------------------------===// | ||||||
| 20 | // | ||||||
| 21 | // TODO List: | ||||||
| 22 | // | ||||||
| 23 | // Future loop memory idioms to recognize: | ||||||
| 24 | // memcmp, strlen, etc. | ||||||
| 25 | // Future floating point idioms to recognize in -ffast-math mode: | ||||||
| 26 | // fpowi | ||||||
| 27 | // Future integer operation idioms to recognize: | ||||||
| 28 | // ctpop | ||||||
| 29 | // | ||||||
| 30 | // Beware that isel's default lowering for ctpop is highly inefficient for | ||||||
| 31 | // i64 and larger types when i64 is legal and the value has few bits set. It | ||||||
| 32 | // would be good to enhance isel to emit a loop for ctpop in this case. | ||||||
| 33 | // | ||||||
| 34 | // This could recognize common matrix multiplies and dot product idioms and | ||||||
| 35 | // replace them with calls to BLAS (if linked in??). | ||||||
| 36 | // | ||||||
| 37 | //===----------------------------------------------------------------------===// | ||||||
| 38 | |||||||
| 39 | #include "llvm/Transforms/Scalar/LoopIdiomRecognize.h" | ||||||
| 40 | #include "llvm/ADT/APInt.h" | ||||||
| 41 | #include "llvm/ADT/ArrayRef.h" | ||||||
| 42 | #include "llvm/ADT/DenseMap.h" | ||||||
| 43 | #include "llvm/ADT/MapVector.h" | ||||||
| 44 | #include "llvm/ADT/SetVector.h" | ||||||
| 45 | #include "llvm/ADT/SmallPtrSet.h" | ||||||
| 46 | #include "llvm/ADT/SmallVector.h" | ||||||
| 47 | #include "llvm/ADT/Statistic.h" | ||||||
| 48 | #include "llvm/ADT/StringRef.h" | ||||||
| 49 | #include "llvm/Analysis/AliasAnalysis.h" | ||||||
| 50 | #include "llvm/Analysis/CmpInstAnalysis.h" | ||||||
| 51 | #include "llvm/Analysis/LoopAccessAnalysis.h" | ||||||
| 52 | #include "llvm/Analysis/LoopInfo.h" | ||||||
| 53 | #include "llvm/Analysis/LoopPass.h" | ||||||
| 54 | #include "llvm/Analysis/MemoryLocation.h" | ||||||
| 55 | #include "llvm/Analysis/MemorySSA.h" | ||||||
| 56 | #include "llvm/Analysis/MemorySSAUpdater.h" | ||||||
| 57 | #include "llvm/Analysis/MustExecute.h" | ||||||
| 58 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | ||||||
| 59 | #include "llvm/Analysis/ScalarEvolution.h" | ||||||
| 60 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | ||||||
| 61 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||||
| 62 | #include "llvm/Analysis/TargetTransformInfo.h" | ||||||
| 63 | #include "llvm/Analysis/ValueTracking.h" | ||||||
| 64 | #include "llvm/IR/BasicBlock.h" | ||||||
| 65 | #include "llvm/IR/Constant.h" | ||||||
| 66 | #include "llvm/IR/Constants.h" | ||||||
| 67 | #include "llvm/IR/DataLayout.h" | ||||||
| 68 | #include "llvm/IR/DebugLoc.h" | ||||||
| 69 | #include "llvm/IR/DerivedTypes.h" | ||||||
| 70 | #include "llvm/IR/Dominators.h" | ||||||
| 71 | #include "llvm/IR/GlobalValue.h" | ||||||
| 72 | #include "llvm/IR/GlobalVariable.h" | ||||||
| 73 | #include "llvm/IR/IRBuilder.h" | ||||||
| 74 | #include "llvm/IR/InstrTypes.h" | ||||||
| 75 | #include "llvm/IR/Instruction.h" | ||||||
| 76 | #include "llvm/IR/Instructions.h" | ||||||
| 77 | #include "llvm/IR/IntrinsicInst.h" | ||||||
| 78 | #include "llvm/IR/Intrinsics.h" | ||||||
| 79 | #include "llvm/IR/LLVMContext.h" | ||||||
| 80 | #include "llvm/IR/Module.h" | ||||||
| 81 | #include "llvm/IR/PassManager.h" | ||||||
| 82 | #include "llvm/IR/PatternMatch.h" | ||||||
| 83 | #include "llvm/IR/Type.h" | ||||||
| 84 | #include "llvm/IR/User.h" | ||||||
| 85 | #include "llvm/IR/Value.h" | ||||||
| 86 | #include "llvm/IR/ValueHandle.h" | ||||||
| 87 | #include "llvm/Support/Casting.h" | ||||||
| 88 | #include "llvm/Support/CommandLine.h" | ||||||
| 89 | #include "llvm/Support/Debug.h" | ||||||
| 90 | #include "llvm/Support/InstructionCost.h" | ||||||
| 91 | #include "llvm/Support/raw_ostream.h" | ||||||
| 92 | #include "llvm/Transforms/Utils/BuildLibCalls.h" | ||||||
| 93 | #include "llvm/Transforms/Utils/Local.h" | ||||||
| 94 | #include "llvm/Transforms/Utils/LoopUtils.h" | ||||||
| 95 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" | ||||||
| 96 | #include <algorithm> | ||||||
| 97 | #include <cassert> | ||||||
| 98 | #include <cstdint> | ||||||
| 99 | #include <utility> | ||||||
| 100 | #include <vector> | ||||||
| 101 | |||||||
| 102 | using namespace llvm; | ||||||
| 103 | |||||||
| 104 | #define DEBUG_TYPE"loop-idiom" "loop-idiom" | ||||||
| 105 | |||||||
| 106 | STATISTIC(NumMemSet, "Number of memset's formed from loop stores")static llvm::Statistic NumMemSet = {"loop-idiom", "NumMemSet" , "Number of memset's formed from loop stores"}; | ||||||
| 107 | STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores")static llvm::Statistic NumMemCpy = {"loop-idiom", "NumMemCpy" , "Number of memcpy's formed from loop load+stores"}; | ||||||
| 108 | STATISTIC(NumMemMove, "Number of memmove's formed from loop load+stores")static llvm::Statistic NumMemMove = {"loop-idiom", "NumMemMove" , "Number of memmove's formed from loop load+stores"}; | ||||||
| 109 | STATISTIC(static llvm::Statistic NumShiftUntilBitTest = {"loop-idiom", "NumShiftUntilBitTest" , "Number of uncountable loops recognized as 'shift until bitttest' idiom" } | ||||||
| 110 | NumShiftUntilBitTest,static llvm::Statistic NumShiftUntilBitTest = {"loop-idiom", "NumShiftUntilBitTest" , "Number of uncountable loops recognized as 'shift until bitttest' idiom" } | ||||||
| 111 | "Number of uncountable loops recognized as 'shift until bitttest' idiom")static llvm::Statistic NumShiftUntilBitTest = {"loop-idiom", "NumShiftUntilBitTest" , "Number of uncountable loops recognized as 'shift until bitttest' idiom" }; | ||||||
| 112 | STATISTIC(NumShiftUntilZero,static llvm::Statistic NumShiftUntilZero = {"loop-idiom", "NumShiftUntilZero" , "Number of uncountable loops recognized as 'shift until zero' idiom" } | ||||||
| 113 | "Number of uncountable loops recognized as 'shift until zero' idiom")static llvm::Statistic NumShiftUntilZero = {"loop-idiom", "NumShiftUntilZero" , "Number of uncountable loops recognized as 'shift until zero' idiom" }; | ||||||
| 114 | |||||||
| 115 | bool DisableLIRP::All; | ||||||
| 116 | static cl::opt<bool, true> | ||||||
| 117 | DisableLIRPAll("disable-" DEBUG_TYPE"loop-idiom" "-all", | ||||||
| 118 | cl::desc("Options to disable Loop Idiom Recognize Pass."), | ||||||
| 119 | cl::location(DisableLIRP::All), cl::init(false), | ||||||
| 120 | cl::ReallyHidden); | ||||||
| 121 | |||||||
| 122 | bool DisableLIRP::Memset; | ||||||
| 123 | static cl::opt<bool, true> | ||||||
| 124 | DisableLIRPMemset("disable-" DEBUG_TYPE"loop-idiom" "-memset", | ||||||
| 125 | cl::desc("Proceed with loop idiom recognize pass, but do " | ||||||
| 126 | "not convert loop(s) to memset."), | ||||||
| 127 | cl::location(DisableLIRP::Memset), cl::init(false), | ||||||
| 128 | cl::ReallyHidden); | ||||||
| 129 | |||||||
| 130 | bool DisableLIRP::Memcpy; | ||||||
| 131 | static cl::opt<bool, true> | ||||||
| 132 | DisableLIRPMemcpy("disable-" DEBUG_TYPE"loop-idiom" "-memcpy", | ||||||
| 133 | cl::desc("Proceed with loop idiom recognize pass, but do " | ||||||
| 134 | "not convert loop(s) to memcpy."), | ||||||
| 135 | cl::location(DisableLIRP::Memcpy), cl::init(false), | ||||||
| 136 | cl::ReallyHidden); | ||||||
| 137 | |||||||
| 138 | static cl::opt<bool> UseLIRCodeSizeHeurs( | ||||||
| 139 | "use-lir-code-size-heurs", | ||||||
| 140 | cl::desc("Use loop idiom recognition code size heuristics when compiling" | ||||||
| 141 | "with -Os/-Oz"), | ||||||
| 142 | cl::init(true), cl::Hidden); | ||||||
| 143 | |||||||
| 144 | namespace { | ||||||
| 145 | |||||||
| 146 | class LoopIdiomRecognize { | ||||||
| 147 | Loop *CurLoop = nullptr; | ||||||
| 148 | AliasAnalysis *AA; | ||||||
| 149 | DominatorTree *DT; | ||||||
| 150 | LoopInfo *LI; | ||||||
| 151 | ScalarEvolution *SE; | ||||||
| 152 | TargetLibraryInfo *TLI; | ||||||
| 153 | const TargetTransformInfo *TTI; | ||||||
| 154 | const DataLayout *DL; | ||||||
| 155 | OptimizationRemarkEmitter &ORE; | ||||||
| 156 | bool ApplyCodeSizeHeuristics; | ||||||
| 157 | std::unique_ptr<MemorySSAUpdater> MSSAU; | ||||||
| 158 | |||||||
| 159 | public: | ||||||
| 160 | explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT, | ||||||
| 161 | LoopInfo *LI, ScalarEvolution *SE, | ||||||
| 162 | TargetLibraryInfo *TLI, | ||||||
| 163 | const TargetTransformInfo *TTI, MemorySSA *MSSA, | ||||||
| 164 | const DataLayout *DL, | ||||||
| 165 | OptimizationRemarkEmitter &ORE) | ||||||
| 166 | : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) { | ||||||
| 167 | if (MSSA) | ||||||
| 168 | MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); | ||||||
| 169 | } | ||||||
| 170 | |||||||
| 171 | bool runOnLoop(Loop *L); | ||||||
| 172 | |||||||
| 173 | private: | ||||||
| 174 | using StoreList = SmallVector<StoreInst *, 8>; | ||||||
| 175 | using StoreListMap = MapVector<Value *, StoreList>; | ||||||
| 176 | |||||||
| 177 | StoreListMap StoreRefsForMemset; | ||||||
| 178 | StoreListMap StoreRefsForMemsetPattern; | ||||||
| 179 | StoreList StoreRefsForMemcpy; | ||||||
| 180 | bool HasMemset; | ||||||
| 181 | bool HasMemsetPattern; | ||||||
| 182 | bool HasMemcpy; | ||||||
| 183 | |||||||
| 184 | /// Return code for isLegalStore() | ||||||
| 185 | enum LegalStoreKind { | ||||||
| 186 | None = 0, | ||||||
| 187 | Memset, | ||||||
| 188 | MemsetPattern, | ||||||
| 189 | Memcpy, | ||||||
| 190 | UnorderedAtomicMemcpy, | ||||||
| 191 | DontUse // Dummy retval never to be used. Allows catching errors in retval | ||||||
| 192 | // handling. | ||||||
| 193 | }; | ||||||
| 194 | |||||||
| 195 | /// \name Countable Loop Idiom Handling | ||||||
| 196 | /// @{ | ||||||
| 197 | |||||||
| 198 | bool runOnCountableLoop(); | ||||||
| 199 | bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, | ||||||
| 200 | SmallVectorImpl<BasicBlock *> &ExitBlocks); | ||||||
| 201 | |||||||
| 202 | void collectStores(BasicBlock *BB); | ||||||
| 203 | LegalStoreKind isLegalStore(StoreInst *SI); | ||||||
| 204 | enum class ForMemset { No, Yes }; | ||||||
| 205 | bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount, | ||||||
| 206 | ForMemset For); | ||||||
| 207 | |||||||
| 208 | template <typename MemInst> | ||||||
| 209 | bool processLoopMemIntrinsic( | ||||||
| 210 | BasicBlock *BB, | ||||||
| 211 | bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), | ||||||
| 212 | const SCEV *BECount); | ||||||
| 213 | bool processLoopMemCpy(MemCpyInst *MCI, const SCEV *BECount); | ||||||
| 214 | bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); | ||||||
| 215 | |||||||
| 216 | bool processLoopStridedStore(Value *DestPtr, const SCEV *StoreSizeSCEV, | ||||||
| 217 | MaybeAlign StoreAlignment, Value *StoredVal, | ||||||
| 218 | Instruction *TheStore, | ||||||
| 219 | SmallPtrSetImpl<Instruction *> &Stores, | ||||||
| 220 | const SCEVAddRecExpr *Ev, const SCEV *BECount, | ||||||
| 221 | bool IsNegStride, bool IsLoopMemset = false); | ||||||
| 222 | bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount); | ||||||
| 223 | bool processLoopStoreOfLoopLoad(Value *DestPtr, Value *SourcePtr, | ||||||
| 224 | const SCEV *StoreSize, MaybeAlign StoreAlign, | ||||||
| 225 | MaybeAlign LoadAlign, Instruction *TheStore, | ||||||
| 226 | Instruction *TheLoad, | ||||||
| 227 | const SCEVAddRecExpr *StoreEv, | ||||||
| 228 | const SCEVAddRecExpr *LoadEv, | ||||||
| 229 | const SCEV *BECount); | ||||||
| 230 | bool avoidLIRForMultiBlockLoop(bool IsMemset = false, | ||||||
| 231 | bool IsLoopMemset = false); | ||||||
| 232 | |||||||
| 233 | /// @} | ||||||
| 234 | /// \name Noncountable Loop Idiom Handling | ||||||
| 235 | /// @{ | ||||||
| 236 | |||||||
| 237 | bool runOnNoncountableLoop(); | ||||||
| 238 | |||||||
| 239 | bool recognizePopcount(); | ||||||
| 240 | void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst, | ||||||
| 241 | PHINode *CntPhi, Value *Var); | ||||||
| 242 | bool recognizeAndInsertFFS(); /// Find First Set: ctlz or cttz | ||||||
| 243 | void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB, | ||||||
| 244 | Instruction *CntInst, PHINode *CntPhi, | ||||||
| 245 | Value *Var, Instruction *DefX, | ||||||
| 246 | const DebugLoc &DL, bool ZeroCheck, | ||||||
| 247 | bool IsCntPhiUsedOutsideLoop); | ||||||
| 248 | |||||||
| 249 | bool recognizeShiftUntilBitTest(); | ||||||
| 250 | bool recognizeShiftUntilZero(); | ||||||
| 251 | |||||||
| 252 | /// @} | ||||||
| 253 | }; | ||||||
| 254 | } // end anonymous namespace | ||||||
| 255 | |||||||
| 256 | PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM, | ||||||
| 257 | LoopStandardAnalysisResults &AR, | ||||||
| 258 | LPMUpdater &) { | ||||||
| 259 | if (DisableLIRP::All) | ||||||
| |||||||
| 260 | return PreservedAnalyses::all(); | ||||||
| 261 | |||||||
| 262 | const auto *DL = &L.getHeader()->getModule()->getDataLayout(); | ||||||
| 263 | |||||||
| 264 | // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis | ||||||
| 265 | // pass. Function analyses need to be preserved across loop transformations | ||||||
| 266 | // but ORE cannot be preserved (see comment before the pass definition). | ||||||
| 267 | OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); | ||||||
| 268 | |||||||
| 269 | LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, | ||||||
| 270 | AR.MSSA, DL, ORE); | ||||||
| 271 | if (!LIR.runOnLoop(&L)) | ||||||
| 272 | return PreservedAnalyses::all(); | ||||||
| 273 | |||||||
| 274 | auto PA = getLoopPassPreservedAnalyses(); | ||||||
| 275 | if (AR.MSSA) | ||||||
| 276 | PA.preserve<MemorySSAAnalysis>(); | ||||||
| 277 | return PA; | ||||||
| 278 | } | ||||||
| 279 | |||||||
| 280 | static void deleteDeadInstruction(Instruction *I) { | ||||||
| 281 | I->replaceAllUsesWith(PoisonValue::get(I->getType())); | ||||||
| 282 | I->eraseFromParent(); | ||||||
| 283 | } | ||||||
| 284 | |||||||
| 285 | //===----------------------------------------------------------------------===// | ||||||
| 286 | // | ||||||
| 287 | // Implementation of LoopIdiomRecognize | ||||||
| 288 | // | ||||||
| 289 | //===----------------------------------------------------------------------===// | ||||||
| 290 | |||||||
| 291 | bool LoopIdiomRecognize::runOnLoop(Loop *L) { | ||||||
| 292 | CurLoop = L; | ||||||
| 293 | // If the loop could not be converted to canonical form, it must have an | ||||||
| 294 | // indirectbr in it, just give up. | ||||||
| 295 | if (!L->getLoopPreheader()) | ||||||
| 296 | return false; | ||||||
| 297 | |||||||
| 298 | // Disable loop idiom recognition if the function's name is a common idiom. | ||||||
| 299 | StringRef Name = L->getHeader()->getParent()->getName(); | ||||||
| 300 | if (Name == "memset" || Name == "memcpy") | ||||||
| 301 | return false; | ||||||
| 302 | |||||||
| 303 | // Determine if code size heuristics need to be applied. | ||||||
| 304 | ApplyCodeSizeHeuristics = | ||||||
| 305 | L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs; | ||||||
| 306 | |||||||
| 307 | HasMemset = TLI->has(LibFunc_memset); | ||||||
| 308 | HasMemsetPattern = TLI->has(LibFunc_memset_pattern16); | ||||||
| 309 | HasMemcpy = TLI->has(LibFunc_memcpy); | ||||||
| 310 | |||||||
| 311 | if (HasMemset
| ||||||
| 312 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) | ||||||
| 313 | return runOnCountableLoop(); | ||||||
| 314 | |||||||
| 315 | return runOnNoncountableLoop(); | ||||||
| 316 | } | ||||||
| 317 | |||||||
| 318 | bool LoopIdiomRecognize::runOnCountableLoop() { | ||||||
| 319 | const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop); | ||||||
| 320 | assert(!isa<SCEVCouldNotCompute>(BECount) &&(static_cast <bool> (!isa<SCEVCouldNotCompute>(BECount ) && "runOnCountableLoop() called on a loop without a predictable" "backedge-taken count") ? void (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(BECount) && \"runOnCountableLoop() called on a loop without a predictable\" \"backedge-taken count\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 322, __extension__ __PRETTY_FUNCTION__)) | ||||||
| 321 | "runOnCountableLoop() called on a loop without a predictable"(static_cast <bool> (!isa<SCEVCouldNotCompute>(BECount ) && "runOnCountableLoop() called on a loop without a predictable" "backedge-taken count") ? void (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(BECount) && \"runOnCountableLoop() called on a loop without a predictable\" \"backedge-taken count\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 322, __extension__ __PRETTY_FUNCTION__)) | ||||||
| 322 | "backedge-taken count")(static_cast <bool> (!isa<SCEVCouldNotCompute>(BECount ) && "runOnCountableLoop() called on a loop without a predictable" "backedge-taken count") ? void (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(BECount) && \"runOnCountableLoop() called on a loop without a predictable\" \"backedge-taken count\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 322, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 323 | |||||||
| 324 | // If this loop executes exactly one time, then it should be peeled, not | ||||||
| 325 | // optimized by this pass. | ||||||
| 326 | if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) | ||||||
| 327 | if (BECst->getAPInt() == 0) | ||||||
| 328 | return false; | ||||||
| 329 | |||||||
| 330 | SmallVector<BasicBlock *, 8> ExitBlocks; | ||||||
| 331 | CurLoop->getUniqueExitBlocks(ExitBlocks); | ||||||
| 332 | |||||||
| 333 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F[" << CurLoop->getHeader()->getParent()->getName () << "] Countable Loop %" << CurLoop->getHeader ()->getName() << "\n"; } } while (false) | ||||||
| 334 | << CurLoop->getHeader()->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F[" << CurLoop->getHeader()->getParent()->getName () << "] Countable Loop %" << CurLoop->getHeader ()->getName() << "\n"; } } while (false) | ||||||
| 335 | << "] Countable Loop %" << CurLoop->getHeader()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F[" << CurLoop->getHeader()->getParent()->getName () << "] Countable Loop %" << CurLoop->getHeader ()->getName() << "\n"; } } while (false) | ||||||
| 336 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F[" << CurLoop->getHeader()->getParent()->getName () << "] Countable Loop %" << CurLoop->getHeader ()->getName() << "\n"; } } while (false); | ||||||
| 337 | |||||||
| 338 | // The following transforms hoist stores/memsets into the loop pre-header. | ||||||
| 339 | // Give up if the loop has instructions that may throw. | ||||||
| 340 | SimpleLoopSafetyInfo SafetyInfo; | ||||||
| 341 | SafetyInfo.computeLoopSafetyInfo(CurLoop); | ||||||
| 342 | if (SafetyInfo.anyBlockMayThrow()) | ||||||
| 343 | return false; | ||||||
| 344 | |||||||
| 345 | bool MadeChange = false; | ||||||
| 346 | |||||||
| 347 | // Scan all the blocks in the loop that are not in subloops. | ||||||
| 348 | for (auto *BB : CurLoop->getBlocks()) { | ||||||
| 349 | // Ignore blocks in subloops. | ||||||
| 350 | if (LI->getLoopFor(BB) != CurLoop) | ||||||
| 351 | continue; | ||||||
| 352 | |||||||
| 353 | MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks); | ||||||
| 354 | } | ||||||
| 355 | return MadeChange; | ||||||
| 356 | } | ||||||
| 357 | |||||||
| 358 | static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) { | ||||||
| 359 | const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1)); | ||||||
| 360 | return ConstStride->getAPInt(); | ||||||
| 361 | } | ||||||
| 362 | |||||||
| 363 | /// getMemSetPatternValue - If a strided store of the specified value is safe to | ||||||
| 364 | /// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should | ||||||
| 365 | /// be passed in. Otherwise, return null. | ||||||
| 366 | /// | ||||||
| 367 | /// Note that we don't ever attempt to use memset_pattern8 or 4, because these | ||||||
| 368 | /// just replicate their input array and then pass on to memset_pattern16. | ||||||
| 369 | static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) { | ||||||
| 370 | // FIXME: This could check for UndefValue because it can be merged into any | ||||||
| 371 | // other valid pattern. | ||||||
| 372 | |||||||
| 373 | // If the value isn't a constant, we can't promote it to being in a constant | ||||||
| 374 | // array. We could theoretically do a store to an alloca or something, but | ||||||
| 375 | // that doesn't seem worthwhile. | ||||||
| 376 | Constant *C = dyn_cast<Constant>(V); | ||||||
| 377 | if (!C || isa<ConstantExpr>(C)) | ||||||
