Bug Summary

File:build/source/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
Warning:line 5598, column 22
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name LoopStrengthReduce.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Transforms/Scalar -I /build/source/llvm/lib/Transforms/Scalar -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -source-date-epoch 1680607027 -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-04-04-200003-16331-1 -x c++ /build/source/llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp
1//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This transformation analyzes and transforms the induction variables (and
10// computations derived from them) into forms suitable for efficient execution
11// on the target.
12//
13// This pass performs a strength reduction on array references inside loops that
14// have as one or more of their components the loop induction variable, it
15// rewrites expressions to take advantage of scaled-index addressing modes
16// available on the target, and it performs a variety of other optimizations
17// related to loop induction variables.
18//
19// Terminology note: this code has a lot of handling for "post-increment" or
20// "post-inc" users. This is not talking about post-increment addressing modes;
21// it is instead talking about code like this:
22//
23// %i = phi [ 0, %entry ], [ %i.next, %latch ]
24// ...
25// %i.next = add %i, 1
26// %c = icmp eq %i.next, %n
27//
28// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
29// it's useful to think about these as the same register, with some uses using
30// the value of the register before the add and some using it after. In this
31// example, the icmp is a post-increment user, since it uses %i.next, which is
32// the value of the induction variable after the increment. The other common
33// case of post-increment users is users outside the loop.
34//
35// TODO: More sophistication in the way Formulae are generated and filtered.
36//
37// TODO: Handle multiple loops at a time.
38//
39// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
40// of a GlobalValue?
41//
42// TODO: When truncation is free, truncate ICmp users' operands to make it a
43// smaller encoding (on x86 at least).
44//
45// TODO: When a negated register is used by an add (such as in a list of
46// multiple base registers, or as the increment expression in an addrec),
47// we may not actually need both reg and (-1 * reg) in registers; the
48// negation can be implemented by using a sub instead of an add. The
49// lack of support for taking this into consideration when making
50// register pressure decisions is partly worked around by the "Special"
51// use kind.
52//
53//===----------------------------------------------------------------------===//
54
55#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
56#include "llvm/ADT/APInt.h"
57#include "llvm/ADT/DenseMap.h"
58#include "llvm/ADT/DenseSet.h"
59#include "llvm/ADT/Hashing.h"
60#include "llvm/ADT/PointerIntPair.h"
61#include "llvm/ADT/STLExtras.h"
62#include "llvm/ADT/SetVector.h"
63#include "llvm/ADT/SmallBitVector.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/SmallSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/Statistic.h"
68#include "llvm/ADT/iterator_range.h"
69#include "llvm/Analysis/AssumptionCache.h"
70#include "llvm/Analysis/IVUsers.h"
71#include "llvm/Analysis/LoopAnalysisManager.h"
72#include "llvm/Analysis/LoopInfo.h"
73#include "llvm/Analysis/LoopPass.h"
74#include "llvm/Analysis/MemorySSA.h"
75#include "llvm/Analysis/MemorySSAUpdater.h"
76#include "llvm/Analysis/ScalarEvolution.h"
77#include "llvm/Analysis/ScalarEvolutionExpressions.h"
78#include "llvm/Analysis/ScalarEvolutionNormalization.h"
79#include "llvm/Analysis/TargetLibraryInfo.h"
80#include "llvm/Analysis/TargetTransformInfo.h"
81#include "llvm/Analysis/ValueTracking.h"
82#include "llvm/BinaryFormat/Dwarf.h"
83#include "llvm/Config/llvm-config.h"
84#include "llvm/IR/BasicBlock.h"
85#include "llvm/IR/Constant.h"
86#include "llvm/IR/Constants.h"
87#include "llvm/IR/DebugInfoMetadata.h"
88#include "llvm/IR/DerivedTypes.h"
89#include "llvm/IR/Dominators.h"
90#include "llvm/IR/GlobalValue.h"
91#include "llvm/IR/IRBuilder.h"
92#include "llvm/IR/InstrTypes.h"
93#include "llvm/IR/Instruction.h"
94#include "llvm/IR/Instructions.h"
95#include "llvm/IR/IntrinsicInst.h"
96#include "llvm/IR/Module.h"
97#include "llvm/IR/Operator.h"
98#include "llvm/IR/PassManager.h"
99#include "llvm/IR/Type.h"
100#include "llvm/IR/Use.h"
101#include "llvm/IR/User.h"
102#include "llvm/IR/Value.h"
103#include "llvm/IR/ValueHandle.h"
104#include "llvm/InitializePasses.h"
105#include "llvm/Pass.h"
106#include "llvm/Support/Casting.h"
107#include "llvm/Support/CommandLine.h"
108#include "llvm/Support/Compiler.h"
109#include "llvm/Support/Debug.h"
110#include "llvm/Support/ErrorHandling.h"
111#include "llvm/Support/MathExtras.h"
112#include "llvm/Support/raw_ostream.h"
113#include "llvm/Transforms/Scalar.h"
114#include "llvm/Transforms/Utils.h"
115#include "llvm/Transforms/Utils/BasicBlockUtils.h"
116#include "llvm/Transforms/Utils/Local.h"
117#include "llvm/Transforms/Utils/LoopUtils.h"
118#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
119#include <algorithm>
120#include <cassert>
121#include <cstddef>
122#include <cstdint>
123#include <iterator>
124#include <limits>
125#include <map>
126#include <numeric>
127#include <optional>
128#include <utility>
129
130using namespace llvm;
131
132#define DEBUG_TYPE"loop-reduce" "loop-reduce"
133
134/// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
135/// bail out. This threshold is far beyond the number of users that LSR can
136/// conceivably solve, so it should not affect generated code, but catches the
137/// worst cases before LSR burns too much compile time and stack space.
138static const unsigned MaxIVUsers = 200;
139
140/// Limit the size of expression that SCEV-based salvaging will attempt to
141/// translate into a DIExpression.
142/// Choose a maximum size such that debuginfo is not excessively increased and
143/// the salvaging is not too expensive for the compiler.
144static const unsigned MaxSCEVSalvageExpressionSize = 64;
145
146// Cleanup congruent phis after LSR phi expansion.
147static cl::opt<bool> EnablePhiElim(
148 "enable-lsr-phielim", cl::Hidden, cl::init(true),
149 cl::desc("Enable LSR phi elimination"));
150
151// The flag adds instruction count to solutions cost comparison.
152static cl::opt<bool> InsnsCost(
153 "lsr-insns-cost", cl::Hidden, cl::init(true),
154 cl::desc("Add instruction count to a LSR cost model"));
155
156// Flag to choose how to narrow complex lsr solution
157static cl::opt<bool> LSRExpNarrow(
158 "lsr-exp-narrow", cl::Hidden, cl::init(false),
159 cl::desc("Narrow LSR complex solution using"
160 " expectation of registers number"));
161
162// Flag to narrow search space by filtering non-optimal formulae with
163// the same ScaledReg and Scale.
164static cl::opt<bool> FilterSameScaledReg(
165 "lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
166 cl::desc("Narrow LSR search space by filtering non-optimal formulae"
167 " with the same ScaledReg and Scale"));
168
169static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
170 "lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
171 cl::desc("A flag that overrides the target's preferred addressing mode."),
172 cl::values(clEnumValN(TTI::AMK_None,llvm::cl::OptionEnumValue { "none", int(TTI::AMK_None), "Don't prefer any addressing mode"
}
173 "none",llvm::cl::OptionEnumValue { "none", int(TTI::AMK_None), "Don't prefer any addressing mode"
}
174 "Don't prefer any addressing mode")llvm::cl::OptionEnumValue { "none", int(TTI::AMK_None), "Don't prefer any addressing mode"
}
,
175 clEnumValN(TTI::AMK_PreIndexed,llvm::cl::OptionEnumValue { "preindexed", int(TTI::AMK_PreIndexed
), "Prefer pre-indexed addressing mode" }
176 "preindexed",llvm::cl::OptionEnumValue { "preindexed", int(TTI::AMK_PreIndexed
), "Prefer pre-indexed addressing mode" }
177 "Prefer pre-indexed addressing mode")llvm::cl::OptionEnumValue { "preindexed", int(TTI::AMK_PreIndexed
), "Prefer pre-indexed addressing mode" }
,
178 clEnumValN(TTI::AMK_PostIndexed,llvm::cl::OptionEnumValue { "postindexed", int(TTI::AMK_PostIndexed
), "Prefer post-indexed addressing mode" }
179 "postindexed",llvm::cl::OptionEnumValue { "postindexed", int(TTI::AMK_PostIndexed
), "Prefer post-indexed addressing mode" }
180 "Prefer post-indexed addressing mode")llvm::cl::OptionEnumValue { "postindexed", int(TTI::AMK_PostIndexed
), "Prefer post-indexed addressing mode" }
));
181
182static cl::opt<unsigned> ComplexityLimit(
183 "lsr-complexity-limit", cl::Hidden,
184 cl::init(std::numeric_limits<uint16_t>::max()),
185 cl::desc("LSR search space complexity limit"));
186
187static cl::opt<unsigned> SetupCostDepthLimit(
188 "lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
189 cl::desc("The limit on recursion depth for LSRs setup cost"));
190
191static cl::opt<bool> AllowTerminatingConditionFoldingAfterLSR(
192 "lsr-term-fold", cl::Hidden, cl::init(false),
193 cl::desc("Attempt to replace primary IV with other IV."));
194
195static cl::opt<bool> AllowDropSolutionIfLessProfitable(
196 "lsr-drop-solution", cl::Hidden, cl::init(false),
197 cl::desc("Attempt to drop solution if it is less profitable"));
198
199STATISTIC(NumTermFold,static llvm::Statistic NumTermFold = {"loop-reduce", "NumTermFold"
, "Number of terminating condition fold recognized and performed"
}
200 "Number of terminating condition fold recognized and performed")static llvm::Statistic NumTermFold = {"loop-reduce", "NumTermFold"
, "Number of terminating condition fold recognized and performed"
}
;
201
202#ifndef NDEBUG
203// Stress test IV chain generation.
204static cl::opt<bool> StressIVChain(
205 "stress-ivchain", cl::Hidden, cl::init(false),
206 cl::desc("Stress test LSR IV chains"));
207#else
208static bool StressIVChain = false;
209#endif
210
211namespace {
212
213struct MemAccessTy {
214 /// Used in situations where the accessed memory type is unknown.
215 static const unsigned UnknownAddressSpace =
216 std::numeric_limits<unsigned>::max();
217
218 Type *MemTy = nullptr;
219 unsigned AddrSpace = UnknownAddressSpace;
220
221 MemAccessTy() = default;
222 MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
223
224 bool operator==(MemAccessTy Other) const {
225 return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
226 }
227
228 bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
229
230 static MemAccessTy getUnknown(LLVMContext &Ctx,
231 unsigned AS = UnknownAddressSpace) {
232 return MemAccessTy(Type::getVoidTy(Ctx), AS);
233 }
234
235 Type *getType() { return MemTy; }
236};
237
238/// This class holds data which is used to order reuse candidates.
239class RegSortData {
240public:
241 /// This represents the set of LSRUse indices which reference
242 /// a particular register.
243 SmallBitVector UsedByIndices;
244
245 void print(raw_ostream &OS) const;
246 void dump() const;
247};
248
249} // end anonymous namespace
250
251#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
252void RegSortData::print(raw_ostream &OS) const {
253 OS << "[NumUses=" << UsedByIndices.count() << ']';
254}
255
256LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void RegSortData::dump() const {
257 print(errs()); errs() << '\n';
258}
259#endif
260
261namespace {
262
263/// Map register candidates to information about how they are used.
264class RegUseTracker {
265 using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
266
267 RegUsesTy RegUsesMap;
268 SmallVector<const SCEV *, 16> RegSequence;
269
270public:
271 void countRegister(const SCEV *Reg, size_t LUIdx);
272 void dropRegister(const SCEV *Reg, size_t LUIdx);
273 void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
274
275 bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
276
277 const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
278
279 void clear();
280
281 using iterator = SmallVectorImpl<const SCEV *>::iterator;
282 using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
283
284 iterator begin() { return RegSequence.begin(); }
285 iterator end() { return RegSequence.end(); }
286 const_iterator begin() const { return RegSequence.begin(); }
287 const_iterator end() const { return RegSequence.end(); }
288};
289
290} // end anonymous namespace
291
292void
293RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
294 std::pair<RegUsesTy::iterator, bool> Pair =
295 RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
296 RegSortData &RSD = Pair.first->second;
297 if (Pair.second)
298 RegSequence.push_back(Reg);
299 RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
300 RSD.UsedByIndices.set(LUIdx);
301}
302
303void
304RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
305 RegUsesTy::iterator It = RegUsesMap.find(Reg);
306 assert(It != RegUsesMap.end())(static_cast <bool> (It != RegUsesMap.end()) ? void (0)
: __assert_fail ("It != RegUsesMap.end()", "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp"
, 306, __extension__ __PRETTY_FUNCTION__))
;
307 RegSortData &RSD = It->second;
308 assert(RSD.UsedByIndices.size() > LUIdx)(static_cast <bool> (RSD.UsedByIndices.size() > LUIdx
) ? void (0) : __assert_fail ("RSD.UsedByIndices.size() > LUIdx"
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 308, __extension__
__PRETTY_FUNCTION__))
;
309 RSD.UsedByIndices.reset(LUIdx);
310}
311
312void
313RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
314 assert(LUIdx <= LastLUIdx)(static_cast <bool> (LUIdx <= LastLUIdx) ? void (0) :
__assert_fail ("LUIdx <= LastLUIdx", "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp"
, 314, __extension__ __PRETTY_FUNCTION__))
;
315
316 // Update RegUses. The data structure is not optimized for this purpose;
317 // we must iterate through it and update each of the bit vectors.
318 for (auto &Pair : RegUsesMap) {
319 SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
320 if (LUIdx < UsedByIndices.size())
321 UsedByIndices[LUIdx] =
322 LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
323 UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
324 }
325}
326
327bool
328RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
329 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
330 if (I == RegUsesMap.end())
331 return false;
332 const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
333 int i = UsedByIndices.find_first();
334 if (i == -1) return false;
335 if ((size_t)i != LUIdx) return true;
336 return UsedByIndices.find_next(i) != -1;
337}
338
339const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
340 RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
341 assert(I != RegUsesMap.end() && "Unknown register!")(static_cast <bool> (I != RegUsesMap.end() && "Unknown register!"
) ? void (0) : __assert_fail ("I != RegUsesMap.end() && \"Unknown register!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 341, __extension__
__PRETTY_FUNCTION__))
;
342 return I->second.UsedByIndices;
343}
344
345void RegUseTracker::clear() {
346 RegUsesMap.clear();
347 RegSequence.clear();
348}
349
350namespace {
351
352/// This class holds information that describes a formula for computing
353/// satisfying a use. It may include broken-out immediates and scaled registers.
354struct Formula {
355 /// Global base address used for complex addressing.
356 GlobalValue *BaseGV = nullptr;
357
358 /// Base offset for complex addressing.
359 int64_t BaseOffset = 0;
360
361 /// Whether any complex addressing has a base register.
362 bool HasBaseReg = false;
363
364 /// The scale of any complex addressing.
365 int64_t Scale = 0;
366
367 /// The list of "base" registers for this use. When this is non-empty. The
368 /// canonical representation of a formula is
369 /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
370 /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
371 /// 3. The reg containing recurrent expr related with currect loop in the
372 /// formula should be put in the ScaledReg.
373 /// #1 enforces that the scaled register is always used when at least two
374 /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
375 /// #2 enforces that 1 * reg is reg.
376 /// #3 ensures invariant regs with respect to current loop can be combined
377 /// together in LSR codegen.
378 /// This invariant can be temporarily broken while building a formula.
379 /// However, every formula inserted into the LSRInstance must be in canonical
380 /// form.
381 SmallVector<const SCEV *, 4> BaseRegs;
382
383 /// The 'scaled' register for this use. This should be non-null when Scale is
384 /// not zero.
385 const SCEV *ScaledReg = nullptr;
386
387 /// An additional constant offset which added near the use. This requires a
388 /// temporary register, but the offset itself can live in an add immediate
389 /// field rather than a register.
390 int64_t UnfoldedOffset = 0;
391
392 Formula() = default;
393
394 void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
395
396 bool isCanonical(const Loop &L) const;
397
398 void canonicalize(const Loop &L);
399
400 bool unscale();
401
402 bool hasZeroEnd() const;
403
404 size_t getNumRegs() const;
405 Type *getType() const;
406
407 void deleteBaseReg(const SCEV *&S);
408
409 bool referencesReg(const SCEV *S) const;
410 bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
411 const RegUseTracker &RegUses) const;
412
413 void print(raw_ostream &OS) const;
414 void dump() const;
415};
416
417} // end anonymous namespace
418
419/// Recursion helper for initialMatch.
420static void DoInitialMatch(const SCEV *S, Loop *L,
421 SmallVectorImpl<const SCEV *> &Good,
422 SmallVectorImpl<const SCEV *> &Bad,
423 ScalarEvolution &SE) {
424 // Collect expressions which properly dominate the loop header.
425 if (SE.properlyDominates(S, L->getHeader())) {
426 Good.push_back(S);
427 return;
428 }
429
430 // Look at add operands.
431 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
432 for (const SCEV *S : Add->operands())
433 DoInitialMatch(S, L, Good, Bad, SE);
434 return;
435 }
436
437 // Look at addrec operands.
438 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
439 if (!AR->getStart()->isZero() && AR->isAffine()) {
440 DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
441 DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
442 AR->getStepRecurrence(SE),
443 // FIXME: AR->getNoWrapFlags()
444 AR->getLoop(), SCEV::FlagAnyWrap),
445 L, Good, Bad, SE);
446 return;
447 }
448
449 // Handle a multiplication by -1 (negation) if it didn't fold.
450 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
451 if (Mul->getOperand(0)->isAllOnesValue()) {
452 SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
453 const SCEV *NewMul = SE.getMulExpr(Ops);
454
455 SmallVector<const SCEV *, 4> MyGood;
456 SmallVector<const SCEV *, 4> MyBad;
457 DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
458 const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
459 SE.getEffectiveSCEVType(NewMul->getType())));
460 for (const SCEV *S : MyGood)
461 Good.push_back(SE.getMulExpr(NegOne, S));
462 for (const SCEV *S : MyBad)
463 Bad.push_back(SE.getMulExpr(NegOne, S));
464 return;
465 }
466
467 // Ok, we can't do anything interesting. Just stuff the whole thing into a
468 // register and hope for the best.
469 Bad.push_back(S);
470}
471
472/// Incorporate loop-variant parts of S into this Formula, attempting to keep
473/// all loop-invariant and loop-computable values in a single base register.
474void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
475 SmallVector<const SCEV *, 4> Good;
476 SmallVector<const SCEV *, 4> Bad;
477 DoInitialMatch(S, L, Good, Bad, SE);
478 if (!Good.empty()) {
479 const SCEV *Sum = SE.getAddExpr(Good);
480 if (!Sum->isZero())
481 BaseRegs.push_back(Sum);
482 HasBaseReg = true;
483 }
484 if (!Bad.empty()) {
485 const SCEV *Sum = SE.getAddExpr(Bad);
486 if (!Sum->isZero())
487 BaseRegs.push_back(Sum);
488 HasBaseReg = true;
489 }
490 canonicalize(*L);
491}
492
493static bool containsAddRecDependentOnLoop(const SCEV *S, const Loop &L) {
494 return SCEVExprContains(S, [&L](const SCEV *S) {
495 return isa<SCEVAddRecExpr>(S) && (cast<SCEVAddRecExpr>(S)->getLoop() == &L);
496 });
497}
498
499/// Check whether or not this formula satisfies the canonical
500/// representation.
501/// \see Formula::BaseRegs.
502bool Formula::isCanonical(const Loop &L) const {
503 if (!ScaledReg)
504 return BaseRegs.size() <= 1;
505
506 if (Scale != 1)
507 return true;
508
509 if (Scale == 1 && BaseRegs.empty())
510 return false;
511
512 if (containsAddRecDependentOnLoop(ScaledReg, L))
513 return true;
514
515 // If ScaledReg is not a recurrent expr, or it is but its loop is not current
516 // loop, meanwhile BaseRegs contains a recurrent expr reg related with current
517 // loop, we want to swap the reg in BaseRegs with ScaledReg.
518 return none_of(BaseRegs, [&L](const SCEV *S) {
519 return containsAddRecDependentOnLoop(S, L);
520 });
521}
522
523/// Helper method to morph a formula into its canonical representation.
524/// \see Formula::BaseRegs.
525/// Every formula having more than one base register, must use the ScaledReg
526/// field. Otherwise, we would have to do special cases everywhere in LSR
527/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
528/// On the other hand, 1*reg should be canonicalized into reg.
529void Formula::canonicalize(const Loop &L) {
530 if (isCanonical(L))
531 return;
532
533 if (BaseRegs.empty()) {
534 // No base reg? Use scale reg with scale = 1 as such.
535 assert(ScaledReg && "Expected 1*reg => reg")(static_cast <bool> (ScaledReg && "Expected 1*reg => reg"
) ? void (0) : __assert_fail ("ScaledReg && \"Expected 1*reg => reg\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 535, __extension__
__PRETTY_FUNCTION__))
;
536 assert(Scale == 1 && "Expected 1*reg => reg")(static_cast <bool> (Scale == 1 && "Expected 1*reg => reg"
) ? void (0) : __assert_fail ("Scale == 1 && \"Expected 1*reg => reg\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 536, __extension__
__PRETTY_FUNCTION__))
;
537 BaseRegs.push_back(ScaledReg);
538 Scale = 0;
539 ScaledReg = nullptr;
540 return;
541 }
542
543 // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
544 if (!ScaledReg) {
545 ScaledReg = BaseRegs.pop_back_val();
546 Scale = 1;
547 }
548
549 // If ScaledReg is an invariant with respect to L, find the reg from
550 // BaseRegs containing the recurrent expr related with Loop L. Swap the
551 // reg with ScaledReg.
552 if (!containsAddRecDependentOnLoop(ScaledReg, L)) {
553 auto I = find_if(BaseRegs, [&L](const SCEV *S) {
554 return containsAddRecDependentOnLoop(S, L);
555 });
556 if (I != BaseRegs.end())
557 std::swap(ScaledReg, *I);
558 }
559 assert(isCanonical(L) && "Failed to canonicalize?")(static_cast <bool> (isCanonical(L) && "Failed to canonicalize?"
) ? void (0) : __assert_fail ("isCanonical(L) && \"Failed to canonicalize?\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 559, __extension__
__PRETTY_FUNCTION__))
;
560}
561
562/// Get rid of the scale in the formula.
563/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
564/// \return true if it was possible to get rid of the scale, false otherwise.
565/// \note After this operation the formula may not be in the canonical form.
566bool Formula::unscale() {
567 if (Scale != 1)
568 return false;
569 Scale = 0;
570 BaseRegs.push_back(ScaledReg);
571 ScaledReg = nullptr;
572 return true;
573}
574
575bool Formula::hasZeroEnd() const {
576 if (UnfoldedOffset || BaseOffset)
577 return false;
578 if (BaseRegs.size() != 1 || ScaledReg)
579 return false;
580 return true;
581}
582
583/// Return the total number of register operands used by this formula. This does
584/// not include register uses implied by non-constant addrec strides.
585size_t Formula::getNumRegs() const {
586 return !!ScaledReg + BaseRegs.size();
587}
588
589/// Return the type of this formula, if it has one, or null otherwise. This type
590/// is meaningless except for the bit size.
591Type *Formula::getType() const {
592 return !BaseRegs.empty() ? BaseRegs.front()->getType() :
593 ScaledReg ? ScaledReg->getType() :
594 BaseGV ? BaseGV->getType() :
595 nullptr;
596}
597
598/// Delete the given base reg from the BaseRegs list.
599void Formula::deleteBaseReg(const SCEV *&S) {
600 if (&S != &BaseRegs.back())
601 std::swap(S, BaseRegs.back());
602 BaseRegs.pop_back();
603}
604
605/// Test if this formula references the given register.
606bool Formula::referencesReg(const SCEV *S) const {
607 return S == ScaledReg || is_contained(BaseRegs, S);
608}
609
610/// Test whether this formula uses registers which are used by uses other than
611/// the use with the given index.
612bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
613 const RegUseTracker &RegUses) const {
614 if (ScaledReg)
615 if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
616 return true;
617 for (const SCEV *BaseReg : BaseRegs)
618 if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
619 return true;
620 return false;
621}
622
623#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
624void Formula::print(raw_ostream &OS) const {
625 bool First = true;
626 if (BaseGV) {
627 if (!First) OS << " + "; else First = false;
628 BaseGV->printAsOperand(OS, /*PrintType=*/false);
629 }
630 if (BaseOffset != 0) {
631 if (!First) OS << " + "; else First = false;
632 OS << BaseOffset;
633 }
634 for (const SCEV *BaseReg : BaseRegs) {
635 if (!First) OS << " + "; else First = false;
636 OS << "reg(" << *BaseReg << ')';
637 }
638 if (HasBaseReg && BaseRegs.empty()) {
639 if (!First) OS << " + "; else First = false;
640 OS << "**error: HasBaseReg**";
641 } else if (!HasBaseReg && !BaseRegs.empty()) {
642 if (!First) OS << " + "; else First = false;
643 OS << "**error: !HasBaseReg**";
644 }
645 if (Scale != 0) {
646 if (!First) OS << " + "; else First = false;
647 OS << Scale << "*reg(";
648 if (ScaledReg)
649 OS << *ScaledReg;
650 else
651 OS << "<unknown>";
652 OS << ')';
653 }
654 if (UnfoldedOffset != 0) {
655 if (!First) OS << " + ";
656 OS << "imm(" << UnfoldedOffset << ')';
657 }
658}
659
660LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void Formula::dump() const {
661 print(errs()); errs() << '\n';
662}
663#endif
664
665/// Return true if the given addrec can be sign-extended without changing its
666/// value.
667static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
668 Type *WideTy =
669 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
670 return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
671}
672
673/// Return true if the given add can be sign-extended without changing its
674/// value.
675static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
676 Type *WideTy =
677 IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
678 return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
679}
680
681/// Return true if the given mul can be sign-extended without changing its
682/// value.
683static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
684 Type *WideTy =
685 IntegerType::get(SE.getContext(),
686 SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
687 return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
688}
689
690/// Return an expression for LHS /s RHS, if it can be determined and if the
691/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
692/// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
693/// the multiplication may overflow, which is useful when the result will be
694/// used in a context where the most significant bits are ignored.
695static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
696 ScalarEvolution &SE,
697 bool IgnoreSignificantBits = false) {
698 // Handle the trivial case, which works for any SCEV type.
699 if (LHS == RHS)
700 return SE.getConstant(LHS->getType(), 1);
701
702 // Handle a few RHS special cases.
703 const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
704 if (RC) {
705 const APInt &RA = RC->getAPInt();
706 // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
707 // some folding.
708 if (RA.isAllOnes()) {
709 if (LHS->getType()->isPointerTy())
710 return nullptr;
711 return SE.getMulExpr(LHS, RC);
712 }
713 // Handle x /s 1 as x.
714 if (RA == 1)
715 return LHS;
716 }
717
718 // Check for a division of a constant by a constant.
719 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
720 if (!RC)
721 return nullptr;
722 const APInt &LA = C->getAPInt();
723 const APInt &RA = RC->getAPInt();
724 if (LA.srem(RA) != 0)
725 return nullptr;
726 return SE.getConstant(LA.sdiv(RA));
727 }
728
729 // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
730 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
731 if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
732 const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
733 IgnoreSignificantBits);
734 if (!Step) return nullptr;
735 const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
736 IgnoreSignificantBits);
737 if (!Start) return nullptr;
738 // FlagNW is independent of the start value, step direction, and is
739 // preserved with smaller magnitude steps.
740 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
741 return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
742 }
743 return nullptr;
744 }
745
746 // Distribute the sdiv over add operands, if the add doesn't overflow.
747 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
748 if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
749 SmallVector<const SCEV *, 8> Ops;
750 for (const SCEV *S : Add->operands()) {
751 const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
752 if (!Op) return nullptr;
753 Ops.push_back(Op);
754 }
755 return SE.getAddExpr(Ops);
756 }
757 return nullptr;
758 }
759
760 // Check for a multiply operand that we can pull RHS out of.
761 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
762 if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
763 // Handle special case C1*X*Y /s C2*X*Y.
764 if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
765 if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
766 const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
767 const SCEVConstant *RC =
768 dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
769 if (LC && RC) {
770 SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
771 SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
772 if (LOps == ROps)
773 return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
774 }
775 }
776 }
777
778 SmallVector<const SCEV *, 4> Ops;
779 bool Found = false;
780 for (const SCEV *S : Mul->operands()) {
781 if (!Found)
782 if (const SCEV *Q = getExactSDiv(S, RHS, SE,
783 IgnoreSignificantBits)) {
784 S = Q;
785 Found = true;
786 }
787 Ops.push_back(S);
788 }
789 return Found ? SE.getMulExpr(Ops) : nullptr;
790 }
791 return nullptr;
792 }
793
794 // Otherwise we don't know.
795 return nullptr;
796}
797
798/// If S involves the addition of a constant integer value, return that integer
799/// value, and mutate S to point to a new SCEV with that value excluded.
800static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
801 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
802 if (C->getAPInt().getSignificantBits() <= 64) {
803 S = SE.getConstant(C->getType(), 0);
804 return C->getValue()->getSExtValue();
805 }
806 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
807 SmallVector<const SCEV *, 8> NewOps(Add->operands());
808 int64_t Result = ExtractImmediate(NewOps.front(), SE);
809 if (Result != 0)
810 S = SE.getAddExpr(NewOps);
811 return Result;
812 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
813 SmallVector<const SCEV *, 8> NewOps(AR->operands());
814 int64_t Result = ExtractImmediate(NewOps.front(), SE);
815 if (Result != 0)
816 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
817 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
818 SCEV::FlagAnyWrap);
819 return Result;
820 }
821 return 0;
822}
823
824/// If S involves the addition of a GlobalValue address, return that symbol, and
825/// mutate S to point to a new SCEV with that value excluded.
826static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
827 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
828 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
829 S = SE.getConstant(GV->getType(), 0);
830 return GV;
831 }
832 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
833 SmallVector<const SCEV *, 8> NewOps(Add->operands());
834 GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
835 if (Result)
836 S = SE.getAddExpr(NewOps);
837 return Result;
838 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
839 SmallVector<const SCEV *, 8> NewOps(AR->operands());
840 GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
841 if (Result)
842 S = SE.getAddRecExpr(NewOps, AR->getLoop(),
843 // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
844 SCEV::FlagAnyWrap);
845 return Result;
846 }
847 return nullptr;
848}
849
850/// Returns true if the specified instruction is using the specified value as an
851/// address.
852static bool isAddressUse(const TargetTransformInfo &TTI,
853 Instruction *Inst, Value *OperandVal) {
854 bool isAddress = isa<LoadInst>(Inst);
855 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
856 if (SI->getPointerOperand() == OperandVal)
857 isAddress = true;
858 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
859 // Addressing modes can also be folded into prefetches and a variety
860 // of intrinsics.
861 switch (II->getIntrinsicID()) {
862 case Intrinsic::memset:
863 case Intrinsic::prefetch:
864 case Intrinsic::masked_load:
865 if (II->getArgOperand(0) == OperandVal)
866 isAddress = true;
867 break;
868 case Intrinsic::masked_store:
869 if (II->getArgOperand(1) == OperandVal)
870 isAddress = true;
871 break;
872 case Intrinsic::memmove:
873 case Intrinsic::memcpy:
874 if (II->getArgOperand(0) == OperandVal ||
875 II->getArgOperand(1) == OperandVal)
876 isAddress = true;
877 break;
878 default: {
879 MemIntrinsicInfo IntrInfo;
880 if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
881 if (IntrInfo.PtrVal == OperandVal)
882 isAddress = true;
883 }
884 }
885 }
886 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
887 if (RMW->getPointerOperand() == OperandVal)
888 isAddress = true;
889 } else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
890 if (CmpX->getPointerOperand() == OperandVal)
891 isAddress = true;
892 }
893 return isAddress;
894}
895
896/// Return the type of the memory being accessed.
897static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
898 Instruction *Inst, Value *OperandVal) {
899 MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
900 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
901 AccessTy.MemTy = SI->getOperand(0)->getType();
902 AccessTy.AddrSpace = SI->getPointerAddressSpace();
903 } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
904 AccessTy.AddrSpace = LI->getPointerAddressSpace();
905 } else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
906 AccessTy.AddrSpace = RMW->getPointerAddressSpace();
907 } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
908 AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
909 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
910 switch (II->getIntrinsicID()) {
911 case Intrinsic::prefetch:
912 case Intrinsic::memset:
913 AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
914 AccessTy.MemTy = OperandVal->getType();
915 break;
916 case Intrinsic::memmove:
917 case Intrinsic::memcpy:
918 AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
919 AccessTy.MemTy = OperandVal->getType();
920 break;
921 case Intrinsic::masked_load:
922 AccessTy.AddrSpace =
923 II->getArgOperand(0)->getType()->getPointerAddressSpace();
924 break;
925 case Intrinsic::masked_store:
926 AccessTy.MemTy = II->getOperand(0)->getType();
927 AccessTy.AddrSpace =
928 II->getArgOperand(1)->getType()->getPointerAddressSpace();
929 break;
930 default: {
931 MemIntrinsicInfo IntrInfo;
932 if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
933 AccessTy.AddrSpace
934 = IntrInfo.PtrVal->getType()->getPointerAddressSpace();
935 }
936
937 break;
938 }
939 }
940 }
941
942 // All pointers have the same requirements, so canonicalize them to an
943 // arbitrary pointer type to minimize variation.
944 if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
945 AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
946 PTy->getAddressSpace());
947
948 return AccessTy;
949}
950
951/// Return true if this AddRec is already a phi in its loop.
952static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
953 for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
954 if (SE.isSCEVable(PN.getType()) &&
955 (SE.getEffectiveSCEVType(PN.getType()) ==
956 SE.getEffectiveSCEVType(AR->getType())) &&
957 SE.getSCEV(&PN) == AR)
958 return true;
959 }
960 return false;
961}
962
963/// Check if expanding this expression is likely to incur significant cost. This
964/// is tricky because SCEV doesn't track which expressions are actually computed
965/// by the current IR.
966///
967/// We currently allow expansion of IV increments that involve adds,
968/// multiplication by constants, and AddRecs from existing phis.
969///
970/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
971/// obvious multiple of the UDivExpr.
972static bool isHighCostExpansion(const SCEV *S,
973 SmallPtrSetImpl<const SCEV*> &Processed,
974 ScalarEvolution &SE) {
975 // Zero/One operand expressions
976 switch (S->getSCEVType()) {
977 case scUnknown:
978 case scConstant:
979 case scVScale:
980 return false;
981 case scTruncate:
982 return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
983 Processed, SE);
984 case scZeroExtend:
985 return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
986 Processed, SE);
987 case scSignExtend:
988 return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
989 Processed, SE);
990 default:
991 break;
992 }
993
994 if (!Processed.insert(S).second)
995 return false;
996
997 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
998 for (const SCEV *S : Add->operands()) {
999 if (isHighCostExpansion(S, Processed, SE))
1000 return true;
1001 }
1002 return false;
1003 }
1004
1005 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
1006 if (Mul->getNumOperands() == 2) {
1007 // Multiplication by a constant is ok
1008 if (isa<SCEVConstant>(Mul->getOperand(0)))
1009 return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
1010
1011 // If we have the value of one operand, check if an existing
1012 // multiplication already generates this expression.
1013 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
1014 Value *UVal = U->getValue();
1015 for (User *UR : UVal->users()) {
1016 // If U is a constant, it may be used by a ConstantExpr.
1017 Instruction *UI = dyn_cast<Instruction>(UR);
1018 if (UI && UI->getOpcode() == Instruction::Mul &&
1019 SE.isSCEVable(UI->getType())) {
1020 return SE.getSCEV(UI) == Mul;
1021 }
1022 }
1023 }
1024 }
1025 }
1026
1027 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
1028 if (isExistingPhi(AR, SE))
1029 return false;
1030 }
1031
1032 // Fow now, consider any other type of expression (div/mul/min/max) high cost.
1033 return true;
1034}
1035
1036namespace {
1037
1038class LSRUse;
1039
1040} // end anonymous namespace
1041
1042/// Check if the addressing mode defined by \p F is completely
1043/// folded in \p LU at isel time.
1044/// This includes address-mode folding and special icmp tricks.
1045/// This function returns true if \p LU can accommodate what \p F
1046/// defines and up to 1 base + 1 scaled + offset.
1047/// In other words, if \p F has several base registers, this function may
1048/// still return true. Therefore, users still need to account for
1049/// additional base registers and/or unfolded offsets to derive an
1050/// accurate cost model.
1051static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1052 const LSRUse &LU, const Formula &F);
1053
1054// Get the cost of the scaling factor used in F for LU.
1055static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1056 const LSRUse &LU, const Formula &F,
1057 const Loop &L);
1058
1059namespace {
1060
1061/// This class is used to measure and compare candidate formulae.
1062class Cost {
1063 const Loop *L = nullptr;
1064 ScalarEvolution *SE = nullptr;
1065 const TargetTransformInfo *TTI = nullptr;
1066 TargetTransformInfo::LSRCost C;
1067 TTI::AddressingModeKind AMK = TTI::AMK_None;
1068
1069public:
1070 Cost() = delete;
1071 Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
1072 TTI::AddressingModeKind AMK) :
1073 L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
1074 C.Insns = 0;
1075 C.NumRegs = 0;
1076 C.AddRecCost = 0;
1077 C.NumIVMuls = 0;
1078 C.NumBaseAdds = 0;
1079 C.ImmCost = 0;
1080 C.SetupCost = 0;
1081 C.ScaleCost = 0;
1082 }
1083
1084 bool isLess(const Cost &Other) const;
1085
1086 void Lose();
1087
1088#ifndef NDEBUG
1089 // Once any of the metrics loses, they must all remain losers.
1090 bool isValid() {
1091 return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
1092 | C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
1093 || ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
1094 & C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
1095 }
1096#endif
1097
1098 bool isLoser() {
1099 assert(isValid() && "invalid cost")(static_cast <bool> (isValid() && "invalid cost"
) ? void (0) : __assert_fail ("isValid() && \"invalid cost\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 1099, __extension__
__PRETTY_FUNCTION__))
;
1100 return C.NumRegs == ~0u;
1101 }
1102
1103 void RateFormula(const Formula &F,
1104 SmallPtrSetImpl<const SCEV *> &Regs,
1105 const DenseSet<const SCEV *> &VisitedRegs,
1106 const LSRUse &LU,
1107 SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
1108
1109 void print(raw_ostream &OS) const;
1110 void dump() const;
1111
1112private:
1113 void RateRegister(const Formula &F, const SCEV *Reg,
1114 SmallPtrSetImpl<const SCEV *> &Regs);
1115 void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1116 SmallPtrSetImpl<const SCEV *> &Regs,
1117 SmallPtrSetImpl<const SCEV *> *LoserRegs);
1118};
1119
1120/// An operand value in an instruction which is to be replaced with some
1121/// equivalent, possibly strength-reduced, replacement.
1122struct LSRFixup {
1123 /// The instruction which will be updated.
1124 Instruction *UserInst = nullptr;
1125
1126 /// The operand of the instruction which will be replaced. The operand may be
1127 /// used more than once; every instance will be replaced.
1128 Value *OperandValToReplace = nullptr;
1129
1130 /// If this user is to use the post-incremented value of an induction
1131 /// variable, this set is non-empty and holds the loops associated with the
1132 /// induction variable.
1133 PostIncLoopSet PostIncLoops;
1134
1135 /// A constant offset to be added to the LSRUse expression. This allows
1136 /// multiple fixups to share the same LSRUse with different offsets, for
1137 /// example in an unrolled loop.
