Bug Summary

File:llvm/lib/Transforms/Utils/LoopUnroll.cpp
Warning:line 546, column 34
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LoopUnroll.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Transforms/Utils -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Transforms/Utils -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp

1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements some loop unrolling utilities. It does not define any
10// actual pass or policy, but provides a single function to perform loop
11// unrolling.
12//
13// The process of unrolling can produce extraneous basic blocks linked with
14// unconditional branches. This will be corrected in the future.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/Statistic.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/Twine.h"
27#include "llvm/ADT/ilist_iterator.h"
28#include "llvm/ADT/iterator_range.h"
29#include "llvm/Analysis/AssumptionCache.h"
30#include "llvm/Analysis/DomTreeUpdater.h"
31#include "llvm/Analysis/InstructionSimplify.h"
32#include "llvm/Analysis/LoopInfo.h"
33#include "llvm/Analysis/LoopIterator.h"
34#include "llvm/Analysis/OptimizationRemarkEmitter.h"
35#include "llvm/Analysis/ScalarEvolution.h"
36#include "llvm/IR/BasicBlock.h"
37#include "llvm/IR/CFG.h"
38#include "llvm/IR/CallSite.h"
39#include "llvm/IR/Constants.h"
40#include "llvm/IR/DebugInfoMetadata.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/IR/DiagnosticInfo.h"
43#include "llvm/IR/Dominators.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/Instruction.h"
46#include "llvm/IR/Instructions.h"
47#include "llvm/IR/IntrinsicInst.h"
48#include "llvm/IR/Metadata.h"
49#include "llvm/IR/Module.h"
50#include "llvm/IR/Use.h"
51#include "llvm/IR/User.h"
52#include "llvm/IR/ValueHandle.h"
53#include "llvm/IR/ValueMap.h"
54#include "llvm/Support/Casting.h"
55#include "llvm/Support/CommandLine.h"
56#include "llvm/Support/Debug.h"
57#include "llvm/Support/GenericDomTree.h"
58#include "llvm/Support/MathExtras.h"
59#include "llvm/Support/raw_ostream.h"
60#include "llvm/Transforms/Utils/BasicBlockUtils.h"
61#include "llvm/Transforms/Utils/Cloning.h"
62#include "llvm/Transforms/Utils/Local.h"
63#include "llvm/Transforms/Utils/LoopSimplify.h"
64#include "llvm/Transforms/Utils/LoopUtils.h"
65#include "llvm/Transforms/Utils/SimplifyIndVar.h"
66#include "llvm/Transforms/Utils/UnrollLoop.h"
67#include "llvm/Transforms/Utils/ValueMapper.h"
68#include <algorithm>
69#include <assert.h>
70#include <type_traits>
71#include <vector>
72
73namespace llvm {
74class DataLayout;
75class Value;
76} // namespace llvm
77
78using namespace llvm;
79
80#define DEBUG_TYPE"loop-unroll" "loop-unroll"
81
82// TODO: Should these be here or in LoopUnroll?
83STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled")static llvm::Statistic NumCompletelyUnrolled = {"loop-unroll"
, "NumCompletelyUnrolled", "Number of loops completely unrolled"
}
;
84STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)")static llvm::Statistic NumUnrolled = {"loop-unroll", "NumUnrolled"
, "Number of loops unrolled (completely or otherwise)"}
;
85STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a "static llvm::Statistic NumUnrolledWithHeader = {"loop-unroll"
, "NumUnrolledWithHeader", "Number of loops unrolled without a "
"conditional latch (completely or otherwise)"}
86 "conditional latch (completely or otherwise)")static llvm::Statistic NumUnrolledWithHeader = {"loop-unroll"
, "NumUnrolledWithHeader", "Number of loops unrolled without a "
"conditional latch (completely or otherwise)"}
;
87
88static cl::opt<bool>
89UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
90 cl::desc("Allow runtime unrolled loops to be unrolled "
91 "with epilog instead of prolog."));
92
93static cl::opt<bool>
94UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
95 cl::desc("Verify domtree after unrolling"),
96#ifdef EXPENSIVE_CHECKS
97 cl::init(true)
98#else
99 cl::init(false)
100#endif
101 );
102
103/// Check if unrolling created a situation where we need to insert phi nodes to
104/// preserve LCSSA form.
105/// \param Blocks is a vector of basic blocks representing unrolled loop.
106/// \param L is the outer loop.
107/// It's possible that some of the blocks are in L, and some are not. In this
108/// case, if there is a use is outside L, and definition is inside L, we need to
109/// insert a phi-node, otherwise LCSSA will be broken.
110/// The function is just a helper function for llvm::UnrollLoop that returns
111/// true if this situation occurs, indicating that LCSSA needs to be fixed.
112static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
113 LoopInfo *LI) {
114 for (BasicBlock *BB : Blocks) {
115 if (LI->getLoopFor(BB) == L)
116 continue;
117 for (Instruction &I : *BB) {
118 for (Use &U : I.operands()) {
119 if (auto Def = dyn_cast<Instruction>(U)) {
120 Loop *DefLoop = LI->getLoopFor(Def->getParent());
121 if (!DefLoop)
122 continue;
123 if (DefLoop->contains(L))
124 return true;
125 }
126 }
127 }
128 }
129 return false;
130}
131
132/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
133/// and adds a mapping from the original loop to the new loop to NewLoops.
134/// Returns nullptr if no new loop was created and a pointer to the
135/// original loop OriginalBB was part of otherwise.
136const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
137 BasicBlock *ClonedBB, LoopInfo *LI,
138 NewLoopsMap &NewLoops) {
139 // Figure out which loop New is in.
140 const Loop *OldLoop = LI->getLoopFor(OriginalBB);
141 assert(OldLoop && "Should (at least) be in the loop being unrolled!")((OldLoop && "Should (at least) be in the loop being unrolled!"
) ? static_cast<void> (0) : __assert_fail ("OldLoop && \"Should (at least) be in the loop being unrolled!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 141, __PRETTY_FUNCTION__))
;
142
143 Loop *&NewLoop = NewLoops[OldLoop];
144 if (!NewLoop) {
145 // Found a new sub-loop.
146 assert(OriginalBB == OldLoop->getHeader() &&((OriginalBB == OldLoop->getHeader() && "Header should be first in RPO"
) ? static_cast<void> (0) : __assert_fail ("OriginalBB == OldLoop->getHeader() && \"Header should be first in RPO\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 147, __PRETTY_FUNCTION__))
147 "Header should be first in RPO")((OriginalBB == OldLoop->getHeader() && "Header should be first in RPO"
) ? static_cast<void> (0) : __assert_fail ("OriginalBB == OldLoop->getHeader() && \"Header should be first in RPO\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 147, __PRETTY_FUNCTION__))
;
148
149 NewLoop = LI->AllocateLoop();
150 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
151
152 if (NewLoopParent)
153 NewLoopParent->addChildLoop(NewLoop);
154 else
155 LI->addTopLevelLoop(NewLoop);
156
157 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
158 return OldLoop;
159 } else {
160 NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
161 return nullptr;
162 }
163}
164
165/// The function chooses which type of unroll (epilog or prolog) is more
166/// profitabale.
167/// Epilog unroll is more profitable when there is PHI that starts from
168/// constant. In this case epilog will leave PHI start from constant,
169/// but prolog will convert it to non-constant.
170///
171/// loop:
172/// PN = PHI [I, Latch], [CI, PreHeader]
173/// I = foo(PN)
174/// ...
175///
176/// Epilog unroll case.
177/// loop:
178/// PN = PHI [I2, Latch], [CI, PreHeader]
179/// I1 = foo(PN)
180/// I2 = foo(I1)
181/// ...
182/// Prolog unroll case.
183/// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
184/// loop:
185/// PN = PHI [I2, Latch], [NewPN, PreHeader]
186/// I1 = foo(PN)
187/// I2 = foo(I1)
188/// ...
189///
190static bool isEpilogProfitable(Loop *L) {
191 BasicBlock *PreHeader = L->getLoopPreheader();
192 BasicBlock *Header = L->getHeader();
193 assert(PreHeader && Header)((PreHeader && Header) ? static_cast<void> (0) :
__assert_fail ("PreHeader && Header", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 193, __PRETTY_FUNCTION__))
;
194 for (const PHINode &PN : Header->phis()) {
195 if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
196 return true;
197 }
198 return false;
199}
200
201/// Perform some cleanup and simplifications on loops after unrolling. It is
202/// useful to simplify the IV's in the new loop, as well as do a quick
203/// simplify/dce pass of the instructions.
204void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
205 ScalarEvolution *SE, DominatorTree *DT,
206 AssumptionCache *AC,
207 const TargetTransformInfo *TTI) {
208 // Simplify any new induction variables in the partially unrolled loop.
209 if (SE && SimplifyIVs) {
210 SmallVector<WeakTrackingVH, 16> DeadInsts;
211 simplifyLoopIVs(L, SE, DT, LI, TTI, DeadInsts);
212
213 // Aggressively clean up dead instructions that simplifyLoopIVs already
214 // identified. Any remaining should be cleaned up below.
215 while (!DeadInsts.empty()) {
216 Value *V = DeadInsts.pop_back_val();
217 if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
218 RecursivelyDeleteTriviallyDeadInstructions(Inst);
219 }
220 }
221
222 // At this point, the code is well formed. We now do a quick sweep over the
223 // inserted code, doing constant propagation and dead code elimination as we
224 // go.
225 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
226 for (BasicBlock *BB : L->getBlocks()) {
227 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
228 Instruction *Inst = &*I++;
229
230 if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
231 if (LI->replacementPreservesLCSSAForm(Inst, V))
232 Inst->replaceAllUsesWith(V);
233 if (isInstructionTriviallyDead(Inst))
234 BB->getInstList().erase(Inst);
235 }
236 }
237
238 // TODO: after peeling or unrolling, previously loop variant conditions are
239 // likely to fold to constants, eagerly propagating those here will require
240 // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be
241 // appropriate.
242}
243
244/// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
245/// can only fail when the loop's latch block is not terminated by a conditional
246/// branch instruction. However, if the trip count (and multiple) are not known,
247/// loop unrolling will mostly produce more code that is no faster.
248///
249/// TripCount is the upper bound of the iteration on which control exits
250/// LatchBlock. Control may exit the loop prior to TripCount iterations either
251/// via an early branch in other loop block or via LatchBlock terminator. This
252/// is relaxed from the general definition of trip count which is the number of
253/// times the loop header executes. Note that UnrollLoop assumes that the loop
254/// counter test is in LatchBlock in order to remove unnecesssary instances of
255/// the test. If control can exit the loop from the LatchBlock's terminator
256/// prior to TripCount iterations, flag PreserveCondBr needs to be set.
257///
258/// PreserveCondBr indicates whether the conditional branch of the LatchBlock
259/// needs to be preserved. It is needed when we use trip count upper bound to
260/// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
261/// conditional branch needs to be preserved.
262///
263/// Similarly, TripMultiple divides the number of times that the LatchBlock may
264/// execute without exiting the loop.
265///
266/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
267/// have a runtime (i.e. not compile time constant) trip count. Unrolling these
268/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
269/// iterations before branching into the unrolled loop. UnrollLoop will not
270/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
271/// AllowExpensiveTripCount is false.
272///
273/// If we want to perform PGO-based loop peeling, PeelCount is set to the
274/// number of iterations we want to peel off.
275///
276/// The LoopInfo Analysis that is passed will be kept consistent.
277///
278/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
279/// DominatorTree if they are non-null.
280///
281/// If RemainderLoop is non-null, it will receive the remainder loop (if
282/// required and not fully unrolled).
283LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
284 ScalarEvolution *SE, DominatorTree *DT,
285 AssumptionCache *AC,
286 const TargetTransformInfo *TTI,
287 OptimizationRemarkEmitter *ORE,
288 bool PreserveLCSSA, Loop **RemainderLoop) {
289
290 BasicBlock *Preheader = L->getLoopPreheader();
291 if (!Preheader) {
1
Assuming 'Preheader' is non-null
2
Taking false branch
292 LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " Can't unroll; loop preheader-insertion failed.\n"
; } } while (false)
;
293 return LoopUnrollResult::Unmodified;
294 }
295
296 BasicBlock *LatchBlock = L->getLoopLatch();
297 if (!LatchBlock) {
3
Assuming 'LatchBlock' is non-null
4
Taking false branch
298 LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"
; } } while (false)
;
299 return LoopUnrollResult::Unmodified;
300 }
301
302 // Loops with indirectbr cannot be cloned.
303 if (!L->isSafeToClone()) {
5
Assuming the condition is false
6
Taking false branch
304 LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " Can't unroll; Loop body cannot be cloned.\n"
; } } while (false)
;
305 return LoopUnrollResult::Unmodified;
306 }
307
308 // The current loop unroll pass can unroll loops with a single latch or header
309 // that's a conditional branch exiting the loop.
310 // FIXME: The implementation can be extended to work with more complicated
311 // cases, e.g. loops with multiple latches.
312 BasicBlock *Header = L->getHeader();
313 BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator());
7
Assuming the object is not a 'BranchInst'
8
'HeaderBI' initialized to a null pointer value
314 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
9
Assuming the object is a 'BranchInst'
315
316 // FIXME: Support loops without conditional latch and multiple exiting blocks.
317 if (!BI
9.1
'BI' is non-null
9.1
'BI' is non-null
||
318 (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() ||
10
Calling 'BranchInst::isUnconditional'
13
Returning from 'BranchInst::isUnconditional'
319 L->getExitingBlock() != Header))) {
320 LLVM_DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " Can't unroll; loop not terminated by a conditional "
"branch in the latch or header.\n"; } } while (false)
321 "branch in the latch or header.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " Can't unroll; loop not terminated by a conditional "
"branch in the latch or header.\n"; } } while (false)
;
322 return LoopUnrollResult::Unmodified;
323 }
324
325 auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) {
326 return BI->isConditional() && BI->getSuccessor(S1) == Header &&
327 !L->contains(BI->getSuccessor(S2));
328 };
329
330 // If we have a conditional latch, it must exit the loop.
331 if (BI
13.1
'BI' is non-null
13.1
'BI' is non-null
&& BI->isConditional() && !CheckLatchSuccessors(0, 1) &&
14
Calling 'BranchInst::isConditional'
17
Returning from 'BranchInst::isConditional'
332 !CheckLatchSuccessors(1, 0)) {
333 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "Can't unroll; a conditional latch must exit the loop"
; } } while (false)
334 dbgs() << "Can't unroll; a conditional latch must exit the loop")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "Can't unroll; a conditional latch must exit the loop"
; } } while (false)
;
335 return LoopUnrollResult::Unmodified;
336 }
337
338 auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) {
339 return HeaderBI && HeaderBI->isConditional() &&
340 L->contains(HeaderBI->getSuccessor(S1)) &&
341 !L->contains(HeaderBI->getSuccessor(S2));
342 };
343
344 // If we do not have a conditional latch, the header must exit the loop.
345 if (BI
17.1
'BI' is non-null
17.1
'BI' is non-null
&& !BI->isConditional() && HeaderBI
20.1
'HeaderBI' is null
20.1
'HeaderBI' is null
&& HeaderBI->isConditional() &&
18
Calling 'BranchInst::isConditional'
20
Returning from 'BranchInst::isConditional'
346 !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) {
347 LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "Can't unroll; conditional header must exit the loop"
; } } while (false)
;
348 return LoopUnrollResult::Unmodified;
349 }
350
351 if (Header->hasAddressTaken()) {
21
Assuming the condition is false
22
Taking false branch
352 // The loop-rotate pass can be helpful to avoid this in many cases.
353 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " Won't unroll loop: address of header block is taken.\n"
; } } while (false)
354 dbgs() << " Won't unroll loop: address of header block is taken.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " Won't unroll loop: address of header block is taken.\n"
; } } while (false)
;
355 return LoopUnrollResult::Unmodified;
356 }
357
358 if (ULO.TripCount != 0)
23
Assuming field 'TripCount' is equal to 0
24
Taking false branch
359 LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " Trip Count = " <<
ULO.TripCount << "\n"; } } while (false)
;
360 if (ULO.TripMultiple != 1)
25
Assuming field 'TripMultiple' is equal to 1
26
Taking false branch
361 LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " Trip Multiple = " <<
ULO.TripMultiple << "\n"; } } while (false)
;
362
363 // Effectively "DCE" unrolled iterations that are beyond the tripcount
364 // and will never be executed.
365 if (ULO.TripCount
26.1
Field 'TripCount' is equal to 0
26.1
Field 'TripCount' is equal to 0
!= 0 && ULO.Count > ULO.TripCount)
366 ULO.Count = ULO.TripCount;
367
368 // Don't enter the unroll code if there is nothing to do.
369 if (ULO.TripCount
26.2
Field 'TripCount' is equal to 0
26.2
Field 'TripCount' is equal to 0
== 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
27
Assuming field 'Count' is >= 2
370 LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "Won't unroll; almost nothing to do\n"
; } } while (false)
;
371 return LoopUnrollResult::Unmodified;
372 }
373
374 assert(ULO.Count > 0)((ULO.Count > 0) ? static_cast<void> (0) : __assert_fail
("ULO.Count > 0", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 374, __PRETTY_FUNCTION__))
;
28
'?' condition is true
375 assert(ULO.TripMultiple > 0)((ULO.TripMultiple > 0) ? static_cast<void> (0) : __assert_fail
("ULO.TripMultiple > 0", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 375, __PRETTY_FUNCTION__))
;
29
'?' condition is true
376 assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0)((ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0
) ? static_cast<void> (0) : __assert_fail ("ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 376, __PRETTY_FUNCTION__))
;
377
378 // Are we eliminating the loop control altogether?
379 bool CompletelyUnroll = ULO.Count
29.2
Field 'Count' is not equal to field 'TripCount'
29.2
Field 'Count' is not equal to field 'TripCount'
== ULO.TripCount;
380 SmallVector<BasicBlock *, 4> ExitBlocks;
381 L->getExitBlocks(ExitBlocks);
382 std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
383
384 // Go through all exits of L and see if there are any phi-nodes there. We just
385 // conservatively assume that they're inserted to preserve LCSSA form, which
386 // means that complete unrolling might break this form. We need to either fix
387 // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
388 // now we just recompute LCSSA for the outer loop, but it should be possible
389 // to fix it in-place.
390 bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
30
Assuming 'PreserveLCSSA' is false
391 any_of(ExitBlocks, [](const BasicBlock *BB) {
392 return isa<PHINode>(BB->begin());
393 });
394
395 // We assume a run-time trip count if the compiler cannot
396 // figure out the loop trip count and the unroll-runtime
397 // flag is specified.
398 bool RuntimeTripCount =
399 (ULO.TripCount
30.1
Field 'TripCount' is equal to 0
30.1
Field 'TripCount' is equal to 0
== 0 && ULO.Count
30.2
Field 'Count' is > 0
30.2
Field 'Count' is > 0
> 0 && ULO.AllowRuntime);
400
401 assert((!RuntimeTripCount || !ULO.PeelCount) &&(((!RuntimeTripCount || !ULO.PeelCount) && "Did not expect runtime trip-count unrolling "
"and peeling for the same loop") ? static_cast<void> (
0) : __assert_fail ("(!RuntimeTripCount || !ULO.PeelCount) && \"Did not expect runtime trip-count unrolling \" \"and peeling for the same loop\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 403, __PRETTY_FUNCTION__))
31
Assuming 'RuntimeTripCount' is true
32
Assuming field 'PeelCount' is 0
33
'?' condition is true
402 "Did not expect runtime trip-count unrolling "(((!RuntimeTripCount || !ULO.PeelCount) && "Did not expect runtime trip-count unrolling "
"and peeling for the same loop") ? static_cast<void> (
0) : __assert_fail ("(!RuntimeTripCount || !ULO.PeelCount) && \"Did not expect runtime trip-count unrolling \" \"and peeling for the same loop\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 403, __PRETTY_FUNCTION__))
403 "and peeling for the same loop")(((!RuntimeTripCount || !ULO.PeelCount) && "Did not expect runtime trip-count unrolling "
"and peeling for the same loop") ? static_cast<void> (
0) : __assert_fail ("(!RuntimeTripCount || !ULO.PeelCount) && \"Did not expect runtime trip-count unrolling \" \"and peeling for the same loop\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 403, __PRETTY_FUNCTION__))
;
404
405 bool Peeled = false;
406 if (ULO.PeelCount
33.1
Field 'PeelCount' is 0
33.1
Field 'PeelCount' is 0
) {
34
Taking false branch
407 Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
408
409 // Successful peeling may result in a change in the loop preheader/trip
410 // counts. If we later unroll the loop, we want these to be updated.
411 if (Peeled) {
412 // According to our guards and profitability checks the only
413 // meaningful exit should be latch block. Other exits go to deopt,
414 // so we do not worry about them.
415 BasicBlock *ExitingBlock = L->getLoopLatch();
416 assert(ExitingBlock && "Loop without exiting block?")((ExitingBlock && "Loop without exiting block?") ? static_cast
<void> (0) : __assert_fail ("ExitingBlock && \"Loop without exiting block?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 416, __PRETTY_FUNCTION__))
;
417 assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?")((L->isLoopExiting(ExitingBlock) && "Latch is not exiting?"
) ? static_cast<void> (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Latch is not exiting?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 417, __PRETTY_FUNCTION__))
;
418 Preheader = L->getLoopPreheader();
419 ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
420 ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
421 }
422 }
423
424 // Loops containing convergent instructions must have a count that divides
425 // their TripMultiple.