| 378 | return nullptr; | ||||||
| 379 | |||||||
| 380 | // Only handle simple values that are a power of two bytes in size. | ||||||
| 381 | uint64_t Size = DL->getTypeSizeInBits(V->getType()); | ||||||
| 382 | if (Size == 0 || (Size & 7) || (Size & (Size - 1))) | ||||||
| 383 | return nullptr; | ||||||
| 384 | |||||||
| 385 | // Don't care enough about darwin/ppc to implement this. | ||||||
| 386 | if (DL->isBigEndian()) | ||||||
| 387 | return nullptr; | ||||||
| 388 | |||||||
| 389 | // Convert to size in bytes. | ||||||
| 390 | Size /= 8; | ||||||
| 391 | |||||||
| 392 | // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see | ||||||
| 393 | // if the top and bottom are the same (e.g. for vectors and large integers). | ||||||
| 394 | if (Size > 16) | ||||||
| 395 | return nullptr; | ||||||
| 396 | |||||||
| 397 | // If the constant is exactly 16 bytes, just use it. | ||||||
| 398 | if (Size == 16) | ||||||
| 399 | return C; | ||||||
| 400 | |||||||
| 401 | // Otherwise, we'll use an array of the constants. | ||||||
| 402 | unsigned ArraySize = 16 / Size; | ||||||
| 403 | ArrayType *AT = ArrayType::get(V->getType(), ArraySize); | ||||||
| 404 | return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C)); | ||||||
| 405 | } | ||||||
| 406 | |||||||
| 407 | LoopIdiomRecognize::LegalStoreKind | ||||||
| 408 | LoopIdiomRecognize::isLegalStore(StoreInst *SI) { | ||||||
| 409 | // Don't touch volatile stores. | ||||||
| 410 | if (SI->isVolatile()) | ||||||
| 411 | return LegalStoreKind::None; | ||||||
| 412 | // We only want simple or unordered-atomic stores. | ||||||
| 413 | if (!SI->isUnordered()) | ||||||
| 414 | return LegalStoreKind::None; | ||||||
| 415 | |||||||
| 416 | // Avoid merging nontemporal stores. | ||||||
| 417 | if (SI->getMetadata(LLVMContext::MD_nontemporal)) | ||||||
| 418 | return LegalStoreKind::None; | ||||||
| 419 | |||||||
| 420 | Value *StoredVal = SI->getValueOperand(); | ||||||
| 421 | Value *StorePtr = SI->getPointerOperand(); | ||||||
| 422 | |||||||
| 423 | // Don't convert stores of non-integral pointer types to memsets (which stores | ||||||
| 424 | // integers). | ||||||
| 425 | if (DL->isNonIntegralPointerType(StoredVal->getType()->getScalarType())) | ||||||
| 426 | return LegalStoreKind::None; | ||||||
| 427 | |||||||
| 428 | // Reject stores that are so large that they overflow an unsigned. | ||||||
| 429 | // When storing out scalable vectors we bail out for now, since the code | ||||||
| 430 | // below currently only works for constant strides. | ||||||
| 431 | TypeSize SizeInBits = DL->getTypeSizeInBits(StoredVal->getType()); | ||||||
| 432 | if (SizeInBits.isScalable() || (SizeInBits.getFixedValue() & 7) || | ||||||
| 433 | (SizeInBits.getFixedValue() >> 32) != 0) | ||||||
| 434 | return LegalStoreKind::None; | ||||||
| 435 | |||||||
| 436 | // See if the pointer expression is an AddRec like {base,+,1} on the current | ||||||
| 437 | // loop, which indicates a strided store. If we have something else, it's a | ||||||
| 438 | // random store we can't handle. | ||||||
| 439 | const SCEVAddRecExpr *StoreEv = | ||||||
| 440 | dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); | ||||||
| 441 | if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) | ||||||
| 442 | return LegalStoreKind::None; | ||||||
| 443 | |||||||
| 444 | // Check to see if we have a constant stride. | ||||||
| 445 | if (!isa<SCEVConstant>(StoreEv->getOperand(1))) | ||||||
| 446 | return LegalStoreKind::None; | ||||||
| 447 | |||||||
| 448 | // See if the store can be turned into a memset. | ||||||
| 449 | |||||||
| 450 | // If the stored value is a byte-wise value (like i32 -1), then it may be | ||||||
| 451 | // turned into a memset of i8 -1, assuming that all the consecutive bytes | ||||||
| 452 | // are stored. A store of i32 0x01020304 can never be turned into a memset, | ||||||
| 453 | // but it can be turned into memset_pattern if the target supports it. | ||||||
| 454 | Value *SplatValue = isBytewiseValue(StoredVal, *DL); | ||||||
| 455 | |||||||
| 456 | // Note: memset and memset_pattern on unordered-atomic is yet not supported | ||||||
| 457 | bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple(); | ||||||
| 458 | |||||||
| 459 | // If we're allowed to form a memset, and the stored value would be | ||||||
| 460 | // acceptable for memset, use it. | ||||||
| 461 | if (!UnorderedAtomic && HasMemset && SplatValue && !DisableLIRP::Memset && | ||||||
| 462 | // Verify that the stored value is loop invariant. If not, we can't | ||||||
| 463 | // promote the memset. | ||||||
| 464 | CurLoop->isLoopInvariant(SplatValue)) { | ||||||
| 465 | // It looks like we can use SplatValue. | ||||||
| 466 | return LegalStoreKind::Memset; | ||||||
| 467 | } | ||||||
| 468 | if (!UnorderedAtomic && HasMemsetPattern && !DisableLIRP::Memset && | ||||||
| 469 | // Don't create memset_pattern16s with address spaces. | ||||||
| 470 | StorePtr->getType()->getPointerAddressSpace() == 0 && | ||||||
| 471 | getMemSetPatternValue(StoredVal, DL)) { | ||||||
| 472 | // It looks like we can use PatternValue! | ||||||
| 473 | return LegalStoreKind::MemsetPattern; | ||||||
| 474 | } | ||||||
| 475 | |||||||
| 476 | // Otherwise, see if the store can be turned into a memcpy. | ||||||
| 477 | if (HasMemcpy && !DisableLIRP::Memcpy) { | ||||||
| 478 | // Check to see if the stride matches the size of the store. If so, then we | ||||||
| 479 | // know that every byte is touched in the loop. | ||||||
| 480 | APInt Stride = getStoreStride(StoreEv); | ||||||
| 481 | unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); | ||||||
| 482 | if (StoreSize != Stride && StoreSize != -Stride) | ||||||
| 483 | return LegalStoreKind::None; | ||||||
| 484 | |||||||
| 485 | // The store must be feeding a non-volatile load. | ||||||
| 486 | LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand()); | ||||||
| 487 | |||||||
| 488 | // Only allow non-volatile loads | ||||||
| 489 | if (!LI || LI->isVolatile()) | ||||||
| 490 | return LegalStoreKind::None; | ||||||
| 491 | // Only allow simple or unordered-atomic loads | ||||||
| 492 | if (!LI->isUnordered()) | ||||||
| 493 | return LegalStoreKind::None; | ||||||
| 494 | |||||||
| 495 | // See if the pointer expression is an AddRec like {base,+,1} on the current | ||||||
| 496 | // loop, which indicates a strided load. If we have something else, it's a | ||||||
| 497 | // random load we can't handle. | ||||||
| 498 | const SCEVAddRecExpr *LoadEv = | ||||||
| 499 | dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand())); | ||||||
| 500 | if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) | ||||||
| 501 | return LegalStoreKind::None; | ||||||
| 502 | |||||||
| 503 | // The store and load must share the same stride. | ||||||
| 504 | if (StoreEv->getOperand(1) != LoadEv->getOperand(1)) | ||||||
| 505 | return LegalStoreKind::None; | ||||||
| 506 | |||||||
| 507 | // Success. This store can be converted into a memcpy. | ||||||
| 508 | UnorderedAtomic = UnorderedAtomic || LI->isAtomic(); | ||||||
| 509 | return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy | ||||||
| 510 | : LegalStoreKind::Memcpy; | ||||||
| 511 | } | ||||||
| 512 | // This store can't be transformed into a memset/memcpy. | ||||||
| 513 | return LegalStoreKind::None; | ||||||
| 514 | } | ||||||
| 515 | |||||||
| 516 | void LoopIdiomRecognize::collectStores(BasicBlock *BB) { | ||||||
| 517 | StoreRefsForMemset.clear(); | ||||||
| 518 | StoreRefsForMemsetPattern.clear(); | ||||||
| 519 | StoreRefsForMemcpy.clear(); | ||||||
| 520 | for (Instruction &I : *BB) { | ||||||
| 521 | StoreInst *SI = dyn_cast<StoreInst>(&I); | ||||||
| 522 | if (!SI) | ||||||
| 523 | continue; | ||||||
| 524 | |||||||
| 525 | // Make sure this is a strided store with a constant stride. | ||||||
| 526 | switch (isLegalStore(SI)) { | ||||||
| 527 | case LegalStoreKind::None: | ||||||
| 528 | // Nothing to do | ||||||
| 529 | break; | ||||||
| 530 | case LegalStoreKind::Memset: { | ||||||
| 531 | // Find the base pointer. | ||||||
| 532 | Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); | ||||||
| 533 | StoreRefsForMemset[Ptr].push_back(SI); | ||||||
| 534 | } break; | ||||||
| 535 | case LegalStoreKind::MemsetPattern: { | ||||||
| 536 | // Find the base pointer. | ||||||
| 537 | Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); | ||||||
| 538 | StoreRefsForMemsetPattern[Ptr].push_back(SI); | ||||||
| 539 | } break; | ||||||
| 540 | case LegalStoreKind::Memcpy: | ||||||
| 541 | case LegalStoreKind::UnorderedAtomicMemcpy: | ||||||
| 542 | StoreRefsForMemcpy.push_back(SI); | ||||||
| 543 | break; | ||||||
| 544 | default: | ||||||
| 545 | assert(false && "unhandled return value")(static_cast <bool> (false && "unhandled return value" ) ? void (0) : __assert_fail ("false && \"unhandled return value\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 545, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 546 | break; | ||||||
| 547 | } | ||||||
| 548 | } | ||||||
| 549 | } | ||||||
| 550 | |||||||
| 551 | /// runOnLoopBlock - Process the specified block, which lives in a counted loop | ||||||
| 552 | /// with the specified backedge count. This block is known to be in the current | ||||||
| 553 | /// loop and not in any subloops. | ||||||
| 554 | bool LoopIdiomRecognize::runOnLoopBlock( | ||||||
| 555 | BasicBlock *BB, const SCEV *BECount, | ||||||
| 556 | SmallVectorImpl<BasicBlock *> &ExitBlocks) { | ||||||
| 557 | // We can only promote stores in this block if they are unconditionally | ||||||
| 558 | // executed in the loop. For a block to be unconditionally executed, it has | ||||||
| 559 | // to dominate all the exit blocks of the loop. Verify this now. | ||||||
| 560 | for (BasicBlock *ExitBlock : ExitBlocks) | ||||||
| 561 | if (!DT->dominates(BB, ExitBlock)) | ||||||
| 562 | return false; | ||||||
| 563 | |||||||
| 564 | bool MadeChange = false; | ||||||
| 565 | // Look for store instructions, which may be optimized to memset/memcpy. | ||||||
| 566 | collectStores(BB); | ||||||
| 567 | |||||||
| 568 | // Look for a single store or sets of stores with a common base, which can be | ||||||
| 569 | // optimized into a memset (memset_pattern). The latter most commonly happens | ||||||
| 570 | // with structs and handunrolled loops. | ||||||
| 571 | for (auto &SL : StoreRefsForMemset) | ||||||
| 572 | MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes); | ||||||
| 573 | |||||||
| 574 | for (auto &SL : StoreRefsForMemsetPattern) | ||||||
| 575 | MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No); | ||||||
| 576 | |||||||
| 577 | // Optimize the store into a memcpy, if it feeds an similarly strided load. | ||||||
| 578 | for (auto &SI : StoreRefsForMemcpy) | ||||||
| 579 | MadeChange |= processLoopStoreOfLoopLoad(SI, BECount); | ||||||
| 580 | |||||||
| 581 | MadeChange |= processLoopMemIntrinsic<MemCpyInst>( | ||||||
| 582 | BB, &LoopIdiomRecognize::processLoopMemCpy, BECount); | ||||||
| 583 | MadeChange |= processLoopMemIntrinsic<MemSetInst>( | ||||||
| 584 | BB, &LoopIdiomRecognize::processLoopMemSet, BECount); | ||||||
| 585 | |||||||
| 586 | return MadeChange; | ||||||
| 587 | } | ||||||
| 588 | |||||||
| 589 | /// See if this store(s) can be promoted to a memset. | ||||||
| 590 | bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL, | ||||||
| 591 | const SCEV *BECount, ForMemset For) { | ||||||
| 592 | // Try to find consecutive stores that can be transformed into memsets. | ||||||
| 593 | SetVector<StoreInst *> Heads, Tails; | ||||||
| 594 | SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; | ||||||
| 595 | |||||||
| 596 | // Do a quadratic search on all of the given stores and find | ||||||
| 597 | // all of the pairs of stores that follow each other. | ||||||
| 598 | SmallVector<unsigned, 16> IndexQueue; | ||||||
| 599 | for (unsigned i = 0, e = SL.size(); i < e; ++i) { | ||||||
| 600 | assert(SL[i]->isSimple() && "Expected only non-volatile stores.")(static_cast <bool> (SL[i]->isSimple() && "Expected only non-volatile stores." ) ? void (0) : __assert_fail ("SL[i]->isSimple() && \"Expected only non-volatile stores.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 600, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 601 | |||||||
| 602 | Value *FirstStoredVal = SL[i]->getValueOperand(); | ||||||
| 603 | Value *FirstStorePtr = SL[i]->getPointerOperand(); | ||||||
| 604 | const SCEVAddRecExpr *FirstStoreEv = | ||||||
| 605 | cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr)); | ||||||
| 606 | APInt FirstStride = getStoreStride(FirstStoreEv); | ||||||
| 607 | unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType()); | ||||||
| 608 | |||||||
| 609 | // See if we can optimize just this store in isolation. | ||||||
| 610 | if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) { | ||||||
| 611 | Heads.insert(SL[i]); | ||||||
| 612 | continue; | ||||||
| 613 | } | ||||||
| 614 | |||||||
| 615 | Value *FirstSplatValue = nullptr; | ||||||
| 616 | Constant *FirstPatternValue = nullptr; | ||||||
| 617 | |||||||
| 618 | if (For == ForMemset::Yes) | ||||||
| 619 | FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL); | ||||||
| 620 | else | ||||||
| 621 | FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL); | ||||||
| 622 | |||||||
| 623 | assert((FirstSplatValue || FirstPatternValue) &&(static_cast <bool> ((FirstSplatValue || FirstPatternValue ) && "Expected either splat value or pattern value.") ? void (0) : __assert_fail ("(FirstSplatValue || FirstPatternValue) && \"Expected either splat value or pattern value.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 624, __extension__ __PRETTY_FUNCTION__)) | ||||||
| 624 | "Expected either splat value or pattern value.")(static_cast <bool> ((FirstSplatValue || FirstPatternValue ) && "Expected either splat value or pattern value.") ? void (0) : __assert_fail ("(FirstSplatValue || FirstPatternValue) && \"Expected either splat value or pattern value.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 624, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 625 | |||||||
| 626 | IndexQueue.clear(); | ||||||
| 627 | // If a store has multiple consecutive store candidates, search Stores | ||||||
| 628 | // array according to the sequence: from i+1 to e, then from i-1 to 0. | ||||||
| 629 | // This is because usually pairing with immediate succeeding or preceding | ||||||
| 630 | // candidate create the best chance to find memset opportunity. | ||||||
| 631 | unsigned j = 0; | ||||||
| 632 | for (j = i + 1; j < e; ++j) | ||||||
| 633 | IndexQueue.push_back(j); | ||||||
| 634 | for (j = i; j > 0; --j) | ||||||
| 635 | IndexQueue.push_back(j - 1); | ||||||
| 636 | |||||||
| 637 | for (auto &k : IndexQueue) { | ||||||
| 638 | assert(SL[k]->isSimple() && "Expected only non-volatile stores.")(static_cast <bool> (SL[k]->isSimple() && "Expected only non-volatile stores." ) ? void (0) : __assert_fail ("SL[k]->isSimple() && \"Expected only non-volatile stores.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 638, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 639 | Value *SecondStorePtr = SL[k]->getPointerOperand(); | ||||||
| 640 | const SCEVAddRecExpr *SecondStoreEv = | ||||||
| 641 | cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr)); | ||||||
| 642 | APInt SecondStride = getStoreStride(SecondStoreEv); | ||||||
| 643 | |||||||
| 644 | if (FirstStride != SecondStride) | ||||||
| 645 | continue; | ||||||
| 646 | |||||||
| 647 | Value *SecondStoredVal = SL[k]->getValueOperand(); | ||||||
| 648 | Value *SecondSplatValue = nullptr; | ||||||
| 649 | Constant *SecondPatternValue = nullptr; | ||||||
| 650 | |||||||
| 651 | if (For == ForMemset::Yes) | ||||||
| 652 | SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL); | ||||||
| 653 | else | ||||||
| 654 | SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL); | ||||||
| 655 | |||||||
| 656 | assert((SecondSplatValue || SecondPatternValue) &&(static_cast <bool> ((SecondSplatValue || SecondPatternValue ) && "Expected either splat value or pattern value.") ? void (0) : __assert_fail ("(SecondSplatValue || SecondPatternValue) && \"Expected either splat value or pattern value.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 657, __extension__ __PRETTY_FUNCTION__)) | ||||||
| 657 | "Expected either splat value or pattern value.")(static_cast <bool> ((SecondSplatValue || SecondPatternValue ) && "Expected either splat value or pattern value.") ? void (0) : __assert_fail ("(SecondSplatValue || SecondPatternValue) && \"Expected either splat value or pattern value.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 657, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 658 | |||||||
| 659 | if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) { | ||||||
| 660 | if (For == ForMemset::Yes) { | ||||||
| 661 | if (isa<UndefValue>(FirstSplatValue)) | ||||||
| 662 | FirstSplatValue = SecondSplatValue; | ||||||
| 663 | if (FirstSplatValue != SecondSplatValue) | ||||||
| 664 | continue; | ||||||
| 665 | } else { | ||||||
| 666 | if (isa<UndefValue>(FirstPatternValue)) | ||||||
| 667 | FirstPatternValue = SecondPatternValue; | ||||||
| 668 | if (FirstPatternValue != SecondPatternValue) | ||||||
| 669 | continue; | ||||||
| 670 | } | ||||||
| 671 | Tails.insert(SL[k]); | ||||||
| 672 | Heads.insert(SL[i]); | ||||||
| 673 | ConsecutiveChain[SL[i]] = SL[k]; | ||||||
| 674 | break; | ||||||
| 675 | } | ||||||
| 676 | } | ||||||
| 677 | } | ||||||
| 678 | |||||||
| 679 | // We may run into multiple chains that merge into a single chain. We mark the | ||||||
| 680 | // stores that we transformed so that we don't visit the same store twice. | ||||||
| 681 | SmallPtrSet<Value *, 16> TransformedStores; | ||||||
| 682 | bool Changed = false; | ||||||
| 683 | |||||||
| 684 | // For stores that start but don't end a link in the chain: | ||||||
| 685 | for (StoreInst *I : Heads) { | ||||||
| 686 | if (Tails.count(I)) | ||||||
| 687 | continue; | ||||||
| 688 | |||||||
| 689 | // We found a store instr that starts a chain. Now follow the chain and try | ||||||
| 690 | // to transform it. | ||||||
| 691 | SmallPtrSet<Instruction *, 8> AdjacentStores; | ||||||
| 692 | StoreInst *HeadStore = I; | ||||||
| 693 | unsigned StoreSize = 0; | ||||||
| 694 | |||||||
| 695 | // Collect the chain into a list. | ||||||
| 696 | while (Tails.count(I) || Heads.count(I)) { | ||||||
| 697 | if (TransformedStores.count(I)) | ||||||
| 698 | break; | ||||||
| 699 | AdjacentStores.insert(I); | ||||||
| 700 | |||||||
| 701 | StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType()); | ||||||
| 702 | // Move to the next value in the chain. | ||||||
| 703 | I = ConsecutiveChain[I]; | ||||||
| 704 | } | ||||||
| 705 | |||||||
| 706 | Value *StoredVal = HeadStore->getValueOperand(); | ||||||
| 707 | Value *StorePtr = HeadStore->getPointerOperand(); | ||||||
| 708 | const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); | ||||||
| 709 | APInt Stride = getStoreStride(StoreEv); | ||||||
| 710 | |||||||
| 711 | // Check to see if the stride matches the size of the stores. If so, then | ||||||
| 712 | // we know that every byte is touched in the loop. | ||||||
| 713 | if (StoreSize != Stride && StoreSize != -Stride) | ||||||
| 714 | continue; | ||||||
| 715 | |||||||
| 716 | bool IsNegStride = StoreSize == -Stride; | ||||||
| 717 | |||||||
| 718 | Type *IntIdxTy = DL->getIndexType(StorePtr->getType()); | ||||||
| 719 | const SCEV *StoreSizeSCEV = SE->getConstant(IntIdxTy, StoreSize); | ||||||
| 720 | if (processLoopStridedStore(StorePtr, StoreSizeSCEV, | ||||||
| 721 | MaybeAlign(HeadStore->getAlign()), StoredVal, | ||||||
| 722 | HeadStore, AdjacentStores, StoreEv, BECount, | ||||||
| 723 | IsNegStride)) { | ||||||
| 724 | TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end()); | ||||||
| 725 | Changed = true; | ||||||
| 726 | } | ||||||
| 727 | } | ||||||
| 728 | |||||||
| 729 | return Changed; | ||||||
| 730 | } | ||||||
| 731 | |||||||
| 732 | /// processLoopMemIntrinsic - Template function for calling different processor | ||||||
| 733 | /// functions based on mem intrinsic type. | ||||||
| 734 | template <typename MemInst> | ||||||
| 735 | bool LoopIdiomRecognize::processLoopMemIntrinsic( | ||||||
| 736 | BasicBlock *BB, | ||||||