1138 int64_t Offset = 0;
1139
1140 LSRFixup() = default;
1141
1142 bool isUseFullyOutsideLoop(const Loop *L) const;
1143
1144 void print(raw_ostream &OS) const;
1145 void dump() const;
1146};
1147
1148/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
1149/// SmallVectors of const SCEV*.
1150struct UniquifierDenseMapInfo {
1151 static SmallVector<const SCEV *, 4> getEmptyKey() {
1152 SmallVector<const SCEV *, 4> V;
1153 V.push_back(reinterpret_cast<const SCEV *>(-1));
1154 return V;
1155 }
1156
1157 static SmallVector<const SCEV *, 4> getTombstoneKey() {
1158 SmallVector<const SCEV *, 4> V;
1159 V.push_back(reinterpret_cast<const SCEV *>(-2));
1160 return V;
1161 }
1162
1163 static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
1164 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1165 }
1166
1167 static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
1168 const SmallVector<const SCEV *, 4> &RHS) {
1169 return LHS == RHS;
1170 }
1171};
1172
1173/// This class holds the state that LSR keeps for each use in IVUsers, as well
1174/// as uses invented by LSR itself. It includes information about what kinds of
1175/// things can be folded into the user, information about the user itself, and
1176/// information about how the use may be satisfied. TODO: Represent multiple
1177/// users of the same expression in common?
1178class LSRUse {
1179 DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
1180
1181public:
1182 /// An enum for a kind of use, indicating what types of scaled and immediate
1183 /// operands it might support.
1184 enum KindType {
1185 Basic, ///< A normal use, with no folding.
1186 Special, ///< A special case of basic, allowing -1 scales.
1187 Address, ///< An address use; folding according to TargetLowering
1188 ICmpZero ///< An equality icmp with both operands folded into one.
1189 // TODO: Add a generic icmp too?
1190 };
1191
1192 using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
1193
1194 KindType Kind;
1195 MemAccessTy AccessTy;
1196
1197 /// The list of operands which are to be replaced.
1198 SmallVector<LSRFixup, 8> Fixups;
1199
1200 /// Keep track of the min and max offsets of the fixups.
1201 int64_t MinOffset = std::numeric_limits<int64_t>::max();
1202 int64_t MaxOffset = std::numeric_limits<int64_t>::min();
1203
1204 /// This records whether all of the fixups using this LSRUse are outside of
1205 /// the loop, in which case some special-case heuristics may be used.
1206 bool AllFixupsOutsideLoop = true;
1207
1208 /// RigidFormula is set to true to guarantee that this use will be associated
1209 /// with a single formula--the one that initially matched. Some SCEV
1210 /// expressions cannot be expanded. This allows LSR to consider the registers
1211 /// used by those expressions without the need to expand them later after
1212 /// changing the formula.
1213 bool RigidFormula = false;
1214
1215 /// This records the widest use type for any fixup using this
1216 /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
1217 /// fixup widths to be equivalent, because the narrower one may be relying on
1218 /// the implicit truncation to truncate away bogus bits.
1219 Type *WidestFixupType = nullptr;
1220
1221 /// A list of ways to build a value that can satisfy this user. After the
1222 /// list is populated, one of these is selected heuristically and used to
1223 /// formulate a replacement for OperandValToReplace in UserInst.
1224 SmallVector<Formula, 12> Formulae;
1225
1226 /// The set of register candidates used by all formulae in this LSRUse.
1227 SmallPtrSet<const SCEV *, 4> Regs;
1228
1229 LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
1230
1231 LSRFixup &getNewFixup() {
1232 Fixups.push_back(LSRFixup());
1233 return Fixups.back();
1234 }
1235
1236 void pushFixup(LSRFixup &f) {
1237 Fixups.push_back(f);
1238 if (f.Offset > MaxOffset)
1239 MaxOffset = f.Offset;
1240 if (f.Offset < MinOffset)
1241 MinOffset = f.Offset;
1242 }
1243
1244 bool HasFormulaWithSameRegs(const Formula &F) const;
1245 float getNotSelectedProbability(const SCEV *Reg) const;
1246 bool InsertFormula(const Formula &F, const Loop &L);
1247 void DeleteFormula(Formula &F);
1248 void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
1249
1250 void print(raw_ostream &OS) const;
1251 void dump() const;
1252};
1253
1254} // end anonymous namespace
1255
1256static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1257 LSRUse::KindType Kind, MemAccessTy AccessTy,
1258 GlobalValue *BaseGV, int64_t BaseOffset,
1259 bool HasBaseReg, int64_t Scale,
1260 Instruction *Fixup = nullptr);
1261
1262static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
1263 if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
1264 return 1;
1265 if (Depth == 0)
1266 return 0;
1267 if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
1268 return getSetupCost(S->getStart(), Depth - 1);
1269 if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
1270 return getSetupCost(S->getOperand(), Depth - 1);
1271 if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
1272 return std::accumulate(S->operands().begin(), S->operands().end(), 0,
1273 [&](unsigned i, const SCEV *Reg) {
1274 return i + getSetupCost(Reg, Depth - 1);
1275 });
1276 if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
1277 return getSetupCost(S->getLHS(), Depth - 1) +
1278 getSetupCost(S->getRHS(), Depth - 1);
1279 return 0;
1280}
1281
1282/// Tally up interesting quantities from the given register.
1283void Cost::RateRegister(const Formula &F, const SCEV *Reg,
1284 SmallPtrSetImpl<const SCEV *> &Regs) {
1285 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
1286 // If this is an addrec for another loop, it should be an invariant
1287 // with respect to L since L is the innermost loop (at least
1288 // for now LSR only handles innermost loops).
1289 if (AR->getLoop() != L) {
1290 // If the AddRec exists, consider it's register free and leave it alone.
1291 if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
1292 return;
1293
1294 // It is bad to allow LSR for current loop to add induction variables
1295 // for its sibling loops.
1296 if (!AR->getLoop()->contains(L)) {
1297 Lose();
1298 return;
1299 }
1300
1301 // Otherwise, it will be an invariant with respect to Loop L.
1302 ++C.NumRegs;
1303 return;
1304 }
1305
1306 unsigned LoopCost = 1;
1307 if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
1308 TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
1309
1310 // If the step size matches the base offset, we could use pre-indexed
1311 // addressing.
1312 if (AMK == TTI::AMK_PreIndexed) {
1313 if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
1314 if (Step->getAPInt() == F.BaseOffset)
1315 LoopCost = 0;
1316 } else if (AMK == TTI::AMK_PostIndexed) {
1317 const SCEV *LoopStep = AR->getStepRecurrence(*SE);
1318 if (isa<SCEVConstant>(LoopStep)) {
1319 const SCEV *LoopStart = AR->getStart();
1320 if (!isa<SCEVConstant>(LoopStart) &&
1321 SE->isLoopInvariant(LoopStart, L))
1322 LoopCost = 0;
1323 }
1324 }
1325 }
1326 C.AddRecCost += LoopCost;
1327
1328 // Add the step value register, if it needs one.
1329 // TODO: The non-affine case isn't precisely modeled here.
1330 if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
1331 if (!Regs.count(AR->getOperand(1))) {
1332 RateRegister(F, AR->getOperand(1), Regs);
1333 if (isLoser())
1334 return;
1335 }
1336 }
1337 }
1338 ++C.NumRegs;
1339
1340 // Rough heuristic; favor registers which don't require extra setup
1341 // instructions in the preheader.
1342 C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
1343 // Ensure we don't, even with the recusion limit, produce invalid costs.
1344 C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
1345
1346 C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
1347 SE->hasComputableLoopEvolution(Reg, L);
1348}
1349
1350/// Record this register in the set. If we haven't seen it before, rate
1351/// it. Optional LoserRegs provides a way to declare any formula that refers to
1352/// one of those regs an instant loser.
1353void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
1354 SmallPtrSetImpl<const SCEV *> &Regs,
1355 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1356 if (LoserRegs && LoserRegs->count(Reg)) {
1357 Lose();
1358 return;
1359 }
1360 if (Regs.insert(Reg).second) {
1361 RateRegister(F, Reg, Regs);
1362 if (LoserRegs && isLoser())
1363 LoserRegs->insert(Reg);
1364 }
1365}
1366
1367void Cost::RateFormula(const Formula &F,
1368 SmallPtrSetImpl<const SCEV *> &Regs,
1369 const DenseSet<const SCEV *> &VisitedRegs,
1370 const LSRUse &LU,
1371 SmallPtrSetImpl<const SCEV *> *LoserRegs) {
1372 if (isLoser())
1373 return;
1374 assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula")(static_cast <bool> (F.isCanonical(*L) && "Cost is accurate only for canonical formula"
) ? void (0) : __assert_fail ("F.isCanonical(*L) && \"Cost is accurate only for canonical formula\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 1374, __extension__
__PRETTY_FUNCTION__))
;
1375 // Tally up the registers.
1376 unsigned PrevAddRecCost = C.AddRecCost;
1377 unsigned PrevNumRegs = C.NumRegs;
1378 unsigned PrevNumBaseAdds = C.NumBaseAdds;
1379 if (const SCEV *ScaledReg = F.ScaledReg) {
1380 if (VisitedRegs.count(ScaledReg)) {
1381 Lose();
1382 return;
1383 }
1384 RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
1385 if (isLoser())
1386 return;
1387 }
1388 for (const SCEV *BaseReg : F.BaseRegs) {
1389 if (VisitedRegs.count(BaseReg)) {
1390 Lose();
1391 return;
1392 }
1393 RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
1394 if (isLoser())
1395 return;
1396 }
1397
1398 // Determine how many (unfolded) adds we'll need inside the loop.
1399 size_t NumBaseParts = F.getNumRegs();
1400 if (NumBaseParts > 1)
1401 // Do not count the base and a possible second register if the target
1402 // allows to fold 2 registers.
1403 C.NumBaseAdds +=
1404 NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
1405 C.NumBaseAdds += (F.UnfoldedOffset != 0);
1406
1407 // Accumulate non-free scaling amounts.
1408 C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
1409
1410 // Tally up the non-zero immediates.
1411 for (const LSRFixup &Fixup : LU.Fixups) {
1412 int64_t O = Fixup.Offset;
1413 int64_t Offset = (uint64_t)O + F.BaseOffset;
1414 if (F.BaseGV)
1415 C.ImmCost += 64; // Handle symbolic values conservatively.
1416 // TODO: This should probably be the pointer size.
1417 else if (Offset != 0)
1418 C.ImmCost += APInt(64, Offset, true).getSignificantBits();
1419
1420 // Check with target if this offset with this instruction is
1421 // specifically not supported.
1422 if (LU.Kind == LSRUse::Address && Offset != 0 &&
1423 !isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1424 Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
1425 C.NumBaseAdds++;
1426 }
1427
1428 // If we don't count instruction cost exit here.
1429 if (!InsnsCost) {
1430 assert(isValid() && "invalid cost")(static_cast <bool> (isValid() && "invalid cost"
) ? void (0) : __assert_fail ("isValid() && \"invalid cost\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 1430, __extension__
__PRETTY_FUNCTION__))
;
1431 return;
1432 }
1433
1434 // Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
1435 // additional instruction (at least fill).
1436 // TODO: Need distinguish register class?
1437 unsigned TTIRegNum = TTI->getNumberOfRegisters(
1438 TTI->getRegisterClassForType(false, F.getType())) - 1;
1439 if (C.NumRegs > TTIRegNum) {
1440 // Cost already exceeded TTIRegNum, then only newly added register can add
1441 // new instructions.
1442 if (PrevNumRegs > TTIRegNum)
1443 C.Insns += (C.NumRegs - PrevNumRegs);
1444 else
1445 C.Insns += (C.NumRegs - TTIRegNum);
1446 }
1447
1448 // If ICmpZero formula ends with not 0, it could not be replaced by
1449 // just add or sub. We'll need to compare final result of AddRec.
1450 // That means we'll need an additional instruction. But if the target can
1451 // macro-fuse a compare with a branch, don't count this extra instruction.
1452 // For -10 + {0, +, 1}:
1453 // i = i + 1;
1454 // cmp i, 10
1455 //
1456 // For {-10, +, 1}:
1457 // i = i + 1;
1458 if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
1459 !TTI->canMacroFuseCmp())
1460 C.Insns++;
1461 // Each new AddRec adds 1 instruction to calculation.
1462 C.Insns += (C.AddRecCost - PrevAddRecCost);
1463
1464 // BaseAdds adds instructions for unfolded registers.
1465 if (LU.Kind != LSRUse::ICmpZero)
1466 C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
1467 assert(isValid() && "invalid cost")(static_cast <bool> (isValid() && "invalid cost"
) ? void (0) : __assert_fail ("isValid() && \"invalid cost\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 1467, __extension__
__PRETTY_FUNCTION__))
;
1468}
1469
1470/// Set this cost to a losing value.
1471void Cost::Lose() {
1472 C.Insns = std::numeric_limits<unsigned>::max();
1473 C.NumRegs = std::numeric_limits<unsigned>::max();
1474 C.AddRecCost = std::numeric_limits<unsigned>::max();
1475 C.NumIVMuls = std::numeric_limits<unsigned>::max();
1476 C.NumBaseAdds = std::numeric_limits<unsigned>::max();
1477 C.ImmCost = std::numeric_limits<unsigned>::max();
1478 C.SetupCost = std::numeric_limits<unsigned>::max();
1479 C.ScaleCost = std::numeric_limits<unsigned>::max();
1480}
1481
1482/// Choose the lower cost.
1483bool Cost::isLess(const Cost &Other) const {
1484 if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
1485 C.Insns != Other.C.Insns)
1486 return C.Insns < Other.C.Insns;
1487 return TTI->isLSRCostLess(C, Other.C);
1488}
1489
1490#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1491void Cost::print(raw_ostream &OS) const {
1492 if (InsnsCost)
1493 OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
1494 OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
1495 if (C.AddRecCost != 0)
1496 OS << ", with addrec cost " << C.AddRecCost;
1497 if (C.NumIVMuls != 0)
1498 OS << ", plus " << C.NumIVMuls << " IV mul"
1499 << (C.NumIVMuls == 1 ? "" : "s");
1500 if (C.NumBaseAdds != 0)
1501 OS << ", plus " << C.NumBaseAdds << " base add"
1502 << (C.NumBaseAdds == 1 ? "" : "s");
1503 if (C.ScaleCost != 0)
1504 OS << ", plus " << C.ScaleCost << " scale cost";
1505 if (C.ImmCost != 0)
1506 OS << ", plus " << C.ImmCost << " imm cost";
1507 if (C.SetupCost != 0)
1508 OS << ", plus " << C.SetupCost << " setup cost";
1509}
1510
1511LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void Cost::dump() const {
1512 print(errs()); errs() << '\n';
1513}
1514#endif
1515
1516/// Test whether this fixup always uses its value outside of the given loop.
1517bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
1518 // PHI nodes use their value in their incoming blocks.
1519 if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
1520 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1521 if (PN->getIncomingValue(i) == OperandValToReplace &&
1522 L->contains(PN->getIncomingBlock(i)))
1523 return false;
1524 return true;
1525 }
1526
1527 return !L->contains(UserInst);
1528}
1529
1530#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1531void LSRFixup::print(raw_ostream &OS) const {
1532 OS << "UserInst=";
1533 // Store is common and interesting enough to be worth special-casing.
1534 if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
1535 OS << "store ";
1536 Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
1537 } else if (UserInst->getType()->isVoidTy())
1538 OS << UserInst->getOpcodeName();
1539 else
1540 UserInst->printAsOperand(OS, /*PrintType=*/false);
1541
1542 OS << ", OperandValToReplace=";
1543 OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
1544
1545 for (const Loop *PIL : PostIncLoops) {
1546 OS << ", PostIncLoop=";
1547 PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
1548 }
1549
1550 if (Offset != 0)
1551 OS << ", Offset=" << Offset;
1552}
1553
1554LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LSRFixup::dump() const {
1555 print(errs()); errs() << '\n';
1556}
1557#endif
1558
1559/// Test whether this use as a formula which has the same registers as the given
1560/// formula.
1561bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
1562 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1563 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1564 // Unstable sort by host order ok, because this is only used for uniquifying.
1565 llvm::sort(Key);
1566 return Uniquifier.count(Key);
1567}
1568
1569/// The function returns a probability of selecting formula without Reg.
1570float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
1571 unsigned FNum = 0;
1572 for (const Formula &F : Formulae)
1573 if (F.referencesReg(Reg))
1574 FNum++;
1575 return ((float)(Formulae.size() - FNum)) / Formulae.size();
1576}
1577
1578/// If the given formula has not yet been inserted, add it to the list, and
1579/// return true. Return false otherwise. The formula must be in canonical form.
1580bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
1581 assert(F.isCanonical(L) && "Invalid canonical representation")(static_cast <bool> (F.isCanonical(L) && "Invalid canonical representation"
) ? void (0) : __assert_fail ("F.isCanonical(L) && \"Invalid canonical representation\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 1581, __extension__
__PRETTY_FUNCTION__))
;
1582
1583 if (!Formulae.empty() && RigidFormula)
1584 return false;
1585
1586 SmallVector<const SCEV *, 4> Key = F.BaseRegs;
1587 if (F.ScaledReg) Key.push_back(F.ScaledReg);
1588 // Unstable sort by host order ok, because this is only used for uniquifying.
1589 llvm::sort(Key);
1590
1591 if (!Uniquifier.insert(Key).second)
1592 return false;
1593
1594 // Using a register to hold the value of 0 is not profitable.
1595 assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&(static_cast <bool> ((!F.ScaledReg || !F.ScaledReg->
isZero()) && "Zero allocated in a scaled register!") ?
void (0) : __assert_fail ("(!F.ScaledReg || !F.ScaledReg->isZero()) && \"Zero allocated in a scaled register!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 1596, __extension__
__PRETTY_FUNCTION__))
1596 "Zero allocated in a scaled register!")(static_cast <bool> ((!F.ScaledReg || !F.ScaledReg->
isZero()) && "Zero allocated in a scaled register!") ?
void (0) : __assert_fail ("(!F.ScaledReg || !F.ScaledReg->isZero()) && \"Zero allocated in a scaled register!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 1596, __extension__
__PRETTY_FUNCTION__))
;
1597#ifndef NDEBUG
1598 for (const SCEV *BaseReg : F.BaseRegs)
1599 assert(!BaseReg->isZero() && "Zero allocated in a base register!")(static_cast <bool> (!BaseReg->isZero() && "Zero allocated in a base register!"
) ? void (0) : __assert_fail ("!BaseReg->isZero() && \"Zero allocated in a base register!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 1599, __extension__
__PRETTY_FUNCTION__))
;
1600#endif
1601
1602 // Add the formula to the list.
1603 Formulae.push_back(F);
1604
1605 // Record registers now being used by this use.
1606 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1607 if (F.ScaledReg)
1608 Regs.insert(F.ScaledReg);
1609
1610 return true;
1611}
1612
1613/// Remove the given formula from this use's list.
1614void LSRUse::DeleteFormula(Formula &F) {
1615 if (&F != &Formulae.back())
1616 std::swap(F, Formulae.back());
1617 Formulae.pop_back();
1618}
1619
1620/// Recompute the Regs field, and update RegUses.
1621void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
1622 // Now that we've filtered out some formulae, recompute the Regs set.
1623 SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
1624 Regs.clear();
1625 for (const Formula &F : Formulae) {
1626 if (F.ScaledReg) Regs.insert(F.ScaledReg);
1627 Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
1628 }
1629
1630 // Update the RegTracker.
1631 for (const SCEV *S : OldRegs)
1632 if (!Regs.count(S))
1633 RegUses.dropRegister(S, LUIdx);
1634}
1635
1636#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1637void LSRUse::print(raw_ostream &OS) const {
1638 OS << "LSR Use: Kind=";
1639 switch (Kind) {
1640 case Basic: OS << "Basic"; break;
1641 case Special: OS << "Special"; break;
1642 case ICmpZero: OS << "ICmpZero"; break;
1643 case Address:
1644 OS << "Address of ";
1645 if (AccessTy.MemTy->isPointerTy())
1646 OS << "pointer"; // the full pointer type could be really verbose
1647 else {
1648 OS << *AccessTy.MemTy;
1649 }
1650
1651 OS << " in addrspace(" << AccessTy.AddrSpace << ')';
1652 }
1653
1654 OS << ", Offsets={";
1655 bool NeedComma = false;
1656 for (const LSRFixup &Fixup : Fixups) {
1657 if (NeedComma) OS << ',';
1658 OS << Fixup.Offset;
1659 NeedComma = true;
1660 }
1661 OS << '}';
1662
1663 if (AllFixupsOutsideLoop)
1664 OS << ", all-fixups-outside-loop";
1665
1666 if (WidestFixupType)
1667 OS << ", widest fixup type: " << *WidestFixupType;
1668}
1669
1670LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LSRUse::dump() const {
1671 print(errs()); errs() << '\n';
1672}
1673#endif
1674
1675static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1676 LSRUse::KindType Kind, MemAccessTy AccessTy,
1677 GlobalValue *BaseGV, int64_t BaseOffset,
1678 bool HasBaseReg, int64_t Scale,
1679 Instruction *Fixup/*= nullptr*/) {
1680 switch (Kind) {
1681 case LSRUse::Address:
1682 return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
1683 HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
1684
1685 case LSRUse::ICmpZero:
1686 // There's not even a target hook for querying whether it would be legal to
1687 // fold a GV into an ICmp.
1688 if (BaseGV)
1689 return false;
1690
1691 // ICmp only has two operands; don't allow more than two non-trivial parts.
1692 if (Scale != 0 && HasBaseReg && BaseOffset != 0)
1693 return false;
1694
1695 // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
1696 // putting the scaled register in the other operand of the icmp.
1697 if (Scale != 0 && Scale != -1)
1698 return false;
1699
1700 // If we have low-level target information, ask the target if it can fold an
1701 // integer immediate on an icmp.
1702 if (BaseOffset != 0) {
1703 // We have one of:
1704 // ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
1705 // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
1706 // Offs is the ICmp immediate.
1707 if (Scale == 0)
1708 // The cast does the right thing with
1709 // std::numeric_limits<int64_t>::min().
1710 BaseOffset = -(uint64_t)BaseOffset;
1711 return TTI.isLegalICmpImmediate(BaseOffset);
1712 }
1713
1714 // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
1715 return true;
1716
1717 case LSRUse::Basic:
1718 // Only handle single-register values.
1719 return !BaseGV && Scale == 0 && BaseOffset == 0;
1720
1721 case LSRUse::Special:
1722 // Special case Basic to handle -1 scales.
1723 return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
1724 }
1725
1726 llvm_unreachable("Invalid LSRUse Kind!")::llvm::llvm_unreachable_internal("Invalid LSRUse Kind!", "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp"
, 1726)
;
1727}
1728
1729static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1730 int64_t MinOffset, int64_t MaxOffset,
1731 LSRUse::KindType Kind, MemAccessTy AccessTy,
1732 GlobalValue *BaseGV, int64_t BaseOffset,
1733 bool HasBaseReg, int64_t Scale) {
1734 // Check for overflow.
1735 if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
1736 (MinOffset > 0))
1737 return false;
1738 MinOffset = (uint64_t)BaseOffset + MinOffset;
1739 if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
1740 (MaxOffset > 0))
1741 return false;
1742 MaxOffset = (uint64_t)BaseOffset + MaxOffset;
1743
1744 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
1745 HasBaseReg, Scale) &&
1746 isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
1747 HasBaseReg, Scale);
1748}
1749
1750static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1751 int64_t MinOffset, int64_t MaxOffset,
1752 LSRUse::KindType Kind, MemAccessTy AccessTy,
1753 const Formula &F, const Loop &L) {
1754 // For the purpose of isAMCompletelyFolded either having a canonical formula
1755 // or a scale not equal to zero is correct.
1756 // Problems may arise from non canonical formulae having a scale == 0.
1757 // Strictly speaking it would best to just rely on canonical formulae.
1758 // However, when we generate the scaled formulae, we first check that the
1759 // scaling factor is profitable before computing the actual ScaledReg for
1760 // compile time sake.
1761 assert((F.isCanonical(L) || F.Scale != 0))(static_cast <bool> ((F.isCanonical(L) || F.Scale != 0)
) ? void (0) : __assert_fail ("(F.isCanonical(L) || F.Scale != 0)"
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 1761, __extension__
__PRETTY_FUNCTION__))
;
1762 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1763 F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
1764}
1765
1766/// Test whether we know how to expand the current formula.
1767static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1768 int64_t MaxOffset, LSRUse::KindType Kind,
1769 MemAccessTy AccessTy, GlobalValue *BaseGV,
1770 int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
1771 // We know how to expand completely foldable formulae.
1772 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1773 BaseOffset, HasBaseReg, Scale) ||
1774 // Or formulae that use a base register produced by a sum of base
1775 // registers.
1776 (Scale == 1 &&
1777 isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
1778 BaseGV, BaseOffset, true, 0));
1779}
1780
1781static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
1782 int64_t MaxOffset, LSRUse::KindType Kind,
1783 MemAccessTy AccessTy, const Formula &F) {
1784 return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
1785 F.BaseOffset, F.HasBaseReg, F.Scale);
1786}
1787
1788static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
1789 const LSRUse &LU, const Formula &F) {
1790 // Target may want to look at the user instructions.
1791 if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
1792 for (const LSRFixup &Fixup : LU.Fixups)
1793 if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
1794 (F.BaseOffset + Fixup.Offset), F.HasBaseReg,
1795 F.Scale, Fixup.UserInst))
1796 return false;
1797 return true;
1798 }
1799
1800 return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1801 LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
1802 F.Scale);
1803}
1804
1805static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
1806 const LSRUse &LU, const Formula &F,
1807 const Loop &L) {
1808 if (!F.Scale)
1809 return 0;
1810
1811 // If the use is not completely folded in that instruction, we will have to
1812 // pay an extra cost only for scale != 1.
1813 if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
1814 LU.AccessTy, F, L))
1815 return F.Scale != 1;
1816
1817 switch (LU.Kind) {
1818 case LSRUse::Address: {
1819 // Check the scaling factor cost with both the min and max offsets.
1820 InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
1821 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
1822 F.Scale, LU.AccessTy.AddrSpace);
1823 InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
1824 LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
1825 F.Scale, LU.AccessTy.AddrSpace);
1826
1827 assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&(static_cast <bool> (ScaleCostMinOffset.isValid() &&
ScaleCostMaxOffset.isValid() && "Legal addressing mode has an illegal cost!"
) ? void (0) : __assert_fail ("ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && \"Legal addressing mode has an illegal cost!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 1828, __extension__
__PRETTY_FUNCTION__))
1828 "Legal addressing mode has an illegal cost!")(static_cast <bool> (ScaleCostMinOffset.isValid() &&
ScaleCostMaxOffset.isValid() && "Legal addressing mode has an illegal cost!"
) ? void (0) : __assert_fail ("ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() && \"Legal addressing mode has an illegal cost!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 1828, __extension__
__PRETTY_FUNCTION__))
;
1829 return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
1830 }
1831 case LSRUse::ICmpZero:
1832 case LSRUse::Basic:
1833 case LSRUse::Special:
1834 // The use is completely folded, i.e., everything is folded into the
1835 // instruction.
1836 return 0;
1837 }
1838
1839 llvm_unreachable("Invalid LSRUse Kind!")::llvm::llvm_unreachable_internal("Invalid LSRUse Kind!", "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp"
, 1839)
;
1840}
1841
1842static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1843 LSRUse::KindType Kind, MemAccessTy AccessTy,
1844 GlobalValue *BaseGV, int64_t BaseOffset,
1845 bool HasBaseReg) {
1846 // Fast-path: zero is always foldable.
1847 if (BaseOffset == 0 && !BaseGV) return true;
1848
1849 // Conservatively, create an address with an immediate and a
1850 // base and a scale.
1851 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1852
1853 // Canonicalize a scale of 1 to a base register if the formula doesn't
1854 // already have a base register.
1855 if (!HasBaseReg && Scale == 1) {
1856 Scale = 0;
1857 HasBaseReg = true;
1858 }
1859
1860 return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
1861 HasBaseReg, Scale);
1862}
1863
1864static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
1865 ScalarEvolution &SE, int64_t MinOffset,
1866 int64_t MaxOffset, LSRUse::KindType Kind,
1867 MemAccessTy AccessTy, const SCEV *S,
1868 bool HasBaseReg) {
1869 // Fast-path: zero is always foldable.
1870 if (S->isZero()) return true;
1871
1872 // Conservatively, create an address with an immediate and a
1873 // base and a scale.
1874 int64_t BaseOffset = ExtractImmediate(S, SE);
1875 GlobalValue *BaseGV = ExtractSymbol(S, SE);
1876
1877 // If there's anything else involved, it's not foldable.
1878 if (!S->isZero()) return false;
1879
1880 // Fast-path: zero is always foldable.
1881 if (BaseOffset == 0 && !BaseGV) return true;
1882
1883 // Conservatively, create an address with an immediate and a
1884 // base and a scale.
1885 int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
1886
1887 return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
1888 BaseOffset, HasBaseReg, Scale);
1889}
1890
1891namespace {
1892
1893/// An individual increment in a Chain of IV increments. Relate an IV user to
1894/// an expression that computes the IV it uses from the IV used by the previous
1895/// link in the Chain.
1896///
1897/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
1898/// original IVOperand. The head of the chain's IVOperand is only valid during
1899/// chain collection, before LSR replaces IV users. During chain generation,
1900/// IncExpr can be used to find the new IVOperand that computes the same
1901/// expression.
1902struct IVInc {
1903 Instruction *UserInst;
1904 Value* IVOperand;
1905 const SCEV *IncExpr;
1906
1907 IVInc(Instruction *U, Value *O, const SCEV *E)
1908 : UserInst(U), IVOperand(O), IncExpr(E) {}
1909};
1910
1911// The list of IV increments in program order. We typically add the head of a
1912// chain without finding subsequent links.
1913struct IVChain {
1914 SmallVector<IVInc, 1> Incs;
1915 const SCEV *ExprBase = nullptr;
1916
1917 IVChain() = default;
1918 IVChain(const IVInc &Head, const SCEV *Base)
1919 : Incs(1, Head), ExprBase(Base) {}
1920
1921 using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
1922
1923 // Return the first increment in the chain.
1924 const_iterator begin() const {
1925 assert(!Incs.empty())(static_cast <bool> (!Incs.empty()) ? void (0) : __assert_fail
("!Incs.empty()", "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp"
, 1925, __extension__ __PRETTY_FUNCTION__))
;
1926 return std::next(Incs.begin());
1927 }
1928 const_iterator end() const {
1929 return Incs.end();
1930 }
1931
1932 // Returns true if this chain contains any increments.
1933 bool hasIncs() const { return Incs.size() >= 2; }
1934
1935 // Add an IVInc to the end of this chain.
1936 void add(const IVInc &X) { Incs.push_back(X); }
1937
1938 // Returns the last UserInst in the chain.
1939 Instruction *tailUserInst() const { return Incs.back().UserInst; }
1940
1941 // Returns true if IncExpr can be profitably added to this chain.
1942 bool isProfitableIncrement(const SCEV *OperExpr,
1943 const SCEV *IncExpr,
1944 ScalarEvolution&);
1945};
1946
1947/// Helper for CollectChains to track multiple IV increment uses. Distinguish
1948/// between FarUsers that definitely cross IV increments and NearUsers that may
1949/// be used between IV increments.
1950struct ChainUsers {
1951 SmallPtrSet<Instruction*, 4> FarUsers;
1952 SmallPtrSet<Instruction*, 4> NearUsers;
1953};
1954
1955/// This class holds state for the main loop strength reduction logic.
1956class LSRInstance {
1957 IVUsers &IU;
1958 ScalarEvolution &SE;
1959 DominatorTree &DT;
1960 LoopInfo &LI;
1961 AssumptionCache &AC;
1962 TargetLibraryInfo &TLI;
1963 const TargetTransformInfo &TTI;
1964 Loop *const L;
1965 MemorySSAUpdater *MSSAU;
1966 TTI::AddressingModeKind AMK;
1967 mutable SCEVExpander Rewriter;
1968 bool Changed = false;
1969
1970 /// This is the insert position that the current loop's induction variable
1971 /// increment should be placed. In simple loops, this is the latch block's
1972 /// terminator. But in more complicated cases, this is a position which will
1973 /// dominate all the in-loop post-increment users.
1974 Instruction *IVIncInsertPos = nullptr;
1975
1976 /// Interesting factors between use strides.
1977 ///
1978 /// We explicitly use a SetVector which contains a SmallSet, instead of the
1979 /// default, a SmallDenseSet, because we need to use the full range of
1980 /// int64_ts, and there's currently no good way of doing that with
1981 /// SmallDenseSet.
1982 SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
1983
1984 /// The cost of the current SCEV, the best solution by LSR will be dropped if
1985 /// the solution is not profitable.
1986 Cost BaselineCost;
1987
1988 /// Interesting use types, to facilitate truncation reuse.
1989 SmallSetVector<Type *, 4> Types;
1990
1991 /// The list of interesting uses.
1992 mutable SmallVector<LSRUse, 16> Uses;
1993
1994 /// Track which uses use which register candidates.
1995 RegUseTracker RegUses;
1996
1997 // Limit the number of chains to avoid quadratic behavior. We don't expect to
1998 // have more than a few IV increment chains in a loop. Missing a Chain falls
1999 // back to normal LSR behavior for those uses.
2000 static const unsigned MaxChains = 8;
2001
2002 /// IV users can form a chain of IV increments.
2003 SmallVector<IVChain, MaxChains> IVChainVec;
2004
2005 /// IV users that belong to profitable IVChains.
2006 SmallPtrSet<Use*, MaxChains> IVIncSet;
2007
2008 /// Induction variables that were generated and inserted by the SCEV Expander.
2009 SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
2010
2011 void OptimizeShadowIV();
2012 bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
2013 ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
2014 void OptimizeLoopTermCond();
2015
2016 void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2017 SmallVectorImpl<ChainUsers> &ChainUsersVec);
2018 void FinalizeChain(IVChain &Chain);
2019 void CollectChains();
2020 void GenerateIVChain(const IVChain &Chain,
2021 SmallVectorImpl<WeakTrackingVH> &DeadInsts);
2022
2023 void CollectInterestingTypesAndFactors();
2024 void CollectFixupsAndInitialFormulae();
2025
2026 // Support for sharing of LSRUses between LSRFixups.
2027 using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
2028 UseMapTy UseMap;
2029
2030 bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
2031 LSRUse::KindType Kind, MemAccessTy AccessTy);
2032
2033 std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
2034 MemAccessTy AccessTy);
2035
2036 void DeleteUse(LSRUse &LU, size_t LUIdx);
2037
2038 LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
2039
2040 void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2041 void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
2042 void CountRegisters(const Formula &F, size_t LUIdx);
2043 bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
2044
2045 void CollectLoopInvariantFixupsAndFormulae();
2046
2047 void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
2048 unsigned Depth = 0);
2049
2050 void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
2051 const Formula &Base, unsigned Depth,
2052 size_t Idx, bool IsScaledReg = false);
2053 void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
2054 void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2055 const Formula &Base, size_t Idx,
2056 bool IsScaledReg = false);
2057 void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2058 void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
2059 const Formula &Base,
2060 const SmallVectorImpl<int64_t> &Worklist,
2061 size_t Idx, bool IsScaledReg = false);
2062 void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
2063 void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2064 void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
2065 void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
2066 void GenerateCrossUseConstantOffsets();
2067 void GenerateAllReuseFormulae();
2068
2069 void FilterOutUndesirableDedicatedRegisters();
2070
2071 size_t EstimateSearchSpaceComplexity() const;
2072 void NarrowSearchSpaceByDetectingSupersets();
2073 void NarrowSearchSpaceByCollapsingUnrolledCode();
2074 void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
2075 void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
2076 void NarrowSearchSpaceByFilterPostInc();
2077 void NarrowSearchSpaceByDeletingCostlyFormulas();
2078 void NarrowSearchSpaceByPickingWinnerRegs();
2079 void NarrowSearchSpaceUsingHeuristics();
2080
2081 void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
2082 Cost &SolutionCost,
2083 SmallVectorImpl<const Formula *> &Workspace,
2084 const Cost &CurCost,
2085 const SmallPtrSet<const SCEV *, 16> &CurRegs,
2086 DenseSet<const SCEV *> &VisitedRegs) const;
2087 void Solve(SmallVectorImpl<const Formula *> &Solution) const;
2088
2089 BasicBlock::iterator
2090 HoistInsertPosition(BasicBlock::iterator IP,
2091 const SmallVectorImpl<Instruction *> &Inputs) const;
2092 BasicBlock::iterator AdjustInsertPositionForExpand(BasicBlock::iterator IP,
2093 const LSRFixup &LF,
2094 const LSRUse &LU) const;
2095
2096 Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2097 BasicBlock::iterator IP,
2098 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2099 void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
2100 const Formula &F,
2101 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2102 void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
2103 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
2104 void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
2105
2106public:
2107 LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
2108 LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
2109 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
2110
2111 bool getChanged() const { return Changed; }
2112 const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
2113 return ScalarEvolutionIVs;
2114 }
2115
2116 void print_factors_and_types(raw_ostream &OS) const;
2117 void print_fixups(raw_ostream &OS) const;
2118 void print_uses(raw_ostream &OS) const;
2119 void print(raw_ostream &OS) const;
2120 void dump() const;
2121};
2122
2123} // end anonymous namespace
2124
2125/// If IV is used in a int-to-float cast inside the loop then try to eliminate
2126/// the cast operation.
2127void LSRInstance::OptimizeShadowIV() {
2128 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2129 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2130 return;
2131
2132 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
2133 UI != E; /* empty */) {
2134 IVUsers::const_iterator CandidateUI = UI;
2135 ++UI;
2136 Instruction *ShadowUse = CandidateUI->getUser();
2137 Type *DestTy = nullptr;
2138 bool IsSigned = false;
2139
2140 /* If shadow use is a int->float cast then insert a second IV
2141 to eliminate this cast.
2142
2143 for (unsigned i = 0; i < n; ++i)
2144 foo((double)i);
2145
2146 is transformed into
2147
2148 double d = 0.0;
2149 for (unsigned i = 0; i < n; ++i, ++d)
2150 foo(d);
2151 */
2152 if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
2153 IsSigned = false;
2154 DestTy = UCast->getDestTy();
2155 }
2156 else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
2157 IsSigned = true;
2158 DestTy = SCast->getDestTy();
2159 }
2160 if (!DestTy) continue;
2161
2162 // If target does not support DestTy natively then do not apply
2163 // this transformation.
2164 if (!TTI.isTypeLegal(DestTy)) continue;
2165
2166 PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
2167 if (!PH) continue;
2168 if (PH->getNumIncomingValues() != 2) continue;
2169
2170 // If the calculation in integers overflows, the result in FP type will
2171 // differ. So we only can do this transformation if we are guaranteed to not
2172 // deal with overflowing values
2173 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
2174 if (!AR) continue;
2175 if (IsSigned && !AR->hasNoSignedWrap()) continue;
2176 if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
2177
2178 Type *SrcTy = PH->getType();
2179 int Mantissa = DestTy->getFPMantissaWidth();
2180 if (Mantissa == -1) continue;
2181 if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
2182 continue;
2183
2184 unsigned Entry, Latch;
2185 if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
2186 Entry = 0;
2187 Latch = 1;
2188 } else {
2189 Entry = 1;
2190 Latch = 0;
2191 }
2192
2193 ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
2194 if (!Init) continue;
2195 Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
2196 (double)Init->getSExtValue() :
2197 (double)Init->getZExtValue());
2198
2199 BinaryOperator *Incr =
2200 dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
2201 if (!Incr) continue;
2202 if (Incr->getOpcode() != Instruction::Add
2203 && Incr->getOpcode() != Instruction::Sub)
2204 continue;
2205
2206 /* Initialize new IV, double d = 0.0 in above example. */
2207 ConstantInt *C = nullptr;
2208 if (Incr->getOperand(0) == PH)
2209 C = dyn_cast<ConstantInt>(Incr->getOperand(1));
2210 else if (Incr->getOperand(1) == PH)
2211 C = dyn_cast<ConstantInt>(Incr->getOperand(0));
2212 else
2213 continue;
2214
2215 if (!C) continue;
2216
2217 // Ignore negative constants, as the code below doesn't handle them
2218 // correctly. TODO: Remove this restriction.