426 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { { bool HasConvergent = false; for (auto &
BB : L->blocks()) for (auto &I : *BB) if (auto CS = CallSite
(&I)) HasConvergent |= CS.isConvergent(); (((!HasConvergent
|| ULO.TripMultiple % ULO.Count == 0) && "Unroll count must divide trip multiple if loop contains a "
"convergent operation.") ? static_cast<void> (0) : __assert_fail
("(!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && \"Unroll count must divide trip multiple if loop contains a \" \"convergent operation.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 435, __PRETTY_FUNCTION__)); }; } } while (false)
35
Assuming 'DebugFlag' is true
36
Assuming the condition is false
37
Taking false branch
38
Loop condition is false. Exiting loop
427 {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { { bool HasConvergent = false; for (auto &
BB : L->blocks()) for (auto &I : *BB) if (auto CS = CallSite
(&I)) HasConvergent |= CS.isConvergent(); (((!HasConvergent
|| ULO.TripMultiple % ULO.Count == 0) && "Unroll count must divide trip multiple if loop contains a "
"convergent operation.") ? static_cast<void> (0) : __assert_fail
("(!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && \"Unroll count must divide trip multiple if loop contains a \" \"convergent operation.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 435, __PRETTY_FUNCTION__)); }; } } while (false)
428 bool HasConvergent = false;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { { bool HasConvergent = false; for (auto &
BB : L->blocks()) for (auto &I : *BB) if (auto CS = CallSite
(&I)) HasConvergent |= CS.isConvergent(); (((!HasConvergent
|| ULO.TripMultiple % ULO.Count == 0) && "Unroll count must divide trip multiple if loop contains a "
"convergent operation.") ? static_cast<void> (0) : __assert_fail
("(!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && \"Unroll count must divide trip multiple if loop contains a \" \"convergent operation.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 435, __PRETTY_FUNCTION__)); }; } } while (false)
429 for (auto &BB : L->blocks())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { { bool HasConvergent = false; for (auto &
BB : L->blocks()) for (auto &I : *BB) if (auto CS = CallSite
(&I)) HasConvergent |= CS.isConvergent(); (((!HasConvergent
|| ULO.TripMultiple % ULO.Count == 0) && "Unroll count must divide trip multiple if loop contains a "
"convergent operation.") ? static_cast<void> (0) : __assert_fail
("(!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && \"Unroll count must divide trip multiple if loop contains a \" \"convergent operation.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 435, __PRETTY_FUNCTION__)); }; } } while (false)
430 for (auto &I : *BB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { { bool HasConvergent = false; for (auto &
BB : L->blocks()) for (auto &I : *BB) if (auto CS = CallSite
(&I)) HasConvergent |= CS.isConvergent(); (((!HasConvergent
|| ULO.TripMultiple % ULO.Count == 0) && "Unroll count must divide trip multiple if loop contains a "
"convergent operation.") ? static_cast<void> (0) : __assert_fail
("(!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && \"Unroll count must divide trip multiple if loop contains a \" \"convergent operation.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 435, __PRETTY_FUNCTION__)); }; } } while (false)
431 if (auto CS = CallSite(&I))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { { bool HasConvergent = false; for (auto &
BB : L->blocks()) for (auto &I : *BB) if (auto CS = CallSite
(&I)) HasConvergent |= CS.isConvergent(); (((!HasConvergent
|| ULO.TripMultiple % ULO.Count == 0) && "Unroll count must divide trip multiple if loop contains a "
"convergent operation.") ? static_cast<void> (0) : __assert_fail
("(!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && \"Unroll count must divide trip multiple if loop contains a \" \"convergent operation.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 435, __PRETTY_FUNCTION__)); }; } } while (false)
432 HasConvergent |= CS.isConvergent();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { { bool HasConvergent = false; for (auto &
BB : L->blocks()) for (auto &I : *BB) if (auto CS = CallSite
(&I)) HasConvergent |= CS.isConvergent(); (((!HasConvergent
|| ULO.TripMultiple % ULO.Count == 0) && "Unroll count must divide trip multiple if loop contains a "
"convergent operation.") ? static_cast<void> (0) : __assert_fail
("(!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && \"Unroll count must divide trip multiple if loop contains a \" \"convergent operation.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 435, __PRETTY_FUNCTION__)); }; } } while (false)
433 assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { { bool HasConvergent = false; for (auto &
BB : L->blocks()) for (auto &I : *BB) if (auto CS = CallSite
(&I)) HasConvergent |= CS.isConvergent(); (((!HasConvergent
|| ULO.TripMultiple % ULO.Count == 0) && "Unroll count must divide trip multiple if loop contains a "
"convergent operation.") ? static_cast<void> (0) : __assert_fail
("(!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && \"Unroll count must divide trip multiple if loop contains a \" \"convergent operation.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 435, __PRETTY_FUNCTION__)); }; } } while (false)
434 "Unroll count must divide trip multiple if loop contains a "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { { bool HasConvergent = false; for (auto &
BB : L->blocks()) for (auto &I : *BB) if (auto CS = CallSite
(&I)) HasConvergent |= CS.isConvergent(); (((!HasConvergent
|| ULO.TripMultiple % ULO.Count == 0) && "Unroll count must divide trip multiple if loop contains a "
"convergent operation.") ? static_cast<void> (0) : __assert_fail
("(!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && \"Unroll count must divide trip multiple if loop contains a \" \"convergent operation.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 435, __PRETTY_FUNCTION__)); }; } } while (false)
435 "convergent operation.");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { { bool HasConvergent = false; for (auto &
BB : L->blocks()) for (auto &I : *BB) if (auto CS = CallSite
(&I)) HasConvergent |= CS.isConvergent(); (((!HasConvergent
|| ULO.TripMultiple % ULO.Count == 0) && "Unroll count must divide trip multiple if loop contains a "
"convergent operation.") ? static_cast<void> (0) : __assert_fail
("(!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && \"Unroll count must divide trip multiple if loop contains a \" \"convergent operation.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 435, __PRETTY_FUNCTION__)); }; } } while (false)
436 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { { bool HasConvergent = false; for (auto &
BB : L->blocks()) for (auto &I : *BB) if (auto CS = CallSite
(&I)) HasConvergent |= CS.isConvergent(); (((!HasConvergent
|| ULO.TripMultiple % ULO.Count == 0) && "Unroll count must divide trip multiple if loop contains a "
"convergent operation.") ? static_cast<void> (0) : __assert_fail
("(!HasConvergent || ULO.TripMultiple % ULO.Count == 0) && \"Unroll count must divide trip multiple if loop contains a \" \"convergent operation.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 435, __PRETTY_FUNCTION__)); }; } } while (false)
;
437
438 bool EpilogProfitability =
439 UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
39
Assuming the condition is true
40
'?' condition is true
440 : isEpilogProfitable(L);
441
442 if (RuntimeTripCount
40.1
'RuntimeTripCount' is true
40.1
'RuntimeTripCount' is true
&& ULO.TripMultiple % ULO.Count != 0 &&
41
Assuming the condition is false
443 !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
444 EpilogProfitability, ULO.UnrollRemainder,
445 ULO.ForgetAllSCEV, LI, SE, DT, AC, TTI,
446 PreserveLCSSA, RemainderLoop)) {
447 if (ULO.Force)
448 RuntimeTripCount = false;
449 else {
450 LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "Won't unroll; remainder loop could not be "
"generated when assuming runtime trip count\n"; } } while (false
)
451 "generated when assuming runtime trip count\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "Won't unroll; remainder loop could not be "
"generated when assuming runtime trip count\n"; } } while (false
)
;
452 return LoopUnrollResult::Unmodified;
453 }
454 }
455
456 // If we know the trip count, we know the multiple...
457 unsigned BreakoutTrip = 0;
458 if (ULO.TripCount
41.1
Field 'TripCount' is equal to 0
41.1
Field 'TripCount' is equal to 0
!= 0) {
42
Taking false branch
459 BreakoutTrip = ULO.TripCount % ULO.Count;
460 ULO.TripMultiple = 0;
461 } else {
462 // Figure out what multiple to use.
463 BreakoutTrip = ULO.TripMultiple =
464 (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
465 }
466
467 using namespace ore;
468 // Report the unrolling decision.
469 if (CompletelyUnroll
42.1
'CompletelyUnroll' is false
42.1
'CompletelyUnroll' is false
) {
43
Taking false branch
470 LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "COMPLETELY UNROLLING loop %"
<< Header->getName() << " with trip count " <<
ULO.TripCount << "!\n"; } } while (false)
471 << " with trip count " << ULO.TripCount << "!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "COMPLETELY UNROLLING loop %"
<< Header->getName() << " with trip count " <<
ULO.TripCount << "!\n"; } } while (false)
;
472 if (ORE)
473 ORE->emit([&]() {
474 return OptimizationRemark(DEBUG_TYPE"loop-unroll", "FullyUnrolled", L->getStartLoc(),
475 L->getHeader())
476 << "completely unrolled loop with "
477 << NV("UnrollCount", ULO.TripCount) << " iterations";
478 });
479 } else if (ULO.PeelCount
43.1
Field 'PeelCount' is 0
43.1
Field 'PeelCount' is 0
) {
44
Taking false branch
480 LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "PEELING loop %" << Header
->getName() << " with iteration count " << ULO
.PeelCount << "!\n"; } } while (false)
481 << " with iteration count " << ULO.PeelCount << "!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "PEELING loop %" << Header
->getName() << " with iteration count " << ULO
.PeelCount << "!\n"; } } while (false)
;
482 if (ORE)
483 ORE->emit([&]() {
484 return OptimizationRemark(DEBUG_TYPE"loop-unroll", "Peeled", L->getStartLoc(),
485 L->getHeader())
486 << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
487 << " iterations";
488 });
489 } else {
490 auto DiagBuilder = [&]() {
491 OptimizationRemark Diag(DEBUG_TYPE"loop-unroll", "PartialUnrolled", L->getStartLoc(),
492 L->getHeader());
493 return Diag << "unrolled loop by a factor of "
494 << NV("UnrollCount", ULO.Count);
495 };
496
497 LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "UNROLLING loop %" <<
Header->getName() << " by " << ULO.Count; } }
while (false)
45
Assuming 'DebugFlag' is true
46
Assuming the condition is false
47
Taking false branch
48
Loop condition is false. Exiting loop
498 << ULO.Count)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "UNROLLING loop %" <<
Header->getName() << " by " << ULO.Count; } }
while (false)
;
499 if (ULO.TripMultiple
48.1
Field 'TripMultiple' is not equal to 0
48.1
Field 'TripMultiple' is not equal to 0
== 0 || BreakoutTrip
48.2
'BreakoutTrip' is equal to field 'TripMultiple'
48.2
'BreakoutTrip' is equal to field 'TripMultiple'
!= ULO.TripMultiple) {
49
Taking false branch
500 LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " with a breakout at trip "
<< BreakoutTrip; } } while (false)
;
501 if (ORE)
502 ORE->emit([&]() {
503 return DiagBuilder() << " with a breakout at trip "
504 << NV("BreakoutTrip", BreakoutTrip);
505 });
506 } else if (ULO.TripMultiple
49.1
Field 'TripMultiple' is equal to 1
49.1
Field 'TripMultiple' is equal to 1
!= 1) {
50
Taking false branch
507 LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " with " << ULO.TripMultiple
<< " trips per branch"; } } while (false)
;
508 if (ORE)
509 ORE->emit([&]() {
510 return DiagBuilder()
511 << " with " << NV("TripMultiple", ULO.TripMultiple)
512 << " trips per branch";
513 });
514 } else if (RuntimeTripCount
50.1
'RuntimeTripCount' is true
50.1
'RuntimeTripCount' is true
) {
51
Taking true branch
515 LLVM_DEBUG(dbgs() << " with run-time trip count")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << " with run-time trip count"
; } } while (false)
;
52
Assuming 'DebugFlag' is false
53
Loop condition is false. Exiting loop
516 if (ORE)
54
Assuming 'ORE' is null
55
Taking false branch
517 ORE->emit(
518 [&]() { return DiagBuilder() << " with run-time trip count"; });
519 }
520 LLVM_DEBUG(dbgs() << "!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "!\n"; } } while (false)
;
56
Loop condition is false. Exiting loop
521 }
522
523 // We are going to make changes to this loop. SCEV may be keeping cached info
524 // about it, in particular about backedge taken count. The changes we make
525 // are guaranteed to invalidate this information for our loop. It is tempting
526 // to only invalidate the loop being unrolled, but it is incorrect as long as
527 // all exiting branches from all inner loops have impact on the outer loops,
528 // and if something changes inside them then any of outer loops may also
529 // change. When we forget outermost loop, we also forget all contained loops
530 // and this is what we need here.
531 if (SE) {
57
Assuming 'SE' is null
58
Taking false branch
532 if (ULO.ForgetAllSCEV)
533 SE->forgetAllLoops();
534 else
535 SE->forgetTopmostLoop(L);
536 }
537
538 bool ContinueOnTrue;
539 bool LatchIsExiting = BI->isConditional();
59
Calling 'BranchInst::isConditional'
61
Returning from 'BranchInst::isConditional'
540 BasicBlock *LoopExit = nullptr;
541 if (LatchIsExiting
61.1
'LatchIsExiting' is false
61.1
'LatchIsExiting' is false
) {
62
Taking false branch
542 ContinueOnTrue = L->contains(BI->getSuccessor(0));
543 LoopExit = BI->getSuccessor(ContinueOnTrue);
544 } else {
545 NumUnrolledWithHeader++;
546 ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0));
63
Called C++ object pointer is null
547 LoopExit = HeaderBI->getSuccessor(ContinueOnTrue);
548 }
549
550 // For the first iteration of the loop, we should use the precloned values for
551 // PHI nodes. Insert associations now.
552 ValueToValueMapTy LastValueMap;
553 std::vector<PHINode*> OrigPHINode;
554 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
555 OrigPHINode.push_back(cast<PHINode>(I));
556 }
557
558 std::vector<BasicBlock *> Headers;
559 std::vector<BasicBlock *> HeaderSucc;
560 std::vector<BasicBlock *> Latches;
561 Headers.push_back(Header);
562 Latches.push_back(LatchBlock);
563
564 if (!LatchIsExiting) {
565 auto *Term = cast<BranchInst>(Header->getTerminator());
566 if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) {
567 assert(L->contains(Term->getSuccessor(0)))((L->contains(Term->getSuccessor(0))) ? static_cast<
void> (0) : __assert_fail ("L->contains(Term->getSuccessor(0))"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 567, __PRETTY_FUNCTION__))
;
568 HeaderSucc.push_back(Term->getSuccessor(0));
569 } else {
570 assert(L->contains(Term->getSuccessor(1)))((L->contains(Term->getSuccessor(1))) ? static_cast<
void> (0) : __assert_fail ("L->contains(Term->getSuccessor(1))"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 570, __PRETTY_FUNCTION__))
;
571 HeaderSucc.push_back(Term->getSuccessor(1));
572 }
573 }
574
575 // The current on-the-fly SSA update requires blocks to be processed in
576 // reverse postorder so that LastValueMap contains the correct value at each
577 // exit.
578 LoopBlocksDFS DFS(L);
579 DFS.perform(LI);
580
581 // Stash the DFS iterators before adding blocks to the loop.
582 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
583 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
584
585 std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
586
587 // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
588 // might break loop-simplified form for these loops (as they, e.g., would
589 // share the same exit blocks). We'll keep track of loops for which we can
590 // break this so that later we can re-simplify them.
591 SmallSetVector<Loop *, 4> LoopsToSimplify;
592 for (Loop *SubLoop : *L)
593 LoopsToSimplify.insert(SubLoop);
594
595 if (Header->getParent()->isDebugInfoForProfiling())
596 for (BasicBlock *BB : L->getBlocks())
597 for (Instruction &I : *BB)
598 if (!isa<DbgInfoIntrinsic>(&I))
599 if (const DILocation *DIL = I.getDebugLoc()) {
600 auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
601 if (NewDIL)
602 I.setDebugLoc(NewDIL.getValue());
603 else
604 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "Failed to create new discriminator: "
<< DIL->getFilename() << " Line: " << DIL
->getLine(); } } while (false)
605 << "Failed to create new discriminator: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "Failed to create new discriminator: "
<< DIL->getFilename() << " Line: " << DIL
->getLine(); } } while (false)
606 << DIL->getFilename() << " Line: " << DIL->getLine())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-unroll")) { dbgs() << "Failed to create new discriminator: "
<< DIL->getFilename() << " Line: " << DIL
->getLine(); } } while (false)
;
607 }
608
609 for (unsigned It = 1; It != ULO.Count; ++It) {
610 SmallVector<BasicBlock *, 8> NewBlocks;
611 SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
612 NewLoops[L] = L;
613
614 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
615 ValueToValueMapTy VMap;
616 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
617 Header->getParent()->getBasicBlockList().push_back(New);
618
619 assert((*BB != Header || LI->getLoopFor(*BB) == L) &&(((*BB != Header || LI->getLoopFor(*BB) == L) && "Header should not be in a sub-loop"
) ? static_cast<void> (0) : __assert_fail ("(*BB != Header || LI->getLoopFor(*BB) == L) && \"Header should not be in a sub-loop\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 620, __PRETTY_FUNCTION__))
620 "Header should not be in a sub-loop")(((*BB != Header || LI->getLoopFor(*BB) == L) && "Header should not be in a sub-loop"
) ? static_cast<void> (0) : __assert_fail ("(*BB != Header || LI->getLoopFor(*BB) == L) && \"Header should not be in a sub-loop\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 620, __PRETTY_FUNCTION__))
;
621 // Tell LI about New.
622 const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
623 if (OldLoop)
624 LoopsToSimplify.insert(NewLoops[OldLoop]);
625
626 if (*BB == Header)
627 // Loop over all of the PHI nodes in the block, changing them to use
628 // the incoming values from the previous block.
629 for (PHINode *OrigPHI : OrigPHINode) {
630 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
631 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
632 if (Instruction *InValI = dyn_cast<Instruction>(InVal))
633 if (It > 1 && L->contains(InValI))
634 InVal = LastValueMap[InValI];
635 VMap[OrigPHI] = InVal;
636 New->getInstList().erase(NewPHI);
637 }
638
639 // Update our running map of newest clones
640 LastValueMap[*BB] = New;
641 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
642 VI != VE; ++VI)
643 LastValueMap[VI->first] = VI->second;
644
645 // Add phi entries for newly created values to all exit blocks.
646 for (BasicBlock *Succ : successors(*BB)) {
647 if (L->contains(Succ))
648 continue;
649 for (PHINode &PHI : Succ->phis()) {
650 Value *Incoming = PHI.getIncomingValueForBlock(*BB);
651 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
652 if (It != LastValueMap.end())
653 Incoming = It->second;
654 PHI.addIncoming(Incoming, New);
655 }
656 }
657 // Keep track of new headers and latches as we create them, so that
658 // we can insert the proper branches later.
659 if (*BB == Header)
660 Headers.push_back(New);
661 if (*BB == LatchBlock)
662 Latches.push_back(New);
663
664 // Keep track of the successor of the new header in the current iteration.
665 for (auto *Pred : predecessors(*BB))
666 if (Pred == Header) {
667 HeaderSucc.push_back(New);
668 break;
669 }
670
671 NewBlocks.push_back(New);
672 UnrolledLoopBlocks.push_back(New);
673
674 // Update DomTree: since we just copy the loop body, and each copy has a
675 // dedicated entry block (copy of the header block), this header's copy
676 // dominates all copied blocks. That means, dominance relations in the
677 // copied body are the same as in the original body.
678 if (DT) {
679 if (*BB == Header)
680 DT->addNewBlock(New, Latches[It - 1]);
681 else {
682 auto BBDomNode = DT->getNode(*BB);
683 auto BBIDom = BBDomNode->getIDom();
684 BasicBlock *OriginalBBIDom = BBIDom->getBlock();
685 DT->addNewBlock(
686 New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
687 }
688 }
689 }
690
691 // Remap all instructions in the most recent iteration
692 remapInstructionsInBlocks(NewBlocks, LastValueMap);
693 for (BasicBlock *NewBlock : NewBlocks) {
694 for (Instruction &I : *NewBlock) {
695 if (auto *II = dyn_cast<IntrinsicInst>(&I))
696 if (II->getIntrinsicID() == Intrinsic::assume)
697 AC->registerAssumption(II);
698 }
699 }
700 }
701
702 // Loop over the PHI nodes in the original block, setting incoming values.
703 for (PHINode *PN : OrigPHINode) {
704 if (CompletelyUnroll) {
705 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
706 Header->getInstList().erase(PN);
707 } else if (ULO.Count > 1) {
708 Value *InVal = PN->removeIncomingValue(LatchBlock, false);
709 // If this value was defined in the loop, take the value defined by the
710 // last iteration of the loop.
711 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
712 if (L->contains(InValI))
713 InVal = LastValueMap[InVal];
714 }
715 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch")((Latches.back() == LastValueMap[LatchBlock] && "bad last latch"
) ? static_cast<void> (0) : __assert_fail ("Latches.back() == LastValueMap[LatchBlock] && \"bad last latch\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 715, __PRETTY_FUNCTION__))
;
716 PN->addIncoming(InVal, Latches.back());
717 }
718 }
719
720 auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest,
721 ArrayRef<BasicBlock *> NextBlocks,
722 BasicBlock *BlockInLoop,
723 bool NeedConditional) {
724 auto *Term = cast<BranchInst>(Src->getTerminator());
725 if (NeedConditional) {
726 // Update the conditional branch's successor for the following
727 // iteration.
728 Term->setSuccessor(!ContinueOnTrue, Dest);
729 } else {
730 // Remove phi operands at this loop exit
731 if (Dest != LoopExit) {
732 BasicBlock *BB = Src;
733 for (BasicBlock *Succ : successors(BB)) {
734 // Preserve the incoming value from BB if we are jumping to the block
735 // in the current loop.
736 if (Succ == BlockInLoop)
737 continue;
738 for (PHINode &Phi : Succ->phis())
739 Phi.removeIncomingValue(BB, false);
740 }
741 }
742 // Replace the conditional branch with an unconditional one.
743 BranchInst::Create(Dest, Term);
744 Term->eraseFromParent();
745 }
746 };
747
748 // Now that all the basic blocks for the unrolled iterations are in place,
749 // set up the branches to connect them.
750 if (LatchIsExiting) {
751 // Set up latches to branch to the new header in the unrolled iterations or
752 // the loop exit for the last latch in a fully unrolled loop.
753 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
754 // The branch destination.
755 unsigned j = (i + 1) % e;
756 BasicBlock *Dest = Headers[j];
757 bool NeedConditional = true;
758
759 if (RuntimeTripCount && j != 0) {
760 NeedConditional = false;
761 }
762
763 // For a complete unroll, make the last iteration end with a branch
764 // to the exit block.
765 if (CompletelyUnroll) {
766 if (j == 0)
767 Dest = LoopExit;
768 // If using trip count upper bound to completely unroll, we need to keep
769 // the conditional branch except the last one because the loop may exit
770 // after any iteration.
771 assert(NeedConditional &&((NeedConditional && "NeedCondition cannot be modified by both complete "
"unrolling and runtime unrolling") ? static_cast<void>
(0) : __assert_fail ("NeedConditional && \"NeedCondition cannot be modified by both complete \" \"unrolling and runtime unrolling\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 773, __PRETTY_FUNCTION__))
772 "NeedCondition cannot be modified by both complete "((NeedConditional && "NeedCondition cannot be modified by both complete "
"unrolling and runtime unrolling") ? static_cast<void>
(0) : __assert_fail ("NeedConditional && \"NeedCondition cannot be modified by both complete \" \"unrolling and runtime unrolling\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 773, __PRETTY_FUNCTION__))
773 "unrolling and runtime unrolling")((NeedConditional && "NeedCondition cannot be modified by both complete "
"unrolling and runtime unrolling") ? static_cast<void>
(0) : __assert_fail ("NeedConditional && \"NeedCondition cannot be modified by both complete \" \"unrolling and runtime unrolling\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 773, __PRETTY_FUNCTION__))
;
774 NeedConditional =
775 (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
776 } else if (j != BreakoutTrip &&
777 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
778 // If we know the trip count or a multiple of it, we can safely use an
779 // unconditional branch for some iterations.
780 NeedConditional = false;
781 }
782
783 setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional);
784 }
785 } else {
786 // Setup headers to branch to their new successors in the unrolled
787 // iterations.
788 for (unsigned i = 0, e = Headers.size(); i != e; ++i) {
789 // The branch destination.
790 unsigned j = (i + 1) % e;
791 BasicBlock *Dest = HeaderSucc[i];
792 bool NeedConditional = true;
793
794 if (RuntimeTripCount && j != 0)
795 NeedConditional = false;
796
797 if (CompletelyUnroll)
798 // We cannot drop the conditional branch for the last condition, as we
799 // may have to execute the loop body depending on the condition.
800 NeedConditional = j == 0 || ULO.PreserveCondBr;
801 else if (j != BreakoutTrip &&
802 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
803 // If we know the trip count or a multiple of it, we can safely use an
804 // unconditional branch for some iterations.
805 NeedConditional = false;
806
807 setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional);
808 }
809
810 // Set up latches to branch to the new header in the unrolled iterations or
811 // the loop exit for the last latch in a fully unrolled loop.
812
813 for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
814 // The original branch was replicated in each unrolled iteration.
815 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
816
817 // The branch destination.
818 unsigned j = (i + 1) % e;
819 BasicBlock *Dest = Headers[j];
820
821 // When completely unrolling, the last latch becomes unreachable.
822 if (CompletelyUnroll && j == 0)
823 new UnreachableInst(Term->getContext(), Term);
824 else
825 // Replace the conditional branch with an unconditional one.
826 BranchInst::Create(Dest, Term);
827
828 Term->eraseFromParent();
829 }
830 }
831
832 // Update dominators of blocks we might reach through exits.
833 // Immediate dominator of such block might change, because we add more
834 // routes which can lead to the exit: we can now reach it from the copied
835 // iterations too.
836 if (DT && ULO.Count > 1) {
837 for (auto *BB : OriginalLoopBlocks) {
838 auto *BBDomNode = DT->getNode(BB);
839 SmallVector<BasicBlock *, 16> ChildrenToUpdate;
840 for (auto *ChildDomNode : BBDomNode->getChildren()) {
841 auto *ChildBB = ChildDomNode->getBlock();
842 if (!L->contains(ChildBB))
843 ChildrenToUpdate.push_back(ChildBB);
844 }
845 BasicBlock *NewIDom;
846 BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header;
847 auto &TermBlocks = LatchIsExiting ? Latches : Headers;
848 if (BB == TermBlock) {
849 // The latch is special because we emit unconditional branches in
850 // some cases where the original loop contained a conditional branch.