| 737 | bool (LoopIdiomRecognize::*Processor)(MemInst *, const SCEV *), | ||||||
| 738 | const SCEV *BECount) { | ||||||
| 739 | bool MadeChange = false; | ||||||
| 740 | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { | ||||||
| 741 | Instruction *Inst = &*I++; | ||||||
| 742 | // Look for memory instructions, which may be optimized to a larger one. | ||||||
| 743 | if (MemInst *MI = dyn_cast<MemInst>(Inst)) { | ||||||
| 744 | WeakTrackingVH InstPtr(&*I); | ||||||
| 745 | if (!(this->*Processor)(MI, BECount)) | ||||||
| 746 | continue; | ||||||
| 747 | MadeChange = true; | ||||||
| 748 | |||||||
| 749 | // If processing the instruction invalidated our iterator, start over from | ||||||
| 750 | // the top of the block. | ||||||
| 751 | if (!InstPtr) | ||||||
| 752 | I = BB->begin(); | ||||||
| 753 | } | ||||||
| 754 | } | ||||||
| 755 | return MadeChange; | ||||||
| 756 | } | ||||||
| 757 | |||||||
| 758 | /// processLoopMemCpy - See if this memcpy can be promoted to a large memcpy | ||||||
| 759 | bool LoopIdiomRecognize::processLoopMemCpy(MemCpyInst *MCI, | ||||||
| 760 | const SCEV *BECount) { | ||||||
| 761 | // We can only handle non-volatile memcpys with a constant size. | ||||||
| 762 | if (MCI->isVolatile() || !isa<ConstantInt>(MCI->getLength())) | ||||||
| 763 | return false; | ||||||
| 764 | |||||||
| 765 | // If we're not allowed to hack on memcpy, we fail. | ||||||
| 766 | if ((!HasMemcpy && !isa<MemCpyInlineInst>(MCI)) || DisableLIRP::Memcpy) | ||||||
| 767 | return false; | ||||||
| 768 | |||||||
| 769 | Value *Dest = MCI->getDest(); | ||||||
| 770 | Value *Source = MCI->getSource(); | ||||||
| 771 | if (!Dest || !Source) | ||||||
| 772 | return false; | ||||||
| 773 | |||||||
| 774 | // See if the load and store pointer expressions are AddRec like {base,+,1} on | ||||||
| 775 | // the current loop, which indicates a strided load and store. If we have | ||||||
| 776 | // something else, it's a random load or store we can't handle. | ||||||
| 777 | const SCEVAddRecExpr *StoreEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Dest)); | ||||||
| 778 | if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) | ||||||
| 779 | return false; | ||||||
| 780 | const SCEVAddRecExpr *LoadEv = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Source)); | ||||||
| 781 | if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine()) | ||||||
| 782 | return false; | ||||||
| 783 | |||||||
| 784 | // Reject memcpys that are so large that they overflow an unsigned. | ||||||
| 785 | uint64_t SizeInBytes = cast<ConstantInt>(MCI->getLength())->getZExtValue(); | ||||||
| 786 | if ((SizeInBytes >> 32) != 0) | ||||||
| 787 | return false; | ||||||
| 788 | |||||||
| 789 | // Check if the stride matches the size of the memcpy. If so, then we know | ||||||
| 790 | // that every byte is touched in the loop. | ||||||
| 791 | const SCEVConstant *ConstStoreStride = | ||||||
| 792 | dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); | ||||||
| 793 | const SCEVConstant *ConstLoadStride = | ||||||
| 794 | dyn_cast<SCEVConstant>(LoadEv->getOperand(1)); | ||||||
| 795 | if (!ConstStoreStride || !ConstLoadStride) | ||||||
| 796 | return false; | ||||||
| 797 | |||||||
| 798 | APInt StoreStrideValue = ConstStoreStride->getAPInt(); | ||||||
| 799 | APInt LoadStrideValue = ConstLoadStride->getAPInt(); | ||||||
| 800 | // Huge stride value - give up | ||||||
| 801 | if (StoreStrideValue.getBitWidth() > 64 || LoadStrideValue.getBitWidth() > 64) | ||||||
| 802 | return false; | ||||||
| 803 | |||||||
| 804 | if (SizeInBytes != StoreStrideValue && SizeInBytes != -StoreStrideValue) { | ||||||
| 805 | ORE.emit([&]() { | ||||||
| 806 | return OptimizationRemarkMissed(DEBUG_TYPE"loop-idiom", "SizeStrideUnequal", MCI) | ||||||
| 807 | << ore::NV("Inst", "memcpy") << " in " | ||||||
| 808 | << ore::NV("Function", MCI->getFunction()) | ||||||
| 809 | << " function will not be hoisted: " | ||||||
| 810 | << ore::NV("Reason", "memcpy size is not equal to stride"); | ||||||
| 811 | }); | ||||||
| 812 | return false; | ||||||
| 813 | } | ||||||
| 814 | |||||||
| 815 | int64_t StoreStrideInt = StoreStrideValue.getSExtValue(); | ||||||
| 816 | int64_t LoadStrideInt = LoadStrideValue.getSExtValue(); | ||||||
| 817 | // Check if the load stride matches the store stride. | ||||||
| 818 | if (StoreStrideInt != LoadStrideInt) | ||||||
| 819 | return false; | ||||||
| 820 | |||||||
| 821 | return processLoopStoreOfLoopLoad( | ||||||
| 822 | Dest, Source, SE->getConstant(Dest->getType(), SizeInBytes), | ||||||
| 823 | MCI->getDestAlign(), MCI->getSourceAlign(), MCI, MCI, StoreEv, LoadEv, | ||||||
| 824 | BECount); | ||||||
| 825 | } | ||||||
| 826 | |||||||
| 827 | /// processLoopMemSet - See if this memset can be promoted to a large memset. | ||||||
| 828 | bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI, | ||||||
| 829 | const SCEV *BECount) { | ||||||
| 830 | // We can only handle non-volatile memsets. | ||||||
| 831 | if (MSI->isVolatile()) | ||||||
| 832 | return false; | ||||||
| 833 | |||||||
| 834 | // If we're not allowed to hack on memset, we fail. | ||||||
| 835 | if (!HasMemset || DisableLIRP::Memset) | ||||||
| 836 | return false; | ||||||
| 837 | |||||||
| 838 | Value *Pointer = MSI->getDest(); | ||||||
| 839 | |||||||
| 840 | // See if the pointer expression is an AddRec like {base,+,1} on the current | ||||||
| 841 | // loop, which indicates a strided store. If we have something else, it's a | ||||||
| 842 | // random store we can't handle. | ||||||
| 843 | const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); | ||||||
| 844 | if (!Ev || Ev->getLoop() != CurLoop) | ||||||
| 845 | return false; | ||||||
| 846 | if (!Ev->isAffine()) { | ||||||
| 847 | LLVM_DEBUG(dbgs() << " Pointer is not affine, abort\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Pointer is not affine, abort\n" ; } } while (false); | ||||||
| 848 | return false; | ||||||
| 849 | } | ||||||
| 850 | |||||||
| 851 | const SCEV *PointerStrideSCEV = Ev->getOperand(1); | ||||||
| 852 | const SCEV *MemsetSizeSCEV = SE->getSCEV(MSI->getLength()); | ||||||
| 853 | if (!PointerStrideSCEV || !MemsetSizeSCEV) | ||||||
| 854 | return false; | ||||||
| 855 | |||||||
| 856 | bool IsNegStride = false; | ||||||
| 857 | const bool IsConstantSize = isa<ConstantInt>(MSI->getLength()); | ||||||
| 858 | |||||||
| 859 | if (IsConstantSize) { | ||||||
| 860 | // Memset size is constant. | ||||||
| 861 | // Check if the pointer stride matches the memset size. If so, then | ||||||
| 862 | // we know that every byte is touched in the loop. | ||||||
| 863 | LLVM_DEBUG(dbgs() << " memset size is constant\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " memset size is constant\n" ; } } while (false); | ||||||
| 864 | uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); | ||||||
| 865 | const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); | ||||||
| 866 | if (!ConstStride) | ||||||
| 867 | return false; | ||||||
| 868 | |||||||
| 869 | APInt Stride = ConstStride->getAPInt(); | ||||||
| 870 | if (SizeInBytes != Stride && SizeInBytes != -Stride) | ||||||
| 871 | return false; | ||||||
| 872 | |||||||
| 873 | IsNegStride = SizeInBytes == -Stride; | ||||||
| 874 | } else { | ||||||
| 875 | // Memset size is non-constant. | ||||||
| 876 | // Check if the pointer stride matches the memset size. | ||||||
| 877 | // To be conservative, the pass would not promote pointers that aren't in | ||||||
| 878 | // address space zero. Also, the pass only handles memset length and stride | ||||||
| 879 | // that are invariant for the top level loop. | ||||||
| 880 | LLVM_DEBUG(dbgs() << " memset size is non-constant\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " memset size is non-constant\n" ; } } while (false); | ||||||
| 881 | if (Pointer->getType()->getPointerAddressSpace() != 0) { | ||||||
| 882 | LLVM_DEBUG(dbgs() << " pointer is not in address space zero, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " pointer is not in address space zero, " << "abort\n"; } } while (false) | ||||||
| 883 | << "abort\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " pointer is not in address space zero, " << "abort\n"; } } while (false); | ||||||
| 884 | return false; | ||||||
| 885 | } | ||||||
| 886 | if (!SE->isLoopInvariant(MemsetSizeSCEV, CurLoop)) { | ||||||
| 887 | LLVM_DEBUG(dbgs() << " memset size is not a loop-invariant, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " memset size is not a loop-invariant, " << "abort\n"; } } while (false) | ||||||
| 888 | << "abort\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " memset size is not a loop-invariant, " << "abort\n"; } } while (false); | ||||||
| 889 | return false; | ||||||
| 890 | } | ||||||
| 891 | |||||||
| 892 | // Compare positive direction PointerStrideSCEV with MemsetSizeSCEV | ||||||
| 893 | IsNegStride = PointerStrideSCEV->isNonConstantNegative(); | ||||||
| 894 | const SCEV *PositiveStrideSCEV = | ||||||
| 895 | IsNegStride ? SE->getNegativeSCEV(PointerStrideSCEV) | ||||||
| 896 | : PointerStrideSCEV; | ||||||
| 897 | LLVM_DEBUG(dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" << " PositiveStrideSCEV: " << *PositiveStrideSCEV << "\n"; } } while (false ) | ||||||
| 898 | << " PositiveStrideSCEV: " << *PositiveStrideSCEVdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" << " PositiveStrideSCEV: " << *PositiveStrideSCEV << "\n"; } } while (false ) | ||||||
| 899 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " MemsetSizeSCEV: " << *MemsetSizeSCEV << "\n" << " PositiveStrideSCEV: " << *PositiveStrideSCEV << "\n"; } } while (false ); | ||||||
| 900 | |||||||
| 901 | if (PositiveStrideSCEV != MemsetSizeSCEV) { | ||||||
| 902 | // If an expression is covered by the loop guard, compare again and | ||||||
| 903 | // proceed with optimization if equal. | ||||||
| 904 | const SCEV *FoldedPositiveStride = | ||||||
| 905 | SE->applyLoopGuards(PositiveStrideSCEV, CurLoop); | ||||||
| 906 | const SCEV *FoldedMemsetSize = | ||||||
| 907 | SE->applyLoopGuards(MemsetSizeSCEV, CurLoop); | ||||||
| 908 | |||||||
| 909 | LLVM_DEBUG(dbgs() << " Try to fold SCEV based on loop guard\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Try to fold SCEV based on loop guard\n" << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" << " FoldedPositiveStride: " << *FoldedPositiveStride << "\n"; } } while (false) | ||||||
| 910 | << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Try to fold SCEV based on loop guard\n" << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" << " FoldedPositiveStride: " << *FoldedPositiveStride << "\n"; } } while (false) | ||||||
| 911 | << " FoldedPositiveStride: " << *FoldedPositiveStridedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Try to fold SCEV based on loop guard\n" << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" << " FoldedPositiveStride: " << *FoldedPositiveStride << "\n"; } } while (false) | ||||||
| 912 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Try to fold SCEV based on loop guard\n" << " FoldedMemsetSize: " << *FoldedMemsetSize << "\n" << " FoldedPositiveStride: " << *FoldedPositiveStride << "\n"; } } while (false); | ||||||
| 913 | |||||||
| 914 | if (FoldedPositiveStride != FoldedMemsetSize) { | ||||||
| 915 | LLVM_DEBUG(dbgs() << " SCEV don't match, abort\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " SCEV don't match, abort\n" ; } } while (false); | ||||||
| 916 | return false; | ||||||
| 917 | } | ||||||
| 918 | } | ||||||
| 919 | } | ||||||
| 920 | |||||||
| 921 | // Verify that the memset value is loop invariant. If not, we can't promote | ||||||
| 922 | // the memset. | ||||||
| 923 | Value *SplatValue = MSI->getValue(); | ||||||
| 924 | if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue)) | ||||||
| 925 | return false; | ||||||
| 926 | |||||||
| 927 | SmallPtrSet<Instruction *, 1> MSIs; | ||||||
| 928 | MSIs.insert(MSI); | ||||||
| 929 | return processLoopStridedStore(Pointer, SE->getSCEV(MSI->getLength()), | ||||||
| 930 | MSI->getDestAlign(), SplatValue, MSI, MSIs, Ev, | ||||||
| 931 | BECount, IsNegStride, /*IsLoopMemset=*/true); | ||||||
| 932 | } | ||||||
| 933 | |||||||
| 934 | /// mayLoopAccessLocation - Return true if the specified loop might access the | ||||||
| 935 | /// specified pointer location, which is a loop-strided access. The 'Access' | ||||||
| 936 | /// argument specifies what the verboten forms of access are (read or write). | ||||||
| 937 | static bool | ||||||
| 938 | mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L, | ||||||
| 939 | const SCEV *BECount, const SCEV *StoreSizeSCEV, | ||||||
| 940 | AliasAnalysis &AA, | ||||||
| 941 | SmallPtrSetImpl<Instruction *> &IgnoredInsts) { | ||||||
| 942 | // Get the location that may be stored across the loop. Since the access is | ||||||
| 943 | // strided positively through memory, we say that the modified location starts | ||||||
| 944 | // at the pointer and has infinite size. | ||||||
| 945 | LocationSize AccessSize = LocationSize::afterPointer(); | ||||||
| 946 | |||||||
| 947 | // If the loop iterates a fixed number of times, we can refine the access size | ||||||
| 948 | // to be exactly the size of the memset, which is (BECount+1)*StoreSize | ||||||
| 949 | const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount); | ||||||
| 950 | const SCEVConstant *ConstSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); | ||||||
| 951 | if (BECst && ConstSize) | ||||||
| 952 | AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) * | ||||||
| 953 | ConstSize->getValue()->getZExtValue()); | ||||||
| 954 | |||||||
| 955 | // TODO: For this to be really effective, we have to dive into the pointer | ||||||
| 956 | // operand in the store. Store to &A[i] of 100 will always return may alias | ||||||
| 957 | // with store of &A[100], we need to StoreLoc to be "A" with size of 100, | ||||||
| 958 | // which will then no-alias a store to &A[100]. | ||||||
| 959 | MemoryLocation StoreLoc(Ptr, AccessSize); | ||||||
| 960 | |||||||
| 961 | for (BasicBlock *B : L->blocks()) | ||||||
| 962 | for (Instruction &I : *B) | ||||||
| 963 | if (!IgnoredInsts.contains(&I) && | ||||||
| 964 | isModOrRefSet(AA.getModRefInfo(&I, StoreLoc) & Access)) | ||||||
| 965 | return true; | ||||||
| 966 | return false; | ||||||
| 967 | } | ||||||
| 968 | |||||||
| 969 | // If we have a negative stride, Start refers to the end of the memory location | ||||||
| 970 | // we're trying to memset. Therefore, we need to recompute the base pointer, | ||||||
| 971 | // which is just Start - BECount*Size. | ||||||
| 972 | static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount, | ||||||
| 973 | Type *IntPtr, const SCEV *StoreSizeSCEV, | ||||||
| 974 | ScalarEvolution *SE) { | ||||||
| 975 | const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr); | ||||||
| 976 | if (!StoreSizeSCEV->isOne()) { | ||||||
| 977 | // index = back edge count * store size | ||||||
| 978 | Index = SE->getMulExpr(Index, | ||||||
| 979 | SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), | ||||||
| 980 | SCEV::FlagNUW); | ||||||
| 981 | } | ||||||
| 982 | // base pointer = start - index * store size | ||||||
| 983 | return SE->getMinusSCEV(Start, Index); | ||||||
| 984 | } | ||||||
| 985 | |||||||
| 986 | /// Compute the number of bytes as a SCEV from the backedge taken count. | ||||||
| 987 | /// | ||||||
| 988 | /// This also maps the SCEV into the provided type and tries to handle the | ||||||
| 989 | /// computation in a way that will fold cleanly. | ||||||
| 990 | static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr, | ||||||
| 991 | const SCEV *StoreSizeSCEV, Loop *CurLoop, | ||||||
| 992 | const DataLayout *DL, ScalarEvolution *SE) { | ||||||
| 993 | const SCEV *TripCountSCEV = | ||||||
| 994 | SE->getTripCountFromExitCount(BECount, IntPtr, CurLoop); | ||||||
| 995 | return SE->getMulExpr(TripCountSCEV, | ||||||
| 996 | SE->getTruncateOrZeroExtend(StoreSizeSCEV, IntPtr), | ||||||
| 997 | SCEV::FlagNUW); | ||||||
| 998 | } | ||||||
| 999 | |||||||
| 1000 | /// processLoopStridedStore - We see a strided store of some value. If we can | ||||||
| 1001 | /// transform this into a memset or memset_pattern in the loop preheader, do so. | ||||||
| 1002 | bool LoopIdiomRecognize::processLoopStridedStore( | ||||||
| 1003 | Value *DestPtr, const SCEV *StoreSizeSCEV, MaybeAlign StoreAlignment, | ||||||
| 1004 | Value *StoredVal, Instruction *TheStore, | ||||||
| 1005 | SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev, | ||||||
| 1006 | const SCEV *BECount, bool IsNegStride, bool IsLoopMemset) { | ||||||
| 1007 | Module *M = TheStore->getModule(); | ||||||
| 1008 | Value *SplatValue = isBytewiseValue(StoredVal, *DL); | ||||||
| 1009 | Constant *PatternValue = nullptr; | ||||||
| 1010 | |||||||
| 1011 | if (!SplatValue) | ||||||
| 1012 | PatternValue = getMemSetPatternValue(StoredVal, DL); | ||||||
| 1013 | |||||||
| 1014 | assert((SplatValue || PatternValue) &&(static_cast <bool> ((SplatValue || PatternValue) && "Expected either splat value or pattern value.") ? void (0) : __assert_fail ("(SplatValue || PatternValue) && \"Expected either splat value or pattern value.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 1015, __extension__ __PRETTY_FUNCTION__)) | ||||||
| 1015 | "Expected either splat value or pattern value.")(static_cast <bool> ((SplatValue || PatternValue) && "Expected either splat value or pattern value.") ? void (0) : __assert_fail ("(SplatValue || PatternValue) && \"Expected either splat value or pattern value.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 1015, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 1016 | |||||||
| 1017 | // The trip count of the loop and the base pointer of the addrec SCEV is | ||||||
| 1018 | // guaranteed to be loop invariant, which means that it should dominate the | ||||||
| 1019 | // header. This allows us to insert code for it in the preheader. | ||||||
| 1020 | unsigned DestAS = DestPtr->getType()->getPointerAddressSpace(); | ||||||
| 1021 | BasicBlock *Preheader = CurLoop->getLoopPreheader(); | ||||||
| 1022 | IRBuilder<> Builder(Preheader->getTerminator()); | ||||||
| 1023 | SCEVExpander Expander(*SE, *DL, "loop-idiom"); | ||||||
| 1024 | SCEVExpanderCleaner ExpCleaner(Expander); | ||||||
| 1025 | |||||||
| 1026 | Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS); | ||||||
| 1027 | Type *IntIdxTy = DL->getIndexType(DestPtr->getType()); | ||||||
| 1028 | |||||||
| 1029 | bool Changed = false; | ||||||
| 1030 | const SCEV *Start = Ev->getStart(); | ||||||
| 1031 | // Handle negative strided loops. | ||||||
| 1032 | if (IsNegStride) | ||||||
| 1033 | Start = getStartForNegStride(Start, BECount, IntIdxTy, StoreSizeSCEV, SE); | ||||||
| 1034 | |||||||
| 1035 | // TODO: ideally we should still be able to generate memset if SCEV expander | ||||||
| 1036 | // is taught to generate the dependencies at the latest point. | ||||||
| 1037 | if (!Expander.isSafeToExpand(Start)) | ||||||
| 1038 | return Changed; | ||||||
| 1039 | |||||||
| 1040 | // Okay, we have a strided store "p[i]" of a splattable value. We can turn | ||||||
| 1041 | // this into a memset in the loop preheader now if we want. However, this | ||||||
| 1042 | // would be unsafe to do if there is anything else in the loop that may read | ||||||
| 1043 | // or write to the aliased location. Check for any overlap by generating the | ||||||
| 1044 | // base pointer and checking the region. | ||||||
| 1045 | Value *BasePtr = | ||||||
| 1046 | Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator()); | ||||||
| 1047 | |||||||
| 1048 | // From here on out, conservatively report to the pass manager that we've | ||||||
| 1049 | // changed the IR, even if we later clean up these added instructions. There | ||||||
| 1050 | // may be structural differences e.g. in the order of use lists not accounted | ||||||
| 1051 | // for in just a textual dump of the IR. This is written as a variable, even | ||||||
| 1052 | // though statically all the places this dominates could be replaced with | ||||||
| 1053 | // 'true', with the hope that anyone trying to be clever / "more precise" with | ||||||
| 1054 | // the return value will read this comment, and leave them alone. | ||||||
| 1055 | Changed = true; | ||||||
| 1056 | |||||||