2219 if (!C->getValue().isStrictlyPositive()) continue;
2220
2221 /* Add new PHINode. */
2222 PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
2223
2224 /* create new increment. '++d' in above example. */
2225 Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
2226 BinaryOperator *NewIncr =
2227 BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
2228 Instruction::FAdd : Instruction::FSub,
2229 NewPH, CFP, "IV.S.next.", Incr);
2230
2231 NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
2232 NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
2233
2234 /* Remove cast operation */
2235 ShadowUse->replaceAllUsesWith(NewPH);
2236 ShadowUse->eraseFromParent();
2237 Changed = true;
2238 break;
2239 }
2240}
2241
2242/// If Cond has an operand that is an expression of an IV, set the IV user and
2243/// stride information and return true, otherwise return false.
2244bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
2245 for (IVStrideUse &U : IU)
2246 if (U.getUser() == Cond) {
2247 // NOTE: we could handle setcc instructions with multiple uses here, but
2248 // InstCombine does it as well for simple uses, it's not clear that it
2249 // occurs enough in real life to handle.
2250 CondUse = &U;
2251 return true;
2252 }
2253 return false;
2254}
2255
2256/// Rewrite the loop's terminating condition if it uses a max computation.
2257///
2258/// This is a narrow solution to a specific, but acute, problem. For loops
2259/// like this:
2260///
2261/// i = 0;
2262/// do {
2263/// p[i] = 0.0;
2264/// } while (++i < n);
2265///
2266/// the trip count isn't just 'n', because 'n' might not be positive. And
2267/// unfortunately this can come up even for loops where the user didn't use
2268/// a C do-while loop. For example, seemingly well-behaved top-test loops
2269/// will commonly be lowered like this:
2270///
2271/// if (n > 0) {
2272/// i = 0;
2273/// do {
2274/// p[i] = 0.0;
2275/// } while (++i < n);
2276/// }
2277///
2278/// and then it's possible for subsequent optimization to obscure the if
2279/// test in such a way that indvars can't find it.
2280///
2281/// When indvars can't find the if test in loops like this, it creates a
2282/// max expression, which allows it to give the loop a canonical
2283/// induction variable:
2284///
2285/// i = 0;
2286/// max = n < 1 ? 1 : n;
2287/// do {
2288/// p[i] = 0.0;
2289/// } while (++i != max);
2290///
2291/// Canonical induction variables are necessary because the loop passes
2292/// are designed around them. The most obvious example of this is the
2293/// LoopInfo analysis, which doesn't remember trip count values. It
2294/// expects to be able to rediscover the trip count each time it is
2295/// needed, and it does this using a simple analysis that only succeeds if
2296/// the loop has a canonical induction variable.
2297///
2298/// However, when it comes time to generate code, the maximum operation
2299/// can be quite costly, especially if it's inside of an outer loop.
2300///
2301/// This function solves this problem by detecting this type of loop and
2302/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
2303/// the instructions for the maximum computation.
2304ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
2305 // Check that the loop matches the pattern we're looking for.
2306 if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
2307 Cond->getPredicate() != CmpInst::ICMP_NE)
2308 return Cond;
2309
2310 SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
2311 if (!Sel || !Sel->hasOneUse()) return Cond;
2312
2313 const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
2314 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2315 return Cond;
2316 const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
2317
2318 // Add one to the backedge-taken count to get the trip count.
2319 const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
2320 if (IterationCount != SE.getSCEV(Sel)) return Cond;
2321
2322 // Check for a max calculation that matches the pattern. There's no check
2323 // for ICMP_ULE here because the comparison would be with zero, which
2324 // isn't interesting.
2325 CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
2326 const SCEVNAryExpr *Max = nullptr;
2327 if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
2328 Pred = ICmpInst::ICMP_SLE;
2329 Max = S;
2330 } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
2331 Pred = ICmpInst::ICMP_SLT;
2332 Max = S;
2333 } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
2334 Pred = ICmpInst::ICMP_ULT;
2335 Max = U;
2336 } else {
2337 // No match; bail.
2338 return Cond;
2339 }
2340
2341 // To handle a max with more than two operands, this optimization would
2342 // require additional checking and setup.
2343 if (Max->getNumOperands() != 2)
2344 return Cond;
2345
2346 const SCEV *MaxLHS = Max->getOperand(0);
2347 const SCEV *MaxRHS = Max->getOperand(1);
2348
2349 // ScalarEvolution canonicalizes constants to the left. For < and >, look
2350 // for a comparison with 1. For <= and >=, a comparison with zero.
2351 if (!MaxLHS ||
2352 (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
2353 return Cond;
2354
2355 // Check the relevant induction variable for conformance to
2356 // the pattern.
2357 const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
2358 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
2359 if (!AR || !AR->isAffine() ||
2360 AR->getStart() != One ||
2361 AR->getStepRecurrence(SE) != One)
2362 return Cond;
2363
2364 assert(AR->getLoop() == L &&(static_cast <bool> (AR->getLoop() == L && "Loop condition operand is an addrec in a different loop!"
) ? void (0) : __assert_fail ("AR->getLoop() == L && \"Loop condition operand is an addrec in a different loop!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 2365, __extension__
__PRETTY_FUNCTION__))
2365 "Loop condition operand is an addrec in a different loop!")(static_cast <bool> (AR->getLoop() == L && "Loop condition operand is an addrec in a different loop!"
) ? void (0) : __assert_fail ("AR->getLoop() == L && \"Loop condition operand is an addrec in a different loop!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 2365, __extension__
__PRETTY_FUNCTION__))
;
2366
2367 // Check the right operand of the select, and remember it, as it will
2368 // be used in the new comparison instruction.
2369 Value *NewRHS = nullptr;
2370 if (ICmpInst::isTrueWhenEqual(Pred)) {
2371 // Look for n+1, and grab n.
2372 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
2373 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2374 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2375 NewRHS = BO->getOperand(0);
2376 if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
2377 if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
2378 if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
2379 NewRHS = BO->getOperand(0);
2380 if (!NewRHS)
2381 return Cond;
2382 } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
2383 NewRHS = Sel->getOperand(1);
2384 else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
2385 NewRHS = Sel->getOperand(2);
2386 else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
2387 NewRHS = SU->getValue();
2388 else
2389 // Max doesn't match expected pattern.
2390 return Cond;
2391
2392 // Determine the new comparison opcode. It may be signed or unsigned,
2393 // and the original comparison may be either equality or inequality.
2394 if (Cond->getPredicate() == CmpInst::ICMP_EQ)
2395 Pred = CmpInst::getInversePredicate(Pred);
2396
2397 // Ok, everything looks ok to change the condition into an SLT or SGE and
2398 // delete the max calculation.
2399 ICmpInst *NewCond =
2400 new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
2401
2402 // Delete the max calculation instructions.
2403 NewCond->setDebugLoc(Cond->getDebugLoc());
2404 Cond->replaceAllUsesWith(NewCond);
2405 CondUse->setUser(NewCond);
2406 Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
2407 Cond->eraseFromParent();
2408 Sel->eraseFromParent();
2409 if (Cmp->use_empty())
2410 Cmp->eraseFromParent();
2411 return NewCond;
2412}
2413
2414/// Change loop terminating condition to use the postinc iv when possible.
2415void
2416LSRInstance::OptimizeLoopTermCond() {
2417 SmallPtrSet<Instruction *, 4> PostIncs;
2418
2419 // We need a different set of heuristics for rotated and non-rotated loops.
2420 // If a loop is rotated then the latch is also the backedge, so inserting
2421 // post-inc expressions just before the latch is ideal. To reduce live ranges
2422 // it also makes sense to rewrite terminating conditions to use post-inc
2423 // expressions.
2424 //
2425 // If the loop is not rotated then the latch is not a backedge; the latch
2426 // check is done in the loop head. Adding post-inc expressions before the
2427 // latch will cause overlapping live-ranges of pre-inc and post-inc expressions
2428 // in the loop body. In this case we do *not* want to use post-inc expressions
2429 // in the latch check, and we want to insert post-inc expressions before
2430 // the backedge.
2431 BasicBlock *LatchBlock = L->getLoopLatch();
2432 SmallVector<BasicBlock*, 8> ExitingBlocks;
2433 L->getExitingBlocks(ExitingBlocks);
2434 if (!llvm::is_contained(ExitingBlocks, LatchBlock)) {
2435 // The backedge doesn't exit the loop; treat this as a head-tested loop.
2436 IVIncInsertPos = LatchBlock->getTerminator();
2437 return;
2438 }
2439
2440 // Otherwise treat this as a rotated loop.
2441 for (BasicBlock *ExitingBlock : ExitingBlocks) {
2442 // Get the terminating condition for the loop if possible. If we
2443 // can, we want to change it to use a post-incremented version of its
2444 // induction variable, to allow coalescing the live ranges for the IV into
2445 // one register value.
2446
2447 BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2448 if (!TermBr)
2449 continue;
2450 // FIXME: Overly conservative, termination condition could be an 'or' etc..
2451 if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
2452 continue;
2453
2454 // Search IVUsesByStride to find Cond's IVUse if there is one.
2455 IVStrideUse *CondUse = nullptr;
2456 ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
2457 if (!FindIVUserForCond(Cond, CondUse))
2458 continue;
2459
2460 // If the trip count is computed in terms of a max (due to ScalarEvolution
2461 // being unable to find a sufficient guard, for example), change the loop
2462 // comparison to use SLT or ULT instead of NE.
2463 // One consequence of doing this now is that it disrupts the count-down
2464 // optimization. That's not always a bad thing though, because in such
2465 // cases it may still be worthwhile to avoid a max.
2466 Cond = OptimizeMax(Cond, CondUse);
2467
2468 // If this exiting block dominates the latch block, it may also use
2469 // the post-inc value if it won't be shared with other uses.
2470 // Check for dominance.
2471 if (!DT.dominates(ExitingBlock, LatchBlock))
2472 continue;
2473
2474 // Conservatively avoid trying to use the post-inc value in non-latch
2475 // exits if there may be pre-inc users in intervening blocks.
2476 if (LatchBlock != ExitingBlock)
2477 for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
2478 // Test if the use is reachable from the exiting block. This dominator
2479 // query is a conservative approximation of reachability.
2480 if (&*UI != CondUse &&
2481 !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
2482 // Conservatively assume there may be reuse if the quotient of their
2483 // strides could be a legal scale.
2484 const SCEV *A = IU.getStride(*CondUse, L);
2485 const SCEV *B = IU.getStride(*UI, L);
2486 if (!A || !B) continue;
2487 if (SE.getTypeSizeInBits(A->getType()) !=
2488 SE.getTypeSizeInBits(B->getType())) {
2489 if (SE.getTypeSizeInBits(A->getType()) >
2490 SE.getTypeSizeInBits(B->getType()))
2491 B = SE.getSignExtendExpr(B, A->getType());
2492 else
2493 A = SE.getSignExtendExpr(A, B->getType());
2494 }
2495 if (const SCEVConstant *D =
2496 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
2497 const ConstantInt *C = D->getValue();
2498 // Stride of one or negative one can have reuse with non-addresses.
2499 if (C->isOne() || C->isMinusOne())
2500 goto decline_post_inc;
2501 // Avoid weird situations.
2502 if (C->getValue().getSignificantBits() >= 64 ||
2503 C->getValue().isMinSignedValue())
2504 goto decline_post_inc;
2505 // Check for possible scaled-address reuse.
2506 if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
2507 MemAccessTy AccessTy = getAccessType(
2508 TTI, UI->getUser(), UI->getOperandValToReplace());
2509 int64_t Scale = C->getSExtValue();
2510 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2511 /*BaseOffset=*/0,
2512 /*HasBaseReg=*/false, Scale,
2513 AccessTy.AddrSpace))
2514 goto decline_post_inc;
2515 Scale = -Scale;
2516 if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
2517 /*BaseOffset=*/0,
2518 /*HasBaseReg=*/false, Scale,
2519 AccessTy.AddrSpace))
2520 goto decline_post_inc;
2521 }
2522 }
2523 }
2524
2525 LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Change loop exiting icmp to use postinc iv: "
<< *Cond << '\n'; } } while (false)
2526 << *Cond << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Change loop exiting icmp to use postinc iv: "
<< *Cond << '\n'; } } while (false)
;
2527
2528 // It's possible for the setcc instruction to be anywhere in the loop, and
2529 // possible for it to have multiple users. If it is not immediately before
2530 // the exiting block branch, move it.
2531 if (Cond->getNextNonDebugInstruction() != TermBr) {
2532 if (Cond->hasOneUse()) {
2533 Cond->moveBefore(TermBr);
2534 } else {
2535 // Clone the terminating condition and insert into the loopend.
2536 ICmpInst *OldCond = Cond;
2537 Cond = cast<ICmpInst>(Cond->clone());
2538 Cond->setName(L->getHeader()->getName() + ".termcond");
2539 Cond->insertInto(ExitingBlock, TermBr->getIterator());
2540
2541 // Clone the IVUse, as the old use still exists!
2542 CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
2543 TermBr->replaceUsesOfWith(OldCond, Cond);
2544 }
2545 }
2546
2547 // If we get to here, we know that we can transform the setcc instruction to
2548 // use the post-incremented version of the IV, allowing us to coalesce the
2549 // live ranges for the IV correctly.
2550 CondUse->transformToPostInc(L);
2551 Changed = true;
2552
2553 PostIncs.insert(Cond);
2554 decline_post_inc:;
2555 }
2556
2557 // Determine an insertion point for the loop induction variable increment. It
2558 // must dominate all the post-inc comparisons we just set up, and it must
2559 // dominate the loop latch edge.
2560 IVIncInsertPos = L->getLoopLatch()->getTerminator();
2561 for (Instruction *Inst : PostIncs)
2562 IVIncInsertPos = DT.findNearestCommonDominator(IVIncInsertPos, Inst);
2563}
2564
2565/// Determine if the given use can accommodate a fixup at the given offset and
2566/// other details. If so, update the use and return true.
2567bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
2568 bool HasBaseReg, LSRUse::KindType Kind,
2569 MemAccessTy AccessTy) {
2570 int64_t NewMinOffset = LU.MinOffset;
2571 int64_t NewMaxOffset = LU.MaxOffset;
2572 MemAccessTy NewAccessTy = AccessTy;
2573
2574 // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
2575 // something conservative, however this can pessimize in the case that one of
2576 // the uses will have all its uses outside the loop, for example.
2577 if (LU.Kind != Kind)
2578 return false;
2579
2580 // Check for a mismatched access type, and fall back conservatively as needed.
2581 // TODO: Be less conservative when the type is similar and can use the same
2582 // addressing modes.
2583 if (Kind == LSRUse::Address) {
2584 if (AccessTy.MemTy != LU.AccessTy.MemTy) {
2585 NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
2586 AccessTy.AddrSpace);
2587 }
2588 }
2589
2590 // Conservatively assume HasBaseReg is true for now.
2591 if (NewOffset < LU.MinOffset) {
2592 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2593 LU.MaxOffset - NewOffset, HasBaseReg))
2594 return false;
2595 NewMinOffset = NewOffset;
2596 } else if (NewOffset > LU.MaxOffset) {
2597 if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
2598 NewOffset - LU.MinOffset, HasBaseReg))
2599 return false;
2600 NewMaxOffset = NewOffset;
2601 }
2602
2603 // Update the use.
2604 LU.MinOffset = NewMinOffset;
2605 LU.MaxOffset = NewMaxOffset;
2606 LU.AccessTy = NewAccessTy;
2607 return true;
2608}
2609
2610/// Return an LSRUse index and an offset value for a fixup which needs the given
2611/// expression, with the given kind and optional access type. Either reuse an
2612/// existing use or create a new one, as needed.
2613std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
2614 LSRUse::KindType Kind,
2615 MemAccessTy AccessTy) {
2616 const SCEV *Copy = Expr;
2617 int64_t Offset = ExtractImmediate(Expr, SE);
2618
2619 // Basic uses can't accept any offset, for example.
2620 if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
2621 Offset, /*HasBaseReg=*/ true)) {
2622 Expr = Copy;
2623 Offset = 0;
2624 }
2625
2626 std::pair<UseMapTy::iterator, bool> P =
2627 UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
2628 if (!P.second) {
2629 // A use already existed with this base.
2630 size_t LUIdx = P.first->second;
2631 LSRUse &LU = Uses[LUIdx];
2632 if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
2633 // Reuse this use.
2634 return std::make_pair(LUIdx, Offset);
2635 }
2636
2637 // Create a new use.
2638 size_t LUIdx = Uses.size();
2639 P.first->second = LUIdx;
2640 Uses.push_back(LSRUse(Kind, AccessTy));
2641 LSRUse &LU = Uses[LUIdx];
2642
2643 LU.MinOffset = Offset;
2644 LU.MaxOffset = Offset;
2645 return std::make_pair(LUIdx, Offset);
2646}
2647
2648/// Delete the given use from the Uses list.
2649void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
2650 if (&LU != &Uses.back())
2651 std::swap(LU, Uses.back());
2652 Uses.pop_back();
2653
2654 // Update RegUses.
2655 RegUses.swapAndDropUse(LUIdx, Uses.size());
2656}
2657
2658/// Look for a use distinct from OrigLU which is has a formula that has the same
2659/// registers as the given formula.
2660LSRUse *
2661LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
2662 const LSRUse &OrigLU) {
2663 // Search all uses for the formula. This could be more clever.
2664 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
2665 LSRUse &LU = Uses[LUIdx];
2666 // Check whether this use is close enough to OrigLU, to see whether it's
2667 // worthwhile looking through its formulae.
2668 // Ignore ICmpZero uses because they may contain formulae generated by
2669 // GenerateICmpZeroScales, in which case adding fixup offsets may
2670 // be invalid.
2671 if (&LU != &OrigLU &&
2672 LU.Kind != LSRUse::ICmpZero &&
2673 LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
2674 LU.WidestFixupType == OrigLU.WidestFixupType &&
2675 LU.HasFormulaWithSameRegs(OrigF)) {
2676 // Scan through this use's formulae.
2677 for (const Formula &F : LU.Formulae) {
2678 // Check to see if this formula has the same registers and symbols
2679 // as OrigF.
2680 if (F.BaseRegs == OrigF.BaseRegs &&
2681 F.ScaledReg == OrigF.ScaledReg &&
2682 F.BaseGV == OrigF.BaseGV &&
2683 F.Scale == OrigF.Scale &&
2684 F.UnfoldedOffset == OrigF.UnfoldedOffset) {
2685 if (F.BaseOffset == 0)
2686 return &LU;
2687 // This is the formula where all the registers and symbols matched;
2688 // there aren't going to be any others. Since we declined it, we
2689 // can skip the rest of the formulae and proceed to the next LSRUse.
2690 break;
2691 }
2692 }
2693 }
2694 }
2695
2696 // Nothing looked good.
2697 return nullptr;
2698}
2699
2700void LSRInstance::CollectInterestingTypesAndFactors() {
2701 SmallSetVector<const SCEV *, 4> Strides;
2702
2703 // Collect interesting types and strides.
2704 SmallVector<const SCEV *, 4> Worklist;
2705 for (const IVStrideUse &U : IU) {
2706 const SCEV *Expr = IU.getExpr(U);
2707
2708 // Collect interesting types.
2709 Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
2710
2711 // Add strides for mentioned loops.
2712 Worklist.push_back(Expr);
2713 do {
2714 const SCEV *S = Worklist.pop_back_val();
2715 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2716 if (AR->getLoop() == L)
2717 Strides.insert(AR->getStepRecurrence(SE));
2718 Worklist.push_back(AR->getStart());
2719 } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
2720 append_range(Worklist, Add->operands());
2721 }
2722 } while (!Worklist.empty());
2723 }
2724
2725 // Compute interesting factors from the set of interesting strides.
2726 for (SmallSetVector<const SCEV *, 4>::const_iterator
2727 I = Strides.begin(), E = Strides.end(); I != E; ++I)
2728 for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
2729 std::next(I); NewStrideIter != E; ++NewStrideIter) {
2730 const SCEV *OldStride = *I;
2731 const SCEV *NewStride = *NewStrideIter;
2732
2733 if (SE.getTypeSizeInBits(OldStride->getType()) !=
2734 SE.getTypeSizeInBits(NewStride->getType())) {
2735 if (SE.getTypeSizeInBits(OldStride->getType()) >
2736 SE.getTypeSizeInBits(NewStride->getType()))
2737 NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
2738 else
2739 OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
2740 }
2741 if (const SCEVConstant *Factor =
2742 dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
2743 SE, true))) {
2744 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2745 Factors.insert(Factor->getAPInt().getSExtValue());
2746 } else if (const SCEVConstant *Factor =
2747 dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
2748 NewStride,
2749 SE, true))) {
2750 if (Factor->getAPInt().getSignificantBits() <= 64 && !Factor->isZero())
2751 Factors.insert(Factor->getAPInt().getSExtValue());
2752 }
2753 }
2754
2755 // If all uses use the same type, don't bother looking for truncation-based
2756 // reuse.
2757 if (Types.size() == 1)
2758 Types.clear();
2759
2760 LLVM_DEBUG(print_factors_and_types(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { print_factors_and_types(dbgs()); } } while
(false)
;
2761}
2762
2763/// Helper for CollectChains that finds an IV operand (computed by an AddRec in
2764/// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
2765/// IVStrideUses, we could partially skip this.
2766static User::op_iterator
2767findIVOperand(User::op_iterator OI, User::op_iterator OE,
2768 Loop *L, ScalarEvolution &SE) {
2769 for(; OI != OE; ++OI) {
2770 if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
2771 if (!SE.isSCEVable(Oper->getType()))
2772 continue;
2773
2774 if (const SCEVAddRecExpr *AR =
2775 dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
2776 if (AR->getLoop() == L)
2777 break;
2778 }
2779 }
2780 }
2781 return OI;
2782}
2783
2784/// IVChain logic must consistently peek base TruncInst operands, so wrap it in
2785/// a convenient helper.
2786static Value *getWideOperand(Value *Oper) {
2787 if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
2788 return Trunc->getOperand(0);
2789 return Oper;
2790}
2791
2792/// Return true if we allow an IV chain to include both types.
2793static bool isCompatibleIVType(Value *LVal, Value *RVal) {
2794 Type *LType = LVal->getType();
2795 Type *RType = RVal->getType();
2796 return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy() &&
2797 // Different address spaces means (possibly)
2798 // different types of the pointer implementation,
2799 // e.g. i16 vs i32 so disallow that.
2800 (LType->getPointerAddressSpace() ==
2801 RType->getPointerAddressSpace()));
2802}
2803
2804/// Return an approximation of this SCEV expression's "base", or NULL for any
2805/// constant. Returning the expression itself is conservative. Returning a
2806/// deeper subexpression is more precise and valid as long as it isn't less
2807/// complex than another subexpression. For expressions involving multiple
2808/// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
2809/// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
2810/// IVInc==b-a.
2811///
2812/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
2813/// SCEVUnknown, we simply return the rightmost SCEV operand.
2814static const SCEV *getExprBase(const SCEV *S) {
2815 switch (S->getSCEVType()) {
2816 default: // including scUnknown.
2817 return S;
2818 case scConstant:
2819 case scVScale:
2820 return nullptr;
2821 case scTruncate:
2822 return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
2823 case scZeroExtend:
2824 return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
2825 case scSignExtend:
2826 return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
2827 case scAddExpr: {
2828 // Skip over scaled operands (scMulExpr) to follow add operands as long as
2829 // there's nothing more complex.
2830 // FIXME: not sure if we want to recognize negation.
2831 const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
2832 for (const SCEV *SubExpr : reverse(Add->operands())) {
2833 if (SubExpr->getSCEVType() == scAddExpr)
2834 return getExprBase(SubExpr);
2835
2836 if (SubExpr->getSCEVType() != scMulExpr)
2837 return SubExpr;
2838 }
2839 return S; // all operands are scaled, be conservative.
2840 }
2841 case scAddRecExpr:
2842 return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
2843 }
2844 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp"
, 2844)
;
2845}
2846
2847/// Return true if the chain increment is profitable to expand into a loop
2848/// invariant value, which may require its own register. A profitable chain
2849/// increment will be an offset relative to the same base. We allow such offsets
2850/// to potentially be used as chain increment as long as it's not obviously
2851/// expensive to expand using real instructions.
2852bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
2853 const SCEV *IncExpr,
2854 ScalarEvolution &SE) {
2855 // Aggressively form chains when -stress-ivchain.
2856 if (StressIVChain)
2857 return true;
2858
2859 // Do not replace a constant offset from IV head with a nonconstant IV
2860 // increment.
2861 if (!isa<SCEVConstant>(IncExpr)) {
2862 const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
2863 if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
2864 return false;
2865 }
2866
2867 SmallPtrSet<const SCEV*, 8> Processed;
2868 return !isHighCostExpansion(IncExpr, Processed, SE);
2869}
2870
2871/// Return true if the number of registers needed for the chain is estimated to
2872/// be less than the number required for the individual IV users. First prohibit
2873/// any IV users that keep the IV live across increments (the Users set should
2874/// be empty). Next count the number and type of increments in the chain.
2875///
2876/// Chaining IVs can lead to considerable code bloat if ISEL doesn't
2877/// effectively use postinc addressing modes. Only consider it profitable it the
2878/// increments can be computed in fewer registers when chained.
2879///
2880/// TODO: Consider IVInc free if it's already used in another chains.
2881static bool isProfitableChain(IVChain &Chain,
2882 SmallPtrSetImpl<Instruction *> &Users,
2883 ScalarEvolution &SE,
2884 const TargetTransformInfo &TTI) {
2885 if (StressIVChain)
2886 return true;
2887
2888 if (!Chain.hasIncs())
2889 return false;
2890
2891 if (!Users.empty()) {
2892 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Chain: " << *Chain.
Incs[0].UserInst << " users:\n"; for (Instruction *Inst
: Users) { dbgs() << " " << *Inst << "\n"
; }; } } while (false)
2893 for (Instruction *Instdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Chain: " << *Chain.
Incs[0].UserInst << " users:\n"; for (Instruction *Inst
: Users) { dbgs() << " " << *Inst << "\n"
; }; } } while (false)
2894 : Users) { dbgs() << " " << *Inst << "\n"; })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Chain: " << *Chain.
Incs[0].UserInst << " users:\n"; for (Instruction *Inst
: Users) { dbgs() << " " << *Inst << "\n"
; }; } } while (false)
;
2895 return false;
2896 }
2897 assert(!Chain.Incs.empty() && "empty IV chains are not allowed")(static_cast <bool> (!Chain.Incs.empty() && "empty IV chains are not allowed"
) ? void (0) : __assert_fail ("!Chain.Incs.empty() && \"empty IV chains are not allowed\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 2897, __extension__
__PRETTY_FUNCTION__))
;
2898
2899 // The chain itself may require a register, so intialize cost to 1.
2900 int cost = 1;
2901
2902 // A complete chain likely eliminates the need for keeping the original IV in
2903 // a register. LSR does not currently know how to form a complete chain unless
2904 // the header phi already exists.
2905 if (isa<PHINode>(Chain.tailUserInst())
2906 && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
2907 --cost;
2908 }
2909 const SCEV *LastIncExpr = nullptr;
2910 unsigned NumConstIncrements = 0;
2911 unsigned NumVarIncrements = 0;
2912 unsigned NumReusedIncrements = 0;
2913
2914 if (TTI.isProfitableLSRChainElement(Chain.Incs[0].UserInst))
2915 return true;
2916
2917 for (const IVInc &Inc : Chain) {
2918 if (TTI.isProfitableLSRChainElement(Inc.UserInst))
2919 return true;
2920 if (Inc.IncExpr->isZero())
2921 continue;
2922
2923 // Incrementing by zero or some constant is neutral. We assume constants can
2924 // be folded into an addressing mode or an add's immediate operand.
2925 if (isa<SCEVConstant>(Inc.IncExpr)) {
2926 ++NumConstIncrements;
2927 continue;
2928 }
2929
2930 if (Inc.IncExpr == LastIncExpr)
2931 ++NumReusedIncrements;
2932 else
2933 ++NumVarIncrements;
2934
2935 LastIncExpr = Inc.IncExpr;
2936 }
2937 // An IV chain with a single increment is handled by LSR's postinc
2938 // uses. However, a chain with multiple increments requires keeping the IV's
2939 // value live longer than it needs to be if chained.
2940 if (NumConstIncrements > 1)
2941 --cost;
2942
2943 // Materializing increment expressions in the preheader that didn't exist in
2944 // the original code may cost a register. For example, sign-extended array
2945 // indices can produce ridiculous increments like this:
2946 // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
2947 cost += NumVarIncrements;
2948
2949 // Reusing variable increments likely saves a register to hold the multiple of
2950 // the stride.
2951 cost -= NumReusedIncrements;
2952
2953 LLVM_DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << costdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Chain: " << *Chain.
Incs[0].UserInst << " Cost: " << cost << "\n"
; } } while (false)
2954 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Chain: " << *Chain.
Incs[0].UserInst << " Cost: " << cost << "\n"
; } } while (false)
;
2955
2956 return cost < 0;
2957}
2958
2959/// Add this IV user to an existing chain or make it the head of a new chain.
2960void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
2961 SmallVectorImpl<ChainUsers> &ChainUsersVec) {
2962 // When IVs are used as types of varying widths, they are generally converted
2963 // to a wider type with some uses remaining narrow under a (free) trunc.
2964 Value *const NextIV = getWideOperand(IVOper);
2965 const SCEV *const OperExpr = SE.getSCEV(NextIV);
2966 const SCEV *const OperExprBase = getExprBase(OperExpr);
2967
2968 // Visit all existing chains. Check if its IVOper can be computed as a
2969 // profitable loop invariant increment from the last link in the Chain.
2970 unsigned ChainIdx = 0, NChains = IVChainVec.size();
2971 const SCEV *LastIncExpr = nullptr;
2972 for (; ChainIdx < NChains; ++ChainIdx) {
2973 IVChain &Chain = IVChainVec[ChainIdx];
2974
2975 // Prune the solution space aggressively by checking that both IV operands
2976 // are expressions that operate on the same unscaled SCEVUnknown. This
2977 // "base" will be canceled by the subsequent getMinusSCEV call. Checking
2978 // first avoids creating extra SCEV expressions.
2979 if (!StressIVChain && Chain.ExprBase != OperExprBase)
2980 continue;
2981
2982 Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
2983 if (!isCompatibleIVType(PrevIV, NextIV))
2984 continue;
2985
2986 // A phi node terminates a chain.
2987 if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
2988 continue;
2989
2990 // The increment must be loop-invariant so it can be kept in a register.
2991 const SCEV *PrevExpr = SE.getSCEV(PrevIV);
2992 const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
2993 if (isa<SCEVCouldNotCompute>(IncExpr) || !SE.isLoopInvariant(IncExpr, L))
2994 continue;
2995
2996 if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
2997 LastIncExpr = IncExpr;
2998 break;
2999 }
3000 }
3001 // If we haven't found a chain, create a new one, unless we hit the max. Don't
3002 // bother for phi nodes, because they must be last in the chain.
3003 if (ChainIdx == NChains) {
3004 if (isa<PHINode>(UserInst))
3005 return;
3006 if (NChains >= MaxChains && !StressIVChain) {
3007 LLVM_DEBUG(dbgs() << "IV Chain Limit\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "IV Chain Limit\n"; } } while
(false)
;
3008 return;
3009 }
3010 LastIncExpr = OperExpr;
3011 // IVUsers may have skipped over sign/zero extensions. We don't currently
3012 // attempt to form chains involving extensions unless they can be hoisted
3013 // into this loop's AddRec.
3014 if (!isa<SCEVAddRecExpr>(LastIncExpr))
3015 return;
3016 ++NChains;
3017 IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
3018 OperExprBase));
3019 ChainUsersVec.resize(NChains);
3020 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInstdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "IV Chain#" << ChainIdx
<< " Head: (" << *UserInst << ") IV=" <<
*LastIncExpr << "\n"; } } while (false)
3021 << ") IV=" << *LastIncExpr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "IV Chain#" << ChainIdx
<< " Head: (" << *UserInst << ") IV=" <<
*LastIncExpr << "\n"; } } while (false)
;
3022 } else {
3023 LLVM_DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Inc: (" << *UserInstdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "IV Chain#" << ChainIdx
<< " Inc: (" << *UserInst << ") IV+" <<
*LastIncExpr << "\n"; } } while (false)
3024 << ") IV+" << *LastIncExpr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "IV Chain#" << ChainIdx
<< " Inc: (" << *UserInst << ") IV+" <<
*LastIncExpr << "\n"; } } while (false)
;
3025 // Add this IV user to the end of the chain.
3026 IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
3027 }
3028 IVChain &Chain = IVChainVec[ChainIdx];
3029
3030 SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
3031 // This chain's NearUsers become FarUsers.
3032 if (!LastIncExpr->isZero()) {
3033 ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
3034 NearUsers.end());
3035 NearUsers.clear();
3036 }
3037
3038 // All other uses of IVOperand become near uses of the chain.
3039 // We currently ignore intermediate values within SCEV expressions, assuming
3040 // they will eventually be used be the current chain, or can be computed
3041 // from one of the chain increments. To be more precise we could
3042 // transitively follow its user and only add leaf IV users to the set.
3043 for (User *U : IVOper->users()) {
3044 Instruction *OtherUse = dyn_cast<Instruction>(U);
3045 if (!OtherUse)
3046 continue;
3047 // Uses in the chain will no longer be uses if the chain is formed.
3048 // Include the head of the chain in this iteration (not Chain.begin()).
3049 IVChain::const_iterator IncIter = Chain.Incs.begin();
3050 IVChain::const_iterator IncEnd = Chain.Incs.end();
3051 for( ; IncIter != IncEnd; ++IncIter) {
3052 if (IncIter->UserInst == OtherUse)
3053 break;
3054 }
3055 if (IncIter != IncEnd)
3056 continue;
3057
3058 if (SE.isSCEVable(OtherUse->getType())
3059 && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
3060 && IU.isIVUserOrOperand(OtherUse)) {
3061 continue;
3062 }
3063 NearUsers.insert(OtherUse);
3064 }
3065
3066 // Since this user is part of the chain, it's no longer considered a use
3067 // of the chain.
3068 ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
3069}
3070
3071/// Populate the vector of Chains.
3072///
3073/// This decreases ILP at the architecture level. Targets with ample registers,
3074/// multiple memory ports, and no register renaming probably don't want
3075/// this. However, such targets should probably disable LSR altogether.
3076///
3077/// The job of LSR is to make a reasonable choice of induction variables across
3078/// the loop. Subsequent passes can easily "unchain" computation exposing more
3079/// ILP *within the loop* if the target wants it.
3080///
3081/// Finding the best IV chain is potentially a scheduling problem. Since LSR
3082/// will not reorder memory operations, it will recognize this as a chain, but
3083/// will generate redundant IV increments. Ideally this would be corrected later
3084/// by a smart scheduler:
3085/// = A[i]
3086/// = A[i+x]
3087/// A[i] =
3088/// A[i+x] =
3089///
3090/// TODO: Walk the entire domtree within this loop, not just the path to the
3091/// loop latch. This will discover chains on side paths, but requires
3092/// maintaining multiple copies of the Chains state.
3093void LSRInstance::CollectChains() {
3094 LLVM_DEBUG(dbgs() << "Collecting IV Chains.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Collecting IV Chains.\n";
} } while (false)
;
3095 SmallVector<ChainUsers, 8> ChainUsersVec;
3096
3097 SmallVector<BasicBlock *,8> LatchPath;
3098 BasicBlock *LoopHeader = L->getHeader();
3099 for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
3100 Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
3101 LatchPath.push_back(Rung->getBlock());
3102 }
3103 LatchPath.push_back(LoopHeader);
3104
3105 // Walk the instruction stream from the loop header to the loop latch.
3106 for (BasicBlock *BB : reverse(LatchPath)) {
3107 for (Instruction &I : *BB) {
3108 // Skip instructions that weren't seen by IVUsers analysis.
3109 if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&I))
3110 continue;
3111
3112 // Ignore users that are part of a SCEV expression. This way we only
3113 // consider leaf IV Users. This effectively rediscovers a portion of
3114 // IVUsers analysis but in program order this time.
3115 if (SE.isSCEVable(I.getType()) && !isa<SCEVUnknown>(SE.getSCEV(&I)))
3116 continue;
3117
3118 // Remove this instruction from any NearUsers set it may be in.
3119 for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
3120 ChainIdx < NChains; ++ChainIdx) {
3121 ChainUsersVec[ChainIdx].NearUsers.erase(&I);
3122 }
3123 // Search for operands that can be chained.
3124 SmallPtrSet<Instruction*, 4> UniqueOperands;
3125 User::op_iterator IVOpEnd = I.op_end();
3126 User::op_iterator IVOpIter = findIVOperand(I.op_begin(), IVOpEnd, L, SE);
3127 while (IVOpIter != IVOpEnd) {
3128 Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
3129 if (UniqueOperands.insert(IVOpInst).second)
3130 ChainInstruction(&I, IVOpInst, ChainUsersVec);
3131 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3132 }
3133 } // Continue walking down the instructions.
3134 } // Continue walking down the domtree.
3135 // Visit phi backedges to determine if the chain can generate the IV postinc.
3136 for (PHINode &PN : L->getHeader()->phis()) {
3137 if (!SE.isSCEVable(PN.getType()))
3138 continue;
3139
3140 Instruction *IncV =
3141 dyn_cast<Instruction>(PN.getIncomingValueForBlock(L->getLoopLatch()));
3142 if (IncV)
3143 ChainInstruction(&PN, IncV, ChainUsersVec);
3144 }
3145 // Remove any unprofitable chains.
3146 unsigned ChainIdx = 0;
3147 for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
3148 UsersIdx < NChains; ++UsersIdx) {
3149 if (!isProfitableChain(IVChainVec[UsersIdx],
3150 ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
3151 continue;
3152 // Preserve the chain at UsesIdx.
3153 if (ChainIdx != UsersIdx)
3154 IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
3155 FinalizeChain(IVChainVec[ChainIdx]);
3156 ++ChainIdx;
3157 }
3158 IVChainVec.resize(ChainIdx);
3159}
3160
3161void LSRInstance::FinalizeChain(IVChain &Chain) {
3162 assert(!Chain.Incs.empty() && "empty IV chains are not allowed")(static_cast <bool> (!Chain.Incs.empty() && "empty IV chains are not allowed"
) ? void (0) : __assert_fail ("!Chain.Incs.empty() && \"empty IV chains are not allowed\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3162, __extension__
__PRETTY_FUNCTION__))
;
3163 LLVM_DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Final Chain: " << *
Chain.Incs[0].UserInst << "\n"; } } while (false)
;
3164
3165 for (const IVInc &Inc : Chain) {
3166 LLVM_DEBUG(dbgs() << " Inc: " << *Inc.UserInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Inc: " << *
Inc.UserInst << "\n"; } } while (false)
;
3167 auto UseI = find(Inc.UserInst->operands(), Inc.IVOperand);
3168 assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand")(static_cast <bool> (UseI != Inc.UserInst->op_end() &&
"cannot find IV operand") ? void (0) : __assert_fail ("UseI != Inc.UserInst->op_end() && \"cannot find IV operand\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3168, __extension__
__PRETTY_FUNCTION__))
;
3169 IVIncSet.insert(UseI);
3170 }
3171}
3172
3173/// Return true if the IVInc can be folded into an addressing mode.
