| File: | build/source/llvm/lib/Transforms/Vectorize/LoopVectorize.cpp |
| Warning: | line 8133, column 35 Potential leak of memory pointed to by 'BlockMask' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// | ||||||||
| 2 | // | ||||||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||||||
| 6 | // | ||||||||
| 7 | //===----------------------------------------------------------------------===// | ||||||||
| 8 | // | ||||||||
| 9 | // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops | ||||||||
| 10 | // and generates target-independent LLVM-IR. | ||||||||
| 11 | // The vectorizer uses the TargetTransformInfo analysis to estimate the costs | ||||||||
| 12 | // of instructions in order to estimate the profitability of vectorization. | ||||||||
| 13 | // | ||||||||
| 14 | // The loop vectorizer combines consecutive loop iterations into a single | ||||||||
| 15 | // 'wide' iteration. After this transformation the index is incremented | ||||||||
| 16 | // by the SIMD vector width, and not by one. | ||||||||
| 17 | // | ||||||||
| 18 | // This pass has three parts: | ||||||||
| 19 | // 1. The main loop pass that drives the different parts. | ||||||||
| 20 | // 2. LoopVectorizationLegality - A unit that checks for the legality | ||||||||
| 21 | // of the vectorization. | ||||||||
| 22 | // 3. InnerLoopVectorizer - A unit that performs the actual | ||||||||
| 23 | // widening of instructions. | ||||||||
| 24 | // 4. LoopVectorizationCostModel - A unit that checks for the profitability | ||||||||
| 25 | // of vectorization. It decides on the optimal vector width, which | ||||||||
| 26 | // can be one, if vectorization is not profitable. | ||||||||
| 27 | // | ||||||||
| 28 | // There is a development effort going on to migrate loop vectorizer to the | ||||||||
| 29 | // VPlan infrastructure and to introduce outer loop vectorization support (see | ||||||||
| 30 | // docs/Proposal/VectorizationPlan.rst and | ||||||||
| 31 | // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this | ||||||||
| 32 | // purpose, we temporarily introduced the VPlan-native vectorization path: an | ||||||||
| 33 | // alternative vectorization path that is natively implemented on top of the | ||||||||
| 34 | // VPlan infrastructure. See EnableVPlanNativePath for enabling. | ||||||||
| 35 | // | ||||||||
| 36 | //===----------------------------------------------------------------------===// | ||||||||
| 37 | // | ||||||||
| 38 | // The reduction-variable vectorization is based on the paper: | ||||||||
| 39 | // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. | ||||||||
| 40 | // | ||||||||
| 41 | // Variable uniformity checks are inspired by: | ||||||||
| 42 | // Karrenberg, R. and Hack, S. Whole Function Vectorization. | ||||||||
| 43 | // | ||||||||
| 44 | // The interleaved access vectorization is based on the paper: | ||||||||
| 45 | // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved | ||||||||
| 46 | // Data for SIMD | ||||||||
| 47 | // | ||||||||
| 48 | // Other ideas/concepts are from: | ||||||||
| 49 | // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. | ||||||||
| 50 | // | ||||||||
| 51 | // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of | ||||||||
| 52 | // Vectorizing Compilers. | ||||||||
| 53 | // | ||||||||
| 54 | //===----------------------------------------------------------------------===// | ||||||||
| 55 | |||||||||
| 56 | #include "llvm/Transforms/Vectorize/LoopVectorize.h" | ||||||||
| 57 | #include "LoopVectorizationPlanner.h" | ||||||||
| 58 | #include "VPRecipeBuilder.h" | ||||||||
| 59 | #include "VPlan.h" | ||||||||
| 60 | #include "VPlanHCFGBuilder.h" | ||||||||
| 61 | #include "VPlanTransforms.h" | ||||||||
| 62 | #include "llvm/ADT/APInt.h" | ||||||||
| 63 | #include "llvm/ADT/ArrayRef.h" | ||||||||
| 64 | #include "llvm/ADT/DenseMap.h" | ||||||||
| 65 | #include "llvm/ADT/DenseMapInfo.h" | ||||||||
| 66 | #include "llvm/ADT/Hashing.h" | ||||||||
| 67 | #include "llvm/ADT/MapVector.h" | ||||||||
| 68 | #include "llvm/ADT/STLExtras.h" | ||||||||
| 69 | #include "llvm/ADT/SmallPtrSet.h" | ||||||||
| 70 | #include "llvm/ADT/SmallSet.h" | ||||||||
| 71 | #include "llvm/ADT/SmallVector.h" | ||||||||
| 72 | #include "llvm/ADT/Statistic.h" | ||||||||
| 73 | #include "llvm/ADT/StringRef.h" | ||||||||
| 74 | #include "llvm/ADT/Twine.h" | ||||||||
| 75 | #include "llvm/ADT/iterator_range.h" | ||||||||
| 76 | #include "llvm/Analysis/AssumptionCache.h" | ||||||||
| 77 | #include "llvm/Analysis/BasicAliasAnalysis.h" | ||||||||
| 78 | #include "llvm/Analysis/BlockFrequencyInfo.h" | ||||||||
| 79 | #include "llvm/Analysis/CFG.h" | ||||||||
| 80 | #include "llvm/Analysis/CodeMetrics.h" | ||||||||
| 81 | #include "llvm/Analysis/DemandedBits.h" | ||||||||
| 82 | #include "llvm/Analysis/GlobalsModRef.h" | ||||||||
| 83 | #include "llvm/Analysis/LoopAccessAnalysis.h" | ||||||||
| 84 | #include "llvm/Analysis/LoopAnalysisManager.h" | ||||||||
| 85 | #include "llvm/Analysis/LoopInfo.h" | ||||||||
| 86 | #include "llvm/Analysis/LoopIterator.h" | ||||||||
| 87 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | ||||||||
| 88 | #include "llvm/Analysis/ProfileSummaryInfo.h" | ||||||||
| 89 | #include "llvm/Analysis/ScalarEvolution.h" | ||||||||
| 90 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | ||||||||
| 91 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||||||
| 92 | #include "llvm/Analysis/TargetTransformInfo.h" | ||||||||
| 93 | #include "llvm/Analysis/ValueTracking.h" | ||||||||
| 94 | #include "llvm/Analysis/VectorUtils.h" | ||||||||
| 95 | #include "llvm/IR/Attributes.h" | ||||||||
| 96 | #include "llvm/IR/BasicBlock.h" | ||||||||
| 97 | #include "llvm/IR/CFG.h" | ||||||||
| 98 | #include "llvm/IR/Constant.h" | ||||||||
| 99 | #include "llvm/IR/Constants.h" | ||||||||
| 100 | #include "llvm/IR/DataLayout.h" | ||||||||
| 101 | #include "llvm/IR/DebugInfoMetadata.h" | ||||||||
| 102 | #include "llvm/IR/DebugLoc.h" | ||||||||
| 103 | #include "llvm/IR/DerivedTypes.h" | ||||||||
| 104 | #include "llvm/IR/DiagnosticInfo.h" | ||||||||
| 105 | #include "llvm/IR/Dominators.h" | ||||||||
| 106 | #include "llvm/IR/Function.h" | ||||||||
| 107 | #include "llvm/IR/IRBuilder.h" | ||||||||
| 108 | #include "llvm/IR/InstrTypes.h" | ||||||||
| 109 | #include "llvm/IR/Instruction.h" | ||||||||
| 110 | #include "llvm/IR/Instructions.h" | ||||||||
| 111 | #include "llvm/IR/IntrinsicInst.h" | ||||||||
| 112 | #include "llvm/IR/Intrinsics.h" | ||||||||
| 113 | #include "llvm/IR/Metadata.h" | ||||||||
| 114 | #include "llvm/IR/Module.h" | ||||||||
| 115 | #include "llvm/IR/Operator.h" | ||||||||
| 116 | #include "llvm/IR/PatternMatch.h" | ||||||||
| 117 | #include "llvm/IR/Type.h" | ||||||||
| 118 | #include "llvm/IR/Use.h" | ||||||||
| 119 | #include "llvm/IR/User.h" | ||||||||
| 120 | #include "llvm/IR/Value.h" | ||||||||
| 121 | #include "llvm/IR/ValueHandle.h" | ||||||||
| 122 | #include "llvm/IR/Verifier.h" | ||||||||
| 123 | #include "llvm/InitializePasses.h" | ||||||||
| 124 | #include "llvm/Pass.h" | ||||||||
| 125 | #include "llvm/Support/Casting.h" | ||||||||
| 126 | #include "llvm/Support/CommandLine.h" | ||||||||
| 127 | #include "llvm/Support/Compiler.h" | ||||||||
| 128 | #include "llvm/Support/Debug.h" | ||||||||
| 129 | #include "llvm/Support/ErrorHandling.h" | ||||||||
| 130 | #include "llvm/Support/InstructionCost.h" | ||||||||
| 131 | #include "llvm/Support/MathExtras.h" | ||||||||
| 132 | #include "llvm/Support/raw_ostream.h" | ||||||||
| 133 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | ||||||||
| 134 | #include "llvm/Transforms/Utils/InjectTLIMappings.h" | ||||||||
| 135 | #include "llvm/Transforms/Utils/LoopSimplify.h" | ||||||||
| 136 | #include "llvm/Transforms/Utils/LoopUtils.h" | ||||||||
| 137 | #include "llvm/Transforms/Utils/LoopVersioning.h" | ||||||||
| 138 | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" | ||||||||
| 139 | #include "llvm/Transforms/Utils/SizeOpts.h" | ||||||||
| 140 | #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" | ||||||||
| 141 | #include <algorithm> | ||||||||
| 142 | #include <cassert> | ||||||||
| 143 | #include <cmath> | ||||||||
| 144 | #include <cstdint> | ||||||||
| 145 | #include <functional> | ||||||||
| 146 | #include <iterator> | ||||||||
| 147 | #include <limits> | ||||||||
| 148 | #include <map> | ||||||||
| 149 | #include <memory> | ||||||||
| 150 | #include <string> | ||||||||
| 151 | #include <tuple> | ||||||||
| 152 | #include <utility> | ||||||||
| 153 | |||||||||
| 154 | using namespace llvm; | ||||||||
| 155 | |||||||||
| 156 | #define LV_NAME"loop-vectorize" "loop-vectorize" | ||||||||
| 157 | #define DEBUG_TYPE"loop-vectorize" LV_NAME"loop-vectorize" | ||||||||
| 158 | |||||||||
| 159 | #ifndef NDEBUG | ||||||||
| 160 | const char VerboseDebug[] = DEBUG_TYPE"loop-vectorize" "-verbose"; | ||||||||
| 161 | #endif | ||||||||
| 162 | |||||||||
| 163 | /// @{ | ||||||||
| 164 | /// Metadata attribute names | ||||||||
| 165 | const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; | ||||||||
| 166 | const char LLVMLoopVectorizeFollowupVectorized[] = | ||||||||
| 167 | "llvm.loop.vectorize.followup_vectorized"; | ||||||||
| 168 | const char LLVMLoopVectorizeFollowupEpilogue[] = | ||||||||
| 169 | "llvm.loop.vectorize.followup_epilogue"; | ||||||||
| 170 | /// @} | ||||||||
| 171 | |||||||||
| 172 | STATISTIC(LoopsVectorized, "Number of loops vectorized")static llvm::Statistic LoopsVectorized = {"loop-vectorize", "LoopsVectorized" , "Number of loops vectorized"}; | ||||||||
| 173 | STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization")static llvm::Statistic LoopsAnalyzed = {"loop-vectorize", "LoopsAnalyzed" , "Number of loops analyzed for vectorization"}; | ||||||||
| 174 | STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized")static llvm::Statistic LoopsEpilogueVectorized = {"loop-vectorize" , "LoopsEpilogueVectorized", "Number of epilogues vectorized" }; | ||||||||
| 175 | |||||||||
| 176 | static cl::opt<bool> EnableEpilogueVectorization( | ||||||||
| 177 | "enable-epilogue-vectorization", cl::init(true), cl::Hidden, | ||||||||
| 178 | cl::desc("Enable vectorization of epilogue loops.")); | ||||||||
| 179 | |||||||||
| 180 | static cl::opt<unsigned> EpilogueVectorizationForceVF( | ||||||||
| 181 | "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, | ||||||||
| 182 | cl::desc("When epilogue vectorization is enabled, and a value greater than " | ||||||||
| 183 | "1 is specified, forces the given VF for all applicable epilogue " | ||||||||
| 184 | "loops.")); | ||||||||
| 185 | |||||||||
| 186 | static cl::opt<unsigned> EpilogueVectorizationMinVF( | ||||||||
| 187 | "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, | ||||||||
| 188 | cl::desc("Only loops with vectorization factor equal to or larger than " | ||||||||
| 189 | "the specified value are considered for epilogue vectorization.")); | ||||||||
| 190 | |||||||||
| 191 | /// Loops with a known constant trip count below this number are vectorized only | ||||||||
| 192 | /// if no scalar iteration overheads are incurred. | ||||||||
| 193 | static cl::opt<unsigned> TinyTripCountVectorThreshold( | ||||||||
| 194 | "vectorizer-min-trip-count", cl::init(16), cl::Hidden, | ||||||||
| 195 | cl::desc("Loops with a constant trip count that is smaller than this " | ||||||||
| 196 | "value are vectorized only if no scalar iteration overheads " | ||||||||
| 197 | "are incurred.")); | ||||||||
| 198 | |||||||||
| 199 | static cl::opt<unsigned> VectorizeMemoryCheckThreshold( | ||||||||
| 200 | "vectorize-memory-check-threshold", cl::init(128), cl::Hidden, | ||||||||
| 201 | cl::desc("The maximum allowed number of runtime memory checks")); | ||||||||
| 202 | |||||||||
| 203 | // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, | ||||||||
| 204 | // that predication is preferred, and this lists all options. I.e., the | ||||||||
| 205 | // vectorizer will try to fold the tail-loop (epilogue) into the vector body | ||||||||
| 206 | // and predicate the instructions accordingly. If tail-folding fails, there are | ||||||||
| 207 | // different fallback strategies depending on these values: | ||||||||
| 208 | namespace PreferPredicateTy { | ||||||||
| 209 | enum Option { | ||||||||
| 210 | ScalarEpilogue = 0, | ||||||||
| 211 | PredicateElseScalarEpilogue, | ||||||||
| 212 | PredicateOrDontVectorize | ||||||||
| 213 | }; | ||||||||
| 214 | } // namespace PreferPredicateTy | ||||||||
| 215 | |||||||||
| 216 | static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( | ||||||||
| 217 | "prefer-predicate-over-epilogue", | ||||||||
| 218 | cl::init(PreferPredicateTy::ScalarEpilogue), | ||||||||
| 219 | cl::Hidden, | ||||||||
| 220 | cl::desc("Tail-folding and predication preferences over creating a scalar " | ||||||||
| 221 | "epilogue loop."), | ||||||||
| 222 | cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,llvm::cl::OptionEnumValue { "scalar-epilogue", int(PreferPredicateTy ::ScalarEpilogue), "Don't tail-predicate loops, create scalar epilogue" } | ||||||||
| 223 | "scalar-epilogue",llvm::cl::OptionEnumValue { "scalar-epilogue", int(PreferPredicateTy ::ScalarEpilogue), "Don't tail-predicate loops, create scalar epilogue" } | ||||||||
| 224 | "Don't tail-predicate loops, create scalar epilogue")llvm::cl::OptionEnumValue { "scalar-epilogue", int(PreferPredicateTy ::ScalarEpilogue), "Don't tail-predicate loops, create scalar epilogue" }, | ||||||||
| 225 | clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,llvm::cl::OptionEnumValue { "predicate-else-scalar-epilogue", int(PreferPredicateTy::PredicateElseScalarEpilogue), "prefer tail-folding, create scalar epilogue if tail " "folding fails." } | ||||||||
| 226 | "predicate-else-scalar-epilogue",llvm::cl::OptionEnumValue { "predicate-else-scalar-epilogue", int(PreferPredicateTy::PredicateElseScalarEpilogue), "prefer tail-folding, create scalar epilogue if tail " "folding fails." } | ||||||||
| 227 | "prefer tail-folding, create scalar epilogue if tail "llvm::cl::OptionEnumValue { "predicate-else-scalar-epilogue", int(PreferPredicateTy::PredicateElseScalarEpilogue), "prefer tail-folding, create scalar epilogue if tail " "folding fails." } | ||||||||
| 228 | "folding fails.")llvm::cl::OptionEnumValue { "predicate-else-scalar-epilogue", int(PreferPredicateTy::PredicateElseScalarEpilogue), "prefer tail-folding, create scalar epilogue if tail " "folding fails." }, | ||||||||
| 229 | clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,llvm::cl::OptionEnumValue { "predicate-dont-vectorize", int(PreferPredicateTy ::PredicateOrDontVectorize), "prefers tail-folding, don't attempt vectorization if " "tail-folding fails." } | ||||||||
| 230 | "predicate-dont-vectorize",llvm::cl::OptionEnumValue { "predicate-dont-vectorize", int(PreferPredicateTy ::PredicateOrDontVectorize), "prefers tail-folding, don't attempt vectorization if " "tail-folding fails." } | ||||||||
| 231 | "prefers tail-folding, don't attempt vectorization if "llvm::cl::OptionEnumValue { "predicate-dont-vectorize", int(PreferPredicateTy ::PredicateOrDontVectorize), "prefers tail-folding, don't attempt vectorization if " "tail-folding fails." } | ||||||||
| 232 | "tail-folding fails.")llvm::cl::OptionEnumValue { "predicate-dont-vectorize", int(PreferPredicateTy ::PredicateOrDontVectorize), "prefers tail-folding, don't attempt vectorization if " "tail-folding fails." })); | ||||||||
| 233 | |||||||||
| 234 | static cl::opt<bool> MaximizeBandwidth( | ||||||||
| 235 | "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, | ||||||||
| 236 | cl::desc("Maximize bandwidth when selecting vectorization factor which " | ||||||||
| 237 | "will be determined by the smallest type in loop.")); | ||||||||
| 238 | |||||||||
| 239 | static cl::opt<bool> EnableInterleavedMemAccesses( | ||||||||
| 240 | "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, | ||||||||
| 241 | cl::desc("Enable vectorization on interleaved memory accesses in a loop")); | ||||||||
| 242 | |||||||||
| 243 | /// An interleave-group may need masking if it resides in a block that needs | ||||||||
| 244 | /// predication, or in order to mask away gaps. | ||||||||
| 245 | static cl::opt<bool> EnableMaskedInterleavedMemAccesses( | ||||||||
| 246 | "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, | ||||||||
| 247 | cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); | ||||||||
| 248 | |||||||||
| 249 | static cl::opt<unsigned> TinyTripCountInterleaveThreshold( | ||||||||
| 250 | "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, | ||||||||
| 251 | cl::desc("We don't interleave loops with a estimated constant trip count " | ||||||||
| 252 | "below this number")); | ||||||||
| 253 | |||||||||
| 254 | static cl::opt<unsigned> ForceTargetNumScalarRegs( | ||||||||
| 255 | "force-target-num-scalar-regs", cl::init(0), cl::Hidden, | ||||||||
| 256 | cl::desc("A flag that overrides the target's number of scalar registers.")); | ||||||||
| 257 | |||||||||
| 258 | static cl::opt<unsigned> ForceTargetNumVectorRegs( | ||||||||
| 259 | "force-target-num-vector-regs", cl::init(0), cl::Hidden, | ||||||||
| 260 | cl::desc("A flag that overrides the target's number of vector registers.")); | ||||||||
| 261 | |||||||||
| 262 | static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( | ||||||||
| 263 | "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, | ||||||||
| 264 | cl::desc("A flag that overrides the target's max interleave factor for " | ||||||||
| 265 | "scalar loops.")); | ||||||||
| 266 | |||||||||
| 267 | static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( | ||||||||
| 268 | "force-target-max-vector-interleave", cl::init(0), cl::Hidden, | ||||||||
| 269 | cl::desc("A flag that overrides the target's max interleave factor for " | ||||||||
| 270 | "vectorized loops.")); | ||||||||
| 271 | |||||||||
| 272 | static cl::opt<unsigned> ForceTargetInstructionCost( | ||||||||
| 273 | "force-target-instruction-cost", cl::init(0), cl::Hidden, | ||||||||
| 274 | cl::desc("A flag that overrides the target's expected cost for " | ||||||||
| 275 | "an instruction to a single constant value. Mostly " | ||||||||
| 276 | "useful for getting consistent testing.")); | ||||||||
| 277 | |||||||||
| 278 | static cl::opt<bool> ForceTargetSupportsScalableVectors( | ||||||||
| 279 | "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, | ||||||||
| 280 | cl::desc( | ||||||||
| 281 | "Pretend that scalable vectors are supported, even if the target does " | ||||||||
| 282 | "not support them. This flag should only be used for testing.")); | ||||||||
| 283 | |||||||||
| 284 | static cl::opt<unsigned> SmallLoopCost( | ||||||||
| 285 | "small-loop-cost", cl::init(20), cl::Hidden, | ||||||||
| 286 | cl::desc( | ||||||||
| 287 | "The cost of a loop that is considered 'small' by the interleaver.")); | ||||||||
| 288 | |||||||||
| 289 | static cl::opt<bool> LoopVectorizeWithBlockFrequency( | ||||||||
| 290 | "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, | ||||||||
| 291 | cl::desc("Enable the use of the block frequency analysis to access PGO " | ||||||||
| 292 | "heuristics minimizing code growth in cold regions and being more " | ||||||||
| 293 | "aggressive in hot regions.")); | ||||||||
| 294 | |||||||||
| 295 | // Runtime interleave loops for load/store throughput. | ||||||||
| 296 | static cl::opt<bool> EnableLoadStoreRuntimeInterleave( | ||||||||
| 297 | "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, | ||||||||
| 298 | cl::desc( | ||||||||
| 299 | "Enable runtime interleaving until load/store ports are saturated")); | ||||||||
| 300 | |||||||||
| 301 | /// Interleave small loops with scalar reductions. | ||||||||
| 302 | static cl::opt<bool> InterleaveSmallLoopScalarReduction( | ||||||||
| 303 | "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, | ||||||||
| 304 | cl::desc("Enable interleaving for loops with small iteration counts that " | ||||||||
| 305 | "contain scalar reductions to expose ILP.")); | ||||||||
| 306 | |||||||||
| 307 | /// The number of stores in a loop that are allowed to need predication. | ||||||||
| 308 | static cl::opt<unsigned> NumberOfStoresToPredicate( | ||||||||
| 309 | "vectorize-num-stores-pred", cl::init(1), cl::Hidden, | ||||||||
| 310 | cl::desc("Max number of stores to be predicated behind an if.")); | ||||||||
| 311 | |||||||||
| 312 | static cl::opt<bool> EnableIndVarRegisterHeur( | ||||||||
| 313 | "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, | ||||||||
| 314 | cl::desc("Count the induction variable only once when interleaving")); | ||||||||
| 315 | |||||||||
| 316 | static cl::opt<bool> EnableCondStoresVectorization( | ||||||||
| 317 | "enable-cond-stores-vec", cl::init(true), cl::Hidden, | ||||||||
| 318 | cl::desc("Enable if predication of stores during vectorization.")); | ||||||||
| 319 | |||||||||
| 320 | static cl::opt<unsigned> MaxNestedScalarReductionIC( | ||||||||
| 321 | "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, | ||||||||
| 322 | cl::desc("The maximum interleave count to use when interleaving a scalar " | ||||||||
| 323 | "reduction in a nested loop.")); | ||||||||
| 324 | |||||||||
| 325 | static cl::opt<bool> | ||||||||
| 326 | PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), | ||||||||
| 327 | cl::Hidden, | ||||||||
| 328 | cl::desc("Prefer in-loop vector reductions, " | ||||||||
| 329 | "overriding the targets preference.")); | ||||||||
| 330 | |||||||||
| 331 | static cl::opt<bool> ForceOrderedReductions( | ||||||||
| 332 | "force-ordered-reductions", cl::init(false), cl::Hidden, | ||||||||
| 333 | cl::desc("Enable the vectorisation of loops with in-order (strict) " | ||||||||
| 334 | "FP reductions")); | ||||||||
| 335 | |||||||||
| 336 | static cl::opt<bool> PreferPredicatedReductionSelect( | ||||||||
| 337 | "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, | ||||||||
| 338 | cl::desc( | ||||||||
| 339 | "Prefer predicating a reduction operation over an after loop select.")); | ||||||||
| 340 | |||||||||
| 341 | cl::opt<bool> EnableVPlanNativePath( | ||||||||
| 342 | "enable-vplan-native-path", cl::init(false), cl::Hidden, | ||||||||
| 343 | cl::desc("Enable VPlan-native vectorization path with " | ||||||||
| 344 | "support for outer loop vectorization.")); | ||||||||
| 345 | |||||||||
| 346 | // This flag enables the stress testing of the VPlan H-CFG construction in the | ||||||||
| 347 | // VPlan-native vectorization path. It must be used in conjuction with | ||||||||
| 348 | // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the | ||||||||
| 349 | // verification of the H-CFGs built. | ||||||||
| 350 | static cl::opt<bool> VPlanBuildStressTest( | ||||||||
| 351 | "vplan-build-stress-test", cl::init(false), cl::Hidden, | ||||||||
| 352 | cl::desc( | ||||||||
| 353 | "Build VPlan for every supported loop nest in the function and bail " | ||||||||
| 354 | "out right after the build (stress test the VPlan H-CFG construction " | ||||||||
| 355 | "in the VPlan-native vectorization path).")); | ||||||||
| 356 | |||||||||
| 357 | cl::opt<bool> llvm::EnableLoopInterleaving( | ||||||||
| 358 | "interleave-loops", cl::init(true), cl::Hidden, | ||||||||
| 359 | cl::desc("Enable loop interleaving in Loop vectorization passes")); | ||||||||
| 360 | cl::opt<bool> llvm::EnableLoopVectorization( | ||||||||
| 361 | "vectorize-loops", cl::init(true), cl::Hidden, | ||||||||
| 362 | cl::desc("Run the Loop vectorization passes")); | ||||||||
| 363 | |||||||||
| 364 | static cl::opt<bool> PrintVPlansInDotFormat( | ||||||||
| 365 | "vplan-print-in-dot-format", cl::Hidden, | ||||||||
| 366 | cl::desc("Use dot format instead of plain text when dumping VPlans")); | ||||||||
| 367 | |||||||||
| 368 | static cl::opt<cl::boolOrDefault> ForceSafeDivisor( | ||||||||
| 369 | "force-widen-divrem-via-safe-divisor", cl::Hidden, | ||||||||
| 370 | cl::desc( | ||||||||
| 371 | "Override cost based safe divisor widening for div/rem instructions")); | ||||||||
| 372 | |||||||||
| 373 | /// A helper function that returns true if the given type is irregular. The | ||||||||
| 374 | /// type is irregular if its allocated size doesn't equal the store size of an | ||||||||
| 375 | /// element of the corresponding vector type. | ||||||||
| 376 | static bool hasIrregularType(Type *Ty, const DataLayout &DL) { | ||||||||
| 377 | // Determine if an array of N elements of type Ty is "bitcast compatible" | ||||||||
| 378 | // with a <N x Ty> vector. | ||||||||
| 379 | // This is only true if there is no padding between the array elements. | ||||||||
| 380 | return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); | ||||||||
| 381 | } | ||||||||
| 382 | |||||||||
| 383 | /// A helper function that returns the reciprocal of the block probability of | ||||||||
| 384 | /// predicated blocks. If we return X, we are assuming the predicated block | ||||||||
| 385 | /// will execute once for every X iterations of the loop header. | ||||||||
| 386 | /// | ||||||||
| 387 | /// TODO: We should use actual block probability here, if available. Currently, | ||||||||
| 388 | /// we always assume predicated blocks have a 50% chance of executing. | ||||||||
| 389 | static unsigned getReciprocalPredBlockProb() { return 2; } | ||||||||
| 390 | |||||||||
| 391 | /// A helper function that returns an integer or floating-point constant with | ||||||||
| 392 | /// value C. | ||||||||
| 393 | static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { | ||||||||
| 394 | return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) | ||||||||
| 395 | : ConstantFP::get(Ty, C); | ||||||||
| 396 | } | ||||||||
| 397 | |||||||||
| 398 | /// Returns "best known" trip count for the specified loop \p L as defined by | ||||||||
| 399 | /// the following procedure: | ||||||||
| 400 | /// 1) Returns exact trip count if it is known. | ||||||||
| 401 | /// 2) Returns expected trip count according to profile data if any. | ||||||||
| 402 | /// 3) Returns upper bound estimate if it is known. | ||||||||
| 403 | /// 4) Returns std::nullopt if all of the above failed. | ||||||||
| 404 | static std::optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, | ||||||||
| 405 | Loop *L) { | ||||||||
| 406 | // Check if exact trip count is known. | ||||||||
| 407 | if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) | ||||||||
| 408 | return ExpectedTC; | ||||||||
| 409 | |||||||||
| 410 | // Check if there is an expected trip count available from profile data. | ||||||||
| 411 | if (LoopVectorizeWithBlockFrequency) | ||||||||
| 412 | if (auto EstimatedTC = getLoopEstimatedTripCount(L)) | ||||||||
| 413 | return *EstimatedTC; | ||||||||
| 414 | |||||||||
| 415 | // Check if upper bound estimate is known. | ||||||||
| 416 | if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) | ||||||||
| 417 | return ExpectedTC; | ||||||||
| 418 | |||||||||
| 419 | return std::nullopt; | ||||||||
| 420 | } | ||||||||
| 421 | |||||||||
| 422 | namespace { | ||||||||
| 423 | // Forward declare GeneratedRTChecks. | ||||||||
| 424 | class GeneratedRTChecks; | ||||||||
| 425 | } // namespace | ||||||||
| 426 | |||||||||
| 427 | namespace llvm { | ||||||||
| 428 | |||||||||
| 429 | AnalysisKey ShouldRunExtraVectorPasses::Key; | ||||||||
| 430 | |||||||||
| 431 | /// InnerLoopVectorizer vectorizes loops which contain only one basic | ||||||||
| 432 | /// block to a specified vectorization factor (VF). | ||||||||
| 433 | /// This class performs the widening of scalars into vectors, or multiple | ||||||||
| 434 | /// scalars. This class also implements the following features: | ||||||||
| 435 | /// * It inserts an epilogue loop for handling loops that don't have iteration | ||||||||
| 436 | /// counts that are known to be a multiple of the vectorization factor. | ||||||||
| 437 | /// * It handles the code generation for reduction variables. | ||||||||
| 438 | /// * Scalarization (implementation using scalars) of un-vectorizable | ||||||||
| 439 | /// instructions. | ||||||||
| 440 | /// InnerLoopVectorizer does not perform any vectorization-legality | ||||||||
| 441 | /// checks, and relies on the caller to check for the different legality | ||||||||
| 442 | /// aspects. The InnerLoopVectorizer relies on the | ||||||||
| 443 | /// LoopVectorizationLegality class to provide information about the induction | ||||||||
| 444 | /// and reduction variables that were found to a given vectorization factor. | ||||||||
| 445 | class InnerLoopVectorizer { | ||||||||
| 446 | public: | ||||||||
| 447 | InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, | ||||||||
| 448 | LoopInfo *LI, DominatorTree *DT, | ||||||||
| 449 | const TargetLibraryInfo *TLI, | ||||||||
| 450 | const TargetTransformInfo *TTI, AssumptionCache *AC, | ||||||||
| 451 | OptimizationRemarkEmitter *ORE, ElementCount VecWidth, | ||||||||
| 452 | ElementCount MinProfitableTripCount, | ||||||||
| 453 | unsigned UnrollFactor, LoopVectorizationLegality *LVL, | ||||||||
| 454 | LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, | ||||||||
| 455 | ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks) | ||||||||
| 456 | : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), | ||||||||
| 457 | AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), | ||||||||
| 458 | Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI), | ||||||||
| 459 | PSI(PSI), RTChecks(RTChecks) { | ||||||||
| 460 | // Query this against the original loop and save it here because the profile | ||||||||
| 461 | // of the original loop header may change as the transformation happens. | ||||||||
| 462 | OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( | ||||||||
| 463 | OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); | ||||||||
| 464 | |||||||||
| 465 | if (MinProfitableTripCount.isZero()) | ||||||||
| 466 | this->MinProfitableTripCount = VecWidth; | ||||||||
| 467 | else | ||||||||
| 468 | this->MinProfitableTripCount = MinProfitableTripCount; | ||||||||
| 469 | } | ||||||||
| 470 | |||||||||
| 471 | virtual ~InnerLoopVectorizer() = default; | ||||||||
| 472 | |||||||||
| 473 | /// Create a new empty loop that will contain vectorized instructions later | ||||||||
| 474 | /// on, while the old loop will be used as the scalar remainder. Control flow | ||||||||
| 475 | /// is generated around the vectorized (and scalar epilogue) loops consisting | ||||||||
| 476 | /// of various checks and bypasses. Return the pre-header block of the new | ||||||||
| 477 | /// loop and the start value for the canonical induction, if it is != 0. The | ||||||||
| 478 | /// latter is the case when vectorizing the epilogue loop. In the case of | ||||||||
| 479 | /// epilogue vectorization, this function is overriden to handle the more | ||||||||
| 480 | /// complex control flow around the loops. | ||||||||
| 481 | virtual std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton(); | ||||||||
| 482 | |||||||||
| 483 | /// Fix the vectorized code, taking care of header phi's, live-outs, and more. | ||||||||
| 484 | void fixVectorizedLoop(VPTransformState &State, VPlan &Plan); | ||||||||
| 485 | |||||||||
| 486 | // Return true if any runtime check is added. | ||||||||
| 487 | bool areSafetyChecksAdded() { return AddedSafetyChecks; } | ||||||||
| 488 | |||||||||
| 489 | /// A type for vectorized values in the new loop. Each value from the | ||||||||
| 490 | /// original loop, when vectorized, is represented by UF vector values in the | ||||||||
| 491 | /// new unrolled loop, where UF is the unroll factor. | ||||||||
| 492 | using VectorParts = SmallVector<Value *, 2>; | ||||||||
| 493 | |||||||||
| 494 | /// A helper function to scalarize a single Instruction in the innermost loop. | ||||||||
| 495 | /// Generates a sequence of scalar instances for each lane between \p MinLane | ||||||||
| 496 | /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, | ||||||||
| 497 | /// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p | ||||||||
| 498 | /// Instr's operands. | ||||||||
| 499 | void scalarizeInstruction(const Instruction *Instr, | ||||||||
| 500 | VPReplicateRecipe *RepRecipe, | ||||||||
| 501 | const VPIteration &Instance, bool IfPredicateInstr, | ||||||||
| 502 | VPTransformState &State); | ||||||||
| 503 | |||||||||
| 504 | /// Construct the vector value of a scalarized value \p V one lane at a time. | ||||||||
| 505 | void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, | ||||||||
| 506 | VPTransformState &State); | ||||||||
| 507 | |||||||||
| 508 | /// Try to vectorize interleaved access group \p Group with the base address | ||||||||
| 509 | /// given in \p Addr, optionally masking the vector operations if \p | ||||||||
| 510 | /// BlockInMask is non-null. Use \p State to translate given VPValues to IR | ||||||||
| 511 | /// values in the vectorized loop. | ||||||||
| 512 | void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, | ||||||||
| 513 | ArrayRef<VPValue *> VPDefs, | ||||||||
| 514 | VPTransformState &State, VPValue *Addr, | ||||||||
| 515 | ArrayRef<VPValue *> StoredValues, | ||||||||
| 516 | VPValue *BlockInMask = nullptr); | ||||||||
| 517 | |||||||||
| 518 | /// Fix the non-induction PHIs in \p Plan. | ||||||||
| 519 | void fixNonInductionPHIs(VPlan &Plan, VPTransformState &State); | ||||||||
| 520 | |||||||||
| 521 | /// Returns true if the reordering of FP operations is not allowed, but we are | ||||||||
| 522 | /// able to vectorize with strict in-order reductions for the given RdxDesc. | ||||||||
| 523 | bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc); | ||||||||
| 524 | |||||||||
| 525 | /// Create a broadcast instruction. This method generates a broadcast | ||||||||
| 526 | /// instruction (shuffle) for loop invariant values and for the induction | ||||||||
| 527 | /// value. If this is the induction variable then we extend it to N, N+1, ... | ||||||||
| 528 | /// this is needed because each iteration in the loop corresponds to a SIMD | ||||||||
| 529 | /// element. | ||||||||
| 530 | virtual Value *getBroadcastInstrs(Value *V); | ||||||||
| 531 | |||||||||
| 532 | // Returns the resume value (bc.merge.rdx) for a reduction as | ||||||||
| 533 | // generated by fixReduction. | ||||||||
| 534 | PHINode *getReductionResumeValue(const RecurrenceDescriptor &RdxDesc); | ||||||||
| 535 | |||||||||
| 536 | /// Create a new phi node for the induction variable \p OrigPhi to resume | ||||||||
| 537 | /// iteration count in the scalar epilogue, from where the vectorized loop | ||||||||
| 538 | /// left off. In cases where the loop skeleton is more complicated (eg. | ||||||||
| 539 | /// epilogue vectorization) and the resume values can come from an additional | ||||||||
| 540 | /// bypass block, the \p AdditionalBypass pair provides information about the | ||||||||
| 541 | /// bypass block and the end value on the edge from bypass to this loop. | ||||||||
| 542 | PHINode *createInductionResumeValue( | ||||||||
| 543 | PHINode *OrigPhi, const InductionDescriptor &ID, | ||||||||
| 544 | ArrayRef<BasicBlock *> BypassBlocks, | ||||||||
| 545 | std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); | ||||||||
| 546 | |||||||||
| 547 | protected: | ||||||||
| 548 | friend class LoopVectorizationPlanner; | ||||||||
| 549 | |||||||||
| 550 | /// A small list of PHINodes. | ||||||||
| 551 | using PhiVector = SmallVector<PHINode *, 4>; | ||||||||
| 552 | |||||||||
| 553 | /// A type for scalarized values in the new loop. Each value from the | ||||||||
| 554 | /// original loop, when scalarized, is represented by UF x VF scalar values | ||||||||
| 555 | /// in the new unrolled loop, where UF is the unroll factor and VF is the | ||||||||
| 556 | /// vectorization factor. | ||||||||
| 557 | using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; | ||||||||
| 558 | |||||||||
| 559 | /// Set up the values of the IVs correctly when exiting the vector loop. | ||||||||
| 560 | void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, | ||||||||
| 561 | Value *VectorTripCount, Value *EndValue, | ||||||||
| 562 | BasicBlock *MiddleBlock, BasicBlock *VectorHeader, | ||||||||
| 563 | VPlan &Plan); | ||||||||
| 564 | |||||||||
| 565 | /// Handle all cross-iteration phis in the header. | ||||||||
| 566 | void fixCrossIterationPHIs(VPTransformState &State); | ||||||||
| 567 | |||||||||
| 568 | /// Create the exit value of first order recurrences in the middle block and | ||||||||
| 569 | /// update their users. | ||||||||
| 570 | void fixFixedOrderRecurrence(VPFirstOrderRecurrencePHIRecipe *PhiR, | ||||||||
| 571 | VPTransformState &State); | ||||||||
| 572 | |||||||||
| 573 | /// Create code for the loop exit value of the reduction. | ||||||||
| 574 | void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State); | ||||||||
| 575 | |||||||||
| 576 | /// Clear NSW/NUW flags from reduction instructions if necessary. | ||||||||
| 577 | void clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, | ||||||||
| 578 | VPTransformState &State); | ||||||||
| 579 | |||||||||
| 580 | /// Iteratively sink the scalarized operands of a predicated instruction into | ||||||||
| 581 | /// the block that was created for it. | ||||||||
| 582 | void sinkScalarOperands(Instruction *PredInst); | ||||||||
| 583 | |||||||||
| 584 | /// Shrinks vector element sizes to the smallest bitwidth they can be legally | ||||||||
| 585 | /// represented as. | ||||||||
| 586 | void truncateToMinimalBitwidths(VPTransformState &State); | ||||||||
| 587 | |||||||||
| 588 | /// Returns (and creates if needed) the original loop trip count. | ||||||||
| 589 | Value *getOrCreateTripCount(BasicBlock *InsertBlock); | ||||||||
| 590 | |||||||||
| 591 | /// Returns (and creates if needed) the trip count of the widened loop. | ||||||||
| 592 | Value *getOrCreateVectorTripCount(BasicBlock *InsertBlock); | ||||||||
| 593 | |||||||||
| 594 | /// Returns a bitcasted value to the requested vector type. | ||||||||
| 595 | /// Also handles bitcasts of vector<float> <-> vector<pointer> types. | ||||||||
| 596 | Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, | ||||||||
| 597 | const DataLayout &DL); | ||||||||
| 598 | |||||||||
| 599 | /// Emit a bypass check to see if the vector trip count is zero, including if | ||||||||
| 600 | /// it overflows. | ||||||||
| 601 | void emitIterationCountCheck(BasicBlock *Bypass); | ||||||||
| 602 | |||||||||
| 603 | /// Emit a bypass check to see if all of the SCEV assumptions we've | ||||||||
| 604 | /// had to make are correct. Returns the block containing the checks or | ||||||||
| 605 | /// nullptr if no checks have been added. | ||||||||
| 606 | BasicBlock *emitSCEVChecks(BasicBlock *Bypass); | ||||||||
| 607 | |||||||||
| 608 | /// Emit bypass checks to check any memory assumptions we may have made. | ||||||||
| 609 | /// Returns the block containing the checks or nullptr if no checks have been | ||||||||
| 610 | /// added. | ||||||||
| 611 | BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass); | ||||||||
| 612 | |||||||||
| 613 | /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, | ||||||||
| 614 | /// vector loop preheader, middle block and scalar preheader. | ||||||||
| 615 | void createVectorLoopSkeleton(StringRef Prefix); | ||||||||
| 616 | |||||||||
| 617 | /// Create new phi nodes for the induction variables to resume iteration count | ||||||||
| 618 | /// in the scalar epilogue, from where the vectorized loop left off. | ||||||||
| 619 | /// In cases where the loop skeleton is more complicated (eg. epilogue | ||||||||
| 620 | /// vectorization) and the resume values can come from an additional bypass | ||||||||
| 621 | /// block, the \p AdditionalBypass pair provides information about the bypass | ||||||||
| 622 | /// block and the end value on the edge from bypass to this loop. | ||||||||
| 623 | void createInductionResumeValues( | ||||||||
| 624 | std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); | ||||||||
| 625 | |||||||||
| 626 | /// Complete the loop skeleton by adding debug MDs, creating appropriate | ||||||||
| 627 | /// conditional branches in the middle block, preparing the builder and | ||||||||
| 628 | /// running the verifier. Return the preheader of the completed vector loop. | ||||||||
| 629 | BasicBlock *completeLoopSkeleton(); | ||||||||
| 630 | |||||||||
| 631 | /// Collect poison-generating recipes that may generate a poison value that is | ||||||||
| 632 | /// used after vectorization, even when their operands are not poison. Those | ||||||||
| 633 | /// recipes meet the following conditions: | ||||||||
| 634 | /// * Contribute to the address computation of a recipe generating a widen | ||||||||
| 635 | /// memory load/store (VPWidenMemoryInstructionRecipe or | ||||||||
| 636 | /// VPInterleaveRecipe). | ||||||||
| 637 | /// * Such a widen memory load/store has at least one underlying Instruction | ||||||||
| 638 | /// that is in a basic block that needs predication and after vectorization | ||||||||
| 639 | /// the generated instruction won't be predicated. | ||||||||
| 640 | void collectPoisonGeneratingRecipes(VPTransformState &State); | ||||||||
| 641 | |||||||||
| 642 | /// Allow subclasses to override and print debug traces before/after vplan | ||||||||
| 643 | /// execution, when trace information is requested. | ||||||||
| 644 | virtual void printDebugTracesAtStart(){}; | ||||||||
| 645 | virtual void printDebugTracesAtEnd(){}; | ||||||||
| 646 | |||||||||
| 647 | /// The original loop. | ||||||||
| 648 | Loop *OrigLoop; | ||||||||
| 649 | |||||||||
| 650 | /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies | ||||||||
| 651 | /// dynamic knowledge to simplify SCEV expressions and converts them to a | ||||||||
| 652 | /// more usable form. | ||||||||
| 653 | PredicatedScalarEvolution &PSE; | ||||||||
| 654 | |||||||||
| 655 | /// Loop Info. | ||||||||
| 656 | LoopInfo *LI; | ||||||||
| 657 | |||||||||
| 658 | /// Dominator Tree. | ||||||||
| 659 | DominatorTree *DT; | ||||||||
| 660 | |||||||||
| 661 | /// Target Library Info. | ||||||||
| 662 | const TargetLibraryInfo *TLI; | ||||||||
| 663 | |||||||||
| 664 | /// Target Transform Info. | ||||||||
| 665 | const TargetTransformInfo *TTI; | ||||||||
| 666 | |||||||||
| 667 | /// Assumption Cache. | ||||||||
| 668 | AssumptionCache *AC; | ||||||||
| 669 | |||||||||
| 670 | /// Interface to emit optimization remarks. | ||||||||
| 671 | OptimizationRemarkEmitter *ORE; | ||||||||
| 672 | |||||||||
| 673 | /// The vectorization SIMD factor to use. Each vector will have this many | ||||||||
| 674 | /// vector elements. | ||||||||
| 675 | ElementCount VF; | ||||||||
| 676 | |||||||||
| 677 | ElementCount MinProfitableTripCount; | ||||||||
| 678 | |||||||||
| 679 | /// The vectorization unroll factor to use. Each scalar is vectorized to this | ||||||||
| 680 | /// many different vector instructions. | ||||||||
| 681 | unsigned UF; | ||||||||
| 682 | |||||||||
| 683 | /// The builder that we use | ||||||||
| 684 | IRBuilder<> Builder; | ||||||||
| 685 | |||||||||
| 686 | // --- Vectorization state --- | ||||||||
| 687 | |||||||||
| 688 | /// The vector-loop preheader. | ||||||||
| 689 | BasicBlock *LoopVectorPreHeader; | ||||||||
| 690 | |||||||||
| 691 | /// The scalar-loop preheader. | ||||||||
| 692 | BasicBlock *LoopScalarPreHeader; | ||||||||
| 693 | |||||||||
| 694 | /// Middle Block between the vector and the scalar. | ||||||||
| 695 | BasicBlock *LoopMiddleBlock; | ||||||||
| 696 | |||||||||
| 697 | /// The unique ExitBlock of the scalar loop if one exists. Note that | ||||||||
| 698 | /// there can be multiple exiting edges reaching this block. | ||||||||
| 699 | BasicBlock *LoopExitBlock; | ||||||||
| 700 | |||||||||
| 701 | /// The scalar loop body. | ||||||||
| 702 | BasicBlock *LoopScalarBody; | ||||||||
| 703 | |||||||||
| 704 | /// A list of all bypass blocks. The first block is the entry of the loop. | ||||||||
| 705 | SmallVector<BasicBlock *, 4> LoopBypassBlocks; | ||||||||
| 706 | |||||||||
| 707 | /// Store instructions that were predicated. | ||||||||
| 708 | SmallVector<Instruction *, 4> PredicatedInstructions; | ||||||||
| 709 | |||||||||
| 710 | /// Trip count of the original loop. | ||||||||
| 711 | Value *TripCount = nullptr; | ||||||||
| 712 | |||||||||
| 713 | /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) | ||||||||
| 714 | Value *VectorTripCount = nullptr; | ||||||||
| 715 | |||||||||
| 716 | /// The legality analysis. | ||||||||
| 717 | LoopVectorizationLegality *Legal; | ||||||||
| 718 | |||||||||
| 719 | /// The profitablity analysis. | ||||||||
| 720 | LoopVectorizationCostModel *Cost; | ||||||||
| 721 | |||||||||
| 722 | // Record whether runtime checks are added. | ||||||||
| 723 | bool AddedSafetyChecks = false; | ||||||||
| 724 | |||||||||
| 725 | // Holds the end values for each induction variable. We save the end values | ||||||||
| 726 | // so we can later fix-up the external users of the induction variables. | ||||||||
| 727 | DenseMap<PHINode *, Value *> IVEndValues; | ||||||||
| 728 | |||||||||
| 729 | /// BFI and PSI are used to check for profile guided size optimizations. | ||||||||
| 730 | BlockFrequencyInfo *BFI; | ||||||||
| 731 | ProfileSummaryInfo *PSI; | ||||||||
| 732 | |||||||||
| 733 | // Whether this loop should be optimized for size based on profile guided size | ||||||||
| 734 | // optimizatios. | ||||||||
| 735 | bool OptForSizeBasedOnProfile; | ||||||||
| 736 | |||||||||
| 737 | /// Structure to hold information about generated runtime checks, responsible | ||||||||
| 738 | /// for cleaning the checks, if vectorization turns out unprofitable. | ||||||||
| 739 | GeneratedRTChecks &RTChecks; | ||||||||
| 740 | |||||||||
| 741 | // Holds the resume values for reductions in the loops, used to set the | ||||||||
| 742 | // correct start value of reduction PHIs when vectorizing the epilogue. | ||||||||
| 743 | SmallMapVector<const RecurrenceDescriptor *, PHINode *, 4> | ||||||||
| 744 | ReductionResumeValues; | ||||||||
| 745 | }; | ||||||||
| 746 | |||||||||
| 747 | class InnerLoopUnroller : public InnerLoopVectorizer { | ||||||||
| 748 | public: | ||||||||
| 749 | InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, | ||||||||
| 750 | LoopInfo *LI, DominatorTree *DT, | ||||||||
| 751 | const TargetLibraryInfo *TLI, | ||||||||
| 752 | const TargetTransformInfo *TTI, AssumptionCache *AC, | ||||||||
| 753 | OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, | ||||||||
| 754 | LoopVectorizationLegality *LVL, | ||||||||
| 755 | LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, | ||||||||
| 756 | ProfileSummaryInfo *PSI, GeneratedRTChecks &Check) | ||||||||
| 757 | : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, | ||||||||
| 758 | ElementCount::getFixed(1), | ||||||||
| 759 | ElementCount::getFixed(1), UnrollFactor, LVL, CM, | ||||||||
| 760 | BFI, PSI, Check) {} | ||||||||
| 761 | |||||||||
| 762 | private: | ||||||||
| 763 | Value *getBroadcastInstrs(Value *V) override; | ||||||||
| 764 | }; | ||||||||
| 765 | |||||||||
| 766 | /// Encapsulate information regarding vectorization of a loop and its epilogue. | ||||||||
| 767 | /// This information is meant to be updated and used across two stages of | ||||||||
| 768 | /// epilogue vectorization. | ||||||||
| 769 | struct EpilogueLoopVectorizationInfo { | ||||||||
| 770 | ElementCount MainLoopVF = ElementCount::getFixed(0); | ||||||||
| 771 | unsigned MainLoopUF = 0; | ||||||||
| 772 | ElementCount EpilogueVF = ElementCount::getFixed(0); | ||||||||
| 773 | unsigned EpilogueUF = 0; | ||||||||
| 774 | BasicBlock *MainLoopIterationCountCheck = nullptr; | ||||||||
| 775 | BasicBlock *EpilogueIterationCountCheck = nullptr; | ||||||||
| 776 | BasicBlock *SCEVSafetyCheck = nullptr; | ||||||||
| 777 | BasicBlock *MemSafetyCheck = nullptr; | ||||||||
| 778 | Value *TripCount = nullptr; | ||||||||
| 779 | Value *VectorTripCount = nullptr; | ||||||||
| 780 | |||||||||
| 781 | EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF, | ||||||||
| 782 | ElementCount EVF, unsigned EUF) | ||||||||
| 783 | : MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) { | ||||||||
| 784 | assert(EUF == 1 &&(static_cast <bool> (EUF == 1 && "A high UF for the epilogue loop is likely not beneficial." ) ? void (0) : __assert_fail ("EUF == 1 && \"A high UF for the epilogue loop is likely not beneficial.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 785, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 785 | "A high UF for the epilogue loop is likely not beneficial.")(static_cast <bool> (EUF == 1 && "A high UF for the epilogue loop is likely not beneficial." ) ? void (0) : __assert_fail ("EUF == 1 && \"A high UF for the epilogue loop is likely not beneficial.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 785, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 786 | } | ||||||||
| 787 | }; | ||||||||
| 788 | |||||||||
| 789 | /// An extension of the inner loop vectorizer that creates a skeleton for a | ||||||||
| 790 | /// vectorized loop that has its epilogue (residual) also vectorized. | ||||||||
| 791 | /// The idea is to run the vplan on a given loop twice, firstly to setup the | ||||||||
| 792 | /// skeleton and vectorize the main loop, and secondly to complete the skeleton | ||||||||
| 793 | /// from the first step and vectorize the epilogue. This is achieved by | ||||||||
