Bug Summary

File:lib/Transforms/Vectorize/LoopVectorize.cpp
Warning:line 5942, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name LoopVectorize.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/Transforms/Vectorize -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp
1//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
11// and generates target-independent LLVM-IR.
12// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
13// of instructions in order to estimate the profitability of vectorization.
14//
15// The loop vectorizer combines consecutive loop iterations into a single
16// 'wide' iteration. After this transformation the index is incremented
17// by the SIMD vector width, and not by one.
18//
19// This pass has three parts:
20// 1. The main loop pass that drives the different parts.
21// 2. LoopVectorizationLegality - A unit that checks for the legality
22// of the vectorization.
23// 3. InnerLoopVectorizer - A unit that performs the actual
24// widening of instructions.
25// 4. LoopVectorizationCostModel - A unit that checks for the profitability
26// of vectorization. It decides on the optimal vector width, which
27// can be one, if vectorization is not profitable.
28//
29//===----------------------------------------------------------------------===//
30//
31// The reduction-variable vectorization is based on the paper:
32// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
33//
34// Variable uniformity checks are inspired by:
35// Karrenberg, R. and Hack, S. Whole Function Vectorization.
36//
37// The interleaved access vectorization is based on the paper:
38// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
39// Data for SIMD
40//
41// Other ideas/concepts are from:
42// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
43//
44// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
45// Vectorizing Compilers.
46//
47//===----------------------------------------------------------------------===//
48
49#include "llvm/Transforms/Vectorize/LoopVectorize.h"
50#include "LoopVectorizationPlanner.h"
51#include "llvm/ADT/APInt.h"
52#include "llvm/ADT/ArrayRef.h"
53#include "llvm/ADT/DenseMap.h"
54#include "llvm/ADT/DenseMapInfo.h"
55#include "llvm/ADT/Hashing.h"
56#include "llvm/ADT/MapVector.h"
57#include "llvm/ADT/None.h"
58#include "llvm/ADT/Optional.h"
59#include "llvm/ADT/STLExtras.h"
60#include "llvm/ADT/SetVector.h"
61#include "llvm/ADT/SmallPtrSet.h"
62#include "llvm/ADT/SmallSet.h"
63#include "llvm/ADT/SmallVector.h"
64#include "llvm/ADT/Statistic.h"
65#include "llvm/ADT/StringRef.h"
66#include "llvm/ADT/Twine.h"
67#include "llvm/ADT/iterator_range.h"
68#include "llvm/Analysis/AssumptionCache.h"
69#include "llvm/Analysis/BasicAliasAnalysis.h"
70#include "llvm/Analysis/BlockFrequencyInfo.h"
71#include "llvm/Analysis/CFG.h"
72#include "llvm/Analysis/CodeMetrics.h"
73#include "llvm/Analysis/DemandedBits.h"
74#include "llvm/Analysis/GlobalsModRef.h"
75#include "llvm/Analysis/LoopAccessAnalysis.h"
76#include "llvm/Analysis/LoopAnalysisManager.h"
77#include "llvm/Analysis/LoopInfo.h"
78#include "llvm/Analysis/LoopIterator.h"
79#include "llvm/Analysis/OptimizationRemarkEmitter.h"
80#include "llvm/Analysis/ScalarEvolution.h"
81#include "llvm/Analysis/ScalarEvolutionExpander.h"
82#include "llvm/Analysis/ScalarEvolutionExpressions.h"
83#include "llvm/Analysis/TargetLibraryInfo.h"
84#include "llvm/Analysis/TargetTransformInfo.h"
85#include "llvm/Analysis/VectorUtils.h"
86#include "llvm/IR/Attributes.h"
87#include "llvm/IR/BasicBlock.h"
88#include "llvm/IR/CFG.h"
89#include "llvm/IR/Constant.h"
90#include "llvm/IR/Constants.h"
91#include "llvm/IR/DataLayout.h"
92#include "llvm/IR/DebugInfoMetadata.h"
93#include "llvm/IR/DebugLoc.h"
94#include "llvm/IR/DerivedTypes.h"
95#include "llvm/IR/DiagnosticInfo.h"
96#include "llvm/IR/Dominators.h"
97#include "llvm/IR/Function.h"
98#include "llvm/IR/IRBuilder.h"
99#include "llvm/IR/InstrTypes.h"
100#include "llvm/IR/Instruction.h"
101#include "llvm/IR/Instructions.h"
102#include "llvm/IR/IntrinsicInst.h"
103#include "llvm/IR/Intrinsics.h"
104#include "llvm/IR/LLVMContext.h"
105#include "llvm/IR/Metadata.h"
106#include "llvm/IR/Module.h"
107#include "llvm/IR/Operator.h"
108#include "llvm/IR/Type.h"
109#include "llvm/IR/Use.h"
110#include "llvm/IR/User.h"
111#include "llvm/IR/Value.h"
112#include "llvm/IR/ValueHandle.h"
113#include "llvm/IR/Verifier.h"
114#include "llvm/Pass.h"
115#include "llvm/Support/Casting.h"
116#include "llvm/Support/CommandLine.h"
117#include "llvm/Support/Compiler.h"
118#include "llvm/Support/Debug.h"
119#include "llvm/Support/ErrorHandling.h"
120#include "llvm/Support/MathExtras.h"
121#include "llvm/Support/raw_ostream.h"
122#include "llvm/Transforms/Utils/BasicBlockUtils.h"
123#include "llvm/Transforms/Utils/LoopSimplify.h"
124#include "llvm/Transforms/Utils/LoopUtils.h"
125#include "llvm/Transforms/Utils/LoopVersioning.h"
126#include <algorithm>
127#include <cassert>
128#include <cstdint>
129#include <cstdlib>
130#include <functional>
131#include <iterator>
132#include <limits>
133#include <memory>
134#include <string>
135#include <tuple>
136#include <utility>
137#include <vector>
138
139using namespace llvm;
140
141#define LV_NAME"loop-vectorize" "loop-vectorize"
142#define DEBUG_TYPE"loop-vectorize" LV_NAME"loop-vectorize"
143
144STATISTIC(LoopsVectorized, "Number of loops vectorized")static llvm::Statistic LoopsVectorized = {"loop-vectorize", "LoopsVectorized"
, "Number of loops vectorized", {0}, {false}}
;
145STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization")static llvm::Statistic LoopsAnalyzed = {"loop-vectorize", "LoopsAnalyzed"
, "Number of loops analyzed for vectorization", {0}, {false}}
;
146
147static cl::opt<bool>
148 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
149 cl::desc("Enable if-conversion during vectorization."));
150
151/// Loops with a known constant trip count below this number are vectorized only
152/// if no scalar iteration overheads are incurred.
153static cl::opt<unsigned> TinyTripCountVectorThreshold(
154 "vectorizer-min-trip-count", cl::init(16), cl::Hidden,
155 cl::desc("Loops with a constant trip count that is smaller than this "
156 "value are vectorized only if no scalar iteration overheads "
157 "are incurred."));
158
159static cl::opt<bool> MaximizeBandwidth(
160 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
161 cl::desc("Maximize bandwidth when selecting vectorization factor which "
162 "will be determined by the smallest type in loop."));
163
164static cl::opt<bool> EnableInterleavedMemAccesses(
165 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
166 cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
167
168/// Maximum factor for an interleaved memory access.
169static cl::opt<unsigned> MaxInterleaveGroupFactor(
170 "max-interleave-group-factor", cl::Hidden,
171 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
172 cl::init(8));
173
174/// We don't interleave loops with a known constant trip count below this
175/// number.
176static const unsigned TinyTripCountInterleaveThreshold = 128;
177
178static cl::opt<unsigned> ForceTargetNumScalarRegs(
179 "force-target-num-scalar-regs", cl::init(0), cl::Hidden,
180 cl::desc("A flag that overrides the target's number of scalar registers."));
181
182static cl::opt<unsigned> ForceTargetNumVectorRegs(
183 "force-target-num-vector-regs", cl::init(0), cl::Hidden,
184 cl::desc("A flag that overrides the target's number of vector registers."));
185
186/// Maximum vectorization interleave count.
187static const unsigned MaxInterleaveFactor = 16;
188
189static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
190 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
191 cl::desc("A flag that overrides the target's max interleave factor for "
192 "scalar loops."));
193
194static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
195 "force-target-max-vector-interleave", cl::init(0), cl::Hidden,
196 cl::desc("A flag that overrides the target's max interleave factor for "
197 "vectorized loops."));
198
199static cl::opt<unsigned> ForceTargetInstructionCost(
200 "force-target-instruction-cost", cl::init(0), cl::Hidden,
201 cl::desc("A flag that overrides the target's expected cost for "
202 "an instruction to a single constant value. Mostly "
203 "useful for getting consistent testing."));
204
205static cl::opt<unsigned> SmallLoopCost(
206 "small-loop-cost", cl::init(20), cl::Hidden,
207 cl::desc(
208 "The cost of a loop that is considered 'small' by the interleaver."));
209
210static cl::opt<bool> LoopVectorizeWithBlockFrequency(
211 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
212 cl::desc("Enable the use of the block frequency analysis to access PGO "
213 "heuristics minimizing code growth in cold regions and being more "
214 "aggressive in hot regions."));
215
216// Runtime interleave loops for load/store throughput.
217static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
218 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
219 cl::desc(
220 "Enable runtime interleaving until load/store ports are saturated"));
221
222/// The number of stores in a loop that are allowed to need predication.
223static cl::opt<unsigned> NumberOfStoresToPredicate(
224 "vectorize-num-stores-pred", cl::init(1), cl::Hidden,
225 cl::desc("Max number of stores to be predicated behind an if."));
226
227static cl::opt<bool> EnableIndVarRegisterHeur(
228 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
229 cl::desc("Count the induction variable only once when interleaving"));
230
231static cl::opt<bool> EnableCondStoresVectorization(
232 "enable-cond-stores-vec", cl::init(true), cl::Hidden,
233 cl::desc("Enable if predication of stores during vectorization."));
234
235static cl::opt<unsigned> MaxNestedScalarReductionIC(
236 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
237 cl::desc("The maximum interleave count to use when interleaving a scalar "
238 "reduction in a nested loop."));
239
240static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
241 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
242 cl::desc("The maximum allowed number of runtime memory checks with a "
243 "vectorize(enable) pragma."));
244
245static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
246 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
247 cl::desc("The maximum number of SCEV checks allowed."));
248
249static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
250 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
251 cl::desc("The maximum number of SCEV checks allowed with a "
252 "vectorize(enable) pragma"));
253
254/// Create an analysis remark that explains why vectorization failed
255///
256/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
257/// RemarkName is the identifier for the remark. If \p I is passed it is an
258/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
259/// the location of the remark. \return the remark object that can be
260/// streamed to.
261static OptimizationRemarkAnalysis
262createMissedAnalysis(const char *PassName, StringRef RemarkName, Loop *TheLoop,
263 Instruction *I = nullptr) {
264 Value *CodeRegion = TheLoop->getHeader();
265 DebugLoc DL = TheLoop->getStartLoc();
266
267 if (I) {
268 CodeRegion = I->getParent();
269 // If there is no debug location attached to the instruction, revert back to
270 // using the loop's.
271 if (I->getDebugLoc())
272 DL = I->getDebugLoc();
273 }
274
275 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
276 R << "loop not vectorized: ";
277 return R;
278}
279
280namespace {
281
282class LoopVectorizationRequirements;
283
284} // end anonymous namespace
285
286/// A helper function for converting Scalar types to vector types.
287/// If the incoming type is void, we return void. If the VF is 1, we return
288/// the scalar type.
289static Type *ToVectorTy(Type *Scalar, unsigned VF) {
290 if (Scalar->isVoidTy() || VF == 1)
291 return Scalar;
292 return VectorType::get(Scalar, VF);
293}
294
295// FIXME: The following helper functions have multiple implementations
296// in the project. They can be effectively organized in a common Load/Store
297// utilities unit.
298
299/// A helper function that returns the type of loaded or stored value.
300static Type *getMemInstValueType(Value *I) {
301 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 302, __extension__ __PRETTY_FUNCTION__))
302 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 302, __extension__ __PRETTY_FUNCTION__))
;
303 if (auto *LI = dyn_cast<LoadInst>(I))
304 return LI->getType();
305 return cast<StoreInst>(I)->getValueOperand()->getType();
306}
307
308/// A helper function that returns the alignment of load or store instruction.
309static unsigned getMemInstAlignment(Value *I) {
310 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 311, __extension__ __PRETTY_FUNCTION__))
311 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 311, __extension__ __PRETTY_FUNCTION__))
;
312 if (auto *LI = dyn_cast<LoadInst>(I))
313 return LI->getAlignment();
314 return cast<StoreInst>(I)->getAlignment();
315}
316
317/// A helper function that returns the address space of the pointer operand of
318/// load or store instruction.
319static unsigned getMemInstAddressSpace(Value *I) {
320 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 321, __extension__ __PRETTY_FUNCTION__))
321 "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa<
StoreInst>(I)) && "Expected Load or Store instruction"
) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 321, __extension__ __PRETTY_FUNCTION__))
;
322 if (auto *LI = dyn_cast<LoadInst>(I))
323 return LI->getPointerAddressSpace();
324 return cast<StoreInst>(I)->getPointerAddressSpace();
325}
326
327/// A helper function that returns true if the given type is irregular. The
328/// type is irregular if its allocated size doesn't equal the store size of an
329/// element of the corresponding vector type at the given vectorization factor.
330static bool hasIrregularType(Type *Ty, const DataLayout &DL, unsigned VF) {
331 // Determine if an array of VF elements of type Ty is "bitcast compatible"
332 // with a <VF x Ty> vector.
333 if (VF > 1) {
334 auto *VectorTy = VectorType::get(Ty, VF);
335 return VF * DL.getTypeAllocSize(Ty) != DL.getTypeStoreSize(VectorTy);
336 }
337
338 // If the vectorization factor is one, we just check if an array of type Ty
339 // requires padding between elements.
340 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
341}
342
343/// A helper function that returns the reciprocal of the block probability of
344/// predicated blocks. If we return X, we are assuming the predicated block
345/// will execute once for every X iterations of the loop header.
346///
347/// TODO: We should use actual block probability here, if available. Currently,
348/// we always assume predicated blocks have a 50% chance of executing.
349static unsigned getReciprocalPredBlockProb() { return 2; }
350
351/// A helper function that adds a 'fast' flag to floating-point operations.
352static Value *addFastMathFlag(Value *V) {
353 if (isa<FPMathOperator>(V)) {
354 FastMathFlags Flags;
355 Flags.setFast();
356 cast<Instruction>(V)->setFastMathFlags(Flags);
357 }
358 return V;
359}
360
361/// A helper function that returns an integer or floating-point constant with
362/// value C.
363static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
364 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
365 : ConstantFP::get(Ty, C);
366}
367
368namespace llvm {
369
370/// InnerLoopVectorizer vectorizes loops which contain only one basic
371/// block to a specified vectorization factor (VF).
372/// This class performs the widening of scalars into vectors, or multiple
373/// scalars. This class also implements the following features:
374/// * It inserts an epilogue loop for handling loops that don't have iteration
375/// counts that are known to be a multiple of the vectorization factor.
376/// * It handles the code generation for reduction variables.
377/// * Scalarization (implementation using scalars) of un-vectorizable
378/// instructions.
379/// InnerLoopVectorizer does not perform any vectorization-legality
380/// checks, and relies on the caller to check for the different legality
381/// aspects. The InnerLoopVectorizer relies on the
382/// LoopVectorizationLegality class to provide information about the induction
383/// and reduction variables that were found to a given vectorization factor.
384class InnerLoopVectorizer {
385public:
386 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
387 LoopInfo *LI, DominatorTree *DT,
388 const TargetLibraryInfo *TLI,
389 const TargetTransformInfo *TTI, AssumptionCache *AC,
390 OptimizationRemarkEmitter *ORE, unsigned VecWidth,
391 unsigned UnrollFactor, LoopVectorizationLegality *LVL,
392 LoopVectorizationCostModel *CM)
393 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
394 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
395 Builder(PSE.getSE()->getContext()),
396 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM) {}
397 virtual ~InnerLoopVectorizer() = default;
398
399 /// Create a new empty loop. Unlink the old loop and connect the new one.
400 /// Return the pre-header block of the new loop.
401 BasicBlock *createVectorizedLoopSkeleton();
402
403 /// Widen a single instruction within the innermost loop.
404 void widenInstruction(Instruction &I);
405
406 /// Fix the vectorized code, taking care of header phi's, live-outs, and more.
407 void fixVectorizedLoop();
408
409 // Return true if any runtime check is added.
410 bool areSafetyChecksAdded() { return AddedSafetyChecks; }
411
412 /// A type for vectorized values in the new loop. Each value from the
413 /// original loop, when vectorized, is represented by UF vector values in the
414 /// new unrolled loop, where UF is the unroll factor.
415 using VectorParts = SmallVector<Value *, 2>;
416
417 /// Vectorize a single PHINode in a block. This method handles the induction
418 /// variable canonicalization. It supports both VF = 1 for unrolled loops and
419 /// arbitrary length vectors.
420 void widenPHIInstruction(Instruction *PN, unsigned UF, unsigned VF);
421
422 /// A helper function to scalarize a single Instruction in the innermost loop.
423 /// Generates a sequence of scalar instances for each lane between \p MinLane
424 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
425 /// inclusive..
426 void scalarizeInstruction(Instruction *Instr, const VPIteration &Instance,
427 bool IfPredicateInstr);
428
429 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc
430 /// is provided, the integer induction variable will first be truncated to
431 /// the corresponding type.
432 void widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc = nullptr);
433
434 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a
435 /// vector or scalar value on-demand if one is not yet available. When
436 /// vectorizing a loop, we visit the definition of an instruction before its
437 /// uses. When visiting the definition, we either vectorize or scalarize the
438 /// instruction, creating an entry for it in the corresponding map. (In some
439 /// cases, such as induction variables, we will create both vector and scalar
440 /// entries.) Then, as we encounter uses of the definition, we derive values
441 /// for each scalar or vector use unless such a value is already available.
442 /// For example, if we scalarize a definition and one of its uses is vector,
443 /// we build the required vector on-demand with an insertelement sequence
444 /// when visiting the use. Otherwise, if the use is scalar, we can use the
445 /// existing scalar definition.
446 ///
447 /// Return a value in the new loop corresponding to \p V from the original
448 /// loop at unroll index \p Part. If the value has already been vectorized,
449 /// the corresponding vector entry in VectorLoopValueMap is returned. If,
450 /// however, the value has a scalar entry in VectorLoopValueMap, we construct
451 /// a new vector value on-demand by inserting the scalar values into a vector
452 /// with an insertelement sequence. If the value has been neither vectorized
453 /// nor scalarized, it must be loop invariant, so we simply broadcast the
454 /// value into a vector.
455 Value *getOrCreateVectorValue(Value *V, unsigned Part);
456
457 /// Return a value in the new loop corresponding to \p V from the original
458 /// loop at unroll and vector indices \p Instance. If the value has been
459 /// vectorized but not scalarized, the necessary extractelement instruction
460 /// will be generated.
461 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance);
462
463 /// Construct the vector value of a scalarized value \p V one lane at a time.
464 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance);
465
466 /// Try to vectorize the interleaved access group that \p Instr belongs to.
467 void vectorizeInterleaveGroup(Instruction *Instr);
468
469 /// Vectorize Load and Store instructions, optionally masking the vector
470 /// operations if \p BlockInMask is non-null.
471 void vectorizeMemoryInstruction(Instruction *Instr,
472 VectorParts *BlockInMask = nullptr);
473
474 /// \brief Set the debug location in the builder using the debug location in
475 /// the instruction.
476 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr);
477
478protected:
479 friend class LoopVectorizationPlanner;
480
481 /// A small list of PHINodes.
482 using PhiVector = SmallVector<PHINode *, 4>;
483
484 /// A type for scalarized values in the new loop. Each value from the
485 /// original loop, when scalarized, is represented by UF x VF scalar values
486 /// in the new unrolled loop, where UF is the unroll factor and VF is the
487 /// vectorization factor.
488 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
489
490 /// Set up the values of the IVs correctly when exiting the vector loop.
491 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
492 Value *CountRoundDown, Value *EndValue,
493 BasicBlock *MiddleBlock);
494
495 /// Create a new induction variable inside L.
496 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
497 Value *Step, Instruction *DL);
498
499 /// Handle all cross-iteration phis in the header.
500 void fixCrossIterationPHIs();
501
502 /// Fix a first-order recurrence. This is the second phase of vectorizing
503 /// this phi node.
504 void fixFirstOrderRecurrence(PHINode *Phi);
505
506 /// Fix a reduction cross-iteration phi. This is the second phase of
507 /// vectorizing this phi node.
508 void fixReduction(PHINode *Phi);
509
510 /// \brief The Loop exit block may have single value PHI nodes with some
511 /// incoming value. While vectorizing we only handled real values
512 /// that were defined inside the loop and we should have one value for
513 /// each predecessor of its parent basic block. See PR14725.
514 void fixLCSSAPHIs();
515
516 /// Iteratively sink the scalarized operands of a predicated instruction into
517 /// the block that was created for it.
518 void sinkScalarOperands(Instruction *PredInst);
519
520 /// Shrinks vector element sizes to the smallest bitwidth they can be legally
521 /// represented as.
522 void truncateToMinimalBitwidths();
523
524 /// Insert the new loop to the loop hierarchy and pass manager
525 /// and update the analysis passes.
526 void updateAnalysis();
527
528 /// Create a broadcast instruction. This method generates a broadcast
529 /// instruction (shuffle) for loop invariant values and for the induction
530 /// value. If this is the induction variable then we extend it to N, N+1, ...
531 /// this is needed because each iteration in the loop corresponds to a SIMD
532 /// element.
533 virtual Value *getBroadcastInstrs(Value *V);
534
535 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...)
536 /// to each vector element of Val. The sequence starts at StartIndex.
537 /// \p Opcode is relevant for FP induction variable.
538 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step,
539 Instruction::BinaryOps Opcode =
540 Instruction::BinaryOpsEnd);
541
542 /// Compute scalar induction steps. \p ScalarIV is the scalar induction
543 /// variable on which to base the steps, \p Step is the size of the step, and
544 /// \p EntryVal is the value from the original loop that maps to the steps.
545 /// Note that \p EntryVal doesn't have to be an induction variable - it
546 /// can also be a truncate instruction.
547 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
548 const InductionDescriptor &ID);
549
550 /// Create a vector induction phi node based on an existing scalar one. \p
551 /// EntryVal is the value from the original loop that maps to the vector phi
552 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a
553 /// truncate instruction, instead of widening the original IV, we widen a
554 /// version of the IV truncated to \p EntryVal's type.
555 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
556 Value *Step, Instruction *EntryVal);
557
558 /// Returns true if an instruction \p I should be scalarized instead of
559 /// vectorized for the chosen vectorization factor.
560 bool shouldScalarizeInstruction(Instruction *I) const;
561
562 /// Returns true if we should generate a scalar version of \p IV.
563 bool needsScalarInduction(Instruction *IV) const;
564
565 /// If there is a cast involved in the induction variable \p ID, which should
566 /// be ignored in the vectorized loop body, this function records the
567 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
568 /// cast. We had already proved that the casted Phi is equal to the uncasted
569 /// Phi in the vectorized loop (under a runtime guard), and therefore
570 /// there is no need to vectorize the cast - the same value can be used in the
571 /// vector loop for both the Phi and the cast.
572 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
573 /// Otherwise, \p VectorLoopValue is a widened/vectorized value.
574 ///
575 /// \p EntryVal is the value from the original loop that maps to the vector
576 /// phi node and is used to distinguish what is the IV currently being
577 /// processed - original one (if \p EntryVal is a phi corresponding to the
578 /// original IV) or the "newly-created" one based on the proof mentioned above
579 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
580 /// latter case \p EntryVal is a TruncInst and we must not record anything for
581 /// that IV, but it's error-prone to expect callers of this routine to care
582 /// about that, hence this explicit parameter.
583 void recordVectorLoopValueForInductionCast(const InductionDescriptor &ID,
584 const Instruction *EntryVal,
585 Value *VectorLoopValue,
586 unsigned Part,
587 unsigned Lane = UINT_MAX(2147483647 *2U +1U));
588
589 /// Generate a shuffle sequence that will reverse the vector Vec.
590 virtual Value *reverseVector(Value *Vec);
591
592 /// Returns (and creates if needed) the original loop trip count.
593 Value *getOrCreateTripCount(Loop *NewLoop);
594
595 /// Returns (and creates if needed) the trip count of the widened loop.
596 Value *getOrCreateVectorTripCount(Loop *NewLoop);
597
598 /// Returns a bitcasted value to the requested vector type.
599 /// Also handles bitcasts of vector<float> <-> vector<pointer> types.
600 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
601 const DataLayout &DL);
602
603 /// Emit a bypass check to see if the vector trip count is zero, including if
604 /// it overflows.
605 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
606
607 /// Emit a bypass check to see if all of the SCEV assumptions we've
608 /// had to make are correct.
609 void emitSCEVChecks(Loop *L, BasicBlock *Bypass);
610
611 /// Emit bypass checks to check any memory assumptions we may have made.
612 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
613
614 /// Add additional metadata to \p To that was not present on \p Orig.
615 ///
616 /// Currently this is used to add the noalias annotations based on the
617 /// inserted memchecks. Use this for instructions that are *cloned* into the
618 /// vector loop.
619 void addNewMetadata(Instruction *To, const Instruction *Orig);
620
621 /// Add metadata from one instruction to another.
622 ///
623 /// This includes both the original MDs from \p From and additional ones (\see
624 /// addNewMetadata). Use this for *newly created* instructions in the vector
625 /// loop.
626 void addMetadata(Instruction *To, Instruction *From);
627
628 /// \brief Similar to the previous function but it adds the metadata to a
629 /// vector of instructions.
630 void addMetadata(ArrayRef<Value *> To, Instruction *From);
631
632 /// The original loop.
633 Loop *OrigLoop;
634
635 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
636 /// dynamic knowledge to simplify SCEV expressions and converts them to a
637 /// more usable form.
638 PredicatedScalarEvolution &PSE;
639
640 /// Loop Info.
641 LoopInfo *LI;
642
643 /// Dominator Tree.
644 DominatorTree *DT;
645
646 /// Alias Analysis.
647 AliasAnalysis *AA;
648
649 /// Target Library Info.
650 const TargetLibraryInfo *TLI;
651
652 /// Target Transform Info.
653 const TargetTransformInfo *TTI;
654
655 /// Assumption Cache.
656 AssumptionCache *AC;
657
658 /// Interface to emit optimization remarks.
659 OptimizationRemarkEmitter *ORE;
660
661 /// \brief LoopVersioning. It's only set up (non-null) if memchecks were
662 /// used.
663 ///
664 /// This is currently only used to add no-alias metadata based on the
665 /// memchecks. The actually versioning is performed manually.
666 std::unique_ptr<LoopVersioning> LVer;
667
668 /// The vectorization SIMD factor to use. Each vector will have this many
669 /// vector elements.
670 unsigned VF;
671
672 /// The vectorization unroll factor to use. Each scalar is vectorized to this
673 /// many different vector instructions.
674 unsigned UF;
675
676 /// The builder that we use
677 IRBuilder<> Builder;
678
679 // --- Vectorization state ---
680
681 /// The vector-loop preheader.
682 BasicBlock *LoopVectorPreHeader;
683
684 /// The scalar-loop preheader.
685 BasicBlock *LoopScalarPreHeader;
686
687 /// Middle Block between the vector and the scalar.
688 BasicBlock *LoopMiddleBlock;
689
690 /// The ExitBlock of the scalar loop.
691 BasicBlock *LoopExitBlock;
692
693 /// The vector loop body.
694 BasicBlock *LoopVectorBody;
695
696 /// The scalar loop body.
697 BasicBlock *LoopScalarBody;
698
699 /// A list of all bypass blocks. The first block is the entry of the loop.
700 SmallVector<BasicBlock *, 4> LoopBypassBlocks;
701
702 /// The new Induction variable which was added to the new block.
703 PHINode *Induction = nullptr;
704
705 /// The induction variable of the old basic block.
706 PHINode *OldInduction = nullptr;
707
708 /// Maps values from the original loop to their corresponding values in the
709 /// vectorized loop. A key value can map to either vector values, scalar
710 /// values or both kinds of values, depending on whether the key was
711 /// vectorized and scalarized.
712 VectorizerValueMap VectorLoopValueMap;
713
714 /// Store instructions that were predicated.
715 SmallVector<Instruction *, 4> PredicatedInstructions;
716
717 /// Trip count of the original loop.
718 Value *TripCount = nullptr;
719
720 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
721 Value *VectorTripCount = nullptr;
722
723 /// The legality analysis.
724 LoopVectorizationLegality *Legal;
725
726 /// The profitablity analysis.
727 LoopVectorizationCostModel *Cost;
728
729 // Record whether runtime checks are added.
730 bool AddedSafetyChecks = false;
731
732 // Holds the end values for each induction variable. We save the end values
733 // so we can later fix-up the external users of the induction variables.
734 DenseMap<PHINode *, Value *> IVEndValues;
735};
736
737class InnerLoopUnroller : public InnerLoopVectorizer {
738public:
739 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
740 LoopInfo *LI, DominatorTree *DT,
741 const TargetLibraryInfo *TLI,
742 const TargetTransformInfo *TTI, AssumptionCache *AC,
743 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
744 LoopVectorizationLegality *LVL,
745 LoopVectorizationCostModel *CM)
746 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1,
747 UnrollFactor, LVL, CM) {}
748
749private:
750 Value *getBroadcastInstrs(Value *V) override;
751 Value *getStepVector(Value *Val, int StartIdx, Value *Step,
752 Instruction::BinaryOps Opcode =
753 Instruction::BinaryOpsEnd) override;
754 Value *reverseVector(Value *Vec) override;
755};
756
757} // end namespace llvm
758
759/// \brief Look for a meaningful debug location on the instruction or it's
760/// operands.
761static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
762 if (!I)
763 return I;
764
765 DebugLoc Empty;
766 if (I->getDebugLoc() != Empty)
767 return I;
768
769 for (User::op_iterator OI = I->op_begin(), OE = I->op_end(); OI != OE; ++OI) {
770 if (Instruction *OpInst = dyn_cast<Instruction>(*OI))
771 if (OpInst->getDebugLoc() != Empty)
772 return OpInst;
773 }
774
775 return I;
776}
777
778void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
779 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) {
780 const DILocation *DIL = Inst->getDebugLoc();
781 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
782 !isa<DbgInfoIntrinsic>(Inst))
783 B.SetCurrentDebugLocation(DIL->cloneWithDuplicationFactor(UF * VF));
784 else
785 B.SetCurrentDebugLocation(DIL);
786 } else
787 B.SetCurrentDebugLocation(DebugLoc());
788}
789
790#ifndef NDEBUG
791/// \return string containing a file name and a line # for the given loop.
792static std::string getDebugLocString(const Loop *L) {
793 std::string Result;
794 if (L) {
795 raw_string_ostream OS(Result);
796 if (const DebugLoc LoopDbgLoc = L->getStartLoc())
797 LoopDbgLoc.print(OS);
798 else
799 // Just print the module name.
800 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
801 OS.flush();
802 }
803 return Result;
804}
805#endif
806
807void InnerLoopVectorizer::addNewMetadata(Instruction *To,
808 const Instruction *Orig) {
809 // If the loop was versioned with memchecks, add the corresponding no-alias
810 // metadata.
811 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
812 LVer->annotateInstWithNoAlias(To, Orig);
813}
814
815void InnerLoopVectorizer::addMetadata(Instruction *To,
816 Instruction *From) {
817 propagateMetadata(To, From);
818 addNewMetadata(To, From);
819}
820
821void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
822 Instruction *From) {
823 for (Value *V : To) {
824 if (Instruction *I = dyn_cast<Instruction>(V))
825 addMetadata(I, From);
826 }
827}
828
829namespace llvm {
830
831/// \brief The group of interleaved loads/stores sharing the same stride and
832/// close to each other.
833///
834/// Each member in this group has an index starting from 0, and the largest
835/// index should be less than interleaved factor, which is equal to the absolute
836/// value of the access's stride.
837///
838/// E.g. An interleaved load group of factor 4:
839/// for (unsigned i = 0; i < 1024; i+=4) {
840/// a = A[i]; // Member of index 0
841/// b = A[i+1]; // Member of index 1
842/// d = A[i+3]; // Member of index 3
843/// ...
844/// }
845///
846/// An interleaved store group of factor 4:
847/// for (unsigned i = 0; i < 1024; i+=4) {
848/// ...
849/// A[i] = a; // Member of index 0
850/// A[i+1] = b; // Member of index 1
851/// A[i+2] = c; // Member of index 2
852/// A[i+3] = d; // Member of index 3
853/// }
854///
855/// Note: the interleaved load group could have gaps (missing members), but
856/// the interleaved store group doesn't allow gaps.
857class InterleaveGroup {
858public:
859 InterleaveGroup(Instruction *Instr, int Stride, unsigned Align)
860 : Align(Align), InsertPos(Instr) {
861 assert(Align && "The alignment should be non-zero")(static_cast <bool> (Align && "The alignment should be non-zero"
) ? void (0) : __assert_fail ("Align && \"The alignment should be non-zero\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 861, __extension__ __PRETTY_FUNCTION__))
;
862
863 Factor = std::abs(Stride);
864 assert(Factor > 1 && "Invalid interleave factor")(static_cast <bool> (Factor > 1 && "Invalid interleave factor"
) ? void (0) : __assert_fail ("Factor > 1 && \"Invalid interleave factor\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 864, __extension__ __PRETTY_FUNCTION__))
;
865
866 Reverse = Stride < 0;
867 Members[0] = Instr;
868 }
869
870 bool isReverse() const { return Reverse; }
871 unsigned getFactor() const { return Factor; }
872 unsigned getAlignment() const { return Align; }
873 unsigned getNumMembers() const { return Members.size(); }
874
875 /// \brief Try to insert a new member \p Instr with index \p Index and
876 /// alignment \p NewAlign. The index is related to the leader and it could be
877 /// negative if it is the new leader.
878 ///
879 /// \returns false if the instruction doesn't belong to the group.
880 bool insertMember(Instruction *Instr, int Index, unsigned NewAlign) {
881 assert(NewAlign && "The new member's alignment should be non-zero")(static_cast <bool> (NewAlign && "The new member's alignment should be non-zero"
) ? void (0) : __assert_fail ("NewAlign && \"The new member's alignment should be non-zero\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 881, __extension__ __PRETTY_FUNCTION__))
;
882
883 int Key = Index + SmallestKey;
884
885 // Skip if there is already a member with the same index.
886 if (Members.count(Key))
887 return false;
888
889 if (Key > LargestKey) {
890 // The largest index is always less than the interleave factor.
891 if (Index >= static_cast<int>(Factor))
892 return false;
893
894 LargestKey = Key;
895 } else if (Key < SmallestKey) {
896 // The largest index is always less than the interleave factor.
897 if (LargestKey - Key >= static_cast<int>(Factor))
898 return false;
899
900 SmallestKey = Key;
901 }
902
903 // It's always safe to select the minimum alignment.
904 Align = std::min(Align, NewAlign);
905 Members[Key] = Instr;
906 return true;
907 }
908
909 /// \brief Get the member with the given index \p Index
910 ///
911 /// \returns nullptr if contains no such member.
912 Instruction *getMember(unsigned Index) const {
913 int Key = SmallestKey + Index;
914 if (!Members.count(Key))
915 return nullptr;
916
917 return Members.find(Key)->second;
918 }
919
920 /// \brief Get the index for the given member. Unlike the key in the member
921 /// map, the index starts from 0.
922 unsigned getIndex(Instruction *Instr) const {
923 for (auto I : Members)
924 if (I.second == Instr)
925 return I.first - SmallestKey;
926
927 llvm_unreachable("InterleaveGroup contains no such member")::llvm::llvm_unreachable_internal("InterleaveGroup contains no such member"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 927)
;
928 }
929
930 Instruction *getInsertPos() const { return InsertPos; }
931 void setInsertPos(Instruction *Inst) { InsertPos = Inst; }
932
933 /// Add metadata (e.g. alias info) from the instructions in this group to \p
934 /// NewInst.
935 ///
936 /// FIXME: this function currently does not add noalias metadata a'la
937 /// addNewMedata. To do that we need to compute the intersection of the
938 /// noalias info from all members.
939 void addMetadata(Instruction *NewInst) const {
940 SmallVector<Value *, 4> VL;
941 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
942 [](std::pair<int, Instruction *> p) { return p.second; });
943 propagateMetadata(NewInst, VL);
944 }
945
946private:
947 unsigned Factor; // Interleave Factor.
948 bool Reverse;
949 unsigned Align;
950 DenseMap<int, Instruction *> Members;
951 int SmallestKey = 0;
952 int LargestKey = 0;
953
954 // To avoid breaking dependences, vectorized instructions of an interleave
955 // group should be inserted at either the first load or the last store in
956 // program order.
957 //
958 // E.g. %even = load i32 // Insert Position
959 // %add = add i32 %even // Use of %even
960 // %odd = load i32
961 //
962 // store i32 %even
963 // %odd = add i32 // Def of %odd
964 // store i32 %odd // Insert Position
965 Instruction *InsertPos;
966};
967} // end namespace llvm
968
969namespace {
970
971/// \brief Drive the analysis of interleaved memory accesses in the loop.
972///
973/// Use this class to analyze interleaved accesses only when we can vectorize
974/// a loop. Otherwise it's meaningless to do analysis as the vectorization
975/// on interleaved accesses is unsafe.
976///
977/// The analysis collects interleave groups and records the relationships
978/// between the member and the group in a map.
979class InterleavedAccessInfo {
980public:
981 InterleavedAccessInfo(PredicatedScalarEvolution &PSE, Loop *L,
982 DominatorTree *DT, LoopInfo *LI,
983 const LoopAccessInfo *LAI)
984 : PSE(PSE), TheLoop(L), DT(DT), LI(LI), LAI(LAI) {}
985
986 ~InterleavedAccessInfo() {
987 SmallSet<InterleaveGroup *, 4> DelSet;
988 // Avoid releasing a pointer twice.
989 for (auto &I : InterleaveGroupMap)
990 DelSet.insert(I.second);
991 for (auto *Ptr : DelSet)
992 delete Ptr;
993 }
994
995 /// \brief Analyze the interleaved accesses and collect them in interleave
996 /// groups. Substitute symbolic strides using \p Strides.
997 void analyzeInterleaving();
998
999 /// \brief Check if \p Instr belongs to any interleave group.
1000 bool isInterleaved(Instruction *Instr) const {
1001 return InterleaveGroupMap.count(Instr);
1002 }
1003
1004 /// \brief Get the interleave group that \p Instr belongs to.
1005 ///
1006 /// \returns nullptr if doesn't have such group.
1007 InterleaveGroup *getInterleaveGroup(Instruction *Instr) const {
1008 if (InterleaveGroupMap.count(Instr))
1009 return InterleaveGroupMap.find(Instr)->second;
1010 return nullptr;
1011 }
1012
1013 /// \brief Returns true if an interleaved group that may access memory
1014 /// out-of-bounds requires a scalar epilogue iteration for correctness.
1015 bool requiresScalarEpilogue() const { return RequiresScalarEpilogue; }
1016
1017private:
1018 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks.
1019 /// Simplifies SCEV expressions in the context of existing SCEV assumptions.
1020 /// The interleaved access analysis can also add new predicates (for example
1021 /// by versioning strides of pointers).
1022 PredicatedScalarEvolution &PSE;
1023
1024 Loop *TheLoop;
1025 DominatorTree *DT;
1026 LoopInfo *LI;
1027 const LoopAccessInfo *LAI;
1028
1029 /// True if the loop may contain non-reversed interleaved groups with
1030 /// out-of-bounds accesses. We ensure we don't speculatively access memory
1031 /// out-of-bounds by executing at least one scalar epilogue iteration.
1032 bool RequiresScalarEpilogue = false;
1033
1034 /// Holds the relationships between the members and the interleave group.
1035 DenseMap<Instruction *, InterleaveGroup *> InterleaveGroupMap;
1036
1037 /// Holds dependences among the memory accesses in the loop. It maps a source
1038 /// access to a set of dependent sink accesses.
1039 DenseMap<Instruction *, SmallPtrSet<Instruction *, 2>> Dependences;
1040
1041 /// \brief The descriptor for a strided memory access.
1042 struct StrideDescriptor {
1043 StrideDescriptor() = default;
1044 StrideDescriptor(int64_t Stride, const SCEV *Scev, uint64_t Size,
1045 unsigned Align)
1046 : Stride(Stride), Scev(Scev), Size(Size), Align(Align) {}
1047
1048 // The access's stride. It is negative for a reverse access.
1049 int64_t Stride = 0;
1050
1051 // The scalar expression of this access.
1052 const SCEV *Scev = nullptr;
1053
1054 // The size of the memory object.
1055 uint64_t Size = 0;
1056
1057 // The alignment of this access.
1058 unsigned Align = 0;
1059 };
1060
1061 /// \brief A type for holding instructions and their stride descriptors.
1062 using StrideEntry = std::pair<Instruction *, StrideDescriptor>;
1063
1064 /// \brief Create a new interleave group with the given instruction \p Instr,
1065 /// stride \p Stride and alignment \p Align.
1066 ///
1067 /// \returns the newly created interleave group.
1068 InterleaveGroup *createInterleaveGroup(Instruction *Instr, int Stride,
1069 unsigned Align) {
1070 assert(!InterleaveGroupMap.count(Instr) &&(static_cast <bool> (!InterleaveGroupMap.count(Instr) &&
"Already in an interleaved access group") ? void (0) : __assert_fail
("!InterleaveGroupMap.count(Instr) && \"Already in an interleaved access group\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1071, __extension__ __PRETTY_FUNCTION__))
1071 "Already in an interleaved access group")(static_cast <bool> (!InterleaveGroupMap.count(Instr) &&
"Already in an interleaved access group") ? void (0) : __assert_fail
("!InterleaveGroupMap.count(Instr) && \"Already in an interleaved access group\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1071, __extension__ __PRETTY_FUNCTION__))
;
1072 InterleaveGroupMap[Instr] = new InterleaveGroup(Instr, Stride, Align);
1073 return InterleaveGroupMap[Instr];
1074 }
1075
1076 /// \brief Release the group and remove all the relationships.
1077 void releaseGroup(InterleaveGroup *Group) {
1078 for (unsigned i = 0; i < Group->getFactor(); i++)
1079 if (Instruction *Member = Group->getMember(i))
1080 InterleaveGroupMap.erase(Member);
1081
1082 delete Group;
1083 }
1084
1085 /// \brief Collect all the accesses with a constant stride in program order.
1086 void collectConstStrideAccesses(
1087 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1088 const ValueToValueMap &Strides);
1089
1090 /// \brief Returns true if \p Stride is allowed in an interleaved group.
1091 static bool isStrided(int Stride) {
1092 unsigned Factor = std::abs(Stride);
1093 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1094 }
1095
1096 /// \brief Returns true if \p BB is a predicated block.
1097 bool isPredicated(BasicBlock *BB) const {
1098 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1099 }
1100
1101 /// \brief Returns true if LoopAccessInfo can be used for dependence queries.
1102 bool areDependencesValid() const {
1103 return LAI && LAI->getDepChecker().getDependences();
1104 }
1105
1106 /// \brief Returns true if memory accesses \p A and \p B can be reordered, if
1107 /// necessary, when constructing interleaved groups.
1108 ///
1109 /// \p A must precede \p B in program order. We return false if reordering is
1110 /// not necessary or is prevented because \p A and \p B may be dependent.
1111 bool canReorderMemAccessesForInterleavedGroups(StrideEntry *A,
1112 StrideEntry *B) const {
1113 // Code motion for interleaved accesses can potentially hoist strided loads
1114 // and sink strided stores. The code below checks the legality of the
1115 // following two conditions:
1116 //
1117 // 1. Potentially moving a strided load (B) before any store (A) that
1118 // precedes B, or
1119 //
1120 // 2. Potentially moving a strided store (A) after any load or store (B)
1121 // that A precedes.
1122 //
1123 // It's legal to reorder A and B if we know there isn't a dependence from A
1124 // to B. Note that this determination is conservative since some
1125 // dependences could potentially be reordered safely.
1126
1127 // A is potentially the source of a dependence.
1128 auto *Src = A->first;
1129 auto SrcDes = A->second;
1130
1131 // B is potentially the sink of a dependence.
1132 auto *Sink = B->first;
1133 auto SinkDes = B->second;
1134
1135 // Code motion for interleaved accesses can't violate WAR dependences.
1136 // Thus, reordering is legal if the source isn't a write.
1137 if (!Src->mayWriteToMemory())
1138 return true;
1139
1140 // At least one of the accesses must be strided.
1141 if (!isStrided(SrcDes.Stride) && !isStrided(SinkDes.Stride))
1142 return true;
1143
1144 // If dependence information is not available from LoopAccessInfo,
1145 // conservatively assume the instructions can't be reordered.
1146 if (!areDependencesValid())
1147 return false;
1148
1149 // If we know there is a dependence from source to sink, assume the
1150 // instructions can't be reordered. Otherwise, reordering is legal.
1151 return !Dependences.count(Src) || !Dependences.lookup(Src).count(Sink);
1152 }
1153
1154 /// \brief Collect the dependences from LoopAccessInfo.
1155 ///
1156 /// We process the dependences once during the interleaved access analysis to
1157 /// enable constant-time dependence queries.
1158 void collectDependences() {
1159 if (!areDependencesValid())
1160 return;
1161 auto *Deps = LAI->getDepChecker().getDependences();
1162 for (auto Dep : *Deps)
1163 Dependences[Dep.getSource(*LAI)].insert(Dep.getDestination(*LAI));
1164 }
1165};
1166
1167/// Utility class for getting and setting loop vectorizer hints in the form
1168/// of loop metadata.
1169/// This class keeps a number of loop annotations locally (as member variables)
1170/// and can, upon request, write them back as metadata on the loop. It will
1171/// initially scan the loop for existing metadata, and will update the local
1172/// values based on information in the loop.
1173/// We cannot write all values to metadata, as the mere presence of some info,
1174/// for example 'force', means a decision has been made. So, we need to be
1175/// careful NOT to add them if the user hasn't specifically asked so.
1176class LoopVectorizeHints {
1177 enum HintKind { HK_WIDTH, HK_UNROLL, HK_FORCE, HK_ISVECTORIZED };
1178
1179 /// Hint - associates name and validation with the hint value.
1180 struct Hint {
1181 const char *Name;
1182 unsigned Value; // This may have to change for non-numeric values.
1183 HintKind Kind;
1184
1185 Hint(const char *Name, unsigned Value, HintKind Kind)
1186 : Name(Name), Value(Value), Kind(Kind) {}
1187
1188 bool validate(unsigned Val) {
1189 switch (Kind) {
1190 case HK_WIDTH:
1191 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
1192 case HK_UNROLL:
1193 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
1194 case HK_FORCE:
1195 return (Val <= 1);
1196 case HK_ISVECTORIZED:
1197 return (Val==0 || Val==1);
1198 }
1199 return false;
1200 }
1201 };
1202
1203 /// Vectorization width.
1204 Hint Width;
1205
1206 /// Vectorization interleave factor.
1207 Hint Interleave;
1208
1209 /// Vectorization forced
1210 Hint Force;
1211
1212 /// Already Vectorized
1213 Hint IsVectorized;
1214
1215 /// Return the loop metadata prefix.
1216 static StringRef Prefix() { return "llvm.loop."; }
1217
1218 /// True if there is any unsafe math in the loop.
1219 bool PotentiallyUnsafe = false;
1220
1221public:
1222 enum ForceKind {
1223 FK_Undefined = -1, ///< Not selected.
1224 FK_Disabled = 0, ///< Forcing disabled.
1225 FK_Enabled = 1, ///< Forcing enabled.
1226 };
1227
1228 LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
1229 OptimizationRemarkEmitter &ORE)
1230 : Width("vectorize.width", VectorizerParams::VectorizationFactor,
1231 HK_WIDTH),
1232 Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
1233 Force("vectorize.enable", FK_Undefined, HK_FORCE),
1234 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
1235 // Populate values with existing loop metadata.
1236 getHintsFromMetadata();
1237
1238 // force-vector-interleave overrides DisableInterleaving.
1239 if (VectorizerParams::isInterleaveForced())
1240 Interleave.Value = VectorizerParams::VectorizationInterleave;
1241
1242 if (IsVectorized.Value != 1)
1243 // If the vectorization width and interleaving count are both 1 then
1244 // consider the loop to have been already vectorized because there's
1245 // nothing more that we can do.
1246 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
1247 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (DisableInterleaving && Interleave
.Value == 1) dbgs() << "LV: Interleaving disabled by the pass manager\n"
; } } while (false)
1248 << "LV: Interleaving disabled by the pass manager\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (DisableInterleaving && Interleave
.Value == 1) dbgs() << "LV: Interleaving disabled by the pass manager\n"
; } } while (false)
;
1249 }
1250
1251 /// Mark the loop L as already vectorized by setting the width to 1.
1252 void setAlreadyVectorized() {
1253 IsVectorized.Value = 1;
1254 Hint Hints[] = {IsVectorized};
1255 writeHintsToMetadata(Hints);
1256 }
1257
1258 bool allowVectorization(Function *F, Loop *L, bool AlwaysVectorize) const {
1259 if (getForce() == LoopVectorizeHints::FK_Disabled) {
1260 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"
; } } while (false)
;
1261 emitRemarkWithHints();
1262 return false;
1263 }
1264
1265 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
1266 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"
; } } while (false)
;
1267 emitRemarkWithHints();
1268 return false;
1269 }
1270
1271 if (getIsVectorized() == 1) {
1272 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"
; } } while (false)
;
1273 // FIXME: Add interleave.disable metadata. This will allow
1274 // vectorize.disable to be used without disabling the pass and errors
1275 // to differentiate between disabled vectorization and a width of 1.
1276 ORE.emit([&]() {
1277 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
1278 "AllDisabled", L->getStartLoc(),
1279 L->getHeader())
1280 << "loop not vectorized: vectorization and interleaving are "
1281 "explicitly disabled, or the loop has already been "
1282 "vectorized";
1283 });
1284 return false;
1285 }
1286
1287 return true;
1288 }
1289
1290 /// Dumps all the hint information.