851 // Since the latch is always at the bottom of the loop, if the latch
852 // dominated an exit before unrolling, the new dominator of that exit
853 // must also be a latch. Specifically, the dominator is the first
854 // latch which ends in a conditional branch, or the last latch if
855 // there is no such latch.
856 // For loops exiting from the header, we limit the supported loops
857 // to have a single exiting block.
858 NewIDom = TermBlocks.back();
859 for (BasicBlock *Iter : TermBlocks) {
860 Instruction *Term = Iter->getTerminator();
861 if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
862 NewIDom = Iter;
863 break;
864 }
865 }
866 } else {
867 // The new idom of the block will be the nearest common dominator
868 // of all copies of the previous idom. This is equivalent to the
869 // nearest common dominator of the previous idom and the first latch,
870 // which dominates all copies of the previous idom.
871 NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
872 }
873 for (auto *ChildBB : ChildrenToUpdate)
874 DT->changeImmediateDominator(ChildBB, NewIDom);
875 }
876 }
877
878 assert(!DT || !UnrollVerifyDomtree ||((!DT || !UnrollVerifyDomtree || DT->verify(DominatorTree::
VerificationLevel::Fast)) ? static_cast<void> (0) : __assert_fail
("!DT || !UnrollVerifyDomtree || DT->verify(DominatorTree::VerificationLevel::Fast)"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 879, __PRETTY_FUNCTION__))
879 DT->verify(DominatorTree::VerificationLevel::Fast))((!DT || !UnrollVerifyDomtree || DT->verify(DominatorTree::
VerificationLevel::Fast)) ? static_cast<void> (0) : __assert_fail
("!DT || !UnrollVerifyDomtree || DT->verify(DominatorTree::VerificationLevel::Fast)"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 879, __PRETTY_FUNCTION__))
;
880
881 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
882 // Merge adjacent basic blocks, if possible.
883 for (BasicBlock *Latch : Latches) {
884 BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
885 assert((Term ||(((Term || (CompletelyUnroll && !LatchIsExiting &&
Latch == Latches.back())) && "Need a branch as terminator, except when fully unrolling with "
"unconditional latch") ? static_cast<void> (0) : __assert_fail
("(Term || (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && \"Need a branch as terminator, except when fully unrolling with \" \"unconditional latch\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 888, __PRETTY_FUNCTION__))
886 (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&(((Term || (CompletelyUnroll && !LatchIsExiting &&
Latch == Latches.back())) && "Need a branch as terminator, except when fully unrolling with "
"unconditional latch") ? static_cast<void> (0) : __assert_fail
("(Term || (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && \"Need a branch as terminator, except when fully unrolling with \" \"unconditional latch\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 888, __PRETTY_FUNCTION__))
887 "Need a branch as terminator, except when fully unrolling with "(((Term || (CompletelyUnroll && !LatchIsExiting &&
Latch == Latches.back())) && "Need a branch as terminator, except when fully unrolling with "
"unconditional latch") ? static_cast<void> (0) : __assert_fail
("(Term || (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && \"Need a branch as terminator, except when fully unrolling with \" \"unconditional latch\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 888, __PRETTY_FUNCTION__))
888 "unconditional latch")(((Term || (CompletelyUnroll && !LatchIsExiting &&
Latch == Latches.back())) && "Need a branch as terminator, except when fully unrolling with "
"unconditional latch") ? static_cast<void> (0) : __assert_fail
("(Term || (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) && \"Need a branch as terminator, except when fully unrolling with \" \"unconditional latch\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 888, __PRETTY_FUNCTION__))
;
889 if (Term && Term->isUnconditional()) {
890 BasicBlock *Dest = Term->getSuccessor(0);
891 BasicBlock *Fold = Dest->getUniquePredecessor();
892 if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
893 // Dest has been folded into Fold. Update our worklists accordingly.
894 std::replace(Latches.begin(), Latches.end(), Dest, Fold);
895 UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
896 UnrolledLoopBlocks.end(), Dest),
897 UnrolledLoopBlocks.end());
898 }
899 }
900 }
901 // Apply updates to the DomTree.
902 DT = &DTU.getDomTree();
903
904 // At this point, the code is well formed. We now simplify the unrolled loop,
905 // doing constant propagation and dead code elimination as we go.
906 simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
907 SE, DT, AC, TTI);
908
909 NumCompletelyUnrolled += CompletelyUnroll;
910 ++NumUnrolled;
911
912 Loop *OuterL = L->getParentLoop();
913 // Update LoopInfo if the loop is completely removed.
914 if (CompletelyUnroll)
915 LI->erase(L);
916
917 // After complete unrolling most of the blocks should be contained in OuterL.
918 // However, some of them might happen to be out of OuterL (e.g. if they
919 // precede a loop exit). In this case we might need to insert PHI nodes in
920 // order to preserve LCSSA form.
921 // We don't need to check this if we already know that we need to fix LCSSA
922 // form.
923 // TODO: For now we just recompute LCSSA for the outer loop in this case, but
924 // it should be possible to fix it in-place.
925 if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
926 NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
927
928 // If we have a pass and a DominatorTree we should re-simplify impacted loops
929 // to ensure subsequent analyses can rely on this form. We want to simplify
930 // at least one layer outside of the loop that was unrolled so that any
931 // changes to the parent loop exposed by the unrolling are considered.
932 if (DT) {
933 if (OuterL) {
934 // OuterL includes all loops for which we can break loop-simplify, so
935 // it's sufficient to simplify only it (it'll recursively simplify inner
936 // loops too).
937 if (NeedToFixLCSSA) {
938 // LCSSA must be performed on the outermost affected loop. The unrolled
939 // loop's last loop latch is guaranteed to be in the outermost loop
940 // after LoopInfo's been updated by LoopInfo::erase.
941 Loop *LatchLoop = LI->getLoopFor(Latches.back());
942 Loop *FixLCSSALoop = OuterL;
943 if (!FixLCSSALoop->contains(LatchLoop))
944 while (FixLCSSALoop->getParentLoop() != LatchLoop)
945 FixLCSSALoop = FixLCSSALoop->getParentLoop();
946
947 formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
948 } else if (PreserveLCSSA) {
949 assert(OuterL->isLCSSAForm(*DT) &&((OuterL->isLCSSAForm(*DT) && "Loops should be in LCSSA form after loop-unroll."
) ? static_cast<void> (0) : __assert_fail ("OuterL->isLCSSAForm(*DT) && \"Loops should be in LCSSA form after loop-unroll.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 950, __PRETTY_FUNCTION__))
950 "Loops should be in LCSSA form after loop-unroll.")((OuterL->isLCSSAForm(*DT) && "Loops should be in LCSSA form after loop-unroll."
) ? static_cast<void> (0) : __assert_fail ("OuterL->isLCSSAForm(*DT) && \"Loops should be in LCSSA form after loop-unroll.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 950, __PRETTY_FUNCTION__))
;
951 }
952
953 // TODO: That potentially might be compile-time expensive. We should try
954 // to fix the loop-simplified form incrementally.
955 simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
956 } else {
957 // Simplify loops for which we might've broken loop-simplify form.
958 for (Loop *SubLoop : LoopsToSimplify)
959 simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
960 }
961 }
962
963 return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
964 : LoopUnrollResult::PartiallyUnrolled;
965}
966
967/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
968/// node with the given name (for example, "llvm.loop.unroll.count"). If no
969/// such metadata node exists, then nullptr is returned.
970MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
971 // First operand should refer to the loop id itself.
972 assert(LoopID->getNumOperands() > 0 && "requires at least one operand")((LoopID->getNumOperands() > 0 && "requires at least one operand"
) ? static_cast<void> (0) : __assert_fail ("LoopID->getNumOperands() > 0 && \"requires at least one operand\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 972, __PRETTY_FUNCTION__))
;
973 assert(LoopID->getOperand(0) == LoopID && "invalid loop id")((LoopID->getOperand(0) == LoopID && "invalid loop id"
) ? static_cast<void> (0) : __assert_fail ("LoopID->getOperand(0) == LoopID && \"invalid loop id\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Transforms/Utils/LoopUnroll.cpp"
, 973, __PRETTY_FUNCTION__))
;
974
975 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
976 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
977 if (!MD)
978 continue;
979
980 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
981 if (!S)
982 continue;
983
984 if (Name.equals(S->getString()))
985 return MD;
986 }
987 return nullptr;
988}

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/ADT/iterator.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/InstrTypes.h"
33#include "llvm/IR/Instruction.h"
34#include "llvm/IR/OperandTraits.h"
35#include "llvm/IR/Type.h"
36#include "llvm/IR/Use.h"
37#include "llvm/IR/User.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Support/AtomicOrdering.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <cassert>
43#include <cstddef>
44#include <cstdint>
45#include <iterator>
46
47namespace llvm {
48
49class APInt;
50class ConstantInt;
51class DataLayout;
52class LLVMContext;
53
54//===----------------------------------------------------------------------===//
55// AllocaInst Class
56//===----------------------------------------------------------------------===//
57
58/// an instruction to allocate memory on the stack
59class AllocaInst : public UnaryInstruction {
60 Type *AllocatedType;
61
62protected:
63 // Note: Instruction needs to be a friend here to call cloneImpl.
64 friend class Instruction;
65
66 AllocaInst *cloneImpl() const;
67
68public:
69 explicit AllocaInst(Type *Ty, unsigned AddrSpace,
70 Value *ArraySize = nullptr,
71 const Twine &Name = "",
72 Instruction *InsertBefore = nullptr);
73 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
74 const Twine &Name, BasicBlock *InsertAtEnd);
75
76 AllocaInst(Type *Ty, unsigned AddrSpace,
77 const Twine &Name, Instruction *InsertBefore = nullptr);
78 AllocaInst(Type *Ty, unsigned AddrSpace,
79 const Twine &Name, BasicBlock *InsertAtEnd);
80
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, MaybeAlign Align,
82 const Twine &Name = "", Instruction *InsertBefore = nullptr);
83 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, MaybeAlign Align,
84 const Twine &Name, BasicBlock *InsertAtEnd);
85
86 /// Return true if there is an allocation size parameter to the allocation
87 /// instruction that is not 1.
88 bool isArrayAllocation() const;
89
90 /// Get the number of elements allocated. For a simple allocation of a single
91 /// element, this will return a constant 1 value.
92 const Value *getArraySize() const { return getOperand(0); }
93 Value *getArraySize() { return getOperand(0); }
94
95 /// Overload to return most specific pointer type.
96 PointerType *getType() const {
97 return cast<PointerType>(Instruction::getType());
98 }
99
100 /// Get allocation size in bits. Returns None if size can't be determined,
101 /// e.g. in case of a VLA.
102 Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const;
103
104 /// Return the type that is being allocated by the instruction.
105 Type *getAllocatedType() const { return AllocatedType; }
106 /// for use only in special circumstances that need to generically
107 /// transform a whole instruction (eg: IR linking and vectorization).
108 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
109
110 /// Return the alignment of the memory that is being allocated by the
111 /// instruction.
112 MaybeAlign getAlign() const {
113 return decodeMaybeAlign(getSubclassDataFromInstruction() & 31);
114 }
115 // FIXME: Remove this one transition to Align is over.
116 unsigned getAlignment() const {
117 if (const auto MA = getAlign())
118 return MA->value();
119 return 0;
120 }
121 void setAlignment(MaybeAlign Align);
122
123 /// Return true if this alloca is in the entry block of the function and is a
124 /// constant size. If so, the code generator will fold it into the
125 /// prolog/epilog code, so it is basically free.
126 bool isStaticAlloca() const;
127
128 /// Return true if this alloca is used as an inalloca argument to a call. Such
129 /// allocas are never considered static even if they are in the entry block.
130 bool isUsedWithInAlloca() const {
131 return getSubclassDataFromInstruction() & 32;
132 }
133
134 /// Specify whether this alloca is used to represent the arguments to a call.
135 void setUsedWithInAlloca(bool V) {
136 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
137 (V ? 32 : 0));
138 }
139
140 /// Return true if this alloca is used as a swifterror argument to a call.
141 bool isSwiftError() const {
142 return getSubclassDataFromInstruction() & 64;
143 }
144
145 /// Specify whether this alloca is used to represent a swifterror.
146 void setSwiftError(bool V) {
147 setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
148 (V ? 64 : 0));
149 }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 void setInstructionSubclassData(unsigned short D) {
163 Instruction::setInstructionSubclassData(D);
164 }
165};
166
167//===----------------------------------------------------------------------===//
168// LoadInst Class
169//===----------------------------------------------------------------------===//
170
171/// An instruction for reading from memory. This uses the SubclassData field in
172/// Value to store whether or not the load is volatile.
173class LoadInst : public UnaryInstruction {
174 void AssertOK();
175
176protected:
177 // Note: Instruction needs to be a friend here to call cloneImpl.
178 friend class Instruction;
179
180 LoadInst *cloneImpl() const;
181
182public:
183 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr = "",
184 Instruction *InsertBefore = nullptr);
185 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
186 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
187 Instruction *InsertBefore = nullptr);
188 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
189 BasicBlock *InsertAtEnd);
190 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
191 MaybeAlign Align, Instruction *InsertBefore = nullptr);
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
193 MaybeAlign Align, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 MaybeAlign Align, AtomicOrdering Order,
196 SyncScope::ID SSID = SyncScope::System,
197 Instruction *InsertBefore = nullptr);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID,
200 BasicBlock *InsertAtEnd);
201
202 // Deprecated [opaque pointer types]
203 explicit LoadInst(Value *Ptr, const Twine &NameStr = "",
204 Instruction *InsertBefore = nullptr)
205 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
206 InsertBefore) {}
207 LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd)
208 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
209 InsertAtEnd) {}
210 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
211 Instruction *InsertBefore = nullptr)
212 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
213 isVolatile, InsertBefore) {}
214 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
215 BasicBlock *InsertAtEnd)
216 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
217 isVolatile, InsertAtEnd) {}
218 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
219 Instruction *InsertBefore = nullptr)
220 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
221 isVolatile, Align, InsertBefore) {}
222 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
223 BasicBlock *InsertAtEnd)
224 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
225 isVolatile, Align, InsertAtEnd) {}
226 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
227 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
228 Instruction *InsertBefore = nullptr)
229 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
230 isVolatile, Align, Order, SSID, InsertBefore) {}
231 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
232 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd)
233 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
234 isVolatile, Align, Order, SSID, InsertAtEnd) {}
235
236 /// Return true if this is a load from a volatile memory location.
237 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
238
239 /// Specify whether this is a volatile load or not.
240 void setVolatile(bool V) {
241 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
242 (V ? 1 : 0));
243 }
244
245 /// Return the alignment of the access that is being performed.
246 /// FIXME: Remove this function once transition to Align is over.
247 /// Use getAlign() instead.
248 unsigned getAlignment() const {
249 if (const auto MA = getAlign())
250 return MA->value();
251 return 0;
252 }
253
254 /// Return the alignment of the access that is being performed.
255 MaybeAlign getAlign() const {
256 return decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31);
257 }
258
259 void setAlignment(MaybeAlign Alignment);
260
261 /// Returns the ordering constraint of this load instruction.
262 AtomicOrdering getOrdering() const {
263 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
264 }
265
266 /// Sets the ordering constraint of this load instruction. May not be Release
267 /// or AcquireRelease.
268 void setOrdering(AtomicOrdering Ordering) {
269 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
270 ((unsigned)Ordering << 7));
271 }
272
273 /// Returns the synchronization scope ID of this load instruction.
274 SyncScope::ID getSyncScopeID() const {
275 return SSID;
276 }
277
278 /// Sets the synchronization scope ID of this load instruction.
279 void setSyncScopeID(SyncScope::ID SSID) {
280 this->SSID = SSID;
281 }
282
283 /// Sets the ordering constraint and the synchronization scope ID of this load
284 /// instruction.
285 void setAtomic(AtomicOrdering Ordering,
286 SyncScope::ID SSID = SyncScope::System) {
287 setOrdering(Ordering);
288 setSyncScopeID(SSID);
289 }
290
291 bool isSimple() const { return !isAtomic() && !isVolatile(); }
292
293 bool isUnordered() const {
294 return (getOrdering() == AtomicOrdering::NotAtomic ||
295 getOrdering() == AtomicOrdering::Unordered) &&
296 !isVolatile();
297 }
298
299 Value *getPointerOperand() { return getOperand(0); }
300 const Value *getPointerOperand() const { return getOperand(0); }
301 static unsigned getPointerOperandIndex() { return 0U; }
302 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
303
304 /// Returns the address space of the pointer operand.
305 unsigned getPointerAddressSpace() const {
306 return getPointerOperandType()->getPointerAddressSpace();
307 }
308
309 // Methods for support type inquiry through isa, cast, and dyn_cast:
310 static bool classof(const Instruction *I) {
311 return I->getOpcode() == Instruction::Load;
312 }
313 static bool classof(const Value *V) {
314 return isa<Instruction>(V) && classof(cast<Instruction>(V));
315 }
316
317private:
318 // Shadow Instruction::setInstructionSubclassData with a private forwarding
319 // method so that subclasses cannot accidentally use it.
320 void setInstructionSubclassData(unsigned short D) {
321 Instruction::setInstructionSubclassData(D);
322 }
323
324 /// The synchronization scope ID of this load instruction. Not quite enough
325 /// room in SubClassData for everything, so synchronization scope ID gets its
326 /// own field.
327 SyncScope::ID SSID;
328};
329
330//===----------------------------------------------------------------------===//
331// StoreInst Class
332//===----------------------------------------------------------------------===//
333
334/// An instruction for storing to memory.
335class StoreInst : public Instruction {
336 void AssertOK();
337
338protected:
339 // Note: Instruction needs to be a friend here to call cloneImpl.
340 friend class Instruction;
341
342 StoreInst *cloneImpl() const;
343
344public:
345 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
346 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
347 StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
348 Instruction *InsertBefore = nullptr);
349 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
350 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
351 Instruction *InsertBefore = nullptr);
352 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
353 BasicBlock *InsertAtEnd);
354 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
355 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
356 Instruction *InsertBefore = nullptr);
357 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
358 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
359
360 // allocate space for exactly two operands
361 void *operator new(size_t s) {
362 return User::operator new(s, 2);
363 }
364
365 /// Return true if this is a store to a volatile memory location.
366 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
367
368 /// Specify whether this is a volatile store or not.
369 void setVolatile(bool V) {
370 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
371 (V ? 1 : 0));
372 }
373
374 /// Transparently provide more efficient getOperand methods.
375 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
376
377 /// Return the alignment of the access that is being performed
378 /// FIXME: Remove this function once transition to Align is over.
379 /// Use getAlign() instead.
380 unsigned getAlignment() const {
381 if (const auto MA = getAlign())
382 return MA->value();
383 return 0;
384 }
385
386 MaybeAlign getAlign() const {
387 return decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31);
388 }
389
390 void setAlignment(MaybeAlign Alignment);
391
392 /// Returns the ordering constraint of this store instruction.
393 AtomicOrdering getOrdering() const {
394 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
395 }
396
397 /// Sets the ordering constraint of this store instruction. May not be
398 /// Acquire or AcquireRelease.
399 void setOrdering(AtomicOrdering Ordering) {
400 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
401 ((unsigned)Ordering << 7));
402 }
403
404 /// Returns the synchronization scope ID of this store instruction.
405 SyncScope::ID getSyncScopeID() const {
406 return SSID;
407 }
408
409 /// Sets the synchronization scope ID of this store instruction.
410 void setSyncScopeID(SyncScope::ID SSID) {
411 this->SSID = SSID;
412 }
413
414 /// Sets the ordering constraint and the synchronization scope ID of this
415 /// store instruction.
416 void setAtomic(AtomicOrdering Ordering,
417 SyncScope::ID SSID = SyncScope::System) {
418 setOrdering(Ordering);
419 setSyncScopeID(SSID);
420 }
421
422 bool isSimple() const { return !isAtomic() && !isVolatile(); }
423
424 bool isUnordered() const {
425 return (getOrdering() == AtomicOrdering::NotAtomic ||
426 getOrdering() == AtomicOrdering::Unordered) &&
427 !isVolatile();
428 }
429
430 Value *getValueOperand() { return getOperand(0); }
431 const Value *getValueOperand() const { return getOperand(0); }
432
433 Value *getPointerOperand() { return getOperand(1); }
434 const Value *getPointerOperand() const { return getOperand(1); }
435 static unsigned getPointerOperandIndex() { return 1U; }
436 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
437
438 /// Returns the address space of the pointer operand.
439 unsigned getPointerAddressSpace() const {
440 return getPointerOperandType()->getPointerAddressSpace();
441 }
442
443 // Methods for support type inquiry through isa, cast, and dyn_cast:
444 static bool classof(const Instruction *I) {
445 return I->getOpcode() == Instruction::Store;
446 }
447 static bool classof(const Value *V) {
448 return isa<Instruction>(V) && classof(cast<Instruction>(V));
449 }
450
451private:
452 // Shadow Instruction::setInstructionSubclassData with a private forwarding
453 // method so that subclasses cannot accidentally use it.
454 void setInstructionSubclassData(unsigned short D) {
455 Instruction::setInstructionSubclassData(D);
456 }
457
458 /// The synchronization scope ID of this store instruction. Not quite enough
459 /// room in SubClassData for everything, so synchronization scope ID gets its
460 /// own field.
461 SyncScope::ID SSID;
462};
463
464template <>
465struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
466};
467
468DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<StoreInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 468, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst
*>(this))[i_nocapture].get()); } void StoreInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 468, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst
::getNumOperands() const { return OperandTraits<StoreInst>
::operands(this); } template <int Idx_nocapture> Use &
StoreInst::Op() { return this->OpFrom<Idx_nocapture>
(this); } template <int Idx_nocapture> const Use &StoreInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
469
470//===----------------------------------------------------------------------===//
471// FenceInst Class
472//===----------------------------------------------------------------------===//
473
474/// An instruction for ordering other memory operations.
475class FenceInst : public Instruction {
476 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
477
478protected:
479 // Note: Instruction needs to be a friend here to call cloneImpl.
480 friend class Instruction;
481
482 FenceInst *cloneImpl() const;
483
484public:
485 // Ordering may only be Acquire, Release, AcquireRelease, or
486 // SequentiallyConsistent.
487 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
488 SyncScope::ID SSID = SyncScope::System,
489 Instruction *InsertBefore = nullptr);
490 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
491 BasicBlock *InsertAtEnd);
492
493 // allocate space for exactly zero operands
494 void *operator new(size_t s) {
495 return User::operator new(s, 0);
496 }
497
498 /// Returns the ordering constraint of this fence instruction.
499 AtomicOrdering getOrdering() const {
500 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
501 }
502
503 /// Sets the ordering constraint of this fence instruction. May only be
504 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
505 void setOrdering(AtomicOrdering Ordering) {
506 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
507 ((unsigned)Ordering << 1));
508 }
509
510 /// Returns the synchronization scope ID of this fence instruction.
511 SyncScope::ID getSyncScopeID() const {
512 return SSID;
513 }
514
515 /// Sets the synchronization scope ID of this fence instruction.
516 void setSyncScopeID(SyncScope::ID SSID) {
517 this->SSID = SSID;
518 }
519
520 // Methods for support type inquiry through isa, cast, and dyn_cast:
521 static bool classof(const Instruction *I) {
522 return I->getOpcode() == Instruction::Fence;
523 }
524 static bool classof(const Value *V) {
525 return isa<Instruction>(V) && classof(cast<Instruction>(V));
526 }
527
528private:
529 // Shadow Instruction::setInstructionSubclassData with a private forwarding
530 // method so that subclasses cannot accidentally use it.
531 void setInstructionSubclassData(unsigned short D) {
532 Instruction::setInstructionSubclassData(D);
533 }
534
535 /// The synchronization scope ID of this fence instruction. Not quite enough
536 /// room in SubClassData for everything, so synchronization scope ID gets its
537 /// own field.
538 SyncScope::ID SSID;
539};
540
541//===----------------------------------------------------------------------===//
542// AtomicCmpXchgInst Class
543//===----------------------------------------------------------------------===//
544
545/// An instruction that atomically checks whether a
546/// specified value is in a memory location, and, if it is, stores a new value
547/// there. The value returned by this instruction is a pair containing the
548/// original value as first element, and an i1 indicating success (true) or
549/// failure (false) as second element.