| 794 | /// deriving two concrete strategy classes from this base class and invoking | ||||||||
| 795 | /// them in succession from the loop vectorizer planner. | ||||||||
| 796 | class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { | ||||||||
| 797 | public: | ||||||||
| 798 | InnerLoopAndEpilogueVectorizer( | ||||||||
| 799 | Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, | ||||||||
| 800 | DominatorTree *DT, const TargetLibraryInfo *TLI, | ||||||||
| 801 | const TargetTransformInfo *TTI, AssumptionCache *AC, | ||||||||
| 802 | OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, | ||||||||
| 803 | LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, | ||||||||
| 804 | BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, | ||||||||
| 805 | GeneratedRTChecks &Checks) | ||||||||
| 806 | : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, | ||||||||
| 807 | EPI.MainLoopVF, EPI.MainLoopVF, EPI.MainLoopUF, LVL, | ||||||||
| 808 | CM, BFI, PSI, Checks), | ||||||||
| 809 | EPI(EPI) {} | ||||||||
| 810 | |||||||||
| 811 | // Override this function to handle the more complex control flow around the | ||||||||
| 812 | // three loops. | ||||||||
| 813 | std::pair<BasicBlock *, Value *> createVectorizedLoopSkeleton() final { | ||||||||
| 814 | return createEpilogueVectorizedLoopSkeleton(); | ||||||||
| 815 | } | ||||||||
| 816 | |||||||||
| 817 | /// The interface for creating a vectorized skeleton using one of two | ||||||||
| 818 | /// different strategies, each corresponding to one execution of the vplan | ||||||||
| 819 | /// as described above. | ||||||||
| 820 | virtual std::pair<BasicBlock *, Value *> | ||||||||
| 821 | createEpilogueVectorizedLoopSkeleton() = 0; | ||||||||
| 822 | |||||||||
| 823 | /// Holds and updates state information required to vectorize the main loop | ||||||||
| 824 | /// and its epilogue in two separate passes. This setup helps us avoid | ||||||||
| 825 | /// regenerating and recomputing runtime safety checks. It also helps us to | ||||||||
| 826 | /// shorten the iteration-count-check path length for the cases where the | ||||||||
| 827 | /// iteration count of the loop is so small that the main vector loop is | ||||||||
| 828 | /// completely skipped. | ||||||||
| 829 | EpilogueLoopVectorizationInfo &EPI; | ||||||||
| 830 | }; | ||||||||
| 831 | |||||||||
| 832 | /// A specialized derived class of inner loop vectorizer that performs | ||||||||
| 833 | /// vectorization of *main* loops in the process of vectorizing loops and their | ||||||||
| 834 | /// epilogues. | ||||||||
| 835 | class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { | ||||||||
| 836 | public: | ||||||||
| 837 | EpilogueVectorizerMainLoop( | ||||||||
| 838 | Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, | ||||||||
| 839 | DominatorTree *DT, const TargetLibraryInfo *TLI, | ||||||||
| 840 | const TargetTransformInfo *TTI, AssumptionCache *AC, | ||||||||
| 841 | OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, | ||||||||
| 842 | LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, | ||||||||
| 843 | BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, | ||||||||
| 844 | GeneratedRTChecks &Check) | ||||||||
| 845 | : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, | ||||||||
| 846 | EPI, LVL, CM, BFI, PSI, Check) {} | ||||||||
| 847 | /// Implements the interface for creating a vectorized skeleton using the | ||||||||
| 848 | /// *main loop* strategy (ie the first pass of vplan execution). | ||||||||
| 849 | std::pair<BasicBlock *, Value *> createEpilogueVectorizedLoopSkeleton() final; | ||||||||
| 850 | |||||||||
| 851 | protected: | ||||||||
| 852 | /// Emits an iteration count bypass check once for the main loop (when \p | ||||||||
| 853 | /// ForEpilogue is false) and once for the epilogue loop (when \p | ||||||||
| 854 | /// ForEpilogue is true). | ||||||||
| 855 | BasicBlock *emitIterationCountCheck(BasicBlock *Bypass, bool ForEpilogue); | ||||||||
| 856 | void printDebugTracesAtStart() override; | ||||||||
| 857 | void printDebugTracesAtEnd() override; | ||||||||
| 858 | }; | ||||||||
| 859 | |||||||||
| 860 | // A specialized derived class of inner loop vectorizer that performs | ||||||||
| 861 | // vectorization of *epilogue* loops in the process of vectorizing loops and | ||||||||
| 862 | // their epilogues. | ||||||||
| 863 | class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { | ||||||||
| 864 | public: | ||||||||
| 865 | EpilogueVectorizerEpilogueLoop( | ||||||||
| 866 | Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, | ||||||||
| 867 | DominatorTree *DT, const TargetLibraryInfo *TLI, | ||||||||
| 868 | const TargetTransformInfo *TTI, AssumptionCache *AC, | ||||||||
| 869 | OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, | ||||||||
| 870 | LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, | ||||||||
| 871 | BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, | ||||||||
| 872 | GeneratedRTChecks &Checks) | ||||||||
| 873 | : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, | ||||||||
| 874 | EPI, LVL, CM, BFI, PSI, Checks) { | ||||||||
| 875 | TripCount = EPI.TripCount; | ||||||||
| 876 | } | ||||||||
| 877 | /// Implements the interface for creating a vectorized skeleton using the | ||||||||
| 878 | /// *epilogue loop* strategy (ie the second pass of vplan execution). | ||||||||
| 879 | std::pair<BasicBlock *, Value *> createEpilogueVectorizedLoopSkeleton() final; | ||||||||
| 880 | |||||||||
| 881 | protected: | ||||||||
| 882 | /// Emits an iteration count bypass check after the main vector loop has | ||||||||
| 883 | /// finished to see if there are any iterations left to execute by either | ||||||||
| 884 | /// the vector epilogue or the scalar epilogue. | ||||||||
| 885 | BasicBlock *emitMinimumVectorEpilogueIterCountCheck( | ||||||||
| 886 | BasicBlock *Bypass, | ||||||||
| 887 | BasicBlock *Insert); | ||||||||
| 888 | void printDebugTracesAtStart() override; | ||||||||
| 889 | void printDebugTracesAtEnd() override; | ||||||||
| 890 | }; | ||||||||
| 891 | } // end namespace llvm | ||||||||
| 892 | |||||||||
| 893 | /// Look for a meaningful debug location on the instruction or it's | ||||||||
| 894 | /// operands. | ||||||||
| 895 | static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { | ||||||||
| 896 | if (!I) | ||||||||
| 897 | return I; | ||||||||
| 898 | |||||||||
| 899 | DebugLoc Empty; | ||||||||
| 900 | if (I->getDebugLoc() != Empty) | ||||||||
| 901 | return I; | ||||||||
| 902 | |||||||||
| 903 | for (Use &Op : I->operands()) { | ||||||||
| 904 | if (Instruction *OpInst = dyn_cast<Instruction>(Op)) | ||||||||
| 905 | if (OpInst->getDebugLoc() != Empty) | ||||||||
| 906 | return OpInst; | ||||||||
| 907 | } | ||||||||
| 908 | |||||||||
| 909 | return I; | ||||||||
| 910 | } | ||||||||
| 911 | |||||||||
| 912 | /// Write a \p DebugMsg about vectorization to the debug output stream. If \p I | ||||||||
| 913 | /// is passed, the message relates to that particular instruction. | ||||||||
| 914 | #ifndef NDEBUG | ||||||||
| 915 | static void debugVectorizationMessage(const StringRef Prefix, | ||||||||
| 916 | const StringRef DebugMsg, | ||||||||
| 917 | Instruction *I) { | ||||||||
| 918 | dbgs() << "LV: " << Prefix << DebugMsg; | ||||||||
| 919 | if (I != nullptr) | ||||||||
| 920 | dbgs() << " " << *I; | ||||||||
| 921 | else | ||||||||
| 922 | dbgs() << '.'; | ||||||||
| 923 | dbgs() << '\n'; | ||||||||
| 924 | } | ||||||||
| 925 | #endif | ||||||||
| 926 | |||||||||
| 927 | /// Create an analysis remark that explains why vectorization failed | ||||||||
| 928 | /// | ||||||||
| 929 | /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p | ||||||||
| 930 | /// RemarkName is the identifier for the remark. If \p I is passed it is an | ||||||||
| 931 | /// instruction that prevents vectorization. Otherwise \p TheLoop is used for | ||||||||
| 932 | /// the location of the remark. \return the remark object that can be | ||||||||
| 933 | /// streamed to. | ||||||||
| 934 | static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, | ||||||||
| 935 | StringRef RemarkName, Loop *TheLoop, Instruction *I) { | ||||||||
| 936 | Value *CodeRegion = TheLoop->getHeader(); | ||||||||
| 937 | DebugLoc DL = TheLoop->getStartLoc(); | ||||||||
| 938 | |||||||||
| 939 | if (I) { | ||||||||
| 940 | CodeRegion = I->getParent(); | ||||||||
| 941 | // If there is no debug location attached to the instruction, revert back to | ||||||||
| 942 | // using the loop's. | ||||||||
| 943 | if (I->getDebugLoc()) | ||||||||
| 944 | DL = I->getDebugLoc(); | ||||||||
| 945 | } | ||||||||
| 946 | |||||||||
| 947 | return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion); | ||||||||
| 948 | } | ||||||||
| 949 | |||||||||
| 950 | namespace llvm { | ||||||||
| 951 | |||||||||
| 952 | /// Return a value for Step multiplied by VF. | ||||||||
| 953 | Value *createStepForVF(IRBuilderBase &B, Type *Ty, ElementCount VF, | ||||||||
| 954 | int64_t Step) { | ||||||||
| 955 | assert(Ty->isIntegerTy() && "Expected an integer step")(static_cast <bool> (Ty->isIntegerTy() && "Expected an integer step" ) ? void (0) : __assert_fail ("Ty->isIntegerTy() && \"Expected an integer step\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 955, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 956 | Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue()); | ||||||||
| 957 | return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; | ||||||||
| 958 | } | ||||||||
| 959 | |||||||||
| 960 | /// Return the runtime value for VF. | ||||||||
| 961 | Value *getRuntimeVF(IRBuilderBase &B, Type *Ty, ElementCount VF) { | ||||||||
| 962 | Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue()); | ||||||||
| 963 | return VF.isScalable() ? B.CreateVScale(EC) : EC; | ||||||||
| 964 | } | ||||||||
| 965 | |||||||||
| 966 | const SCEV *createTripCountSCEV(Type *IdxTy, PredicatedScalarEvolution &PSE) { | ||||||||
| 967 | const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); | ||||||||
| 968 | assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && "Invalid loop count")(static_cast <bool> (!isa<SCEVCouldNotCompute>(BackedgeTakenCount ) && "Invalid loop count") ? void (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && \"Invalid loop count\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 968, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 969 | |||||||||
| 970 | ScalarEvolution &SE = *PSE.getSE(); | ||||||||
| 971 | |||||||||
| 972 | // The exit count might have the type of i64 while the phi is i32. This can | ||||||||
| 973 | // happen if we have an induction variable that is sign extended before the | ||||||||
| 974 | // compare. The only way that we get a backedge taken count is that the | ||||||||
| 975 | // induction variable was signed and as such will not overflow. In such a case | ||||||||
| 976 | // truncation is legal. | ||||||||
| 977 | if (SE.getTypeSizeInBits(BackedgeTakenCount->getType()) > | ||||||||
| 978 | IdxTy->getPrimitiveSizeInBits()) | ||||||||
| 979 | BackedgeTakenCount = SE.getTruncateOrNoop(BackedgeTakenCount, IdxTy); | ||||||||
| 980 | BackedgeTakenCount = SE.getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); | ||||||||
| 981 | |||||||||
| 982 | // Get the total trip count from the count by adding 1. | ||||||||
| 983 | return SE.getAddExpr(BackedgeTakenCount, | ||||||||
| 984 | SE.getOne(BackedgeTakenCount->getType())); | ||||||||
| 985 | } | ||||||||
| 986 | |||||||||
| 987 | static Value *getRuntimeVFAsFloat(IRBuilderBase &B, Type *FTy, | ||||||||
| 988 | ElementCount VF) { | ||||||||
| 989 | assert(FTy->isFloatingPointTy() && "Expected floating point type!")(static_cast <bool> (FTy->isFloatingPointTy() && "Expected floating point type!") ? void (0) : __assert_fail ( "FTy->isFloatingPointTy() && \"Expected floating point type!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 989, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 990 | Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits()); | ||||||||
| 991 | Value *RuntimeVF = getRuntimeVF(B, IntTy, VF); | ||||||||
| 992 | return B.CreateUIToFP(RuntimeVF, FTy); | ||||||||
| 993 | } | ||||||||
| 994 | |||||||||
| 995 | void reportVectorizationFailure(const StringRef DebugMsg, | ||||||||
| 996 | const StringRef OREMsg, const StringRef ORETag, | ||||||||
| 997 | OptimizationRemarkEmitter *ORE, Loop *TheLoop, | ||||||||
| 998 | Instruction *I) { | ||||||||
| 999 | LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { debugVectorizationMessage("Not vectorizing: " , DebugMsg, I); } } while (false); | ||||||||
| 1000 | LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); | ||||||||
| 1001 | ORE->emit( | ||||||||
| 1002 | createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) | ||||||||
| 1003 | << "loop not vectorized: " << OREMsg); | ||||||||
| 1004 | } | ||||||||
| 1005 | |||||||||
| 1006 | void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag, | ||||||||
| 1007 | OptimizationRemarkEmitter *ORE, Loop *TheLoop, | ||||||||
| 1008 | Instruction *I) { | ||||||||
| 1009 | LLVM_DEBUG(debugVectorizationMessage("", Msg, I))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { debugVectorizationMessage("", Msg, I); } } while (false); | ||||||||
| 1010 | LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); | ||||||||
| 1011 | ORE->emit( | ||||||||
| 1012 | createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I) | ||||||||
| 1013 | << Msg); | ||||||||
| 1014 | } | ||||||||
| 1015 | |||||||||
| 1016 | } // end namespace llvm | ||||||||
| 1017 | |||||||||
| 1018 | #ifndef NDEBUG | ||||||||
| 1019 | /// \return string containing a file name and a line # for the given loop. | ||||||||
| 1020 | static std::string getDebugLocString(const Loop *L) { | ||||||||
| 1021 | std::string Result; | ||||||||
| 1022 | if (L) { | ||||||||
| 1023 | raw_string_ostream OS(Result); | ||||||||
| 1024 | if (const DebugLoc LoopDbgLoc = L->getStartLoc()) | ||||||||
| 1025 | LoopDbgLoc.print(OS); | ||||||||
| 1026 | else | ||||||||
| 1027 | // Just print the module name. | ||||||||
| 1028 | OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); | ||||||||
| 1029 | OS.flush(); | ||||||||
| 1030 | } | ||||||||
| 1031 | return Result; | ||||||||
| 1032 | } | ||||||||
| 1033 | #endif | ||||||||
| 1034 | |||||||||
| 1035 | void InnerLoopVectorizer::collectPoisonGeneratingRecipes( | ||||||||
| 1036 | VPTransformState &State) { | ||||||||
| 1037 | |||||||||
| 1038 | // Collect recipes in the backward slice of `Root` that may generate a poison | ||||||||
| 1039 | // value that is used after vectorization. | ||||||||
| 1040 | SmallPtrSet<VPRecipeBase *, 16> Visited; | ||||||||
| 1041 | auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) { | ||||||||
| 1042 | SmallVector<VPRecipeBase *, 16> Worklist; | ||||||||
| 1043 | Worklist.push_back(Root); | ||||||||
| 1044 | |||||||||
| 1045 | // Traverse the backward slice of Root through its use-def chain. | ||||||||
| 1046 | while (!Worklist.empty()) { | ||||||||
| 1047 | VPRecipeBase *CurRec = Worklist.back(); | ||||||||
| 1048 | Worklist.pop_back(); | ||||||||
| 1049 | |||||||||
| 1050 | if (!Visited.insert(CurRec).second) | ||||||||
| 1051 | continue; | ||||||||
| 1052 | |||||||||
| 1053 | // Prune search if we find another recipe generating a widen memory | ||||||||
| 1054 | // instruction. Widen memory instructions involved in address computation | ||||||||
| 1055 | // will lead to gather/scatter instructions, which don't need to be | ||||||||
| 1056 | // handled. | ||||||||
| 1057 | if (isa<VPWidenMemoryInstructionRecipe>(CurRec) || | ||||||||
| 1058 | isa<VPInterleaveRecipe>(CurRec) || | ||||||||
| 1059 | isa<VPScalarIVStepsRecipe>(CurRec) || | ||||||||
| 1060 | isa<VPCanonicalIVPHIRecipe>(CurRec) || | ||||||||
| 1061 | isa<VPActiveLaneMaskPHIRecipe>(CurRec)) | ||||||||
| 1062 | continue; | ||||||||
| 1063 | |||||||||
| 1064 | // This recipe contributes to the address computation of a widen | ||||||||
| 1065 | // load/store. Collect recipe if its underlying instruction has | ||||||||
| 1066 | // poison-generating flags. | ||||||||
| 1067 | Instruction *Instr = CurRec->getUnderlyingInstr(); | ||||||||
| 1068 | if (Instr && Instr->hasPoisonGeneratingFlags()) | ||||||||
| 1069 | State.MayGeneratePoisonRecipes.insert(CurRec); | ||||||||
| 1070 | |||||||||
| 1071 | // Add new definitions to the worklist. | ||||||||
| 1072 | for (VPValue *operand : CurRec->operands()) | ||||||||
| 1073 | if (VPRecipeBase *OpDef = operand->getDefiningRecipe()) | ||||||||
| 1074 | Worklist.push_back(OpDef); | ||||||||
| 1075 | } | ||||||||
| 1076 | }); | ||||||||
| 1077 | |||||||||
| 1078 | // Traverse all the recipes in the VPlan and collect the poison-generating | ||||||||
| 1079 | // recipes in the backward slice starting at the address of a VPWidenRecipe or | ||||||||
| 1080 | // VPInterleaveRecipe. | ||||||||
| 1081 | auto Iter = vp_depth_first_deep(State.Plan->getEntry()); | ||||||||
| 1082 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { | ||||||||
| 1083 | for (VPRecipeBase &Recipe : *VPBB) { | ||||||||
| 1084 | if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) { | ||||||||
| 1085 | Instruction &UnderlyingInstr = WidenRec->getIngredient(); | ||||||||
| 1086 | VPRecipeBase *AddrDef = WidenRec->getAddr()->getDefiningRecipe(); | ||||||||
| 1087 | if (AddrDef && WidenRec->isConsecutive() && | ||||||||
| 1088 | Legal->blockNeedsPredication(UnderlyingInstr.getParent())) | ||||||||
| 1089 | collectPoisonGeneratingInstrsInBackwardSlice(AddrDef); | ||||||||
| 1090 | } else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) { | ||||||||
| 1091 | VPRecipeBase *AddrDef = InterleaveRec->getAddr()->getDefiningRecipe(); | ||||||||
| 1092 | if (AddrDef) { | ||||||||
| 1093 | // Check if any member of the interleave group needs predication. | ||||||||
| 1094 | const InterleaveGroup<Instruction> *InterGroup = | ||||||||
| 1095 | InterleaveRec->getInterleaveGroup(); | ||||||||
| 1096 | bool NeedPredication = false; | ||||||||
| 1097 | for (int I = 0, NumMembers = InterGroup->getNumMembers(); | ||||||||
| 1098 | I < NumMembers; ++I) { | ||||||||
| 1099 | Instruction *Member = InterGroup->getMember(I); | ||||||||
| 1100 | if (Member) | ||||||||
| 1101 | NeedPredication |= | ||||||||
| 1102 | Legal->blockNeedsPredication(Member->getParent()); | ||||||||
| 1103 | } | ||||||||
| 1104 | |||||||||
| 1105 | if (NeedPredication) | ||||||||
| 1106 | collectPoisonGeneratingInstrsInBackwardSlice(AddrDef); | ||||||||
| 1107 | } | ||||||||
| 1108 | } | ||||||||
| 1109 | } | ||||||||
| 1110 | } | ||||||||
| 1111 | } | ||||||||
| 1112 | |||||||||
| 1113 | PHINode *InnerLoopVectorizer::getReductionResumeValue( | ||||||||
| 1114 | const RecurrenceDescriptor &RdxDesc) { | ||||||||
| 1115 | auto It = ReductionResumeValues.find(&RdxDesc); | ||||||||
| 1116 | assert(It != ReductionResumeValues.end() &&(static_cast <bool> (It != ReductionResumeValues.end() && "Expected to find a resume value for the reduction.") ? void (0) : __assert_fail ("It != ReductionResumeValues.end() && \"Expected to find a resume value for the reduction.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1117, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 1117 | "Expected to find a resume value for the reduction.")(static_cast <bool> (It != ReductionResumeValues.end() && "Expected to find a resume value for the reduction.") ? void (0) : __assert_fail ("It != ReductionResumeValues.end() && \"Expected to find a resume value for the reduction.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1117, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 1118 | return It->second; | ||||||||
| 1119 | } | ||||||||
| 1120 | |||||||||
| 1121 | namespace llvm { | ||||||||
| 1122 | |||||||||
| 1123 | // Loop vectorization cost-model hints how the scalar epilogue loop should be | ||||||||
| 1124 | // lowered. | ||||||||
| 1125 | enum ScalarEpilogueLowering { | ||||||||
| 1126 | |||||||||
| 1127 | // The default: allowing scalar epilogues. | ||||||||
| 1128 | CM_ScalarEpilogueAllowed, | ||||||||
| 1129 | |||||||||
| 1130 | // Vectorization with OptForSize: don't allow epilogues. | ||||||||
| 1131 | CM_ScalarEpilogueNotAllowedOptSize, | ||||||||
| 1132 | |||||||||
| 1133 | // A special case of vectorisation with OptForSize: loops with a very small | ||||||||
| 1134 | // trip count are considered for vectorization under OptForSize, thereby | ||||||||
| 1135 | // making sure the cost of their loop body is dominant, free of runtime | ||||||||
| 1136 | // guards and scalar iteration overheads. | ||||||||
| 1137 | CM_ScalarEpilogueNotAllowedLowTripLoop, | ||||||||
| 1138 | |||||||||
| 1139 | // Loop hint predicate indicating an epilogue is undesired. | ||||||||
| 1140 | CM_ScalarEpilogueNotNeededUsePredicate, | ||||||||
| 1141 | |||||||||
| 1142 | // Directive indicating we must either tail fold or not vectorize | ||||||||
| 1143 | CM_ScalarEpilogueNotAllowedUsePredicate | ||||||||
| 1144 | }; | ||||||||
| 1145 | |||||||||
| 1146 | /// ElementCountComparator creates a total ordering for ElementCount | ||||||||
| 1147 | /// for the purposes of using it in a set structure. | ||||||||
| 1148 | struct ElementCountComparator { | ||||||||
| 1149 | bool operator()(const ElementCount &LHS, const ElementCount &RHS) const { | ||||||||
| 1150 | return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) < | ||||||||
| 1151 | std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue()); | ||||||||
| 1152 | } | ||||||||
| 1153 | }; | ||||||||
| 1154 | using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>; | ||||||||
| 1155 | |||||||||
| 1156 | /// LoopVectorizationCostModel - estimates the expected speedups due to | ||||||||
| 1157 | /// vectorization. | ||||||||
| 1158 | /// In many cases vectorization is not profitable. This can happen because of | ||||||||
| 1159 | /// a number of reasons. In this class we mainly attempt to predict the | ||||||||
| 1160 | /// expected speedup/slowdowns due to the supported instruction set. We use the | ||||||||
| 1161 | /// TargetTransformInfo to query the different backends for the cost of | ||||||||
| 1162 | /// different operations. | ||||||||
| 1163 | class LoopVectorizationCostModel { | ||||||||
| 1164 | public: | ||||||||
| 1165 | LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, | ||||||||
| 1166 | PredicatedScalarEvolution &PSE, LoopInfo *LI, | ||||||||
| 1167 | LoopVectorizationLegality *Legal, | ||||||||
| 1168 | const TargetTransformInfo &TTI, | ||||||||
| 1169 | const TargetLibraryInfo *TLI, DemandedBits *DB, | ||||||||
| 1170 | AssumptionCache *AC, | ||||||||
| 1171 | OptimizationRemarkEmitter *ORE, const Function *F, | ||||||||
| 1172 | const LoopVectorizeHints *Hints, | ||||||||
| 1173 | InterleavedAccessInfo &IAI) | ||||||||
| 1174 | : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), | ||||||||
| 1175 | TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), | ||||||||
| 1176 | Hints(Hints), InterleaveInfo(IAI) {} | ||||||||
| 1177 | |||||||||
| 1178 | /// \return An upper bound for the vectorization factors (both fixed and | ||||||||
| 1179 | /// scalable). If the factors are 0, vectorization and interleaving should be | ||||||||
| 1180 | /// avoided up front. | ||||||||
| 1181 | FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC); | ||||||||
| 1182 | |||||||||
| 1183 | /// \return True if runtime checks are required for vectorization, and false | ||||||||
| 1184 | /// otherwise. | ||||||||
| 1185 | bool runtimeChecksRequired(); | ||||||||
| 1186 | |||||||||
| 1187 | /// \return The most profitable vectorization factor and the cost of that VF. | ||||||||
| 1188 | /// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO | ||||||||
| 1189 | /// then this vectorization factor will be selected if vectorization is | ||||||||
| 1190 | /// possible. | ||||||||
| 1191 | VectorizationFactor | ||||||||
| 1192 | selectVectorizationFactor(const ElementCountSet &CandidateVFs); | ||||||||
| 1193 | |||||||||
| 1194 | VectorizationFactor | ||||||||
| 1195 | selectEpilogueVectorizationFactor(const ElementCount MaxVF, | ||||||||
| 1196 | const LoopVectorizationPlanner &LVP); | ||||||||
| 1197 | |||||||||
| 1198 | /// Setup cost-based decisions for user vectorization factor. | ||||||||
| 1199 | /// \return true if the UserVF is a feasible VF to be chosen. | ||||||||
| 1200 | bool selectUserVectorizationFactor(ElementCount UserVF) { | ||||||||
| 1201 | collectUniformsAndScalars(UserVF); | ||||||||
| 1202 | collectInstsToScalarize(UserVF); | ||||||||
| 1203 | return expectedCost(UserVF).first.isValid(); | ||||||||
| 1204 | } | ||||||||
| 1205 | |||||||||
| 1206 | /// \return The size (in bits) of the smallest and widest types in the code | ||||||||
| 1207 | /// that needs to be vectorized. We ignore values that remain scalar such as | ||||||||
| 1208 | /// 64 bit loop indices. | ||||||||
| 1209 | std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); | ||||||||
| 1210 | |||||||||
| 1211 | /// \return The desired interleave count. | ||||||||
| 1212 | /// If interleave count has been specified by metadata it will be returned. | ||||||||
| 1213 | /// Otherwise, the interleave count is computed and returned. VF and LoopCost | ||||||||
| 1214 | /// are the selected vectorization factor and the cost of the selected VF. | ||||||||
| 1215 | unsigned selectInterleaveCount(ElementCount VF, InstructionCost LoopCost); | ||||||||
| 1216 | |||||||||
| 1217 | /// Memory access instruction may be vectorized in more than one way. | ||||||||
| 1218 | /// Form of instruction after vectorization depends on cost. | ||||||||
| 1219 | /// This function takes cost-based decisions for Load/Store instructions | ||||||||
| 1220 | /// and collects them in a map. This decisions map is used for building | ||||||||
| 1221 | /// the lists of loop-uniform and loop-scalar instructions. | ||||||||
| 1222 | /// The calculated cost is saved with widening decision in order to | ||||||||
| 1223 | /// avoid redundant calculations. | ||||||||
| 1224 | void setCostBasedWideningDecision(ElementCount VF); | ||||||||
| 1225 | |||||||||
| 1226 | /// A struct that represents some properties of the register usage | ||||||||
| 1227 | /// of a loop. | ||||||||
| 1228 | struct RegisterUsage { | ||||||||
| 1229 | /// Holds the number of loop invariant values that are used in the loop. | ||||||||
| 1230 | /// The key is ClassID of target-provided register class. | ||||||||
| 1231 | SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; | ||||||||
| 1232 | /// Holds the maximum number of concurrent live intervals in the loop. | ||||||||
| 1233 | /// The key is ClassID of target-provided register class. | ||||||||
| 1234 | SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; | ||||||||
| 1235 | }; | ||||||||
| 1236 | |||||||||
| 1237 | /// \return Returns information about the register usages of the loop for the | ||||||||
| 1238 | /// given vectorization factors. | ||||||||
| 1239 | SmallVector<RegisterUsage, 8> | ||||||||
| 1240 | calculateRegisterUsage(ArrayRef<ElementCount> VFs); | ||||||||
| 1241 | |||||||||
| 1242 | /// Collect values we want to ignore in the cost model. | ||||||||
| 1243 | void collectValuesToIgnore(); | ||||||||
| 1244 | |||||||||
| 1245 | /// Collect all element types in the loop for which widening is needed. | ||||||||
| 1246 | void collectElementTypesForWidening(); | ||||||||
| 1247 | |||||||||
| 1248 | /// Split reductions into those that happen in the loop, and those that happen | ||||||||
| 1249 | /// outside. In loop reductions are collected into InLoopReductionChains. | ||||||||
| 1250 | void collectInLoopReductions(); | ||||||||
| 1251 | |||||||||
| 1252 | /// Returns true if we should use strict in-order reductions for the given | ||||||||
| 1253 | /// RdxDesc. This is true if the -enable-strict-reductions flag is passed, | ||||||||
| 1254 | /// the IsOrdered flag of RdxDesc is set and we do not allow reordering | ||||||||
| 1255 | /// of FP operations. | ||||||||
| 1256 | bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) const { | ||||||||
| 1257 | return !Hints->allowReordering() && RdxDesc.isOrdered(); | ||||||||
| 1258 | } | ||||||||
| 1259 | |||||||||
| 1260 | /// \returns The smallest bitwidth each instruction can be represented with. | ||||||||
| 1261 | /// The vector equivalents of these instructions should be truncated to this | ||||||||
| 1262 | /// type. | ||||||||
| 1263 | const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { | ||||||||
| 1264 | return MinBWs; | ||||||||
| 1265 | } | ||||||||
| 1266 | |||||||||
| 1267 | /// \returns True if it is more profitable to scalarize instruction \p I for | ||||||||
| 1268 | /// vectorization factor \p VF. | ||||||||
| 1269 | bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { | ||||||||
| 1270 | assert(VF.isVector() &&(static_cast <bool> (VF.isVector() && "Profitable to scalarize relevant only for VF > 1." ) ? void (0) : __assert_fail ("VF.isVector() && \"Profitable to scalarize relevant only for VF > 1.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1271, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 1271 | "Profitable to scalarize relevant only for VF > 1.")(static_cast <bool> (VF.isVector() && "Profitable to scalarize relevant only for VF > 1." ) ? void (0) : __assert_fail ("VF.isVector() && \"Profitable to scalarize relevant only for VF > 1.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1271, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 1272 | |||||||||
| 1273 | // Cost model is not run in the VPlan-native path - return conservative | ||||||||
| 1274 | // result until this changes. | ||||||||
| 1275 | if (EnableVPlanNativePath) | ||||||||
| 1276 | return false; | ||||||||
| 1277 | |||||||||
| 1278 | auto Scalars = InstsToScalarize.find(VF); | ||||||||
| 1279 | assert(Scalars != InstsToScalarize.end() &&(static_cast <bool> (Scalars != InstsToScalarize.end() && "VF not yet analyzed for scalarization profitability") ? void (0) : __assert_fail ("Scalars != InstsToScalarize.end() && \"VF not yet analyzed for scalarization profitability\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1280, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 1280 | "VF not yet analyzed for scalarization profitability")(static_cast <bool> (Scalars != InstsToScalarize.end() && "VF not yet analyzed for scalarization profitability") ? void (0) : __assert_fail ("Scalars != InstsToScalarize.end() && \"VF not yet analyzed for scalarization profitability\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1280, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 1281 | return Scalars->second.find(I) != Scalars->second.end(); | ||||||||
| 1282 | } | ||||||||
| 1283 | |||||||||
| 1284 | /// Returns true if \p I is known to be uniform after vectorization. | ||||||||
| 1285 | bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { | ||||||||
| 1286 | if (VF.isScalar()) | ||||||||
| 1287 | return true; | ||||||||
| 1288 | |||||||||
| 1289 | // Cost model is not run in the VPlan-native path - return conservative | ||||||||
| 1290 | // result until this changes. | ||||||||
| 1291 | if (EnableVPlanNativePath) | ||||||||
| 1292 | return false; | ||||||||
| 1293 | |||||||||
| 1294 | auto UniformsPerVF = Uniforms.find(VF); | ||||||||
| 1295 | assert(UniformsPerVF != Uniforms.end() &&(static_cast <bool> (UniformsPerVF != Uniforms.end() && "VF not yet analyzed for uniformity") ? void (0) : __assert_fail ("UniformsPerVF != Uniforms.end() && \"VF not yet analyzed for uniformity\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1296, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 1296 | "VF not yet analyzed for uniformity")(static_cast <bool> (UniformsPerVF != Uniforms.end() && "VF not yet analyzed for uniformity") ? void (0) : __assert_fail ("UniformsPerVF != Uniforms.end() && \"VF not yet analyzed for uniformity\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1296, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 1297 | return UniformsPerVF->second.count(I); | ||||||||
| 1298 | } | ||||||||
| 1299 | |||||||||
| 1300 | /// Returns true if \p I is known to be scalar after vectorization. | ||||||||
| 1301 | bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { | ||||||||
| 1302 | if (VF.isScalar()) | ||||||||
| 1303 | return true; | ||||||||
| 1304 | |||||||||
| 1305 | // Cost model is not run in the VPlan-native path - return conservative | ||||||||
| 1306 | // result until this changes. | ||||||||
| 1307 | if (EnableVPlanNativePath) | ||||||||
| 1308 | return false; | ||||||||
| 1309 | |||||||||
| 1310 | auto ScalarsPerVF = Scalars.find(VF); | ||||||||
| 1311 | assert(ScalarsPerVF != Scalars.end() &&(static_cast <bool> (ScalarsPerVF != Scalars.end() && "Scalar values are not calculated for VF") ? void (0) : __assert_fail ("ScalarsPerVF != Scalars.end() && \"Scalar values are not calculated for VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1312, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 1312 | "Scalar values are not calculated for VF")(static_cast <bool> (ScalarsPerVF != Scalars.end() && "Scalar values are not calculated for VF") ? void (0) : __assert_fail ("ScalarsPerVF != Scalars.end() && \"Scalar values are not calculated for VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1312, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 1313 | return ScalarsPerVF->second.count(I); | ||||||||
| 1314 | } | ||||||||
| 1315 | |||||||||
| 1316 | /// \returns True if instruction \p I can be truncated to a smaller bitwidth | ||||||||
| 1317 | /// for vectorization factor \p VF. | ||||||||
| 1318 | bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { | ||||||||
| 1319 | return VF.isVector() && MinBWs.find(I) != MinBWs.end() && | ||||||||
| 1320 | !isProfitableToScalarize(I, VF) && | ||||||||
| 1321 | !isScalarAfterVectorization(I, VF); | ||||||||
| 1322 | } | ||||||||
| 1323 | |||||||||
| 1324 | /// Decision that was taken during cost calculation for memory instruction. | ||||||||
| 1325 | enum InstWidening { | ||||||||
| 1326 | CM_Unknown, | ||||||||
| 1327 | CM_Widen, // For consecutive accesses with stride +1. | ||||||||
| 1328 | CM_Widen_Reverse, // For consecutive accesses with stride -1. | ||||||||
| 1329 | CM_Interleave, | ||||||||
| 1330 | CM_GatherScatter, | ||||||||
| 1331 | CM_Scalarize | ||||||||
| 1332 | }; | ||||||||
| 1333 | |||||||||
| 1334 | /// Save vectorization decision \p W and \p Cost taken by the cost model for | ||||||||
| 1335 | /// instruction \p I and vector width \p VF. | ||||||||
| 1336 | void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, | ||||||||
| 1337 | InstructionCost Cost) { | ||||||||
| 1338 | assert(VF.isVector() && "Expected VF >=2")(static_cast <bool> (VF.isVector() && "Expected VF >=2" ) ? void (0) : __assert_fail ("VF.isVector() && \"Expected VF >=2\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1338, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 1339 | WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); | ||||||||
| 1340 | } | ||||||||
| 1341 | |||||||||
| 1342 | /// Save vectorization decision \p W and \p Cost taken by the cost model for | ||||||||
| 1343 | /// interleaving group \p Grp and vector width \p VF. | ||||||||
| 1344 | void setWideningDecision(const InterleaveGroup<Instruction> *Grp, | ||||||||
| 1345 | ElementCount VF, InstWidening W, | ||||||||
| 1346 | InstructionCost Cost) { | ||||||||
| 1347 | assert(VF.isVector() && "Expected VF >=2")(static_cast <bool> (VF.isVector() && "Expected VF >=2" ) ? void (0) : __assert_fail ("VF.isVector() && \"Expected VF >=2\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1347, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 1348 | /// Broadcast this decicion to all instructions inside the group. | ||||||||
| 1349 | /// But the cost will be assigned to one instruction only. | ||||||||
| 1350 | for (unsigned i = 0; i < Grp->getFactor(); ++i) { | ||||||||
| 1351 | if (auto *I = Grp->getMember(i)) { | ||||||||
| 1352 | if (Grp->getInsertPos() == I) | ||||||||
| 1353 | WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); | ||||||||
| 1354 | else | ||||||||
| 1355 | WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); | ||||||||
| 1356 | } | ||||||||
| 1357 | } | ||||||||
| 1358 | } | ||||||||
| 1359 | |||||||||
| 1360 | /// Return the cost model decision for the given instruction \p I and vector | ||||||||
| 1361 | /// width \p VF. Return CM_Unknown if this instruction did not pass | ||||||||
| 1362 | /// through the cost modeling. | ||||||||
| 1363 | InstWidening getWideningDecision(Instruction *I, ElementCount VF) const { | ||||||||
| 1364 | assert(VF.isVector() && "Expected VF to be a vector VF")(static_cast <bool> (VF.isVector() && "Expected VF to be a vector VF" ) ? void (0) : __assert_fail ("VF.isVector() && \"Expected VF to be a vector VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1364, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 1365 | // Cost model is not run in the VPlan-native path - return conservative | ||||||||
| 1366 | // result until this changes. | ||||||||
| 1367 | if (EnableVPlanNativePath) | ||||||||
| 1368 | return CM_GatherScatter; | ||||||||
| 1369 | |||||||||
| 1370 | std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); | ||||||||
| 1371 | auto Itr = WideningDecisions.find(InstOnVF); | ||||||||
| 1372 | if (Itr == WideningDecisions.end()) | ||||||||
| 1373 | return CM_Unknown; | ||||||||
| 1374 | return Itr->second.first; | ||||||||
| 1375 | } | ||||||||
| 1376 | |||||||||
| 1377 | /// Return the vectorization cost for the given instruction \p I and vector | ||||||||
| 1378 | /// width \p VF. | ||||||||
| 1379 | InstructionCost getWideningCost(Instruction *I, ElementCount VF) { | ||||||||
| 1380 | assert(VF.isVector() && "Expected VF >=2")(static_cast <bool> (VF.isVector() && "Expected VF >=2" ) ? void (0) : __assert_fail ("VF.isVector() && \"Expected VF >=2\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1380, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 1381 | std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); | ||||||||
| 1382 | assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&(static_cast <bool> (WideningDecisions.find(InstOnVF) != WideningDecisions.end() && "The cost is not calculated" ) ? void (0) : __assert_fail ("WideningDecisions.find(InstOnVF) != WideningDecisions.end() && \"The cost is not calculated\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1383, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 1383 | "The cost is not calculated")(static_cast <bool> (WideningDecisions.find(InstOnVF) != WideningDecisions.end() && "The cost is not calculated" ) ? void (0) : __assert_fail ("WideningDecisions.find(InstOnVF) != WideningDecisions.end() && \"The cost is not calculated\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1383, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 1384 | return WideningDecisions[InstOnVF].second; | ||||||||
| 1385 | } | ||||||||
| 1386 | |||||||||
| 1387 | /// Return True if instruction \p I is an optimizable truncate whose operand | ||||||||
| 1388 | /// is an induction variable. Such a truncate will be removed by adding a new | ||||||||
| 1389 | /// induction variable with the destination type. | ||||||||
| 1390 | bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { | ||||||||
| 1391 | // If the instruction is not a truncate, return false. | ||||||||
| 1392 | auto *Trunc = dyn_cast<TruncInst>(I); | ||||||||
| 1393 | if (!Trunc) | ||||||||
| 1394 | return false; | ||||||||
| 1395 | |||||||||
| 1396 | // Get the source and destination types of the truncate. | ||||||||
| 1397 | Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); | ||||||||
| 1398 | Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); | ||||||||
| 1399 | |||||||||
| 1400 | // If the truncate is free for the given types, return false. Replacing a | ||||||||
| 1401 | // free truncate with an induction variable would add an induction variable | ||||||||
| 1402 | // update instruction to each iteration of the loop. We exclude from this | ||||||||
| 1403 | // check the primary induction variable since it will need an update | ||||||||
| 1404 | // instruction regardless. | ||||||||
| 1405 | Value *Op = Trunc->getOperand(0); | ||||||||
| 1406 | if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) | ||||||||
| 1407 | return false; | ||||||||
| 1408 | |||||||||
| 1409 | // If the truncated value is not an induction variable, return false. | ||||||||
| 1410 | return Legal->isInductionPhi(Op); | ||||||||
| 1411 | } | ||||||||
| 1412 | |||||||||
| 1413 | /// Collects the instructions to scalarize for each predicated instruction in | ||||||||
| 1414 | /// the loop. | ||||||||
| 1415 | void collectInstsToScalarize(ElementCount VF); | ||||||||
| 1416 | |||||||||
| 1417 | /// Collect Uniform and Scalar values for the given \p VF. | ||||||||
| 1418 | /// The sets depend on CM decision for Load/Store instructions | ||||||||
| 1419 | /// that may be vectorized as interleave, gather-scatter or scalarized. | ||||||||
| 1420 | void collectUniformsAndScalars(ElementCount VF) { | ||||||||
| 1421 | // Do the analysis once. | ||||||||
| 1422 | if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) | ||||||||
| 1423 | return; | ||||||||
| 1424 | setCostBasedWideningDecision(VF); | ||||||||
| 1425 | collectLoopUniforms(VF); | ||||||||
| 1426 | collectLoopScalars(VF); | ||||||||
| 1427 | } | ||||||||
| 1428 | |||||||||
| 1429 | /// Returns true if the target machine supports masked store operation | ||||||||
| 1430 | /// for the given \p DataType and kind of access to \p Ptr. | ||||||||
| 1431 | bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const { | ||||||||
| 1432 | return Legal->isConsecutivePtr(DataType, Ptr) && | ||||||||
| 1433 | TTI.isLegalMaskedStore(DataType, Alignment); | ||||||||
| 1434 | } | ||||||||
| 1435 | |||||||||
| 1436 | /// Returns true if the target machine supports masked load operation | ||||||||
| 1437 | /// for the given \p DataType and kind of access to \p Ptr. | ||||||||
| 1438 | bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const { | ||||||||
| 1439 | return Legal->isConsecutivePtr(DataType, Ptr) && | ||||||||
| 1440 | TTI.isLegalMaskedLoad(DataType, Alignment); | ||||||||
| 1441 | } | ||||||||
| 1442 | |||||||||
| 1443 | /// Returns true if the target machine can represent \p V as a masked gather | ||||||||
| 1444 | /// or scatter operation. | ||||||||
| 1445 | bool isLegalGatherOrScatter(Value *V, | ||||||||
| 1446 | ElementCount VF = ElementCount::getFixed(1)) { | ||||||||
| 1447 | bool LI = isa<LoadInst>(V); | ||||||||
| 1448 | bool SI = isa<StoreInst>(V); | ||||||||
| 1449 | if (!LI && !SI) | ||||||||
| 1450 | return false; | ||||||||
| 1451 | auto *Ty = getLoadStoreType(V); | ||||||||
| 1452 | Align Align = getLoadStoreAlignment(V); | ||||||||
| 1453 | if (VF.isVector()) | ||||||||
| 1454 | Ty = VectorType::get(Ty, VF); | ||||||||
| 1455 | return (LI && TTI.isLegalMaskedGather(Ty, Align)) || | ||||||||
| 1456 | (SI && TTI.isLegalMaskedScatter(Ty, Align)); | ||||||||
| 1457 | } | ||||||||
| 1458 | |||||||||
| 1459 | /// Returns true if the target machine supports all of the reduction | ||||||||
| 1460 | /// variables found for the given VF. | ||||||||
| 1461 | bool canVectorizeReductions(ElementCount VF) const { | ||||||||
| 1462 | return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { | ||||||||
| 1463 | const RecurrenceDescriptor &RdxDesc = Reduction.second; | ||||||||
| 1464 | return TTI.isLegalToVectorizeReduction(RdxDesc, VF); | ||||||||
| 1465 | })); | ||||||||
| 1466 | } | ||||||||
| 1467 | |||||||||
| 1468 | /// Given costs for both strategies, return true if the scalar predication | ||||||||
| 1469 | /// lowering should be used for div/rem. This incorporates an override | ||||||||
| 1470 | /// option so it is not simply a cost comparison. | ||||||||
| 1471 | bool isDivRemScalarWithPredication(InstructionCost ScalarCost, | ||||||||
| 1472 | InstructionCost SafeDivisorCost) const { | ||||||||
| 1473 | switch (ForceSafeDivisor) { | ||||||||
| 1474 | case cl::BOU_UNSET: | ||||||||
| 1475 | return ScalarCost < SafeDivisorCost; | ||||||||
| 1476 | case cl::BOU_TRUE: | ||||||||
| 1477 | return false; | ||||||||
| 1478 | case cl::BOU_FALSE: | ||||||||
| 1479 | return true; | ||||||||
| 1480 | }; | ||||||||
| 1481 | llvm_unreachable("impossible case value")::llvm::llvm_unreachable_internal("impossible case value", "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp" , 1481); | ||||||||
| 1482 | } | ||||||||
| 1483 | |||||||||
| 1484 | /// Returns true if \p I is an instruction which requires predication and | ||||||||
| 1485 | /// for which our chosen predication strategy is scalarization (i.e. we | ||||||||
| 1486 | /// don't have an alternate strategy such as masking available). | ||||||||
| 1487 | /// \p VF is the vectorization factor that will be used to vectorize \p I. | ||||||||
| 1488 | bool isScalarWithPredication(Instruction *I, ElementCount VF) const; | ||||||||
| 1489 | |||||||||
| 1490 | /// Returns true if \p I is an instruction that needs to be predicated | ||||||||
| 1491 | /// at runtime. The result is independent of the predication mechanism. | ||||||||
| 1492 | /// Superset of instructions that return true for isScalarWithPredication. | ||||||||
| 1493 | bool isPredicatedInst(Instruction *I) const; | ||||||||
| 1494 | |||||||||
| 1495 | /// Return the costs for our two available strategies for lowering a | ||||||||
| 1496 | /// div/rem operation which requires speculating at least one lane. | ||||||||
| 1497 | /// First result is for scalarization (will be invalid for scalable | ||||||||
| 1498 | /// vectors); second is for the safe-divisor strategy. | ||||||||
| 1499 | std::pair<InstructionCost, InstructionCost> | ||||||||
| 1500 | getDivRemSpeculationCost(Instruction *I, | ||||||||
| 1501 | ElementCount VF) const; | ||||||||
| 1502 | |||||||||
| 1503 | /// Returns true if \p I is a memory instruction with consecutive memory | ||||||||
| 1504 | /// access that can be widened. | ||||||||
| 1505 | bool memoryInstructionCanBeWidened(Instruction *I, ElementCount VF); | ||||||||
| 1506 | |||||||||
| 1507 | /// Returns true if \p I is a memory instruction in an interleaved-group | ||||||||
| 1508 | /// of memory accesses that can be vectorized with wide vector loads/stores | ||||||||
| 1509 | /// and shuffles. | ||||||||
| 1510 | bool interleavedAccessCanBeWidened(Instruction *I, ElementCount VF); | ||||||||
| 1511 | |||||||||
| 1512 | /// Check if \p Instr belongs to any interleaved access group. | ||||||||
| 1513 | bool isAccessInterleaved(Instruction *Instr) { | ||||||||
| 1514 | return InterleaveInfo.isInterleaved(Instr); | ||||||||
| 1515 | } | ||||||||
| 1516 | |||||||||
| 1517 | /// Get the interleaved access group that \p Instr belongs to. | ||||||||
| 1518 | const InterleaveGroup<Instruction> * | ||||||||
| 1519 | getInterleavedAccessGroup(Instruction *Instr) { | ||||||||
| 1520 | return InterleaveInfo.getInterleaveGroup(Instr); | ||||||||
| 1521 | } | ||||||||
| 1522 | |||||||||
| 1523 | /// Returns true if we're required to use a scalar epilogue for at least | ||||||||
| 1524 | /// the final iteration of the original loop. | ||||||||
| 1525 | bool requiresScalarEpilogue(ElementCount VF) const { | ||||||||
| 1526 | if (!isScalarEpilogueAllowed()) | ||||||||
| 1527 | return false; | ||||||||
| 1528 | // If we might exit from anywhere but the latch, must run the exiting | ||||||||
| 1529 | // iteration in scalar form. | ||||||||
| 1530 | if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) | ||||||||
| 1531 | return true; | ||||||||
| 1532 | return VF.isVector() && InterleaveInfo.requiresScalarEpilogue(); | ||||||||
| 1533 | } | ||||||||
| 1534 | |||||||||
| 1535 | /// Returns true if a scalar epilogue is not allowed due to optsize or a | ||||||||
| 1536 | /// loop hint annotation. | ||||||||
| 1537 | bool isScalarEpilogueAllowed() const { | ||||||||
| 1538 | return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; | ||||||||
| 1539 | } | ||||||||
| 1540 | |||||||||
| 1541 | /// Returns true if all loop blocks should be masked to fold tail loop. | ||||||||
| 1542 | bool foldTailByMasking() const { return FoldTailByMasking; } | ||||||||
| 1543 | |||||||||
| 1544 | /// Returns true if were tail-folding and want to use the active lane mask | ||||||||
| 1545 | /// for vector loop control flow. | ||||||||
| 1546 | bool useActiveLaneMaskForControlFlow() const { | ||||||||
| 1547 | return FoldTailByMasking && | ||||||||
| 1548 | TTI.emitGetActiveLaneMask() == PredicationStyle::DataAndControlFlow; | ||||||||
| 1549 | } | ||||||||
| 1550 | |||||||||
| 1551 | /// Returns true if the instructions in this block requires predication | ||||||||
| 1552 | /// for any reason, e.g. because tail folding now requires a predicate | ||||||||
| 1553 | /// or because the block in the original loop was predicated. | ||||||||
| 1554 | bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const { | ||||||||
| 1555 | return foldTailByMasking() || Legal->blockNeedsPredication(BB); | ||||||||
| 1556 | } | ||||||||
| 1557 | |||||||||
| 1558 | /// A SmallMapVector to store the InLoop reduction op chains, mapping phi | ||||||||