1291 void emitRemarkWithHints() const {
1292 using namespace ore;
1293
1294 ORE.emit([&]() {
1295 if (Force.Value == LoopVectorizeHints::FK_Disabled)
1296 return OptimizationRemarkMissed(LV_NAME"loop-vectorize", "MissedExplicitlyDisabled",
1297 TheLoop->getStartLoc(),
1298 TheLoop->getHeader())
1299 << "loop not vectorized: vectorization is explicitly disabled";
1300 else {
1301 OptimizationRemarkMissed R(LV_NAME"loop-vectorize", "MissedDetails",
1302 TheLoop->getStartLoc(),
1303 TheLoop->getHeader());
1304 R << "loop not vectorized";
1305 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
1306 R << " (Force=" << NV("Force", true);
1307 if (Width.Value != 0)
1308 R << ", Vector Width=" << NV("VectorWidth", Width.Value);
1309 if (Interleave.Value != 0)
1310 R << ", Interleave Count="
1311 << NV("InterleaveCount", Interleave.Value);
1312 R << ")";
1313 }
1314 return R;
1315 }
1316 });
1317 }
1318
1319 unsigned getWidth() const { return Width.Value; }
1320 unsigned getInterleave() const { return Interleave.Value; }
1321 unsigned getIsVectorized() const { return IsVectorized.Value; }
1322 enum ForceKind getForce() const { return (ForceKind)Force.Value; }
1323
1324 /// \brief If hints are provided that force vectorization, use the AlwaysPrint
1325 /// pass name to force the frontend to print the diagnostic.
1326 const char *vectorizeAnalysisPassName() const {
1327 if (getWidth() == 1)
1328 return LV_NAME"loop-vectorize";
1329 if (getForce() == LoopVectorizeHints::FK_Disabled)
1330 return LV_NAME"loop-vectorize";
1331 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
1332 return LV_NAME"loop-vectorize";
1333 return OptimizationRemarkAnalysis::AlwaysPrint;
1334 }
1335
1336 bool allowReordering() const {
1337 // When enabling loop hints are provided we allow the vectorizer to change
1338 // the order of operations that is given by the scalar loop. This is not
1339 // enabled by default because can be unsafe or inefficient. For example,
1340 // reordering floating-point operations will change the way round-off
1341 // error accumulates in the loop.
1342 return getForce() == LoopVectorizeHints::FK_Enabled || getWidth() > 1;
1343 }
1344
1345 bool isPotentiallyUnsafe() const {
1346 // Avoid FP vectorization if the target is unsure about proper support.
1347 // This may be related to the SIMD unit in the target not handling
1348 // IEEE 754 FP ops properly, or bad single-to-double promotions.
1349 // Otherwise, a sequence of vectorized loops, even without reduction,
1350 // could lead to different end results on the destination vectors.
1351 return getForce() != LoopVectorizeHints::FK_Enabled && PotentiallyUnsafe;
1352 }
1353
1354 void setPotentiallyUnsafe() { PotentiallyUnsafe = true; }
1355
1356private:
1357 /// Find hints specified in the loop metadata and update local values.
1358 void getHintsFromMetadata() {
1359 MDNode *LoopID = TheLoop->getLoopID();
1360 if (!LoopID)
1361 return;
1362
1363 // First operand should refer to the loop id itself.
1364 assert(LoopID->getNumOperands() > 0 && "requires at least one operand")(static_cast <bool> (LoopID->getNumOperands() > 0
&& "requires at least one operand") ? void (0) : __assert_fail
("LoopID->getNumOperands() > 0 && \"requires at least one operand\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1364, __extension__ __PRETTY_FUNCTION__))
;
1365 assert(LoopID->getOperand(0) == LoopID && "invalid loop id")(static_cast <bool> (LoopID->getOperand(0) == LoopID
&& "invalid loop id") ? void (0) : __assert_fail ("LoopID->getOperand(0) == LoopID && \"invalid loop id\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1365, __extension__ __PRETTY_FUNCTION__))
;
1366
1367 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1368 const MDString *S = nullptr;
1369 SmallVector<Metadata *, 4> Args;
1370
1371 // The expected hint is either a MDString or a MDNode with the first
1372 // operand a MDString.
1373 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
1374 if (!MD || MD->getNumOperands() == 0)
1375 continue;
1376 S = dyn_cast<MDString>(MD->getOperand(0));
1377 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
1378 Args.push_back(MD->getOperand(i));
1379 } else {
1380 S = dyn_cast<MDString>(LoopID->getOperand(i));
1381 assert(Args.size() == 0 && "too many arguments for MDString")(static_cast <bool> (Args.size() == 0 && "too many arguments for MDString"
) ? void (0) : __assert_fail ("Args.size() == 0 && \"too many arguments for MDString\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1381, __extension__ __PRETTY_FUNCTION__))
;
1382 }
1383
1384 if (!S)
1385 continue;
1386
1387 // Check if the hint starts with the loop metadata prefix.
1388 StringRef Name = S->getString();
1389 if (Args.size() == 1)
1390 setHint(Name, Args[0]);
1391 }
1392 }
1393
1394 /// Checks string hint with one operand and set value if valid.
1395 void setHint(StringRef Name, Metadata *Arg) {
1396 if (!Name.startswith(Prefix()))
1397 return;
1398 Name = Name.substr(Prefix().size(), StringRef::npos);
1399
1400 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
1401 if (!C)
1402 return;
1403 unsigned Val = C->getZExtValue();
1404
1405 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
1406 for (auto H : Hints) {
1407 if (Name == H->Name) {
1408 if (H->validate(Val))
1409 H->Value = Val;
1410 else
1411 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: ignoring invalid hint '"
<< Name << "'\n"; } } while (false)
;
1412 break;
1413 }
1414 }
1415 }
1416
1417 /// Create a new hint from name / value pair.
1418 MDNode *createHintMetadata(StringRef Name, unsigned V) const {
1419 LLVMContext &Context = TheLoop->getHeader()->getContext();
1420 Metadata *MDs[] = {MDString::get(Context, Name),
1421 ConstantAsMetadata::get(
1422 ConstantInt::get(Type::getInt32Ty(Context), V))};
1423 return MDNode::get(Context, MDs);
1424 }
1425
1426 /// Matches metadata with hint name.
1427 bool matchesHintMetadataName(MDNode *Node, ArrayRef<Hint> HintTypes) {
1428 MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
1429 if (!Name)
1430 return false;
1431
1432 for (auto H : HintTypes)
1433 if (Name->getString().endswith(H.Name))
1434 return true;
1435 return false;
1436 }
1437
1438 /// Sets current hints into loop metadata, keeping other values intact.
1439 void writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
1440 if (HintTypes.empty())
1441 return;
1442
1443 // Reserve the first element to LoopID (see below).
1444 SmallVector<Metadata *, 4> MDs(1);
1445 // If the loop already has metadata, then ignore the existing operands.
1446 MDNode *LoopID = TheLoop->getLoopID();
1447 if (LoopID) {
1448 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
1449 MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
1450 // If node in update list, ignore old value.
1451 if (!matchesHintMetadataName(Node, HintTypes))
1452 MDs.push_back(Node);
1453 }
1454 }
1455
1456 // Now, add the missing hints.
1457 for (auto H : HintTypes)
1458 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
1459
1460 // Replace current metadata node with new one.
1461 LLVMContext &Context = TheLoop->getHeader()->getContext();
1462 MDNode *NewLoopID = MDNode::get(Context, MDs);
1463 // Set operand 0 to refer to the loop id itself.
1464 NewLoopID->replaceOperandWith(0, NewLoopID);
1465
1466 TheLoop->setLoopID(NewLoopID);
1467 }
1468
1469 /// The loop these hints belong to.
1470 const Loop *TheLoop;
1471
1472 /// Interface to emit optimization remarks.
1473 OptimizationRemarkEmitter &ORE;
1474};
1475
1476} // end anonymous namespace
1477
1478static void emitMissedWarning(Function *F, Loop *L,
1479 const LoopVectorizeHints &LH,
1480 OptimizationRemarkEmitter *ORE) {
1481 LH.emitRemarkWithHints();
1482
1483 if (LH.getForce() == LoopVectorizeHints::FK_Enabled) {
1484 if (LH.getWidth() != 1)
1485 ORE->emit(DiagnosticInfoOptimizationFailure(
1486 DEBUG_TYPE"loop-vectorize", "FailedRequestedVectorization",
1487 L->getStartLoc(), L->getHeader())
1488 << "loop not vectorized: "
1489 << "failed explicitly specified loop vectorization");
1490 else if (LH.getInterleave() != 1)
1491 ORE->emit(DiagnosticInfoOptimizationFailure(
1492 DEBUG_TYPE"loop-vectorize", "FailedRequestedInterleaving", L->getStartLoc(),
1493 L->getHeader())
1494 << "loop not interleaved: "
1495 << "failed explicitly specified loop interleaving");
1496 }
1497}
1498
1499namespace llvm {
1500
1501/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
1502/// to what vectorization factor.
1503/// This class does not look at the profitability of vectorization, only the
1504/// legality. This class has two main kinds of checks:
1505/// * Memory checks - The code in canVectorizeMemory checks if vectorization
1506/// will change the order of memory accesses in a way that will change the
1507/// correctness of the program.
1508/// * Scalars checks - The code in canVectorizeInstrs and canVectorizeMemory
1509/// checks for a number of different conditions, such as the availability of a
1510/// single induction variable, that all types are supported and vectorize-able,
1511/// etc. This code reflects the capabilities of InnerLoopVectorizer.
1512/// This class is also used by InnerLoopVectorizer for identifying
1513/// induction variable and the different reduction variables.
1514class LoopVectorizationLegality {
1515public:
1516 LoopVectorizationLegality(
1517 Loop *L, PredicatedScalarEvolution &PSE, DominatorTree *DT,
1518 TargetLibraryInfo *TLI, AliasAnalysis *AA, Function *F,
1519 std::function<const LoopAccessInfo &(Loop &)> *GetLAA, LoopInfo *LI,
1520 OptimizationRemarkEmitter *ORE, LoopVectorizationRequirements *R,
1521 LoopVectorizeHints *H, DemandedBits *DB, AssumptionCache *AC)
1522 : TheLoop(L), PSE(PSE), TLI(TLI), DT(DT), GetLAA(GetLAA),
1523 ORE(ORE), Requirements(R), Hints(H), DB(DB), AC(AC) {}
1524
1525 /// ReductionList contains the reduction descriptors for all
1526 /// of the reductions that were found in the loop.
1527 using ReductionList = DenseMap<PHINode *, RecurrenceDescriptor>;
1528
1529 /// InductionList saves induction variables and maps them to the
1530 /// induction descriptor.
1531 using InductionList = MapVector<PHINode *, InductionDescriptor>;
1532
1533 /// RecurrenceSet contains the phi nodes that are recurrences other than
1534 /// inductions and reductions.
1535 using RecurrenceSet = SmallPtrSet<const PHINode *, 8>;
1536
1537 /// Returns true if it is legal to vectorize this loop.
1538 /// This does not mean that it is profitable to vectorize this
1539 /// loop, only that it is legal to do so.
1540 bool canVectorize();
1541
1542 /// Returns the primary induction variable.
1543 PHINode *getPrimaryInduction() { return PrimaryInduction; }
1544
1545 /// Returns the reduction variables found in the loop.
1546 ReductionList *getReductionVars() { return &Reductions; }
1547
1548 /// Returns the induction variables found in the loop.
1549 InductionList *getInductionVars() { return &Inductions; }
1550
1551 /// Return the first-order recurrences found in the loop.
1552 RecurrenceSet *getFirstOrderRecurrences() { return &FirstOrderRecurrences; }
1553
1554 /// Return the set of instructions to sink to handle first-order recurrences.
1555 DenseMap<Instruction *, Instruction *> &getSinkAfter() { return SinkAfter; }
1556
1557 /// Returns the widest induction type.
1558 Type *getWidestInductionType() { return WidestIndTy; }
1559
1560 /// Returns True if V is a Phi node of an induction variable in this loop.
1561 bool isInductionPhi(const Value *V);
1562
1563 /// Returns True if V is a cast that is part of an induction def-use chain,
1564 /// and had been proven to be redundant under a runtime guard (in other
1565 /// words, the cast has the same SCEV expression as the induction phi).
1566 bool isCastedInductionVariable(const Value *V);
1567
1568 /// Returns True if V can be considered as an induction variable in this
1569 /// loop. V can be the induction phi, or some redundant cast in the def-use
1570 /// chain of the inducion phi.
1571 bool isInductionVariable(const Value *V);
1572
1573 /// Returns True if PN is a reduction variable in this loop.
1574 bool isReductionVariable(PHINode *PN) { return Reductions.count(PN); }
1575
1576 /// Returns True if Phi is a first-order recurrence in this loop.
1577 bool isFirstOrderRecurrence(const PHINode *Phi);
1578
1579 /// Return true if the block BB needs to be predicated in order for the loop
1580 /// to be vectorized.
1581 bool blockNeedsPredication(BasicBlock *BB);
1582
1583 /// Check if this pointer is consecutive when vectorizing. This happens
1584 /// when the last index of the GEP is the induction variable, or that the
1585 /// pointer itself is an induction variable.
1586 /// This check allows us to vectorize A[idx] into a wide load/store.
1587 /// Returns:
1588 /// 0 - Stride is unknown or non-consecutive.
1589 /// 1 - Address is consecutive.
1590 /// -1 - Address is consecutive, and decreasing.
1591 /// NOTE: This method must only be used before modifying the original scalar
1592 /// loop. Do not use after invoking 'createVectorizedLoopSkeleton' (PR34965).
1593 int isConsecutivePtr(Value *Ptr);
1594
1595 /// Returns true if the value V is uniform within the loop.
1596 bool isUniform(Value *V);
1597
1598 /// Returns the information that we collected about runtime memory check.
1599 const RuntimePointerChecking *getRuntimePointerChecking() const {
1600 return LAI->getRuntimePointerChecking();
1601 }
1602
1603 const LoopAccessInfo *getLAI() const { return LAI; }
1604
1605 unsigned getMaxSafeDepDistBytes() { return LAI->getMaxSafeDepDistBytes(); }
1606
1607 uint64_t getMaxSafeRegisterWidth() const {
1608 return LAI->getDepChecker().getMaxSafeRegisterWidth();
1609 }
1610
1611 bool hasStride(Value *V) { return LAI->hasStride(V); }
1612
1613 /// Returns true if vector representation of the instruction \p I
1614 /// requires mask.
1615 bool isMaskRequired(const Instruction *I) { return (MaskedOp.count(I) != 0); }
1616
1617 unsigned getNumStores() const { return LAI->getNumStores(); }
1618 unsigned getNumLoads() const { return LAI->getNumLoads(); }
1619
1620 // Returns true if the NoNaN attribute is set on the function.
1621 bool hasFunNoNaNAttr() const { return HasFunNoNaNAttr; }
1622
1623private:
1624 /// Check if a single basic block loop is vectorizable.
1625 /// At this point we know that this is a loop with a constant trip count
1626 /// and we only need to check individual instructions.
1627 bool canVectorizeInstrs();
1628
1629 /// When we vectorize loops we may change the order in which
1630 /// we read and write from memory. This method checks if it is
1631 /// legal to vectorize the code, considering only memory constrains.
1632 /// Returns true if the loop is vectorizable
1633 bool canVectorizeMemory();
1634
1635 /// Return true if we can vectorize this loop using the IF-conversion
1636 /// transformation.
1637 bool canVectorizeWithIfConvert();
1638
1639 /// Return true if all of the instructions in the block can be speculatively
1640 /// executed. \p SafePtrs is a list of addresses that are known to be legal
1641 /// and we know that we can read from them without segfault.
1642 bool blockCanBePredicated(BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs);
1643
1644 /// Updates the vectorization state by adding \p Phi to the inductions list.
1645 /// This can set \p Phi as the main induction of the loop if \p Phi is a
1646 /// better choice for the main induction than the existing one.
1647 void addInductionPhi(PHINode *Phi, const InductionDescriptor &ID,
1648 SmallPtrSetImpl<Value *> &AllowedExit);
1649
1650 /// Create an analysis remark that explains why vectorization failed
1651 ///
1652 /// \p RemarkName is the identifier for the remark. If \p I is passed it is
1653 /// an instruction that prevents vectorization. Otherwise the loop is used
1654 /// for the location of the remark. \return the remark object that can be
1655 /// streamed to.
1656 OptimizationRemarkAnalysis
1657 createMissedAnalysis(StringRef RemarkName, Instruction *I = nullptr) const {
1658 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
1659 RemarkName, TheLoop, I);
1660 }
1661
1662 /// \brief If an access has a symbolic strides, this maps the pointer value to
1663 /// the stride symbol.
1664 const ValueToValueMap *getSymbolicStrides() {
1665 // FIXME: Currently, the set of symbolic strides is sometimes queried before
1666 // it's collected. This happens from canVectorizeWithIfConvert, when the
1667 // pointer is checked to reference consecutive elements suitable for a
1668 // masked access.
1669 return LAI ? &LAI->getSymbolicStrides() : nullptr;
1670 }
1671
1672 /// The loop that we evaluate.
1673 Loop *TheLoop;
1674
1675 /// A wrapper around ScalarEvolution used to add runtime SCEV checks.
1676 /// Applies dynamic knowledge to simplify SCEV expressions in the context
1677 /// of existing SCEV assumptions. The analysis will also add a minimal set
1678 /// of new predicates if this is required to enable vectorization and
1679 /// unrolling.
1680 PredicatedScalarEvolution &PSE;
1681
1682 /// Target Library Info.
1683 TargetLibraryInfo *TLI;
1684
1685 /// Dominator Tree.
1686 DominatorTree *DT;
1687
1688 // LoopAccess analysis.
1689 std::function<const LoopAccessInfo &(Loop &)> *GetLAA;
1690
1691 // And the loop-accesses info corresponding to this loop. This pointer is
1692 // null until canVectorizeMemory sets it up.
1693 const LoopAccessInfo *LAI = nullptr;
1694
1695 /// Interface to emit optimization remarks.
1696 OptimizationRemarkEmitter *ORE;
1697
1698 // --- vectorization state --- //
1699
1700 /// Holds the primary induction variable. This is the counter of the
1701 /// loop.
1702 PHINode *PrimaryInduction = nullptr;
1703
1704 /// Holds the reduction variables.
1705 ReductionList Reductions;
1706
1707 /// Holds all of the induction variables that we found in the loop.
1708 /// Notice that inductions don't need to start at zero and that induction
1709 /// variables can be pointers.
1710 InductionList Inductions;
1711
1712 /// Holds all the casts that participate in the update chain of the induction
1713 /// variables, and that have been proven to be redundant (possibly under a
1714 /// runtime guard). These casts can be ignored when creating the vectorized
1715 /// loop body.
1716 SmallPtrSet<Instruction *, 4> InductionCastsToIgnore;
1717
1718 /// Holds the phi nodes that are first-order recurrences.
1719 RecurrenceSet FirstOrderRecurrences;
1720
1721 /// Holds instructions that need to sink past other instructions to handle
1722 /// first-order recurrences.
1723 DenseMap<Instruction *, Instruction *> SinkAfter;
1724
1725 /// Holds the widest induction type encountered.
1726 Type *WidestIndTy = nullptr;
1727
1728 /// Allowed outside users. This holds the induction and reduction
1729 /// vars which can be accessed from outside the loop.
1730 SmallPtrSet<Value *, 4> AllowedExit;
1731
1732 /// Can we assume the absence of NaNs.
1733 bool HasFunNoNaNAttr = false;
1734
1735 /// Vectorization requirements that will go through late-evaluation.
1736 LoopVectorizationRequirements *Requirements;
1737
1738 /// Used to emit an analysis of any legality issues.
1739 LoopVectorizeHints *Hints;
1740
1741 /// The demanded bits analsyis is used to compute the minimum type size in
1742 /// which a reduction can be computed.
1743 DemandedBits *DB;
1744
1745 /// The assumption cache analysis is used to compute the minimum type size in
1746 /// which a reduction can be computed.
1747 AssumptionCache *AC;
1748
1749 /// While vectorizing these instructions we have to generate a
1750 /// call to the appropriate masked intrinsic
1751 SmallPtrSet<const Instruction *, 8> MaskedOp;
1752};
1753
1754/// LoopVectorizationCostModel - estimates the expected speedups due to
1755/// vectorization.
1756/// In many cases vectorization is not profitable. This can happen because of
1757/// a number of reasons. In this class we mainly attempt to predict the
1758/// expected speedup/slowdowns due to the supported instruction set. We use the
1759/// TargetTransformInfo to query the different backends for the cost of
1760/// different operations.
1761class LoopVectorizationCostModel {
1762public:
1763 LoopVectorizationCostModel(Loop *L, PredicatedScalarEvolution &PSE,
1764 LoopInfo *LI, LoopVectorizationLegality *Legal,
1765 const TargetTransformInfo &TTI,
1766 const TargetLibraryInfo *TLI, DemandedBits *DB,
1767 AssumptionCache *AC,
1768 OptimizationRemarkEmitter *ORE, const Function *F,
1769 const LoopVectorizeHints *Hints,
1770 InterleavedAccessInfo &IAI)
1771 : TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), TTI(TTI), TLI(TLI), DB(DB),
1772 AC(AC), ORE(ORE), TheFunction(F), Hints(Hints), InterleaveInfo(IAI) {}
1773
1774 /// \return An upper bound for the vectorization factor, or None if
1775 /// vectorization should be avoided up front.
1776 Optional<unsigned> computeMaxVF(bool OptForSize);
1777
1778 /// \return The most profitable vectorization factor and the cost of that VF.
1779 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO
1780 /// then this vectorization factor will be selected if vectorization is
1781 /// possible.
1782 VectorizationFactor selectVectorizationFactor(unsigned MaxVF);
1783
1784 /// Setup cost-based decisions for user vectorization factor.
1785 void selectUserVectorizationFactor(unsigned UserVF) {
1786 collectUniformsAndScalars(UserVF);
1787 collectInstsToScalarize(UserVF);
1788 }
1789
1790 /// \return The size (in bits) of the smallest and widest types in the code
1791 /// that needs to be vectorized. We ignore values that remain scalar such as
1792 /// 64 bit loop indices.
1793 std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
1794
1795 /// \return The desired interleave count.
1796 /// If interleave count has been specified by metadata it will be returned.
1797 /// Otherwise, the interleave count is computed and returned. VF and LoopCost
1798 /// are the selected vectorization factor and the cost of the selected VF.
1799 unsigned selectInterleaveCount(bool OptForSize, unsigned VF,
1800 unsigned LoopCost);
1801
1802 /// Memory access instruction may be vectorized in more than one way.
1803 /// Form of instruction after vectorization depends on cost.
1804 /// This function takes cost-based decisions for Load/Store instructions
1805 /// and collects them in a map. This decisions map is used for building
1806 /// the lists of loop-uniform and loop-scalar instructions.
1807 /// The calculated cost is saved with widening decision in order to
1808 /// avoid redundant calculations.
1809 void setCostBasedWideningDecision(unsigned VF);
1810
1811 /// \brief A struct that represents some properties of the register usage
1812 /// of a loop.
1813 struct RegisterUsage {
1814 /// Holds the number of loop invariant values that are used in the loop.
1815 unsigned LoopInvariantRegs;
1816
1817 /// Holds the maximum number of concurrent live intervals in the loop.
1818 unsigned MaxLocalUsers;
1819 };
1820
1821 /// \return Returns information about the register usages of the loop for the
1822 /// given vectorization factors.
1823 SmallVector<RegisterUsage, 8> calculateRegisterUsage(ArrayRef<unsigned> VFs);
1824
1825 /// Collect values we want to ignore in the cost model.
1826 void collectValuesToIgnore();
1827
1828 /// \returns The smallest bitwidth each instruction can be represented with.
1829 /// The vector equivalents of these instructions should be truncated to this
1830 /// type.
1831 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
1832 return MinBWs;
1833 }
1834
1835 /// \returns True if it is more profitable to scalarize instruction \p I for
1836 /// vectorization factor \p VF.
1837 bool isProfitableToScalarize(Instruction *I, unsigned VF) const {
1838 assert(VF > 1 && "Profitable to scalarize relevant only for VF > 1.")(static_cast <bool> (VF > 1 && "Profitable to scalarize relevant only for VF > 1."
) ? void (0) : __assert_fail ("VF > 1 && \"Profitable to scalarize relevant only for VF > 1.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1838, __extension__ __PRETTY_FUNCTION__))
;
1839 auto Scalars = InstsToScalarize.find(VF);
1840 assert(Scalars != InstsToScalarize.end() &&(static_cast <bool> (Scalars != InstsToScalarize.end() &&
"VF not yet analyzed for scalarization profitability") ? void
(0) : __assert_fail ("Scalars != InstsToScalarize.end() && \"VF not yet analyzed for scalarization profitability\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1841, __extension__ __PRETTY_FUNCTION__))
1841 "VF not yet analyzed for scalarization profitability")(static_cast <bool> (Scalars != InstsToScalarize.end() &&
"VF not yet analyzed for scalarization profitability") ? void
(0) : __assert_fail ("Scalars != InstsToScalarize.end() && \"VF not yet analyzed for scalarization profitability\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1841, __extension__ __PRETTY_FUNCTION__))
;
1842 return Scalars->second.count(I);
1843 }
1844
1845 /// Returns true if \p I is known to be uniform after vectorization.
1846 bool isUniformAfterVectorization(Instruction *I, unsigned VF) const {
1847 if (VF == 1)
1848 return true;
1849 assert(Uniforms.count(VF) && "VF not yet analyzed for uniformity")(static_cast <bool> (Uniforms.count(VF) && "VF not yet analyzed for uniformity"
) ? void (0) : __assert_fail ("Uniforms.count(VF) && \"VF not yet analyzed for uniformity\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1849, __extension__ __PRETTY_FUNCTION__))
;
1850 auto UniformsPerVF = Uniforms.find(VF);
1851 return UniformsPerVF->second.count(I);
1852 }
1853
1854 /// Returns true if \p I is known to be scalar after vectorization.
1855 bool isScalarAfterVectorization(Instruction *I, unsigned VF) const {
1856 if (VF == 1)
1857 return true;
1858 assert(Scalars.count(VF) && "Scalar values are not calculated for VF")(static_cast <bool> (Scalars.count(VF) && "Scalar values are not calculated for VF"
) ? void (0) : __assert_fail ("Scalars.count(VF) && \"Scalar values are not calculated for VF\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1858, __extension__ __PRETTY_FUNCTION__))
;
1859 auto ScalarsPerVF = Scalars.find(VF);
1860 return ScalarsPerVF->second.count(I);
1861 }
1862
1863 /// \returns True if instruction \p I can be truncated to a smaller bitwidth
1864 /// for vectorization factor \p VF.
1865 bool canTruncateToMinimalBitwidth(Instruction *I, unsigned VF) const {
1866 return VF > 1 && MinBWs.count(I) && !isProfitableToScalarize(I, VF) &&
1867 !isScalarAfterVectorization(I, VF);
1868 }
1869
1870 /// Decision that was taken during cost calculation for memory instruction.
1871 enum InstWidening {
1872 CM_Unknown,
1873 CM_Widen, // For consecutive accesses with stride +1.
1874 CM_Widen_Reverse, // For consecutive accesses with stride -1.
1875 CM_Interleave,
1876 CM_GatherScatter,
1877 CM_Scalarize
1878 };
1879
1880 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1881 /// instruction \p I and vector width \p VF.
1882 void setWideningDecision(Instruction *I, unsigned VF, InstWidening W,
1883 unsigned Cost) {
1884 assert(VF >= 2 && "Expected VF >=2")(static_cast <bool> (VF >= 2 && "Expected VF >=2"
) ? void (0) : __assert_fail ("VF >= 2 && \"Expected VF >=2\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1884, __extension__ __PRETTY_FUNCTION__))
;
1885 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1886 }
1887
1888 /// Save vectorization decision \p W and \p Cost taken by the cost model for
1889 /// interleaving group \p Grp and vector width \p VF.
1890 void setWideningDecision(const InterleaveGroup *Grp, unsigned VF,
1891 InstWidening W, unsigned Cost) {
1892 assert(VF >= 2 && "Expected VF >=2")(static_cast <bool> (VF >= 2 && "Expected VF >=2"
) ? void (0) : __assert_fail ("VF >= 2 && \"Expected VF >=2\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1892, __extension__ __PRETTY_FUNCTION__))
;
1893 /// Broadcast this decicion to all instructions inside the group.
1894 /// But the cost will be assigned to one instruction only.
1895 for (unsigned i = 0; i < Grp->getFactor(); ++i) {
1896 if (auto *I = Grp->getMember(i)) {
1897 if (Grp->getInsertPos() == I)
1898 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
1899 else
1900 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
1901 }
1902 }
1903 }
1904
1905 /// Return the cost model decision for the given instruction \p I and vector
1906 /// width \p VF. Return CM_Unknown if this instruction did not pass
1907 /// through the cost modeling.
1908 InstWidening getWideningDecision(Instruction *I, unsigned VF) {
1909 assert(VF >= 2 && "Expected VF >=2")(static_cast <bool> (VF >= 2 && "Expected VF >=2"
) ? void (0) : __assert_fail ("VF >= 2 && \"Expected VF >=2\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1909, __extension__ __PRETTY_FUNCTION__))
;
1910 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1911 auto Itr = WideningDecisions.find(InstOnVF);
1912 if (Itr == WideningDecisions.end())
1913 return CM_Unknown;
1914 return Itr->second.first;
1915 }
1916
1917 /// Return the vectorization cost for the given instruction \p I and vector
1918 /// width \p VF.
1919 unsigned getWideningCost(Instruction *I, unsigned VF) {
1920 assert(VF >= 2 && "Expected VF >=2")(static_cast <bool> (VF >= 2 && "Expected VF >=2"
) ? void (0) : __assert_fail ("VF >= 2 && \"Expected VF >=2\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1920, __extension__ __PRETTY_FUNCTION__))
;
1921 std::pair<Instruction *, unsigned> InstOnVF = std::make_pair(I, VF);
1922 assert(WideningDecisions.count(InstOnVF) && "The cost is not calculated")(static_cast <bool> (WideningDecisions.count(InstOnVF) &&
"The cost is not calculated") ? void (0) : __assert_fail ("WideningDecisions.count(InstOnVF) && \"The cost is not calculated\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 1922, __extension__ __PRETTY_FUNCTION__))
;
1923 return WideningDecisions[InstOnVF].second;
1924 }
1925
1926 /// Return True if instruction \p I is an optimizable truncate whose operand
1927 /// is an induction variable. Such a truncate will be removed by adding a new
1928 /// induction variable with the destination type.
1929 bool isOptimizableIVTruncate(Instruction *I, unsigned VF) {
1930 // If the instruction is not a truncate, return false.
1931 auto *Trunc = dyn_cast<TruncInst>(I);
1932 if (!Trunc)
1933 return false;
1934
1935 // Get the source and destination types of the truncate.
1936 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
1937 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
1938
1939 // If the truncate is free for the given types, return false. Replacing a
1940 // free truncate with an induction variable would add an induction variable
1941 // update instruction to each iteration of the loop. We exclude from this
1942 // check the primary induction variable since it will need an update
1943 // instruction regardless.
1944 Value *Op = Trunc->getOperand(0);
1945 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
1946 return false;
1947
1948 // If the truncated value is not an induction variable, return false.
1949 return Legal->isInductionPhi(Op);
1950 }
1951
1952 /// Collects the instructions to scalarize for each predicated instruction in
1953 /// the loop.
1954 void collectInstsToScalarize(unsigned VF);
1955
1956 /// Collect Uniform and Scalar values for the given \p VF.
1957 /// The sets depend on CM decision for Load/Store instructions
1958 /// that may be vectorized as interleave, gather-scatter or scalarized.
1959 void collectUniformsAndScalars(unsigned VF) {
1960 // Do the analysis once.
1961 if (VF == 1 || Uniforms.count(VF))
1962 return;
1963 setCostBasedWideningDecision(VF);
1964 collectLoopUniforms(VF);
1965 collectLoopScalars(VF);
1966 }
1967
1968 /// Returns true if the target machine supports masked store operation
1969 /// for the given \p DataType and kind of access to \p Ptr.
1970 bool isLegalMaskedStore(Type *DataType, Value *Ptr) {
1971 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedStore(DataType);
1972 }
1973
1974 /// Returns true if the target machine supports masked load operation
1975 /// for the given \p DataType and kind of access to \p Ptr.
1976 bool isLegalMaskedLoad(Type *DataType, Value *Ptr) {
1977 return Legal->isConsecutivePtr(Ptr) && TTI.isLegalMaskedLoad(DataType);
1978 }
1979
1980 /// Returns true if the target machine supports masked scatter operation
1981 /// for the given \p DataType.
1982 bool isLegalMaskedScatter(Type *DataType) {
1983 return TTI.isLegalMaskedScatter(DataType);
1984 }
1985
1986 /// Returns true if the target machine supports masked gather operation
1987 /// for the given \p DataType.
1988 bool isLegalMaskedGather(Type *DataType) {
1989 return TTI.isLegalMaskedGather(DataType);
1990 }
1991
1992 /// Returns true if the target machine can represent \p V as a masked gather
1993 /// or scatter operation.
1994 bool isLegalGatherOrScatter(Value *V) {
1995 bool LI = isa<LoadInst>(V);
1996 bool SI = isa<StoreInst>(V);
1997 if (!LI && !SI)
1998 return false;
1999 auto *Ty = getMemInstValueType(V);
2000 return (LI && isLegalMaskedGather(Ty)) || (SI && isLegalMaskedScatter(Ty));
2001 }
2002
2003 /// Returns true if \p I is an instruction that will be scalarized with
2004 /// predication. Such instructions include conditional stores and
2005 /// instructions that may divide by zero.
2006 bool isScalarWithPredication(Instruction *I);
2007
2008 /// Returns true if \p I is a memory instruction with consecutive memory
2009 /// access that can be widened.
2010 bool memoryInstructionCanBeWidened(Instruction *I, unsigned VF = 1);
2011
2012 /// \brief Check if \p Instr belongs to any interleaved access group.
2013 bool isAccessInterleaved(Instruction *Instr) {
2014 return InterleaveInfo.isInterleaved(Instr);
2015 }
2016
2017 /// \brief Get the interleaved access group that \p Instr belongs to.
2018 const InterleaveGroup *getInterleavedAccessGroup(Instruction *Instr) {
2019 return InterleaveInfo.getInterleaveGroup(Instr);
2020 }
2021
2022 /// \brief Returns true if an interleaved group requires a scalar iteration
2023 /// to handle accesses with gaps.
2024 bool requiresScalarEpilogue() const {
2025 return InterleaveInfo.requiresScalarEpilogue();
2026 }
2027
2028private:
2029 unsigned NumPredStores = 0;
2030
2031 /// \return An upper bound for the vectorization factor, larger than zero.
2032 /// One is returned if vectorization should best be avoided due to cost.
2033 unsigned computeFeasibleMaxVF(bool OptForSize, unsigned ConstTripCount);
2034
2035 /// The vectorization cost is a combination of the cost itself and a boolean
2036 /// indicating whether any of the contributing operations will actually
2037 /// operate on
2038 /// vector values after type legalization in the backend. If this latter value
2039 /// is
2040 /// false, then all operations will be scalarized (i.e. no vectorization has
2041 /// actually taken place).
2042 using VectorizationCostTy = std::pair<unsigned, bool>;
2043
2044 /// Returns the expected execution cost. The unit of the cost does
2045 /// not matter because we use the 'cost' units to compare different
2046 /// vector widths. The cost that is returned is *not* normalized by
2047 /// the factor width.
2048 VectorizationCostTy expectedCost(unsigned VF);
2049
2050 /// Returns the execution time cost of an instruction for a given vector
2051 /// width. Vector width of one means scalar.
2052 VectorizationCostTy getInstructionCost(Instruction *I, unsigned VF);
2053
2054 /// The cost-computation logic from getInstructionCost which provides
2055 /// the vector type as an output parameter.
2056 unsigned getInstructionCost(Instruction *I, unsigned VF, Type *&VectorTy);
2057
2058 /// Calculate vectorization cost of memory instruction \p I.
2059 unsigned getMemoryInstructionCost(Instruction *I, unsigned VF);
2060
2061 /// The cost computation for scalarized memory instruction.
2062 unsigned getMemInstScalarizationCost(Instruction *I, unsigned VF);
2063
2064 /// The cost computation for interleaving group of memory instructions.
2065 unsigned getInterleaveGroupCost(Instruction *I, unsigned VF);
2066
2067 /// The cost computation for Gather/Scatter instruction.
2068 unsigned getGatherScatterCost(Instruction *I, unsigned VF);
2069
2070 /// The cost computation for widening instruction \p I with consecutive
2071 /// memory access.
2072 unsigned getConsecutiveMemOpCost(Instruction *I, unsigned VF);
2073
2074 /// The cost calculation for Load instruction \p I with uniform pointer -
2075 /// scalar load + broadcast.
2076 unsigned getUniformMemOpCost(Instruction *I, unsigned VF);
2077
2078 /// Returns whether the instruction is a load or store and will be a emitted
2079 /// as a vector operation.
2080 bool isConsecutiveLoadOrStore(Instruction *I);
2081
2082 /// Returns true if an artificially high cost for emulated masked memrefs
2083 /// should be used.
2084 bool useEmulatedMaskMemRefHack(Instruction *I);
2085
2086 /// Create an analysis remark that explains why vectorization failed
2087 ///
2088 /// \p RemarkName is the identifier for the remark. \return the remark object
2089 /// that can be streamed to.
2090 OptimizationRemarkAnalysis createMissedAnalysis(StringRef RemarkName) {
2091 return ::createMissedAnalysis(Hints->vectorizeAnalysisPassName(),
2092 RemarkName, TheLoop);
2093 }
2094
2095 /// Map of scalar integer values to the smallest bitwidth they can be legally
2096 /// represented as. The vector equivalents of these values should be truncated
2097 /// to this type.
2098 MapVector<Instruction *, uint64_t> MinBWs;
2099
2100 /// A type representing the costs for instructions if they were to be
2101 /// scalarized rather than vectorized. The entries are Instruction-Cost
2102 /// pairs.
2103 using ScalarCostsTy = DenseMap<Instruction *, unsigned>;
2104
2105 /// A set containing all BasicBlocks that are known to present after
2106 /// vectorization as a predicated block.
2107 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
2108
2109 /// A map holding scalar costs for different vectorization factors. The
2110 /// presence of a cost for an instruction in the mapping indicates that the
2111 /// instruction will be scalarized when vectorizing with the associated
2112 /// vectorization factor. The entries are VF-ScalarCostTy pairs.
2113 DenseMap<unsigned, ScalarCostsTy> InstsToScalarize;
2114
2115 /// Holds the instructions known to be uniform after vectorization.
2116 /// The data is collected per VF.
2117 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Uniforms;
2118
2119 /// Holds the instructions known to be scalar after vectorization.
2120 /// The data is collected per VF.
2121 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> Scalars;
2122
2123 /// Holds the instructions (address computations) that are forced to be
2124 /// scalarized.
2125 DenseMap<unsigned, SmallPtrSet<Instruction *, 4>> ForcedScalars;
2126
2127 /// Returns the expected difference in cost from scalarizing the expression
2128 /// feeding a predicated instruction \p PredInst. The instructions to
2129 /// scalarize and their scalar costs are collected in \p ScalarCosts. A
2130 /// non-negative return value implies the expression will be scalarized.
2131 /// Currently, only single-use chains are considered for scalarization.
2132 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
2133 unsigned VF);
2134
2135 /// Collect the instructions that are uniform after vectorization. An
2136 /// instruction is uniform if we represent it with a single scalar value in
2137 /// the vectorized loop corresponding to each vector iteration. Examples of
2138 /// uniform instructions include pointer operands of consecutive or
2139 /// interleaved memory accesses. Note that although uniformity implies an
2140 /// instruction will be scalar, the reverse is not true. In general, a
2141 /// scalarized instruction will be represented by VF scalar values in the
2142 /// vectorized loop, each corresponding to an iteration of the original
2143 /// scalar loop.
2144 void collectLoopUniforms(unsigned VF);
2145
2146 /// Collect the instructions that are scalar after vectorization. An
2147 /// instruction is scalar if it is known to be uniform or will be scalarized
2148 /// during vectorization. Non-uniform scalarized instructions will be
2149 /// represented by VF values in the vectorized loop, each corresponding to an
2150 /// iteration of the original scalar loop.
2151 void collectLoopScalars(unsigned VF);
2152
2153 /// Keeps cost model vectorization decision and cost for instructions.
2154 /// Right now it is used for memory instructions only.
2155 using DecisionList = DenseMap<std::pair<Instruction *, unsigned>,
2156 std::pair<InstWidening, unsigned>>;
2157
2158 DecisionList WideningDecisions;
2159
2160public:
2161 /// The loop that we evaluate.
2162 Loop *TheLoop;
2163
2164 /// Predicated scalar evolution analysis.
2165 PredicatedScalarEvolution &PSE;
2166
2167 /// Loop Info analysis.
2168 LoopInfo *LI;
2169
2170 /// Vectorization legality.
2171 LoopVectorizationLegality *Legal;
2172
2173 /// Vector target information.
2174 const TargetTransformInfo &TTI;
2175
2176 /// Target Library Info.
2177 const TargetLibraryInfo *TLI;
2178
2179 /// Demanded bits analysis.
2180 DemandedBits *DB;
2181
2182 /// Assumption cache.
2183 AssumptionCache *AC;
2184
2185 /// Interface to emit optimization remarks.
2186 OptimizationRemarkEmitter *ORE;
2187
2188 const Function *TheFunction;
2189
2190 /// Loop Vectorize Hint.
2191 const LoopVectorizeHints *Hints;
2192
2193 /// The interleave access information contains groups of interleaved accesses
2194 /// with the same stride and close to each other.
2195 InterleavedAccessInfo &InterleaveInfo;
2196
2197 /// Values to ignore in the cost model.
2198 SmallPtrSet<const Value *, 16> ValuesToIgnore;
2199
2200 /// Values to ignore in the cost model when VF > 1.
2201 SmallPtrSet<const Value *, 16> VecValuesToIgnore;
2202};
2203
2204} // end namespace llvm
2205
2206namespace {
2207
2208/// \brief This holds vectorization requirements that must be verified late in
2209/// the process. The requirements are set by legalize and costmodel. Once
2210/// vectorization has been determined to be possible and profitable the
2211/// requirements can be verified by looking for metadata or compiler options.
2212/// For example, some loops require FP commutativity which is only allowed if
2213/// vectorization is explicitly specified or if the fast-math compiler option
2214/// has been provided.
2215/// Late evaluation of these requirements allows helpful diagnostics to be
2216/// composed that tells the user what need to be done to vectorize the loop. For
2217/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
2218/// evaluation should be used only when diagnostics can generated that can be
2219/// followed by a non-expert user.
2220class LoopVectorizationRequirements {
2221public:
2222 LoopVectorizationRequirements(OptimizationRemarkEmitter &ORE) : ORE(ORE) {}
2223
2224 void addUnsafeAlgebraInst(Instruction *I) {
2225 // First unsafe algebra instruction.
2226 if (!UnsafeAlgebraInst)
2227 UnsafeAlgebraInst = I;
2228 }
2229
2230 void addRuntimePointerChecks(unsigned Num) { NumRuntimePointerChecks = Num; }
2231
2232 bool doesNotMeet(Function *F, Loop *L, const LoopVectorizeHints &Hints) {
2233 const char *PassName = Hints.vectorizeAnalysisPassName();
2234 bool Failed = false;
2235 if (UnsafeAlgebraInst && !Hints.allowReordering()) {
2236 ORE.emit([&]() {
2237 return OptimizationRemarkAnalysisFPCommute(
2238 PassName, "CantReorderFPOps",
2239 UnsafeAlgebraInst->getDebugLoc(),
2240 UnsafeAlgebraInst->getParent())
2241 << "loop not vectorized: cannot prove it is safe to reorder "
2242 "floating-point operations";
2243 });
2244 Failed = true;
2245 }
2246
2247 // Test if runtime memcheck thresholds are exceeded.
2248 bool PragmaThresholdReached =
2249 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
2250 bool ThresholdReached =
2251 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
2252 if ((ThresholdReached && !Hints.allowReordering()) ||
2253 PragmaThresholdReached) {
2254 ORE.emit([&]() {
2255 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
2256 L->getStartLoc(),
2257 L->getHeader())
2258 << "loop not vectorized: cannot prove it is safe to reorder "
2259 "memory operations";
2260 });
2261 DEBUG(dbgs() << "LV: Too many memory checks needed.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Too many memory checks needed.\n"
; } } while (false)
;
2262 Failed = true;
2263 }
2264
2265 return Failed;
2266 }
2267
2268private:
2269 unsigned NumRuntimePointerChecks = 0;
2270 Instruction *UnsafeAlgebraInst = nullptr;
2271
2272 /// Interface to emit optimization remarks.
2273 OptimizationRemarkEmitter &ORE;
2274};
2275
2276} // end anonymous namespace
2277
2278static void addAcyclicInnerLoop(Loop &L, LoopInfo &LI,
2279 SmallVectorImpl<Loop *> &V) {
2280 if (L.empty()) {
2281 LoopBlocksRPO RPOT(&L);
2282 RPOT.perform(&LI);
2283 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
2284 V.push_back(&L);
2285 return;
2286 }
2287 for (Loop *InnerL : L)
2288 addAcyclicInnerLoop(*InnerL, LI, V);
2289}
2290
2291namespace {
2292
2293/// The LoopVectorize Pass.
2294struct LoopVectorize : public FunctionPass {
2295 /// Pass identification, replacement for typeid
2296 static char ID;
2297
2298 LoopVectorizePass Impl;
2299
2300 explicit LoopVectorize(bool NoUnrolling = false, bool AlwaysVectorize = true)
2301 : FunctionPass(ID) {
2302 Impl.DisableUnrolling = NoUnrolling;
2303 Impl.AlwaysVectorize = AlwaysVectorize;
2304 initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
2305 }
2306
2307 bool runOnFunction(Function &F) override {
2308 if (skipFunction(F))
2309 return false;
2310
2311 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2312 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2313 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
2314 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2315 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
2316 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2317 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2318 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
2319 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
2320 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
2321 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
2322 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
2323
2324 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
2325 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
2326
2327 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
2328 GetLAA, *ORE);
2329 }
2330
2331 void getAnalysisUsage(AnalysisUsage &AU) const override {
2332 AU.addRequired<AssumptionCacheTracker>();
2333 AU.addRequired<BlockFrequencyInfoWrapperPass>();
2334 AU.addRequired<DominatorTreeWrapperPass>();
2335 AU.addRequired<LoopInfoWrapperPass>();
2336 AU.addRequired<ScalarEvolutionWrapperPass>();
2337 AU.addRequired<TargetTransformInfoWrapperPass>();
2338 AU.addRequired<AAResultsWrapperPass>();
2339 AU.addRequired<LoopAccessLegacyAnalysis>();
2340 AU.addRequired<DemandedBitsWrapperPass>();
2341 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
2342 AU.addPreserved<LoopInfoWrapperPass>();
2343 AU.addPreserved<DominatorTreeWrapperPass>();
2344 AU.addPreserved<BasicAAWrapperPass>();
2345 AU.addPreserved<GlobalsAAWrapperPass>();
2346 }
2347};
2348
2349} // end anonymous namespace
2350
2351//===----------------------------------------------------------------------===//
2352// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
2353// LoopVectorizationCostModel and LoopVectorizationPlanner.
2354//===----------------------------------------------------------------------===//
2355
2356Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
2357 // We need to place the broadcast of invariant variables outside the loop.
2358 Instruction *Instr = dyn_cast<Instruction>(V);
2359 bool NewInstr = (Instr && Instr->getParent() == LoopVectorBody);
2360 bool Invariant = OrigLoop->isLoopInvariant(V) && !NewInstr;
2361
2362 // Place the code for broadcasting invariant variables in the new preheader.
2363 IRBuilder<>::InsertPointGuard Guard(Builder);
2364 if (Invariant)
2365 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2366
2367 // Broadcast the scalar into all locations in the vector.
2368 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
2369
2370 return Shuf;
2371}
2372
2373void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
2374 const InductionDescriptor &II, Value *Step, Instruction *EntryVal) {
2375 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&(static_cast <bool> ((isa<PHINode>(EntryVal) || isa
<TruncInst>(EntryVal)) && "Expected either an induction phi-node or a truncate of it!"
) ? void (0) : __assert_fail ("(isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && \"Expected either an induction phi-node or a truncate of it!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2376, __extension__ __PRETTY_FUNCTION__))
2376 "Expected either an induction phi-node or a truncate of it!")(static_cast <bool> ((isa<PHINode>(EntryVal) || isa
<TruncInst>(EntryVal)) && "Expected either an induction phi-node or a truncate of it!"
) ? void (0) : __assert_fail ("(isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && \"Expected either an induction phi-node or a truncate of it!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2376, __extension__ __PRETTY_FUNCTION__))
;
2377 Value *Start = II.getStartValue();
2378
2379 // Construct the initial value of the vector IV in the vector loop preheader
2380 auto CurrIP = Builder.saveIP();
2381 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
2382 if (isa<TruncInst>(EntryVal)) {
2383 assert(Start->getType()->isIntegerTy() &&(static_cast <bool> (Start->getType()->isIntegerTy
() && "Truncation requires an integer type") ? void (
0) : __assert_fail ("Start->getType()->isIntegerTy() && \"Truncation requires an integer type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2384, __extension__ __PRETTY_FUNCTION__))
2384 "Truncation requires an integer type")(static_cast <bool> (Start->getType()->isIntegerTy
() && "Truncation requires an integer type") ? void (
0) : __assert_fail ("Start->getType()->isIntegerTy() && \"Truncation requires an integer type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2384, __extension__ __PRETTY_FUNCTION__))
;
2385 auto *TruncType = cast<IntegerType>(EntryVal->getType());
2386 Step = Builder.CreateTrunc(Step, TruncType);
2387 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
2388 }
2389 Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
2390 Value *SteppedStart =
2391 getStepVector(SplatStart, 0, Step, II.getInductionOpcode());
2392
2393 // We create vector phi nodes for both integer and floating-point induction
2394 // variables. Here, we determine the kind of arithmetic we will perform.
2395 Instruction::BinaryOps AddOp;
2396 Instruction::BinaryOps MulOp;
2397 if (Step->getType()->isIntegerTy()) {
2398 AddOp = Instruction::Add;
2399 MulOp = Instruction::Mul;
2400 } else {
2401 AddOp = II.getInductionOpcode();
2402 MulOp = Instruction::FMul;
2403 }
2404
2405 // Multiply the vectorization factor by the step using integer or
2406 // floating-point arithmetic as appropriate.