3174static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
3175 Value *Operand, const TargetTransformInfo &TTI) {
3176 const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
3177 if (!IncConst || !isAddressUse(TTI, UserInst, Operand))
3178 return false;
3179
3180 if (IncConst->getAPInt().getSignificantBits() > 64)
3181 return false;
3182
3183 MemAccessTy AccessTy = getAccessType(TTI, UserInst, Operand);
3184 int64_t IncOffset = IncConst->getValue()->getSExtValue();
3185 if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
3186 IncOffset, /*HasBaseReg=*/false))
3187 return false;
3188
3189 return true;
3190}
3191
3192/// Generate an add or subtract for each IVInc in a chain to materialize the IV
3193/// user's operand from the previous IV user's operand.
3194void LSRInstance::GenerateIVChain(const IVChain &Chain,
3195 SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
3196 // Find the new IVOperand for the head of the chain. It may have been replaced
3197 // by LSR.
3198 const IVInc &Head = Chain.Incs[0];
3199 User::op_iterator IVOpEnd = Head.UserInst->op_end();
3200 // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
3201 User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
3202 IVOpEnd, L, SE);
3203 Value *IVSrc = nullptr;
3204 while (IVOpIter != IVOpEnd) {
3205 IVSrc = getWideOperand(*IVOpIter);
3206
3207 // If this operand computes the expression that the chain needs, we may use
3208 // it. (Check this after setting IVSrc which is used below.)
3209 //
3210 // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
3211 // narrow for the chain, so we can no longer use it. We do allow using a
3212 // wider phi, assuming the LSR checked for free truncation. In that case we
3213 // should already have a truncate on this operand such that
3214 // getSCEV(IVSrc) == IncExpr.
3215 if (SE.getSCEV(*IVOpIter) == Head.IncExpr
3216 || SE.getSCEV(IVSrc) == Head.IncExpr) {
3217 break;
3218 }
3219 IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
3220 }
3221 if (IVOpIter == IVOpEnd) {
3222 // Gracefully give up on this chain.
3223 LLVM_DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Concealed chain head: " <<
*Head.UserInst << "\n"; } } while (false)
;
3224 return;
3225 }
3226 assert(IVSrc && "Failed to find IV chain source")(static_cast <bool> (IVSrc && "Failed to find IV chain source"
) ? void (0) : __assert_fail ("IVSrc && \"Failed to find IV chain source\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3226, __extension__
__PRETTY_FUNCTION__))
;
3227
3228 LLVM_DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Generate chain at: " <<
*IVSrc << "\n"; } } while (false)
;
3229 Type *IVTy = IVSrc->getType();
3230 Type *IntTy = SE.getEffectiveSCEVType(IVTy);
3231 const SCEV *LeftOverExpr = nullptr;
3232 for (const IVInc &Inc : Chain) {
3233 Instruction *InsertPt = Inc.UserInst;
3234 if (isa<PHINode>(InsertPt))
3235 InsertPt = L->getLoopLatch()->getTerminator();
3236
3237 // IVOper will replace the current IV User's operand. IVSrc is the IV
3238 // value currently held in a register.
3239 Value *IVOper = IVSrc;
3240 if (!Inc.IncExpr->isZero()) {
3241 // IncExpr was the result of subtraction of two narrow values, so must
3242 // be signed.
3243 const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
3244 LeftOverExpr = LeftOverExpr ?
3245 SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
3246 }
3247 if (LeftOverExpr && !LeftOverExpr->isZero()) {
3248 // Expand the IV increment.
3249 Rewriter.clearPostInc();
3250 Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
3251 const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
3252 SE.getUnknown(IncV));
3253 IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
3254
3255 // If an IV increment can't be folded, use it as the next IV value.
3256 if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
3257 assert(IVTy == IVOper->getType() && "inconsistent IV increment type")(static_cast <bool> (IVTy == IVOper->getType() &&
"inconsistent IV increment type") ? void (0) : __assert_fail
("IVTy == IVOper->getType() && \"inconsistent IV increment type\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3257, __extension__
__PRETTY_FUNCTION__))
;
3258 IVSrc = IVOper;
3259 LeftOverExpr = nullptr;
3260 }
3261 }
3262 Type *OperTy = Inc.IVOperand->getType();
3263 if (IVTy != OperTy) {
3264 assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&(static_cast <bool> (SE.getTypeSizeInBits(IVTy) >= SE
.getTypeSizeInBits(OperTy) && "cannot extend a chained IV"
) ? void (0) : __assert_fail ("SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && \"cannot extend a chained IV\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3265, __extension__
__PRETTY_FUNCTION__))
3265 "cannot extend a chained IV")(static_cast <bool> (SE.getTypeSizeInBits(IVTy) >= SE
.getTypeSizeInBits(OperTy) && "cannot extend a chained IV"
) ? void (0) : __assert_fail ("SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) && \"cannot extend a chained IV\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3265, __extension__
__PRETTY_FUNCTION__))
;
3266 IRBuilder<> Builder(InsertPt);
3267 IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
3268 }
3269 Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
3270 if (auto *OperandIsInstr = dyn_cast<Instruction>(Inc.IVOperand))
3271 DeadInsts.emplace_back(OperandIsInstr);
3272 }
3273 // If LSR created a new, wider phi, we may also replace its postinc. We only
3274 // do this if we also found a wide value for the head of the chain.
3275 if (isa<PHINode>(Chain.tailUserInst())) {
3276 for (PHINode &Phi : L->getHeader()->phis()) {
3277 if (!isCompatibleIVType(&Phi, IVSrc))
3278 continue;
3279 Instruction *PostIncV = dyn_cast<Instruction>(
3280 Phi.getIncomingValueForBlock(L->getLoopLatch()));
3281 if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
3282 continue;
3283 Value *IVOper = IVSrc;
3284 Type *PostIncTy = PostIncV->getType();
3285 if (IVTy != PostIncTy) {
3286 assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types")(static_cast <bool> (PostIncTy->isPointerTy() &&
"mixing int/ptr IV types") ? void (0) : __assert_fail ("PostIncTy->isPointerTy() && \"mixing int/ptr IV types\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3286, __extension__
__PRETTY_FUNCTION__))
;
3287 IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
3288 Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
3289 IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
3290 }
3291 Phi.replaceUsesOfWith(PostIncV, IVOper);
3292 DeadInsts.emplace_back(PostIncV);
3293 }
3294 }
3295}
3296
3297void LSRInstance::CollectFixupsAndInitialFormulae() {
3298 BranchInst *ExitBranch = nullptr;
3299 bool SaveCmp = TTI.canSaveCmp(L, &ExitBranch, &SE, &LI, &DT, &AC, &TLI);
3300
3301 // For calculating baseline cost
3302 SmallPtrSet<const SCEV *, 16> Regs;
3303 DenseSet<const SCEV *> VisitedRegs;
3304 DenseSet<size_t> VisitedLSRUse;
3305
3306 for (const IVStrideUse &U : IU) {
3307 Instruction *UserInst = U.getUser();
3308 // Skip IV users that are part of profitable IV Chains.
3309 User::op_iterator UseI =
3310 find(UserInst->operands(), U.getOperandValToReplace());
3311 assert(UseI != UserInst->op_end() && "cannot find IV operand")(static_cast <bool> (UseI != UserInst->op_end() &&
"cannot find IV operand") ? void (0) : __assert_fail ("UseI != UserInst->op_end() && \"cannot find IV operand\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3311, __extension__
__PRETTY_FUNCTION__))
;
3312 if (IVIncSet.count(UseI)) {
3313 LLVM_DEBUG(dbgs() << "Use is in profitable chain: " << **UseI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Use is in profitable chain: "
<< **UseI << '\n'; } } while (false)
;
3314 continue;
3315 }
3316
3317 LSRUse::KindType Kind = LSRUse::Basic;
3318 MemAccessTy AccessTy;
3319 if (isAddressUse(TTI, UserInst, U.getOperandValToReplace())) {
3320 Kind = LSRUse::Address;
3321 AccessTy = getAccessType(TTI, UserInst, U.getOperandValToReplace());
3322 }
3323
3324 const SCEV *S = IU.getExpr(U);
3325 PostIncLoopSet TmpPostIncLoops = U.getPostIncLoops();
3326
3327 // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
3328 // (N - i == 0), and this allows (N - i) to be the expression that we work
3329 // with rather than just N or i, so we can consider the register
3330 // requirements for both N and i at the same time. Limiting this code to
3331 // equality icmps is not a problem because all interesting loops use
3332 // equality icmps, thanks to IndVarSimplify.
3333 if (ICmpInst *CI = dyn_cast<ICmpInst>(UserInst)) {
3334 // If CI can be saved in some target, like replaced inside hardware loop
3335 // in PowerPC, no need to generate initial formulae for it.
3336 if (SaveCmp && CI == dyn_cast<ICmpInst>(ExitBranch->getCondition()))
3337 continue;
3338 if (CI->isEquality()) {
3339 // Swap the operands if needed to put the OperandValToReplace on the
3340 // left, for consistency.
3341 Value *NV = CI->getOperand(1);
3342 if (NV == U.getOperandValToReplace()) {
3343 CI->setOperand(1, CI->getOperand(0));
3344 CI->setOperand(0, NV);
3345 NV = CI->getOperand(1);
3346 Changed = true;
3347 }
3348
3349 // x == y --> x - y == 0
3350 const SCEV *N = SE.getSCEV(NV);
3351 if (SE.isLoopInvariant(N, L) && Rewriter.isSafeToExpand(N) &&
3352 (!NV->getType()->isPointerTy() ||
3353 SE.getPointerBase(N) == SE.getPointerBase(S))) {
3354 // S is normalized, so normalize N before folding it into S
3355 // to keep the result normalized.
3356 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3357 Kind = LSRUse::ICmpZero;
3358 S = SE.getMinusSCEV(N, S);
3359 } else if (L->isLoopInvariant(NV) &&
3360 (!isa<Instruction>(NV) ||
3361 DT.dominates(cast<Instruction>(NV), L->getHeader())) &&
3362 !NV->getType()->isPointerTy()) {
3363 // If we can't generally expand the expression (e.g. it contains
3364 // a divide), but it is already at a loop invariant point before the
3365 // loop, wrap it in an unknown (to prevent the expander from trying
3366 // to re-expand in a potentially unsafe way.) The restriction to
3367 // integer types is required because the unknown hides the base, and
3368 // SCEV can't compute the difference of two unknown pointers.
3369 N = SE.getUnknown(NV);
3370 N = normalizeForPostIncUse(N, TmpPostIncLoops, SE);
3371 Kind = LSRUse::ICmpZero;
3372 S = SE.getMinusSCEV(N, S);
3373 assert(!isa<SCEVCouldNotCompute>(S))(static_cast <bool> (!isa<SCEVCouldNotCompute>(S)
) ? void (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(S)"
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3373, __extension__
__PRETTY_FUNCTION__))
;
3374 }
3375
3376 // -1 and the negations of all interesting strides (except the negation
3377 // of -1) are now also interesting.
3378 for (size_t i = 0, e = Factors.size(); i != e; ++i)
3379 if (Factors[i] != -1)
3380 Factors.insert(-(uint64_t)Factors[i]);
3381 Factors.insert(-1);
3382 }
3383 }
3384
3385 // Get or create an LSRUse.
3386 std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
3387 size_t LUIdx = P.first;
3388 int64_t Offset = P.second;
3389 LSRUse &LU = Uses[LUIdx];
3390
3391 // Record the fixup.
3392 LSRFixup &LF = LU.getNewFixup();
3393 LF.UserInst = UserInst;
3394 LF.OperandValToReplace = U.getOperandValToReplace();
3395 LF.PostIncLoops = TmpPostIncLoops;
3396 LF.Offset = Offset;
3397 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3398
3399 // Create SCEV as Formula for calculating baseline cost
3400 if (!VisitedLSRUse.count(LUIdx) && !LF.isUseFullyOutsideLoop(L)) {
3401 Formula F;
3402 F.initialMatch(S, L, SE);
3403 BaselineCost.RateFormula(F, Regs, VisitedRegs, LU);
3404 VisitedLSRUse.insert(LUIdx);
3405 }
3406
3407 if (!LU.WidestFixupType ||
3408 SE.getTypeSizeInBits(LU.WidestFixupType) <
3409 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3410 LU.WidestFixupType = LF.OperandValToReplace->getType();
3411
3412 // If this is the first use of this LSRUse, give it a formula.
3413 if (LU.Formulae.empty()) {
3414 InsertInitialFormula(S, LU, LUIdx);
3415 CountRegisters(LU.Formulae.back(), LUIdx);
3416 }
3417 }
3418
3419 LLVM_DEBUG(print_fixups(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { print_fixups(dbgs()); } } while (false)
;
3420}
3421
3422/// Insert a formula for the given expression into the given use, separating out
3423/// loop-variant portions from loop-invariant and loop-computable portions.
3424void LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU,
3425 size_t LUIdx) {
3426 // Mark uses whose expressions cannot be expanded.
3427 if (!Rewriter.isSafeToExpand(S))
3428 LU.RigidFormula = true;
3429
3430 Formula F;
3431 F.initialMatch(S, L, SE);
3432 bool Inserted = InsertFormula(LU, LUIdx, F);
3433 assert(Inserted && "Initial formula already exists!")(static_cast <bool> (Inserted && "Initial formula already exists!"
) ? void (0) : __assert_fail ("Inserted && \"Initial formula already exists!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3433, __extension__
__PRETTY_FUNCTION__))
; (void)Inserted;
3434}
3435
3436/// Insert a simple single-register formula for the given expression into the
3437/// given use.
3438void
3439LSRInstance::InsertSupplementalFormula(const SCEV *S,
3440 LSRUse &LU, size_t LUIdx) {
3441 Formula F;
3442 F.BaseRegs.push_back(S);
3443 F.HasBaseReg = true;
3444 bool Inserted = InsertFormula(LU, LUIdx, F);
3445 assert(Inserted && "Supplemental formula already exists!")(static_cast <bool> (Inserted && "Supplemental formula already exists!"
) ? void (0) : __assert_fail ("Inserted && \"Supplemental formula already exists!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3445, __extension__
__PRETTY_FUNCTION__))
; (void)Inserted;
3446}
3447
3448/// Note which registers are used by the given formula, updating RegUses.
3449void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
3450 if (F.ScaledReg)
3451 RegUses.countRegister(F.ScaledReg, LUIdx);
3452 for (const SCEV *BaseReg : F.BaseRegs)
3453 RegUses.countRegister(BaseReg, LUIdx);
3454}
3455
3456/// If the given formula has not yet been inserted, add it to the list, and
3457/// return true. Return false otherwise.
3458bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
3459 // Do not insert formula that we will not be able to expand.
3460 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&(static_cast <bool> (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset
, LU.Kind, LU.AccessTy, F) && "Formula is illegal") ?
void (0) : __assert_fail ("isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && \"Formula is illegal\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3461, __extension__
__PRETTY_FUNCTION__))
3461 "Formula is illegal")(static_cast <bool> (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset
, LU.Kind, LU.AccessTy, F) && "Formula is illegal") ?
void (0) : __assert_fail ("isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && \"Formula is illegal\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3461, __extension__
__PRETTY_FUNCTION__))
;
3462
3463 if (!LU.InsertFormula(F, *L))
3464 return false;
3465
3466 CountRegisters(F, LUIdx);
3467 return true;
3468}
3469
3470/// Check for other uses of loop-invariant values which we're tracking. These
3471/// other uses will pin these values in registers, making them less profitable
3472/// for elimination.
3473/// TODO: This currently misses non-constant addrec step registers.
3474/// TODO: Should this give more weight to users inside the loop?
3475void
3476LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
3477 SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
3478 SmallPtrSet<const SCEV *, 32> Visited;
3479
3480 while (!Worklist.empty()) {
3481 const SCEV *S = Worklist.pop_back_val();
3482
3483 // Don't process the same SCEV twice
3484 if (!Visited.insert(S).second)
3485 continue;
3486
3487 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
3488 append_range(Worklist, N->operands());
3489 else if (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(S))
3490 Worklist.push_back(C->getOperand());
3491 else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
3492 Worklist.push_back(D->getLHS());
3493 Worklist.push_back(D->getRHS());
3494 } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
3495 const Value *V = US->getValue();
3496 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
3497 // Look for instructions defined outside the loop.
3498 if (L->contains(Inst)) continue;
3499 } else if (isa<UndefValue>(V))
3500 // Undef doesn't have a live range, so it doesn't matter.
3501 continue;
3502 for (const Use &U : V->uses()) {
3503 const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
3504 // Ignore non-instructions.
3505 if (!UserInst)
3506 continue;
3507 // Don't bother if the instruction is an EHPad.
3508 if (UserInst->isEHPad())
3509 continue;
3510 // Ignore instructions in other functions (as can happen with
3511 // Constants).
3512 if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
3513 continue;
3514 // Ignore instructions not dominated by the loop.
3515 const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
3516 UserInst->getParent() :
3517 cast<PHINode>(UserInst)->getIncomingBlock(
3518 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
3519 if (!DT.dominates(L->getHeader(), UseBB))
3520 continue;
3521 // Don't bother if the instruction is in a BB which ends in an EHPad.
3522 if (UseBB->getTerminator()->isEHPad())
3523 continue;
3524
3525 // Ignore cases in which the currently-examined value could come from
3526 // a basic block terminated with an EHPad. This checks all incoming
3527 // blocks of the phi node since it is possible that the same incoming
3528 // value comes from multiple basic blocks, only some of which may end
3529 // in an EHPad. If any of them do, a subsequent rewrite attempt by this
3530 // pass would try to insert instructions into an EHPad, hitting an
3531 // assertion.
3532 if (isa<PHINode>(UserInst)) {
3533 const auto *PhiNode = cast<PHINode>(UserInst);
3534 bool HasIncompatibleEHPTerminatedBlock = false;
3535 llvm::Value *ExpectedValue = U;
3536 for (unsigned int I = 0; I < PhiNode->getNumIncomingValues(); I++) {
3537 if (PhiNode->getIncomingValue(I) == ExpectedValue) {
3538 if (PhiNode->getIncomingBlock(I)->getTerminator()->isEHPad()) {
3539 HasIncompatibleEHPTerminatedBlock = true;
3540 break;
3541 }
3542 }
3543 }
3544 if (HasIncompatibleEHPTerminatedBlock) {
3545 continue;
3546 }
3547 }
3548
3549 // Don't bother rewriting PHIs in catchswitch blocks.
3550 if (isa<CatchSwitchInst>(UserInst->getParent()->getTerminator()))
3551 continue;
3552 // Ignore uses which are part of other SCEV expressions, to avoid
3553 // analyzing them multiple times.
3554 if (SE.isSCEVable(UserInst->getType())) {
3555 const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
3556 // If the user is a no-op, look through to its uses.
3557 if (!isa<SCEVUnknown>(UserS))
3558 continue;
3559 if (UserS == US) {
3560 Worklist.push_back(
3561 SE.getUnknown(const_cast<Instruction *>(UserInst)));
3562 continue;
3563 }
3564 }
3565 // Ignore icmp instructions which are already being analyzed.
3566 if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
3567 unsigned OtherIdx = !U.getOperandNo();
3568 Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
3569 if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
3570 continue;
3571 }
3572
3573 std::pair<size_t, int64_t> P = getUse(
3574 S, LSRUse::Basic, MemAccessTy());
3575 size_t LUIdx = P.first;
3576 int64_t Offset = P.second;
3577 LSRUse &LU = Uses[LUIdx];
3578 LSRFixup &LF = LU.getNewFixup();
3579 LF.UserInst = const_cast<Instruction *>(UserInst);
3580 LF.OperandValToReplace = U;
3581 LF.Offset = Offset;
3582 LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
3583 if (!LU.WidestFixupType ||
3584 SE.getTypeSizeInBits(LU.WidestFixupType) <
3585 SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
3586 LU.WidestFixupType = LF.OperandValToReplace->getType();
3587 InsertSupplementalFormula(US, LU, LUIdx);
3588 CountRegisters(LU.Formulae.back(), Uses.size() - 1);
3589 break;
3590 }
3591 }
3592 }
3593}
3594
3595/// Split S into subexpressions which can be pulled out into separate
3596/// registers. If C is non-null, multiply each subexpression by C.
3597///
3598/// Return remainder expression after factoring the subexpressions captured by
3599/// Ops. If Ops is complete, return NULL.
3600static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
3601 SmallVectorImpl<const SCEV *> &Ops,
3602 const Loop *L,
3603 ScalarEvolution &SE,
3604 unsigned Depth = 0) {
3605 // Arbitrarily cap recursion to protect compile time.
3606 if (Depth >= 3)
3607 return S;
3608
3609 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
3610 // Break out add operands.
3611 for (const SCEV *S : Add->operands()) {
3612 const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
3613 if (Remainder)
3614 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3615 }
3616 return nullptr;
3617 } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
3618 // Split a non-zero base out of an addrec.
3619 if (AR->getStart()->isZero() || !AR->isAffine())
3620 return S;
3621
3622 const SCEV *Remainder = CollectSubexprs(AR->getStart(),
3623 C, Ops, L, SE, Depth+1);
3624 // Split the non-zero AddRec unless it is part of a nested recurrence that
3625 // does not pertain to this loop.
3626 if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
3627 Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
3628 Remainder = nullptr;
3629 }
3630 if (Remainder != AR->getStart()) {
3631 if (!Remainder)
3632 Remainder = SE.getConstant(AR->getType(), 0);
3633 return SE.getAddRecExpr(Remainder,
3634 AR->getStepRecurrence(SE),
3635 AR->getLoop(),
3636 //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
3637 SCEV::FlagAnyWrap);
3638 }
3639 } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
3640 // Break (C * (a + b + c)) into C*a + C*b + C*c.
3641 if (Mul->getNumOperands() != 2)
3642 return S;
3643 if (const SCEVConstant *Op0 =
3644 dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3645 C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
3646 const SCEV *Remainder =
3647 CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
3648 if (Remainder)
3649 Ops.push_back(SE.getMulExpr(C, Remainder));
3650 return nullptr;
3651 }
3652 }
3653 return S;
3654}
3655
3656/// Return true if the SCEV represents a value that may end up as a
3657/// post-increment operation.
3658static bool mayUsePostIncMode(const TargetTransformInfo &TTI,
3659 LSRUse &LU, const SCEV *S, const Loop *L,
3660 ScalarEvolution &SE) {
3661 if (LU.Kind != LSRUse::Address ||
3662 !LU.AccessTy.getType()->isIntOrIntVectorTy())
3663 return false;
3664 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
3665 if (!AR)
3666 return false;
3667 const SCEV *LoopStep = AR->getStepRecurrence(SE);
3668 if (!isa<SCEVConstant>(LoopStep))
3669 return false;
3670 // Check if a post-indexed load/store can be used.
3671 if (TTI.isIndexedLoadLegal(TTI.MIM_PostInc, AR->getType()) ||
3672 TTI.isIndexedStoreLegal(TTI.MIM_PostInc, AR->getType())) {
3673 const SCEV *LoopStart = AR->getStart();
3674 if (!isa<SCEVConstant>(LoopStart) && SE.isLoopInvariant(LoopStart, L))
3675 return true;
3676 }
3677 return false;
3678}
3679
3680/// Helper function for LSRInstance::GenerateReassociations.
3681void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
3682 const Formula &Base,
3683 unsigned Depth, size_t Idx,
3684 bool IsScaledReg) {
3685 const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3686 // Don't generate reassociations for the base register of a value that
3687 // may generate a post-increment operator. The reason is that the
3688 // reassociations cause extra base+register formula to be created,
3689 // and possibly chosen, but the post-increment is more efficient.
3690 if (AMK == TTI::AMK_PostIndexed && mayUsePostIncMode(TTI, LU, BaseReg, L, SE))
3691 return;
3692 SmallVector<const SCEV *, 8> AddOps;
3693 const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
3694 if (Remainder)
3695 AddOps.push_back(Remainder);
3696
3697 if (AddOps.size() == 1)
3698 return;
3699
3700 for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
3701 JE = AddOps.end();
3702 J != JE; ++J) {
3703 // Loop-variant "unknown" values are uninteresting; we won't be able to
3704 // do anything meaningful with them.
3705 if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
3706 continue;
3707
3708 // Don't pull a constant into a register if the constant could be folded
3709 // into an immediate field.
3710 if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3711 LU.AccessTy, *J, Base.getNumRegs() > 1))
3712 continue;
3713
3714 // Collect all operands except *J.
3715 SmallVector<const SCEV *, 8> InnerAddOps(
3716 ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
3717 InnerAddOps.append(std::next(J),
3718 ((const SmallVector<const SCEV *, 8> &)AddOps).end());
3719
3720 // Don't leave just a constant behind in a register if the constant could
3721 // be folded into an immediate field.
3722 if (InnerAddOps.size() == 1 &&
3723 isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
3724 LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
3725 continue;
3726
3727 const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
3728 if (InnerSum->isZero())
3729 continue;
3730 Formula F = Base;
3731
3732 // Add the remaining pieces of the add back into the new formula.
3733 const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
3734 if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
3735 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3736 InnerSumSC->getValue()->getZExtValue())) {
3737 F.UnfoldedOffset =
3738 (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
3739 if (IsScaledReg)
3740 F.ScaledReg = nullptr;
3741 else
3742 F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
3743 } else if (IsScaledReg)
3744 F.ScaledReg = InnerSum;
3745 else
3746 F.BaseRegs[Idx] = InnerSum;
3747
3748 // Add J as its own register, or an unfolded immediate.
3749 const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
3750 if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
3751 TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
3752 SC->getValue()->getZExtValue()))
3753 F.UnfoldedOffset =
3754 (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
3755 else
3756 F.BaseRegs.push_back(*J);
3757 // We may have changed the number of register in base regs, adjust the
3758 // formula accordingly.
3759 F.canonicalize(*L);
3760
3761 if (InsertFormula(LU, LUIdx, F))
3762 // If that formula hadn't been seen before, recurse to find more like
3763 // it.
3764 // Add check on Log16(AddOps.size()) - same as Log2_32(AddOps.size()) >> 2)
3765 // Because just Depth is not enough to bound compile time.
3766 // This means that every time AddOps.size() is greater 16^x we will add
3767 // x to Depth.
3768 GenerateReassociations(LU, LUIdx, LU.Formulae.back(),
3769 Depth + 1 + (Log2_32(AddOps.size()) >> 2));
3770 }
3771}
3772
3773/// Split out subexpressions from adds and the bases of addrecs.
3774void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
3775 Formula Base, unsigned Depth) {
3776 assert(Base.isCanonical(*L) && "Input must be in the canonical form")(static_cast <bool> (Base.isCanonical(*L) && "Input must be in the canonical form"
) ? void (0) : __assert_fail ("Base.isCanonical(*L) && \"Input must be in the canonical form\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3776, __extension__
__PRETTY_FUNCTION__))
;
3777 // Arbitrarily cap recursion to protect compile time.
3778 if (Depth >= 3)
3779 return;
3780
3781 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3782 GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
3783
3784 if (Base.Scale == 1)
3785 GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
3786 /* Idx */ -1, /* IsScaledReg */ true);
3787}
3788
3789/// Generate a formula consisting of all of the loop-dominating registers added
3790/// into a single register.
3791void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
3792 Formula Base) {
3793 // This method is only interesting on a plurality of registers.
3794 if (Base.BaseRegs.size() + (Base.Scale == 1) +
3795 (Base.UnfoldedOffset != 0) <= 1)
3796 return;
3797
3798 // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
3799 // processing the formula.
3800 Base.unscale();
3801 SmallVector<const SCEV *, 4> Ops;
3802 Formula NewBase = Base;
3803 NewBase.BaseRegs.clear();
3804 Type *CombinedIntegerType = nullptr;
3805 for (const SCEV *BaseReg : Base.BaseRegs) {
3806 if (SE.properlyDominates(BaseReg, L->getHeader()) &&
3807 !SE.hasComputableLoopEvolution(BaseReg, L)) {
3808 if (!CombinedIntegerType)
3809 CombinedIntegerType = SE.getEffectiveSCEVType(BaseReg->getType());
3810 Ops.push_back(BaseReg);
3811 }
3812 else
3813 NewBase.BaseRegs.push_back(BaseReg);
3814 }
3815
3816 // If no register is relevant, we're done.
3817 if (Ops.size() == 0)
3818 return;
3819
3820 // Utility function for generating the required variants of the combined
3821 // registers.
3822 auto GenerateFormula = [&](const SCEV *Sum) {
3823 Formula F = NewBase;
3824
3825 // TODO: If Sum is zero, it probably means ScalarEvolution missed an
3826 // opportunity to fold something. For now, just ignore such cases
3827 // rather than proceed with zero in a register.
3828 if (Sum->isZero())
3829 return;
3830
3831 F.BaseRegs.push_back(Sum);
3832 F.canonicalize(*L);
3833 (void)InsertFormula(LU, LUIdx, F);
3834 };
3835
3836 // If we collected at least two registers, generate a formula combining them.
3837 if (Ops.size() > 1) {
3838 SmallVector<const SCEV *, 4> OpsCopy(Ops); // Don't let SE modify Ops.
3839 GenerateFormula(SE.getAddExpr(OpsCopy));
3840 }
3841
3842 // If we have an unfolded offset, generate a formula combining it with the
3843 // registers collected.
3844 if (NewBase.UnfoldedOffset) {
3845 assert(CombinedIntegerType && "Missing a type for the unfolded offset")(static_cast <bool> (CombinedIntegerType && "Missing a type for the unfolded offset"
) ? void (0) : __assert_fail ("CombinedIntegerType && \"Missing a type for the unfolded offset\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3845, __extension__
__PRETTY_FUNCTION__))
;
3846 Ops.push_back(SE.getConstant(CombinedIntegerType, NewBase.UnfoldedOffset,
3847 true));
3848 NewBase.UnfoldedOffset = 0;
3849 GenerateFormula(SE.getAddExpr(Ops));
3850 }
3851}
3852
3853/// Helper function for LSRInstance::GenerateSymbolicOffsets.
3854void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
3855 const Formula &Base, size_t Idx,
3856 bool IsScaledReg) {
3857 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3858 GlobalValue *GV = ExtractSymbol(G, SE);
3859 if (G->isZero() || !GV)
3860 return;
3861 Formula F = Base;
3862 F.BaseGV = GV;
3863 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3864 return;
3865 if (IsScaledReg)
3866 F.ScaledReg = G;
3867 else
3868 F.BaseRegs[Idx] = G;
3869 (void)InsertFormula(LU, LUIdx, F);
3870}
3871
3872/// Generate reuse formulae using symbolic offsets.
3873void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
3874 Formula Base) {
3875 // We can't add a symbolic offset if the address already contains one.
3876 if (Base.BaseGV) return;
3877
3878 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3879 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
3880 if (Base.Scale == 1)
3881 GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
3882 /* IsScaledReg */ true);
3883}
3884
3885/// Helper function for LSRInstance::GenerateConstantOffsets.
3886void LSRInstance::GenerateConstantOffsetsImpl(
3887 LSRUse &LU, unsigned LUIdx, const Formula &Base,
3888 const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
3889
3890 auto GenerateOffset = [&](const SCEV *G, int64_t Offset) {
3891 Formula F = Base;
3892 F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
3893
3894 if (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F)) {
3895 // Add the offset to the base register.
3896 const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
3897 // If it cancelled out, drop the base register, otherwise update it.
3898 if (NewG->isZero()) {
3899 if (IsScaledReg) {
3900 F.Scale = 0;
3901 F.ScaledReg = nullptr;
3902 } else
3903 F.deleteBaseReg(F.BaseRegs[Idx]);
3904 F.canonicalize(*L);
3905 } else if (IsScaledReg)
3906 F.ScaledReg = NewG;
3907 else
3908 F.BaseRegs[Idx] = NewG;
3909
3910 (void)InsertFormula(LU, LUIdx, F);
3911 }
3912 };
3913
3914 const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
3915
3916 // With constant offsets and constant steps, we can generate pre-inc
3917 // accesses by having the offset equal the step. So, for access #0 with a
3918 // step of 8, we generate a G - 8 base which would require the first access
3919 // to be ((G - 8) + 8),+,8. The pre-indexed access then updates the pointer
3920 // for itself and hopefully becomes the base for other accesses. This means
3921 // means that a single pre-indexed access can be generated to become the new
3922 // base pointer for each iteration of the loop, resulting in no extra add/sub
3923 // instructions for pointer updating.
3924 if (AMK == TTI::AMK_PreIndexed && LU.Kind == LSRUse::Address) {
3925 if (auto *GAR = dyn_cast<SCEVAddRecExpr>(G)) {
3926 if (auto *StepRec =
3927 dyn_cast<SCEVConstant>(GAR->getStepRecurrence(SE))) {
3928 const APInt &StepInt = StepRec->getAPInt();
3929 int64_t Step = StepInt.isNegative() ?
3930 StepInt.getSExtValue() : StepInt.getZExtValue();
3931
3932 for (int64_t Offset : Worklist) {
3933 Offset -= Step;
3934 GenerateOffset(G, Offset);
3935 }
3936 }
3937 }
3938 }
3939 for (int64_t Offset : Worklist)
3940 GenerateOffset(G, Offset);
3941
3942 int64_t Imm = ExtractImmediate(G, SE);
3943 if (G->isZero() || Imm == 0)
3944 return;
3945 Formula F = Base;
3946 F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
3947 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
3948 return;
3949 if (IsScaledReg) {
3950 F.ScaledReg = G;
3951 } else {
3952 F.BaseRegs[Idx] = G;
3953 // We may generate non canonical Formula if G is a recurrent expr reg
3954 // related with current loop while F.ScaledReg is not.
3955 F.canonicalize(*L);
3956 }
3957 (void)InsertFormula(LU, LUIdx, F);
3958}
3959
3960/// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
3961void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
3962 Formula Base) {
3963 // TODO: For now, just add the min and max offset, because it usually isn't
3964 // worthwhile looking at everything inbetween.
3965 SmallVector<int64_t, 2> Worklist;
3966 Worklist.push_back(LU.MinOffset);
3967 if (LU.MaxOffset != LU.MinOffset)
3968 Worklist.push_back(LU.MaxOffset);
3969
3970 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
3971 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
3972 if (Base.Scale == 1)
3973 GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
3974 /* IsScaledReg */ true);
3975}
3976
3977/// For ICmpZero, check to see if we can scale up the comparison. For example, x
3978/// == y -> x*c == y*c.
3979void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
3980 Formula Base) {
3981 if (LU.Kind != LSRUse::ICmpZero) return;
3982
3983 // Determine the integer type for the base formula.
3984 Type *IntTy = Base.getType();
3985 if (!IntTy) return;
3986 if (SE.getTypeSizeInBits(IntTy) > 64) return;
3987
3988 // Don't do this if there is more than one offset.
3989 if (LU.MinOffset != LU.MaxOffset) return;
3990
3991 // Check if transformation is valid. It is illegal to multiply pointer.
3992 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
3993 return;
3994 for (const SCEV *BaseReg : Base.BaseRegs)
3995 if (BaseReg->getType()->isPointerTy())
3996 return;
3997 assert(!Base.BaseGV && "ICmpZero use is not legal!")(static_cast <bool> (!Base.BaseGV && "ICmpZero use is not legal!"
) ? void (0) : __assert_fail ("!Base.BaseGV && \"ICmpZero use is not legal!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 3997, __extension__
__PRETTY_FUNCTION__))
;
3998
3999 // Check each interesting stride.
4000 for (int64_t Factor : Factors) {
4001 // Check that Factor can be represented by IntTy
4002 if (!ConstantInt::isValueValidForType(IntTy, Factor))
4003 continue;
4004 // Check that the multiplication doesn't overflow.
4005 if (Base.BaseOffset == std::numeric_limits<int64_t>::min() && Factor == -1)
4006 continue;
4007 int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
4008 assert(Factor != 0 && "Zero factor not expected!")(static_cast <bool> (Factor != 0 && "Zero factor not expected!"
) ? void (0) : __assert_fail ("Factor != 0 && \"Zero factor not expected!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 4008, __extension__
__PRETTY_FUNCTION__))
;
4009 if (NewBaseOffset / Factor != Base.BaseOffset)
4010 continue;
4011 // If the offset will be truncated at this use, check that it is in bounds.
4012 if (!IntTy->isPointerTy() &&
4013 !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
4014 continue;
4015
4016 // Check that multiplying with the use offset doesn't overflow.
4017 int64_t Offset = LU.MinOffset;
4018 if (Offset == std::numeric_limits<int64_t>::min() && Factor == -1)
4019 continue;
4020 Offset = (uint64_t)Offset * Factor;
4021 if (Offset / Factor != LU.MinOffset)
4022 continue;
4023 // If the offset will be truncated at this use, check that it is in bounds.
4024 if (!IntTy->isPointerTy() &&
4025 !ConstantInt::isValueValidForType(IntTy, Offset))
4026 continue;
4027
4028 Formula F = Base;
4029 F.BaseOffset = NewBaseOffset;
4030
4031 // Check that this scale is legal.
4032 if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
4033 continue;
4034
4035 // Compensate for the use having MinOffset built into it.
4036 F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
4037
4038 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4039
4040 // Check that multiplying with each base register doesn't overflow.
4041 for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
4042 F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
4043 if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
4044 goto next;
4045 }
4046
4047 // Check that multiplying with the scaled register doesn't overflow.
4048 if (F.ScaledReg) {
4049 F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
4050 if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
4051 continue;
4052 }
4053
4054 // Check that multiplying with the unfolded offset doesn't overflow.
4055 if (F.UnfoldedOffset != 0) {
4056 if (F.UnfoldedOffset == std::numeric_limits<int64_t>::min() &&
4057 Factor == -1)
4058 continue;
4059 F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
4060 if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
4061 continue;
4062 // If the offset will be truncated, check that it is in bounds.
4063 if (!IntTy->isPointerTy() &&
4064 !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
4065 continue;
4066 }
4067
4068 // If we make it here and it's legal, add it.
4069 (void)InsertFormula(LU, LUIdx, F);
4070 next:;
4071 }
4072}
4073
4074/// Generate stride factor reuse formulae by making use of scaled-offset address
4075/// modes, for example.
4076void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
4077 // Determine the integer type for the base formula.
4078 Type *IntTy = Base.getType();
4079 if (!IntTy) return;
4080
4081 // If this Formula already has a scaled register, we can't add another one.
4082 // Try to unscale the formula to generate a better scale.
4083 if (Base.Scale != 0 && !Base.unscale())
4084 return;
4085
4086 assert(Base.Scale == 0 && "unscale did not did its job!")(static_cast <bool> (Base.Scale == 0 && "unscale did not did its job!"
) ? void (0) : __assert_fail ("Base.Scale == 0 && \"unscale did not did its job!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 4086, __extension__
__PRETTY_FUNCTION__))
;
4087
4088 // Check each interesting stride.
4089 for (int64_t Factor : Factors) {
4090 Base.Scale = Factor;
4091 Base.HasBaseReg = Base.BaseRegs.size() > 1;
4092 // Check whether this scale is going to be legal.
4093 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4094 Base)) {
4095 // As a special-case, handle special out-of-loop Basic users specially.
4096 // TODO: Reconsider this special case.
4097 if (LU.Kind == LSRUse::Basic &&
4098 isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
4099 LU.AccessTy, Base) &&
4100 LU.AllFixupsOutsideLoop)
4101 LU.Kind = LSRUse::Special;
4102 else
4103 continue;
4104 }
4105 // For an ICmpZero, negating a solitary base register won't lead to
4106 // new solutions.
4107 if (LU.Kind == LSRUse::ICmpZero &&
4108 !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
4109 continue;
4110 // For each addrec base reg, if its loop is current loop, apply the scale.
4111 for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i) {
4112 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i]);
4113 if (AR && (AR->getLoop() == L || LU.AllFixupsOutsideLoop)) {
4114 const SCEV *FactorS = SE.getConstant(IntTy, Factor);
4115 if (FactorS->isZero())
4116 continue;
4117 // Divide out the factor, ignoring high bits, since we'll be
4118 // scaling the value back up in the end.
4119 if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true))
4120 if (!Quotient->isZero()) {
4121 // TODO: This could be optimized to avoid all the copying.