| 1559 | /// nodes to the chain of instructions representing the reductions. Uses a | ||||||||
| 1560 | /// MapVector to ensure deterministic iteration order. | ||||||||
| 1561 | using ReductionChainMap = | ||||||||
| 1562 | SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; | ||||||||
| 1563 | |||||||||
| 1564 | /// Return the chain of instructions representing an inloop reduction. | ||||||||
| 1565 | const ReductionChainMap &getInLoopReductionChains() const { | ||||||||
| 1566 | return InLoopReductionChains; | ||||||||
| 1567 | } | ||||||||
| 1568 | |||||||||
| 1569 | /// Returns true if the Phi is part of an inloop reduction. | ||||||||
| 1570 | bool isInLoopReduction(PHINode *Phi) const { | ||||||||
| 1571 | return InLoopReductionChains.count(Phi); | ||||||||
| 1572 | } | ||||||||
| 1573 | |||||||||
| 1574 | /// Estimate cost of an intrinsic call instruction CI if it were vectorized | ||||||||
| 1575 | /// with factor VF. Return the cost of the instruction, including | ||||||||
| 1576 | /// scalarization overhead if it's needed. | ||||||||
| 1577 | InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const; | ||||||||
| 1578 | |||||||||
| 1579 | /// Estimate cost of a call instruction CI if it were vectorized with factor | ||||||||
| 1580 | /// VF. Return the cost of the instruction, including scalarization overhead | ||||||||
| 1581 | /// if it's needed. The flag NeedToScalarize shows if the call needs to be | ||||||||
| 1582 | /// scalarized - | ||||||||
| 1583 | /// i.e. either vector version isn't available, or is too expensive. | ||||||||
| 1584 | InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, | ||||||||
| 1585 | bool &NeedToScalarize) const; | ||||||||
| 1586 | |||||||||
| 1587 | /// Returns true if the per-lane cost of VectorizationFactor A is lower than | ||||||||
| 1588 | /// that of B. | ||||||||
| 1589 | bool isMoreProfitable(const VectorizationFactor &A, | ||||||||
| 1590 | const VectorizationFactor &B) const; | ||||||||
| 1591 | |||||||||
| 1592 | /// Invalidates decisions already taken by the cost model. | ||||||||
| 1593 | void invalidateCostModelingDecisions() { | ||||||||
| 1594 | WideningDecisions.clear(); | ||||||||
| 1595 | Uniforms.clear(); | ||||||||
| 1596 | Scalars.clear(); | ||||||||
| 1597 | } | ||||||||
| 1598 | |||||||||
| 1599 | /// Convenience function that returns the value of vscale_range iff | ||||||||
| 1600 | /// vscale_range.min == vscale_range.max or otherwise returns the value | ||||||||
| 1601 | /// returned by the corresponding TLI method. | ||||||||
| 1602 | std::optional<unsigned> getVScaleForTuning() const; | ||||||||
| 1603 | |||||||||
| 1604 | private: | ||||||||
| 1605 | unsigned NumPredStores = 0; | ||||||||
| 1606 | |||||||||
| 1607 | /// \return An upper bound for the vectorization factors for both | ||||||||
| 1608 | /// fixed and scalable vectorization, where the minimum-known number of | ||||||||
| 1609 | /// elements is a power-of-2 larger than zero. If scalable vectorization is | ||||||||
| 1610 | /// disabled or unsupported, then the scalable part will be equal to | ||||||||
| 1611 | /// ElementCount::getScalable(0). | ||||||||
| 1612 | FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount, | ||||||||
| 1613 | ElementCount UserVF, | ||||||||
| 1614 | bool FoldTailByMasking); | ||||||||
| 1615 | |||||||||
| 1616 | /// \return the maximized element count based on the targets vector | ||||||||
| 1617 | /// registers and the loop trip-count, but limited to a maximum safe VF. | ||||||||
| 1618 | /// This is a helper function of computeFeasibleMaxVF. | ||||||||
| 1619 | ElementCount getMaximizedVFForTarget(unsigned ConstTripCount, | ||||||||
| 1620 | unsigned SmallestType, | ||||||||
| 1621 | unsigned WidestType, | ||||||||
| 1622 | ElementCount MaxSafeVF, | ||||||||
| 1623 | bool FoldTailByMasking); | ||||||||
| 1624 | |||||||||
| 1625 | /// \return the maximum legal scalable VF, based on the safe max number | ||||||||
| 1626 | /// of elements. | ||||||||
| 1627 | ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements); | ||||||||
| 1628 | |||||||||
| 1629 | /// The vectorization cost is a combination of the cost itself and a boolean | ||||||||
| 1630 | /// indicating whether any of the contributing operations will actually | ||||||||
| 1631 | /// operate on vector values after type legalization in the backend. If this | ||||||||
| 1632 | /// latter value is false, then all operations will be scalarized (i.e. no | ||||||||
| 1633 | /// vectorization has actually taken place). | ||||||||
| 1634 | using VectorizationCostTy = std::pair<InstructionCost, bool>; | ||||||||
| 1635 | |||||||||
| 1636 | /// Returns the expected execution cost. The unit of the cost does | ||||||||
| 1637 | /// not matter because we use the 'cost' units to compare different | ||||||||
| 1638 | /// vector widths. The cost that is returned is *not* normalized by | ||||||||
| 1639 | /// the factor width. If \p Invalid is not nullptr, this function | ||||||||
| 1640 | /// will add a pair(Instruction*, ElementCount) to \p Invalid for | ||||||||
| 1641 | /// each instruction that has an Invalid cost for the given VF. | ||||||||
| 1642 | using InstructionVFPair = std::pair<Instruction *, ElementCount>; | ||||||||
| 1643 | VectorizationCostTy | ||||||||
| 1644 | expectedCost(ElementCount VF, | ||||||||
| 1645 | SmallVectorImpl<InstructionVFPair> *Invalid = nullptr); | ||||||||
| 1646 | |||||||||
| 1647 | /// Returns the execution time cost of an instruction for a given vector | ||||||||
| 1648 | /// width. Vector width of one means scalar. | ||||||||
| 1649 | VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); | ||||||||
| 1650 | |||||||||
| 1651 | /// The cost-computation logic from getInstructionCost which provides | ||||||||
| 1652 | /// the vector type as an output parameter. | ||||||||
| 1653 | InstructionCost getInstructionCost(Instruction *I, ElementCount VF, | ||||||||
| 1654 | Type *&VectorTy); | ||||||||
| 1655 | |||||||||
| 1656 | /// Return the cost of instructions in an inloop reduction pattern, if I is | ||||||||
| 1657 | /// part of that pattern. | ||||||||
| 1658 | std::optional<InstructionCost> | ||||||||
| 1659 | getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy, | ||||||||
| 1660 | TTI::TargetCostKind CostKind); | ||||||||
| 1661 | |||||||||
| 1662 | /// Calculate vectorization cost of memory instruction \p I. | ||||||||
| 1663 | InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); | ||||||||
| 1664 | |||||||||
| 1665 | /// The cost computation for scalarized memory instruction. | ||||||||
| 1666 | InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); | ||||||||
| 1667 | |||||||||
| 1668 | /// The cost computation for interleaving group of memory instructions. | ||||||||
| 1669 | InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); | ||||||||
| 1670 | |||||||||
| 1671 | /// The cost computation for Gather/Scatter instruction. | ||||||||
| 1672 | InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); | ||||||||
| 1673 | |||||||||
| 1674 | /// The cost computation for widening instruction \p I with consecutive | ||||||||
| 1675 | /// memory access. | ||||||||
| 1676 | InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); | ||||||||
| 1677 | |||||||||
| 1678 | /// The cost calculation for Load/Store instruction \p I with uniform pointer - | ||||||||
| 1679 | /// Load: scalar load + broadcast. | ||||||||
| 1680 | /// Store: scalar store + (loop invariant value stored? 0 : extract of last | ||||||||
| 1681 | /// element) | ||||||||
| 1682 | InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); | ||||||||
| 1683 | |||||||||
| 1684 | /// Estimate the overhead of scalarizing an instruction. This is a | ||||||||
| 1685 | /// convenience wrapper for the type-based getScalarizationOverhead API. | ||||||||
| 1686 | InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF, | ||||||||
| 1687 | TTI::TargetCostKind CostKind) const; | ||||||||
| 1688 | |||||||||
| 1689 | /// Returns true if an artificially high cost for emulated masked memrefs | ||||||||
| 1690 | /// should be used. | ||||||||
| 1691 | bool useEmulatedMaskMemRefHack(Instruction *I, ElementCount VF); | ||||||||
| 1692 | |||||||||
| 1693 | /// Map of scalar integer values to the smallest bitwidth they can be legally | ||||||||
| 1694 | /// represented as. The vector equivalents of these values should be truncated | ||||||||
| 1695 | /// to this type. | ||||||||
| 1696 | MapVector<Instruction *, uint64_t> MinBWs; | ||||||||
| 1697 | |||||||||
| 1698 | /// A type representing the costs for instructions if they were to be | ||||||||
| 1699 | /// scalarized rather than vectorized. The entries are Instruction-Cost | ||||||||
| 1700 | /// pairs. | ||||||||
| 1701 | using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; | ||||||||
| 1702 | |||||||||
| 1703 | /// A set containing all BasicBlocks that are known to present after | ||||||||
| 1704 | /// vectorization as a predicated block. | ||||||||
| 1705 | DenseMap<ElementCount, SmallPtrSet<BasicBlock *, 4>> | ||||||||
| 1706 | PredicatedBBsAfterVectorization; | ||||||||
| 1707 | |||||||||
| 1708 | /// Records whether it is allowed to have the original scalar loop execute at | ||||||||
| 1709 | /// least once. This may be needed as a fallback loop in case runtime | ||||||||
| 1710 | /// aliasing/dependence checks fail, or to handle the tail/remainder | ||||||||
| 1711 | /// iterations when the trip count is unknown or doesn't divide by the VF, | ||||||||
| 1712 | /// or as a peel-loop to handle gaps in interleave-groups. | ||||||||
| 1713 | /// Under optsize and when the trip count is very small we don't allow any | ||||||||
| 1714 | /// iterations to execute in the scalar loop. | ||||||||
| 1715 | ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; | ||||||||
| 1716 | |||||||||
| 1717 | /// All blocks of loop are to be masked to fold tail of scalar iterations. | ||||||||
| 1718 | bool FoldTailByMasking = false; | ||||||||
| 1719 | |||||||||
| 1720 | /// A map holding scalar costs for different vectorization factors. The | ||||||||
| 1721 | /// presence of a cost for an instruction in the mapping indicates that the | ||||||||
| 1722 | /// instruction will be scalarized when vectorizing with the associated | ||||||||
| 1723 | /// vectorization factor. The entries are VF-ScalarCostTy pairs. | ||||||||
| 1724 | DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; | ||||||||
| 1725 | |||||||||
| 1726 | /// Holds the instructions known to be uniform after vectorization. | ||||||||
| 1727 | /// The data is collected per VF. | ||||||||
| 1728 | DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; | ||||||||
| 1729 | |||||||||
| 1730 | /// Holds the instructions known to be scalar after vectorization. | ||||||||
| 1731 | /// The data is collected per VF. | ||||||||
| 1732 | DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; | ||||||||
| 1733 | |||||||||
| 1734 | /// Holds the instructions (address computations) that are forced to be | ||||||||
| 1735 | /// scalarized. | ||||||||
| 1736 | DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; | ||||||||
| 1737 | |||||||||
| 1738 | /// PHINodes of the reductions that should be expanded in-loop along with | ||||||||
| 1739 | /// their associated chains of reduction operations, in program order from top | ||||||||
| 1740 | /// (PHI) to bottom | ||||||||
| 1741 | ReductionChainMap InLoopReductionChains; | ||||||||
| 1742 | |||||||||
| 1743 | /// A Map of inloop reduction operations and their immediate chain operand. | ||||||||
| 1744 | /// FIXME: This can be removed once reductions can be costed correctly in | ||||||||
| 1745 | /// vplan. This was added to allow quick lookup to the inloop operations, | ||||||||
| 1746 | /// without having to loop through InLoopReductionChains. | ||||||||
| 1747 | DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; | ||||||||
| 1748 | |||||||||
| 1749 | /// Returns the expected difference in cost from scalarizing the expression | ||||||||
| 1750 | /// feeding a predicated instruction \p PredInst. The instructions to | ||||||||
| 1751 | /// scalarize and their scalar costs are collected in \p ScalarCosts. A | ||||||||
| 1752 | /// non-negative return value implies the expression will be scalarized. | ||||||||
| 1753 | /// Currently, only single-use chains are considered for scalarization. | ||||||||
| 1754 | InstructionCost computePredInstDiscount(Instruction *PredInst, | ||||||||
| 1755 | ScalarCostsTy &ScalarCosts, | ||||||||
| 1756 | ElementCount VF); | ||||||||
| 1757 | |||||||||
| 1758 | /// Collect the instructions that are uniform after vectorization. An | ||||||||
| 1759 | /// instruction is uniform if we represent it with a single scalar value in | ||||||||
| 1760 | /// the vectorized loop corresponding to each vector iteration. Examples of | ||||||||
| 1761 | /// uniform instructions include pointer operands of consecutive or | ||||||||
| 1762 | /// interleaved memory accesses. Note that although uniformity implies an | ||||||||
| 1763 | /// instruction will be scalar, the reverse is not true. In general, a | ||||||||
| 1764 | /// scalarized instruction will be represented by VF scalar values in the | ||||||||
| 1765 | /// vectorized loop, each corresponding to an iteration of the original | ||||||||
| 1766 | /// scalar loop. | ||||||||
| 1767 | void collectLoopUniforms(ElementCount VF); | ||||||||
| 1768 | |||||||||
| 1769 | /// Collect the instructions that are scalar after vectorization. An | ||||||||
| 1770 | /// instruction is scalar if it is known to be uniform or will be scalarized | ||||||||
| 1771 | /// during vectorization. collectLoopScalars should only add non-uniform nodes | ||||||||
| 1772 | /// to the list if they are used by a load/store instruction that is marked as | ||||||||
| 1773 | /// CM_Scalarize. Non-uniform scalarized instructions will be represented by | ||||||||
| 1774 | /// VF values in the vectorized loop, each corresponding to an iteration of | ||||||||
| 1775 | /// the original scalar loop. | ||||||||
| 1776 | void collectLoopScalars(ElementCount VF); | ||||||||
| 1777 | |||||||||
| 1778 | /// Keeps cost model vectorization decision and cost for instructions. | ||||||||
| 1779 | /// Right now it is used for memory instructions only. | ||||||||
| 1780 | using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, | ||||||||
| 1781 | std::pair<InstWidening, InstructionCost>>; | ||||||||
| 1782 | |||||||||
| 1783 | DecisionList WideningDecisions; | ||||||||
| 1784 | |||||||||
| 1785 | /// Returns true if \p V is expected to be vectorized and it needs to be | ||||||||
| 1786 | /// extracted. | ||||||||
| 1787 | bool needsExtract(Value *V, ElementCount VF) const { | ||||||||
| 1788 | Instruction *I = dyn_cast<Instruction>(V); | ||||||||
| 1789 | if (VF.isScalar() || !I || !TheLoop->contains(I) || | ||||||||
| 1790 | TheLoop->isLoopInvariant(I)) | ||||||||
| 1791 | return false; | ||||||||
| 1792 | |||||||||
| 1793 | // Assume we can vectorize V (and hence we need extraction) if the | ||||||||
| 1794 | // scalars are not computed yet. This can happen, because it is called | ||||||||
| 1795 | // via getScalarizationOverhead from setCostBasedWideningDecision, before | ||||||||
| 1796 | // the scalars are collected. That should be a safe assumption in most | ||||||||
| 1797 | // cases, because we check if the operands have vectorizable types | ||||||||
| 1798 | // beforehand in LoopVectorizationLegality. | ||||||||
| 1799 | return Scalars.find(VF) == Scalars.end() || | ||||||||
| 1800 | !isScalarAfterVectorization(I, VF); | ||||||||
| 1801 | }; | ||||||||
| 1802 | |||||||||
| 1803 | /// Returns a range containing only operands needing to be extracted. | ||||||||
| 1804 | SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, | ||||||||
| 1805 | ElementCount VF) const { | ||||||||
| 1806 | return SmallVector<Value *, 4>(make_filter_range( | ||||||||
| 1807 | Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); | ||||||||
| 1808 | } | ||||||||
| 1809 | |||||||||
| 1810 | /// Determines if we have the infrastructure to vectorize loop \p L and its | ||||||||
| 1811 | /// epilogue, assuming the main loop is vectorized by \p VF. | ||||||||
| 1812 | bool isCandidateForEpilogueVectorization(const Loop &L, | ||||||||
| 1813 | const ElementCount VF) const; | ||||||||
| 1814 | |||||||||
| 1815 | /// Returns true if epilogue vectorization is considered profitable, and | ||||||||
| 1816 | /// false otherwise. | ||||||||
| 1817 | /// \p VF is the vectorization factor chosen for the original loop. | ||||||||
| 1818 | bool isEpilogueVectorizationProfitable(const ElementCount VF) const; | ||||||||
| 1819 | |||||||||
| 1820 | public: | ||||||||
| 1821 | /// The loop that we evaluate. | ||||||||
| 1822 | Loop *TheLoop; | ||||||||
| 1823 | |||||||||
| 1824 | /// Predicated scalar evolution analysis. | ||||||||
| 1825 | PredicatedScalarEvolution &PSE; | ||||||||
| 1826 | |||||||||
| 1827 | /// Loop Info analysis. | ||||||||
| 1828 | LoopInfo *LI; | ||||||||
| 1829 | |||||||||
| 1830 | /// Vectorization legality. | ||||||||
| 1831 | LoopVectorizationLegality *Legal; | ||||||||
| 1832 | |||||||||
| 1833 | /// Vector target information. | ||||||||
| 1834 | const TargetTransformInfo &TTI; | ||||||||
| 1835 | |||||||||
| 1836 | /// Target Library Info. | ||||||||
| 1837 | const TargetLibraryInfo *TLI; | ||||||||
| 1838 | |||||||||
| 1839 | /// Demanded bits analysis. | ||||||||
| 1840 | DemandedBits *DB; | ||||||||
| 1841 | |||||||||
| 1842 | /// Assumption cache. | ||||||||
| 1843 | AssumptionCache *AC; | ||||||||
| 1844 | |||||||||
| 1845 | /// Interface to emit optimization remarks. | ||||||||
| 1846 | OptimizationRemarkEmitter *ORE; | ||||||||
| 1847 | |||||||||
| 1848 | const Function *TheFunction; | ||||||||
| 1849 | |||||||||
| 1850 | /// Loop Vectorize Hint. | ||||||||
| 1851 | const LoopVectorizeHints *Hints; | ||||||||
| 1852 | |||||||||
| 1853 | /// The interleave access information contains groups of interleaved accesses | ||||||||
| 1854 | /// with the same stride and close to each other. | ||||||||
| 1855 | InterleavedAccessInfo &InterleaveInfo; | ||||||||
| 1856 | |||||||||
| 1857 | /// Values to ignore in the cost model. | ||||||||
| 1858 | SmallPtrSet<const Value *, 16> ValuesToIgnore; | ||||||||
| 1859 | |||||||||
| 1860 | /// Values to ignore in the cost model when VF > 1. | ||||||||
| 1861 | SmallPtrSet<const Value *, 16> VecValuesToIgnore; | ||||||||
| 1862 | |||||||||
| 1863 | /// All element types found in the loop. | ||||||||
| 1864 | SmallPtrSet<Type *, 16> ElementTypesInLoop; | ||||||||
| 1865 | |||||||||
| 1866 | /// Profitable vector factors. | ||||||||
| 1867 | SmallVector<VectorizationFactor, 8> ProfitableVFs; | ||||||||
| 1868 | }; | ||||||||
| 1869 | } // end namespace llvm | ||||||||
| 1870 | |||||||||
| 1871 | namespace { | ||||||||
| 1872 | /// Helper struct to manage generating runtime checks for vectorization. | ||||||||
| 1873 | /// | ||||||||
| 1874 | /// The runtime checks are created up-front in temporary blocks to allow better | ||||||||
| 1875 | /// estimating the cost and un-linked from the existing IR. After deciding to | ||||||||
| 1876 | /// vectorize, the checks are moved back. If deciding not to vectorize, the | ||||||||
| 1877 | /// temporary blocks are completely removed. | ||||||||
| 1878 | class GeneratedRTChecks { | ||||||||
| 1879 | /// Basic block which contains the generated SCEV checks, if any. | ||||||||
| 1880 | BasicBlock *SCEVCheckBlock = nullptr; | ||||||||
| 1881 | |||||||||
| 1882 | /// The value representing the result of the generated SCEV checks. If it is | ||||||||
| 1883 | /// nullptr, either no SCEV checks have been generated or they have been used. | ||||||||
| 1884 | Value *SCEVCheckCond = nullptr; | ||||||||
| 1885 | |||||||||
| 1886 | /// Basic block which contains the generated memory runtime checks, if any. | ||||||||
| 1887 | BasicBlock *MemCheckBlock = nullptr; | ||||||||
| 1888 | |||||||||
| 1889 | /// The value representing the result of the generated memory runtime checks. | ||||||||
| 1890 | /// If it is nullptr, either no memory runtime checks have been generated or | ||||||||
| 1891 | /// they have been used. | ||||||||
| 1892 | Value *MemRuntimeCheckCond = nullptr; | ||||||||
| 1893 | |||||||||
| 1894 | DominatorTree *DT; | ||||||||
| 1895 | LoopInfo *LI; | ||||||||
| 1896 | TargetTransformInfo *TTI; | ||||||||
| 1897 | |||||||||
| 1898 | SCEVExpander SCEVExp; | ||||||||
| 1899 | SCEVExpander MemCheckExp; | ||||||||
| 1900 | |||||||||
| 1901 | bool CostTooHigh = false; | ||||||||
| 1902 | |||||||||
| 1903 | public: | ||||||||
| 1904 | GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI, | ||||||||
| 1905 | TargetTransformInfo *TTI, const DataLayout &DL) | ||||||||
| 1906 | : DT(DT), LI(LI), TTI(TTI), SCEVExp(SE, DL, "scev.check"), | ||||||||
| 1907 | MemCheckExp(SE, DL, "scev.check") {} | ||||||||
| 1908 | |||||||||
| 1909 | /// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can | ||||||||
| 1910 | /// accurately estimate the cost of the runtime checks. The blocks are | ||||||||
| 1911 | /// un-linked from the IR and is added back during vector code generation. If | ||||||||
| 1912 | /// there is no vector code generation, the check blocks are removed | ||||||||
| 1913 | /// completely. | ||||||||
| 1914 | void Create(Loop *L, const LoopAccessInfo &LAI, | ||||||||
| 1915 | const SCEVPredicate &UnionPred, ElementCount VF, unsigned IC) { | ||||||||
| 1916 | |||||||||
| 1917 | // Hard cutoff to limit compile-time increase in case a very large number of | ||||||||
| 1918 | // runtime checks needs to be generated. | ||||||||
| 1919 | // TODO: Skip cutoff if the loop is guaranteed to execute, e.g. due to | ||||||||
| 1920 | // profile info. | ||||||||
| 1921 | CostTooHigh = | ||||||||
| 1922 | LAI.getNumRuntimePointerChecks() > VectorizeMemoryCheckThreshold; | ||||||||
| 1923 | if (CostTooHigh) | ||||||||
| 1924 | return; | ||||||||
| 1925 | |||||||||
| 1926 | BasicBlock *LoopHeader = L->getHeader(); | ||||||||
| 1927 | BasicBlock *Preheader = L->getLoopPreheader(); | ||||||||
| 1928 | |||||||||
| 1929 | // Use SplitBlock to create blocks for SCEV & memory runtime checks to | ||||||||
| 1930 | // ensure the blocks are properly added to LoopInfo & DominatorTree. Those | ||||||||
| 1931 | // may be used by SCEVExpander. The blocks will be un-linked from their | ||||||||
| 1932 | // predecessors and removed from LI & DT at the end of the function. | ||||||||
| 1933 | if (!UnionPred.isAlwaysTrue()) { | ||||||||
| 1934 | SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI, | ||||||||
| 1935 | nullptr, "vector.scevcheck"); | ||||||||
| 1936 | |||||||||
| 1937 | SCEVCheckCond = SCEVExp.expandCodeForPredicate( | ||||||||
| 1938 | &UnionPred, SCEVCheckBlock->getTerminator()); | ||||||||
| 1939 | } | ||||||||
| 1940 | |||||||||
| 1941 | const auto &RtPtrChecking = *LAI.getRuntimePointerChecking(); | ||||||||
| 1942 | if (RtPtrChecking.Need) { | ||||||||
| 1943 | auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader; | ||||||||
| 1944 | MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr, | ||||||||
| 1945 | "vector.memcheck"); | ||||||||
| 1946 | |||||||||
| 1947 | auto DiffChecks = RtPtrChecking.getDiffChecks(); | ||||||||
| 1948 | if (DiffChecks) { | ||||||||
| 1949 | Value *RuntimeVF = nullptr; | ||||||||
| 1950 | MemRuntimeCheckCond = addDiffRuntimeChecks( | ||||||||
| 1951 | MemCheckBlock->getTerminator(), *DiffChecks, MemCheckExp, | ||||||||
| 1952 | [VF, &RuntimeVF](IRBuilderBase &B, unsigned Bits) { | ||||||||
| 1953 | if (!RuntimeVF) | ||||||||
| 1954 | RuntimeVF = getRuntimeVF(B, B.getIntNTy(Bits), VF); | ||||||||
| 1955 | return RuntimeVF; | ||||||||
| 1956 | }, | ||||||||
| 1957 | IC); | ||||||||
| 1958 | } else { | ||||||||
| 1959 | MemRuntimeCheckCond = | ||||||||
| 1960 | addRuntimeChecks(MemCheckBlock->getTerminator(), L, | ||||||||
| 1961 | RtPtrChecking.getChecks(), MemCheckExp); | ||||||||
| 1962 | } | ||||||||
| 1963 | assert(MemRuntimeCheckCond &&(static_cast <bool> (MemRuntimeCheckCond && "no RT checks generated although RtPtrChecking " "claimed checks are required") ? void (0) : __assert_fail ("MemRuntimeCheckCond && \"no RT checks generated although RtPtrChecking \" \"claimed checks are required\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1965, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 1964 | "no RT checks generated although RtPtrChecking "(static_cast <bool> (MemRuntimeCheckCond && "no RT checks generated although RtPtrChecking " "claimed checks are required") ? void (0) : __assert_fail ("MemRuntimeCheckCond && \"no RT checks generated although RtPtrChecking \" \"claimed checks are required\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1965, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 1965 | "claimed checks are required")(static_cast <bool> (MemRuntimeCheckCond && "no RT checks generated although RtPtrChecking " "claimed checks are required") ? void (0) : __assert_fail ("MemRuntimeCheckCond && \"no RT checks generated although RtPtrChecking \" \"claimed checks are required\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 1965, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 1966 | } | ||||||||
| 1967 | |||||||||
| 1968 | if (!MemCheckBlock && !SCEVCheckBlock) | ||||||||
| 1969 | return; | ||||||||
| 1970 | |||||||||
| 1971 | // Unhook the temporary block with the checks, update various places | ||||||||
| 1972 | // accordingly. | ||||||||
| 1973 | if (SCEVCheckBlock) | ||||||||
| 1974 | SCEVCheckBlock->replaceAllUsesWith(Preheader); | ||||||||
| 1975 | if (MemCheckBlock) | ||||||||
| 1976 | MemCheckBlock->replaceAllUsesWith(Preheader); | ||||||||
| 1977 | |||||||||
| 1978 | if (SCEVCheckBlock) { | ||||||||
| 1979 | SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); | ||||||||
| 1980 | new UnreachableInst(Preheader->getContext(), SCEVCheckBlock); | ||||||||
| 1981 | Preheader->getTerminator()->eraseFromParent(); | ||||||||
| 1982 | } | ||||||||
| 1983 | if (MemCheckBlock) { | ||||||||
| 1984 | MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator()); | ||||||||
| 1985 | new UnreachableInst(Preheader->getContext(), MemCheckBlock); | ||||||||
| 1986 | Preheader->getTerminator()->eraseFromParent(); | ||||||||
| 1987 | } | ||||||||
| 1988 | |||||||||
| 1989 | DT->changeImmediateDominator(LoopHeader, Preheader); | ||||||||
| 1990 | if (MemCheckBlock) { | ||||||||
| 1991 | DT->eraseNode(MemCheckBlock); | ||||||||
| 1992 | LI->removeBlock(MemCheckBlock); | ||||||||
| 1993 | } | ||||||||
| 1994 | if (SCEVCheckBlock) { | ||||||||
| 1995 | DT->eraseNode(SCEVCheckBlock); | ||||||||
| 1996 | LI->removeBlock(SCEVCheckBlock); | ||||||||
| 1997 | } | ||||||||
| 1998 | } | ||||||||
| 1999 | |||||||||
| 2000 | InstructionCost getCost() { | ||||||||
| 2001 | if (SCEVCheckBlock || MemCheckBlock) | ||||||||
| 2002 | LLVM_DEBUG(dbgs() << "Calculating cost of runtime checks:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "Calculating cost of runtime checks:\n" ; } } while (false); | ||||||||
| 2003 | |||||||||
| 2004 | if (CostTooHigh) { | ||||||||
| 2005 | InstructionCost Cost; | ||||||||
| 2006 | Cost.setInvalid(); | ||||||||
| 2007 | LLVM_DEBUG(dbgs() << " number of checks exceeded threshold\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << " number of checks exceeded threshold\n" ; } } while (false); | ||||||||
| 2008 | return Cost; | ||||||||
| 2009 | } | ||||||||
| 2010 | |||||||||
| 2011 | InstructionCost RTCheckCost = 0; | ||||||||
| 2012 | if (SCEVCheckBlock) | ||||||||
| 2013 | for (Instruction &I : *SCEVCheckBlock) { | ||||||||
| 2014 | if (SCEVCheckBlock->getTerminator() == &I) | ||||||||
| 2015 | continue; | ||||||||
| 2016 | InstructionCost C = | ||||||||
| 2017 | TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); | ||||||||
| 2018 | LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << " " << C << " for " << I << "\n"; } } while (false); | ||||||||
| 2019 | RTCheckCost += C; | ||||||||
| 2020 | } | ||||||||
| 2021 | if (MemCheckBlock) | ||||||||
| 2022 | for (Instruction &I : *MemCheckBlock) { | ||||||||
| 2023 | if (MemCheckBlock->getTerminator() == &I) | ||||||||
| 2024 | continue; | ||||||||
| 2025 | InstructionCost C = | ||||||||
| 2026 | TTI->getInstructionCost(&I, TTI::TCK_RecipThroughput); | ||||||||
| 2027 | LLVM_DEBUG(dbgs() << " " << C << " for " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << " " << C << " for " << I << "\n"; } } while (false); | ||||||||
| 2028 | RTCheckCost += C; | ||||||||
| 2029 | } | ||||||||
| 2030 | |||||||||
| 2031 | if (SCEVCheckBlock || MemCheckBlock) | ||||||||
| 2032 | LLVM_DEBUG(dbgs() << "Total cost of runtime checks: " << RTCheckCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "Total cost of runtime checks: " << RTCheckCost << "\n"; } } while (false) | ||||||||
| 2033 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "Total cost of runtime checks: " << RTCheckCost << "\n"; } } while (false); | ||||||||
| 2034 | |||||||||
| 2035 | return RTCheckCost; | ||||||||
| 2036 | } | ||||||||
| 2037 | |||||||||
| 2038 | /// Remove the created SCEV & memory runtime check blocks & instructions, if | ||||||||
| 2039 | /// unused. | ||||||||
| 2040 | ~GeneratedRTChecks() { | ||||||||
| 2041 | SCEVExpanderCleaner SCEVCleaner(SCEVExp); | ||||||||
| 2042 | SCEVExpanderCleaner MemCheckCleaner(MemCheckExp); | ||||||||
| 2043 | if (!SCEVCheckCond) | ||||||||
| 2044 | SCEVCleaner.markResultUsed(); | ||||||||
| 2045 | |||||||||
| 2046 | if (!MemRuntimeCheckCond) | ||||||||
| 2047 | MemCheckCleaner.markResultUsed(); | ||||||||
| 2048 | |||||||||
| 2049 | if (MemRuntimeCheckCond) { | ||||||||
| 2050 | auto &SE = *MemCheckExp.getSE(); | ||||||||
| 2051 | // Memory runtime check generation creates compares that use expanded | ||||||||
| 2052 | // values. Remove them before running the SCEVExpanderCleaners. | ||||||||
| 2053 | for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) { | ||||||||
| 2054 | if (MemCheckExp.isInsertedInstruction(&I)) | ||||||||
| 2055 | continue; | ||||||||
| 2056 | SE.forgetValue(&I); | ||||||||
| 2057 | I.eraseFromParent(); | ||||||||
| 2058 | } | ||||||||
| 2059 | } | ||||||||
| 2060 | MemCheckCleaner.cleanup(); | ||||||||
| 2061 | SCEVCleaner.cleanup(); | ||||||||
| 2062 | |||||||||
| 2063 | if (SCEVCheckCond) | ||||||||
| 2064 | SCEVCheckBlock->eraseFromParent(); | ||||||||
| 2065 | if (MemRuntimeCheckCond) | ||||||||
| 2066 | MemCheckBlock->eraseFromParent(); | ||||||||
| 2067 | } | ||||||||
| 2068 | |||||||||
| 2069 | /// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and | ||||||||
| 2070 | /// adjusts the branches to branch to the vector preheader or \p Bypass, | ||||||||
| 2071 | /// depending on the generated condition. | ||||||||
| 2072 | BasicBlock *emitSCEVChecks(BasicBlock *Bypass, | ||||||||
| 2073 | BasicBlock *LoopVectorPreHeader, | ||||||||
| 2074 | BasicBlock *LoopExitBlock) { | ||||||||
| 2075 | if (!SCEVCheckCond) | ||||||||
| 2076 | return nullptr; | ||||||||
| 2077 | |||||||||
| 2078 | Value *Cond = SCEVCheckCond; | ||||||||
| 2079 | // Mark the check as used, to prevent it from being removed during cleanup. | ||||||||
| 2080 | SCEVCheckCond = nullptr; | ||||||||
| 2081 | if (auto *C = dyn_cast<ConstantInt>(Cond)) | ||||||||
| 2082 | if (C->isZero()) | ||||||||
| 2083 | return nullptr; | ||||||||
| 2084 | |||||||||
| 2085 | auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); | ||||||||
| 2086 | |||||||||
| 2087 | BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock); | ||||||||
| 2088 | // Create new preheader for vector loop. | ||||||||
| 2089 | if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) | ||||||||
| 2090 | PL->addBasicBlockToLoop(SCEVCheckBlock, *LI); | ||||||||
| 2091 | |||||||||
| 2092 | SCEVCheckBlock->getTerminator()->eraseFromParent(); | ||||||||
| 2093 | SCEVCheckBlock->moveBefore(LoopVectorPreHeader); | ||||||||
| 2094 | Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, | ||||||||
| 2095 | SCEVCheckBlock); | ||||||||
| 2096 | |||||||||
| 2097 | DT->addNewBlock(SCEVCheckBlock, Pred); | ||||||||
| 2098 | DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock); | ||||||||
| 2099 | |||||||||
| 2100 | ReplaceInstWithInst(SCEVCheckBlock->getTerminator(), | ||||||||
| 2101 | BranchInst::Create(Bypass, LoopVectorPreHeader, Cond)); | ||||||||
| 2102 | return SCEVCheckBlock; | ||||||||
| 2103 | } | ||||||||
| 2104 | |||||||||
| 2105 | /// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts | ||||||||
| 2106 | /// the branches to branch to the vector preheader or \p Bypass, depending on | ||||||||
| 2107 | /// the generated condition. | ||||||||
| 2108 | BasicBlock *emitMemRuntimeChecks(BasicBlock *Bypass, | ||||||||
| 2109 | BasicBlock *LoopVectorPreHeader) { | ||||||||
| 2110 | // Check if we generated code that checks in runtime if arrays overlap. | ||||||||
| 2111 | if (!MemRuntimeCheckCond) | ||||||||
| 2112 | return nullptr; | ||||||||
| 2113 | |||||||||
| 2114 | auto *Pred = LoopVectorPreHeader->getSinglePredecessor(); | ||||||||
| 2115 | Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader, | ||||||||
| 2116 | MemCheckBlock); | ||||||||
| 2117 | |||||||||
| 2118 | DT->addNewBlock(MemCheckBlock, Pred); | ||||||||
| 2119 | DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock); | ||||||||
| 2120 | MemCheckBlock->moveBefore(LoopVectorPreHeader); | ||||||||
| 2121 | |||||||||
| 2122 | if (auto *PL = LI->getLoopFor(LoopVectorPreHeader)) | ||||||||
| 2123 | PL->addBasicBlockToLoop(MemCheckBlock, *LI); | ||||||||
| 2124 | |||||||||
| 2125 | ReplaceInstWithInst( | ||||||||
| 2126 | MemCheckBlock->getTerminator(), | ||||||||
| 2127 | BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond)); | ||||||||
| 2128 | MemCheckBlock->getTerminator()->setDebugLoc( | ||||||||
| 2129 | Pred->getTerminator()->getDebugLoc()); | ||||||||
| 2130 | |||||||||
| 2131 | // Mark the check as used, to prevent it from being removed during cleanup. | ||||||||
| 2132 | MemRuntimeCheckCond = nullptr; | ||||||||
| 2133 | return MemCheckBlock; | ||||||||
| 2134 | } | ||||||||
| 2135 | }; | ||||||||
| 2136 | } // namespace | ||||||||
| 2137 | |||||||||
| 2138 | // Return true if \p OuterLp is an outer loop annotated with hints for explicit | ||||||||
| 2139 | // vectorization. The loop needs to be annotated with #pragma omp simd | ||||||||
| 2140 | // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the | ||||||||
| 2141 | // vector length information is not provided, vectorization is not considered | ||||||||
| 2142 | // explicit. Interleave hints are not allowed either. These limitations will be | ||||||||
| 2143 | // relaxed in the future. | ||||||||
| 2144 | // Please, note that we are currently forced to abuse the pragma 'clang | ||||||||
| 2145 | // vectorize' semantics. This pragma provides *auto-vectorization hints* | ||||||||
| 2146 | // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' | ||||||||
| 2147 | // provides *explicit vectorization hints* (LV can bypass legal checks and | ||||||||
| 2148 | // assume that vectorization is legal). However, both hints are implemented | ||||||||
| 2149 | // using the same metadata (llvm.loop.vectorize, processed by | ||||||||
| 2150 | // LoopVectorizeHints). This will be fixed in the future when the native IR | ||||||||
| 2151 | // representation for pragma 'omp simd' is introduced. | ||||||||
| 2152 | static bool isExplicitVecOuterLoop(Loop *OuterLp, | ||||||||
| 2153 | OptimizationRemarkEmitter *ORE) { | ||||||||
| 2154 | assert(!OuterLp->isInnermost() && "This is not an outer loop")(static_cast <bool> (!OuterLp->isInnermost() && "This is not an outer loop") ? void (0) : __assert_fail ("!OuterLp->isInnermost() && \"This is not an outer loop\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2154, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2155 | LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); | ||||||||
| 2156 | |||||||||
| 2157 | // Only outer loops with an explicit vectorization hint are supported. | ||||||||
| 2158 | // Unannotated outer loops are ignored. | ||||||||
| 2159 | if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) | ||||||||
| 2160 | return false; | ||||||||
| 2161 | |||||||||
| 2162 | Function *Fn = OuterLp->getHeader()->getParent(); | ||||||||
| 2163 | if (!Hints.allowVectorization(Fn, OuterLp, | ||||||||
| 2164 | true /*VectorizeOnlyWhenForced*/)) { | ||||||||
| 2165 | LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints prevent outer loop vectorization.\n" ; } } while (false); | ||||||||
| 2166 | return false; | ||||||||
| 2167 | } | ||||||||
| 2168 | |||||||||
| 2169 | if (Hints.getInterleave() > 1) { | ||||||||
| 2170 | // TODO: Interleave support is future work. | ||||||||
| 2171 | LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not vectorizing: Interleave is not supported for " "outer loops.\n"; } } while (false) | ||||||||
| 2172 | "outer loops.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not vectorizing: Interleave is not supported for " "outer loops.\n"; } } while (false); | ||||||||
| 2173 | Hints.emitRemarkWithHints(); | ||||||||
| 2174 | return false; | ||||||||
| 2175 | } | ||||||||
| 2176 | |||||||||
| 2177 | return true; | ||||||||
| 2178 | } | ||||||||
| 2179 | |||||||||
| 2180 | static void collectSupportedLoops(Loop &L, LoopInfo *LI, | ||||||||
| 2181 | OptimizationRemarkEmitter *ORE, | ||||||||
| 2182 | SmallVectorImpl<Loop *> &V) { | ||||||||
| 2183 | // Collect inner loops and outer loops without irreducible control flow. For | ||||||||
| 2184 | // now, only collect outer loops that have explicit vectorization hints. If we | ||||||||
| 2185 | // are stress testing the VPlan H-CFG construction, we collect the outermost | ||||||||
| 2186 | // loop of every loop nest. | ||||||||
| 2187 | if (L.isInnermost() || VPlanBuildStressTest || | ||||||||
| 2188 | (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { | ||||||||
| 2189 | LoopBlocksRPO RPOT(&L); | ||||||||
| 2190 | RPOT.perform(LI); | ||||||||
| 2191 | if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { | ||||||||
| 2192 | V.push_back(&L); | ||||||||
| 2193 | // TODO: Collect inner loops inside marked outer loops in case | ||||||||
| 2194 | // vectorization fails for the outer loop. Do not invoke | ||||||||
| 2195 | // 'containsIrreducibleCFG' again for inner loops when the outer loop is | ||||||||
| 2196 | // already known to be reducible. We can use an inherited attribute for | ||||||||
| 2197 | // that. | ||||||||
| 2198 | return; | ||||||||
| 2199 | } | ||||||||
| 2200 | } | ||||||||
| 2201 | for (Loop *InnerL : L) | ||||||||
| 2202 | collectSupportedLoops(*InnerL, LI, ORE, V); | ||||||||
| 2203 | } | ||||||||
| 2204 | |||||||||
| 2205 | namespace { | ||||||||
| 2206 | |||||||||
| 2207 | /// The LoopVectorize Pass. | ||||||||
| 2208 | struct LoopVectorize : public FunctionPass { | ||||||||
| 2209 | /// Pass identification, replacement for typeid | ||||||||
| 2210 | static char ID; | ||||||||
| 2211 | |||||||||
| 2212 | LoopVectorizePass Impl; | ||||||||
| 2213 | |||||||||
| 2214 | explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, | ||||||||
| 2215 | bool VectorizeOnlyWhenForced = false) | ||||||||
| 2216 | : FunctionPass(ID), | ||||||||
| 2217 | Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { | ||||||||
| 2218 | initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); | ||||||||
| 2219 | } | ||||||||
| 2220 | |||||||||
| 2221 | bool runOnFunction(Function &F) override { | ||||||||
| 2222 | if (skipFunction(F)) | ||||||||
| 2223 | return false; | ||||||||
| 2224 | |||||||||
| 2225 | auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | ||||||||
| 2226 | auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); | ||||||||
| 2227 | auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | ||||||||
| 2228 | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | ||||||||
| 2229 | auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); | ||||||||
| 2230 | auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); | ||||||||
| 2231 | auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; | ||||||||
| 2232 | auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | ||||||||
| 2233 | auto &LAIs = getAnalysis<LoopAccessLegacyAnalysis>().getLAIs(); | ||||||||
| 2234 | auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); | ||||||||
| 2235 | auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); | ||||||||
| 2236 | auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); | ||||||||
| 2237 | |||||||||
| 2238 | return Impl | ||||||||
| 2239 | .runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AC, LAIs, *ORE, PSI) | ||||||||
| 2240 | .MadeAnyChange; | ||||||||
| 2241 | } | ||||||||
| 2242 | |||||||||
| 2243 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||||||
| 2244 | AU.addRequired<AssumptionCacheTracker>(); | ||||||||
| 2245 | AU.addRequired<BlockFrequencyInfoWrapperPass>(); | ||||||||
| 2246 | AU.addRequired<DominatorTreeWrapperPass>(); | ||||||||
| 2247 | AU.addRequired<LoopInfoWrapperPass>(); | ||||||||
| 2248 | AU.addRequired<ScalarEvolutionWrapperPass>(); | ||||||||
| 2249 | AU.addRequired<TargetTransformInfoWrapperPass>(); | ||||||||
| 2250 | AU.addRequired<LoopAccessLegacyAnalysis>(); | ||||||||
| 2251 | AU.addRequired<DemandedBitsWrapperPass>(); | ||||||||
| 2252 | AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); | ||||||||
| 2253 | AU.addRequired<InjectTLIMappingsLegacy>(); | ||||||||
| 2254 | |||||||||
| 2255 | // We currently do not preserve loopinfo/dominator analyses with outer loop | ||||||||
| 2256 | // vectorization. Until this is addressed, mark these analyses as preserved | ||||||||
| 2257 | // only for non-VPlan-native path. | ||||||||
| 2258 | // TODO: Preserve Loop and Dominator analyses for VPlan-native path. | ||||||||
| 2259 | if (!EnableVPlanNativePath) { | ||||||||
| 2260 | AU.addPreserved<LoopInfoWrapperPass>(); | ||||||||
| 2261 | AU.addPreserved<DominatorTreeWrapperPass>(); | ||||||||
| 2262 | } | ||||||||
| 2263 | |||||||||
| 2264 | AU.addPreserved<BasicAAWrapperPass>(); | ||||||||
| 2265 | AU.addPreserved<GlobalsAAWrapperPass>(); | ||||||||
| 2266 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); | ||||||||
| 2267 | } | ||||||||
| 2268 | }; | ||||||||
| 2269 | |||||||||
| 2270 | } // end anonymous namespace | ||||||||
| 2271 | |||||||||
| 2272 | //===----------------------------------------------------------------------===// | ||||||||
| 2273 | // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and | ||||||||
| 2274 | // LoopVectorizationCostModel and LoopVectorizationPlanner. | ||||||||
| 2275 | //===----------------------------------------------------------------------===// | ||||||||
| 2276 | |||||||||
| 2277 | Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { | ||||||||
| 2278 | // We need to place the broadcast of invariant variables outside the loop, | ||||||||
| 2279 | // but only if it's proven safe to do so. Else, broadcast will be inside | ||||||||
| 2280 | // vector loop body. | ||||||||
| 2281 | Instruction *Instr = dyn_cast<Instruction>(V); | ||||||||
| 2282 | bool SafeToHoist = OrigLoop->isLoopInvariant(V) && | ||||||||
| 2283 | (!Instr || | ||||||||
| 2284 | DT->dominates(Instr->getParent(), LoopVectorPreHeader)); | ||||||||
| 2285 | // Place the code for broadcasting invariant variables in the new preheader. | ||||||||
| 2286 | IRBuilder<>::InsertPointGuard Guard(Builder); | ||||||||
| 2287 | if (SafeToHoist) | ||||||||
| 2288 | Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); | ||||||||
| 2289 | |||||||||
| 2290 | // Broadcast the scalar into all locations in the vector. | ||||||||
| 2291 | Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); | ||||||||
| 2292 | |||||||||
| 2293 | return Shuf; | ||||||||
| 2294 | } | ||||||||
| 2295 | |||||||||
| 2296 | /// This function adds | ||||||||
| 2297 | /// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...) | ||||||||
| 2298 | /// to each vector element of Val. The sequence starts at StartIndex. | ||||||||
| 2299 | /// \p Opcode is relevant for FP induction variable. | ||||||||
| 2300 | static Value *getStepVector(Value *Val, Value *StartIdx, Value *Step, | ||||||||
| 2301 | Instruction::BinaryOps BinOp, ElementCount VF, | ||||||||
| 2302 | IRBuilderBase &Builder) { | ||||||||
| 2303 | assert(VF.isVector() && "only vector VFs are supported")(static_cast <bool> (VF.isVector() && "only vector VFs are supported" ) ? void (0) : __assert_fail ("VF.isVector() && \"only vector VFs are supported\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2303, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2304 | |||||||||
| 2305 | // Create and check the types. | ||||||||
| 2306 | auto *ValVTy = cast<VectorType>(Val->getType()); | ||||||||
| 2307 | ElementCount VLen = ValVTy->getElementCount(); | ||||||||
| 2308 | |||||||||
| 2309 | Type *STy = Val->getType()->getScalarType(); | ||||||||
| 2310 | assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&(static_cast <bool> ((STy->isIntegerTy() || STy-> isFloatingPointTy()) && "Induction Step must be an integer or FP" ) ? void (0) : __assert_fail ("(STy->isIntegerTy() || STy->isFloatingPointTy()) && \"Induction Step must be an integer or FP\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2311, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2311 | "Induction Step must be an integer or FP")(static_cast <bool> ((STy->isIntegerTy() || STy-> isFloatingPointTy()) && "Induction Step must be an integer or FP" ) ? void (0) : __assert_fail ("(STy->isIntegerTy() || STy->isFloatingPointTy()) && \"Induction Step must be an integer or FP\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2311, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2312 | assert(Step->getType() == STy && "Step has wrong type")(static_cast <bool> (Step->getType() == STy && "Step has wrong type") ? void (0) : __assert_fail ("Step->getType() == STy && \"Step has wrong type\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2312, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2313 | |||||||||
| 2314 | SmallVector<Constant *, 8> Indices; | ||||||||
| 2315 | |||||||||
| 2316 | // Create a vector of consecutive numbers from zero to VF. | ||||||||
| 2317 | VectorType *InitVecValVTy = ValVTy; | ||||||||
| 2318 | if (STy->isFloatingPointTy()) { | ||||||||
| 2319 | Type *InitVecValSTy = | ||||||||
| 2320 | IntegerType::get(STy->getContext(), STy->getScalarSizeInBits()); | ||||||||
| 2321 | InitVecValVTy = VectorType::get(InitVecValSTy, VLen); | ||||||||
| 2322 | } | ||||||||
| 2323 | Value *InitVec = Builder.CreateStepVector(InitVecValVTy); | ||||||||
| 2324 | |||||||||
| 2325 | // Splat the StartIdx | ||||||||
| 2326 | Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx); | ||||||||
| 2327 | |||||||||
| 2328 | if (STy->isIntegerTy()) { | ||||||||
| 2329 | InitVec = Builder.CreateAdd(InitVec, StartIdxSplat); | ||||||||
| 2330 | Step = Builder.CreateVectorSplat(VLen, Step); | ||||||||
| 2331 | assert(Step->getType() == Val->getType() && "Invalid step vec")(static_cast <bool> (Step->getType() == Val->getType () && "Invalid step vec") ? void (0) : __assert_fail ( "Step->getType() == Val->getType() && \"Invalid step vec\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2331, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2332 | // FIXME: The newly created binary instructions should contain nsw/nuw | ||||||||
| 2333 | // flags, which can be found from the original scalar operations. | ||||||||
| 2334 | Step = Builder.CreateMul(InitVec, Step); | ||||||||
| 2335 | return Builder.CreateAdd(Val, Step, "induction"); | ||||||||
| 2336 | } | ||||||||
| 2337 | |||||||||
| 2338 | // Floating point induction. | ||||||||
| 2339 | assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&(static_cast <bool> ((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && "Binary Opcode should be specified for FP induction" ) ? void (0) : __assert_fail ("(BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && \"Binary Opcode should be specified for FP induction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2340, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2340 | "Binary Opcode should be specified for FP induction")(static_cast <bool> ((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && "Binary Opcode should be specified for FP induction" ) ? void (0) : __assert_fail ("(BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && \"Binary Opcode should be specified for FP induction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2340, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2341 | InitVec = Builder.CreateUIToFP(InitVec, ValVTy); | ||||||||
| 2342 | InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat); | ||||||||
| 2343 | |||||||||
| 2344 | Step = Builder.CreateVectorSplat(VLen, Step); | ||||||||
| 2345 | Value *MulOp = Builder.CreateFMul(InitVec, Step); | ||||||||
| 2346 | return Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); | ||||||||
| 2347 | } | ||||||||
| 2348 | |||||||||
| 2349 | /// Compute scalar induction steps. \p ScalarIV is the scalar induction | ||||||||
| 2350 | /// variable on which to base the steps, \p Step is the size of the step. | ||||||||
| 2351 | static void buildScalarSteps(Value *ScalarIV, Value *Step, | ||||||||