2407 Value *ConstVF = getSignedIntOrFpConstant(Step->getType(), VF);
2408 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF));
2409
2410 // Create a vector splat to use in the induction update.
2411 //
2412 // FIXME: If the step is non-constant, we create the vector splat with
2413 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
2414 // handle a constant vector splat.
2415 Value *SplatVF = isa<Constant>(Mul)
2416 ? ConstantVector::getSplat(VF, cast<Constant>(Mul))
2417 : Builder.CreateVectorSplat(VF, Mul);
2418 Builder.restoreIP(CurrIP);
2419
2420 // We may need to add the step a number of times, depending on the unroll
2421 // factor. The last of those goes into the PHI.
2422 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
2423 &*LoopVectorBody->getFirstInsertionPt());
2424 Instruction *LastInduction = VecInd;
2425 for (unsigned Part = 0; Part < UF; ++Part) {
2426 VectorLoopValueMap.setVectorValue(EntryVal, Part, LastInduction);
2427
2428 if (isa<TruncInst>(EntryVal))
2429 addMetadata(LastInduction, EntryVal);
2430 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, Part);
2431
2432 LastInduction = cast<Instruction>(addFastMathFlag(
2433 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")));
2434 }
2435
2436 // Move the last step to the end of the latch block. This ensures consistent
2437 // placement of all induction updates.
2438 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
2439 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
2440 auto *ICmp = cast<Instruction>(Br->getCondition());
2441 LastInduction->moveBefore(ICmp);
2442 LastInduction->setName("vec.ind.next");
2443
2444 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
2445 VecInd->addIncoming(LastInduction, LoopVectorLatch);
2446}
2447
2448bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
2449 return Cost->isScalarAfterVectorization(I, VF) ||
2450 Cost->isProfitableToScalarize(I, VF);
2451}
2452
2453bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
2454 if (shouldScalarizeInstruction(IV))
2455 return true;
2456 auto isScalarInst = [&](User *U) -> bool {
2457 auto *I = cast<Instruction>(U);
2458 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
2459 };
2460 return llvm::any_of(IV->users(), isScalarInst);
2461}
2462
2463void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
2464 const InductionDescriptor &ID, const Instruction *EntryVal,
2465 Value *VectorLoopVal, unsigned Part, unsigned Lane) {
2466 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&(static_cast <bool> ((isa<PHINode>(EntryVal) || isa
<TruncInst>(EntryVal)) && "Expected either an induction phi-node or a truncate of it!"
) ? void (0) : __assert_fail ("(isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && \"Expected either an induction phi-node or a truncate of it!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2467, __extension__ __PRETTY_FUNCTION__))
2467 "Expected either an induction phi-node or a truncate of it!")(static_cast <bool> ((isa<PHINode>(EntryVal) || isa
<TruncInst>(EntryVal)) && "Expected either an induction phi-node or a truncate of it!"
) ? void (0) : __assert_fail ("(isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && \"Expected either an induction phi-node or a truncate of it!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2467, __extension__ __PRETTY_FUNCTION__))
;
2468
2469 // This induction variable is not the phi from the original loop but the
2470 // newly-created IV based on the proof that casted Phi is equal to the
2471 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It
2472 // re-uses the same InductionDescriptor that original IV uses but we don't
2473 // have to do any recording in this case - that is done when original IV is
2474 // processed.
2475 if (isa<TruncInst>(EntryVal))
2476 return;
2477
2478 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
2479 if (Casts.empty())
2480 return;
2481 // Only the first Cast instruction in the Casts vector is of interest.
2482 // The rest of the Casts (if exist) have no uses outside the
2483 // induction update chain itself.
2484 Instruction *CastInst = *Casts.begin();
2485 if (Lane < UINT_MAX(2147483647 *2U +1U))
2486 VectorLoopValueMap.setScalarValue(CastInst, {Part, Lane}, VectorLoopVal);
2487 else
2488 VectorLoopValueMap.setVectorValue(CastInst, Part, VectorLoopVal);
2489}
2490
2491void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, TruncInst *Trunc) {
2492 assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&(static_cast <bool> ((IV->getType()->isIntegerTy(
) || IV != OldInduction) && "Primary induction variable must have an integer type"
) ? void (0) : __assert_fail ("(IV->getType()->isIntegerTy() || IV != OldInduction) && \"Primary induction variable must have an integer type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2493, __extension__ __PRETTY_FUNCTION__))
2493 "Primary induction variable must have an integer type")(static_cast <bool> ((IV->getType()->isIntegerTy(
) || IV != OldInduction) && "Primary induction variable must have an integer type"
) ? void (0) : __assert_fail ("(IV->getType()->isIntegerTy() || IV != OldInduction) && \"Primary induction variable must have an integer type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2493, __extension__ __PRETTY_FUNCTION__))
;
2494
2495 auto II = Legal->getInductionVars()->find(IV);
2496 assert(II != Legal->getInductionVars()->end() && "IV is not an induction")(static_cast <bool> (II != Legal->getInductionVars()
->end() && "IV is not an induction") ? void (0) : __assert_fail
("II != Legal->getInductionVars()->end() && \"IV is not an induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2496, __extension__ __PRETTY_FUNCTION__))
;
2497
2498 auto ID = II->second;
2499 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match")(static_cast <bool> (IV->getType() == ID.getStartValue
()->getType() && "Types must match") ? void (0) : __assert_fail
("IV->getType() == ID.getStartValue()->getType() && \"Types must match\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2499, __extension__ __PRETTY_FUNCTION__))
;
2500
2501 // The scalar value to broadcast. This will be derived from the canonical
2502 // induction variable.
2503 Value *ScalarIV = nullptr;
2504
2505 // The value from the original loop to which we are mapping the new induction
2506 // variable.
2507 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
2508
2509 // True if we have vectorized the induction variable.
2510 auto VectorizedIV = false;
2511
2512 // Determine if we want a scalar version of the induction variable. This is
2513 // true if the induction variable itself is not widened, or if it has at
2514 // least one user in the loop that is not widened.
2515 auto NeedsScalarIV = VF > 1 && needsScalarInduction(EntryVal);
2516
2517 // Generate code for the induction step. Note that induction steps are
2518 // required to be loop-invariant
2519 assert(PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) &&(static_cast <bool> (PSE.getSE()->isLoopInvariant(ID
.getStep(), OrigLoop) && "Induction step should be loop invariant"
) ? void (0) : __assert_fail ("PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && \"Induction step should be loop invariant\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2520, __extension__ __PRETTY_FUNCTION__))
2520 "Induction step should be loop invariant")(static_cast <bool> (PSE.getSE()->isLoopInvariant(ID
.getStep(), OrigLoop) && "Induction step should be loop invariant"
) ? void (0) : __assert_fail ("PSE.getSE()->isLoopInvariant(ID.getStep(), OrigLoop) && \"Induction step should be loop invariant\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2520, __extension__ __PRETTY_FUNCTION__))
;
2521 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
2522 Value *Step = nullptr;
2523 if (PSE.getSE()->isSCEVable(IV->getType())) {
2524 SCEVExpander Exp(*PSE.getSE(), DL, "induction");
2525 Step = Exp.expandCodeFor(ID.getStep(), ID.getStep()->getType(),
2526 LoopVectorPreHeader->getTerminator());
2527 } else {
2528 Step = cast<SCEVUnknown>(ID.getStep())->getValue();
2529 }
2530
2531 // Try to create a new independent vector induction variable. If we can't
2532 // create the phi node, we will splat the scalar induction variable in each
2533 // loop iteration.
2534 if (VF > 1 && !shouldScalarizeInstruction(EntryVal)) {
2535 createVectorIntOrFpInductionPHI(ID, Step, EntryVal);
2536 VectorizedIV = true;
2537 }
2538
2539 // If we haven't yet vectorized the induction variable, or if we will create
2540 // a scalar one, we need to define the scalar induction variable and step
2541 // values. If we were given a truncation type, truncate the canonical
2542 // induction variable and step. Otherwise, derive these values from the
2543 // induction descriptor.
2544 if (!VectorizedIV || NeedsScalarIV) {
2545 ScalarIV = Induction;
2546 if (IV != OldInduction) {
2547 ScalarIV = IV->getType()->isIntegerTy()
2548 ? Builder.CreateSExtOrTrunc(Induction, IV->getType())
2549 : Builder.CreateCast(Instruction::SIToFP, Induction,
2550 IV->getType());
2551 ScalarIV = ID.transform(Builder, ScalarIV, PSE.getSE(), DL);
2552 ScalarIV->setName("offset.idx");
2553 }
2554 if (Trunc) {
2555 auto *TruncType = cast<IntegerType>(Trunc->getType());
2556 assert(Step->getType()->isIntegerTy() &&(static_cast <bool> (Step->getType()->isIntegerTy
() && "Truncation requires an integer step") ? void (
0) : __assert_fail ("Step->getType()->isIntegerTy() && \"Truncation requires an integer step\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2557, __extension__ __PRETTY_FUNCTION__))
2557 "Truncation requires an integer step")(static_cast <bool> (Step->getType()->isIntegerTy
() && "Truncation requires an integer step") ? void (
0) : __assert_fail ("Step->getType()->isIntegerTy() && \"Truncation requires an integer step\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2557, __extension__ __PRETTY_FUNCTION__))
;
2558 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
2559 Step = Builder.CreateTrunc(Step, TruncType);
2560 }
2561 }
2562
2563 // If we haven't yet vectorized the induction variable, splat the scalar
2564 // induction variable, and build the necessary step vectors.
2565 // TODO: Don't do it unless the vectorized IV is really required.
2566 if (!VectorizedIV) {
2567 Value *Broadcasted = getBroadcastInstrs(ScalarIV);
2568 for (unsigned Part = 0; Part < UF; ++Part) {
2569 Value *EntryPart =
2570 getStepVector(Broadcasted, VF * Part, Step, ID.getInductionOpcode());
2571 VectorLoopValueMap.setVectorValue(EntryVal, Part, EntryPart);
2572 if (Trunc)
2573 addMetadata(EntryPart, Trunc);
2574 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, Part);
2575 }
2576 }
2577
2578 // If an induction variable is only used for counting loop iterations or
2579 // calculating addresses, it doesn't need to be widened. Create scalar steps
2580 // that can be used by instructions we will later scalarize. Note that the
2581 // addition of the scalar steps will not increase the number of instructions
2582 // in the loop in the common case prior to InstCombine. We will be trading
2583 // one vector extract for each scalar step.
2584 if (NeedsScalarIV)
2585 buildScalarSteps(ScalarIV, Step, EntryVal, ID);
2586}
2587
2588Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step,
2589 Instruction::BinaryOps BinOp) {
2590 // Create and check the types.
2591 assert(Val->getType()->isVectorTy() && "Must be a vector")(static_cast <bool> (Val->getType()->isVectorTy()
&& "Must be a vector") ? void (0) : __assert_fail ("Val->getType()->isVectorTy() && \"Must be a vector\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2591, __extension__ __PRETTY_FUNCTION__))
;
2592 int VLen = Val->getType()->getVectorNumElements();
2593
2594 Type *STy = Val->getType()->getScalarType();
2595 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&(static_cast <bool> ((STy->isIntegerTy() || STy->
isFloatingPointTy()) && "Induction Step must be an integer or FP"
) ? void (0) : __assert_fail ("(STy->isIntegerTy() || STy->isFloatingPointTy()) && \"Induction Step must be an integer or FP\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2596, __extension__ __PRETTY_FUNCTION__))
2596 "Induction Step must be an integer or FP")(static_cast <bool> ((STy->isIntegerTy() || STy->
isFloatingPointTy()) && "Induction Step must be an integer or FP"
) ? void (0) : __assert_fail ("(STy->isIntegerTy() || STy->isFloatingPointTy()) && \"Induction Step must be an integer or FP\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2596, __extension__ __PRETTY_FUNCTION__))
;
2597 assert(Step->getType() == STy && "Step has wrong type")(static_cast <bool> (Step->getType() == STy &&
"Step has wrong type") ? void (0) : __assert_fail ("Step->getType() == STy && \"Step has wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2597, __extension__ __PRETTY_FUNCTION__))
;
2598
2599 SmallVector<Constant *, 8> Indices;
2600
2601 if (STy->isIntegerTy()) {
2602 // Create a vector of consecutive numbers from zero to VF.
2603 for (int i = 0; i < VLen; ++i)
2604 Indices.push_back(ConstantInt::get(STy, StartIdx + i));
2605
2606 // Add the consecutive indices to the vector value.
2607 Constant *Cv = ConstantVector::get(Indices);
2608 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec")(static_cast <bool> (Cv->getType() == Val->getType
() && "Invalid consecutive vec") ? void (0) : __assert_fail
("Cv->getType() == Val->getType() && \"Invalid consecutive vec\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2608, __extension__ __PRETTY_FUNCTION__))
;
2609 Step = Builder.CreateVectorSplat(VLen, Step);
2610 assert(Step->getType() == Val->getType() && "Invalid step vec")(static_cast <bool> (Step->getType() == Val->getType
() && "Invalid step vec") ? void (0) : __assert_fail (
"Step->getType() == Val->getType() && \"Invalid step vec\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2610, __extension__ __PRETTY_FUNCTION__))
;
2611 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
2612 // which can be found from the original scalar operations.
2613 Step = Builder.CreateMul(Cv, Step);
2614 return Builder.CreateAdd(Val, Step, "induction");
2615 }
2616
2617 // Floating point induction.
2618 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&(static_cast <bool> ((BinOp == Instruction::FAdd || BinOp
== Instruction::FSub) && "Binary Opcode should be specified for FP induction"
) ? void (0) : __assert_fail ("(BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && \"Binary Opcode should be specified for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2619, __extension__ __PRETTY_FUNCTION__))
2619 "Binary Opcode should be specified for FP induction")(static_cast <bool> ((BinOp == Instruction::FAdd || BinOp
== Instruction::FSub) && "Binary Opcode should be specified for FP induction"
) ? void (0) : __assert_fail ("(BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && \"Binary Opcode should be specified for FP induction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2619, __extension__ __PRETTY_FUNCTION__))
;
2620 // Create a vector of consecutive numbers from zero to VF.
2621 for (int i = 0; i < VLen; ++i)
2622 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i)));
2623
2624 // Add the consecutive indices to the vector value.
2625 Constant *Cv = ConstantVector::get(Indices);
2626
2627 Step = Builder.CreateVectorSplat(VLen, Step);
2628
2629 // Floating point operations had to be 'fast' to enable the induction.
2630 FastMathFlags Flags;
2631 Flags.setFast();
2632
2633 Value *MulOp = Builder.CreateFMul(Cv, Step);
2634 if (isa<Instruction>(MulOp))
2635 // Have to check, MulOp may be a constant
2636 cast<Instruction>(MulOp)->setFastMathFlags(Flags);
2637
2638 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
2639 if (isa<Instruction>(BOp))
2640 cast<Instruction>(BOp)->setFastMathFlags(Flags);
2641 return BOp;
2642}
2643
2644void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
2645 Instruction *EntryVal,
2646 const InductionDescriptor &ID) {
2647 // We shouldn't have to build scalar steps if we aren't vectorizing.
2648 assert(VF > 1 && "VF should be greater than one")(static_cast <bool> (VF > 1 && "VF should be greater than one"
) ? void (0) : __assert_fail ("VF > 1 && \"VF should be greater than one\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2648, __extension__ __PRETTY_FUNCTION__))
;
2649
2650 // Get the value type and ensure it and the step have the same integer type.
2651 Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
2652 assert(ScalarIVTy == Step->getType() &&(static_cast <bool> (ScalarIVTy == Step->getType() &&
"Val and Step should have the same type") ? void (0) : __assert_fail
("ScalarIVTy == Step->getType() && \"Val and Step should have the same type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2653, __extension__ __PRETTY_FUNCTION__))
2653 "Val and Step should have the same type")(static_cast <bool> (ScalarIVTy == Step->getType() &&
"Val and Step should have the same type") ? void (0) : __assert_fail
("ScalarIVTy == Step->getType() && \"Val and Step should have the same type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2653, __extension__ __PRETTY_FUNCTION__))
;
2654
2655 // We build scalar steps for both integer and floating-point induction
2656 // variables. Here, we determine the kind of arithmetic we will perform.
2657 Instruction::BinaryOps AddOp;
2658 Instruction::BinaryOps MulOp;
2659 if (ScalarIVTy->isIntegerTy()) {
2660 AddOp = Instruction::Add;
2661 MulOp = Instruction::Mul;
2662 } else {
2663 AddOp = ID.getInductionOpcode();
2664 MulOp = Instruction::FMul;
2665 }
2666
2667 // Determine the number of scalars we need to generate for each unroll
2668 // iteration. If EntryVal is uniform, we only need to generate the first
2669 // lane. Otherwise, we generate all VF values.
2670 unsigned Lanes =
2671 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) ? 1
2672 : VF;
2673 // Compute the scalar steps and save the results in VectorLoopValueMap.
2674 for (unsigned Part = 0; Part < UF; ++Part) {
2675 for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
2676 auto *StartIdx = getSignedIntOrFpConstant(ScalarIVTy, VF * Part + Lane);
2677 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step));
2678 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul));
2679 VectorLoopValueMap.setScalarValue(EntryVal, {Part, Lane}, Add);
2680 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, Part, Lane);
2681 }
2682 }
2683}
2684
2685int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
2686 const ValueToValueMap &Strides = getSymbolicStrides() ? *getSymbolicStrides() :
2687 ValueToValueMap();
2688
2689 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
2690 if (Stride == 1 || Stride == -1)
2691 return Stride;
2692 return 0;
2693}
2694
2695bool LoopVectorizationLegality::isUniform(Value *V) {
2696 return LAI->isUniform(V);
2697}
2698
2699Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) {
2700 assert(V != Induction && "The new induction variable should not be used.")(static_cast <bool> (V != Induction && "The new induction variable should not be used."
) ? void (0) : __assert_fail ("V != Induction && \"The new induction variable should not be used.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2700, __extension__ __PRETTY_FUNCTION__))
;
2701 assert(!V->getType()->isVectorTy() && "Can't widen a vector")(static_cast <bool> (!V->getType()->isVectorTy() &&
"Can't widen a vector") ? void (0) : __assert_fail ("!V->getType()->isVectorTy() && \"Can't widen a vector\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2701, __extension__ __PRETTY_FUNCTION__))
;
2702 assert(!V->getType()->isVoidTy() && "Type does not produce a value")(static_cast <bool> (!V->getType()->isVoidTy() &&
"Type does not produce a value") ? void (0) : __assert_fail (
"!V->getType()->isVoidTy() && \"Type does not produce a value\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2702, __extension__ __PRETTY_FUNCTION__))
;
2703
2704 // If we have a stride that is replaced by one, do it here.
2705 if (Legal->hasStride(V))
2706 V = ConstantInt::get(V->getType(), 1);
2707
2708 // If we have a vector mapped to this value, return it.
2709 if (VectorLoopValueMap.hasVectorValue(V, Part))
2710 return VectorLoopValueMap.getVectorValue(V, Part);
2711
2712 // If the value has not been vectorized, check if it has been scalarized
2713 // instead. If it has been scalarized, and we actually need the value in
2714 // vector form, we will construct the vector values on demand.
2715 if (VectorLoopValueMap.hasAnyScalarValue(V)) {
2716 Value *ScalarValue = VectorLoopValueMap.getScalarValue(V, {Part, 0});
2717
2718 // If we've scalarized a value, that value should be an instruction.
2719 auto *I = cast<Instruction>(V);
2720
2721 // If we aren't vectorizing, we can just copy the scalar map values over to
2722 // the vector map.
2723 if (VF == 1) {
2724 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue);
2725 return ScalarValue;
2726 }
2727
2728 // Get the last scalar instruction we generated for V and Part. If the value
2729 // is known to be uniform after vectorization, this corresponds to lane zero
2730 // of the Part unroll iteration. Otherwise, the last instruction is the one
2731 // we created for the last vector lane of the Part unroll iteration.
2732 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) ? 0 : VF - 1;
2733 auto *LastInst = cast<Instruction>(
2734 VectorLoopValueMap.getScalarValue(V, {Part, LastLane}));
2735
2736 // Set the insert point after the last scalarized instruction. This ensures
2737 // the insertelement sequence will directly follow the scalar definitions.
2738 auto OldIP = Builder.saveIP();
2739 auto NewIP = std::next(BasicBlock::iterator(LastInst));
2740 Builder.SetInsertPoint(&*NewIP);
2741
2742 // However, if we are vectorizing, we need to construct the vector values.
2743 // If the value is known to be uniform after vectorization, we can just
2744 // broadcast the scalar value corresponding to lane zero for each unroll
2745 // iteration. Otherwise, we construct the vector values using insertelement
2746 // instructions. Since the resulting vectors are stored in
2747 // VectorLoopValueMap, we will only generate the insertelements once.
2748 Value *VectorValue = nullptr;
2749 if (Cost->isUniformAfterVectorization(I, VF)) {
2750 VectorValue = getBroadcastInstrs(ScalarValue);
2751 VectorLoopValueMap.setVectorValue(V, Part, VectorValue);
2752 } else {
2753 // Initialize packing with insertelements to start from undef.
2754 Value *Undef = UndefValue::get(VectorType::get(V->getType(), VF));
2755 VectorLoopValueMap.setVectorValue(V, Part, Undef);
2756 for (unsigned Lane = 0; Lane < VF; ++Lane)
2757 packScalarIntoVectorValue(V, {Part, Lane});
2758 VectorValue = VectorLoopValueMap.getVectorValue(V, Part);
2759 }
2760 Builder.restoreIP(OldIP);
2761 return VectorValue;
2762 }
2763
2764 // If this scalar is unknown, assume that it is a constant or that it is
2765 // loop invariant. Broadcast V and save the value for future uses.
2766 Value *B = getBroadcastInstrs(V);
2767 VectorLoopValueMap.setVectorValue(V, Part, B);
2768 return B;
2769}
2770
2771Value *
2772InnerLoopVectorizer::getOrCreateScalarValue(Value *V,
2773 const VPIteration &Instance) {
2774 // If the value is not an instruction contained in the loop, it should
2775 // already be scalar.
2776 if (OrigLoop->isLoopInvariant(V))
2777 return V;
2778
2779 assert(Instance.Lane > 0(static_cast <bool> (Instance.Lane > 0 ? !Cost->isUniformAfterVectorization
(cast<Instruction>(V), VF) : true && "Uniform values only have lane zero"
) ? void (0) : __assert_fail ("Instance.Lane > 0 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) : true && \"Uniform values only have lane zero\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2781, __extension__ __PRETTY_FUNCTION__))
2780 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF)(static_cast <bool> (Instance.Lane > 0 ? !Cost->isUniformAfterVectorization
(cast<Instruction>(V), VF) : true && "Uniform values only have lane zero"
) ? void (0) : __assert_fail ("Instance.Lane > 0 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) : true && \"Uniform values only have lane zero\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2781, __extension__ __PRETTY_FUNCTION__))
2781 : true && "Uniform values only have lane zero")(static_cast <bool> (Instance.Lane > 0 ? !Cost->isUniformAfterVectorization
(cast<Instruction>(V), VF) : true && "Uniform values only have lane zero"
) ? void (0) : __assert_fail ("Instance.Lane > 0 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) : true && \"Uniform values only have lane zero\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2781, __extension__ __PRETTY_FUNCTION__))
;
2782
2783 // If the value from the original loop has not been vectorized, it is
2784 // represented by UF x VF scalar values in the new loop. Return the requested
2785 // scalar value.
2786 if (VectorLoopValueMap.hasScalarValue(V, Instance))
2787 return VectorLoopValueMap.getScalarValue(V, Instance);
2788
2789 // If the value has not been scalarized, get its entry in VectorLoopValueMap
2790 // for the given unroll part. If this entry is not a vector type (i.e., the
2791 // vectorization factor is one), there is no need to generate an
2792 // extractelement instruction.
2793 auto *U = getOrCreateVectorValue(V, Instance.Part);
2794 if (!U->getType()->isVectorTy()) {
2795 assert(VF == 1 && "Value not scalarized has non-vector type")(static_cast <bool> (VF == 1 && "Value not scalarized has non-vector type"
) ? void (0) : __assert_fail ("VF == 1 && \"Value not scalarized has non-vector type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2795, __extension__ __PRETTY_FUNCTION__))
;
2796 return U;
2797 }
2798
2799 // Otherwise, the value from the original loop has been vectorized and is
2800 // represented by UF vector values. Extract and return the requested scalar
2801 // value from the appropriate vector lane.
2802 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane));
2803}
2804
2805void InnerLoopVectorizer::packScalarIntoVectorValue(
2806 Value *V, const VPIteration &Instance) {
2807 assert(V != Induction && "The new induction variable should not be used.")(static_cast <bool> (V != Induction && "The new induction variable should not be used."
) ? void (0) : __assert_fail ("V != Induction && \"The new induction variable should not be used.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2807, __extension__ __PRETTY_FUNCTION__))
;
2808 assert(!V->getType()->isVectorTy() && "Can't pack a vector")(static_cast <bool> (!V->getType()->isVectorTy() &&
"Can't pack a vector") ? void (0) : __assert_fail ("!V->getType()->isVectorTy() && \"Can't pack a vector\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2808, __extension__ __PRETTY_FUNCTION__))
;
2809 assert(!V->getType()->isVoidTy() && "Type does not produce a value")(static_cast <bool> (!V->getType()->isVoidTy() &&
"Type does not produce a value") ? void (0) : __assert_fail (
"!V->getType()->isVoidTy() && \"Type does not produce a value\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2809, __extension__ __PRETTY_FUNCTION__))
;
2810
2811 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance);
2812 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part);
2813 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst,
2814 Builder.getInt32(Instance.Lane));
2815 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue);
2816}
2817
2818Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
2819 assert(Vec->getType()->isVectorTy() && "Invalid type")(static_cast <bool> (Vec->getType()->isVectorTy()
&& "Invalid type") ? void (0) : __assert_fail ("Vec->getType()->isVectorTy() && \"Invalid type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2819, __extension__ __PRETTY_FUNCTION__))
;
2820 SmallVector<Constant *, 8> ShuffleMask;
2821 for (unsigned i = 0; i < VF; ++i)
2822 ShuffleMask.push_back(Builder.getInt32(VF - i - 1));
2823
2824 return Builder.CreateShuffleVector(Vec, UndefValue::get(Vec->getType()),
2825 ConstantVector::get(ShuffleMask),
2826 "reverse");
2827}
2828
2829// Try to vectorize the interleave group that \p Instr belongs to.
2830//
2831// E.g. Translate following interleaved load group (factor = 3):
2832// for (i = 0; i < N; i+=3) {
2833// R = Pic[i]; // Member of index 0
2834// G = Pic[i+1]; // Member of index 1
2835// B = Pic[i+2]; // Member of index 2
2836// ... // do something to R, G, B
2837// }
2838// To:
2839// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
2840// %R.vec = shuffle %wide.vec, undef, <0, 3, 6, 9> ; R elements
2841// %G.vec = shuffle %wide.vec, undef, <1, 4, 7, 10> ; G elements
2842// %B.vec = shuffle %wide.vec, undef, <2, 5, 8, 11> ; B elements
2843//
2844// Or translate following interleaved store group (factor = 3):
2845// for (i = 0; i < N; i+=3) {
2846// ... do something to R, G, B
2847// Pic[i] = R; // Member of index 0
2848// Pic[i+1] = G; // Member of index 1
2849// Pic[i+2] = B; // Member of index 2
2850// }
2851// To:
2852// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
2853// %B_U.vec = shuffle %B.vec, undef, <0, 1, 2, 3, u, u, u, u>
2854// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
2855// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
2856// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
2857void InnerLoopVectorizer::vectorizeInterleaveGroup(Instruction *Instr) {
2858 const InterleaveGroup *Group = Cost->getInterleavedAccessGroup(Instr);
2859 assert(Group && "Fail to get an interleaved access group.")(static_cast <bool> (Group && "Fail to get an interleaved access group."
) ? void (0) : __assert_fail ("Group && \"Fail to get an interleaved access group.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2859, __extension__ __PRETTY_FUNCTION__))
;
2860
2861 // Skip if current instruction is not the insert position.
2862 if (Instr != Group->getInsertPos())
2863 return;
2864
2865 const DataLayout &DL = Instr->getModule()->getDataLayout();
2866 Value *Ptr = getLoadStorePointerOperand(Instr);
2867
2868 // Prepare for the vector type of the interleaved load/store.
2869 Type *ScalarTy = getMemInstValueType(Instr);
2870 unsigned InterleaveFactor = Group->getFactor();
2871 Type *VecTy = VectorType::get(ScalarTy, InterleaveFactor * VF);
2872 Type *PtrTy = VecTy->getPointerTo(getMemInstAddressSpace(Instr));
2873
2874 // Prepare for the new pointers.
2875 setDebugLocFromInst(Builder, Ptr);
2876 SmallVector<Value *, 2> NewPtrs;
2877 unsigned Index = Group->getIndex(Instr);
2878
2879 // If the group is reverse, adjust the index to refer to the last vector lane
2880 // instead of the first. We adjust the index from the first vector lane,
2881 // rather than directly getting the pointer for lane VF - 1, because the
2882 // pointer operand of the interleaved access is supposed to be uniform. For
2883 // uniform instructions, we're only required to generate a value for the
2884 // first vector lane in each unroll iteration.
2885 if (Group->isReverse())
2886 Index += (VF - 1) * Group->getFactor();
2887
2888 for (unsigned Part = 0; Part < UF; Part++) {
2889 Value *NewPtr = getOrCreateScalarValue(Ptr, {Part, 0});
2890
2891 // Notice current instruction could be any index. Need to adjust the address
2892 // to the member of index 0.
2893 //
2894 // E.g. a = A[i+1]; // Member of index 1 (Current instruction)
2895 // b = A[i]; // Member of index 0
2896 // Current pointer is pointed to A[i+1], adjust it to A[i].
2897 //
2898 // E.g. A[i+1] = a; // Member of index 1
2899 // A[i] = b; // Member of index 0
2900 // A[i+2] = c; // Member of index 2 (Current instruction)
2901 // Current pointer is pointed to A[i+2], adjust it to A[i].
2902 NewPtr = Builder.CreateGEP(NewPtr, Builder.getInt32(-Index));
2903
2904 // Cast to the vector pointer type.
2905 NewPtrs.push_back(Builder.CreateBitCast(NewPtr, PtrTy));
2906 }
2907
2908 setDebugLocFromInst(Builder, Instr);
2909 Value *UndefVec = UndefValue::get(VecTy);
2910
2911 // Vectorize the interleaved load group.
2912 if (isa<LoadInst>(Instr)) {
2913 // For each unroll part, create a wide load for the group.
2914 SmallVector<Value *, 2> NewLoads;
2915 for (unsigned Part = 0; Part < UF; Part++) {
2916 auto *NewLoad = Builder.CreateAlignedLoad(
2917 NewPtrs[Part], Group->getAlignment(), "wide.vec");
2918 Group->addMetadata(NewLoad);
2919 NewLoads.push_back(NewLoad);
2920 }
2921
2922 // For each member in the group, shuffle out the appropriate data from the
2923 // wide loads.
2924 for (unsigned I = 0; I < InterleaveFactor; ++I) {
2925 Instruction *Member = Group->getMember(I);
2926
2927 // Skip the gaps in the group.
2928 if (!Member)
2929 continue;
2930
2931 Constant *StrideMask = createStrideMask(Builder, I, InterleaveFactor, VF);
2932 for (unsigned Part = 0; Part < UF; Part++) {
2933 Value *StridedVec = Builder.CreateShuffleVector(
2934 NewLoads[Part], UndefVec, StrideMask, "strided.vec");
2935
2936 // If this member has different type, cast the result type.
2937 if (Member->getType() != ScalarTy) {
2938 VectorType *OtherVTy = VectorType::get(Member->getType(), VF);
2939 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL);
2940 }
2941
2942 if (Group->isReverse())
2943 StridedVec = reverseVector(StridedVec);
2944
2945 VectorLoopValueMap.setVectorValue(Member, Part, StridedVec);
2946 }
2947 }
2948 return;
2949 }
2950
2951 // The sub vector type for current instruction.
2952 VectorType *SubVT = VectorType::get(ScalarTy, VF);
2953
2954 // Vectorize the interleaved store group.
2955 for (unsigned Part = 0; Part < UF; Part++) {
2956 // Collect the stored vector from each member.
2957 SmallVector<Value *, 4> StoredVecs;
2958 for (unsigned i = 0; i < InterleaveFactor; i++) {
2959 // Interleaved store group doesn't allow a gap, so each index has a member
2960 Instruction *Member = Group->getMember(i);
2961 assert(Member && "Fail to get a member from an interleaved store group")(static_cast <bool> (Member && "Fail to get a member from an interleaved store group"
) ? void (0) : __assert_fail ("Member && \"Fail to get a member from an interleaved store group\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2961, __extension__ __PRETTY_FUNCTION__))
;
2962
2963 Value *StoredVec = getOrCreateVectorValue(
2964 cast<StoreInst>(Member)->getValueOperand(), Part);
2965 if (Group->isReverse())
2966 StoredVec = reverseVector(StoredVec);
2967
2968 // If this member has different type, cast it to a unified type.
2969
2970 if (StoredVec->getType() != SubVT)
2971 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL);
2972
2973 StoredVecs.push_back(StoredVec);
2974 }
2975
2976 // Concatenate all vectors into a wide vector.
2977 Value *WideVec = concatenateVectors(Builder, StoredVecs);
2978
2979 // Interleave the elements in the wide vector.
2980 Constant *IMask = createInterleaveMask(Builder, VF, InterleaveFactor);
2981 Value *IVec = Builder.CreateShuffleVector(WideVec, UndefVec, IMask,
2982 "interleaved.vec");
2983
2984 Instruction *NewStoreInstr =
2985 Builder.CreateAlignedStore(IVec, NewPtrs[Part], Group->getAlignment());
2986
2987 Group->addMetadata(NewStoreInstr);
2988 }
2989}
2990
2991void InnerLoopVectorizer::vectorizeMemoryInstruction(Instruction *Instr,
2992 VectorParts *BlockInMask) {
2993 // Attempt to issue a wide load.
2994 LoadInst *LI = dyn_cast<LoadInst>(Instr);
2995 StoreInst *SI = dyn_cast<StoreInst>(Instr);
2996
2997 assert((LI || SI) && "Invalid Load/Store instruction")(static_cast <bool> ((LI || SI) && "Invalid Load/Store instruction"
) ? void (0) : __assert_fail ("(LI || SI) && \"Invalid Load/Store instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 2997, __extension__ __PRETTY_FUNCTION__))
;
2998
2999 LoopVectorizationCostModel::InstWidening Decision =
3000 Cost->getWideningDecision(Instr, VF);
3001 assert(Decision != LoopVectorizationCostModel::CM_Unknown &&(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Unknown && "CM decision should be taken at this point"
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Unknown && \"CM decision should be taken at this point\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3002, __extension__ __PRETTY_FUNCTION__))
3002 "CM decision should be taken at this point")(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Unknown && "CM decision should be taken at this point"
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Unknown && \"CM decision should be taken at this point\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3002, __extension__ __PRETTY_FUNCTION__))
;
3003 if (Decision == LoopVectorizationCostModel::CM_Interleave)
3004 return vectorizeInterleaveGroup(Instr);
3005
3006 Type *ScalarDataTy = getMemInstValueType(Instr);
3007 Type *DataTy = VectorType::get(ScalarDataTy, VF);
3008 Value *Ptr = getLoadStorePointerOperand(Instr);
3009 unsigned Alignment = getMemInstAlignment(Instr);
3010 // An alignment of 0 means target abi alignment. We need to use the scalar's
3011 // target abi alignment in such a case.
3012 const DataLayout &DL = Instr->getModule()->getDataLayout();
3013 if (!Alignment)
3014 Alignment = DL.getABITypeAlignment(ScalarDataTy);
3015 unsigned AddressSpace = getMemInstAddressSpace(Instr);
3016
3017 // Determine if the pointer operand of the access is either consecutive or
3018 // reverse consecutive.
3019 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse);
3020 bool ConsecutiveStride =
3021 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen);
3022 bool CreateGatherScatter =
3023 (Decision == LoopVectorizationCostModel::CM_GatherScatter);
3024
3025 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector
3026 // gather/scatter. Otherwise Decision should have been to Scalarize.
3027 assert((ConsecutiveStride || CreateGatherScatter) &&(static_cast <bool> ((ConsecutiveStride || CreateGatherScatter
) && "The instruction should be scalarized") ? void (
0) : __assert_fail ("(ConsecutiveStride || CreateGatherScatter) && \"The instruction should be scalarized\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3028, __extension__ __PRETTY_FUNCTION__))
3028 "The instruction should be scalarized")(static_cast <bool> ((ConsecutiveStride || CreateGatherScatter
) && "The instruction should be scalarized") ? void (
0) : __assert_fail ("(ConsecutiveStride || CreateGatherScatter) && \"The instruction should be scalarized\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3028, __extension__ __PRETTY_FUNCTION__))
;
3029
3030 // Handle consecutive loads/stores.
3031 if (ConsecutiveStride)
3032 Ptr = getOrCreateScalarValue(Ptr, {0, 0});
3033
3034 VectorParts Mask;
3035 bool isMaskRequired = BlockInMask;
3036 if (isMaskRequired)
3037 Mask = *BlockInMask;
3038
3039 // Handle Stores:
3040 if (SI) {
3041 setDebugLocFromInst(Builder, SI);
3042
3043 for (unsigned Part = 0; Part < UF; ++Part) {
3044 Instruction *NewSI = nullptr;
3045 Value *StoredVal = getOrCreateVectorValue(SI->getValueOperand(), Part);
3046 if (CreateGatherScatter) {
3047 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
3048 Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
3049 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment,
3050 MaskPart);
3051 } else {
3052 // Calculate the pointer for the specific unroll-part.
3053 Value *PartPtr =
3054 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
3055
3056 if (Reverse) {
3057 // If we store to reverse consecutive memory locations, then we need
3058 // to reverse the order of elements in the stored value.
3059 StoredVal = reverseVector(StoredVal);
3060 // We don't want to update the value in the map as it might be used in
3061 // another expression. So don't call resetVectorValue(StoredVal).
3062
3063 // If the address is consecutive but reversed, then the
3064 // wide store needs to start at the last vector element.
3065 PartPtr =
3066 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
3067 PartPtr =
3068 Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
3069 if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
3070 Mask[Part] = reverseVector(Mask[Part]);
3071 }
3072
3073 Value *VecPtr =
3074 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3075
3076 if (isMaskRequired)
3077 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment,
3078 Mask[Part]);
3079 else
3080 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment);
3081 }
3082 addMetadata(NewSI, SI);
3083 }
3084 return;
3085 }
3086
3087 // Handle loads.
3088 assert(LI && "Must have a load instruction")(static_cast <bool> (LI && "Must have a load instruction"
) ? void (0) : __assert_fail ("LI && \"Must have a load instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3088, __extension__ __PRETTY_FUNCTION__))
;
3089 setDebugLocFromInst(Builder, LI);
3090 for (unsigned Part = 0; Part < UF; ++Part) {
3091 Value *NewLI;
3092 if (CreateGatherScatter) {
3093 Value *MaskPart = isMaskRequired ? Mask[Part] : nullptr;
3094 Value *VectorGep = getOrCreateVectorValue(Ptr, Part);
3095 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart,
3096 nullptr, "wide.masked.gather");
3097 addMetadata(NewLI, LI);
3098 } else {
3099 // Calculate the pointer for the specific unroll-part.
3100 Value *PartPtr =
3101 Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(Part * VF));
3102
3103 if (Reverse) {
3104 // If the address is consecutive but reversed, then the
3105 // wide load needs to start at the last vector element.
3106 PartPtr = Builder.CreateGEP(nullptr, Ptr, Builder.getInt32(-Part * VF));
3107 PartPtr = Builder.CreateGEP(nullptr, PartPtr, Builder.getInt32(1 - VF));
3108 if (isMaskRequired) // Reverse of a null all-one mask is a null mask.
3109 Mask[Part] = reverseVector(Mask[Part]);
3110 }
3111
3112 Value *VecPtr =
3113 Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace));
3114 if (isMaskRequired)
3115 NewLI = Builder.CreateMaskedLoad(VecPtr, Alignment, Mask[Part],
3116 UndefValue::get(DataTy),
3117 "wide.masked.load");
3118 else
3119 NewLI = Builder.CreateAlignedLoad(VecPtr, Alignment, "wide.load");
3120
3121 // Add metadata to the load, but setVectorValue to the reverse shuffle.
3122 addMetadata(NewLI, LI);
3123 if (Reverse)
3124 NewLI = reverseVector(NewLI);
3125 }
3126 VectorLoopValueMap.setVectorValue(Instr, Part, NewLI);
3127 }
3128}
3129
3130void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr,
3131 const VPIteration &Instance,
3132 bool IfPredicateInstr) {
3133 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors")(static_cast <bool> (!Instr->getType()->isAggregateType
() && "Can't handle vectors") ? void (0) : __assert_fail
("!Instr->getType()->isAggregateType() && \"Can't handle vectors\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3133, __extension__ __PRETTY_FUNCTION__))
;
3134
3135 setDebugLocFromInst(Builder, Instr);
3136
3137 // Does this instruction return a value ?
3138 bool IsVoidRetTy = Instr->getType()->isVoidTy();
3139
3140 Instruction *Cloned = Instr->clone();
3141 if (!IsVoidRetTy)
3142 Cloned->setName(Instr->getName() + ".cloned");
3143
3144 // Replace the operands of the cloned instructions with their scalar
3145 // equivalents in the new loop.
3146 for (unsigned op = 0, e = Instr->getNumOperands(); op != e; ++op) {
3147 auto *NewOp = getOrCreateScalarValue(Instr->getOperand(op), Instance);
3148 Cloned->setOperand(op, NewOp);
3149 }
3150 addNewMetadata(Cloned, Instr);
3151
3152 // Place the cloned scalar in the new loop.
3153 Builder.Insert(Cloned);
3154
3155 // Add the cloned scalar to the scalar map entry.
3156 VectorLoopValueMap.setScalarValue(Instr, Instance, Cloned);
3157
3158 // If we just cloned a new assumption, add it the assumption cache.
3159 if (auto *II = dyn_cast<IntrinsicInst>(Cloned))
3160 if (II->getIntrinsicID() == Intrinsic::assume)
3161 AC->registerAssumption(II);
3162
3163 // End if-block.
3164 if (IfPredicateInstr)
3165 PredicatedInstructions.push_back(Cloned);
3166}
3167
3168PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start,
3169 Value *End, Value *Step,
3170 Instruction *DL) {
3171 BasicBlock *Header = L->getHeader();
3172 BasicBlock *Latch = L->getLoopLatch();
3173 // As we're just creating this loop, it's possible no latch exists
3174 // yet. If so, use the header as this will be a single block loop.
3175 if (!Latch)
3176 Latch = Header;
3177
3178 IRBuilder<> Builder(&*Header->getFirstInsertionPt());
3179 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction);
3180 setDebugLocFromInst(Builder, OldInst);
3181 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
3182
3183 Builder.SetInsertPoint(Latch->getTerminator());
3184 setDebugLocFromInst(Builder, OldInst);
3185
3186 // Create i+1 and fill the PHINode.
3187 Value *Next = Builder.CreateAdd(Induction, Step, "index.next");
3188 Induction->addIncoming(Start, L->getLoopPreheader());
3189 Induction->addIncoming(Next, Latch);
3190 // Create the compare.
3191 Value *ICmp = Builder.CreateICmpEQ(Next, End);
3192 Builder.CreateCondBr(ICmp, L->getExitBlock(), Header);
3193
3194 // Now we have two terminators. Remove the old one from the block.
3195 Latch->getTerminator()->eraseFromParent();
3196
3197 return Induction;
3198}
3199
3200Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) {
3201 if (TripCount)
3202 return TripCount;
3203
3204 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3205 // Find the loop boundaries.
3206 ScalarEvolution *SE = PSE.getSE();
3207 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount();
3208 assert(BackedgeTakenCount != SE->getCouldNotCompute() &&(static_cast <bool> (BackedgeTakenCount != SE->getCouldNotCompute
() && "Invalid loop count") ? void (0) : __assert_fail
("BackedgeTakenCount != SE->getCouldNotCompute() && \"Invalid loop count\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3209, __extension__ __PRETTY_FUNCTION__))
3209 "Invalid loop count")(static_cast <bool> (BackedgeTakenCount != SE->getCouldNotCompute
() && "Invalid loop count") ? void (0) : __assert_fail
("BackedgeTakenCount != SE->getCouldNotCompute() && \"Invalid loop count\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3209, __extension__ __PRETTY_FUNCTION__))
;
3210
3211 Type *IdxTy = Legal->getWidestInductionType();
3212
3213 // The exit count might have the type of i64 while the phi is i32. This can
3214 // happen if we have an induction variable that is sign extended before the
3215 // compare. The only way that we get a backedge taken count is that the
3216 // induction variable was signed and as such will not overflow. In such a case
3217 // truncation is legal.
3218 if (BackedgeTakenCount->getType()->getPrimitiveSizeInBits() >
3219 IdxTy->getPrimitiveSizeInBits())
3220 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy);
3221 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy);
3222
3223 // Get the total trip count from the count by adding 1.
3224 const SCEV *ExitCount = SE->getAddExpr(
3225 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType()));
3226
3227 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
3228
3229 // Expand the trip count and place the new instructions in the preheader.
3230 // Notice that the pre-header does not change, only the loop body.
3231 SCEVExpander Exp(*SE, DL, "induction");
3232
3233 // Count holds the overall loop count (N).
3234 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
3235 L->getLoopPreheader()->getTerminator());
3236
3237 if (TripCount->getType()->isPointerTy())
3238 TripCount =
3239 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int",
3240 L->getLoopPreheader()->getTerminator());
3241
3242 return TripCount;
3243}
3244
3245Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) {
3246 if (VectorTripCount)
3247 return VectorTripCount;
3248
3249 Value *TC = getOrCreateTripCount(L);
3250 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
3251
3252 // Now we need to generate the expression for the part of the loop that the
3253 // vectorized body will execute. This is equal to N - (N % Step) if scalar
3254 // iterations are not required for correctness, or N - Step, otherwise. Step
3255 // is equal to the vectorization factor (number of SIMD elements) times the
3256 // unroll factor (number of SIMD instructions).
3257 Constant *Step = ConstantInt::get(TC->getType(), VF * UF);
3258 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf");
3259
3260 // If there is a non-reversed interleaved group that may speculatively access
3261 // memory out-of-bounds, we need to ensure that there will be at least one
3262 // iteration of the scalar epilogue loop. Thus, if the step evenly divides
3263 // the trip count, we set the remainder to be equal to the step. If the step
3264 // does not evenly divide the trip count, no adjustment is necessary since
3265 // there will already be scalar iterations. Note that the minimum iterations
3266 // check ensures that N >= Step.
3267 if (VF > 1 && Cost->requiresScalarEpilogue()) {
3268 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0));
3269 R = Builder.CreateSelect(IsZero, Step, R);
3270 }
3271
3272 VectorTripCount = Builder.CreateSub(TC, R, "n.vec");
3273
3274 return VectorTripCount;
3275}
3276
3277Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy,
3278 const DataLayout &DL) {
3279 // Verify that V is a vector type with same number of elements as DstVTy.
3280 unsigned VF = DstVTy->getNumElements();
3281 VectorType *SrcVecTy = cast<VectorType>(V->getType());
3282 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match")(static_cast <bool> ((VF == SrcVecTy->getNumElements
()) && "Vector dimensions do not match") ? void (0) :
__assert_fail ("(VF == SrcVecTy->getNumElements()) && \"Vector dimensions do not match\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3282, __extension__ __PRETTY_FUNCTION__))
;
3283 Type *SrcElemTy = SrcVecTy->getElementType();
3284 Type *DstElemTy = DstVTy->getElementType();
3285 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&(static_cast <bool> ((DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) && "Vector elements must have same size"
) ? void (0) : __assert_fail ("(DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && \"Vector elements must have same size\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3286, __extension__ __PRETTY_FUNCTION__))
3286 "Vector elements must have same size")(static_cast <bool> ((DL.getTypeSizeInBits(SrcElemTy) ==
DL.getTypeSizeInBits(DstElemTy)) && "Vector elements must have same size"
) ? void (0) : __assert_fail ("(DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && \"Vector elements must have same size\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3286, __extension__ __PRETTY_FUNCTION__))
;
3287
3288 // Do a direct cast if element types are castable.
3289 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) {
3290 return Builder.CreateBitOrPointerCast(V, DstVTy);
3291 }
3292 // V cannot be directly casted to desired vector type.
3293 // May happen when V is a floating point vector but DstVTy is a vector of
3294 // pointers or vice-versa. Handle this using a two-step bitcast using an
3295 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float.
3296 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&(static_cast <bool> ((DstElemTy->isPointerTy() != SrcElemTy
->isPointerTy()) && "Only one type should be a pointer type"
) ? void (0) : __assert_fail ("(DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && \"Only one type should be a pointer type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3297, __extension__ __PRETTY_FUNCTION__))
3297 "Only one type should be a pointer type")(static_cast <bool> ((DstElemTy->isPointerTy() != SrcElemTy
->isPointerTy()) && "Only one type should be a pointer type"
) ? void (0) : __assert_fail ("(DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && \"Only one type should be a pointer type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3297, __extension__ __PRETTY_FUNCTION__))
;
3298 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&(static_cast <bool> ((DstElemTy->isFloatingPointTy()
!= SrcElemTy->isFloatingPointTy()) && "Only one type should be a floating point type"
) ? void (0) : __assert_fail ("(DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && \"Only one type should be a floating point type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3299, __extension__ __PRETTY_FUNCTION__))
3299 "Only one type should be a floating point type")(static_cast <bool> ((DstElemTy->isFloatingPointTy()
!= SrcElemTy->isFloatingPointTy()) && "Only one type should be a floating point type"
) ? void (0) : __assert_fail ("(DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && \"Only one type should be a floating point type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3299, __extension__ __PRETTY_FUNCTION__))
;
3300 Type *IntTy =
3301 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy));
3302 VectorType *VecIntTy = VectorType::get(IntTy, VF);
3303 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy);
3304 return Builder.CreateBitOrPointerCast(CastVal, DstVTy);
3305}
3306
3307void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L,
3308 BasicBlock *Bypass) {
3309 Value *Count = getOrCreateTripCount(L);
3310 BasicBlock *BB = L->getLoopPreheader();
3311 IRBuilder<> Builder(BB->getTerminator());
3312
3313 // Generate code to check if the loop's trip count is less than VF * UF, or
3314 // equal to it in case a scalar epilogue is required; this implies that the
3315 // vector trip count is zero. This check also covers the case where adding one
3316 // to the backedge-taken count overflowed leading to an incorrect trip count
3317 // of zero. In this case we will also jump to the scalar loop.