4122 Formula F = Base;
4123 F.ScaledReg = Quotient;
4124 F.deleteBaseReg(F.BaseRegs[i]);
4125 // The canonical representation of 1*reg is reg, which is already in
4126 // Base. In that case, do not try to insert the formula, it will be
4127 // rejected anyway.
4128 if (F.Scale == 1 && (F.BaseRegs.empty() ||
4129 (AR->getLoop() != L && LU.AllFixupsOutsideLoop)))
4130 continue;
4131 // If AllFixupsOutsideLoop is true and F.Scale is 1, we may generate
4132 // non canonical Formula with ScaledReg's loop not being L.
4133 if (F.Scale == 1 && LU.AllFixupsOutsideLoop)
4134 F.canonicalize(*L);
4135 (void)InsertFormula(LU, LUIdx, F);
4136 }
4137 }
4138 }
4139 }
4140}
4141
4142/// Generate reuse formulae from different IV types.
4143void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
4144 // Don't bother truncating symbolic values.
4145 if (Base.BaseGV) return;
4146
4147 // Determine the integer type for the base formula.
4148 Type *DstTy = Base.getType();
4149 if (!DstTy) return;
4150 if (DstTy->isPointerTy())
4151 return;
4152
4153 // It is invalid to extend a pointer type so exit early if ScaledReg or
4154 // any of the BaseRegs are pointers.
4155 if (Base.ScaledReg && Base.ScaledReg->getType()->isPointerTy())
4156 return;
4157 if (any_of(Base.BaseRegs,
4158 [](const SCEV *S) { return S->getType()->isPointerTy(); }))
4159 return;
4160
4161 for (Type *SrcTy : Types) {
4162 if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
4163 Formula F = Base;
4164
4165 // Sometimes SCEV is able to prove zero during ext transform. It may
4166 // happen if SCEV did not do all possible transforms while creating the
4167 // initial node (maybe due to depth limitations), but it can do them while
4168 // taking ext.
4169 if (F.ScaledReg) {
4170 const SCEV *NewScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
4171 if (NewScaledReg->isZero())
4172 continue;
4173 F.ScaledReg = NewScaledReg;
4174 }
4175 bool HasZeroBaseReg = false;
4176 for (const SCEV *&BaseReg : F.BaseRegs) {
4177 const SCEV *NewBaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
4178 if (NewBaseReg->isZero()) {
4179 HasZeroBaseReg = true;
4180 break;
4181 }
4182 BaseReg = NewBaseReg;
4183 }
4184 if (HasZeroBaseReg)
4185 continue;
4186
4187 // TODO: This assumes we've done basic processing on all uses and
4188 // have an idea what the register usage is.
4189 if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
4190 continue;
4191
4192 F.canonicalize(*L);
4193 (void)InsertFormula(LU, LUIdx, F);
4194 }
4195 }
4196}
4197
4198namespace {
4199
4200/// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
4201/// modifications so that the search phase doesn't have to worry about the data
4202/// structures moving underneath it.
4203struct WorkItem {
4204 size_t LUIdx;
4205 int64_t Imm;
4206 const SCEV *OrigReg;
4207
4208 WorkItem(size_t LI, int64_t I, const SCEV *R)
4209 : LUIdx(LI), Imm(I), OrigReg(R) {}
4210
4211 void print(raw_ostream &OS) const;
4212 void dump() const;
4213};
4214
4215} // end anonymous namespace
4216
4217#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4218void WorkItem::print(raw_ostream &OS) const {
4219 OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
4220 << " , add offset " << Imm;
4221}
4222
4223LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void WorkItem::dump() const {
4224 print(errs()); errs() << '\n';
4225}
4226#endif
4227
4228/// Look for registers which are a constant distance apart and try to form reuse
4229/// opportunities between them.
4230void LSRInstance::GenerateCrossUseConstantOffsets() {
4231 // Group the registers by their value without any added constant offset.
4232 using ImmMapTy = std::map<int64_t, const SCEV *>;
4233
4234 DenseMap<const SCEV *, ImmMapTy> Map;
4235 DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
4236 SmallVector<const SCEV *, 8> Sequence;
4237 for (const SCEV *Use : RegUses) {
4238 const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
4239 int64_t Imm = ExtractImmediate(Reg, SE);
4240 auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
4241 if (Pair.second)
4242 Sequence.push_back(Reg);
4243 Pair.first->second.insert(std::make_pair(Imm, Use));
4244 UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
4245 }
4246
4247 // Now examine each set of registers with the same base value. Build up
4248 // a list of work to do and do the work in a separate step so that we're
4249 // not adding formulae and register counts while we're searching.
4250 SmallVector<WorkItem, 32> WorkItems;
4251 SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
4252 for (const SCEV *Reg : Sequence) {
4253 const ImmMapTy &Imms = Map.find(Reg)->second;
4254
4255 // It's not worthwhile looking for reuse if there's only one offset.
4256 if (Imms.size() == 1)
4257 continue;
4258
4259 LLVM_DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Generating cross-use offsets for "
<< *Reg << ':'; for (const auto &Entry : Imms
) dbgs() << ' ' << Entry.first; dbgs() << '\n'
; } } while (false)
4260 for (const auto &Entrydo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Generating cross-use offsets for "
<< *Reg << ':'; for (const auto &Entry : Imms
) dbgs() << ' ' << Entry.first; dbgs() << '\n'
; } } while (false)
4261 : Imms) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Generating cross-use offsets for "
<< *Reg << ':'; for (const auto &Entry : Imms
) dbgs() << ' ' << Entry.first; dbgs() << '\n'
; } } while (false)
4262 << ' ' << Entry.first;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Generating cross-use offsets for "
<< *Reg << ':'; for (const auto &Entry : Imms
) dbgs() << ' ' << Entry.first; dbgs() << '\n'
; } } while (false)
4263 dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Generating cross-use offsets for "
<< *Reg << ':'; for (const auto &Entry : Imms
) dbgs() << ' ' << Entry.first; dbgs() << '\n'
; } } while (false)
;
4264
4265 // Examine each offset.
4266 for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
4267 J != JE; ++J) {
4268 const SCEV *OrigReg = J->second;
4269
4270 int64_t JImm = J->first;
4271 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
4272
4273 if (!isa<SCEVConstant>(OrigReg) &&
4274 UsedByIndicesMap[Reg].count() == 1) {
4275 LLVM_DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigRegdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Skipping cross-use reuse for "
<< *OrigReg << '\n'; } } while (false)
4276 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Skipping cross-use reuse for "
<< *OrigReg << '\n'; } } while (false)
;
4277 continue;
4278 }
4279
4280 // Conservatively examine offsets between this orig reg a few selected
4281 // other orig regs.
4282 int64_t First = Imms.begin()->first;
4283 int64_t Last = std::prev(Imms.end())->first;
4284 // Compute (First + Last) / 2 without overflow using the fact that
4285 // First + Last = 2 * (First + Last) + (First ^ Last).
4286 int64_t Avg = (First & Last) + ((First ^ Last) >> 1);
4287 // If the result is negative and First is odd and Last even (or vice versa),
4288 // we rounded towards -inf. Add 1 in that case, to round towards 0.
4289 Avg = Avg + ((First ^ Last) & ((uint64_t)Avg >> 63));
4290 ImmMapTy::const_iterator OtherImms[] = {
4291 Imms.begin(), std::prev(Imms.end()),
4292 Imms.lower_bound(Avg)};
4293 for (const auto &M : OtherImms) {
4294 if (M == J || M == JE) continue;
4295
4296 // Compute the difference between the two.
4297 int64_t Imm = (uint64_t)JImm - M->first;
4298 for (unsigned LUIdx : UsedByIndices.set_bits())
4299 // Make a memo of this use, offset, and register tuple.
4300 if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
4301 WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
4302 }
4303 }
4304 }
4305
4306 Map.clear();
4307 Sequence.clear();
4308 UsedByIndicesMap.clear();
4309 UniqueItems.clear();
4310
4311 // Now iterate through the worklist and add new formulae.
4312 for (const WorkItem &WI : WorkItems) {
4313 size_t LUIdx = WI.LUIdx;
4314 LSRUse &LU = Uses[LUIdx];
4315 int64_t Imm = WI.Imm;
4316 const SCEV *OrigReg = WI.OrigReg;
4317
4318 Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
4319 const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
4320 unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
4321
4322 // TODO: Use a more targeted data structure.
4323 for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
4324 Formula F = LU.Formulae[L];
4325 // FIXME: The code for the scaled and unscaled registers looks
4326 // very similar but slightly different. Investigate if they
4327 // could be merged. That way, we would not have to unscale the
4328 // Formula.
4329 F.unscale();
4330 // Use the immediate in the scaled register.
4331 if (F.ScaledReg == OrigReg) {
4332 int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
4333 // Don't create 50 + reg(-50).
4334 if (F.referencesReg(SE.getSCEV(
4335 ConstantInt::get(IntTy, -(uint64_t)Offset))))
4336 continue;
4337 Formula NewF = F;
4338 NewF.BaseOffset = Offset;
4339 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
4340 NewF))
4341 continue;
4342 NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
4343
4344 // If the new scale is a constant in a register, and adding the constant
4345 // value to the immediate would produce a value closer to zero than the
4346 // immediate itself, then the formula isn't worthwhile.
4347 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
4348 if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
4349 (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
4350 .ule(std::abs(NewF.BaseOffset)))
4351 continue;
4352
4353 // OK, looks good.
4354 NewF.canonicalize(*this->L);
4355 (void)InsertFormula(LU, LUIdx, NewF);
4356 } else {
4357 // Use the immediate in a base register.
4358 for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
4359 const SCEV *BaseReg = F.BaseRegs[N];
4360 if (BaseReg != OrigReg)
4361 continue;
4362 Formula NewF = F;
4363 NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
4364 if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
4365 LU.Kind, LU.AccessTy, NewF)) {
4366 if (AMK == TTI::AMK_PostIndexed &&
4367 mayUsePostIncMode(TTI, LU, OrigReg, this->L, SE))
4368 continue;
4369 if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
4370 continue;
4371 NewF = F;
4372 NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
4373 }
4374 NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
4375
4376 // If the new formula has a constant in a register, and adding the
4377 // constant value to the immediate would produce a value closer to
4378 // zero than the immediate itself, then the formula isn't worthwhile.
4379 for (const SCEV *NewReg : NewF.BaseRegs)
4380 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
4381 if ((C->getAPInt() + NewF.BaseOffset)
4382 .abs()
4383 .slt(std::abs(NewF.BaseOffset)) &&
4384 (C->getAPInt() + NewF.BaseOffset).countr_zero() >=
4385 (unsigned)llvm::countr_zero<uint64_t>(NewF.BaseOffset))
4386 goto skip_formula;
4387
4388 // Ok, looks good.
4389 NewF.canonicalize(*this->L);
4390 (void)InsertFormula(LU, LUIdx, NewF);
4391 break;
4392 skip_formula:;
4393 }
4394 }
4395 }
4396 }
4397}
4398
4399/// Generate formulae for each use.
4400void
4401LSRInstance::GenerateAllReuseFormulae() {
4402 // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
4403 // queries are more precise.
4404 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4405 LSRUse &LU = Uses[LUIdx];
4406 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4407 GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
4408 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4409 GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
4410 }
4411 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4412 LSRUse &LU = Uses[LUIdx];
4413 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4414 GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
4415 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4416 GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
4417 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4418 GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
4419 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4420 GenerateScales(LU, LUIdx, LU.Formulae[i]);
4421 }
4422 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4423 LSRUse &LU = Uses[LUIdx];
4424 for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
4425 GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
4426 }
4427
4428 GenerateCrossUseConstantOffsets();
4429
4430 LLVM_DEBUG(dbgs() << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "After generating reuse formulae:\n"
; print_uses(dbgs()); } } while (false)
4431 "After generating reuse formulae:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "After generating reuse formulae:\n"
; print_uses(dbgs()); } } while (false)
4432 print_uses(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "After generating reuse formulae:\n"
; print_uses(dbgs()); } } while (false)
;
4433}
4434
4435/// If there are multiple formulae with the same set of registers used
4436/// by other uses, pick the best one and delete the others.
4437void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
4438 DenseSet<const SCEV *> VisitedRegs;
4439 SmallPtrSet<const SCEV *, 16> Regs;
4440 SmallPtrSet<const SCEV *, 16> LoserRegs;
4441#ifndef NDEBUG
4442 bool ChangedFormulae = false;
4443#endif
4444
4445 // Collect the best formula for each unique set of shared registers. This
4446 // is reset for each use.
4447 using BestFormulaeTy =
4448 DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>;
4449
4450 BestFormulaeTy BestFormulae;
4451
4452 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4453 LSRUse &LU = Uses[LUIdx];
4454 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Filtering for use "; LU.print
(dbgs()); dbgs() << '\n'; } } while (false)
4455 dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Filtering for use "; LU.print
(dbgs()); dbgs() << '\n'; } } while (false)
;
4456
4457 bool Any = false;
4458 for (size_t FIdx = 0, NumForms = LU.Formulae.size();
4459 FIdx != NumForms; ++FIdx) {
4460 Formula &F = LU.Formulae[FIdx];
4461
4462 // Some formulas are instant losers. For example, they may depend on
4463 // nonexistent AddRecs from other loops. These need to be filtered
4464 // immediately, otherwise heuristics could choose them over others leading
4465 // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
4466 // avoids the need to recompute this information across formulae using the
4467 // same bad AddRec. Passing LoserRegs is also essential unless we remove
4468 // the corresponding bad register from the Regs set.
4469 Cost CostF(L, SE, TTI, AMK);
4470 Regs.clear();
4471 CostF.RateFormula(F, Regs, VisitedRegs, LU, &LoserRegs);
4472 if (CostF.isLoser()) {
4473 // During initial formula generation, undesirable formulae are generated
4474 // by uses within other loops that have some non-trivial address mode or
4475 // use the postinc form of the IV. LSR needs to provide these formulae
4476 // as the basis of rediscovering the desired formula that uses an AddRec
4477 // corresponding to the existing phi. Once all formulae have been
4478 // generated, these initial losers may be pruned.
4479 LLVM_DEBUG(dbgs() << " Filtering loser "; F.print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering loser "; F.print
(dbgs()); dbgs() << "\n"; } } while (false)
4480 dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering loser "; F.print
(dbgs()); dbgs() << "\n"; } } while (false)
;
4481 }
4482 else {
4483 SmallVector<const SCEV *, 4> Key;
4484 for (const SCEV *Reg : F.BaseRegs) {
4485 if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
4486 Key.push_back(Reg);
4487 }
4488 if (F.ScaledReg &&
4489 RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
4490 Key.push_back(F.ScaledReg);
4491 // Unstable sort by host order ok, because this is only used for
4492 // uniquifying.
4493 llvm::sort(Key);
4494
4495 std::pair<BestFormulaeTy::const_iterator, bool> P =
4496 BestFormulae.insert(std::make_pair(Key, FIdx));
4497 if (P.second)
4498 continue;
4499
4500 Formula &Best = LU.Formulae[P.first->second];
4501
4502 Cost CostBest(L, SE, TTI, AMK);
4503 Regs.clear();
4504 CostBest.RateFormula(Best, Regs, VisitedRegs, LU);
4505 if (CostF.isLess(CostBest))
4506 std::swap(F, Best);
4507 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering out formula "
; F.print(dbgs()); dbgs() << "\n" " in favor of formula "
; Best.print(dbgs()); dbgs() << '\n'; } } while (false)
4508 dbgs() << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering out formula "
; F.print(dbgs()); dbgs() << "\n" " in favor of formula "
; Best.print(dbgs()); dbgs() << '\n'; } } while (false)
4509 " in favor of formula ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering out formula "
; F.print(dbgs()); dbgs() << "\n" " in favor of formula "
; Best.print(dbgs()); dbgs() << '\n'; } } while (false)
4510 Best.print(dbgs()); dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering out formula "
; F.print(dbgs()); dbgs() << "\n" " in favor of formula "
; Best.print(dbgs()); dbgs() << '\n'; } } while (false)
;
4511 }
4512#ifndef NDEBUG
4513 ChangedFormulae = true;
4514#endif
4515 LU.DeleteFormula(F);
4516 --FIdx;
4517 --NumForms;
4518 Any = true;
4519 }
4520
4521 // Now that we've filtered out some formulae, recompute the Regs set.
4522 if (Any)
4523 LU.RecomputeRegs(LUIdx, RegUses);
4524
4525 // Reset this to prepare for the next use.
4526 BestFormulae.clear();
4527 }
4528
4529 LLVM_DEBUG(if (ChangedFormulae) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ChangedFormulae) { dbgs() << "\n"
"After filtering out undesirable candidates:\n"; print_uses(
dbgs()); }; } } while (false)
4530 dbgs() << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ChangedFormulae) { dbgs() << "\n"
"After filtering out undesirable candidates:\n"; print_uses(
dbgs()); }; } } while (false)
4531 "After filtering out undesirable candidates:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ChangedFormulae) { dbgs() << "\n"
"After filtering out undesirable candidates:\n"; print_uses(
dbgs()); }; } } while (false)
4532 print_uses(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ChangedFormulae) { dbgs() << "\n"
"After filtering out undesirable candidates:\n"; print_uses(
dbgs()); }; } } while (false)
4533 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ChangedFormulae) { dbgs() << "\n"
"After filtering out undesirable candidates:\n"; print_uses(
dbgs()); }; } } while (false)
;
4534}
4535
4536/// Estimate the worst-case number of solutions the solver might have to
4537/// consider. It almost never considers this many solutions because it prune the
4538/// search space, but the pruning isn't always sufficient.
4539size_t LSRInstance::EstimateSearchSpaceComplexity() const {
4540 size_t Power = 1;
4541 for (const LSRUse &LU : Uses) {
4542 size_t FSize = LU.Formulae.size();
4543 if (FSize >= ComplexityLimit) {
4544 Power = ComplexityLimit;
4545 break;
4546 }
4547 Power *= FSize;
4548 if (Power >= ComplexityLimit)
4549 break;
4550 }
4551 return Power;
4552}
4553
4554/// When one formula uses a superset of the registers of another formula, it
4555/// won't help reduce register pressure (though it may not necessarily hurt
4556/// register pressure); remove it to simplify the system.
4557void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
4558 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4559 LLVM_DEBUG(dbgs() << "The search space is too complex.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
; } } while (false)
;
4560
4561 LLVM_DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Narrowing the search space by eliminating formulae "
"which use a superset of registers used by other " "formulae.\n"
; } } while (false)
4562 "which use a superset of registers used by other "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Narrowing the search space by eliminating formulae "
"which use a superset of registers used by other " "formulae.\n"
; } } while (false)
4563 "formulae.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Narrowing the search space by eliminating formulae "
"which use a superset of registers used by other " "formulae.\n"
; } } while (false)
;
4564
4565 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4566 LSRUse &LU = Uses[LUIdx];
4567 bool Any = false;
4568 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4569 Formula &F = LU.Formulae[i];
4570 // Look for a formula with a constant or GV in a register. If the use
4571 // also has a formula with that same value in an immediate field,
4572 // delete the one that uses a register.
4573 for (SmallVectorImpl<const SCEV *>::const_iterator
4574 I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
4575 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
4576 Formula NewF = F;
4577 //FIXME: Formulas should store bitwidth to do wrapping properly.
4578 // See PR41034.
4579 NewF.BaseOffset += (uint64_t)C->getValue()->getSExtValue();
4580 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4581 (I - F.BaseRegs.begin()));
4582 if (LU.HasFormulaWithSameRegs(NewF)) {
4583 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Deleting "; F.print(dbgs
()); dbgs() << '\n'; } } while (false)
4584 dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Deleting "; F.print(dbgs
()); dbgs() << '\n'; } } while (false)
;
4585 LU.DeleteFormula(F);
4586 --i;
4587 --e;
4588 Any = true;
4589 break;
4590 }
4591 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
4592 if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
4593 if (!F.BaseGV) {
4594 Formula NewF = F;
4595 NewF.BaseGV = GV;
4596 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
4597 (I - F.BaseRegs.begin()));
4598 if (LU.HasFormulaWithSameRegs(NewF)) {
4599 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Deleting "; F.print(dbgs
()); dbgs() << '\n'; } } while (false)
4600 dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Deleting "; F.print(dbgs
()); dbgs() << '\n'; } } while (false)
;
4601 LU.DeleteFormula(F);
4602 --i;
4603 --e;
4604 Any = true;
4605 break;
4606 }
4607 }
4608 }
4609 }
4610 }
4611 if (Any)
4612 LU.RecomputeRegs(LUIdx, RegUses);
4613 }
4614
4615 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "After pre-selection:\n"; print_uses
(dbgs()); } } while (false)
;
4616 }
4617}
4618
4619/// When there are many registers for expressions like A, A+1, A+2, etc.,
4620/// allocate a single register for them.
4621void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
4622 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4623 return;
4624
4625 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
"Narrowing the search space by assuming that uses separated "
"by a constant offset will use the same registers.\n"; } } while
(false)
4626 dbgs() << "The search space is too complex.\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
"Narrowing the search space by assuming that uses separated "
"by a constant offset will use the same registers.\n"; } } while
(false)
4627 "Narrowing the search space by assuming that uses separated "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
"Narrowing the search space by assuming that uses separated "
"by a constant offset will use the same registers.\n"; } } while
(false)
4628 "by a constant offset will use the same registers.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
"Narrowing the search space by assuming that uses separated "
"by a constant offset will use the same registers.\n"; } } while
(false)
;
4629
4630 // This is especially useful for unrolled loops.
4631
4632 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4633 LSRUse &LU = Uses[LUIdx];
4634 for (const Formula &F : LU.Formulae) {
4635 if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
4636 continue;
4637
4638 LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
4639 if (!LUThatHas)
4640 continue;
4641
4642 if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
4643 LU.Kind, LU.AccessTy))
4644 continue;
4645
4646 LLVM_DEBUG(dbgs() << " Deleting use "; LU.print(dbgs()); dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Deleting use "; LU.print
(dbgs()); dbgs() << '\n'; } } while (false)
;
4647
4648 LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
4649
4650 // Transfer the fixups of LU to LUThatHas.
4651 for (LSRFixup &Fixup : LU.Fixups) {
4652 Fixup.Offset += F.BaseOffset;
4653 LUThatHas->pushFixup(Fixup);
4654 LLVM_DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "New fixup has offset " <<
Fixup.Offset << '\n'; } } while (false)
;
4655 }
4656
4657 // Delete formulae from the new use which are no longer legal.
4658 bool Any = false;
4659 for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
4660 Formula &F = LUThatHas->Formulae[i];
4661 if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
4662 LUThatHas->Kind, LUThatHas->AccessTy, F)) {
4663 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Deleting "; F.print(dbgs
()); dbgs() << '\n'; } } while (false)
;
4664 LUThatHas->DeleteFormula(F);
4665 --i;
4666 --e;
4667 Any = true;
4668 }
4669 }
4670
4671 if (Any)
4672 LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
4673
4674 // Delete the old use.
4675 DeleteUse(LU, LUIdx);
4676 --LUIdx;
4677 --NumUses;
4678 break;
4679 }
4680 }
4681
4682 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "After pre-selection:\n"; print_uses
(dbgs()); } } while (false)
;
4683}
4684
4685/// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
4686/// we've done more filtering, as it may be able to find more formulae to
4687/// eliminate.
4688void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
4689 if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
4690 LLVM_DEBUG(dbgs() << "The search space is too complex.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
; } } while (false)
;
4691
4692 LLVM_DEBUG(dbgs() << "Narrowing the search space by re-filtering out "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Narrowing the search space by re-filtering out "
"undesirable dedicated registers.\n"; } } while (false)
4693 "undesirable dedicated registers.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Narrowing the search space by re-filtering out "
"undesirable dedicated registers.\n"; } } while (false)
;
4694
4695 FilterOutUndesirableDedicatedRegisters();
4696
4697 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "After pre-selection:\n"; print_uses
(dbgs()); } } while (false)
;
4698 }
4699}
4700
4701/// If a LSRUse has multiple formulae with the same ScaledReg and Scale.
4702/// Pick the best one and delete the others.
4703/// This narrowing heuristic is to keep as many formulae with different
4704/// Scale and ScaledReg pair as possible while narrowing the search space.
4705/// The benefit is that it is more likely to find out a better solution
4706/// from a formulae set with more Scale and ScaledReg variations than
4707/// a formulae set with the same Scale and ScaledReg. The picking winner
4708/// reg heuristic will often keep the formulae with the same Scale and
4709/// ScaledReg and filter others, and we want to avoid that if possible.
4710void LSRInstance::NarrowSearchSpaceByFilterFormulaWithSameScaledReg() {
4711 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4712 return;
4713
4714 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
"Narrowing the search space by choosing the best Formula " "from the Formulae with the same Scale and ScaledReg.\n"
; } } while (false)
4715 dbgs() << "The search space is too complex.\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
"Narrowing the search space by choosing the best Formula " "from the Formulae with the same Scale and ScaledReg.\n"
; } } while (false)
4716 "Narrowing the search space by choosing the best Formula "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
"Narrowing the search space by choosing the best Formula " "from the Formulae with the same Scale and ScaledReg.\n"
; } } while (false)
4717 "from the Formulae with the same Scale and ScaledReg.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
"Narrowing the search space by choosing the best Formula " "from the Formulae with the same Scale and ScaledReg.\n"
; } } while (false)
;
4718
4719 // Map the "Scale * ScaledReg" pair to the best formula of current LSRUse.
4720 using BestFormulaeTy = DenseMap<std::pair<const SCEV *, int64_t>, size_t>;
4721
4722 BestFormulaeTy BestFormulae;
4723#ifndef NDEBUG
4724 bool ChangedFormulae = false;
4725#endif
4726 DenseSet<const SCEV *> VisitedRegs;
4727 SmallPtrSet<const SCEV *, 16> Regs;
4728
4729 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4730 LSRUse &LU = Uses[LUIdx];
4731 LLVM_DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Filtering for use "; LU.print
(dbgs()); dbgs() << '\n'; } } while (false)
4732 dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Filtering for use "; LU.print
(dbgs()); dbgs() << '\n'; } } while (false)
;
4733
4734 // Return true if Formula FA is better than Formula FB.
4735 auto IsBetterThan = [&](Formula &FA, Formula &FB) {
4736 // First we will try to choose the Formula with fewer new registers.
4737 // For a register used by current Formula, the more the register is
4738 // shared among LSRUses, the less we increase the register number
4739 // counter of the formula.
4740 size_t FARegNum = 0;
4741 for (const SCEV *Reg : FA.BaseRegs) {
4742 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4743 FARegNum += (NumUses - UsedByIndices.count() + 1);
4744 }
4745 size_t FBRegNum = 0;
4746 for (const SCEV *Reg : FB.BaseRegs) {
4747 const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(Reg);
4748 FBRegNum += (NumUses - UsedByIndices.count() + 1);
4749 }
4750 if (FARegNum != FBRegNum)
4751 return FARegNum < FBRegNum;
4752
4753 // If the new register numbers are the same, choose the Formula with
4754 // less Cost.
4755 Cost CostFA(L, SE, TTI, AMK);
4756 Cost CostFB(L, SE, TTI, AMK);
4757 Regs.clear();
4758 CostFA.RateFormula(FA, Regs, VisitedRegs, LU);
4759 Regs.clear();
4760 CostFB.RateFormula(FB, Regs, VisitedRegs, LU);
4761 return CostFA.isLess(CostFB);
4762 };
4763
4764 bool Any = false;
4765 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4766 ++FIdx) {
4767 Formula &F = LU.Formulae[FIdx];
4768 if (!F.ScaledReg)
4769 continue;
4770 auto P = BestFormulae.insert({{F.ScaledReg, F.Scale}, FIdx});
4771 if (P.second)
4772 continue;
4773
4774 Formula &Best = LU.Formulae[P.first->second];
4775 if (IsBetterThan(F, Best))
4776 std::swap(F, Best);
4777 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering out formula "
; F.print(dbgs()); dbgs() << "\n" " in favor of formula "
; Best.print(dbgs()); dbgs() << '\n'; } } while (false)
4778 dbgs() << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering out formula "
; F.print(dbgs()); dbgs() << "\n" " in favor of formula "
; Best.print(dbgs()); dbgs() << '\n'; } } while (false)
4779 " in favor of formula ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering out formula "
; F.print(dbgs()); dbgs() << "\n" " in favor of formula "
; Best.print(dbgs()); dbgs() << '\n'; } } while (false)
4780 Best.print(dbgs()); dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering out formula "
; F.print(dbgs()); dbgs() << "\n" " in favor of formula "
; Best.print(dbgs()); dbgs() << '\n'; } } while (false)
;
4781#ifndef NDEBUG
4782 ChangedFormulae = true;
4783#endif
4784 LU.DeleteFormula(F);
4785 --FIdx;
4786 --NumForms;
4787 Any = true;
4788 }
4789 if (Any)
4790 LU.RecomputeRegs(LUIdx, RegUses);
4791
4792 // Reset this to prepare for the next use.
4793 BestFormulae.clear();
4794 }
4795
4796 LLVM_DEBUG(if (ChangedFormulae) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ChangedFormulae) { dbgs() << "\n"
"After filtering out undesirable candidates:\n"; print_uses(
dbgs()); }; } } while (false)
4797 dbgs() << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ChangedFormulae) { dbgs() << "\n"
"After filtering out undesirable candidates:\n"; print_uses(
dbgs()); }; } } while (false)
4798 "After filtering out undesirable candidates:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ChangedFormulae) { dbgs() << "\n"
"After filtering out undesirable candidates:\n"; print_uses(
dbgs()); }; } } while (false)
4799 print_uses(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ChangedFormulae) { dbgs() << "\n"
"After filtering out undesirable candidates:\n"; print_uses(
dbgs()); }; } } while (false)
4800 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ChangedFormulae) { dbgs() << "\n"
"After filtering out undesirable candidates:\n"; print_uses(
dbgs()); }; } } while (false)
;
4801}
4802
4803/// If we are over the complexity limit, filter out any post-inc prefering
4804/// variables to only post-inc values.
4805void LSRInstance::NarrowSearchSpaceByFilterPostInc() {
4806 if (AMK != TTI::AMK_PostIndexed)
4807 return;
4808 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4809 return;
4810
4811 LLVM_DEBUG(dbgs() << "The search space is too complex.\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
"Narrowing the search space by choosing the lowest " "register Formula for PostInc Uses.\n"
; } } while (false)
4812 "Narrowing the search space by choosing the lowest "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
"Narrowing the search space by choosing the lowest " "register Formula for PostInc Uses.\n"
; } } while (false)
4813 "register Formula for PostInc Uses.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
"Narrowing the search space by choosing the lowest " "register Formula for PostInc Uses.\n"
; } } while (false)
;
4814
4815 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4816 LSRUse &LU = Uses[LUIdx];
4817
4818 if (LU.Kind != LSRUse::Address)
4819 continue;
4820 if (!TTI.isIndexedLoadLegal(TTI.MIM_PostInc, LU.AccessTy.getType()) &&
4821 !TTI.isIndexedStoreLegal(TTI.MIM_PostInc, LU.AccessTy.getType()))
4822 continue;
4823
4824 size_t MinRegs = std::numeric_limits<size_t>::max();
4825 for (const Formula &F : LU.Formulae)
4826 MinRegs = std::min(F.getNumRegs(), MinRegs);
4827
4828 bool Any = false;
4829 for (size_t FIdx = 0, NumForms = LU.Formulae.size(); FIdx != NumForms;
4830 ++FIdx) {
4831 Formula &F = LU.Formulae[FIdx];
4832 if (F.getNumRegs() > MinRegs) {
4833 LLVM_DEBUG(dbgs() << " Filtering out formula "; F.print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering out formula "
; F.print(dbgs()); dbgs() << "\n"; } } while (false)
4834 dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Filtering out formula "
; F.print(dbgs()); dbgs() << "\n"; } } while (false)
;
4835 LU.DeleteFormula(F);
4836 --FIdx;
4837 --NumForms;
4838 Any = true;
4839 }
4840 }
4841 if (Any)
4842 LU.RecomputeRegs(LUIdx, RegUses);
4843
4844 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4845 break;
4846 }
4847
4848 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "After pre-selection:\n"; print_uses
(dbgs()); } } while (false)
;
4849}
4850
4851/// The function delete formulas with high registers number expectation.
4852/// Assuming we don't know the value of each formula (already delete
4853/// all inefficient), generate probability of not selecting for each
4854/// register.
4855/// For example,
4856/// Use1:
4857/// reg(a) + reg({0,+,1})
4858/// reg(a) + reg({-1,+,1}) + 1
4859/// reg({a,+,1})
4860/// Use2:
4861/// reg(b) + reg({0,+,1})
4862/// reg(b) + reg({-1,+,1}) + 1
4863/// reg({b,+,1})
4864/// Use3:
4865/// reg(c) + reg(b) + reg({0,+,1})
4866/// reg(c) + reg({b,+,1})
4867///
4868/// Probability of not selecting
4869/// Use1 Use2 Use3
4870/// reg(a) (1/3) * 1 * 1
4871/// reg(b) 1 * (1/3) * (1/2)
4872/// reg({0,+,1}) (2/3) * (2/3) * (1/2)
4873/// reg({-1,+,1}) (2/3) * (2/3) * 1
4874/// reg({a,+,1}) (2/3) * 1 * 1
4875/// reg({b,+,1}) 1 * (2/3) * (2/3)
4876/// reg(c) 1 * 1 * 0
4877///
4878/// Now count registers number mathematical expectation for each formula:
4879/// Note that for each use we exclude probability if not selecting for the use.
4880/// For example for Use1 probability for reg(a) would be just 1 * 1 (excluding
4881/// probabilty 1/3 of not selecting for Use1).
4882/// Use1:
4883/// reg(a) + reg({0,+,1}) 1 + 1/3 -- to be deleted
4884/// reg(a) + reg({-1,+,1}) + 1 1 + 4/9 -- to be deleted
4885/// reg({a,+,1}) 1
4886/// Use2:
4887/// reg(b) + reg({0,+,1}) 1/2 + 1/3 -- to be deleted
4888/// reg(b) + reg({-1,+,1}) + 1 1/2 + 2/3 -- to be deleted
4889/// reg({b,+,1}) 2/3
4890/// Use3:
4891/// reg(c) + reg(b) + reg({0,+,1}) 1 + 1/3 + 4/9 -- to be deleted
4892/// reg(c) + reg({b,+,1}) 1 + 2/3
4893void LSRInstance::NarrowSearchSpaceByDeletingCostlyFormulas() {
4894 if (EstimateSearchSpaceComplexity() < ComplexityLimit)
4895 return;
4896 // Ok, we have too many of formulae on our hands to conveniently handle.
4897 // Use a rough heuristic to thin out the list.
4898
4899 // Set of Regs wich will be 100% used in final solution.
4900 // Used in each formula of a solution (in example above this is reg(c)).
4901 // We can skip them in calculations.
4902 SmallPtrSet<const SCEV *, 4> UniqRegs;
4903 LLVM_DEBUG(dbgs() << "The search space is too complex.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
; } } while (false)
;
4904
4905 // Map each register to probability of not selecting
4906 DenseMap <const SCEV *, float> RegNumMap;
4907 for (const SCEV *Reg : RegUses) {
4908 if (UniqRegs.count(Reg))
4909 continue;
4910 float PNotSel = 1;
4911 for (const LSRUse &LU : Uses) {
4912 if (!LU.Regs.count(Reg))
4913 continue;
4914 float P = LU.getNotSelectedProbability(Reg);
4915 if (P != 0.0)
4916 PNotSel *= P;
4917 else
4918 UniqRegs.insert(Reg);
4919 }
4920 RegNumMap.insert(std::make_pair(Reg, PNotSel));
4921 }
4922
4923 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Narrowing the search space by deleting costly formulas\n"
; } } while (false)
4924 dbgs() << "Narrowing the search space by deleting costly formulas\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Narrowing the search space by deleting costly formulas\n"
; } } while (false)
;
4925
4926 // Delete formulas where registers number expectation is high.
4927 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
4928 LSRUse &LU = Uses[LUIdx];
4929 // If nothing to delete - continue.
4930 if (LU.Formulae.size() < 2)
4931 continue;
4932 // This is temporary solution to test performance. Float should be
4933 // replaced with round independent type (based on integers) to avoid
4934 // different results for different target builds.
4935 float FMinRegNum = LU.Formulae[0].getNumRegs();
4936 float FMinARegNum = LU.Formulae[0].getNumRegs();
4937 size_t MinIdx = 0;
4938 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
4939 Formula &F = LU.Formulae[i];
4940 float FRegNum = 0;
4941 float FARegNum = 0;
4942 for (const SCEV *BaseReg : F.BaseRegs) {
4943 if (UniqRegs.count(BaseReg))
4944 continue;
4945 FRegNum += RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4946 if (isa<SCEVAddRecExpr>(BaseReg))
4947 FARegNum +=
4948 RegNumMap[BaseReg] / LU.getNotSelectedProbability(BaseReg);
4949 }
4950 if (const SCEV *ScaledReg = F.ScaledReg) {
4951 if (!UniqRegs.count(ScaledReg)) {
4952 FRegNum +=
4953 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4954 if (isa<SCEVAddRecExpr>(ScaledReg))
4955 FARegNum +=
4956 RegNumMap[ScaledReg] / LU.getNotSelectedProbability(ScaledReg);
4957 }
4958 }
4959 if (FMinRegNum > FRegNum ||
4960 (FMinRegNum == FRegNum && FMinARegNum > FARegNum)) {
4961 FMinRegNum = FRegNum;
4962 FMinARegNum = FARegNum;
4963 MinIdx = i;
4964 }
4965 }
4966 LLVM_DEBUG(dbgs() << " The formula "; LU.Formulae[MinIdx].print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " The formula "; LU.Formulae
[MinIdx].print(dbgs()); dbgs() << " with min reg num " <<
FMinRegNum << '\n'; } } while (false)
4967 dbgs() << " with min reg num " << FMinRegNum << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " The formula "; LU.Formulae
[MinIdx].print(dbgs()); dbgs() << " with min reg num " <<
FMinRegNum << '\n'; } } while (false)
;
4968 if (MinIdx != 0)
4969 std::swap(LU.Formulae[MinIdx], LU.Formulae[0]);
4970 while (LU.Formulae.size() != 1) {
4971 LLVM_DEBUG(dbgs() << " Deleting "; LU.Formulae.back().print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Deleting "; LU.Formulae
.back().print(dbgs()); dbgs() << '\n'; } } while (false
)
4972 dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Deleting "; LU.Formulae
.back().print(dbgs()); dbgs() << '\n'; } } while (false
)
;
4973 LU.Formulae.pop_back();
4974 }
4975 LU.RecomputeRegs(LUIdx, RegUses);
4976 assert(LU.Formulae.size() == 1 && "Should be exactly 1 min regs formula")(static_cast <bool> (LU.Formulae.size() == 1 &&
"Should be exactly 1 min regs formula") ? void (0) : __assert_fail
("LU.Formulae.size() == 1 && \"Should be exactly 1 min regs formula\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 4976, __extension__
__PRETTY_FUNCTION__))
;
4977 Formula &F = LU.Formulae[0];
4978 LLVM_DEBUG(dbgs() << " Leaving only "; F.print(dbgs()); dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Leaving only "; F.print
(dbgs()); dbgs() << '\n'; } } while (false)
;
4979 // When we choose the formula, the regs become unique.
4980 UniqRegs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
4981 if (F.ScaledReg)
4982 UniqRegs.insert(F.ScaledReg);
4983 }
4984 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "After pre-selection:\n"; print_uses
(dbgs()); } } while (false)
;
4985}
4986
4987// Check if Best and Reg are SCEVs separated by a constant amount C, and if so
4988// would the addressing offset +C would be legal where the negative offset -C is
4989// not.