| 2352 | const InductionDescriptor &ID, VPValue *Def, | ||||||||
| 2353 | VPTransformState &State) { | ||||||||
| 2354 | IRBuilderBase &Builder = State.Builder; | ||||||||
| 2355 | |||||||||
| 2356 | // Ensure step has the same type as that of scalar IV. | ||||||||
| 2357 | Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); | ||||||||
| 2358 | if (ScalarIVTy != Step->getType()) { | ||||||||
| 2359 | // TODO: Also use VPDerivedIVRecipe when only the step needs truncating, to | ||||||||
| 2360 | // avoid separate truncate here. | ||||||||
| 2361 | assert(Step->getType()->isIntegerTy() &&(static_cast <bool> (Step->getType()->isIntegerTy () && "Truncation requires an integer step") ? void ( 0) : __assert_fail ("Step->getType()->isIntegerTy() && \"Truncation requires an integer step\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2362, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2362 | "Truncation requires an integer step")(static_cast <bool> (Step->getType()->isIntegerTy () && "Truncation requires an integer step") ? void ( 0) : __assert_fail ("Step->getType()->isIntegerTy() && \"Truncation requires an integer step\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2362, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2363 | Step = State.Builder.CreateTrunc(Step, ScalarIVTy); | ||||||||
| 2364 | } | ||||||||
| 2365 | |||||||||
| 2366 | // We build scalar steps for both integer and floating-point induction | ||||||||
| 2367 | // variables. Here, we determine the kind of arithmetic we will perform. | ||||||||
| 2368 | Instruction::BinaryOps AddOp; | ||||||||
| 2369 | Instruction::BinaryOps MulOp; | ||||||||
| 2370 | if (ScalarIVTy->isIntegerTy()) { | ||||||||
| 2371 | AddOp = Instruction::Add; | ||||||||
| 2372 | MulOp = Instruction::Mul; | ||||||||
| 2373 | } else { | ||||||||
| 2374 | AddOp = ID.getInductionOpcode(); | ||||||||
| 2375 | MulOp = Instruction::FMul; | ||||||||
| 2376 | } | ||||||||
| 2377 | |||||||||
| 2378 | // Determine the number of scalars we need to generate for each unroll | ||||||||
| 2379 | // iteration. | ||||||||
| 2380 | bool FirstLaneOnly = vputils::onlyFirstLaneUsed(Def); | ||||||||
| 2381 | // Compute the scalar steps and save the results in State. | ||||||||
| 2382 | Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), | ||||||||
| 2383 | ScalarIVTy->getScalarSizeInBits()); | ||||||||
| 2384 | Type *VecIVTy = nullptr; | ||||||||
| 2385 | Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr; | ||||||||
| 2386 | if (!FirstLaneOnly && State.VF.isScalable()) { | ||||||||
| 2387 | VecIVTy = VectorType::get(ScalarIVTy, State.VF); | ||||||||
| 2388 | UnitStepVec = | ||||||||
| 2389 | Builder.CreateStepVector(VectorType::get(IntStepTy, State.VF)); | ||||||||
| 2390 | SplatStep = Builder.CreateVectorSplat(State.VF, Step); | ||||||||
| 2391 | SplatIV = Builder.CreateVectorSplat(State.VF, ScalarIV); | ||||||||
| 2392 | } | ||||||||
| 2393 | |||||||||
| 2394 | unsigned StartPart = 0; | ||||||||
| 2395 | unsigned EndPart = State.UF; | ||||||||
| 2396 | unsigned StartLane = 0; | ||||||||
| 2397 | unsigned EndLane = FirstLaneOnly ? 1 : State.VF.getKnownMinValue(); | ||||||||
| 2398 | if (State.Instance) { | ||||||||
| 2399 | StartPart = State.Instance->Part; | ||||||||
| 2400 | EndPart = StartPart + 1; | ||||||||
| 2401 | StartLane = State.Instance->Lane.getKnownLane(); | ||||||||
| 2402 | EndLane = StartLane + 1; | ||||||||
| 2403 | } | ||||||||
| 2404 | for (unsigned Part = StartPart; Part < EndPart; ++Part) { | ||||||||
| 2405 | Value *StartIdx0 = createStepForVF(Builder, IntStepTy, State.VF, Part); | ||||||||
| 2406 | |||||||||
| 2407 | if (!FirstLaneOnly && State.VF.isScalable()) { | ||||||||
| 2408 | auto *SplatStartIdx = Builder.CreateVectorSplat(State.VF, StartIdx0); | ||||||||
| 2409 | auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec); | ||||||||
| 2410 | if (ScalarIVTy->isFloatingPointTy()) | ||||||||
| 2411 | InitVec = Builder.CreateSIToFP(InitVec, VecIVTy); | ||||||||
| 2412 | auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep); | ||||||||
| 2413 | auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul); | ||||||||
| 2414 | State.set(Def, Add, Part); | ||||||||
| 2415 | // It's useful to record the lane values too for the known minimum number | ||||||||
| 2416 | // of elements so we do those below. This improves the code quality when | ||||||||
| 2417 | // trying to extract the first element, for example. | ||||||||
| 2418 | } | ||||||||
| 2419 | |||||||||
| 2420 | if (ScalarIVTy->isFloatingPointTy()) | ||||||||
| 2421 | StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy); | ||||||||
| 2422 | |||||||||
| 2423 | for (unsigned Lane = StartLane; Lane < EndLane; ++Lane) { | ||||||||
| 2424 | Value *StartIdx = Builder.CreateBinOp( | ||||||||
| 2425 | AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane)); | ||||||||
| 2426 | // The step returned by `createStepForVF` is a runtime-evaluated value | ||||||||
| 2427 | // when VF is scalable. Otherwise, it should be folded into a Constant. | ||||||||
| 2428 | assert((State.VF.isScalable() || isa<Constant>(StartIdx)) &&(static_cast <bool> ((State.VF.isScalable() || isa<Constant >(StartIdx)) && "Expected StartIdx to be folded to a constant when VF is not " "scalable") ? void (0) : __assert_fail ("(State.VF.isScalable() || isa<Constant>(StartIdx)) && \"Expected StartIdx to be folded to a constant when VF is not \" \"scalable\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2430, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2429 | "Expected StartIdx to be folded to a constant when VF is not "(static_cast <bool> ((State.VF.isScalable() || isa<Constant >(StartIdx)) && "Expected StartIdx to be folded to a constant when VF is not " "scalable") ? void (0) : __assert_fail ("(State.VF.isScalable() || isa<Constant>(StartIdx)) && \"Expected StartIdx to be folded to a constant when VF is not \" \"scalable\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2430, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2430 | "scalable")(static_cast <bool> ((State.VF.isScalable() || isa<Constant >(StartIdx)) && "Expected StartIdx to be folded to a constant when VF is not " "scalable") ? void (0) : __assert_fail ("(State.VF.isScalable() || isa<Constant>(StartIdx)) && \"Expected StartIdx to be folded to a constant when VF is not \" \"scalable\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2430, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2431 | auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step); | ||||||||
| 2432 | auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul); | ||||||||
| 2433 | State.set(Def, Add, VPIteration(Part, Lane)); | ||||||||
| 2434 | } | ||||||||
| 2435 | } | ||||||||
| 2436 | } | ||||||||
| 2437 | |||||||||
| 2438 | // Generate code for the induction step. Note that induction steps are | ||||||||
| 2439 | // required to be loop-invariant | ||||||||
| 2440 | static Value *CreateStepValue(const SCEV *Step, ScalarEvolution &SE, | ||||||||
| 2441 | Instruction *InsertBefore, | ||||||||
| 2442 | Loop *OrigLoop = nullptr) { | ||||||||
| 2443 | const DataLayout &DL = SE.getDataLayout(); | ||||||||
| 2444 | assert((!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) &&(static_cast <bool> ((!OrigLoop || SE.isLoopInvariant(Step , OrigLoop)) && "Induction step should be loop invariant" ) ? void (0) : __assert_fail ("(!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && \"Induction step should be loop invariant\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2445, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2445 | "Induction step should be loop invariant")(static_cast <bool> ((!OrigLoop || SE.isLoopInvariant(Step , OrigLoop)) && "Induction step should be loop invariant" ) ? void (0) : __assert_fail ("(!OrigLoop || SE.isLoopInvariant(Step, OrigLoop)) && \"Induction step should be loop invariant\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2445, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2446 | if (auto *E = dyn_cast<SCEVUnknown>(Step)) | ||||||||
| 2447 | return E->getValue(); | ||||||||
| 2448 | |||||||||
| 2449 | SCEVExpander Exp(SE, DL, "induction"); | ||||||||
| 2450 | return Exp.expandCodeFor(Step, Step->getType(), InsertBefore); | ||||||||
| 2451 | } | ||||||||
| 2452 | |||||||||
| 2453 | /// Compute the transformed value of Index at offset StartValue using step | ||||||||
| 2454 | /// StepValue. | ||||||||
| 2455 | /// For integer induction, returns StartValue + Index * StepValue. | ||||||||
| 2456 | /// For pointer induction, returns StartValue[Index * StepValue]. | ||||||||
| 2457 | /// FIXME: The newly created binary instructions should contain nsw/nuw | ||||||||
| 2458 | /// flags, which can be found from the original scalar operations. | ||||||||
| 2459 | static Value *emitTransformedIndex(IRBuilderBase &B, Value *Index, | ||||||||
| 2460 | Value *StartValue, Value *Step, | ||||||||
| 2461 | const InductionDescriptor &ID) { | ||||||||
| 2462 | Type *StepTy = Step->getType(); | ||||||||
| 2463 | Value *CastedIndex = StepTy->isIntegerTy() | ||||||||
| 2464 | ? B.CreateSExtOrTrunc(Index, StepTy) | ||||||||
| 2465 | : B.CreateCast(Instruction::SIToFP, Index, StepTy); | ||||||||
| 2466 | if (CastedIndex != Index) { | ||||||||
| 2467 | CastedIndex->setName(CastedIndex->getName() + ".cast"); | ||||||||
| 2468 | Index = CastedIndex; | ||||||||
| 2469 | } | ||||||||
| 2470 | |||||||||
| 2471 | // Note: the IR at this point is broken. We cannot use SE to create any new | ||||||||
| 2472 | // SCEV and then expand it, hoping that SCEV's simplification will give us | ||||||||
| 2473 | // a more optimal code. Unfortunately, attempt of doing so on invalid IR may | ||||||||
| 2474 | // lead to various SCEV crashes. So all we can do is to use builder and rely | ||||||||
| 2475 | // on InstCombine for future simplifications. Here we handle some trivial | ||||||||
| 2476 | // cases only. | ||||||||
| 2477 | auto CreateAdd = [&B](Value *X, Value *Y) { | ||||||||
| 2478 | assert(X->getType() == Y->getType() && "Types don't match!")(static_cast <bool> (X->getType() == Y->getType() && "Types don't match!") ? void (0) : __assert_fail ( "X->getType() == Y->getType() && \"Types don't match!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2478, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2479 | if (auto *CX = dyn_cast<ConstantInt>(X)) | ||||||||
| 2480 | if (CX->isZero()) | ||||||||
| 2481 | return Y; | ||||||||
| 2482 | if (auto *CY = dyn_cast<ConstantInt>(Y)) | ||||||||
| 2483 | if (CY->isZero()) | ||||||||
| 2484 | return X; | ||||||||
| 2485 | return B.CreateAdd(X, Y); | ||||||||
| 2486 | }; | ||||||||
| 2487 | |||||||||
| 2488 | // We allow X to be a vector type, in which case Y will potentially be | ||||||||
| 2489 | // splatted into a vector with the same element count. | ||||||||
| 2490 | auto CreateMul = [&B](Value *X, Value *Y) { | ||||||||
| 2491 | assert(X->getType()->getScalarType() == Y->getType() &&(static_cast <bool> (X->getType()->getScalarType( ) == Y->getType() && "Types don't match!") ? void ( 0) : __assert_fail ("X->getType()->getScalarType() == Y->getType() && \"Types don't match!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2492, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2492 | "Types don't match!")(static_cast <bool> (X->getType()->getScalarType( ) == Y->getType() && "Types don't match!") ? void ( 0) : __assert_fail ("X->getType()->getScalarType() == Y->getType() && \"Types don't match!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2492, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2493 | if (auto *CX = dyn_cast<ConstantInt>(X)) | ||||||||
| 2494 | if (CX->isOne()) | ||||||||
| 2495 | return Y; | ||||||||
| 2496 | if (auto *CY = dyn_cast<ConstantInt>(Y)) | ||||||||
| 2497 | if (CY->isOne()) | ||||||||
| 2498 | return X; | ||||||||
| 2499 | VectorType *XVTy = dyn_cast<VectorType>(X->getType()); | ||||||||
| 2500 | if (XVTy && !isa<VectorType>(Y->getType())) | ||||||||
| 2501 | Y = B.CreateVectorSplat(XVTy->getElementCount(), Y); | ||||||||
| 2502 | return B.CreateMul(X, Y); | ||||||||
| 2503 | }; | ||||||||
| 2504 | |||||||||
| 2505 | switch (ID.getKind()) { | ||||||||
| 2506 | case InductionDescriptor::IK_IntInduction: { | ||||||||
| 2507 | assert(!isa<VectorType>(Index->getType()) &&(static_cast <bool> (!isa<VectorType>(Index->getType ()) && "Vector indices not supported for integer inductions yet" ) ? void (0) : __assert_fail ("!isa<VectorType>(Index->getType()) && \"Vector indices not supported for integer inductions yet\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2508, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2508 | "Vector indices not supported for integer inductions yet")(static_cast <bool> (!isa<VectorType>(Index->getType ()) && "Vector indices not supported for integer inductions yet" ) ? void (0) : __assert_fail ("!isa<VectorType>(Index->getType()) && \"Vector indices not supported for integer inductions yet\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2508, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2509 | assert(Index->getType() == StartValue->getType() &&(static_cast <bool> (Index->getType() == StartValue-> getType() && "Index type does not match StartValue type" ) ? void (0) : __assert_fail ("Index->getType() == StartValue->getType() && \"Index type does not match StartValue type\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2510, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2510 | "Index type does not match StartValue type")(static_cast <bool> (Index->getType() == StartValue-> getType() && "Index type does not match StartValue type" ) ? void (0) : __assert_fail ("Index->getType() == StartValue->getType() && \"Index type does not match StartValue type\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2510, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2511 | if (isa<ConstantInt>(Step) && cast<ConstantInt>(Step)->isMinusOne()) | ||||||||
| 2512 | return B.CreateSub(StartValue, Index); | ||||||||
| 2513 | auto *Offset = CreateMul(Index, Step); | ||||||||
| 2514 | return CreateAdd(StartValue, Offset); | ||||||||
| 2515 | } | ||||||||
| 2516 | case InductionDescriptor::IK_PtrInduction: { | ||||||||
| 2517 | assert(isa<Constant>(Step) &&(static_cast <bool> (isa<Constant>(Step) && "Expected constant step for pointer induction") ? void (0) : __assert_fail ("isa<Constant>(Step) && \"Expected constant step for pointer induction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2518, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2518 | "Expected constant step for pointer induction")(static_cast <bool> (isa<Constant>(Step) && "Expected constant step for pointer induction") ? void (0) : __assert_fail ("isa<Constant>(Step) && \"Expected constant step for pointer induction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2518, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2519 | return B.CreateGEP(ID.getElementType(), StartValue, CreateMul(Index, Step)); | ||||||||
| 2520 | } | ||||||||
| 2521 | case InductionDescriptor::IK_FpInduction: { | ||||||||
| 2522 | assert(!isa<VectorType>(Index->getType()) &&(static_cast <bool> (!isa<VectorType>(Index->getType ()) && "Vector indices not supported for FP inductions yet" ) ? void (0) : __assert_fail ("!isa<VectorType>(Index->getType()) && \"Vector indices not supported for FP inductions yet\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2523, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2523 | "Vector indices not supported for FP inductions yet")(static_cast <bool> (!isa<VectorType>(Index->getType ()) && "Vector indices not supported for FP inductions yet" ) ? void (0) : __assert_fail ("!isa<VectorType>(Index->getType()) && \"Vector indices not supported for FP inductions yet\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2523, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2524 | assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value")(static_cast <bool> (Step->getType()->isFloatingPointTy () && "Expected FP Step value") ? void (0) : __assert_fail ("Step->getType()->isFloatingPointTy() && \"Expected FP Step value\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2524, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2525 | auto InductionBinOp = ID.getInductionBinOp(); | ||||||||
| 2526 | assert(InductionBinOp &&(static_cast <bool> (InductionBinOp && (InductionBinOp ->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode () == Instruction::FSub) && "Original bin op should be defined for FP induction" ) ? void (0) : __assert_fail ("InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub) && \"Original bin op should be defined for FP induction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2529, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2527 | (InductionBinOp->getOpcode() == Instruction::FAdd ||(static_cast <bool> (InductionBinOp && (InductionBinOp ->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode () == Instruction::FSub) && "Original bin op should be defined for FP induction" ) ? void (0) : __assert_fail ("InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub) && \"Original bin op should be defined for FP induction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2529, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2528 | InductionBinOp->getOpcode() == Instruction::FSub) &&(static_cast <bool> (InductionBinOp && (InductionBinOp ->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode () == Instruction::FSub) && "Original bin op should be defined for FP induction" ) ? void (0) : __assert_fail ("InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub) && \"Original bin op should be defined for FP induction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2529, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2529 | "Original bin op should be defined for FP induction")(static_cast <bool> (InductionBinOp && (InductionBinOp ->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode () == Instruction::FSub) && "Original bin op should be defined for FP induction" ) ? void (0) : __assert_fail ("InductionBinOp && (InductionBinOp->getOpcode() == Instruction::FAdd || InductionBinOp->getOpcode() == Instruction::FSub) && \"Original bin op should be defined for FP induction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2529, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2530 | |||||||||
| 2531 | Value *MulExp = B.CreateFMul(Step, Index); | ||||||||
| 2532 | return B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, | ||||||||
| 2533 | "induction"); | ||||||||
| 2534 | } | ||||||||
| 2535 | case InductionDescriptor::IK_NoInduction: | ||||||||
| 2536 | return nullptr; | ||||||||
| 2537 | } | ||||||||
| 2538 | llvm_unreachable("invalid enum")::llvm::llvm_unreachable_internal("invalid enum", "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp" , 2538); | ||||||||
| 2539 | } | ||||||||
| 2540 | |||||||||
| 2541 | void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, | ||||||||
| 2542 | const VPIteration &Instance, | ||||||||
| 2543 | VPTransformState &State) { | ||||||||
| 2544 | Value *ScalarInst = State.get(Def, Instance); | ||||||||
| 2545 | Value *VectorValue = State.get(Def, Instance.Part); | ||||||||
| 2546 | VectorValue = Builder.CreateInsertElement( | ||||||||
| 2547 | VectorValue, ScalarInst, | ||||||||
| 2548 | Instance.Lane.getAsRuntimeExpr(State.Builder, VF)); | ||||||||
| 2549 | State.set(Def, VectorValue, Instance.Part); | ||||||||
| 2550 | } | ||||||||
| 2551 | |||||||||
| 2552 | // Return whether we allow using masked interleave-groups (for dealing with | ||||||||
| 2553 | // strided loads/stores that reside in predicated blocks, or for dealing | ||||||||
| 2554 | // with gaps). | ||||||||
| 2555 | static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { | ||||||||
| 2556 | // If an override option has been passed in for interleaved accesses, use it. | ||||||||
| 2557 | if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) | ||||||||
| 2558 | return EnableMaskedInterleavedMemAccesses; | ||||||||
| 2559 | |||||||||
| 2560 | return TTI.enableMaskedInterleavedAccessVectorization(); | ||||||||
| 2561 | } | ||||||||
| 2562 | |||||||||
| 2563 | // Try to vectorize the interleave group that \p Instr belongs to. | ||||||||
| 2564 | // | ||||||||
| 2565 | // E.g. Translate following interleaved load group (factor = 3): | ||||||||
| 2566 | // for (i = 0; i < N; i+=3) { | ||||||||
| 2567 | // R = Pic[i]; // Member of index 0 | ||||||||
| 2568 | // G = Pic[i+1]; // Member of index 1 | ||||||||
| 2569 | // B = Pic[i+2]; // Member of index 2 | ||||||||
| 2570 | // ... // do something to R, G, B | ||||||||
| 2571 | // } | ||||||||
| 2572 | // To: | ||||||||
| 2573 | // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B | ||||||||
| 2574 | // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements | ||||||||
| 2575 | // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements | ||||||||
| 2576 | // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements | ||||||||
| 2577 | // | ||||||||
| 2578 | // Or translate following interleaved store group (factor = 3): | ||||||||
| 2579 | // for (i = 0; i < N; i+=3) { | ||||||||
| 2580 | // ... do something to R, G, B | ||||||||
| 2581 | // Pic[i] = R; // Member of index 0 | ||||||||
| 2582 | // Pic[i+1] = G; // Member of index 1 | ||||||||
| 2583 | // Pic[i+2] = B; // Member of index 2 | ||||||||
| 2584 | // } | ||||||||
| 2585 | // To: | ||||||||
| 2586 | // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> | ||||||||
| 2587 | // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> | ||||||||
| 2588 | // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, | ||||||||
| 2589 | // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements | ||||||||
| 2590 | // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B | ||||||||
| 2591 | void InnerLoopVectorizer::vectorizeInterleaveGroup( | ||||||||
| 2592 | const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, | ||||||||
| 2593 | VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, | ||||||||
| 2594 | VPValue *BlockInMask) { | ||||||||
| 2595 | Instruction *Instr = Group->getInsertPos(); | ||||||||
| 2596 | const DataLayout &DL = Instr->getModule()->getDataLayout(); | ||||||||
| 2597 | |||||||||
| 2598 | // Prepare for the vector type of the interleaved load/store. | ||||||||
| 2599 | Type *ScalarTy = getLoadStoreType(Instr); | ||||||||
| 2600 | unsigned InterleaveFactor = Group->getFactor(); | ||||||||
| 2601 | assert(!VF.isScalable() && "scalable vectors not yet supported.")(static_cast <bool> (!VF.isScalable() && "scalable vectors not yet supported." ) ? void (0) : __assert_fail ("!VF.isScalable() && \"scalable vectors not yet supported.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2601, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2602 | auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); | ||||||||
| 2603 | |||||||||
| 2604 | // Prepare for the new pointers. | ||||||||
| 2605 | SmallVector<Value *, 2> AddrParts; | ||||||||
| 2606 | unsigned Index = Group->getIndex(Instr); | ||||||||
| 2607 | |||||||||
| 2608 | // TODO: extend the masked interleaved-group support to reversed access. | ||||||||
| 2609 | assert((!BlockInMask || !Group->isReverse()) &&(static_cast <bool> ((!BlockInMask || !Group->isReverse ()) && "Reversed masked interleave-group not supported." ) ? void (0) : __assert_fail ("(!BlockInMask || !Group->isReverse()) && \"Reversed masked interleave-group not supported.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2610, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2610 | "Reversed masked interleave-group not supported.")(static_cast <bool> ((!BlockInMask || !Group->isReverse ()) && "Reversed masked interleave-group not supported." ) ? void (0) : __assert_fail ("(!BlockInMask || !Group->isReverse()) && \"Reversed masked interleave-group not supported.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2610, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2611 | |||||||||
| 2612 | // If the group is reverse, adjust the index to refer to the last vector lane | ||||||||
| 2613 | // instead of the first. We adjust the index from the first vector lane, | ||||||||
| 2614 | // rather than directly getting the pointer for lane VF - 1, because the | ||||||||
| 2615 | // pointer operand of the interleaved access is supposed to be uniform. For | ||||||||
| 2616 | // uniform instructions, we're only required to generate a value for the | ||||||||
| 2617 | // first vector lane in each unroll iteration. | ||||||||
| 2618 | if (Group->isReverse()) | ||||||||
| 2619 | Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); | ||||||||
| 2620 | |||||||||
| 2621 | for (unsigned Part = 0; Part < UF; Part++) { | ||||||||
| 2622 | Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); | ||||||||
| 2623 | State.setDebugLocFromInst(AddrPart); | ||||||||
| 2624 | |||||||||
| 2625 | // Notice current instruction could be any index. Need to adjust the address | ||||||||
| 2626 | // to the member of index 0. | ||||||||
| 2627 | // | ||||||||
| 2628 | // E.g. a = A[i+1]; // Member of index 1 (Current instruction) | ||||||||
| 2629 | // b = A[i]; // Member of index 0 | ||||||||
| 2630 | // Current pointer is pointed to A[i+1], adjust it to A[i]. | ||||||||
| 2631 | // | ||||||||
| 2632 | // E.g. A[i+1] = a; // Member of index 1 | ||||||||
| 2633 | // A[i] = b; // Member of index 0 | ||||||||
| 2634 | // A[i+2] = c; // Member of index 2 (Current instruction) | ||||||||
| 2635 | // Current pointer is pointed to A[i+2], adjust it to A[i]. | ||||||||
| 2636 | |||||||||
| 2637 | bool InBounds = false; | ||||||||
| 2638 | if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) | ||||||||
| 2639 | InBounds = gep->isInBounds(); | ||||||||
| 2640 | AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); | ||||||||
| 2641 | cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); | ||||||||
| 2642 | |||||||||
| 2643 | // Cast to the vector pointer type. | ||||||||
| 2644 | unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); | ||||||||
| 2645 | Type *PtrTy = VecTy->getPointerTo(AddressSpace); | ||||||||
| 2646 | AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); | ||||||||
| 2647 | } | ||||||||
| 2648 | |||||||||
| 2649 | State.setDebugLocFromInst(Instr); | ||||||||
| 2650 | Value *PoisonVec = PoisonValue::get(VecTy); | ||||||||
| 2651 | |||||||||
| 2652 | Value *MaskForGaps = nullptr; | ||||||||
| 2653 | if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { | ||||||||
| 2654 | MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); | ||||||||
| 2655 | assert(MaskForGaps && "Mask for Gaps is required but it is null")(static_cast <bool> (MaskForGaps && "Mask for Gaps is required but it is null" ) ? void (0) : __assert_fail ("MaskForGaps && \"Mask for Gaps is required but it is null\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2655, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2656 | } | ||||||||
| 2657 | |||||||||
| 2658 | // Vectorize the interleaved load group. | ||||||||
| 2659 | if (isa<LoadInst>(Instr)) { | ||||||||
| 2660 | // For each unroll part, create a wide load for the group. | ||||||||
| 2661 | SmallVector<Value *, 2> NewLoads; | ||||||||
| 2662 | for (unsigned Part = 0; Part < UF; Part++) { | ||||||||
| 2663 | Instruction *NewLoad; | ||||||||
| 2664 | if (BlockInMask || MaskForGaps) { | ||||||||
| 2665 | assert(useMaskedInterleavedAccesses(*TTI) &&(static_cast <bool> (useMaskedInterleavedAccesses(*TTI) && "masked interleaved groups are not allowed.") ? void (0) : __assert_fail ("useMaskedInterleavedAccesses(*TTI) && \"masked interleaved groups are not allowed.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2666, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2666 | "masked interleaved groups are not allowed.")(static_cast <bool> (useMaskedInterleavedAccesses(*TTI) && "masked interleaved groups are not allowed.") ? void (0) : __assert_fail ("useMaskedInterleavedAccesses(*TTI) && \"masked interleaved groups are not allowed.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2666, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2667 | Value *GroupMask = MaskForGaps; | ||||||||
| 2668 | if (BlockInMask) { | ||||||||
| 2669 | Value *BlockInMaskPart = State.get(BlockInMask, Part); | ||||||||
| 2670 | Value *ShuffledMask = Builder.CreateShuffleVector( | ||||||||
| 2671 | BlockInMaskPart, | ||||||||
| 2672 | createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), | ||||||||
| 2673 | "interleaved.mask"); | ||||||||
| 2674 | GroupMask = MaskForGaps | ||||||||
| 2675 | ? Builder.CreateBinOp(Instruction::And, ShuffledMask, | ||||||||
| 2676 | MaskForGaps) | ||||||||
| 2677 | : ShuffledMask; | ||||||||
| 2678 | } | ||||||||
| 2679 | NewLoad = | ||||||||
| 2680 | Builder.CreateMaskedLoad(VecTy, AddrParts[Part], Group->getAlign(), | ||||||||
| 2681 | GroupMask, PoisonVec, "wide.masked.vec"); | ||||||||
| 2682 | } | ||||||||
| 2683 | else | ||||||||
| 2684 | NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], | ||||||||
| 2685 | Group->getAlign(), "wide.vec"); | ||||||||
| 2686 | Group->addMetadata(NewLoad); | ||||||||
| 2687 | NewLoads.push_back(NewLoad); | ||||||||
| 2688 | } | ||||||||
| 2689 | |||||||||
| 2690 | // For each member in the group, shuffle out the appropriate data from the | ||||||||
| 2691 | // wide loads. | ||||||||
| 2692 | unsigned J = 0; | ||||||||
| 2693 | for (unsigned I = 0; I < InterleaveFactor; ++I) { | ||||||||
| 2694 | Instruction *Member = Group->getMember(I); | ||||||||
| 2695 | |||||||||
| 2696 | // Skip the gaps in the group. | ||||||||
| 2697 | if (!Member) | ||||||||
| 2698 | continue; | ||||||||
| 2699 | |||||||||
| 2700 | auto StrideMask = | ||||||||
| 2701 | createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); | ||||||||
| 2702 | for (unsigned Part = 0; Part < UF; Part++) { | ||||||||
| 2703 | Value *StridedVec = Builder.CreateShuffleVector( | ||||||||
| 2704 | NewLoads[Part], StrideMask, "strided.vec"); | ||||||||
| 2705 | |||||||||
| 2706 | // If this member has different type, cast the result type. | ||||||||
| 2707 | if (Member->getType() != ScalarTy) { | ||||||||
| 2708 | assert(!VF.isScalable() && "VF is assumed to be non scalable.")(static_cast <bool> (!VF.isScalable() && "VF is assumed to be non scalable." ) ? void (0) : __assert_fail ("!VF.isScalable() && \"VF is assumed to be non scalable.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2708, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2709 | VectorType *OtherVTy = VectorType::get(Member->getType(), VF); | ||||||||
| 2710 | StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); | ||||||||
| 2711 | } | ||||||||
| 2712 | |||||||||
| 2713 | if (Group->isReverse()) | ||||||||
| 2714 | StridedVec = Builder.CreateVectorReverse(StridedVec, "reverse"); | ||||||||
| 2715 | |||||||||
| 2716 | State.set(VPDefs[J], StridedVec, Part); | ||||||||
| 2717 | } | ||||||||
| 2718 | ++J; | ||||||||
| 2719 | } | ||||||||
| 2720 | return; | ||||||||
| 2721 | } | ||||||||
| 2722 | |||||||||
| 2723 | // The sub vector type for current instruction. | ||||||||
| 2724 | auto *SubVT = VectorType::get(ScalarTy, VF); | ||||||||
| 2725 | |||||||||
| 2726 | // Vectorize the interleaved store group. | ||||||||
| 2727 | MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); | ||||||||
| 2728 | assert((!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) &&(static_cast <bool> ((!MaskForGaps || useMaskedInterleavedAccesses (*TTI)) && "masked interleaved groups are not allowed." ) ? void (0) : __assert_fail ("(!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && \"masked interleaved groups are not allowed.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2729, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2729 | "masked interleaved groups are not allowed.")(static_cast <bool> ((!MaskForGaps || useMaskedInterleavedAccesses (*TTI)) && "masked interleaved groups are not allowed." ) ? void (0) : __assert_fail ("(!MaskForGaps || useMaskedInterleavedAccesses(*TTI)) && \"masked interleaved groups are not allowed.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2729, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2730 | assert((!MaskForGaps || !VF.isScalable()) &&(static_cast <bool> ((!MaskForGaps || !VF.isScalable()) && "masking gaps for scalable vectors is not yet supported." ) ? void (0) : __assert_fail ("(!MaskForGaps || !VF.isScalable()) && \"masking gaps for scalable vectors is not yet supported.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2731, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2731 | "masking gaps for scalable vectors is not yet supported.")(static_cast <bool> ((!MaskForGaps || !VF.isScalable()) && "masking gaps for scalable vectors is not yet supported." ) ? void (0) : __assert_fail ("(!MaskForGaps || !VF.isScalable()) && \"masking gaps for scalable vectors is not yet supported.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2731, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2732 | for (unsigned Part = 0; Part < UF; Part++) { | ||||||||
| 2733 | // Collect the stored vector from each member. | ||||||||
| 2734 | SmallVector<Value *, 4> StoredVecs; | ||||||||
| 2735 | unsigned StoredIdx = 0; | ||||||||
| 2736 | for (unsigned i = 0; i < InterleaveFactor; i++) { | ||||||||
| 2737 | assert((Group->getMember(i) || MaskForGaps) &&(static_cast <bool> ((Group->getMember(i) || MaskForGaps ) && "Fail to get a member from an interleaved store group" ) ? void (0) : __assert_fail ("(Group->getMember(i) || MaskForGaps) && \"Fail to get a member from an interleaved store group\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2738, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2738 | "Fail to get a member from an interleaved store group")(static_cast <bool> ((Group->getMember(i) || MaskForGaps ) && "Fail to get a member from an interleaved store group" ) ? void (0) : __assert_fail ("(Group->getMember(i) || MaskForGaps) && \"Fail to get a member from an interleaved store group\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2738, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2739 | Instruction *Member = Group->getMember(i); | ||||||||
| 2740 | |||||||||
| 2741 | // Skip the gaps in the group. | ||||||||
| 2742 | if (!Member) { | ||||||||
| 2743 | Value *Undef = PoisonValue::get(SubVT); | ||||||||
| 2744 | StoredVecs.push_back(Undef); | ||||||||
| 2745 | continue; | ||||||||
| 2746 | } | ||||||||
| 2747 | |||||||||
| 2748 | Value *StoredVec = State.get(StoredValues[StoredIdx], Part); | ||||||||
| 2749 | ++StoredIdx; | ||||||||
| 2750 | |||||||||
| 2751 | if (Group->isReverse()) | ||||||||
| 2752 | StoredVec = Builder.CreateVectorReverse(StoredVec, "reverse"); | ||||||||
| 2753 | |||||||||
| 2754 | // If this member has different type, cast it to a unified type. | ||||||||
| 2755 | |||||||||
| 2756 | if (StoredVec->getType() != SubVT) | ||||||||
| 2757 | StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); | ||||||||
| 2758 | |||||||||
| 2759 | StoredVecs.push_back(StoredVec); | ||||||||
| 2760 | } | ||||||||
| 2761 | |||||||||
| 2762 | // Concatenate all vectors into a wide vector. | ||||||||
| 2763 | Value *WideVec = concatenateVectors(Builder, StoredVecs); | ||||||||
| 2764 | |||||||||
| 2765 | // Interleave the elements in the wide vector. | ||||||||
| 2766 | Value *IVec = Builder.CreateShuffleVector( | ||||||||
| 2767 | WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), | ||||||||
| 2768 | "interleaved.vec"); | ||||||||
| 2769 | |||||||||
| 2770 | Instruction *NewStoreInstr; | ||||||||
| 2771 | if (BlockInMask || MaskForGaps) { | ||||||||
| 2772 | Value *GroupMask = MaskForGaps; | ||||||||
| 2773 | if (BlockInMask) { | ||||||||
| 2774 | Value *BlockInMaskPart = State.get(BlockInMask, Part); | ||||||||
| 2775 | Value *ShuffledMask = Builder.CreateShuffleVector( | ||||||||
| 2776 | BlockInMaskPart, | ||||||||
| 2777 | createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), | ||||||||
| 2778 | "interleaved.mask"); | ||||||||
| 2779 | GroupMask = MaskForGaps ? Builder.CreateBinOp(Instruction::And, | ||||||||
| 2780 | ShuffledMask, MaskForGaps) | ||||||||
| 2781 | : ShuffledMask; | ||||||||
| 2782 | } | ||||||||
| 2783 | NewStoreInstr = Builder.CreateMaskedStore(IVec, AddrParts[Part], | ||||||||
| 2784 | Group->getAlign(), GroupMask); | ||||||||
| 2785 | } else | ||||||||
| 2786 | NewStoreInstr = | ||||||||
| 2787 | Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); | ||||||||
| 2788 | |||||||||
| 2789 | Group->addMetadata(NewStoreInstr); | ||||||||
| 2790 | } | ||||||||
| 2791 | } | ||||||||
| 2792 | |||||||||
| 2793 | void InnerLoopVectorizer::scalarizeInstruction(const Instruction *Instr, | ||||||||
| 2794 | VPReplicateRecipe *RepRecipe, | ||||||||
| 2795 | const VPIteration &Instance, | ||||||||
| 2796 | bool IfPredicateInstr, | ||||||||
| 2797 | VPTransformState &State) { | ||||||||
| 2798 | assert(!Instr->getType()->isAggregateType() && "Can't handle vectors")(static_cast <bool> (!Instr->getType()->isAggregateType () && "Can't handle vectors") ? void (0) : __assert_fail ("!Instr->getType()->isAggregateType() && \"Can't handle vectors\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2798, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2799 | |||||||||
| 2800 | // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for | ||||||||
| 2801 | // the first lane and part. | ||||||||
| 2802 | if (isa<NoAliasScopeDeclInst>(Instr)) | ||||||||
| 2803 | if (!Instance.isFirstIteration()) | ||||||||
| 2804 | return; | ||||||||
| 2805 | |||||||||
| 2806 | // Does this instruction return a value ? | ||||||||
| 2807 | bool IsVoidRetTy = Instr->getType()->isVoidTy(); | ||||||||
| 2808 | |||||||||
| 2809 | Instruction *Cloned = Instr->clone(); | ||||||||
| 2810 | if (!IsVoidRetTy) | ||||||||
| 2811 | Cloned->setName(Instr->getName() + ".cloned"); | ||||||||
| 2812 | |||||||||
| 2813 | // If the scalarized instruction contributes to the address computation of a | ||||||||
| 2814 | // widen masked load/store which was in a basic block that needed predication | ||||||||
| 2815 | // and is not predicated after vectorization, we can't propagate | ||||||||
| 2816 | // poison-generating flags (nuw/nsw, exact, inbounds, etc.). The scalarized | ||||||||
| 2817 | // instruction could feed a poison value to the base address of the widen | ||||||||
| 2818 | // load/store. | ||||||||
| 2819 | if (State.MayGeneratePoisonRecipes.contains(RepRecipe)) | ||||||||
| 2820 | Cloned->dropPoisonGeneratingFlags(); | ||||||||
| 2821 | |||||||||
| 2822 | if (Instr->getDebugLoc()) | ||||||||
| 2823 | State.setDebugLocFromInst(Instr); | ||||||||
| 2824 | |||||||||
| 2825 | // Replace the operands of the cloned instructions with their scalar | ||||||||
| 2826 | // equivalents in the new loop. | ||||||||
| 2827 | for (const auto &I : enumerate(RepRecipe->operands())) { | ||||||||
| 2828 | auto InputInstance = Instance; | ||||||||
| 2829 | VPValue *Operand = I.value(); | ||||||||
| 2830 | if (vputils::isUniformAfterVectorization(Operand)) | ||||||||
| 2831 | InputInstance.Lane = VPLane::getFirstLane(); | ||||||||
| 2832 | Cloned->setOperand(I.index(), State.get(Operand, InputInstance)); | ||||||||
| 2833 | } | ||||||||
| 2834 | State.addNewMetadata(Cloned, Instr); | ||||||||
| 2835 | |||||||||
| 2836 | // Place the cloned scalar in the new loop. | ||||||||
| 2837 | State.Builder.Insert(Cloned); | ||||||||
| 2838 | |||||||||
| 2839 | State.set(RepRecipe, Cloned, Instance); | ||||||||
| 2840 | |||||||||
| 2841 | // If we just cloned a new assumption, add it the assumption cache. | ||||||||
| 2842 | if (auto *II = dyn_cast<AssumeInst>(Cloned)) | ||||||||
| 2843 | AC->registerAssumption(II); | ||||||||
| 2844 | |||||||||
| 2845 | // End if-block. | ||||||||
| 2846 | if (IfPredicateInstr) | ||||||||
| 2847 | PredicatedInstructions.push_back(Cloned); | ||||||||
| 2848 | } | ||||||||
| 2849 | |||||||||
| 2850 | Value *InnerLoopVectorizer::getOrCreateTripCount(BasicBlock *InsertBlock) { | ||||||||
| 2851 | if (TripCount) | ||||||||
| 2852 | return TripCount; | ||||||||
| 2853 | |||||||||
| 2854 | assert(InsertBlock)(static_cast <bool> (InsertBlock) ? void (0) : __assert_fail ("InsertBlock", "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp" , 2854, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2855 | IRBuilder<> Builder(InsertBlock->getTerminator()); | ||||||||
| 2856 | // Find the loop boundaries. | ||||||||
| 2857 | Type *IdxTy = Legal->getWidestInductionType(); | ||||||||
| 2858 | assert(IdxTy && "No type for induction")(static_cast <bool> (IdxTy && "No type for induction" ) ? void (0) : __assert_fail ("IdxTy && \"No type for induction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2858, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2859 | const SCEV *ExitCount = createTripCountSCEV(IdxTy, PSE); | ||||||||
| 2860 | |||||||||
| 2861 | const DataLayout &DL = InsertBlock->getModule()->getDataLayout(); | ||||||||
| 2862 | |||||||||
| 2863 | // Expand the trip count and place the new instructions in the preheader. | ||||||||
| 2864 | // Notice that the pre-header does not change, only the loop body. | ||||||||
| 2865 | SCEVExpander Exp(*PSE.getSE(), DL, "induction"); | ||||||||
| 2866 | |||||||||
| 2867 | // Count holds the overall loop count (N). | ||||||||
| 2868 | TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), | ||||||||
| 2869 | InsertBlock->getTerminator()); | ||||||||
| 2870 | |||||||||
| 2871 | if (TripCount->getType()->isPointerTy()) | ||||||||
| 2872 | TripCount = | ||||||||
| 2873 | CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", | ||||||||
| 2874 | InsertBlock->getTerminator()); | ||||||||
| 2875 | |||||||||
| 2876 | return TripCount; | ||||||||
| 2877 | } | ||||||||
| 2878 | |||||||||
| 2879 | Value * | ||||||||
| 2880 | InnerLoopVectorizer::getOrCreateVectorTripCount(BasicBlock *InsertBlock) { | ||||||||
| 2881 | if (VectorTripCount) | ||||||||
| 2882 | return VectorTripCount; | ||||||||
| 2883 | |||||||||
| 2884 | Value *TC = getOrCreateTripCount(InsertBlock); | ||||||||
| 2885 | IRBuilder<> Builder(InsertBlock->getTerminator()); | ||||||||
| 2886 | |||||||||
| 2887 | Type *Ty = TC->getType(); | ||||||||
| 2888 | // This is where we can make the step a runtime constant. | ||||||||
| 2889 | Value *Step = createStepForVF(Builder, Ty, VF, UF); | ||||||||
| 2890 | |||||||||
| 2891 | // If the tail is to be folded by masking, round the number of iterations N | ||||||||
| 2892 | // up to a multiple of Step instead of rounding down. This is done by first | ||||||||
| 2893 | // adding Step-1 and then rounding down. Note that it's ok if this addition | ||||||||
| 2894 | // overflows: the vector induction variable will eventually wrap to zero given | ||||||||
| 2895 | // that it starts at zero and its Step is a power of two; the loop will then | ||||||||
| 2896 | // exit, with the last early-exit vector comparison also producing all-true. | ||||||||
| 2897 | // For scalable vectors the VF is not guaranteed to be a power of 2, but this | ||||||||
| 2898 | // is accounted for in emitIterationCountCheck that adds an overflow check. | ||||||||
| 2899 | if (Cost->foldTailByMasking()) { | ||||||||
| 2900 | assert(isPowerOf2_32(VF.getKnownMinValue() * UF) &&(static_cast <bool> (isPowerOf2_32(VF.getKnownMinValue( ) * UF) && "VF*UF must be a power of 2 when folding tail by masking" ) ? void (0) : __assert_fail ("isPowerOf2_32(VF.getKnownMinValue() * UF) && \"VF*UF must be a power of 2 when folding tail by masking\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2901, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2901 | "VF*UF must be a power of 2 when folding tail by masking")(static_cast <bool> (isPowerOf2_32(VF.getKnownMinValue( ) * UF) && "VF*UF must be a power of 2 when folding tail by masking" ) ? void (0) : __assert_fail ("isPowerOf2_32(VF.getKnownMinValue() * UF) && \"VF*UF must be a power of 2 when folding tail by masking\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2901, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2902 | Value *NumLanes = getRuntimeVF(Builder, Ty, VF * UF); | ||||||||
| 2903 | TC = Builder.CreateAdd( | ||||||||
| 2904 | TC, Builder.CreateSub(NumLanes, ConstantInt::get(Ty, 1)), "n.rnd.up"); | ||||||||
| 2905 | } | ||||||||
| 2906 | |||||||||
| 2907 | // Now we need to generate the expression for the part of the loop that the | ||||||||
| 2908 | // vectorized body will execute. This is equal to N - (N % Step) if scalar | ||||||||
| 2909 | // iterations are not required for correctness, or N - Step, otherwise. Step | ||||||||
| 2910 | // is equal to the vectorization factor (number of SIMD elements) times the | ||||||||
| 2911 | // unroll factor (number of SIMD instructions). | ||||||||
| 2912 | Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); | ||||||||
| 2913 | |||||||||
| 2914 | // There are cases where we *must* run at least one iteration in the remainder | ||||||||
| 2915 | // loop. See the cost model for when this can happen. If the step evenly | ||||||||
| 2916 | // divides the trip count, we set the remainder to be equal to the step. If | ||||||||
| 2917 | // the step does not evenly divide the trip count, no adjustment is necessary | ||||||||
| 2918 | // since there will already be scalar iterations. Note that the minimum | ||||||||
| 2919 | // iterations check ensures that N >= Step. | ||||||||
| 2920 | if (Cost->requiresScalarEpilogue(VF)) { | ||||||||
| 2921 | auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); | ||||||||
| 2922 | R = Builder.CreateSelect(IsZero, Step, R); | ||||||||
| 2923 | } | ||||||||
| 2924 | |||||||||
| 2925 | VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); | ||||||||
| 2926 | |||||||||
| 2927 | return VectorTripCount; | ||||||||
| 2928 | } | ||||||||
| 2929 | |||||||||
| 2930 | Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, | ||||||||
| 2931 | const DataLayout &DL) { | ||||||||
| 2932 | // Verify that V is a vector type with same number of elements as DstVTy. | ||||||||
| 2933 | auto *DstFVTy = cast<FixedVectorType>(DstVTy); | ||||||||
| 2934 | unsigned VF = DstFVTy->getNumElements(); | ||||||||
| 2935 | auto *SrcVecTy = cast<FixedVectorType>(V->getType()); | ||||||||
| 2936 | assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match")(static_cast <bool> ((VF == SrcVecTy->getNumElements ()) && "Vector dimensions do not match") ? void (0) : __assert_fail ("(VF == SrcVecTy->getNumElements()) && \"Vector dimensions do not match\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2936, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2937 | Type *SrcElemTy = SrcVecTy->getElementType(); | ||||||||
| 2938 | Type *DstElemTy = DstFVTy->getElementType(); | ||||||||
| 2939 | assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) &&(static_cast <bool> ((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && "Vector elements must have same size" ) ? void (0) : __assert_fail ("(DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && \"Vector elements must have same size\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2940, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2940 | "Vector elements must have same size")(static_cast <bool> ((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && "Vector elements must have same size" ) ? void (0) : __assert_fail ("(DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && \"Vector elements must have same size\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2940, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2941 | |||||||||
| 2942 | // Do a direct cast if element types are castable. | ||||||||
| 2943 | if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { | ||||||||
| 2944 | return Builder.CreateBitOrPointerCast(V, DstFVTy); | ||||||||
| 2945 | } | ||||||||
| 2946 | // V cannot be directly casted to desired vector type. | ||||||||
| 2947 | // May happen when V is a floating point vector but DstVTy is a vector of | ||||||||
| 2948 | // pointers or vice-versa. Handle this using a two-step bitcast using an | ||||||||
| 2949 | // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. | ||||||||
| 2950 | assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) &&(static_cast <bool> ((DstElemTy->isPointerTy() != SrcElemTy ->isPointerTy()) && "Only one type should be a pointer type" ) ? void (0) : __assert_fail ("(DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && \"Only one type should be a pointer type\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2951, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2951 | "Only one type should be a pointer type")(static_cast <bool> ((DstElemTy->isPointerTy() != SrcElemTy ->isPointerTy()) && "Only one type should be a pointer type" ) ? void (0) : __assert_fail ("(DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && \"Only one type should be a pointer type\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2951, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2952 | assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) &&(static_cast <bool> ((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && "Only one type should be a floating point type" ) ? void (0) : __assert_fail ("(DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && \"Only one type should be a floating point type\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2953, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 2953 | "Only one type should be a floating point type")(static_cast <bool> ((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && "Only one type should be a floating point type" ) ? void (0) : __assert_fail ("(DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && \"Only one type should be a floating point type\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 2953, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 2954 | Type *IntTy = | ||||||||