550///
551class AtomicCmpXchgInst : public Instruction {
552 void Init(Value *Ptr, Value *Cmp, Value *NewVal,
553 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
554 SyncScope::ID SSID);
555
556protected:
557 // Note: Instruction needs to be a friend here to call cloneImpl.
558 friend class Instruction;
559
560 AtomicCmpXchgInst *cloneImpl() const;
561
562public:
563 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
564 AtomicOrdering SuccessOrdering,
565 AtomicOrdering FailureOrdering,
566 SyncScope::ID SSID, Instruction *InsertBefore = nullptr);
567 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
568 AtomicOrdering SuccessOrdering,
569 AtomicOrdering FailureOrdering,
570 SyncScope::ID SSID, BasicBlock *InsertAtEnd);
571
572 // allocate space for exactly three operands
573 void *operator new(size_t s) {
574 return User::operator new(s, 3);
575 }
576
577 /// Return true if this is a cmpxchg from a volatile memory
578 /// location.
579 ///
580 bool isVolatile() const {
581 return getSubclassDataFromInstruction() & 1;
582 }
583
584 /// Specify whether this is a volatile cmpxchg.
585 ///
586 void setVolatile(bool V) {
587 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
588 (unsigned)V);
589 }
590
591 /// Return true if this cmpxchg may spuriously fail.
592 bool isWeak() const {
593 return getSubclassDataFromInstruction() & 0x100;
594 }
595
596 void setWeak(bool IsWeak) {
597 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
598 (IsWeak << 8));
599 }
600
601 /// Transparently provide more efficient getOperand methods.
602 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
603
604 /// Returns the success ordering constraint of this cmpxchg instruction.
605 AtomicOrdering getSuccessOrdering() const {
606 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
607 }
608
609 /// Sets the success ordering constraint of this cmpxchg instruction.
610 void setSuccessOrdering(AtomicOrdering Ordering) {
611 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 612, __PRETTY_FUNCTION__))
612 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 612, __PRETTY_FUNCTION__))
;
613 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
614 ((unsigned)Ordering << 2));
615 }
616
617 /// Returns the failure ordering constraint of this cmpxchg instruction.
618 AtomicOrdering getFailureOrdering() const {
619 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
620 }
621
622 /// Sets the failure ordering constraint of this cmpxchg instruction.
623 void setFailureOrdering(AtomicOrdering Ordering) {
624 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 625, __PRETTY_FUNCTION__))
625 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 625, __PRETTY_FUNCTION__))
;
626 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
627 ((unsigned)Ordering << 5));
628 }
629
630 /// Returns the synchronization scope ID of this cmpxchg instruction.
631 SyncScope::ID getSyncScopeID() const {
632 return SSID;
633 }
634
635 /// Sets the synchronization scope ID of this cmpxchg instruction.
636 void setSyncScopeID(SyncScope::ID SSID) {
637 this->SSID = SSID;
638 }
639
640 Value *getPointerOperand() { return getOperand(0); }
641 const Value *getPointerOperand() const { return getOperand(0); }
642 static unsigned getPointerOperandIndex() { return 0U; }
643
644 Value *getCompareOperand() { return getOperand(1); }
645 const Value *getCompareOperand() const { return getOperand(1); }
646
647 Value *getNewValOperand() { return getOperand(2); }
648 const Value *getNewValOperand() const { return getOperand(2); }
649
650 /// Returns the address space of the pointer operand.
651 unsigned getPointerAddressSpace() const {
652 return getPointerOperand()->getType()->getPointerAddressSpace();
653 }
654
655 /// Returns the strongest permitted ordering on failure, given the
656 /// desired ordering on success.
657 ///
658 /// If the comparison in a cmpxchg operation fails, there is no atomic store
659 /// so release semantics cannot be provided. So this function drops explicit
660 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
661 /// operation would remain SequentiallyConsistent.
662 static AtomicOrdering
663 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
664 switch (SuccessOrdering) {
665 default:
666 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 666)
;
667 case AtomicOrdering::Release:
668 case AtomicOrdering::Monotonic:
669 return AtomicOrdering::Monotonic;
670 case AtomicOrdering::AcquireRelease:
671 case AtomicOrdering::Acquire:
672 return AtomicOrdering::Acquire;
673 case AtomicOrdering::SequentiallyConsistent:
674 return AtomicOrdering::SequentiallyConsistent;
675 }
676 }
677
678 // Methods for support type inquiry through isa, cast, and dyn_cast:
679 static bool classof(const Instruction *I) {
680 return I->getOpcode() == Instruction::AtomicCmpXchg;
681 }
682 static bool classof(const Value *V) {
683 return isa<Instruction>(V) && classof(cast<Instruction>(V));
684 }
685
686private:
687 // Shadow Instruction::setInstructionSubclassData with a private forwarding
688 // method so that subclasses cannot accidentally use it.
689 void setInstructionSubclassData(unsigned short D) {
690 Instruction::setInstructionSubclassData(D);
691 }
692
693 /// The synchronization scope ID of this cmpxchg instruction. Not quite
694 /// enough room in SubClassData for everything, so synchronization scope ID
695 /// gets its own field.
696 SyncScope::ID SSID;
697};
698
699template <>
700struct OperandTraits<AtomicCmpXchgInst> :
701 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
702};
703
704DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 704, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 704, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
AtomicCmpXchgInst::getNumOperands() const { return OperandTraits
<AtomicCmpXchgInst>::operands(this); } template <int
Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &AtomicCmpXchgInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
705
706//===----------------------------------------------------------------------===//
707// AtomicRMWInst Class
708//===----------------------------------------------------------------------===//
709
710/// an instruction that atomically reads a memory location,
711/// combines it with another value, and then stores the result back. Returns
712/// the old value.
713///
714class AtomicRMWInst : public Instruction {
715protected:
716 // Note: Instruction needs to be a friend here to call cloneImpl.
717 friend class Instruction;
718
719 AtomicRMWInst *cloneImpl() const;
720
721public:
722 /// This enumeration lists the possible modifications atomicrmw can make. In
723 /// the descriptions, 'p' is the pointer to the instruction's memory location,
724 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
725 /// instruction. These instructions always return 'old'.
726 enum BinOp {
727 /// *p = v
728 Xchg,
729 /// *p = old + v
730 Add,
731 /// *p = old - v
732 Sub,
733 /// *p = old & v
734 And,
735 /// *p = ~(old & v)
736 Nand,
737 /// *p = old | v
738 Or,
739 /// *p = old ^ v
740 Xor,
741 /// *p = old >signed v ? old : v
742 Max,
743 /// *p = old <signed v ? old : v
744 Min,
745 /// *p = old >unsigned v ? old : v
746 UMax,
747 /// *p = old <unsigned v ? old : v
748 UMin,
749
750 /// *p = old + v
751 FAdd,
752
753 /// *p = old - v
754 FSub,
755
756 FIRST_BINOP = Xchg,
757 LAST_BINOP = FSub,
758 BAD_BINOP
759 };
760
761 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
762 AtomicOrdering Ordering, SyncScope::ID SSID,
763 Instruction *InsertBefore = nullptr);
764 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
765 AtomicOrdering Ordering, SyncScope::ID SSID,
766 BasicBlock *InsertAtEnd);
767
768 // allocate space for exactly two operands
769 void *operator new(size_t s) {
770 return User::operator new(s, 2);
771 }
772
773 BinOp getOperation() const {
774 return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
775 }
776
777 static StringRef getOperationName(BinOp Op);
778
779 static bool isFPOperation(BinOp Op) {
780 switch (Op) {
781 case AtomicRMWInst::FAdd:
782 case AtomicRMWInst::FSub:
783 return true;
784 default:
785 return false;
786 }
787 }
788
789 void setOperation(BinOp Operation) {
790 unsigned short SubclassData = getSubclassDataFromInstruction();
791 setInstructionSubclassData((SubclassData & 31) |
792 (Operation << 5));
793 }
794
795 /// Return true if this is a RMW on a volatile memory location.
796 ///
797 bool isVolatile() const {
798 return getSubclassDataFromInstruction() & 1;
799 }
800
801 /// Specify whether this is a volatile RMW or not.
802 ///
803 void setVolatile(bool V) {
804 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
805 (unsigned)V);
806 }
807
808 /// Transparently provide more efficient getOperand methods.
809 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
810
811 /// Returns the ordering constraint of this rmw instruction.
812 AtomicOrdering getOrdering() const {
813 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
814 }
815
816 /// Sets the ordering constraint of this rmw instruction.
817 void setOrdering(AtomicOrdering Ordering) {
818 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 819, __PRETTY_FUNCTION__))
819 "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 819, __PRETTY_FUNCTION__))
;
820 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
821 ((unsigned)Ordering << 2));
822 }
823
824 /// Returns the synchronization scope ID of this rmw instruction.
825 SyncScope::ID getSyncScopeID() const {
826 return SSID;
827 }
828
829 /// Sets the synchronization scope ID of this rmw instruction.
830 void setSyncScopeID(SyncScope::ID SSID) {
831 this->SSID = SSID;
832 }
833
834 Value *getPointerOperand() { return getOperand(0); }
835 const Value *getPointerOperand() const { return getOperand(0); }
836 static unsigned getPointerOperandIndex() { return 0U; }
837
838 Value *getValOperand() { return getOperand(1); }
839 const Value *getValOperand() const { return getOperand(1); }
840
841 /// Returns the address space of the pointer operand.
842 unsigned getPointerAddressSpace() const {
843 return getPointerOperand()->getType()->getPointerAddressSpace();
844 }
845
846 bool isFloatingPointOperation() const {
847 return isFPOperation(getOperation());
848 }
849
850 // Methods for support type inquiry through isa, cast, and dyn_cast:
851 static bool classof(const Instruction *I) {
852 return I->getOpcode() == Instruction::AtomicRMW;
853 }
854 static bool classof(const Value *V) {
855 return isa<Instruction>(V) && classof(cast<Instruction>(V));
856 }
857
858private:
859 void Init(BinOp Operation, Value *Ptr, Value *Val,
860 AtomicOrdering Ordering, SyncScope::ID SSID);
861
862 // Shadow Instruction::setInstructionSubclassData with a private forwarding
863 // method so that subclasses cannot accidentally use it.
864 void setInstructionSubclassData(unsigned short D) {
865 Instruction::setInstructionSubclassData(D);
866 }
867
868 /// The synchronization scope ID of this rmw instruction. Not quite enough
869 /// room in SubClassData for everything, so synchronization scope ID gets its
870 /// own field.
871 SyncScope::ID SSID;
872};
873
874template <>
875struct OperandTraits<AtomicRMWInst>
876 : public FixedNumOperandTraits<AtomicRMWInst,2> {
877};
878
879DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<AtomicRMWInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 879, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicRMWInst>::op_begin(const_cast<
AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<AtomicRMWInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 879, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst
::getNumOperands() const { return OperandTraits<AtomicRMWInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
880
881//===----------------------------------------------------------------------===//
882// GetElementPtrInst Class
883//===----------------------------------------------------------------------===//
884
885// checkGEPType - Simple wrapper function to give a better assertion failure
886// message on bad indexes for a gep instruction.
887//
888inline Type *checkGEPType(Type *Ty) {
889 assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!"
) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 889, __PRETTY_FUNCTION__))
;
890 return Ty;
891}
892
893/// an instruction for type-safe pointer arithmetic to
894/// access elements of arrays and structs
895///
896class GetElementPtrInst : public Instruction {
897 Type *SourceElementType;
898 Type *ResultElementType;
899
900 GetElementPtrInst(const GetElementPtrInst &GEPI);
901
902 /// Constructors - Create a getelementptr instruction with a base pointer an
903 /// list of indices. The first ctor can optionally insert before an existing
904 /// instruction, the second appends the new instruction to the specified
905 /// BasicBlock.
906 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
907 ArrayRef<Value *> IdxList, unsigned Values,
908 const Twine &NameStr, Instruction *InsertBefore);
909 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
910 ArrayRef<Value *> IdxList, unsigned Values,
911 const Twine &NameStr, BasicBlock *InsertAtEnd);
912
913 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
914
915protected:
916 // Note: Instruction needs to be a friend here to call cloneImpl.
917 friend class Instruction;
918
919 GetElementPtrInst *cloneImpl() const;
920
921public:
922 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
923 ArrayRef<Value *> IdxList,
924 const Twine &NameStr = "",
925 Instruction *InsertBefore = nullptr) {
926 unsigned Values = 1 + unsigned(IdxList.size());
927 if (!PointeeType)
928 PointeeType =
929 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
930 else
931 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
932 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
933 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
;
934 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
935 NameStr, InsertBefore);
936 }
937
938 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList,
940 const Twine &NameStr,
941 BasicBlock *InsertAtEnd) {
942 unsigned Values = 1 + unsigned(IdxList.size());
943 if (!PointeeType)
944 PointeeType =
945 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
946 else
947 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
948 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
949 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
;
950 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
951 NameStr, InsertAtEnd);
952 }
953
954 /// Create an "inbounds" getelementptr. See the documentation for the
955 /// "inbounds" flag in LangRef.html for details.
956 static GetElementPtrInst *CreateInBounds(Value *Ptr,
957 ArrayRef<Value *> IdxList,
958 const Twine &NameStr = "",
959 Instruction *InsertBefore = nullptr){
960 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
961 }
962
963 static GetElementPtrInst *
964 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
965 const Twine &NameStr = "",
966 Instruction *InsertBefore = nullptr) {
967 GetElementPtrInst *GEP =
968 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
969 GEP->setIsInBounds(true);
970 return GEP;
971 }
972
973 static GetElementPtrInst *CreateInBounds(Value *Ptr,
974 ArrayRef<Value *> IdxList,
975 const Twine &NameStr,
976 BasicBlock *InsertAtEnd) {
977 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
978 }
979
980 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
981 ArrayRef<Value *> IdxList,
982 const Twine &NameStr,
983 BasicBlock *InsertAtEnd) {
984 GetElementPtrInst *GEP =
985 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
986 GEP->setIsInBounds(true);
987 return GEP;
988 }
989
990 /// Transparently provide more efficient getOperand methods.
991 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
992
993 Type *getSourceElementType() const { return SourceElementType; }
994
995 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
996 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
997
998 Type *getResultElementType() const {
999 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1000, __PRETTY_FUNCTION__))
1000 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1000, __PRETTY_FUNCTION__))
;
1001 return ResultElementType;
1002 }
1003
1004 /// Returns the address space of this instruction's pointer type.
1005 unsigned getAddressSpace() const {
1006 // Note that this is always the same as the pointer operand's address space
1007 // and that is cheaper to compute, so cheat here.
1008 return getPointerAddressSpace();
1009 }
1010
1011 /// Returns the type of the element that would be loaded with
1012 /// a load instruction with the specified parameters.
1013 ///
1014 /// Null is returned if the indices are invalid for the specified
1015 /// pointer type.
1016 ///
1017 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1018 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1019 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1020
1021 inline op_iterator idx_begin() { return op_begin()+1; }
1022 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1023 inline op_iterator idx_end() { return op_end(); }
1024 inline const_op_iterator idx_end() const { return op_end(); }
1025
1026 inline iterator_range<op_iterator> indices() {
1027 return make_range(idx_begin(), idx_end());
1028 }
1029
1030 inline iterator_range<const_op_iterator> indices() const {
1031 return make_range(idx_begin(), idx_end());
1032 }
1033
1034 Value *getPointerOperand() {
1035 return getOperand(0);
1036 }
1037 const Value *getPointerOperand() const {
1038 return getOperand(0);
1039 }
1040 static unsigned getPointerOperandIndex() {
1041 return 0U; // get index for modifying correct operand.
1042 }
1043
1044 /// Method to return the pointer operand as a
1045 /// PointerType.
1046 Type *getPointerOperandType() const {
1047 return getPointerOperand()->getType();
1048 }
1049
1050 /// Returns the address space of the pointer operand.
1051 unsigned getPointerAddressSpace() const {
1052 return getPointerOperandType()->getPointerAddressSpace();
1053 }
1054
1055 /// Returns the pointer type returned by the GEP
1056 /// instruction, which may be a vector of pointers.
1057 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1058 ArrayRef<Value *> IdxList) {
1059 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1060 Ptr->getType()->getPointerAddressSpace());
1061 // Vector GEP
1062 if (Ptr->getType()->isVectorTy()) {
1063 ElementCount EltCount = Ptr->getType()->getVectorElementCount();
1064 return VectorType::get(PtrTy, EltCount);
1065 }
1066 for (Value *Index : IdxList)
1067 if (Index->getType()->isVectorTy()) {
1068 ElementCount EltCount = Index->getType()->getVectorElementCount();
1069 return VectorType::get(PtrTy, EltCount);
1070 }
1071 // Scalar GEP
1072 return PtrTy;
1073 }
1074
1075 unsigned getNumIndices() const { // Note: always non-negative
1076 return getNumOperands() - 1;
1077 }
1078
1079 bool hasIndices() const {
1080 return getNumOperands() > 1;
1081 }
1082
1083 /// Return true if all of the indices of this GEP are
1084 /// zeros. If so, the result pointer and the first operand have the same
1085 /// value, just potentially different types.
1086 bool hasAllZeroIndices() const;
1087
1088 /// Return true if all of the indices of this GEP are
1089 /// constant integers. If so, the result pointer and the first operand have
1090 /// a constant offset between them.
1091 bool hasAllConstantIndices() const;
1092
1093 /// Set or clear the inbounds flag on this GEP instruction.
1094 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1095 void setIsInBounds(bool b = true);
1096
1097 /// Determine whether the GEP has the inbounds flag.
1098 bool isInBounds() const;
1099
1100 /// Accumulate the constant address offset of this GEP if possible.
1101 ///
1102 /// This routine accepts an APInt into which it will accumulate the constant
1103 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1104 /// all-constant, it returns false and the value of the offset APInt is
1105 /// undefined (it is *not* preserved!). The APInt passed into this routine
1106 /// must be at least as wide as the IntPtr type for the address space of
1107 /// the base GEP pointer.
1108 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1109
1110 // Methods for support type inquiry through isa, cast, and dyn_cast:
1111 static bool classof(const Instruction *I) {
1112 return (I->getOpcode() == Instruction::GetElementPtr);
1113 }
1114 static bool classof(const Value *V) {
1115 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1116 }
1117};
1118
1119template <>
1120struct OperandTraits<GetElementPtrInst> :
1121 public VariadicOperandTraits<GetElementPtrInst, 1> {
1122};
1123
1124GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1125 ArrayRef<Value *> IdxList, unsigned Values,
1126 const Twine &NameStr,
1127 Instruction *InsertBefore)
1128 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1129 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1130 Values, InsertBefore),
1131 SourceElementType(PointeeType),
1132 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1133 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1134, __PRETTY_FUNCTION__))
1134 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1134, __PRETTY_FUNCTION__))
;
1135 init(Ptr, IdxList, NameStr);
1136}
1137
1138GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1139 ArrayRef<Value *> IdxList, unsigned Values,
1140 const Twine &NameStr,
1141 BasicBlock *InsertAtEnd)
1142 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1143 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1144 Values, InsertAtEnd),
1145 SourceElementType(PointeeType),
1146 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1147 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1148, __PRETTY_FUNCTION__))
1148 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1148, __PRETTY_FUNCTION__))
;
1149 init(Ptr, IdxList, NameStr);
1150}
1151
1152DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1152, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<GetElementPtrInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1152, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
GetElementPtrInst::getNumOperands() const { return OperandTraits
<GetElementPtrInst>::operands(this); } template <int
Idx_nocapture> Use &GetElementPtrInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &GetElementPtrInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1153
1154//===----------------------------------------------------------------------===//
1155// ICmpInst Class
1156//===----------------------------------------------------------------------===//
1157
1158/// This instruction compares its operands according to the predicate given
1159/// to the constructor. It only operates on integers or pointers. The operands
1160/// must be identical types.
1161/// Represent an integer comparison operator.
1162class ICmpInst: public CmpInst {
1163 void AssertOK() {
1164 assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1165, __PRETTY_FUNCTION__))
1165 "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1165, __PRETTY_FUNCTION__))
;
1166 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1167, __PRETTY_FUNCTION__))
1167 "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1167, __PRETTY_FUNCTION__))
;
1168 // Check that the operands are the right type
1169 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
1170 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
1171 "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
;
1172 }
1173
1174protected:
1175 // Note: Instruction needs to be a friend here to call cloneImpl.
1176 friend class Instruction;
1177
1178 /// Clone an identical ICmpInst
1179 ICmpInst *cloneImpl() const;
1180
1181public:
1182 /// Constructor with insert-before-instruction semantics.
1183 ICmpInst(
1184 Instruction *InsertBefore, ///< Where to insert
1185 Predicate pred, ///< The predicate to use for the comparison
1186 Value *LHS, ///< The left-hand-side of the expression
1187 Value *RHS, ///< The right-hand-side of the expression
1188 const Twine &NameStr = "" ///< Name of the instruction
1189 ) : CmpInst(makeCmpResultType(LHS->getType()),
1190 Instruction::ICmp, pred, LHS, RHS, NameStr,
1191 InsertBefore) {
1192#ifndef NDEBUG
1193 AssertOK();
1194#endif
1195 }
1196
1197 /// Constructor with insert-at-end semantics.
1198 ICmpInst(
1199 BasicBlock &InsertAtEnd, ///< Block to insert into.
1200 Predicate pred, ///< The predicate to use for the comparison
1201 Value *LHS, ///< The left-hand-side of the expression
1202 Value *RHS, ///< The right-hand-side of the expression
1203 const Twine &NameStr = "" ///< Name of the instruction
1204 ) : CmpInst(makeCmpResultType(LHS->getType()),
1205 Instruction::ICmp, pred, LHS, RHS, NameStr,
1206 &InsertAtEnd) {
1207#ifndef NDEBUG
1208 AssertOK();
1209#endif
1210 }
1211
1212 /// Constructor with no-insertion semantics
1213 ICmpInst(
1214 Predicate pred, ///< The predicate to use for the comparison
1215 Value *LHS, ///< The left-hand-side of the expression
1216 Value *RHS, ///< The right-hand-side of the expression
1217 const Twine &NameStr = "" ///< Name of the instruction
1218 ) : CmpInst(makeCmpResultType(LHS->getType()),
1219 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1220#ifndef NDEBUG
1221 AssertOK();
1222#endif
1223 }
1224
1225 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1226 /// @returns the predicate that would be the result if the operand were
1227 /// regarded as signed.
1228 /// Return the signed version of the predicate
1229 Predicate getSignedPredicate() const {
1230 return getSignedPredicate(getPredicate());
1231 }
1232
1233 /// This is a static version that you can use without an instruction.
1234 /// Return the signed version of the predicate.
1235 static Predicate getSignedPredicate(Predicate pred);
1236
1237 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1238 /// @returns the predicate that would be the result if the operand were
1239 /// regarded as unsigned.
1240 /// Return the unsigned version of the predicate
1241 Predicate getUnsignedPredicate() const {
1242 return getUnsignedPredicate(getPredicate());
1243 }
1244
1245 /// This is a static version that you can use without an instruction.
1246 /// Return the unsigned version of the predicate.
1247 static Predicate getUnsignedPredicate(Predicate pred);
1248
1249 /// Return true if this predicate is either EQ or NE. This also
1250 /// tests for commutativity.
1251 static bool isEquality(Predicate P) {
1252 return P == ICMP_EQ || P == ICMP_NE;
1253 }
1254
1255 /// Return true if this predicate is either EQ or NE. This also
1256 /// tests for commutativity.
1257 bool isEquality() const {
1258 return isEquality(getPredicate());
1259 }
1260
1261 /// @returns true if the predicate of this ICmpInst is commutative
1262 /// Determine if this relation is commutative.
1263 bool isCommutative() const { return isEquality(); }
1264
1265 /// Return true if the predicate is relational (not EQ or NE).
1266 ///
1267 bool isRelational() const {
1268 return !isEquality();
1269 }
1270
1271 /// Return true if the predicate is relational (not EQ or NE).
1272 ///
1273 static bool isRelational(Predicate P) {
1274 return !isEquality(P);
1275 }
1276
1277 /// Exchange the two operands to this instruction in such a way that it does
1278 /// not modify the semantics of the instruction. The predicate value may be
1279 /// changed to retain the same result if the predicate is order dependent
1280 /// (e.g. ult).