| 1057 | if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount, | ||||||
| 1058 | StoreSizeSCEV, *AA, Stores)) | ||||||
| 1059 | return Changed; | ||||||
| 1060 | |||||||
| 1061 | if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset)) | ||||||
| 1062 | return Changed; | ||||||
| 1063 | |||||||
| 1064 | // Okay, everything looks good, insert the memset. | ||||||
| 1065 | |||||||
| 1066 | const SCEV *NumBytesS = | ||||||
| 1067 | getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); | ||||||
| 1068 | |||||||
| 1069 | // TODO: ideally we should still be able to generate memset if SCEV expander | ||||||
| 1070 | // is taught to generate the dependencies at the latest point. | ||||||
| 1071 | if (!Expander.isSafeToExpand(NumBytesS)) | ||||||
| 1072 | return Changed; | ||||||
| 1073 | |||||||
| 1074 | Value *NumBytes = | ||||||
| 1075 | Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); | ||||||
| 1076 | |||||||
| 1077 | CallInst *NewCall; | ||||||
| 1078 | if (SplatValue) { | ||||||
| 1079 | AAMDNodes AATags = TheStore->getAAMetadata(); | ||||||
| 1080 | for (Instruction *Store : Stores) | ||||||
| 1081 | AATags = AATags.merge(Store->getAAMetadata()); | ||||||
| 1082 | if (auto CI = dyn_cast<ConstantInt>(NumBytes)) | ||||||
| 1083 | AATags = AATags.extendTo(CI->getZExtValue()); | ||||||
| 1084 | else | ||||||
| 1085 | AATags = AATags.extendTo(-1); | ||||||
| 1086 | |||||||
| 1087 | NewCall = Builder.CreateMemSet( | ||||||
| 1088 | BasePtr, SplatValue, NumBytes, MaybeAlign(StoreAlignment), | ||||||
| 1089 | /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); | ||||||
| 1090 | } else if (isLibFuncEmittable(M, TLI, LibFunc_memset_pattern16)) { | ||||||
| 1091 | // Everything is emitted in default address space | ||||||
| 1092 | Type *Int8PtrTy = DestInt8PtrTy; | ||||||
| 1093 | |||||||
| 1094 | StringRef FuncName = "memset_pattern16"; | ||||||
| 1095 | FunctionCallee MSP = getOrInsertLibFunc(M, *TLI, LibFunc_memset_pattern16, | ||||||
| 1096 | Builder.getVoidTy(), Int8PtrTy, Int8PtrTy, IntIdxTy); | ||||||
| 1097 | inferNonMandatoryLibFuncAttrs(M, FuncName, *TLI); | ||||||
| 1098 | |||||||
| 1099 | // Otherwise we should form a memset_pattern16. PatternValue is known to be | ||||||
| 1100 | // an constant array of 16-bytes. Plop the value into a mergable global. | ||||||
| 1101 | GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, | ||||||
| 1102 | GlobalValue::PrivateLinkage, | ||||||
| 1103 | PatternValue, ".memset_pattern"); | ||||||
| 1104 | GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these. | ||||||
| 1105 | GV->setAlignment(Align(16)); | ||||||
| 1106 | Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy); | ||||||
| 1107 | NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes}); | ||||||
| 1108 | } else | ||||||
| 1109 | return Changed; | ||||||
| 1110 | |||||||
| 1111 | NewCall->setDebugLoc(TheStore->getDebugLoc()); | ||||||
| 1112 | |||||||
| 1113 | if (MSSAU) { | ||||||
| 1114 | MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( | ||||||
| 1115 | NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); | ||||||
| 1116 | MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); | ||||||
| 1117 | } | ||||||
| 1118 | |||||||
| 1119 | LLVM_DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Formed memset: " << *NewCall << "\n" << " from store to: " << *Ev << " at: " << *TheStore << "\n"; } } while (false) | ||||||
| 1120 | << " from store to: " << *Ev << " at: " << *TheStoredo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Formed memset: " << *NewCall << "\n" << " from store to: " << *Ev << " at: " << *TheStore << "\n"; } } while (false) | ||||||
| 1121 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Formed memset: " << *NewCall << "\n" << " from store to: " << *Ev << " at: " << *TheStore << "\n"; } } while (false); | ||||||
| 1122 | |||||||
| 1123 | ORE.emit([&]() { | ||||||
| 1124 | OptimizationRemark R(DEBUG_TYPE"loop-idiom", "ProcessLoopStridedStore", | ||||||
| 1125 | NewCall->getDebugLoc(), Preheader); | ||||||
| 1126 | R << "Transformed loop-strided store in " | ||||||
| 1127 | << ore::NV("Function", TheStore->getFunction()) | ||||||
| 1128 | << " function into a call to " | ||||||
| 1129 | << ore::NV("NewFunction", NewCall->getCalledFunction()) | ||||||
| 1130 | << "() intrinsic"; | ||||||
| 1131 | if (!Stores.empty()) | ||||||
| 1132 | R << ore::setExtraArgs(); | ||||||
| 1133 | for (auto *I : Stores) { | ||||||
| 1134 | R << ore::NV("FromBlock", I->getParent()->getName()) | ||||||
| 1135 | << ore::NV("ToBlock", Preheader->getName()); | ||||||
| 1136 | } | ||||||
| 1137 | return R; | ||||||
| 1138 | }); | ||||||
| 1139 | |||||||
| 1140 | // Okay, the memset has been formed. Zap the original store and anything that | ||||||
| 1141 | // feeds into it. | ||||||
| 1142 | for (auto *I : Stores) { | ||||||
| 1143 | if (MSSAU) | ||||||
| 1144 | MSSAU->removeMemoryAccess(I, true); | ||||||
| 1145 | deleteDeadInstruction(I); | ||||||
| 1146 | } | ||||||
| 1147 | if (MSSAU && VerifyMemorySSA) | ||||||
| 1148 | MSSAU->getMemorySSA()->verifyMemorySSA(); | ||||||
| 1149 | ++NumMemSet; | ||||||
| 1150 | ExpCleaner.markResultUsed(); | ||||||
| 1151 | return true; | ||||||
| 1152 | } | ||||||
| 1153 | |||||||
| 1154 | /// If the stored value is a strided load in the same loop with the same stride | ||||||
| 1155 | /// this may be transformable into a memcpy. This kicks in for stuff like | ||||||
| 1156 | /// for (i) A[i] = B[i]; | ||||||
| 1157 | bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI, | ||||||
| 1158 | const SCEV *BECount) { | ||||||
| 1159 | assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.")(static_cast <bool> (SI->isUnordered() && "Expected only non-volatile non-ordered stores." ) ? void (0) : __assert_fail ("SI->isUnordered() && \"Expected only non-volatile non-ordered stores.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 1159, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 1160 | |||||||
| 1161 | Value *StorePtr = SI->getPointerOperand(); | ||||||
| 1162 | const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); | ||||||
| 1163 | unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType()); | ||||||
| 1164 | |||||||
| 1165 | // The store must be feeding a non-volatile load. | ||||||
| 1166 | LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); | ||||||
| 1167 | assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.")(static_cast <bool> (LI->isUnordered() && "Expected only non-volatile non-ordered loads." ) ? void (0) : __assert_fail ("LI->isUnordered() && \"Expected only non-volatile non-ordered loads.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 1167, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 1168 | |||||||
| 1169 | // See if the pointer expression is an AddRec like {base,+,1} on the current | ||||||
| 1170 | // loop, which indicates a strided load. If we have something else, it's a | ||||||
| 1171 | // random load we can't handle. | ||||||
| 1172 | Value *LoadPtr = LI->getPointerOperand(); | ||||||
| 1173 | const SCEVAddRecExpr *LoadEv = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr)); | ||||||
| 1174 | |||||||
| 1175 | const SCEV *StoreSizeSCEV = SE->getConstant(StorePtr->getType(), StoreSize); | ||||||
| 1176 | return processLoopStoreOfLoopLoad(StorePtr, LoadPtr, StoreSizeSCEV, | ||||||
| 1177 | SI->getAlign(), LI->getAlign(), SI, LI, | ||||||
| 1178 | StoreEv, LoadEv, BECount); | ||||||
| 1179 | } | ||||||
| 1180 | |||||||
| 1181 | namespace { | ||||||
| 1182 | class MemmoveVerifier { | ||||||
| 1183 | public: | ||||||
| 1184 | explicit MemmoveVerifier(const Value &LoadBasePtr, const Value &StoreBasePtr, | ||||||
| 1185 | const DataLayout &DL) | ||||||
| 1186 | : DL(DL), BP1(llvm::GetPointerBaseWithConstantOffset( | ||||||
| 1187 | LoadBasePtr.stripPointerCasts(), LoadOff, DL)), | ||||||
| 1188 | BP2(llvm::GetPointerBaseWithConstantOffset( | ||||||
| 1189 | StoreBasePtr.stripPointerCasts(), StoreOff, DL)), | ||||||
| 1190 | IsSameObject(BP1 == BP2) {} | ||||||
| 1191 | |||||||
| 1192 | bool loadAndStoreMayFormMemmove(unsigned StoreSize, bool IsNegStride, | ||||||
| 1193 | const Instruction &TheLoad, | ||||||
| 1194 | bool IsMemCpy) const { | ||||||
| 1195 | if (IsMemCpy) { | ||||||
| 1196 | // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr | ||||||
| 1197 | // for negative stride. | ||||||
| 1198 | if ((!IsNegStride && LoadOff <= StoreOff) || | ||||||
| 1199 | (IsNegStride && LoadOff >= StoreOff)) | ||||||
| 1200 | return false; | ||||||
| 1201 | } else { | ||||||
| 1202 | // Ensure that LoadBasePtr is after StoreBasePtr or before StoreBasePtr | ||||||
| 1203 | // for negative stride. LoadBasePtr shouldn't overlap with StoreBasePtr. | ||||||
| 1204 | int64_t LoadSize = | ||||||
| 1205 | DL.getTypeSizeInBits(TheLoad.getType()).getFixedValue() / 8; | ||||||
| 1206 | if (BP1 != BP2 || LoadSize != int64_t(StoreSize)) | ||||||
| 1207 | return false; | ||||||
| 1208 | if ((!IsNegStride && LoadOff < StoreOff + int64_t(StoreSize)) || | ||||||
| 1209 | (IsNegStride && LoadOff + LoadSize > StoreOff)) | ||||||
| 1210 | return false; | ||||||
| 1211 | } | ||||||
| 1212 | return true; | ||||||
| 1213 | } | ||||||
| 1214 | |||||||
| 1215 | private: | ||||||
| 1216 | const DataLayout &DL; | ||||||
| 1217 | int64_t LoadOff = 0; | ||||||
| 1218 | int64_t StoreOff = 0; | ||||||
| 1219 | const Value *BP1; | ||||||
| 1220 | const Value *BP2; | ||||||
| 1221 | |||||||
| 1222 | public: | ||||||
| 1223 | const bool IsSameObject; | ||||||
| 1224 | }; | ||||||
| 1225 | } // namespace | ||||||
| 1226 | |||||||
| 1227 | bool LoopIdiomRecognize::processLoopStoreOfLoopLoad( | ||||||
| 1228 | Value *DestPtr, Value *SourcePtr, const SCEV *StoreSizeSCEV, | ||||||
| 1229 | MaybeAlign StoreAlign, MaybeAlign LoadAlign, Instruction *TheStore, | ||||||
| 1230 | Instruction *TheLoad, const SCEVAddRecExpr *StoreEv, | ||||||
| 1231 | const SCEVAddRecExpr *LoadEv, const SCEV *BECount) { | ||||||
| 1232 | |||||||
| 1233 | // FIXME: until llvm.memcpy.inline supports dynamic sizes, we need to | ||||||
| 1234 | // conservatively bail here, since otherwise we may have to transform | ||||||
| 1235 | // llvm.memcpy.inline into llvm.memcpy which is illegal. | ||||||
| 1236 | if (isa<MemCpyInlineInst>(TheStore)) | ||||||
| 1237 | return false; | ||||||
| 1238 | |||||||
| 1239 | // The trip count of the loop and the base pointer of the addrec SCEV is | ||||||
| 1240 | // guaranteed to be loop invariant, which means that it should dominate the | ||||||
| 1241 | // header. This allows us to insert code for it in the preheader. | ||||||
| 1242 | BasicBlock *Preheader = CurLoop->getLoopPreheader(); | ||||||
| 1243 | IRBuilder<> Builder(Preheader->getTerminator()); | ||||||
| 1244 | SCEVExpander Expander(*SE, *DL, "loop-idiom"); | ||||||
| 1245 | |||||||
| 1246 | SCEVExpanderCleaner ExpCleaner(Expander); | ||||||
| 1247 | |||||||
| 1248 | bool Changed = false; | ||||||
| 1249 | const SCEV *StrStart = StoreEv->getStart(); | ||||||
| 1250 | unsigned StrAS = DestPtr->getType()->getPointerAddressSpace(); | ||||||
| 1251 | Type *IntIdxTy = Builder.getIntNTy(DL->getIndexSizeInBits(StrAS)); | ||||||
| 1252 | |||||||
| 1253 | APInt Stride = getStoreStride(StoreEv); | ||||||
| 1254 | const SCEVConstant *ConstStoreSize = dyn_cast<SCEVConstant>(StoreSizeSCEV); | ||||||
| 1255 | |||||||
| 1256 | // TODO: Deal with non-constant size; Currently expect constant store size | ||||||
| 1257 | assert(ConstStoreSize && "store size is expected to be a constant")(static_cast <bool> (ConstStoreSize && "store size is expected to be a constant" ) ? void (0) : __assert_fail ("ConstStoreSize && \"store size is expected to be a constant\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 1257, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 1258 | |||||||
| 1259 | int64_t StoreSize = ConstStoreSize->getValue()->getZExtValue(); | ||||||
| 1260 | bool IsNegStride = StoreSize == -Stride; | ||||||
| 1261 | |||||||
| 1262 | // Handle negative strided loops. | ||||||
| 1263 | if (IsNegStride) | ||||||
| 1264 | StrStart = | ||||||
| 1265 | getStartForNegStride(StrStart, BECount, IntIdxTy, StoreSizeSCEV, SE); | ||||||
| 1266 | |||||||
| 1267 | // Okay, we have a strided store "p[i]" of a loaded value. We can turn | ||||||
| 1268 | // this into a memcpy in the loop preheader now if we want. However, this | ||||||
| 1269 | // would be unsafe to do if there is anything else in the loop that may read | ||||||
| 1270 | // or write the memory region we're storing to. This includes the load that | ||||||
| 1271 | // feeds the stores. Check for an alias by generating the base address and | ||||||
| 1272 | // checking everything. | ||||||
| 1273 | Value *StoreBasePtr = Expander.expandCodeFor( | ||||||
| 1274 | StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator()); | ||||||
| 1275 | |||||||
| 1276 | // From here on out, conservatively report to the pass manager that we've | ||||||
| 1277 | // changed the IR, even if we later clean up these added instructions. There | ||||||
| 1278 | // may be structural differences e.g. in the order of use lists not accounted | ||||||
| 1279 | // for in just a textual dump of the IR. This is written as a variable, even | ||||||
| 1280 | // though statically all the places this dominates could be replaced with | ||||||
| 1281 | // 'true', with the hope that anyone trying to be clever / "more precise" with | ||||||
| 1282 | // the return value will read this comment, and leave them alone. | ||||||
| 1283 | Changed = true; | ||||||
| 1284 | |||||||
| 1285 | SmallPtrSet<Instruction *, 2> IgnoredInsts; | ||||||
| 1286 | IgnoredInsts.insert(TheStore); | ||||||
| 1287 | |||||||
| 1288 | bool IsMemCpy = isa<MemCpyInst>(TheStore); | ||||||
| 1289 | const StringRef InstRemark = IsMemCpy ? "memcpy" : "load and store"; | ||||||
| 1290 | |||||||
| 1291 | bool LoopAccessStore = | ||||||
| 1292 | mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount, | ||||||
| 1293 | StoreSizeSCEV, *AA, IgnoredInsts); | ||||||
| 1294 | if (LoopAccessStore) { | ||||||
| 1295 | // For memmove case it's not enough to guarantee that loop doesn't access | ||||||
| 1296 | // TheStore and TheLoad. Additionally we need to make sure that TheStore is | ||||||
| 1297 | // the only user of TheLoad. | ||||||
| 1298 | if (!TheLoad->hasOneUse()) | ||||||
| 1299 | return Changed; | ||||||
| 1300 | IgnoredInsts.insert(TheLoad); | ||||||
| 1301 | if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, | ||||||
| 1302 | BECount, StoreSizeSCEV, *AA, IgnoredInsts)) { | ||||||
| 1303 | ORE.emit([&]() { | ||||||
| 1304 | return OptimizationRemarkMissed(DEBUG_TYPE"loop-idiom", "LoopMayAccessStore", | ||||||
| 1305 | TheStore) | ||||||
| 1306 | << ore::NV("Inst", InstRemark) << " in " | ||||||
| 1307 | << ore::NV("Function", TheStore->getFunction()) | ||||||
| 1308 | << " function will not be hoisted: " | ||||||
| 1309 | << ore::NV("Reason", "The loop may access store location"); | ||||||
| 1310 | }); | ||||||
| 1311 | return Changed; | ||||||
| 1312 | } | ||||||
| 1313 | IgnoredInsts.erase(TheLoad); | ||||||
| 1314 | } | ||||||
| 1315 | |||||||
| 1316 | const SCEV *LdStart = LoadEv->getStart(); | ||||||
| 1317 | unsigned LdAS = SourcePtr->getType()->getPointerAddressSpace(); | ||||||
| 1318 | |||||||
| 1319 | // Handle negative strided loops. | ||||||
| 1320 | if (IsNegStride) | ||||||
| 1321 | LdStart = | ||||||
| 1322 | getStartForNegStride(LdStart, BECount, IntIdxTy, StoreSizeSCEV, SE); | ||||||
| 1323 | |||||||
| 1324 | // For a memcpy, we have to make sure that the input array is not being | ||||||
| 1325 | // mutated by the loop. | ||||||
| 1326 | Value *LoadBasePtr = Expander.expandCodeFor( | ||||||
| 1327 | LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator()); | ||||||
| 1328 | |||||||
| 1329 | // If the store is a memcpy instruction, we must check if it will write to | ||||||
| 1330 | // the load memory locations. So remove it from the ignored stores. | ||||||
| 1331 | MemmoveVerifier Verifier(*LoadBasePtr, *StoreBasePtr, *DL); | ||||||
| 1332 | if (IsMemCpy && !Verifier.IsSameObject) | ||||||
| 1333 | IgnoredInsts.erase(TheStore); | ||||||
| 1334 | if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount, | ||||||
| 1335 | StoreSizeSCEV, *AA, IgnoredInsts)) { | ||||||
| 1336 | ORE.emit([&]() { | ||||||
| 1337 | return OptimizationRemarkMissed(DEBUG_TYPE"loop-idiom", "LoopMayAccessLoad", TheLoad) | ||||||
| 1338 | << ore::NV("Inst", InstRemark) << " in " | ||||||
| 1339 | << ore::NV("Function", TheStore->getFunction()) | ||||||
| 1340 | << " function will not be hoisted: " | ||||||
| 1341 | << ore::NV("Reason", "The loop may access load location"); | ||||||
| 1342 | }); | ||||||
| 1343 | return Changed; | ||||||
| 1344 | } | ||||||
| 1345 | |||||||
| 1346 | bool UseMemMove = IsMemCpy ? Verifier.IsSameObject : LoopAccessStore; | ||||||
| 1347 | if (UseMemMove) | ||||||
| 1348 | if (!Verifier.loadAndStoreMayFormMemmove(StoreSize, IsNegStride, *TheLoad, | ||||||
| 1349 | IsMemCpy)) | ||||||
| 1350 | return Changed; | ||||||
| 1351 | |||||||
| 1352 | if (avoidLIRForMultiBlockLoop()) | ||||||
| 1353 | return Changed; | ||||||
| 1354 | |||||||
| 1355 | // Okay, everything is safe, we can transform this! | ||||||
| 1356 | |||||||
| 1357 | const SCEV *NumBytesS = | ||||||
| 1358 | getNumBytes(BECount, IntIdxTy, StoreSizeSCEV, CurLoop, DL, SE); | ||||||
| 1359 | |||||||
| 1360 | Value *NumBytes = | ||||||
| 1361 | Expander.expandCodeFor(NumBytesS, IntIdxTy, Preheader->getTerminator()); | ||||||
| 1362 | |||||||
| 1363 | AAMDNodes AATags = TheLoad->getAAMetadata(); | ||||||
| 1364 | AAMDNodes StoreAATags = TheStore->getAAMetadata(); | ||||||
| 1365 | AATags = AATags.merge(StoreAATags); | ||||||
| 1366 | if (auto CI = dyn_cast<ConstantInt>(NumBytes)) | ||||||
| 1367 | AATags = AATags.extendTo(CI->getZExtValue()); | ||||||
| 1368 | else | ||||||
| 1369 | AATags = AATags.extendTo(-1); | ||||||
| 1370 | |||||||
| 1371 | CallInst *NewCall = nullptr; | ||||||
| 1372 | // Check whether to generate an unordered atomic memcpy: | ||||||
| 1373 | // If the load or store are atomic, then they must necessarily be unordered | ||||||
| 1374 | // by previous checks. | ||||||
| 1375 | if (!TheStore->isAtomic() && !TheLoad->isAtomic()) { | ||||||
| 1376 | if (UseMemMove) | ||||||
| 1377 | NewCall = Builder.CreateMemMove( | ||||||
| 1378 | StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, NumBytes, | ||||||
| 1379 | /*isVolatile=*/false, AATags.TBAA, AATags.Scope, AATags.NoAlias); | ||||||
| 1380 | else | ||||||
| 1381 | NewCall = | ||||||
| 1382 | Builder.CreateMemCpy(StoreBasePtr, StoreAlign, LoadBasePtr, LoadAlign, | ||||||
| 1383 | NumBytes, /*isVolatile=*/false, AATags.TBAA, | ||||||
| 1384 | AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); | ||||||
| 1385 | } else { | ||||||
| 1386 | // For now don't support unordered atomic memmove. | ||||||
| 1387 | if (UseMemMove) | ||||||
| 1388 | return Changed; | ||||||
| 1389 | // We cannot allow unaligned ops for unordered load/store, so reject | ||||||
| 1390 | // anything where the alignment isn't at least the element size. | ||||||
| 1391 | assert((StoreAlign && LoadAlign) &&(static_cast <bool> ((StoreAlign && LoadAlign) && "Expect unordered load/store to have align.") ? void (0) : __assert_fail ("(StoreAlign && LoadAlign) && \"Expect unordered load/store to have align.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 1392, __extension__ __PRETTY_FUNCTION__)) | ||||||
| 1392 | "Expect unordered load/store to have align.")(static_cast <bool> ((StoreAlign && LoadAlign) && "Expect unordered load/store to have align.") ? void (0) : __assert_fail ("(StoreAlign && LoadAlign) && \"Expect unordered load/store to have align.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 1392, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 1393 | if (*StoreAlign < StoreSize || *LoadAlign < StoreSize) | ||||||
| 1394 | return Changed; | ||||||
| 1395 | |||||||
| 1396 | // If the element.atomic memcpy is not lowered into explicit | ||||||
| 1397 | // loads/stores later, then it will be lowered into an element-size | ||||||
| 1398 | // specific lib call. If the lib call doesn't exist for our store size, then | ||||||
| 1399 | // we shouldn't generate the memcpy. | ||||||
| 1400 | if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize()) | ||||||