| 2955 | IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); | ||||||||
| 2956 | auto *VecIntTy = FixedVectorType::get(IntTy, VF); | ||||||||
| 2957 | Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); | ||||||||
| 2958 | return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); | ||||||||
| 2959 | } | ||||||||
| 2960 | |||||||||
| 2961 | void InnerLoopVectorizer::emitIterationCountCheck(BasicBlock *Bypass) { | ||||||||
| 2962 | Value *Count = getOrCreateTripCount(LoopVectorPreHeader); | ||||||||
| 2963 | // Reuse existing vector loop preheader for TC checks. | ||||||||
| 2964 | // Note that new preheader block is generated for vector loop. | ||||||||
| 2965 | BasicBlock *const TCCheckBlock = LoopVectorPreHeader; | ||||||||
| 2966 | IRBuilder<> Builder(TCCheckBlock->getTerminator()); | ||||||||
| 2967 | |||||||||
| 2968 | // Generate code to check if the loop's trip count is less than VF * UF, or | ||||||||
| 2969 | // equal to it in case a scalar epilogue is required; this implies that the | ||||||||
| 2970 | // vector trip count is zero. This check also covers the case where adding one | ||||||||
| 2971 | // to the backedge-taken count overflowed leading to an incorrect trip count | ||||||||
| 2972 | // of zero. In this case we will also jump to the scalar loop. | ||||||||
| 2973 | auto P = Cost->requiresScalarEpilogue(VF) ? ICmpInst::ICMP_ULE | ||||||||
| 2974 | : ICmpInst::ICMP_ULT; | ||||||||
| 2975 | |||||||||
| 2976 | // If tail is to be folded, vector loop takes care of all iterations. | ||||||||
| 2977 | Type *CountTy = Count->getType(); | ||||||||
| 2978 | Value *CheckMinIters = Builder.getFalse(); | ||||||||
| 2979 | auto CreateStep = [&]() -> Value * { | ||||||||
| 2980 | // Create step with max(MinProTripCount, UF * VF). | ||||||||
| 2981 | if (UF * VF.getKnownMinValue() >= MinProfitableTripCount.getKnownMinValue()) | ||||||||
| 2982 | return createStepForVF(Builder, CountTy, VF, UF); | ||||||||
| 2983 | |||||||||
| 2984 | Value *MinProfTC = | ||||||||
| 2985 | createStepForVF(Builder, CountTy, MinProfitableTripCount, 1); | ||||||||
| 2986 | if (!VF.isScalable()) | ||||||||
| 2987 | return MinProfTC; | ||||||||
| 2988 | return Builder.CreateBinaryIntrinsic( | ||||||||
| 2989 | Intrinsic::umax, MinProfTC, createStepForVF(Builder, CountTy, VF, UF)); | ||||||||
| 2990 | }; | ||||||||
| 2991 | |||||||||
| 2992 | if (!Cost->foldTailByMasking()) | ||||||||
| 2993 | CheckMinIters = | ||||||||
| 2994 | Builder.CreateICmp(P, Count, CreateStep(), "min.iters.check"); | ||||||||
| 2995 | else if (VF.isScalable()) { | ||||||||
| 2996 | // vscale is not necessarily a power-of-2, which means we cannot guarantee | ||||||||
| 2997 | // an overflow to zero when updating induction variables and so an | ||||||||
| 2998 | // additional overflow check is required before entering the vector loop. | ||||||||
| 2999 | |||||||||
| 3000 | // Get the maximum unsigned value for the type. | ||||||||
| 3001 | Value *MaxUIntTripCount = | ||||||||
| 3002 | ConstantInt::get(CountTy, cast<IntegerType>(CountTy)->getMask()); | ||||||||
| 3003 | Value *LHS = Builder.CreateSub(MaxUIntTripCount, Count); | ||||||||
| 3004 | |||||||||
| 3005 | // Don't execute the vector loop if (UMax - n) < (VF * UF). | ||||||||
| 3006 | CheckMinIters = Builder.CreateICmp(ICmpInst::ICMP_ULT, LHS, CreateStep()); | ||||||||
| 3007 | } | ||||||||
| 3008 | |||||||||
| 3009 | // Create new preheader for vector loop. | ||||||||
| 3010 | LoopVectorPreHeader = | ||||||||
| 3011 | SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, | ||||||||
| 3012 | "vector.ph"); | ||||||||
| 3013 | |||||||||
| 3014 | assert(DT->properlyDominates(DT->getNode(TCCheckBlock),(static_cast <bool> (DT->properlyDominates(DT->getNode (TCCheckBlock), DT->getNode(Bypass)->getIDom()) && "TC check is expected to dominate Bypass") ? void (0) : __assert_fail ("DT->properlyDominates(DT->getNode(TCCheckBlock), DT->getNode(Bypass)->getIDom()) && \"TC check is expected to dominate Bypass\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3016, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 3015 | DT->getNode(Bypass)->getIDom()) &&(static_cast <bool> (DT->properlyDominates(DT->getNode (TCCheckBlock), DT->getNode(Bypass)->getIDom()) && "TC check is expected to dominate Bypass") ? void (0) : __assert_fail ("DT->properlyDominates(DT->getNode(TCCheckBlock), DT->getNode(Bypass)->getIDom()) && \"TC check is expected to dominate Bypass\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3016, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 3016 | "TC check is expected to dominate Bypass")(static_cast <bool> (DT->properlyDominates(DT->getNode (TCCheckBlock), DT->getNode(Bypass)->getIDom()) && "TC check is expected to dominate Bypass") ? void (0) : __assert_fail ("DT->properlyDominates(DT->getNode(TCCheckBlock), DT->getNode(Bypass)->getIDom()) && \"TC check is expected to dominate Bypass\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3016, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3017 | |||||||||
| 3018 | // Update dominator for Bypass & LoopExit (if needed). | ||||||||
| 3019 | DT->changeImmediateDominator(Bypass, TCCheckBlock); | ||||||||
| 3020 | if (!Cost->requiresScalarEpilogue(VF)) | ||||||||
| 3021 | // If there is an epilogue which must run, there's no edge from the | ||||||||
| 3022 | // middle block to exit blocks and thus no need to update the immediate | ||||||||
| 3023 | // dominator of the exit blocks. | ||||||||
| 3024 | DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); | ||||||||
| 3025 | |||||||||
| 3026 | ReplaceInstWithInst( | ||||||||
| 3027 | TCCheckBlock->getTerminator(), | ||||||||
| 3028 | BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); | ||||||||
| 3029 | LoopBypassBlocks.push_back(TCCheckBlock); | ||||||||
| 3030 | } | ||||||||
| 3031 | |||||||||
| 3032 | BasicBlock *InnerLoopVectorizer::emitSCEVChecks(BasicBlock *Bypass) { | ||||||||
| 3033 | BasicBlock *const SCEVCheckBlock = | ||||||||
| 3034 | RTChecks.emitSCEVChecks(Bypass, LoopVectorPreHeader, LoopExitBlock); | ||||||||
| 3035 | if (!SCEVCheckBlock) | ||||||||
| 3036 | return nullptr; | ||||||||
| 3037 | |||||||||
| 3038 | assert(!(SCEVCheckBlock->getParent()->hasOptSize() ||(static_cast <bool> (!(SCEVCheckBlock->getParent()-> hasOptSize() || (OptForSizeBasedOnProfile && Cost-> Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && "Cannot SCEV check stride or overflow when optimizing for size" ) ? void (0) : __assert_fail ("!(SCEVCheckBlock->getParent()->hasOptSize() || (OptForSizeBasedOnProfile && Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && \"Cannot SCEV check stride or overflow when optimizing for size\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3041, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 3039 | (OptForSizeBasedOnProfile &&(static_cast <bool> (!(SCEVCheckBlock->getParent()-> hasOptSize() || (OptForSizeBasedOnProfile && Cost-> Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && "Cannot SCEV check stride or overflow when optimizing for size" ) ? void (0) : __assert_fail ("!(SCEVCheckBlock->getParent()->hasOptSize() || (OptForSizeBasedOnProfile && Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && \"Cannot SCEV check stride or overflow when optimizing for size\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3041, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 3040 | Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) &&(static_cast <bool> (!(SCEVCheckBlock->getParent()-> hasOptSize() || (OptForSizeBasedOnProfile && Cost-> Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && "Cannot SCEV check stride or overflow when optimizing for size" ) ? void (0) : __assert_fail ("!(SCEVCheckBlock->getParent()->hasOptSize() || (OptForSizeBasedOnProfile && Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && \"Cannot SCEV check stride or overflow when optimizing for size\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3041, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 3041 | "Cannot SCEV check stride or overflow when optimizing for size")(static_cast <bool> (!(SCEVCheckBlock->getParent()-> hasOptSize() || (OptForSizeBasedOnProfile && Cost-> Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && "Cannot SCEV check stride or overflow when optimizing for size" ) ? void (0) : __assert_fail ("!(SCEVCheckBlock->getParent()->hasOptSize() || (OptForSizeBasedOnProfile && Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && \"Cannot SCEV check stride or overflow when optimizing for size\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3041, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3042 | |||||||||
| 3043 | |||||||||
| 3044 | // Update dominator only if this is first RT check. | ||||||||
| 3045 | if (LoopBypassBlocks.empty()) { | ||||||||
| 3046 | DT->changeImmediateDominator(Bypass, SCEVCheckBlock); | ||||||||
| 3047 | if (!Cost->requiresScalarEpilogue(VF)) | ||||||||
| 3048 | // If there is an epilogue which must run, there's no edge from the | ||||||||
| 3049 | // middle block to exit blocks and thus no need to update the immediate | ||||||||
| 3050 | // dominator of the exit blocks. | ||||||||
| 3051 | DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); | ||||||||
| 3052 | } | ||||||||
| 3053 | |||||||||
| 3054 | LoopBypassBlocks.push_back(SCEVCheckBlock); | ||||||||
| 3055 | AddedSafetyChecks = true; | ||||||||
| 3056 | return SCEVCheckBlock; | ||||||||
| 3057 | } | ||||||||
| 3058 | |||||||||
| 3059 | BasicBlock *InnerLoopVectorizer::emitMemRuntimeChecks(BasicBlock *Bypass) { | ||||||||
| 3060 | // VPlan-native path does not do any analysis for runtime checks currently. | ||||||||
| 3061 | if (EnableVPlanNativePath) | ||||||||
| 3062 | return nullptr; | ||||||||
| 3063 | |||||||||
| 3064 | BasicBlock *const MemCheckBlock = | ||||||||
| 3065 | RTChecks.emitMemRuntimeChecks(Bypass, LoopVectorPreHeader); | ||||||||
| 3066 | |||||||||
| 3067 | // Check if we generated code that checks in runtime if arrays overlap. We put | ||||||||
| 3068 | // the checks into a separate block to make the more common case of few | ||||||||
| 3069 | // elements faster. | ||||||||
| 3070 | if (!MemCheckBlock) | ||||||||
| 3071 | return nullptr; | ||||||||
| 3072 | |||||||||
| 3073 | if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { | ||||||||
| 3074 | assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled &&(static_cast <bool> (Cost->Hints->getForce() == LoopVectorizeHints ::FK_Enabled && "Cannot emit memory checks when optimizing for size, unless forced " "to vectorize.") ? void (0) : __assert_fail ("Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && \"Cannot emit memory checks when optimizing for size, unless forced \" \"to vectorize.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3076, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 3075 | "Cannot emit memory checks when optimizing for size, unless forced "(static_cast <bool> (Cost->Hints->getForce() == LoopVectorizeHints ::FK_Enabled && "Cannot emit memory checks when optimizing for size, unless forced " "to vectorize.") ? void (0) : __assert_fail ("Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && \"Cannot emit memory checks when optimizing for size, unless forced \" \"to vectorize.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3076, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 3076 | "to vectorize.")(static_cast <bool> (Cost->Hints->getForce() == LoopVectorizeHints ::FK_Enabled && "Cannot emit memory checks when optimizing for size, unless forced " "to vectorize.") ? void (0) : __assert_fail ("Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && \"Cannot emit memory checks when optimizing for size, unless forced \" \"to vectorize.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3076, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3077 | ORE->emit([&]() { | ||||||||
| 3078 | return OptimizationRemarkAnalysis(DEBUG_TYPE"loop-vectorize", "VectorizationCodeSize", | ||||||||
| 3079 | OrigLoop->getStartLoc(), | ||||||||
| 3080 | OrigLoop->getHeader()) | ||||||||
| 3081 | << "Code-size may be reduced by not forcing " | ||||||||
| 3082 | "vectorization, or by source-code modifications " | ||||||||
| 3083 | "eliminating the need for runtime checks " | ||||||||
| 3084 | "(e.g., adding 'restrict')."; | ||||||||
| 3085 | }); | ||||||||
| 3086 | } | ||||||||
| 3087 | |||||||||
| 3088 | LoopBypassBlocks.push_back(MemCheckBlock); | ||||||||
| 3089 | |||||||||
| 3090 | AddedSafetyChecks = true; | ||||||||
| 3091 | |||||||||
| 3092 | return MemCheckBlock; | ||||||||
| 3093 | } | ||||||||
| 3094 | |||||||||
| 3095 | void InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { | ||||||||
| 3096 | LoopScalarBody = OrigLoop->getHeader(); | ||||||||
| 3097 | LoopVectorPreHeader = OrigLoop->getLoopPreheader(); | ||||||||
| 3098 | assert(LoopVectorPreHeader && "Invalid loop structure")(static_cast <bool> (LoopVectorPreHeader && "Invalid loop structure" ) ? void (0) : __assert_fail ("LoopVectorPreHeader && \"Invalid loop structure\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3098, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3099 | LoopExitBlock = OrigLoop->getUniqueExitBlock(); // may be nullptr | ||||||||
| 3100 | assert((LoopExitBlock || Cost->requiresScalarEpilogue(VF)) &&(static_cast <bool> ((LoopExitBlock || Cost->requiresScalarEpilogue (VF)) && "multiple exit loop without required epilogue?" ) ? void (0) : __assert_fail ("(LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && \"multiple exit loop without required epilogue?\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3101, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 3101 | "multiple exit loop without required epilogue?")(static_cast <bool> ((LoopExitBlock || Cost->requiresScalarEpilogue (VF)) && "multiple exit loop without required epilogue?" ) ? void (0) : __assert_fail ("(LoopExitBlock || Cost->requiresScalarEpilogue(VF)) && \"multiple exit loop without required epilogue?\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3101, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3102 | |||||||||
| 3103 | LoopMiddleBlock = | ||||||||
| 3104 | SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, | ||||||||
| 3105 | LI, nullptr, Twine(Prefix) + "middle.block"); | ||||||||
| 3106 | LoopScalarPreHeader = | ||||||||
| 3107 | SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, | ||||||||
| 3108 | nullptr, Twine(Prefix) + "scalar.ph"); | ||||||||
| 3109 | |||||||||
| 3110 | auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); | ||||||||
| 3111 | |||||||||
| 3112 | // Set up the middle block terminator. Two cases: | ||||||||
| 3113 | // 1) If we know that we must execute the scalar epilogue, emit an | ||||||||
| 3114 | // unconditional branch. | ||||||||
| 3115 | // 2) Otherwise, we must have a single unique exit block (due to how we | ||||||||
| 3116 | // implement the multiple exit case). In this case, set up a conditional | ||||||||
| 3117 | // branch from the middle block to the loop scalar preheader, and the | ||||||||
| 3118 | // exit block. completeLoopSkeleton will update the condition to use an | ||||||||
| 3119 | // iteration check, if required to decide whether to execute the remainder. | ||||||||
| 3120 | BranchInst *BrInst = Cost->requiresScalarEpilogue(VF) ? | ||||||||
| 3121 | BranchInst::Create(LoopScalarPreHeader) : | ||||||||
| 3122 | BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, | ||||||||
| 3123 | Builder.getTrue()); | ||||||||
| 3124 | BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); | ||||||||
| 3125 | ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); | ||||||||
| 3126 | |||||||||
| 3127 | // Update dominator for loop exit. During skeleton creation, only the vector | ||||||||
| 3128 | // pre-header and the middle block are created. The vector loop is entirely | ||||||||
| 3129 | // created during VPlan exection. | ||||||||
| 3130 | if (!Cost->requiresScalarEpilogue(VF)) | ||||||||
| 3131 | // If there is an epilogue which must run, there's no edge from the | ||||||||
| 3132 | // middle block to exit blocks and thus no need to update the immediate | ||||||||
| 3133 | // dominator of the exit blocks. | ||||||||
| 3134 | DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); | ||||||||
| 3135 | } | ||||||||
| 3136 | |||||||||
| 3137 | PHINode *InnerLoopVectorizer::createInductionResumeValue( | ||||||||
| 3138 | PHINode *OrigPhi, const InductionDescriptor &II, | ||||||||
| 3139 | ArrayRef<BasicBlock *> BypassBlocks, | ||||||||
| 3140 | std::pair<BasicBlock *, Value *> AdditionalBypass) { | ||||||||
| 3141 | Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); | ||||||||
| 3142 | assert(VectorTripCount && "Expected valid arguments")(static_cast <bool> (VectorTripCount && "Expected valid arguments" ) ? void (0) : __assert_fail ("VectorTripCount && \"Expected valid arguments\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3142, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3143 | |||||||||
| 3144 | Instruction *OldInduction = Legal->getPrimaryInduction(); | ||||||||
| 3145 | Value *&EndValue = IVEndValues[OrigPhi]; | ||||||||
| 3146 | Value *EndValueFromAdditionalBypass = AdditionalBypass.second; | ||||||||
| 3147 | if (OrigPhi == OldInduction) { | ||||||||
| 3148 | // We know what the end value is. | ||||||||
| 3149 | EndValue = VectorTripCount; | ||||||||
| 3150 | } else { | ||||||||
| 3151 | IRBuilder<> B(LoopVectorPreHeader->getTerminator()); | ||||||||
| 3152 | |||||||||
| 3153 | // Fast-math-flags propagate from the original induction instruction. | ||||||||
| 3154 | if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) | ||||||||
| 3155 | B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); | ||||||||
| 3156 | |||||||||
| 3157 | Value *Step = | ||||||||
| 3158 | CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); | ||||||||
| 3159 | EndValue = | ||||||||
| 3160 | emitTransformedIndex(B, VectorTripCount, II.getStartValue(), Step, II); | ||||||||
| 3161 | EndValue->setName("ind.end"); | ||||||||
| 3162 | |||||||||
| 3163 | // Compute the end value for the additional bypass (if applicable). | ||||||||
| 3164 | if (AdditionalBypass.first) { | ||||||||
| 3165 | B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); | ||||||||
| 3166 | Value *Step = | ||||||||
| 3167 | CreateStepValue(II.getStep(), *PSE.getSE(), &*B.GetInsertPoint()); | ||||||||
| 3168 | EndValueFromAdditionalBypass = emitTransformedIndex( | ||||||||
| 3169 | B, AdditionalBypass.second, II.getStartValue(), Step, II); | ||||||||
| 3170 | EndValueFromAdditionalBypass->setName("ind.end"); | ||||||||
| 3171 | } | ||||||||
| 3172 | } | ||||||||
| 3173 | |||||||||
| 3174 | // Create phi nodes to merge from the backedge-taken check block. | ||||||||
| 3175 | PHINode *BCResumeVal = PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", | ||||||||
| 3176 | LoopScalarPreHeader->getTerminator()); | ||||||||
| 3177 | // Copy original phi DL over to the new one. | ||||||||
| 3178 | BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); | ||||||||
| 3179 | |||||||||
| 3180 | // The new PHI merges the original incoming value, in case of a bypass, | ||||||||
| 3181 | // or the value at the end of the vectorized loop. | ||||||||
| 3182 | BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); | ||||||||
| 3183 | |||||||||
| 3184 | // Fix the scalar body counter (PHI node). | ||||||||
| 3185 | // The old induction's phi node in the scalar body needs the truncated | ||||||||
| 3186 | // value. | ||||||||
| 3187 | for (BasicBlock *BB : BypassBlocks) | ||||||||
| 3188 | BCResumeVal->addIncoming(II.getStartValue(), BB); | ||||||||
| 3189 | |||||||||
| 3190 | if (AdditionalBypass.first) | ||||||||
| 3191 | BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, | ||||||||
| 3192 | EndValueFromAdditionalBypass); | ||||||||
| 3193 | return BCResumeVal; | ||||||||
| 3194 | } | ||||||||
| 3195 | |||||||||
| 3196 | void InnerLoopVectorizer::createInductionResumeValues( | ||||||||
| 3197 | std::pair<BasicBlock *, Value *> AdditionalBypass) { | ||||||||
| 3198 | assert(((AdditionalBypass.first && AdditionalBypass.second) ||(static_cast <bool> (((AdditionalBypass.first && AdditionalBypass.second) || (!AdditionalBypass.first && !AdditionalBypass.second)) && "Inconsistent information about additional bypass." ) ? void (0) : __assert_fail ("((AdditionalBypass.first && AdditionalBypass.second) || (!AdditionalBypass.first && !AdditionalBypass.second)) && \"Inconsistent information about additional bypass.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3200, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 3199 | (!AdditionalBypass.first && !AdditionalBypass.second)) &&(static_cast <bool> (((AdditionalBypass.first && AdditionalBypass.second) || (!AdditionalBypass.first && !AdditionalBypass.second)) && "Inconsistent information about additional bypass." ) ? void (0) : __assert_fail ("((AdditionalBypass.first && AdditionalBypass.second) || (!AdditionalBypass.first && !AdditionalBypass.second)) && \"Inconsistent information about additional bypass.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3200, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 3200 | "Inconsistent information about additional bypass.")(static_cast <bool> (((AdditionalBypass.first && AdditionalBypass.second) || (!AdditionalBypass.first && !AdditionalBypass.second)) && "Inconsistent information about additional bypass." ) ? void (0) : __assert_fail ("((AdditionalBypass.first && AdditionalBypass.second) || (!AdditionalBypass.first && !AdditionalBypass.second)) && \"Inconsistent information about additional bypass.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3200, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3201 | // We are going to resume the execution of the scalar loop. | ||||||||
| 3202 | // Go over all of the induction variables that we found and fix the | ||||||||
| 3203 | // PHIs that are left in the scalar version of the loop. | ||||||||
| 3204 | // The starting values of PHI nodes depend on the counter of the last | ||||||||
| 3205 | // iteration in the vectorized loop. | ||||||||
| 3206 | // If we come from a bypass edge then we need to start from the original | ||||||||
| 3207 | // start value. | ||||||||
| 3208 | for (const auto &InductionEntry : Legal->getInductionVars()) { | ||||||||
| 3209 | PHINode *OrigPhi = InductionEntry.first; | ||||||||
| 3210 | const InductionDescriptor &II = InductionEntry.second; | ||||||||
| 3211 | PHINode *BCResumeVal = createInductionResumeValue( | ||||||||
| 3212 | OrigPhi, II, LoopBypassBlocks, AdditionalBypass); | ||||||||
| 3213 | OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); | ||||||||
| 3214 | } | ||||||||
| 3215 | } | ||||||||
| 3216 | |||||||||
| 3217 | BasicBlock *InnerLoopVectorizer::completeLoopSkeleton() { | ||||||||
| 3218 | // The trip counts should be cached by now. | ||||||||
| 3219 | Value *Count = getOrCreateTripCount(LoopVectorPreHeader); | ||||||||
| 3220 | Value *VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); | ||||||||
| 3221 | |||||||||
| 3222 | auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); | ||||||||
| 3223 | |||||||||
| 3224 | // Add a check in the middle block to see if we have completed | ||||||||
| 3225 | // all of the iterations in the first vector loop. Three cases: | ||||||||
| 3226 | // 1) If we require a scalar epilogue, there is no conditional branch as | ||||||||
| 3227 | // we unconditionally branch to the scalar preheader. Do nothing. | ||||||||
| 3228 | // 2) If (N - N%VF) == N, then we *don't* need to run the remainder. | ||||||||
| 3229 | // Thus if tail is to be folded, we know we don't need to run the | ||||||||
| 3230 | // remainder and we can use the previous value for the condition (true). | ||||||||
| 3231 | // 3) Otherwise, construct a runtime check. | ||||||||
| 3232 | if (!Cost->requiresScalarEpilogue(VF) && !Cost->foldTailByMasking()) { | ||||||||
| 3233 | Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, | ||||||||
| 3234 | Count, VectorTripCount, "cmp.n", | ||||||||
| 3235 | LoopMiddleBlock->getTerminator()); | ||||||||
| 3236 | |||||||||
| 3237 | // Here we use the same DebugLoc as the scalar loop latch terminator instead | ||||||||
| 3238 | // of the corresponding compare because they may have ended up with | ||||||||
| 3239 | // different line numbers and we want to avoid awkward line stepping while | ||||||||
| 3240 | // debugging. Eg. if the compare has got a line number inside the loop. | ||||||||
| 3241 | CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); | ||||||||
| 3242 | cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); | ||||||||
| 3243 | } | ||||||||
| 3244 | |||||||||
| 3245 | #ifdef EXPENSIVE_CHECKS | ||||||||
| 3246 | assert(DT->verify(DominatorTree::VerificationLevel::Fast))(static_cast <bool> (DT->verify(DominatorTree::VerificationLevel ::Fast)) ? void (0) : __assert_fail ("DT->verify(DominatorTree::VerificationLevel::Fast)" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3246, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3247 | #endif | ||||||||
| 3248 | |||||||||
| 3249 | return LoopVectorPreHeader; | ||||||||
| 3250 | } | ||||||||
| 3251 | |||||||||
| 3252 | std::pair<BasicBlock *, Value *> | ||||||||
| 3253 | InnerLoopVectorizer::createVectorizedLoopSkeleton() { | ||||||||
| 3254 | /* | ||||||||
| 3255 | In this function we generate a new loop. The new loop will contain | ||||||||
| 3256 | the vectorized instructions while the old loop will continue to run the | ||||||||
| 3257 | scalar remainder. | ||||||||
| 3258 | |||||||||
| 3259 | [ ] <-- loop iteration number check. | ||||||||
| 3260 | / | | ||||||||
| 3261 | / v | ||||||||
| 3262 | | [ ] <-- vector loop bypass (may consist of multiple blocks). | ||||||||
| 3263 | | / | | ||||||||
| 3264 | | / v | ||||||||
| 3265 | || [ ] <-- vector pre header. | ||||||||
| 3266 | |/ | | ||||||||
| 3267 | | v | ||||||||
| 3268 | | [ ] \ | ||||||||
| 3269 | | [ ]_| <-- vector loop (created during VPlan execution). | ||||||||
| 3270 | | | | ||||||||
| 3271 | | v | ||||||||
| 3272 | \ -[ ] <--- middle-block. | ||||||||
| 3273 | \/ | | ||||||||
| 3274 | /\ v | ||||||||
| 3275 | | ->[ ] <--- new preheader. | ||||||||
| 3276 | | | | ||||||||
| 3277 | (opt) v <-- edge from middle to exit iff epilogue is not required. | ||||||||
| 3278 | | [ ] \ | ||||||||
| 3279 | | [ ]_| <-- old scalar loop to handle remainder (scalar epilogue). | ||||||||
| 3280 | \ | | ||||||||
| 3281 | \ v | ||||||||
| 3282 | >[ ] <-- exit block(s). | ||||||||
| 3283 | ... | ||||||||
| 3284 | */ | ||||||||
| 3285 | |||||||||
| 3286 | // Create an empty vector loop, and prepare basic blocks for the runtime | ||||||||
| 3287 | // checks. | ||||||||
| 3288 | createVectorLoopSkeleton(""); | ||||||||
| 3289 | |||||||||
| 3290 | // Now, compare the new count to zero. If it is zero skip the vector loop and | ||||||||
| 3291 | // jump to the scalar loop. This check also covers the case where the | ||||||||
| 3292 | // backedge-taken count is uint##_max: adding one to it will overflow leading | ||||||||
| 3293 | // to an incorrect trip count of zero. In this (rare) case we will also jump | ||||||||
| 3294 | // to the scalar loop. | ||||||||
| 3295 | emitIterationCountCheck(LoopScalarPreHeader); | ||||||||
| 3296 | |||||||||
| 3297 | // Generate the code to check any assumptions that we've made for SCEV | ||||||||
| 3298 | // expressions. | ||||||||
| 3299 | emitSCEVChecks(LoopScalarPreHeader); | ||||||||
| 3300 | |||||||||
| 3301 | // Generate the code that checks in runtime if arrays overlap. We put the | ||||||||
| 3302 | // checks into a separate block to make the more common case of few elements | ||||||||
| 3303 | // faster. | ||||||||
| 3304 | emitMemRuntimeChecks(LoopScalarPreHeader); | ||||||||
| 3305 | |||||||||
| 3306 | // Emit phis for the new starting index of the scalar loop. | ||||||||
| 3307 | createInductionResumeValues(); | ||||||||
| 3308 | |||||||||
| 3309 | return {completeLoopSkeleton(), nullptr}; | ||||||||
| 3310 | } | ||||||||
| 3311 | |||||||||
| 3312 | // Fix up external users of the induction variable. At this point, we are | ||||||||
| 3313 | // in LCSSA form, with all external PHIs that use the IV having one input value, | ||||||||
| 3314 | // coming from the remainder loop. We need those PHIs to also have a correct | ||||||||
| 3315 | // value for the IV when arriving directly from the middle block. | ||||||||
| 3316 | void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, | ||||||||
| 3317 | const InductionDescriptor &II, | ||||||||
| 3318 | Value *VectorTripCount, Value *EndValue, | ||||||||
| 3319 | BasicBlock *MiddleBlock, | ||||||||
| 3320 | BasicBlock *VectorHeader, VPlan &Plan) { | ||||||||
| 3321 | // There are two kinds of external IV usages - those that use the value | ||||||||
| 3322 | // computed in the last iteration (the PHI) and those that use the penultimate | ||||||||
| 3323 | // value (the value that feeds into the phi from the loop latch). | ||||||||
| 3324 | // We allow both, but they, obviously, have different values. | ||||||||
| 3325 | |||||||||
| 3326 | assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block")(static_cast <bool> (OrigLoop->getUniqueExitBlock() && "Expected a single exit block") ? void (0) : __assert_fail ( "OrigLoop->getUniqueExitBlock() && \"Expected a single exit block\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3326, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3327 | |||||||||
| 3328 | DenseMap<Value *, Value *> MissingVals; | ||||||||
| 3329 | |||||||||
| 3330 | // An external user of the last iteration's value should see the value that | ||||||||
| 3331 | // the remainder loop uses to initialize its own IV. | ||||||||
| 3332 | Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); | ||||||||
| 3333 | for (User *U : PostInc->users()) { | ||||||||
| 3334 | Instruction *UI = cast<Instruction>(U); | ||||||||
| 3335 | if (!OrigLoop->contains(UI)) { | ||||||||
| 3336 | assert(isa<PHINode>(UI) && "Expected LCSSA form")(static_cast <bool> (isa<PHINode>(UI) && "Expected LCSSA form" ) ? void (0) : __assert_fail ("isa<PHINode>(UI) && \"Expected LCSSA form\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3336, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3337 | MissingVals[UI] = EndValue; | ||||||||
| 3338 | } | ||||||||
| 3339 | } | ||||||||
| 3340 | |||||||||
| 3341 | // An external user of the penultimate value need to see EndValue - Step. | ||||||||
| 3342 | // The simplest way to get this is to recompute it from the constituent SCEVs, | ||||||||
| 3343 | // that is Start + (Step * (CRD - 1)). | ||||||||
| 3344 | for (User *U : OrigPhi->users()) { | ||||||||
| 3345 | auto *UI = cast<Instruction>(U); | ||||||||
| 3346 | if (!OrigLoop->contains(UI)) { | ||||||||
| 3347 | assert(isa<PHINode>(UI) && "Expected LCSSA form")(static_cast <bool> (isa<PHINode>(UI) && "Expected LCSSA form" ) ? void (0) : __assert_fail ("isa<PHINode>(UI) && \"Expected LCSSA form\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3347, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3348 | |||||||||
| 3349 | IRBuilder<> B(MiddleBlock->getTerminator()); | ||||||||
| 3350 | |||||||||
| 3351 | // Fast-math-flags propagate from the original induction instruction. | ||||||||
| 3352 | if (II.getInductionBinOp() && isa<FPMathOperator>(II.getInductionBinOp())) | ||||||||
| 3353 | B.setFastMathFlags(II.getInductionBinOp()->getFastMathFlags()); | ||||||||
| 3354 | |||||||||
| 3355 | Value *CountMinusOne = B.CreateSub( | ||||||||
| 3356 | VectorTripCount, ConstantInt::get(VectorTripCount->getType(), 1)); | ||||||||
| 3357 | CountMinusOne->setName("cmo"); | ||||||||
| 3358 | Value *Step = CreateStepValue(II.getStep(), *PSE.getSE(), | ||||||||
| 3359 | VectorHeader->getTerminator()); | ||||||||
| 3360 | Value *Escape = | ||||||||
| 3361 | emitTransformedIndex(B, CountMinusOne, II.getStartValue(), Step, II); | ||||||||
| 3362 | Escape->setName("ind.escape"); | ||||||||
| 3363 | MissingVals[UI] = Escape; | ||||||||
| 3364 | } | ||||||||
| 3365 | } | ||||||||
| 3366 | |||||||||
| 3367 | for (auto &I : MissingVals) { | ||||||||
| 3368 | PHINode *PHI = cast<PHINode>(I.first); | ||||||||
| 3369 | // One corner case we have to handle is two IVs "chasing" each-other, | ||||||||
| 3370 | // that is %IV2 = phi [...], [ %IV1, %latch ] | ||||||||
| 3371 | // In this case, if IV1 has an external use, we need to avoid adding both | ||||||||
| 3372 | // "last value of IV1" and "penultimate value of IV2". So, verify that we | ||||||||
| 3373 | // don't already have an incoming value for the middle block. | ||||||||
| 3374 | if (PHI->getBasicBlockIndex(MiddleBlock) == -1) { | ||||||||
| 3375 | PHI->addIncoming(I.second, MiddleBlock); | ||||||||
| 3376 | Plan.removeLiveOut(PHI); | ||||||||
| 3377 | } | ||||||||
| 3378 | } | ||||||||
| 3379 | } | ||||||||
| 3380 | |||||||||
| 3381 | namespace { | ||||||||
| 3382 | |||||||||
| 3383 | struct CSEDenseMapInfo { | ||||||||
| 3384 | static bool canHandle(const Instruction *I) { | ||||||||
| 3385 | return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || | ||||||||
| 3386 | isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); | ||||||||
| 3387 | } | ||||||||
| 3388 | |||||||||
| 3389 | static inline Instruction *getEmptyKey() { | ||||||||
| 3390 | return DenseMapInfo<Instruction *>::getEmptyKey(); | ||||||||
| 3391 | } | ||||||||
| 3392 | |||||||||
| 3393 | static inline Instruction *getTombstoneKey() { | ||||||||
| 3394 | return DenseMapInfo<Instruction *>::getTombstoneKey(); | ||||||||
| 3395 | } | ||||||||
| 3396 | |||||||||
| 3397 | static unsigned getHashValue(const Instruction *I) { | ||||||||
| 3398 | assert(canHandle(I) && "Unknown instruction!")(static_cast <bool> (canHandle(I) && "Unknown instruction!" ) ? void (0) : __assert_fail ("canHandle(I) && \"Unknown instruction!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3398, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3399 | return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), | ||||||||
| 3400 | I->value_op_end())); | ||||||||
| 3401 | } | ||||||||
| 3402 | |||||||||
| 3403 | static bool isEqual(const Instruction *LHS, const Instruction *RHS) { | ||||||||
| 3404 | if (LHS == getEmptyKey() || RHS == getEmptyKey() || | ||||||||
| 3405 | LHS == getTombstoneKey() || RHS == getTombstoneKey()) | ||||||||
| 3406 | return LHS == RHS; | ||||||||
| 3407 | return LHS->isIdenticalTo(RHS); | ||||||||
| 3408 | } | ||||||||
| 3409 | }; | ||||||||
| 3410 | |||||||||
| 3411 | } // end anonymous namespace | ||||||||
| 3412 | |||||||||
| 3413 | ///Perform cse of induction variable instructions. | ||||||||
| 3414 | static void cse(BasicBlock *BB) { | ||||||||
| 3415 | // Perform simple cse. | ||||||||
| 3416 | SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; | ||||||||
| 3417 | for (Instruction &In : llvm::make_early_inc_range(*BB)) { | ||||||||
| 3418 | if (!CSEDenseMapInfo::canHandle(&In)) | ||||||||
| 3419 | continue; | ||||||||
| 3420 | |||||||||
| 3421 | // Check if we can replace this instruction with any of the | ||||||||
| 3422 | // visited instructions. | ||||||||
| 3423 | if (Instruction *V = CSEMap.lookup(&In)) { | ||||||||
| 3424 | In.replaceAllUsesWith(V); | ||||||||
| 3425 | In.eraseFromParent(); | ||||||||
| 3426 | continue; | ||||||||
| 3427 | } | ||||||||
| 3428 | |||||||||
| 3429 | CSEMap[&In] = &In; | ||||||||
| 3430 | } | ||||||||
| 3431 | } | ||||||||
| 3432 | |||||||||
| 3433 | InstructionCost | ||||||||
| 3434 | LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, | ||||||||
| 3435 | bool &NeedToScalarize) const { | ||||||||
| 3436 | Function *F = CI->getCalledFunction(); | ||||||||
| 3437 | Type *ScalarRetTy = CI->getType(); | ||||||||
| 3438 | SmallVector<Type *, 4> Tys, ScalarTys; | ||||||||
| 3439 | for (auto &ArgOp : CI->args()) | ||||||||
| 3440 | ScalarTys.push_back(ArgOp->getType()); | ||||||||
| 3441 | |||||||||
| 3442 | // Estimate cost of scalarized vector call. The source operands are assumed | ||||||||
| 3443 | // to be vectors, so we need to extract individual elements from there, | ||||||||
| 3444 | // execute VF scalar calls, and then gather the result into the vector return | ||||||||
| 3445 | // value. | ||||||||
| 3446 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; | ||||||||
| 3447 | InstructionCost ScalarCallCost = | ||||||||
| 3448 | TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, CostKind); | ||||||||
| 3449 | if (VF.isScalar()) | ||||||||
| 3450 | return ScalarCallCost; | ||||||||
| 3451 | |||||||||
| 3452 | // Compute corresponding vector type for return value and arguments. | ||||||||
| 3453 | Type *RetTy = ToVectorTy(ScalarRetTy, VF); | ||||||||
| 3454 | for (Type *ScalarTy : ScalarTys) | ||||||||
| 3455 | Tys.push_back(ToVectorTy(ScalarTy, VF)); | ||||||||
| 3456 | |||||||||
| 3457 | // Compute costs of unpacking argument values for the scalar calls and | ||||||||
| 3458 | // packing the return values to a vector. | ||||||||
| 3459 | InstructionCost ScalarizationCost = | ||||||||
| 3460 | getScalarizationOverhead(CI, VF, CostKind); | ||||||||
| 3461 | |||||||||
| 3462 | InstructionCost Cost = | ||||||||
| 3463 | ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; | ||||||||
| 3464 | |||||||||
| 3465 | // If we can't emit a vector call for this function, then the currently found | ||||||||
| 3466 | // cost is the cost we need to return. | ||||||||
| 3467 | NeedToScalarize = true; | ||||||||
| 3468 | VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); | ||||||||
| 3469 | Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); | ||||||||
| 3470 | |||||||||
| 3471 | if (!TLI || CI->isNoBuiltin() || !VecFunc) | ||||||||
| 3472 | return Cost; | ||||||||
| 3473 | |||||||||
| 3474 | // If the corresponding vector cost is cheaper, return its cost. | ||||||||
| 3475 | InstructionCost VectorCallCost = | ||||||||
| 3476 | TTI.getCallInstrCost(nullptr, RetTy, Tys, CostKind); | ||||||||
| 3477 | if (VectorCallCost < Cost) { | ||||||||
| 3478 | NeedToScalarize = false; | ||||||||
| 3479 | Cost = VectorCallCost; | ||||||||
| 3480 | } | ||||||||
| 3481 | return Cost; | ||||||||
| 3482 | } | ||||||||
| 3483 | |||||||||
| 3484 | static Type *MaybeVectorizeType(Type *Elt, ElementCount VF) { | ||||||||
| 3485 | if (VF.isScalar() || (!Elt->isIntOrPtrTy() && !Elt->isFloatingPointTy())) | ||||||||
| 3486 | return Elt; | ||||||||
| 3487 | return VectorType::get(Elt, VF); | ||||||||
| 3488 | } | ||||||||
| 3489 | |||||||||
| 3490 | InstructionCost | ||||||||
| 3491 | LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, | ||||||||
| 3492 | ElementCount VF) const { | ||||||||
| 3493 | Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); | ||||||||
| 3494 | assert(ID && "Expected intrinsic call!")(static_cast <bool> (ID && "Expected intrinsic call!" ) ? void (0) : __assert_fail ("ID && \"Expected intrinsic call!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3494, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3495 | Type *RetTy = MaybeVectorizeType(CI->getType(), VF); | ||||||||
| 3496 | FastMathFlags FMF; | ||||||||
| 3497 | if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) | ||||||||
| 3498 | FMF = FPMO->getFastMathFlags(); | ||||||||
| 3499 | |||||||||
| 3500 | SmallVector<const Value *> Arguments(CI->args()); | ||||||||
| 3501 | FunctionType *FTy = CI->getCalledFunction()->getFunctionType(); | ||||||||
| 3502 | SmallVector<Type *> ParamTys; | ||||||||
| 3503 | std::transform(FTy->param_begin(), FTy->param_end(), | ||||||||
| 3504 | std::back_inserter(ParamTys), | ||||||||
| 3505 | [&](Type *Ty) { return MaybeVectorizeType(Ty, VF); }); | ||||||||
| 3506 | |||||||||
| 3507 | IntrinsicCostAttributes CostAttrs(ID, RetTy, Arguments, ParamTys, FMF, | ||||||||
| 3508 | dyn_cast<IntrinsicInst>(CI)); | ||||||||
| 3509 | return TTI.getIntrinsicInstrCost(CostAttrs, | ||||||||
| 3510 | TargetTransformInfo::TCK_RecipThroughput); | ||||||||
| 3511 | } | ||||||||
| 3512 | |||||||||
| 3513 | static Type *smallestIntegerVectorType(Type *T1, Type *T2) { | ||||||||
| 3514 | auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); | ||||||||
| 3515 | auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); | ||||||||
| 3516 | return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; | ||||||||
| 3517 | } | ||||||||
| 3518 | |||||||||
| 3519 | static Type *largestIntegerVectorType(Type *T1, Type *T2) { | ||||||||
| 3520 | auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); | ||||||||
| 3521 | auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); | ||||||||
| 3522 | return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; | ||||||||
| 3523 | } | ||||||||
| 3524 | |||||||||
| 3525 | void InnerLoopVectorizer::truncateToMinimalBitwidths(VPTransformState &State) { | ||||||||
| 3526 | // For every instruction `I` in MinBWs, truncate the operands, create a | ||||||||
| 3527 | // truncated version of `I` and reextend its result. InstCombine runs | ||||||||
| 3528 | // later and will remove any ext/trunc pairs. | ||||||||
| 3529 | SmallPtrSet<Value *, 4> Erased; | ||||||||
| 3530 | for (const auto &KV : Cost->getMinimalBitwidths()) { | ||||||||
| 3531 | // If the value wasn't vectorized, we must maintain the original scalar | ||||||||
| 3532 | // type. The absence of the value from State indicates that it | ||||||||
| 3533 | // wasn't vectorized. | ||||||||
| 3534 | // FIXME: Should not rely on getVPValue at this point. | ||||||||
| 3535 | VPValue *Def = State.Plan->getVPValue(KV.first, true); | ||||||||
| 3536 | if (!State.hasAnyVectorValue(Def)) | ||||||||
| 3537 | continue; | ||||||||
| 3538 | for (unsigned Part = 0; Part < UF; ++Part) { | ||||||||
| 3539 | Value *I = State.get(Def, Part); | ||||||||
| 3540 | if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) | ||||||||
| 3541 | continue; | ||||||||
| 3542 | Type *OriginalTy = I->getType(); | ||||||||
| 3543 | Type *ScalarTruncatedTy = | ||||||||
| 3544 | IntegerType::get(OriginalTy->getContext(), KV.second); | ||||||||
| 3545 | auto *TruncatedTy = VectorType::get( | ||||||||
| 3546 | ScalarTruncatedTy, cast<VectorType>(OriginalTy)->getElementCount()); | ||||||||
| 3547 | if (TruncatedTy == OriginalTy) | ||||||||
| 3548 | continue; | ||||||||
| 3549 | |||||||||
| 3550 | IRBuilder<> B(cast<Instruction>(I)); | ||||||||
| 3551 | auto ShrinkOperand = [&](Value *V) -> Value * { | ||||||||
| 3552 | if (auto *ZI = dyn_cast<ZExtInst>(V)) | ||||||||
| 3553 | if (ZI->getSrcTy() == TruncatedTy) | ||||||||
| 3554 | return ZI->getOperand(0); | ||||||||
| 3555 | return B.CreateZExtOrTrunc(V, TruncatedTy); | ||||||||
| 3556 | }; | ||||||||
| 3557 | |||||||||
| 3558 | // The actual instruction modification depends on the instruction type, | ||||||||
| 3559 | // unfortunately. | ||||||||
| 3560 | Value *NewI = nullptr; | ||||||||
| 3561 | if (auto *BO = dyn_cast<BinaryOperator>(I)) { | ||||||||
| 3562 | NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), | ||||||||
| 3563 | ShrinkOperand(BO->getOperand(1))); | ||||||||
| 3564 | |||||||||
| 3565 | // Any wrapping introduced by shrinking this operation shouldn't be | ||||||||
| 3566 | // considered undefined behavior. So, we can't unconditionally copy | ||||||||
| 3567 | // arithmetic wrapping flags to NewI. | ||||||||
| 3568 | cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); | ||||||||
| 3569 | } else if (auto *CI = dyn_cast<ICmpInst>(I)) { | ||||||||
| 3570 | NewI = | ||||||||
| 3571 | B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), | ||||||||
| 3572 | ShrinkOperand(CI->getOperand(1))); | ||||||||
| 3573 | } else if (auto *SI = dyn_cast<SelectInst>(I)) { | ||||||||
| 3574 | NewI = B.CreateSelect(SI->getCondition(), | ||||||||
| 3575 | ShrinkOperand(SI->getTrueValue()), | ||||||||
| 3576 | ShrinkOperand(SI->getFalseValue())); | ||||||||
| 3577 | } else if (auto *CI = dyn_cast<CastInst>(I)) { | ||||||||
| 3578 | switch (CI->getOpcode()) { | ||||||||
| 3579 | default: | ||||||||
| 3580 | llvm_unreachable("Unhandled cast!")::llvm::llvm_unreachable_internal("Unhandled cast!", "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp" , 3580); | ||||||||
| 3581 | case Instruction::Trunc: | ||||||||
| 3582 | NewI = ShrinkOperand(CI->getOperand(0)); | ||||||||
| 3583 | break; | ||||||||
| 3584 | case Instruction::SExt: | ||||||||
| 3585 | NewI = B.CreateSExtOrTrunc( | ||||||||
| 3586 | CI->getOperand(0), | ||||||||
| 3587 | smallestIntegerVectorType(OriginalTy, TruncatedTy)); | ||||||||
| 3588 | break; | ||||||||
| 3589 | case Instruction::ZExt: | ||||||||
| 3590 | NewI = B.CreateZExtOrTrunc( | ||||||||
| 3591 | CI->getOperand(0), | ||||||||
| 3592 | smallestIntegerVectorType(OriginalTy, TruncatedTy)); | ||||||||
| 3593 | break; | ||||||||
| 3594 | } | ||||||||
| 3595 | } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { | ||||||||
| 3596 | auto Elements0 = | ||||||||
| 3597 | cast<VectorType>(SI->getOperand(0)->getType())->getElementCount(); | ||||||||
| 3598 | auto *O0 = B.CreateZExtOrTrunc( | ||||||||
| 3599 | SI->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements0)); | ||||||||
| 3600 | auto Elements1 = | ||||||||
| 3601 | cast<VectorType>(SI->getOperand(1)->getType())->getElementCount(); | ||||||||
| 3602 | auto *O1 = B.CreateZExtOrTrunc( | ||||||||
| 3603 | SI->getOperand(1), VectorType::get(ScalarTruncatedTy, Elements1)); | ||||||||
| 3604 | |||||||||
| 3605 | NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); | ||||||||
| 3606 | } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { | ||||||||
| 3607 | // Don't do anything with the operands, just extend the result. | ||||||||
| 3608 | continue; | ||||||||
| 3609 | } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { | ||||||||
| 3610 | auto Elements = | ||||||||
| 3611 | cast<VectorType>(IE->getOperand(0)->getType())->getElementCount(); | ||||||||
| 3612 | auto *O0 = B.CreateZExtOrTrunc( | ||||||||
| 3613 | IE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); | ||||||||
| 3614 | auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); | ||||||||
| 3615 | NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); | ||||||||
| 3616 | } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { | ||||||||
| 3617 | auto Elements = | ||||||||
| 3618 | cast<VectorType>(EE->getOperand(0)->getType())->getElementCount(); | ||||||||
| 3619 | auto *O0 = B.CreateZExtOrTrunc( | ||||||||
| 3620 | EE->getOperand(0), VectorType::get(ScalarTruncatedTy, Elements)); | ||||||||
| 3621 | NewI = B.CreateExtractElement(O0, EE->getOperand(2)); | ||||||||
| 3622 | } else { | ||||||||
| 3623 | // If we don't know what to do, be conservative and don't do anything. | ||||||||
| 3624 | continue; | ||||||||
| 3625 | } | ||||||||
| 3626 | |||||||||
| 3627 | // Lastly, extend the result. | ||||||||
| 3628 | NewI->takeName(cast<Instruction>(I)); | ||||||||
| 3629 | Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); | ||||||||
| 3630 | I->replaceAllUsesWith(Res); | ||||||||
| 3631 | cast<Instruction>(I)->eraseFromParent(); | ||||||||
| 3632 | Erased.insert(I); | ||||||||
| 3633 | State.reset(Def, Res, Part); | ||||||||
| 3634 | } | ||||||||
| 3635 | } | ||||||||
| 3636 | |||||||||
| 3637 | // We'll have created a bunch of ZExts that are now parentless. Clean up. | ||||||||
| 3638 | for (const auto &KV : Cost->getMinimalBitwidths()) { | ||||||||
| 3639 | // If the value wasn't vectorized, we must maintain the original scalar | ||||||||
| 3640 | // type. The absence of the value from State indicates that it | ||||||||
| 3641 | // wasn't vectorized. | ||||||||
| 3642 | // FIXME: Should not rely on getVPValue at this point. | ||||||||
| 3643 | VPValue *Def = State.Plan->getVPValue(KV.first, true); | ||||||||
| 3644 | if (!State.hasAnyVectorValue(Def)) | ||||||||
| 3645 | continue; | ||||||||
| 3646 | for (unsigned Part = 0; Part < UF; ++Part) { | ||||||||
| 3647 | Value *I = State.get(Def, Part); | ||||||||
| 3648 | ZExtInst *Inst = dyn_cast<ZExtInst>(I); | ||||||||
| 3649 | if (Inst && Inst->use_empty()) { | ||||||||
| 3650 | Value *NewI = Inst->getOperand(0); | ||||||||
| 3651 | Inst->eraseFromParent(); | ||||||||
| 3652 | State.reset(Def, NewI, Part); | ||||||||
| 3653 | } | ||||||||
| 3654 | } | ||||||||
| 3655 | } | ||||||||
| 3656 | } | ||||||||
| 3657 | |||||||||
| 3658 | void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State, | ||||||||
| 3659 | VPlan &Plan) { | ||||||||
| 3660 | // Insert truncates and extends for any truncated instructions as hints to | ||||||||
| 3661 | // InstCombine. | ||||||||
| 3662 | if (VF.isVector()) | ||||||||