1281 /// Swap operands and adjust predicate.
1282 void swapOperands() {
1283 setPredicate(getSwappedPredicate());
1284 Op<0>().swap(Op<1>());
1285 }
1286
1287 // Methods for support type inquiry through isa, cast, and dyn_cast:
1288 static bool classof(const Instruction *I) {
1289 return I->getOpcode() == Instruction::ICmp;
1290 }
1291 static bool classof(const Value *V) {
1292 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1293 }
1294};
1295
1296//===----------------------------------------------------------------------===//
1297// FCmpInst Class
1298//===----------------------------------------------------------------------===//
1299
1300/// This instruction compares its operands according to the predicate given
1301/// to the constructor. It only operates on floating point values or packed
1302/// vectors of floating point values. The operands must be identical types.
1303/// Represents a floating point comparison operator.
1304class FCmpInst: public CmpInst {
1305 void AssertOK() {
1306 assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ?
static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1306, __PRETTY_FUNCTION__))
;
1307 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1308, __PRETTY_FUNCTION__))
1308 "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1308, __PRETTY_FUNCTION__))
;
1309 // Check that the operands are the right type
1310 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1311, __PRETTY_FUNCTION__))
1311 "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1311, __PRETTY_FUNCTION__))
;
1312 }
1313
1314protected:
1315 // Note: Instruction needs to be a friend here to call cloneImpl.
1316 friend class Instruction;
1317
1318 /// Clone an identical FCmpInst
1319 FCmpInst *cloneImpl() const;
1320
1321public:
1322 /// Constructor with insert-before-instruction semantics.
1323 FCmpInst(
1324 Instruction *InsertBefore, ///< Where to insert
1325 Predicate pred, ///< The predicate to use for the comparison
1326 Value *LHS, ///< The left-hand-side of the expression
1327 Value *RHS, ///< The right-hand-side of the expression
1328 const Twine &NameStr = "" ///< Name of the instruction
1329 ) : CmpInst(makeCmpResultType(LHS->getType()),
1330 Instruction::FCmp, pred, LHS, RHS, NameStr,
1331 InsertBefore) {
1332 AssertOK();
1333 }
1334
1335 /// Constructor with insert-at-end semantics.
1336 FCmpInst(
1337 BasicBlock &InsertAtEnd, ///< Block to insert into.
1338 Predicate pred, ///< The predicate to use for the comparison
1339 Value *LHS, ///< The left-hand-side of the expression
1340 Value *RHS, ///< The right-hand-side of the expression
1341 const Twine &NameStr = "" ///< Name of the instruction
1342 ) : CmpInst(makeCmpResultType(LHS->getType()),
1343 Instruction::FCmp, pred, LHS, RHS, NameStr,
1344 &InsertAtEnd) {
1345 AssertOK();
1346 }
1347
1348 /// Constructor with no-insertion semantics
1349 FCmpInst(
1350 Predicate Pred, ///< The predicate to use for the comparison
1351 Value *LHS, ///< The left-hand-side of the expression
1352 Value *RHS, ///< The right-hand-side of the expression
1353 const Twine &NameStr = "", ///< Name of the instruction
1354 Instruction *FlagsSource = nullptr
1355 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1356 RHS, NameStr, nullptr, FlagsSource) {
1357 AssertOK();
1358 }
1359
1360 /// @returns true if the predicate of this instruction is EQ or NE.
1361 /// Determine if this is an equality predicate.
1362 static bool isEquality(Predicate Pred) {
1363 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1364 Pred == FCMP_UNE;
1365 }
1366
1367 /// @returns true if the predicate of this instruction is EQ or NE.
1368 /// Determine if this is an equality predicate.
1369 bool isEquality() const { return isEquality(getPredicate()); }
1370
1371 /// @returns true if the predicate of this instruction is commutative.
1372 /// Determine if this is a commutative predicate.
1373 bool isCommutative() const {
1374 return isEquality() ||
1375 getPredicate() == FCMP_FALSE ||
1376 getPredicate() == FCMP_TRUE ||
1377 getPredicate() == FCMP_ORD ||
1378 getPredicate() == FCMP_UNO;
1379 }
1380
1381 /// @returns true if the predicate is relational (not EQ or NE).
1382 /// Determine if this a relational predicate.
1383 bool isRelational() const { return !isEquality(); }
1384
1385 /// Exchange the two operands to this instruction in such a way that it does
1386 /// not modify the semantics of the instruction. The predicate value may be
1387 /// changed to retain the same result if the predicate is order dependent
1388 /// (e.g. ult).
1389 /// Swap operands and adjust predicate.
1390 void swapOperands() {
1391 setPredicate(getSwappedPredicate());
1392 Op<0>().swap(Op<1>());
1393 }
1394
1395 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1396 static bool classof(const Instruction *I) {
1397 return I->getOpcode() == Instruction::FCmp;
1398 }
1399 static bool classof(const Value *V) {
1400 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1401 }
1402};
1403
1404//===----------------------------------------------------------------------===//
1405/// This class represents a function call, abstracting a target
1406/// machine's calling convention. This class uses low bit of the SubClassData
1407/// field to indicate whether or not this is a tail call. The rest of the bits
1408/// hold the calling convention of the call.
1409///
1410class CallInst : public CallBase {
1411 CallInst(const CallInst &CI);
1412
1413 /// Construct a CallInst given a range of arguments.
1414 /// Construct a CallInst from a range of arguments
1415 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1416 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1417 Instruction *InsertBefore);
1418
1419 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1420 const Twine &NameStr, Instruction *InsertBefore)
1421 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1422
1423 /// Construct a CallInst given a range of arguments.
1424 /// Construct a CallInst from a range of arguments
1425 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1426 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1427 BasicBlock *InsertAtEnd);
1428
1429 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1430 Instruction *InsertBefore);
1431
1432 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1433 BasicBlock *InsertAtEnd);
1434
1435 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1436 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1437 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1438
1439 /// Compute the number of operands to allocate.
1440 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1441 // We need one operand for the called function, plus the input operand
1442 // counts provided.
1443 return 1 + NumArgs + NumBundleInputs;
1444 }
1445
1446protected:
1447 // Note: Instruction needs to be a friend here to call cloneImpl.
1448 friend class Instruction;
1449
1450 CallInst *cloneImpl() const;
1451
1452public:
1453 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1454 Instruction *InsertBefore = nullptr) {
1455 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1456 }
1457
1458 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1459 const Twine &NameStr,
1460 Instruction *InsertBefore = nullptr) {
1461 return new (ComputeNumOperands(Args.size()))
1462 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1463 }
1464
1465 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1466 ArrayRef<OperandBundleDef> Bundles = None,
1467 const Twine &NameStr = "",
1468 Instruction *InsertBefore = nullptr) {
1469 const int NumOperands =
1470 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1471 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1472
1473 return new (NumOperands, DescriptorBytes)
1474 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1475 }
1476
1477 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1478 BasicBlock *InsertAtEnd) {
1479 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1480 }
1481
1482 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1483 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1484 return new (ComputeNumOperands(Args.size()))
1485 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1486 }
1487
1488 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1489 ArrayRef<OperandBundleDef> Bundles,
1490 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1491 const int NumOperands =
1492 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1493 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1494
1495 return new (NumOperands, DescriptorBytes)
1496 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1497 }
1498
1499 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1500 Instruction *InsertBefore = nullptr) {
1501 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1502 InsertBefore);
1503 }
1504
1505 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1506 ArrayRef<OperandBundleDef> Bundles = None,
1507 const Twine &NameStr = "",
1508 Instruction *InsertBefore = nullptr) {
1509 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1510 NameStr, InsertBefore);
1511 }
1512
1513 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1514 const Twine &NameStr,
1515 Instruction *InsertBefore = nullptr) {
1516 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1517 InsertBefore);
1518 }
1519
1520 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1521 BasicBlock *InsertAtEnd) {
1522 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1523 InsertAtEnd);
1524 }
1525
1526 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1527 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1528 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1529 InsertAtEnd);
1530 }
1531
1532 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1533 ArrayRef<OperandBundleDef> Bundles,
1534 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1535 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1536 NameStr, InsertAtEnd);
1537 }
1538
1539 // Deprecated [opaque pointer types]
1540 static CallInst *Create(Value *Func, const Twine &NameStr = "",
1541 Instruction *InsertBefore = nullptr) {
1542 return Create(cast<FunctionType>(
1543 cast<PointerType>(Func->getType())->getElementType()),
1544 Func, NameStr, InsertBefore);
1545 }
1546
1547 // Deprecated [opaque pointer types]
1548 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1549 const Twine &NameStr,
1550 Instruction *InsertBefore = nullptr) {
1551 return Create(cast<FunctionType>(
1552 cast<PointerType>(Func->getType())->getElementType()),
1553 Func, Args, NameStr, InsertBefore);
1554 }
1555
1556 // Deprecated [opaque pointer types]
1557 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1558 ArrayRef<OperandBundleDef> Bundles = None,
1559 const Twine &NameStr = "",
1560 Instruction *InsertBefore = nullptr) {
1561 return Create(cast<FunctionType>(
1562 cast<PointerType>(Func->getType())->getElementType()),
1563 Func, Args, Bundles, NameStr, InsertBefore);
1564 }
1565
1566 // Deprecated [opaque pointer types]
1567 static CallInst *Create(Value *Func, const Twine &NameStr,
1568 BasicBlock *InsertAtEnd) {
1569 return Create(cast<FunctionType>(
1570 cast<PointerType>(Func->getType())->getElementType()),
1571 Func, NameStr, InsertAtEnd);
1572 }
1573
1574 // Deprecated [opaque pointer types]
1575 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1576 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1577 return Create(cast<FunctionType>(
1578 cast<PointerType>(Func->getType())->getElementType()),
1579 Func, Args, NameStr, InsertAtEnd);
1580 }
1581
1582 // Deprecated [opaque pointer types]
1583 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1584 ArrayRef<OperandBundleDef> Bundles,
1585 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1586 return Create(cast<FunctionType>(
1587 cast<PointerType>(Func->getType())->getElementType()),
1588 Func, Args, Bundles, NameStr, InsertAtEnd);
1589 }
1590
1591 /// Create a clone of \p CI with a different set of operand bundles and
1592 /// insert it before \p InsertPt.
1593 ///
1594 /// The returned call instruction is identical \p CI in every way except that
1595 /// the operand bundles for the new instruction are set to the operand bundles
1596 /// in \p Bundles.
1597 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1598 Instruction *InsertPt = nullptr);
1599
1600 /// Generate the IR for a call to malloc:
1601 /// 1. Compute the malloc call's argument as the specified type's size,
1602 /// possibly multiplied by the array size if the array size is not
1603 /// constant 1.
1604 /// 2. Call malloc with that argument.
1605 /// 3. Bitcast the result of the malloc call to the specified type.
1606 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1607 Type *AllocTy, Value *AllocSize,
1608 Value *ArraySize = nullptr,
1609 Function *MallocF = nullptr,
1610 const Twine &Name = "");
1611 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1612 Type *AllocTy, Value *AllocSize,
1613 Value *ArraySize = nullptr,
1614 Function *MallocF = nullptr,
1615 const Twine &Name = "");
1616 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1617 Type *AllocTy, Value *AllocSize,
1618 Value *ArraySize = nullptr,
1619 ArrayRef<OperandBundleDef> Bundles = None,
1620 Function *MallocF = nullptr,
1621 const Twine &Name = "");
1622 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1623 Type *AllocTy, Value *AllocSize,
1624 Value *ArraySize = nullptr,
1625 ArrayRef<OperandBundleDef> Bundles = None,
1626 Function *MallocF = nullptr,
1627 const Twine &Name = "");
1628 /// Generate the IR for a call to the builtin free function.
1629 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1630 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1631 static Instruction *CreateFree(Value *Source,
1632 ArrayRef<OperandBundleDef> Bundles,
1633 Instruction *InsertBefore);
1634 static Instruction *CreateFree(Value *Source,
1635 ArrayRef<OperandBundleDef> Bundles,
1636 BasicBlock *InsertAtEnd);
1637
1638 // Note that 'musttail' implies 'tail'.
1639 enum TailCallKind {
1640 TCK_None = 0,
1641 TCK_Tail = 1,
1642 TCK_MustTail = 2,
1643 TCK_NoTail = 3
1644 };
1645 TailCallKind getTailCallKind() const {
1646 return TailCallKind(getSubclassDataFromInstruction() & 3);
1647 }
1648
1649 bool isTailCall() const {
1650 unsigned Kind = getSubclassDataFromInstruction() & 3;
1651 return Kind == TCK_Tail || Kind == TCK_MustTail;
1652 }
1653
1654 bool isMustTailCall() const {
1655 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
1656 }
1657
1658 bool isNoTailCall() const {
1659 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail;
1660 }
1661
1662 void setTailCall(bool isTC = true) {
1663 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1664 unsigned(isTC ? TCK_Tail : TCK_None));
1665 }
1666
1667 void setTailCallKind(TailCallKind TCK) {
1668 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1669 unsigned(TCK));
1670 }
1671
1672 /// Return true if the call can return twice
1673 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1674 void setCanReturnTwice() {
1675 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1676 }
1677
1678 // Methods for support type inquiry through isa, cast, and dyn_cast:
1679 static bool classof(const Instruction *I) {
1680 return I->getOpcode() == Instruction::Call;
1681 }
1682 static bool classof(const Value *V) {
1683 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1684 }
1685
1686 /// Updates profile metadata by scaling it by \p S / \p T.
1687 void updateProfWeight(uint64_t S, uint64_t T);
1688
1689private:
1690 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1691 // method so that subclasses cannot accidentally use it.
1692 void setInstructionSubclassData(unsigned short D) {
1693 Instruction::setInstructionSubclassData(D);
1694 }
1695};
1696
1697CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1698 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1699 BasicBlock *InsertAtEnd)
1700 : CallBase(Ty->getReturnType(), Instruction::Call,
1701 OperandTraits<CallBase>::op_end(this) -
1702 (Args.size() + CountBundleInputs(Bundles) + 1),
1703 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1704 InsertAtEnd) {
1705 init(Ty, Func, Args, Bundles, NameStr);
1706}
1707
1708CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1709 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1710 Instruction *InsertBefore)
1711 : CallBase(Ty->getReturnType(), Instruction::Call,
1712 OperandTraits<CallBase>::op_end(this) -
1713 (Args.size() + CountBundleInputs(Bundles) + 1),
1714 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1715 InsertBefore) {
1716 init(Ty, Func, Args, Bundles, NameStr);
1717}
1718
1719//===----------------------------------------------------------------------===//
1720// SelectInst Class
1721//===----------------------------------------------------------------------===//
1722
1723/// This class represents the LLVM 'select' instruction.
1724///
1725class SelectInst : public Instruction {
1726 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1727 Instruction *InsertBefore)
1728 : Instruction(S1->getType(), Instruction::Select,
1729 &Op<0>(), 3, InsertBefore) {
1730 init(C, S1, S2);
1731 setName(NameStr);
1732 }
1733
1734 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1735 BasicBlock *InsertAtEnd)
1736 : Instruction(S1->getType(), Instruction::Select,
1737 &Op<0>(), 3, InsertAtEnd) {
1738 init(C, S1, S2);
1739 setName(NameStr);
1740 }
1741
1742 void init(Value *C, Value *S1, Value *S2) {
1743 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select"
) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1743, __PRETTY_FUNCTION__))
;
1744 Op<0>() = C;
1745 Op<1>() = S1;
1746 Op<2>() = S2;
1747 }
1748
1749protected:
1750 // Note: Instruction needs to be a friend here to call cloneImpl.
1751 friend class Instruction;
1752
1753 SelectInst *cloneImpl() const;
1754
1755public:
1756 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1757 const Twine &NameStr = "",
1758 Instruction *InsertBefore = nullptr,
1759 Instruction *MDFrom = nullptr) {
1760 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1761 if (MDFrom)
1762 Sel->copyMetadata(*MDFrom);
1763 return Sel;
1764 }
1765
1766 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1767 const Twine &NameStr,
1768 BasicBlock *InsertAtEnd) {
1769 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1770 }
1771
1772 const Value *getCondition() const { return Op<0>(); }
1773 const Value *getTrueValue() const { return Op<1>(); }
1774 const Value *getFalseValue() const { return Op<2>(); }
1775 Value *getCondition() { return Op<0>(); }
1776 Value *getTrueValue() { return Op<1>(); }
1777 Value *getFalseValue() { return Op<2>(); }
1778
1779 void setCondition(Value *V) { Op<0>() = V; }
1780 void setTrueValue(Value *V) { Op<1>() = V; }
1781 void setFalseValue(Value *V) { Op<2>() = V; }
1782
1783 /// Swap the true and false values of the select instruction.
1784 /// This doesn't swap prof metadata.
1785 void swapValues() { Op<1>().swap(Op<2>()); }
1786
1787 /// Return a string if the specified operands are invalid
1788 /// for a select operation, otherwise return null.
1789 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1790
1791 /// Transparently provide more efficient getOperand methods.
1792 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1793
1794 OtherOps getOpcode() const {
1795 return static_cast<OtherOps>(Instruction::getOpcode());
1796 }
1797
1798 // Methods for support type inquiry through isa, cast, and dyn_cast:
1799 static bool classof(const Instruction *I) {
1800 return I->getOpcode() == Instruction::Select;
1801 }
1802 static bool classof(const Value *V) {
1803 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1804 }
1805};
1806
1807template <>
1808struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1809};
1810
1811DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst
*>(this))[i_nocapture].get()); } void SelectInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); OperandTraits<SelectInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst
::getNumOperands() const { return OperandTraits<SelectInst
>::operands(this); } template <int Idx_nocapture> Use
&SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1812
1813//===----------------------------------------------------------------------===//
1814// VAArgInst Class
1815//===----------------------------------------------------------------------===//
1816
1817/// This class represents the va_arg llvm instruction, which returns
1818/// an argument of the specified type given a va_list and increments that list
1819///
1820class VAArgInst : public UnaryInstruction {
1821protected:
1822 // Note: Instruction needs to be a friend here to call cloneImpl.
1823 friend class Instruction;
1824
1825 VAArgInst *cloneImpl() const;
1826
1827public:
1828 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1829 Instruction *InsertBefore = nullptr)
1830 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1831 setName(NameStr);
1832 }
1833
1834 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1835 BasicBlock *InsertAtEnd)
1836 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1837 setName(NameStr);
1838 }
1839
1840 Value *getPointerOperand() { return getOperand(0); }
1841 const Value *getPointerOperand() const { return getOperand(0); }
1842 static unsigned getPointerOperandIndex() { return 0U; }
1843
1844 // Methods for support type inquiry through isa, cast, and dyn_cast:
1845 static bool classof(const Instruction *I) {
1846 return I->getOpcode() == VAArg;
1847 }
1848 static bool classof(const Value *V) {
1849 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1850 }
1851};
1852
1853//===----------------------------------------------------------------------===//
1854// ExtractElementInst Class
1855//===----------------------------------------------------------------------===//
1856
1857/// This instruction extracts a single (scalar)
1858/// element from a VectorType value
1859///
1860class ExtractElementInst : public Instruction {
1861 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1862 Instruction *InsertBefore = nullptr);
1863 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1864 BasicBlock *InsertAtEnd);
1865
1866protected:
1867 // Note: Instruction needs to be a friend here to call cloneImpl.
1868 friend class Instruction;
1869
1870 ExtractElementInst *cloneImpl() const;
1871
1872public:
1873 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1874 const Twine &NameStr = "",
1875 Instruction *InsertBefore = nullptr) {
1876 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1877 }
1878
1879 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1880 const Twine &NameStr,
1881 BasicBlock *InsertAtEnd) {
1882 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1883 }
1884
1885 /// Return true if an extractelement instruction can be
1886 /// formed with the specified operands.
1887 static bool isValidOperands(const Value *Vec, const Value *Idx);
1888
1889 Value *getVectorOperand() { return Op<0>(); }
1890 Value *getIndexOperand() { return Op<1>(); }
1891 const Value *getVectorOperand() const { return Op<0>(); }
1892 const Value *getIndexOperand() const { return Op<1>(); }
1893
1894 VectorType *getVectorOperandType() const {
1895 return cast<VectorType>(getVectorOperand()->getType());
1896 }
1897
1898 /// Transparently provide more efficient getOperand methods.
1899 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1900
1901 // Methods for support type inquiry through isa, cast, and dyn_cast:
1902 static bool classof(const Instruction *I) {
1903 return I->getOpcode() == Instruction::ExtractElement;
1904 }
1905 static bool classof(const Value *V) {
1906 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1907 }
1908};
1909
1910template <>
1911struct OperandTraits<ExtractElementInst> :
1912 public FixedNumOperandTraits<ExtractElementInst, 2> {
1913};
1914
1915DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((i_nocapture < OperandTraits<ExtractElementInst>::
operands(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ExtractElementInst>::op_begin(const_cast
<ExtractElementInst*>(this))[i_nocapture].get()); } void
ExtractElementInst::setOperand(unsigned i_nocapture, Value *
Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst
>::operands(this) && "setOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ExtractElementInst::getNumOperands() const { return OperandTraits
<ExtractElementInst>::operands(this); } template <int
Idx_nocapture> Use &ExtractElementInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ExtractElementInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
1916
1917//===----------------------------------------------------------------------===//
1918// InsertElementInst Class
1919//===----------------------------------------------------------------------===//
1920
1921/// This instruction inserts a single (scalar)
1922/// element into a VectorType value
1923///
1924class InsertElementInst : public Instruction {
1925 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1926 const Twine &NameStr = "",
1927 Instruction *InsertBefore = nullptr);
1928 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1929 BasicBlock *InsertAtEnd);
1930
1931protected:
1932 // Note: Instruction needs to be a friend here to call cloneImpl.
1933 friend class Instruction;
1934
1935 InsertElementInst *cloneImpl() const;
1936
1937public:
1938 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1939 const Twine &NameStr = "",
1940 Instruction *InsertBefore = nullptr) {
1941 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1942 }
1943
1944 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1945 const Twine &NameStr,
1946 BasicBlock *InsertAtEnd) {
1947 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1948 }
1949
1950 /// Return true if an insertelement instruction can be
1951 /// formed with the specified operands.
1952 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1953 const Value *Idx);
1954
1955 /// Overload to return most specific vector type.
1956 ///
1957 VectorType *getType() const {
1958 return cast<VectorType>(Instruction::getType());
1959 }
1960
1961 /// Transparently provide more efficient getOperand methods.
1962 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1963
1964 // Methods for support type inquiry through isa, cast, and dyn_cast:
1965 static bool classof(const Instruction *I) {
1966 return I->getOpcode() == Instruction::InsertElement;
1967 }
1968 static bool classof(const Value *V) {
1969 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1970 }
1971};
1972
1973template <>
1974struct OperandTraits<InsertElementInst> :
1975 public FixedNumOperandTraits<InsertElementInst, 3> {
1976};
1977
1978DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<InsertElementInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertElementInst::getNumOperands() const { return OperandTraits
<InsertElementInst>::operands(this); } template <int
Idx_nocapture> Use &InsertElementInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &InsertElementInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1979
1980//===----------------------------------------------------------------------===//
1981// ShuffleVectorInst Class
1982//===----------------------------------------------------------------------===//
1983
1984/// This instruction constructs a fixed permutation of two
1985/// input vectors.
1986///
1987class ShuffleVectorInst : public Instruction {
1988protected:
1989 // Note: Instruction needs to be a friend here to call cloneImpl.
1990 friend class Instruction;
1991
1992 ShuffleVectorInst *cloneImpl() const;
1993
1994public:
1995 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1996 const Twine &NameStr = "",
1997 Instruction *InsertBefor = nullptr);
1998 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1999 const Twine &NameStr, BasicBlock *InsertAtEnd);
2000
2001 // allocate space for exactly three operands
2002 void *operator new(size_t s) {
2003 return User::operator new(s, 3);
2004 }
2005
2006 /// Swap the first 2 operands and adjust the mask to preserve the semantics
2007 /// of the instruction.