3318 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE
3319 : ICmpInst::ICMP_ULT;
3320 Value *CheckMinIters = Builder.CreateICmp(
3321 P, Count, ConstantInt::get(Count->getType(), VF * UF), "min.iters.check");
3322
3323 BasicBlock *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3324 // Update dominator tree immediately if the generated block is a
3325 // LoopBypassBlock because SCEV expansions to generate loop bypass
3326 // checks may query it before the current function is finished.
3327 DT->addNewBlock(NewBB, BB);
3328 if (L->getParentLoop())
3329 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3330 ReplaceInstWithInst(BB->getTerminator(),
3331 BranchInst::Create(Bypass, NewBB, CheckMinIters));
3332 LoopBypassBlocks.push_back(BB);
3333}
3334
3335void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) {
3336 BasicBlock *BB = L->getLoopPreheader();
3337
3338 // Generate the code to check that the SCEV assumptions that we made.
3339 // We want the new basic block to start at the first instruction in a
3340 // sequence of instructions that form a check.
3341 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(),
3342 "scev.check");
3343 Value *SCEVCheck =
3344 Exp.expandCodeForPredicate(&PSE.getUnionPredicate(), BB->getTerminator());
3345
3346 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck))
3347 if (C->isZero())
3348 return;
3349
3350 // Create a new block containing the stride check.
3351 BB->setName("vector.scevcheck");
3352 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3353 // Update dominator tree immediately if the generated block is a
3354 // LoopBypassBlock because SCEV expansions to generate loop bypass
3355 // checks may query it before the current function is finished.
3356 DT->addNewBlock(NewBB, BB);
3357 if (L->getParentLoop())
3358 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3359 ReplaceInstWithInst(BB->getTerminator(),
3360 BranchInst::Create(Bypass, NewBB, SCEVCheck));
3361 LoopBypassBlocks.push_back(BB);
3362 AddedSafetyChecks = true;
3363}
3364
3365void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) {
3366 BasicBlock *BB = L->getLoopPreheader();
3367
3368 // Generate the code that checks in runtime if arrays overlap. We put the
3369 // checks into a separate block to make the more common case of few elements
3370 // faster.
3371 Instruction *FirstCheckInst;
3372 Instruction *MemRuntimeCheck;
3373 std::tie(FirstCheckInst, MemRuntimeCheck) =
3374 Legal->getLAI()->addRuntimeChecks(BB->getTerminator());
3375 if (!MemRuntimeCheck)
3376 return;
3377
3378 // Create a new block containing the memory check.
3379 BB->setName("vector.memcheck");
3380 auto *NewBB = BB->splitBasicBlock(BB->getTerminator(), "vector.ph");
3381 // Update dominator tree immediately if the generated block is a
3382 // LoopBypassBlock because SCEV expansions to generate loop bypass
3383 // checks may query it before the current function is finished.
3384 DT->addNewBlock(NewBB, BB);
3385 if (L->getParentLoop())
3386 L->getParentLoop()->addBasicBlockToLoop(NewBB, *LI);
3387 ReplaceInstWithInst(BB->getTerminator(),
3388 BranchInst::Create(Bypass, NewBB, MemRuntimeCheck));
3389 LoopBypassBlocks.push_back(BB);
3390 AddedSafetyChecks = true;
3391
3392 // We currently don't use LoopVersioning for the actual loop cloning but we
3393 // still use it to add the noalias metadata.
3394 LVer = llvm::make_unique<LoopVersioning>(*Legal->getLAI(), OrigLoop, LI, DT,
3395 PSE.getSE());
3396 LVer->prepareNoAliasMetadata();
3397}
3398
3399BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() {
3400 /*
3401 In this function we generate a new loop. The new loop will contain
3402 the vectorized instructions while the old loop will continue to run the
3403 scalar remainder.
3404
3405 [ ] <-- loop iteration number check.
3406 / |
3407 / v
3408 | [ ] <-- vector loop bypass (may consist of multiple blocks).
3409 | / |
3410 | / v
3411 || [ ] <-- vector pre header.
3412 |/ |
3413 | v
3414 | [ ] \
3415 | [ ]_| <-- vector loop.
3416 | |
3417 | v
3418 | -[ ] <--- middle-block.
3419 | / |
3420 | / v
3421 -|- >[ ] <--- new preheader.
3422 | |
3423 | v
3424 | [ ] \
3425 | [ ]_| <-- old scalar loop to handle remainder.
3426 \ |
3427 \ v
3428 >[ ] <-- exit block.
3429 ...
3430 */
3431
3432 BasicBlock *OldBasicBlock = OrigLoop->getHeader();
3433 BasicBlock *VectorPH = OrigLoop->getLoopPreheader();
3434 BasicBlock *ExitBlock = OrigLoop->getExitBlock();
3435 assert(VectorPH && "Invalid loop structure")(static_cast <bool> (VectorPH && "Invalid loop structure"
) ? void (0) : __assert_fail ("VectorPH && \"Invalid loop structure\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3435, __extension__ __PRETTY_FUNCTION__))
;
3436 assert(ExitBlock && "Must have an exit block")(static_cast <bool> (ExitBlock && "Must have an exit block"
) ? void (0) : __assert_fail ("ExitBlock && \"Must have an exit block\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3436, __extension__ __PRETTY_FUNCTION__))
;
3437
3438 // Some loops have a single integer induction variable, while other loops
3439 // don't. One example is c++ iterators that often have multiple pointer
3440 // induction variables. In the code below we also support a case where we
3441 // don't have a single induction variable.
3442 //
3443 // We try to obtain an induction variable from the original loop as hard
3444 // as possible. However if we don't find one that:
3445 // - is an integer
3446 // - counts from zero, stepping by one
3447 // - is the size of the widest induction variable type
3448 // then we create a new one.
3449 OldInduction = Legal->getPrimaryInduction();
3450 Type *IdxTy = Legal->getWidestInductionType();
3451
3452 // Split the single block loop into the two loop structure described above.
3453 BasicBlock *VecBody =
3454 VectorPH->splitBasicBlock(VectorPH->getTerminator(), "vector.body");
3455 BasicBlock *MiddleBlock =
3456 VecBody->splitBasicBlock(VecBody->getTerminator(), "middle.block");
3457 BasicBlock *ScalarPH =
3458 MiddleBlock->splitBasicBlock(MiddleBlock->getTerminator(), "scalar.ph");
3459
3460 // Create and register the new vector loop.
3461 Loop *Lp = LI->AllocateLoop();
3462 Loop *ParentLoop = OrigLoop->getParentLoop();
3463
3464 // Insert the new loop into the loop nest and register the new basic blocks
3465 // before calling any utilities such as SCEV that require valid LoopInfo.
3466 if (ParentLoop) {
3467 ParentLoop->addChildLoop(Lp);
3468 ParentLoop->addBasicBlockToLoop(ScalarPH, *LI);
3469 ParentLoop->addBasicBlockToLoop(MiddleBlock, *LI);
3470 } else {
3471 LI->addTopLevelLoop(Lp);
3472 }
3473 Lp->addBasicBlockToLoop(VecBody, *LI);
3474
3475 // Find the loop boundaries.
3476 Value *Count = getOrCreateTripCount(Lp);
3477
3478 Value *StartIdx = ConstantInt::get(IdxTy, 0);
3479
3480 // Now, compare the new count to zero. If it is zero skip the vector loop and
3481 // jump to the scalar loop. This check also covers the case where the
3482 // backedge-taken count is uint##_max: adding one to it will overflow leading
3483 // to an incorrect trip count of zero. In this (rare) case we will also jump
3484 // to the scalar loop.
3485 emitMinimumIterationCountCheck(Lp, ScalarPH);
3486
3487 // Generate the code to check any assumptions that we've made for SCEV
3488 // expressions.
3489 emitSCEVChecks(Lp, ScalarPH);
3490
3491 // Generate the code that checks in runtime if arrays overlap. We put the
3492 // checks into a separate block to make the more common case of few elements
3493 // faster.
3494 emitMemRuntimeChecks(Lp, ScalarPH);
3495
3496 // Generate the induction variable.
3497 // The loop step is equal to the vectorization factor (num of SIMD elements)
3498 // times the unroll factor (num of SIMD instructions).
3499 Value *CountRoundDown = getOrCreateVectorTripCount(Lp);
3500 Constant *Step = ConstantInt::get(IdxTy, VF * UF);
3501 Induction =
3502 createInductionVariable(Lp, StartIdx, CountRoundDown, Step,
3503 getDebugLocFromInstOrOperands(OldInduction));
3504
3505 // We are going to resume the execution of the scalar loop.
3506 // Go over all of the induction variables that we found and fix the
3507 // PHIs that are left in the scalar version of the loop.
3508 // The starting values of PHI nodes depend on the counter of the last
3509 // iteration in the vectorized loop.
3510 // If we come from a bypass edge then we need to start from the original
3511 // start value.
3512
3513 // This variable saves the new starting index for the scalar loop. It is used
3514 // to test if there are any tail iterations left once the vector loop has
3515 // completed.
3516 LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
3517 for (auto &InductionEntry : *List) {
3518 PHINode *OrigPhi = InductionEntry.first;
3519 InductionDescriptor II = InductionEntry.second;
3520
3521 // Create phi nodes to merge from the backedge-taken check block.
3522 PHINode *BCResumeVal = PHINode::Create(
3523 OrigPhi->getType(), 3, "bc.resume.val", ScalarPH->getTerminator());
3524 Value *&EndValue = IVEndValues[OrigPhi];
3525 if (OrigPhi == OldInduction) {
3526 // We know what the end value is.
3527 EndValue = CountRoundDown;
3528 } else {
3529 IRBuilder<> B(Lp->getLoopPreheader()->getTerminator());
3530 Type *StepType = II.getStep()->getType();
3531 Instruction::CastOps CastOp =
3532 CastInst::getCastOpcode(CountRoundDown, true, StepType, true);
3533 Value *CRD = B.CreateCast(CastOp, CountRoundDown, StepType, "cast.crd");
3534 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
3535 EndValue = II.transform(B, CRD, PSE.getSE(), DL);
3536 EndValue->setName("ind.end");
3537 }
3538
3539 // The new PHI merges the original incoming value, in case of a bypass,
3540 // or the value at the end of the vectorized loop.
3541 BCResumeVal->addIncoming(EndValue, MiddleBlock);
3542
3543 // Fix the scalar body counter (PHI node).
3544 unsigned BlockIdx = OrigPhi->getBasicBlockIndex(ScalarPH);
3545
3546 // The old induction's phi node in the scalar body needs the truncated
3547 // value.
3548 for (BasicBlock *BB : LoopBypassBlocks)
3549 BCResumeVal->addIncoming(II.getStartValue(), BB);
3550 OrigPhi->setIncomingValue(BlockIdx, BCResumeVal);
3551 }
3552
3553 // Add a check in the middle block to see if we have completed
3554 // all of the iterations in the first vector loop.
3555 // If (N - N%VF) == N, then we *don't* need to run the remainder.
3556 Value *CmpN =
3557 CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, Count,
3558 CountRoundDown, "cmp.n", MiddleBlock->getTerminator());
3559 ReplaceInstWithInst(MiddleBlock->getTerminator(),
3560 BranchInst::Create(ExitBlock, ScalarPH, CmpN));
3561
3562 // Get ready to start creating new instructions into the vectorized body.
3563 Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
3564
3565 // Save the state.
3566 LoopVectorPreHeader = Lp->getLoopPreheader();
3567 LoopScalarPreHeader = ScalarPH;
3568 LoopMiddleBlock = MiddleBlock;
3569 LoopExitBlock = ExitBlock;
3570 LoopVectorBody = VecBody;
3571 LoopScalarBody = OldBasicBlock;
3572
3573 // Keep all loop hints from the original loop on the vector loop (we'll
3574 // replace the vectorizer-specific hints below).
3575 if (MDNode *LID = OrigLoop->getLoopID())
3576 Lp->setLoopID(LID);
3577
3578 LoopVectorizeHints Hints(Lp, true, *ORE);
3579 Hints.setAlreadyVectorized();
3580
3581 return LoopVectorPreHeader;
3582}
3583
3584// Fix up external users of the induction variable. At this point, we are
3585// in LCSSA form, with all external PHIs that use the IV having one input value,
3586// coming from the remainder loop. We need those PHIs to also have a correct
3587// value for the IV when arriving directly from the middle block.
3588void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi,
3589 const InductionDescriptor &II,
3590 Value *CountRoundDown, Value *EndValue,
3591 BasicBlock *MiddleBlock) {
3592 // There are two kinds of external IV usages - those that use the value
3593 // computed in the last iteration (the PHI) and those that use the penultimate
3594 // value (the value that feeds into the phi from the loop latch).
3595 // We allow both, but they, obviously, have different values.
3596
3597 assert(OrigLoop->getExitBlock() && "Expected a single exit block")(static_cast <bool> (OrigLoop->getExitBlock() &&
"Expected a single exit block") ? void (0) : __assert_fail (
"OrigLoop->getExitBlock() && \"Expected a single exit block\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3597, __extension__ __PRETTY_FUNCTION__))
;
3598
3599 DenseMap<Value *, Value *> MissingVals;
3600
3601 // An external user of the last iteration's value should see the value that
3602 // the remainder loop uses to initialize its own IV.
3603 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch());
3604 for (User *U : PostInc->users()) {
3605 Instruction *UI = cast<Instruction>(U);
3606 if (!OrigLoop->contains(UI)) {
3607 assert(isa<PHINode>(UI) && "Expected LCSSA form")(static_cast <bool> (isa<PHINode>(UI) && "Expected LCSSA form"
) ? void (0) : __assert_fail ("isa<PHINode>(UI) && \"Expected LCSSA form\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3607, __extension__ __PRETTY_FUNCTION__))
;
3608 MissingVals[UI] = EndValue;
3609 }
3610 }
3611
3612 // An external user of the penultimate value need to see EndValue - Step.
3613 // The simplest way to get this is to recompute it from the constituent SCEVs,
3614 // that is Start + (Step * (CRD - 1)).
3615 for (User *U : OrigPhi->users()) {
3616 auto *UI = cast<Instruction>(U);
3617 if (!OrigLoop->contains(UI)) {
3618 const DataLayout &DL =
3619 OrigLoop->getHeader()->getModule()->getDataLayout();
3620 assert(isa<PHINode>(UI) && "Expected LCSSA form")(static_cast <bool> (isa<PHINode>(UI) && "Expected LCSSA form"
) ? void (0) : __assert_fail ("isa<PHINode>(UI) && \"Expected LCSSA form\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3620, __extension__ __PRETTY_FUNCTION__))
;
3621
3622 IRBuilder<> B(MiddleBlock->getTerminator());
3623 Value *CountMinusOne = B.CreateSub(
3624 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1));
3625 Value *CMO =
3626 !II.getStep()->getType()->isIntegerTy()
3627 ? B.CreateCast(Instruction::SIToFP, CountMinusOne,
3628 II.getStep()->getType())
3629 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType());
3630 CMO->setName("cast.cmo");
3631 Value *Escape = II.transform(B, CMO, PSE.getSE(), DL);
3632 Escape->setName("ind.escape");
3633 MissingVals[UI] = Escape;
3634 }
3635 }
3636
3637 for (auto &I : MissingVals) {
3638 PHINode *PHI = cast<PHINode>(I.first);
3639 // One corner case we have to handle is two IVs "chasing" each-other,
3640 // that is %IV2 = phi [...], [ %IV1, %latch ]
3641 // In this case, if IV1 has an external use, we need to avoid adding both
3642 // "last value of IV1" and "penultimate value of IV2". So, verify that we
3643 // don't already have an incoming value for the middle block.
3644 if (PHI->getBasicBlockIndex(MiddleBlock) == -1)
3645 PHI->addIncoming(I.second, MiddleBlock);
3646 }
3647}
3648
3649namespace {
3650
3651struct CSEDenseMapInfo {
3652 static bool canHandle(const Instruction *I) {
3653 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
3654 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I);
3655 }
3656
3657 static inline Instruction *getEmptyKey() {
3658 return DenseMapInfo<Instruction *>::getEmptyKey();
3659 }
3660
3661 static inline Instruction *getTombstoneKey() {
3662 return DenseMapInfo<Instruction *>::getTombstoneKey();
3663 }
3664
3665 static unsigned getHashValue(const Instruction *I) {
3666 assert(canHandle(I) && "Unknown instruction!")(static_cast <bool> (canHandle(I) && "Unknown instruction!"
) ? void (0) : __assert_fail ("canHandle(I) && \"Unknown instruction!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3666, __extension__ __PRETTY_FUNCTION__))
;
3667 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(),
3668 I->value_op_end()));
3669 }
3670
3671 static bool isEqual(const Instruction *LHS, const Instruction *RHS) {
3672 if (LHS == getEmptyKey() || RHS == getEmptyKey() ||
3673 LHS == getTombstoneKey() || RHS == getTombstoneKey())
3674 return LHS == RHS;
3675 return LHS->isIdenticalTo(RHS);
3676 }
3677};
3678
3679} // end anonymous namespace
3680
3681///\brief Perform cse of induction variable instructions.
3682static void cse(BasicBlock *BB) {
3683 // Perform simple cse.
3684 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap;
3685 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
3686 Instruction *In = &*I++;
3687
3688 if (!CSEDenseMapInfo::canHandle(In))
3689 continue;
3690
3691 // Check if we can replace this instruction with any of the
3692 // visited instructions.
3693 if (Instruction *V = CSEMap.lookup(In)) {
3694 In->replaceAllUsesWith(V);
3695 In->eraseFromParent();
3696 continue;
3697 }
3698
3699 CSEMap[In] = In;
3700 }
3701}
3702
3703/// \brief Estimate the overhead of scalarizing an instruction. This is a
3704/// convenience wrapper for the type-based getScalarizationOverhead API.
3705static unsigned getScalarizationOverhead(Instruction *I, unsigned VF,
3706 const TargetTransformInfo &TTI) {
3707 if (VF == 1)
3708 return 0;
3709
3710 unsigned Cost = 0;
3711 Type *RetTy = ToVectorTy(I->getType(), VF);
3712 if (!RetTy->isVoidTy() &&
3713 (!isa<LoadInst>(I) ||
3714 !TTI.supportsEfficientVectorElementLoadStore()))
3715 Cost += TTI.getScalarizationOverhead(RetTy, true, false);
3716
3717 if (CallInst *CI = dyn_cast<CallInst>(I)) {
3718 SmallVector<const Value *, 4> Operands(CI->arg_operands());
3719 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3720 }
3721 else if (!isa<StoreInst>(I) ||
3722 !TTI.supportsEfficientVectorElementLoadStore()) {
3723 SmallVector<const Value *, 4> Operands(I->operand_values());
3724 Cost += TTI.getOperandsScalarizationOverhead(Operands, VF);
3725 }
3726
3727 return Cost;
3728}
3729
3730// Estimate cost of a call instruction CI if it were vectorized with factor VF.
3731// Return the cost of the instruction, including scalarization overhead if it's
3732// needed. The flag NeedToScalarize shows if the call needs to be scalarized -
3733// i.e. either vector version isn't available, or is too expensive.
3734static unsigned getVectorCallCost(CallInst *CI, unsigned VF,
3735 const TargetTransformInfo &TTI,
3736 const TargetLibraryInfo *TLI,
3737 bool &NeedToScalarize) {
3738 Function *F = CI->getCalledFunction();
3739 StringRef FnName = CI->getCalledFunction()->getName();
3740 Type *ScalarRetTy = CI->getType();
3741 SmallVector<Type *, 4> Tys, ScalarTys;
3742 for (auto &ArgOp : CI->arg_operands())
3743 ScalarTys.push_back(ArgOp->getType());
3744
3745 // Estimate cost of scalarized vector call. The source operands are assumed
3746 // to be vectors, so we need to extract individual elements from there,
3747 // execute VF scalar calls, and then gather the result into the vector return
3748 // value.
3749 unsigned ScalarCallCost = TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys);
3750 if (VF == 1)
3751 return ScalarCallCost;
3752
3753 // Compute corresponding vector type for return value and arguments.
3754 Type *RetTy = ToVectorTy(ScalarRetTy, VF);
3755 for (Type *ScalarTy : ScalarTys)
3756 Tys.push_back(ToVectorTy(ScalarTy, VF));
3757
3758 // Compute costs of unpacking argument values for the scalar calls and
3759 // packing the return values to a vector.
3760 unsigned ScalarizationCost = getScalarizationOverhead(CI, VF, TTI);
3761
3762 unsigned Cost = ScalarCallCost * VF + ScalarizationCost;
3763
3764 // If we can't emit a vector call for this function, then the currently found
3765 // cost is the cost we need to return.
3766 NeedToScalarize = true;
3767 if (!TLI || !TLI->isFunctionVectorizable(FnName, VF) || CI->isNoBuiltin())
3768 return Cost;
3769
3770 // If the corresponding vector cost is cheaper, return its cost.
3771 unsigned VectorCallCost = TTI.getCallInstrCost(nullptr, RetTy, Tys);
3772 if (VectorCallCost < Cost) {
3773 NeedToScalarize = false;
3774 return VectorCallCost;
3775 }
3776 return Cost;
3777}
3778
3779// Estimate cost of an intrinsic call instruction CI if it were vectorized with
3780// factor VF. Return the cost of the instruction, including scalarization
3781// overhead if it's needed.
3782static unsigned getVectorIntrinsicCost(CallInst *CI, unsigned VF,
3783 const TargetTransformInfo &TTI,
3784 const TargetLibraryInfo *TLI) {
3785 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3786 assert(ID && "Expected intrinsic call!")(static_cast <bool> (ID && "Expected intrinsic call!"
) ? void (0) : __assert_fail ("ID && \"Expected intrinsic call!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3786, __extension__ __PRETTY_FUNCTION__))
;
3787
3788 FastMathFlags FMF;
3789 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3790 FMF = FPMO->getFastMathFlags();
3791
3792 SmallVector<Value *, 4> Operands(CI->arg_operands());
3793 return TTI.getIntrinsicInstrCost(ID, CI->getType(), Operands, FMF, VF);
3794}
3795
3796static Type *smallestIntegerVectorType(Type *T1, Type *T2) {
3797 auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3798 auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3799 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2;
3800}
3801static Type *largestIntegerVectorType(Type *T1, Type *T2) {
3802 auto *I1 = cast<IntegerType>(T1->getVectorElementType());
3803 auto *I2 = cast<IntegerType>(T2->getVectorElementType());
3804 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2;
3805}
3806
3807void InnerLoopVectorizer::truncateToMinimalBitwidths() {
3808 // For every instruction `I` in MinBWs, truncate the operands, create a
3809 // truncated version of `I` and reextend its result. InstCombine runs
3810 // later and will remove any ext/trunc pairs.
3811 SmallPtrSet<Value *, 4> Erased;
3812 for (const auto &KV : Cost->getMinimalBitwidths()) {
3813 // If the value wasn't vectorized, we must maintain the original scalar
3814 // type. The absence of the value from VectorLoopValueMap indicates that it
3815 // wasn't vectorized.
3816 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3817 continue;
3818 for (unsigned Part = 0; Part < UF; ++Part) {
3819 Value *I = getOrCreateVectorValue(KV.first, Part);
3820 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I))
3821 continue;
3822 Type *OriginalTy = I->getType();
3823 Type *ScalarTruncatedTy =
3824 IntegerType::get(OriginalTy->getContext(), KV.second);
3825 Type *TruncatedTy = VectorType::get(ScalarTruncatedTy,
3826 OriginalTy->getVectorNumElements());
3827 if (TruncatedTy == OriginalTy)
3828 continue;
3829
3830 IRBuilder<> B(cast<Instruction>(I));
3831 auto ShrinkOperand = [&](Value *V) -> Value * {
3832 if (auto *ZI = dyn_cast<ZExtInst>(V))
3833 if (ZI->getSrcTy() == TruncatedTy)
3834 return ZI->getOperand(0);
3835 return B.CreateZExtOrTrunc(V, TruncatedTy);
3836 };
3837
3838 // The actual instruction modification depends on the instruction type,
3839 // unfortunately.
3840 Value *NewI = nullptr;
3841 if (auto *BO = dyn_cast<BinaryOperator>(I)) {
3842 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)),
3843 ShrinkOperand(BO->getOperand(1)));
3844
3845 // Any wrapping introduced by shrinking this operation shouldn't be
3846 // considered undefined behavior. So, we can't unconditionally copy
3847 // arithmetic wrapping flags to NewI.
3848 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false);
3849 } else if (auto *CI = dyn_cast<ICmpInst>(I)) {
3850 NewI =
3851 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)),
3852 ShrinkOperand(CI->getOperand(1)));
3853 } else if (auto *SI = dyn_cast<SelectInst>(I)) {
3854 NewI = B.CreateSelect(SI->getCondition(),
3855 ShrinkOperand(SI->getTrueValue()),
3856 ShrinkOperand(SI->getFalseValue()));
3857 } else if (auto *CI = dyn_cast<CastInst>(I)) {
3858 switch (CI->getOpcode()) {
3859 default:
3860 llvm_unreachable("Unhandled cast!")::llvm::llvm_unreachable_internal("Unhandled cast!", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3860)
;
3861 case Instruction::Trunc:
3862 NewI = ShrinkOperand(CI->getOperand(0));
3863 break;
3864 case Instruction::SExt:
3865 NewI = B.CreateSExtOrTrunc(
3866 CI->getOperand(0),
3867 smallestIntegerVectorType(OriginalTy, TruncatedTy));
3868 break;
3869 case Instruction::ZExt:
3870 NewI = B.CreateZExtOrTrunc(
3871 CI->getOperand(0),
3872 smallestIntegerVectorType(OriginalTy, TruncatedTy));
3873 break;
3874 }
3875 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) {
3876 auto Elements0 = SI->getOperand(0)->getType()->getVectorNumElements();
3877 auto *O0 = B.CreateZExtOrTrunc(
3878 SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0));
3879 auto Elements1 = SI->getOperand(1)->getType()->getVectorNumElements();
3880 auto *O1 = B.CreateZExtOrTrunc(
3881 SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1));
3882
3883 NewI = B.CreateShuffleVector(O0, O1, SI->getMask());
3884 } else if (isa<LoadInst>(I)) {
3885 // Don't do anything with the operands, just extend the result.
3886 continue;
3887 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) {
3888 auto Elements = IE->getOperand(0)->getType()->getVectorNumElements();
3889 auto *O0 = B.CreateZExtOrTrunc(
3890 IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3891 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy);
3892 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2));
3893 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) {
3894 auto Elements = EE->getOperand(0)->getType()->getVectorNumElements();
3895 auto *O0 = B.CreateZExtOrTrunc(
3896 EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements));
3897 NewI = B.CreateExtractElement(O0, EE->getOperand(2));
3898 } else {
3899 llvm_unreachable("Unhandled instruction type!")::llvm::llvm_unreachable_internal("Unhandled instruction type!"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 3899)
;
3900 }
3901
3902 // Lastly, extend the result.
3903 NewI->takeName(cast<Instruction>(I));
3904 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy);
3905 I->replaceAllUsesWith(Res);
3906 cast<Instruction>(I)->eraseFromParent();
3907 Erased.insert(I);
3908 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res);
3909 }
3910 }
3911
3912 // We'll have created a bunch of ZExts that are now parentless. Clean up.
3913 for (const auto &KV : Cost->getMinimalBitwidths()) {
3914 // If the value wasn't vectorized, we must maintain the original scalar
3915 // type. The absence of the value from VectorLoopValueMap indicates that it
3916 // wasn't vectorized.
3917 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first))
3918 continue;
3919 for (unsigned Part = 0; Part < UF; ++Part) {
3920 Value *I = getOrCreateVectorValue(KV.first, Part);
3921 ZExtInst *Inst = dyn_cast<ZExtInst>(I);
3922 if (Inst && Inst->use_empty()) {
3923 Value *NewI = Inst->getOperand(0);
3924 Inst->eraseFromParent();
3925 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI);
3926 }
3927 }
3928 }
3929}
3930
3931void InnerLoopVectorizer::fixVectorizedLoop() {
3932 // Insert truncates and extends for any truncated instructions as hints to
3933 // InstCombine.
3934 if (VF > 1)
3935 truncateToMinimalBitwidths();
3936
3937 // At this point every instruction in the original loop is widened to a
3938 // vector form. Now we need to fix the recurrences in the loop. These PHI
3939 // nodes are currently empty because we did not want to introduce cycles.
3940 // This is the second stage of vectorizing recurrences.
3941 fixCrossIterationPHIs();
3942
3943 // Update the dominator tree.
3944 //
3945 // FIXME: After creating the structure of the new loop, the dominator tree is
3946 // no longer up-to-date, and it remains that way until we update it
3947 // here. An out-of-date dominator tree is problematic for SCEV,
3948 // because SCEVExpander uses it to guide code generation. The
3949 // vectorizer use SCEVExpanders in several places. Instead, we should
3950 // keep the dominator tree up-to-date as we go.
3951 updateAnalysis();
3952
3953 // Fix-up external users of the induction variables.
3954 for (auto &Entry : *Legal->getInductionVars())
3955 fixupIVUsers(Entry.first, Entry.second,
3956 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)),
3957 IVEndValues[Entry.first], LoopMiddleBlock);
3958
3959 fixLCSSAPHIs();
3960 for (Instruction *PI : PredicatedInstructions)
3961 sinkScalarOperands(&*PI);
3962
3963 // Remove redundant induction instructions.
3964 cse(LoopVectorBody);
3965}
3966
3967void InnerLoopVectorizer::fixCrossIterationPHIs() {
3968 // In order to support recurrences we need to be able to vectorize Phi nodes.
3969 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
3970 // stage #2: We now need to fix the recurrences by adding incoming edges to
3971 // the currently empty PHI nodes. At this point every instruction in the
3972 // original loop is widened to a vector form so we can use them to construct
3973 // the incoming edges.
3974 for (PHINode &Phi : OrigLoop->getHeader()->phis()) {
3975 // Handle first-order recurrences and reductions that need to be fixed.
3976 if (Legal->isFirstOrderRecurrence(&Phi))
3977 fixFirstOrderRecurrence(&Phi);
3978 else if (Legal->isReductionVariable(&Phi))
3979 fixReduction(&Phi);
3980 }
3981}
3982
3983void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi) {
3984 // This is the second phase of vectorizing first-order recurrences. An
3985 // overview of the transformation is described below. Suppose we have the
3986 // following loop.
3987 //
3988 // for (int i = 0; i < n; ++i)
3989 // b[i] = a[i] - a[i - 1];
3990 //
3991 // There is a first-order recurrence on "a". For this loop, the shorthand
3992 // scalar IR looks like:
3993 //
3994 // scalar.ph:
3995 // s_init = a[-1]
3996 // br scalar.body
3997 //
3998 // scalar.body:
3999 // i = phi [0, scalar.ph], [i+1, scalar.body]
4000 // s1 = phi [s_init, scalar.ph], [s2, scalar.body]
4001 // s2 = a[i]
4002 // b[i] = s2 - s1
4003 // br cond, scalar.body, ...
4004 //
4005 // In this example, s1 is a recurrence because it's value depends on the
4006 // previous iteration. In the first phase of vectorization, we created a
4007 // temporary value for s1. We now complete the vectorization and produce the
4008 // shorthand vector IR shown below (for VF = 4, UF = 1).
4009 //
4010 // vector.ph:
4011 // v_init = vector(..., ..., ..., a[-1])
4012 // br vector.body
4013 //
4014 // vector.body
4015 // i = phi [0, vector.ph], [i+4, vector.body]
4016 // v1 = phi [v_init, vector.ph], [v2, vector.body]
4017 // v2 = a[i, i+1, i+2, i+3];
4018 // v3 = vector(v1(3), v2(0, 1, 2))
4019 // b[i, i+1, i+2, i+3] = v2 - v3
4020 // br cond, vector.body, middle.block
4021 //
4022 // middle.block:
4023 // x = v2(3)
4024 // br scalar.ph
4025 //
4026 // scalar.ph:
4027 // s_init = phi [x, middle.block], [a[-1], otherwise]
4028 // br scalar.body
4029 //
4030 // After execution completes the vector loop, we extract the next value of
4031 // the recurrence (x) to use as the initial value in the scalar loop.
4032
4033 // Get the original loop preheader and single loop latch.
4034 auto *Preheader = OrigLoop->getLoopPreheader();
4035 auto *Latch = OrigLoop->getLoopLatch();
4036
4037 // Get the initial and previous values of the scalar recurrence.
4038 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader);
4039 auto *Previous = Phi->getIncomingValueForBlock(Latch);
4040
4041 // Create a vector from the initial value.
4042 auto *VectorInit = ScalarInit;
4043 if (VF > 1) {
4044 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4045 VectorInit = Builder.CreateInsertElement(
4046 UndefValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit,
4047 Builder.getInt32(VF - 1), "vector.recur.init");
4048 }
4049
4050 // We constructed a temporary phi node in the first phase of vectorization.
4051 // This phi node will eventually be deleted.
4052 Builder.SetInsertPoint(
4053 cast<Instruction>(VectorLoopValueMap.getVectorValue(Phi, 0)));
4054
4055 // Create a phi node for the new recurrence. The current value will either be
4056 // the initial value inserted into a vector or loop-varying vector value.
4057 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur");
4058 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader);
4059
4060 // Get the vectorized previous value of the last part UF - 1. It appears last
4061 // among all unrolled iterations, due to the order of their construction.
4062 Value *PreviousLastPart = getOrCreateVectorValue(Previous, UF - 1);
4063
4064 // Set the insertion point after the previous value if it is an instruction.
4065 // Note that the previous value may have been constant-folded so it is not
4066 // guaranteed to be an instruction in the vector loop. Also, if the previous
4067 // value is a phi node, we should insert after all the phi nodes to avoid
4068 // breaking basic block verification.
4069 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart) ||
4070 isa<PHINode>(PreviousLastPart))
4071 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt());
4072 else
4073 Builder.SetInsertPoint(
4074 &*++BasicBlock::iterator(cast<Instruction>(PreviousLastPart)));
4075
4076 // We will construct a vector for the recurrence by combining the values for
4077 // the current and previous iterations. This is the required shuffle mask.
4078 SmallVector<Constant *, 8> ShuffleMask(VF);
4079 ShuffleMask[0] = Builder.getInt32(VF - 1);
4080 for (unsigned I = 1; I < VF; ++I)
4081 ShuffleMask[I] = Builder.getInt32(I + VF - 1);
4082
4083 // The vector from which to take the initial value for the current iteration
4084 // (actual or unrolled). Initially, this is the vector phi node.
4085 Value *Incoming = VecPhi;
4086
4087 // Shuffle the current and previous vector and update the vector parts.
4088 for (unsigned Part = 0; Part < UF; ++Part) {
4089 Value *PreviousPart = getOrCreateVectorValue(Previous, Part);
4090 Value *PhiPart = VectorLoopValueMap.getVectorValue(Phi, Part);
4091 auto *Shuffle =
4092 VF > 1 ? Builder.CreateShuffleVector(Incoming, PreviousPart,
4093 ConstantVector::get(ShuffleMask))
4094 : Incoming;
4095 PhiPart->replaceAllUsesWith(Shuffle);
4096 cast<Instruction>(PhiPart)->eraseFromParent();
4097 VectorLoopValueMap.resetVectorValue(Phi, Part, Shuffle);
4098 Incoming = PreviousPart;
4099 }
4100
4101 // Fix the latch value of the new recurrence in the vector loop.
4102 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4103
4104 // Extract the last vector element in the middle block. This will be the
4105 // initial value for the recurrence when jumping to the scalar loop.
4106 auto *ExtractForScalar = Incoming;
4107 if (VF > 1) {
4108 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator());
4109 ExtractForScalar = Builder.CreateExtractElement(
4110 ExtractForScalar, Builder.getInt32(VF - 1), "vector.recur.extract");
4111 }
4112 // Extract the second last element in the middle block if the
4113 // Phi is used outside the loop. We need to extract the phi itself
4114 // and not the last element (the phi update in the current iteration). This
4115 // will be the value when jumping to the exit block from the LoopMiddleBlock,
4116 // when the scalar loop is not run at all.
4117 Value *ExtractForPhiUsedOutsideLoop = nullptr;
4118 if (VF > 1)
4119 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement(
4120 Incoming, Builder.getInt32(VF - 2), "vector.recur.extract.for.phi");
4121 // When loop is unrolled without vectorizing, initialize
4122 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of
4123 // `Incoming`. This is analogous to the vectorized case above: extracting the
4124 // second last element when VF > 1.
4125 else if (UF > 1)
4126 ExtractForPhiUsedOutsideLoop = getOrCreateVectorValue(Previous, UF - 2);
4127
4128 // Fix the initial value of the original recurrence in the scalar loop.
4129 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin());
4130 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init");
4131 for (auto *BB : predecessors(LoopScalarPreHeader)) {
4132 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit;
4133 Start->addIncoming(Incoming, BB);
4134 }
4135
4136 Phi->setIncomingValue(Phi->getBasicBlockIndex(LoopScalarPreHeader), Start);
4137 Phi->setName("scalar.recur");
4138
4139 // Finally, fix users of the recurrence outside the loop. The users will need
4140 // either the last value of the scalar recurrence or the last value of the
4141 // vector recurrence we extracted in the middle block. Since the loop is in
4142 // LCSSA form, we just need to find the phi node for the original scalar
4143 // recurrence in the exit block, and then add an edge for the middle block.
4144 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4145 if (LCSSAPhi.getIncomingValue(0) == Phi) {
4146 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock);
4147 break;
4148 }
4149 }
4150}
4151
4152void InnerLoopVectorizer::fixReduction(PHINode *Phi) {
4153 Constant *Zero = Builder.getInt32(0);
4154
4155 // Get it's reduction variable descriptor.
4156 assert(Legal->isReductionVariable(Phi) &&(static_cast <bool> (Legal->isReductionVariable(Phi)
&& "Unable to find the reduction variable") ? void (
0) : __assert_fail ("Legal->isReductionVariable(Phi) && \"Unable to find the reduction variable\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4157, __extension__ __PRETTY_FUNCTION__))
4157 "Unable to find the reduction variable")(static_cast <bool> (Legal->isReductionVariable(Phi)
&& "Unable to find the reduction variable") ? void (
0) : __assert_fail ("Legal->isReductionVariable(Phi) && \"Unable to find the reduction variable\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4157, __extension__ __PRETTY_FUNCTION__))
;
4158 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[Phi];
4159
4160 RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
4161 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
4162 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
4163 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind =
4164 RdxDesc.getMinMaxRecurrenceKind();
4165 setDebugLocFromInst(Builder, ReductionStartValue);
4166
4167 // We need to generate a reduction vector from the incoming scalar.
4168 // To do so, we need to generate the 'identity' vector and override
4169 // one of the elements with the incoming scalar reduction. We need
4170 // to do it in the vector-loop preheader.
4171 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
4172
4173 // This is the vector-clone of the value that leaves the loop.
4174 Type *VecTy = getOrCreateVectorValue(LoopExitInst, 0)->getType();
4175
4176 // Find the reduction identity variable. Zero for addition, or, xor,
4177 // one for multiplication, -1 for And.
4178 Value *Identity;
4179 Value *VectorStart;
4180 if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
4181 RK == RecurrenceDescriptor::RK_FloatMinMax) {
4182 // MinMax reduction have the start value as their identify.
4183 if (VF == 1) {
4184 VectorStart = Identity = ReductionStartValue;
4185 } else {
4186 VectorStart = Identity =
4187 Builder.CreateVectorSplat(VF, ReductionStartValue, "minmax.ident");
4188 }
4189 } else {
4190 // Handle other reduction kinds:
4191 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
4192 RK, VecTy->getScalarType());
4193 if (VF == 1) {
4194 Identity = Iden;
4195 // This vector is the Identity vector where the first element is the
4196 // incoming scalar reduction.
4197 VectorStart = ReductionStartValue;
4198 } else {
4199 Identity = ConstantVector::getSplat(VF, Iden);
4200
4201 // This vector is the Identity vector where the first element is the
4202 // incoming scalar reduction.
4203 VectorStart =
4204 Builder.CreateInsertElement(Identity, ReductionStartValue, Zero);
4205 }
4206 }
4207
4208 // Fix the vector-loop phi.
4209
4210 // Reductions do not have to start at zero. They can start with
4211 // any loop invariant values.
4212 BasicBlock *Latch = OrigLoop->getLoopLatch();
4213 Value *LoopVal = Phi->getIncomingValueForBlock(Latch);
4214 for (unsigned Part = 0; Part < UF; ++Part) {
4215 Value *VecRdxPhi = getOrCreateVectorValue(Phi, Part);
4216 Value *Val = getOrCreateVectorValue(LoopVal, Part);
4217 // Make sure to add the reduction stat value only to the
4218 // first unroll part.
4219 Value *StartVal = (Part == 0) ? VectorStart : Identity;
4220 cast<PHINode>(VecRdxPhi)->addIncoming(StartVal, LoopVectorPreHeader);
4221 cast<PHINode>(VecRdxPhi)
4222 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4223 }
4224
4225 // Before each round, move the insertion point right between
4226 // the PHIs and the values we are going to write.
4227 // This allows us to write both PHINodes and the extractelement
4228 // instructions.
4229 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4230
4231 setDebugLocFromInst(Builder, LoopExitInst);
4232
4233 // If the vector reduction can be performed in a smaller type, we truncate
4234 // then extend the loop exit value to enable InstCombine to evaluate the
4235 // entire expression in the smaller type.
4236 if (VF > 1 && Phi->getType() != RdxDesc.getRecurrenceType()) {
4237 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
4238 Builder.SetInsertPoint(
4239 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator());
4240 VectorParts RdxParts(UF);
4241 for (unsigned Part = 0; Part < UF; ++Part) {
4242 RdxParts[Part] = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4243 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4244 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy)
4245 : Builder.CreateZExt(Trunc, VecTy);
4246 for (Value::user_iterator UI = RdxParts[Part]->user_begin();
4247 UI != RdxParts[Part]->user_end();)
4248 if (*UI != Trunc) {
4249 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd);
4250 RdxParts[Part] = Extnd;
4251 } else {
4252 ++UI;
4253 }
4254 }
4255 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
4256 for (unsigned Part = 0; Part < UF; ++Part) {
4257 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
4258 VectorLoopValueMap.resetVectorValue(LoopExitInst, Part, RdxParts[Part]);
4259 }
4260 }
4261
4262 // Reduce all of the unrolled parts into a single vector.
4263 Value *ReducedPartRdx = VectorLoopValueMap.getVectorValue(LoopExitInst, 0);
4264 unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
4265 setDebugLocFromInst(Builder, ReducedPartRdx);
4266 for (unsigned Part = 1; Part < UF; ++Part) {
4267 Value *RdxPart = VectorLoopValueMap.getVectorValue(LoopExitInst, Part);
4268 if (Op != Instruction::ICmp && Op != Instruction::FCmp)
4269 // Floating point operations had to be 'fast' to enable the reduction.
4270 ReducedPartRdx = addFastMathFlag(
4271 Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxPart,
4272 ReducedPartRdx, "bin.rdx"));
4273 else
4274 ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
4275 Builder, MinMaxKind, ReducedPartRdx, RdxPart);
4276 }
4277
4278 if (VF > 1) {
4279 bool NoNaN = Legal->hasFunNoNaNAttr();
4280 ReducedPartRdx =
4281 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, NoNaN);
4282 // If the reduction can be performed in a smaller type, we need to extend
4283 // the reduction to the wider type before we branch to the original loop.
4284 if (Phi->getType() != RdxDesc.getRecurrenceType())
4285 ReducedPartRdx =
4286 RdxDesc.isSigned()
4287 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType())
4288 : Builder.CreateZExt(ReducedPartRdx, Phi->getType());
4289 }
4290
4291 // Create a phi node that merges control-flow from the backedge-taken check
4292 // block and the middle block.
4293 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx",
4294 LoopScalarPreHeader->getTerminator());
4295 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I)
4296 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]);
4297 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock);
4298
4299 // Now, we need to fix the users of the reduction variable
4300 // inside and outside of the scalar remainder loop.
4301 // We know that the loop is in LCSSA form. We need to update the
4302 // PHI nodes in the exit blocks.
4303 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4304 // All PHINodes need to have a single entry edge, or two if
4305 // we already fixed them.
4306 assert(LCSSAPhi.getNumIncomingValues() < 3 && "Invalid LCSSA PHI")(static_cast <bool> (LCSSAPhi.getNumIncomingValues() <
3 && "Invalid LCSSA PHI") ? void (0) : __assert_fail
("LCSSAPhi.getNumIncomingValues() < 3 && \"Invalid LCSSA PHI\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4306, __extension__ __PRETTY_FUNCTION__))
;
4307
4308 // We found a reduction value exit-PHI. Update it with the
4309 // incoming bypass edge.
4310 if (LCSSAPhi.getIncomingValue(0) == LoopExitInst)
4311 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock);
4312 } // end of the LCSSA phi scan.
4313
4314 // Fix the scalar loop reduction variable with the incoming reduction sum
4315 // from the vector body and from the backedge value.
4316 int IncomingEdgeBlockIdx =
4317 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch());
4318 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index")(static_cast <bool> (IncomingEdgeBlockIdx >= 0 &&
"Invalid block index") ? void (0) : __assert_fail ("IncomingEdgeBlockIdx >= 0 && \"Invalid block index\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4318, __extension__ __PRETTY_FUNCTION__))
;
4319 // Pick the other block.
4320 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1);
4321 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi);
4322 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst);
4323}
4324
4325void InnerLoopVectorizer::fixLCSSAPHIs() {
4326 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) {
4327 if (LCSSAPhi.getNumIncomingValues() == 1) {
4328 assert(OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) &&(static_cast <bool> (OrigLoop->isLoopInvariant(LCSSAPhi
.getIncomingValue(0)) && "Incoming value isn't loop invariant"
) ? void (0) : __assert_fail ("OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && \"Incoming value isn't loop invariant\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4329, __extension__ __PRETTY_FUNCTION__))
4329 "Incoming value isn't loop invariant")(static_cast <bool> (OrigLoop->isLoopInvariant(LCSSAPhi
.getIncomingValue(0)) && "Incoming value isn't loop invariant"
) ? void (0) : __assert_fail ("OrigLoop->isLoopInvariant(LCSSAPhi.getIncomingValue(0)) && \"Incoming value isn't loop invariant\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4329, __extension__ __PRETTY_FUNCTION__))
;
4330 LCSSAPhi.addIncoming(LCSSAPhi.getIncomingValue(0), LoopMiddleBlock);
4331 }
4332 }
4333}
4334
4335void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) {
4336 // The basic block and loop containing the predicated instruction.
4337 auto *PredBB = PredInst->getParent();
4338 auto *VectorLoop = LI->getLoopFor(PredBB);
4339
4340 // Initialize a worklist with the operands of the predicated instruction.
4341 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end());
4342
4343 // Holds instructions that we need to analyze again. An instruction may be
4344 // reanalyzed if we don't yet know if we can sink it or not.
4345 SmallVector<Instruction *, 8> InstsToReanalyze;
4346
4347 // Returns true if a given use occurs in the predicated block. Phi nodes use
4348 // their operands in their corresponding predecessor blocks.
4349 auto isBlockOfUsePredicated = [&](Use &U) -> bool {
4350 auto *I = cast<Instruction>(U.getUser());
4351 BasicBlock *BB = I->getParent();
4352 if (auto *Phi = dyn_cast<PHINode>(I))
4353 BB = Phi->getIncomingBlock(
4354 PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
4355 return BB == PredBB;
4356 };
4357
4358 // Iteratively sink the scalarized operands of the predicated instruction
4359 // into the block we created for it. When an instruction is sunk, it's
4360 // operands are then added to the worklist. The algorithm ends after one pass
4361 // through the worklist doesn't sink a single instruction.
4362 bool Changed;
4363 do {
4364 // Add the instructions that need to be reanalyzed to the worklist, and
4365 // reset the changed indicator.
4366 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end());
4367 InstsToReanalyze.clear();
4368 Changed = false;
4369
4370 while (!Worklist.empty()) {
4371 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val());
4372
4373 // We can't sink an instruction if it is a phi node, is already in the
4374 // predicated block, is not in the loop, or may have side effects.
4375 if (!I || isa<PHINode>(I) || I->getParent() == PredBB ||
4376 !VectorLoop->contains(I) || I->mayHaveSideEffects())
4377 continue;
4378
4379 // It's legal to sink the instruction if all its uses occur in the
4380 // predicated block. Otherwise, there's nothing to do yet, and we may
4381 // need to reanalyze the instruction.
4382 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) {
4383 InstsToReanalyze.push_back(I);
4384 continue;
4385 }
4386
4387 // Move the instruction to the beginning of the predicated block, and add
4388 // it's operands to the worklist.
4389 I->moveBefore(&*PredBB->getFirstInsertionPt());
4390 Worklist.insert(I->op_begin(), I->op_end());
4391
4392 // The sinking may have enabled other instructions to be sunk, so we will
4393 // need to iterate.
4394 Changed = true;
4395 }
4396 } while (Changed);
4397}
4398
4399void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, unsigned UF,
4400 unsigned VF) {
4401 assert(PN->getParent() == OrigLoop->getHeader() &&(static_cast <bool> (PN->getParent() == OrigLoop->
getHeader() && "Non-header phis should have been handled elsewhere"
) ? void (0) : __assert_fail ("PN->getParent() == OrigLoop->getHeader() && \"Non-header phis should have been handled elsewhere\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4402, __extension__ __PRETTY_FUNCTION__))
4402 "Non-header phis should have been handled elsewhere")(static_cast <bool> (PN->getParent() == OrigLoop->
getHeader() && "Non-header phis should have been handled elsewhere"
) ? void (0) : __assert_fail ("PN->getParent() == OrigLoop->getHeader() && \"Non-header phis should have been handled elsewhere\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4402, __extension__ __PRETTY_FUNCTION__))
;
4403
4404 PHINode *P = cast<PHINode>(PN);
4405 // In order to support recurrences we need to be able to vectorize Phi nodes.