| 3663 | truncateToMinimalBitwidths(State); | ||||||||
| 3664 | |||||||||
| 3665 | // Fix widened non-induction PHIs by setting up the PHI operands. | ||||||||
| 3666 | if (EnableVPlanNativePath) | ||||||||
| 3667 | fixNonInductionPHIs(Plan, State); | ||||||||
| 3668 | |||||||||
| 3669 | // At this point every instruction in the original loop is widened to a | ||||||||
| 3670 | // vector form. Now we need to fix the recurrences in the loop. These PHI | ||||||||
| 3671 | // nodes are currently empty because we did not want to introduce cycles. | ||||||||
| 3672 | // This is the second stage of vectorizing recurrences. | ||||||||
| 3673 | fixCrossIterationPHIs(State); | ||||||||
| 3674 | |||||||||
| 3675 | // Forget the original basic block. | ||||||||
| 3676 | PSE.getSE()->forgetLoop(OrigLoop); | ||||||||
| 3677 | |||||||||
| 3678 | VPBasicBlock *LatchVPBB = Plan.getVectorLoopRegion()->getExitingBasicBlock(); | ||||||||
| 3679 | Loop *VectorLoop = LI->getLoopFor(State.CFG.VPBB2IRBB[LatchVPBB]); | ||||||||
| 3680 | if (Cost->requiresScalarEpilogue(VF)) { | ||||||||
| 3681 | // No edge from the middle block to the unique exit block has been inserted | ||||||||
| 3682 | // and there is nothing to fix from vector loop; phis should have incoming | ||||||||
| 3683 | // from scalar loop only. | ||||||||
| 3684 | Plan.clearLiveOuts(); | ||||||||
| 3685 | } else { | ||||||||
| 3686 | // If we inserted an edge from the middle block to the unique exit block, | ||||||||
| 3687 | // update uses outside the loop (phis) to account for the newly inserted | ||||||||
| 3688 | // edge. | ||||||||
| 3689 | |||||||||
| 3690 | // Fix-up external users of the induction variables. | ||||||||
| 3691 | for (const auto &Entry : Legal->getInductionVars()) | ||||||||
| 3692 | fixupIVUsers(Entry.first, Entry.second, | ||||||||
| 3693 | getOrCreateVectorTripCount(VectorLoop->getLoopPreheader()), | ||||||||
| 3694 | IVEndValues[Entry.first], LoopMiddleBlock, | ||||||||
| 3695 | VectorLoop->getHeader(), Plan); | ||||||||
| 3696 | } | ||||||||
| 3697 | |||||||||
| 3698 | // Fix LCSSA phis not already fixed earlier. Extracts may need to be generated | ||||||||
| 3699 | // in the exit block, so update the builder. | ||||||||
| 3700 | State.Builder.SetInsertPoint(State.CFG.ExitBB->getFirstNonPHI()); | ||||||||
| 3701 | for (const auto &KV : Plan.getLiveOuts()) | ||||||||
| 3702 | KV.second->fixPhi(Plan, State); | ||||||||
| 3703 | |||||||||
| 3704 | for (Instruction *PI : PredicatedInstructions) | ||||||||
| 3705 | sinkScalarOperands(&*PI); | ||||||||
| 3706 | |||||||||
| 3707 | // Remove redundant induction instructions. | ||||||||
| 3708 | cse(VectorLoop->getHeader()); | ||||||||
| 3709 | |||||||||
| 3710 | // Set/update profile weights for the vector and remainder loops as original | ||||||||
| 3711 | // loop iterations are now distributed among them. Note that original loop | ||||||||
| 3712 | // represented by LoopScalarBody becomes remainder loop after vectorization. | ||||||||
| 3713 | // | ||||||||
| 3714 | // For cases like foldTailByMasking() and requiresScalarEpiloque() we may | ||||||||
| 3715 | // end up getting slightly roughened result but that should be OK since | ||||||||
| 3716 | // profile is not inherently precise anyway. Note also possible bypass of | ||||||||
| 3717 | // vector code caused by legality checks is ignored, assigning all the weight | ||||||||
| 3718 | // to the vector loop, optimistically. | ||||||||
| 3719 | // | ||||||||
| 3720 | // For scalable vectorization we can't know at compile time how many iterations | ||||||||
| 3721 | // of the loop are handled in one vector iteration, so instead assume a pessimistic | ||||||||
| 3722 | // vscale of '1'. | ||||||||
| 3723 | setProfileInfoAfterUnrolling(LI->getLoopFor(LoopScalarBody), VectorLoop, | ||||||||
| 3724 | LI->getLoopFor(LoopScalarBody), | ||||||||
| 3725 | VF.getKnownMinValue() * UF); | ||||||||
| 3726 | } | ||||||||
| 3727 | |||||||||
| 3728 | void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { | ||||||||
| 3729 | // In order to support recurrences we need to be able to vectorize Phi nodes. | ||||||||
| 3730 | // Phi nodes have cycles, so we need to vectorize them in two stages. This is | ||||||||
| 3731 | // stage #2: We now need to fix the recurrences by adding incoming edges to | ||||||||
| 3732 | // the currently empty PHI nodes. At this point every instruction in the | ||||||||
| 3733 | // original loop is widened to a vector form so we can use them to construct | ||||||||
| 3734 | // the incoming edges. | ||||||||
| 3735 | VPBasicBlock *Header = | ||||||||
| 3736 | State.Plan->getVectorLoopRegion()->getEntryBasicBlock(); | ||||||||
| 3737 | for (VPRecipeBase &R : Header->phis()) { | ||||||||
| 3738 | if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) | ||||||||
| 3739 | fixReduction(ReductionPhi, State); | ||||||||
| 3740 | else if (auto *FOR = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R)) | ||||||||
| 3741 | fixFixedOrderRecurrence(FOR, State); | ||||||||
| 3742 | } | ||||||||
| 3743 | } | ||||||||
| 3744 | |||||||||
| 3745 | void InnerLoopVectorizer::fixFixedOrderRecurrence( | ||||||||
| 3746 | VPFirstOrderRecurrencePHIRecipe *PhiR, VPTransformState &State) { | ||||||||
| 3747 | // This is the second phase of vectorizing first-order recurrences. An | ||||||||
| 3748 | // overview of the transformation is described below. Suppose we have the | ||||||||
| 3749 | // following loop. | ||||||||
| 3750 | // | ||||||||
| 3751 | // for (int i = 0; i < n; ++i) | ||||||||
| 3752 | // b[i] = a[i] - a[i - 1]; | ||||||||
| 3753 | // | ||||||||
| 3754 | // There is a first-order recurrence on "a". For this loop, the shorthand | ||||||||
| 3755 | // scalar IR looks like: | ||||||||
| 3756 | // | ||||||||
| 3757 | // scalar.ph: | ||||||||
| 3758 | // s_init = a[-1] | ||||||||
| 3759 | // br scalar.body | ||||||||
| 3760 | // | ||||||||
| 3761 | // scalar.body: | ||||||||
| 3762 | // i = phi [0, scalar.ph], [i+1, scalar.body] | ||||||||
| 3763 | // s1 = phi [s_init, scalar.ph], [s2, scalar.body] | ||||||||
| 3764 | // s2 = a[i] | ||||||||
| 3765 | // b[i] = s2 - s1 | ||||||||
| 3766 | // br cond, scalar.body, ... | ||||||||
| 3767 | // | ||||||||
| 3768 | // In this example, s1 is a recurrence because it's value depends on the | ||||||||
| 3769 | // previous iteration. In the first phase of vectorization, we created a | ||||||||
| 3770 | // vector phi v1 for s1. We now complete the vectorization and produce the | ||||||||
| 3771 | // shorthand vector IR shown below (for VF = 4, UF = 1). | ||||||||
| 3772 | // | ||||||||
| 3773 | // vector.ph: | ||||||||
| 3774 | // v_init = vector(..., ..., ..., a[-1]) | ||||||||
| 3775 | // br vector.body | ||||||||
| 3776 | // | ||||||||
| 3777 | // vector.body | ||||||||
| 3778 | // i = phi [0, vector.ph], [i+4, vector.body] | ||||||||
| 3779 | // v1 = phi [v_init, vector.ph], [v2, vector.body] | ||||||||
| 3780 | // v2 = a[i, i+1, i+2, i+3]; | ||||||||
| 3781 | // v3 = vector(v1(3), v2(0, 1, 2)) | ||||||||
| 3782 | // b[i, i+1, i+2, i+3] = v2 - v3 | ||||||||
| 3783 | // br cond, vector.body, middle.block | ||||||||
| 3784 | // | ||||||||
| 3785 | // middle.block: | ||||||||
| 3786 | // x = v2(3) | ||||||||
| 3787 | // br scalar.ph | ||||||||
| 3788 | // | ||||||||
| 3789 | // scalar.ph: | ||||||||
| 3790 | // s_init = phi [x, middle.block], [a[-1], otherwise] | ||||||||
| 3791 | // br scalar.body | ||||||||
| 3792 | // | ||||||||
| 3793 | // After execution completes the vector loop, we extract the next value of | ||||||||
| 3794 | // the recurrence (x) to use as the initial value in the scalar loop. | ||||||||
| 3795 | |||||||||
| 3796 | // Extract the last vector element in the middle block. This will be the | ||||||||
| 3797 | // initial value for the recurrence when jumping to the scalar loop. | ||||||||
| 3798 | VPValue *PreviousDef = PhiR->getBackedgeValue(); | ||||||||
| 3799 | Value *Incoming = State.get(PreviousDef, UF - 1); | ||||||||
| 3800 | auto *ExtractForScalar = Incoming; | ||||||||
| 3801 | auto *IdxTy = Builder.getInt32Ty(); | ||||||||
| 3802 | if (VF.isVector()) { | ||||||||
| 3803 | auto *One = ConstantInt::get(IdxTy, 1); | ||||||||
| 3804 | Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); | ||||||||
| 3805 | auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); | ||||||||
| 3806 | auto *LastIdx = Builder.CreateSub(RuntimeVF, One); | ||||||||
| 3807 | ExtractForScalar = Builder.CreateExtractElement(ExtractForScalar, LastIdx, | ||||||||
| 3808 | "vector.recur.extract"); | ||||||||
| 3809 | } | ||||||||
| 3810 | // Extract the second last element in the middle block if the | ||||||||
| 3811 | // Phi is used outside the loop. We need to extract the phi itself | ||||||||
| 3812 | // and not the last element (the phi update in the current iteration). This | ||||||||
| 3813 | // will be the value when jumping to the exit block from the LoopMiddleBlock, | ||||||||
| 3814 | // when the scalar loop is not run at all. | ||||||||
| 3815 | Value *ExtractForPhiUsedOutsideLoop = nullptr; | ||||||||
| 3816 | if (VF.isVector()) { | ||||||||
| 3817 | auto *RuntimeVF = getRuntimeVF(Builder, IdxTy, VF); | ||||||||
| 3818 | auto *Idx = Builder.CreateSub(RuntimeVF, ConstantInt::get(IdxTy, 2)); | ||||||||
| 3819 | ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( | ||||||||
| 3820 | Incoming, Idx, "vector.recur.extract.for.phi"); | ||||||||
| 3821 | } else if (UF > 1) | ||||||||
| 3822 | // When loop is unrolled without vectorizing, initialize | ||||||||
| 3823 | // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value | ||||||||
| 3824 | // of `Incoming`. This is analogous to the vectorized case above: extracting | ||||||||
| 3825 | // the second last element when VF > 1. | ||||||||
| 3826 | ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); | ||||||||
| 3827 | |||||||||
| 3828 | // Fix the initial value of the original recurrence in the scalar loop. | ||||||||
| 3829 | Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); | ||||||||
| 3830 | PHINode *Phi = cast<PHINode>(PhiR->getUnderlyingValue()); | ||||||||
| 3831 | auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); | ||||||||
| 3832 | auto *ScalarInit = PhiR->getStartValue()->getLiveInIRValue(); | ||||||||
| 3833 | for (auto *BB : predecessors(LoopScalarPreHeader)) { | ||||||||
| 3834 | auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; | ||||||||
| 3835 | Start->addIncoming(Incoming, BB); | ||||||||
| 3836 | } | ||||||||
| 3837 | |||||||||
| 3838 | Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); | ||||||||
| 3839 | Phi->setName("scalar.recur"); | ||||||||
| 3840 | |||||||||
| 3841 | // Finally, fix users of the recurrence outside the loop. The users will need | ||||||||
| 3842 | // either the last value of the scalar recurrence or the last value of the | ||||||||
| 3843 | // vector recurrence we extracted in the middle block. Since the loop is in | ||||||||
| 3844 | // LCSSA form, we just need to find all the phi nodes for the original scalar | ||||||||
| 3845 | // recurrence in the exit block, and then add an edge for the middle block. | ||||||||
| 3846 | // Note that LCSSA does not imply single entry when the original scalar loop | ||||||||
| 3847 | // had multiple exiting edges (as we always run the last iteration in the | ||||||||
| 3848 | // scalar epilogue); in that case, there is no edge from middle to exit and | ||||||||
| 3849 | // and thus no phis which needed updated. | ||||||||
| 3850 | if (!Cost->requiresScalarEpilogue(VF)) | ||||||||
| 3851 | for (PHINode &LCSSAPhi : LoopExitBlock->phis()) | ||||||||
| 3852 | if (llvm::is_contained(LCSSAPhi.incoming_values(), Phi)) { | ||||||||
| 3853 | LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); | ||||||||
| 3854 | State.Plan->removeLiveOut(&LCSSAPhi); | ||||||||
| 3855 | } | ||||||||
| 3856 | } | ||||||||
| 3857 | |||||||||
| 3858 | void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR, | ||||||||
| 3859 | VPTransformState &State) { | ||||||||
| 3860 | PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue()); | ||||||||
| 3861 | // Get it's reduction variable descriptor. | ||||||||
| 3862 | assert(Legal->isReductionVariable(OrigPhi) &&(static_cast <bool> (Legal->isReductionVariable(OrigPhi ) && "Unable to find the reduction variable") ? void ( 0) : __assert_fail ("Legal->isReductionVariable(OrigPhi) && \"Unable to find the reduction variable\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3863, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 3863 | "Unable to find the reduction variable")(static_cast <bool> (Legal->isReductionVariable(OrigPhi ) && "Unable to find the reduction variable") ? void ( 0) : __assert_fail ("Legal->isReductionVariable(OrigPhi) && \"Unable to find the reduction variable\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3863, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3864 | const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); | ||||||||
| 3865 | |||||||||
| 3866 | RecurKind RK = RdxDesc.getRecurrenceKind(); | ||||||||
| 3867 | TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); | ||||||||
| 3868 | Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); | ||||||||
| 3869 | State.setDebugLocFromInst(ReductionStartValue); | ||||||||
| 3870 | |||||||||
| 3871 | VPValue *LoopExitInstDef = PhiR->getBackedgeValue(); | ||||||||
| 3872 | // This is the vector-clone of the value that leaves the loop. | ||||||||
| 3873 | Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); | ||||||||
| 3874 | |||||||||
| 3875 | // Wrap flags are in general invalid after vectorization, clear them. | ||||||||
| 3876 | clearReductionWrapFlags(PhiR, State); | ||||||||
| 3877 | |||||||||
| 3878 | // Before each round, move the insertion point right between | ||||||||
| 3879 | // the PHIs and the values we are going to write. | ||||||||
| 3880 | // This allows us to write both PHINodes and the extractelement | ||||||||
| 3881 | // instructions. | ||||||||
| 3882 | Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); | ||||||||
| 3883 | |||||||||
| 3884 | State.setDebugLocFromInst(LoopExitInst); | ||||||||
| 3885 | |||||||||
| 3886 | Type *PhiTy = OrigPhi->getType(); | ||||||||
| 3887 | |||||||||
| 3888 | VPBasicBlock *LatchVPBB = | ||||||||
| 3889 | PhiR->getParent()->getEnclosingLoopRegion()->getExitingBasicBlock(); | ||||||||
| 3890 | BasicBlock *VectorLoopLatch = State.CFG.VPBB2IRBB[LatchVPBB]; | ||||||||
| 3891 | // If tail is folded by masking, the vector value to leave the loop should be | ||||||||
| 3892 | // a Select choosing between the vectorized LoopExitInst and vectorized Phi, | ||||||||
| 3893 | // instead of the former. For an inloop reduction the reduction will already | ||||||||
| 3894 | // be predicated, and does not need to be handled here. | ||||||||
| 3895 | if (Cost->foldTailByMasking() && !PhiR->isInLoop()) { | ||||||||
| 3896 | for (unsigned Part = 0; Part < UF; ++Part) { | ||||||||
| 3897 | Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); | ||||||||
| 3898 | SelectInst *Sel = nullptr; | ||||||||
| 3899 | for (User *U : VecLoopExitInst->users()) { | ||||||||
| 3900 | if (isa<SelectInst>(U)) { | ||||||||
| 3901 | assert(!Sel && "Reduction exit feeding two selects")(static_cast <bool> (!Sel && "Reduction exit feeding two selects" ) ? void (0) : __assert_fail ("!Sel && \"Reduction exit feeding two selects\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3901, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3902 | Sel = cast<SelectInst>(U); | ||||||||
| 3903 | } else | ||||||||
| 3904 | assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select")(static_cast <bool> (isa<PHINode>(U) && "Reduction exit must feed Phi's or select" ) ? void (0) : __assert_fail ("isa<PHINode>(U) && \"Reduction exit must feed Phi's or select\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3904, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3905 | } | ||||||||
| 3906 | assert(Sel && "Reduction exit feeds no select")(static_cast <bool> (Sel && "Reduction exit feeds no select" ) ? void (0) : __assert_fail ("Sel && \"Reduction exit feeds no select\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3906, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3907 | State.reset(LoopExitInstDef, Sel, Part); | ||||||||
| 3908 | |||||||||
| 3909 | if (isa<FPMathOperator>(Sel)) | ||||||||
| 3910 | Sel->setFastMathFlags(RdxDesc.getFastMathFlags()); | ||||||||
| 3911 | |||||||||
| 3912 | // If the target can create a predicated operator for the reduction at no | ||||||||
| 3913 | // extra cost in the loop (for example a predicated vadd), it can be | ||||||||
| 3914 | // cheaper for the select to remain in the loop than be sunk out of it, | ||||||||
| 3915 | // and so use the select value for the phi instead of the old | ||||||||
| 3916 | // LoopExitValue. | ||||||||
| 3917 | if (PreferPredicatedReductionSelect || | ||||||||
| 3918 | TTI->preferPredicatedReductionSelect( | ||||||||
| 3919 | RdxDesc.getOpcode(), PhiTy, | ||||||||
| 3920 | TargetTransformInfo::ReductionFlags())) { | ||||||||
| 3921 | auto *VecRdxPhi = | ||||||||
| 3922 | cast<PHINode>(State.get(PhiR, Part)); | ||||||||
| 3923 | VecRdxPhi->setIncomingValueForBlock(VectorLoopLatch, Sel); | ||||||||
| 3924 | } | ||||||||
| 3925 | } | ||||||||
| 3926 | } | ||||||||
| 3927 | |||||||||
| 3928 | // If the vector reduction can be performed in a smaller type, we truncate | ||||||||
| 3929 | // then extend the loop exit value to enable InstCombine to evaluate the | ||||||||
| 3930 | // entire expression in the smaller type. | ||||||||
| 3931 | if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) { | ||||||||
| 3932 | assert(!PhiR->isInLoop() && "Unexpected truncated inloop reduction!")(static_cast <bool> (!PhiR->isInLoop() && "Unexpected truncated inloop reduction!" ) ? void (0) : __assert_fail ("!PhiR->isInLoop() && \"Unexpected truncated inloop reduction!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 3932, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 3933 | Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); | ||||||||
| 3934 | Builder.SetInsertPoint(VectorLoopLatch->getTerminator()); | ||||||||
| 3935 | VectorParts RdxParts(UF); | ||||||||
| 3936 | for (unsigned Part = 0; Part < UF; ++Part) { | ||||||||
| 3937 | RdxParts[Part] = State.get(LoopExitInstDef, Part); | ||||||||
| 3938 | Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); | ||||||||
| 3939 | Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) | ||||||||
| 3940 | : Builder.CreateZExt(Trunc, VecTy); | ||||||||
| 3941 | for (User *U : llvm::make_early_inc_range(RdxParts[Part]->users())) | ||||||||
| 3942 | if (U != Trunc) { | ||||||||
| 3943 | U->replaceUsesOfWith(RdxParts[Part], Extnd); | ||||||||
| 3944 | RdxParts[Part] = Extnd; | ||||||||
| 3945 | } | ||||||||
| 3946 | } | ||||||||
| 3947 | Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); | ||||||||
| 3948 | for (unsigned Part = 0; Part < UF; ++Part) { | ||||||||
| 3949 | RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); | ||||||||
| 3950 | State.reset(LoopExitInstDef, RdxParts[Part], Part); | ||||||||
| 3951 | } | ||||||||
| 3952 | } | ||||||||
| 3953 | |||||||||
| 3954 | // Reduce all of the unrolled parts into a single vector. | ||||||||
| 3955 | Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); | ||||||||
| 3956 | unsigned Op = RecurrenceDescriptor::getOpcode(RK); | ||||||||
| 3957 | |||||||||
| 3958 | // The middle block terminator has already been assigned a DebugLoc here (the | ||||||||
| 3959 | // OrigLoop's single latch terminator). We want the whole middle block to | ||||||||
| 3960 | // appear to execute on this line because: (a) it is all compiler generated, | ||||||||
| 3961 | // (b) these instructions are always executed after evaluating the latch | ||||||||
| 3962 | // conditional branch, and (c) other passes may add new predecessors which | ||||||||
| 3963 | // terminate on this line. This is the easiest way to ensure we don't | ||||||||
| 3964 | // accidentally cause an extra step back into the loop while debugging. | ||||||||
| 3965 | State.setDebugLocFromInst(LoopMiddleBlock->getTerminator()); | ||||||||
| 3966 | if (PhiR->isOrdered()) | ||||||||
| 3967 | ReducedPartRdx = State.get(LoopExitInstDef, UF - 1); | ||||||||
| 3968 | else { | ||||||||
| 3969 | // Floating-point operations should have some FMF to enable the reduction. | ||||||||
| 3970 | IRBuilderBase::FastMathFlagGuard FMFG(Builder); | ||||||||
| 3971 | Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); | ||||||||
| 3972 | for (unsigned Part = 1; Part < UF; ++Part) { | ||||||||
| 3973 | Value *RdxPart = State.get(LoopExitInstDef, Part); | ||||||||
| 3974 | if (Op != Instruction::ICmp && Op != Instruction::FCmp) { | ||||||||
| 3975 | ReducedPartRdx = Builder.CreateBinOp( | ||||||||
| 3976 | (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); | ||||||||
| 3977 | } else if (RecurrenceDescriptor::isSelectCmpRecurrenceKind(RK)) | ||||||||
| 3978 | ReducedPartRdx = createSelectCmpOp(Builder, ReductionStartValue, RK, | ||||||||
| 3979 | ReducedPartRdx, RdxPart); | ||||||||
| 3980 | else | ||||||||
| 3981 | ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); | ||||||||
| 3982 | } | ||||||||
| 3983 | } | ||||||||
| 3984 | |||||||||
| 3985 | // Create the reduction after the loop. Note that inloop reductions create the | ||||||||
| 3986 | // target reduction in the loop using a Reduction recipe. | ||||||||
| 3987 | if (VF.isVector() && !PhiR->isInLoop()) { | ||||||||
| 3988 | ReducedPartRdx = | ||||||||
| 3989 | createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx, OrigPhi); | ||||||||
| 3990 | // If the reduction can be performed in a smaller type, we need to extend | ||||||||
| 3991 | // the reduction to the wider type before we branch to the original loop. | ||||||||
| 3992 | if (PhiTy != RdxDesc.getRecurrenceType()) | ||||||||
| 3993 | ReducedPartRdx = RdxDesc.isSigned() | ||||||||
| 3994 | ? Builder.CreateSExt(ReducedPartRdx, PhiTy) | ||||||||
| 3995 | : Builder.CreateZExt(ReducedPartRdx, PhiTy); | ||||||||
| 3996 | } | ||||||||
| 3997 | |||||||||
| 3998 | PHINode *ResumePhi = | ||||||||
| 3999 | dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue()); | ||||||||
| 4000 | |||||||||
| 4001 | // Create a phi node that merges control-flow from the backedge-taken check | ||||||||
| 4002 | // block and the middle block. | ||||||||
| 4003 | PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx", | ||||||||
| 4004 | LoopScalarPreHeader->getTerminator()); | ||||||||
| 4005 | |||||||||
| 4006 | // If we are fixing reductions in the epilogue loop then we should already | ||||||||
| 4007 | // have created a bc.merge.rdx Phi after the main vector body. Ensure that | ||||||||
| 4008 | // we carry over the incoming values correctly. | ||||||||
| 4009 | for (auto *Incoming : predecessors(LoopScalarPreHeader)) { | ||||||||
| 4010 | if (Incoming == LoopMiddleBlock) | ||||||||
| 4011 | BCBlockPhi->addIncoming(ReducedPartRdx, Incoming); | ||||||||
| 4012 | else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming)) | ||||||||
| 4013 | BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming), | ||||||||
| 4014 | Incoming); | ||||||||
| 4015 | else | ||||||||
| 4016 | BCBlockPhi->addIncoming(ReductionStartValue, Incoming); | ||||||||
| 4017 | } | ||||||||
| 4018 | |||||||||
| 4019 | // Set the resume value for this reduction | ||||||||
| 4020 | ReductionResumeValues.insert({&RdxDesc, BCBlockPhi}); | ||||||||
| 4021 | |||||||||
| 4022 | // If there were stores of the reduction value to a uniform memory address | ||||||||
| 4023 | // inside the loop, create the final store here. | ||||||||
| 4024 | if (StoreInst *SI = RdxDesc.IntermediateStore) { | ||||||||
| 4025 | StoreInst *NewSI = | ||||||||
| 4026 | Builder.CreateStore(ReducedPartRdx, SI->getPointerOperand()); | ||||||||
| 4027 | propagateMetadata(NewSI, SI); | ||||||||
| 4028 | |||||||||
| 4029 | // If the reduction value is used in other places, | ||||||||
| 4030 | // then let the code below create PHI's for that. | ||||||||
| 4031 | } | ||||||||
| 4032 | |||||||||
| 4033 | // Now, we need to fix the users of the reduction variable | ||||||||
| 4034 | // inside and outside of the scalar remainder loop. | ||||||||
| 4035 | |||||||||
| 4036 | // We know that the loop is in LCSSA form. We need to update the PHI nodes | ||||||||
| 4037 | // in the exit blocks. See comment on analogous loop in | ||||||||
| 4038 | // fixFixedOrderRecurrence for a more complete explaination of the logic. | ||||||||
| 4039 | if (!Cost->requiresScalarEpilogue(VF)) | ||||||||
| 4040 | for (PHINode &LCSSAPhi : LoopExitBlock->phis()) | ||||||||
| 4041 | if (llvm::is_contained(LCSSAPhi.incoming_values(), LoopExitInst)) { | ||||||||
| 4042 | LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); | ||||||||
| 4043 | State.Plan->removeLiveOut(&LCSSAPhi); | ||||||||
| 4044 | } | ||||||||
| 4045 | |||||||||
| 4046 | // Fix the scalar loop reduction variable with the incoming reduction sum | ||||||||
| 4047 | // from the vector body and from the backedge value. | ||||||||
| 4048 | int IncomingEdgeBlockIdx = | ||||||||
| 4049 | OrigPhi->getBasicBlockIndex(OrigLoop->getLoopLatch()); | ||||||||
| 4050 | assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index")(static_cast <bool> (IncomingEdgeBlockIdx >= 0 && "Invalid block index") ? void (0) : __assert_fail ("IncomingEdgeBlockIdx >= 0 && \"Invalid block index\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4050, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4051 | // Pick the other block. | ||||||||
| 4052 | int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); | ||||||||
| 4053 | OrigPhi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); | ||||||||
| 4054 | OrigPhi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); | ||||||||
| 4055 | } | ||||||||
| 4056 | |||||||||
| 4057 | void InnerLoopVectorizer::clearReductionWrapFlags(VPReductionPHIRecipe *PhiR, | ||||||||
| 4058 | VPTransformState &State) { | ||||||||
| 4059 | const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor(); | ||||||||
| 4060 | RecurKind RK = RdxDesc.getRecurrenceKind(); | ||||||||
| 4061 | if (RK != RecurKind::Add && RK != RecurKind::Mul) | ||||||||
| 4062 | return; | ||||||||
| 4063 | |||||||||
| 4064 | SmallVector<VPValue *, 8> Worklist; | ||||||||
| 4065 | SmallPtrSet<VPValue *, 8> Visited; | ||||||||
| 4066 | Worklist.push_back(PhiR); | ||||||||
| 4067 | Visited.insert(PhiR); | ||||||||
| 4068 | |||||||||
| 4069 | while (!Worklist.empty()) { | ||||||||
| 4070 | VPValue *Cur = Worklist.pop_back_val(); | ||||||||
| 4071 | for (unsigned Part = 0; Part < UF; ++Part) { | ||||||||
| 4072 | Value *V = State.get(Cur, Part); | ||||||||
| 4073 | if (!isa<OverflowingBinaryOperator>(V)) | ||||||||
| 4074 | break; | ||||||||
| 4075 | cast<Instruction>(V)->dropPoisonGeneratingFlags(); | ||||||||
| 4076 | } | ||||||||
| 4077 | |||||||||
| 4078 | for (VPUser *U : Cur->users()) { | ||||||||
| 4079 | auto *UserRecipe = dyn_cast<VPRecipeBase>(U); | ||||||||
| 4080 | if (!UserRecipe) | ||||||||
| 4081 | continue; | ||||||||
| 4082 | for (VPValue *V : UserRecipe->definedValues()) | ||||||||
| 4083 | if (Visited.insert(V).second) | ||||||||
| 4084 | Worklist.push_back(V); | ||||||||
| 4085 | } | ||||||||
| 4086 | } | ||||||||
| 4087 | } | ||||||||
| 4088 | |||||||||
| 4089 | void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { | ||||||||
| 4090 | // The basic block and loop containing the predicated instruction. | ||||||||
| 4091 | auto *PredBB = PredInst->getParent(); | ||||||||
| 4092 | auto *VectorLoop = LI->getLoopFor(PredBB); | ||||||||
| 4093 | |||||||||
| 4094 | // Initialize a worklist with the operands of the predicated instruction. | ||||||||
| 4095 | SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); | ||||||||
| 4096 | |||||||||
| 4097 | // Holds instructions that we need to analyze again. An instruction may be | ||||||||
| 4098 | // reanalyzed if we don't yet know if we can sink it or not. | ||||||||
| 4099 | SmallVector<Instruction *, 8> InstsToReanalyze; | ||||||||
| 4100 | |||||||||
| 4101 | // Returns true if a given use occurs in the predicated block. Phi nodes use | ||||||||
| 4102 | // their operands in their corresponding predecessor blocks. | ||||||||
| 4103 | auto isBlockOfUsePredicated = [&](Use &U) -> bool { | ||||||||
| 4104 | auto *I = cast<Instruction>(U.getUser()); | ||||||||
| 4105 | BasicBlock *BB = I->getParent(); | ||||||||
| 4106 | if (auto *Phi = dyn_cast<PHINode>(I)) | ||||||||
| 4107 | BB = Phi->getIncomingBlock( | ||||||||
| 4108 | PHINode::getIncomingValueNumForOperand(U.getOperandNo())); | ||||||||
| 4109 | return BB == PredBB; | ||||||||
| 4110 | }; | ||||||||
| 4111 | |||||||||
| 4112 | // Iteratively sink the scalarized operands of the predicated instruction | ||||||||
| 4113 | // into the block we created for it. When an instruction is sunk, it's | ||||||||
| 4114 | // operands are then added to the worklist. The algorithm ends after one pass | ||||||||
| 4115 | // through the worklist doesn't sink a single instruction. | ||||||||
| 4116 | bool Changed; | ||||||||
| 4117 | do { | ||||||||
| 4118 | // Add the instructions that need to be reanalyzed to the worklist, and | ||||||||
| 4119 | // reset the changed indicator. | ||||||||
| 4120 | Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); | ||||||||
| 4121 | InstsToReanalyze.clear(); | ||||||||
| 4122 | Changed = false; | ||||||||
| 4123 | |||||||||
| 4124 | while (!Worklist.empty()) { | ||||||||
| 4125 | auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); | ||||||||
| 4126 | |||||||||
| 4127 | // We can't sink an instruction if it is a phi node, is not in the loop, | ||||||||
| 4128 | // or may have side effects. | ||||||||
| 4129 | if (!I || isa<PHINode>(I) || !VectorLoop->contains(I) || | ||||||||
| 4130 | I->mayHaveSideEffects()) | ||||||||
| 4131 | continue; | ||||||||
| 4132 | |||||||||
| 4133 | // If the instruction is already in PredBB, check if we can sink its | ||||||||
| 4134 | // operands. In that case, VPlan's sinkScalarOperands() succeeded in | ||||||||
| 4135 | // sinking the scalar instruction I, hence it appears in PredBB; but it | ||||||||
| 4136 | // may have failed to sink I's operands (recursively), which we try | ||||||||
| 4137 | // (again) here. | ||||||||
| 4138 | if (I->getParent() == PredBB) { | ||||||||
| 4139 | Worklist.insert(I->op_begin(), I->op_end()); | ||||||||
| 4140 | continue; | ||||||||
| 4141 | } | ||||||||
| 4142 | |||||||||
| 4143 | // It's legal to sink the instruction if all its uses occur in the | ||||||||
| 4144 | // predicated block. Otherwise, there's nothing to do yet, and we may | ||||||||
| 4145 | // need to reanalyze the instruction. | ||||||||
| 4146 | if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { | ||||||||
| 4147 | InstsToReanalyze.push_back(I); | ||||||||
| 4148 | continue; | ||||||||
| 4149 | } | ||||||||
| 4150 | |||||||||
| 4151 | // Move the instruction to the beginning of the predicated block, and add | ||||||||
| 4152 | // it's operands to the worklist. | ||||||||
| 4153 | I->moveBefore(&*PredBB->getFirstInsertionPt()); | ||||||||
| 4154 | Worklist.insert(I->op_begin(), I->op_end()); | ||||||||
| 4155 | |||||||||
| 4156 | // The sinking may have enabled other instructions to be sunk, so we will | ||||||||
| 4157 | // need to iterate. | ||||||||
| 4158 | Changed = true; | ||||||||
| 4159 | } | ||||||||
| 4160 | } while (Changed); | ||||||||
| 4161 | } | ||||||||
| 4162 | |||||||||
| 4163 | void InnerLoopVectorizer::fixNonInductionPHIs(VPlan &Plan, | ||||||||
| 4164 | VPTransformState &State) { | ||||||||
| 4165 | auto Iter = vp_depth_first_deep(Plan.getEntry()); | ||||||||
| 4166 | for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) { | ||||||||
| 4167 | for (VPRecipeBase &P : VPBB->phis()) { | ||||||||
| 4168 | VPWidenPHIRecipe *VPPhi = dyn_cast<VPWidenPHIRecipe>(&P); | ||||||||
| 4169 | if (!VPPhi) | ||||||||
| 4170 | continue; | ||||||||
| 4171 | PHINode *NewPhi = cast<PHINode>(State.get(VPPhi, 0)); | ||||||||
| 4172 | // Make sure the builder has a valid insert point. | ||||||||
| 4173 | Builder.SetInsertPoint(NewPhi); | ||||||||
| 4174 | for (unsigned i = 0; i < VPPhi->getNumOperands(); ++i) { | ||||||||
| 4175 | VPValue *Inc = VPPhi->getIncomingValue(i); | ||||||||
| 4176 | VPBasicBlock *VPBB = VPPhi->getIncomingBlock(i); | ||||||||
| 4177 | NewPhi->addIncoming(State.get(Inc, 0), State.CFG.VPBB2IRBB[VPBB]); | ||||||||
| 4178 | } | ||||||||
| 4179 | } | ||||||||
| 4180 | } | ||||||||
| 4181 | } | ||||||||
| 4182 | |||||||||
| 4183 | bool InnerLoopVectorizer::useOrderedReductions( | ||||||||
| 4184 | const RecurrenceDescriptor &RdxDesc) { | ||||||||
| 4185 | return Cost->useOrderedReductions(RdxDesc); | ||||||||
| 4186 | } | ||||||||
| 4187 | |||||||||
| 4188 | void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { | ||||||||
| 4189 | // We should not collect Scalars more than once per VF. Right now, this | ||||||||
| 4190 | // function is called from collectUniformsAndScalars(), which already does | ||||||||
| 4191 | // this check. Collecting Scalars for VF=1 does not make any sense. | ||||||||
| 4192 | assert(VF.isVector() && Scalars.find(VF) == Scalars.end() &&(static_cast <bool> (VF.isVector() && Scalars.find (VF) == Scalars.end() && "This function should not be visited twice for the same VF" ) ? void (0) : __assert_fail ("VF.isVector() && Scalars.find(VF) == Scalars.end() && \"This function should not be visited twice for the same VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4193, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 4193 | "This function should not be visited twice for the same VF")(static_cast <bool> (VF.isVector() && Scalars.find (VF) == Scalars.end() && "This function should not be visited twice for the same VF" ) ? void (0) : __assert_fail ("VF.isVector() && Scalars.find(VF) == Scalars.end() && \"This function should not be visited twice for the same VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4193, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4194 | |||||||||
| 4195 | // This avoids any chances of creating a REPLICATE recipe during planning | ||||||||
| 4196 | // since that would result in generation of scalarized code during execution, | ||||||||
| 4197 | // which is not supported for scalable vectors. | ||||||||
| 4198 | if (VF.isScalable()) { | ||||||||
| 4199 | Scalars[VF].insert(Uniforms[VF].begin(), Uniforms[VF].end()); | ||||||||
| 4200 | return; | ||||||||
| 4201 | } | ||||||||
| 4202 | |||||||||
| 4203 | SmallSetVector<Instruction *, 8> Worklist; | ||||||||
| 4204 | |||||||||
| 4205 | // These sets are used to seed the analysis with pointers used by memory | ||||||||
| 4206 | // accesses that will remain scalar. | ||||||||
| 4207 | SmallSetVector<Instruction *, 8> ScalarPtrs; | ||||||||
| 4208 | SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; | ||||||||
| 4209 | auto *Latch = TheLoop->getLoopLatch(); | ||||||||
| 4210 | |||||||||
| 4211 | // A helper that returns true if the use of Ptr by MemAccess will be scalar. | ||||||||
| 4212 | // The pointer operands of loads and stores will be scalar as long as the | ||||||||
| 4213 | // memory access is not a gather or scatter operation. The value operand of a | ||||||||
| 4214 | // store will remain scalar if the store is scalarized. | ||||||||
| 4215 | auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { | ||||||||
| 4216 | InstWidening WideningDecision = getWideningDecision(MemAccess, VF); | ||||||||
| 4217 | assert(WideningDecision != CM_Unknown &&(static_cast <bool> (WideningDecision != CM_Unknown && "Widening decision should be ready at this moment") ? void ( 0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4218, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 4218 | "Widening decision should be ready at this moment")(static_cast <bool> (WideningDecision != CM_Unknown && "Widening decision should be ready at this moment") ? void ( 0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4218, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4219 | if (auto *Store = dyn_cast<StoreInst>(MemAccess)) | ||||||||
| 4220 | if (Ptr == Store->getValueOperand()) | ||||||||
| 4221 | return WideningDecision == CM_Scalarize; | ||||||||
| 4222 | assert(Ptr == getLoadStorePointerOperand(MemAccess) &&(static_cast <bool> (Ptr == getLoadStorePointerOperand( MemAccess) && "Ptr is neither a value or pointer operand" ) ? void (0) : __assert_fail ("Ptr == getLoadStorePointerOperand(MemAccess) && \"Ptr is neither a value or pointer operand\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4223, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 4223 | "Ptr is neither a value or pointer operand")(static_cast <bool> (Ptr == getLoadStorePointerOperand( MemAccess) && "Ptr is neither a value or pointer operand" ) ? void (0) : __assert_fail ("Ptr == getLoadStorePointerOperand(MemAccess) && \"Ptr is neither a value or pointer operand\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4223, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4224 | return WideningDecision != CM_GatherScatter; | ||||||||
| 4225 | }; | ||||||||
| 4226 | |||||||||
| 4227 | // A helper that returns true if the given value is a bitcast or | ||||||||
| 4228 | // getelementptr instruction contained in the loop. | ||||||||
| 4229 | auto isLoopVaryingBitCastOrGEP = [&](Value *V) { | ||||||||
| 4230 | return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || | ||||||||
| 4231 | isa<GetElementPtrInst>(V)) && | ||||||||
| 4232 | !TheLoop->isLoopInvariant(V); | ||||||||
| 4233 | }; | ||||||||
| 4234 | |||||||||
| 4235 | // A helper that evaluates a memory access's use of a pointer. If the use will | ||||||||
| 4236 | // be a scalar use and the pointer is only used by memory accesses, we place | ||||||||
| 4237 | // the pointer in ScalarPtrs. Otherwise, the pointer is placed in | ||||||||
| 4238 | // PossibleNonScalarPtrs. | ||||||||
| 4239 | auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { | ||||||||
| 4240 | // We only care about bitcast and getelementptr instructions contained in | ||||||||
| 4241 | // the loop. | ||||||||
| 4242 | if (!isLoopVaryingBitCastOrGEP(Ptr)) | ||||||||
| 4243 | return; | ||||||||
| 4244 | |||||||||
| 4245 | // If the pointer has already been identified as scalar (e.g., if it was | ||||||||
| 4246 | // also identified as uniform), there's nothing to do. | ||||||||
| 4247 | auto *I = cast<Instruction>(Ptr); | ||||||||
| 4248 | if (Worklist.count(I)) | ||||||||
| 4249 | return; | ||||||||
| 4250 | |||||||||
| 4251 | // If the use of the pointer will be a scalar use, and all users of the | ||||||||
| 4252 | // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, | ||||||||
| 4253 | // place the pointer in PossibleNonScalarPtrs. | ||||||||
| 4254 | if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { | ||||||||
| 4255 | return isa<LoadInst>(U) || isa<StoreInst>(U); | ||||||||
| 4256 | })) | ||||||||
| 4257 | ScalarPtrs.insert(I); | ||||||||
| 4258 | else | ||||||||
| 4259 | PossibleNonScalarPtrs.insert(I); | ||||||||
| 4260 | }; | ||||||||
| 4261 | |||||||||
| 4262 | // We seed the scalars analysis with three classes of instructions: (1) | ||||||||
| 4263 | // instructions marked uniform-after-vectorization and (2) bitcast, | ||||||||
| 4264 | // getelementptr and (pointer) phi instructions used by memory accesses | ||||||||
| 4265 | // requiring a scalar use. | ||||||||
| 4266 | // | ||||||||
| 4267 | // (1) Add to the worklist all instructions that have been identified as | ||||||||
| 4268 | // uniform-after-vectorization. | ||||||||
| 4269 | Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); | ||||||||
| 4270 | |||||||||
| 4271 | // (2) Add to the worklist all bitcast and getelementptr instructions used by | ||||||||
| 4272 | // memory accesses requiring a scalar use. The pointer operands of loads and | ||||||||
| 4273 | // stores will be scalar as long as the memory accesses is not a gather or | ||||||||
| 4274 | // scatter operation. The value operand of a store will remain scalar if the | ||||||||
| 4275 | // store is scalarized. | ||||||||
| 4276 | for (auto *BB : TheLoop->blocks()) | ||||||||
| 4277 | for (auto &I : *BB) { | ||||||||
| 4278 | if (auto *Load = dyn_cast<LoadInst>(&I)) { | ||||||||
| 4279 | evaluatePtrUse(Load, Load->getPointerOperand()); | ||||||||
| 4280 | } else if (auto *Store = dyn_cast<StoreInst>(&I)) { | ||||||||
| 4281 | evaluatePtrUse(Store, Store->getPointerOperand()); | ||||||||
| 4282 | evaluatePtrUse(Store, Store->getValueOperand()); | ||||||||
| 4283 | } | ||||||||
| 4284 | } | ||||||||
| 4285 | for (auto *I : ScalarPtrs) | ||||||||
| 4286 | if (!PossibleNonScalarPtrs.count(I)) { | ||||||||
| 4287 | LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: " << *I << "\n"; } } while (false); | ||||||||
| 4288 | Worklist.insert(I); | ||||||||
| 4289 | } | ||||||||
| 4290 | |||||||||
| 4291 | // Insert the forced scalars. | ||||||||
| 4292 | // FIXME: Currently VPWidenPHIRecipe() often creates a dead vector | ||||||||
| 4293 | // induction variable when the PHI user is scalarized. | ||||||||
| 4294 | auto ForcedScalar = ForcedScalars.find(VF); | ||||||||
| 4295 | if (ForcedScalar != ForcedScalars.end()) | ||||||||
| 4296 | for (auto *I : ForcedScalar->second) { | ||||||||
| 4297 | LLVM_DEBUG(dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found (forced) scalar instruction: " << *I << "\n"; } } while (false); | ||||||||
| 4298 | Worklist.insert(I); | ||||||||
| 4299 | } | ||||||||
| 4300 | |||||||||
| 4301 | // Expand the worklist by looking through any bitcasts and getelementptr | ||||||||
| 4302 | // instructions we've already identified as scalar. This is similar to the | ||||||||
| 4303 | // expansion step in collectLoopUniforms(); however, here we're only | ||||||||
| 4304 | // expanding to include additional bitcasts and getelementptr instructions. | ||||||||
| 4305 | unsigned Idx = 0; | ||||||||
| 4306 | while (Idx != Worklist.size()) { | ||||||||
| 4307 | Instruction *Dst = Worklist[Idx++]; | ||||||||
| 4308 | if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) | ||||||||
| 4309 | continue; | ||||||||
| 4310 | auto *Src = cast<Instruction>(Dst->getOperand(0)); | ||||||||
| 4311 | if (llvm::all_of(Src->users(), [&](User *U) -> bool { | ||||||||
| 4312 | auto *J = cast<Instruction>(U); | ||||||||
| 4313 | return !TheLoop->contains(J) || Worklist.count(J) || | ||||||||
| 4314 | ((isa<LoadInst>(J) || isa<StoreInst>(J)) && | ||||||||
| 4315 | isScalarUse(J, Src)); | ||||||||
| 4316 | })) { | ||||||||
| 4317 | Worklist.insert(Src); | ||||||||
| 4318 | LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: " << *Src << "\n"; } } while (false); | ||||||||
| 4319 | } | ||||||||
| 4320 | } | ||||||||
| 4321 | |||||||||
| 4322 | // An induction variable will remain scalar if all users of the induction | ||||||||
| 4323 | // variable and induction variable update remain scalar. | ||||||||
| 4324 | for (const auto &Induction : Legal->getInductionVars()) { | ||||||||
| 4325 | auto *Ind = Induction.first; | ||||||||
| 4326 | auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); | ||||||||
| 4327 | |||||||||
| 4328 | // If tail-folding is applied, the primary induction variable will be used | ||||||||
| 4329 | // to feed a vector compare. | ||||||||
| 4330 | if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) | ||||||||
| 4331 | continue; | ||||||||
| 4332 | |||||||||
| 4333 | // Returns true if \p Indvar is a pointer induction that is used directly by | ||||||||
| 4334 | // load/store instruction \p I. | ||||||||
| 4335 | auto IsDirectLoadStoreFromPtrIndvar = [&](Instruction *Indvar, | ||||||||
| 4336 | Instruction *I) { | ||||||||
| 4337 | return Induction.second.getKind() == | ||||||||
| 4338 | InductionDescriptor::IK_PtrInduction && | ||||||||
| 4339 | (isa<LoadInst>(I) || isa<StoreInst>(I)) && | ||||||||
| 4340 | Indvar == getLoadStorePointerOperand(I) && isScalarUse(I, Indvar); | ||||||||
| 4341 | }; | ||||||||
| 4342 | |||||||||
| 4343 | // Determine if all users of the induction variable are scalar after | ||||||||
| 4344 | // vectorization. | ||||||||
| 4345 | auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { | ||||||||
| 4346 | auto *I = cast<Instruction>(U); | ||||||||
| 4347 | return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || | ||||||||
| 4348 | IsDirectLoadStoreFromPtrIndvar(Ind, I); | ||||||||
| 4349 | }); | ||||||||
| 4350 | if (!ScalarInd) | ||||||||
| 4351 | continue; | ||||||||
| 4352 | |||||||||
| 4353 | // Determine if all users of the induction variable update instruction are | ||||||||
| 4354 | // scalar after vectorization. | ||||||||
| 4355 | auto ScalarIndUpdate = | ||||||||
| 4356 | llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { | ||||||||
| 4357 | auto *I = cast<Instruction>(U); | ||||||||
| 4358 | return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || | ||||||||
| 4359 | IsDirectLoadStoreFromPtrIndvar(IndUpdate, I); | ||||||||
| 4360 | }); | ||||||||
| 4361 | if (!ScalarIndUpdate) | ||||||||
| 4362 | continue; | ||||||||
| 4363 | |||||||||
| 4364 | // The induction variable and its update instruction will remain scalar. | ||||||||
| 4365 | Worklist.insert(Ind); | ||||||||
| 4366 | Worklist.insert(IndUpdate); | ||||||||
| 4367 | LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"; } } while (false); | ||||||||
| 4368 | LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdatedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"; } } while (false) | ||||||||
| 4369 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found scalar instruction: " << *IndUpdate << "\n"; } } while (false); | ||||||||
| 4370 | } | ||||||||
| 4371 | |||||||||
| 4372 | Scalars[VF].insert(Worklist.begin(), Worklist.end()); | ||||||||
| 4373 | } | ||||||||
| 4374 | |||||||||
| 4375 | bool LoopVectorizationCostModel::isScalarWithPredication( | ||||||||
| 4376 | Instruction *I, ElementCount VF) const { | ||||||||
| 4377 | if (!isPredicatedInst(I)) | ||||||||
| 4378 | return false; | ||||||||
| 4379 | |||||||||
| 4380 | // Do we have a non-scalar lowering for this predicated | ||||||||
| 4381 | // instruction? No - it is scalar with predication. | ||||||||
| 4382 | switch(I->getOpcode()) { | ||||||||
| 4383 | default: | ||||||||
| 4384 | return true; | ||||||||
| 4385 | case Instruction::Load: | ||||||||
| 4386 | case Instruction::Store: { | ||||||||
| 4387 | auto *Ptr = getLoadStorePointerOperand(I); | ||||||||
| 4388 | auto *Ty = getLoadStoreType(I); | ||||||||
| 4389 | Type *VTy = Ty; | ||||||||
| 4390 | if (VF.isVector()) | ||||||||
| 4391 | VTy = VectorType::get(Ty, VF); | ||||||||
| 4392 | const Align Alignment = getLoadStoreAlignment(I); | ||||||||
| 4393 | return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || | ||||||||
| 4394 | TTI.isLegalMaskedGather(VTy, Alignment)) | ||||||||
| 4395 | : !(isLegalMaskedStore(Ty, Ptr, Alignment) || | ||||||||
| 4396 | TTI.isLegalMaskedScatter(VTy, Alignment)); | ||||||||
| 4397 | } | ||||||||
| 4398 | case Instruction::UDiv: | ||||||||
| 4399 | case Instruction::SDiv: | ||||||||
| 4400 | case Instruction::SRem: | ||||||||
| 4401 | case Instruction::URem: { | ||||||||
| 4402 | // We have the option to use the safe-divisor idiom to avoid predication. | ||||||||
| 4403 | // The cost based decision here will always select safe-divisor for | ||||||||
| 4404 | // scalable vectors as scalarization isn't legal. | ||||||||
| 4405 | const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF); | ||||||||
| 4406 | return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost); | ||||||||
| 4407 | } | ||||||||
| 4408 | } | ||||||||
| 4409 | } | ||||||||
| 4410 | |||||||||
| 4411 | bool LoopVectorizationCostModel::isPredicatedInst(Instruction *I) const { | ||||||||
| 4412 | if (!blockNeedsPredicationForAnyReason(I->getParent())) | ||||||||
| 4413 | return false; | ||||||||
| 4414 | |||||||||
| 4415 | // Can we prove this instruction is safe to unconditionally execute? | ||||||||
| 4416 | // If not, we must use some form of predication. | ||||||||
| 4417 | switch(I->getOpcode()) { | ||||||||
| 4418 | default: | ||||||||
| 4419 | return false; | ||||||||
| 4420 | case Instruction::Load: | ||||||||
| 4421 | case Instruction::Store: { | ||||||||
| 4422 | if (!Legal->isMaskRequired(I)) | ||||||||
| 4423 | return false; | ||||||||
| 4424 | // When we know the load's address is loop invariant and the instruction | ||||||||
| 4425 | // in the original scalar loop was unconditionally executed then we | ||||||||
| 4426 | // don't need to mark it as a predicated instruction. Tail folding may | ||||||||
| 4427 | // introduce additional predication, but we're guaranteed to always have | ||||||||
| 4428 | // at least one active lane. We call Legal->blockNeedsPredication here | ||||||||
| 4429 | // because it doesn't query tail-folding. For stores, we need to prove | ||||||||
| 4430 | // both speculation safety (which follows from the same argument as loads), | ||||||||
| 4431 | // but also must prove the value being stored is correct. The easiest | ||||||||
| 4432 | // form of the later is to require that all values stored are the same. | ||||||||
| 4433 | if (Legal->isUniformMemOp(*I) && | ||||||||
| 4434 | (isa<LoadInst>(I) || | ||||||||