| 1401 | return Changed; | ||||||
| 1402 | |||||||
| 1403 | // Create the call. | ||||||
| 1404 | // Note that unordered atomic loads/stores are *required* by the spec to | ||||||
| 1405 | // have an alignment but non-atomic loads/stores may not. | ||||||
| 1406 | NewCall = Builder.CreateElementUnorderedAtomicMemCpy( | ||||||
| 1407 | StoreBasePtr, *StoreAlign, LoadBasePtr, *LoadAlign, NumBytes, StoreSize, | ||||||
| 1408 | AATags.TBAA, AATags.TBAAStruct, AATags.Scope, AATags.NoAlias); | ||||||
| 1409 | } | ||||||
| 1410 | NewCall->setDebugLoc(TheStore->getDebugLoc()); | ||||||
| 1411 | |||||||
| 1412 | if (MSSAU) { | ||||||
| 1413 | MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( | ||||||
| 1414 | NewCall, nullptr, NewCall->getParent(), MemorySSA::BeforeTerminator); | ||||||
| 1415 | MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); | ||||||
| 1416 | } | ||||||
| 1417 | |||||||
| 1418 | LLVM_DEBUG(dbgs() << " Formed new call: " << *NewCall << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Formed new call: " << *NewCall << "\n" << " from load ptr=" << *LoadEv << " at: " << *TheLoad << "\n" << " from store ptr=" << *StoreEv << " at: " << *TheStore << "\n"; } } while (false) | ||||||
| 1419 | << " from load ptr=" << *LoadEv << " at: " << *TheLoaddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Formed new call: " << *NewCall << "\n" << " from load ptr=" << *LoadEv << " at: " << *TheLoad << "\n" << " from store ptr=" << *StoreEv << " at: " << *TheStore << "\n"; } } while (false) | ||||||
| 1420 | << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Formed new call: " << *NewCall << "\n" << " from load ptr=" << *LoadEv << " at: " << *TheLoad << "\n" << " from store ptr=" << *StoreEv << " at: " << *TheStore << "\n"; } } while (false) | ||||||
| 1421 | << " from store ptr=" << *StoreEv << " at: " << *TheStoredo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Formed new call: " << *NewCall << "\n" << " from load ptr=" << *LoadEv << " at: " << *TheLoad << "\n" << " from store ptr=" << *StoreEv << " at: " << *TheStore << "\n"; } } while (false) | ||||||
| 1422 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " Formed new call: " << *NewCall << "\n" << " from load ptr=" << *LoadEv << " at: " << *TheLoad << "\n" << " from store ptr=" << *StoreEv << " at: " << *TheStore << "\n"; } } while (false); | ||||||
| 1423 | |||||||
| 1424 | ORE.emit([&]() { | ||||||
| 1425 | return OptimizationRemark(DEBUG_TYPE"loop-idiom", "ProcessLoopStoreOfLoopLoad", | ||||||
| 1426 | NewCall->getDebugLoc(), Preheader) | ||||||
| 1427 | << "Formed a call to " | ||||||
| 1428 | << ore::NV("NewFunction", NewCall->getCalledFunction()) | ||||||
| 1429 | << "() intrinsic from " << ore::NV("Inst", InstRemark) | ||||||
| 1430 | << " instruction in " << ore::NV("Function", TheStore->getFunction()) | ||||||
| 1431 | << " function" | ||||||
| 1432 | << ore::setExtraArgs() | ||||||
| 1433 | << ore::NV("FromBlock", TheStore->getParent()->getName()) | ||||||
| 1434 | << ore::NV("ToBlock", Preheader->getName()); | ||||||
| 1435 | }); | ||||||
| 1436 | |||||||
| 1437 | // Okay, a new call to memcpy/memmove has been formed. Zap the original store | ||||||
| 1438 | // and anything that feeds into it. | ||||||
| 1439 | if (MSSAU) | ||||||
| 1440 | MSSAU->removeMemoryAccess(TheStore, true); | ||||||
| 1441 | deleteDeadInstruction(TheStore); | ||||||
| 1442 | if (MSSAU && VerifyMemorySSA) | ||||||
| 1443 | MSSAU->getMemorySSA()->verifyMemorySSA(); | ||||||
| 1444 | if (UseMemMove) | ||||||
| 1445 | ++NumMemMove; | ||||||
| 1446 | else | ||||||
| 1447 | ++NumMemCpy; | ||||||
| 1448 | ExpCleaner.markResultUsed(); | ||||||
| 1449 | return true; | ||||||
| 1450 | } | ||||||
| 1451 | |||||||
| 1452 | // When compiling for codesize we avoid idiom recognition for a multi-block loop | ||||||
| 1453 | // unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop. | ||||||
| 1454 | // | ||||||
| 1455 | bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset, | ||||||
| 1456 | bool IsLoopMemset) { | ||||||
| 1457 | if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) { | ||||||
| 1458 | if (CurLoop->isOutermost() && (!IsMemset || !IsLoopMemset)) { | ||||||
| 1459 | LLVM_DEBUG(dbgs() << " " << CurLoop->getHeader()->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " " << CurLoop->getHeader ()->getParent()->getName() << " : LIR " << ( IsMemset ? "Memset" : "Memcpy") << " avoided: multi-block top-level loop\n" ; } } while (false) | ||||||
| 1460 | << " : LIR " << (IsMemset ? "Memset" : "Memcpy")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " " << CurLoop->getHeader ()->getParent()->getName() << " : LIR " << ( IsMemset ? "Memset" : "Memcpy") << " avoided: multi-block top-level loop\n" ; } } while (false) | ||||||
| 1461 | << " avoided: multi-block top-level loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << " " << CurLoop->getHeader ()->getParent()->getName() << " : LIR " << ( IsMemset ? "Memset" : "Memcpy") << " avoided: multi-block top-level loop\n" ; } } while (false); | ||||||
| 1462 | return true; | ||||||
| 1463 | } | ||||||
| 1464 | } | ||||||
| 1465 | |||||||
| 1466 | return false; | ||||||
| 1467 | } | ||||||
| 1468 | |||||||
| 1469 | bool LoopIdiomRecognize::runOnNoncountableLoop() { | ||||||
| 1470 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F[" << CurLoop->getHeader()->getParent()->getName () << "] Noncountable Loop %" << CurLoop->getHeader ()->getName() << "\n"; } } while (false) | ||||||
| 1471 | << CurLoop->getHeader()->getParent()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F[" << CurLoop->getHeader()->getParent()->getName () << "] Noncountable Loop %" << CurLoop->getHeader ()->getName() << "\n"; } } while (false) | ||||||
| 1472 | << "] Noncountable Loop %"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F[" << CurLoop->getHeader()->getParent()->getName () << "] Noncountable Loop %" << CurLoop->getHeader ()->getName() << "\n"; } } while (false) | ||||||
| 1473 | << CurLoop->getHeader()->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Scanning: F[" << CurLoop->getHeader()->getParent()->getName () << "] Noncountable Loop %" << CurLoop->getHeader ()->getName() << "\n"; } } while (false); | ||||||
| 1474 | |||||||
| 1475 | return recognizePopcount() || recognizeAndInsertFFS() || | ||||||
| 1476 | recognizeShiftUntilBitTest() || recognizeShiftUntilZero(); | ||||||
| 1477 | } | ||||||
| 1478 | |||||||
| 1479 | /// Check if the given conditional branch is based on the comparison between | ||||||
| 1480 | /// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is | ||||||
| 1481 | /// true), the control yields to the loop entry. If the branch matches the | ||||||
| 1482 | /// behavior, the variable involved in the comparison is returned. This function | ||||||
| 1483 | /// will be called to see if the precondition and postcondition of the loop are | ||||||
| 1484 | /// in desirable form. | ||||||
| 1485 | static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry, | ||||||
| 1486 | bool JmpOnZero = false) { | ||||||
| 1487 | if (!BI || !BI->isConditional()) | ||||||
| 1488 | return nullptr; | ||||||
| 1489 | |||||||
| 1490 | ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); | ||||||
| 1491 | if (!Cond) | ||||||
| 1492 | return nullptr; | ||||||
| 1493 | |||||||
| 1494 | ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1)); | ||||||
| 1495 | if (!CmpZero || !CmpZero->isZero()) | ||||||
| 1496 | return nullptr; | ||||||
| 1497 | |||||||
| 1498 | BasicBlock *TrueSucc = BI->getSuccessor(0); | ||||||
| 1499 | BasicBlock *FalseSucc = BI->getSuccessor(1); | ||||||
| 1500 | if (JmpOnZero) | ||||||
| 1501 | std::swap(TrueSucc, FalseSucc); | ||||||
| 1502 | |||||||
| 1503 | ICmpInst::Predicate Pred = Cond->getPredicate(); | ||||||
| 1504 | if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) || | ||||||
| 1505 | (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry)) | ||||||
| 1506 | return Cond->getOperand(0); | ||||||
| 1507 | |||||||
| 1508 | return nullptr; | ||||||
| 1509 | } | ||||||
| 1510 | |||||||
| 1511 | // Check if the recurrence variable `VarX` is in the right form to create | ||||||
| 1512 | // the idiom. Returns the value coerced to a PHINode if so. | ||||||
| 1513 | static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX, | ||||||
| 1514 | BasicBlock *LoopEntry) { | ||||||
| 1515 | auto *PhiX = dyn_cast<PHINode>(VarX); | ||||||
| 1516 | if (PhiX && PhiX->getParent() == LoopEntry && | ||||||
| 1517 | (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX)) | ||||||
| 1518 | return PhiX; | ||||||
| 1519 | return nullptr; | ||||||
| 1520 | } | ||||||
| 1521 | |||||||
| 1522 | /// Return true iff the idiom is detected in the loop. | ||||||
| 1523 | /// | ||||||
| 1524 | /// Additionally: | ||||||
| 1525 | /// 1) \p CntInst is set to the instruction counting the population bit. | ||||||
| 1526 | /// 2) \p CntPhi is set to the corresponding phi node. | ||||||
| 1527 | /// 3) \p Var is set to the value whose population bits are being counted. | ||||||
| 1528 | /// | ||||||
| 1529 | /// The core idiom we are trying to detect is: | ||||||
| 1530 | /// \code | ||||||
| 1531 | /// if (x0 != 0) | ||||||
| 1532 | /// goto loop-exit // the precondition of the loop | ||||||
| 1533 | /// cnt0 = init-val; | ||||||
| 1534 | /// do { | ||||||
| 1535 | /// x1 = phi (x0, x2); | ||||||
| 1536 | /// cnt1 = phi(cnt0, cnt2); | ||||||
| 1537 | /// | ||||||
| 1538 | /// cnt2 = cnt1 + 1; | ||||||
| 1539 | /// ... | ||||||
| 1540 | /// x2 = x1 & (x1 - 1); | ||||||
| 1541 | /// ... | ||||||
| 1542 | /// } while(x != 0); | ||||||
| 1543 | /// | ||||||
| 1544 | /// loop-exit: | ||||||
| 1545 | /// \endcode | ||||||
| 1546 | static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB, | ||||||
| 1547 | Instruction *&CntInst, PHINode *&CntPhi, | ||||||
| 1548 | Value *&Var) { | ||||||
| 1549 | // step 1: Check to see if the look-back branch match this pattern: | ||||||
| 1550 | // "if (a!=0) goto loop-entry". | ||||||
| 1551 | BasicBlock *LoopEntry; | ||||||
| 1552 | Instruction *DefX2, *CountInst; | ||||||
| 1553 | Value *VarX1, *VarX0; | ||||||
| 1554 | PHINode *PhiX, *CountPhi; | ||||||
| 1555 | |||||||
| 1556 | DefX2 = CountInst = nullptr; | ||||||
| 1557 | VarX1 = VarX0 = nullptr; | ||||||
| 1558 | PhiX = CountPhi = nullptr; | ||||||
| 1559 | LoopEntry = *(CurLoop->block_begin()); | ||||||
| 1560 | |||||||
| 1561 | // step 1: Check if the loop-back branch is in desirable form. | ||||||
| 1562 | { | ||||||
| 1563 | if (Value *T = matchCondition( | ||||||
| 1564 | dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) | ||||||
| 1565 | DefX2 = dyn_cast<Instruction>(T); | ||||||
| 1566 | else | ||||||
| 1567 | return false; | ||||||
| 1568 | } | ||||||
| 1569 | |||||||
| 1570 | // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)" | ||||||
| 1571 | { | ||||||
| 1572 | if (!DefX2 || DefX2->getOpcode() != Instruction::And) | ||||||
| 1573 | return false; | ||||||
| 1574 | |||||||
| 1575 | BinaryOperator *SubOneOp; | ||||||
| 1576 | |||||||
| 1577 | if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0)))) | ||||||
| 1578 | VarX1 = DefX2->getOperand(1); | ||||||
| 1579 | else { | ||||||
| 1580 | VarX1 = DefX2->getOperand(0); | ||||||
| 1581 | SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1)); | ||||||
| 1582 | } | ||||||
| 1583 | if (!SubOneOp || SubOneOp->getOperand(0) != VarX1) | ||||||
| 1584 | return false; | ||||||
| 1585 | |||||||
| 1586 | ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1)); | ||||||
| 1587 | if (!Dec || | ||||||
| 1588 | !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) || | ||||||
| 1589 | (SubOneOp->getOpcode() == Instruction::Add && | ||||||
| 1590 | Dec->isMinusOne()))) { | ||||||
| 1591 | return false; | ||||||
| 1592 | } | ||||||
| 1593 | } | ||||||
| 1594 | |||||||
| 1595 | // step 3: Check the recurrence of variable X | ||||||
| 1596 | PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry); | ||||||
| 1597 | if (!PhiX) | ||||||
| 1598 | return false; | ||||||
| 1599 | |||||||
| 1600 | // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1 | ||||||
| 1601 | { | ||||||
| 1602 | CountInst = nullptr; | ||||||
| 1603 | for (Instruction &Inst : llvm::make_range( | ||||||
| 1604 | LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { | ||||||
| 1605 | if (Inst.getOpcode() != Instruction::Add) | ||||||
| 1606 | continue; | ||||||
| 1607 | |||||||
| 1608 | ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); | ||||||
| 1609 | if (!Inc || !Inc->isOne()) | ||||||
| 1610 | continue; | ||||||
| 1611 | |||||||
| 1612 | PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); | ||||||
| 1613 | if (!Phi) | ||||||
| 1614 | continue; | ||||||
| 1615 | |||||||
| 1616 | // Check if the result of the instruction is live of the loop. | ||||||
| 1617 | bool LiveOutLoop = false; | ||||||
| 1618 | for (User *U : Inst.users()) { | ||||||
| 1619 | if ((cast<Instruction>(U))->getParent() != LoopEntry) { | ||||||
| 1620 | LiveOutLoop = true; | ||||||
| 1621 | break; | ||||||
| 1622 | } | ||||||
| 1623 | } | ||||||
| 1624 | |||||||
| 1625 | if (LiveOutLoop) { | ||||||
| 1626 | CountInst = &Inst; | ||||||
| 1627 | CountPhi = Phi; | ||||||
| 1628 | break; | ||||||
| 1629 | } | ||||||
| 1630 | } | ||||||
| 1631 | |||||||
| 1632 | if (!CountInst) | ||||||
| 1633 | return false; | ||||||
| 1634 | } | ||||||
| 1635 | |||||||
| 1636 | // step 5: check if the precondition is in this form: | ||||||
| 1637 | // "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;" | ||||||
| 1638 | { | ||||||
| 1639 | auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator()); | ||||||
| 1640 | Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader()); | ||||||
| 1641 | if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1)) | ||||||
| 1642 | return false; | ||||||
| 1643 | |||||||
| 1644 | CntInst = CountInst; | ||||||
| 1645 | CntPhi = CountPhi; | ||||||
| 1646 | Var = T; | ||||||
| 1647 | } | ||||||
| 1648 | |||||||
| 1649 | return true; | ||||||
| 1650 | } | ||||||
| 1651 | |||||||
| 1652 | /// Return true if the idiom is detected in the loop. | ||||||
| 1653 | /// | ||||||
| 1654 | /// Additionally: | ||||||
| 1655 | /// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ) | ||||||
| 1656 | /// or nullptr if there is no such. | ||||||
| 1657 | /// 2) \p CntPhi is set to the corresponding phi node | ||||||
| 1658 | /// or nullptr if there is no such. | ||||||
| 1659 | /// 3) \p Var is set to the value whose CTLZ could be used. | ||||||
| 1660 | /// 4) \p DefX is set to the instruction calculating Loop exit condition. | ||||||
| 1661 | /// | ||||||
| 1662 | /// The core idiom we are trying to detect is: | ||||||
| 1663 | /// \code | ||||||
| 1664 | /// if (x0 == 0) | ||||||
| 1665 | /// goto loop-exit // the precondition of the loop | ||||||
| 1666 | /// cnt0 = init-val; | ||||||
| 1667 | /// do { | ||||||
| 1668 | /// x = phi (x0, x.next); //PhiX | ||||||
| 1669 | /// cnt = phi(cnt0, cnt.next); | ||||||
| 1670 | /// | ||||||
| 1671 | /// cnt.next = cnt + 1; | ||||||
| 1672 | /// ... | ||||||
| 1673 | /// x.next = x >> 1; // DefX | ||||||
| 1674 | /// ... | ||||||
| 1675 | /// } while(x.next != 0); | ||||||
| 1676 | /// | ||||||
| 1677 | /// loop-exit: | ||||||
| 1678 | /// \endcode | ||||||
| 1679 | static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL, | ||||||
| 1680 | Intrinsic::ID &IntrinID, Value *&InitX, | ||||||
| 1681 | Instruction *&CntInst, PHINode *&CntPhi, | ||||||
| 1682 | Instruction *&DefX) { | ||||||
| 1683 | BasicBlock *LoopEntry; | ||||||
| 1684 | Value *VarX = nullptr; | ||||||
| 1685 | |||||||
| 1686 | DefX = nullptr; | ||||||
| 1687 | CntInst = nullptr; | ||||||
| 1688 | CntPhi = nullptr; | ||||||
| 1689 | LoopEntry = *(CurLoop->block_begin()); | ||||||
| 1690 | |||||||
| 1691 | // step 1: Check if the loop-back branch is in desirable form. | ||||||
| 1692 | if (Value *T = matchCondition( | ||||||
| 1693 | dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry)) | ||||||
| 1694 | DefX = dyn_cast<Instruction>(T); | ||||||
| 1695 | else | ||||||
| 1696 | return false; | ||||||
| 1697 | |||||||
| 1698 | // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1" | ||||||
| 1699 | if (!DefX
| ||||||
| 1700 | return false; | ||||||
| 1701 | IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz : | ||||||
| 1702 | Intrinsic::ctlz; | ||||||
| 1703 | ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1)); | ||||||
| 1704 | if (!Shft
| ||||||
| 1705 | return false; | ||||||
| 1706 | VarX = DefX->getOperand(0); | ||||||
| 1707 | |||||||
| 1708 | // step 3: Check the recurrence of variable X | ||||||
| 1709 | PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry); | ||||||
| 1710 | if (!PhiX) | ||||||
| 1711 | return false; | ||||||
| 1712 | |||||||
| 1713 | InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader()); | ||||||
| 1714 | |||||||
| 1715 | // Make sure the initial value can't be negative otherwise the ashr in the | ||||||
| 1716 | // loop might never reach zero which would make the loop infinite. | ||||||
| 1717 | if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL)) | ||||||
| 1718 | return false; | ||||||
| 1719 | |||||||
| 1720 | // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1 | ||||||
| 1721 | // or cnt.next = cnt + -1. | ||||||
| 1722 | // TODO: We can skip the step. If loop trip count is known (CTLZ), | ||||||
| 1723 | // then all uses of "cnt.next" could be optimized to the trip count | ||||||
| 1724 | // plus "cnt0". Currently it is not optimized. | ||||||
| 1725 | // This step could be used to detect POPCNT instruction: | ||||||
| 1726 | // cnt.next = cnt + (x.next & 1) | ||||||
| 1727 | for (Instruction &Inst : llvm::make_range( | ||||||
| 1728 | LoopEntry->getFirstNonPHI()->getIterator(), LoopEntry->end())) { | ||||||
| 1729 | if (Inst.getOpcode() != Instruction::Add) | ||||||
| 1730 | continue; | ||||||
| 1731 | |||||||
| 1732 | ConstantInt *Inc = dyn_cast<ConstantInt>(Inst.getOperand(1)); | ||||||
| 1733 | if (!Inc
| ||||||
| 1734 | continue; | ||||||
| 1735 | |||||||
| 1736 | PHINode *Phi = getRecurrenceVar(Inst.getOperand(0), &Inst, LoopEntry); | ||||||
| 1737 | if (!Phi) | ||||||
| 1738 | continue; | ||||||
| 1739 | |||||||
| 1740 | CntInst = &Inst; | ||||||
| 1741 | CntPhi = Phi; | ||||||
| 1742 | break; | ||||||
| 1743 | } | ||||||
| 1744 | if (!CntInst
| ||||||
| 1745 | return false; | ||||||
| 1746 | |||||||
| 1747 | return true; | ||||||
| 1748 | } | ||||||
| 1749 | |||||||
| 1750 | /// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop | ||||||
| 1751 | /// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new | ||||||
| 1752 | /// trip count returns true; otherwise, returns false. | ||||||
| 1753 | bool LoopIdiomRecognize::recognizeAndInsertFFS() { | ||||||
| 1754 | // Give up if the loop has multiple blocks or multiple backedges. | ||||||
| 1755 | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) | ||||||
| 1756 | return false; | ||||||
| 1757 | |||||||
| 1758 | Intrinsic::ID IntrinID; | ||||||
| 1759 | Value *InitX; | ||||||
| 1760 | Instruction *DefX = nullptr; | ||||||
| 1761 | PHINode *CntPhi = nullptr; | ||||||
| 1762 | Instruction *CntInst = nullptr; | ||||||
| 1763 | // Help decide if transformation is profitable. For ShiftUntilZero idiom, | ||||||
| 1764 | // this is always 6. | ||||||
| 1765 | size_t IdiomCanonicalSize = 6; | ||||||
| 1766 | |||||||
| 1767 | if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX, | ||||||
| 1768 | CntInst, CntPhi, DefX)) | ||||||
| 1769 | return false; | ||||||
| 1770 | |||||||
| 1771 | bool IsCntPhiUsedOutsideLoop = false; | ||||||
| 1772 | for (User *U : CntPhi->users()) | ||||||
| 1773 | if (!CurLoop->contains(cast<Instruction>(U))) { | ||||||
| 1774 | IsCntPhiUsedOutsideLoop = true; | ||||||
| 1775 | break; | ||||||
| 1776 | } | ||||||
| 1777 | bool IsCntInstUsedOutsideLoop = false; | ||||||
| 1778 | for (User *U : CntInst->users()) | ||||||
| 1779 | if (!CurLoop->contains(cast<Instruction>(U))) { | ||||||
| 1780 | IsCntInstUsedOutsideLoop = true; | ||||||
| 1781 | break; | ||||||
| 1782 | } | ||||||
| 1783 | // If both CntInst and CntPhi are used outside the loop the profitability | ||||||
| 1784 | // is questionable. | ||||||
| 1785 | if (IsCntInstUsedOutsideLoop
| ||||||