4990static bool IsSimplerBaseSCEVForTarget(const TargetTransformInfo &TTI,
4991 ScalarEvolution &SE, const SCEV *Best,
4992 const SCEV *Reg,
4993 MemAccessTy AccessType) {
4994 if (Best->getType() != Reg->getType() ||
4995 (isa<SCEVAddRecExpr>(Best) && isa<SCEVAddRecExpr>(Reg) &&
4996 cast<SCEVAddRecExpr>(Best)->getLoop() !=
4997 cast<SCEVAddRecExpr>(Reg)->getLoop()))
4998 return false;
4999 const auto *Diff = dyn_cast<SCEVConstant>(SE.getMinusSCEV(Best, Reg));
5000 if (!Diff)
5001 return false;
5002
5003 return TTI.isLegalAddressingMode(
5004 AccessType.MemTy, /*BaseGV=*/nullptr,
5005 /*BaseOffset=*/Diff->getAPInt().getSExtValue(),
5006 /*HasBaseReg=*/false, /*Scale=*/0, AccessType.AddrSpace) &&
5007 !TTI.isLegalAddressingMode(
5008 AccessType.MemTy, /*BaseGV=*/nullptr,
5009 /*BaseOffset=*/-Diff->getAPInt().getSExtValue(),
5010 /*HasBaseReg=*/false, /*Scale=*/0, AccessType.AddrSpace);
5011}
5012
5013/// Pick a register which seems likely to be profitable, and then in any use
5014/// which has any reference to that register, delete all formulae which do not
5015/// reference that register.
5016void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
5017 // With all other options exhausted, loop until the system is simple
5018 // enough to handle.
5019 SmallPtrSet<const SCEV *, 4> Taken;
5020 while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
5021 // Ok, we have too many of formulae on our hands to conveniently handle.
5022 // Use a rough heuristic to thin out the list.
5023 LLVM_DEBUG(dbgs() << "The search space is too complex.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The search space is too complex.\n"
; } } while (false)
;
5024
5025 // Pick the register which is used by the most LSRUses, which is likely
5026 // to be a good reuse register candidate.
5027 const SCEV *Best = nullptr;
5028 unsigned BestNum = 0;
5029 for (const SCEV *Reg : RegUses) {
5030 if (Taken.count(Reg))
5031 continue;
5032 if (!Best) {
5033 Best = Reg;
5034 BestNum = RegUses.getUsedByIndices(Reg).count();
5035 } else {
5036 unsigned Count = RegUses.getUsedByIndices(Reg).count();
5037 if (Count > BestNum) {
5038 Best = Reg;
5039 BestNum = Count;
5040 }
5041
5042 // If the scores are the same, but the Reg is simpler for the target
5043 // (for example {x,+,1} as opposed to {x+C,+,1}, where the target can
5044 // handle +C but not -C), opt for the simpler formula.
5045 if (Count == BestNum) {
5046 int LUIdx = RegUses.getUsedByIndices(Reg).find_first();
5047 if (LUIdx >= 0 && Uses[LUIdx].Kind == LSRUse::Address &&
5048 IsSimplerBaseSCEVForTarget(TTI, SE, Best, Reg,
5049 Uses[LUIdx].AccessTy)) {
5050 Best = Reg;
5051 BestNum = Count;
5052 }
5053 }
5054 }
5055 }
5056 assert(Best && "Failed to find best LSRUse candidate")(static_cast <bool> (Best && "Failed to find best LSRUse candidate"
) ? void (0) : __assert_fail ("Best && \"Failed to find best LSRUse candidate\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5056, __extension__
__PRETTY_FUNCTION__))
;
5057
5058 LLVM_DEBUG(dbgs() << "Narrowing the search space by assuming " << *Bestdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Narrowing the search space by assuming "
<< *Best << " will yield profitable reuse.\n"; }
} while (false)
5059 << " will yield profitable reuse.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Narrowing the search space by assuming "
<< *Best << " will yield profitable reuse.\n"; }
} while (false)
;
5060 Taken.insert(Best);
5061
5062 // In any use with formulae which references this register, delete formulae
5063 // which don't reference it.
5064 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
5065 LSRUse &LU = Uses[LUIdx];
5066 if (!LU.Regs.count(Best)) continue;
5067
5068 bool Any = false;
5069 for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
5070 Formula &F = LU.Formulae[i];
5071 if (!F.referencesReg(Best)) {
5072 LLVM_DEBUG(dbgs() << " Deleting "; F.print(dbgs()); dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << " Deleting "; F.print(dbgs
()); dbgs() << '\n'; } } while (false)
;
5073 LU.DeleteFormula(F);
5074 --e;
5075 --i;
5076 Any = true;
5077 assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?")(static_cast <bool> (e != 0 && "Use has no formulae left! Is Regs inconsistent?"
) ? void (0) : __assert_fail ("e != 0 && \"Use has no formulae left! Is Regs inconsistent?\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5077, __extension__
__PRETTY_FUNCTION__))
;
5078 continue;
5079 }
5080 }
5081
5082 if (Any)
5083 LU.RecomputeRegs(LUIdx, RegUses);
5084 }
5085
5086 LLVM_DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "After pre-selection:\n"; print_uses
(dbgs()); } } while (false)
;
5087 }
5088}
5089
5090/// If there are an extraordinary number of formulae to choose from, use some
5091/// rough heuristics to prune down the number of formulae. This keeps the main
5092/// solver from taking an extraordinary amount of time in some worst-case
5093/// scenarios.
5094void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
5095 NarrowSearchSpaceByDetectingSupersets();
5096 NarrowSearchSpaceByCollapsingUnrolledCode();
5097 NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
5098 if (FilterSameScaledReg)
5099 NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
5100 NarrowSearchSpaceByFilterPostInc();
5101 if (LSRExpNarrow)
5102 NarrowSearchSpaceByDeletingCostlyFormulas();
5103 else
5104 NarrowSearchSpaceByPickingWinnerRegs();
5105}
5106
5107/// This is the recursive solver.
5108void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
5109 Cost &SolutionCost,
5110 SmallVectorImpl<const Formula *> &Workspace,
5111 const Cost &CurCost,
5112 const SmallPtrSet<const SCEV *, 16> &CurRegs,
5113 DenseSet<const SCEV *> &VisitedRegs) const {
5114 // Some ideas:
5115 // - prune more:
5116 // - use more aggressive filtering
5117 // - sort the formula so that the most profitable solutions are found first
5118 // - sort the uses too
5119 // - search faster:
5120 // - don't compute a cost, and then compare. compare while computing a cost
5121 // and bail early.
5122 // - track register sets with SmallBitVector
5123
5124 const LSRUse &LU = Uses[Workspace.size()];
5125
5126 // If this use references any register that's already a part of the
5127 // in-progress solution, consider it a requirement that a formula must
5128 // reference that register in order to be considered. This prunes out
5129 // unprofitable searching.
5130 SmallSetVector<const SCEV *, 4> ReqRegs;
5131 for (const SCEV *S : CurRegs)
5132 if (LU.Regs.count(S))
5133 ReqRegs.insert(S);
5134
5135 SmallPtrSet<const SCEV *, 16> NewRegs;
5136 Cost NewCost(L, SE, TTI, AMK);
5137 for (const Formula &F : LU.Formulae) {
5138 // Ignore formulae which may not be ideal in terms of register reuse of
5139 // ReqRegs. The formula should use all required registers before
5140 // introducing new ones.
5141 // This can sometimes (notably when trying to favour postinc) lead to
5142 // sub-optimial decisions. There it is best left to the cost modelling to
5143 // get correct.
5144 if (AMK != TTI::AMK_PostIndexed || LU.Kind != LSRUse::Address) {
5145 int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
5146 for (const SCEV *Reg : ReqRegs) {
5147 if ((F.ScaledReg && F.ScaledReg == Reg) ||
5148 is_contained(F.BaseRegs, Reg)) {
5149 --NumReqRegsToFind;
5150 if (NumReqRegsToFind == 0)
5151 break;
5152 }
5153 }
5154 if (NumReqRegsToFind != 0) {
5155 // If none of the formulae satisfied the required registers, then we could
5156 // clear ReqRegs and try again. Currently, we simply give up in this case.
5157 continue;
5158 }
5159 }
5160
5161 // Evaluate the cost of the current formula. If it's already worse than
5162 // the current best, prune the search at that point.
5163 NewCost = CurCost;
5164 NewRegs = CurRegs;
5165 NewCost.RateFormula(F, NewRegs, VisitedRegs, LU);
5166 if (NewCost.isLess(SolutionCost)) {
5167 Workspace.push_back(&F);
5168 if (Workspace.size() != Uses.size()) {
5169 SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
5170 NewRegs, VisitedRegs);
5171 if (F.getNumRegs() == 1 && Workspace.size() == 1)
5172 VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
5173 } else {
5174 LLVM_DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "New best at "; NewCost.print
(dbgs()); dbgs() << ".\nRegs:\n"; for (const SCEV *S : NewRegs
) dbgs() << "- " << *S << "\n"; dbgs() <<
'\n'; } } while (false)
5175 dbgs() << ".\nRegs:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "New best at "; NewCost.print
(dbgs()); dbgs() << ".\nRegs:\n"; for (const SCEV *S : NewRegs
) dbgs() << "- " << *S << "\n"; dbgs() <<
'\n'; } } while (false)
5176 for (const SCEV *S : NewRegs) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "New best at "; NewCost.print
(dbgs()); dbgs() << ".\nRegs:\n"; for (const SCEV *S : NewRegs
) dbgs() << "- " << *S << "\n"; dbgs() <<
'\n'; } } while (false)
5177 << "- " << *S << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "New best at "; NewCost.print
(dbgs()); dbgs() << ".\nRegs:\n"; for (const SCEV *S : NewRegs
) dbgs() << "- " << *S << "\n"; dbgs() <<
'\n'; } } while (false)
5178 dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "New best at "; NewCost.print
(dbgs()); dbgs() << ".\nRegs:\n"; for (const SCEV *S : NewRegs
) dbgs() << "- " << *S << "\n"; dbgs() <<
'\n'; } } while (false)
;
5179
5180 SolutionCost = NewCost;
5181 Solution = Workspace;
5182 }
5183 Workspace.pop_back();
5184 }
5185 }
5186}
5187
5188/// Choose one formula from each use. Return the results in the given Solution
5189/// vector.
5190void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
5191 SmallVector<const Formula *, 8> Workspace;
5192 Cost SolutionCost(L, SE, TTI, AMK);
5193 SolutionCost.Lose();
5194 Cost CurCost(L, SE, TTI, AMK);
5195 SmallPtrSet<const SCEV *, 16> CurRegs;
5196 DenseSet<const SCEV *> VisitedRegs;
5197 Workspace.reserve(Uses.size());
5198
5199 // SolveRecurse does all the work.
5200 SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
5201 CurRegs, VisitedRegs);
5202 if (Solution.empty()) {
5203 LLVM_DEBUG(dbgs() << "\nNo Satisfactory Solution\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\nNo Satisfactory Solution\n"
; } } while (false)
;
5204 return;
5205 }
5206
5207 // Ok, we've now made all our decisions.
5208 LLVM_DEBUG(dbgs() << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "The chosen solution requires "
; SolutionCost.print(dbgs()); dbgs() << ":\n"; for (size_t
i = 0, e = Uses.size(); i != e; ++i) { dbgs() << " ";
Uses[i].print(dbgs()); dbgs() << "\n" " "; Solution
[i]->print(dbgs()); dbgs() << '\n'; }; } } while (false
)
5209 "The chosen solution requires ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "The chosen solution requires "
; SolutionCost.print(dbgs()); dbgs() << ":\n"; for (size_t
i = 0, e = Uses.size(); i != e; ++i) { dbgs() << " ";
Uses[i].print(dbgs()); dbgs() << "\n" " "; Solution
[i]->print(dbgs()); dbgs() << '\n'; }; } } while (false
)
5210 SolutionCost.print(dbgs()); dbgs() << ":\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "The chosen solution requires "
; SolutionCost.print(dbgs()); dbgs() << ":\n"; for (size_t
i = 0, e = Uses.size(); i != e; ++i) { dbgs() << " ";
Uses[i].print(dbgs()); dbgs() << "\n" " "; Solution
[i]->print(dbgs()); dbgs() << '\n'; }; } } while (false
)
5211 for (size_t i = 0, e = Uses.size(); i != e; ++i) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "The chosen solution requires "
; SolutionCost.print(dbgs()); dbgs() << ":\n"; for (size_t
i = 0, e = Uses.size(); i != e; ++i) { dbgs() << " ";
Uses[i].print(dbgs()); dbgs() << "\n" " "; Solution
[i]->print(dbgs()); dbgs() << '\n'; }; } } while (false
)
5212 dbgs() << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "The chosen solution requires "
; SolutionCost.print(dbgs()); dbgs() << ":\n"; for (size_t
i = 0, e = Uses.size(); i != e; ++i) { dbgs() << " ";
Uses[i].print(dbgs()); dbgs() << "\n" " "; Solution
[i]->print(dbgs()); dbgs() << '\n'; }; } } while (false
)
5213 Uses[i].print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "The chosen solution requires "
; SolutionCost.print(dbgs()); dbgs() << ":\n"; for (size_t
i = 0, e = Uses.size(); i != e; ++i) { dbgs() << " ";
Uses[i].print(dbgs()); dbgs() << "\n" " "; Solution
[i]->print(dbgs()); dbgs() << '\n'; }; } } while (false
)
5214 dbgs() << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "The chosen solution requires "
; SolutionCost.print(dbgs()); dbgs() << ":\n"; for (size_t
i = 0, e = Uses.size(); i != e; ++i) { dbgs() << " ";
Uses[i].print(dbgs()); dbgs() << "\n" " "; Solution
[i]->print(dbgs()); dbgs() << '\n'; }; } } while (false
)
5215 " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "The chosen solution requires "
; SolutionCost.print(dbgs()); dbgs() << ":\n"; for (size_t
i = 0, e = Uses.size(); i != e; ++i) { dbgs() << " ";
Uses[i].print(dbgs()); dbgs() << "\n" " "; Solution
[i]->print(dbgs()); dbgs() << '\n'; }; } } while (false
)
5216 Solution[i]->print(dbgs());do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "The chosen solution requires "
; SolutionCost.print(dbgs()); dbgs() << ":\n"; for (size_t
i = 0, e = Uses.size(); i != e; ++i) { dbgs() << " ";
Uses[i].print(dbgs()); dbgs() << "\n" " "; Solution
[i]->print(dbgs()); dbgs() << '\n'; }; } } while (false
)
5217 dbgs() << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "The chosen solution requires "
; SolutionCost.print(dbgs()); dbgs() << ":\n"; for (size_t
i = 0, e = Uses.size(); i != e; ++i) { dbgs() << " ";
Uses[i].print(dbgs()); dbgs() << "\n" " "; Solution
[i]->print(dbgs()); dbgs() << '\n'; }; } } while (false
)
5218 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\n" "The chosen solution requires "
; SolutionCost.print(dbgs()); dbgs() << ":\n"; for (size_t
i = 0, e = Uses.size(); i != e; ++i) { dbgs() << " ";
Uses[i].print(dbgs()); dbgs() << "\n" " "; Solution
[i]->print(dbgs()); dbgs() << '\n'; }; } } while (false
)
;
5219
5220 assert(Solution.size() == Uses.size() && "Malformed solution!")(static_cast <bool> (Solution.size() == Uses.size() &&
"Malformed solution!") ? void (0) : __assert_fail ("Solution.size() == Uses.size() && \"Malformed solution!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5220, __extension__
__PRETTY_FUNCTION__))
;
5221
5222 if (BaselineCost.isLess(SolutionCost)) {
5223 LLVM_DEBUG(dbgs() << "The baseline solution requires ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The baseline solution requires "
; BaselineCost.print(dbgs()); dbgs() << "\n"; } } while
(false)
5224 BaselineCost.print(dbgs()); dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "The baseline solution requires "
; BaselineCost.print(dbgs()); dbgs() << "\n"; } } while
(false)
;
5225 if (!AllowDropSolutionIfLessProfitable)
5226 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Baseline is more profitable than chosen solution, "
"add option 'lsr-drop-solution' to drop LSR solution.\n"; } }
while (false)
5227 dbgs() << "Baseline is more profitable than chosen solution, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Baseline is more profitable than chosen solution, "
"add option 'lsr-drop-solution' to drop LSR solution.\n"; } }
while (false)
5228 "add option 'lsr-drop-solution' to drop LSR solution.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Baseline is more profitable than chosen solution, "
"add option 'lsr-drop-solution' to drop LSR solution.\n"; } }
while (false)
;
5229 else {
5230 LLVM_DEBUG(dbgs() << "Baseline is more profitable than chosen "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Baseline is more profitable than chosen "
"solution, dropping LSR solution.\n";; } } while (false)
5231 "solution, dropping LSR solution.\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Baseline is more profitable than chosen "
"solution, dropping LSR solution.\n";; } } while (false)
;
5232 Solution.clear();
5233 }
5234 }
5235}
5236
5237/// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
5238/// we can go while still being dominated by the input positions. This helps
5239/// canonicalize the insert position, which encourages sharing.
5240BasicBlock::iterator
5241LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
5242 const SmallVectorImpl<Instruction *> &Inputs)
5243 const {
5244 Instruction *Tentative = &*IP;
5245 while (true) {
5246 bool AllDominate = true;
5247 Instruction *BetterPos = nullptr;
5248 // Don't bother attempting to insert before a catchswitch, their basic block
5249 // cannot have other non-PHI instructions.
5250 if (isa<CatchSwitchInst>(Tentative))
5251 return IP;
5252
5253 for (Instruction *Inst : Inputs) {
5254 if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
5255 AllDominate = false;
5256 break;
5257 }
5258 // Attempt to find an insert position in the middle of the block,
5259 // instead of at the end, so that it can be used for other expansions.
5260 if (Tentative->getParent() == Inst->getParent() &&
5261 (!BetterPos || !DT.dominates(Inst, BetterPos)))
5262 BetterPos = &*std::next(BasicBlock::iterator(Inst));
5263 }
5264 if (!AllDominate)
5265 break;
5266 if (BetterPos)
5267 IP = BetterPos->getIterator();
5268 else
5269 IP = Tentative->getIterator();
5270
5271 const Loop *IPLoop = LI.getLoopFor(IP->getParent());
5272 unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
5273
5274 BasicBlock *IDom;
5275 for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
5276 if (!Rung) return IP;
5277 Rung = Rung->getIDom();
5278 if (!Rung) return IP;
5279 IDom = Rung->getBlock();
5280
5281 // Don't climb into a loop though.
5282 const Loop *IDomLoop = LI.getLoopFor(IDom);
5283 unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
5284 if (IDomDepth <= IPLoopDepth &&
5285 (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
5286 break;
5287 }
5288
5289 Tentative = IDom->getTerminator();
5290 }
5291
5292 return IP;
5293}
5294
5295/// Determine an input position which will be dominated by the operands and
5296/// which will dominate the result.
5297BasicBlock::iterator LSRInstance::AdjustInsertPositionForExpand(
5298 BasicBlock::iterator LowestIP, const LSRFixup &LF, const LSRUse &LU) const {
5299 // Collect some instructions which must be dominated by the
5300 // expanding replacement. These must be dominated by any operands that
5301 // will be required in the expansion.
5302 SmallVector<Instruction *, 4> Inputs;
5303 if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
5304 Inputs.push_back(I);
5305 if (LU.Kind == LSRUse::ICmpZero)
5306 if (Instruction *I =
5307 dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
5308 Inputs.push_back(I);
5309 if (LF.PostIncLoops.count(L)) {
5310 if (LF.isUseFullyOutsideLoop(L))
5311 Inputs.push_back(L->getLoopLatch()->getTerminator());
5312 else
5313 Inputs.push_back(IVIncInsertPos);
5314 }
5315 // The expansion must also be dominated by the increment positions of any
5316 // loops it for which it is using post-inc mode.
5317 for (const Loop *PIL : LF.PostIncLoops) {
5318 if (PIL == L) continue;
5319
5320 // Be dominated by the loop exit.
5321 SmallVector<BasicBlock *, 4> ExitingBlocks;
5322 PIL->getExitingBlocks(ExitingBlocks);
5323 if (!ExitingBlocks.empty()) {
5324 BasicBlock *BB = ExitingBlocks[0];
5325 for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
5326 BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
5327 Inputs.push_back(BB->getTerminator());
5328 }
5329 }
5330
5331 assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()(static_cast <bool> (!isa<PHINode>(LowestIP) &&
!LowestIP->isEHPad() && !isa<DbgInfoIntrinsic>
(LowestIP) && "Insertion point must be a normal instruction"
) ? void (0) : __assert_fail ("!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() && !isa<DbgInfoIntrinsic>(LowestIP) && \"Insertion point must be a normal instruction\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5333, __extension__
__PRETTY_FUNCTION__))
5332 && !isa<DbgInfoIntrinsic>(LowestIP) &&(static_cast <bool> (!isa<PHINode>(LowestIP) &&
!LowestIP->isEHPad() && !isa<DbgInfoIntrinsic>
(LowestIP) && "Insertion point must be a normal instruction"
) ? void (0) : __assert_fail ("!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() && !isa<DbgInfoIntrinsic>(LowestIP) && \"Insertion point must be a normal instruction\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5333, __extension__
__PRETTY_FUNCTION__))
5333 "Insertion point must be a normal instruction")(static_cast <bool> (!isa<PHINode>(LowestIP) &&
!LowestIP->isEHPad() && !isa<DbgInfoIntrinsic>
(LowestIP) && "Insertion point must be a normal instruction"
) ? void (0) : __assert_fail ("!isa<PHINode>(LowestIP) && !LowestIP->isEHPad() && !isa<DbgInfoIntrinsic>(LowestIP) && \"Insertion point must be a normal instruction\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5333, __extension__
__PRETTY_FUNCTION__))
;
5334
5335 // Then, climb up the immediate dominator tree as far as we can go while
5336 // still being dominated by the input positions.
5337 BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
5338
5339 // Don't insert instructions before PHI nodes.
5340 while (isa<PHINode>(IP)) ++IP;
5341
5342 // Ignore landingpad instructions.
5343 while (IP->isEHPad()) ++IP;
5344
5345 // Ignore debug intrinsics.
5346 while (isa<DbgInfoIntrinsic>(IP)) ++IP;
5347
5348 // Set IP below instructions recently inserted by SCEVExpander. This keeps the
5349 // IP consistent across expansions and allows the previously inserted
5350 // instructions to be reused by subsequent expansion.
5351 while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
5352 ++IP;
5353
5354 return IP;
5355}
5356
5357/// Emit instructions for the leading candidate expression for this LSRUse (this
5358/// is called "expanding").
5359Value *LSRInstance::Expand(const LSRUse &LU, const LSRFixup &LF,
5360 const Formula &F, BasicBlock::iterator IP,
5361 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5362 if (LU.RigidFormula)
5363 return LF.OperandValToReplace;
5364
5365 // Determine an input position which will be dominated by the operands and
5366 // which will dominate the result.
5367 IP = AdjustInsertPositionForExpand(IP, LF, LU);
5368 Rewriter.setInsertPoint(&*IP);
5369
5370 // Inform the Rewriter if we have a post-increment use, so that it can
5371 // perform an advantageous expansion.
5372 Rewriter.setPostInc(LF.PostIncLoops);
5373
5374 // This is the type that the user actually needs.
5375 Type *OpTy = LF.OperandValToReplace->getType();
5376 // This will be the type that we'll initially expand to.
5377 Type *Ty = F.getType();
5378 if (!Ty)
5379 // No type known; just expand directly to the ultimate type.
5380 Ty = OpTy;
5381 else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
5382 // Expand directly to the ultimate type if it's the right size.
5383 Ty = OpTy;
5384 // This is the type to do integer arithmetic in.
5385 Type *IntTy = SE.getEffectiveSCEVType(Ty);
5386
5387 // Build up a list of operands to add together to form the full base.
5388 SmallVector<const SCEV *, 8> Ops;
5389
5390 // Expand the BaseRegs portion.
5391 for (const SCEV *Reg : F.BaseRegs) {
5392 assert(!Reg->isZero() && "Zero allocated in a base register!")(static_cast <bool> (!Reg->isZero() && "Zero allocated in a base register!"
) ? void (0) : __assert_fail ("!Reg->isZero() && \"Zero allocated in a base register!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5392, __extension__
__PRETTY_FUNCTION__))
;
5393
5394 // If we're expanding for a post-inc user, make the post-inc adjustment.
5395 Reg = denormalizeForPostIncUse(Reg, LF.PostIncLoops, SE);
5396 Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr)));
5397 }
5398
5399 // Expand the ScaledReg portion.
5400 Value *ICmpScaledV = nullptr;
5401 if (F.Scale != 0) {
5402 const SCEV *ScaledS = F.ScaledReg;
5403
5404 // If we're expanding for a post-inc user, make the post-inc adjustment.
5405 PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
5406 ScaledS = denormalizeForPostIncUse(ScaledS, Loops, SE);
5407
5408 if (LU.Kind == LSRUse::ICmpZero) {
5409 // Expand ScaleReg as if it was part of the base regs.
5410 if (F.Scale == 1)
5411 Ops.push_back(
5412 SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr)));
5413 else {
5414 // An interesting way of "folding" with an icmp is to use a negated
5415 // scale, which we'll implement by inserting it into the other operand
5416 // of the icmp.
5417 assert(F.Scale == -1 &&(static_cast <bool> (F.Scale == -1 && "The only scale supported by ICmpZero uses is -1!"
) ? void (0) : __assert_fail ("F.Scale == -1 && \"The only scale supported by ICmpZero uses is -1!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5418, __extension__
__PRETTY_FUNCTION__))
5418 "The only scale supported by ICmpZero uses is -1!")(static_cast <bool> (F.Scale == -1 && "The only scale supported by ICmpZero uses is -1!"
) ? void (0) : __assert_fail ("F.Scale == -1 && \"The only scale supported by ICmpZero uses is -1!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5418, __extension__
__PRETTY_FUNCTION__))
;
5419 ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr);
5420 }
5421 } else {
5422 // Otherwise just expand the scaled register and an explicit scale,
5423 // which is expected to be matched as part of the address.
5424
5425 // Flush the operand list to suppress SCEVExpander hoisting address modes.
5426 // Unless the addressing mode will not be folded.
5427 if (!Ops.empty() && LU.Kind == LSRUse::Address &&
5428 isAMCompletelyFolded(TTI, LU, F)) {
5429 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), nullptr);
5430 Ops.clear();
5431 Ops.push_back(SE.getUnknown(FullV));
5432 }
5433 ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr));
5434 if (F.Scale != 1)
5435 ScaledS =
5436 SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
5437 Ops.push_back(ScaledS);
5438 }
5439 }
5440
5441 // Expand the GV portion.
5442 if (F.BaseGV) {
5443 // Flush the operand list to suppress SCEVExpander hoisting.
5444 if (!Ops.empty()) {
5445 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), IntTy);
5446 Ops.clear();
5447 Ops.push_back(SE.getUnknown(FullV));
5448 }
5449 Ops.push_back(SE.getUnknown(F.BaseGV));
5450 }
5451
5452 // Flush the operand list to suppress SCEVExpander hoisting of both folded and
5453 // unfolded offsets. LSR assumes they both live next to their uses.
5454 if (!Ops.empty()) {
5455 Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty);
5456 Ops.clear();
5457 Ops.push_back(SE.getUnknown(FullV));
5458 }
5459
5460 // Expand the immediate portion.
5461 int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
5462 if (Offset != 0) {
5463 if (LU.Kind == LSRUse::ICmpZero) {
5464 // The other interesting way of "folding" with an ICmpZero is to use a
5465 // negated immediate.
5466 if (!ICmpScaledV)
5467 ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
5468 else {
5469 Ops.push_back(SE.getUnknown(ICmpScaledV));
5470 ICmpScaledV = ConstantInt::get(IntTy, Offset);
5471 }
5472 } else {
5473 // Just add the immediate values. These again are expected to be matched
5474 // as part of the address.
5475 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
5476 }
5477 }
5478
5479 // Expand the unfolded offset portion.
5480 int64_t UnfoldedOffset = F.UnfoldedOffset;
5481 if (UnfoldedOffset != 0) {
5482 // Just add the immediate values.
5483 Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
5484 UnfoldedOffset)));
5485 }
5486
5487 // Emit instructions summing all the operands.
5488 const SCEV *FullS = Ops.empty() ?
5489 SE.getConstant(IntTy, 0) :
5490 SE.getAddExpr(Ops);
5491 Value *FullV = Rewriter.expandCodeFor(FullS, Ty);
5492
5493 // We're done expanding now, so reset the rewriter.
5494 Rewriter.clearPostInc();
5495
5496 // An ICmpZero Formula represents an ICmp which we're handling as a
5497 // comparison against zero. Now that we've expanded an expression for that
5498 // form, update the ICmp's other operand.
5499 if (LU.Kind == LSRUse::ICmpZero) {
5500 ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
5501 if (auto *OperandIsInstr = dyn_cast<Instruction>(CI->getOperand(1)))
5502 DeadInsts.emplace_back(OperandIsInstr);
5503 assert(!F.BaseGV && "ICmp does not support folding a global value and "(static_cast <bool> (!F.BaseGV && "ICmp does not support folding a global value and "
"a scale at the same time!") ? void (0) : __assert_fail ("!F.BaseGV && \"ICmp does not support folding a global value and \" \"a scale at the same time!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5504, __extension__
__PRETTY_FUNCTION__))
5504 "a scale at the same time!")(static_cast <bool> (!F.BaseGV && "ICmp does not support folding a global value and "
"a scale at the same time!") ? void (0) : __assert_fail ("!F.BaseGV && \"ICmp does not support folding a global value and \" \"a scale at the same time!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5504, __extension__
__PRETTY_FUNCTION__))
;
5505 if (F.Scale == -1) {
5506 if (ICmpScaledV->getType() != OpTy) {
5507 Instruction *Cast =
5508 CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
5509 OpTy, false),
5510 ICmpScaledV, OpTy, "tmp", CI);
5511 ICmpScaledV = Cast;
5512 }
5513 CI->setOperand(1, ICmpScaledV);
5514 } else {
5515 // A scale of 1 means that the scale has been expanded as part of the
5516 // base regs.
5517 assert((F.Scale == 0 || F.Scale == 1) &&(static_cast <bool> ((F.Scale == 0 || F.Scale == 1) &&
"ICmp does not support folding a global value and " "a scale at the same time!"
) ? void (0) : __assert_fail ("(F.Scale == 0 || F.Scale == 1) && \"ICmp does not support folding a global value and \" \"a scale at the same time!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5519, __extension__
__PRETTY_FUNCTION__))
5518 "ICmp does not support folding a global value and "(static_cast <bool> ((F.Scale == 0 || F.Scale == 1) &&
"ICmp does not support folding a global value and " "a scale at the same time!"
) ? void (0) : __assert_fail ("(F.Scale == 0 || F.Scale == 1) && \"ICmp does not support folding a global value and \" \"a scale at the same time!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5519, __extension__
__PRETTY_FUNCTION__))
5519 "a scale at the same time!")(static_cast <bool> ((F.Scale == 0 || F.Scale == 1) &&
"ICmp does not support folding a global value and " "a scale at the same time!"
) ? void (0) : __assert_fail ("(F.Scale == 0 || F.Scale == 1) && \"ICmp does not support folding a global value and \" \"a scale at the same time!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5519, __extension__
__PRETTY_FUNCTION__))
;
5520 Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
5521 -(uint64_t)Offset);
5522 if (C->getType() != OpTy)
5523 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
5524 OpTy, false),
5525 C, OpTy);
5526
5527 CI->setOperand(1, C);
5528 }
5529 }
5530
5531 return FullV;
5532}
5533
5534/// Helper for Rewrite. PHI nodes are special because the use of their operands
5535/// effectively happens in their predecessor blocks, so the expression may need
5536/// to be expanded in multiple places.
5537void LSRInstance::RewriteForPHI(
5538 PHINode *PN, const LSRUse &LU, const LSRFixup &LF, const Formula &F,
5539 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5540 DenseMap<BasicBlock *, Value *> Inserted;
5541 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1
Assuming 'i' is not equal to 'e'
2
Loop condition is true. Entering loop body
5542 if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
3
Assuming pointer value is null
4
Taking true branch
5543 bool needUpdateFixups = false;
5544 BasicBlock *BB = PN->getIncomingBlock(i);
5545
5546 // If this is a critical edge, split the edge so that we do not insert
5547 // the code on all predecessor/successor paths. We do this unless this
5548 // is the canonical backedge for this loop, which complicates post-inc
5549 // users.
5550 if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
5
Assuming 'e' is not equal to 1
6
Assuming the condition is false
7
Taking false branch
5551 !isa<IndirectBrInst>(BB->getTerminator()) &&
5552 !isa<CatchSwitchInst>(BB->getTerminator())) {
5553 BasicBlock *Parent = PN->getParent();
5554 Loop *PNLoop = LI.getLoopFor(Parent);
5555 if (!PNLoop || Parent != PNLoop->getHeader()) {
5556 // Split the critical edge.
5557 BasicBlock *NewBB = nullptr;
5558 if (!Parent->isLandingPad()) {
5559 NewBB =
5560 SplitCriticalEdge(BB, Parent,
5561 CriticalEdgeSplittingOptions(&DT, &LI, MSSAU)
5562 .setMergeIdenticalEdges()
5563 .setKeepOneInputPHIs());
5564 } else {
5565 SmallVector<BasicBlock*, 2> NewBBs;
5566 SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
5567 NewBB = NewBBs[0];
5568 }
5569 // If NewBB==NULL, then SplitCriticalEdge refused to split because all
5570 // phi predecessors are identical. The simple thing to do is skip
5571 // splitting in this case rather than complicate the API.
5572 if (NewBB) {
5573 // If PN is outside of the loop and BB is in the loop, we want to
5574 // move the block to be immediately before the PHI block, not
5575 // immediately after BB.
5576 if (L->contains(BB) && !L->contains(PN))
5577 NewBB->moveBefore(PN->getParent());
5578
5579 // Splitting the edge can reduce the number of PHI entries we have.
5580 e = PN->getNumIncomingValues();
5581 BB = NewBB;
5582 i = PN->getBasicBlockIndex(BB);
5583
5584 needUpdateFixups = true;
5585 }
5586 }
5587 }
5588
5589 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
5590 Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
5591 if (!Pair.second)
8
Assuming field 'second' is true
9
Taking false branch
5592 PN->setIncomingValue(i, Pair.first->second);
5593 else {
5594 Value *FullV =
5595 Expand(LU, LF, F, BB->getTerminator()->getIterator(), DeadInsts);
5596
5597 // If this is reuse-by-noop-cast, insert the noop cast.
5598 Type *OpTy = LF.OperandValToReplace->getType();
10
Called C++ object pointer is null
5599 if (FullV->getType() != OpTy)
5600 FullV =
5601 CastInst::Create(CastInst::getCastOpcode(FullV, false,
5602 OpTy, false),
5603 FullV, LF.OperandValToReplace->getType(),
5604 "tmp", BB->getTerminator());
5605
5606 PN->setIncomingValue(i, FullV);
5607 Pair.first->second = FullV;
5608 }
5609
5610 // If LSR splits critical edge and phi node has other pending
5611 // fixup operands, we need to update those pending fixups. Otherwise
5612 // formulae will not be implemented completely and some instructions
5613 // will not be eliminated.
5614 if (needUpdateFixups) {
5615 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5616 for (LSRFixup &Fixup : Uses[LUIdx].Fixups)
5617 // If fixup is supposed to rewrite some operand in the phi
5618 // that was just updated, it may be already moved to
5619 // another phi node. Such fixup requires update.
5620 if (Fixup.UserInst == PN) {
5621 // Check if the operand we try to replace still exists in the
5622 // original phi.
5623 bool foundInOriginalPHI = false;
5624 for (const auto &val : PN->incoming_values())
5625 if (val == Fixup.OperandValToReplace) {
5626 foundInOriginalPHI = true;
5627 break;
5628 }
5629
5630 // If fixup operand found in original PHI - nothing to do.
5631 if (foundInOriginalPHI)
5632 continue;
5633
5634 // Otherwise it might be moved to another PHI and requires update.
5635 // If fixup operand not found in any of the incoming blocks that
5636 // means we have already rewritten it - nothing to do.
5637 for (const auto &Block : PN->blocks())
5638 for (BasicBlock::iterator I = Block->begin(); isa<PHINode>(I);
5639 ++I) {
5640 PHINode *NewPN = cast<PHINode>(I);
5641 for (const auto &val : NewPN->incoming_values())
5642 if (val == Fixup.OperandValToReplace)
5643 Fixup.UserInst = NewPN;
5644 }
5645 }
5646 }
5647 }
5648}
5649
5650/// Emit instructions for the leading candidate expression for this LSRUse (this
5651/// is called "expanding"), and update the UserInst to reference the newly
5652/// expanded value.
5653void LSRInstance::Rewrite(const LSRUse &LU, const LSRFixup &LF,
5654 const Formula &F,
5655 SmallVectorImpl<WeakTrackingVH> &DeadInsts) const {
5656 // First, find an insertion point that dominates UserInst. For PHI nodes,
5657 // find the nearest block which dominates all the relevant uses.
5658 if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
5659 RewriteForPHI(PN, LU, LF, F, DeadInsts);
5660 } else {
5661 Value *FullV = Expand(LU, LF, F, LF.UserInst->getIterator(), DeadInsts);
5662
5663 // If this is reuse-by-noop-cast, insert the noop cast.
5664 Type *OpTy = LF.OperandValToReplace->getType();
5665 if (FullV->getType() != OpTy) {
5666 Instruction *Cast =
5667 CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
5668 FullV, OpTy, "tmp", LF.UserInst);
5669 FullV = Cast;
5670 }
5671
5672 // Update the user. ICmpZero is handled specially here (for now) because
5673 // Expand may have updated one of the operands of the icmp already, and
5674 // its new value may happen to be equal to LF.OperandValToReplace, in
5675 // which case doing replaceUsesOfWith leads to replacing both operands
5676 // with the same value. TODO: Reorganize this.
5677 if (LU.Kind == LSRUse::ICmpZero)
5678 LF.UserInst->setOperand(0, FullV);
5679 else
5680 LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
5681 }
5682
5683 if (auto *OperandIsInstr = dyn_cast<Instruction>(LF.OperandValToReplace))
5684 DeadInsts.emplace_back(OperandIsInstr);
5685}
5686
5687// Trying to hoist the IVInc to loop header if all IVInc users are in
5688// the loop header. It will help backend to generate post index load/store
5689// when the latch block is different from loop header block.
5690static bool canHoistIVInc(const TargetTransformInfo &TTI, const LSRFixup &Fixup,
5691 const LSRUse &LU, Instruction *IVIncInsertPos,
5692 Loop *L) {
5693 if (LU.Kind != LSRUse::Address)
5694 return false;
5695
5696 // For now this code do the conservative optimization, only work for
5697 // the header block. Later we can hoist the IVInc to the block post
5698 // dominate all users.
5699 BasicBlock *LHeader = L->getHeader();
5700 if (IVIncInsertPos->getParent() == LHeader)
5701 return false;
5702
5703 if (!Fixup.OperandValToReplace ||
5704 any_of(Fixup.OperandValToReplace->users(), [&LHeader](User *U) {
5705 Instruction *UI = cast<Instruction>(U);
5706 return UI->getParent() != LHeader;
5707 }))
5708 return false;
5709
5710 Instruction *I = Fixup.UserInst;
5711 Type *Ty = I->getType();
5712 return Ty->isIntegerTy() &&
5713 ((isa<LoadInst>(I) && TTI.isIndexedLoadLegal(TTI.MIM_PostInc, Ty)) ||
5714 (isa<StoreInst>(I) && TTI.isIndexedStoreLegal(TTI.MIM_PostInc, Ty)));
5715}
5716
5717/// Rewrite all the fixup locations with new values, following the chosen
5718/// solution.