2008 void commute();
2009
2010 /// Return true if a shufflevector instruction can be
2011 /// formed with the specified operands.
2012 static bool isValidOperands(const Value *V1, const Value *V2,
2013 const Value *Mask);
2014
2015 /// Overload to return most specific vector type.
2016 ///
2017 VectorType *getType() const {
2018 return cast<VectorType>(Instruction::getType());
2019 }
2020
2021 /// Transparently provide more efficient getOperand methods.
2022 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2023
2024 Constant *getMask() const {
2025 return cast<Constant>(getOperand(2));
2026 }
2027
2028 /// Return the shuffle mask value for the specified element of the mask.
2029 /// Return -1 if the element is undef.
2030 static int getMaskValue(const Constant *Mask, unsigned Elt);
2031
2032 /// Return the shuffle mask value of this instruction for the given element
2033 /// index. Return -1 if the element is undef.
2034 int getMaskValue(unsigned Elt) const {
2035 return getMaskValue(getMask(), Elt);
2036 }
2037
2038 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2039 /// elements of the mask are returned as -1.
2040 static void getShuffleMask(const Constant *Mask,
2041 SmallVectorImpl<int> &Result);
2042
2043 /// Return the mask for this instruction as a vector of integers. Undefined
2044 /// elements of the mask are returned as -1.
2045 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2046 return getShuffleMask(getMask(), Result);
2047 }
2048
2049 SmallVector<int, 16> getShuffleMask() const {
2050 SmallVector<int, 16> Mask;
2051 getShuffleMask(Mask);
2052 return Mask;
2053 }
2054
2055 /// Return true if this shuffle returns a vector with a different number of
2056 /// elements than its source vectors.
2057 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2058 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2059 bool changesLength() const {
2060 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2061 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2062 return NumSourceElts != NumMaskElts;
2063 }
2064
2065 /// Return true if this shuffle returns a vector with a greater number of
2066 /// elements than its source vectors.
2067 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2068 bool increasesLength() const {
2069 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2070 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2071 return NumSourceElts < NumMaskElts;
2072 }
2073
2074 /// Return true if this shuffle mask chooses elements from exactly one source
2075 /// vector.
2076 /// Example: <7,5,undef,7>
2077 /// This assumes that vector operands are the same length as the mask.
2078 static bool isSingleSourceMask(ArrayRef<int> Mask);
2079 static bool isSingleSourceMask(const Constant *Mask) {
2080 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2080, __PRETTY_FUNCTION__))
;
2081 SmallVector<int, 16> MaskAsInts;
2082 getShuffleMask(Mask, MaskAsInts);
2083 return isSingleSourceMask(MaskAsInts);
2084 }
2085
2086 /// Return true if this shuffle chooses elements from exactly one source
2087 /// vector without changing the length of that vector.
2088 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2089 /// TODO: Optionally allow length-changing shuffles.
2090 bool isSingleSource() const {
2091 return !changesLength() && isSingleSourceMask(getMask());
2092 }
2093
2094 /// Return true if this shuffle mask chooses elements from exactly one source
2095 /// vector without lane crossings. A shuffle using this mask is not
2096 /// necessarily a no-op because it may change the number of elements from its
2097 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2098 /// Example: <undef,undef,2,3>
2099 static bool isIdentityMask(ArrayRef<int> Mask);
2100 static bool isIdentityMask(const Constant *Mask) {
2101 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2101, __PRETTY_FUNCTION__))
;
2102 SmallVector<int, 16> MaskAsInts;
2103 getShuffleMask(Mask, MaskAsInts);
2104 return isIdentityMask(MaskAsInts);
2105 }
2106
2107 /// Return true if this shuffle chooses elements from exactly one source
2108 /// vector without lane crossings and does not change the number of elements
2109 /// from its input vectors.
2110 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2111 bool isIdentity() const {
2112 return !changesLength() && isIdentityMask(getShuffleMask());
2113 }
2114
2115 /// Return true if this shuffle lengthens exactly one source vector with
2116 /// undefs in the high elements.
2117 bool isIdentityWithPadding() const;
2118
2119 /// Return true if this shuffle extracts the first N elements of exactly one
2120 /// source vector.
2121 bool isIdentityWithExtract() const;
2122
2123 /// Return true if this shuffle concatenates its 2 source vectors. This
2124 /// returns false if either input is undefined. In that case, the shuffle is
2125 /// is better classified as an identity with padding operation.
2126 bool isConcat() const;
2127
2128 /// Return true if this shuffle mask chooses elements from its source vectors
2129 /// without lane crossings. A shuffle using this mask would be
2130 /// equivalent to a vector select with a constant condition operand.
2131 /// Example: <4,1,6,undef>
2132 /// This returns false if the mask does not choose from both input vectors.
2133 /// In that case, the shuffle is better classified as an identity shuffle.
2134 /// This assumes that vector operands are the same length as the mask
2135 /// (a length-changing shuffle can never be equivalent to a vector select).
2136 static bool isSelectMask(ArrayRef<int> Mask);
2137 static bool isSelectMask(const Constant *Mask) {
2138 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2138, __PRETTY_FUNCTION__))
;
2139 SmallVector<int, 16> MaskAsInts;
2140 getShuffleMask(Mask, MaskAsInts);
2141 return isSelectMask(MaskAsInts);
2142 }
2143
2144 /// Return true if this shuffle chooses elements from its source vectors
2145 /// without lane crossings and all operands have the same number of elements.
2146 /// In other words, this shuffle is equivalent to a vector select with a
2147 /// constant condition operand.
2148 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2149 /// This returns false if the mask does not choose from both input vectors.
2150 /// In that case, the shuffle is better classified as an identity shuffle.
2151 /// TODO: Optionally allow length-changing shuffles.
2152 bool isSelect() const {
2153 return !changesLength() && isSelectMask(getMask());
2154 }
2155
2156 /// Return true if this shuffle mask swaps the order of elements from exactly
2157 /// one source vector.
2158 /// Example: <7,6,undef,4>
2159 /// This assumes that vector operands are the same length as the mask.
2160 static bool isReverseMask(ArrayRef<int> Mask);
2161 static bool isReverseMask(const Constant *Mask) {
2162 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2162, __PRETTY_FUNCTION__))
;
2163 SmallVector<int, 16> MaskAsInts;
2164 getShuffleMask(Mask, MaskAsInts);
2165 return isReverseMask(MaskAsInts);
2166 }
2167
2168 /// Return true if this shuffle swaps the order of elements from exactly
2169 /// one source vector.
2170 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2171 /// TODO: Optionally allow length-changing shuffles.
2172 bool isReverse() const {
2173 return !changesLength() && isReverseMask(getMask());
2174 }
2175
2176 /// Return true if this shuffle mask chooses all elements with the same value
2177 /// as the first element of exactly one source vector.
2178 /// Example: <4,undef,undef,4>
2179 /// This assumes that vector operands are the same length as the mask.
2180 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2181 static bool isZeroEltSplatMask(const Constant *Mask) {
2182 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2182, __PRETTY_FUNCTION__))
;
2183 SmallVector<int, 16> MaskAsInts;
2184 getShuffleMask(Mask, MaskAsInts);
2185 return isZeroEltSplatMask(MaskAsInts);
2186 }
2187
2188 /// Return true if all elements of this shuffle are the same value as the
2189 /// first element of exactly one source vector without changing the length
2190 /// of that vector.
2191 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2192 /// TODO: Optionally allow length-changing shuffles.
2193 /// TODO: Optionally allow splats from other elements.
2194 bool isZeroEltSplat() const {
2195 return !changesLength() && isZeroEltSplatMask(getMask());
2196 }
2197
2198 /// Return true if this shuffle mask is a transpose mask.
2199 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2200 /// even- or odd-numbered vector elements from two n-dimensional source
2201 /// vectors and write each result into consecutive elements of an
2202 /// n-dimensional destination vector. Two shuffles are necessary to complete
2203 /// the transpose, one for the even elements and another for the odd elements.
2204 /// This description closely follows how the TRN1 and TRN2 AArch64
2205 /// instructions operate.
2206 ///
2207 /// For example, a simple 2x2 matrix can be transposed with:
2208 ///
2209 /// ; Original matrix
2210 /// m0 = < a, b >
2211 /// m1 = < c, d >
2212 ///
2213 /// ; Transposed matrix
2214 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2215 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2216 ///
2217 /// For matrices having greater than n columns, the resulting nx2 transposed
2218 /// matrix is stored in two result vectors such that one vector contains
2219 /// interleaved elements from all the even-numbered rows and the other vector
2220 /// contains interleaved elements from all the odd-numbered rows. For example,
2221 /// a 2x4 matrix can be transposed with:
2222 ///
2223 /// ; Original matrix
2224 /// m0 = < a, b, c, d >
2225 /// m1 = < e, f, g, h >
2226 ///
2227 /// ; Transposed matrix
2228 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2229 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2230 static bool isTransposeMask(ArrayRef<int> Mask);
2231 static bool isTransposeMask(const Constant *Mask) {
2232 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2232, __PRETTY_FUNCTION__))
;
2233 SmallVector<int, 16> MaskAsInts;
2234 getShuffleMask(Mask, MaskAsInts);
2235 return isTransposeMask(MaskAsInts);
2236 }
2237
2238 /// Return true if this shuffle transposes the elements of its inputs without
2239 /// changing the length of the vectors. This operation may also be known as a
2240 /// merge or interleave. See the description for isTransposeMask() for the
2241 /// exact specification.
2242 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2243 bool isTranspose() const {
2244 return !changesLength() && isTransposeMask(getMask());
2245 }
2246
2247 /// Return true if this shuffle mask is an extract subvector mask.
2248 /// A valid extract subvector mask returns a smaller vector from a single
2249 /// source operand. The base extraction index is returned as well.
2250 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2251 int &Index);
2252 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2253 int &Index) {
2254 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2254, __PRETTY_FUNCTION__))
;
2255 SmallVector<int, 16> MaskAsInts;
2256 getShuffleMask(Mask, MaskAsInts);
2257 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2258 }
2259
2260 /// Return true if this shuffle mask is an extract subvector mask.
2261 bool isExtractSubvectorMask(int &Index) const {
2262 int NumSrcElts = Op<0>()->getType()->getVectorNumElements();
2263 return isExtractSubvectorMask(getMask(), NumSrcElts, Index);
2264 }
2265
2266 /// Change values in a shuffle permute mask assuming the two vector operands
2267 /// of length InVecNumElts have swapped position.
2268 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2269 unsigned InVecNumElts) {
2270 for (int &Idx : Mask) {
2271 if (Idx == -1)
2272 continue;
2273 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2274 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2275, __PRETTY_FUNCTION__))
2275 "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2275, __PRETTY_FUNCTION__))
;
2276 }
2277 }
2278
2279 // Methods for support type inquiry through isa, cast, and dyn_cast:
2280 static bool classof(const Instruction *I) {
2281 return I->getOpcode() == Instruction::ShuffleVector;
2282 }
2283 static bool classof(const Value *V) {
2284 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2285 }
2286};
2287
2288template <>
2289struct OperandTraits<ShuffleVectorInst> :
2290 public FixedNumOperandTraits<ShuffleVectorInst, 3> {
2291};
2292
2293DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2293, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<ShuffleVectorInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2293, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ShuffleVectorInst::getNumOperands() const { return OperandTraits
<ShuffleVectorInst>::operands(this); } template <int
Idx_nocapture> Use &ShuffleVectorInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ShuffleVectorInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
2294
2295//===----------------------------------------------------------------------===//
2296// ExtractValueInst Class
2297//===----------------------------------------------------------------------===//
2298
2299/// This instruction extracts a struct member or array
2300/// element value from an aggregate value.
2301///
2302class ExtractValueInst : public UnaryInstruction {
2303 SmallVector<unsigned, 4> Indices;
2304
2305 ExtractValueInst(const ExtractValueInst &EVI);
2306
2307 /// Constructors - Create a extractvalue instruction with a base aggregate
2308 /// value and a list of indices. The first ctor can optionally insert before
2309 /// an existing instruction, the second appends the new instruction to the
2310 /// specified BasicBlock.
2311 inline ExtractValueInst(Value *Agg,
2312 ArrayRef<unsigned> Idxs,
2313 const Twine &NameStr,
2314 Instruction *InsertBefore);
2315 inline ExtractValueInst(Value *Agg,
2316 ArrayRef<unsigned> Idxs,
2317 const Twine &NameStr, BasicBlock *InsertAtEnd);
2318
2319 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2320
2321protected:
2322 // Note: Instruction needs to be a friend here to call cloneImpl.
2323 friend class Instruction;
2324
2325 ExtractValueInst *cloneImpl() const;
2326
2327public:
2328 static ExtractValueInst *Create(Value *Agg,
2329 ArrayRef<unsigned> Idxs,
2330 const Twine &NameStr = "",
2331 Instruction *InsertBefore = nullptr) {
2332 return new
2333 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2334 }
2335
2336 static ExtractValueInst *Create(Value *Agg,
2337 ArrayRef<unsigned> Idxs,
2338 const Twine &NameStr,
2339 BasicBlock *InsertAtEnd) {
2340 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2341 }
2342
2343 /// Returns the type of the element that would be extracted
2344 /// with an extractvalue instruction with the specified parameters.
2345 ///
2346 /// Null is returned if the indices are invalid for the specified type.
2347 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2348
2349 using idx_iterator = const unsigned*;
2350
2351 inline idx_iterator idx_begin() const { return Indices.begin(); }
2352 inline idx_iterator idx_end() const { return Indices.end(); }
2353 inline iterator_range<idx_iterator> indices() const {
2354 return make_range(idx_begin(), idx_end());
2355 }
2356
2357 Value *getAggregateOperand() {
2358 return getOperand(0);
2359 }
2360 const Value *getAggregateOperand() const {
2361 return getOperand(0);
2362 }
2363 static unsigned getAggregateOperandIndex() {
2364 return 0U; // get index for modifying correct operand
2365 }
2366
2367 ArrayRef<unsigned> getIndices() const {
2368 return Indices;
2369 }
2370
2371 unsigned getNumIndices() const {
2372 return (unsigned)Indices.size();
2373 }
2374
2375 bool hasIndices() const {
2376 return true;
2377 }
2378
2379 // Methods for support type inquiry through isa, cast, and dyn_cast:
2380 static bool classof(const Instruction *I) {
2381 return I->getOpcode() == Instruction::ExtractValue;
2382 }
2383 static bool classof(const Value *V) {
2384 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2385 }
2386};
2387
2388ExtractValueInst::ExtractValueInst(Value *Agg,
2389 ArrayRef<unsigned> Idxs,
2390 const Twine &NameStr,
2391 Instruction *InsertBefore)
2392 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2393 ExtractValue, Agg, InsertBefore) {
2394 init(Idxs, NameStr);
2395}
2396
2397ExtractValueInst::ExtractValueInst(Value *Agg,
2398 ArrayRef<unsigned> Idxs,
2399 const Twine &NameStr,
2400 BasicBlock *InsertAtEnd)
2401 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2402 ExtractValue, Agg, InsertAtEnd) {
2403 init(Idxs, NameStr);
2404}
2405
2406//===----------------------------------------------------------------------===//
2407// InsertValueInst Class
2408//===----------------------------------------------------------------------===//
2409
2410/// This instruction inserts a struct field of array element
2411/// value into an aggregate value.
2412///
2413class InsertValueInst : public Instruction {
2414 SmallVector<unsigned, 4> Indices;
2415
2416 InsertValueInst(const InsertValueInst &IVI);
2417
2418 /// Constructors - Create a insertvalue instruction with a base aggregate
2419 /// value, a value to insert, and a list of indices. The first ctor can
2420 /// optionally insert before an existing instruction, the second appends
2421 /// the new instruction to the specified BasicBlock.
2422 inline InsertValueInst(Value *Agg, Value *Val,
2423 ArrayRef<unsigned> Idxs,
2424 const Twine &NameStr,
2425 Instruction *InsertBefore);
2426 inline InsertValueInst(Value *Agg, Value *Val,
2427 ArrayRef<unsigned> Idxs,
2428 const Twine &NameStr, BasicBlock *InsertAtEnd);
2429
2430 /// Constructors - These two constructors are convenience methods because one
2431 /// and two index insertvalue instructions are so common.
2432 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2433 const Twine &NameStr = "",
2434 Instruction *InsertBefore = nullptr);
2435 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2436 BasicBlock *InsertAtEnd);
2437
2438 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2439 const Twine &NameStr);
2440
2441protected:
2442 // Note: Instruction needs to be a friend here to call cloneImpl.
2443 friend class Instruction;
2444
2445 InsertValueInst *cloneImpl() const;
2446
2447public:
2448 // allocate space for exactly two operands
2449 void *operator new(size_t s) {
2450 return User::operator new(s, 2);
2451 }
2452
2453 static InsertValueInst *Create(Value *Agg, Value *Val,
2454 ArrayRef<unsigned> Idxs,
2455 const Twine &NameStr = "",
2456 Instruction *InsertBefore = nullptr) {
2457 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2458 }
2459
2460 static InsertValueInst *Create(Value *Agg, Value *Val,
2461 ArrayRef<unsigned> Idxs,
2462 const Twine &NameStr,
2463 BasicBlock *InsertAtEnd) {
2464 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2465 }
2466
2467 /// Transparently provide more efficient getOperand methods.
2468 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2469
2470 using idx_iterator = const unsigned*;
2471
2472 inline idx_iterator idx_begin() const { return Indices.begin(); }
2473 inline idx_iterator idx_end() const { return Indices.end(); }
2474 inline iterator_range<idx_iterator> indices() const {
2475 return make_range(idx_begin(), idx_end());
2476 }
2477
2478 Value *getAggregateOperand() {
2479 return getOperand(0);
2480 }
2481 const Value *getAggregateOperand() const {
2482 return getOperand(0);
2483 }
2484 static unsigned getAggregateOperandIndex() {
2485 return 0U; // get index for modifying correct operand
2486 }
2487
2488 Value *getInsertedValueOperand() {
2489 return getOperand(1);
2490 }
2491 const Value *getInsertedValueOperand() const {
2492 return getOperand(1);
2493 }
2494 static unsigned getInsertedValueOperandIndex() {
2495 return 1U; // get index for modifying correct operand
2496 }
2497
2498 ArrayRef<unsigned> getIndices() const {
2499 return Indices;
2500 }
2501
2502 unsigned getNumIndices() const {
2503 return (unsigned)Indices.size();
2504 }
2505
2506 bool hasIndices() const {
2507 return true;
2508 }
2509
2510 // Methods for support type inquiry through isa, cast, and dyn_cast:
2511 static bool classof(const Instruction *I) {
2512 return I->getOpcode() == Instruction::InsertValue;
2513 }
2514 static bool classof(const Value *V) {
2515 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2516 }
2517};
2518
2519template <>
2520struct OperandTraits<InsertValueInst> :
2521 public FixedNumOperandTraits<InsertValueInst, 2> {
2522};
2523
2524InsertValueInst::InsertValueInst(Value *Agg,
2525 Value *Val,
2526 ArrayRef<unsigned> Idxs,
2527 const Twine &NameStr,
2528 Instruction *InsertBefore)
2529 : Instruction(Agg->getType(), InsertValue,
2530 OperandTraits<InsertValueInst>::op_begin(this),
2531 2, InsertBefore) {
2532 init(Agg, Val, Idxs, NameStr);
2533}
2534
2535InsertValueInst::InsertValueInst(Value *Agg,
2536 Value *Val,
2537 ArrayRef<unsigned> Idxs,
2538 const Twine &NameStr,
2539 BasicBlock *InsertAtEnd)
2540 : Instruction(Agg->getType(), InsertValue,
2541 OperandTraits<InsertValueInst>::op_begin(this),
2542 2, InsertAtEnd) {
2543 init(Agg, Val, Idxs, NameStr);
2544}
2545
2546DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2546, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<InsertValueInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2546, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2547
2548//===----------------------------------------------------------------------===//
2549// PHINode Class
2550//===----------------------------------------------------------------------===//
2551
2552// PHINode - The PHINode class is used to represent the magical mystical PHI
2553// node, that can not exist in nature, but can be synthesized in a computer
2554// scientist's overactive imagination.
2555//
2556class PHINode : public Instruction {
2557 /// The number of operands actually allocated. NumOperands is
2558 /// the number actually in use.
2559 unsigned ReservedSpace;
2560
2561 PHINode(const PHINode &PN);
2562
2563 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2564 const Twine &NameStr = "",
2565 Instruction *InsertBefore = nullptr)
2566 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2567 ReservedSpace(NumReservedValues) {
2568 setName(NameStr);
2569 allocHungoffUses(ReservedSpace);
2570 }
2571
2572 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2573 BasicBlock *InsertAtEnd)
2574 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2575 ReservedSpace(NumReservedValues) {
2576 setName(NameStr);
2577 allocHungoffUses(ReservedSpace);
2578 }
2579
2580protected:
2581 // Note: Instruction needs to be a friend here to call cloneImpl.
2582 friend class Instruction;
2583
2584 PHINode *cloneImpl() const;
2585
2586 // allocHungoffUses - this is more complicated than the generic
2587 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2588 // values and pointers to the incoming blocks, all in one allocation.
2589 void allocHungoffUses(unsigned N) {
2590 User::allocHungoffUses(N, /* IsPhi */ true);
2591 }
2592
2593public:
2594 /// Constructors - NumReservedValues is a hint for the number of incoming
2595 /// edges that this phi node will have (use 0 if you really have no idea).
2596 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2597 const Twine &NameStr = "",
2598 Instruction *InsertBefore = nullptr) {
2599 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2600 }
2601
2602 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2603 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2604 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2605 }
2606
2607 /// Provide fast operand accessors
2608 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2609
2610 // Block iterator interface. This provides access to the list of incoming
2611 // basic blocks, which parallels the list of incoming values.
2612
2613 using block_iterator = BasicBlock **;
2614 using const_block_iterator = BasicBlock * const *;
2615
2616 block_iterator block_begin() {
2617 Use::UserRef *ref =
2618 reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
2619 return reinterpret_cast<block_iterator>(ref + 1);
2620 }
2621
2622 const_block_iterator block_begin() const {
2623 const Use::UserRef *ref =
2624 reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
2625 return reinterpret_cast<const_block_iterator>(ref + 1);
2626 }
2627
2628 block_iterator block_end() {
2629 return block_begin() + getNumOperands();
2630 }
2631
2632 const_block_iterator block_end() const {
2633 return block_begin() + getNumOperands();
2634 }
2635
2636 iterator_range<block_iterator> blocks() {
2637 return make_range(block_begin(), block_end());
2638 }
2639
2640 iterator_range<const_block_iterator> blocks() const {
2641 return make_range(block_begin(), block_end());
2642 }
2643
2644 op_range incoming_values() { return operands(); }
2645
2646 const_op_range incoming_values() const { return operands(); }
2647
2648 /// Return the number of incoming edges
2649 ///
2650 unsigned getNumIncomingValues() const { return getNumOperands(); }
2651
2652 /// Return incoming value number x
2653 ///
2654 Value *getIncomingValue(unsigned i) const {
2655 return getOperand(i);
2656 }
2657 void setIncomingValue(unsigned i, Value *V) {
2658 assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast<
void> (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2658, __PRETTY_FUNCTION__))
;
2659 assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2660, __PRETTY_FUNCTION__))
2660 "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2660, __PRETTY_FUNCTION__))
;
2661 setOperand(i, V);
2662 }
2663
2664 static unsigned getOperandNumForIncomingValue(unsigned i) {
2665 return i;
2666 }
2667
2668 static unsigned getIncomingValueNumForOperand(unsigned i) {
2669 return i;
2670 }
2671
2672 /// Return incoming basic block number @p i.
2673 ///
2674 BasicBlock *getIncomingBlock(unsigned i) const {
2675 return block_begin()[i];
2676 }
2677
2678 /// Return incoming basic block corresponding
2679 /// to an operand of the PHI.
2680 ///
2681 BasicBlock *getIncomingBlock(const Use &U) const {
2682 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2682, __PRETTY_FUNCTION__))
;
2683 return getIncomingBlock(unsigned(&U - op_begin()));
2684 }
2685
2686 /// Return incoming basic block corresponding
2687 /// to value use iterator.