4406 // Phi nodes have cycles, so we need to vectorize them in two stages. This is
4407 // stage #1: We create a new vector PHI node with no incoming edges. We'll use
4408 // this value when we vectorize all of the instructions that use the PHI.
4409 if (Legal->isReductionVariable(P) || Legal->isFirstOrderRecurrence(P)) {
4410 for (unsigned Part = 0; Part < UF; ++Part) {
4411 // This is phase one of vectorizing PHIs.
4412 Type *VecTy =
4413 (VF == 1) ? PN->getType() : VectorType::get(PN->getType(), VF);
4414 Value *EntryPart = PHINode::Create(
4415 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt());
4416 VectorLoopValueMap.setVectorValue(P, Part, EntryPart);
4417 }
4418 return;
4419 }
4420
4421 setDebugLocFromInst(Builder, P);
4422
4423 // This PHINode must be an induction variable.
4424 // Make sure that we know about it.
4425 assert(Legal->getInductionVars()->count(P) && "Not an induction variable")(static_cast <bool> (Legal->getInductionVars()->count
(P) && "Not an induction variable") ? void (0) : __assert_fail
("Legal->getInductionVars()->count(P) && \"Not an induction variable\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4425, __extension__ __PRETTY_FUNCTION__))
;
4426
4427 InductionDescriptor II = Legal->getInductionVars()->lookup(P);
4428 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
4429
4430 // FIXME: The newly created binary instructions should contain nsw/nuw flags,
4431 // which can be found from the original scalar operations.
4432 switch (II.getKind()) {
4433 case InductionDescriptor::IK_NoInduction:
4434 llvm_unreachable("Unknown induction")::llvm::llvm_unreachable_internal("Unknown induction", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4434)
;
4435 case InductionDescriptor::IK_IntInduction:
4436 case InductionDescriptor::IK_FpInduction:
4437 llvm_unreachable("Integer/fp induction is handled elsewhere.")::llvm::llvm_unreachable_internal("Integer/fp induction is handled elsewhere."
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4437)
;
4438 case InductionDescriptor::IK_PtrInduction: {
4439 // Handle the pointer induction variable case.
4440 assert(P->getType()->isPointerTy() && "Unexpected type.")(static_cast <bool> (P->getType()->isPointerTy() &&
"Unexpected type.") ? void (0) : __assert_fail ("P->getType()->isPointerTy() && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4440, __extension__ __PRETTY_FUNCTION__))
;
4441 // This is the normalized GEP that starts counting at zero.
4442 Value *PtrInd = Induction;
4443 PtrInd = Builder.CreateSExtOrTrunc(PtrInd, II.getStep()->getType());
4444 // Determine the number of scalars we need to generate for each unroll
4445 // iteration. If the instruction is uniform, we only need to generate the
4446 // first lane. Otherwise, we generate all VF values.
4447 unsigned Lanes = Cost->isUniformAfterVectorization(P, VF) ? 1 : VF;
4448 // These are the scalar results. Notice that we don't generate vector GEPs
4449 // because scalar GEPs result in better code.
4450 for (unsigned Part = 0; Part < UF; ++Part) {
4451 for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
4452 Constant *Idx = ConstantInt::get(PtrInd->getType(), Lane + Part * VF);
4453 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx);
4454 Value *SclrGep = II.transform(Builder, GlobalIdx, PSE.getSE(), DL);
4455 SclrGep->setName("next.gep");
4456 VectorLoopValueMap.setScalarValue(P, {Part, Lane}, SclrGep);
4457 }
4458 }
4459 return;
4460 }
4461 }
4462}
4463
4464/// A helper function for checking whether an integer division-related
4465/// instruction may divide by zero (in which case it must be predicated if
4466/// executed conditionally in the scalar code).
4467/// TODO: It may be worthwhile to generalize and check isKnownNonZero().
4468/// Non-zero divisors that are non compile-time constants will not be
4469/// converted into multiplication, so we will still end up scalarizing
4470/// the division, but can do so w/o predication.
4471static bool mayDivideByZero(Instruction &I) {
4472 assert((I.getOpcode() == Instruction::UDiv ||(static_cast <bool> ((I.getOpcode() == Instruction::UDiv
|| I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction
::URem || I.getOpcode() == Instruction::SRem) && "Unexpected instruction"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::URem || I.getOpcode() == Instruction::SRem) && \"Unexpected instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4476, __extension__ __PRETTY_FUNCTION__))
4473 I.getOpcode() == Instruction::SDiv ||(static_cast <bool> ((I.getOpcode() == Instruction::UDiv
|| I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction
::URem || I.getOpcode() == Instruction::SRem) && "Unexpected instruction"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::URem || I.getOpcode() == Instruction::SRem) && \"Unexpected instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4476, __extension__ __PRETTY_FUNCTION__))
4474 I.getOpcode() == Instruction::URem ||(static_cast <bool> ((I.getOpcode() == Instruction::UDiv
|| I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction
::URem || I.getOpcode() == Instruction::SRem) && "Unexpected instruction"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::URem || I.getOpcode() == Instruction::SRem) && \"Unexpected instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4476, __extension__ __PRETTY_FUNCTION__))
4475 I.getOpcode() == Instruction::SRem) &&(static_cast <bool> ((I.getOpcode() == Instruction::UDiv
|| I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction
::URem || I.getOpcode() == Instruction::SRem) && "Unexpected instruction"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::URem || I.getOpcode() == Instruction::SRem) && \"Unexpected instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4476, __extension__ __PRETTY_FUNCTION__))
4476 "Unexpected instruction")(static_cast <bool> ((I.getOpcode() == Instruction::UDiv
|| I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction
::URem || I.getOpcode() == Instruction::SRem) && "Unexpected instruction"
) ? void (0) : __assert_fail ("(I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::URem || I.getOpcode() == Instruction::SRem) && \"Unexpected instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4476, __extension__ __PRETTY_FUNCTION__))
;
4477 Value *Divisor = I.getOperand(1);
4478 auto *CInt = dyn_cast<ConstantInt>(Divisor);
4479 return !CInt || CInt->isZero();
4480}
4481
4482void InnerLoopVectorizer::widenInstruction(Instruction &I) {
4483 switch (I.getOpcode()) {
4484 case Instruction::Br:
4485 case Instruction::PHI:
4486 llvm_unreachable("This instruction is handled by a different recipe.")::llvm::llvm_unreachable_internal("This instruction is handled by a different recipe."
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4486)
;
4487 case Instruction::GetElementPtr: {
4488 // Construct a vector GEP by widening the operands of the scalar GEP as
4489 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP
4490 // results in a vector of pointers when at least one operand of the GEP
4491 // is vector-typed. Thus, to keep the representation compact, we only use
4492 // vector-typed operands for loop-varying values.
4493 auto *GEP = cast<GetElementPtrInst>(&I);
4494
4495 if (VF > 1 && OrigLoop->hasLoopInvariantOperands(GEP)) {
4496 // If we are vectorizing, but the GEP has only loop-invariant operands,
4497 // the GEP we build (by only using vector-typed operands for
4498 // loop-varying values) would be a scalar pointer. Thus, to ensure we
4499 // produce a vector of pointers, we need to either arbitrarily pick an
4500 // operand to broadcast, or broadcast a clone of the original GEP.
4501 // Here, we broadcast a clone of the original.
4502 //
4503 // TODO: If at some point we decide to scalarize instructions having
4504 // loop-invariant operands, this special case will no longer be
4505 // required. We would add the scalarization decision to
4506 // collectLoopScalars() and teach getVectorValue() to broadcast
4507 // the lane-zero scalar value.
4508 auto *Clone = Builder.Insert(GEP->clone());
4509 for (unsigned Part = 0; Part < UF; ++Part) {
4510 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone);
4511 VectorLoopValueMap.setVectorValue(&I, Part, EntryPart);
4512 addMetadata(EntryPart, GEP);
4513 }
4514 } else {
4515 // If the GEP has at least one loop-varying operand, we are sure to
4516 // produce a vector of pointers. But if we are only unrolling, we want
4517 // to produce a scalar GEP for each unroll part. Thus, the GEP we
4518 // produce with the code below will be scalar (if VF == 1) or vector
4519 // (otherwise). Note that for the unroll-only case, we still maintain
4520 // values in the vector mapping with initVector, as we do for other
4521 // instructions.
4522 for (unsigned Part = 0; Part < UF; ++Part) {
4523 // The pointer operand of the new GEP. If it's loop-invariant, we
4524 // won't broadcast it.
4525 auto *Ptr =
4526 OrigLoop->isLoopInvariant(GEP->getPointerOperand())
4527 ? GEP->getPointerOperand()
4528 : getOrCreateVectorValue(GEP->getPointerOperand(), Part);
4529
4530 // Collect all the indices for the new GEP. If any index is
4531 // loop-invariant, we won't broadcast it.
4532 SmallVector<Value *, 4> Indices;
4533 for (auto &U : make_range(GEP->idx_begin(), GEP->idx_end())) {
4534 if (OrigLoop->isLoopInvariant(U.get()))
4535 Indices.push_back(U.get());
4536 else
4537 Indices.push_back(getOrCreateVectorValue(U.get(), Part));
4538 }
4539
4540 // Create the new GEP. Note that this GEP may be a scalar if VF == 1,
4541 // but it should be a vector, otherwise.
4542 auto *NewGEP = GEP->isInBounds()
4543 ? Builder.CreateInBoundsGEP(Ptr, Indices)
4544 : Builder.CreateGEP(Ptr, Indices);
4545 assert((VF == 1 || NewGEP->getType()->isVectorTy()) &&(static_cast <bool> ((VF == 1 || NewGEP->getType()->
isVectorTy()) && "NewGEP is not a pointer vector") ? void
(0) : __assert_fail ("(VF == 1 || NewGEP->getType()->isVectorTy()) && \"NewGEP is not a pointer vector\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4546, __extension__ __PRETTY_FUNCTION__))
4546 "NewGEP is not a pointer vector")(static_cast <bool> ((VF == 1 || NewGEP->getType()->
isVectorTy()) && "NewGEP is not a pointer vector") ? void
(0) : __assert_fail ("(VF == 1 || NewGEP->getType()->isVectorTy()) && \"NewGEP is not a pointer vector\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4546, __extension__ __PRETTY_FUNCTION__))
;
4547 VectorLoopValueMap.setVectorValue(&I, Part, NewGEP);
4548 addMetadata(NewGEP, GEP);
4549 }
4550 }
4551
4552 break;
4553 }
4554 case Instruction::UDiv:
4555 case Instruction::SDiv:
4556 case Instruction::SRem:
4557 case Instruction::URem:
4558 case Instruction::Add:
4559 case Instruction::FAdd:
4560 case Instruction::Sub:
4561 case Instruction::FSub:
4562 case Instruction::Mul:
4563 case Instruction::FMul:
4564 case Instruction::FDiv:
4565 case Instruction::FRem:
4566 case Instruction::Shl:
4567 case Instruction::LShr:
4568 case Instruction::AShr:
4569 case Instruction::And:
4570 case Instruction::Or:
4571 case Instruction::Xor: {
4572 // Just widen binops.
4573 auto *BinOp = cast<BinaryOperator>(&I);
4574 setDebugLocFromInst(Builder, BinOp);
4575
4576 for (unsigned Part = 0; Part < UF; ++Part) {
4577 Value *A = getOrCreateVectorValue(BinOp->getOperand(0), Part);
4578 Value *B = getOrCreateVectorValue(BinOp->getOperand(1), Part);
4579 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), A, B);
4580
4581 if (BinaryOperator *VecOp = dyn_cast<BinaryOperator>(V))
4582 VecOp->copyIRFlags(BinOp);
4583
4584 // Use this vector value for all users of the original instruction.
4585 VectorLoopValueMap.setVectorValue(&I, Part, V);
4586 addMetadata(V, BinOp);
4587 }
4588
4589 break;
4590 }
4591 case Instruction::Select: {
4592 // Widen selects.
4593 // If the selector is loop invariant we can create a select
4594 // instruction with a scalar condition. Otherwise, use vector-select.
4595 auto *SE = PSE.getSE();
4596 bool InvariantCond =
4597 SE->isLoopInvariant(PSE.getSCEV(I.getOperand(0)), OrigLoop);
4598 setDebugLocFromInst(Builder, &I);
4599
4600 // The condition can be loop invariant but still defined inside the
4601 // loop. This means that we can't just use the original 'cond' value.
4602 // We have to take the 'vectorized' value and pick the first lane.
4603 // Instcombine will make this a no-op.
4604
4605 auto *ScalarCond = getOrCreateScalarValue(I.getOperand(0), {0, 0});
4606
4607 for (unsigned Part = 0; Part < UF; ++Part) {
4608 Value *Cond = getOrCreateVectorValue(I.getOperand(0), Part);
4609 Value *Op0 = getOrCreateVectorValue(I.getOperand(1), Part);
4610 Value *Op1 = getOrCreateVectorValue(I.getOperand(2), Part);
4611 Value *Sel =
4612 Builder.CreateSelect(InvariantCond ? ScalarCond : Cond, Op0, Op1);
4613 VectorLoopValueMap.setVectorValue(&I, Part, Sel);
4614 addMetadata(Sel, &I);
4615 }
4616
4617 break;
4618 }
4619
4620 case Instruction::ICmp:
4621 case Instruction::FCmp: {
4622 // Widen compares. Generate vector compares.
4623 bool FCmp = (I.getOpcode() == Instruction::FCmp);
4624 auto *Cmp = dyn_cast<CmpInst>(&I);
4625 setDebugLocFromInst(Builder, Cmp);
4626 for (unsigned Part = 0; Part < UF; ++Part) {
4627 Value *A = getOrCreateVectorValue(Cmp->getOperand(0), Part);
4628 Value *B = getOrCreateVectorValue(Cmp->getOperand(1), Part);
4629 Value *C = nullptr;
4630 if (FCmp) {
4631 // Propagate fast math flags.
4632 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
4633 Builder.setFastMathFlags(Cmp->getFastMathFlags());
4634 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B);
4635 } else {
4636 C = Builder.CreateICmp(Cmp->getPredicate(), A, B);
4637 }
4638 VectorLoopValueMap.setVectorValue(&I, Part, C);
4639 addMetadata(C, &I);
4640 }
4641
4642 break;
4643 }
4644
4645 case Instruction::ZExt:
4646 case Instruction::SExt:
4647 case Instruction::FPToUI:
4648 case Instruction::FPToSI:
4649 case Instruction::FPExt:
4650 case Instruction::PtrToInt:
4651 case Instruction::IntToPtr:
4652 case Instruction::SIToFP:
4653 case Instruction::UIToFP:
4654 case Instruction::Trunc:
4655 case Instruction::FPTrunc:
4656 case Instruction::BitCast: {
4657 auto *CI = dyn_cast<CastInst>(&I);
4658 setDebugLocFromInst(Builder, CI);
4659
4660 /// Vectorize casts.
4661 Type *DestTy =
4662 (VF == 1) ? CI->getType() : VectorType::get(CI->getType(), VF);
4663
4664 for (unsigned Part = 0; Part < UF; ++Part) {
4665 Value *A = getOrCreateVectorValue(CI->getOperand(0), Part);
4666 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy);
4667 VectorLoopValueMap.setVectorValue(&I, Part, Cast);
4668 addMetadata(Cast, &I);
4669 }
4670 break;
4671 }
4672
4673 case Instruction::Call: {
4674 // Ignore dbg intrinsics.
4675 if (isa<DbgInfoIntrinsic>(I))
4676 break;
4677 setDebugLocFromInst(Builder, &I);
4678
4679 Module *M = I.getParent()->getParent()->getParent();
4680 auto *CI = cast<CallInst>(&I);
4681
4682 StringRef FnName = CI->getCalledFunction()->getName();
4683 Function *F = CI->getCalledFunction();
4684 Type *RetTy = ToVectorTy(CI->getType(), VF);
4685 SmallVector<Type *, 4> Tys;
4686 for (Value *ArgOperand : CI->arg_operands())
4687 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF));
4688
4689 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4690
4691 // The flag shows whether we use Intrinsic or a usual Call for vectorized
4692 // version of the instruction.
4693 // Is it beneficial to perform intrinsic call compared to lib call?
4694 bool NeedToScalarize;
4695 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
4696 bool UseVectorIntrinsic =
4697 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
4698 assert((UseVectorIntrinsic || !NeedToScalarize) &&(static_cast <bool> ((UseVectorIntrinsic || !NeedToScalarize
) && "Instruction should be scalarized elsewhere.") ?
void (0) : __assert_fail ("(UseVectorIntrinsic || !NeedToScalarize) && \"Instruction should be scalarized elsewhere.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4699, __extension__ __PRETTY_FUNCTION__))
4699 "Instruction should be scalarized elsewhere.")(static_cast <bool> ((UseVectorIntrinsic || !NeedToScalarize
) && "Instruction should be scalarized elsewhere.") ?
void (0) : __assert_fail ("(UseVectorIntrinsic || !NeedToScalarize) && \"Instruction should be scalarized elsewhere.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4699, __extension__ __PRETTY_FUNCTION__))
;
4700
4701 for (unsigned Part = 0; Part < UF; ++Part) {
4702 SmallVector<Value *, 4> Args;
4703 for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
4704 Value *Arg = CI->getArgOperand(i);
4705 // Some intrinsics have a scalar argument - don't replace it with a
4706 // vector.
4707 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, i))
4708 Arg = getOrCreateVectorValue(CI->getArgOperand(i), Part);
4709 Args.push_back(Arg);
4710 }
4711
4712 Function *VectorF;
4713 if (UseVectorIntrinsic) {
4714 // Use vector version of the intrinsic.
4715 Type *TysForDecl[] = {CI->getType()};
4716 if (VF > 1)
4717 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF);
4718 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl);
4719 } else {
4720 // Use vector version of the library call.
4721 StringRef VFnName = TLI->getVectorizedFunction(FnName, VF);
4722 assert(!VFnName.empty() && "Vector function name is empty.")(static_cast <bool> (!VFnName.empty() && "Vector function name is empty."
) ? void (0) : __assert_fail ("!VFnName.empty() && \"Vector function name is empty.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4722, __extension__ __PRETTY_FUNCTION__))
;
4723 VectorF = M->getFunction(VFnName);
4724 if (!VectorF) {
4725 // Generate a declaration
4726 FunctionType *FTy = FunctionType::get(RetTy, Tys, false);
4727 VectorF =
4728 Function::Create(FTy, Function::ExternalLinkage, VFnName, M);
4729 VectorF->copyAttributesFrom(F);
4730 }
4731 }
4732 assert(VectorF && "Can't create vector function.")(static_cast <bool> (VectorF && "Can't create vector function."
) ? void (0) : __assert_fail ("VectorF && \"Can't create vector function.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4732, __extension__ __PRETTY_FUNCTION__))
;
4733
4734 SmallVector<OperandBundleDef, 1> OpBundles;
4735 CI->getOperandBundlesAsDefs(OpBundles);
4736 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles);
4737
4738 if (isa<FPMathOperator>(V))
4739 V->copyFastMathFlags(CI);
4740
4741 VectorLoopValueMap.setVectorValue(&I, Part, V);
4742 addMetadata(V, &I);
4743 }
4744
4745 break;
4746 }
4747
4748 default:
4749 // This instruction is not vectorized by simple widening.
4750 DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an unhandled instruction: "
<< I; } } while (false)
;
4751 llvm_unreachable("Unhandled instruction!")::llvm::llvm_unreachable_internal("Unhandled instruction!", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4751)
;
4752 } // end of switch.
4753}
4754
4755void InnerLoopVectorizer::updateAnalysis() {
4756 // Forget the original basic block.
4757 PSE.getSE()->forgetLoop(OrigLoop);
4758
4759 // Update the dominator tree information.
4760 assert(DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) &&(static_cast <bool> (DT->properlyDominates(LoopBypassBlocks
.front(), LoopExitBlock) && "Entry does not dominate exit."
) ? void (0) : __assert_fail ("DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && \"Entry does not dominate exit.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4761, __extension__ __PRETTY_FUNCTION__))
4761 "Entry does not dominate exit.")(static_cast <bool> (DT->properlyDominates(LoopBypassBlocks
.front(), LoopExitBlock) && "Entry does not dominate exit."
) ? void (0) : __assert_fail ("DT->properlyDominates(LoopBypassBlocks.front(), LoopExitBlock) && \"Entry does not dominate exit.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4761, __extension__ __PRETTY_FUNCTION__))
;
4762
4763 DT->addNewBlock(LoopMiddleBlock,
4764 LI->getLoopFor(LoopVectorBody)->getLoopLatch());
4765 DT->addNewBlock(LoopScalarPreHeader, LoopBypassBlocks[0]);
4766 DT->changeImmediateDominator(LoopScalarBody, LoopScalarPreHeader);
4767 DT->changeImmediateDominator(LoopExitBlock, LoopBypassBlocks[0]);
4768 assert(DT->verify(DominatorTree::VerificationLevel::Fast))(static_cast <bool> (DT->verify(DominatorTree::VerificationLevel
::Fast)) ? void (0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast)"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4768, __extension__ __PRETTY_FUNCTION__))
;
4769}
4770
4771/// \brief Check whether it is safe to if-convert this phi node.
4772///
4773/// Phi nodes with constant expressions that can trap are not safe to if
4774/// convert.
4775static bool canIfConvertPHINodes(BasicBlock *BB) {
4776 for (PHINode &Phi : BB->phis()) {
4777 for (Value *V : Phi.incoming_values())
4778 if (auto *C = dyn_cast<Constant>(V))
4779 if (C->canTrap())
4780 return false;
4781 }
4782 return true;
4783}
4784
4785bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
4786 if (!EnableIfConversion) {
4787 ORE->emit(createMissedAnalysis("IfConversionDisabled")
4788 << "if-conversion is disabled");
4789 return false;
4790 }
4791
4792 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable")(static_cast <bool> (TheLoop->getNumBlocks() > 1 &&
"Single block loops are vectorizable") ? void (0) : __assert_fail
("TheLoop->getNumBlocks() > 1 && \"Single block loops are vectorizable\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 4792, __extension__ __PRETTY_FUNCTION__))
;
4793
4794 // A list of pointers that we can safely read and write to.
4795 SmallPtrSet<Value *, 8> SafePointes;
4796
4797 // Collect safe addresses.
4798 for (BasicBlock *BB : TheLoop->blocks()) {
4799 if (blockNeedsPredication(BB))
4800 continue;
4801
4802 for (Instruction &I : *BB)
4803 if (auto *Ptr = getLoadStorePointerOperand(&I))
4804 SafePointes.insert(Ptr);
4805 }
4806
4807 // Collect the blocks that need predication.
4808 BasicBlock *Header = TheLoop->getHeader();
4809 for (BasicBlock *BB : TheLoop->blocks()) {
4810 // We don't support switch statements inside loops.
4811 if (!isa<BranchInst>(BB->getTerminator())) {
4812 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
4813 << "loop contains a switch statement");
4814 return false;
4815 }
4816
4817 // We must be able to predicate all blocks that need to be predicated.
4818 if (blockNeedsPredication(BB)) {
4819 if (!blockCanBePredicated(BB, SafePointes)) {
4820 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
4821 << "control flow cannot be substituted for a select");
4822 return false;
4823 }
4824 } else if (BB != Header && !canIfConvertPHINodes(BB)) {
4825 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
4826 << "control flow cannot be substituted for a select");
4827 return false;
4828 }
4829 }
4830
4831 // We can if-convert this loop.
4832 return true;
4833}
4834
4835bool LoopVectorizationLegality::canVectorize() {
4836 // Store the result and return it at the end instead of exiting early, in case
4837 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
4838 bool Result = true;
4839
4840 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE"loop-vectorize");
4841 // We must have a loop in canonical form. Loops with indirectbr in them cannot
4842 // be canonicalized.
4843 if (!TheLoop->getLoopPreheader()) {
4844 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop doesn't have a legal pre-header.\n"
; } } while (false)
;
4845 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4846 << "loop control flow is not understood by vectorizer");
4847 if (DoExtraAnalysis)
4848 Result = false;
4849 else
4850 return false;
4851 }
4852
4853 // FIXME: The code is currently dead, since the loop gets sent to
4854 // LoopVectorizationLegality is already an innermost loop.
4855 //
4856 // We can only vectorize innermost loops.
4857 if (!TheLoop->empty()) {
4858 ORE->emit(createMissedAnalysis("NotInnermostLoop")
4859 << "loop is not the innermost loop");
4860 if (DoExtraAnalysis)
4861 Result = false;
4862 else
4863 return false;
4864 }
4865
4866 // We must have a single backedge.
4867 if (TheLoop->getNumBackEdges() != 1) {
4868 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4869 << "loop control flow is not understood by vectorizer");
4870 if (DoExtraAnalysis)
4871 Result = false;
4872 else
4873 return false;
4874 }
4875
4876 // We must have a single exiting block.
4877 if (!TheLoop->getExitingBlock()) {
4878 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4879 << "loop control flow is not understood by vectorizer");
4880 if (DoExtraAnalysis)
4881 Result = false;
4882 else
4883 return false;
4884 }
4885
4886 // We only handle bottom-tested loops, i.e. loop in which the condition is
4887 // checked at the end of each iteration. With that we can assume that all
4888 // instructions in the loop are executed the same number of times.
4889 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) {
4890 ORE->emit(createMissedAnalysis("CFGNotUnderstood")
4891 << "loop control flow is not understood by vectorizer");
4892 if (DoExtraAnalysis)
4893 Result = false;
4894 else
4895 return false;
4896 }
4897
4898 // We need to have a loop header.
4899 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop: " <<
TheLoop->getHeader()->getName() << '\n'; } } while
(false)
4900 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop: " <<
TheLoop->getHeader()->getName() << '\n'; } } while
(false)
;
4901
4902 // Check if we can if-convert non-single-bb loops.
4903 unsigned NumBlocks = TheLoop->getNumBlocks();
4904 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
4905 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't if-convert the loop.\n"
; } } while (false)
;
4906 if (DoExtraAnalysis)
4907 Result = false;
4908 else
4909 return false;
4910 }
4911
4912 // Check if we can vectorize the instructions and CFG in this loop.
4913 if (!canVectorizeInstrs()) {
4914 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize the instructions or CFG\n"
; } } while (false)
;
4915 if (DoExtraAnalysis)
4916 Result = false;
4917 else
4918 return false;
4919 }
4920
4921 // Go over each instruction and look at memory deps.
4922 if (!canVectorizeMemory()) {
4923 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize due to memory conflicts\n"
; } } while (false)
;
4924 if (DoExtraAnalysis)
4925 Result = false;
4926 else
4927 return false;
4928 }
4929
4930 DEBUG(dbgs() << "LV: We can vectorize this loop"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)"
: "") << "!\n"; } } while (false)
4931 << (LAI->getRuntimePointerChecking()->Needdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)"
: "") << "!\n"; } } while (false)
4932 ? " (with a runtime bound check)"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)"
: "") << "!\n"; } } while (false)
4933 : "")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)"
: "") << "!\n"; } } while (false)
4934 << "!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We can vectorize this loop"
<< (LAI->getRuntimePointerChecking()->Need ? " (with a runtime bound check)"
: "") << "!\n"; } } while (false)
;
4935
4936 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
4937 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
4938 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
4939
4940 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
4941 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
4942 << "Too many SCEV assumptions need to be made and checked "
4943 << "at runtime");
4944 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Too many SCEV checks needed.\n"
; } } while (false)
;
4945 if (DoExtraAnalysis)
4946 Result = false;
4947 else
4948 return false;
4949 }
4950
4951 // Okay! We've done all the tests. If any have failed, return false. Otherwise
4952 // we can vectorize, and at this point we don't have any other mem analysis
4953 // which may limit our maximum vectorization factor, so just return true with
4954 // no restrictions.
4955 return Result;
4956}
4957
4958static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
4959 if (Ty->isPointerTy())
4960 return DL.getIntPtrType(Ty);
4961
4962 // It is possible that char's or short's overflow when we ask for the loop's
4963 // trip count, work around this by changing the type size.
4964 if (Ty->getScalarSizeInBits() < 32)
4965 return Type::getInt32Ty(Ty->getContext());
4966
4967 return Ty;
4968}
4969
4970static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
4971 Ty0 = convertPointerToIntegerType(DL, Ty0);
4972 Ty1 = convertPointerToIntegerType(DL, Ty1);
4973 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
4974 return Ty0;
4975 return Ty1;
4976}
4977
4978/// \brief Check that the instruction has outside loop users and is not an
4979/// identified reduction variable.
4980static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
4981 SmallPtrSetImpl<Value *> &AllowedExit) {
4982 // Reduction and Induction instructions are allowed to have exit users. All
4983 // other instructions must not have external users.
4984 if (!AllowedExit.count(Inst))
4985 // Check that all of the users of the loop are inside the BB.
4986 for (User *U : Inst->users()) {
4987 Instruction *UI = cast<Instruction>(U);
4988 // This user may be a reduction exit value.
4989 if (!TheLoop->contains(UI)) {
4990 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an outside user for : "
<< *UI << '\n'; } } while (false)
;
4991 return true;
4992 }
4993 }
4994 return false;
4995}
4996
4997void LoopVectorizationLegality::addInductionPhi(
4998 PHINode *Phi, const InductionDescriptor &ID,
4999 SmallPtrSetImpl<Value *> &AllowedExit) {
5000 Inductions[Phi] = ID;
5001
5002 // In case this induction also comes with casts that we know we can ignore
5003 // in the vectorized loop body, record them here. All casts could be recorded
5004 // here for ignoring, but suffices to record only the first (as it is the
5005 // only one that may bw used outside the cast sequence).
5006 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
5007 if (!Casts.empty())
5008 InductionCastsToIgnore.insert(*Casts.begin());
5009
5010 Type *PhiTy = Phi->getType();
5011 const DataLayout &DL = Phi->getModule()->getDataLayout();
5012
5013 // Get the widest type.
5014 if (!PhiTy->isFloatingPointTy()) {
5015 if (!WidestIndTy)
5016 WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
5017 else
5018 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
5019 }
5020
5021 // Int inductions are special because we only allow one IV.
5022 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
5023 ID.getConstIntStepValue() &&
5024 ID.getConstIntStepValue()->isOne() &&
5025 isa<Constant>(ID.getStartValue()) &&
5026 cast<Constant>(ID.getStartValue())->isNullValue()) {
5027
5028 // Use the phi node with the widest type as induction. Use the last
5029 // one if there are multiple (no good reason for doing this other
5030 // than it is expedient). We've checked that it begins at zero and
5031 // steps by one, so this is a canonical induction variable.
5032 if (!PrimaryInduction || PhiTy == WidestIndTy)
5033 PrimaryInduction = Phi;
5034 }
5035
5036 // Both the PHI node itself, and the "post-increment" value feeding
5037 // back into the PHI node may have external users.
5038 // We can allow those uses, except if the SCEVs we have for them rely
5039 // on predicates that only hold within the loop, since allowing the exit
5040 // currently means re-using this SCEV outside the loop.
5041 if (PSE.getUnionPredicate().isAlwaysTrue()) {
5042 AllowedExit.insert(Phi);
5043 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
5044 }
5045
5046 DEBUG(dbgs() << "LV: Found an induction variable.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an induction variable.\n"
; } } while (false)
;
5047}
5048
5049bool LoopVectorizationLegality::canVectorizeInstrs() {
5050 BasicBlock *Header = TheLoop->getHeader();
5051
5052 // Look for the attribute signaling the absence of NaNs.
5053 Function &F = *Header->getParent();
5054 HasFunNoNaNAttr =
5055 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
5056
5057 // For each block in the loop.
5058 for (BasicBlock *BB : TheLoop->blocks()) {
5059 // Scan the instructions in the block and look for hazards.
5060 for (Instruction &I : *BB) {
5061 if (auto *Phi = dyn_cast<PHINode>(&I)) {
5062 Type *PhiTy = Phi->getType();
5063 // Check that this PHI type is allowed.
5064 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
5065 !PhiTy->isPointerTy()) {
5066 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
5067 << "loop control flow is not understood by vectorizer");
5068 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an non-int non-pointer PHI.\n"
; } } while (false)
;
5069 return false;
5070 }
5071
5072 // If this PHINode is not in the header block, then we know that we
5073 // can convert it to select during if-conversion. No need to check if
5074 // the PHIs in this block are induction or reduction variables.
5075 if (BB != Header) {
5076 // Check that this instruction has no outside users or is an
5077 // identified reduction value with an outside user.
5078 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit))
5079 continue;
5080 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi)
5081 << "value could not be identified as "
5082 "an induction or reduction variable");
5083 return false;
5084 }
5085
5086 // We only allow if-converted PHIs with exactly two incoming values.
5087 if (Phi->getNumIncomingValues() != 2) {
5088 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
5089 << "control flow not understood by vectorizer");
5090 DEBUG(dbgs() << "LV: Found an invalid PHI.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an invalid PHI.\n"
; } } while (false)
;
5091 return false;
5092 }
5093
5094 RecurrenceDescriptor RedDes;
5095 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
5096 DT)) {
5097 if (RedDes.hasUnsafeAlgebra())
5098 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
5099 AllowedExit.insert(RedDes.getLoopExitInstr());
5100 Reductions[Phi] = RedDes;
5101 continue;
5102 }
5103
5104 InductionDescriptor ID;
5105 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
5106 addInductionPhi(Phi, ID, AllowedExit);
5107 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
5108 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
5109 continue;
5110 }
5111
5112 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
5113 SinkAfter, DT)) {
5114 FirstOrderRecurrences.insert(Phi);
5115 continue;
5116 }
5117
5118 // As a last resort, coerce the PHI to a AddRec expression
5119 // and re-try classifying it a an induction PHI.
5120 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
5121 addInductionPhi(Phi, ID, AllowedExit);
5122 continue;
5123 }
5124
5125 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
5126 << "value that could not be identified as "
5127 "reduction is used outside the loop");
5128 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an unidentified PHI."
<< *Phi << "\n"; } } while (false)
;
5129 return false;
5130 } // end of PHI handling
5131
5132 // We handle calls that:
5133 // * Are debug info intrinsics.
5134 // * Have a mapping to an IR intrinsic.
5135 // * Have a vector version available.
5136 auto *CI = dyn_cast<CallInst>(&I);
5137 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
5138 !isa<DbgInfoIntrinsic>(CI) &&
5139 !(CI->getCalledFunction() && TLI &&
5140 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
5141 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
5142 << "call instruction cannot be vectorized");
5143 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"
; } } while (false)
;
5144 return false;
5145 }
5146
5147 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
5148 // second argument is the same (i.e. loop invariant)
5149 if (CI && hasVectorInstrinsicScalarOpd(
5150 getVectorIntrinsicIDForCall(CI, TLI), 1)) {
5151 auto *SE = PSE.getSE();
5152 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
5153 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
5154 << "intrinsic instruction cannot be vectorized");
5155 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found unvectorizable intrinsic "
<< *CI << "\n"; } } while (false)
;
5156 return false;
5157 }
5158 }
5159
5160 // Check that the instruction return type is vectorizable.
5161 // Also, we can't vectorize extractelement instructions.
5162 if ((!VectorType::isValidElementType(I.getType()) &&
5163 !I.getType()->isVoidTy()) ||
5164 isa<ExtractElementInst>(I)) {
5165 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
5166 << "instruction return type cannot be vectorized");
5167 DEBUG(dbgs() << "LV: Found unvectorizable type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found unvectorizable type.\n"
; } } while (false)
;
5168 return false;
5169 }
5170
5171 // Check that the stored type is vectorizable.
5172 if (auto *ST = dyn_cast<StoreInst>(&I)) {
5173 Type *T = ST->getValueOperand()->getType();
5174 if (!VectorType::isValidElementType(T)) {
5175 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
5176 << "store instruction cannot be vectorized");
5177 return false;
5178 }
5179
5180 // FP instructions can allow unsafe algebra, thus vectorizable by
5181 // non-IEEE-754 compliant SIMD units.
5182 // This applies to floating-point math operations and calls, not memory
5183 // operations, shuffles, or casts, as they don't change precision or
5184 // semantics.
5185 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
5186 !I.isFast()) {
5187 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found FP op with unsafe algebra.\n"
; } } while (false)
;
5188 Hints->setPotentiallyUnsafe();
5189 }
5190
5191 // Reduction instructions are allowed to have exit users.
5192 // All other instructions must not have external users.
5193 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
5194 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
5195 << "value cannot be used outside the loop");
5196 return false;
5197 }
5198 } // next instr.
5199 }
5200
5201 if (!PrimaryInduction) {
5202 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Did not find one integer induction var.\n"
; } } while (false)
;
5203 if (Inductions.empty()) {
5204 ORE->emit(createMissedAnalysis("NoInductionVariable")
5205 << "loop induction variable could not be identified");
5206 return false;
5207 }
5208 }
5209
5210 // Now we know the widest induction type, check if our found induction
5211 // is the same size. If it's not, unset it here and InnerLoopVectorizer
5212 // will create another.
5213 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
5214 PrimaryInduction = nullptr;
5215
5216 return true;
5217}
5218
5219void LoopVectorizationCostModel::collectLoopScalars(unsigned VF) {
5220 // We should not collect Scalars more than once per VF. Right now, this
5221 // function is called from collectUniformsAndScalars(), which already does
5222 // this check. Collecting Scalars for VF=1 does not make any sense.
5223 assert(VF >= 2 && !Scalars.count(VF) &&(static_cast <bool> (VF >= 2 && !Scalars.count
(VF) && "This function should not be visited twice for the same VF"
) ? void (0) : __assert_fail ("VF >= 2 && !Scalars.count(VF) && \"This function should not be visited twice for the same VF\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5224, __extension__ __PRETTY_FUNCTION__))
5224 "This function should not be visited twice for the same VF")(static_cast <bool> (VF >= 2 && !Scalars.count
(VF) && "This function should not be visited twice for the same VF"
) ? void (0) : __assert_fail ("VF >= 2 && !Scalars.count(VF) && \"This function should not be visited twice for the same VF\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5224, __extension__ __PRETTY_FUNCTION__))
;
5225
5226 SmallSetVector<Instruction *, 8> Worklist;
5227
5228 // These sets are used to seed the analysis with pointers used by memory
5229 // accesses that will remain scalar.
5230 SmallSetVector<Instruction *, 8> ScalarPtrs;
5231 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs;
5232
5233 // A helper that returns true if the use of Ptr by MemAccess will be scalar.
5234 // The pointer operands of loads and stores will be scalar as long as the
5235 // memory access is not a gather or scatter operation. The value operand of a
5236 // store will remain scalar if the store is scalarized.
5237 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) {
5238 InstWidening WideningDecision = getWideningDecision(MemAccess, VF);
5239 assert(WideningDecision != CM_Unknown &&(static_cast <bool> (WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment") ? void (
0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5240, __extension__ __PRETTY_FUNCTION__))
5240 "Widening decision should be ready at this moment")(static_cast <bool> (WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment") ? void (
0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5240, __extension__ __PRETTY_FUNCTION__))
;
5241 if (auto *Store = dyn_cast<StoreInst>(MemAccess))
5242 if (Ptr == Store->getValueOperand())
5243 return WideningDecision == CM_Scalarize;
5244 assert(Ptr == getLoadStorePointerOperand(MemAccess) &&(static_cast <bool> (Ptr == getLoadStorePointerOperand(
MemAccess) && "Ptr is neither a value or pointer operand"
) ? void (0) : __assert_fail ("Ptr == getLoadStorePointerOperand(MemAccess) && \"Ptr is neither a value or pointer operand\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5245, __extension__ __PRETTY_FUNCTION__))
5245 "Ptr is neither a value or pointer operand")(static_cast <bool> (Ptr == getLoadStorePointerOperand(
MemAccess) && "Ptr is neither a value or pointer operand"
) ? void (0) : __assert_fail ("Ptr == getLoadStorePointerOperand(MemAccess) && \"Ptr is neither a value or pointer operand\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5245, __extension__ __PRETTY_FUNCTION__))
;
5246 return WideningDecision != CM_GatherScatter;
5247 };
5248
5249 // A helper that returns true if the given value is a bitcast or
5250 // getelementptr instruction contained in the loop.
5251 auto isLoopVaryingBitCastOrGEP = [&](Value *V) {
5252 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) ||
5253 isa<GetElementPtrInst>(V)) &&
5254 !TheLoop->isLoopInvariant(V);
5255 };
5256
5257 // A helper that evaluates a memory access's use of a pointer. If the use
5258 // will be a scalar use, and the pointer is only used by memory accesses, we
5259 // place the pointer in ScalarPtrs. Otherwise, the pointer is placed in
5260 // PossibleNonScalarPtrs.
5261 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) {
5262 // We only care about bitcast and getelementptr instructions contained in
5263 // the loop.
5264 if (!isLoopVaryingBitCastOrGEP(Ptr))
5265 return;
5266
5267 // If the pointer has already been identified as scalar (e.g., if it was
5268 // also identified as uniform), there's nothing to do.
5269 auto *I = cast<Instruction>(Ptr);
5270 if (Worklist.count(I))
5271 return;
5272
5273 // If the use of the pointer will be a scalar use, and all users of the
5274 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise,
5275 // place the pointer in PossibleNonScalarPtrs.
5276 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) {
5277 return isa<LoadInst>(U) || isa<StoreInst>(U);
5278 }))
5279 ScalarPtrs.insert(I);
5280 else
5281 PossibleNonScalarPtrs.insert(I);
5282 };
5283
5284 // We seed the scalars analysis with three classes of instructions: (1)
5285 // instructions marked uniform-after-vectorization, (2) bitcast and
5286 // getelementptr instructions used by memory accesses requiring a scalar use,
5287 // and (3) pointer induction variables and their update instructions (we
5288 // currently only scalarize these).
5289 //
5290 // (1) Add to the worklist all instructions that have been identified as
5291 // uniform-after-vectorization.
5292 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end());
5293
5294 // (2) Add to the worklist all bitcast and getelementptr instructions used by
5295 // memory accesses requiring a scalar use. The pointer operands of loads and
5296 // stores will be scalar as long as the memory accesses is not a gather or
5297 // scatter operation. The value operand of a store will remain scalar if the
5298 // store is scalarized.
5299 for (auto *BB : TheLoop->blocks())
5300 for (auto &I : *BB) {
5301 if (auto *Load = dyn_cast<LoadInst>(&I)) {
5302 evaluatePtrUse(Load, Load->getPointerOperand());
5303 } else if (auto *Store = dyn_cast<StoreInst>(&I)) {
5304 evaluatePtrUse(Store, Store->getPointerOperand());
5305 evaluatePtrUse(Store, Store->getValueOperand());
5306 }
5307 }
5308 for (auto *I : ScalarPtrs)
5309 if (!PossibleNonScalarPtrs.count(I)) {
5310 DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *I << "\n"; } } while (false)
;
5311 Worklist.insert(I);
5312 }
5313
5314 // (3) Add to the worklist all pointer induction variables and their update
5315 // instructions.
5316 //
5317 // TODO: Once we are able to vectorize pointer induction variables we should
5318 // no longer insert them into the worklist here.
5319 auto *Latch = TheLoop->getLoopLatch();
5320 for (auto &Induction : *Legal->getInductionVars()) {
5321 auto *Ind = Induction.first;
5322 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5323 if (Induction.second.getKind() != InductionDescriptor::IK_PtrInduction)
5324 continue;
5325 Worklist.insert(Ind);
5326 Worklist.insert(IndUpdate);
5327 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *Ind << "\n"; } } while (false)
;
5328 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *IndUpdate << "\n"; } } while (false)
;
5329 }
5330
5331 // Insert the forced scalars.
5332 // FIXME: Currently widenPHIInstruction() often creates a dead vector
5333 // induction variable when the PHI user is scalarized.
5334 if (ForcedScalars.count(VF))
5335 for (auto *I : ForcedScalars.find(VF)->second)
5336 Worklist.insert(I);
5337
5338 // Expand the worklist by looking through any bitcasts and getelementptr
5339 // instructions we've already identified as scalar. This is similar to the
5340 // expansion step in collectLoopUniforms(); however, here we're only
5341 // expanding to include additional bitcasts and getelementptr instructions.
5342 unsigned Idx = 0;
5343 while (Idx != Worklist.size()) {
5344 Instruction *Dst = Worklist[Idx++];
5345 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0)))
5346 continue;
5347 auto *Src = cast<Instruction>(Dst->getOperand(0));
5348 if (llvm::all_of(Src->users(), [&](User *U) -> bool {
5349 auto *J = cast<Instruction>(U);
5350 return !TheLoop->contains(J) || Worklist.count(J) ||
5351 ((isa<LoadInst>(J) || isa<StoreInst>(J)) &&
5352 isScalarUse(J, Src));
5353 })) {
5354 Worklist.insert(Src);
5355 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *Src << "\n"; } } while (false)
;
5356 }
5357 }
5358
5359 // An induction variable will remain scalar if all users of the induction
5360 // variable and induction variable update remain scalar.
5361 for (auto &Induction : *Legal->getInductionVars()) {
5362 auto *Ind = Induction.first;
5363 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5364
5365 // We already considered pointer induction variables, so there's no reason
5366 // to look at their users again.
5367 //
5368 // TODO: Once we are able to vectorize pointer induction variables we
5369 // should no longer skip over them here.
5370 if (Induction.second.getKind() == InductionDescriptor::IK_PtrInduction)
5371 continue;
5372
5373 // Determine if all users of the induction variable are scalar after
5374 // vectorization.
5375 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5376 auto *I = cast<Instruction>(U);
5377 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I);
5378 });
5379 if (!ScalarInd)
5380 continue;
5381
5382 // Determine if all users of the induction variable update instruction are
5383 // scalar after vectorization.
5384 auto ScalarIndUpdate =
5385 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5386 auto *I = cast<Instruction>(U);
5387 return I == Ind || !TheLoop->contains(I) || Worklist.count(I);
5388 });
5389 if (!ScalarIndUpdate)
5390 continue;
5391
5392 // The induction variable and its update instruction will remain scalar.
5393 Worklist.insert(Ind);
5394 Worklist.insert(IndUpdate);
5395 DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *Ind << "\n"; } } while (false)
;
5396 DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: "
<< *IndUpdate << "\n"; } } while (false)
;
5397 }
5398
5399 Scalars[VF].insert(Worklist.begin(), Worklist.end());
5400}
5401
5402bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I) {
5403 if (!Legal->blockNeedsPredication(I->getParent()))
5404 return false;
5405 switch(I->getOpcode()) {
5406 default:
5407 break;
5408 case Instruction::Load:
5409 case Instruction::Store: {
5410 if (!Legal->isMaskRequired(I))
5411 return false;
5412 auto *Ptr = getLoadStorePointerOperand(I);
5413 auto *Ty = getMemInstValueType(I);
5414 return isa<LoadInst>(I) ?
5415 !(isLegalMaskedLoad(Ty, Ptr) || isLegalMaskedGather(Ty))
5416 : !(isLegalMaskedStore(Ty, Ptr) || isLegalMaskedScatter(Ty));
5417 }
5418 case Instruction::UDiv:
5419 case Instruction::SDiv:
5420 case Instruction::SRem:
5421 case Instruction::URem:
5422 return mayDivideByZero(*I);
5423 }
5424 return false;
5425}
5426
5427bool LoopVectorizationCostModel::memoryInstructionCanBeWidened(Instruction *I,
5428 unsigned VF) {
5429 // Get and ensure we have a valid memory instruction.
5430 LoadInst *LI = dyn_cast<LoadInst>(I);
5431 StoreInst *SI = dyn_cast<StoreInst>(I);
5432 assert((LI || SI) && "Invalid memory instruction")(static_cast <bool> ((LI || SI) && "Invalid memory instruction"
) ? void (0) : __assert_fail ("(LI || SI) && \"Invalid memory instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5432, __extension__ __PRETTY_FUNCTION__))
;
5433
5434 auto *Ptr = getLoadStorePointerOperand(I);
5435
5436 // In order to be widened, the pointer should be consecutive, first of all.
5437 if (!Legal->isConsecutivePtr(Ptr))
5438 return false;
5439
5440 // If the instruction is a store located in a predicated block, it will be
5441 // scalarized.
5442 if (isScalarWithPredication(I))
5443 return false;
5444
5445 // If the instruction's allocated size doesn't equal it's type size, it
5446 // requires padding and will be scalarized.
5447 auto &DL = I->getModule()->getDataLayout();
5448 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType();
5449 if (hasIrregularType(ScalarTy, DL, VF))
5450 return false;
5451
5452 return true;
5453}
5454
5455void LoopVectorizationCostModel::collectLoopUniforms(unsigned VF) {
5456 // We should not collect Uniforms more than once per VF. Right now,
5457 // this function is called from collectUniformsAndScalars(), which
5458 // already does this check. Collecting Uniforms for VF=1 does not make any
5459 // sense.
5460
5461 assert(VF >= 2 && !Uniforms.count(VF) &&(static_cast <bool> (VF >= 2 && !Uniforms.count
(VF) && "This function should not be visited twice for the same VF"
) ? void (0) : __assert_fail ("VF >= 2 && !Uniforms.count(VF) && \"This function should not be visited twice for the same VF\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5462, __extension__ __PRETTY_FUNCTION__))
5462 "This function should not be visited twice for the same VF")(static_cast <bool> (VF >= 2 && !Uniforms.count
(VF) && "This function should not be visited twice for the same VF"
) ? void (0) : __assert_fail ("VF >= 2 && !Uniforms.count(VF) && \"This function should not be visited twice for the same VF\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5462, __extension__ __PRETTY_FUNCTION__))
;
5463
5464 // Visit the list of Uniforms. If we'll not find any uniform value, we'll
5465 // not analyze again. Uniforms.count(VF) will return 1.
5466 Uniforms[VF].clear();
5467
5468 // We now know that the loop is vectorizable!
5469 // Collect instructions inside the loop that will remain uniform after
5470 // vectorization.
5471
5472 // Global values, params and instructions outside of current loop are out of
5473 // scope.
5474 auto isOutOfScope = [&](Value *V) -> bool {
5475 Instruction *I = dyn_cast<Instruction>(V);
5476 return (!I || !TheLoop->contains(I));
5477 };
5478
5479 SetVector<Instruction *> Worklist;
5480 BasicBlock *Latch = TheLoop->getLoopLatch();
5481
5482 // Start with the conditional branch. If the branch condition is an
5483 // instruction contained in the loop that is only used by the branch, it is
5484 // uniform.