| 4435 | (isa<StoreInst>(I) && | ||||||||
| 4436 | TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()))) && | ||||||||
| 4437 | !Legal->blockNeedsPredication(I->getParent())) | ||||||||
| 4438 | return false; | ||||||||
| 4439 | return true; | ||||||||
| 4440 | } | ||||||||
| 4441 | case Instruction::UDiv: | ||||||||
| 4442 | case Instruction::SDiv: | ||||||||
| 4443 | case Instruction::SRem: | ||||||||
| 4444 | case Instruction::URem: | ||||||||
| 4445 | // TODO: We can use the loop-preheader as context point here and get | ||||||||
| 4446 | // context sensitive reasoning | ||||||||
| 4447 | return !isSafeToSpeculativelyExecute(I); | ||||||||
| 4448 | } | ||||||||
| 4449 | } | ||||||||
| 4450 | |||||||||
| 4451 | std::pair<InstructionCost, InstructionCost> | ||||||||
| 4452 | LoopVectorizationCostModel::getDivRemSpeculationCost(Instruction *I, | ||||||||
| 4453 | ElementCount VF) const { | ||||||||
| 4454 | assert(I->getOpcode() == Instruction::UDiv ||(static_cast <bool> (I->getOpcode() == Instruction:: UDiv || I->getOpcode() == Instruction::SDiv || I->getOpcode () == Instruction::SRem || I->getOpcode() == Instruction:: URem) ? void (0) : __assert_fail ("I->getOpcode() == Instruction::UDiv || I->getOpcode() == Instruction::SDiv || I->getOpcode() == Instruction::SRem || I->getOpcode() == Instruction::URem" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4457, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 4455 | I->getOpcode() == Instruction::SDiv ||(static_cast <bool> (I->getOpcode() == Instruction:: UDiv || I->getOpcode() == Instruction::SDiv || I->getOpcode () == Instruction::SRem || I->getOpcode() == Instruction:: URem) ? void (0) : __assert_fail ("I->getOpcode() == Instruction::UDiv || I->getOpcode() == Instruction::SDiv || I->getOpcode() == Instruction::SRem || I->getOpcode() == Instruction::URem" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4457, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 4456 | I->getOpcode() == Instruction::SRem ||(static_cast <bool> (I->getOpcode() == Instruction:: UDiv || I->getOpcode() == Instruction::SDiv || I->getOpcode () == Instruction::SRem || I->getOpcode() == Instruction:: URem) ? void (0) : __assert_fail ("I->getOpcode() == Instruction::UDiv || I->getOpcode() == Instruction::SDiv || I->getOpcode() == Instruction::SRem || I->getOpcode() == Instruction::URem" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4457, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 4457 | I->getOpcode() == Instruction::URem)(static_cast <bool> (I->getOpcode() == Instruction:: UDiv || I->getOpcode() == Instruction::SDiv || I->getOpcode () == Instruction::SRem || I->getOpcode() == Instruction:: URem) ? void (0) : __assert_fail ("I->getOpcode() == Instruction::UDiv || I->getOpcode() == Instruction::SDiv || I->getOpcode() == Instruction::SRem || I->getOpcode() == Instruction::URem" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4457, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4458 | assert(!isSafeToSpeculativelyExecute(I))(static_cast <bool> (!isSafeToSpeculativelyExecute(I)) ? void (0) : __assert_fail ("!isSafeToSpeculativelyExecute(I)" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4458, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4459 | |||||||||
| 4460 | const TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; | ||||||||
| 4461 | |||||||||
| 4462 | // Scalarization isn't legal for scalable vector types | ||||||||
| 4463 | InstructionCost ScalarizationCost = InstructionCost::getInvalid(); | ||||||||
| 4464 | if (!VF.isScalable()) { | ||||||||
| 4465 | // Get the scalarization cost and scale this amount by the probability of | ||||||||
| 4466 | // executing the predicated block. If the instruction is not predicated, | ||||||||
| 4467 | // we fall through to the next case. | ||||||||
| 4468 | ScalarizationCost = 0; | ||||||||
| 4469 | |||||||||
| 4470 | // These instructions have a non-void type, so account for the phi nodes | ||||||||
| 4471 | // that we will create. This cost is likely to be zero. The phi node | ||||||||
| 4472 | // cost, if any, should be scaled by the block probability because it | ||||||||
| 4473 | // models a copy at the end of each predicated block. | ||||||||
| 4474 | ScalarizationCost += VF.getKnownMinValue() * | ||||||||
| 4475 | TTI.getCFInstrCost(Instruction::PHI, CostKind); | ||||||||
| 4476 | |||||||||
| 4477 | // The cost of the non-predicated instruction. | ||||||||
| 4478 | ScalarizationCost += VF.getKnownMinValue() * | ||||||||
| 4479 | TTI.getArithmeticInstrCost(I->getOpcode(), I->getType(), CostKind); | ||||||||
| 4480 | |||||||||
| 4481 | // The cost of insertelement and extractelement instructions needed for | ||||||||
| 4482 | // scalarization. | ||||||||
| 4483 | ScalarizationCost += getScalarizationOverhead(I, VF, CostKind); | ||||||||
| 4484 | |||||||||
| 4485 | // Scale the cost by the probability of executing the predicated blocks. | ||||||||
| 4486 | // This assumes the predicated block for each vector lane is equally | ||||||||
| 4487 | // likely. | ||||||||
| 4488 | ScalarizationCost = ScalarizationCost / getReciprocalPredBlockProb(); | ||||||||
| 4489 | } | ||||||||
| 4490 | InstructionCost SafeDivisorCost = 0; | ||||||||
| 4491 | |||||||||
| 4492 | auto *VecTy = ToVectorTy(I->getType(), VF); | ||||||||
| 4493 | |||||||||
| 4494 | // The cost of the select guard to ensure all lanes are well defined | ||||||||
| 4495 | // after we speculate above any internal control flow. | ||||||||
| 4496 | SafeDivisorCost += TTI.getCmpSelInstrCost( | ||||||||
| 4497 | Instruction::Select, VecTy, | ||||||||
| 4498 | ToVectorTy(Type::getInt1Ty(I->getContext()), VF), | ||||||||
| 4499 | CmpInst::BAD_ICMP_PREDICATE, CostKind); | ||||||||
| 4500 | |||||||||
| 4501 | // Certain instructions can be cheaper to vectorize if they have a constant | ||||||||
| 4502 | // second vector operand. One example of this are shifts on x86. | ||||||||
| 4503 | Value *Op2 = I->getOperand(1); | ||||||||
| 4504 | auto Op2Info = TTI.getOperandInfo(Op2); | ||||||||
| 4505 | if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) | ||||||||
| 4506 | Op2Info.Kind = TargetTransformInfo::OK_UniformValue; | ||||||||
| 4507 | |||||||||
| 4508 | SmallVector<const Value *, 4> Operands(I->operand_values()); | ||||||||
| 4509 | SafeDivisorCost += TTI.getArithmeticInstrCost( | ||||||||
| 4510 | I->getOpcode(), VecTy, CostKind, | ||||||||
| 4511 | {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, | ||||||||
| 4512 | Op2Info, Operands, I); | ||||||||
| 4513 | return {ScalarizationCost, SafeDivisorCost}; | ||||||||
| 4514 | } | ||||||||
| 4515 | |||||||||
| 4516 | bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( | ||||||||
| 4517 | Instruction *I, ElementCount VF) { | ||||||||
| 4518 | assert(isAccessInterleaved(I) && "Expecting interleaved access.")(static_cast <bool> (isAccessInterleaved(I) && "Expecting interleaved access." ) ? void (0) : __assert_fail ("isAccessInterleaved(I) && \"Expecting interleaved access.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4518, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4519 | assert(getWideningDecision(I, VF) == CM_Unknown &&(static_cast <bool> (getWideningDecision(I, VF) == CM_Unknown && "Decision should not be set yet.") ? void (0) : __assert_fail ("getWideningDecision(I, VF) == CM_Unknown && \"Decision should not be set yet.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4520, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 4520 | "Decision should not be set yet.")(static_cast <bool> (getWideningDecision(I, VF) == CM_Unknown && "Decision should not be set yet.") ? void (0) : __assert_fail ("getWideningDecision(I, VF) == CM_Unknown && \"Decision should not be set yet.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4520, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4521 | auto *Group = getInterleavedAccessGroup(I); | ||||||||
| 4522 | assert(Group && "Must have a group.")(static_cast <bool> (Group && "Must have a group." ) ? void (0) : __assert_fail ("Group && \"Must have a group.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4522, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4523 | |||||||||
| 4524 | // If the instruction's allocated size doesn't equal it's type size, it | ||||||||
| 4525 | // requires padding and will be scalarized. | ||||||||
| 4526 | auto &DL = I->getModule()->getDataLayout(); | ||||||||
| 4527 | auto *ScalarTy = getLoadStoreType(I); | ||||||||
| 4528 | if (hasIrregularType(ScalarTy, DL)) | ||||||||
| 4529 | return false; | ||||||||
| 4530 | |||||||||
| 4531 | // If the group involves a non-integral pointer, we may not be able to | ||||||||
| 4532 | // losslessly cast all values to a common type. | ||||||||
| 4533 | unsigned InterleaveFactor = Group->getFactor(); | ||||||||
| 4534 | bool ScalarNI = DL.isNonIntegralPointerType(ScalarTy); | ||||||||
| 4535 | for (unsigned i = 0; i < InterleaveFactor; i++) { | ||||||||
| 4536 | Instruction *Member = Group->getMember(i); | ||||||||
| 4537 | if (!Member) | ||||||||
| 4538 | continue; | ||||||||
| 4539 | auto *MemberTy = getLoadStoreType(Member); | ||||||||
| 4540 | bool MemberNI = DL.isNonIntegralPointerType(MemberTy); | ||||||||
| 4541 | // Don't coerce non-integral pointers to integers or vice versa. | ||||||||
| 4542 | if (MemberNI != ScalarNI) { | ||||||||
| 4543 | // TODO: Consider adding special nullptr value case here | ||||||||
| 4544 | return false; | ||||||||
| 4545 | } else if (MemberNI && ScalarNI && | ||||||||
| 4546 | ScalarTy->getPointerAddressSpace() != | ||||||||
| 4547 | MemberTy->getPointerAddressSpace()) { | ||||||||
| 4548 | return false; | ||||||||
| 4549 | } | ||||||||
| 4550 | } | ||||||||
| 4551 | |||||||||
| 4552 | // Check if masking is required. | ||||||||
| 4553 | // A Group may need masking for one of two reasons: it resides in a block that | ||||||||
| 4554 | // needs predication, or it was decided to use masking to deal with gaps | ||||||||
| 4555 | // (either a gap at the end of a load-access that may result in a speculative | ||||||||
| 4556 | // load, or any gaps in a store-access). | ||||||||
| 4557 | bool PredicatedAccessRequiresMasking = | ||||||||
| 4558 | blockNeedsPredicationForAnyReason(I->getParent()) && | ||||||||
| 4559 | Legal->isMaskRequired(I); | ||||||||
| 4560 | bool LoadAccessWithGapsRequiresEpilogMasking = | ||||||||
| 4561 | isa<LoadInst>(I) && Group->requiresScalarEpilogue() && | ||||||||
| 4562 | !isScalarEpilogueAllowed(); | ||||||||
| 4563 | bool StoreAccessWithGapsRequiresMasking = | ||||||||
| 4564 | isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor()); | ||||||||
| 4565 | if (!PredicatedAccessRequiresMasking && | ||||||||
| 4566 | !LoadAccessWithGapsRequiresEpilogMasking && | ||||||||
| 4567 | !StoreAccessWithGapsRequiresMasking) | ||||||||
| 4568 | return true; | ||||||||
| 4569 | |||||||||
| 4570 | // If masked interleaving is required, we expect that the user/target had | ||||||||
| 4571 | // enabled it, because otherwise it either wouldn't have been created or | ||||||||
| 4572 | // it should have been invalidated by the CostModel. | ||||||||
| 4573 | assert(useMaskedInterleavedAccesses(TTI) &&(static_cast <bool> (useMaskedInterleavedAccesses(TTI) && "Masked interleave-groups for predicated accesses are not enabled." ) ? void (0) : __assert_fail ("useMaskedInterleavedAccesses(TTI) && \"Masked interleave-groups for predicated accesses are not enabled.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4574, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 4574 | "Masked interleave-groups for predicated accesses are not enabled.")(static_cast <bool> (useMaskedInterleavedAccesses(TTI) && "Masked interleave-groups for predicated accesses are not enabled." ) ? void (0) : __assert_fail ("useMaskedInterleavedAccesses(TTI) && \"Masked interleave-groups for predicated accesses are not enabled.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4574, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4575 | |||||||||
| 4576 | if (Group->isReverse()) | ||||||||
| 4577 | return false; | ||||||||
| 4578 | |||||||||
| 4579 | auto *Ty = getLoadStoreType(I); | ||||||||
| 4580 | const Align Alignment = getLoadStoreAlignment(I); | ||||||||
| 4581 | return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) | ||||||||
| 4582 | : TTI.isLegalMaskedStore(Ty, Alignment); | ||||||||
| 4583 | } | ||||||||
| 4584 | |||||||||
| 4585 | bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( | ||||||||
| 4586 | Instruction *I, ElementCount VF) { | ||||||||
| 4587 | // Get and ensure we have a valid memory instruction. | ||||||||
| 4588 | assert((isa<LoadInst, StoreInst>(I)) && "Invalid memory instruction")(static_cast <bool> ((isa<LoadInst, StoreInst>(I) ) && "Invalid memory instruction") ? void (0) : __assert_fail ("(isa<LoadInst, StoreInst>(I)) && \"Invalid memory instruction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4588, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4589 | |||||||||
| 4590 | auto *Ptr = getLoadStorePointerOperand(I); | ||||||||
| 4591 | auto *ScalarTy = getLoadStoreType(I); | ||||||||
| 4592 | |||||||||
| 4593 | // In order to be widened, the pointer should be consecutive, first of all. | ||||||||
| 4594 | if (!Legal->isConsecutivePtr(ScalarTy, Ptr)) | ||||||||
| 4595 | return false; | ||||||||
| 4596 | |||||||||
| 4597 | // If the instruction is a store located in a predicated block, it will be | ||||||||
| 4598 | // scalarized. | ||||||||
| 4599 | if (isScalarWithPredication(I, VF)) | ||||||||
| 4600 | return false; | ||||||||
| 4601 | |||||||||
| 4602 | // If the instruction's allocated size doesn't equal it's type size, it | ||||||||
| 4603 | // requires padding and will be scalarized. | ||||||||
| 4604 | auto &DL = I->getModule()->getDataLayout(); | ||||||||
| 4605 | if (hasIrregularType(ScalarTy, DL)) | ||||||||
| 4606 | return false; | ||||||||
| 4607 | |||||||||
| 4608 | return true; | ||||||||
| 4609 | } | ||||||||
| 4610 | |||||||||
| 4611 | void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { | ||||||||
| 4612 | // We should not collect Uniforms more than once per VF. Right now, | ||||||||
| 4613 | // this function is called from collectUniformsAndScalars(), which | ||||||||
| 4614 | // already does this check. Collecting Uniforms for VF=1 does not make any | ||||||||
| 4615 | // sense. | ||||||||
| 4616 | |||||||||
| 4617 | assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() &&(static_cast <bool> (VF.isVector() && Uniforms. find(VF) == Uniforms.end() && "This function should not be visited twice for the same VF" ) ? void (0) : __assert_fail ("VF.isVector() && Uniforms.find(VF) == Uniforms.end() && \"This function should not be visited twice for the same VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4618, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 4618 | "This function should not be visited twice for the same VF")(static_cast <bool> (VF.isVector() && Uniforms. find(VF) == Uniforms.end() && "This function should not be visited twice for the same VF" ) ? void (0) : __assert_fail ("VF.isVector() && Uniforms.find(VF) == Uniforms.end() && \"This function should not be visited twice for the same VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4618, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4619 | |||||||||
| 4620 | // Visit the list of Uniforms. If we'll not find any uniform value, we'll | ||||||||
| 4621 | // not analyze again. Uniforms.count(VF) will return 1. | ||||||||
| 4622 | Uniforms[VF].clear(); | ||||||||
| 4623 | |||||||||
| 4624 | // We now know that the loop is vectorizable! | ||||||||
| 4625 | // Collect instructions inside the loop that will remain uniform after | ||||||||
| 4626 | // vectorization. | ||||||||
| 4627 | |||||||||
| 4628 | // Global values, params and instructions outside of current loop are out of | ||||||||
| 4629 | // scope. | ||||||||
| 4630 | auto isOutOfScope = [&](Value *V) -> bool { | ||||||||
| 4631 | Instruction *I = dyn_cast<Instruction>(V); | ||||||||
| 4632 | return (!I || !TheLoop->contains(I)); | ||||||||
| 4633 | }; | ||||||||
| 4634 | |||||||||
| 4635 | // Worklist containing uniform instructions demanding lane 0. | ||||||||
| 4636 | SetVector<Instruction *> Worklist; | ||||||||
| 4637 | BasicBlock *Latch = TheLoop->getLoopLatch(); | ||||||||
| 4638 | |||||||||
| 4639 | // Add uniform instructions demanding lane 0 to the worklist. Instructions | ||||||||
| 4640 | // that are scalar with predication must not be considered uniform after | ||||||||
| 4641 | // vectorization, because that would create an erroneous replicating region | ||||||||
| 4642 | // where only a single instance out of VF should be formed. | ||||||||
| 4643 | // TODO: optimize such seldom cases if found important, see PR40816. | ||||||||
| 4644 | auto addToWorklistIfAllowed = [&](Instruction *I) -> void { | ||||||||
| 4645 | if (isOutOfScope(I)) { | ||||||||
| 4646 | LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found not uniform due to scope: " << *I << "\n"; } } while (false) | ||||||||
| 4647 | << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found not uniform due to scope: " << *I << "\n"; } } while (false); | ||||||||
| 4648 | return; | ||||||||
| 4649 | } | ||||||||
| 4650 | if (isScalarWithPredication(I, VF)) { | ||||||||
| 4651 | LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found not uniform being ScalarWithPredication: " << *I << "\n"; } } while (false) | ||||||||
| 4652 | << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found not uniform being ScalarWithPredication: " << *I << "\n"; } } while (false); | ||||||||
| 4653 | return; | ||||||||
| 4654 | } | ||||||||
| 4655 | LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found uniform instruction: " << *I << "\n"; } } while (false); | ||||||||
| 4656 | Worklist.insert(I); | ||||||||
| 4657 | }; | ||||||||
| 4658 | |||||||||
| 4659 | // Start with the conditional branch. If the branch condition is an | ||||||||
| 4660 | // instruction contained in the loop that is only used by the branch, it is | ||||||||
| 4661 | // uniform. | ||||||||
| 4662 | auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); | ||||||||
| 4663 | if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) | ||||||||
| 4664 | addToWorklistIfAllowed(Cmp); | ||||||||
| 4665 | |||||||||
| 4666 | // Return true if all lanes perform the same memory operation, and we can | ||||||||
| 4667 | // thus chose to execute only one. | ||||||||
| 4668 | auto isUniformMemOpUse = [&](Instruction *I) { | ||||||||
| 4669 | if (!Legal->isUniformMemOp(*I)) | ||||||||
| 4670 | return false; | ||||||||
| 4671 | if (isa<LoadInst>(I)) | ||||||||
| 4672 | // Loading the same address always produces the same result - at least | ||||||||
| 4673 | // assuming aliasing and ordering which have already been checked. | ||||||||
| 4674 | return true; | ||||||||
| 4675 | // Storing the same value on every iteration. | ||||||||
| 4676 | return TheLoop->isLoopInvariant(cast<StoreInst>(I)->getValueOperand()); | ||||||||
| 4677 | }; | ||||||||
| 4678 | |||||||||
| 4679 | auto isUniformDecision = [&](Instruction *I, ElementCount VF) { | ||||||||
| 4680 | InstWidening WideningDecision = getWideningDecision(I, VF); | ||||||||
| 4681 | assert(WideningDecision != CM_Unknown &&(static_cast <bool> (WideningDecision != CM_Unknown && "Widening decision should be ready at this moment") ? void ( 0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4682, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 4682 | "Widening decision should be ready at this moment")(static_cast <bool> (WideningDecision != CM_Unknown && "Widening decision should be ready at this moment") ? void ( 0) : __assert_fail ("WideningDecision != CM_Unknown && \"Widening decision should be ready at this moment\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4682, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4683 | |||||||||
| 4684 | if (isUniformMemOpUse(I)) | ||||||||
| 4685 | return true; | ||||||||
| 4686 | |||||||||
| 4687 | return (WideningDecision == CM_Widen || | ||||||||
| 4688 | WideningDecision == CM_Widen_Reverse || | ||||||||
| 4689 | WideningDecision == CM_Interleave); | ||||||||
| 4690 | }; | ||||||||
| 4691 | |||||||||
| 4692 | |||||||||
| 4693 | // Returns true if Ptr is the pointer operand of a memory access instruction | ||||||||
| 4694 | // I, and I is known to not require scalarization. | ||||||||
| 4695 | auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { | ||||||||
| 4696 | return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); | ||||||||
| 4697 | }; | ||||||||
| 4698 | |||||||||
| 4699 | // Holds a list of values which are known to have at least one uniform use. | ||||||||
| 4700 | // Note that there may be other uses which aren't uniform. A "uniform use" | ||||||||
| 4701 | // here is something which only demands lane 0 of the unrolled iterations; | ||||||||
| 4702 | // it does not imply that all lanes produce the same value (e.g. this is not | ||||||||
| 4703 | // the usual meaning of uniform) | ||||||||
| 4704 | SetVector<Value *> HasUniformUse; | ||||||||
| 4705 | |||||||||
| 4706 | // Scan the loop for instructions which are either a) known to have only | ||||||||
| 4707 | // lane 0 demanded or b) are uses which demand only lane 0 of their operand. | ||||||||
| 4708 | for (auto *BB : TheLoop->blocks()) | ||||||||
| 4709 | for (auto &I : *BB) { | ||||||||
| 4710 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) { | ||||||||
| 4711 | switch (II->getIntrinsicID()) { | ||||||||
| 4712 | case Intrinsic::sideeffect: | ||||||||
| 4713 | case Intrinsic::experimental_noalias_scope_decl: | ||||||||
| 4714 | case Intrinsic::assume: | ||||||||
| 4715 | case Intrinsic::lifetime_start: | ||||||||
| 4716 | case Intrinsic::lifetime_end: | ||||||||
| 4717 | if (TheLoop->hasLoopInvariantOperands(&I)) | ||||||||
| 4718 | addToWorklistIfAllowed(&I); | ||||||||
| 4719 | break; | ||||||||
| 4720 | default: | ||||||||
| 4721 | break; | ||||||||
| 4722 | } | ||||||||
| 4723 | } | ||||||||
| 4724 | |||||||||
| 4725 | // ExtractValue instructions must be uniform, because the operands are | ||||||||
| 4726 | // known to be loop-invariant. | ||||||||
| 4727 | if (auto *EVI = dyn_cast<ExtractValueInst>(&I)) { | ||||||||
| 4728 | assert(isOutOfScope(EVI->getAggregateOperand()) &&(static_cast <bool> (isOutOfScope(EVI->getAggregateOperand ()) && "Expected aggregate value to be loop invariant" ) ? void (0) : __assert_fail ("isOutOfScope(EVI->getAggregateOperand()) && \"Expected aggregate value to be loop invariant\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4729, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 4729 | "Expected aggregate value to be loop invariant")(static_cast <bool> (isOutOfScope(EVI->getAggregateOperand ()) && "Expected aggregate value to be loop invariant" ) ? void (0) : __assert_fail ("isOutOfScope(EVI->getAggregateOperand()) && \"Expected aggregate value to be loop invariant\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4729, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4730 | addToWorklistIfAllowed(EVI); | ||||||||
| 4731 | continue; | ||||||||
| 4732 | } | ||||||||
| 4733 | |||||||||
| 4734 | // If there's no pointer operand, there's nothing to do. | ||||||||
| 4735 | auto *Ptr = getLoadStorePointerOperand(&I); | ||||||||
| 4736 | if (!Ptr) | ||||||||
| 4737 | continue; | ||||||||
| 4738 | |||||||||
| 4739 | if (isUniformMemOpUse(&I)) | ||||||||
| 4740 | addToWorklistIfAllowed(&I); | ||||||||
| 4741 | |||||||||
| 4742 | if (isUniformDecision(&I, VF)) { | ||||||||
| 4743 | assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check")(static_cast <bool> (isVectorizedMemAccessUse(&I, Ptr ) && "consistency check") ? void (0) : __assert_fail ( "isVectorizedMemAccessUse(&I, Ptr) && \"consistency check\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4743, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4744 | HasUniformUse.insert(Ptr); | ||||||||
| 4745 | } | ||||||||
| 4746 | } | ||||||||
| 4747 | |||||||||
| 4748 | // Add to the worklist any operands which have *only* uniform (e.g. lane 0 | ||||||||
| 4749 | // demanding) users. Since loops are assumed to be in LCSSA form, this | ||||||||
| 4750 | // disallows uses outside the loop as well. | ||||||||
| 4751 | for (auto *V : HasUniformUse) { | ||||||||
| 4752 | if (isOutOfScope(V)) | ||||||||
| 4753 | continue; | ||||||||
| 4754 | auto *I = cast<Instruction>(V); | ||||||||
| 4755 | auto UsersAreMemAccesses = | ||||||||
| 4756 | llvm::all_of(I->users(), [&](User *U) -> bool { | ||||||||
| 4757 | return isVectorizedMemAccessUse(cast<Instruction>(U), V); | ||||||||
| 4758 | }); | ||||||||
| 4759 | if (UsersAreMemAccesses) | ||||||||
| 4760 | addToWorklistIfAllowed(I); | ||||||||
| 4761 | } | ||||||||
| 4762 | |||||||||
| 4763 | // Expand Worklist in topological order: whenever a new instruction | ||||||||
| 4764 | // is added , its users should be already inside Worklist. It ensures | ||||||||
| 4765 | // a uniform instruction will only be used by uniform instructions. | ||||||||
| 4766 | unsigned idx = 0; | ||||||||
| 4767 | while (idx != Worklist.size()) { | ||||||||
| 4768 | Instruction *I = Worklist[idx++]; | ||||||||
| 4769 | |||||||||
| 4770 | for (auto *OV : I->operand_values()) { | ||||||||
| 4771 | // isOutOfScope operands cannot be uniform instructions. | ||||||||
| 4772 | if (isOutOfScope(OV)) | ||||||||
| 4773 | continue; | ||||||||
| 4774 | // First order recurrence Phi's should typically be considered | ||||||||
| 4775 | // non-uniform. | ||||||||
| 4776 | auto *OP = dyn_cast<PHINode>(OV); | ||||||||
| 4777 | if (OP && Legal->isFixedOrderRecurrence(OP)) | ||||||||
| 4778 | continue; | ||||||||
| 4779 | // If all the users of the operand are uniform, then add the | ||||||||
| 4780 | // operand into the uniform worklist. | ||||||||
| 4781 | auto *OI = cast<Instruction>(OV); | ||||||||
| 4782 | if (llvm::all_of(OI->users(), [&](User *U) -> bool { | ||||||||
| 4783 | auto *J = cast<Instruction>(U); | ||||||||
| 4784 | return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); | ||||||||
| 4785 | })) | ||||||||
| 4786 | addToWorklistIfAllowed(OI); | ||||||||
| 4787 | } | ||||||||
| 4788 | } | ||||||||
| 4789 | |||||||||
| 4790 | // For an instruction to be added into Worklist above, all its users inside | ||||||||
| 4791 | // the loop should also be in Worklist. However, this condition cannot be | ||||||||
| 4792 | // true for phi nodes that form a cyclic dependence. We must process phi | ||||||||
| 4793 | // nodes separately. An induction variable will remain uniform if all users | ||||||||
| 4794 | // of the induction variable and induction variable update remain uniform. | ||||||||
| 4795 | // The code below handles both pointer and non-pointer induction variables. | ||||||||
| 4796 | for (const auto &Induction : Legal->getInductionVars()) { | ||||||||
| 4797 | auto *Ind = Induction.first; | ||||||||
| 4798 | auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); | ||||||||
| 4799 | |||||||||
| 4800 | // Determine if all users of the induction variable are uniform after | ||||||||
| 4801 | // vectorization. | ||||||||
| 4802 | auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { | ||||||||
| 4803 | auto *I = cast<Instruction>(U); | ||||||||
| 4804 | return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || | ||||||||
| 4805 | isVectorizedMemAccessUse(I, Ind); | ||||||||
| 4806 | }); | ||||||||
| 4807 | if (!UniformInd) | ||||||||
| 4808 | continue; | ||||||||
| 4809 | |||||||||
| 4810 | // Determine if all users of the induction variable update instruction are | ||||||||
| 4811 | // uniform after vectorization. | ||||||||
| 4812 | auto UniformIndUpdate = | ||||||||
| 4813 | llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { | ||||||||
| 4814 | auto *I = cast<Instruction>(U); | ||||||||
| 4815 | return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || | ||||||||
| 4816 | isVectorizedMemAccessUse(I, IndUpdate); | ||||||||
| 4817 | }); | ||||||||
| 4818 | if (!UniformIndUpdate) | ||||||||
| 4819 | continue; | ||||||||
| 4820 | |||||||||
| 4821 | // The induction variable and its update instruction will remain uniform. | ||||||||
| 4822 | addToWorklistIfAllowed(Ind); | ||||||||
| 4823 | addToWorklistIfAllowed(IndUpdate); | ||||||||
| 4824 | } | ||||||||
| 4825 | |||||||||
| 4826 | Uniforms[VF].insert(Worklist.begin(), Worklist.end()); | ||||||||
| 4827 | } | ||||||||
| 4828 | |||||||||
| 4829 | bool LoopVectorizationCostModel::runtimeChecksRequired() { | ||||||||
| 4830 | LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Performing code size checks.\n" ; } } while (false); | ||||||||
| 4831 | |||||||||
| 4832 | if (Legal->getRuntimePointerChecking()->Need) { | ||||||||
| 4833 | reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", | ||||||||
| 4834 | "runtime pointer checks needed. Enable vectorization of this " | ||||||||
| 4835 | "loop with '#pragma clang loop vectorize(enable)' when " | ||||||||
| 4836 | "compiling with -Os/-Oz", | ||||||||
| 4837 | "CantVersionLoopWithOptForSize", ORE, TheLoop); | ||||||||
| 4838 | return true; | ||||||||
| 4839 | } | ||||||||
| 4840 | |||||||||
| 4841 | if (!PSE.getPredicate().isAlwaysTrue()) { | ||||||||
| 4842 | reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", | ||||||||
| 4843 | "runtime SCEV checks needed. Enable vectorization of this " | ||||||||
| 4844 | "loop with '#pragma clang loop vectorize(enable)' when " | ||||||||
| 4845 | "compiling with -Os/-Oz", | ||||||||
| 4846 | "CantVersionLoopWithOptForSize", ORE, TheLoop); | ||||||||
| 4847 | return true; | ||||||||
| 4848 | } | ||||||||
| 4849 | |||||||||
| 4850 | // FIXME: Avoid specializing for stride==1 instead of bailing out. | ||||||||
| 4851 | if (!Legal->getLAI()->getSymbolicStrides().empty()) { | ||||||||
| 4852 | reportVectorizationFailure("Runtime stride check for small trip count", | ||||||||
| 4853 | "runtime stride == 1 checks needed. Enable vectorization of " | ||||||||
| 4854 | "this loop without such check by compiling with -Os/-Oz", | ||||||||
| 4855 | "CantVersionLoopWithOptForSize", ORE, TheLoop); | ||||||||
| 4856 | return true; | ||||||||
| 4857 | } | ||||||||
| 4858 | |||||||||
| 4859 | return false; | ||||||||
| 4860 | } | ||||||||
| 4861 | |||||||||
| 4862 | ElementCount | ||||||||
| 4863 | LoopVectorizationCostModel::getMaxLegalScalableVF(unsigned MaxSafeElements) { | ||||||||
| 4864 | if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) | ||||||||
| 4865 | return ElementCount::getScalable(0); | ||||||||
| 4866 | |||||||||
| 4867 | if (Hints->isScalableVectorizationDisabled()) { | ||||||||
| 4868 | reportVectorizationInfo("Scalable vectorization is explicitly disabled", | ||||||||
| 4869 | "ScalableVectorizationDisabled", ORE, TheLoop); | ||||||||
| 4870 | return ElementCount::getScalable(0); | ||||||||
| 4871 | } | ||||||||
| 4872 | |||||||||
| 4873 | LLVM_DEBUG(dbgs() << "LV: Scalable vectorization is available\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Scalable vectorization is available\n" ; } } while (false); | ||||||||
| 4874 | |||||||||
| 4875 | auto MaxScalableVF = ElementCount::getScalable( | ||||||||
| 4876 | std::numeric_limits<ElementCount::ScalarTy>::max()); | ||||||||
| 4877 | |||||||||
| 4878 | // Test that the loop-vectorizer can legalize all operations for this MaxVF. | ||||||||
| 4879 | // FIXME: While for scalable vectors this is currently sufficient, this should | ||||||||
| 4880 | // be replaced by a more detailed mechanism that filters out specific VFs, | ||||||||
| 4881 | // instead of invalidating vectorization for a whole set of VFs based on the | ||||||||
| 4882 | // MaxVF. | ||||||||
| 4883 | |||||||||
| 4884 | // Disable scalable vectorization if the loop contains unsupported reductions. | ||||||||
| 4885 | if (!canVectorizeReductions(MaxScalableVF)) { | ||||||||
| 4886 | reportVectorizationInfo( | ||||||||
| 4887 | "Scalable vectorization not supported for the reduction " | ||||||||
| 4888 | "operations found in this loop.", | ||||||||
| 4889 | "ScalableVFUnfeasible", ORE, TheLoop); | ||||||||
| 4890 | return ElementCount::getScalable(0); | ||||||||
| 4891 | } | ||||||||
| 4892 | |||||||||
| 4893 | // Disable scalable vectorization if the loop contains any instructions | ||||||||
| 4894 | // with element types not supported for scalable vectors. | ||||||||
| 4895 | if (any_of(ElementTypesInLoop, [&](Type *Ty) { | ||||||||
| 4896 | return !Ty->isVoidTy() && | ||||||||
| 4897 | !this->TTI.isElementTypeLegalForScalableVector(Ty); | ||||||||
| 4898 | })) { | ||||||||
| 4899 | reportVectorizationInfo("Scalable vectorization is not supported " | ||||||||
| 4900 | "for all element types found in this loop.", | ||||||||
| 4901 | "ScalableVFUnfeasible", ORE, TheLoop); | ||||||||
| 4902 | return ElementCount::getScalable(0); | ||||||||
| 4903 | } | ||||||||
| 4904 | |||||||||
| 4905 | if (Legal->isSafeForAnyVectorWidth()) | ||||||||
| 4906 | return MaxScalableVF; | ||||||||
| 4907 | |||||||||
| 4908 | // Limit MaxScalableVF by the maximum safe dependence distance. | ||||||||
| 4909 | std::optional<unsigned> MaxVScale = TTI.getMaxVScale(); | ||||||||
| 4910 | if (!MaxVScale && TheFunction->hasFnAttribute(Attribute::VScaleRange)) | ||||||||
| 4911 | MaxVScale = | ||||||||
| 4912 | TheFunction->getFnAttribute(Attribute::VScaleRange).getVScaleRangeMax(); | ||||||||
| 4913 | MaxScalableVF = | ||||||||
| 4914 | ElementCount::getScalable(MaxVScale ? (MaxSafeElements / *MaxVScale) : 0); | ||||||||
| 4915 | if (!MaxScalableVF) | ||||||||
| 4916 | reportVectorizationInfo( | ||||||||
| 4917 | "Max legal vector width too small, scalable vectorization " | ||||||||
| 4918 | "unfeasible.", | ||||||||
| 4919 | "ScalableVFUnfeasible", ORE, TheLoop); | ||||||||
| 4920 | |||||||||
| 4921 | return MaxScalableVF; | ||||||||
| 4922 | } | ||||||||
| 4923 | |||||||||
| 4924 | FixedScalableVFPair LoopVectorizationCostModel::computeFeasibleMaxVF( | ||||||||
| 4925 | unsigned ConstTripCount, ElementCount UserVF, bool FoldTailByMasking) { | ||||||||
| 4926 | MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); | ||||||||
| 4927 | unsigned SmallestType, WidestType; | ||||||||
| 4928 | std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); | ||||||||
| 4929 | |||||||||
| 4930 | // Get the maximum safe dependence distance in bits computed by LAA. | ||||||||
| 4931 | // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from | ||||||||
| 4932 | // the memory accesses that is most restrictive (involved in the smallest | ||||||||
| 4933 | // dependence distance). | ||||||||
| 4934 | unsigned MaxSafeElements = | ||||||||
| 4935 | PowerOf2Floor(Legal->getMaxSafeVectorWidthInBits() / WidestType); | ||||||||
| 4936 | |||||||||
| 4937 | auto MaxSafeFixedVF = ElementCount::getFixed(MaxSafeElements); | ||||||||
| 4938 | auto MaxSafeScalableVF = getMaxLegalScalableVF(MaxSafeElements); | ||||||||
| 4939 | |||||||||
| 4940 | LLVM_DEBUG(dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF << ".\n"; } } while (false) | ||||||||
| 4941 | << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The max safe fixed VF is: " << MaxSafeFixedVF << ".\n"; } } while (false); | ||||||||
| 4942 | LLVM_DEBUG(dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF << ".\n"; } } while (false) | ||||||||
| 4943 | << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The max safe scalable VF is: " << MaxSafeScalableVF << ".\n"; } } while (false); | ||||||||
| 4944 | |||||||||
| 4945 | // First analyze the UserVF, fall back if the UserVF should be ignored. | ||||||||
| 4946 | if (UserVF) { | ||||||||
| 4947 | auto MaxSafeUserVF = | ||||||||
| 4948 | UserVF.isScalable() ? MaxSafeScalableVF : MaxSafeFixedVF; | ||||||||
| 4949 | |||||||||
| 4950 | if (ElementCount::isKnownLE(UserVF, MaxSafeUserVF)) { | ||||||||
| 4951 | // If `VF=vscale x N` is safe, then so is `VF=N` | ||||||||
| 4952 | if (UserVF.isScalable()) | ||||||||
| 4953 | return FixedScalableVFPair( | ||||||||
| 4954 | ElementCount::getFixed(UserVF.getKnownMinValue()), UserVF); | ||||||||
| 4955 | else | ||||||||
| 4956 | return UserVF; | ||||||||
| 4957 | } | ||||||||
| 4958 | |||||||||
| 4959 | assert(ElementCount::isKnownGT(UserVF, MaxSafeUserVF))(static_cast <bool> (ElementCount::isKnownGT(UserVF, MaxSafeUserVF )) ? void (0) : __assert_fail ("ElementCount::isKnownGT(UserVF, MaxSafeUserVF)" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 4959, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 4960 | |||||||||
| 4961 | // Only clamp if the UserVF is not scalable. If the UserVF is scalable, it | ||||||||
| 4962 | // is better to ignore the hint and let the compiler choose a suitable VF. | ||||||||
| 4963 | if (!UserVF.isScalable()) { | ||||||||
| 4964 | LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: User VF=" << UserVF << " is unsafe, clamping to max safe VF=" << MaxSafeFixedVF << ".\n"; } } while (false) | ||||||||
| 4965 | << " is unsafe, clamping to max safe VF="do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: User VF=" << UserVF << " is unsafe, clamping to max safe VF=" << MaxSafeFixedVF << ".\n"; } } while (false) | ||||||||
| 4966 | << MaxSafeFixedVF << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: User VF=" << UserVF << " is unsafe, clamping to max safe VF=" << MaxSafeFixedVF << ".\n"; } } while (false); | ||||||||
| 4967 | ORE->emit([&]() { | ||||||||
| 4968 | return OptimizationRemarkAnalysis(DEBUG_TYPE"loop-vectorize", "VectorizationFactor", | ||||||||
| 4969 | TheLoop->getStartLoc(), | ||||||||
| 4970 | TheLoop->getHeader()) | ||||||||
| 4971 | << "User-specified vectorization factor " | ||||||||
| 4972 | << ore::NV("UserVectorizationFactor", UserVF) | ||||||||
| 4973 | << " is unsafe, clamping to maximum safe vectorization factor " | ||||||||
| 4974 | << ore::NV("VectorizationFactor", MaxSafeFixedVF); | ||||||||
| 4975 | }); | ||||||||
| 4976 | return MaxSafeFixedVF; | ||||||||
| 4977 | } | ||||||||
| 4978 | |||||||||
| 4979 | if (!TTI.supportsScalableVectors() && !ForceTargetSupportsScalableVectors) { | ||||||||
| 4980 | LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: User VF=" << UserVF << " is ignored because scalable vectors are not " "available.\n"; } } while (false) | ||||||||
| 4981 | << " is ignored because scalable vectors are not "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: User VF=" << UserVF << " is ignored because scalable vectors are not " "available.\n"; } } while (false) | ||||||||
| 4982 | "available.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: User VF=" << UserVF << " is ignored because scalable vectors are not " "available.\n"; } } while (false); | ||||||||
| 4983 | ORE->emit([&]() { | ||||||||
| 4984 | return OptimizationRemarkAnalysis(DEBUG_TYPE"loop-vectorize", "VectorizationFactor", | ||||||||
| 4985 | TheLoop->getStartLoc(), | ||||||||
| 4986 | TheLoop->getHeader()) | ||||||||
| 4987 | << "User-specified vectorization factor " | ||||||||
| 4988 | << ore::NV("UserVectorizationFactor", UserVF) | ||||||||
| 4989 | << " is ignored because the target does not support scalable " | ||||||||
| 4990 | "vectors. The compiler will pick a more suitable value."; | ||||||||
| 4991 | }); | ||||||||
| 4992 | } else { | ||||||||
| 4993 | LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: User VF=" << UserVF << " is unsafe. Ignoring scalable UserVF.\n"; } } while (false) | ||||||||
| 4994 | << " is unsafe. Ignoring scalable UserVF.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: User VF=" << UserVF << " is unsafe. Ignoring scalable UserVF.\n"; } } while (false); | ||||||||
| 4995 | ORE->emit([&]() { | ||||||||
| 4996 | return OptimizationRemarkAnalysis(DEBUG_TYPE"loop-vectorize", "VectorizationFactor", | ||||||||
| 4997 | TheLoop->getStartLoc(), | ||||||||
| 4998 | TheLoop->getHeader()) | ||||||||
| 4999 | << "User-specified vectorization factor " | ||||||||
| 5000 | << ore::NV("UserVectorizationFactor", UserVF) | ||||||||
| 5001 | << " is unsafe. Ignoring the hint to let the compiler pick a " | ||||||||
| 5002 | "more suitable value."; | ||||||||
| 5003 | }); | ||||||||
| 5004 | } | ||||||||
| 5005 | } | ||||||||
| 5006 | |||||||||
| 5007 | LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestTypedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " << WidestType << " bits.\n"; } } while (false) | ||||||||
| 5008 | << " / " << WidestType << " bits.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The Smallest and Widest types: " << SmallestType << " / " << WidestType << " bits.\n"; } } while (false); | ||||||||
| 5009 | |||||||||
| 5010 | FixedScalableVFPair Result(ElementCount::getFixed(1), | ||||||||
| 5011 | ElementCount::getScalable(0)); | ||||||||
| 5012 | if (auto MaxVF = | ||||||||
| 5013 | getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, | ||||||||
| 5014 | MaxSafeFixedVF, FoldTailByMasking)) | ||||||||
| 5015 | Result.FixedVF = MaxVF; | ||||||||
| 5016 | |||||||||
| 5017 | if (auto MaxVF = | ||||||||
| 5018 | getMaximizedVFForTarget(ConstTripCount, SmallestType, WidestType, | ||||||||
| 5019 | MaxSafeScalableVF, FoldTailByMasking)) | ||||||||
| 5020 | if (MaxVF.isScalable()) { | ||||||||
| 5021 | Result.ScalableVF = MaxVF; | ||||||||
| 5022 | LLVM_DEBUG(dbgs() << "LV: Found feasible scalable VF = " << MaxVFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found feasible scalable VF = " << MaxVF << "\n"; } } while (false) | ||||||||
| 5023 | << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found feasible scalable VF = " << MaxVF << "\n"; } } while (false); | ||||||||
| 5024 | } | ||||||||
| 5025 | |||||||||
| 5026 | return Result; | ||||||||
| 5027 | } | ||||||||
| 5028 | |||||||||
| 5029 | FixedScalableVFPair | ||||||||
| 5030 | LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { | ||||||||
| 5031 | if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { | ||||||||
| 5032 | // TODO: It may by useful to do since it's still likely to be dynamically | ||||||||
| 5033 | // uniform if the target can skip. | ||||||||
| 5034 | reportVectorizationFailure( | ||||||||
| 5035 | "Not inserting runtime ptr check for divergent target", | ||||||||
| 5036 | "runtime pointer checks needed. Not enabled for divergent target", | ||||||||
| 5037 | "CantVersionLoopWithDivergentTarget", ORE, TheLoop); | ||||||||
| 5038 | return FixedScalableVFPair::getNone(); | ||||||||
| 5039 | } | ||||||||
| 5040 | |||||||||
| 5041 | unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); | ||||||||
| 5042 | LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found trip count: " << TC << '\n'; } } while (false); | ||||||||
| 5043 | if (TC == 1) { | ||||||||
| 5044 | reportVectorizationFailure("Single iteration (non) loop", | ||||||||
| 5045 | "loop trip count is one, irrelevant for vectorization", | ||||||||
| 5046 | "SingleIterationLoop", ORE, TheLoop); | ||||||||
| 5047 | return FixedScalableVFPair::getNone(); | ||||||||
| 5048 | } | ||||||||
| 5049 | |||||||||
| 5050 | switch (ScalarEpilogueStatus) { | ||||||||
| 5051 | case CM_ScalarEpilogueAllowed: | ||||||||
| 5052 | return computeFeasibleMaxVF(TC, UserVF, false); | ||||||||
| 5053 | case CM_ScalarEpilogueNotAllowedUsePredicate: | ||||||||
| 5054 | [[fallthrough]]; | ||||||||
| 5055 | case CM_ScalarEpilogueNotNeededUsePredicate: | ||||||||
| 5056 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: vector predicate hint/switch found.\n" << "LV: Not allowing scalar epilogue, creating predicated " << "vector loop.\n"; } } while (false) | ||||||||
| 5057 | dbgs() << "LV: vector predicate hint/switch found.\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: vector predicate hint/switch found.\n" << "LV: Not allowing scalar epilogue, creating predicated " << "vector loop.\n"; } } while (false) | ||||||||
| 5058 | << "LV: Not allowing scalar epilogue, creating predicated "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: vector predicate hint/switch found.\n" << "LV: Not allowing scalar epilogue, creating predicated " << "vector loop.\n"; } } while (false) | ||||||||
| 5059 | << "vector loop.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: vector predicate hint/switch found.\n" << "LV: Not allowing scalar epilogue, creating predicated " << "vector loop.\n"; } } while (false); | ||||||||
| 5060 | break; | ||||||||
| 5061 | case CM_ScalarEpilogueNotAllowedLowTripLoop: | ||||||||
| 5062 | // fallthrough as a special case of OptForSize | ||||||||
| 5063 | case CM_ScalarEpilogueNotAllowedOptSize: | ||||||||
| 5064 | if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) | ||||||||
| 5065 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n" ; } } while (false) | ||||||||
| 5066 | dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n" ; } } while (false); | ||||||||
| 5067 | else | ||||||||
| 5068 | LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not allowing scalar epilogue due to low trip " << "count.\n"; } } while (false) | ||||||||
| 5069 | << "count.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not allowing scalar epilogue due to low trip " << "count.\n"; } } while (false); | ||||||||
| 5070 | |||||||||
| 5071 | // Bail if runtime checks are required, which are not good when optimising | ||||||||
| 5072 | // for size. | ||||||||
| 5073 | if (runtimeChecksRequired()) | ||||||||
| 5074 | return FixedScalableVFPair::getNone(); | ||||||||
| 5075 | |||||||||
| 5076 | break; | ||||||||
| 5077 | } | ||||||||
| 5078 | |||||||||
| 5079 | // The only loops we can vectorize without a scalar epilogue, are loops with | ||||||||
| 5080 | // a bottom-test and a single exiting block. We'd have to handle the fact | ||||||||
| 5081 | // that not every instruction executes on the last iteration. This will | ||||||||
| 5082 | // require a lane mask which varies through the vector loop body. (TODO) | ||||||||
| 5083 | if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { | ||||||||
| 5084 | // If there was a tail-folding hint/switch, but we can't fold the tail by | ||||||||
| 5085 | // masking, fallback to a vectorization with a scalar epilogue. | ||||||||
| 5086 | if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { | ||||||||
| 5087 | LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Cannot fold tail by masking: vectorize with a " "scalar epilogue instead.\n"; } } while (false) | ||||||||
| 5088 | "scalar epilogue instead.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Cannot fold tail by masking: vectorize with a " "scalar epilogue instead.\n"; } } while (false); | ||||||||
| 5089 | ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; | ||||||||
| 5090 | return computeFeasibleMaxVF(TC, UserVF, false); | ||||||||
| 5091 | } | ||||||||
| 5092 | return FixedScalableVFPair::getNone(); | ||||||||
| 5093 | } | ||||||||
| 5094 | |||||||||
| 5095 | // Now try the tail folding | ||||||||
| 5096 | |||||||||
| 5097 | // Invalidate interleave groups that require an epilogue if we can't mask | ||||||||
| 5098 | // the interleave-group. | ||||||||
| 5099 | if (!useMaskedInterleavedAccesses(TTI)) { | ||||||||
| 5100 | assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() &&(static_cast <bool> (WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && "No decisions should have been taken at this point" ) ? void (0) : __assert_fail ("WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && \"No decisions should have been taken at this point\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5101, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 5101 | "No decisions should have been taken at this point")(static_cast <bool> (WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && "No decisions should have been taken at this point" ) ? void (0) : __assert_fail ("WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && \"No decisions should have been taken at this point\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5101, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 5102 | // Note: There is no need to invalidate any cost modeling decisions here, as | ||||||||
| 5103 | // non where taken so far. | ||||||||
| 5104 | InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); | ||||||||
| 5105 | } | ||||||||
| 5106 | |||||||||
| 5107 | FixedScalableVFPair MaxFactors = computeFeasibleMaxVF(TC, UserVF, true); | ||||||||
| 5108 | // Avoid tail folding if the trip count is known to be a multiple of any VF | ||||||||
| 5109 | // we chose. | ||||||||
| 5110 | // FIXME: The condition below pessimises the case for fixed-width vectors, | ||||||||
| 5111 | // when scalable VFs are also candidates for vectorization. | ||||||||
| 5112 | if (MaxFactors.FixedVF.isVector() && !MaxFactors.ScalableVF) { | ||||||||
| 5113 | ElementCount MaxFixedVF = MaxFactors.FixedVF; | ||||||||
| 5114 | assert((UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) &&(static_cast <bool> ((UserVF.isNonZero() || isPowerOf2_32 (MaxFixedVF.getFixedValue())) && "MaxFixedVF must be a power of 2" ) ? void (0) : __assert_fail ("(UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && \"MaxFixedVF must be a power of 2\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5115, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 5115 | "MaxFixedVF must be a power of 2")(static_cast <bool> ((UserVF.isNonZero() || isPowerOf2_32 (MaxFixedVF.getFixedValue())) && "MaxFixedVF must be a power of 2" ) ? void (0) : __assert_fail ("(UserVF.isNonZero() || isPowerOf2_32(MaxFixedVF.getFixedValue())) && \"MaxFixedVF must be a power of 2\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5115, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 5116 | unsigned MaxVFtimesIC = UserIC ? MaxFixedVF.getFixedValue() * UserIC | ||||||||