2688 ///
2689 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2690 return getIncomingBlock(I.getUse());
2691 }
2692
2693 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2694 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2694, __PRETTY_FUNCTION__))
;
2695 block_begin()[i] = BB;
2696 }
2697
2698 /// Replace every incoming basic block \p Old to basic block \p New.
2699 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2700 assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!"
) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2700, __PRETTY_FUNCTION__))
;
2701 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2702 if (getIncomingBlock(Op) == Old)
2703 setIncomingBlock(Op, New);
2704 }
2705
2706 /// Add an incoming value to the end of the PHI list
2707 ///
2708 void addIncoming(Value *V, BasicBlock *BB) {
2709 if (getNumOperands() == ReservedSpace)
2710 growOperands(); // Get more space!
2711 // Initialize some new operands.
2712 setNumHungOffUseOperands(getNumOperands() + 1);
2713 setIncomingValue(getNumOperands() - 1, V);
2714 setIncomingBlock(getNumOperands() - 1, BB);
2715 }
2716
2717 /// Remove an incoming value. This is useful if a
2718 /// predecessor basic block is deleted. The value removed is returned.
2719 ///
2720 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2721 /// is true), the PHI node is destroyed and any uses of it are replaced with
2722 /// dummy values. The only time there should be zero incoming values to a PHI
2723 /// node is when the block is dead, so this strategy is sound.
2724 ///
2725 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2726
2727 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2728 int Idx = getBasicBlockIndex(BB);
2729 assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!"
) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2729, __PRETTY_FUNCTION__))
;
2730 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2731 }
2732
2733 /// Return the first index of the specified basic
2734 /// block in the value list for this PHI. Returns -1 if no instance.
2735 ///
2736 int getBasicBlockIndex(const BasicBlock *BB) const {
2737 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2738 if (block_begin()[i] == BB)
2739 return i;
2740 return -1;
2741 }
2742
2743 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2744 int Idx = getBasicBlockIndex(BB);
2745 assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast
<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2745, __PRETTY_FUNCTION__))
;
2746 return getIncomingValue(Idx);
2747 }
2748
2749 /// Set every incoming value(s) for block \p BB to \p V.
2750 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2751 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2751, __PRETTY_FUNCTION__))
;
2752 bool Found = false;
2753 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2754 if (getIncomingBlock(Op) == BB) {
2755 Found = true;
2756 setIncomingValue(Op, V);
2757 }
2758 (void)Found;
2759 assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast
<void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2759, __PRETTY_FUNCTION__))
;
2760 }
2761
2762 /// If the specified PHI node always merges together the
2763 /// same value, return the value, otherwise return null.
2764 Value *hasConstantValue() const;
2765
2766 /// Whether the specified PHI node always merges
2767 /// together the same value, assuming undefs are equal to a unique
2768 /// non-undef value.
2769 bool hasConstantOrUndefValue() const;
2770
2771 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2772 static bool classof(const Instruction *I) {
2773 return I->getOpcode() == Instruction::PHI;
2774 }
2775 static bool classof(const Value *V) {
2776 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2777 }
2778
2779private:
2780 void growOperands();
2781};
2782
2783template <>
2784struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2785};
2786
2787DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<PHINode>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2787, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<PHINode>::op_begin(const_cast<PHINode
*>(this))[i_nocapture].get()); } void PHINode::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2787, __PRETTY_FUNCTION__)); OperandTraits<PHINode>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode
::getNumOperands() const { return OperandTraits<PHINode>
::operands(this); } template <int Idx_nocapture> Use &
PHINode::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &PHINode
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2788
2789//===----------------------------------------------------------------------===//
2790// LandingPadInst Class
2791//===----------------------------------------------------------------------===//
2792
2793//===---------------------------------------------------------------------------
2794/// The landingpad instruction holds all of the information
2795/// necessary to generate correct exception handling. The landingpad instruction
2796/// cannot be moved from the top of a landing pad block, which itself is
2797/// accessible only from the 'unwind' edge of an invoke. This uses the
2798/// SubclassData field in Value to store whether or not the landingpad is a
2799/// cleanup.
2800///
2801class LandingPadInst : public Instruction {
2802 /// The number of operands actually allocated. NumOperands is
2803 /// the number actually in use.
2804 unsigned ReservedSpace;
2805
2806 LandingPadInst(const LandingPadInst &LP);
2807
2808public:
2809 enum ClauseType { Catch, Filter };
2810
2811private:
2812 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2813 const Twine &NameStr, Instruction *InsertBefore);
2814 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2815 const Twine &NameStr, BasicBlock *InsertAtEnd);
2816
2817 // Allocate space for exactly zero operands.
2818 void *operator new(size_t s) {
2819 return User::operator new(s);
2820 }
2821
2822 void growOperands(unsigned Size);
2823 void init(unsigned NumReservedValues, const Twine &NameStr);
2824
2825protected:
2826 // Note: Instruction needs to be a friend here to call cloneImpl.
2827 friend class Instruction;
2828
2829 LandingPadInst *cloneImpl() const;
2830
2831public:
2832 /// Constructors - NumReservedClauses is a hint for the number of incoming
2833 /// clauses that this landingpad will have (use 0 if you really have no idea).
2834 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2835 const Twine &NameStr = "",
2836 Instruction *InsertBefore = nullptr);
2837 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2838 const Twine &NameStr, BasicBlock *InsertAtEnd);
2839
2840 /// Provide fast operand accessors
2841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2842
2843 /// Return 'true' if this landingpad instruction is a
2844 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2845 /// doesn't catch the exception.
2846 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2847
2848 /// Indicate that this landingpad instruction is a cleanup.
2849 void setCleanup(bool V) {
2850 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2851 (V ? 1 : 0));
2852 }
2853
2854 /// Add a catch or filter clause to the landing pad.
2855 void addClause(Constant *ClauseVal);
2856
2857 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2858 /// determine what type of clause this is.
2859 Constant *getClause(unsigned Idx) const {
2860 return cast<Constant>(getOperandList()[Idx]);
2861 }
2862
2863 /// Return 'true' if the clause and index Idx is a catch clause.
2864 bool isCatch(unsigned Idx) const {
2865 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2866 }
2867
2868 /// Return 'true' if the clause and index Idx is a filter clause.
2869 bool isFilter(unsigned Idx) const {
2870 return isa<ArrayType>(getOperandList()[Idx]->getType());
2871 }
2872
2873 /// Get the number of clauses for this landing pad.
2874 unsigned getNumClauses() const { return getNumOperands(); }
2875
2876 /// Grow the size of the operand list to accommodate the new
2877 /// number of clauses.
2878 void reserveClauses(unsigned Size) { growOperands(Size); }
2879
2880 // Methods for support type inquiry through isa, cast, and dyn_cast:
2881 static bool classof(const Instruction *I) {
2882 return I->getOpcode() == Instruction::LandingPad;
2883 }
2884 static bool classof(const Value *V) {
2885 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2886 }
2887};
2888
2889template <>
2890struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2891};
2892
2893DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2893, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2893, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2894
2895//===----------------------------------------------------------------------===//
2896// ReturnInst Class
2897//===----------------------------------------------------------------------===//
2898
2899//===---------------------------------------------------------------------------
2900/// Return a value (possibly void), from a function. Execution
2901/// does not continue in this function any longer.
2902///
2903class ReturnInst : public Instruction {
2904 ReturnInst(const ReturnInst &RI);
2905
2906private:
2907 // ReturnInst constructors:
2908 // ReturnInst() - 'ret void' instruction
2909 // ReturnInst( null) - 'ret void' instruction
2910 // ReturnInst(Value* X) - 'ret X' instruction
2911 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2912 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2913 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2914 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2915 //
2916 // NOTE: If the Value* passed is of type void then the constructor behaves as
2917 // if it was passed NULL.
2918 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2919 Instruction *InsertBefore = nullptr);
2920 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2921 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2922
2923protected:
2924 // Note: Instruction needs to be a friend here to call cloneImpl.
2925 friend class Instruction;
2926
2927 ReturnInst *cloneImpl() const;
2928
2929public:
2930 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2931 Instruction *InsertBefore = nullptr) {
2932 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2933 }
2934
2935 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2936 BasicBlock *InsertAtEnd) {
2937 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2938 }
2939
2940 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2941 return new(0) ReturnInst(C, InsertAtEnd);
2942 }
2943
2944 /// Provide fast operand accessors
2945 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2946
2947 /// Convenience accessor. Returns null if there is no return value.
2948 Value *getReturnValue() const {
2949 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2950 }
2951
2952 unsigned getNumSuccessors() const { return 0; }
2953
2954 // Methods for support type inquiry through isa, cast, and dyn_cast:
2955 static bool classof(const Instruction *I) {
2956 return (I->getOpcode() == Instruction::Ret);
2957 }
2958 static bool classof(const Value *V) {
2959 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2960 }
2961
2962private:
2963 BasicBlock *getSuccessor(unsigned idx) const {
2964 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2964)
;
2965 }
2966
2967 void setSuccessor(unsigned idx, BasicBlock *B) {
2968 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2968)
;
2969 }
2970};
2971
2972template <>
2973struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2974};
2975
2976DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2976, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst
*>(this))[i_nocapture].get()); } void ReturnInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2976, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst
::getNumOperands() const { return OperandTraits<ReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2977
2978//===----------------------------------------------------------------------===//
2979// BranchInst Class
2980//===----------------------------------------------------------------------===//
2981
2982//===---------------------------------------------------------------------------
2983/// Conditional or Unconditional Branch instruction.
2984///
2985class BranchInst : public Instruction {
2986 /// Ops list - Branches are strange. The operands are ordered:
2987 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2988 /// they don't have to check for cond/uncond branchness. These are mostly
2989 /// accessed relative from op_end().
2990 BranchInst(const BranchInst &BI);
2991 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2992 // BranchInst(BB *B) - 'br B'
2993 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2994 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2995 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2996 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2997 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2998 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2999 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3000 Instruction *InsertBefore = nullptr);
3001 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3002 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3003 BasicBlock *InsertAtEnd);
3004
3005 void AssertOK();
3006
3007protected:
3008 // Note: Instruction needs to be a friend here to call cloneImpl.
3009 friend class Instruction;
3010
3011 BranchInst *cloneImpl() const;
3012
3013public:
3014 /// Iterator type that casts an operand to a basic block.
3015 ///
3016 /// This only makes sense because the successors are stored as adjacent
3017 /// operands for branch instructions.
3018 struct succ_op_iterator
3019 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3020 std::random_access_iterator_tag, BasicBlock *,
3021 ptrdiff_t, BasicBlock *, BasicBlock *> {
3022 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3023
3024 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3025 BasicBlock *operator->() const { return operator*(); }
3026 };
3027
3028 /// The const version of `succ_op_iterator`.
3029 struct const_succ_op_iterator
3030 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3031 std::random_access_iterator_tag,
3032 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3033 const BasicBlock *> {
3034 explicit const_succ_op_iterator(const_value_op_iterator I)
3035 : iterator_adaptor_base(I) {}
3036
3037 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3038 const BasicBlock *operator->() const { return operator*(); }
3039 };
3040
3041 static BranchInst *Create(BasicBlock *IfTrue,
3042 Instruction *InsertBefore = nullptr) {
3043 return new(1) BranchInst(IfTrue, InsertBefore);
3044 }
3045
3046 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3047 Value *Cond, Instruction *InsertBefore = nullptr) {
3048 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3049 }
3050
3051 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3052 return new(1) BranchInst(IfTrue, InsertAtEnd);
3053 }
3054
3055 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3056 Value *Cond, BasicBlock *InsertAtEnd) {
3057 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3058 }
3059
3060 /// Transparently provide more efficient getOperand methods.
3061 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3062
3063 bool isUnconditional() const { return getNumOperands() == 1; }
11
Assuming the condition is false
12
Returning zero, which participates in a condition later
3064 bool isConditional() const { return getNumOperands() == 3; }
15
Assuming the condition is false
16
Returning zero, which participates in a condition later
19
Returning zero, which participates in a condition later
60
Returning zero, which participates in a condition later
3065
3066 Value *getCondition() const {
3067 assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3067, __PRETTY_FUNCTION__))
;
3068 return Op<-3>();
3069 }
3070
3071 void setCondition(Value *V) {
3072 assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3072, __PRETTY_FUNCTION__))
;
3073 Op<-3>() = V;
3074 }
3075
3076 unsigned getNumSuccessors() const { return 1+isConditional(); }
3077
3078 BasicBlock *getSuccessor(unsigned i) const {
3079 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3079, __PRETTY_FUNCTION__))
;
3080 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3081 }
3082
3083 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3084 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3084, __PRETTY_FUNCTION__))
;
3085 *(&Op<-1>() - idx) = NewSucc;
3086 }
3087
3088 /// Swap the successors of this branch instruction.
3089 ///
3090 /// Swaps the successors of the branch instruction. This also swaps any
3091 /// branch weight metadata associated with the instruction so that it
3092 /// continues to map correctly to each operand.
3093 void swapSuccessors();
3094
3095 iterator_range<succ_op_iterator> successors() {
3096 return make_range(
3097 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3098 succ_op_iterator(value_op_end()));
3099 }
3100
3101 iterator_range<const_succ_op_iterator> successors() const {
3102 return make_range(const_succ_op_iterator(
3103 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3104 const_succ_op_iterator(value_op_end()));
3105 }
3106
3107 // Methods for support type inquiry through isa, cast, and dyn_cast:
3108 static bool classof(const Instruction *I) {
3109 return (I->getOpcode() == Instruction::Br);
3110 }
3111 static bool classof(const Value *V) {
3112 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3113 }
3114};
3115
3116template <>
3117struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3118};
3119
3120DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3120, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst
*>(this))[i_nocapture].get()); } void BranchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3120, __PRETTY_FUNCTION__)); OperandTraits<BranchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst
::getNumOperands() const { return OperandTraits<BranchInst
>::operands(this); } template <int Idx_nocapture> Use
&BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3121
3122//===----------------------------------------------------------------------===//
3123// SwitchInst Class
3124//===----------------------------------------------------------------------===//
3125
3126//===---------------------------------------------------------------------------
3127/// Multiway switch
3128///
3129class SwitchInst : public Instruction {
3130 unsigned ReservedSpace;
3131
3132 // Operand[0] = Value to switch on
3133 // Operand[1] = Default basic block destination
3134 // Operand[2n ] = Value to match
3135 // Operand[2n+1] = BasicBlock to go to on match
3136 SwitchInst(const SwitchInst &SI);
3137
3138 /// Create a new switch instruction, specifying a value to switch on and a
3139 /// default destination. The number of additional cases can be specified here
3140 /// to make memory allocation more efficient. This constructor can also
3141 /// auto-insert before another instruction.
3142 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3143 Instruction *InsertBefore);
3144
3145 /// Create a new switch instruction, specifying a value to switch on and a
3146 /// default destination. The number of additional cases can be specified here
3147 /// to make memory allocation more efficient. This constructor also
3148 /// auto-inserts at the end of the specified BasicBlock.
3149 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3150 BasicBlock *InsertAtEnd);
3151
3152 // allocate space for exactly zero operands
3153 void *operator new(size_t s) {
3154 return User::operator new(s);
3155 }
3156
3157 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3158 void growOperands();
3159
3160protected:
3161 // Note: Instruction needs to be a friend here to call cloneImpl.
3162 friend class Instruction;
3163
3164 SwitchInst *cloneImpl() const;
3165
3166public:
3167 // -2
3168 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3169
3170 template <typename CaseHandleT> class CaseIteratorImpl;
3171
3172 /// A handle to a particular switch case. It exposes a convenient interface
3173 /// to both the case value and the successor block.
3174 ///
3175 /// We define this as a template and instantiate it to form both a const and
3176 /// non-const handle.
3177 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3178 class CaseHandleImpl {
3179 // Directly befriend both const and non-const iterators.
3180 friend class SwitchInst::CaseIteratorImpl<
3181 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3182
3183 protected:
3184 // Expose the switch type we're parameterized with to the iterator.
3185 using SwitchInstType = SwitchInstT;
3186
3187 SwitchInstT *SI;
3188 ptrdiff_t Index;
3189
3190 CaseHandleImpl() = default;
3191 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3192
3193 public:
3194 /// Resolves case value for current case.
3195 ConstantIntT *getCaseValue() const {
3196 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3197, __PRETTY_FUNCTION__))
3197 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3197, __PRETTY_FUNCTION__))
;
3198 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3199 }
3200
3201 /// Resolves successor for current case.
3202 BasicBlockT *getCaseSuccessor() const {
3203 assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
3204 (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
3205 "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
;
3206 return SI->getSuccessor(getSuccessorIndex());
3207 }
3208
3209 /// Returns number of current case.
3210 unsigned getCaseIndex() const { return Index; }
3211
3212 /// Returns successor index for current case successor.
3213 unsigned getSuccessorIndex() const {
3214 assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
3215 (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
3216 "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
;
3217 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3218 }
3219
3220 bool operator==(const CaseHandleImpl &RHS) const {
3221 assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast
<void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3221, __PRETTY_FUNCTION__))
;
3222 return Index == RHS.Index;
3223 }
3224 };
3225
3226 using ConstCaseHandle =
3227 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3228
3229 class CaseHandle
3230 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3231 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3232
3233 public:
3234 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3235
3236 /// Sets the new value for current case.
3237 void setValue(ConstantInt *V) {
3238 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3239, __PRETTY_FUNCTION__))
3239 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3239, __PRETTY_FUNCTION__))
;
3240 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3241 }
3242
3243 /// Sets the new successor for current case.
3244 void setSuccessor(BasicBlock *S) {
3245 SI->setSuccessor(getSuccessorIndex(), S);
3246 }
3247 };
3248
3249 template <typename CaseHandleT>
3250 class CaseIteratorImpl
3251 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3252 std::random_access_iterator_tag,
3253 CaseHandleT> {
3254 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3255
3256 CaseHandleT Case;
3257
3258 public:
3259 /// Default constructed iterator is in an invalid state until assigned to
3260 /// a case for a particular switch.
3261 CaseIteratorImpl() = default;
3262
3263 /// Initializes case iterator for given SwitchInst and for given
3264 /// case number.
3265 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3266
3267 /// Initializes case iterator for given SwitchInst and for given
3268 /// successor index.
3269 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3270 unsigned SuccessorIndex) {
3271 assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3272, __PRETTY_FUNCTION__))
3272 "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3272, __PRETTY_FUNCTION__))
;
3273 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3274 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3275 }
3276
3277 /// Support converting to the const variant. This will be a no-op for const
3278 /// variant.
3279 operator CaseIteratorImpl<ConstCaseHandle>() const {
3280 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3281 }
3282
3283 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3284 // Check index correctness after addition.
3285 // Note: Index == getNumCases() means end().
3286 assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
3287 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
3288 "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
;
3289 Case.Index += N;
3290 return *this;
3291 }
3292 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3293 // Check index correctness after subtraction.
3294 // Note: Case.Index == getNumCases() means end().
3295 assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
3296 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
3297 "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
;
3298 Case.Index -= N;
3299 return *this;
3300 }
3301 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3302 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3302, __PRETTY_FUNCTION__))
;
3303 return Case.Index - RHS.Case.Index;
3304 }
3305 bool operator==(const CaseIteratorImpl &RHS) const {
3306 return Case == RHS.Case;
3307 }
3308 bool operator<(const CaseIteratorImpl &RHS) const {
3309 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3309, __PRETTY_FUNCTION__))
;
3310 return Case.Index < RHS.Case.Index;
3311 }
3312 CaseHandleT &operator*() { return Case; }
3313 const CaseHandleT &operator*() const { return Case; }
3314 };
3315
3316 using CaseIt = CaseIteratorImpl<CaseHandle>;
3317 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3318
3319 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3320 unsigned NumCases,
3321 Instruction *InsertBefore = nullptr) {
3322 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3323 }
3324
3325 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3326 unsigned NumCases, BasicBlock *InsertAtEnd) {
3327 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3328 }
3329
3330 /// Provide fast operand accessors
3331 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3332
3333 // Accessor Methods for Switch stmt
3334 Value *getCondition() const { return getOperand(0); }
3335 void setCondition(Value *V) { setOperand(0, V); }
3336
3337 BasicBlock *getDefaultDest() const {
3338 return cast<BasicBlock>(getOperand(1));
3339 }
3340
3341 void setDefaultDest(BasicBlock *DefaultCase) {
3342 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3343 }
3344
3345 /// Return the number of 'cases' in this switch instruction, excluding the
3346 /// default case.
3347 unsigned getNumCases() const {
3348 return getNumOperands()/2 - 1;
3349 }
3350
3351 /// Returns a read/write iterator that points to the first case in the
3352 /// SwitchInst.
3353 CaseIt case_begin() {
3354 return CaseIt(this, 0);
3355 }
3356
3357 /// Returns a read-only iterator that points to the first case in the
3358 /// SwitchInst.
3359 ConstCaseIt case_begin() const {
3360 return ConstCaseIt(this, 0);
3361 }
3362
3363 /// Returns a read/write iterator that points one past the last in the
3364 /// SwitchInst.
3365 CaseIt case_end() {
3366 return CaseIt(this, getNumCases());
3367 }
3368
3369 /// Returns a read-only iterator that points one past the last in the
3370 /// SwitchInst.
3371 ConstCaseIt case_end() const {
3372 return ConstCaseIt(this, getNumCases());
3373 }
3374
3375 /// Iteration adapter for range-for loops.
3376 iterator_range<CaseIt> cases() {
3377 return make_range(case_begin(), case_end());
3378 }
3379
3380 /// Constant iteration adapter for range-for loops.
3381 iterator_range<ConstCaseIt> cases() const {
3382 return make_range(case_begin(), case_end());
3383 }
3384
3385 /// Returns an iterator that points to the default case.
3386 /// Note: this iterator allows to resolve successor only. Attempt
3387 /// to resolve case value causes an assertion.
3388 /// Also note, that increment and decrement also causes an assertion and
3389 /// makes iterator invalid.
3390 CaseIt case_default() {
3391 return CaseIt(this, DefaultPseudoIndex);
3392 }
3393 ConstCaseIt case_default() const {
3394 return ConstCaseIt(this, DefaultPseudoIndex);
3395 }
3396
3397 /// Search all of the case values for the specified constant. If it is
3398 /// explicitly handled, return the case iterator of it, otherwise return
3399 /// default case iterator to indicate that it is handled by the default
3400 /// handler.
3401 CaseIt findCaseValue(const ConstantInt *C) {
3402 CaseIt I = llvm::find_if(
3403 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3404 if (I != case_end())
3405 return I;
3406
3407 return case_default();
3408 }
3409 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3410 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3411 return Case.getCaseValue() == C;
3412 });
3413 if (I != case_end())
3414 return I;
3415
3416 return case_default();
3417 }
3418
3419 /// Finds the unique case value for a given successor. Returns null if the
3420 /// successor is not found, not unique, or is the default case.
3421 ConstantInt *findCaseDest(BasicBlock *BB) {
3422 if (BB == getDefaultDest())
3423 return nullptr;
3424
3425 ConstantInt *CI = nullptr;
3426 for (auto Case : cases()) {
3427 if (Case.getCaseSuccessor() != BB)
3428 continue;
3429
3430 if (CI)
3431 return nullptr; // Multiple cases lead to BB.
3432
3433 CI = Case.getCaseValue();
3434 }
3435
3436 return CI;
3437 }
3438
3439 /// Add an entry to the switch instruction.
3440 /// Note:
3441 /// This action invalidates case_end(). Old case_end() iterator will
3442 /// point to the added case.
3443 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3444
3445 /// This method removes the specified case and its successor from the switch
3446 /// instruction. Note that this operation may reorder the remaining cases at
3447 /// index idx and above.
3448 /// Note:
3449 /// This action invalidates iterators for all cases following the one removed,
3450 /// including the case_end() iterator. It returns an iterator for the next
3451 /// case.