5485 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
5486 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) {
5487 Worklist.insert(Cmp);
5488 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Cmp << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found uniform instruction: "
<< *Cmp << "\n"; } } while (false)
;
5489 }
5490
5491 // Holds consecutive and consecutive-like pointers. Consecutive-like pointers
5492 // are pointers that are treated like consecutive pointers during
5493 // vectorization. The pointer operands of interleaved accesses are an
5494 // example.
5495 SmallSetVector<Instruction *, 8> ConsecutiveLikePtrs;
5496
5497 // Holds pointer operands of instructions that are possibly non-uniform.
5498 SmallPtrSet<Instruction *, 8> PossibleNonUniformPtrs;
5499
5500 auto isUniformDecision = [&](Instruction *I, unsigned VF) {
5501 InstWidening WideningDecision = getWideningDecision(I, VF);
5502 assert(WideningDecision != CM_Unknown &&(static_cast <bool> (WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment") ? void (
0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5503, __extension__ __PRETTY_FUNCTION__))
5503 "Widening decision should be ready at this moment")(static_cast <bool> (WideningDecision != CM_Unknown &&
"Widening decision should be ready at this moment") ? void (
0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 5503, __extension__ __PRETTY_FUNCTION__))
;
5504
5505 return (WideningDecision == CM_Widen ||
5506 WideningDecision == CM_Widen_Reverse ||
5507 WideningDecision == CM_Interleave);
5508 };
5509 // Iterate over the instructions in the loop, and collect all
5510 // consecutive-like pointer operands in ConsecutiveLikePtrs. If it's possible
5511 // that a consecutive-like pointer operand will be scalarized, we collect it
5512 // in PossibleNonUniformPtrs instead. We use two sets here because a single
5513 // getelementptr instruction can be used by both vectorized and scalarized
5514 // memory instructions. For example, if a loop loads and stores from the same
5515 // location, but the store is conditional, the store will be scalarized, and
5516 // the getelementptr won't remain uniform.
5517 for (auto *BB : TheLoop->blocks())
5518 for (auto &I : *BB) {
5519 // If there's no pointer operand, there's nothing to do.
5520 auto *Ptr = dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
5521 if (!Ptr)
5522 continue;
5523
5524 // True if all users of Ptr are memory accesses that have Ptr as their
5525 // pointer operand.
5526 auto UsersAreMemAccesses =
5527 llvm::all_of(Ptr->users(), [&](User *U) -> bool {
5528 return getLoadStorePointerOperand(U) == Ptr;
5529 });
5530
5531 // Ensure the memory instruction will not be scalarized or used by
5532 // gather/scatter, making its pointer operand non-uniform. If the pointer
5533 // operand is used by any instruction other than a memory access, we
5534 // conservatively assume the pointer operand may be non-uniform.
5535 if (!UsersAreMemAccesses || !isUniformDecision(&I, VF))
5536 PossibleNonUniformPtrs.insert(Ptr);
5537
5538 // If the memory instruction will be vectorized and its pointer operand
5539 // is consecutive-like, or interleaving - the pointer operand should
5540 // remain uniform.
5541 else
5542 ConsecutiveLikePtrs.insert(Ptr);
5543 }
5544
5545 // Add to the Worklist all consecutive and consecutive-like pointers that
5546 // aren't also identified as possibly non-uniform.
5547 for (auto *V : ConsecutiveLikePtrs)
5548 if (!PossibleNonUniformPtrs.count(V)) {
5549 DEBUG(dbgs() << "LV: Found uniform instruction: " << *V << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found uniform instruction: "
<< *V << "\n"; } } while (false)
;
5550 Worklist.insert(V);
5551 }
5552
5553 // Expand Worklist in topological order: whenever a new instruction
5554 // is added , its users should be either already inside Worklist, or
5555 // out of scope. It ensures a uniform instruction will only be used
5556 // by uniform instructions or out of scope instructions.
5557 unsigned idx = 0;
5558 while (idx != Worklist.size()) {
5559 Instruction *I = Worklist[idx++];
5560
5561 for (auto OV : I->operand_values()) {
5562 if (isOutOfScope(OV))
5563 continue;
5564 auto *OI = cast<Instruction>(OV);
5565 if (llvm::all_of(OI->users(), [&](User *U) -> bool {
5566 auto *J = cast<Instruction>(U);
5567 return !TheLoop->contains(J) || Worklist.count(J) ||
5568 (OI == getLoadStorePointerOperand(J) &&
5569 isUniformDecision(J, VF));
5570 })) {
5571 Worklist.insert(OI);
5572 DEBUG(dbgs() << "LV: Found uniform instruction: " << *OI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found uniform instruction: "
<< *OI << "\n"; } } while (false)
;
5573 }
5574 }
5575 }
5576
5577 // Returns true if Ptr is the pointer operand of a memory access instruction
5578 // I, and I is known to not require scalarization.
5579 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool {
5580 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF);
5581 };
5582
5583 // For an instruction to be added into Worklist above, all its users inside
5584 // the loop should also be in Worklist. However, this condition cannot be
5585 // true for phi nodes that form a cyclic dependence. We must process phi
5586 // nodes separately. An induction variable will remain uniform if all users
5587 // of the induction variable and induction variable update remain uniform.
5588 // The code below handles both pointer and non-pointer induction variables.
5589 for (auto &Induction : *Legal->getInductionVars()) {
5590 auto *Ind = Induction.first;
5591 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
5592
5593 // Determine if all users of the induction variable are uniform after
5594 // vectorization.
5595 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool {
5596 auto *I = cast<Instruction>(U);
5597 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) ||
5598 isVectorizedMemAccessUse(I, Ind);
5599 });
5600 if (!UniformInd)
5601 continue;
5602
5603 // Determine if all users of the induction variable update instruction are
5604 // uniform after vectorization.
5605 auto UniformIndUpdate =
5606 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
5607 auto *I = cast<Instruction>(U);
5608 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) ||
5609 isVectorizedMemAccessUse(I, IndUpdate);
5610 });
5611 if (!UniformIndUpdate)
5612 continue;
5613
5614 // The induction variable and its update instruction will remain uniform.
5615 Worklist.insert(Ind);
5616 Worklist.insert(IndUpdate);
5617 DEBUG(dbgs() << "LV: Found uniform instruction: " << *Ind << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found uniform instruction: "
<< *Ind << "\n"; } } while (false)
;
5618 DEBUG(dbgs() << "LV: Found uniform instruction: " << *IndUpdate << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found uniform instruction: "
<< *IndUpdate << "\n"; } } while (false)
;
5619 }
5620
5621 Uniforms[VF].insert(Worklist.begin(), Worklist.end());
5622}
5623
5624bool LoopVectorizationLegality::canVectorizeMemory() {
5625 LAI = &(*GetLAA)(*TheLoop);
5626 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
5627 if (LAR) {
5628 ORE->emit([&]() {
5629 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
5630 "loop not vectorized: ", *LAR);
5631 });
5632 }
5633 if (!LAI->canVectorizeMemory())
5634 return false;
5635
5636 if (LAI->hasStoreToLoopInvariantAddress()) {
5637 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
5638 << "write to a loop invariant address could not be vectorized");
5639 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: We don't allow storing to uniform addresses\n"
; } } while (false)
;
5640 return false;
5641 }
5642
5643 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
5644 PSE.addPredicate(LAI->getPSE().getUnionPredicate());
5645
5646 return true;
5647}
5648
5649bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
5650 Value *In0 = const_cast<Value *>(V);
5651 PHINode *PN = dyn_cast_or_null<PHINode>(In0);
5652 if (!PN)
5653 return false;
5654
5655 return Inductions.count(PN);
5656}
5657
5658bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
5659 auto *Inst = dyn_cast<Instruction>(V);
5660 return (Inst && InductionCastsToIgnore.count(Inst));
5661}
5662
5663bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
5664 return isInductionPhi(V) || isCastedInductionVariable(V);
5665}
5666
5667bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
5668 return FirstOrderRecurrences.count(Phi);
5669}
5670
5671bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
5672 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
5673}
5674
5675bool LoopVectorizationLegality::blockCanBePredicated(
5676 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
5677 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
5678
5679 for (Instruction &I : *BB) {
5680 // Check that we don't have a constant expression that can trap as operand.
5681 for (Value *Operand : I.operands()) {
5682 if (auto *C = dyn_cast<Constant>(Operand))
5683 if (C->canTrap())
5684 return false;
5685 }
5686 // We might be able to hoist the load.
5687 if (I.mayReadFromMemory()) {
5688 auto *LI = dyn_cast<LoadInst>(&I);
5689 if (!LI)
5690 return false;
5691 if (!SafePtrs.count(LI->getPointerOperand())) {
5692 // !llvm.mem.parallel_loop_access implies if-conversion safety.
5693 // Otherwise, record that the load needs (real or emulated) masking
5694 // and let the cost model decide.
5695 if (!IsAnnotatedParallel)
5696 MaskedOp.insert(LI);
5697 continue;
5698 }
5699 }
5700
5701 if (I.mayWriteToMemory()) {
5702 auto *SI = dyn_cast<StoreInst>(&I);
5703 if (!SI)
5704 return false;
5705 // Predicated store requires some form of masking:
5706 // 1) masked store HW instruction,
5707 // 2) emulation via load-blend-store (only if safe and legal to do so,
5708 // be aware on the race conditions), or
5709 // 3) element-by-element predicate check and scalar store.
5710 MaskedOp.insert(SI);
5711 continue;
5712 }
5713 if (I.mayThrow())
5714 return false;
5715 }
5716
5717 return true;
5718}
5719
5720void InterleavedAccessInfo::collectConstStrideAccesses(
5721 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
5722 const ValueToValueMap &Strides) {
5723 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
5724
5725 // Since it's desired that the load/store instructions be maintained in
5726 // "program order" for the interleaved access analysis, we have to visit the
5727 // blocks in the loop in reverse postorder (i.e., in a topological order).
5728 // Such an ordering will ensure that any load/store that may be executed
5729 // before a second load/store will precede the second load/store in
5730 // AccessStrideInfo.
5731 LoopBlocksDFS DFS(TheLoop);
5732 DFS.perform(LI);
5733 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
5734 for (auto &I : *BB) {
5735 auto *LI = dyn_cast<LoadInst>(&I);
5736 auto *SI = dyn_cast<StoreInst>(&I);
5737 if (!LI && !SI)
5738 continue;
5739
5740 Value *Ptr = getLoadStorePointerOperand(&I);
5741 // We don't check wrapping here because we don't know yet if Ptr will be
5742 // part of a full group or a group with gaps. Checking wrapping for all
5743 // pointers (even those that end up in groups with no gaps) will be overly
5744 // conservative. For full groups, wrapping should be ok since if we would
5745 // wrap around the address space we would do a memory access at nullptr
5746 // even without the transformation. The wrapping checks are therefore
5747 // deferred until after we've formed the interleaved groups.
5748 int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides,
5749 /*Assume=*/true, /*ShouldCheckWrap=*/false);
5750
5751 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
5752 PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
5753 uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType());
5754
5755 // An alignment of 0 means target ABI alignment.
5756 unsigned Align = getMemInstAlignment(&I);
5757 if (!Align)
5758 Align = DL.getABITypeAlignment(PtrTy->getElementType());
5759
5760 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align);
5761 }
5762}
5763
5764// Analyze interleaved accesses and collect them into interleaved load and
5765// store groups.
5766//
5767// When generating code for an interleaved load group, we effectively hoist all
5768// loads in the group to the location of the first load in program order. When
5769// generating code for an interleaved store group, we sink all stores to the
5770// location of the last store. This code motion can change the order of load
5771// and store instructions and may break dependences.
5772//
5773// The code generation strategy mentioned above ensures that we won't violate
5774// any write-after-read (WAR) dependences.
5775//
5776// E.g., for the WAR dependence: a = A[i]; // (1)
5777// A[i] = b; // (2)
5778//
5779// The store group of (2) is always inserted at or below (2), and the load
5780// group of (1) is always inserted at or above (1). Thus, the instructions will
5781// never be reordered. All other dependences are checked to ensure the
5782// correctness of the instruction reordering.
5783//
5784// The algorithm visits all memory accesses in the loop in bottom-up program
5785// order. Program order is established by traversing the blocks in the loop in
5786// reverse postorder when collecting the accesses.
5787//
5788// We visit the memory accesses in bottom-up order because it can simplify the
5789// construction of store groups in the presence of write-after-write (WAW)
5790// dependences.
5791//
5792// E.g., for the WAW dependence: A[i] = a; // (1)
5793// A[i] = b; // (2)
5794// A[i + 1] = c; // (3)
5795//
5796// We will first create a store group with (3) and (2). (1) can't be added to
5797// this group because it and (2) are dependent. However, (1) can be grouped
5798// with other accesses that may precede it in program order. Note that a
5799// bottom-up order does not imply that WAW dependences should not be checked.
5800void InterleavedAccessInfo::analyzeInterleaving() {
5801 DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Analyzing interleaved accesses...\n"
; } } while (false)
;
5802 const ValueToValueMap &Strides = LAI->getSymbolicStrides();
5803
5804 // Holds all accesses with a constant stride.
5805 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
5806 collectConstStrideAccesses(AccessStrideInfo, Strides);
5807
5808 if (AccessStrideInfo.empty())
1
Assuming the condition is false
2
Taking false branch
5809 return;
5810
5811 // Collect the dependences in the loop.
5812 collectDependences();
5813
5814 // Holds all interleaved store groups temporarily.
5815 SmallSetVector<InterleaveGroup *, 4> StoreGroups;
5816 // Holds all interleaved load groups temporarily.
5817 SmallSetVector<InterleaveGroup *, 4> LoadGroups;
5818
5819 // Search in bottom-up program order for pairs of accesses (A and B) that can
5820 // form interleaved load or store groups. In the algorithm below, access A
5821 // precedes access B in program order. We initialize a group for B in the
5822 // outer loop of the algorithm, and then in the inner loop, we attempt to
5823 // insert each A into B's group if:
5824 //
5825 // 1. A and B have the same stride,
5826 // 2. A and B have the same memory object size, and
5827 // 3. A belongs in B's group according to its distance from B.
5828 //
5829 // Special care is taken to ensure group formation will not break any
5830 // dependences.
5831 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
3
Loop condition is true. Entering loop body
5832 BI != E; ++BI) {
5833 Instruction *B = BI->first;
5834 StrideDescriptor DesB = BI->second;
5835
5836 // Initialize a group for B if it has an allowable stride. Even if we don't
5837 // create a group for B, we continue with the bottom-up algorithm to ensure
5838 // we don't break any of B's dependences.
5839 InterleaveGroup *Group = nullptr;
4
'Group' initialized to a null pointer value
5840 if (isStrided(DesB.Stride)) {
5
Taking false branch
5841 Group = getInterleaveGroup(B);
5842 if (!Group) {
5843 DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Creating an interleave group with:"
<< *B << '\n'; } } while (false)
;
5844 Group = createInterleaveGroup(B, DesB.Stride, DesB.Align);
5845 }
5846 if (B->mayWriteToMemory())
5847 StoreGroups.insert(Group);
5848 else
5849 LoadGroups.insert(Group);
5850 }
5851
5852 for (auto AI = std::next(BI); AI != E; ++AI) {
6
Loop condition is true. Entering loop body
5853 Instruction *A = AI->first;
5854 StrideDescriptor DesA = AI->second;
5855
5856 // Our code motion strategy implies that we can't have dependences
5857 // between accesses in an interleaved group and other accesses located
5858 // between the first and last member of the group. Note that this also
5859 // means that a group can't have more than one member at a given offset.
5860 // The accesses in a group can have dependences with other accesses, but
5861 // we must ensure we don't extend the boundaries of the group such that
5862 // we encompass those dependent accesses.
5863 //
5864 // For example, assume we have the sequence of accesses shown below in a
5865 // stride-2 loop:
5866 //
5867 // (1, 2) is a group | A[i] = a; // (1)
5868 // | A[i-1] = b; // (2) |
5869 // A[i-3] = c; // (3)
5870 // A[i] = d; // (4) | (2, 4) is not a group
5871 //
5872 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
5873 // but not with (4). If we did, the dependent access (3) would be within
5874 // the boundaries of the (2, 4) group.
5875 if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) {
7
Taking false branch
5876 // If a dependence exists and A is already in a group, we know that A
5877 // must be a store since A precedes B and WAR dependences are allowed.
5878 // Thus, A would be sunk below B. We release A's group to prevent this
5879 // illegal code motion. A will then be free to form another group with
5880 // instructions that precede it.
5881 if (isInterleaved(A)) {
5882 InterleaveGroup *StoreGroup = getInterleaveGroup(A);
5883 StoreGroups.remove(StoreGroup);
5884 releaseGroup(StoreGroup);
5885 }
5886
5887 // If a dependence exists and A is not already in a group (or it was
5888 // and we just released it), B might be hoisted above A (if B is a
5889 // load) or another store might be sunk below A (if B is a store). In
5890 // either case, we can't add additional instructions to B's group. B
5891 // will only form a group with instructions that it precedes.
5892 break;
5893 }
5894
5895 // At this point, we've checked for illegal code motion. If either A or B
5896 // isn't strided, there's nothing left to do.
5897 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
8
Taking false branch
5898 continue;
5899
5900 // Ignore A if it's already in a group or isn't the same kind of memory
5901 // operation as B.
5902 // Note that mayReadFromMemory() isn't mutually exclusive to mayWriteToMemory
5903 // in the case of atomic loads. We shouldn't see those here, canVectorizeMemory()
5904 // should have returned false - except for the case we asked for optimization
5905 // remarks.
5906 if (isInterleaved(A) || (A->mayReadFromMemory() != B->mayReadFromMemory())
9
Assuming the condition is false
10
Taking false branch
5907 || (A->mayWriteToMemory() != B->mayWriteToMemory()))
5908 continue;
5909
5910 // Check rules 1 and 2. Ignore A if its stride or size is different from
5911 // that of B.
5912 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
11
Taking false branch
5913 continue;
5914
5915 // Ignore A if the memory object of A and B don't belong to the same
5916 // address space
5917 if (getMemInstAddressSpace(A) != getMemInstAddressSpace(B))
12
Taking false branch
5918 continue;
5919
5920 // Calculate the distance from A to B.
5921 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
5922 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
5923 if (!DistToB)
13
Assuming 'DistToB' is non-null
14
Taking false branch
5924 continue;
5925 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
5926
5927 // Check rule 3. Ignore A if its distance to B is not a multiple of the
5928 // size.
5929 if (DistanceToB % static_cast<int64_t>(DesB.Size))
15
Taking false branch
5930 continue;
5931
5932 // Ignore A if either A or B is in a predicated block. Although we
5933 // currently prevent group formation for predicated accesses, we may be
5934 // able to relax this limitation in the future once we handle more
5935 // complicated blocks.
5936 if (isPredicated(A->getParent()) || isPredicated(B->getParent()))
16
Assuming the condition is false
17
Assuming the condition is false
18
Taking false branch
5937 continue;
5938
5939 // The index of A is the index of B plus A's distance to B in multiples
5940 // of the size.
5941 int IndexA =
5942 Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
19
Called C++ object pointer is null
5943
5944 // Try to insert A into B's group.
5945 if (Group->insertMember(A, IndexA, DesA.Align)) {
5946 DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Inserted:" <<
*A << '\n' << " into the interleave group with"
<< *B << '\n'; } } while (false)
5947 << " into the interleave group with" << *B << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Inserted:" <<
*A << '\n' << " into the interleave group with"
<< *B << '\n'; } } while (false)
;
5948 InterleaveGroupMap[A] = Group;
5949
5950 // Set the first load in program order as the insert position.
5951 if (A->mayReadFromMemory())
5952 Group->setInsertPos(A);
5953 }
5954 } // Iteration over A accesses.
5955 } // Iteration over B accesses.
5956
5957 // Remove interleaved store groups with gaps.
5958 for (InterleaveGroup *Group : StoreGroups)
5959 if (Group->getNumMembers() != Group->getFactor()) {
5960 DEBUG(dbgs() << "LV: Invalidate candidate interleaved store group due "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved store group due "
"to gaps.\n"; } } while (false)
5961 "to gaps.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved store group due "
"to gaps.\n"; } } while (false)
;
5962 releaseGroup(Group);
5963 }
5964 // Remove interleaved groups with gaps (currently only loads) whose memory
5965 // accesses may wrap around. We have to revisit the getPtrStride analysis,
5966 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
5967 // not check wrapping (see documentation there).
5968 // FORNOW we use Assume=false;
5969 // TODO: Change to Assume=true but making sure we don't exceed the threshold
5970 // of runtime SCEV assumptions checks (thereby potentially failing to
5971 // vectorize altogether).
5972 // Additional optional optimizations:
5973 // TODO: If we are peeling the loop and we know that the first pointer doesn't
5974 // wrap then we can deduce that all pointers in the group don't wrap.
5975 // This means that we can forcefully peel the loop in order to only have to
5976 // check the first pointer for no-wrap. When we'll change to use Assume=true
5977 // we'll only need at most one runtime check per interleaved group.
5978 for (InterleaveGroup *Group : LoadGroups) {
5979 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
5980 // load would wrap around the address space we would do a memory access at
5981 // nullptr even without the transformation.
5982 if (Group->getNumMembers() == Group->getFactor())
5983 continue;
5984
5985 // Case 2: If first and last members of the group don't wrap this implies
5986 // that all the pointers in the group don't wrap.
5987 // So we check only group member 0 (which is always guaranteed to exist),
5988 // and group member Factor - 1; If the latter doesn't exist we rely on
5989 // peeling (if it is a non-reveresed accsess -- see Case 3).
5990 Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0));
5991 if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false,
5992 /*ShouldCheckWrap=*/true)) {
5993 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"first group member potentially pointer-wrapping.\n"; } } while
(false)
5994 "first group member potentially pointer-wrapping.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"first group member potentially pointer-wrapping.\n"; } } while
(false)
;
5995 releaseGroup(Group);
5996 continue;
5997 }
5998 Instruction *LastMember = Group->getMember(Group->getFactor() - 1);
5999 if (LastMember) {
6000 Value *LastMemberPtr = getLoadStorePointerOperand(LastMember);
6001 if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false,
6002 /*ShouldCheckWrap=*/true)) {
6003 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"last group member potentially pointer-wrapping.\n"; } } while
(false)
6004 "last group member potentially pointer-wrapping.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"last group member potentially pointer-wrapping.\n"; } } while
(false)
;
6005 releaseGroup(Group);
6006 }
6007 } else {
6008 // Case 3: A non-reversed interleaved load group with gaps: We need
6009 // to execute at least one scalar epilogue iteration. This will ensure
6010 // we don't speculatively access memory out-of-bounds. We only need
6011 // to look for a member at index factor - 1, since every group must have
6012 // a member at index zero.
6013 if (Group->isReverse()) {
6014 DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"a reverse access with gaps.\n"; } } while (false)
6015 "a reverse access with gaps.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Invalidate candidate interleaved group due to "
"a reverse access with gaps.\n"; } } while (false)
;
6016 releaseGroup(Group);
6017 continue;
6018 }
6019 DEBUG(dbgs() << "LV: Interleaved group requires epilogue iteration.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaved group requires epilogue iteration.\n"
; } } while (false)
;
6020 RequiresScalarEpilogue = true;
6021 }
6022 }
6023}
6024
6025Optional<unsigned> LoopVectorizationCostModel::computeMaxVF(bool OptForSize) {
6026 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) {
6027 // TODO: It may by useful to do since it's still likely to be dynamically
6028 // uniform if the target can skip.
6029 DEBUG(dbgs() << "LV: Not inserting runtime ptr check for divergent target")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not inserting runtime ptr check for divergent target"
; } } while (false)
;
6030
6031 ORE->emit(
6032 createMissedAnalysis("CantVersionLoopWithDivergentTarget")
6033 << "runtime pointer checks needed. Not enabled for divergent target");
6034
6035 return None;
6036 }
6037
6038 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
6039 if (!OptForSize) // Remaining checks deal with scalar loop when OptForSize.
6040 return computeFeasibleMaxVF(OptForSize, TC);
6041
6042 if (Legal->getRuntimePointerChecking()->Need) {
6043 ORE->emit(createMissedAnalysis("CantVersionLoopWithOptForSize")
6044 << "runtime pointer checks needed. Enable vectorization of this "
6045 "loop with '#pragma clang loop vectorize(enable)' when "
6046 "compiling with -Os/-Oz");
6047 DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"
; } } while (false)
6048 << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Aborting. Runtime ptr check is required with -Os/-Oz.\n"
; } } while (false)
;
6049 return None;
6050 }
6051
6052 // If we optimize the program for size, avoid creating the tail loop.
6053 DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found trip count: "
<< TC << '\n'; } } while (false)
;
6054
6055 // If we don't know the precise trip count, don't try to vectorize.
6056 if (TC < 2) {
6057 ORE->emit(
6058 createMissedAnalysis("UnknownLoopCountComplexCFG")
6059 << "unable to calculate the loop count due to complex control flow");
6060 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"
; } } while (false)
;
6061 return None;
6062 }
6063
6064 unsigned MaxVF = computeFeasibleMaxVF(OptForSize, TC);
6065
6066 if (TC % MaxVF != 0) {
6067 // If the trip count that we found modulo the vectorization factor is not
6068 // zero then we require a tail.
6069 // FIXME: look for a smaller MaxVF that does divide TC rather than give up.
6070 // FIXME: return None if loop requiresScalarEpilog(<MaxVF>), or look for a
6071 // smaller MaxVF that does not require a scalar epilog.
6072
6073 ORE->emit(createMissedAnalysis("NoTailLoopWithOptForSize")
6074 << "cannot optimize for size and vectorize at the "
6075 "same time. Enable vectorization of this loop "
6076 "with '#pragma clang loop vectorize(enable)' "
6077 "when compiling with -Os/-Oz");
6078 DEBUG(dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Aborting. A tail loop is required with -Os/-Oz.\n"
; } } while (false)
;
6079 return None;
6080 }
6081
6082 return MaxVF;
6083}
6084
6085unsigned
6086LoopVectorizationCostModel::computeFeasibleMaxVF(bool OptForSize,
6087 unsigned ConstTripCount) {
6088 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI);
6089 unsigned SmallestType, WidestType;
6090 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes();
6091 unsigned WidestRegister = TTI.getRegisterBitWidth(true);
6092
6093 // Get the maximum safe dependence distance in bits computed by LAA.
6094 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from
6095 // the memory accesses that is most restrictive (involved in the smallest
6096 // dependence distance).
6097 unsigned MaxSafeRegisterWidth = Legal->getMaxSafeRegisterWidth();
6098
6099 WidestRegister = std::min(WidestRegister, MaxSafeRegisterWidth);
6100
6101 unsigned MaxVectorSize = WidestRegister / WidestType;
6102
6103 DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The Smallest and Widest types: "
<< SmallestType << " / " << WidestType <<
" bits.\n"; } } while (false)
6104 << WidestType << " bits.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The Smallest and Widest types: "
<< SmallestType << " / " << WidestType <<
" bits.\n"; } } while (false)
;
6105 DEBUG(dbgs() << "LV: The Widest register safe to use is: " << WidestRegisterdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The Widest register safe to use is: "
<< WidestRegister << " bits.\n"; } } while (false
)
6106 << " bits.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The Widest register safe to use is: "
<< WidestRegister << " bits.\n"; } } while (false
)
;
6107
6108 assert(MaxVectorSize <= 64 && "Did not expect to pack so many elements"(static_cast <bool> (MaxVectorSize <= 64 && "Did not expect to pack so many elements"
" into one vector!") ? void (0) : __assert_fail ("MaxVectorSize <= 64 && \"Did not expect to pack so many elements\" \" into one vector!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6109, __extension__ __PRETTY_FUNCTION__))
6109 " into one vector!")(static_cast <bool> (MaxVectorSize <= 64 && "Did not expect to pack so many elements"
" into one vector!") ? void (0) : __assert_fail ("MaxVectorSize <= 64 && \"Did not expect to pack so many elements\" \" into one vector!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6109, __extension__ __PRETTY_FUNCTION__))
;
6110 if (MaxVectorSize == 0) {
6111 DEBUG(dbgs() << "LV: The target has no vector registers.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The target has no vector registers.\n"
; } } while (false)
;
6112 MaxVectorSize = 1;
6113 return MaxVectorSize;
6114 } else if (ConstTripCount && ConstTripCount < MaxVectorSize &&
6115 isPowerOf2_32(ConstTripCount)) {
6116 // We need to clamp the VF to be the ConstTripCount. There is no point in
6117 // choosing a higher viable VF as done in the loop below.
6118 DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
<< ConstTripCount << "\n"; } } while (false)
6119 << ConstTripCount << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Clamping the MaxVF to the constant trip count: "
<< ConstTripCount << "\n"; } } while (false)
;
6120 MaxVectorSize = ConstTripCount;
6121 return MaxVectorSize;
6122 }
6123
6124 unsigned MaxVF = MaxVectorSize;
6125 if (TTI.shouldMaximizeVectorBandwidth(OptForSize) ||
6126 (MaximizeBandwidth && !OptForSize)) {
6127 // Collect all viable vectorization factors larger than the default MaxVF
6128 // (i.e. MaxVectorSize).
6129 SmallVector<unsigned, 8> VFs;
6130 unsigned NewMaxVectorSize = WidestRegister / SmallestType;
6131 for (unsigned VS = MaxVectorSize * 2; VS <= NewMaxVectorSize; VS *= 2)
6132 VFs.push_back(VS);
6133
6134 // For each VF calculate its register usage.
6135 auto RUs = calculateRegisterUsage(VFs);
6136
6137 // Select the largest VF which doesn't require more registers than existing
6138 // ones.
6139 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(true);
6140 for (int i = RUs.size() - 1; i >= 0; --i) {
6141 if (RUs[i].MaxLocalUsers <= TargetNumRegisters) {
6142 MaxVF = VFs[i];
6143 break;
6144 }
6145 }
6146 }
6147 return MaxVF;
6148}
6149
6150VectorizationFactor
6151LoopVectorizationCostModel::selectVectorizationFactor(unsigned MaxVF) {
6152 float Cost = expectedCost(1).first;
6153 const float ScalarCost = Cost;
6154 unsigned Width = 1;
6155 DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Scalar loop costs: "
<< (int)ScalarCost << ".\n"; } } while (false)
;
6156
6157 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled;
6158 // Ignore scalar width, because the user explicitly wants vectorization.
6159 if (ForceVectorization && MaxVF > 1) {
6160 Width = 2;
6161 Cost = expectedCost(Width).first / (float)Width;
6162 }
6163
6164 for (unsigned i = 2; i <= MaxVF; i *= 2) {
6165 // Notice that the vector loop needs to be executed less times, so
6166 // we need to divide the cost of the vector loops by the width of
6167 // the vector elements.
6168 VectorizationCostTy C = expectedCost(i);
6169 float VectorCost = C.first / (float)i;
6170 DEBUG(dbgs() << "LV: Vector loop of width " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Vector loop of width "
<< i << " costs: " << (int)VectorCost <<
".\n"; } } while (false)
6171 << " costs: " << (int)VectorCost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Vector loop of width "
<< i << " costs: " << (int)VectorCost <<
".\n"; } } while (false)
;
6172 if (!C.second && !ForceVectorization) {
6173 DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not considering vector loop of width "
<< i << " because it will not generate any vector instructions.\n"
; } } while (false)
6174 dbgs() << "LV: Not considering vector loop of width " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not considering vector loop of width "
<< i << " because it will not generate any vector instructions.\n"
; } } while (false)
6175 << " because it will not generate any vector instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not considering vector loop of width "
<< i << " because it will not generate any vector instructions.\n"
; } } while (false)
;
6176 continue;
6177 }
6178 if (VectorCost < Cost) {
6179 Cost = VectorCost;
6180 Width = i;
6181 }
6182 }
6183
6184 if (!EnableCondStoresVectorization && NumPredStores) {
6185 ORE->emit(createMissedAnalysis("ConditionalStore")
6186 << "store that is conditionally executed prevents vectorization");
6187 DEBUG(dbgs() << "LV: No vectorization. There are conditional stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: No vectorization. There are conditional stores.\n"
; } } while (false)
;
6188 Width = 1;
6189 Cost = ScalarCost;
6190 }
6191
6192 DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (ForceVectorization && Width
> 1 && Cost >= ScalarCost) dbgs() << "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n"; } } while (false)
6193 << "LV: Vectorization seems to be not beneficial, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (ForceVectorization && Width
> 1 && Cost >= ScalarCost) dbgs() << "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n"; } } while (false)
6194 << "but was forced by a user.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { if (ForceVectorization && Width
> 1 && Cost >= ScalarCost) dbgs() << "LV: Vectorization seems to be not beneficial, "
<< "but was forced by a user.\n"; } } while (false)
;
6195 DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Selecting VF: " <<
Width << ".\n"; } } while (false)
;
6196 VectorizationFactor Factor = {Width, (unsigned)(Width * Cost)};
6197 return Factor;
6198}
6199
6200std::pair<unsigned, unsigned>
6201LoopVectorizationCostModel::getSmallestAndWidestTypes() {
6202 unsigned MinWidth = -1U;
6203 unsigned MaxWidth = 8;
6204 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6205
6206 // For each block.
6207 for (BasicBlock *BB : TheLoop->blocks()) {
6208 // For each instruction in the loop.
6209 for (Instruction &I : *BB) {
6210 Type *T = I.getType();
6211
6212 // Skip ignored values.
6213 if (ValuesToIgnore.count(&I))
6214 continue;
6215
6216 // Only examine Loads, Stores and PHINodes.
6217 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I))
6218 continue;
6219
6220 // Examine PHI nodes that are reduction variables. Update the type to
6221 // account for the recurrence type.
6222 if (auto *PN = dyn_cast<PHINode>(&I)) {
6223 if (!Legal->isReductionVariable(PN))
6224 continue;
6225 RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[PN];
6226 T = RdxDesc.getRecurrenceType();
6227 }
6228
6229 // Examine the stored values.
6230 if (auto *ST = dyn_cast<StoreInst>(&I))
6231 T = ST->getValueOperand()->getType();
6232
6233 // Ignore loaded pointer types and stored pointer types that are not
6234 // vectorizable.
6235 //
6236 // FIXME: The check here attempts to predict whether a load or store will
6237 // be vectorized. We only know this for certain after a VF has
6238 // been selected. Here, we assume that if an access can be
6239 // vectorized, it will be. We should also look at extending this
6240 // optimization to non-pointer types.
6241 //
6242 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) &&
6243 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I))
6244 continue;
6245
6246 MinWidth = std::min(MinWidth,
6247 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6248 MaxWidth = std::max(MaxWidth,
6249 (unsigned)DL.getTypeSizeInBits(T->getScalarType()));
6250 }
6251 }
6252
6253 return {MinWidth, MaxWidth};
6254}
6255
6256unsigned LoopVectorizationCostModel::selectInterleaveCount(bool OptForSize,
6257 unsigned VF,
6258 unsigned LoopCost) {
6259 // -- The interleave heuristics --
6260 // We interleave the loop in order to expose ILP and reduce the loop overhead.
6261 // There are many micro-architectural considerations that we can't predict
6262 // at this level. For example, frontend pressure (on decode or fetch) due to
6263 // code size, or the number and capabilities of the execution ports.
6264 //
6265 // We use the following heuristics to select the interleave count:
6266 // 1. If the code has reductions, then we interleave to break the cross
6267 // iteration dependency.
6268 // 2. If the loop is really small, then we interleave to reduce the loop
6269 // overhead.
6270 // 3. We don't interleave if we think that we will spill registers to memory
6271 // due to the increased register pressure.
6272
6273 // When we optimize for size, we don't interleave.
6274 if (OptForSize)
6275 return 1;
6276
6277 // We used the distance for the interleave count.
6278 if (Legal->getMaxSafeDepDistBytes() != -1U)
6279 return 1;
6280
6281 // Do not interleave loops with a relatively small trip count.
6282 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop);
6283 if (TC > 1 && TC < TinyTripCountInterleaveThreshold)
6284 return 1;
6285
6286 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(VF > 1);
6287 DEBUG(dbgs() << "LV: The target has " << TargetNumRegistersdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The target has " <<
TargetNumRegisters << " registers\n"; } } while (false
)
6288 << " registers\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: The target has " <<
TargetNumRegisters << " registers\n"; } } while (false
)
;
6289
6290 if (VF == 1) {
6291 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0)
6292 TargetNumRegisters = ForceTargetNumScalarRegs;
6293 } else {
6294 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0)
6295 TargetNumRegisters = ForceTargetNumVectorRegs;
6296 }
6297
6298 RegisterUsage R = calculateRegisterUsage({VF})[0];
6299 // We divide by these constants so assume that we have at least one
6300 // instruction that uses at least one register.
6301 R.MaxLocalUsers = std::max(R.MaxLocalUsers, 1U);
6302
6303 // We calculate the interleave count using the following formula.
6304 // Subtract the number of loop invariants from the number of available
6305 // registers. These registers are used by all of the interleaved instances.
6306 // Next, divide the remaining registers by the number of registers that is
6307 // required by the loop, in order to estimate how many parallel instances
6308 // fit without causing spills. All of this is rounded down if necessary to be
6309 // a power of two. We want power of two interleave count to simplify any
6310 // addressing operations or alignment considerations.
6311 unsigned IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs) /
6312 R.MaxLocalUsers);
6313
6314 // Don't count the induction variable as interleaved.
6315 if (EnableIndVarRegisterHeur)
6316 IC = PowerOf2Floor((TargetNumRegisters - R.LoopInvariantRegs - 1) /
6317 std::max(1U, (R.MaxLocalUsers - 1)));
6318
6319 // Clamp the interleave ranges to reasonable counts.
6320 unsigned MaxInterleaveCount = TTI.getMaxInterleaveFactor(VF);
6321
6322 // Check if the user has overridden the max.
6323 if (VF == 1) {
6324 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0)
6325 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor;
6326 } else {
6327 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0)
6328 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor;
6329 }
6330
6331 // If we did not calculate the cost for VF (because the user selected the VF)
6332 // then we calculate the cost of VF here.
6333 if (LoopCost == 0)
6334 LoopCost = expectedCost(VF).first;
6335
6336 // Clamp the calculated IC to be between the 1 and the max interleave count
6337 // that the target allows.
6338 if (IC > MaxInterleaveCount)
6339 IC = MaxInterleaveCount;
6340 else if (IC < 1)
6341 IC = 1;
6342
6343 // Interleave if we vectorized this loop and there is a reduction that could
6344 // benefit from interleaving.
6345 if (VF > 1 && !Legal->getReductionVars()->empty()) {
6346 DEBUG(dbgs() << "LV: Interleaving because of reductions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving because of reductions.\n"
; } } while (false)
;
6347 return IC;
6348 }
6349
6350 // Note that if we've already vectorized the loop we will have done the
6351 // runtime check and so interleaving won't require further checks.
6352 bool InterleavingRequiresRuntimePointerCheck =
6353 (VF == 1 && Legal->getRuntimePointerChecking()->Need);
6354
6355 // We want to interleave small loops in order to reduce the loop overhead and
6356 // potentially expose ILP opportunities.
6357 DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop cost is " <<
LoopCost << '\n'; } } while (false)
;
6358 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) {
6359 // We assume that the cost overhead is 1 and we use the cost model
6360 // to estimate the cost of the loop and interleave until the cost of the
6361 // loop overhead is about 5% of the cost of the loop.
6362 unsigned SmallIC =
6363 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost));
6364
6365 // Interleave until store/load ports (estimated by max interleave count) are
6366 // saturated.
6367 unsigned NumStores = Legal->getNumStores();
6368 unsigned NumLoads = Legal->getNumLoads();
6369 unsigned StoresIC = IC / (NumStores ? NumStores : 1);
6370 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1);
6371
6372 // If we have a scalar reduction (vector reductions are already dealt with
6373 // by this point), we can increase the critical path length if the loop
6374 // we're interleaving is inside another loop. Limit, by default to 2, so the
6375 // critical path only gets increased by one reduction operation.
6376 if (!Legal->getReductionVars()->empty() && TheLoop->getLoopDepth() > 1) {
6377 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC);
6378 SmallIC = std::min(SmallIC, F);
6379 StoresIC = std::min(StoresIC, F);
6380 LoadsIC = std::min(LoadsIC, F);
6381 }
6382
6383 if (EnableLoadStoreRuntimeInterleave &&
6384 std::max(StoresIC, LoadsIC) > SmallIC) {
6385 DEBUG(dbgs() << "LV: Interleaving to saturate store or load ports.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving to saturate store or load ports.\n"
; } } while (false)
;
6386 return std::max(StoresIC, LoadsIC);
6387 }
6388
6389 DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving to reduce branch cost.\n"
; } } while (false)
;
6390 return SmallIC;
6391 }
6392
6393 // Interleave if this is a large loop (small loops are already dealt with by
6394 // this point) that could benefit from interleaving.
6395 bool HasReductions = !Legal->getReductionVars()->empty();
6396 if (TTI.enableAggressiveInterleaving(HasReductions)) {
6397 DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving to expose ILP.\n"
; } } while (false)
;
6398 return IC;
6399 }
6400
6401 DEBUG(dbgs() << "LV: Not Interleaving.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not Interleaving.\n"
; } } while (false)
;
6402 return 1;
6403}
6404
6405SmallVector<LoopVectorizationCostModel::RegisterUsage, 8>
6406LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<unsigned> VFs) {
6407 // This function calculates the register usage by measuring the highest number
6408 // of values that are alive at a single location. Obviously, this is a very
6409 // rough estimation. We scan the loop in a topological order in order and
6410 // assign a number to each instruction. We use RPO to ensure that defs are
6411 // met before their users. We assume that each instruction that has in-loop
6412 // users starts an interval. We record every time that an in-loop value is
6413 // used, so we have a list of the first and last occurrences of each
6414 // instruction. Next, we transpose this data structure into a multi map that
6415 // holds the list of intervals that *end* at a specific location. This multi
6416 // map allows us to perform a linear search. We scan the instructions linearly
6417 // and record each time that a new interval starts, by placing it in a set.
6418 // If we find this value in the multi-map then we remove it from the set.
6419 // The max register usage is the maximum size of the set.
6420 // We also search for instructions that are defined outside the loop, but are
6421 // used inside the loop. We need this number separately from the max-interval
6422 // usage number because when we unroll, loop-invariant values do not take
6423 // more register.
6424 LoopBlocksDFS DFS(TheLoop);
6425 DFS.perform(LI);
6426
6427 RegisterUsage RU;
6428
6429 // Each 'key' in the map opens a new interval. The values
6430 // of the map are the index of the 'last seen' usage of the
6431 // instruction that is the key.
6432 using IntervalMap = DenseMap<Instruction *, unsigned>;
6433
6434 // Maps instruction to its index.
6435 DenseMap<unsigned, Instruction *> IdxToInstr;
6436 // Marks the end of each interval.
6437 IntervalMap EndPoint;
6438 // Saves the list of instruction indices that are used in the loop.
6439 SmallSet<Instruction *, 8> Ends;
6440 // Saves the list of values that are used in the loop but are
6441 // defined outside the loop, such as arguments and constants.
6442 SmallPtrSet<Value *, 8> LoopInvariants;
6443
6444 unsigned Index = 0;
6445 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
6446 for (Instruction &I : *BB) {
6447 IdxToInstr[Index++] = &I;
6448
6449 // Save the end location of each USE.
6450 for (Value *U : I.operands()) {
6451 auto *Instr = dyn_cast<Instruction>(U);
6452
6453 // Ignore non-instruction values such as arguments, constants, etc.
6454 if (!Instr)
6455 continue;
6456
6457 // If this instruction is outside the loop then record it and continue.
6458 if (!TheLoop->contains(Instr)) {
6459 LoopInvariants.insert(Instr);
6460 continue;
6461 }
6462
6463 // Overwrite previous end points.
6464 EndPoint[Instr] = Index;
6465 Ends.insert(Instr);
6466 }
6467 }
6468 }
6469
6470 // Saves the list of intervals that end with the index in 'key'.
6471 using InstrList = SmallVector<Instruction *, 2>;
6472 DenseMap<unsigned, InstrList> TransposeEnds;
6473
6474 // Transpose the EndPoints to a list of values that end at each index.
6475 for (auto &Interval : EndPoint)
6476 TransposeEnds[Interval.second].push_back(Interval.first);
6477
6478 SmallSet<Instruction *, 8> OpenIntervals;
6479
6480 // Get the size of the widest register.
6481 unsigned MaxSafeDepDist = -1U;
6482 if (Legal->getMaxSafeDepDistBytes() != -1U)
6483 MaxSafeDepDist = Legal->getMaxSafeDepDistBytes() * 8;
6484 unsigned WidestRegister =
6485 std::min(TTI.getRegisterBitWidth(true), MaxSafeDepDist);
6486 const DataLayout &DL = TheFunction->getParent()->getDataLayout();
6487
6488 SmallVector<RegisterUsage, 8> RUs(VFs.size());
6489 SmallVector<unsigned, 8> MaxUsages(VFs.size(), 0);
6490
6491 DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): Calculating max register usage:\n"
; } } while (false)
;
6492
6493 // A lambda that gets the register usage for the given type and VF.
6494 auto GetRegUsage = [&DL, WidestRegister](Type *Ty, unsigned VF) {
6495 if (Ty->isTokenTy())
6496 return 0U;
6497 unsigned TypeSize = DL.getTypeSizeInBits(Ty->getScalarType());
6498 return std::max<unsigned>(1, VF * TypeSize / WidestRegister);
6499 };
6500
6501 for (unsigned int i = 0; i < Index; ++i) {
6502 Instruction *I = IdxToInstr[i];
6503
6504 // Remove all of the instructions that end at this location.
6505 InstrList &List = TransposeEnds[i];
6506 for (Instruction *ToRemove : List)
6507 OpenIntervals.erase(ToRemove);
6508
6509 // Ignore instructions that are never used within the loop.
6510 if (!Ends.count(I))
6511 continue;
6512
6513 // Skip ignored values.
6514 if (ValuesToIgnore.count(I))
6515 continue;
6516
6517 // For each VF find the maximum usage of registers.
6518 for (unsigned j = 0, e = VFs.size(); j < e; ++j) {
6519 if (VFs[j] == 1) {
6520 MaxUsages[j] = std::max(MaxUsages[j], OpenIntervals.size());
6521 continue;
6522 }
6523 collectUniformsAndScalars(VFs[j]);
6524 // Count the number of live intervals.
6525 unsigned RegUsage = 0;
6526 for (auto Inst : OpenIntervals) {
6527 // Skip ignored values for VF > 1.
6528 if (VecValuesToIgnore.count(Inst) ||
6529 isScalarAfterVectorization(Inst, VFs[j]))
6530 continue;
6531 RegUsage += GetRegUsage(Inst->getType(), VFs[j]);
6532 }
6533 MaxUsages[j] = std::max(MaxUsages[j], RegUsage);
6534 }
6535
6536 DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): At #" <<
i << " Interval # " << OpenIntervals.size() <<
'\n'; } } while (false)
6537 << OpenIntervals.size() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): At #" <<
i << " Interval # " << OpenIntervals.size() <<
'\n'; } } while (false)
;
6538
6539 // Add the current instruction to the list of open intervals.
6540 OpenIntervals.insert(I);
6541 }
6542
6543 for (unsigned i = 0, e = VFs.size(); i < e; ++i) {
6544 unsigned Invariant = 0;
6545 if (VFs[i] == 1)
6546 Invariant = LoopInvariants.size();
6547 else {
6548 for (auto Inst : LoopInvariants)
6549 Invariant += GetRegUsage(Inst->getType(), VFs[i]);
6550 }
6551
6552 DEBUG(dbgs() << "LV(REG): VF = " << VFs[i] << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): VF = " <<
VFs[i] << '\n'; } } while (false)
;
6553 DEBUG(dbgs() << "LV(REG): Found max usage: " << MaxUsages[i] << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): Found max usage: "
<< MaxUsages[i] << '\n'; } } while (false)
;
6554 DEBUG(dbgs() << "LV(REG): Found invariant usage: " << Invariant << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV(REG): Found invariant usage: "
<< Invariant << '\n'; } } while (false)
;
6555
6556 RU.LoopInvariantRegs = Invariant;
6557 RU.MaxLocalUsers = MaxUsages[i];
6558 RUs[i] = RU;
6559 }
6560
6561 return RUs;
6562}
6563
6564bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){
6565 // TODO: Cost model for emulated masked load/store is completely
6566 // broken. This hack guides the cost model to use an artificially
6567 // high enough value to practically disable vectorization with such
6568 // operations, except where previously deployed legality hack allowed
6569 // using very low cost values. This is to avoid regressions coming simply
6570 // from moving "masked load/store" check from legality to cost model.
6571 // Masked Load/Gather emulation was previously never allowed.
6572 // Limited number of Masked Store/Scatter emulation was allowed.
6573 assert(isScalarWithPredication(I) &&(static_cast <bool> (isScalarWithPredication(I) &&
"Expecting a scalar emulated instruction") ? void (0) : __assert_fail
("isScalarWithPredication(I) && \"Expecting a scalar emulated instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6574, __extension__ __PRETTY_FUNCTION__))
6574 "Expecting a scalar emulated instruction")(static_cast <bool> (isScalarWithPredication(I) &&
"Expecting a scalar emulated instruction") ? void (0) : __assert_fail
("isScalarWithPredication(I) && \"Expecting a scalar emulated instruction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6574, __extension__ __PRETTY_FUNCTION__))
;
6575 return isa<LoadInst>(I) ||
6576 (isa<StoreInst>(I) &&
6577 NumPredStores > NumberOfStoresToPredicate);
6578}
6579
6580void LoopVectorizationCostModel::collectInstsToScalarize(unsigned VF) {
6581 // If we aren't vectorizing the loop, or if we've already collected the
6582 // instructions to scalarize, there's nothing to do. Collection may already
6583 // have occurred if we have a user-selected VF and are now computing the
6584 // expected cost for interleaving.
6585 if (VF < 2 || InstsToScalarize.count(VF))
6586 return;
6587
6588 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's
6589 // not profitable to scalarize any instructions, the presence of VF in the
6590 // map will indicate that we've analyzed it already.
6591 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF];
6592
6593 // Find all the instructions that are scalar with predication in the loop and
6594 // determine if it would be better to not if-convert the blocks they are in.
6595 // If so, we also record the instructions to scalarize.