| 1786 | return false; | ||||||
| 1787 | |||||||
| 1788 | // For some CPUs result of CTLZ(X) intrinsic is undefined | ||||||
| 1789 | // when X is 0. If we can not guarantee X != 0, we need to check this | ||||||
| 1790 | // when expand. | ||||||
| 1791 | bool ZeroCheck = false; | ||||||
| 1792 | // It is safe to assume Preheader exist as it was checked in | ||||||
| 1793 | // parent function RunOnLoop. | ||||||
| 1794 | BasicBlock *PH = CurLoop->getLoopPreheader(); | ||||||
| 1795 | |||||||
| 1796 | // If we are using the count instruction outside the loop, make sure we | ||||||
| 1797 | // have a zero check as a precondition. Without the check the loop would run | ||||||
| 1798 | // one iteration for before any check of the input value. This means 0 and 1 | ||||||
| 1799 | // would have identical behavior in the original loop and thus | ||||||
| 1800 | if (!IsCntPhiUsedOutsideLoop
| ||||||
| 1801 | auto *PreCondBB = PH->getSinglePredecessor(); | ||||||
| 1802 | if (!PreCondBB) | ||||||
| 1803 | return false; | ||||||
| 1804 | auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); | ||||||
| 1805 | if (!PreCondBI
| ||||||
| 1806 | return false; | ||||||
| 1807 | if (matchCondition(PreCondBI, PH) != InitX) | ||||||
| 1808 | return false; | ||||||
| 1809 | ZeroCheck = true; | ||||||
| 1810 | } | ||||||
| 1811 | |||||||
| 1812 | // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always | ||||||
| 1813 | // profitable if we delete the loop. | ||||||
| 1814 | |||||||
| 1815 | // the loop has only 6 instructions: | ||||||
| 1816 | // %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ] | ||||||
| 1817 | // %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ] | ||||||
| 1818 | // %shr = ashr %n.addr.0, 1 | ||||||
| 1819 | // %tobool = icmp eq %shr, 0 | ||||||
| 1820 | // %inc = add nsw %i.0, 1 | ||||||
| 1821 | // br i1 %tobool | ||||||
| 1822 | |||||||
| 1823 | const Value *Args[] = {InitX, | ||||||
| 1824 | ConstantInt::getBool(InitX->getContext(), ZeroCheck)}; | ||||||
| |||||||
| 1825 | |||||||
| 1826 | // @llvm.dbg doesn't count as they have no semantic effect. | ||||||
| 1827 | auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug(); | ||||||
| 1828 | uint32_t HeaderSize = | ||||||
| 1829 | std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end()); | ||||||
| 1830 | |||||||
| 1831 | IntrinsicCostAttributes Attrs(IntrinID, InitX->getType(), Args); | ||||||
| 1832 | InstructionCost Cost = | ||||||
| 1833 | TTI->getIntrinsicInstrCost(Attrs, TargetTransformInfo::TCK_SizeAndLatency); | ||||||
| 1834 | if (HeaderSize != IdiomCanonicalSize && | ||||||
| 1835 | Cost > TargetTransformInfo::TCC_Basic) | ||||||
| 1836 | return false; | ||||||
| 1837 | |||||||
| 1838 | transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX, | ||||||
| 1839 | DefX->getDebugLoc(), ZeroCheck, | ||||||
| 1840 | IsCntPhiUsedOutsideLoop); | ||||||
| 1841 | return true; | ||||||
| 1842 | } | ||||||
| 1843 | |||||||
| 1844 | /// Recognizes a population count idiom in a non-countable loop. | ||||||
| 1845 | /// | ||||||
| 1846 | /// If detected, transforms the relevant code to issue the popcount intrinsic | ||||||
| 1847 | /// function call, and returns true; otherwise, returns false. | ||||||
| 1848 | bool LoopIdiomRecognize::recognizePopcount() { | ||||||
| 1849 | if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware) | ||||||
| 1850 | return false; | ||||||
| 1851 | |||||||
| 1852 | // Counting population are usually conducted by few arithmetic instructions. | ||||||
| 1853 | // Such instructions can be easily "absorbed" by vacant slots in a | ||||||
| 1854 | // non-compact loop. Therefore, recognizing popcount idiom only makes sense | ||||||
| 1855 | // in a compact loop. | ||||||
| 1856 | |||||||
| 1857 | // Give up if the loop has multiple blocks or multiple backedges. | ||||||
| 1858 | if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1) | ||||||
| 1859 | return false; | ||||||
| 1860 | |||||||
| 1861 | BasicBlock *LoopBody = *(CurLoop->block_begin()); | ||||||
| 1862 | if (LoopBody->size() >= 20) { | ||||||
| 1863 | // The loop is too big, bail out. | ||||||
| 1864 | return false; | ||||||
| 1865 | } | ||||||
| 1866 | |||||||
| 1867 | // It should have a preheader containing nothing but an unconditional branch. | ||||||
| 1868 | BasicBlock *PH = CurLoop->getLoopPreheader(); | ||||||
| 1869 | if (!PH || &PH->front() != PH->getTerminator()) | ||||||
| 1870 | return false; | ||||||
| 1871 | auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator()); | ||||||
| 1872 | if (!EntryBI || EntryBI->isConditional()) | ||||||
| 1873 | return false; | ||||||
| 1874 | |||||||
| 1875 | // It should have a precondition block where the generated popcount intrinsic | ||||||
| 1876 | // function can be inserted. | ||||||
| 1877 | auto *PreCondBB = PH->getSinglePredecessor(); | ||||||
| 1878 | if (!PreCondBB) | ||||||
| 1879 | return false; | ||||||
| 1880 | auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator()); | ||||||
| 1881 | if (!PreCondBI || PreCondBI->isUnconditional()) | ||||||
| 1882 | return false; | ||||||
| 1883 | |||||||
| 1884 | Instruction *CntInst; | ||||||
| 1885 | PHINode *CntPhi; | ||||||
| 1886 | Value *Val; | ||||||
| 1887 | if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val)) | ||||||
| 1888 | return false; | ||||||
| 1889 | |||||||
| 1890 | transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val); | ||||||
| 1891 | return true; | ||||||
| 1892 | } | ||||||
| 1893 | |||||||
| 1894 | static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val, | ||||||
| 1895 | const DebugLoc &DL) { | ||||||
| 1896 | Value *Ops[] = {Val}; | ||||||
| 1897 | Type *Tys[] = {Val->getType()}; | ||||||
| 1898 | |||||||
| 1899 | Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); | ||||||
| 1900 | Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys); | ||||||
| 1901 | CallInst *CI = IRBuilder.CreateCall(Func, Ops); | ||||||
| 1902 | CI->setDebugLoc(DL); | ||||||
| 1903 | |||||||
| 1904 | return CI; | ||||||
| 1905 | } | ||||||
| 1906 | |||||||
| 1907 | static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val, | ||||||
| 1908 | const DebugLoc &DL, bool ZeroCheck, | ||||||
| 1909 | Intrinsic::ID IID) { | ||||||
| 1910 | Value *Ops[] = {Val, IRBuilder.getInt1(ZeroCheck)}; | ||||||
| 1911 | Type *Tys[] = {Val->getType()}; | ||||||
| 1912 | |||||||
| 1913 | Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent(); | ||||||
| 1914 | Function *Func = Intrinsic::getDeclaration(M, IID, Tys); | ||||||
| 1915 | CallInst *CI = IRBuilder.CreateCall(Func, Ops); | ||||||
| 1916 | CI->setDebugLoc(DL); | ||||||
| 1917 | |||||||
| 1918 | return CI; | ||||||
| 1919 | } | ||||||
| 1920 | |||||||
| 1921 | /// Transform the following loop (Using CTLZ, CTTZ is similar): | ||||||
| 1922 | /// loop: | ||||||
| 1923 | /// CntPhi = PHI [Cnt0, CntInst] | ||||||
| 1924 | /// PhiX = PHI [InitX, DefX] | ||||||
| 1925 | /// CntInst = CntPhi + 1 | ||||||
| 1926 | /// DefX = PhiX >> 1 | ||||||
| 1927 | /// LOOP_BODY | ||||||
| 1928 | /// Br: loop if (DefX != 0) | ||||||
| 1929 | /// Use(CntPhi) or Use(CntInst) | ||||||
| 1930 | /// | ||||||
| 1931 | /// Into: | ||||||
| 1932 | /// If CntPhi used outside the loop: | ||||||
| 1933 | /// CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1) | ||||||
| 1934 | /// Count = CountPrev + 1 | ||||||
| 1935 | /// else | ||||||
| 1936 | /// Count = BitWidth(InitX) - CTLZ(InitX) | ||||||
| 1937 | /// loop: | ||||||
| 1938 | /// CntPhi = PHI [Cnt0, CntInst] | ||||||
| 1939 | /// PhiX = PHI [InitX, DefX] | ||||||
| 1940 | /// PhiCount = PHI [Count, Dec] | ||||||
| 1941 | /// CntInst = CntPhi + 1 | ||||||
| 1942 | /// DefX = PhiX >> 1 | ||||||
| 1943 | /// Dec = PhiCount - 1 | ||||||
| 1944 | /// LOOP_BODY | ||||||
| 1945 | /// Br: loop if (Dec != 0) | ||||||
| 1946 | /// Use(CountPrev + Cnt0) // Use(CntPhi) | ||||||
| 1947 | /// or | ||||||
| 1948 | /// Use(Count + Cnt0) // Use(CntInst) | ||||||
| 1949 | /// | ||||||
| 1950 | /// If LOOP_BODY is empty the loop will be deleted. | ||||||
| 1951 | /// If CntInst and DefX are not used in LOOP_BODY they will be removed. | ||||||
| 1952 | void LoopIdiomRecognize::transformLoopToCountable( | ||||||
| 1953 | Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst, | ||||||
| 1954 | PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL, | ||||||
| 1955 | bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) { | ||||||
| 1956 | BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator()); | ||||||
| 1957 | |||||||
| 1958 | // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block | ||||||
| 1959 | IRBuilder<> Builder(PreheaderBr); | ||||||
| 1960 | Builder.SetCurrentDebugLocation(DL); | ||||||
| 1961 | |||||||
| 1962 | // If there are no uses of CntPhi crate: | ||||||
| 1963 | // Count = BitWidth - CTLZ(InitX); | ||||||
| 1964 | // NewCount = Count; | ||||||
| 1965 | // If there are uses of CntPhi create: | ||||||
| 1966 | // NewCount = BitWidth - CTLZ(InitX >> 1); | ||||||
| 1967 | // Count = NewCount + 1; | ||||||
| 1968 | Value *InitXNext; | ||||||
| 1969 | if (IsCntPhiUsedOutsideLoop) { | ||||||
| 1970 | if (DefX->getOpcode() == Instruction::AShr) | ||||||
| 1971 | InitXNext = Builder.CreateAShr(InitX, 1); | ||||||
| 1972 | else if (DefX->getOpcode() == Instruction::LShr) | ||||||
| 1973 | InitXNext = Builder.CreateLShr(InitX, 1); | ||||||
| 1974 | else if (DefX->getOpcode() == Instruction::Shl) // cttz | ||||||
| 1975 | InitXNext = Builder.CreateShl(InitX, 1); | ||||||
| 1976 | else | ||||||
| 1977 | llvm_unreachable("Unexpected opcode!")::llvm::llvm_unreachable_internal("Unexpected opcode!", "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp" , 1977); | ||||||
| 1978 | } else | ||||||
| 1979 | InitXNext = InitX; | ||||||
| 1980 | Value *Count = | ||||||
| 1981 | createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID); | ||||||
| 1982 | Type *CountTy = Count->getType(); | ||||||
| 1983 | Count = Builder.CreateSub( | ||||||
| 1984 | ConstantInt::get(CountTy, CountTy->getIntegerBitWidth()), Count); | ||||||
| 1985 | Value *NewCount = Count; | ||||||
| 1986 | if (IsCntPhiUsedOutsideLoop) | ||||||
| 1987 | Count = Builder.CreateAdd(Count, ConstantInt::get(CountTy, 1)); | ||||||
| 1988 | |||||||
| 1989 | NewCount = Builder.CreateZExtOrTrunc(NewCount, CntInst->getType()); | ||||||
| 1990 | |||||||
| 1991 | Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader); | ||||||
| 1992 | if (cast<ConstantInt>(CntInst->getOperand(1))->isOne()) { | ||||||
| 1993 | // If the counter was being incremented in the loop, add NewCount to the | ||||||
| 1994 | // counter's initial value, but only if the initial value is not zero. | ||||||
| 1995 | ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); | ||||||
| 1996 | if (!InitConst || !InitConst->isZero()) | ||||||
| 1997 | NewCount = Builder.CreateAdd(NewCount, CntInitVal); | ||||||
| 1998 | } else { | ||||||
| 1999 | // If the count was being decremented in the loop, subtract NewCount from | ||||||
| 2000 | // the counter's initial value. | ||||||
| 2001 | NewCount = Builder.CreateSub(CntInitVal, NewCount); | ||||||
| 2002 | } | ||||||
| 2003 | |||||||
| 2004 | // Step 2: Insert new IV and loop condition: | ||||||
| 2005 | // loop: | ||||||
| 2006 | // ... | ||||||
| 2007 | // PhiCount = PHI [Count, Dec] | ||||||
| 2008 | // ... | ||||||
| 2009 | // Dec = PhiCount - 1 | ||||||
| 2010 | // ... | ||||||
| 2011 | // Br: loop if (Dec != 0) | ||||||
| 2012 | BasicBlock *Body = *(CurLoop->block_begin()); | ||||||
| 2013 | auto *LbBr = cast<BranchInst>(Body->getTerminator()); | ||||||
| 2014 | ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); | ||||||
| 2015 | |||||||
| 2016 | PHINode *TcPhi = PHINode::Create(CountTy, 2, "tcphi", &Body->front()); | ||||||
| 2017 | |||||||
| 2018 | Builder.SetInsertPoint(LbCond); | ||||||
| 2019 | Instruction *TcDec = cast<Instruction>(Builder.CreateSub( | ||||||
| 2020 | TcPhi, ConstantInt::get(CountTy, 1), "tcdec", false, true)); | ||||||
| 2021 | |||||||
| 2022 | TcPhi->addIncoming(Count, Preheader); | ||||||
| 2023 | TcPhi->addIncoming(TcDec, Body); | ||||||
| 2024 | |||||||
| 2025 | CmpInst::Predicate Pred = | ||||||
| 2026 | (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ; | ||||||
| 2027 | LbCond->setPredicate(Pred); | ||||||
| 2028 | LbCond->setOperand(0, TcDec); | ||||||
| 2029 | LbCond->setOperand(1, ConstantInt::get(CountTy, 0)); | ||||||
| 2030 | |||||||
| 2031 | // Step 3: All the references to the original counter outside | ||||||
| 2032 | // the loop are replaced with the NewCount | ||||||
| 2033 | if (IsCntPhiUsedOutsideLoop) | ||||||
| 2034 | CntPhi->replaceUsesOutsideBlock(NewCount, Body); | ||||||
| 2035 | else | ||||||
| 2036 | CntInst->replaceUsesOutsideBlock(NewCount, Body); | ||||||
| 2037 | |||||||
| 2038 | // step 4: Forget the "non-computable" trip-count SCEV associated with the | ||||||
| 2039 | // loop. The loop would otherwise not be deleted even if it becomes empty. | ||||||
| 2040 | SE->forgetLoop(CurLoop); | ||||||
| 2041 | } | ||||||
| 2042 | |||||||
| 2043 | void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB, | ||||||
| 2044 | Instruction *CntInst, | ||||||
| 2045 | PHINode *CntPhi, Value *Var) { | ||||||
| 2046 | BasicBlock *PreHead = CurLoop->getLoopPreheader(); | ||||||
| 2047 | auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator()); | ||||||
| 2048 | const DebugLoc &DL = CntInst->getDebugLoc(); | ||||||
| 2049 | |||||||
| 2050 | // Assuming before transformation, the loop is following: | ||||||
| 2051 | // if (x) // the precondition | ||||||
| 2052 | // do { cnt++; x &= x - 1; } while(x); | ||||||
| 2053 | |||||||
| 2054 | // Step 1: Insert the ctpop instruction at the end of the precondition block | ||||||
| 2055 | IRBuilder<> Builder(PreCondBr); | ||||||
| 2056 | Value *PopCnt, *PopCntZext, *NewCount, *TripCnt; | ||||||
| 2057 | { | ||||||
| 2058 | PopCnt = createPopcntIntrinsic(Builder, Var, DL); | ||||||
| 2059 | NewCount = PopCntZext = | ||||||
| 2060 | Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType())); | ||||||
| 2061 | |||||||
| 2062 | if (NewCount != PopCnt) | ||||||
| 2063 | (cast<Instruction>(NewCount))->setDebugLoc(DL); | ||||||
| 2064 | |||||||
| 2065 | // TripCnt is exactly the number of iterations the loop has | ||||||
| 2066 | TripCnt = NewCount; | ||||||
| 2067 | |||||||
| 2068 | // If the population counter's initial value is not zero, insert Add Inst. | ||||||
| 2069 | Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead); | ||||||
| 2070 | ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal); | ||||||
| 2071 | if (!InitConst || !InitConst->isZero()) { | ||||||
| 2072 | NewCount = Builder.CreateAdd(NewCount, CntInitVal); | ||||||
| 2073 | (cast<Instruction>(NewCount))->setDebugLoc(DL); | ||||||
| 2074 | } | ||||||
| 2075 | } | ||||||
| 2076 | |||||||
| 2077 | // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to | ||||||
| 2078 | // "if (NewCount == 0) loop-exit". Without this change, the intrinsic | ||||||
| 2079 | // function would be partial dead code, and downstream passes will drag | ||||||
| 2080 | // it back from the precondition block to the preheader. | ||||||
| 2081 | { | ||||||
| 2082 | ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition()); | ||||||
| 2083 | |||||||
| 2084 | Value *Opnd0 = PopCntZext; | ||||||
| 2085 | Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0); | ||||||
| 2086 | if (PreCond->getOperand(0) != Var) | ||||||
| 2087 | std::swap(Opnd0, Opnd1); | ||||||
| 2088 | |||||||
| 2089 | ICmpInst *NewPreCond = cast<ICmpInst>( | ||||||
| 2090 | Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1)); | ||||||
| 2091 | PreCondBr->setCondition(NewPreCond); | ||||||
| 2092 | |||||||
| 2093 | RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI); | ||||||
| 2094 | } | ||||||
| 2095 | |||||||
| 2096 | // Step 3: Note that the population count is exactly the trip count of the | ||||||
| 2097 | // loop in question, which enable us to convert the loop from noncountable | ||||||
| 2098 | // loop into a countable one. The benefit is twofold: | ||||||
| 2099 | // | ||||||
| 2100 | // - If the loop only counts population, the entire loop becomes dead after | ||||||
| 2101 | // the transformation. It is a lot easier to prove a countable loop dead | ||||||
| 2102 | // than to prove a noncountable one. (In some C dialects, an infinite loop | ||||||
| 2103 | // isn't dead even if it computes nothing useful. In general, DCE needs | ||||||
| 2104 | // to prove a noncountable loop finite before safely delete it.) | ||||||
| 2105 | // | ||||||
| 2106 | // - If the loop also performs something else, it remains alive. | ||||||
| 2107 | // Since it is transformed to countable form, it can be aggressively | ||||||
| 2108 | // optimized by some optimizations which are in general not applicable | ||||||
| 2109 | // to a noncountable loop. | ||||||
| 2110 | // | ||||||
| 2111 | // After this step, this loop (conceptually) would look like following: | ||||||
| 2112 | // newcnt = __builtin_ctpop(x); | ||||||
| 2113 | // t = newcnt; | ||||||
| 2114 | // if (x) | ||||||
| 2115 | // do { cnt++; x &= x-1; t--) } while (t > 0); | ||||||
| 2116 | BasicBlock *Body = *(CurLoop->block_begin()); | ||||||
| 2117 | { | ||||||
| 2118 | auto *LbBr = cast<BranchInst>(Body->getTerminator()); | ||||||
| 2119 | ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition()); | ||||||
| 2120 | Type *Ty = TripCnt->getType(); | ||||||
| 2121 | |||||||
| 2122 | PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front()); | ||||||
| 2123 | |||||||
| 2124 | Builder.SetInsertPoint(LbCond); | ||||||
| 2125 | Instruction *TcDec = cast<Instruction>( | ||||||
| 2126 | Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1), | ||||||
| 2127 | "tcdec", false, true)); | ||||||
| 2128 | |||||||
| 2129 | TcPhi->addIncoming(TripCnt, PreHead); | ||||||
| 2130 | TcPhi->addIncoming(TcDec, Body); | ||||||
| 2131 | |||||||
| 2132 | CmpInst::Predicate Pred = | ||||||
| 2133 | (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE; | ||||||
| 2134 | LbCond->setPredicate(Pred); | ||||||
| 2135 | LbCond->setOperand(0, TcDec); | ||||||
| 2136 | LbCond->setOperand(1, ConstantInt::get(Ty, 0)); | ||||||
| 2137 | } | ||||||
| 2138 | |||||||
| 2139 | // Step 4: All the references to the original population counter outside | ||||||
| 2140 | // the loop are replaced with the NewCount -- the value returned from | ||||||
| 2141 | // __builtin_ctpop(). | ||||||
| 2142 | CntInst->replaceUsesOutsideBlock(NewCount, Body); | ||||||
| 2143 | |||||||
| 2144 | // step 5: Forget the "non-computable" trip-count SCEV associated with the | ||||||
| 2145 | // loop. The loop would otherwise not be deleted even if it becomes empty. | ||||||
| 2146 | SE->forgetLoop(CurLoop); | ||||||
| 2147 | } | ||||||
| 2148 | |||||||
| 2149 | /// Match loop-invariant value. | ||||||
| 2150 | template <typename SubPattern_t> struct match_LoopInvariant { | ||||||
| 2151 | SubPattern_t SubPattern; | ||||||
| 2152 | const Loop *L; | ||||||
| 2153 | |||||||
| 2154 | match_LoopInvariant(const SubPattern_t &SP, const Loop *L) | ||||||
| 2155 | : SubPattern(SP), L(L) {} | ||||||
| 2156 | |||||||
| 2157 | template <typename ITy> bool match(ITy *V) { | ||||||
| 2158 | return L->isLoopInvariant(V) && SubPattern.match(V); | ||||||
| 2159 | } | ||||||
| 2160 | }; | ||||||
| 2161 | |||||||
| 2162 | /// Matches if the value is loop-invariant. | ||||||
| 2163 | template <typename Ty> | ||||||
| 2164 | inline match_LoopInvariant<Ty> m_LoopInvariant(const Ty &M, const Loop *L) { | ||||||
| 2165 | return match_LoopInvariant<Ty>(M, L); | ||||||
| 2166 | } | ||||||
| 2167 | |||||||
| 2168 | /// Return true if the idiom is detected in the loop. | ||||||
| 2169 | /// | ||||||
| 2170 | /// The core idiom we are trying to detect is: | ||||||
| 2171 | /// \code | ||||||
| 2172 | /// entry: | ||||||
| 2173 | /// <...> | ||||||
| 2174 | /// %bitmask = shl i32 1, %bitpos | ||||||
| 2175 | /// br label %loop | ||||||
| 2176 | /// | ||||||
| 2177 | /// loop: | ||||||
| 2178 | /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] | ||||||
| 2179 | /// %x.curr.bitmasked = and i32 %x.curr, %bitmask | ||||||
| 2180 | /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 | ||||||
| 2181 | /// %x.next = shl i32 %x.curr, 1 | ||||||
| 2182 | /// <...> | ||||||