5719void LSRInstance::ImplementSolution(
5720 const SmallVectorImpl<const Formula *> &Solution) {
5721 // Keep track of instructions we may have made dead, so that
5722 // we can remove them after we are done working.
5723 SmallVector<WeakTrackingVH, 16> DeadInsts;
5724
5725 // Mark phi nodes that terminate chains so the expander tries to reuse them.
5726 for (const IVChain &Chain : IVChainVec) {
5727 if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
5728 Rewriter.setChainedPhi(PN);
5729 }
5730
5731 // Expand the new value definitions and update the users.
5732 for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx)
5733 for (const LSRFixup &Fixup : Uses[LUIdx].Fixups) {
5734 Instruction *InsertPos =
5735 canHoistIVInc(TTI, Fixup, Uses[LUIdx], IVIncInsertPos, L)
5736 ? L->getHeader()->getTerminator()
5737 : IVIncInsertPos;
5738 Rewriter.setIVIncInsertPos(L, InsertPos);
5739 Rewrite(Uses[LUIdx], Fixup, *Solution[LUIdx], DeadInsts);
5740 Changed = true;
5741 }
5742
5743 for (const IVChain &Chain : IVChainVec) {
5744 GenerateIVChain(Chain, DeadInsts);
5745 Changed = true;
5746 }
5747
5748 for (const WeakVH &IV : Rewriter.getInsertedIVs())
5749 if (IV && dyn_cast<Instruction>(&*IV)->getParent())
5750 ScalarEvolutionIVs.push_back(IV);
5751
5752 // Clean up after ourselves. This must be done before deleting any
5753 // instructions.
5754 Rewriter.clear();
5755
5756 Changed |= RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts,
5757 &TLI, MSSAU);
5758
5759 // In our cost analysis above, we assume that each addrec consumes exactly
5760 // one register, and arrange to have increments inserted just before the
5761 // latch to maximimize the chance this is true. However, if we reused
5762 // existing IVs, we now need to move the increments to match our
5763 // expectations. Otherwise, our cost modeling results in us having a
5764 // chosen a non-optimal result for the actual schedule. (And yes, this
5765 // scheduling decision does impact later codegen.)
5766 for (PHINode &PN : L->getHeader()->phis()) {
5767 BinaryOperator *BO = nullptr;
5768 Value *Start = nullptr, *Step = nullptr;
5769 if (!matchSimpleRecurrence(&PN, BO, Start, Step))
5770 continue;
5771
5772 switch (BO->getOpcode()) {
5773 case Instruction::Sub:
5774 if (BO->getOperand(0) != &PN)
5775 // sub is non-commutative - match handling elsewhere in LSR
5776 continue;
5777 break;
5778 case Instruction::Add:
5779 break;
5780 default:
5781 continue;
5782 };
5783
5784 if (!isa<Constant>(Step))
5785 // If not a constant step, might increase register pressure
5786 // (We assume constants have been canonicalized to RHS)
5787 continue;
5788
5789 if (BO->getParent() == IVIncInsertPos->getParent())
5790 // Only bother moving across blocks. Isel can handle block local case.
5791 continue;
5792
5793 // Can we legally schedule inc at the desired point?
5794 if (!llvm::all_of(BO->uses(),
5795 [&](Use &U) {return DT.dominates(IVIncInsertPos, U);}))
5796 continue;
5797 BO->moveBefore(IVIncInsertPos);
5798 Changed = true;
5799 }
5800
5801
5802}
5803
5804LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
5805 DominatorTree &DT, LoopInfo &LI,
5806 const TargetTransformInfo &TTI, AssumptionCache &AC,
5807 TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU)
5808 : IU(IU), SE(SE), DT(DT), LI(LI), AC(AC), TLI(TLI), TTI(TTI), L(L),
5809 MSSAU(MSSAU), AMK(PreferredAddresingMode.getNumOccurrences() > 0
5810 ? PreferredAddresingMode
5811 : TTI.getPreferredAddressingMode(L, &SE)),
5812 Rewriter(SE, L->getHeader()->getModule()->getDataLayout(), "lsr", false),
5813 BaselineCost(L, SE, TTI, AMK) {
5814 // If LoopSimplify form is not available, stay out of trouble.
5815 if (!L->isLoopSimplifyForm())
5816 return;
5817
5818 // If there's no interesting work to be done, bail early.
5819 if (IU.empty()) return;
5820
5821 // If there's too much analysis to be done, bail early. We won't be able to
5822 // model the problem anyway.
5823 unsigned NumUsers = 0;
5824 for (const IVStrideUse &U : IU) {
5825 if (++NumUsers > MaxIVUsers) {
5826 (void)U;
5827 LLVM_DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << Udo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "LSR skipping loop, too many IV Users in "
<< U << "\n"; } } while (false)
5828 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "LSR skipping loop, too many IV Users in "
<< U << "\n"; } } while (false)
;
5829 return;
5830 }
5831 // Bail out if we have a PHI on an EHPad that gets a value from a
5832 // CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
5833 // no good place to stick any instructions.
5834 if (auto *PN = dyn_cast<PHINode>(U.getUser())) {
5835 auto *FirstNonPHI = PN->getParent()->getFirstNonPHI();
5836 if (isa<FuncletPadInst>(FirstNonPHI) ||
5837 isa<CatchSwitchInst>(FirstNonPHI))
5838 for (BasicBlock *PredBB : PN->blocks())
5839 if (isa<CatchSwitchInst>(PredBB->getFirstNonPHI()))
5840 return;
5841 }
5842 }
5843
5844 LLVM_DEBUG(dbgs() << "\nLSR on loop ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\nLSR on loop "; L->getHeader
()->printAsOperand(dbgs(), false); dbgs() << ":\n"; }
} while (false)
5845 L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\nLSR on loop "; L->getHeader
()->printAsOperand(dbgs(), false); dbgs() << ":\n"; }
} while (false)
5846 dbgs() << ":\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "\nLSR on loop "; L->getHeader
()->printAsOperand(dbgs(), false); dbgs() << ":\n"; }
} while (false)
;
5847
5848 // Configure SCEVExpander already now, so the correct mode is used for
5849 // isSafeToExpand() checks.
5850#ifndef NDEBUG
5851 Rewriter.setDebugType(DEBUG_TYPE"loop-reduce");
5852#endif
5853 Rewriter.disableCanonicalMode();
5854 Rewriter.enableLSRMode();
5855
5856 // First, perform some low-level loop optimizations.
5857 OptimizeShadowIV();
5858 OptimizeLoopTermCond();
5859
5860 // If loop preparation eliminates all interesting IV users, bail.
5861 if (IU.empty()) return;
5862
5863 // Skip nested loops until we can model them better with formulae.
5864 if (!L->isInnermost()) {
5865 LLVM_DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "LSR skipping outer loop "
<< *L << "\n"; } } while (false)
;
5866 return;
5867 }
5868
5869 // Start collecting data and preparing for the solver.
5870 // If number of registers is not the major cost, we cannot benefit from the
5871 // current profitable chain optimization which is based on number of
5872 // registers.
5873 // FIXME: add profitable chain optimization for other kinds major cost, for
5874 // example number of instructions.
5875 if (TTI.isNumRegsMajorCostOfLSR() || StressIVChain)
5876 CollectChains();
5877 CollectInterestingTypesAndFactors();
5878 CollectFixupsAndInitialFormulae();
5879 CollectLoopInvariantFixupsAndFormulae();
5880
5881 if (Uses.empty())
5882 return;
5883
5884 LLVM_DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "LSR found " << Uses
.size() << " uses:\n"; print_uses(dbgs()); } } while (false
)
5885 print_uses(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "LSR found " << Uses
.size() << " uses:\n"; print_uses(dbgs()); } } while (false
)
;
5886
5887 // Now use the reuse data to generate a bunch of interesting ways
5888 // to formulate the values needed for the uses.
5889 GenerateAllReuseFormulae();
5890
5891 FilterOutUndesirableDedicatedRegisters();
5892 NarrowSearchSpaceUsingHeuristics();
5893
5894 SmallVector<const Formula *, 8> Solution;
5895 Solve(Solution);
5896
5897 // Release memory that is no longer needed.
5898 Factors.clear();
5899 Types.clear();
5900 RegUses.clear();
5901
5902 if (Solution.empty())
5903 return;
5904
5905#ifndef NDEBUG
5906 // Formulae should be legal.
5907 for (const LSRUse &LU : Uses) {
5908 for (const Formula &F : LU.Formulae)
5909 assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,(static_cast <bool> (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset
, LU.Kind, LU.AccessTy, F) && "Illegal formula generated!"
) ? void (0) : __assert_fail ("isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && \"Illegal formula generated!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5910, __extension__
__PRETTY_FUNCTION__))
5910 F) && "Illegal formula generated!")(static_cast <bool> (isLegalUse(TTI, LU.MinOffset, LU.MaxOffset
, LU.Kind, LU.AccessTy, F) && "Illegal formula generated!"
) ? void (0) : __assert_fail ("isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) && \"Illegal formula generated!\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 5910, __extension__
__PRETTY_FUNCTION__))
;
5911 };
5912#endif
5913
5914 // Now that we've decided what we want, make it so.
5915 ImplementSolution(Solution);
5916}
5917
5918#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
5919void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
5920 if (Factors.empty() && Types.empty()) return;
5921
5922 OS << "LSR has identified the following interesting factors and types: ";
5923 bool First = true;
5924
5925 for (int64_t Factor : Factors) {
5926 if (!First) OS << ", ";
5927 First = false;
5928 OS << '*' << Factor;
5929 }
5930
5931 for (Type *Ty : Types) {
5932 if (!First) OS << ", ";
5933 First = false;
5934 OS << '(' << *Ty << ')';
5935 }
5936 OS << '\n';
5937}
5938
5939void LSRInstance::print_fixups(raw_ostream &OS) const {
5940 OS << "LSR is examining the following fixup sites:\n";
5941 for (const LSRUse &LU : Uses)
5942 for (const LSRFixup &LF : LU.Fixups) {
5943 dbgs() << " ";
5944 LF.print(OS);
5945 OS << '\n';
5946 }
5947}
5948
5949void LSRInstance::print_uses(raw_ostream &OS) const {
5950 OS << "LSR is examining the following uses:\n";
5951 for (const LSRUse &LU : Uses) {
5952 dbgs() << " ";
5953 LU.print(OS);
5954 OS << '\n';
5955 for (const Formula &F : LU.Formulae) {
5956 OS << " ";
5957 F.print(OS);
5958 OS << '\n';
5959 }
5960 }
5961}
5962
5963void LSRInstance::print(raw_ostream &OS) const {
5964 print_factors_and_types(OS);
5965 print_fixups(OS);
5966 print_uses(OS);
5967}
5968
5969LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LSRInstance::dump() const {
5970 print(errs()); errs() << '\n';
5971}
5972#endif
5973
5974namespace {
5975
5976class LoopStrengthReduce : public LoopPass {
5977public:
5978 static char ID; // Pass ID, replacement for typeid
5979
5980 LoopStrengthReduce();
5981
5982private:
5983 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
5984 void getAnalysisUsage(AnalysisUsage &AU) const override;
5985};
5986
5987} // end anonymous namespace
5988
5989LoopStrengthReduce::LoopStrengthReduce() : LoopPass(ID) {
5990 initializeLoopStrengthReducePass(*PassRegistry::getPassRegistry());
5991}
5992
5993void LoopStrengthReduce::getAnalysisUsage(AnalysisUsage &AU) const {
5994 // We split critical edges, so we change the CFG. However, we do update
5995 // many analyses if they are around.
5996 AU.addPreservedID(LoopSimplifyID);
5997
5998 AU.addRequired<LoopInfoWrapperPass>();
5999 AU.addPreserved<LoopInfoWrapperPass>();
6000 AU.addRequiredID(LoopSimplifyID);
6001 AU.addRequired<DominatorTreeWrapperPass>();
6002 AU.addPreserved<DominatorTreeWrapperPass>();
6003 AU.addRequired<ScalarEvolutionWrapperPass>();
6004 AU.addPreserved<ScalarEvolutionWrapperPass>();
6005 AU.addRequired<AssumptionCacheTracker>();
6006 AU.addRequired<TargetLibraryInfoWrapperPass>();
6007 // Requiring LoopSimplify a second time here prevents IVUsers from running
6008 // twice, since LoopSimplify was invalidated by running ScalarEvolution.
6009 AU.addRequiredID(LoopSimplifyID);
6010 AU.addRequired<IVUsersWrapperPass>();
6011 AU.addPreserved<IVUsersWrapperPass>();
6012 AU.addRequired<TargetTransformInfoWrapperPass>();
6013 AU.addPreserved<MemorySSAWrapperPass>();
6014}
6015
6016namespace {
6017
6018/// Enables more convenient iteration over a DWARF expression vector.
6019static iterator_range<llvm::DIExpression::expr_op_iterator>
6020ToDwarfOpIter(SmallVectorImpl<uint64_t> &Expr) {
6021 llvm::DIExpression::expr_op_iterator Begin =
6022 llvm::DIExpression::expr_op_iterator(Expr.begin());
6023 llvm::DIExpression::expr_op_iterator End =
6024 llvm::DIExpression::expr_op_iterator(Expr.end());
6025 return {Begin, End};
6026}
6027
6028struct SCEVDbgValueBuilder {
6029 SCEVDbgValueBuilder() = default;
6030 SCEVDbgValueBuilder(const SCEVDbgValueBuilder &Base) { clone(Base); }
6031
6032 void clone(const SCEVDbgValueBuilder &Base) {
6033 LocationOps = Base.LocationOps;
6034 Expr = Base.Expr;
6035 }
6036
6037 void clear() {
6038 LocationOps.clear();
6039 Expr.clear();
6040 }
6041
6042 /// The DIExpression as we translate the SCEV.
6043 SmallVector<uint64_t, 6> Expr;
6044 /// The location ops of the DIExpression.
6045 SmallVector<Value *, 2> LocationOps;
6046
6047 void pushOperator(uint64_t Op) { Expr.push_back(Op); }
6048 void pushUInt(uint64_t Operand) { Expr.push_back(Operand); }
6049
6050 /// Add a DW_OP_LLVM_arg to the expression, followed by the index of the value
6051 /// in the set of values referenced by the expression.
6052 void pushLocation(llvm::Value *V) {
6053 Expr.push_back(llvm::dwarf::DW_OP_LLVM_arg);
6054 auto *It = llvm::find(LocationOps, V);
6055 unsigned ArgIndex = 0;
6056 if (It != LocationOps.end()) {
6057 ArgIndex = std::distance(LocationOps.begin(), It);
6058 } else {
6059 ArgIndex = LocationOps.size();
6060 LocationOps.push_back(V);
6061 }
6062 Expr.push_back(ArgIndex);
6063 }
6064
6065 void pushValue(const SCEVUnknown *U) {
6066 llvm::Value *V = cast<SCEVUnknown>(U)->getValue();
6067 pushLocation(V);
6068 }
6069
6070 bool pushConst(const SCEVConstant *C) {
6071 if (C->getAPInt().getSignificantBits() > 64)
6072 return false;
6073 Expr.push_back(llvm::dwarf::DW_OP_consts);
6074 Expr.push_back(C->getAPInt().getSExtValue());
6075 return true;
6076 }
6077
6078 // Iterating the expression as DWARF ops is convenient when updating
6079 // DWARF_OP_LLVM_args.
6080 iterator_range<llvm::DIExpression::expr_op_iterator> expr_ops() {
6081 return ToDwarfOpIter(Expr);
6082 }
6083
6084 /// Several SCEV types are sequences of the same arithmetic operator applied
6085 /// to constants and values that may be extended or truncated.
6086 bool pushArithmeticExpr(const llvm::SCEVCommutativeExpr *CommExpr,
6087 uint64_t DwarfOp) {
6088 assert((isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) &&(static_cast <bool> ((isa<llvm::SCEVAddExpr>(CommExpr
) || isa<SCEVMulExpr>(CommExpr)) && "Expected arithmetic SCEV type"
) ? void (0) : __assert_fail ("(isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && \"Expected arithmetic SCEV type\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6089, __extension__
__PRETTY_FUNCTION__))
6089 "Expected arithmetic SCEV type")(static_cast <bool> ((isa<llvm::SCEVAddExpr>(CommExpr
) || isa<SCEVMulExpr>(CommExpr)) && "Expected arithmetic SCEV type"
) ? void (0) : __assert_fail ("(isa<llvm::SCEVAddExpr>(CommExpr) || isa<SCEVMulExpr>(CommExpr)) && \"Expected arithmetic SCEV type\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6089, __extension__
__PRETTY_FUNCTION__))
;
6090 bool Success = true;
6091 unsigned EmitOperator = 0;
6092 for (const auto &Op : CommExpr->operands()) {
6093 Success &= pushSCEV(Op);
6094
6095 if (EmitOperator >= 1)
6096 pushOperator(DwarfOp);
6097 ++EmitOperator;
6098 }
6099 return Success;
6100 }
6101
6102 // TODO: Identify and omit noop casts.
6103 bool pushCast(const llvm::SCEVCastExpr *C, bool IsSigned) {
6104 const llvm::SCEV *Inner = C->getOperand(0);
6105 const llvm::Type *Type = C->getType();
6106 uint64_t ToWidth = Type->getIntegerBitWidth();
6107 bool Success = pushSCEV(Inner);
6108 uint64_t CastOps[] = {dwarf::DW_OP_LLVM_convert, ToWidth,
6109 IsSigned ? llvm::dwarf::DW_ATE_signed
6110 : llvm::dwarf::DW_ATE_unsigned};
6111 for (const auto &Op : CastOps)
6112 pushOperator(Op);
6113 return Success;
6114 }
6115
6116 // TODO: MinMax - although these haven't been encountered in the test suite.
6117 bool pushSCEV(const llvm::SCEV *S) {
6118 bool Success = true;
6119 if (const SCEVConstant *StartInt = dyn_cast<SCEVConstant>(S)) {
6120 Success &= pushConst(StartInt);
6121
6122 } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6123 if (!U->getValue())
6124 return false;
6125 pushLocation(U->getValue());
6126
6127 } else if (const SCEVMulExpr *MulRec = dyn_cast<SCEVMulExpr>(S)) {
6128 Success &= pushArithmeticExpr(MulRec, llvm::dwarf::DW_OP_mul);
6129
6130 } else if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6131 Success &= pushSCEV(UDiv->getLHS());
6132 Success &= pushSCEV(UDiv->getRHS());
6133 pushOperator(llvm::dwarf::DW_OP_div);
6134
6135 } else if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(S)) {
6136 // Assert if a new and unknown SCEVCastEXpr type is encountered.
6137 assert((isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) ||(static_cast <bool> ((isa<SCEVZeroExtendExpr>(Cast
) || isa<SCEVTruncateExpr>(Cast) || isa<SCEVPtrToIntExpr
>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
"Unexpected cast type in SCEV.") ? void (0) : __assert_fail (
"(isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && \"Unexpected cast type in SCEV.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6139, __extension__
__PRETTY_FUNCTION__))
6138 isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&(static_cast <bool> ((isa<SCEVZeroExtendExpr>(Cast
) || isa<SCEVTruncateExpr>(Cast) || isa<SCEVPtrToIntExpr
>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
"Unexpected cast type in SCEV.") ? void (0) : __assert_fail (
"(isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && \"Unexpected cast type in SCEV.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6139, __extension__
__PRETTY_FUNCTION__))
6139 "Unexpected cast type in SCEV.")(static_cast <bool> ((isa<SCEVZeroExtendExpr>(Cast
) || isa<SCEVTruncateExpr>(Cast) || isa<SCEVPtrToIntExpr
>(Cast) || isa<SCEVSignExtendExpr>(Cast)) &&
"Unexpected cast type in SCEV.") ? void (0) : __assert_fail (
"(isa<SCEVZeroExtendExpr>(Cast) || isa<SCEVTruncateExpr>(Cast) || isa<SCEVPtrToIntExpr>(Cast) || isa<SCEVSignExtendExpr>(Cast)) && \"Unexpected cast type in SCEV.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6139, __extension__
__PRETTY_FUNCTION__))
;
6140 Success &= pushCast(Cast, (isa<SCEVSignExtendExpr>(Cast)));
6141
6142 } else if (const SCEVAddExpr *AddExpr = dyn_cast<SCEVAddExpr>(S)) {
6143 Success &= pushArithmeticExpr(AddExpr, llvm::dwarf::DW_OP_plus);
6144
6145 } else if (isa<SCEVAddRecExpr>(S)) {
6146 // Nested SCEVAddRecExpr are generated by nested loops and are currently
6147 // unsupported.
6148 return false;
6149
6150 } else {
6151 return false;
6152 }
6153 return Success;
6154 }
6155
6156 /// Return true if the combination of arithmetic operator and underlying
6157 /// SCEV constant value is an identity function.
6158 bool isIdentityFunction(uint64_t Op, const SCEV *S) {
6159 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
6160 if (C->getAPInt().getSignificantBits() > 64)
6161 return false;
6162 int64_t I = C->getAPInt().getSExtValue();
6163 switch (Op) {
6164 case llvm::dwarf::DW_OP_plus:
6165 case llvm::dwarf::DW_OP_minus:
6166 return I == 0;
6167 case llvm::dwarf::DW_OP_mul:
6168 case llvm::dwarf::DW_OP_div:
6169 return I == 1;
6170 }
6171 }
6172 return false;
6173 }
6174
6175 /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6176 /// builder's expression stack. The stack should already contain an
6177 /// expression for the iteration count, so that it can be multiplied by
6178 /// the stride and added to the start.
6179 /// Components of the expression are omitted if they are an identity function.
6180 /// Chain (non-affine) SCEVs are not supported.
6181 bool SCEVToValueExpr(const llvm::SCEVAddRecExpr &SAR, ScalarEvolution &SE) {
6182 assert(SAR.isAffine() && "Expected affine SCEV")(static_cast <bool> (SAR.isAffine() && "Expected affine SCEV"
) ? void (0) : __assert_fail ("SAR.isAffine() && \"Expected affine SCEV\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6182, __extension__
__PRETTY_FUNCTION__))
;
6183 // TODO: Is this check needed?
6184 if (isa<SCEVAddRecExpr>(SAR.getStart()))
6185 return false;
6186
6187 const SCEV *Start = SAR.getStart();
6188 const SCEV *Stride = SAR.getStepRecurrence(SE);
6189
6190 // Skip pushing arithmetic noops.
6191 if (!isIdentityFunction(llvm::dwarf::DW_OP_mul, Stride)) {
6192 if (!pushSCEV(Stride))
6193 return false;
6194 pushOperator(llvm::dwarf::DW_OP_mul);
6195 }
6196 if (!isIdentityFunction(llvm::dwarf::DW_OP_plus, Start)) {
6197 if (!pushSCEV(Start))
6198 return false;
6199 pushOperator(llvm::dwarf::DW_OP_plus);
6200 }
6201 return true;
6202 }
6203
6204 /// Create an expression that is an offset from a value (usually the IV).
6205 void createOffsetExpr(int64_t Offset, Value *OffsetValue) {
6206 pushLocation(OffsetValue);
6207 DIExpression::appendOffset(Expr, Offset);
6208 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
<< std::to_string(Offset) << "\n"; } } while (false
)
6209 dbgs() << "scev-salvage: Generated IV offset expression. Offset: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
<< std::to_string(Offset) << "\n"; } } while (false
)
6210 << std::to_string(Offset) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: Generated IV offset expression. Offset: "
<< std::to_string(Offset) << "\n"; } } while (false
)
;
6211 }
6212
6213 /// Combine a translation of the SCEV and the IV to create an expression that
6214 /// recovers a location's value.
6215 /// returns true if an expression was created.
6216 bool createIterCountExpr(const SCEV *S,
6217 const SCEVDbgValueBuilder &IterationCount,
6218 ScalarEvolution &SE) {
6219 // SCEVs for SSA values are most frquently of the form
6220 // {start,+,stride}, but sometimes they are ({start,+,stride} + %a + ..).
6221 // This is because %a is a PHI node that is not the IV. However, these
6222 // SCEVs have not been observed to result in debuginfo-lossy optimisations,
6223 // so its not expected this point will be reached.
6224 if (!isa<SCEVAddRecExpr>(S))
6225 return false;
6226
6227 LLVM_DEBUG(dbgs() << "scev-salvage: Location to salvage SCEV: " << *Sdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: Location to salvage SCEV: "
<< *S << '\n'; } } while (false)
6228 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: Location to salvage SCEV: "
<< *S << '\n'; } } while (false)
;
6229
6230 const auto *Rec = cast<SCEVAddRecExpr>(S);
6231 if (!Rec->isAffine())
6232 return false;
6233
6234 if (S->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6235 return false;
6236
6237 // Initialise a new builder with the iteration count expression. In
6238 // combination with the value's SCEV this enables recovery.
6239 clone(IterationCount);
6240 if (!SCEVToValueExpr(*Rec, SE))
6241 return false;
6242
6243 return true;
6244 }
6245
6246 /// Convert a SCEV of a value to a DIExpression that is pushed onto the
6247 /// builder's expression stack. The stack should already contain an
6248 /// expression for the iteration count, so that it can be multiplied by
6249 /// the stride and added to the start.
6250 /// Components of the expression are omitted if they are an identity function.
6251 bool SCEVToIterCountExpr(const llvm::SCEVAddRecExpr &SAR,
6252 ScalarEvolution &SE) {
6253 assert(SAR.isAffine() && "Expected affine SCEV")(static_cast <bool> (SAR.isAffine() && "Expected affine SCEV"
) ? void (0) : __assert_fail ("SAR.isAffine() && \"Expected affine SCEV\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6253, __extension__
__PRETTY_FUNCTION__))
;
6254 if (isa<SCEVAddRecExpr>(SAR.getStart())) {
6255 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
<< SAR << '\n'; } } while (false)
6256 << SAR << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: IV SCEV. Unsupported nested AddRec: "
<< SAR << '\n'; } } while (false)
;
6257 return false;
6258 }
6259 const SCEV *Start = SAR.getStart();
6260 const SCEV *Stride = SAR.getStepRecurrence(SE);
6261
6262 // Skip pushing arithmetic noops.
6263 if (!isIdentityFunction(llvm::dwarf::DW_OP_minus, Start)) {
6264 if (!pushSCEV(Start))
6265 return false;
6266 pushOperator(llvm::dwarf::DW_OP_minus);
6267 }
6268 if (!isIdentityFunction(llvm::dwarf::DW_OP_div, Stride)) {
6269 if (!pushSCEV(Stride))
6270 return false;
6271 pushOperator(llvm::dwarf::DW_OP_div);
6272 }
6273 return true;
6274 }
6275
6276 // Append the current expression and locations to a location list and an
6277 // expression list. Modify the DW_OP_LLVM_arg indexes to account for
6278 // the locations already present in the destination list.
6279 void appendToVectors(SmallVectorImpl<uint64_t> &DestExpr,
6280 SmallVectorImpl<Value *> &DestLocations) {
6281 assert(!DestLocations.empty() &&(static_cast <bool> (!DestLocations.empty() && "Expected the locations vector to contain the IV"
) ? void (0) : __assert_fail ("!DestLocations.empty() && \"Expected the locations vector to contain the IV\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6282, __extension__
__PRETTY_FUNCTION__))
6282 "Expected the locations vector to contain the IV")(static_cast <bool> (!DestLocations.empty() && "Expected the locations vector to contain the IV"
) ? void (0) : __assert_fail ("!DestLocations.empty() && \"Expected the locations vector to contain the IV\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6282, __extension__
__PRETTY_FUNCTION__))
;
6283 // The DWARF_OP_LLVM_arg arguments of the expression being appended must be
6284 // modified to account for the locations already in the destination vector.
6285 // All builders contain the IV as the first location op.
6286 assert(!LocationOps.empty() &&(static_cast <bool> (!LocationOps.empty() && "Expected the location ops to contain the IV."
) ? void (0) : __assert_fail ("!LocationOps.empty() && \"Expected the location ops to contain the IV.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6287, __extension__
__PRETTY_FUNCTION__))
6287 "Expected the location ops to contain the IV.")(static_cast <bool> (!LocationOps.empty() && "Expected the location ops to contain the IV."
) ? void (0) : __assert_fail ("!LocationOps.empty() && \"Expected the location ops to contain the IV.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6287, __extension__
__PRETTY_FUNCTION__))
;
6288 // DestIndexMap[n] contains the index in DestLocations for the nth
6289 // location in this SCEVDbgValueBuilder.
6290 SmallVector<uint64_t, 2> DestIndexMap;
6291 for (const auto &Op : LocationOps) {
6292 auto It = find(DestLocations, Op);
6293 if (It != DestLocations.end()) {
6294 // Location already exists in DestLocations, reuse existing ArgIndex.
6295 DestIndexMap.push_back(std::distance(DestLocations.begin(), It));
6296 continue;
6297 }
6298 // Location is not in DestLocations, add it.
6299 DestIndexMap.push_back(DestLocations.size());
6300 DestLocations.push_back(Op);
6301 }
6302
6303 for (const auto &Op : expr_ops()) {
6304 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6305 Op.appendToVector(DestExpr);
6306 continue;
6307 }
6308
6309 DestExpr.push_back(dwarf::DW_OP_LLVM_arg);
6310 // `DW_OP_LLVM_arg n` represents the nth LocationOp in this SCEV,
6311 // DestIndexMap[n] contains its new index in DestLocations.
6312 uint64_t NewIndex = DestIndexMap[Op.getArg(0)];
6313 DestExpr.push_back(NewIndex);
6314 }
6315 }
6316};
6317
6318/// Holds all the required data to salvage a dbg.value using the pre-LSR SCEVs
6319/// and DIExpression.
6320struct DVIRecoveryRec {
6321 DVIRecoveryRec(DbgValueInst *DbgValue)
6322 : DVI(DbgValue), Expr(DbgValue->getExpression()),
6323 HadLocationArgList(false) {}
6324
6325 DbgValueInst *DVI;
6326 DIExpression *Expr;
6327 bool HadLocationArgList;
6328 SmallVector<WeakVH, 2> LocationOps;
6329 SmallVector<const llvm::SCEV *, 2> SCEVs;
6330 SmallVector<std::unique_ptr<SCEVDbgValueBuilder>, 2> RecoveryExprs;
6331
6332 void clear() {
6333 for (auto &RE : RecoveryExprs)
6334 RE.reset();
6335 RecoveryExprs.clear();
6336 }
6337
6338 ~DVIRecoveryRec() { clear(); }
6339};
6340} // namespace
6341
6342/// Returns the total number of DW_OP_llvm_arg operands in the expression.
6343/// This helps in determining if a DIArglist is necessary or can be omitted from
6344/// the dbg.value.
6345static unsigned numLLVMArgOps(SmallVectorImpl<uint64_t> &Expr) {
6346 auto expr_ops = ToDwarfOpIter(Expr);
6347 unsigned Count = 0;
6348 for (auto Op : expr_ops)
6349 if (Op.getOp() == dwarf::DW_OP_LLVM_arg)
6350 Count++;
6351 return Count;
6352}
6353
6354/// Overwrites DVI with the location and Ops as the DIExpression. This will
6355/// create an invalid expression if Ops has any dwarf::DW_OP_llvm_arg operands,
6356/// because a DIArglist is not created for the first argument of the dbg.value.
6357static void updateDVIWithLocation(DbgValueInst &DVI, Value *Location,
6358 SmallVectorImpl<uint64_t> &Ops) {
6359 assert((static_cast <bool> (numLLVMArgOps(Ops) == 0 &&
"Expected expression that does not contain any DW_OP_llvm_arg operands."
) ? void (0) : __assert_fail ("numLLVMArgOps(Ops) == 0 && \"Expected expression that does not contain any DW_OP_llvm_arg operands.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6361, __extension__
__PRETTY_FUNCTION__))
6360 numLLVMArgOps(Ops) == 0 &&(static_cast <bool> (numLLVMArgOps(Ops) == 0 &&
"Expected expression that does not contain any DW_OP_llvm_arg operands."
) ? void (0) : __assert_fail ("numLLVMArgOps(Ops) == 0 && \"Expected expression that does not contain any DW_OP_llvm_arg operands.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6361, __extension__
__PRETTY_FUNCTION__))
6361 "Expected expression that does not contain any DW_OP_llvm_arg operands.")(static_cast <bool> (numLLVMArgOps(Ops) == 0 &&
"Expected expression that does not contain any DW_OP_llvm_arg operands."
) ? void (0) : __assert_fail ("numLLVMArgOps(Ops) == 0 && \"Expected expression that does not contain any DW_OP_llvm_arg operands.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6361, __extension__
__PRETTY_FUNCTION__))
;
6362 DVI.setRawLocation(ValueAsMetadata::get(Location));
6363 DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6364}
6365
6366/// Overwrite DVI with locations placed into a DIArglist.
6367static void updateDVIWithLocations(DbgValueInst &DVI,
6368 SmallVectorImpl<Value *> &Locations,
6369 SmallVectorImpl<uint64_t> &Ops) {
6370 assert(numLLVMArgOps(Ops) != 0 &&(static_cast <bool> (numLLVMArgOps(Ops) != 0 &&
"Expected expression that references DIArglist locations using "
"DW_OP_llvm_arg operands.") ? void (0) : __assert_fail ("numLLVMArgOps(Ops) != 0 && \"Expected expression that references DIArglist locations using \" \"DW_OP_llvm_arg operands.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6372, __extension__
__PRETTY_FUNCTION__))
6371 "Expected expression that references DIArglist locations using "(static_cast <bool> (numLLVMArgOps(Ops) != 0 &&
"Expected expression that references DIArglist locations using "
"DW_OP_llvm_arg operands.") ? void (0) : __assert_fail ("numLLVMArgOps(Ops) != 0 && \"Expected expression that references DIArglist locations using \" \"DW_OP_llvm_arg operands.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6372, __extension__
__PRETTY_FUNCTION__))
6372 "DW_OP_llvm_arg operands.")(static_cast <bool> (numLLVMArgOps(Ops) != 0 &&
"Expected expression that references DIArglist locations using "
"DW_OP_llvm_arg operands.") ? void (0) : __assert_fail ("numLLVMArgOps(Ops) != 0 && \"Expected expression that references DIArglist locations using \" \"DW_OP_llvm_arg operands.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6372, __extension__
__PRETTY_FUNCTION__))
;
6373 SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6374 for (Value *V : Locations)
6375 MetadataLocs.push_back(ValueAsMetadata::get(V));
6376 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6377 DVI.setRawLocation(llvm::DIArgList::get(DVI.getContext(), ValArrayRef));
6378 DVI.setExpression(DIExpression::get(DVI.getContext(), Ops));
6379}
6380
6381/// Write the new expression and new location ops for the dbg.value. If possible
6382/// reduce the szie of the dbg.value intrinsic by omitting DIArglist. This
6383/// can be omitted if:
6384/// 1. There is only a single location, refenced by a single DW_OP_llvm_arg.
6385/// 2. The DW_OP_LLVM_arg is the first operand in the expression.
6386static void UpdateDbgValueInst(DVIRecoveryRec &DVIRec,
6387 SmallVectorImpl<Value *> &NewLocationOps,
6388 SmallVectorImpl<uint64_t> &NewExpr) {
6389 unsigned NumLLVMArgs = numLLVMArgOps(NewExpr);
6390 if (NumLLVMArgs == 0) {
6391 // Location assumed to be on the stack.
6392 updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], NewExpr);
6393 } else if (NumLLVMArgs == 1 && NewExpr[0] == dwarf::DW_OP_LLVM_arg) {
6394 // There is only a single DW_OP_llvm_arg at the start of the expression,
6395 // so it can be omitted along with DIArglist.
6396 assert(NewExpr[1] == 0 &&(static_cast <bool> (NewExpr[1] == 0 && "Lone LLVM_arg in a DIExpression should refer to location-op 0."
) ? void (0) : __assert_fail ("NewExpr[1] == 0 && \"Lone LLVM_arg in a DIExpression should refer to location-op 0.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6397, __extension__
__PRETTY_FUNCTION__))
6397 "Lone LLVM_arg in a DIExpression should refer to location-op 0.")(static_cast <bool> (NewExpr[1] == 0 && "Lone LLVM_arg in a DIExpression should refer to location-op 0."
) ? void (0) : __assert_fail ("NewExpr[1] == 0 && \"Lone LLVM_arg in a DIExpression should refer to location-op 0.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6397, __extension__
__PRETTY_FUNCTION__))
;
6398 llvm::SmallVector<uint64_t, 6> ShortenedOps(llvm::drop_begin(NewExpr, 2));
6399 updateDVIWithLocation(*DVIRec.DVI, NewLocationOps[0], ShortenedOps);
6400 } else {
6401 // Multiple DW_OP_llvm_arg, so DIArgList is strictly necessary.
6402 updateDVIWithLocations(*DVIRec.DVI, NewLocationOps, NewExpr);
6403 }
6404
6405 // If the DIExpression was previously empty then add the stack terminator.
6406 // Non-empty expressions have only had elements inserted into them and so the
6407 // terminator should already be present e.g. stack_value or fragment.
6408 DIExpression *SalvageExpr = DVIRec.DVI->getExpression();
6409 if (!DVIRec.Expr->isComplex() && SalvageExpr->isComplex()) {
6410 SalvageExpr = DIExpression::append(SalvageExpr, {dwarf::DW_OP_stack_value});
6411 DVIRec.DVI->setExpression(SalvageExpr);
6412 }
6413}
6414
6415/// Cached location ops may be erased during LSR, in which case an undef is
6416/// required when restoring from the cache. The type of that location is no
6417/// longer available, so just use int8. The undef will be replaced by one or
6418/// more locations later when a SCEVDbgValueBuilder selects alternative
6419/// locations to use for the salvage.
6420static Value *getValueOrUndef(WeakVH &VH, LLVMContext &C) {
6421 return (VH) ? VH : UndefValue::get(llvm::Type::getInt8Ty(C));
6422}
6423
6424/// Restore the DVI's pre-LSR arguments. Substitute undef for any erased values.
6425static void restorePreTransformState(DVIRecoveryRec &DVIRec) {
6426 LLVM_DEBUG(dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
<< "scev-salvage: post-LSR: " << *DVIRec.DVI <<
'\n'; } } while (false)
6427 << "scev-salvage: post-LSR: " << *DVIRec.DVI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: restore dbg.value to pre-LSR state\n"
<< "scev-salvage: post-LSR: " << *DVIRec.DVI <<
'\n'; } } while (false)
;
6428 assert(DVIRec.Expr && "Expected an expression")(static_cast <bool> (DVIRec.Expr && "Expected an expression"
) ? void (0) : __assert_fail ("DVIRec.Expr && \"Expected an expression\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6428, __extension__
__PRETTY_FUNCTION__))
;
6429 DVIRec.DVI->setExpression(DVIRec.Expr);
6430
6431 // Even a single location-op may be inside a DIArgList and referenced with
6432 // DW_OP_LLVM_arg, which is valid only with a DIArgList.
6433 if (!DVIRec.HadLocationArgList) {
6434 assert(DVIRec.LocationOps.size() == 1 &&(static_cast <bool> (DVIRec.LocationOps.size() == 1 &&
"Unexpected number of location ops.") ? void (0) : __assert_fail
("DVIRec.LocationOps.size() == 1 && \"Unexpected number of location ops.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6435, __extension__
__PRETTY_FUNCTION__))
6435 "Unexpected number of location ops.")(static_cast <bool> (DVIRec.LocationOps.size() == 1 &&
"Unexpected number of location ops.") ? void (0) : __assert_fail
("DVIRec.LocationOps.size() == 1 && \"Unexpected number of location ops.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6435, __extension__
__PRETTY_FUNCTION__))
;
6436 // LSR's unsuccessful salvage attempt may have added DIArgList, which in
6437 // this case was not present before, so force the location back to a single
6438 // uncontained Value.