6596 for (BasicBlock *BB : TheLoop->blocks()) {
6597 if (!Legal->blockNeedsPredication(BB))
6598 continue;
6599 for (Instruction &I : *BB)
6600 if (isScalarWithPredication(&I)) {
6601 ScalarCostsTy ScalarCosts;
6602 // Do not apply discount logic if hacked cost is needed
6603 // for emulated masked memrefs.
6604 if (!useEmulatedMaskMemRefHack(&I) &&
6605 computePredInstDiscount(&I, ScalarCosts, VF) >= 0)
6606 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end());
6607 // Remember that BB will remain after vectorization.
6608 PredicatedBBsAfterVectorization.insert(BB);
6609 }
6610 }
6611}
6612
6613int LoopVectorizationCostModel::computePredInstDiscount(
6614 Instruction *PredInst, DenseMap<Instruction *, unsigned> &ScalarCosts,
6615 unsigned VF) {
6616 assert(!isUniformAfterVectorization(PredInst, VF) &&(static_cast <bool> (!isUniformAfterVectorization(PredInst
, VF) && "Instruction marked uniform-after-vectorization will be predicated"
) ? void (0) : __assert_fail ("!isUniformAfterVectorization(PredInst, VF) && \"Instruction marked uniform-after-vectorization will be predicated\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6617, __extension__ __PRETTY_FUNCTION__))
6617 "Instruction marked uniform-after-vectorization will be predicated")(static_cast <bool> (!isUniformAfterVectorization(PredInst
, VF) && "Instruction marked uniform-after-vectorization will be predicated"
) ? void (0) : __assert_fail ("!isUniformAfterVectorization(PredInst, VF) && \"Instruction marked uniform-after-vectorization will be predicated\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6617, __extension__ __PRETTY_FUNCTION__))
;
6618
6619 // Initialize the discount to zero, meaning that the scalar version and the
6620 // vector version cost the same.
6621 int Discount = 0;
6622
6623 // Holds instructions to analyze. The instructions we visit are mapped in
6624 // ScalarCosts. Those instructions are the ones that would be scalarized if
6625 // we find that the scalar version costs less.
6626 SmallVector<Instruction *, 8> Worklist;
6627
6628 // Returns true if the given instruction can be scalarized.
6629 auto canBeScalarized = [&](Instruction *I) -> bool {
6630 // We only attempt to scalarize instructions forming a single-use chain
6631 // from the original predicated block that would otherwise be vectorized.
6632 // Although not strictly necessary, we give up on instructions we know will
6633 // already be scalar to avoid traversing chains that are unlikely to be
6634 // beneficial.
6635 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() ||
6636 isScalarAfterVectorization(I, VF))
6637 return false;
6638
6639 // If the instruction is scalar with predication, it will be analyzed
6640 // separately. We ignore it within the context of PredInst.
6641 if (isScalarWithPredication(I))
6642 return false;
6643
6644 // If any of the instruction's operands are uniform after vectorization,
6645 // the instruction cannot be scalarized. This prevents, for example, a
6646 // masked load from being scalarized.
6647 //
6648 // We assume we will only emit a value for lane zero of an instruction
6649 // marked uniform after vectorization, rather than VF identical values.
6650 // Thus, if we scalarize an instruction that uses a uniform, we would
6651 // create uses of values corresponding to the lanes we aren't emitting code
6652 // for. This behavior can be changed by allowing getScalarValue to clone
6653 // the lane zero values for uniforms rather than asserting.
6654 for (Use &U : I->operands())
6655 if (auto *J = dyn_cast<Instruction>(U.get()))
6656 if (isUniformAfterVectorization(J, VF))
6657 return false;
6658
6659 // Otherwise, we can scalarize the instruction.
6660 return true;
6661 };
6662
6663 // Returns true if an operand that cannot be scalarized must be extracted
6664 // from a vector. We will account for this scalarization overhead below. Note
6665 // that the non-void predicated instructions are placed in their own blocks,
6666 // and their return values are inserted into vectors. Thus, an extract would
6667 // still be required.
6668 auto needsExtract = [&](Instruction *I) -> bool {
6669 return TheLoop->contains(I) && !isScalarAfterVectorization(I, VF);
6670 };
6671
6672 // Compute the expected cost discount from scalarizing the entire expression
6673 // feeding the predicated instruction. We currently only consider expressions
6674 // that are single-use instruction chains.
6675 Worklist.push_back(PredInst);
6676 while (!Worklist.empty()) {
6677 Instruction *I = Worklist.pop_back_val();
6678
6679 // If we've already analyzed the instruction, there's nothing to do.
6680 if (ScalarCosts.count(I))
6681 continue;
6682
6683 // Compute the cost of the vector instruction. Note that this cost already
6684 // includes the scalarization overhead of the predicated instruction.
6685 unsigned VectorCost = getInstructionCost(I, VF).first;
6686
6687 // Compute the cost of the scalarized instruction. This cost is the cost of
6688 // the instruction as if it wasn't if-converted and instead remained in the
6689 // predicated block. We will scale this cost by block probability after
6690 // computing the scalarization overhead.
6691 unsigned ScalarCost = VF * getInstructionCost(I, 1).first;
6692
6693 // Compute the scalarization overhead of needed insertelement instructions
6694 // and phi nodes.
6695 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) {
6696 ScalarCost += TTI.getScalarizationOverhead(ToVectorTy(I->getType(), VF),
6697 true, false);
6698 ScalarCost += VF * TTI.getCFInstrCost(Instruction::PHI);
6699 }
6700
6701 // Compute the scalarization overhead of needed extractelement
6702 // instructions. For each of the instruction's operands, if the operand can
6703 // be scalarized, add it to the worklist; otherwise, account for the
6704 // overhead.
6705 for (Use &U : I->operands())
6706 if (auto *J = dyn_cast<Instruction>(U.get())) {
6707 assert(VectorType::isValidElementType(J->getType()) &&(static_cast <bool> (VectorType::isValidElementType(J->
getType()) && "Instruction has non-scalar type") ? void
(0) : __assert_fail ("VectorType::isValidElementType(J->getType()) && \"Instruction has non-scalar type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6708, __extension__ __PRETTY_FUNCTION__))
6708 "Instruction has non-scalar type")(static_cast <bool> (VectorType::isValidElementType(J->
getType()) && "Instruction has non-scalar type") ? void
(0) : __assert_fail ("VectorType::isValidElementType(J->getType()) && \"Instruction has non-scalar type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6708, __extension__ __PRETTY_FUNCTION__))
;
6709 if (canBeScalarized(J))
6710 Worklist.push_back(J);
6711 else if (needsExtract(J))
6712 ScalarCost += TTI.getScalarizationOverhead(
6713 ToVectorTy(J->getType(),VF), false, true);
6714 }
6715
6716 // Scale the total scalar cost by block probability.
6717 ScalarCost /= getReciprocalPredBlockProb();
6718
6719 // Compute the discount. A non-negative discount means the vector version
6720 // of the instruction costs more, and scalarizing would be beneficial.
6721 Discount += VectorCost - ScalarCost;
6722 ScalarCosts[I] = ScalarCost;
6723 }
6724
6725 return Discount;
6726}
6727
6728LoopVectorizationCostModel::VectorizationCostTy
6729LoopVectorizationCostModel::expectedCost(unsigned VF) {
6730 VectorizationCostTy Cost;
6731
6732 // For each block.
6733 for (BasicBlock *BB : TheLoop->blocks()) {
6734 VectorizationCostTy BlockCost;
6735
6736 // For each instruction in the old loop.
6737 for (Instruction &I : *BB) {
6738 // Skip dbg intrinsics.
6739 if (isa<DbgInfoIntrinsic>(I))
6740 continue;
6741
6742 // Skip ignored values.
6743 if (ValuesToIgnore.count(&I) ||
6744 (VF > 1 && VecValuesToIgnore.count(&I)))
6745 continue;
6746
6747 VectorizationCostTy C = getInstructionCost(&I, VF);
6748
6749 // Check if we should override the cost.
6750 if (ForceTargetInstructionCost.getNumOccurrences() > 0)
6751 C.first = ForceTargetInstructionCost;
6752
6753 BlockCost.first += C.first;
6754 BlockCost.second |= C.second;
6755 DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first << " for VF "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an estimated cost of "
<< C.first << " for VF " << VF << " For instruction: "
<< I << '\n'; } } while (false)
6756 << VF << " For instruction: " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found an estimated cost of "
<< C.first << " for VF " << VF << " For instruction: "
<< I << '\n'; } } while (false)
;
6757 }
6758
6759 // If we are vectorizing a predicated block, it will have been
6760 // if-converted. This means that the block's instructions (aside from
6761 // stores and instructions that may divide by zero) will now be
6762 // unconditionally executed. For the scalar case, we may not always execute
6763 // the predicated block. Thus, scale the block's cost by the probability of
6764 // executing it.
6765 if (VF == 1 && Legal->blockNeedsPredication(BB))
6766 BlockCost.first /= getReciprocalPredBlockProb();
6767
6768 Cost.first += BlockCost.first;
6769 Cost.second |= BlockCost.second;
6770 }
6771
6772 return Cost;
6773}
6774
6775/// \brief Gets Address Access SCEV after verifying that the access pattern
6776/// is loop invariant except the induction variable dependence.
6777///
6778/// This SCEV can be sent to the Target in order to estimate the address
6779/// calculation cost.
6780static const SCEV *getAddressAccessSCEV(
6781 Value *Ptr,
6782 LoopVectorizationLegality *Legal,
6783 PredicatedScalarEvolution &PSE,
6784 const Loop *TheLoop) {
6785
6786 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr);
6787 if (!Gep)
6788 return nullptr;
6789
6790 // We are looking for a gep with all loop invariant indices except for one
6791 // which should be an induction variable.
6792 auto SE = PSE.getSE();
6793 unsigned NumOperands = Gep->getNumOperands();
6794 for (unsigned i = 1; i < NumOperands; ++i) {
6795 Value *Opd = Gep->getOperand(i);
6796 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) &&
6797 !Legal->isInductionVariable(Opd))
6798 return nullptr;
6799 }
6800
6801 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV.
6802 return PSE.getSCEV(Ptr);
6803}
6804
6805static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) {
6806 return Legal->hasStride(I->getOperand(0)) ||
6807 Legal->hasStride(I->getOperand(1));
6808}
6809
6810unsigned LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I,
6811 unsigned VF) {
6812 Type *ValTy = getMemInstValueType(I);
6813 auto SE = PSE.getSE();
6814
6815 unsigned Alignment = getMemInstAlignment(I);
6816 unsigned AS = getMemInstAddressSpace(I);
6817 Value *Ptr = getLoadStorePointerOperand(I);
6818 Type *PtrTy = ToVectorTy(Ptr->getType(), VF);
6819
6820 // Figure out whether the access is strided and get the stride value
6821 // if it's known in compile time
6822 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop);
6823
6824 // Get the cost of the scalar memory instruction and address computation.
6825 unsigned Cost = VF * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV);
6826
6827 Cost += VF *
6828 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment,
6829 AS, I);
6830
6831 // Get the overhead of the extractelement and insertelement instructions
6832 // we might create due to scalarization.
6833 Cost += getScalarizationOverhead(I, VF, TTI);
6834
6835 // If we have a predicated store, it may not be executed for each vector
6836 // lane. Scale the cost by the probability of executing the predicated
6837 // block.
6838 if (isScalarWithPredication(I)) {
6839 Cost /= getReciprocalPredBlockProb();
6840
6841 if (useEmulatedMaskMemRefHack(I))
6842 // Artificially setting to a high enough value to practically disable
6843 // vectorization with such operations.
6844 Cost = 3000000;
6845 }
6846
6847 return Cost;
6848}
6849
6850unsigned LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I,
6851 unsigned VF) {
6852 Type *ValTy = getMemInstValueType(I);
6853 Type *VectorTy = ToVectorTy(ValTy, VF);
6854 unsigned Alignment = getMemInstAlignment(I);
6855 Value *Ptr = getLoadStorePointerOperand(I);
6856 unsigned AS = getMemInstAddressSpace(I);
6857 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr);
6858
6859 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride
== -1) && "Stride should be 1 or -1 for consecutive memory access"
) ? void (0) : __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Stride should be 1 or -1 for consecutive memory access\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6860, __extension__ __PRETTY_FUNCTION__))
6860 "Stride should be 1 or -1 for consecutive memory access")(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride
== -1) && "Stride should be 1 or -1 for consecutive memory access"
) ? void (0) : __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Stride should be 1 or -1 for consecutive memory access\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6860, __extension__ __PRETTY_FUNCTION__))
;
6861 unsigned Cost = 0;
6862 if (Legal->isMaskRequired(I))
6863 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS);
6864 else
6865 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, I);
6866
6867 bool Reverse = ConsecutiveStride < 0;
6868 if (Reverse)
6869 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6870 return Cost;
6871}
6872
6873unsigned LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I,
6874 unsigned VF) {
6875 LoadInst *LI = cast<LoadInst>(I);
6876 Type *ValTy = LI->getType();
6877 Type *VectorTy = ToVectorTy(ValTy, VF);
6878 unsigned Alignment = LI->getAlignment();
6879 unsigned AS = LI->getPointerAddressSpace();
6880
6881 return TTI.getAddressComputationCost(ValTy) +
6882 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS) +
6883 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy);
6884}
6885
6886unsigned LoopVectorizationCostModel::getGatherScatterCost(Instruction *I,
6887 unsigned VF) {
6888 Type *ValTy = getMemInstValueType(I);
6889 Type *VectorTy = ToVectorTy(ValTy, VF);
6890 unsigned Alignment = getMemInstAlignment(I);
6891 Value *Ptr = getLoadStorePointerOperand(I);
6892
6893 return TTI.getAddressComputationCost(VectorTy) +
6894 TTI.getGatherScatterOpCost(I->getOpcode(), VectorTy, Ptr,
6895 Legal->isMaskRequired(I), Alignment);
6896}
6897
6898unsigned LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I,
6899 unsigned VF) {
6900 Type *ValTy = getMemInstValueType(I);
6901 Type *VectorTy = ToVectorTy(ValTy, VF);
6902 unsigned AS = getMemInstAddressSpace(I);
6903
6904 auto Group = getInterleavedAccessGroup(I);
6905 assert(Group && "Fail to get an interleaved access group.")(static_cast <bool> (Group && "Fail to get an interleaved access group."
) ? void (0) : __assert_fail ("Group && \"Fail to get an interleaved access group.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6905, __extension__ __PRETTY_FUNCTION__))
;
6906
6907 unsigned InterleaveFactor = Group->getFactor();
6908 Type *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor);
6909
6910 // Holds the indices of existing members in an interleaved load group.
6911 // An interleaved store group doesn't need this as it doesn't allow gaps.
6912 SmallVector<unsigned, 4> Indices;
6913 if (isa<LoadInst>(I)) {
6914 for (unsigned i = 0; i < InterleaveFactor; i++)
6915 if (Group->getMember(i))
6916 Indices.push_back(i);
6917 }
6918
6919 // Calculate the cost of the whole interleaved group.
6920 unsigned Cost = TTI.getInterleavedMemoryOpCost(I->getOpcode(), WideVecTy,
6921 Group->getFactor(), Indices,
6922 Group->getAlignment(), AS);
6923
6924 if (Group->isReverse())
6925 Cost += Group->getNumMembers() *
6926 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0);
6927 return Cost;
6928}
6929
6930unsigned LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I,
6931 unsigned VF) {
6932 // Calculate scalar cost only. Vectorization cost should be ready at this
6933 // moment.
6934 if (VF == 1) {
6935 Type *ValTy = getMemInstValueType(I);
6936 unsigned Alignment = getMemInstAlignment(I);
6937 unsigned AS = getMemInstAddressSpace(I);
6938
6939 return TTI.getAddressComputationCost(ValTy) +
6940 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, I);
6941 }
6942 return getWideningCost(I, VF);
6943}
6944
6945LoopVectorizationCostModel::VectorizationCostTy
6946LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
6947 // If we know that this instruction will remain uniform, check the cost of
6948 // the scalar version.
6949 if (isUniformAfterVectorization(I, VF))
6950 VF = 1;
6951
6952 if (VF > 1 && isProfitableToScalarize(I, VF))
6953 return VectorizationCostTy(InstsToScalarize[VF][I], false);
6954
6955 // Forced scalars do not have any scalarization overhead.
6956 if (VF > 1 && ForcedScalars.count(VF) &&
6957 ForcedScalars.find(VF)->second.count(I))
6958 return VectorizationCostTy((getInstructionCost(I, 1).first * VF), false);
6959
6960 Type *VectorTy;
6961 unsigned C = getInstructionCost(I, VF, VectorTy);
6962
6963 bool TypeNotScalarized =
6964 VF > 1 && VectorTy->isVectorTy() && TTI.getNumberOfParts(VectorTy) < VF;
6965 return VectorizationCostTy(C, TypeNotScalarized);
6966}
6967
6968void LoopVectorizationCostModel::setCostBasedWideningDecision(unsigned VF) {
6969 if (VF == 1)
6970 return;
6971 NumPredStores = 0;
6972 for (BasicBlock *BB : TheLoop->blocks()) {
6973 // For each instruction in the old loop.
6974 for (Instruction &I : *BB) {
6975 Value *Ptr = getLoadStorePointerOperand(&I);
6976 if (!Ptr)
6977 continue;
6978
6979 if (isa<StoreInst>(&I) && isScalarWithPredication(&I))
6980 NumPredStores++;
6981 if (isa<LoadInst>(&I) && Legal->isUniform(Ptr)) {
6982 // Scalar load + broadcast
6983 unsigned Cost = getUniformMemOpCost(&I, VF);
6984 setWideningDecision(&I, VF, CM_Scalarize, Cost);
6985 continue;
6986 }
6987
6988 // We assume that widening is the best solution when possible.
6989 if (memoryInstructionCanBeWidened(&I, VF)) {
6990 unsigned Cost = getConsecutiveMemOpCost(&I, VF);
6991 int ConsecutiveStride =
6992 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I));
6993 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride
== -1) && "Expected consecutive stride.") ? void (0)
: __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Expected consecutive stride.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6994, __extension__ __PRETTY_FUNCTION__))
6994 "Expected consecutive stride.")(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride
== -1) && "Expected consecutive stride.") ? void (0)
: __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Expected consecutive stride.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 6994, __extension__ __PRETTY_FUNCTION__))
;
6995 InstWidening Decision =
6996 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse;
6997 setWideningDecision(&I, VF, Decision, Cost);
6998 continue;
6999 }
7000
7001 // Choose between Interleaving, Gather/Scatter or Scalarization.
7002 unsigned InterleaveCost = std::numeric_limits<unsigned>::max();
7003 unsigned NumAccesses = 1;
7004 if (isAccessInterleaved(&I)) {
7005 auto Group = getInterleavedAccessGroup(&I);
7006 assert(Group && "Fail to get an interleaved access group.")(static_cast <bool> (Group && "Fail to get an interleaved access group."
) ? void (0) : __assert_fail ("Group && \"Fail to get an interleaved access group.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7006, __extension__ __PRETTY_FUNCTION__))
;
7007
7008 // Make one decision for the whole group.
7009 if (getWideningDecision(&I, VF) != CM_Unknown)
7010 continue;
7011
7012 NumAccesses = Group->getNumMembers();
7013 InterleaveCost = getInterleaveGroupCost(&I, VF);
7014 }
7015
7016 unsigned GatherScatterCost =
7017 isLegalGatherOrScatter(&I)
7018 ? getGatherScatterCost(&I, VF) * NumAccesses
7019 : std::numeric_limits<unsigned>::max();
7020
7021 unsigned ScalarizationCost =
7022 getMemInstScalarizationCost(&I, VF) * NumAccesses;
7023
7024 // Choose better solution for the current VF,
7025 // write down this decision and use it during vectorization.
7026 unsigned Cost;
7027 InstWidening Decision;
7028 if (InterleaveCost <= GatherScatterCost &&
7029 InterleaveCost < ScalarizationCost) {
7030 Decision = CM_Interleave;
7031 Cost = InterleaveCost;
7032 } else if (GatherScatterCost < ScalarizationCost) {
7033 Decision = CM_GatherScatter;
7034 Cost = GatherScatterCost;
7035 } else {
7036 Decision = CM_Scalarize;
7037 Cost = ScalarizationCost;
7038 }
7039 // If the instructions belongs to an interleave group, the whole group
7040 // receives the same decision. The whole group receives the cost, but
7041 // the cost will actually be assigned to one instruction.
7042 if (auto Group = getInterleavedAccessGroup(&I))
7043 setWideningDecision(Group, VF, Decision, Cost);
7044 else
7045 setWideningDecision(&I, VF, Decision, Cost);
7046 }
7047 }
7048
7049 // Make sure that any load of address and any other address computation
7050 // remains scalar unless there is gather/scatter support. This avoids
7051 // inevitable extracts into address registers, and also has the benefit of
7052 // activating LSR more, since that pass can't optimize vectorized
7053 // addresses.
7054 if (TTI.prefersVectorizedAddressing())
7055 return;
7056
7057 // Start with all scalar pointer uses.
7058 SmallPtrSet<Instruction *, 8> AddrDefs;
7059 for (BasicBlock *BB : TheLoop->blocks())
7060 for (Instruction &I : *BB) {
7061 Instruction *PtrDef =
7062 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I));
7063 if (PtrDef && TheLoop->contains(PtrDef) &&
7064 getWideningDecision(&I, VF) != CM_GatherScatter)
7065 AddrDefs.insert(PtrDef);
7066 }
7067
7068 // Add all instructions used to generate the addresses.
7069 SmallVector<Instruction *, 4> Worklist;
7070 for (auto *I : AddrDefs)
7071 Worklist.push_back(I);
7072 while (!Worklist.empty()) {
7073 Instruction *I = Worklist.pop_back_val();
7074 for (auto &Op : I->operands())
7075 if (auto *InstOp = dyn_cast<Instruction>(Op))
7076 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) &&
7077 AddrDefs.insert(InstOp).second)
7078 Worklist.push_back(InstOp);
7079 }
7080
7081 for (auto *I : AddrDefs) {
7082 if (isa<LoadInst>(I)) {
7083 // Setting the desired widening decision should ideally be handled in
7084 // by cost functions, but since this involves the task of finding out
7085 // if the loaded register is involved in an address computation, it is
7086 // instead changed here when we know this is the case.
7087 InstWidening Decision = getWideningDecision(I, VF);
7088 if (Decision == CM_Widen || Decision == CM_Widen_Reverse)
7089 // Scalarize a widened load of address.
7090 setWideningDecision(I, VF, CM_Scalarize,
7091 (VF * getMemoryInstructionCost(I, 1)));
7092 else if (auto Group = getInterleavedAccessGroup(I)) {
7093 // Scalarize an interleave group of address loads.
7094 for (unsigned I = 0; I < Group->getFactor(); ++I) {
7095 if (Instruction *Member = Group->getMember(I))
7096 setWideningDecision(Member, VF, CM_Scalarize,
7097 (VF * getMemoryInstructionCost(Member, 1)));
7098 }
7099 }
7100 } else
7101 // Make sure I gets scalarized and a cost estimate without
7102 // scalarization overhead.
7103 ForcedScalars[VF].insert(I);
7104 }
7105}
7106
7107unsigned LoopVectorizationCostModel::getInstructionCost(Instruction *I,
7108 unsigned VF,
7109 Type *&VectorTy) {
7110 Type *RetTy = I->getType();
7111 if (canTruncateToMinimalBitwidth(I, VF))
7112 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]);
7113 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF);
7114 auto SE = PSE.getSE();
7115
7116 // TODO: We need to estimate the cost of intrinsic calls.
7117 switch (I->getOpcode()) {
7118 case Instruction::GetElementPtr:
7119 // We mark this instruction as zero-cost because the cost of GEPs in
7120 // vectorized code depends on whether the corresponding memory instruction
7121 // is scalarized or not. Therefore, we handle GEPs with the memory
7122 // instruction cost.
7123 return 0;
7124 case Instruction::Br: {
7125 // In cases of scalarized and predicated instructions, there will be VF
7126 // predicated blocks in the vectorized loop. Each branch around these
7127 // blocks requires also an extract of its vector compare i1 element.
7128 bool ScalarPredicatedBB = false;
7129 BranchInst *BI = cast<BranchInst>(I);
7130 if (VF > 1 && BI->isConditional() &&
7131 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) ||
7132 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1))))
7133 ScalarPredicatedBB = true;
7134
7135 if (ScalarPredicatedBB) {
7136 // Return cost for branches around scalarized and predicated blocks.
7137 Type *Vec_i1Ty =
7138 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF);
7139 return (TTI.getScalarizationOverhead(Vec_i1Ty, false, true) +
7140 (TTI.getCFInstrCost(Instruction::Br) * VF));
7141 } else if (I->getParent() == TheLoop->getLoopLatch() || VF == 1)
7142 // The back-edge branch will remain, as will all scalar branches.
7143 return TTI.getCFInstrCost(Instruction::Br);
7144 else
7145 // This branch will be eliminated by if-conversion.
7146 return 0;
7147 // Note: We currently assume zero cost for an unconditional branch inside
7148 // a predicated block since it will become a fall-through, although we
7149 // may decide in the future to call TTI for all branches.
7150 }
7151 case Instruction::PHI: {
7152 auto *Phi = cast<PHINode>(I);
7153
7154 // First-order recurrences are replaced by vector shuffles inside the loop.
7155 if (VF > 1 && Legal->isFirstOrderRecurrence(Phi))
7156 return TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector,
7157 VectorTy, VF - 1, VectorTy);
7158
7159 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are
7160 // converted into select instructions. We require N - 1 selects per phi
7161 // node, where N is the number of incoming values.
7162 if (VF > 1 && Phi->getParent() != TheLoop->getHeader())
7163 return (Phi->getNumIncomingValues() - 1) *
7164 TTI.getCmpSelInstrCost(
7165 Instruction::Select, ToVectorTy(Phi->getType(), VF),
7166 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF));
7167
7168 return TTI.getCFInstrCost(Instruction::PHI);
7169 }
7170 case Instruction::UDiv:
7171 case Instruction::SDiv:
7172 case Instruction::URem:
7173 case Instruction::SRem:
7174 // If we have a predicated instruction, it may not be executed for each
7175 // vector lane. Get the scalarization cost and scale this amount by the
7176 // probability of executing the predicated block. If the instruction is not
7177 // predicated, we fall through to the next case.
7178 if (VF > 1 && isScalarWithPredication(I)) {
7179 unsigned Cost = 0;
7180
7181 // These instructions have a non-void type, so account for the phi nodes
7182 // that we will create. This cost is likely to be zero. The phi node
7183 // cost, if any, should be scaled by the block probability because it
7184 // models a copy at the end of each predicated block.
7185 Cost += VF * TTI.getCFInstrCost(Instruction::PHI);
7186
7187 // The cost of the non-predicated instruction.
7188 Cost += VF * TTI.getArithmeticInstrCost(I->getOpcode(), RetTy);
7189
7190 // The cost of insertelement and extractelement instructions needed for
7191 // scalarization.
7192 Cost += getScalarizationOverhead(I, VF, TTI);
7193
7194 // Scale the cost by the probability of executing the predicated blocks.
7195 // This assumes the predicated block for each vector lane is equally
7196 // likely.
7197 return Cost / getReciprocalPredBlockProb();
7198 }
7199 LLVM_FALLTHROUGH[[clang::fallthrough]];
7200 case Instruction::Add:
7201 case Instruction::FAdd:
7202 case Instruction::Sub:
7203 case Instruction::FSub:
7204 case Instruction::Mul:
7205 case Instruction::FMul:
7206 case Instruction::FDiv:
7207 case Instruction::FRem:
7208 case Instruction::Shl:
7209 case Instruction::LShr:
7210 case Instruction::AShr:
7211 case Instruction::And:
7212 case Instruction::Or:
7213 case Instruction::Xor: {
7214 // Since we will replace the stride by 1 the multiplication should go away.
7215 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal))
7216 return 0;
7217 // Certain instructions can be cheaper to vectorize if they have a constant
7218 // second vector operand. One example of this are shifts on x86.
7219 TargetTransformInfo::OperandValueKind Op1VK =
7220 TargetTransformInfo::OK_AnyValue;
7221 TargetTransformInfo::OperandValueKind Op2VK =
7222 TargetTransformInfo::OK_AnyValue;
7223 TargetTransformInfo::OperandValueProperties Op1VP =
7224 TargetTransformInfo::OP_None;
7225 TargetTransformInfo::OperandValueProperties Op2VP =
7226 TargetTransformInfo::OP_None;
7227 Value *Op2 = I->getOperand(1);
7228
7229 // Check for a splat or for a non uniform vector of constants.
7230 if (isa<ConstantInt>(Op2)) {
7231 ConstantInt *CInt = cast<ConstantInt>(Op2);
7232 if (CInt && CInt->getValue().isPowerOf2())
7233 Op2VP = TargetTransformInfo::OP_PowerOf2;
7234 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
7235 } else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
7236 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
7237 Constant *SplatValue = cast<Constant>(Op2)->getSplatValue();
7238 if (SplatValue) {
7239 ConstantInt *CInt = dyn_cast<ConstantInt>(SplatValue);
7240 if (CInt && CInt->getValue().isPowerOf2())
7241 Op2VP = TargetTransformInfo::OP_PowerOf2;
7242 Op2VK = TargetTransformInfo::OK_UniformConstantValue;
7243 }
7244 } else if (Legal->isUniform(Op2)) {
7245 Op2VK = TargetTransformInfo::OK_UniformValue;
7246 }
7247 SmallVector<const Value *, 4> Operands(I->operand_values());
7248 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
7249 return N * TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy, Op1VK,
7250 Op2VK, Op1VP, Op2VP, Operands);
7251 }
7252 case Instruction::Select: {
7253 SelectInst *SI = cast<SelectInst>(I);
7254 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition());
7255 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop));
7256 Type *CondTy = SI->getCondition()->getType();
7257 if (!ScalarCond)
7258 CondTy = VectorType::get(CondTy, VF);
7259
7260 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, I);
7261 }
7262 case Instruction::ICmp:
7263 case Instruction::FCmp: {
7264 Type *ValTy = I->getOperand(0)->getType();
7265 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0));
7266 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF))
7267 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]);
7268 VectorTy = ToVectorTy(ValTy, VF);
7269 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, I);
7270 }
7271 case Instruction::Store:
7272 case Instruction::Load: {
7273 unsigned Width = VF;
7274 if (Width > 1) {
7275 InstWidening Decision = getWideningDecision(I, Width);
7276 assert(Decision != CM_Unknown &&(static_cast <bool> (Decision != CM_Unknown && "CM decision should be taken at this point"
) ? void (0) : __assert_fail ("Decision != CM_Unknown && \"CM decision should be taken at this point\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7277, __extension__ __PRETTY_FUNCTION__))
7277 "CM decision should be taken at this point")(static_cast <bool> (Decision != CM_Unknown && "CM decision should be taken at this point"
) ? void (0) : __assert_fail ("Decision != CM_Unknown && \"CM decision should be taken at this point\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7277, __extension__ __PRETTY_FUNCTION__))
;
7278 if (Decision == CM_Scalarize)
7279 Width = 1;
7280 }
7281 VectorTy = ToVectorTy(getMemInstValueType(I), Width);
7282 return getMemoryInstructionCost(I, VF);
7283 }
7284 case Instruction::ZExt:
7285 case Instruction::SExt:
7286 case Instruction::FPToUI:
7287 case Instruction::FPToSI:
7288 case Instruction::FPExt:
7289 case Instruction::PtrToInt:
7290 case Instruction::IntToPtr:
7291 case Instruction::SIToFP:
7292 case Instruction::UIToFP:
7293 case Instruction::Trunc:
7294 case Instruction::FPTrunc:
7295 case Instruction::BitCast: {
7296 // We optimize the truncation of induction variables having constant
7297 // integer steps. The cost of these truncations is the same as the scalar
7298 // operation.
7299 if (isOptimizableIVTruncate(I, VF)) {
7300 auto *Trunc = cast<TruncInst>(I);
7301 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(),
7302 Trunc->getSrcTy(), Trunc);
7303 }
7304
7305 Type *SrcScalarTy = I->getOperand(0)->getType();
7306 Type *SrcVecTy =
7307 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy;
7308 if (canTruncateToMinimalBitwidth(I, VF)) {
7309 // This cast is going to be shrunk. This may remove the cast or it might
7310 // turn it into slightly different cast. For example, if MinBW == 16,
7311 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16".
7312 //
7313 // Calculate the modified src and dest types.
7314 Type *MinVecTy = VectorTy;
7315 if (I->getOpcode() == Instruction::Trunc) {
7316 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy);
7317 VectorTy =
7318 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7319 } else if (I->getOpcode() == Instruction::ZExt ||
7320 I->getOpcode() == Instruction::SExt) {
7321 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy);
7322 VectorTy =
7323 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy);
7324 }
7325 }
7326
7327 unsigned N = isScalarAfterVectorization(I, VF) ? VF : 1;
7328 return N * TTI.getCastInstrCost(I->getOpcode(), VectorTy, SrcVecTy, I);
7329 }
7330 case Instruction::Call: {
7331 bool NeedToScalarize;
7332 CallInst *CI = cast<CallInst>(I);
7333 unsigned CallCost = getVectorCallCost(CI, VF, TTI, TLI, NeedToScalarize);
7334 if (getVectorIntrinsicIDForCall(CI, TLI))
7335 return std::min(CallCost, getVectorIntrinsicCost(CI, VF, TTI, TLI));
7336 return CallCost;
7337 }
7338 default:
7339 // The cost of executing VF copies of the scalar instruction. This opcode
7340 // is unknown. Assume that it is the same as 'mul'.
7341 return VF * TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy) +
7342 getScalarizationOverhead(I, VF, TTI);
7343 } // end of switch.
7344}
7345
7346char LoopVectorize::ID = 0;
7347
7348static const char lv_name[] = "Loop Vectorization";
7349
7350INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)static void *initializeLoopVectorizePassOnce(PassRegistry &
Registry) {
7351INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
7352INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)initializeBasicAAWrapperPassPass(Registry);
7353INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
7354INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)initializeGlobalsAAWrapperPassPass(Registry);
7355INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
7356INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)initializeBlockFrequencyInfoWrapperPassPass(Registry);
7357INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
7358INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
7359INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);
7360INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)initializeLoopAccessLegacyAnalysisPass(Registry);
7361INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)initializeDemandedBitsWrapperPassPass(Registry);
7362INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
7363INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo( lv_name, "loop-vectorize", &
LoopVectorize::ID, PassInfo::NormalCtor_t(callDefaultCtor<
LoopVectorize>), false, false); Registry.registerPass(*PI,
true); return PI; } static llvm::once_flag InitializeLoopVectorizePassFlag
; void llvm::initializeLoopVectorizePass(PassRegistry &Registry
) { llvm::call_once(InitializeLoopVectorizePassFlag, initializeLoopVectorizePassOnce
, std::ref(Registry)); }
7364
7365namespace llvm {
7366
7367Pass *createLoopVectorizePass(bool NoUnrolling, bool AlwaysVectorize) {
7368 return new LoopVectorize(NoUnrolling, AlwaysVectorize);
7369}
7370
7371} // end namespace llvm
7372
7373bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) {
7374 // Check if the pointer operand of a load or store instruction is
7375 // consecutive.
7376 if (auto *Ptr = getLoadStorePointerOperand(Inst))
7377 return Legal->isConsecutivePtr(Ptr);
7378 return false;
7379}
7380
7381void LoopVectorizationCostModel::collectValuesToIgnore() {
7382 // Ignore ephemeral values.
7383 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore);
7384
7385 // Ignore type-promoting instructions we identified during reduction
7386 // detection.
7387 for (auto &Reduction : *Legal->getReductionVars()) {
7388 RecurrenceDescriptor &RedDes = Reduction.second;
7389 SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts();
7390 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7391 }
7392 // Ignore type-casting instructions we identified during induction
7393 // detection.
7394 for (auto &Induction : *Legal->getInductionVars()) {
7395 InductionDescriptor &IndDes = Induction.second;
7396 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7397 VecValuesToIgnore.insert(Casts.begin(), Casts.end());
7398 }
7399}
7400
7401VectorizationFactor
7402LoopVectorizationPlanner::plan(bool OptForSize, unsigned UserVF) {
7403 // Width 1 means no vectorize, cost 0 means uncomputed cost.
7404 const VectorizationFactor NoVectorization = {1U, 0U};
7405 Optional<unsigned> MaybeMaxVF = CM.computeMaxVF(OptForSize);
7406 if (!MaybeMaxVF.hasValue()) // Cases considered too costly to vectorize.
7407 return NoVectorization;
7408
7409 if (UserVF) {
7410 DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Using user VF " <<
UserVF << ".\n"; } } while (false)
;
7411 assert(isPowerOf2_32(UserVF) && "VF needs to be a power of two")(static_cast <bool> (isPowerOf2_32(UserVF) && "VF needs to be a power of two"
) ? void (0) : __assert_fail ("isPowerOf2_32(UserVF) && \"VF needs to be a power of two\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7411, __extension__ __PRETTY_FUNCTION__))
;
7412 // Collect the instructions (and their associated costs) that will be more
7413 // profitable to scalarize.
7414 CM.selectUserVectorizationFactor(UserVF);
7415 buildVPlans(UserVF, UserVF);
7416 DEBUG(printPlans(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { printPlans(dbgs()); } } while (false)
;
7417 return {UserVF, 0};
7418 }
7419
7420 unsigned MaxVF = MaybeMaxVF.getValue();
7421 assert(MaxVF != 0 && "MaxVF is zero.")(static_cast <bool> (MaxVF != 0 && "MaxVF is zero."
) ? void (0) : __assert_fail ("MaxVF != 0 && \"MaxVF is zero.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7421, __extension__ __PRETTY_FUNCTION__))
;
7422
7423 for (unsigned VF = 1; VF <= MaxVF; VF *= 2) {
7424 // Collect Uniform and Scalar instructions after vectorization with VF.
7425 CM.collectUniformsAndScalars(VF);
7426
7427 // Collect the instructions (and their associated costs) that will be more
7428 // profitable to scalarize.
7429 if (VF > 1)
7430 CM.collectInstsToScalarize(VF);
7431 }
7432
7433 buildVPlans(1, MaxVF);
7434 DEBUG(printPlans(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { printPlans(dbgs()); } } while (false)
;
7435 if (MaxVF == 1)
7436 return NoVectorization;
7437
7438 // Select the optimal vectorization factor.
7439 return CM.selectVectorizationFactor(MaxVF);
7440}
7441
7442void LoopVectorizationPlanner::setBestPlan(unsigned VF, unsigned UF) {
7443 DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "Setting best plan to VF="
<< VF << ", UF=" << UF << '\n'; } } while
(false)
;
7444 BestVF = VF;
7445 BestUF = UF;
7446
7447 erase_if(VPlans, [VF](const VPlanPtr &Plan) {
7448 return !Plan->hasVF(VF);
7449 });
7450 assert(VPlans.size() == 1 && "Best VF has not a single VPlan.")(static_cast <bool> (VPlans.size() == 1 && "Best VF has not a single VPlan."
) ? void (0) : __assert_fail ("VPlans.size() == 1 && \"Best VF has not a single VPlan.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7450, __extension__ __PRETTY_FUNCTION__))
;
7451}
7452
7453void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV,
7454 DominatorTree *DT) {
7455 // Perform the actual loop transformation.
7456
7457 // 1. Create a new empty loop. Unlink the old loop and connect the new one.
7458 VPCallbackILV CallbackILV(ILV);
7459
7460 VPTransformState State{BestVF, BestUF, LI,
7461 DT, ILV.Builder, ILV.VectorLoopValueMap,
7462 &ILV, CallbackILV};
7463 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton();
7464
7465 //===------------------------------------------------===//
7466 //
7467 // Notice: any optimization or new instruction that go
7468 // into the code below should also be implemented in
7469 // the cost-model.
7470 //
7471 //===------------------------------------------------===//
7472
7473 // 2. Copy and widen instructions from the old loop into the new loop.
7474 assert(VPlans.size() == 1 && "Not a single VPlan to execute.")(static_cast <bool> (VPlans.size() == 1 && "Not a single VPlan to execute."
) ? void (0) : __assert_fail ("VPlans.size() == 1 && \"Not a single VPlan to execute.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7474, __extension__ __PRETTY_FUNCTION__))
;
7475 VPlans.front()->execute(&State);
7476
7477 // 3. Fix the vectorized code: take care of header phi's, live-outs,
7478 // predication, updating analyses.
7479 ILV.fixVectorizedLoop();
7480}
7481
7482void LoopVectorizationPlanner::collectTriviallyDeadInstructions(
7483 SmallPtrSetImpl<Instruction *> &DeadInstructions) {
7484 BasicBlock *Latch = OrigLoop->getLoopLatch();
7485
7486 // We create new control-flow for the vectorized loop, so the original
7487 // condition will be dead after vectorization if it's only used by the
7488 // branch.
7489 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0));
7490 if (Cmp && Cmp->hasOneUse())
7491 DeadInstructions.insert(Cmp);
7492
7493 // We create new "steps" for induction variable updates to which the original
7494 // induction variables map. An original update instruction will be dead if
7495 // all its users except the induction variable are dead.
7496 for (auto &Induction : *Legal->getInductionVars()) {
7497 PHINode *Ind = Induction.first;
7498 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch));
7499 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool {
7500 return U == Ind || DeadInstructions.count(cast<Instruction>(U));
7501 }))
7502 DeadInstructions.insert(IndUpdate);
7503
7504 // We record as "Dead" also the type-casting instructions we had identified
7505 // during induction analysis. We don't need any handling for them in the
7506 // vectorized loop because we have proven that, under a proper runtime
7507 // test guarding the vectorized loop, the value of the phi, and the casted
7508 // value of the phi, are the same. The last instruction in this casting chain
7509 // will get its scalar/vector/widened def from the scalar/vector/widened def
7510 // of the respective phi node. Any other casts in the induction def-use chain
7511 // have no other uses outside the phi update chain, and will be ignored.
7512 InductionDescriptor &IndDes = Induction.second;
7513 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts();
7514 DeadInstructions.insert(Casts.begin(), Casts.end());
7515 }
7516}
7517
7518Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; }
7519
7520Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; }
7521
7522Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step,
7523 Instruction::BinaryOps BinOp) {
7524 // When unrolling and the VF is 1, we only need to add a simple scalar.
7525 Type *Ty = Val->getType();
7526 assert(!Ty->isVectorTy() && "Val must be a scalar")(static_cast <bool> (!Ty->isVectorTy() && "Val must be a scalar"
) ? void (0) : __assert_fail ("!Ty->isVectorTy() && \"Val must be a scalar\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7526, __extension__ __PRETTY_FUNCTION__))
;
7527
7528 if (Ty->isFloatingPointTy()) {
7529 Constant *C = ConstantFP::get(Ty, (double)StartIdx);
7530
7531 // Floating point operations had to be 'fast' to enable the unrolling.
7532 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step));
7533 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp));
7534 }
7535 Constant *C = ConstantInt::get(Ty, StartIdx);
7536 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction");
7537}
7538
7539static void AddRuntimeUnrollDisableMetaData(Loop *L) {
7540 SmallVector<Metadata *, 4> MDs;
7541 // Reserve first location for self reference to the LoopID metadata node.
7542 MDs.push_back(nullptr);
7543 bool IsUnrollMetadata = false;
7544 MDNode *LoopID = L->getLoopID();
7545 if (LoopID) {
7546 // First find existing loop unrolling disable metadata.
7547 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
7548 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
7549 if (MD) {
7550 const auto *S = dyn_cast<MDString>(MD->getOperand(0));
7551 IsUnrollMetadata =
7552 S && S->getString().startswith("llvm.loop.unroll.disable");
7553 }
7554 MDs.push_back(LoopID->getOperand(i));
7555 }
7556 }
7557
7558 if (!IsUnrollMetadata) {
7559 // Add runtime unroll disable metadata.
7560 LLVMContext &Context = L->getHeader()->getContext();
7561 SmallVector<Metadata *, 1> DisableOperands;
7562 DisableOperands.push_back(
7563 MDString::get(Context, "llvm.loop.unroll.runtime.disable"));
7564 MDNode *DisableNode = MDNode::get(Context, DisableOperands);
7565 MDs.push_back(DisableNode);
7566 MDNode *NewLoopID = MDNode::get(Context, MDs);
7567 // Set operand 0 to refer to the loop id itself.
7568 NewLoopID->replaceOperandWith(0, NewLoopID);
7569 L->setLoopID(NewLoopID);
7570 }
7571}
7572
7573bool LoopVectorizationPlanner::getDecisionAndClampRange(
7574 const std::function<bool(unsigned)> &Predicate, VFRange &Range) {
7575 assert(Range.End > Range.Start && "Trying to test an empty VF range.")(static_cast <bool> (Range.End > Range.Start &&
"Trying to test an empty VF range.") ? void (0) : __assert_fail
("Range.End > Range.Start && \"Trying to test an empty VF range.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7575, __extension__ __PRETTY_FUNCTION__))
;
7576 bool PredicateAtRangeStart = Predicate(Range.Start);
7577
7578 for (unsigned TmpVF = Range.Start * 2; TmpVF < Range.End; TmpVF *= 2)
7579 if (Predicate(TmpVF) != PredicateAtRangeStart) {
7580 Range.End = TmpVF;
7581 break;
7582 }
7583
7584 return PredicateAtRangeStart;
7585}
7586
7587/// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF,
7588/// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range
7589/// of VF's starting at a given VF and extending it as much as possible. Each
7590/// vectorization decision can potentially shorten this sub-range during
7591/// buildVPlan().
7592void LoopVectorizationPlanner::buildVPlans(unsigned MinVF, unsigned MaxVF) {
7593
7594 // Collect conditions feeding internal conditional branches; they need to be
7595 // represented in VPlan for it to model masking.
7596 SmallPtrSet<Value *, 1> NeedDef;
7597
7598 auto *Latch = OrigLoop->getLoopLatch();
7599 for (BasicBlock *BB : OrigLoop->blocks()) {
7600 if (BB == Latch)
7601 continue;
7602 BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
7603 if (Branch && Branch->isConditional())
7604 NeedDef.insert(Branch->getCondition());
7605 }
7606
7607 for (unsigned VF = MinVF; VF < MaxVF + 1;) {
7608 VFRange SubRange = {VF, MaxVF + 1};
7609 VPlans.push_back(buildVPlan(SubRange, NeedDef));
7610 VF = SubRange.End;
7611 }
7612}
7613
7614VPValue *LoopVectorizationPlanner::createEdgeMask(BasicBlock *Src,
7615 BasicBlock *Dst,
7616 VPlanPtr &Plan) {
7617 assert(is_contained(predecessors(Dst), Src) && "Invalid edge")(static_cast <bool> (is_contained(predecessors(Dst), Src
) && "Invalid edge") ? void (0) : __assert_fail ("is_contained(predecessors(Dst), Src) && \"Invalid edge\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7617, __extension__ __PRETTY_FUNCTION__))
;
7618
7619 // Look for cached value.
7620 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst);
7621 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge);
7622 if (ECEntryIt != EdgeMaskCache.end())
7623 return ECEntryIt->second;
7624
7625 VPValue *SrcMask = createBlockInMask(Src, Plan);
7626
7627 // The terminator has to be a branch inst!
7628 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator());
7629 assert(BI && "Unexpected terminator found")(static_cast <bool> (BI && "Unexpected terminator found"
) ? void (0) : __assert_fail ("BI && \"Unexpected terminator found\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7629, __extension__ __PRETTY_FUNCTION__))
;
7630
7631 if (!BI->isConditional())
7632 return EdgeMaskCache[Edge] = SrcMask;
7633
7634 VPValue *EdgeMask = Plan->getVPValue(BI->getCondition());
7635 assert(EdgeMask && "No Edge Mask found for condition")(static_cast <bool> (EdgeMask && "No Edge Mask found for condition"
) ? void (0) : __assert_fail ("EdgeMask && \"No Edge Mask found for condition\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7635, __extension__ __PRETTY_FUNCTION__))
;
7636
7637 if (BI->getSuccessor(0) != Dst)
7638 EdgeMask = Builder.createNot(EdgeMask);
7639
7640 if (SrcMask) // Otherwise block in-mask is all-one, no need to AND.
7641 EdgeMask = Builder.createAnd(EdgeMask, SrcMask);
7642
7643 return EdgeMaskCache[Edge] = EdgeMask;
7644}
7645
7646VPValue *LoopVectorizationPlanner::createBlockInMask(BasicBlock *BB,
7647 VPlanPtr &Plan) {
7648 assert(OrigLoop->contains(BB) && "Block is not a part of a loop")(static_cast <bool> (OrigLoop->contains(BB) &&
"Block is not a part of a loop") ? void (0) : __assert_fail (
"OrigLoop->contains(BB) && \"Block is not a part of a loop\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7648, __extension__ __PRETTY_FUNCTION__))
;
7649
7650 // Look for cached value.
7651 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB);
7652 if (BCEntryIt != BlockMaskCache.end())
7653 return BCEntryIt->second;
7654
7655 // All-one mask is modelled as no-mask following the convention for masked
7656 // load/store/gather/scatter. Initialize BlockMask to no-mask.
7657 VPValue *BlockMask = nullptr;
7658
7659 // Loop incoming mask is all-one.
7660 if (OrigLoop->getHeader() == BB)
7661 return BlockMaskCache[BB] = BlockMask;
7662
7663 // This is the block mask. We OR all incoming edges.
7664 for (auto *Predecessor : predecessors(BB)) {
7665 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan);
7666 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too.
7667 return BlockMaskCache[BB] = EdgeMask;
7668
7669 if (!BlockMask) { // BlockMask has its initialized nullptr value.
7670 BlockMask = EdgeMask;
7671 continue;
7672 }
7673
7674 BlockMask = Builder.createOr(BlockMask, EdgeMask);
7675 }
7676
7677 return BlockMaskCache[BB] = BlockMask;
7678}
7679
7680VPInterleaveRecipe *
7681LoopVectorizationPlanner::tryToInterleaveMemory(Instruction *I,
7682 VFRange &Range) {
7683 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(I);
7684 if (!IG)
7685 return nullptr;
7686
7687 // Now check if IG is relevant for VF's in the given range.
7688 auto isIGMember = [&](Instruction *I) -> std::function<bool(unsigned)> {
7689 return [=](unsigned VF) -> bool {
7690 return (VF >= 2 && // Query is illegal for VF == 1
7691 CM.getWideningDecision(I, VF) ==
7692 LoopVectorizationCostModel::CM_Interleave);
7693 };
7694 };
7695 if (!getDecisionAndClampRange(isIGMember(I), Range))
7696 return nullptr;
7697
7698 // I is a member of an InterleaveGroup for VF's in the (possibly trimmed)
7699 // range. If it's the primary member of the IG construct a VPInterleaveRecipe.