| 2183 | /// br i1 %x.curr.isbitunset, label %loop, label %end | ||||||
| 2184 | /// | ||||||
| 2185 | /// end: | ||||||
| 2186 | /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> | ||||||
| 2187 | /// %x.next.res = phi i32 [ %x.next, %loop ] <...> | ||||||
| 2188 | /// <...> | ||||||
| 2189 | /// \endcode | ||||||
| 2190 | static bool detectShiftUntilBitTestIdiom(Loop *CurLoop, Value *&BaseX, | ||||||
| 2191 | Value *&BitMask, Value *&BitPos, | ||||||
| 2192 | Value *&CurrX, Instruction *&NextX) { | ||||||
| 2193 | LLVM_DEBUG(dbgs() << DEBUG_TYPEdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Performing shift-until-bittest idiom detection.\n" ; } } while (false) | ||||||
| 2194 | " Performing shift-until-bittest idiom detection.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Performing shift-until-bittest idiom detection.\n" ; } } while (false); | ||||||
| 2195 | |||||||
| 2196 | // Give up if the loop has multiple blocks or multiple backedges. | ||||||
| 2197 | if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { | ||||||
| 2198 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Bad block/backedge count.\n" ; } } while (false); | ||||||
| 2199 | return false; | ||||||
| 2200 | } | ||||||
| 2201 | |||||||
| 2202 | BasicBlock *LoopHeaderBB = CurLoop->getHeader(); | ||||||
| 2203 | BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); | ||||||
| 2204 | assert(LoopPreheaderBB && "There is always a loop preheader.")(static_cast <bool> (LoopPreheaderBB && "There is always a loop preheader." ) ? void (0) : __assert_fail ("LoopPreheaderBB && \"There is always a loop preheader.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2204, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 2205 | |||||||
| 2206 | using namespace PatternMatch; | ||||||
| 2207 | |||||||
| 2208 | // Step 1: Check if the loop backedge is in desirable form. | ||||||
| 2209 | |||||||
| 2210 | ICmpInst::Predicate Pred; | ||||||
| 2211 | Value *CmpLHS, *CmpRHS; | ||||||
| 2212 | BasicBlock *TrueBB, *FalseBB; | ||||||
| 2213 | if (!match(LoopHeaderBB->getTerminator(), | ||||||
| 2214 | m_Br(m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)), | ||||||
| 2215 | m_BasicBlock(TrueBB), m_BasicBlock(FalseBB)))) { | ||||||
| 2216 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Bad backedge structure.\n" ; } } while (false); | ||||||
| 2217 | return false; | ||||||
| 2218 | } | ||||||
| 2219 | |||||||
| 2220 | // Step 2: Check if the backedge's condition is in desirable form. | ||||||
| 2221 | |||||||
| 2222 | auto MatchVariableBitMask = [&]() { | ||||||
| 2223 | return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && | ||||||
| 2224 | match(CmpLHS, | ||||||
| 2225 | m_c_And(m_Value(CurrX), | ||||||
| 2226 | m_CombineAnd( | ||||||
| 2227 | m_Value(BitMask), | ||||||
| 2228 | m_LoopInvariant(m_Shl(m_One(), m_Value(BitPos)), | ||||||
| 2229 | CurLoop)))); | ||||||
| 2230 | }; | ||||||
| 2231 | auto MatchConstantBitMask = [&]() { | ||||||
| 2232 | return ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero()) && | ||||||
| 2233 | match(CmpLHS, m_And(m_Value(CurrX), | ||||||
| 2234 | m_CombineAnd(m_Value(BitMask), m_Power2()))) && | ||||||
| 2235 | (BitPos = ConstantExpr::getExactLogBase2(cast<Constant>(BitMask))); | ||||||
| 2236 | }; | ||||||
| 2237 | auto MatchDecomposableConstantBitMask = [&]() { | ||||||
| 2238 | APInt Mask; | ||||||
| 2239 | return llvm::decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, CurrX, Mask) && | ||||||
| 2240 | ICmpInst::isEquality(Pred) && Mask.isPowerOf2() && | ||||||
| 2241 | (BitMask = ConstantInt::get(CurrX->getType(), Mask)) && | ||||||
| 2242 | (BitPos = ConstantInt::get(CurrX->getType(), Mask.logBase2())); | ||||||
| 2243 | }; | ||||||
| 2244 | |||||||
| 2245 | if (!MatchVariableBitMask() && !MatchConstantBitMask() && | ||||||
| 2246 | !MatchDecomposableConstantBitMask()) { | ||||||
| 2247 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge comparison.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Bad backedge comparison.\n" ; } } while (false); | ||||||
| 2248 | return false; | ||||||
| 2249 | } | ||||||
| 2250 | |||||||
| 2251 | // Step 3: Check if the recurrence is in desirable form. | ||||||
| 2252 | auto *CurrXPN = dyn_cast<PHINode>(CurrX); | ||||||
| 2253 | if (!CurrXPN || CurrXPN->getParent() != LoopHeaderBB) { | ||||||
| 2254 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Not an expected PHI node.\n" ; } } while (false); | ||||||
| 2255 | return false; | ||||||
| 2256 | } | ||||||
| 2257 | |||||||
| 2258 | BaseX = CurrXPN->getIncomingValueForBlock(LoopPreheaderBB); | ||||||
| 2259 | NextX = | ||||||
| 2260 | dyn_cast<Instruction>(CurrXPN->getIncomingValueForBlock(LoopHeaderBB)); | ||||||
| 2261 | |||||||
| 2262 | assert(CurLoop->isLoopInvariant(BaseX) &&(static_cast <bool> (CurLoop->isLoopInvariant(BaseX) && "Expected BaseX to be avaliable in the preheader!" ) ? void (0) : __assert_fail ("CurLoop->isLoopInvariant(BaseX) && \"Expected BaseX to be avaliable in the preheader!\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2263, __extension__ __PRETTY_FUNCTION__)) | ||||||
| 2263 | "Expected BaseX to be avaliable in the preheader!")(static_cast <bool> (CurLoop->isLoopInvariant(BaseX) && "Expected BaseX to be avaliable in the preheader!" ) ? void (0) : __assert_fail ("CurLoop->isLoopInvariant(BaseX) && \"Expected BaseX to be avaliable in the preheader!\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2263, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 2264 | |||||||
| 2265 | if (!NextX || !match(NextX, m_Shl(m_Specific(CurrX), m_One()))) { | ||||||
| 2266 | // FIXME: support right-shift? | ||||||
| 2267 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Bad recurrence.\n" ; } } while (false); | ||||||
| 2268 | return false; | ||||||
| 2269 | } | ||||||
| 2270 | |||||||
| 2271 | // Step 4: Check if the backedge's destinations are in desirable form. | ||||||
| 2272 | |||||||
| 2273 | assert(ICmpInst::isEquality(Pred) &&(static_cast <bool> (ICmpInst::isEquality(Pred) && "Should only get equality predicates here.") ? void (0) : __assert_fail ("ICmpInst::isEquality(Pred) && \"Should only get equality predicates here.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2274, __extension__ __PRETTY_FUNCTION__)) | ||||||
| 2274 | "Should only get equality predicates here.")(static_cast <bool> (ICmpInst::isEquality(Pred) && "Should only get equality predicates here.") ? void (0) : __assert_fail ("ICmpInst::isEquality(Pred) && \"Should only get equality predicates here.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2274, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 2275 | |||||||
| 2276 | // cmp-br is commutative, so canonicalize to a single variant. | ||||||
| 2277 | if (Pred != ICmpInst::Predicate::ICMP_EQ) { | ||||||
| 2278 | Pred = ICmpInst::getInversePredicate(Pred); | ||||||
| 2279 | std::swap(TrueBB, FalseBB); | ||||||
| 2280 | } | ||||||
| 2281 | |||||||
| 2282 | // We expect to exit loop when comparison yields false, | ||||||
| 2283 | // so when it yields true we should branch back to loop header. | ||||||
| 2284 | if (TrueBB != LoopHeaderBB) { | ||||||
| 2285 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Bad backedge flow.\n" ; } } while (false); | ||||||
| 2286 | return false; | ||||||
| 2287 | } | ||||||
| 2288 | |||||||
| 2289 | // Okay, idiom checks out. | ||||||
| 2290 | return true; | ||||||
| 2291 | } | ||||||
| 2292 | |||||||
| 2293 | /// Look for the following loop: | ||||||
| 2294 | /// \code | ||||||
| 2295 | /// entry: | ||||||
| 2296 | /// <...> | ||||||
| 2297 | /// %bitmask = shl i32 1, %bitpos | ||||||
| 2298 | /// br label %loop | ||||||
| 2299 | /// | ||||||
| 2300 | /// loop: | ||||||
| 2301 | /// %x.curr = phi i32 [ %x, %entry ], [ %x.next, %loop ] | ||||||
| 2302 | /// %x.curr.bitmasked = and i32 %x.curr, %bitmask | ||||||
| 2303 | /// %x.curr.isbitunset = icmp eq i32 %x.curr.bitmasked, 0 | ||||||
| 2304 | /// %x.next = shl i32 %x.curr, 1 | ||||||
| 2305 | /// <...> | ||||||
| 2306 | /// br i1 %x.curr.isbitunset, label %loop, label %end | ||||||
| 2307 | /// | ||||||
| 2308 | /// end: | ||||||
| 2309 | /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> | ||||||
| 2310 | /// %x.next.res = phi i32 [ %x.next, %loop ] <...> | ||||||
| 2311 | /// <...> | ||||||
| 2312 | /// \endcode | ||||||
| 2313 | /// | ||||||
| 2314 | /// And transform it into: | ||||||
| 2315 | /// \code | ||||||
| 2316 | /// entry: | ||||||
| 2317 | /// %bitmask = shl i32 1, %bitpos | ||||||
| 2318 | /// %lowbitmask = add i32 %bitmask, -1 | ||||||
| 2319 | /// %mask = or i32 %lowbitmask, %bitmask | ||||||
| 2320 | /// %x.masked = and i32 %x, %mask | ||||||
| 2321 | /// %x.masked.numleadingzeros = call i32 @llvm.ctlz.i32(i32 %x.masked, | ||||||
| 2322 | /// i1 true) | ||||||
| 2323 | /// %x.masked.numactivebits = sub i32 32, %x.masked.numleadingzeros | ||||||
| 2324 | /// %x.masked.leadingonepos = add i32 %x.masked.numactivebits, -1 | ||||||
| 2325 | /// %backedgetakencount = sub i32 %bitpos, %x.masked.leadingonepos | ||||||
| 2326 | /// %tripcount = add i32 %backedgetakencount, 1 | ||||||
| 2327 | /// %x.curr = shl i32 %x, %backedgetakencount | ||||||
| 2328 | /// %x.next = shl i32 %x, %tripcount | ||||||
| 2329 | /// br label %loop | ||||||
| 2330 | /// | ||||||
| 2331 | /// loop: | ||||||
| 2332 | /// %loop.iv = phi i32 [ 0, %entry ], [ %loop.iv.next, %loop ] | ||||||
| 2333 | /// %loop.iv.next = add nuw i32 %loop.iv, 1 | ||||||
| 2334 | /// %loop.ivcheck = icmp eq i32 %loop.iv.next, %tripcount | ||||||
| 2335 | /// <...> | ||||||
| 2336 | /// br i1 %loop.ivcheck, label %end, label %loop | ||||||
| 2337 | /// | ||||||
| 2338 | /// end: | ||||||
| 2339 | /// %x.curr.res = phi i32 [ %x.curr, %loop ] <...> | ||||||
| 2340 | /// %x.next.res = phi i32 [ %x.next, %loop ] <...> | ||||||
| 2341 | /// <...> | ||||||
| 2342 | /// \endcode | ||||||
| 2343 | bool LoopIdiomRecognize::recognizeShiftUntilBitTest() { | ||||||
| 2344 | bool MadeChange = false; | ||||||
| 2345 | |||||||
| 2346 | Value *X, *BitMask, *BitPos, *XCurr; | ||||||
| 2347 | Instruction *XNext; | ||||||
| 2348 | if (!detectShiftUntilBitTestIdiom(CurLoop, X, BitMask, BitPos, XCurr, | ||||||
| 2349 | XNext)) { | ||||||
| 2350 | LLVM_DEBUG(dbgs() << DEBUG_TYPEdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " shift-until-bittest idiom detection failed.\n" ; } } while (false) | ||||||
| 2351 | " shift-until-bittest idiom detection failed.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " shift-until-bittest idiom detection failed.\n" ; } } while (false); | ||||||
| 2352 | return MadeChange; | ||||||
| 2353 | } | ||||||
| 2354 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom detected!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " shift-until-bittest idiom detected!\n" ; } } while (false); | ||||||
| 2355 | |||||||
| 2356 | // Ok, it is the idiom we were looking for, we *could* transform this loop, | ||||||
| 2357 | // but is it profitable to transform? | ||||||
| 2358 | |||||||
| 2359 | BasicBlock *LoopHeaderBB = CurLoop->getHeader(); | ||||||
| 2360 | BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); | ||||||
| 2361 | assert(LoopPreheaderBB && "There is always a loop preheader.")(static_cast <bool> (LoopPreheaderBB && "There is always a loop preheader." ) ? void (0) : __assert_fail ("LoopPreheaderBB && \"There is always a loop preheader.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2361, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 2362 | |||||||
| 2363 | BasicBlock *SuccessorBB = CurLoop->getExitBlock(); | ||||||
| 2364 | assert(SuccessorBB && "There is only a single successor.")(static_cast <bool> (SuccessorBB && "There is only a single successor." ) ? void (0) : __assert_fail ("SuccessorBB && \"There is only a single successor.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2364, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 2365 | |||||||
| 2366 | IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); | ||||||
| 2367 | Builder.SetCurrentDebugLocation(cast<Instruction>(XCurr)->getDebugLoc()); | ||||||
| 2368 | |||||||
| 2369 | Intrinsic::ID IntrID = Intrinsic::ctlz; | ||||||
| 2370 | Type *Ty = X->getType(); | ||||||
| 2371 | unsigned Bitwidth = Ty->getScalarSizeInBits(); | ||||||
| 2372 | |||||||
| 2373 | TargetTransformInfo::TargetCostKind CostKind = | ||||||
| 2374 | TargetTransformInfo::TCK_SizeAndLatency; | ||||||
| 2375 | |||||||
| 2376 | // The rewrite is considered to be unprofitable iff and only iff the | ||||||
| 2377 | // intrinsic/shift we'll use are not cheap. Note that we are okay with *just* | ||||||
| 2378 | // making the loop countable, even if nothing else changes. | ||||||
| 2379 | IntrinsicCostAttributes Attrs( | ||||||
| 2380 | IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getTrue()}); | ||||||
| 2381 | InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); | ||||||
| 2382 | if (Cost > TargetTransformInfo::TCC_Basic) { | ||||||
| 2383 | LLVM_DEBUG(dbgs() << DEBUG_TYPEdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Intrinsic is too costly, not beneficial\n" ; } } while (false) | ||||||
| 2384 | " Intrinsic is too costly, not beneficial\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Intrinsic is too costly, not beneficial\n" ; } } while (false); | ||||||
| 2385 | return MadeChange; | ||||||
| 2386 | } | ||||||
| 2387 | if (TTI->getArithmeticInstrCost(Instruction::Shl, Ty, CostKind) > | ||||||
| 2388 | TargetTransformInfo::TCC_Basic) { | ||||||
| 2389 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Shift is too costly, not beneficial\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Shift is too costly, not beneficial\n" ; } } while (false); | ||||||
| 2390 | return MadeChange; | ||||||
| 2391 | } | ||||||
| 2392 | |||||||
| 2393 | // Ok, transform appears worthwhile. | ||||||
| 2394 | MadeChange = true; | ||||||
| 2395 | |||||||
| 2396 | // Step 1: Compute the loop trip count. | ||||||
| 2397 | |||||||
| 2398 | Value *LowBitMask = Builder.CreateAdd(BitMask, Constant::getAllOnesValue(Ty), | ||||||
| 2399 | BitPos->getName() + ".lowbitmask"); | ||||||
| 2400 | Value *Mask = | ||||||
| 2401 | Builder.CreateOr(LowBitMask, BitMask, BitPos->getName() + ".mask"); | ||||||
| 2402 | Value *XMasked = Builder.CreateAnd(X, Mask, X->getName() + ".masked"); | ||||||
| 2403 | CallInst *XMaskedNumLeadingZeros = Builder.CreateIntrinsic( | ||||||
| 2404 | IntrID, Ty, {XMasked, /*is_zero_undef=*/Builder.getTrue()}, | ||||||
| 2405 | /*FMFSource=*/nullptr, XMasked->getName() + ".numleadingzeros"); | ||||||
| 2406 | Value *XMaskedNumActiveBits = Builder.CreateSub( | ||||||
| 2407 | ConstantInt::get(Ty, Ty->getScalarSizeInBits()), XMaskedNumLeadingZeros, | ||||||
| 2408 | XMasked->getName() + ".numactivebits", /*HasNUW=*/true, | ||||||
| 2409 | /*HasNSW=*/Bitwidth != 2); | ||||||
| 2410 | Value *XMaskedLeadingOnePos = | ||||||
| 2411 | Builder.CreateAdd(XMaskedNumActiveBits, Constant::getAllOnesValue(Ty), | ||||||
| 2412 | XMasked->getName() + ".leadingonepos", /*HasNUW=*/false, | ||||||
| 2413 | /*HasNSW=*/Bitwidth > 2); | ||||||
| 2414 | |||||||
| 2415 | Value *LoopBackedgeTakenCount = Builder.CreateSub( | ||||||
| 2416 | BitPos, XMaskedLeadingOnePos, CurLoop->getName() + ".backedgetakencount", | ||||||
| 2417 | /*HasNUW=*/true, /*HasNSW=*/true); | ||||||
| 2418 | // We know loop's backedge-taken count, but what's loop's trip count? | ||||||
| 2419 | // Note that while NUW is always safe, while NSW is only for bitwidths != 2. | ||||||
| 2420 | Value *LoopTripCount = | ||||||
| 2421 | Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), | ||||||
| 2422 | CurLoop->getName() + ".tripcount", /*HasNUW=*/true, | ||||||
| 2423 | /*HasNSW=*/Bitwidth != 2); | ||||||
| 2424 | |||||||
| 2425 | // Step 2: Compute the recurrence's final value without a loop. | ||||||
| 2426 | |||||||
| 2427 | // NewX is always safe to compute, because `LoopBackedgeTakenCount` | ||||||
| 2428 | // will always be smaller than `bitwidth(X)`, i.e. we never get poison. | ||||||
| 2429 | Value *NewX = Builder.CreateShl(X, LoopBackedgeTakenCount); | ||||||
| 2430 | NewX->takeName(XCurr); | ||||||
| 2431 | if (auto *I = dyn_cast<Instruction>(NewX)) | ||||||
| 2432 | I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); | ||||||
| 2433 | |||||||
| 2434 | Value *NewXNext; | ||||||
| 2435 | // Rewriting XNext is more complicated, however, because `X << LoopTripCount` | ||||||
| 2436 | // will be poison iff `LoopTripCount == bitwidth(X)` (which will happen | ||||||
| 2437 | // iff `BitPos` is `bitwidth(x) - 1` and `X` is `1`). So unless we know | ||||||
| 2438 | // that isn't the case, we'll need to emit an alternative, safe IR. | ||||||
| 2439 | if (XNext->hasNoSignedWrap() || XNext->hasNoUnsignedWrap() || | ||||||
| 2440 | PatternMatch::match( | ||||||
| 2441 | BitPos, PatternMatch::m_SpecificInt_ICMP( | ||||||
| 2442 | ICmpInst::ICMP_NE, APInt(Ty->getScalarSizeInBits(), | ||||||
| 2443 | Ty->getScalarSizeInBits() - 1)))) | ||||||
| 2444 | NewXNext = Builder.CreateShl(X, LoopTripCount); | ||||||
| 2445 | else { | ||||||
| 2446 | // Otherwise, just additionally shift by one. It's the smallest solution, | ||||||
| 2447 | // alternatively, we could check that NewX is INT_MIN (or BitPos is ) | ||||||
| 2448 | // and select 0 instead. | ||||||
| 2449 | NewXNext = Builder.CreateShl(NewX, ConstantInt::get(Ty, 1)); | ||||||
| 2450 | } | ||||||
| 2451 | |||||||
| 2452 | NewXNext->takeName(XNext); | ||||||
| 2453 | if (auto *I = dyn_cast<Instruction>(NewXNext)) | ||||||
| 2454 | I->copyIRFlags(XNext, /*IncludeWrapFlags=*/true); | ||||||
| 2455 | |||||||
| 2456 | // Step 3: Adjust the successor basic block to recieve the computed | ||||||
| 2457 | // recurrence's final value instead of the recurrence itself. | ||||||
| 2458 | |||||||
| 2459 | XCurr->replaceUsesOutsideBlock(NewX, LoopHeaderBB); | ||||||
| 2460 | XNext->replaceUsesOutsideBlock(NewXNext, LoopHeaderBB); | ||||||
| 2461 | |||||||
| 2462 | // Step 4: Rewrite the loop into a countable form, with canonical IV. | ||||||
| 2463 | |||||||
| 2464 | // The new canonical induction variable. | ||||||
| 2465 | Builder.SetInsertPoint(&LoopHeaderBB->front()); | ||||||
| 2466 | auto *IV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); | ||||||
| 2467 | |||||||
| 2468 | // The induction itself. | ||||||
| 2469 | // Note that while NUW is always safe, while NSW is only for bitwidths != 2. | ||||||
| 2470 | Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); | ||||||
| 2471 | auto *IVNext = | ||||||
| 2472 | Builder.CreateAdd(IV, ConstantInt::get(Ty, 1), IV->getName() + ".next", | ||||||
| 2473 | /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); | ||||||
| 2474 | |||||||
| 2475 | // The loop trip count check. | ||||||
| 2476 | auto *IVCheck = Builder.CreateICmpEQ(IVNext, LoopTripCount, | ||||||
| 2477 | CurLoop->getName() + ".ivcheck"); | ||||||
| 2478 | Builder.CreateCondBr(IVCheck, SuccessorBB, LoopHeaderBB); | ||||||
| 2479 | LoopHeaderBB->getTerminator()->eraseFromParent(); | ||||||
| 2480 | |||||||
| 2481 | // Populate the IV PHI. | ||||||
| 2482 | IV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); | ||||||
| 2483 | IV->addIncoming(IVNext, LoopHeaderBB); | ||||||
| 2484 | |||||||
| 2485 | // Step 5: Forget the "non-computable" trip-count SCEV associated with the | ||||||
| 2486 | // loop. The loop would otherwise not be deleted even if it becomes empty. | ||||||
| 2487 | |||||||
| 2488 | SE->forgetLoop(CurLoop); | ||||||
| 2489 | |||||||
| 2490 | // Other passes will take care of actually deleting the loop if possible. | ||||||
| 2491 | |||||||
| 2492 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-bittest idiom optimized!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " shift-until-bittest idiom optimized!\n" ; } } while (false); | ||||||
| 2493 | |||||||
| 2494 | ++NumShiftUntilBitTest; | ||||||
| 2495 | return MadeChange; | ||||||
| 2496 | } | ||||||
| 2497 | |||||||
| 2498 | /// Return true if the idiom is detected in the loop. | ||||||
| 2499 | /// | ||||||
| 2500 | /// The core idiom we are trying to detect is: | ||||||
| 2501 | /// \code | ||||||
| 2502 | /// entry: | ||||||
| 2503 | /// <...> | ||||||
| 2504 | /// %start = <...> | ||||||
| 2505 | /// %extraoffset = <...> | ||||||
| 2506 | /// <...> | ||||||