6439 Value *CachedValue =
6440 getValueOrUndef(DVIRec.LocationOps[0], DVIRec.DVI->getContext());
6441 DVIRec.DVI->setRawLocation(ValueAsMetadata::get(CachedValue));
6442 } else {
6443 SmallVector<ValueAsMetadata *, 3> MetadataLocs;
6444 for (WeakVH VH : DVIRec.LocationOps) {
6445 Value *CachedValue = getValueOrUndef(VH, DVIRec.DVI->getContext());
6446 MetadataLocs.push_back(ValueAsMetadata::get(CachedValue));
6447 }
6448 auto ValArrayRef = llvm::ArrayRef<llvm::ValueAsMetadata *>(MetadataLocs);
6449 DVIRec.DVI->setRawLocation(
6450 llvm::DIArgList::get(DVIRec.DVI->getContext(), ValArrayRef));
6451 }
6452 LLVM_DEBUG(dbgs() << "scev-salvage: pre-LSR: " << *DVIRec.DVI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: pre-LSR: " <<
*DVIRec.DVI << '\n'; } } while (false)
;
6453}
6454
6455static bool SalvageDVI(llvm::Loop *L, ScalarEvolution &SE,
6456 llvm::PHINode *LSRInductionVar, DVIRecoveryRec &DVIRec,
6457 const SCEV *SCEVInductionVar,
6458 SCEVDbgValueBuilder IterCountExpr) {
6459 if (!DVIRec.DVI->isKillLocation())
6460 return false;
6461
6462 // LSR may have caused several changes to the dbg.value in the failed salvage
6463 // attempt. So restore the DIExpression, the location ops and also the
6464 // location ops format, which is always DIArglist for multiple ops, but only
6465 // sometimes for a single op.
6466 restorePreTransformState(DVIRec);
6467
6468 // LocationOpIndexMap[i] will store the post-LSR location index of
6469 // the non-optimised out location at pre-LSR index i.
6470 SmallVector<int64_t, 2> LocationOpIndexMap;
6471 LocationOpIndexMap.assign(DVIRec.LocationOps.size(), -1);
6472 SmallVector<Value *, 2> NewLocationOps;
6473 NewLocationOps.push_back(LSRInductionVar);
6474
6475 for (unsigned i = 0; i < DVIRec.LocationOps.size(); i++) {
6476 WeakVH VH = DVIRec.LocationOps[i];
6477 // Place the locations not optimised out in the list first, avoiding
6478 // inserts later. The map is used to update the DIExpression's
6479 // DW_OP_LLVM_arg arguments as the expression is updated.
6480 if (VH && !isa<UndefValue>(VH)) {
6481 NewLocationOps.push_back(VH);
6482 LocationOpIndexMap[i] = NewLocationOps.size() - 1;
6483 LLVM_DEBUG(dbgs() << "scev-salvage: Location index " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: Location index "
<< i << " now at index " << LocationOpIndexMap
[i] << "\n"; } } while (false)
6484 << " now at index " << LocationOpIndexMap[i] << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: Location index "
<< i << " now at index " << LocationOpIndexMap
[i] << "\n"; } } while (false)
;
6485 continue;
6486 }
6487
6488 // It's possible that a value referred to in the SCEV may have been
6489 // optimised out by LSR.
6490 if (SE.containsErasedValue(DVIRec.SCEVs[i]) ||
6491 SE.containsUndefs(DVIRec.SCEVs[i])) {
6492 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV for location at index: " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: SCEV for location at index: "
<< i << " refers to a location that is now undef or erased. "
"Salvage abandoned.\n"; } } while (false)
6493 << " refers to a location that is now undef or erased. "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: SCEV for location at index: "
<< i << " refers to a location that is now undef or erased. "
"Salvage abandoned.\n"; } } while (false)
6494 "Salvage abandoned.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: SCEV for location at index: "
<< i << " refers to a location that is now undef or erased. "
"Salvage abandoned.\n"; } } while (false)
;
6495 return false;
6496 }
6497
6498 LLVM_DEBUG(dbgs() << "scev-salvage: salvaging location at index " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: salvaging location at index "
<< i << " with SCEV: " << *DVIRec.SCEVs[i]
<< "\n"; } } while (false)
6499 << " with SCEV: " << *DVIRec.SCEVs[i] << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: salvaging location at index "
<< i << " with SCEV: " << *DVIRec.SCEVs[i]
<< "\n"; } } while (false)
;
6500
6501 DVIRec.RecoveryExprs[i] = std::make_unique<SCEVDbgValueBuilder>();
6502 SCEVDbgValueBuilder *SalvageExpr = DVIRec.RecoveryExprs[i].get();
6503
6504 // Create an offset-based salvage expression if possible, as it requires
6505 // less DWARF ops than an iteration count-based expression.
6506 if (std::optional<APInt> Offset =
6507 SE.computeConstantDifference(DVIRec.SCEVs[i], SCEVInductionVar)) {
6508 if (Offset->getSignificantBits() <= 64)
6509 SalvageExpr->createOffsetExpr(Offset->getSExtValue(), LSRInductionVar);
6510 } else if (!SalvageExpr->createIterCountExpr(DVIRec.SCEVs[i], IterCountExpr,
6511 SE))
6512 return false;
6513 }
6514
6515 // Merge the DbgValueBuilder generated expressions and the original
6516 // DIExpression, place the result into an new vector.
6517 SmallVector<uint64_t, 3> NewExpr;
6518 if (DVIRec.Expr->getNumElements() == 0) {
6519 assert(DVIRec.RecoveryExprs.size() == 1 &&(static_cast <bool> (DVIRec.RecoveryExprs.size() == 1 &&
"Expected only a single recovery expression for an empty " "DIExpression."
) ? void (0) : __assert_fail ("DVIRec.RecoveryExprs.size() == 1 && \"Expected only a single recovery expression for an empty \" \"DIExpression.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6521, __extension__
__PRETTY_FUNCTION__))
6520 "Expected only a single recovery expression for an empty "(static_cast <bool> (DVIRec.RecoveryExprs.size() == 1 &&
"Expected only a single recovery expression for an empty " "DIExpression."
) ? void (0) : __assert_fail ("DVIRec.RecoveryExprs.size() == 1 && \"Expected only a single recovery expression for an empty \" \"DIExpression.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6521, __extension__
__PRETTY_FUNCTION__))
6521 "DIExpression.")(static_cast <bool> (DVIRec.RecoveryExprs.size() == 1 &&
"Expected only a single recovery expression for an empty " "DIExpression."
) ? void (0) : __assert_fail ("DVIRec.RecoveryExprs.size() == 1 && \"Expected only a single recovery expression for an empty \" \"DIExpression.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6521, __extension__
__PRETTY_FUNCTION__))
;
6522 assert(DVIRec.RecoveryExprs[0] &&(static_cast <bool> (DVIRec.RecoveryExprs[0] &&
"Expected a SCEVDbgSalvageBuilder for location 0") ? void (0
) : __assert_fail ("DVIRec.RecoveryExprs[0] && \"Expected a SCEVDbgSalvageBuilder for location 0\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6523, __extension__
__PRETTY_FUNCTION__))
6523 "Expected a SCEVDbgSalvageBuilder for location 0")(static_cast <bool> (DVIRec.RecoveryExprs[0] &&
"Expected a SCEVDbgSalvageBuilder for location 0") ? void (0
) : __assert_fail ("DVIRec.RecoveryExprs[0] && \"Expected a SCEVDbgSalvageBuilder for location 0\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6523, __extension__
__PRETTY_FUNCTION__))
;
6524 SCEVDbgValueBuilder *B = DVIRec.RecoveryExprs[0].get();
6525 B->appendToVectors(NewExpr, NewLocationOps);
6526 }
6527 for (const auto &Op : DVIRec.Expr->expr_ops()) {
6528 // Most Ops needn't be updated.
6529 if (Op.getOp() != dwarf::DW_OP_LLVM_arg) {
6530 Op.appendToVector(NewExpr);
6531 continue;
6532 }
6533
6534 uint64_t LocationArgIndex = Op.getArg(0);
6535 SCEVDbgValueBuilder *DbgBuilder =
6536 DVIRec.RecoveryExprs[LocationArgIndex].get();
6537 // The location doesn't have s SCEVDbgValueBuilder, so LSR did not
6538 // optimise it away. So just translate the argument to the updated
6539 // location index.
6540 if (!DbgBuilder) {
6541 NewExpr.push_back(dwarf::DW_OP_LLVM_arg);
6542 assert(LocationOpIndexMap[Op.getArg(0)] != -1 &&(static_cast <bool> (LocationOpIndexMap[Op.getArg(0)] !=
-1 && "Expected a positive index for the location-op position."
) ? void (0) : __assert_fail ("LocationOpIndexMap[Op.getArg(0)] != -1 && \"Expected a positive index for the location-op position.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6543, __extension__
__PRETTY_FUNCTION__))
6543 "Expected a positive index for the location-op position.")(static_cast <bool> (LocationOpIndexMap[Op.getArg(0)] !=
-1 && "Expected a positive index for the location-op position."
) ? void (0) : __assert_fail ("LocationOpIndexMap[Op.getArg(0)] != -1 && \"Expected a positive index for the location-op position.\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6543, __extension__
__PRETTY_FUNCTION__))
;
6544 NewExpr.push_back(LocationOpIndexMap[Op.getArg(0)]);
6545 continue;
6546 }
6547 // The location has a recovery expression.
6548 DbgBuilder->appendToVectors(NewExpr, NewLocationOps);
6549 }
6550
6551 UpdateDbgValueInst(DVIRec, NewLocationOps, NewExpr);
6552 LLVM_DEBUG(dbgs() << "scev-salvage: Updated DVI: " << *DVIRec.DVI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: Updated DVI: "
<< *DVIRec.DVI << "\n"; } } while (false)
;
6553 return true;
6554}
6555
6556/// Obtain an expression for the iteration count, then attempt to salvage the
6557/// dbg.value intrinsics.
6558static void
6559DbgRewriteSalvageableDVIs(llvm::Loop *L, ScalarEvolution &SE,
6560 llvm::PHINode *LSRInductionVar,
6561 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &DVIToUpdate) {
6562 if (DVIToUpdate.empty())
6563 return;
6564
6565 const llvm::SCEV *SCEVInductionVar = SE.getSCEV(LSRInductionVar);
6566 assert(SCEVInductionVar &&(static_cast <bool> (SCEVInductionVar && "Anticipated a SCEV for the post-LSR induction variable"
) ? void (0) : __assert_fail ("SCEVInductionVar && \"Anticipated a SCEV for the post-LSR induction variable\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6567, __extension__
__PRETTY_FUNCTION__))
6567 "Anticipated a SCEV for the post-LSR induction variable")(static_cast <bool> (SCEVInductionVar && "Anticipated a SCEV for the post-LSR induction variable"
) ? void (0) : __assert_fail ("SCEVInductionVar && \"Anticipated a SCEV for the post-LSR induction variable\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6567, __extension__
__PRETTY_FUNCTION__))
;
6568
6569 if (const SCEVAddRecExpr *IVAddRec =
6570 dyn_cast<SCEVAddRecExpr>(SCEVInductionVar)) {
6571 if (!IVAddRec->isAffine())
6572 return;
6573
6574 // Prevent translation using excessive resources.
6575 if (IVAddRec->getExpressionSize() > MaxSCEVSalvageExpressionSize)
6576 return;
6577
6578 // The iteration count is required to recover location values.
6579 SCEVDbgValueBuilder IterCountExpr;
6580 IterCountExpr.pushLocation(LSRInductionVar);
6581 if (!IterCountExpr.SCEVToIterCountExpr(*IVAddRec, SE))
6582 return;
6583
6584 LLVM_DEBUG(dbgs() << "scev-salvage: IV SCEV: " << *SCEVInductionVardo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: IV SCEV: " <<
*SCEVInductionVar << '\n'; } } while (false)
6585 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: IV SCEV: " <<
*SCEVInductionVar << '\n'; } } while (false)
;
6586
6587 for (auto &DVIRec : DVIToUpdate) {
6588 SalvageDVI(L, SE, LSRInductionVar, *DVIRec, SCEVInductionVar,
6589 IterCountExpr);
6590 }
6591 }
6592}
6593
6594/// Identify and cache salvageable DVI locations and expressions along with the
6595/// corresponding SCEV(s). Also ensure that the DVI is not deleted between
6596/// cacheing and salvaging.
6597static void DbgGatherSalvagableDVI(
6598 Loop *L, ScalarEvolution &SE,
6599 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> &SalvageableDVISCEVs,
6600 SmallSet<AssertingVH<DbgValueInst>, 2> &DVIHandles) {
6601 for (const auto &B : L->getBlocks()) {
6602 for (auto &I : *B) {
6603 auto DVI = dyn_cast<DbgValueInst>(&I);
6604 if (!DVI)
6605 continue;
6606 // Ensure that if any location op is undef that the dbg.vlue is not
6607 // cached.
6608 if (DVI->isKillLocation())
6609 continue;
6610
6611 // Check that the location op SCEVs are suitable for translation to
6612 // DIExpression.
6613 const auto &HasTranslatableLocationOps =
6614 [&](const DbgValueInst *DVI) -> bool {
6615 for (const auto LocOp : DVI->location_ops()) {
6616 if (!LocOp)
6617 return false;
6618
6619 if (!SE.isSCEVable(LocOp->getType()))
6620 return false;
6621
6622 const SCEV *S = SE.getSCEV(LocOp);
6623 if (SE.containsUndefs(S))
6624 return false;
6625 }
6626 return true;
6627 };
6628
6629 if (!HasTranslatableLocationOps(DVI))
6630 continue;
6631
6632 std::unique_ptr<DVIRecoveryRec> NewRec =
6633 std::make_unique<DVIRecoveryRec>(DVI);
6634 // Each location Op may need a SCEVDbgValueBuilder in order to recover it.
6635 // Pre-allocating a vector will enable quick lookups of the builder later
6636 // during the salvage.
6637 NewRec->RecoveryExprs.resize(DVI->getNumVariableLocationOps());
6638 for (const auto LocOp : DVI->location_ops()) {
6639 NewRec->SCEVs.push_back(SE.getSCEV(LocOp));
6640 NewRec->LocationOps.push_back(LocOp);
6641 NewRec->HadLocationArgList = DVI->hasArgList();
6642 }
6643 SalvageableDVISCEVs.push_back(std::move(NewRec));
6644 DVIHandles.insert(DVI);
6645 }
6646 }
6647}
6648
6649/// Ideally pick the PHI IV inserted by ScalarEvolutionExpander. As a fallback
6650/// any PHi from the loop header is usable, but may have less chance of
6651/// surviving subsequent transforms.
6652static llvm::PHINode *GetInductionVariable(const Loop &L, ScalarEvolution &SE,
6653 const LSRInstance &LSR) {
6654
6655 auto IsSuitableIV = [&](PHINode *P) {
6656 if (!SE.isSCEVable(P->getType()))
6657 return false;
6658 if (const SCEVAddRecExpr *Rec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(P)))
6659 return Rec->isAffine() && !SE.containsUndefs(SE.getSCEV(P));
6660 return false;
6661 };
6662
6663 // For now, just pick the first IV that was generated and inserted by
6664 // ScalarEvolution. Ideally pick an IV that is unlikely to be optimised away
6665 // by subsequent transforms.
6666 for (const WeakVH &IV : LSR.getScalarEvolutionIVs()) {
6667 if (!IV)
6668 continue;
6669
6670 // There should only be PHI node IVs.
6671 PHINode *P = cast<PHINode>(&*IV);
6672
6673 if (IsSuitableIV(P))
6674 return P;
6675 }
6676
6677 for (PHINode &P : L.getHeader()->phis()) {
6678 if (IsSuitableIV(&P))
6679 return &P;
6680 }
6681 return nullptr;
6682}
6683
6684static std::optional<std::tuple<PHINode *, PHINode *, const SCEV *, bool>>
6685canFoldTermCondOfLoop(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
6686 const LoopInfo &LI) {
6687 if (!L->isInnermost()) {
6688 LLVM_DEBUG(dbgs() << "Cannot fold on non-innermost loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Cannot fold on non-innermost loop\n"
; } } while (false)
;
6689 return std::nullopt;
6690 }
6691 // Only inspect on simple loop structure
6692 if (!L->isLoopSimplifyForm()) {
6693 LLVM_DEBUG(dbgs() << "Cannot fold on non-simple loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Cannot fold on non-simple loop\n"
; } } while (false)
;
6694 return std::nullopt;
6695 }
6696
6697 if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
6698 LLVM_DEBUG(dbgs() << "Cannot fold on backedge that is loop variant\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Cannot fold on backedge that is loop variant\n"
; } } while (false)
;
6699 return std::nullopt;
6700 }
6701
6702 BasicBlock *LoopLatch = L->getLoopLatch();
6703 BranchInst *BI = dyn_cast<BranchInst>(LoopLatch->getTerminator());
6704 if (!BI || BI->isUnconditional())
6705 return std::nullopt;
6706 auto *TermCond = dyn_cast<ICmpInst>(BI->getCondition());
6707 if (!TermCond) {
6708 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Cannot fold on branching condition that is not an ICmpInst"
; } } while (false)
6709 dbgs() << "Cannot fold on branching condition that is not an ICmpInst")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Cannot fold on branching condition that is not an ICmpInst"
; } } while (false)
;
6710 return std::nullopt;
6711 }
6712 if (!TermCond->hasOneUse()) {
6713 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Cannot replace terminating condition with more than one use\n"
; } } while (false)
6714 dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Cannot replace terminating condition with more than one use\n"
; } } while (false)
6715 << "Cannot replace terminating condition with more than one use\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Cannot replace terminating condition with more than one use\n"
; } } while (false)
;
6716 return std::nullopt;
6717 }
6718
6719 BinaryOperator *LHS = dyn_cast<BinaryOperator>(TermCond->getOperand(0));
6720 Value *RHS = TermCond->getOperand(1);
6721 if (!LHS || !L->isLoopInvariant(RHS))
6722 // We could pattern match the inverse form of the icmp, but that is
6723 // non-canonical, and this pass is running *very* late in the pipeline.
6724 return std::nullopt;
6725
6726 // Find the IV used by the current exit condition.
6727 PHINode *ToFold;
6728 Value *ToFoldStart, *ToFoldStep;
6729 if (!matchSimpleRecurrence(LHS, ToFold, ToFoldStart, ToFoldStep))
6730 return std::nullopt;
6731
6732 // If that IV isn't dead after we rewrite the exit condition in terms of
6733 // another IV, there's no point in doing the transform.
6734 if (!isAlmostDeadIV(ToFold, LoopLatch, TermCond))
6735 return std::nullopt;
6736
6737 const SCEV *BECount = SE.getBackedgeTakenCount(L);
6738 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6739 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
6740
6741 PHINode *ToHelpFold = nullptr;
6742 const SCEV *TermValueS = nullptr;
6743 bool MustDropPoison = false;
6744 for (PHINode &PN : L->getHeader()->phis()) {
6745 if (ToFold == &PN)
6746 continue;
6747
6748 if (!SE.isSCEVable(PN.getType())) {
6749 LLVM_DEBUG(dbgs() << "IV of phi '" << PNdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "IV of phi '" << PN <<
"' is not SCEV-able, not qualified for the " "terminating condition folding.\n"
; } } while (false)
6750 << "' is not SCEV-able, not qualified for the "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "IV of phi '" << PN <<
"' is not SCEV-able, not qualified for the " "terminating condition folding.\n"
; } } while (false)
6751 "terminating condition folding.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "IV of phi '" << PN <<
"' is not SCEV-able, not qualified for the " "terminating condition folding.\n"
; } } while (false)
;
6752 continue;
6753 }
6754 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
6755 // Only speculate on affine AddRec
6756 if (!AddRec || !AddRec->isAffine()) {
6757 LLVM_DEBUG(dbgs() << "SCEV of phi '" << PNdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "SCEV of phi '" << PN
<< "' is not an affine add recursion, not qualified " "for the terminating condition folding.\n"
; } } while (false)
6758 << "' is not an affine add recursion, not qualified "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "SCEV of phi '" << PN
<< "' is not an affine add recursion, not qualified " "for the terminating condition folding.\n"
; } } while (false)
6759 "for the terminating condition folding.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "SCEV of phi '" << PN
<< "' is not an affine add recursion, not qualified " "for the terminating condition folding.\n"
; } } while (false)
;
6760 continue;
6761 }
6762
6763 // Check that we can compute the value of AddRec on the exiting iteration
6764 // without soundness problems. evaluateAtIteration internally needs
6765 // to multiply the stride of the iteration number - which may wrap around.
6766 // The issue here is subtle because computing the result accounting for
6767 // wrap is insufficient. In order to use the result in an exit test, we
6768 // must also know that AddRec doesn't take the same value on any previous
6769 // iteration. The simplest case to consider is a candidate IV which is
6770 // narrower than the trip count (and thus original IV), but this can
6771 // also happen due to non-unit strides on the candidate IVs.
6772 if (!AddRec->hasNoSelfWrap())
6773 continue;
6774
6775 const SCEVAddRecExpr *PostInc = AddRec->getPostIncExpr(SE);
6776 const SCEV *TermValueSLocal = PostInc->evaluateAtIteration(BECount, SE);
6777 if (!Expander.isSafeToExpand(TermValueSLocal)) {
6778 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Is not safe to expand terminating value for phi node"
<< PN << "\n"; } } while (false)
6779 dbgs() << "Is not safe to expand terminating value for phi node" << PNdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Is not safe to expand terminating value for phi node"
<< PN << "\n"; } } while (false)
6780 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Is not safe to expand terminating value for phi node"
<< PN << "\n"; } } while (false)
;
6781 continue;
6782 }
6783
6784 // The candidate IV may have been otherwise dead and poison from the
6785 // very first iteration. If we can't disprove that, we can't use the IV.
6786 if (!mustExecuteUBIfPoisonOnPathTo(&PN, LoopLatch->getTerminator(), &DT)) {
6787 LLVM_DEBUG(dbgs() << "Can not prove poison safety for IV "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Can not prove poison safety for IV "
<< PN << "\n"; } } while (false)
6788 << PN << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Can not prove poison safety for IV "
<< PN << "\n"; } } while (false)
;
6789 continue;
6790 }
6791
6792 // The candidate IV may become poison on the last iteration. If this
6793 // value is not branched on, this is a well defined program. We're
6794 // about to add a new use to this IV, and we have to ensure we don't
6795 // insert UB which didn't previously exist.
6796 bool MustDropPoisonLocal = false;
6797 Instruction *PostIncV =
6798 cast<Instruction>(PN.getIncomingValueForBlock(LoopLatch));
6799 if (!mustExecuteUBIfPoisonOnPathTo(PostIncV, LoopLatch->getTerminator(),
6800 &DT)) {
6801 LLVM_DEBUG(dbgs() << "Can not prove poison safety to insert use"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Can not prove poison safety to insert use"
<< PN << "\n"; } } while (false)
6802 << PN << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Can not prove poison safety to insert use"
<< PN << "\n"; } } while (false)
;
6803
6804 // If this is a complex recurrance with multiple instructions computing
6805 // the backedge value, we might need to strip poison flags from all of
6806 // them.
6807 if (PostIncV->getOperand(0) != &PN)
6808 continue;
6809
6810 // In order to perform the transform, we need to drop the poison generating
6811 // flags on this instruction (if any).
6812 MustDropPoisonLocal = PostIncV->hasPoisonGeneratingFlags();
6813 }
6814
6815 // We pick the last legal alternate IV. We could expore choosing an optimal
6816 // alternate IV if we had a decent heuristic to do so.
6817 ToHelpFold = &PN;
6818 TermValueS = TermValueSLocal;
6819 MustDropPoison = MustDropPoisonLocal;
6820 }
6821
6822 LLVM_DEBUG(if (ToFold && !ToHelpFold) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ToFold && !ToHelpFold) dbgs() <<
"Cannot find other AddRec IV to help folding\n";; } } while (
false)
6823 << "Cannot find other AddRec IV to help folding\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ToFold && !ToHelpFold) dbgs() <<
"Cannot find other AddRec IV to help folding\n";; } } while (
false)
;
6824
6825 LLVM_DEBUG(if (ToFold && ToHelpFold) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ToFold && ToHelpFold) dbgs() <<
"\nFound loop that can fold terminating condition\n" <<
" BECount (SCEV): " << *SE.getBackedgeTakenCount(L) <<
"\n" << " TermCond: " << *TermCond << "\n"
<< " BrandInst: " << *BI << "\n" <<
" ToFold: " << *ToFold << "\n" << " ToHelpFold: "
<< *ToHelpFold << "\n"; } } while (false)
6826 << "\nFound loop that can fold terminating condition\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ToFold && ToHelpFold) dbgs() <<
"\nFound loop that can fold terminating condition\n" <<
" BECount (SCEV): " << *SE.getBackedgeTakenCount(L) <<
"\n" << " TermCond: " << *TermCond << "\n"
<< " BrandInst: " << *BI << "\n" <<
" ToFold: " << *ToFold << "\n" << " ToHelpFold: "
<< *ToHelpFold << "\n"; } } while (false)
6827 << " BECount (SCEV): " << *SE.getBackedgeTakenCount(L) << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ToFold && ToHelpFold) dbgs() <<
"\nFound loop that can fold terminating condition\n" <<
" BECount (SCEV): " << *SE.getBackedgeTakenCount(L) <<
"\n" << " TermCond: " << *TermCond << "\n"
<< " BrandInst: " << *BI << "\n" <<
" ToFold: " << *ToFold << "\n" << " ToHelpFold: "
<< *ToHelpFold << "\n"; } } while (false)
6828 << " TermCond: " << *TermCond << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ToFold && ToHelpFold) dbgs() <<
"\nFound loop that can fold terminating condition\n" <<
" BECount (SCEV): " << *SE.getBackedgeTakenCount(L) <<
"\n" << " TermCond: " << *TermCond << "\n"
<< " BrandInst: " << *BI << "\n" <<
" ToFold: " << *ToFold << "\n" << " ToHelpFold: "
<< *ToHelpFold << "\n"; } } while (false)
6829 << " BrandInst: " << *BI << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ToFold && ToHelpFold) dbgs() <<
"\nFound loop that can fold terminating condition\n" <<
" BECount (SCEV): " << *SE.getBackedgeTakenCount(L) <<
"\n" << " TermCond: " << *TermCond << "\n"
<< " BrandInst: " << *BI << "\n" <<
" ToFold: " << *ToFold << "\n" << " ToHelpFold: "
<< *ToHelpFold << "\n"; } } while (false)
6830 << " ToFold: " << *ToFold << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ToFold && ToHelpFold) dbgs() <<
"\nFound loop that can fold terminating condition\n" <<
" BECount (SCEV): " << *SE.getBackedgeTakenCount(L) <<
"\n" << " TermCond: " << *TermCond << "\n"
<< " BrandInst: " << *BI << "\n" <<
" ToFold: " << *ToFold << "\n" << " ToHelpFold: "
<< *ToHelpFold << "\n"; } } while (false)
6831 << " ToHelpFold: " << *ToHelpFold << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { if (ToFold && ToHelpFold) dbgs() <<
"\nFound loop that can fold terminating condition\n" <<
" BECount (SCEV): " << *SE.getBackedgeTakenCount(L) <<
"\n" << " TermCond: " << *TermCond << "\n"
<< " BrandInst: " << *BI << "\n" <<
" ToFold: " << *ToFold << "\n" << " ToHelpFold: "
<< *ToHelpFold << "\n"; } } while (false)
;
6832
6833 if (!ToFold || !ToHelpFold)
6834 return std::nullopt;
6835 return std::make_tuple(ToFold, ToHelpFold, TermValueS, MustDropPoison);
6836}
6837
6838static bool ReduceLoopStrength(Loop *L, IVUsers &IU, ScalarEvolution &SE,
6839 DominatorTree &DT, LoopInfo &LI,
6840 const TargetTransformInfo &TTI,
6841 AssumptionCache &AC, TargetLibraryInfo &TLI,
6842 MemorySSA *MSSA) {
6843
6844 // Debug preservation - before we start removing anything identify which DVI
6845 // meet the salvageable criteria and store their DIExpression and SCEVs.
6846 SmallVector<std::unique_ptr<DVIRecoveryRec>, 2> SalvageableDVIRecords;
6847 SmallSet<AssertingVH<DbgValueInst>, 2> DVIHandles;
6848 DbgGatherSalvagableDVI(L, SE, SalvageableDVIRecords, DVIHandles);
6849
6850 bool Changed = false;
6851 std::unique_ptr<MemorySSAUpdater> MSSAU;
6852 if (MSSA)
6853 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
6854
6855 // Run the main LSR transformation.
6856 const LSRInstance &Reducer =
6857 LSRInstance(L, IU, SE, DT, LI, TTI, AC, TLI, MSSAU.get());
6858 Changed |= Reducer.getChanged();
6859
6860 // Remove any extra phis created by processing inner loops.
6861 Changed |= DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6862 if (EnablePhiElim && L->isLoopSimplifyForm()) {
6863 SmallVector<WeakTrackingVH, 16> DeadInsts;
6864 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6865 SCEVExpander Rewriter(SE, DL, "lsr", false);
6866#ifndef NDEBUG
6867 Rewriter.setDebugType(DEBUG_TYPE"loop-reduce");
6868#endif
6869 unsigned numFolded = Rewriter.replaceCongruentIVs(L, &DT, DeadInsts, &TTI);
6870 if (numFolded) {
6871 Changed = true;
6872 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6873 MSSAU.get());
6874 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6875 }
6876 }
6877 // LSR may at times remove all uses of an induction variable from a loop.
6878 // The only remaining use is the PHI in the exit block.
6879 // When this is the case, if the exit value of the IV can be calculated using
6880 // SCEV, we can replace the exit block PHI with the final value of the IV and
6881 // skip the updates in each loop iteration.
6882 if (L->isRecursivelyLCSSAForm(DT, LI) && L->getExitBlock()) {
6883 SmallVector<WeakTrackingVH, 16> DeadInsts;
6884 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6885 SCEVExpander Rewriter(SE, DL, "lsr", true);
6886 int Rewrites = rewriteLoopExitValues(L, &LI, &TLI, &SE, &TTI, Rewriter, &DT,
6887 UnusedIndVarInLoop, DeadInsts);
6888 if (Rewrites) {
6889 Changed = true;
6890 RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts, &TLI,
6891 MSSAU.get());
6892 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6893 }
6894 }
6895
6896 if (AllowTerminatingConditionFoldingAfterLSR) {
6897 if (auto Opt = canFoldTermCondOfLoop(L, SE, DT, LI)) {
6898 auto [ToFold, ToHelpFold, TermValueS, MustDrop] = *Opt;
6899
6900 Changed = true;
6901 NumTermFold++;
6902
6903 BasicBlock *LoopPreheader = L->getLoopPreheader();
6904 BasicBlock *LoopLatch = L->getLoopLatch();
6905
6906 (void)ToFold;
6907 LLVM_DEBUG(dbgs() << "To fold phi-node:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "To fold phi-node:\n" <<
*ToFold << "\n" << "New term-cond phi-node:\n" <<
*ToHelpFold << "\n"; } } while (false)
6908 << *ToFold << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "To fold phi-node:\n" <<
*ToFold << "\n" << "New term-cond phi-node:\n" <<
*ToHelpFold << "\n"; } } while (false)
6909 << "New term-cond phi-node:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "To fold phi-node:\n" <<
*ToFold << "\n" << "New term-cond phi-node:\n" <<
*ToHelpFold << "\n"; } } while (false)
6910 << *ToHelpFold << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "To fold phi-node:\n" <<
*ToFold << "\n" << "New term-cond phi-node:\n" <<
*ToHelpFold << "\n"; } } while (false)
;
6911
6912 Value *StartValue = ToHelpFold->getIncomingValueForBlock(LoopPreheader);
6913 (void)StartValue;
6914 Value *LoopValue = ToHelpFold->getIncomingValueForBlock(LoopLatch);
6915
6916 // See comment in canFoldTermCondOfLoop on why this is sufficient.
6917 if (MustDrop)
6918 cast<Instruction>(LoopValue)->dropPoisonGeneratingFlags();
6919
6920 // SCEVExpander for both use in preheader and latch
6921 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
6922 SCEVExpander Expander(SE, DL, "lsr_fold_term_cond");
6923 SCEVExpanderCleaner ExpCleaner(Expander);
6924
6925 assert(Expander.isSafeToExpand(TermValueS) &&(static_cast <bool> (Expander.isSafeToExpand(TermValueS
) && "Terminating value was checked safe in canFoldTerminatingCondition"
) ? void (0) : __assert_fail ("Expander.isSafeToExpand(TermValueS) && \"Terminating value was checked safe in canFoldTerminatingCondition\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6926, __extension__
__PRETTY_FUNCTION__))
6926 "Terminating value was checked safe in canFoldTerminatingCondition")(static_cast <bool> (Expander.isSafeToExpand(TermValueS
) && "Terminating value was checked safe in canFoldTerminatingCondition"
) ? void (0) : __assert_fail ("Expander.isSafeToExpand(TermValueS) && \"Terminating value was checked safe in canFoldTerminatingCondition\""
, "llvm/lib/Transforms/Scalar/LoopStrengthReduce.cpp", 6926, __extension__
__PRETTY_FUNCTION__))
;
6927
6928 // Create new terminating value at loop header
6929 Value *TermValue = Expander.expandCodeFor(TermValueS, ToHelpFold->getType(),
6930 LoopPreheader->getTerminator());
6931
6932 LLVM_DEBUG(dbgs() << "Start value of new term-cond phi-node:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Start value of new term-cond phi-node:\n"
<< *StartValue << "\n" << "Terminating value of new term-cond phi-node:\n"
<< *TermValue << "\n"; } } while (false)
6933 << *StartValue << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Start value of new term-cond phi-node:\n"
<< *StartValue << "\n" << "Terminating value of new term-cond phi-node:\n"
<< *TermValue << "\n"; } } while (false)
6934 << "Terminating value of new term-cond phi-node:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Start value of new term-cond phi-node:\n"
<< *StartValue << "\n" << "Terminating value of new term-cond phi-node:\n"
<< *TermValue << "\n"; } } while (false)
6935 << *TermValue << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Start value of new term-cond phi-node:\n"
<< *StartValue << "\n" << "Terminating value of new term-cond phi-node:\n"
<< *TermValue << "\n"; } } while (false)
;
6936
6937 // Create new terminating condition at loop latch
6938 BranchInst *BI = cast<BranchInst>(LoopLatch->getTerminator());
6939 ICmpInst *OldTermCond = cast<ICmpInst>(BI->getCondition());
6940 IRBuilder<> LatchBuilder(LoopLatch->getTerminator());
6941 Value *NewTermCond =
6942 LatchBuilder.CreateICmp(CmpInst::ICMP_EQ, LoopValue, TermValue,
6943 "lsr_fold_term_cond.replaced_term_cond");
6944 // Swap successors to exit loop body if IV equals to new TermValue
6945 if (BI->getSuccessor(0) == L->getHeader())
6946 BI->swapSuccessors();
6947
6948 LLVM_DEBUG(dbgs() << "Old term-cond:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Old term-cond:\n" <<
*OldTermCond << "\n" << "New term-cond:\b" <<
*NewTermCond << "\n"; } } while (false)
6949 << *OldTermCond << "\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Old term-cond:\n" <<
*OldTermCond << "\n" << "New term-cond:\b" <<
*NewTermCond << "\n"; } } while (false)
6950 << "New term-cond:\b" << *NewTermCond << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "Old term-cond:\n" <<
*OldTermCond << "\n" << "New term-cond:\b" <<
*NewTermCond << "\n"; } } while (false)
;
6951
6952 BI->setCondition(NewTermCond);
6953
6954 OldTermCond->eraseFromParent();
6955 DeleteDeadPHIs(L->getHeader(), &TLI, MSSAU.get());
6956
6957 ExpCleaner.markResultUsed();
6958 }
6959 }
6960
6961 if (SalvageableDVIRecords.empty())
6962 return Changed;
6963
6964 // Obtain relevant IVs and attempt to rewrite the salvageable DVIs with
6965 // expressions composed using the derived iteration count.
6966 // TODO: Allow for multiple IV references for nested AddRecSCEVs
6967 for (const auto &L : LI) {
6968 if (llvm::PHINode *IV = GetInductionVariable(*L, SE, Reducer))
6969 DbgRewriteSalvageableDVIs(L, SE, IV, SalvageableDVIRecords);
6970 else {
6971 LLVM_DEBUG(dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
"could not be identified.\n"; } } while (false)
6972 "could not be identified.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-reduce")) { dbgs() << "scev-salvage: SCEV salvaging not possible. An IV "
"could not be identified.\n"; } } while (false)
;
6973 }
6974 }
6975
6976 for (auto &Rec : SalvageableDVIRecords)
6977 Rec->clear();
6978 SalvageableDVIRecords.clear();
6979 DVIHandles.clear();
6980 return Changed;
6981}
6982
6983bool LoopStrengthReduce::runOnLoop(Loop *L, LPPassManager & /*LPM*/) {
6984 if (skipLoop(L))
6985 return false;
6986
6987 auto &IU = getAnalysis<IVUsersWrapperPass>().getIU();
6988 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
6989 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
6990 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
6991 const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
6992 *L->getHeader()->getParent());
6993 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
6994 *L->getHeader()->getParent());
6995 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
6996 *L->getHeader()->getParent());
6997 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
6998 MemorySSA *MSSA = nullptr;
6999 if (MSSAAnalysis)
7000 MSSA = &MSSAAnalysis->getMSSA();
7001 return ReduceLoopStrength(L, IU, SE, DT, LI, TTI, AC, TLI, MSSA);
7002}
7003
7004PreservedAnalyses LoopStrengthReducePass::run(Loop &L, LoopAnalysisManager &AM,
7005 LoopStandardAnalysisResults &AR,
7006 LPMUpdater &) {
7007 if (!ReduceLoopStrength(&L, AM.getResult<IVUsersAnalysis>(L, AR), AR.SE,
7008 AR.DT, AR.LI, AR.TTI, AR.AC, AR.TLI, AR.MSSA))
7009 return PreservedAnalyses::all();
7010
7011 auto PA = getLoopPassPreservedAnalyses();
7012 if (AR.MSSA)
7013 PA.preserve<MemorySSAAnalysis>();
7014 return PA;
7015}
7016
7017char LoopStrengthReduce::ID = 0;
7018
7019INITIALIZE_PASS_BEGIN(LoopStrengthReduce, "loop-reduce",static void *initializeLoopStrengthReducePassOnce(PassRegistry
&Registry) {
7020 "Loop Strength Reduction", false, false)static void *initializeLoopStrengthReducePassOnce(PassRegistry
&Registry) {
7021INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
7022INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
7023INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
7024INITIALIZE_PASS_DEPENDENCY(IVUsersWrapperPass)initializeIVUsersWrapperPassPass(Registry);
7025INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);
7026INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
7027INITIALIZE_PASS_END(LoopStrengthReduce, "loop-reduce",PassInfo *PI = new PassInfo( "Loop Strength Reduction", "loop-reduce"
, &LoopStrengthReduce::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LoopStrengthReduce>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLoopStrengthReducePassFlag
; void llvm::initializeLoopStrengthReducePass(PassRegistry &
Registry) { llvm::call_once(InitializeLoopStrengthReducePassFlag
, initializeLoopStrengthReducePassOnce, std::ref(Registry)); }
7028 "Loop Strength Reduction", false, false)PassInfo *PI = new PassInfo( "Loop Strength Reduction", "loop-reduce"
, &LoopStrengthReduce::ID, PassInfo::NormalCtor_t(callDefaultCtor
<LoopStrengthReduce>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeLoopStrengthReducePassFlag
; void llvm::initializeLoopStrengthReducePass(PassRegistry &
Registry) { llvm::call_once(InitializeLoopStrengthReducePassFlag
, initializeLoopStrengthReducePassOnce, std::ref(Registry)); }
7029
7030Pass *llvm::createLoopStrengthReducePass() { return new LoopStrengthReduce(); }