7700 // Otherwise, it's an adjunct member of the IG, do not construct any Recipe.
7701 assert(I == IG->getInsertPos() &&(static_cast <bool> (I == IG->getInsertPos() &&
"Generating a recipe for an adjunct member of an interleave group"
) ? void (0) : __assert_fail ("I == IG->getInsertPos() && \"Generating a recipe for an adjunct member of an interleave group\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7702, __extension__ __PRETTY_FUNCTION__))
7702 "Generating a recipe for an adjunct member of an interleave group")(static_cast <bool> (I == IG->getInsertPos() &&
"Generating a recipe for an adjunct member of an interleave group"
) ? void (0) : __assert_fail ("I == IG->getInsertPos() && \"Generating a recipe for an adjunct member of an interleave group\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7702, __extension__ __PRETTY_FUNCTION__))
;
7703
7704 return new VPInterleaveRecipe(IG);
7705}
7706
7707VPWidenMemoryInstructionRecipe *
7708LoopVectorizationPlanner::tryToWidenMemory(Instruction *I, VFRange &Range,
7709 VPlanPtr &Plan) {
7710 if (!isa<LoadInst>(I) && !isa<StoreInst>(I))
7711 return nullptr;
7712
7713 auto willWiden = [&](unsigned VF) -> bool {
7714 if (VF == 1)
7715 return false;
7716 if (CM.isScalarAfterVectorization(I, VF) ||
7717 CM.isProfitableToScalarize(I, VF))
7718 return false;
7719 LoopVectorizationCostModel::InstWidening Decision =
7720 CM.getWideningDecision(I, VF);
7721 assert(Decision != LoopVectorizationCostModel::CM_Unknown &&(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Unknown && "CM decision should be taken at this point."
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Unknown && \"CM decision should be taken at this point.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7722, __extension__ __PRETTY_FUNCTION__))
7722 "CM decision should be taken at this point.")(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Unknown && "CM decision should be taken at this point."
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Unknown && \"CM decision should be taken at this point.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7722, __extension__ __PRETTY_FUNCTION__))
;
7723 assert(Decision != LoopVectorizationCostModel::CM_Interleave &&(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Interleave && "Interleave memory opportunity should be caught earlier."
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Interleave && \"Interleave memory opportunity should be caught earlier.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7724, __extension__ __PRETTY_FUNCTION__))
7724 "Interleave memory opportunity should be caught earlier.")(static_cast <bool> (Decision != LoopVectorizationCostModel
::CM_Interleave && "Interleave memory opportunity should be caught earlier."
) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Interleave && \"Interleave memory opportunity should be caught earlier.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7724, __extension__ __PRETTY_FUNCTION__))
;
7725 return Decision != LoopVectorizationCostModel::CM_Scalarize;
7726 };
7727
7728 if (!getDecisionAndClampRange(willWiden, Range))
7729 return nullptr;
7730
7731 VPValue *Mask = nullptr;
7732 if (Legal->isMaskRequired(I))
7733 Mask = createBlockInMask(I->getParent(), Plan);
7734
7735 return new VPWidenMemoryInstructionRecipe(*I, Mask);
7736}
7737
7738VPWidenIntOrFpInductionRecipe *
7739LoopVectorizationPlanner::tryToOptimizeInduction(Instruction *I,
7740 VFRange &Range) {
7741 if (PHINode *Phi = dyn_cast<PHINode>(I)) {
7742 // Check if this is an integer or fp induction. If so, build the recipe that
7743 // produces its scalar and vector values.
7744 InductionDescriptor II = Legal->getInductionVars()->lookup(Phi);
7745 if (II.getKind() == InductionDescriptor::IK_IntInduction ||
7746 II.getKind() == InductionDescriptor::IK_FpInduction)
7747 return new VPWidenIntOrFpInductionRecipe(Phi);
7748
7749 return nullptr;
7750 }
7751
7752 // Optimize the special case where the source is a constant integer
7753 // induction variable. Notice that we can only optimize the 'trunc' case
7754 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and
7755 // (c) other casts depend on pointer size.
7756
7757 // Determine whether \p K is a truncation based on an induction variable that
7758 // can be optimized.
7759 auto isOptimizableIVTruncate =
7760 [&](Instruction *K) -> std::function<bool(unsigned)> {
7761 return
7762 [=](unsigned VF) -> bool { return CM.isOptimizableIVTruncate(K, VF); };
7763 };
7764
7765 if (isa<TruncInst>(I) &&
7766 getDecisionAndClampRange(isOptimizableIVTruncate(I), Range))
7767 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)),
7768 cast<TruncInst>(I));
7769 return nullptr;
7770}
7771
7772VPBlendRecipe *
7773LoopVectorizationPlanner::tryToBlend(Instruction *I, VPlanPtr &Plan) {
7774 PHINode *Phi = dyn_cast<PHINode>(I);
7775 if (!Phi || Phi->getParent() == OrigLoop->getHeader())
7776 return nullptr;
7777
7778 // We know that all PHIs in non-header blocks are converted into selects, so
7779 // we don't have to worry about the insertion order and we can just use the
7780 // builder. At this point we generate the predication tree. There may be
7781 // duplications since this is a simple recursive scan, but future
7782 // optimizations will clean it up.
7783
7784 SmallVector<VPValue *, 2> Masks;
7785 unsigned NumIncoming = Phi->getNumIncomingValues();
7786 for (unsigned In = 0; In < NumIncoming; In++) {
7787 VPValue *EdgeMask =
7788 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan);
7789 assert((EdgeMask || NumIncoming == 1) &&(static_cast <bool> ((EdgeMask || NumIncoming == 1) &&
"Multiple predecessors with one having a full mask") ? void (
0) : __assert_fail ("(EdgeMask || NumIncoming == 1) && \"Multiple predecessors with one having a full mask\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7790, __extension__ __PRETTY_FUNCTION__))
7790 "Multiple predecessors with one having a full mask")(static_cast <bool> ((EdgeMask || NumIncoming == 1) &&
"Multiple predecessors with one having a full mask") ? void (
0) : __assert_fail ("(EdgeMask || NumIncoming == 1) && \"Multiple predecessors with one having a full mask\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7790, __extension__ __PRETTY_FUNCTION__))
;
7791 if (EdgeMask)
7792 Masks.push_back(EdgeMask);
7793 }
7794 return new VPBlendRecipe(Phi, Masks);
7795}
7796
7797bool LoopVectorizationPlanner::tryToWiden(Instruction *I, VPBasicBlock *VPBB,
7798 VFRange &Range) {
7799 if (CM.isScalarWithPredication(I))
7800 return false;
7801
7802 auto IsVectorizableOpcode = [](unsigned Opcode) {
7803 switch (Opcode) {
7804 case Instruction::Add:
7805 case Instruction::And:
7806 case Instruction::AShr:
7807 case Instruction::BitCast:
7808 case Instruction::Br:
7809 case Instruction::Call:
7810 case Instruction::FAdd:
7811 case Instruction::FCmp:
7812 case Instruction::FDiv:
7813 case Instruction::FMul:
7814 case Instruction::FPExt:
7815 case Instruction::FPToSI:
7816 case Instruction::FPToUI:
7817 case Instruction::FPTrunc:
7818 case Instruction::FRem:
7819 case Instruction::FSub:
7820 case Instruction::GetElementPtr:
7821 case Instruction::ICmp:
7822 case Instruction::IntToPtr:
7823 case Instruction::Load:
7824 case Instruction::LShr:
7825 case Instruction::Mul:
7826 case Instruction::Or:
7827 case Instruction::PHI:
7828 case Instruction::PtrToInt:
7829 case Instruction::SDiv:
7830 case Instruction::Select:
7831 case Instruction::SExt:
7832 case Instruction::Shl:
7833 case Instruction::SIToFP:
7834 case Instruction::SRem:
7835 case Instruction::Store:
7836 case Instruction::Sub:
7837 case Instruction::Trunc:
7838 case Instruction::UDiv:
7839 case Instruction::UIToFP:
7840 case Instruction::URem:
7841 case Instruction::Xor:
7842 case Instruction::ZExt:
7843 return true;
7844 }
7845 return false;
7846 };
7847
7848 if (!IsVectorizableOpcode(I->getOpcode()))
7849 return false;
7850
7851 if (CallInst *CI = dyn_cast<CallInst>(I)) {
7852 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7853 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
7854 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect))
7855 return false;
7856 }
7857
7858 auto willWiden = [&](unsigned VF) -> bool {
7859 if (!isa<PHINode>(I) && (CM.isScalarAfterVectorization(I, VF) ||
7860 CM.isProfitableToScalarize(I, VF)))
7861 return false;
7862 if (CallInst *CI = dyn_cast<CallInst>(I)) {
7863 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
7864 // The following case may be scalarized depending on the VF.
7865 // The flag shows whether we use Intrinsic or a usual Call for vectorized
7866 // version of the instruction.
7867 // Is it beneficial to perform intrinsic call compared to lib call?
7868 bool NeedToScalarize;
7869 unsigned CallCost = getVectorCallCost(CI, VF, *TTI, TLI, NeedToScalarize);
7870 bool UseVectorIntrinsic =
7871 ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
7872 return UseVectorIntrinsic || !NeedToScalarize;
7873 }
7874 if (isa<LoadInst>(I) || isa<StoreInst>(I)) {
7875 assert(CM.getWideningDecision(I, VF) ==(static_cast <bool> (CM.getWideningDecision(I, VF) == LoopVectorizationCostModel
::CM_Scalarize && "Memory widening decisions should have been taken care by now"
) ? void (0) : __assert_fail ("CM.getWideningDecision(I, VF) == LoopVectorizationCostModel::CM_Scalarize && \"Memory widening decisions should have been taken care by now\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7877, __extension__ __PRETTY_FUNCTION__))
7876 LoopVectorizationCostModel::CM_Scalarize &&(static_cast <bool> (CM.getWideningDecision(I, VF) == LoopVectorizationCostModel
::CM_Scalarize && "Memory widening decisions should have been taken care by now"
) ? void (0) : __assert_fail ("CM.getWideningDecision(I, VF) == LoopVectorizationCostModel::CM_Scalarize && \"Memory widening decisions should have been taken care by now\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7877, __extension__ __PRETTY_FUNCTION__))
7877 "Memory widening decisions should have been taken care by now")(static_cast <bool> (CM.getWideningDecision(I, VF) == LoopVectorizationCostModel
::CM_Scalarize && "Memory widening decisions should have been taken care by now"
) ? void (0) : __assert_fail ("CM.getWideningDecision(I, VF) == LoopVectorizationCostModel::CM_Scalarize && \"Memory widening decisions should have been taken care by now\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7877, __extension__ __PRETTY_FUNCTION__))
;
7878 return false;
7879 }
7880 return true;
7881 };
7882
7883 if (!getDecisionAndClampRange(willWiden, Range))
7884 return false;
7885
7886 // Success: widen this instruction. We optimize the common case where
7887 // consecutive instructions can be represented by a single recipe.
7888 if (!VPBB->empty()) {
7889 VPWidenRecipe *LastWidenRecipe = dyn_cast<VPWidenRecipe>(&VPBB->back());
7890 if (LastWidenRecipe && LastWidenRecipe->appendInstruction(I))
7891 return true;
7892 }
7893
7894 VPBB->appendRecipe(new VPWidenRecipe(I));
7895 return true;
7896}
7897
7898VPBasicBlock *LoopVectorizationPlanner::handleReplication(
7899 Instruction *I, VFRange &Range, VPBasicBlock *VPBB,
7900 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe,
7901 VPlanPtr &Plan) {
7902 bool IsUniform = getDecisionAndClampRange(
7903 [&](unsigned VF) { return CM.isUniformAfterVectorization(I, VF); },
7904 Range);
7905
7906 bool IsPredicated = CM.isScalarWithPredication(I);
7907 auto *Recipe = new VPReplicateRecipe(I, IsUniform, IsPredicated);
7908
7909 // Find if I uses a predicated instruction. If so, it will use its scalar
7910 // value. Avoid hoisting the insert-element which packs the scalar value into
7911 // a vector value, as that happens iff all users use the vector value.
7912 for (auto &Op : I->operands())
7913 if (auto *PredInst = dyn_cast<Instruction>(Op))
7914 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end())
7915 PredInst2Recipe[PredInst]->setAlsoPack(false);
7916
7917 // Finalize the recipe for Instr, first if it is not predicated.
7918 if (!IsPredicated) {
7919 DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Scalarizing:" <<
*I << "\n"; } } while (false)
;
7920 VPBB->appendRecipe(Recipe);
7921 return VPBB;
7922 }
7923 DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Scalarizing and predicating:"
<< *I << "\n"; } } while (false)
;
7924 assert(VPBB->getSuccessors().empty() &&(static_cast <bool> (VPBB->getSuccessors().empty() &&
"VPBB has successors when handling predicated replication.")
? void (0) : __assert_fail ("VPBB->getSuccessors().empty() && \"VPBB has successors when handling predicated replication.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7925, __extension__ __PRETTY_FUNCTION__))
7925 "VPBB has successors when handling predicated replication.")(static_cast <bool> (VPBB->getSuccessors().empty() &&
"VPBB has successors when handling predicated replication.")
? void (0) : __assert_fail ("VPBB->getSuccessors().empty() && \"VPBB has successors when handling predicated replication.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7925, __extension__ __PRETTY_FUNCTION__))
;
7926 // Record predicated instructions for above packing optimizations.
7927 PredInst2Recipe[I] = Recipe;
7928 VPBlockBase *Region =
7929 VPBB->setOneSuccessor(createReplicateRegion(I, Recipe, Plan));
7930 return cast<VPBasicBlock>(Region->setOneSuccessor(new VPBasicBlock()));
7931}
7932
7933VPRegionBlock *
7934LoopVectorizationPlanner::createReplicateRegion(Instruction *Instr,
7935 VPRecipeBase *PredRecipe,
7936 VPlanPtr &Plan) {
7937 // Instructions marked for predication are replicated and placed under an
7938 // if-then construct to prevent side-effects.
7939
7940 // Generate recipes to compute the block mask for this region.
7941 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan);
7942
7943 // Build the triangular if-then region.
7944 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str();
7945 assert(Instr->getParent() && "Predicated instruction not in any basic block")(static_cast <bool> (Instr->getParent() && "Predicated instruction not in any basic block"
) ? void (0) : __assert_fail ("Instr->getParent() && \"Predicated instruction not in any basic block\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 7945, __extension__ __PRETTY_FUNCTION__))
;
7946 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask);
7947 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe);
7948 auto *PHIRecipe =
7949 Instr->getType()->isVoidTy() ? nullptr : new VPPredInstPHIRecipe(Instr);
7950 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe);
7951 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe);
7952 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true);
7953
7954 // Note: first set Entry as region entry and then connect successors starting
7955 // from it in order, to propagate the "parent" of each VPBasicBlock.
7956 Entry->setTwoSuccessors(Pred, Exit);
7957 Pred->setOneSuccessor(Exit);
7958
7959 return Region;
7960}
7961
7962LoopVectorizationPlanner::VPlanPtr
7963LoopVectorizationPlanner::buildVPlan(VFRange &Range,
7964 const SmallPtrSetImpl<Value *> &NeedDef) {
7965 EdgeMaskCache.clear();
7966 BlockMaskCache.clear();
7967 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter();
7968 DenseMap<Instruction *, Instruction *> SinkAfterInverse;
7969
7970 // Collect instructions from the original loop that will become trivially dead
7971 // in the vectorized loop. We don't need to vectorize these instructions. For
7972 // example, original induction update instructions can become dead because we
7973 // separately emit induction "steps" when generating code for the new loop.
7974 // Similarly, we create a new latch condition when setting up the structure
7975 // of the new loop, so the old one can become dead.
7976 SmallPtrSet<Instruction *, 4> DeadInstructions;
7977 collectTriviallyDeadInstructions(DeadInstructions);
7978
7979 // Hold a mapping from predicated instructions to their recipes, in order to
7980 // fix their AlsoPack behavior if a user is determined to replicate and use a
7981 // scalar instead of vector value.
7982 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe;
7983
7984 // Create a dummy pre-entry VPBasicBlock to start building the VPlan.
7985 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry");
7986 auto Plan = llvm::make_unique<VPlan>(VPBB);
7987
7988 // Represent values that will have defs inside VPlan.
7989 for (Value *V : NeedDef)
7990 Plan->addVPValue(V);
7991
7992 // Scan the body of the loop in a topological order to visit each basic block
7993 // after having visited its predecessor basic blocks.
7994 LoopBlocksDFS DFS(OrigLoop);
7995 DFS.perform(LI);
7996
7997 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) {
7998 // Relevant instructions from basic block BB will be grouped into VPRecipe
7999 // ingredients and fill a new VPBasicBlock.
8000 unsigned VPBBsForBB = 0;
8001 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName());
8002 VPBB->setOneSuccessor(FirstVPBBForBB);
8003 VPBB = FirstVPBBForBB;
8004 Builder.setInsertPoint(VPBB);
8005
8006 std::vector<Instruction *> Ingredients;
8007
8008 // Organize the ingredients to vectorize from current basic block in the
8009 // right order.
8010 for (Instruction &I : *BB) {
8011 Instruction *Instr = &I;
8012
8013 // First filter out irrelevant instructions, to ensure no recipes are
8014 // built for them.
8015 if (isa<BranchInst>(Instr) || isa<DbgInfoIntrinsic>(Instr) ||
8016 DeadInstructions.count(Instr))
8017 continue;
8018
8019 // I is a member of an InterleaveGroup for Range.Start. If it's an adjunct
8020 // member of the IG, do not construct any Recipe for it.
8021 const InterleaveGroup *IG = CM.getInterleavedAccessGroup(Instr);
8022 if (IG && Instr != IG->getInsertPos() &&
8023 Range.Start >= 2 && // Query is illegal for VF == 1
8024 CM.getWideningDecision(Instr, Range.Start) ==
8025 LoopVectorizationCostModel::CM_Interleave) {
8026 if (SinkAfterInverse.count(Instr))
8027 Ingredients.push_back(SinkAfterInverse.find(Instr)->second);
8028 continue;
8029 }
8030
8031 // Move instructions to handle first-order recurrences, step 1: avoid
8032 // handling this instruction until after we've handled the instruction it
8033 // should follow.
8034 auto SAIt = SinkAfter.find(Instr);
8035 if (SAIt != SinkAfter.end()) {
8036 DEBUG(dbgs() << "Sinking" << *SAIt->first << " after" << *SAIt->seconddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "Sinking" << *SAIt
->first << " after" << *SAIt->second <<
" to vectorize a 1st order recurrence.\n"; } } while (false)
8037 << " to vectorize a 1st order recurrence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "Sinking" << *SAIt
->first << " after" << *SAIt->second <<
" to vectorize a 1st order recurrence.\n"; } } while (false)
;
8038 SinkAfterInverse[SAIt->second] = Instr;
8039 continue;
8040 }
8041
8042 Ingredients.push_back(Instr);
8043
8044 // Move instructions to handle first-order recurrences, step 2: push the
8045 // instruction to be sunk at its insertion point.
8046 auto SAInvIt = SinkAfterInverse.find(Instr);
8047 if (SAInvIt != SinkAfterInverse.end())
8048 Ingredients.push_back(SAInvIt->second);
8049 }
8050
8051 // Introduce each ingredient into VPlan.
8052 for (Instruction *Instr : Ingredients) {
8053 VPRecipeBase *Recipe = nullptr;
8054
8055 // Check if Instr should belong to an interleave memory recipe, or already
8056 // does. In the latter case Instr is irrelevant.
8057 if ((Recipe = tryToInterleaveMemory(Instr, Range))) {
8058 VPBB->appendRecipe(Recipe);
8059 continue;
8060 }
8061
8062 // Check if Instr is a memory operation that should be widened.
8063 if ((Recipe = tryToWidenMemory(Instr, Range, Plan))) {
8064 VPBB->appendRecipe(Recipe);
8065 continue;
8066 }
8067
8068 // Check if Instr should form some PHI recipe.
8069 if ((Recipe = tryToOptimizeInduction(Instr, Range))) {
8070 VPBB->appendRecipe(Recipe);
8071 continue;
8072 }
8073 if ((Recipe = tryToBlend(Instr, Plan))) {
8074 VPBB->appendRecipe(Recipe);
8075 continue;
8076 }
8077 if (PHINode *Phi = dyn_cast<PHINode>(Instr)) {
8078 VPBB->appendRecipe(new VPWidenPHIRecipe(Phi));
8079 continue;
8080 }
8081
8082 // Check if Instr is to be widened by a general VPWidenRecipe, after
8083 // having first checked for specific widening recipes that deal with
8084 // Interleave Groups, Inductions and Phi nodes.
8085 if (tryToWiden(Instr, VPBB, Range))
8086 continue;
8087
8088 // Otherwise, if all widening options failed, Instruction is to be
8089 // replicated. This may create a successor for VPBB.
8090 VPBasicBlock *NextVPBB =
8091 handleReplication(Instr, Range, VPBB, PredInst2Recipe, Plan);
8092 if (NextVPBB != VPBB) {
8093 VPBB = NextVPBB;
8094 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++)
8095 : "");
8096 }
8097 }
8098 }
8099
8100 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks
8101 // may also be empty, such as the last one VPBB, reflecting original
8102 // basic-blocks with no recipes.
8103 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry());
8104 assert(PreEntry->empty() && "Expecting empty pre-entry block.")(static_cast <bool> (PreEntry->empty() && "Expecting empty pre-entry block."
) ? void (0) : __assert_fail ("PreEntry->empty() && \"Expecting empty pre-entry block.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8104, __extension__ __PRETTY_FUNCTION__))
;
8105 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor());
8106 PreEntry->disconnectSuccessor(Entry);
8107 delete PreEntry;
8108
8109 std::string PlanName;
8110 raw_string_ostream RSO(PlanName);
8111 unsigned VF = Range.Start;
8112 Plan->addVF(VF);
8113 RSO << "Initial VPlan for VF={" << VF;
8114 for (VF *= 2; VF < Range.End; VF *= 2) {
8115 Plan->addVF(VF);
8116 RSO << "," << VF;
8117 }
8118 RSO << "},UF>=1";
8119 RSO.flush();
8120 Plan->setName(PlanName);
8121
8122 return Plan;
8123}
8124
8125Value* LoopVectorizationPlanner::VPCallbackILV::
8126getOrCreateVectorValues(Value *V, unsigned Part) {
8127 return ILV.getOrCreateVectorValue(V, Part);
8128}
8129
8130void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent) const {
8131 O << " +\n"
8132 << Indent << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at ";
8133 IG->getInsertPos()->printAsOperand(O, false);
8134 O << "\\l\"";
8135 for (unsigned i = 0; i < IG->getFactor(); ++i)
8136 if (Instruction *I = IG->getMember(i))
8137 O << " +\n"
8138 << Indent << "\" " << VPlanIngredient(I) << " " << i << "\\l\"";
8139}
8140
8141void VPWidenRecipe::execute(VPTransformState &State) {
8142 for (auto &Instr : make_range(Begin, End))
8143 State.ILV->widenInstruction(Instr);
8144}
8145
8146void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) {
8147 assert(!State.Instance && "Int or FP induction being replicated.")(static_cast <bool> (!State.Instance && "Int or FP induction being replicated."
) ? void (0) : __assert_fail ("!State.Instance && \"Int or FP induction being replicated.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8147, __extension__ __PRETTY_FUNCTION__))
;
8148 State.ILV->widenIntOrFpInduction(IV, Trunc);
8149}
8150
8151void VPWidenPHIRecipe::execute(VPTransformState &State) {
8152 State.ILV->widenPHIInstruction(Phi, State.UF, State.VF);
8153}
8154
8155void VPBlendRecipe::execute(VPTransformState &State) {
8156 State.ILV->setDebugLocFromInst(State.Builder, Phi);
8157 // We know that all PHIs in non-header blocks are converted into
8158 // selects, so we don't have to worry about the insertion order and we
8159 // can just use the builder.
8160 // At this point we generate the predication tree. There may be
8161 // duplications since this is a simple recursive scan, but future
8162 // optimizations will clean it up.
8163
8164 unsigned NumIncoming = Phi->getNumIncomingValues();
8165
8166 assert((User || NumIncoming == 1) &&(static_cast <bool> ((User || NumIncoming == 1) &&
"Multiple predecessors with predecessors having a full mask"
) ? void (0) : __assert_fail ("(User || NumIncoming == 1) && \"Multiple predecessors with predecessors having a full mask\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8167, __extension__ __PRETTY_FUNCTION__))
8167 "Multiple predecessors with predecessors having a full mask")(static_cast <bool> ((User || NumIncoming == 1) &&
"Multiple predecessors with predecessors having a full mask"
) ? void (0) : __assert_fail ("(User || NumIncoming == 1) && \"Multiple predecessors with predecessors having a full mask\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8167, __extension__ __PRETTY_FUNCTION__))
;
8168 // Generate a sequence of selects of the form:
8169 // SELECT(Mask3, In3,
8170 // SELECT(Mask2, In2,
8171 // ( ...)))
8172 InnerLoopVectorizer::VectorParts Entry(State.UF);
8173 for (unsigned In = 0; In < NumIncoming; ++In) {
8174 for (unsigned Part = 0; Part < State.UF; ++Part) {
8175 // We might have single edge PHIs (blocks) - use an identity
8176 // 'select' for the first PHI operand.
8177 Value *In0 =
8178 State.ILV->getOrCreateVectorValue(Phi->getIncomingValue(In), Part);
8179 if (In == 0)
8180 Entry[Part] = In0; // Initialize with the first incoming value.
8181 else {
8182 // Select between the current value and the previous incoming edge
8183 // based on the incoming mask.
8184 Value *Cond = State.get(User->getOperand(In), Part);
8185 Entry[Part] =
8186 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi");
8187 }
8188 }
8189 }
8190 for (unsigned Part = 0; Part < State.UF; ++Part)
8191 State.ValueMap.setVectorValue(Phi, Part, Entry[Part]);
8192}
8193
8194void VPInterleaveRecipe::execute(VPTransformState &State) {
8195 assert(!State.Instance && "Interleave group being replicated.")(static_cast <bool> (!State.Instance && "Interleave group being replicated."
) ? void (0) : __assert_fail ("!State.Instance && \"Interleave group being replicated.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8195, __extension__ __PRETTY_FUNCTION__))
;
8196 State.ILV->vectorizeInterleaveGroup(IG->getInsertPos());
8197}
8198
8199void VPReplicateRecipe::execute(VPTransformState &State) {
8200 if (State.Instance) { // Generate a single instance.
8201 State.ILV->scalarizeInstruction(Ingredient, *State.Instance, IsPredicated);
8202 // Insert scalar instance packing it into a vector.
8203 if (AlsoPack && State.VF > 1) {
8204 // If we're constructing lane 0, initialize to start from undef.
8205 if (State.Instance->Lane == 0) {
8206 Value *Undef =
8207 UndefValue::get(VectorType::get(Ingredient->getType(), State.VF));
8208 State.ValueMap.setVectorValue(Ingredient, State.Instance->Part, Undef);
8209 }
8210 State.ILV->packScalarIntoVectorValue(Ingredient, *State.Instance);
8211 }
8212 return;
8213 }
8214
8215 // Generate scalar instances for all VF lanes of all UF parts, unless the
8216 // instruction is uniform inwhich case generate only the first lane for each
8217 // of the UF parts.
8218 unsigned EndLane = IsUniform ? 1 : State.VF;
8219 for (unsigned Part = 0; Part < State.UF; ++Part)
8220 for (unsigned Lane = 0; Lane < EndLane; ++Lane)
8221 State.ILV->scalarizeInstruction(Ingredient, {Part, Lane}, IsPredicated);
8222}
8223
8224void VPBranchOnMaskRecipe::execute(VPTransformState &State) {
8225 assert(State.Instance && "Branch on Mask works only on single instance.")(static_cast <bool> (State.Instance && "Branch on Mask works only on single instance."
) ? void (0) : __assert_fail ("State.Instance && \"Branch on Mask works only on single instance.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8225, __extension__ __PRETTY_FUNCTION__))
;
8226
8227 unsigned Part = State.Instance->Part;
8228 unsigned Lane = State.Instance->Lane;
8229
8230 Value *ConditionBit = nullptr;
8231 if (!User) // Block in mask is all-one.
8232 ConditionBit = State.Builder.getTrue();
8233 else {
8234 VPValue *BlockInMask = User->getOperand(0);
8235 ConditionBit = State.get(BlockInMask, Part);
8236 if (ConditionBit->getType()->isVectorTy())
8237 ConditionBit = State.Builder.CreateExtractElement(
8238 ConditionBit, State.Builder.getInt32(Lane));
8239 }
8240
8241 // Replace the temporary unreachable terminator with a new conditional branch,
8242 // whose two destinations will be set later when they are created.
8243 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator();
8244 assert(isa<UnreachableInst>(CurrentTerminator) &&(static_cast <bool> (isa<UnreachableInst>(CurrentTerminator
) && "Expected to replace unreachable terminator with conditional branch."
) ? void (0) : __assert_fail ("isa<UnreachableInst>(CurrentTerminator) && \"Expected to replace unreachable terminator with conditional branch.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8245, __extension__ __PRETTY_FUNCTION__))
8245 "Expected to replace unreachable terminator with conditional branch.")(static_cast <bool> (isa<UnreachableInst>(CurrentTerminator
) && "Expected to replace unreachable terminator with conditional branch."
) ? void (0) : __assert_fail ("isa<UnreachableInst>(CurrentTerminator) && \"Expected to replace unreachable terminator with conditional branch.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8245, __extension__ __PRETTY_FUNCTION__))
;
8246 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit);
8247 CondBr->setSuccessor(0, nullptr);
8248 ReplaceInstWithInst(CurrentTerminator, CondBr);
8249}
8250
8251void VPPredInstPHIRecipe::execute(VPTransformState &State) {
8252 assert(State.Instance && "Predicated instruction PHI works per instance.")(static_cast <bool> (State.Instance && "Predicated instruction PHI works per instance."
) ? void (0) : __assert_fail ("State.Instance && \"Predicated instruction PHI works per instance.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8252, __extension__ __PRETTY_FUNCTION__))
;
8253 Instruction *ScalarPredInst = cast<Instruction>(
8254 State.ValueMap.getScalarValue(PredInst, *State.Instance));
8255 BasicBlock *PredicatedBB = ScalarPredInst->getParent();
8256 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor();
8257 assert(PredicatingBB && "Predicated block has no single predecessor.")(static_cast <bool> (PredicatingBB && "Predicated block has no single predecessor."
) ? void (0) : __assert_fail ("PredicatingBB && \"Predicated block has no single predecessor.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8257, __extension__ __PRETTY_FUNCTION__))
;
8258
8259 // By current pack/unpack logic we need to generate only a single phi node: if
8260 // a vector value for the predicated instruction exists at this point it means
8261 // the instruction has vector users only, and a phi for the vector value is
8262 // needed. In this case the recipe of the predicated instruction is marked to
8263 // also do that packing, thereby "hoisting" the insert-element sequence.
8264 // Otherwise, a phi node for the scalar value is needed.
8265 unsigned Part = State.Instance->Part;
8266 if (State.ValueMap.hasVectorValue(PredInst, Part)) {
8267 Value *VectorValue = State.ValueMap.getVectorValue(PredInst, Part);
8268 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue);
8269 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2);
8270 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector.
8271 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element.
8272 State.ValueMap.resetVectorValue(PredInst, Part, VPhi); // Update cache.
8273 } else {
8274 Type *PredInstType = PredInst->getType();
8275 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2);
8276 Phi->addIncoming(UndefValue::get(ScalarPredInst->getType()), PredicatingBB);
8277 Phi->addIncoming(ScalarPredInst, PredicatedBB);
8278 State.ValueMap.resetScalarValue(PredInst, *State.Instance, Phi);
8279 }
8280}
8281
8282void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) {
8283 if (!User)
8284 return State.ILV->vectorizeMemoryInstruction(&Instr);
8285
8286 // Last (and currently only) operand is a mask.
8287 InnerLoopVectorizer::VectorParts MaskValues(State.UF);
8288 VPValue *Mask = User->getOperand(User->getNumOperands() - 1);
8289 for (unsigned Part = 0; Part < State.UF; ++Part)
8290 MaskValues[Part] = State.get(Mask, Part);
8291 State.ILV->vectorizeMemoryInstruction(&Instr, &MaskValues);
8292}
8293
8294bool LoopVectorizePass::processLoop(Loop *L) {
8295 assert(L->empty() && "Only process inner loops.")(static_cast <bool> (L->empty() && "Only process inner loops."
) ? void (0) : __assert_fail ("L->empty() && \"Only process inner loops.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8295, __extension__ __PRETTY_FUNCTION__))
;
8296
8297#ifndef NDEBUG
8298 const std::string DebugLocStr = getDebugLocString(L);
8299#endif /* NDEBUG */
8300
8301 DEBUG(dbgs() << "\nLV: Checking a loop in \""do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() <<
"\" from " << DebugLocStr << "\n"; } } while (false
)
8302 << L->getHeader()->getParent()->getName() << "\" from "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() <<
"\" from " << DebugLocStr << "\n"; } } while (false
)
8303 << DebugLocStr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in \""
<< L->getHeader()->getParent()->getName() <<
"\" from " << DebugLocStr << "\n"; } } while (false
)
;
8304
8305 LoopVectorizeHints Hints(L, DisableUnrolling, *ORE);
8306
8307 DEBUG(dbgs() << "LV: Loop hints:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8308 << " force="do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8309 << (Hints.getForce() == LoopVectorizeHints::FK_Disableddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8310 ? "disabled"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8311 : (Hints.getForce() == LoopVectorizeHints::FK_Enableddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8312 ? "enabled"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8313 : "?"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8314 << " width=" << Hints.getWidth()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
8315 << " unroll=" << Hints.getInterleave() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints:" <<
" force=" << (Hints.getForce() == LoopVectorizeHints::
FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints
::FK_Enabled ? "enabled" : "?")) << " width=" << Hints
.getWidth() << " unroll=" << Hints.getInterleave(
) << "\n"; } } while (false)
;
8316
8317 // Function containing loop
8318 Function *F = L->getHeader()->getParent();
8319
8320 // Looking at the diagnostic output is the only way to determine if a loop
8321 // was vectorized (other than looking at the IR or machine code), so it
8322 // is important to generate an optimization remark for each loop. Most of
8323 // these messages are generated as OptimizationRemarkAnalysis. Remarks
8324 // generated as OptimizationRemark and OptimizationRemarkMissed are
8325 // less verbose reporting vectorized loops and unvectorized loops that may
8326 // benefit from vectorization, respectively.
8327
8328 if (!Hints.allowVectorization(F, L, AlwaysVectorize)) {
8329 DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Loop hints prevent vectorization.\n"
; } } while (false)
;
8330 return false;
8331 }
8332
8333 PredicatedScalarEvolution PSE(*SE, *L);
8334
8335 // Check if it is legal to vectorize the loop.
8336 LoopVectorizationRequirements Requirements(*ORE);
8337 LoopVectorizationLegality LVL(L, PSE, DT, TLI, AA, F, GetLAA, LI, ORE,
8338 &Requirements, &Hints, DB, AC);
8339 if (!LVL.canVectorize()) {
8340 DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"
; } } while (false)
;
8341 emitMissedWarning(F, L, Hints, ORE);
8342 return false;
8343 }
8344
8345 // Check the function attributes to find out if this function should be
8346 // optimized for size.
8347 bool OptForSize =
8348 Hints.getForce() != LoopVectorizeHints::FK_Enabled && F->optForSize();
8349
8350 // Check the loop for a trip count threshold: vectorize loops with a tiny trip
8351 // count by optimizing for size, to minimize overheads.
8352 // Prefer constant trip counts over profile data, over upper bound estimate.
8353 unsigned ExpectedTC = 0;
8354 bool HasExpectedTC = false;
8355 if (const SCEVConstant *ConstExits =
8356 dyn_cast<SCEVConstant>(SE->getBackedgeTakenCount(L))) {
8357 const APInt &ExitsCount = ConstExits->getAPInt();
8358 // We are interested in small values for ExpectedTC. Skip over those that
8359 // can't fit an unsigned.
8360 if (ExitsCount.ult(std::numeric_limits<unsigned>::max())) {
8361 ExpectedTC = static_cast<unsigned>(ExitsCount.getZExtValue()) + 1;
8362 HasExpectedTC = true;
8363 }
8364 }
8365 // ExpectedTC may be large because it's bound by a variable. Check
8366 // profiling information to validate we should vectorize.
8367 if (!HasExpectedTC && LoopVectorizeWithBlockFrequency) {
8368 auto EstimatedTC = getLoopEstimatedTripCount(L);
8369 if (EstimatedTC) {
8370 ExpectedTC = *EstimatedTC;
8371 HasExpectedTC = true;
8372 }
8373 }
8374 if (!HasExpectedTC) {
8375 ExpectedTC = SE->getSmallConstantMaxTripCount(L);
8376 HasExpectedTC = (ExpectedTC > 0);
8377 }
8378
8379 if (HasExpectedTC && ExpectedTC < TinyTripCountVectorThreshold) {
8380 DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is worth vectorizing only if no scalar "
<< "iteration overheads are incurred."; } } while (false
)
8381 << "This loop is worth vectorizing only if no scalar "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is worth vectorizing only if no scalar "
<< "iteration overheads are incurred."; } } while (false
)
8382 << "iteration overheads are incurred.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a loop with a very small trip count. "
<< "This loop is worth vectorizing only if no scalar "
<< "iteration overheads are incurred."; } } while (false
)
;
8383 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
8384 DEBUG(dbgs() << " But vectorizing was explicitly forced.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << " But vectorizing was explicitly forced.\n"
; } } while (false)
;
8385 else {
8386 DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "\n"; } } while (false)
;
8387 // Loops with a very small trip count are considered for vectorization
8388 // under OptForSize, thereby making sure the cost of their loop body is
8389 // dominant, free of runtime guards and scalar iteration overheads.
8390 OptForSize = true;
8391 }
8392 }
8393
8394 // Check the function attributes to see if implicit floats are allowed.
8395 // FIXME: This check doesn't seem possibly correct -- what if the loop is
8396 // an integer loop and the vector instructions selected are purely integer
8397 // vector instructions?
8398 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) {
8399 DEBUG(dbgs() << "LV: Can't vectorize when the NoImplicitFloat"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
"attribute is used.\n"; } } while (false)
8400 "attribute is used.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Can't vectorize when the NoImplicitFloat"
"attribute is used.\n"; } } while (false)
;
8401 ORE->emit(createMissedAnalysis(Hints.vectorizeAnalysisPassName(),
8402 "NoImplicitFloat", L)
8403 << "loop not vectorized due to NoImplicitFloat attribute");
8404 emitMissedWarning(F, L, Hints, ORE);
8405 return false;
8406 }
8407
8408 // Check if the target supports potentially unsafe FP vectorization.
8409 // FIXME: Add a check for the type of safety issue (denormal, signaling)
8410 // for the target we're vectorizing for, to make sure none of the
8411 // additional fp-math flags can help.
8412 if (Hints.isPotentiallyUnsafe() &&
8413 TTI->isFPVectorizationPotentiallyUnsafe()) {
8414 DEBUG(dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Potentially unsafe FP op prevents vectorization.\n"
; } } while (false)
;
8415 ORE->emit(
8416 createMissedAnalysis(Hints.vectorizeAnalysisPassName(), "UnsafeFP", L)
8417 << "loop not vectorized due to unsafe FP support.");
8418 emitMissedWarning(F, L, Hints, ORE);
8419 return false;
8420 }
8421
8422 bool UseInterleaved = TTI->enableInterleavedAccessVectorization();
8423 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI());
8424
8425 // If an override option has been passed in for interleaved accesses, use it.
8426 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0)
8427 UseInterleaved = EnableInterleavedMemAccesses;
8428
8429 // Analyze interleaved memory accesses.
8430 if (UseInterleaved) {
8431 IAI.analyzeInterleaving();
8432 }
8433
8434 // Use the cost model.
8435 LoopVectorizationCostModel CM(L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, F,
8436 &Hints, IAI);
8437 CM.collectValuesToIgnore();
8438
8439 // Use the planner for vectorization.
8440 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM);
8441
8442 // Get user vectorization factor.
8443 unsigned UserVF = Hints.getWidth();
8444
8445 // Plan how to best vectorize, return the best VF and its cost.
8446 VectorizationFactor VF = LVP.plan(OptForSize, UserVF);
8447
8448 // Select the interleave count.
8449 unsigned IC = CM.selectInterleaveCount(OptForSize, VF.Width, VF.Cost);
8450
8451 // Get user interleave count.
8452 unsigned UserIC = Hints.getInterleave();
8453
8454 // Identify the diagnostic messages that should be produced.
8455 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg;
8456 bool VectorizeLoop = true, InterleaveLoop = true;
8457 if (Requirements.doesNotMeet(F, L, Hints)) {
8458 DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
"requirements.\n"; } } while (false)
8459 "requirements.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
"requirements.\n"; } } while (false)
;
8460 emitMissedWarning(F, L, Hints, ORE);
8461 return false;
8462 }
8463
8464 if (VF.Width == 1) {
8465 DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Vectorization is possible but not beneficial.\n"
; } } while (false)
;
8466 VecDiagMsg = std::make_pair(
8467 "VectorizationNotBeneficial",
8468 "the cost-model indicates that vectorization is not beneficial");
8469 VectorizeLoop = false;
8470 }
8471
8472 if (IC == 1 && UserIC <= 1) {
8473 // Tell the user interleaving is not beneficial.
8474 DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving is not beneficial.\n"
; } } while (false)
;
8475 IntDiagMsg = std::make_pair(
8476 "InterleavingNotBeneficial",
8477 "the cost-model indicates that interleaving is not beneficial");
8478 InterleaveLoop = false;
8479 if (UserIC == 1) {
8480 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled";
8481 IntDiagMsg.second +=
8482 " and is explicitly disabled or interleave count is set to 1";
8483 }
8484 } else if (IC > 1 && UserIC == 1) {
8485 // Tell the user interleaving is beneficial, but it explicitly disabled.
8486 DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."
; } } while (false)
8487 << "LV: Interleaving is beneficial but is explicitly disabled.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."
; } } while (false)
;
8488 IntDiagMsg = std::make_pair(
8489 "InterleavingBeneficialButDisabled",
8490 "the cost-model indicates that interleaving is beneficial "
8491 "but is explicitly disabled or interleave count is set to 1");
8492 InterleaveLoop = false;
8493 }
8494
8495 // Override IC if user provided an interleave count.
8496 IC = UserIC > 0 ? UserIC : IC;
8497
8498 // Emit diagnostic messages, if any.
8499 const char *VAPassName = Hints.vectorizeAnalysisPassName();
8500 if (!VectorizeLoop && !InterleaveLoop) {
8501 // Do not vectorize or interleaving the loop.
8502 ORE->emit([&]() {
8503 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first,
8504 L->getStartLoc(), L->getHeader())
8505 << VecDiagMsg.second;
8506 });
8507 ORE->emit([&]() {
8508 return OptimizationRemarkMissed(LV_NAME"loop-vectorize", IntDiagMsg.first,
8509 L->getStartLoc(), L->getHeader())
8510 << IntDiagMsg.second;
8511 });
8512 return false;
8513 } else if (!VectorizeLoop && InterleaveLoop) {
8514 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleave Count is "
<< IC << '\n'; } } while (false)
;
8515 ORE->emit([&]() {
8516 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first,
8517 L->getStartLoc(), L->getHeader())
8518 << VecDiagMsg.second;
8519 });
8520 } else if (VectorizeLoop && !InterleaveLoop) {
8521 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop ("
<< VF.Width << ") in " << DebugLocStr <<
'\n'; } } while (false)
8522 << DebugLocStr << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop ("
<< VF.Width << ") in " << DebugLocStr <<
'\n'; } } while (false)
;
8523 ORE->emit([&]() {
8524 return OptimizationRemarkAnalysis(LV_NAME"loop-vectorize", IntDiagMsg.first,
8525 L->getStartLoc(), L->getHeader())
8526 << IntDiagMsg.second;
8527 });
8528 } else if (VectorizeLoop && InterleaveLoop) {
8529 DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop ("
<< VF.Width << ") in " << DebugLocStr <<
'\n'; } } while (false)
8530 << DebugLocStr << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop ("
<< VF.Width << ") in " << DebugLocStr <<
'\n'; } } while (false)
;
8531 DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { dbgs() << "LV: Interleave Count is "
<< IC << '\n'; } } while (false)
;
8532 }
8533
8534 LVP.setBestPlan(VF.Width, IC);
8535
8536 using namespace ore;
8537
8538 if (!VectorizeLoop) {
8539 assert(IC > 1 && "interleave count should not be 1 or 0")(static_cast <bool> (IC > 1 && "interleave count should not be 1 or 0"
) ? void (0) : __assert_fail ("IC > 1 && \"interleave count should not be 1 or 0\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Transforms/Vectorize/LoopVectorize.cpp"
, 8539, __extension__ __PRETTY_FUNCTION__))
;
8540 // If we decided that it is not legal to vectorize the loop, then
8541 // interleave it.
8542 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL,
8543 &CM);
8544 LVP.executePlan(Unroller, DT);
8545
8546 ORE->emit([&]() {
8547 return OptimizationRemark(LV_NAME"loop-vectorize", "Interleaved", L->getStartLoc(),
8548 L->getHeader())
8549 << "interleaved loop (interleaved count: "
8550 << NV("InterleaveCount", IC) << ")";
8551 });
8552 } else {
8553 // If we decided that it is *legal* to vectorize the loop, then do it.
8554 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC,
8555 &LVL, &CM);
8556 LVP.executePlan(LB, DT);
8557 ++LoopsVectorized;
8558
8559 // Add metadata to disable runtime unrolling a scalar loop when there are
8560 // no runtime checks about strides and memory. A scalar loop that is
8561 // rarely used is not worth unrolling.
8562 if (!LB.areSafetyChecksAdded())
8563 AddRuntimeUnrollDisableMetaData(L);
8564
8565 // Report the vectorization decision.
8566 ORE->emit([&]() {
8567 return OptimizationRemark(LV_NAME"loop-vectorize", "Vectorized", L->getStartLoc(),
8568 L->getHeader())
8569 << "vectorized loop (vectorization width: "
8570 << NV("VectorizationFactor", VF.Width)
8571 << ", interleaved count: " << NV("InterleaveCount", IC) << ")";
8572 });
8573 }
8574
8575 // Mark the loop as already vectorized to avoid vectorizing again.
8576 Hints.setAlreadyVectorized();
8577
8578 DEBUG(verifyFunction(*L->getHeader()->getParent()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("loop-vectorize")) { verifyFunction(*L->getHeader()->getParent
()); } } while (false)
;
8579 return true;
8580}
8581
8582bool LoopVectorizePass::runImpl(
8583 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_,
8584 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_,
8585 DemandedBits &DB_, AliasAnalysis &AA_, AssumptionCache &AC_,
8586 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_,
8587 OptimizationRemarkEmitter &ORE_) {
8588 SE = &SE_;
8589 LI = &LI_;
8590 TTI = &TTI_;
8591 DT = &DT_;
8592 BFI = &BFI_;
8593 TLI = TLI_;
8594 AA = &AA_;
8595 AC = &AC_;
8596 GetLAA = &GetLAA_;
8597 DB = &DB_;
8598 ORE = &ORE_;
8599
8600 // Don't attempt if
8601 // 1. the target claims to have no vector registers, and
8602 // 2. interleaving won't help ILP.
8603 //
8604 // The second condition is necessary because, even if the target has no
8605 // vector registers, loop vectorization may still enable scalar
8606 // interleaving.
8607 if (!TTI->getNumberOfRegisters(true) && TTI->getMaxInterleaveFactor(1) < 2)
8608 return false;
8609
8610 bool Changed = false;
8611
8612 // The vectorizer requires loops to be in simplified form.
8613 // Since simplification may add new inner loops, it has to run before the
8614 // legality and profitability checks. This means running the loop vectorizer
8615 // will simplify all loops, regardless of whether anything end up being
8616 // vectorized.
8617 for (auto &L : *LI)
8618 Changed |= simplifyLoop(L, DT, LI, SE, AC, false /* PreserveLCSSA */);
8619
8620 // Build up a worklist of inner-loops to vectorize. This is necessary as
8621 // the act of vectorizing or partially unrolling a loop creates new loops
8622 // and can invalidate iterators across the loops.
8623 SmallVector<Loop *, 8> Worklist;
8624
8625 for (Loop *L : *LI)
8626 addAcyclicInnerLoop(*L, *LI, Worklist);
8627
8628 LoopsAnalyzed += Worklist.size();
8629
8630 // Now walk the identified inner loops.
8631 while (!Worklist.empty()) {
8632 Loop *L = Worklist.pop_back_val();
8633
8634 // For the inner loops we actually process, form LCSSA to simplify the
8635 // transform.
8636 Changed |= formLCSSARecursively(*L, *DT, LI, SE);
8637
8638 Changed |= processLoop(L);
8639 }
8640
8641 // Process each loop nest in the function.
8642 return Changed;
8643}
8644
8645PreservedAnalyses LoopVectorizePass::run(Function &F,
8646 FunctionAnalysisManager &AM) {
8647 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
8648 auto &LI = AM.getResult<LoopAnalysis>(F);
8649 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
8650 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
8651 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F);
8652 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
8653 auto &AA = AM.getResult<AAManager>(F);
8654 auto &AC = AM.getResult<AssumptionAnalysis>(F);
8655 auto &DB = AM.getResult<DemandedBitsAnalysis>(F);
8656 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
8657
8658 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager();
8659 std::function<const LoopAccessInfo &(Loop &)> GetLAA =
8660 [&](Loop &L) -> const LoopAccessInfo & {
8661 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, TLI, TTI, nullptr};
8662 return LAM.getResult<LoopAccessAnalysis>(L, AR);
8663 };
8664 bool Changed =
8665 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE);
8666 if (!Changed)
8667 return PreservedAnalyses::all();
8668 PreservedAnalyses PA;
8669 PA.preserve<LoopAnalysis>();
8670 PA.preserve<DominatorTreeAnalysis>();
8671 PA.preserve<BasicAA>();
8672 PA.preserve<GlobalsAA>();
8673 return PA;
8674}