| 2507 | /// br label %for.cond | ||||||
| 2508 | /// | ||||||
| 2509 | /// loop: | ||||||
| 2510 | /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] | ||||||
| 2511 | /// %nbits = add nsw i8 %iv, %extraoffset | ||||||
| 2512 | /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits | ||||||
| 2513 | /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 | ||||||
| 2514 | /// %iv.next = add i8 %iv, 1 | ||||||
| 2515 | /// <...> | ||||||
| 2516 | /// br i1 %val.shifted.iszero, label %end, label %loop | ||||||
| 2517 | /// | ||||||
| 2518 | /// end: | ||||||
| 2519 | /// %iv.res = phi i8 [ %iv, %loop ] <...> | ||||||
| 2520 | /// %nbits.res = phi i8 [ %nbits, %loop ] <...> | ||||||
| 2521 | /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> | ||||||
| 2522 | /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> | ||||||
| 2523 | /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> | ||||||
| 2524 | /// <...> | ||||||
| 2525 | /// \endcode | ||||||
| 2526 | static bool detectShiftUntilZeroIdiom(Loop *CurLoop, ScalarEvolution *SE, | ||||||
| 2527 | Instruction *&ValShiftedIsZero, | ||||||
| 2528 | Intrinsic::ID &IntrinID, Instruction *&IV, | ||||||
| 2529 | Value *&Start, Value *&Val, | ||||||
| 2530 | const SCEV *&ExtraOffsetExpr, | ||||||
| 2531 | bool &InvertedCond) { | ||||||
| 2532 | LLVM_DEBUG(dbgs() << DEBUG_TYPEdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Performing shift-until-zero idiom detection.\n" ; } } while (false) | ||||||
| 2533 | " Performing shift-until-zero idiom detection.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Performing shift-until-zero idiom detection.\n" ; } } while (false); | ||||||
| 2534 | |||||||
| 2535 | // Give up if the loop has multiple blocks or multiple backedges. | ||||||
| 2536 | if (CurLoop->getNumBlocks() != 1 || CurLoop->getNumBackEdges() != 1) { | ||||||
| 2537 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad block/backedge count.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Bad block/backedge count.\n" ; } } while (false); | ||||||
| 2538 | return false; | ||||||
| 2539 | } | ||||||
| 2540 | |||||||
| 2541 | Instruction *ValShifted, *NBits, *IVNext; | ||||||
| 2542 | Value *ExtraOffset; | ||||||
| 2543 | |||||||
| 2544 | BasicBlock *LoopHeaderBB = CurLoop->getHeader(); | ||||||
| 2545 | BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); | ||||||
| 2546 | assert(LoopPreheaderBB && "There is always a loop preheader.")(static_cast <bool> (LoopPreheaderBB && "There is always a loop preheader." ) ? void (0) : __assert_fail ("LoopPreheaderBB && \"There is always a loop preheader.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2546, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 2547 | |||||||
| 2548 | using namespace PatternMatch; | ||||||
| 2549 | |||||||
| 2550 | // Step 1: Check if the loop backedge, condition is in desirable form. | ||||||
| 2551 | |||||||
| 2552 | ICmpInst::Predicate Pred; | ||||||
| 2553 | BasicBlock *TrueBB, *FalseBB; | ||||||
| 2554 | if (!match(LoopHeaderBB->getTerminator(), | ||||||
| 2555 | m_Br(m_Instruction(ValShiftedIsZero), m_BasicBlock(TrueBB), | ||||||
| 2556 | m_BasicBlock(FalseBB))) || | ||||||
| 2557 | !match(ValShiftedIsZero, | ||||||
| 2558 | m_ICmp(Pred, m_Instruction(ValShifted), m_Zero())) || | ||||||
| 2559 | !ICmpInst::isEquality(Pred)) { | ||||||
| 2560 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge structure.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Bad backedge structure.\n" ; } } while (false); | ||||||
| 2561 | return false; | ||||||
| 2562 | } | ||||||
| 2563 | |||||||
| 2564 | // Step 2: Check if the comparison's operand is in desirable form. | ||||||
| 2565 | // FIXME: Val could be a one-input PHI node, which we should look past. | ||||||
| 2566 | if (!match(ValShifted, m_Shift(m_LoopInvariant(m_Value(Val), CurLoop), | ||||||
| 2567 | m_Instruction(NBits)))) { | ||||||
| 2568 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad comparisons value computation.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Bad comparisons value computation.\n" ; } } while (false); | ||||||
| 2569 | return false; | ||||||
| 2570 | } | ||||||
| 2571 | IntrinID = ValShifted->getOpcode() == Instruction::Shl ? Intrinsic::cttz | ||||||
| 2572 | : Intrinsic::ctlz; | ||||||
| 2573 | |||||||
| 2574 | // Step 3: Check if the shift amount is in desirable form. | ||||||
| 2575 | |||||||
| 2576 | if (match(NBits, m_c_Add(m_Instruction(IV), | ||||||
| 2577 | m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && | ||||||
| 2578 | (NBits->hasNoSignedWrap() || NBits->hasNoUnsignedWrap())) | ||||||
| 2579 | ExtraOffsetExpr = SE->getNegativeSCEV(SE->getSCEV(ExtraOffset)); | ||||||
| 2580 | else if (match(NBits, | ||||||
| 2581 | m_Sub(m_Instruction(IV), | ||||||
| 2582 | m_LoopInvariant(m_Value(ExtraOffset), CurLoop))) && | ||||||
| 2583 | NBits->hasNoSignedWrap()) | ||||||
| 2584 | ExtraOffsetExpr = SE->getSCEV(ExtraOffset); | ||||||
| 2585 | else { | ||||||
| 2586 | IV = NBits; | ||||||
| 2587 | ExtraOffsetExpr = SE->getZero(NBits->getType()); | ||||||
| 2588 | } | ||||||
| 2589 | |||||||
| 2590 | // Step 4: Check if the recurrence is in desirable form. | ||||||
| 2591 | auto *IVPN = dyn_cast<PHINode>(IV); | ||||||
| 2592 | if (!IVPN || IVPN->getParent() != LoopHeaderBB) { | ||||||
| 2593 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Not an expected PHI node.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Not an expected PHI node.\n" ; } } while (false); | ||||||
| 2594 | return false; | ||||||
| 2595 | } | ||||||
| 2596 | |||||||
| 2597 | Start = IVPN->getIncomingValueForBlock(LoopPreheaderBB); | ||||||
| 2598 | IVNext = dyn_cast<Instruction>(IVPN->getIncomingValueForBlock(LoopHeaderBB)); | ||||||
| 2599 | |||||||
| 2600 | if (!IVNext || !match(IVNext, m_Add(m_Specific(IVPN), m_One()))) { | ||||||
| 2601 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad recurrence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Bad recurrence.\n" ; } } while (false); | ||||||
| 2602 | return false; | ||||||
| 2603 | } | ||||||
| 2604 | |||||||
| 2605 | // Step 4: Check if the backedge's destinations are in desirable form. | ||||||
| 2606 | |||||||
| 2607 | assert(ICmpInst::isEquality(Pred) &&(static_cast <bool> (ICmpInst::isEquality(Pred) && "Should only get equality predicates here.") ? void (0) : __assert_fail ("ICmpInst::isEquality(Pred) && \"Should only get equality predicates here.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2608, __extension__ __PRETTY_FUNCTION__)) | ||||||
| 2608 | "Should only get equality predicates here.")(static_cast <bool> (ICmpInst::isEquality(Pred) && "Should only get equality predicates here.") ? void (0) : __assert_fail ("ICmpInst::isEquality(Pred) && \"Should only get equality predicates here.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2608, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 2609 | |||||||
| 2610 | // cmp-br is commutative, so canonicalize to a single variant. | ||||||
| 2611 | InvertedCond = Pred != ICmpInst::Predicate::ICMP_EQ; | ||||||
| 2612 | if (InvertedCond) { | ||||||
| 2613 | Pred = ICmpInst::getInversePredicate(Pred); | ||||||
| 2614 | std::swap(TrueBB, FalseBB); | ||||||
| 2615 | } | ||||||
| 2616 | |||||||
| 2617 | // We expect to exit loop when comparison yields true, | ||||||
| 2618 | // so when it yields false we should branch back to loop header. | ||||||
| 2619 | if (FalseBB != LoopHeaderBB) { | ||||||
| 2620 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Bad backedge flow.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Bad backedge flow.\n" ; } } while (false); | ||||||
| 2621 | return false; | ||||||
| 2622 | } | ||||||
| 2623 | |||||||
| 2624 | // The new, countable, loop will certainly only run a known number of | ||||||
| 2625 | // iterations, It won't be infinite. But the old loop might be infinite | ||||||
| 2626 | // under certain conditions. For logical shifts, the value will become zero | ||||||
| 2627 | // after at most bitwidth(%Val) loop iterations. However, for arithmetic | ||||||
| 2628 | // right-shift, iff the sign bit was set, the value will never become zero, | ||||||
| 2629 | // and the loop may never finish. | ||||||
| 2630 | if (ValShifted->getOpcode() == Instruction::AShr && | ||||||
| 2631 | !isMustProgress(CurLoop) && !SE->isKnownNonNegative(SE->getSCEV(Val))) { | ||||||
| 2632 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " Can not prove the loop is finite.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Can not prove the loop is finite.\n" ; } } while (false); | ||||||
| 2633 | return false; | ||||||
| 2634 | } | ||||||
| 2635 | |||||||
| 2636 | // Okay, idiom checks out. | ||||||
| 2637 | return true; | ||||||
| 2638 | } | ||||||
| 2639 | |||||||
| 2640 | /// Look for the following loop: | ||||||
| 2641 | /// \code | ||||||
| 2642 | /// entry: | ||||||
| 2643 | /// <...> | ||||||
| 2644 | /// %start = <...> | ||||||
| 2645 | /// %extraoffset = <...> | ||||||
| 2646 | /// <...> | ||||||
| 2647 | /// br label %for.cond | ||||||
| 2648 | /// | ||||||
| 2649 | /// loop: | ||||||
| 2650 | /// %iv = phi i8 [ %start, %entry ], [ %iv.next, %for.cond ] | ||||||
| 2651 | /// %nbits = add nsw i8 %iv, %extraoffset | ||||||
| 2652 | /// %val.shifted = {{l,a}shr,shl} i8 %val, %nbits | ||||||
| 2653 | /// %val.shifted.iszero = icmp eq i8 %val.shifted, 0 | ||||||
| 2654 | /// %iv.next = add i8 %iv, 1 | ||||||
| 2655 | /// <...> | ||||||
| 2656 | /// br i1 %val.shifted.iszero, label %end, label %loop | ||||||
| 2657 | /// | ||||||
| 2658 | /// end: | ||||||
| 2659 | /// %iv.res = phi i8 [ %iv, %loop ] <...> | ||||||
| 2660 | /// %nbits.res = phi i8 [ %nbits, %loop ] <...> | ||||||
| 2661 | /// %val.shifted.res = phi i8 [ %val.shifted, %loop ] <...> | ||||||
| 2662 | /// %val.shifted.iszero.res = phi i1 [ %val.shifted.iszero, %loop ] <...> | ||||||
| 2663 | /// %iv.next.res = phi i8 [ %iv.next, %loop ] <...> | ||||||
| 2664 | /// <...> | ||||||
| 2665 | /// \endcode | ||||||
| 2666 | /// | ||||||
| 2667 | /// And transform it into: | ||||||
| 2668 | /// \code | ||||||
| 2669 | /// entry: | ||||||
| 2670 | /// <...> | ||||||
| 2671 | /// %start = <...> | ||||||
| 2672 | /// %extraoffset = <...> | ||||||
| 2673 | /// <...> | ||||||
| 2674 | /// %val.numleadingzeros = call i8 @llvm.ct{l,t}z.i8(i8 %val, i1 0) | ||||||
| 2675 | /// %val.numactivebits = sub i8 8, %val.numleadingzeros | ||||||
| 2676 | /// %extraoffset.neg = sub i8 0, %extraoffset | ||||||
| 2677 | /// %tmp = add i8 %val.numactivebits, %extraoffset.neg | ||||||
| 2678 | /// %iv.final = call i8 @llvm.smax.i8(i8 %tmp, i8 %start) | ||||||
| 2679 | /// %loop.tripcount = sub i8 %iv.final, %start | ||||||
| 2680 | /// br label %loop | ||||||
| 2681 | /// | ||||||
| 2682 | /// loop: | ||||||
| 2683 | /// %loop.iv = phi i8 [ 0, %entry ], [ %loop.iv.next, %loop ] | ||||||
| 2684 | /// %loop.iv.next = add i8 %loop.iv, 1 | ||||||
| 2685 | /// %loop.ivcheck = icmp eq i8 %loop.iv.next, %loop.tripcount | ||||||
| 2686 | /// %iv = add i8 %loop.iv, %start | ||||||
| 2687 | /// <...> | ||||||
| 2688 | /// br i1 %loop.ivcheck, label %end, label %loop | ||||||
| 2689 | /// | ||||||
| 2690 | /// end: | ||||||
| 2691 | /// %iv.res = phi i8 [ %iv.final, %loop ] <...> | ||||||
| 2692 | /// <...> | ||||||
| 2693 | /// \endcode | ||||||
| 2694 | bool LoopIdiomRecognize::recognizeShiftUntilZero() { | ||||||
| 2695 | bool MadeChange = false; | ||||||
| 2696 | |||||||
| 2697 | Instruction *ValShiftedIsZero; | ||||||
| 2698 | Intrinsic::ID IntrID; | ||||||
| 2699 | Instruction *IV; | ||||||
| 2700 | Value *Start, *Val; | ||||||
| 2701 | const SCEV *ExtraOffsetExpr; | ||||||
| 2702 | bool InvertedCond; | ||||||
| 2703 | if (!detectShiftUntilZeroIdiom(CurLoop, SE, ValShiftedIsZero, IntrID, IV, | ||||||
| 2704 | Start, Val, ExtraOffsetExpr, InvertedCond)) { | ||||||
| 2705 | LLVM_DEBUG(dbgs() << DEBUG_TYPEdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " shift-until-zero idiom detection failed.\n" ; } } while (false) | ||||||
| 2706 | " shift-until-zero idiom detection failed.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " shift-until-zero idiom detection failed.\n" ; } } while (false); | ||||||
| 2707 | return MadeChange; | ||||||
| 2708 | } | ||||||
| 2709 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom detected!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " shift-until-zero idiom detected!\n" ; } } while (false); | ||||||
| 2710 | |||||||
| 2711 | // Ok, it is the idiom we were looking for, we *could* transform this loop, | ||||||
| 2712 | // but is it profitable to transform? | ||||||
| 2713 | |||||||
| 2714 | BasicBlock *LoopHeaderBB = CurLoop->getHeader(); | ||||||
| 2715 | BasicBlock *LoopPreheaderBB = CurLoop->getLoopPreheader(); | ||||||
| 2716 | assert(LoopPreheaderBB && "There is always a loop preheader.")(static_cast <bool> (LoopPreheaderBB && "There is always a loop preheader." ) ? void (0) : __assert_fail ("LoopPreheaderBB && \"There is always a loop preheader.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2716, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 2717 | |||||||
| 2718 | BasicBlock *SuccessorBB = CurLoop->getExitBlock(); | ||||||
| 2719 | assert(SuccessorBB && "There is only a single successor.")(static_cast <bool> (SuccessorBB && "There is only a single successor." ) ? void (0) : __assert_fail ("SuccessorBB && \"There is only a single successor.\"" , "llvm/lib/Transforms/Scalar/LoopIdiomRecognize.cpp", 2719, __extension__ __PRETTY_FUNCTION__)); | ||||||
| 2720 | |||||||
| 2721 | IRBuilder<> Builder(LoopPreheaderBB->getTerminator()); | ||||||
| 2722 | Builder.SetCurrentDebugLocation(IV->getDebugLoc()); | ||||||
| 2723 | |||||||
| 2724 | Type *Ty = Val->getType(); | ||||||
| 2725 | unsigned Bitwidth = Ty->getScalarSizeInBits(); | ||||||
| 2726 | |||||||
| 2727 | TargetTransformInfo::TargetCostKind CostKind = | ||||||
| 2728 | TargetTransformInfo::TCK_SizeAndLatency; | ||||||
| 2729 | |||||||
| 2730 | // The rewrite is considered to be unprofitable iff and only iff the | ||||||
| 2731 | // intrinsic we'll use are not cheap. Note that we are okay with *just* | ||||||
| 2732 | // making the loop countable, even if nothing else changes. | ||||||
| 2733 | IntrinsicCostAttributes Attrs( | ||||||
| 2734 | IntrID, Ty, {UndefValue::get(Ty), /*is_zero_undef=*/Builder.getFalse()}); | ||||||
| 2735 | InstructionCost Cost = TTI->getIntrinsicInstrCost(Attrs, CostKind); | ||||||
| 2736 | if (Cost > TargetTransformInfo::TCC_Basic) { | ||||||
| 2737 | LLVM_DEBUG(dbgs() << DEBUG_TYPEdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Intrinsic is too costly, not beneficial\n" ; } } while (false) | ||||||
| 2738 | " Intrinsic is too costly, not beneficial\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " Intrinsic is too costly, not beneficial\n" ; } } while (false); | ||||||
| 2739 | return MadeChange; | ||||||
| 2740 | } | ||||||
| 2741 | |||||||
| 2742 | // Ok, transform appears worthwhile. | ||||||
| 2743 | MadeChange = true; | ||||||
| 2744 | |||||||
| 2745 | bool OffsetIsZero = false; | ||||||
| 2746 | if (auto *ExtraOffsetExprC = dyn_cast<SCEVConstant>(ExtraOffsetExpr)) | ||||||
| 2747 | OffsetIsZero = ExtraOffsetExprC->isZero(); | ||||||
| 2748 | |||||||
| 2749 | // Step 1: Compute the loop's final IV value / trip count. | ||||||
| 2750 | |||||||
| 2751 | CallInst *ValNumLeadingZeros = Builder.CreateIntrinsic( | ||||||
| 2752 | IntrID, Ty, {Val, /*is_zero_undef=*/Builder.getFalse()}, | ||||||
| 2753 | /*FMFSource=*/nullptr, Val->getName() + ".numleadingzeros"); | ||||||
| 2754 | Value *ValNumActiveBits = Builder.CreateSub( | ||||||
| 2755 | ConstantInt::get(Ty, Ty->getScalarSizeInBits()), ValNumLeadingZeros, | ||||||
| 2756 | Val->getName() + ".numactivebits", /*HasNUW=*/true, | ||||||
| 2757 | /*HasNSW=*/Bitwidth != 2); | ||||||
| 2758 | |||||||
| 2759 | SCEVExpander Expander(*SE, *DL, "loop-idiom"); | ||||||
| 2760 | Expander.setInsertPoint(&*Builder.GetInsertPoint()); | ||||||
| 2761 | Value *ExtraOffset = Expander.expandCodeFor(ExtraOffsetExpr); | ||||||
| 2762 | |||||||
| 2763 | Value *ValNumActiveBitsOffset = Builder.CreateAdd( | ||||||
| 2764 | ValNumActiveBits, ExtraOffset, ValNumActiveBits->getName() + ".offset", | ||||||
| 2765 | /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true); | ||||||
| 2766 | Value *IVFinal = Builder.CreateIntrinsic(Intrinsic::smax, {Ty}, | ||||||
| 2767 | {ValNumActiveBitsOffset, Start}, | ||||||
| 2768 | /*FMFSource=*/nullptr, "iv.final"); | ||||||
| 2769 | |||||||
| 2770 | auto *LoopBackedgeTakenCount = cast<Instruction>(Builder.CreateSub( | ||||||
| 2771 | IVFinal, Start, CurLoop->getName() + ".backedgetakencount", | ||||||
| 2772 | /*HasNUW=*/OffsetIsZero, /*HasNSW=*/true)); | ||||||
| 2773 | // FIXME: or when the offset was `add nuw` | ||||||
| 2774 | |||||||
| 2775 | // We know loop's backedge-taken count, but what's loop's trip count? | ||||||
| 2776 | Value *LoopTripCount = | ||||||
| 2777 | Builder.CreateAdd(LoopBackedgeTakenCount, ConstantInt::get(Ty, 1), | ||||||
| 2778 | CurLoop->getName() + ".tripcount", /*HasNUW=*/true, | ||||||
| 2779 | /*HasNSW=*/Bitwidth != 2); | ||||||
| 2780 | |||||||
| 2781 | // Step 2: Adjust the successor basic block to recieve the original | ||||||
| 2782 | // induction variable's final value instead of the orig. IV itself. | ||||||
| 2783 | |||||||
| 2784 | IV->replaceUsesOutsideBlock(IVFinal, LoopHeaderBB); | ||||||
| 2785 | |||||||
| 2786 | // Step 3: Rewrite the loop into a countable form, with canonical IV. | ||||||
| 2787 | |||||||
| 2788 | // The new canonical induction variable. | ||||||
| 2789 | Builder.SetInsertPoint(&LoopHeaderBB->front()); | ||||||
| 2790 | auto *CIV = Builder.CreatePHI(Ty, 2, CurLoop->getName() + ".iv"); | ||||||
| 2791 | |||||||
| 2792 | // The induction itself. | ||||||
| 2793 | Builder.SetInsertPoint(LoopHeaderBB->getFirstNonPHI()); | ||||||
| 2794 | auto *CIVNext = | ||||||
| 2795 | Builder.CreateAdd(CIV, ConstantInt::get(Ty, 1), CIV->getName() + ".next", | ||||||
| 2796 | /*HasNUW=*/true, /*HasNSW=*/Bitwidth != 2); | ||||||
| 2797 | |||||||
| 2798 | // The loop trip count check. | ||||||
| 2799 | auto *CIVCheck = Builder.CreateICmpEQ(CIVNext, LoopTripCount, | ||||||
| 2800 | CurLoop->getName() + ".ivcheck"); | ||||||
| 2801 | auto *NewIVCheck = CIVCheck; | ||||||
| 2802 | if (InvertedCond) { | ||||||
| 2803 | NewIVCheck = Builder.CreateNot(CIVCheck); | ||||||
| 2804 | NewIVCheck->takeName(ValShiftedIsZero); | ||||||
| 2805 | } | ||||||
| 2806 | |||||||
| 2807 | // The original IV, but rebased to be an offset to the CIV. | ||||||
| 2808 | auto *IVDePHId = Builder.CreateAdd(CIV, Start, "", /*HasNUW=*/false, | ||||||
| 2809 | /*HasNSW=*/true); // FIXME: what about NUW? | ||||||
| 2810 | IVDePHId->takeName(IV); | ||||||
| 2811 | |||||||
| 2812 | // The loop terminator. | ||||||
| 2813 | Builder.SetInsertPoint(LoopHeaderBB->getTerminator()); | ||||||
| 2814 | Builder.CreateCondBr(CIVCheck, SuccessorBB, LoopHeaderBB); | ||||||
| 2815 | LoopHeaderBB->getTerminator()->eraseFromParent(); | ||||||
| 2816 | |||||||
| 2817 | // Populate the IV PHI. | ||||||
| 2818 | CIV->addIncoming(ConstantInt::get(Ty, 0), LoopPreheaderBB); | ||||||
| 2819 | CIV->addIncoming(CIVNext, LoopHeaderBB); | ||||||
| 2820 | |||||||
| 2821 | // Step 4: Forget the "non-computable" trip-count SCEV associated with the | ||||||
| 2822 | // loop. The loop would otherwise not be deleted even if it becomes empty. | ||||||
| 2823 | |||||||
| 2824 | SE->forgetLoop(CurLoop); | ||||||
| 2825 | |||||||
| 2826 | // Step 5: Try to cleanup the loop's body somewhat. | ||||||
| 2827 | IV->replaceAllUsesWith(IVDePHId); | ||||||
| 2828 | IV->eraseFromParent(); | ||||||
| 2829 | |||||||
| 2830 | ValShiftedIsZero->replaceAllUsesWith(NewIVCheck); | ||||||
| 2831 | ValShiftedIsZero->eraseFromParent(); | ||||||
| 2832 | |||||||
| 2833 | // Other passes will take care of actually deleting the loop if possible. | ||||||
| 2834 | |||||||
| 2835 | LLVM_DEBUG(dbgs() << DEBUG_TYPE " shift-until-zero idiom optimized!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-idiom")) { dbgs() << "loop-idiom" " shift-until-zero idiom optimized!\n" ; } } while (false); | ||||||
| 2836 | |||||||
| 2837 | ++NumShiftUntilZero; | ||||||
| 2838 | return MadeChange; | ||||||
| 2839 | } |