3452 CaseIt removeCase(CaseIt I);
3453
3454 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3455 BasicBlock *getSuccessor(unsigned idx) const {
3456 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((idx < getNumSuccessors() &&"Successor idx out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3456, __PRETTY_FUNCTION__))
;
3457 return cast<BasicBlock>(getOperand(idx*2+1));
3458 }
3459 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3460 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((idx < getNumSuccessors() && "Successor # out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3460, __PRETTY_FUNCTION__))
;
3461 setOperand(idx * 2 + 1, NewSucc);
3462 }
3463
3464 // Methods for support type inquiry through isa, cast, and dyn_cast:
3465 static bool classof(const Instruction *I) {
3466 return I->getOpcode() == Instruction::Switch;
3467 }
3468 static bool classof(const Value *V) {
3469 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3470 }
3471};
3472
3473/// A wrapper class to simplify modification of SwitchInst cases along with
3474/// their prof branch_weights metadata.
3475class SwitchInstProfUpdateWrapper {
3476 SwitchInst &SI;
3477 Optional<SmallVector<uint32_t, 8> > Weights = None;
3478 bool Changed = false;
3479
3480protected:
3481 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3482
3483 MDNode *buildProfBranchWeightsMD();
3484
3485 void init();
3486
3487public:
3488 using CaseWeightOpt = Optional<uint32_t>;
3489 SwitchInst *operator->() { return &SI; }
3490 SwitchInst &operator*() { return SI; }
3491 operator SwitchInst *() { return &SI; }
3492
3493 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3494
3495 ~SwitchInstProfUpdateWrapper() {
3496 if (Changed)
3497 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3498 }
3499
3500 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3501 /// correspondent branch weight.
3502 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3503
3504 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3505 /// specified branch weight for the added case.
3506 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3507
3508 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3509 /// this object to not touch the underlying SwitchInst in destructor.
3510 SymbolTableList<Instruction>::iterator eraseFromParent();
3511
3512 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3513 CaseWeightOpt getSuccessorWeight(unsigned idx);
3514
3515 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3516};
3517
3518template <>
3519struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3520};
3521
3522DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3522, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SwitchInst>::op_begin(const_cast<SwitchInst
*>(this))[i_nocapture].get()); } void SwitchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3522, __PRETTY_FUNCTION__)); OperandTraits<SwitchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SwitchInst
::getNumOperands() const { return OperandTraits<SwitchInst
>::operands(this); } template <int Idx_nocapture> Use
&SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3523
3524//===----------------------------------------------------------------------===//
3525// IndirectBrInst Class
3526//===----------------------------------------------------------------------===//
3527
3528//===---------------------------------------------------------------------------
3529/// Indirect Branch Instruction.
3530///
3531class IndirectBrInst : public Instruction {
3532 unsigned ReservedSpace;
3533
3534 // Operand[0] = Address to jump to
3535 // Operand[n+1] = n-th destination
3536 IndirectBrInst(const IndirectBrInst &IBI);
3537
3538 /// Create a new indirectbr instruction, specifying an
3539 /// Address to jump to. The number of expected destinations can be specified
3540 /// here to make memory allocation more efficient. This constructor can also
3541 /// autoinsert before another instruction.
3542 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3543
3544 /// Create a new indirectbr instruction, specifying an
3545 /// Address to jump to. The number of expected destinations can be specified
3546 /// here to make memory allocation more efficient. This constructor also
3547 /// autoinserts at the end of the specified BasicBlock.
3548 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3549
3550 // allocate space for exactly zero operands
3551 void *operator new(size_t s) {
3552 return User::operator new(s);
3553 }
3554
3555 void init(Value *Address, unsigned NumDests);
3556 void growOperands();
3557
3558protected:
3559 // Note: Instruction needs to be a friend here to call cloneImpl.
3560 friend class Instruction;
3561
3562 IndirectBrInst *cloneImpl() const;
3563
3564public:
3565 /// Iterator type that casts an operand to a basic block.
3566 ///
3567 /// This only makes sense because the successors are stored as adjacent
3568 /// operands for indirectbr instructions.
3569 struct succ_op_iterator
3570 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3571 std::random_access_iterator_tag, BasicBlock *,
3572 ptrdiff_t, BasicBlock *, BasicBlock *> {
3573 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3574
3575 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3576 BasicBlock *operator->() const { return operator*(); }
3577 };
3578
3579 /// The const version of `succ_op_iterator`.
3580 struct const_succ_op_iterator
3581 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3582 std::random_access_iterator_tag,
3583 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3584 const BasicBlock *> {
3585 explicit const_succ_op_iterator(const_value_op_iterator I)
3586 : iterator_adaptor_base(I) {}
3587
3588 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3589 const BasicBlock *operator->() const { return operator*(); }
3590 };
3591
3592 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3593 Instruction *InsertBefore = nullptr) {
3594 return new IndirectBrInst(Address, NumDests, InsertBefore);
3595 }
3596
3597 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3598 BasicBlock *InsertAtEnd) {
3599 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3600 }
3601
3602 /// Provide fast operand accessors.
3603 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3604
3605 // Accessor Methods for IndirectBrInst instruction.
3606 Value *getAddress() { return getOperand(0); }
3607 const Value *getAddress() const { return getOperand(0); }
3608 void setAddress(Value *V) { setOperand(0, V); }
3609
3610 /// return the number of possible destinations in this
3611 /// indirectbr instruction.
3612 unsigned getNumDestinations() const { return getNumOperands()-1; }
3613
3614 /// Return the specified destination.
3615 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3616 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3617
3618 /// Add a destination.
3619 ///
3620 void addDestination(BasicBlock *Dest);
3621
3622 /// This method removes the specified successor from the
3623 /// indirectbr instruction.
3624 void removeDestination(unsigned i);
3625
3626 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3627 BasicBlock *getSuccessor(unsigned i) const {
3628 return cast<BasicBlock>(getOperand(i+1));
3629 }
3630 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3631 setOperand(i + 1, NewSucc);
3632 }
3633
3634 iterator_range<succ_op_iterator> successors() {
3635 return make_range(succ_op_iterator(std::next(value_op_begin())),
3636 succ_op_iterator(value_op_end()));
3637 }
3638
3639 iterator_range<const_succ_op_iterator> successors() const {
3640 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3641 const_succ_op_iterator(value_op_end()));
3642 }
3643
3644 // Methods for support type inquiry through isa, cast, and dyn_cast:
3645 static bool classof(const Instruction *I) {
3646 return I->getOpcode() == Instruction::IndirectBr;
3647 }
3648 static bool classof(const Value *V) {
3649 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3650 }
3651};
3652
3653template <>
3654struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3655};
3656
3657DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<IndirectBrInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3657, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3657, __PRETTY_FUNCTION__)); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3658
3659//===----------------------------------------------------------------------===//
3660// InvokeInst Class
3661//===----------------------------------------------------------------------===//
3662
3663/// Invoke instruction. The SubclassData field is used to hold the
3664/// calling convention of the call.
3665///
3666class InvokeInst : public CallBase {
3667 /// The number of operands for this call beyond the called function,
3668 /// arguments, and operand bundles.
3669 static constexpr int NumExtraOperands = 2;
3670
3671 /// The index from the end of the operand array to the normal destination.
3672 static constexpr int NormalDestOpEndIdx = -3;
3673
3674 /// The index from the end of the operand array to the unwind destination.
3675 static constexpr int UnwindDestOpEndIdx = -2;
3676
3677 InvokeInst(const InvokeInst &BI);
3678
3679 /// Construct an InvokeInst given a range of arguments.
3680 ///
3681 /// Construct an InvokeInst from a range of arguments
3682 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3683 BasicBlock *IfException, ArrayRef<Value *> Args,
3684 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3685 const Twine &NameStr, Instruction *InsertBefore);
3686
3687 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3688 BasicBlock *IfException, ArrayRef<Value *> Args,
3689 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3690 const Twine &NameStr, BasicBlock *InsertAtEnd);
3691
3692 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3693 BasicBlock *IfException, ArrayRef<Value *> Args,
3694 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3695
3696 /// Compute the number of operands to allocate.
3697 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3698 // We need one operand for the called function, plus our extra operands and
3699 // the input operand counts provided.
3700 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3701 }
3702
3703protected:
3704 // Note: Instruction needs to be a friend here to call cloneImpl.
3705 friend class Instruction;
3706
3707 InvokeInst *cloneImpl() const;
3708
3709public:
3710 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3711 BasicBlock *IfException, ArrayRef<Value *> Args,
3712 const Twine &NameStr,
3713 Instruction *InsertBefore = nullptr) {
3714 int NumOperands = ComputeNumOperands(Args.size());
3715 return new (NumOperands)
3716 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3717 NameStr, InsertBefore);
3718 }
3719
3720 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3721 BasicBlock *IfException, ArrayRef<Value *> Args,
3722 ArrayRef<OperandBundleDef> Bundles = None,
3723 const Twine &NameStr = "",
3724 Instruction *InsertBefore = nullptr) {
3725 int NumOperands =
3726 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3727 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3728
3729 return new (NumOperands, DescriptorBytes)
3730 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3731 NameStr, InsertBefore);
3732 }
3733
3734 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3735 BasicBlock *IfException, ArrayRef<Value *> Args,
3736 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3737 int NumOperands = ComputeNumOperands(Args.size());
3738 return new (NumOperands)
3739 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3740 NameStr, InsertAtEnd);
3741 }
3742
3743 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3744 BasicBlock *IfException, ArrayRef<Value *> Args,
3745 ArrayRef<OperandBundleDef> Bundles,
3746 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3747 int NumOperands =
3748 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3749 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3750
3751 return new (NumOperands, DescriptorBytes)
3752 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3753 NameStr, InsertAtEnd);
3754 }
3755
3756 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3757 BasicBlock *IfException, ArrayRef<Value *> Args,
3758 const Twine &NameStr,
3759 Instruction *InsertBefore = nullptr) {
3760 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3761 IfException, Args, None, NameStr, InsertBefore);
3762 }
3763
3764 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3765 BasicBlock *IfException, ArrayRef<Value *> Args,
3766 ArrayRef<OperandBundleDef> Bundles = None,
3767 const Twine &NameStr = "",
3768 Instruction *InsertBefore = nullptr) {
3769 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3770 IfException, Args, Bundles, NameStr, InsertBefore);
3771 }
3772
3773 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3774 BasicBlock *IfException, ArrayRef<Value *> Args,
3775 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3776 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3777 IfException, Args, NameStr, InsertAtEnd);
3778 }
3779
3780 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3781 BasicBlock *IfException, ArrayRef<Value *> Args,
3782 ArrayRef<OperandBundleDef> Bundles,
3783 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3784 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3785 IfException, Args, Bundles, NameStr, InsertAtEnd);
3786 }
3787
3788 // Deprecated [opaque pointer types]
3789 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3790 BasicBlock *IfException, ArrayRef<Value *> Args,
3791 const Twine &NameStr,
3792 Instruction *InsertBefore = nullptr) {
3793 return Create(cast<FunctionType>(
3794 cast<PointerType>(Func->getType())->getElementType()),
3795 Func, IfNormal, IfException, Args, None, NameStr,
3796 InsertBefore);
3797 }
3798
3799 // Deprecated [opaque pointer types]
3800 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3801 BasicBlock *IfException, ArrayRef<Value *> Args,
3802 ArrayRef<OperandBundleDef> Bundles = None,
3803 const Twine &NameStr = "",
3804 Instruction *InsertBefore = nullptr) {
3805 return Create(cast<FunctionType>(
3806 cast<PointerType>(Func->getType())->getElementType()),
3807 Func, IfNormal, IfException, Args, Bundles, NameStr,
3808 InsertBefore);
3809 }
3810
3811 // Deprecated [opaque pointer types]
3812 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3813 BasicBlock *IfException, ArrayRef<Value *> Args,
3814 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3815 return Create(cast<FunctionType>(
3816 cast<PointerType>(Func->getType())->getElementType()),
3817 Func, IfNormal, IfException, Args, NameStr, InsertAtEnd);
3818 }
3819
3820 // Deprecated [opaque pointer types]
3821 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3822 BasicBlock *IfException, ArrayRef<Value *> Args,
3823 ArrayRef<OperandBundleDef> Bundles,
3824 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3825 return Create(cast<FunctionType>(
3826 cast<PointerType>(Func->getType())->getElementType()),
3827 Func, IfNormal, IfException, Args, Bundles, NameStr,
3828 InsertAtEnd);
3829 }
3830
3831 /// Create a clone of \p II with a different set of operand bundles and
3832 /// insert it before \p InsertPt.
3833 ///
3834 /// The returned invoke instruction is identical to \p II in every way except
3835 /// that the operand bundles for the new instruction are set to the operand
3836 /// bundles in \p Bundles.
3837 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3838 Instruction *InsertPt = nullptr);
3839
3840 /// Determine if the call should not perform indirect branch tracking.
3841 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
3842
3843 /// Determine if the call cannot unwind.
3844 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
3845 void setDoesNotThrow() {
3846 addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
3847 }
3848
3849 // get*Dest - Return the destination basic blocks...
3850 BasicBlock *getNormalDest() const {
3851 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3852 }
3853 BasicBlock *getUnwindDest() const {
3854 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3855 }
3856 void setNormalDest(BasicBlock *B) {
3857 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3858 }
3859 void setUnwindDest(BasicBlock *B) {
3860 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3861 }
3862
3863 /// Get the landingpad instruction from the landing pad
3864 /// block (the unwind destination).
3865 LandingPadInst *getLandingPadInst() const;
3866
3867 BasicBlock *getSuccessor(unsigned i) const {
3868 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3868, __PRETTY_FUNCTION__))
;
3869 return i == 0 ? getNormalDest() : getUnwindDest();
3870 }
3871
3872 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3873 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3873, __PRETTY_FUNCTION__))
;
3874 if (i == 0)
3875 setNormalDest(NewSucc);
3876 else
3877 setUnwindDest(NewSucc);
3878 }
3879
3880 unsigned getNumSuccessors() const { return 2; }
3881
3882 // Methods for support type inquiry through isa, cast, and dyn_cast:
3883 static bool classof(const Instruction *I) {
3884 return (I->getOpcode() == Instruction::Invoke);
3885 }
3886 static bool classof(const Value *V) {
3887 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3888 }
3889
3890private:
3891
3892 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3893 // method so that subclasses cannot accidentally use it.
3894 void setInstructionSubclassData(unsigned short D) {
3895 Instruction::setInstructionSubclassData(D);
3896 }
3897};
3898
3899InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3900 BasicBlock *IfException, ArrayRef<Value *> Args,
3901 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3902 const Twine &NameStr, Instruction *InsertBefore)
3903 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3904 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3905 InsertBefore) {
3906 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3907}
3908
3909InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3910 BasicBlock *IfException, ArrayRef<Value *> Args,
3911 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3912 const Twine &NameStr, BasicBlock *InsertAtEnd)
3913 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3914 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3915 InsertAtEnd) {
3916 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3917}
3918
3919//===----------------------------------------------------------------------===//
3920// CallBrInst Class
3921//===----------------------------------------------------------------------===//
3922
3923/// CallBr instruction, tracking function calls that may not return control but
3924/// instead transfer it to a third location. The SubclassData field is used to
3925/// hold the calling convention of the call.
3926///
3927class CallBrInst : public CallBase {
3928
3929 unsigned NumIndirectDests;
3930
3931 CallBrInst(const CallBrInst &BI);
3932
3933 /// Construct a CallBrInst given a range of arguments.
3934 ///
3935 /// Construct a CallBrInst from a range of arguments
3936 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3937 ArrayRef<BasicBlock *> IndirectDests,
3938 ArrayRef<Value *> Args,
3939 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3940 const Twine &NameStr, Instruction *InsertBefore);
3941
3942 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3943 ArrayRef<BasicBlock *> IndirectDests,
3944 ArrayRef<Value *> Args,
3945 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3946 const Twine &NameStr, BasicBlock *InsertAtEnd);
3947
3948 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3949 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3950 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3951
3952 /// Should the Indirect Destinations change, scan + update the Arg list.
3953 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3954
3955 /// Compute the number of operands to allocate.
3956 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3957 int NumBundleInputs = 0) {
3958 // We need one operand for the called function, plus our extra operands and
3959 // the input operand counts provided.
3960 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3961 }
3962
3963protected:
3964 // Note: Instruction needs to be a friend here to call cloneImpl.
3965 friend class Instruction;
3966
3967 CallBrInst *cloneImpl() const;
3968
3969public:
3970 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3971 BasicBlock *DefaultDest,
3972 ArrayRef<BasicBlock *> IndirectDests,
3973 ArrayRef<Value *> Args, const Twine &NameStr,
3974 Instruction *InsertBefore = nullptr) {
3975 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3976 return new (NumOperands)
3977 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3978 NumOperands, NameStr, InsertBefore);
3979 }
3980
3981 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3982 BasicBlock *DefaultDest,
3983 ArrayRef<BasicBlock *> IndirectDests,
3984 ArrayRef<Value *> Args,
3985 ArrayRef<OperandBundleDef> Bundles = None,
3986 const Twine &NameStr = "",
3987 Instruction *InsertBefore = nullptr) {
3988 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3989 CountBundleInputs(Bundles));
3990 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3991
3992 return new (NumOperands, DescriptorBytes)
3993 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3994 NumOperands, NameStr, InsertBefore);
3995 }
3996
3997 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3998 BasicBlock *DefaultDest,
3999 ArrayRef<BasicBlock *> IndirectDests,
4000 ArrayRef<Value *> Args, const Twine &NameStr,
4001 BasicBlock *InsertAtEnd) {
4002 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4003 return new (NumOperands)
4004 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4005 NumOperands, NameStr, InsertAtEnd);
4006 }
4007
4008 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4009 BasicBlock *DefaultDest,
4010 ArrayRef<BasicBlock *> IndirectDests,
4011 ArrayRef<Value *> Args,
4012 ArrayRef<OperandBundleDef> Bundles,
4013 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4014 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4015 CountBundleInputs(Bundles));
4016 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4017
4018 return new (NumOperands, DescriptorBytes)
4019 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4020 NumOperands, NameStr, InsertAtEnd);
4021 }
4022
4023 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4024 ArrayRef<BasicBlock *> IndirectDests,
4025 ArrayRef<Value *> Args, const Twine &NameStr,
4026 Instruction *InsertBefore = nullptr) {
4027 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4028 IndirectDests, Args, NameStr, InsertBefore);
4029 }
4030
4031 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4032 ArrayRef<BasicBlock *> IndirectDests,
4033 ArrayRef<Value *> Args,
4034 ArrayRef<OperandBundleDef> Bundles = None,
4035 const Twine &NameStr = "",
4036 Instruction *InsertBefore = nullptr) {
4037 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4038 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4039 }
4040
4041 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4042 ArrayRef<BasicBlock *> IndirectDests,
4043 ArrayRef<Value *> Args, const Twine &NameStr,
4044 BasicBlock *InsertAtEnd) {
4045 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4046 IndirectDests, Args, NameStr, InsertAtEnd);
4047 }
4048
4049 static CallBrInst *Create(FunctionCallee Func,
4050 BasicBlock *DefaultDest,
4051 ArrayRef<BasicBlock *> IndirectDests,
4052 ArrayRef<Value *> Args,
4053 ArrayRef<OperandBundleDef> Bundles,
4054 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4055 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4056 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4057 }
4058
4059 /// Create a clone of \p CBI with a different set of operand bundles and
4060 /// insert it before \p InsertPt.
4061 ///
4062 /// The returned callbr instruction is identical to \p CBI in every way
4063 /// except that the operand bundles for the new instruction are set to the
4064 /// operand bundles in \p Bundles.
4065 static CallBrInst *Create(CallBrInst *CBI,
4066 ArrayRef<OperandBundleDef> Bundles,
4067 Instruction *InsertPt = nullptr);
4068
4069 /// Return the number of callbr indirect dest labels.
4070 ///
4071 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4072
4073 /// getIndirectDestLabel - Return the i-th indirect dest label.
4074 ///
4075 Value *getIndirectDestLabel(unsigned i) const {
4076 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4076, __PRETTY_FUNCTION__))
;
4077 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4078 1);
4079 }
4080
4081 Value *getIndirectDestLabelUse(unsigned i) const {
4082 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4082, __PRETTY_FUNCTION__))
;
4083 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4084 1);
4085 }
4086
4087 // Return the destination basic blocks...
4088 BasicBlock *getDefaultDest() const {
4089 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4090 }
4091 BasicBlock *getIndirectDest(unsigned i) const {
4092 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4093 }
4094 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4095 SmallVector<BasicBlock *, 16> IndirectDests;
4096 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4097 IndirectDests.push_back(getIndirectDest(i));
4098 return IndirectDests;
4099 }
4100 void setDefaultDest(BasicBlock *B) {
4101 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4102 }
4103 void setIndirectDest(unsigned i, BasicBlock *B) {
4104 updateArgBlockAddresses(i, B);
4105 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4106 }
4107
4108 BasicBlock *getSuccessor(unsigned i) const {
4109 assert(i < getNumSuccessors() + 1 &&((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4110, __PRETTY_FUNCTION__))
4110 "Successor # out of range for callbr!")((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4110, __PRETTY_FUNCTION__))
;
4111 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4112 }
4113
4114 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4115 assert(i < getNumIndirectDests() + 1 &&((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4116, __PRETTY_FUNCTION__))
4116 "Successor # out of range for callbr!")((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4116, __PRETTY_FUNCTION__))
;
4117 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4118 }
4119
4120 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4121
4122 // Methods for support type inquiry through isa, cast, and dyn_cast:
4123 static bool classof(const Instruction *I) {
4124 return (I->getOpcode() == Instruction::CallBr);
4125 }
4126 static bool classof(const Value *V) {
4127 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4128 }
4129
4130private:
4131
4132 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4133 // method so that subclasses cannot accidentally use it.
4134 void setInstructionSubclassData(unsigned short D) {
4135 Instruction::setInstructionSubclassData(D);
4136 }
4137};
4138
4139CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4140 ArrayRef<BasicBlock *> IndirectDests,
4141 ArrayRef<Value *> Args,
4142 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4143 const Twine &NameStr, Instruction *InsertBefore)
4144 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4145 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4146 InsertBefore) {
4147 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4148}
4149
4150CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4151 ArrayRef<BasicBlock *> IndirectDests,
4152 ArrayRef<Value *> Args,
4153 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4154 const Twine &NameStr, BasicBlock *InsertAtEnd)
4155 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4156 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4157 InsertAtEnd) {
4158 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4159}
4160
4161//===----------------------------------------------------------------------===//
4162// ResumeInst Class
4163//===----------------------------------------------------------------------===//
4164
4165//===---------------------------------------------------------------------------
4166/// Resume the propagation of an exception.
4167///
4168class ResumeInst : public Instruction {
4169 ResumeInst(const ResumeInst &RI);
4170
4171 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4172 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4173
4174protected:
4175 // Note: Instruction needs to be a friend here to call cloneImpl.
4176 friend class Instruction;
4177
4178 ResumeInst *cloneImpl() const;
4179
4180public:
4181 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4182 return new(1) ResumeInst(Exn, InsertBefore);
4183 }
4184
4185 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4186 return new(1) ResumeInst(Exn, InsertAtEnd);
4187 }
4188
4189 /// Provide fast operand accessors
4190 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4191
4192 /// Convenience accessor.
4193 Value *getValue() const { return Op<0>(); }
4194
4195 unsigned getNumSuccessors() const { return 0; }
4196
4197 // Methods for support type inquiry through isa, cast, and dyn_cast:
4198 static bool classof(const Instruction *I) {
4199 return I->getOpcode() == Instruction::Resume;
4200 }
4201 static bool classof(const Value *V) {
4202 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4203 }
4204
4205private:
4206 BasicBlock *getSuccessor(unsigned idx) const {
4207 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4207)
;
4208 }
4209
4210 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4211 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4211)
;
4212 }
4213};
4214
4215template <>
4216struct OperandTraits<ResumeInst> :
4217 public FixedNumOperandTraits<ResumeInst, 1> {
4218};
4219
4220DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4220, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ResumeInst>::op_begin(const_cast<ResumeInst
*>(this))[i_nocapture].get()); } void ResumeInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4220, __PRETTY_FUNCTION__)); OperandTraits<ResumeInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ResumeInst
::getNumOperands() const { return OperandTraits<ResumeInst
>::operands(this); } template <int Idx_nocapture> Use
&ResumeInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ResumeInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4221
4222//===----------------------------------------------------------------------===//
4223