| 5117 | : MaxFixedVF.getFixedValue(); | ||||||||
| 5118 | ScalarEvolution *SE = PSE.getSE(); | ||||||||
| 5119 | const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); | ||||||||
| 5120 | const SCEV *ExitCount = SE->getAddExpr( | ||||||||
| 5121 | BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); | ||||||||
| 5122 | const SCEV *Rem = SE->getURemExpr( | ||||||||
| 5123 | SE->applyLoopGuards(ExitCount, TheLoop), | ||||||||
| 5124 | SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); | ||||||||
| 5125 | if (Rem->isZero()) { | ||||||||
| 5126 | // Accept MaxFixedVF if we do not have a tail. | ||||||||
| 5127 | LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: No tail will remain for any chosen VF.\n" ; } } while (false); | ||||||||
| 5128 | return MaxFactors; | ||||||||
| 5129 | } | ||||||||
| 5130 | } | ||||||||
| 5131 | |||||||||
| 5132 | // If we don't know the precise trip count, or if the trip count that we | ||||||||
| 5133 | // found modulo the vectorization factor is not zero, try to fold the tail | ||||||||
| 5134 | // by masking. | ||||||||
| 5135 | // FIXME: look for a smaller MaxVF that does divide TC rather than masking. | ||||||||
| 5136 | if (Legal->prepareToFoldTailByMasking()) { | ||||||||
| 5137 | FoldTailByMasking = true; | ||||||||
| 5138 | return MaxFactors; | ||||||||
| 5139 | } | ||||||||
| 5140 | |||||||||
| 5141 | // If there was a tail-folding hint/switch, but we can't fold the tail by | ||||||||
| 5142 | // masking, fallback to a vectorization with a scalar epilogue. | ||||||||
| 5143 | if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { | ||||||||
| 5144 | LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Cannot fold tail by masking: vectorize with a " "scalar epilogue instead.\n"; } } while (false) | ||||||||
| 5145 | "scalar epilogue instead.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Cannot fold tail by masking: vectorize with a " "scalar epilogue instead.\n"; } } while (false); | ||||||||
| 5146 | ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; | ||||||||
| 5147 | return MaxFactors; | ||||||||
| 5148 | } | ||||||||
| 5149 | |||||||||
| 5150 | if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { | ||||||||
| 5151 | LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Can't fold tail by masking: don't vectorize\n" ; } } while (false); | ||||||||
| 5152 | return FixedScalableVFPair::getNone(); | ||||||||
| 5153 | } | ||||||||
| 5154 | |||||||||
| 5155 | if (TC == 0) { | ||||||||
| 5156 | reportVectorizationFailure( | ||||||||
| 5157 | "Unable to calculate the loop count due to complex control flow", | ||||||||
| 5158 | "unable to calculate the loop count due to complex control flow", | ||||||||
| 5159 | "UnknownLoopCountComplexCFG", ORE, TheLoop); | ||||||||
| 5160 | return FixedScalableVFPair::getNone(); | ||||||||
| 5161 | } | ||||||||
| 5162 | |||||||||
| 5163 | reportVectorizationFailure( | ||||||||
| 5164 | "Cannot optimize for size and vectorize at the same time.", | ||||||||
| 5165 | "cannot optimize for size and vectorize at the same time. " | ||||||||
| 5166 | "Enable vectorization of this loop with '#pragma clang loop " | ||||||||
| 5167 | "vectorize(enable)' when compiling with -Os/-Oz", | ||||||||
| 5168 | "NoTailLoopWithOptForSize", ORE, TheLoop); | ||||||||
| 5169 | return FixedScalableVFPair::getNone(); | ||||||||
| 5170 | } | ||||||||
| 5171 | |||||||||
| 5172 | ElementCount LoopVectorizationCostModel::getMaximizedVFForTarget( | ||||||||
| 5173 | unsigned ConstTripCount, unsigned SmallestType, unsigned WidestType, | ||||||||
| 5174 | ElementCount MaxSafeVF, bool FoldTailByMasking) { | ||||||||
| 5175 | bool ComputeScalableMaxVF = MaxSafeVF.isScalable(); | ||||||||
| 5176 | const TypeSize WidestRegister = TTI.getRegisterBitWidth( | ||||||||
| 5177 | ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector | ||||||||
| 5178 | : TargetTransformInfo::RGK_FixedWidthVector); | ||||||||
| 5179 | |||||||||
| 5180 | // Convenience function to return the minimum of two ElementCounts. | ||||||||
| 5181 | auto MinVF = [](const ElementCount &LHS, const ElementCount &RHS) { | ||||||||
| 5182 | assert((LHS.isScalable() == RHS.isScalable()) &&(static_cast <bool> ((LHS.isScalable() == RHS.isScalable ()) && "Scalable flags must match") ? void (0) : __assert_fail ("(LHS.isScalable() == RHS.isScalable()) && \"Scalable flags must match\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5183, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 5183 | "Scalable flags must match")(static_cast <bool> ((LHS.isScalable() == RHS.isScalable ()) && "Scalable flags must match") ? void (0) : __assert_fail ("(LHS.isScalable() == RHS.isScalable()) && \"Scalable flags must match\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5183, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 5184 | return ElementCount::isKnownLT(LHS, RHS) ? LHS : RHS; | ||||||||
| 5185 | }; | ||||||||
| 5186 | |||||||||
| 5187 | // Ensure MaxVF is a power of 2; the dependence distance bound may not be. | ||||||||
| 5188 | // Note that both WidestRegister and WidestType may not be a powers of 2. | ||||||||
| 5189 | auto MaxVectorElementCount = ElementCount::get( | ||||||||
| 5190 | PowerOf2Floor(WidestRegister.getKnownMinValue() / WidestType), | ||||||||
| 5191 | ComputeScalableMaxVF); | ||||||||
| 5192 | MaxVectorElementCount = MinVF(MaxVectorElementCount, MaxSafeVF); | ||||||||
| 5193 | LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The Widest register safe to use is: " << (MaxVectorElementCount * WidestType) << " bits.\n" ; } } while (false) | ||||||||
| 5194 | << (MaxVectorElementCount * WidestType) << " bits.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The Widest register safe to use is: " << (MaxVectorElementCount * WidestType) << " bits.\n" ; } } while (false); | ||||||||
| 5195 | |||||||||
| 5196 | if (!MaxVectorElementCount) { | ||||||||
| 5197 | LLVM_DEBUG(dbgs() << "LV: The target has no "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The target has no " << (ComputeScalableMaxVF ? "scalable" : "fixed") << " vector registers.\n"; } } while (false) | ||||||||
| 5198 | << (ComputeScalableMaxVF ? "scalable" : "fixed")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The target has no " << (ComputeScalableMaxVF ? "scalable" : "fixed") << " vector registers.\n"; } } while (false) | ||||||||
| 5199 | << " vector registers.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The target has no " << (ComputeScalableMaxVF ? "scalable" : "fixed") << " vector registers.\n"; } } while (false); | ||||||||
| 5200 | return ElementCount::getFixed(1); | ||||||||
| 5201 | } | ||||||||
| 5202 | |||||||||
| 5203 | unsigned WidestRegisterMinEC = MaxVectorElementCount.getKnownMinValue(); | ||||||||
| 5204 | if (MaxVectorElementCount.isScalable() && | ||||||||
| 5205 | TheFunction->hasFnAttribute(Attribute::VScaleRange)) { | ||||||||
| 5206 | auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); | ||||||||
| 5207 | auto Min = Attr.getVScaleRangeMin(); | ||||||||
| 5208 | WidestRegisterMinEC *= Min; | ||||||||
| 5209 | } | ||||||||
| 5210 | if (ConstTripCount && ConstTripCount <= WidestRegisterMinEC && | ||||||||
| 5211 | (!FoldTailByMasking || isPowerOf2_32(ConstTripCount))) { | ||||||||
| 5212 | // If loop trip count (TC) is known at compile time there is no point in | ||||||||
| 5213 | // choosing VF greater than TC (as done in the loop below). Select maximum | ||||||||
| 5214 | // power of two which doesn't exceed TC. | ||||||||
| 5215 | // If MaxVectorElementCount is scalable, we only fall back on a fixed VF | ||||||||
| 5216 | // when the TC is less than or equal to the known number of lanes. | ||||||||
| 5217 | auto ClampedConstTripCount = PowerOf2Floor(ConstTripCount); | ||||||||
| 5218 | LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to maximum power of two not "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Clamping the MaxVF to maximum power of two not " "exceeding the constant trip count: " << ClampedConstTripCount << "\n"; } } while (false) | ||||||||
| 5219 | "exceeding the constant trip count: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Clamping the MaxVF to maximum power of two not " "exceeding the constant trip count: " << ClampedConstTripCount << "\n"; } } while (false) | ||||||||
| 5220 | << ClampedConstTripCount << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Clamping the MaxVF to maximum power of two not " "exceeding the constant trip count: " << ClampedConstTripCount << "\n"; } } while (false); | ||||||||
| 5221 | return ElementCount::getFixed(ClampedConstTripCount); | ||||||||
| 5222 | } | ||||||||
| 5223 | |||||||||
| 5224 | TargetTransformInfo::RegisterKind RegKind = | ||||||||
| 5225 | ComputeScalableMaxVF ? TargetTransformInfo::RGK_ScalableVector | ||||||||
| 5226 | : TargetTransformInfo::RGK_FixedWidthVector; | ||||||||
| 5227 | ElementCount MaxVF = MaxVectorElementCount; | ||||||||
| 5228 | if (MaximizeBandwidth || (MaximizeBandwidth.getNumOccurrences() == 0 && | ||||||||
| 5229 | TTI.shouldMaximizeVectorBandwidth(RegKind))) { | ||||||||
| 5230 | auto MaxVectorElementCountMaxBW = ElementCount::get( | ||||||||
| 5231 | PowerOf2Floor(WidestRegister.getKnownMinValue() / SmallestType), | ||||||||
| 5232 | ComputeScalableMaxVF); | ||||||||
| 5233 | MaxVectorElementCountMaxBW = MinVF(MaxVectorElementCountMaxBW, MaxSafeVF); | ||||||||
| 5234 | |||||||||
| 5235 | // Collect all viable vectorization factors larger than the default MaxVF | ||||||||
| 5236 | // (i.e. MaxVectorElementCount). | ||||||||
| 5237 | SmallVector<ElementCount, 8> VFs; | ||||||||
| 5238 | for (ElementCount VS = MaxVectorElementCount * 2; | ||||||||
| 5239 | ElementCount::isKnownLE(VS, MaxVectorElementCountMaxBW); VS *= 2) | ||||||||
| 5240 | VFs.push_back(VS); | ||||||||
| 5241 | |||||||||
| 5242 | // For each VF calculate its register usage. | ||||||||
| 5243 | auto RUs = calculateRegisterUsage(VFs); | ||||||||
| 5244 | |||||||||
| 5245 | // Select the largest VF which doesn't require more registers than existing | ||||||||
| 5246 | // ones. | ||||||||
| 5247 | for (int i = RUs.size() - 1; i >= 0; --i) { | ||||||||
| 5248 | bool Selected = true; | ||||||||
| 5249 | for (auto &pair : RUs[i].MaxLocalUsers) { | ||||||||
| 5250 | unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); | ||||||||
| 5251 | if (pair.second > TargetNumRegisters) | ||||||||
| 5252 | Selected = false; | ||||||||
| 5253 | } | ||||||||
| 5254 | if (Selected) { | ||||||||
| 5255 | MaxVF = VFs[i]; | ||||||||
| 5256 | break; | ||||||||
| 5257 | } | ||||||||
| 5258 | } | ||||||||
| 5259 | if (ElementCount MinVF = | ||||||||
| 5260 | TTI.getMinimumVF(SmallestType, ComputeScalableMaxVF)) { | ||||||||
| 5261 | if (ElementCount::isKnownLT(MaxVF, MinVF)) { | ||||||||
| 5262 | LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF << ") with target's minimum: " << MinVF << '\n'; } } while (false) | ||||||||
| 5263 | << ") with target's minimum: " << MinVF << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF << ") with target's minimum: " << MinVF << '\n'; } } while (false); | ||||||||
| 5264 | MaxVF = MinVF; | ||||||||
| 5265 | } | ||||||||
| 5266 | } | ||||||||
| 5267 | |||||||||
| 5268 | // Invalidate any widening decisions we might have made, in case the loop | ||||||||
| 5269 | // requires prediction (decided later), but we have already made some | ||||||||
| 5270 | // load/store widening decisions. | ||||||||
| 5271 | invalidateCostModelingDecisions(); | ||||||||
| 5272 | } | ||||||||
| 5273 | return MaxVF; | ||||||||
| 5274 | } | ||||||||
| 5275 | |||||||||
| 5276 | std::optional<unsigned> LoopVectorizationCostModel::getVScaleForTuning() const { | ||||||||
| 5277 | if (TheFunction->hasFnAttribute(Attribute::VScaleRange)) { | ||||||||
| 5278 | auto Attr = TheFunction->getFnAttribute(Attribute::VScaleRange); | ||||||||
| 5279 | auto Min = Attr.getVScaleRangeMin(); | ||||||||
| 5280 | auto Max = Attr.getVScaleRangeMax(); | ||||||||
| 5281 | if (Max && Min == Max) | ||||||||
| 5282 | return Max; | ||||||||
| 5283 | } | ||||||||
| 5284 | |||||||||
| 5285 | return TTI.getVScaleForTuning(); | ||||||||
| 5286 | } | ||||||||
| 5287 | |||||||||
| 5288 | bool LoopVectorizationCostModel::isMoreProfitable( | ||||||||
| 5289 | const VectorizationFactor &A, const VectorizationFactor &B) const { | ||||||||
| 5290 | InstructionCost CostA = A.Cost; | ||||||||
| 5291 | InstructionCost CostB = B.Cost; | ||||||||
| 5292 | |||||||||
| 5293 | unsigned MaxTripCount = PSE.getSE()->getSmallConstantMaxTripCount(TheLoop); | ||||||||
| 5294 | |||||||||
| 5295 | if (!A.Width.isScalable() && !B.Width.isScalable() && FoldTailByMasking && | ||||||||
| 5296 | MaxTripCount) { | ||||||||
| 5297 | // If we are folding the tail and the trip count is a known (possibly small) | ||||||||
| 5298 | // constant, the trip count will be rounded up to an integer number of | ||||||||
| 5299 | // iterations. The total cost will be PerIterationCost*ceil(TripCount/VF), | ||||||||
| 5300 | // which we compare directly. When not folding the tail, the total cost will | ||||||||
| 5301 | // be PerIterationCost*floor(TC/VF) + Scalar remainder cost, and so is | ||||||||
| 5302 | // approximated with the per-lane cost below instead of using the tripcount | ||||||||
| 5303 | // as here. | ||||||||
| 5304 | auto RTCostA = CostA * divideCeil(MaxTripCount, A.Width.getFixedValue()); | ||||||||
| 5305 | auto RTCostB = CostB * divideCeil(MaxTripCount, B.Width.getFixedValue()); | ||||||||
| 5306 | return RTCostA < RTCostB; | ||||||||
| 5307 | } | ||||||||
| 5308 | |||||||||
| 5309 | // Improve estimate for the vector width if it is scalable. | ||||||||
| 5310 | unsigned EstimatedWidthA = A.Width.getKnownMinValue(); | ||||||||
| 5311 | unsigned EstimatedWidthB = B.Width.getKnownMinValue(); | ||||||||
| 5312 | if (std::optional<unsigned> VScale = getVScaleForTuning()) { | ||||||||
| 5313 | if (A.Width.isScalable()) | ||||||||
| 5314 | EstimatedWidthA *= *VScale; | ||||||||
| 5315 | if (B.Width.isScalable()) | ||||||||
| 5316 | EstimatedWidthB *= *VScale; | ||||||||
| 5317 | } | ||||||||
| 5318 | |||||||||
| 5319 | // Assume vscale may be larger than 1 (or the value being tuned for), | ||||||||
| 5320 | // so that scalable vectorization is slightly favorable over fixed-width | ||||||||
| 5321 | // vectorization. | ||||||||
| 5322 | if (A.Width.isScalable() && !B.Width.isScalable()) | ||||||||
| 5323 | return (CostA * B.Width.getFixedValue()) <= (CostB * EstimatedWidthA); | ||||||||
| 5324 | |||||||||
| 5325 | // To avoid the need for FP division: | ||||||||
| 5326 | // (CostA / A.Width) < (CostB / B.Width) | ||||||||
| 5327 | // <=> (CostA * B.Width) < (CostB * A.Width) | ||||||||
| 5328 | return (CostA * EstimatedWidthB) < (CostB * EstimatedWidthA); | ||||||||
| 5329 | } | ||||||||
| 5330 | |||||||||
| 5331 | VectorizationFactor LoopVectorizationCostModel::selectVectorizationFactor( | ||||||||
| 5332 | const ElementCountSet &VFCandidates) { | ||||||||
| 5333 | InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; | ||||||||
| 5334 | LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"; } } while (false); | ||||||||
| 5335 | assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop")(static_cast <bool> (ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop" ) ? void (0) : __assert_fail ("ExpectedCost.isValid() && \"Unexpected invalid cost for scalar loop\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5335, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 5336 | assert(VFCandidates.count(ElementCount::getFixed(1)) &&(static_cast <bool> (VFCandidates.count(ElementCount::getFixed (1)) && "Expected Scalar VF to be a candidate") ? void (0) : __assert_fail ("VFCandidates.count(ElementCount::getFixed(1)) && \"Expected Scalar VF to be a candidate\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5337, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 5337 | "Expected Scalar VF to be a candidate")(static_cast <bool> (VFCandidates.count(ElementCount::getFixed (1)) && "Expected Scalar VF to be a candidate") ? void (0) : __assert_fail ("VFCandidates.count(ElementCount::getFixed(1)) && \"Expected Scalar VF to be a candidate\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5337, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 5338 | |||||||||
| 5339 | const VectorizationFactor ScalarCost(ElementCount::getFixed(1), ExpectedCost, | ||||||||
| 5340 | ExpectedCost); | ||||||||
| 5341 | VectorizationFactor ChosenFactor = ScalarCost; | ||||||||
| 5342 | |||||||||
| 5343 | bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; | ||||||||
| 5344 | if (ForceVectorization && VFCandidates.size() > 1) { | ||||||||
| 5345 | // Ignore scalar width, because the user explicitly wants vectorization. | ||||||||
| 5346 | // Initialize cost to max so that VF = 2 is, at least, chosen during cost | ||||||||
| 5347 | // evaluation. | ||||||||
| 5348 | ChosenFactor.Cost = InstructionCost::getMax(); | ||||||||
| 5349 | } | ||||||||
| 5350 | |||||||||
| 5351 | SmallVector<InstructionVFPair> InvalidCosts; | ||||||||
| 5352 | for (const auto &i : VFCandidates) { | ||||||||
| 5353 | // The cost for scalar VF=1 is already calculated, so ignore it. | ||||||||
| 5354 | if (i.isScalar()) | ||||||||
| 5355 | continue; | ||||||||
| 5356 | |||||||||
| 5357 | VectorizationCostTy C = expectedCost(i, &InvalidCosts); | ||||||||
| 5358 | VectorizationFactor Candidate(i, C.first, ScalarCost.ScalarCost); | ||||||||
| 5359 | |||||||||
| 5360 | #ifndef NDEBUG | ||||||||
| 5361 | unsigned AssumedMinimumVscale = 1; | ||||||||
| 5362 | if (std::optional<unsigned> VScale = getVScaleForTuning()) | ||||||||
| 5363 | AssumedMinimumVscale = *VScale; | ||||||||
| 5364 | unsigned Width = | ||||||||
| 5365 | Candidate.Width.isScalable() | ||||||||
| 5366 | ? Candidate.Width.getKnownMinValue() * AssumedMinimumVscale | ||||||||
| 5367 | : Candidate.Width.getFixedValue(); | ||||||||
| 5368 | LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Vector loop of width " << i << " costs: " << (Candidate.Cost / Width ); } } while (false) | ||||||||
| 5369 | << " costs: " << (Candidate.Cost / Width))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Vector loop of width " << i << " costs: " << (Candidate.Cost / Width ); } } while (false); | ||||||||
| 5370 | if (i.isScalable()) | ||||||||
| 5371 | LLVM_DEBUG(dbgs() << " (assuming a minimum vscale of "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << " (assuming a minimum vscale of " << AssumedMinimumVscale << ")"; } } while (false ) | ||||||||
| 5372 | << AssumedMinimumVscale << ")")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << " (assuming a minimum vscale of " << AssumedMinimumVscale << ")"; } } while (false ); | ||||||||
| 5373 | LLVM_DEBUG(dbgs() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << ".\n"; } } while (false ); | ||||||||
| 5374 | #endif | ||||||||
| 5375 | |||||||||
| 5376 | if (!C.second && !ForceVectorization) { | ||||||||
| 5377 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not considering vector loop of width " << i << " because it will not generate any vector instructions.\n" ; } } while (false) | ||||||||
| 5378 | dbgs() << "LV: Not considering vector loop of width " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not considering vector loop of width " << i << " because it will not generate any vector instructions.\n" ; } } while (false) | ||||||||
| 5379 | << " because it will not generate any vector instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not considering vector loop of width " << i << " because it will not generate any vector instructions.\n" ; } } while (false); | ||||||||
| 5380 | continue; | ||||||||
| 5381 | } | ||||||||
| 5382 | |||||||||
| 5383 | // If profitable add it to ProfitableVF list. | ||||||||
| 5384 | if (isMoreProfitable(Candidate, ScalarCost)) | ||||||||
| 5385 | ProfitableVFs.push_back(Candidate); | ||||||||
| 5386 | |||||||||
| 5387 | if (isMoreProfitable(Candidate, ChosenFactor)) | ||||||||
| 5388 | ChosenFactor = Candidate; | ||||||||
| 5389 | } | ||||||||
| 5390 | |||||||||
| 5391 | // Emit a report of VFs with invalid costs in the loop. | ||||||||
| 5392 | if (!InvalidCosts.empty()) { | ||||||||
| 5393 | // Group the remarks per instruction, keeping the instruction order from | ||||||||
| 5394 | // InvalidCosts. | ||||||||
| 5395 | std::map<Instruction *, unsigned> Numbering; | ||||||||
| 5396 | unsigned I = 0; | ||||||||
| 5397 | for (auto &Pair : InvalidCosts) | ||||||||
| 5398 | if (!Numbering.count(Pair.first)) | ||||||||
| 5399 | Numbering[Pair.first] = I++; | ||||||||
| 5400 | |||||||||
| 5401 | // Sort the list, first on instruction(number) then on VF. | ||||||||
| 5402 | llvm::sort(InvalidCosts, | ||||||||
| 5403 | [&Numbering](InstructionVFPair &A, InstructionVFPair &B) { | ||||||||
| 5404 | if (Numbering[A.first] != Numbering[B.first]) | ||||||||
| 5405 | return Numbering[A.first] < Numbering[B.first]; | ||||||||
| 5406 | ElementCountComparator ECC; | ||||||||
| 5407 | return ECC(A.second, B.second); | ||||||||
| 5408 | }); | ||||||||
| 5409 | |||||||||
| 5410 | // For a list of ordered instruction-vf pairs: | ||||||||
| 5411 | // [(load, vf1), (load, vf2), (store, vf1)] | ||||||||
| 5412 | // Group the instructions together to emit separate remarks for: | ||||||||
| 5413 | // load (vf1, vf2) | ||||||||
| 5414 | // store (vf1) | ||||||||
| 5415 | auto Tail = ArrayRef<InstructionVFPair>(InvalidCosts); | ||||||||
| 5416 | auto Subset = ArrayRef<InstructionVFPair>(); | ||||||||
| 5417 | do { | ||||||||
| 5418 | if (Subset.empty()) | ||||||||
| 5419 | Subset = Tail.take_front(1); | ||||||||
| 5420 | |||||||||
| 5421 | Instruction *I = Subset.front().first; | ||||||||
| 5422 | |||||||||
| 5423 | // If the next instruction is different, or if there are no other pairs, | ||||||||
| 5424 | // emit a remark for the collated subset. e.g. | ||||||||
| 5425 | // [(load, vf1), (load, vf2))] | ||||||||
| 5426 | // to emit: | ||||||||
| 5427 | // remark: invalid costs for 'load' at VF=(vf, vf2) | ||||||||
| 5428 | if (Subset == Tail || Tail[Subset.size()].first != I) { | ||||||||
| 5429 | std::string OutString; | ||||||||
| 5430 | raw_string_ostream OS(OutString); | ||||||||
| 5431 | assert(!Subset.empty() && "Unexpected empty range")(static_cast <bool> (!Subset.empty() && "Unexpected empty range" ) ? void (0) : __assert_fail ("!Subset.empty() && \"Unexpected empty range\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5431, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 5432 | OS << "Instruction with invalid costs prevented vectorization at VF=("; | ||||||||
| 5433 | for (const auto &Pair : Subset) | ||||||||
| 5434 | OS << (Pair.second == Subset.front().second ? "" : ", ") | ||||||||
| 5435 | << Pair.second; | ||||||||
| 5436 | OS << "):"; | ||||||||
| 5437 | if (auto *CI = dyn_cast<CallInst>(I)) | ||||||||
| 5438 | OS << " call to " << CI->getCalledFunction()->getName(); | ||||||||
| 5439 | else | ||||||||
| 5440 | OS << " " << I->getOpcodeName(); | ||||||||
| 5441 | OS.flush(); | ||||||||
| 5442 | reportVectorizationInfo(OutString, "InvalidCost", ORE, TheLoop, I); | ||||||||
| 5443 | Tail = Tail.drop_front(Subset.size()); | ||||||||
| 5444 | Subset = {}; | ||||||||
| 5445 | } else | ||||||||
| 5446 | // Grow the subset by one element | ||||||||
| 5447 | Subset = Tail.take_front(Subset.size() + 1); | ||||||||
| 5448 | } while (!Tail.empty()); | ||||||||
| 5449 | } | ||||||||
| 5450 | |||||||||
| 5451 | if (!EnableCondStoresVectorization && NumPredStores) { | ||||||||
| 5452 | reportVectorizationFailure("There are conditional stores.", | ||||||||
| 5453 | "store that is conditionally executed prevents vectorization", | ||||||||
| 5454 | "ConditionalStore", ORE, TheLoop); | ||||||||
| 5455 | ChosenFactor = ScalarCost; | ||||||||
| 5456 | } | ||||||||
| 5457 | |||||||||
| 5458 | LLVM_DEBUG(if (ForceVectorization && !ChosenFactor.Width.isScalar() &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { if (ForceVectorization && !ChosenFactor .Width.isScalar() && !isMoreProfitable(ChosenFactor, ScalarCost )) dbgs() << "LV: Vectorization seems to be not beneficial, " << "but was forced by a user.\n"; } } while (false) | ||||||||
| 5459 | !isMoreProfitable(ChosenFactor, ScalarCost)) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { if (ForceVectorization && !ChosenFactor .Width.isScalar() && !isMoreProfitable(ChosenFactor, ScalarCost )) dbgs() << "LV: Vectorization seems to be not beneficial, " << "but was forced by a user.\n"; } } while (false) | ||||||||
| 5460 | << "LV: Vectorization seems to be not beneficial, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { if (ForceVectorization && !ChosenFactor .Width.isScalar() && !isMoreProfitable(ChosenFactor, ScalarCost )) dbgs() << "LV: Vectorization seems to be not beneficial, " << "but was forced by a user.\n"; } } while (false) | ||||||||
| 5461 | << "but was forced by a user.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { if (ForceVectorization && !ChosenFactor .Width.isScalar() && !isMoreProfitable(ChosenFactor, ScalarCost )) dbgs() << "LV: Vectorization seems to be not beneficial, " << "but was forced by a user.\n"; } } while (false); | ||||||||
| 5462 | LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Selecting VF: " << ChosenFactor.Width << ".\n"; } } while (false); | ||||||||
| 5463 | return ChosenFactor; | ||||||||
| 5464 | } | ||||||||
| 5465 | |||||||||
| 5466 | bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( | ||||||||
| 5467 | const Loop &L, ElementCount VF) const { | ||||||||
| 5468 | // Cross iteration phis such as reductions need special handling and are | ||||||||
| 5469 | // currently unsupported. | ||||||||
| 5470 | if (any_of(L.getHeader()->phis(), | ||||||||
| 5471 | [&](PHINode &Phi) { return Legal->isFixedOrderRecurrence(&Phi); })) | ||||||||
| 5472 | return false; | ||||||||
| 5473 | |||||||||
| 5474 | // Phis with uses outside of the loop require special handling and are | ||||||||
| 5475 | // currently unsupported. | ||||||||
| 5476 | for (const auto &Entry : Legal->getInductionVars()) { | ||||||||
| 5477 | // Look for uses of the value of the induction at the last iteration. | ||||||||
| 5478 | Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); | ||||||||
| 5479 | for (User *U : PostInc->users()) | ||||||||
| 5480 | if (!L.contains(cast<Instruction>(U))) | ||||||||
| 5481 | return false; | ||||||||
| 5482 | // Look for uses of penultimate value of the induction. | ||||||||
| 5483 | for (User *U : Entry.first->users()) | ||||||||
| 5484 | if (!L.contains(cast<Instruction>(U))) | ||||||||
| 5485 | return false; | ||||||||
| 5486 | } | ||||||||
| 5487 | |||||||||
| 5488 | // Epilogue vectorization code has not been auditted to ensure it handles | ||||||||
| 5489 | // non-latch exits properly. It may be fine, but it needs auditted and | ||||||||
| 5490 | // tested. | ||||||||
| 5491 | if (L.getExitingBlock() != L.getLoopLatch()) | ||||||||
| 5492 | return false; | ||||||||
| 5493 | |||||||||
| 5494 | return true; | ||||||||
| 5495 | } | ||||||||
| 5496 | |||||||||
| 5497 | bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( | ||||||||
| 5498 | const ElementCount VF) const { | ||||||||
| 5499 | // FIXME: We need a much better cost-model to take different parameters such | ||||||||
| 5500 | // as register pressure, code size increase and cost of extra branches into | ||||||||
| 5501 | // account. For now we apply a very crude heuristic and only consider loops | ||||||||
| 5502 | // with vectorization factors larger than a certain value. | ||||||||
| 5503 | |||||||||
| 5504 | // Allow the target to opt out entirely. | ||||||||
| 5505 | if (!TTI.preferEpilogueVectorization()) | ||||||||
| 5506 | return false; | ||||||||
| 5507 | |||||||||
| 5508 | // We also consider epilogue vectorization unprofitable for targets that don't | ||||||||
| 5509 | // consider interleaving beneficial (eg. MVE). | ||||||||
| 5510 | if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) | ||||||||
| 5511 | return false; | ||||||||
| 5512 | // FIXME: We should consider changing the threshold for scalable | ||||||||
| 5513 | // vectors to take VScaleForTuning into account. | ||||||||
| 5514 | if (VF.getKnownMinValue() >= EpilogueVectorizationMinVF) | ||||||||
| 5515 | return true; | ||||||||
| 5516 | return false; | ||||||||
| 5517 | } | ||||||||
| 5518 | |||||||||
| 5519 | VectorizationFactor | ||||||||
| 5520 | LoopVectorizationCostModel::selectEpilogueVectorizationFactor( | ||||||||
| 5521 | const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { | ||||||||
| 5522 | VectorizationFactor Result = VectorizationFactor::Disabled(); | ||||||||
| 5523 | if (!EnableEpilogueVectorization) { | ||||||||
| 5524 | LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Epilogue vectorization is disabled.\n" ;; } } while (false); | ||||||||
| 5525 | return Result; | ||||||||
| 5526 | } | ||||||||
| 5527 | |||||||||
| 5528 | if (!isScalarEpilogueAllowed()) { | ||||||||
| 5529 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " "allowed.\n";; } } while (false) | ||||||||
| 5530 | dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " "allowed.\n";; } } while (false) | ||||||||
| 5531 | "allowed.\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " "allowed.\n";; } } while (false); | ||||||||
| 5532 | return Result; | ||||||||
| 5533 | } | ||||||||
| 5534 | |||||||||
| 5535 | // Not really a cost consideration, but check for unsupported cases here to | ||||||||
| 5536 | // simplify the logic. | ||||||||
| 5537 | if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { | ||||||||
| 5538 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Unable to vectorize epilogue because the loop is " "not a supported candidate.\n";; } } while (false) | ||||||||
| 5539 | dbgs() << "LEV: Unable to vectorize epilogue because the loop is "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Unable to vectorize epilogue because the loop is " "not a supported candidate.\n";; } } while (false) | ||||||||
| 5540 | "not a supported candidate.\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Unable to vectorize epilogue because the loop is " "not a supported candidate.\n";; } } while (false); | ||||||||
| 5541 | return Result; | ||||||||
| 5542 | } | ||||||||
| 5543 | |||||||||
| 5544 | if (EpilogueVectorizationForceVF > 1) { | ||||||||
| 5545 | LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Epilogue vectorization factor is forced.\n" ;; } } while (false); | ||||||||
| 5546 | ElementCount ForcedEC = ElementCount::getFixed(EpilogueVectorizationForceVF); | ||||||||
| 5547 | if (LVP.hasPlanWithVF(ForcedEC)) | ||||||||
| 5548 | return {ForcedEC, 0, 0}; | ||||||||
| 5549 | else { | ||||||||
| 5550 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Epilogue vectorization forced factor is not viable.\n" ;; } } while (false) | ||||||||
| 5551 | dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Epilogue vectorization forced factor is not viable.\n" ;; } } while (false) | ||||||||
| 5552 | << "LEV: Epilogue vectorization forced factor is not viable.\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Epilogue vectorization forced factor is not viable.\n" ;; } } while (false); | ||||||||
| 5553 | return Result; | ||||||||
| 5554 | } | ||||||||
| 5555 | } | ||||||||
| 5556 | |||||||||
| 5557 | if (TheLoop->getHeader()->getParent()->hasOptSize() || | ||||||||
| 5558 | TheLoop->getHeader()->getParent()->hasMinSize()) { | ||||||||
| 5559 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n" ;; } } while (false) | ||||||||
| 5560 | dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n" ;; } } while (false) | ||||||||
| 5561 | << "LEV: Epilogue vectorization skipped due to opt for size.\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Epilogue vectorization skipped due to opt for size.\n" ;; } } while (false); | ||||||||
| 5562 | return Result; | ||||||||
| 5563 | } | ||||||||
| 5564 | |||||||||
| 5565 | if (!isEpilogueVectorizationProfitable(MainLoopVF)) { | ||||||||
| 5566 | LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is not profitable for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Epilogue vectorization is not profitable for " "this loop\n"; } } while (false) | ||||||||
| 5567 | "this loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Epilogue vectorization is not profitable for " "this loop\n"; } } while (false); | ||||||||
| 5568 | return Result; | ||||||||
| 5569 | } | ||||||||
| 5570 | |||||||||
| 5571 | // If MainLoopVF = vscale x 2, and vscale is expected to be 4, then we know | ||||||||
| 5572 | // the main loop handles 8 lanes per iteration. We could still benefit from | ||||||||
| 5573 | // vectorizing the epilogue loop with VF=4. | ||||||||
| 5574 | ElementCount EstimatedRuntimeVF = MainLoopVF; | ||||||||
| 5575 | if (MainLoopVF.isScalable()) { | ||||||||
| 5576 | EstimatedRuntimeVF = ElementCount::getFixed(MainLoopVF.getKnownMinValue()); | ||||||||
| 5577 | if (std::optional<unsigned> VScale = getVScaleForTuning()) | ||||||||
| 5578 | EstimatedRuntimeVF *= *VScale; | ||||||||
| 5579 | } | ||||||||
| 5580 | |||||||||
| 5581 | for (auto &NextVF : ProfitableVFs) | ||||||||
| 5582 | if (((!NextVF.Width.isScalable() && MainLoopVF.isScalable() && | ||||||||
| 5583 | ElementCount::isKnownLT(NextVF.Width, EstimatedRuntimeVF)) || | ||||||||
| 5584 | ElementCount::isKnownLT(NextVF.Width, MainLoopVF)) && | ||||||||
| 5585 | (Result.Width.isScalar() || isMoreProfitable(NextVF, Result)) && | ||||||||
| 5586 | LVP.hasPlanWithVF(NextVF.Width)) | ||||||||
| 5587 | Result = NextVF; | ||||||||
| 5588 | |||||||||
| 5589 | if (Result != VectorizationFactor::Disabled()) | ||||||||
| 5590 | LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Vectorizing epilogue loop with VF = " << Result.Width << "\n";; } } while (false) | ||||||||
| 5591 | << Result.Width << "\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LEV: Vectorizing epilogue loop with VF = " << Result.Width << "\n";; } } while (false); | ||||||||
| 5592 | return Result; | ||||||||
| 5593 | } | ||||||||
| 5594 | |||||||||
| 5595 | std::pair<unsigned, unsigned> | ||||||||
| 5596 | LoopVectorizationCostModel::getSmallestAndWidestTypes() { | ||||||||
| 5597 | unsigned MinWidth = -1U; | ||||||||
| 5598 | unsigned MaxWidth = 8; | ||||||||
| 5599 | const DataLayout &DL = TheFunction->getParent()->getDataLayout(); | ||||||||
| 5600 | // For in-loop reductions, no element types are added to ElementTypesInLoop | ||||||||
| 5601 | // if there are no loads/stores in the loop. In this case, check through the | ||||||||
| 5602 | // reduction variables to determine the maximum width. | ||||||||
| 5603 | if (ElementTypesInLoop.empty() && !Legal->getReductionVars().empty()) { | ||||||||
| 5604 | // Reset MaxWidth so that we can find the smallest type used by recurrences | ||||||||
| 5605 | // in the loop. | ||||||||
| 5606 | MaxWidth = -1U; | ||||||||
| 5607 | for (const auto &PhiDescriptorPair : Legal->getReductionVars()) { | ||||||||
| 5608 | const RecurrenceDescriptor &RdxDesc = PhiDescriptorPair.second; | ||||||||
| 5609 | // When finding the min width used by the recurrence we need to account | ||||||||
| 5610 | // for casts on the input operands of the recurrence. | ||||||||
| 5611 | MaxWidth = std::min<unsigned>( | ||||||||
| 5612 | MaxWidth, std::min<unsigned>( | ||||||||
| 5613 | RdxDesc.getMinWidthCastToRecurrenceTypeInBits(), | ||||||||
| 5614 | RdxDesc.getRecurrenceType()->getScalarSizeInBits())); | ||||||||
| 5615 | } | ||||||||
| 5616 | } else { | ||||||||
| 5617 | for (Type *T : ElementTypesInLoop) { | ||||||||
| 5618 | MinWidth = std::min<unsigned>( | ||||||||
| 5619 | MinWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue()); | ||||||||
| 5620 | MaxWidth = std::max<unsigned>( | ||||||||
| 5621 | MaxWidth, DL.getTypeSizeInBits(T->getScalarType()).getFixedValue()); | ||||||||
| 5622 | } | ||||||||
| 5623 | } | ||||||||
| 5624 | return {MinWidth, MaxWidth}; | ||||||||
| 5625 | } | ||||||||
| 5626 | |||||||||
| 5627 | void LoopVectorizationCostModel::collectElementTypesForWidening() { | ||||||||
| 5628 | ElementTypesInLoop.clear(); | ||||||||
| 5629 | // For each block. | ||||||||
| 5630 | for (BasicBlock *BB : TheLoop->blocks()) { | ||||||||
| 5631 | // For each instruction in the loop. | ||||||||
| 5632 | for (Instruction &I : BB->instructionsWithoutDebug()) { | ||||||||
| 5633 | Type *T = I.getType(); | ||||||||
| 5634 | |||||||||
| 5635 | // Skip ignored values. | ||||||||
| 5636 | if (ValuesToIgnore.count(&I)) | ||||||||
| 5637 | continue; | ||||||||
| 5638 | |||||||||
| 5639 | // Only examine Loads, Stores and PHINodes. | ||||||||
| 5640 | if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) | ||||||||
| 5641 | continue; | ||||||||
| 5642 | |||||||||
| 5643 | // Examine PHI nodes that are reduction variables. Update the type to | ||||||||
| 5644 | // account for the recurrence type. | ||||||||
| 5645 | if (auto *PN = dyn_cast<PHINode>(&I)) { | ||||||||
| 5646 | if (!Legal->isReductionVariable(PN)) | ||||||||
| 5647 | continue; | ||||||||
| 5648 | const RecurrenceDescriptor &RdxDesc = | ||||||||
| 5649 | Legal->getReductionVars().find(PN)->second; | ||||||||
| 5650 | if (PreferInLoopReductions || useOrderedReductions(RdxDesc) || | ||||||||
| 5651 | TTI.preferInLoopReduction(RdxDesc.getOpcode(), | ||||||||
| 5652 | RdxDesc.getRecurrenceType(), | ||||||||
| 5653 | TargetTransformInfo::ReductionFlags())) | ||||||||
| 5654 | continue; | ||||||||
| 5655 | T = RdxDesc.getRecurrenceType(); | ||||||||
| 5656 | } | ||||||||
| 5657 | |||||||||
| 5658 | // Examine the stored values. | ||||||||
| 5659 | if (auto *ST = dyn_cast<StoreInst>(&I)) | ||||||||
| 5660 | T = ST->getValueOperand()->getType(); | ||||||||
| 5661 | |||||||||
| 5662 | assert(T->isSized() &&(static_cast <bool> (T->isSized() && "Expected the load/store/recurrence type to be sized" ) ? void (0) : __assert_fail ("T->isSized() && \"Expected the load/store/recurrence type to be sized\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5663, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 5663 | "Expected the load/store/recurrence type to be sized")(static_cast <bool> (T->isSized() && "Expected the load/store/recurrence type to be sized" ) ? void (0) : __assert_fail ("T->isSized() && \"Expected the load/store/recurrence type to be sized\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5663, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 5664 | |||||||||
| 5665 | ElementTypesInLoop.insert(T); | ||||||||
| 5666 | } | ||||||||
| 5667 | } | ||||||||
| 5668 | } | ||||||||
| 5669 | |||||||||
| 5670 | unsigned | ||||||||
| 5671 | LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, | ||||||||
| 5672 | InstructionCost LoopCost) { | ||||||||
| 5673 | // -- The interleave heuristics -- | ||||||||
| 5674 | // We interleave the loop in order to expose ILP and reduce the loop overhead. | ||||||||
| 5675 | // There are many micro-architectural considerations that we can't predict | ||||||||
| 5676 | // at this level. For example, frontend pressure (on decode or fetch) due to | ||||||||
| 5677 | // code size, or the number and capabilities of the execution ports. | ||||||||
| 5678 | // | ||||||||
| 5679 | // We use the following heuristics to select the interleave count: | ||||||||
| 5680 | // 1. If the code has reductions, then we interleave to break the cross | ||||||||
| 5681 | // iteration dependency. | ||||||||
| 5682 | // 2. If the loop is really small, then we interleave to reduce the loop | ||||||||
| 5683 | // overhead. | ||||||||
| 5684 | // 3. We don't interleave if we think that we will spill registers to memory | ||||||||
| 5685 | // due to the increased register pressure. | ||||||||
| 5686 | |||||||||
| 5687 | if (!isScalarEpilogueAllowed()) | ||||||||
| 5688 | return 1; | ||||||||
| 5689 | |||||||||
| 5690 | // We used the distance for the interleave count. | ||||||||
| 5691 | if (Legal->getMaxSafeDepDistBytes() != -1U) | ||||||||
| 5692 | return 1; | ||||||||
| 5693 | |||||||||
| 5694 | auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); | ||||||||
| 5695 | const bool HasReductions = !Legal->getReductionVars().empty(); | ||||||||
| 5696 | // Do not interleave loops with a relatively small known or estimated trip | ||||||||
| 5697 | // count. But we will interleave when InterleaveSmallLoopScalarReduction is | ||||||||
| 5698 | // enabled, and the code has scalar reductions(HasReductions && VF = 1), | ||||||||
| 5699 | // because with the above conditions interleaving can expose ILP and break | ||||||||
| 5700 | // cross iteration dependences for reductions. | ||||||||
| 5701 | if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && | ||||||||
| 5702 | !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) | ||||||||
| 5703 | return 1; | ||||||||
| 5704 | |||||||||
| 5705 | // If we did not calculate the cost for VF (because the user selected the VF) | ||||||||
| 5706 | // then we calculate the cost of VF here. | ||||||||
| 5707 | if (LoopCost == 0) { | ||||||||
| 5708 | LoopCost = expectedCost(VF).first; | ||||||||
| 5709 | assert(LoopCost.isValid() && "Expected to have chosen a VF with valid cost")(static_cast <bool> (LoopCost.isValid() && "Expected to have chosen a VF with valid cost" ) ? void (0) : __assert_fail ("LoopCost.isValid() && \"Expected to have chosen a VF with valid cost\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5709, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 5710 | |||||||||
| 5711 | // Loop body is free and there is no need for interleaving. | ||||||||
| 5712 | if (LoopCost == 0) | ||||||||
| 5713 | return 1; | ||||||||
| 5714 | } | ||||||||
| 5715 | |||||||||
| 5716 | RegisterUsage R = calculateRegisterUsage({VF})[0]; | ||||||||
| 5717 | // We divide by these constants so assume that we have at least one | ||||||||
| 5718 | // instruction that uses at least one register. | ||||||||
| 5719 | for (auto& pair : R.MaxLocalUsers) { | ||||||||
| 5720 | pair.second = std::max(pair.second, 1U); | ||||||||
| 5721 | } | ||||||||
| 5722 | |||||||||
| 5723 | // We calculate the interleave count using the following formula. | ||||||||
| 5724 | // Subtract the number of loop invariants from the number of available | ||||||||
| 5725 | // registers. These registers are used by all of the interleaved instances. | ||||||||
| 5726 | // Next, divide the remaining registers by the number of registers that is | ||||||||
| 5727 | // required by the loop, in order to estimate how many parallel instances | ||||||||
| 5728 | // fit without causing spills. All of this is rounded down if necessary to be | ||||||||
| 5729 | // a power of two. We want power of two interleave count to simplify any | ||||||||
| 5730 | // addressing operations or alignment considerations. | ||||||||
| 5731 | // We also want power of two interleave counts to ensure that the induction | ||||||||
| 5732 | // variable of the vector loop wraps to zero, when tail is folded by masking; | ||||||||
| 5733 | // this currently happens when OptForSize, in which case IC is set to 1 above. | ||||||||
| 5734 | unsigned IC = UINT_MAX(2147483647 *2U +1U); | ||||||||
| 5735 | |||||||||
| 5736 | for (auto& pair : R.MaxLocalUsers) { | ||||||||
| 5737 | unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); | ||||||||
| 5738 | LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegistersdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The target has " << TargetNumRegisters << " registers of " << TTI.getRegisterClassName (pair.first) << " register class\n"; } } while (false) | ||||||||
| 5739 | << " registers of "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The target has " << TargetNumRegisters << " registers of " << TTI.getRegisterClassName (pair.first) << " register class\n"; } } while (false) | ||||||||
| 5740 | << TTI.getRegisterClassName(pair.first) << " register class\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: The target has " << TargetNumRegisters << " registers of " << TTI.getRegisterClassName (pair.first) << " register class\n"; } } while (false); | ||||||||
| 5741 | if (VF.isScalar()) { | ||||||||
| 5742 | if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) | ||||||||
| 5743 | TargetNumRegisters = ForceTargetNumScalarRegs; | ||||||||
| 5744 | } else { | ||||||||
| 5745 | if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) | ||||||||
| 5746 | TargetNumRegisters = ForceTargetNumVectorRegs; | ||||||||
| 5747 | } | ||||||||
| 5748 | unsigned MaxLocalUsers = pair.second; | ||||||||
| 5749 | unsigned LoopInvariantRegs = 0; | ||||||||
| 5750 | if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) | ||||||||
| 5751 | LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; | ||||||||
| 5752 | |||||||||
| 5753 | unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); | ||||||||
| 5754 | // Don't count the induction variable as interleaved. | ||||||||
| 5755 | if (EnableIndVarRegisterHeur) { | ||||||||
| 5756 | TmpIC = | ||||||||
| 5757 | PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / | ||||||||
| 5758 | std::max(1U, (MaxLocalUsers - 1))); | ||||||||
| 5759 | } | ||||||||
| 5760 | |||||||||
| 5761 | IC = std::min(IC, TmpIC); | ||||||||
| 5762 | } | ||||||||
| 5763 | |||||||||
| 5764 | // Clamp the interleave ranges to reasonable counts. | ||||||||
| 5765 | unsigned MaxInterleaveCount = | ||||||||
| 5766 | TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); | ||||||||
| 5767 | |||||||||
| 5768 | // Check if the user has overridden the max. | ||||||||
| 5769 | if (VF.isScalar()) { | ||||||||
| 5770 | if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) | ||||||||
| 5771 | MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; | ||||||||
| 5772 | } else { | ||||||||
| 5773 | if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) | ||||||||
| 5774 | MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; | ||||||||
| 5775 | } | ||||||||
| 5776 | |||||||||
| 5777 | // If trip count is known or estimated compile time constant, limit the | ||||||||
| 5778 | // interleave count to be less than the trip count divided by VF, provided it | ||||||||
| 5779 | // is at least 1. | ||||||||
| 5780 | // | ||||||||
| 5781 | // For scalable vectors we can't know if interleaving is beneficial. It may | ||||||||
| 5782 | // not be beneficial for small loops if none of the lanes in the second vector | ||||||||
| 5783 | // iterations is enabled. However, for larger loops, there is likely to be a | ||||||||
| 5784 | // similar benefit as for fixed-width vectors. For now, we choose to leave | ||||||||
| 5785 | // the InterleaveCount as if vscale is '1', although if some information about | ||||||||
| 5786 | // the vector is known (e.g. min vector size), we can make a better decision. | ||||||||
| 5787 | if (BestKnownTC) { | ||||||||
| 5788 | MaxInterleaveCount = | ||||||||
| 5789 | std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); | ||||||||
| 5790 | // Make sure MaxInterleaveCount is greater than 0. | ||||||||
| 5791 | MaxInterleaveCount = std::max(1u, MaxInterleaveCount); | ||||||||
| 5792 | } | ||||||||
| 5793 | |||||||||
| 5794 | assert(MaxInterleaveCount > 0 &&(static_cast <bool> (MaxInterleaveCount > 0 && "Maximum interleave count must be greater than 0") ? void (0 ) : __assert_fail ("MaxInterleaveCount > 0 && \"Maximum interleave count must be greater than 0\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5795, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 5795 | "Maximum interleave count must be greater than 0")(static_cast <bool> (MaxInterleaveCount > 0 && "Maximum interleave count must be greater than 0") ? void (0 ) : __assert_fail ("MaxInterleaveCount > 0 && \"Maximum interleave count must be greater than 0\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5795, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 5796 | |||||||||
| 5797 | // Clamp the calculated IC to be between the 1 and the max interleave count | ||||||||
| 5798 | // that the target and trip count allows. | ||||||||
| 5799 | if (IC > MaxInterleaveCount) | ||||||||
| 5800 | IC = MaxInterleaveCount; | ||||||||
| 5801 | else | ||||||||
| 5802 | // Make sure IC is greater than 0. | ||||||||
| 5803 | IC = std::max(1u, IC); | ||||||||
| 5804 | |||||||||
| 5805 | assert(IC > 0 && "Interleave count must be greater than 0.")(static_cast <bool> (IC > 0 && "Interleave count must be greater than 0." ) ? void (0) : __assert_fail ("IC > 0 && \"Interleave count must be greater than 0.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 5805, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 5806 | |||||||||
| 5807 | // Interleave if we vectorized this loop and there is a reduction that could | ||||||||
| 5808 | // benefit from interleaving. | ||||||||
| 5809 | if (VF.isVector() && HasReductions) { | ||||||||
| 5810 | LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving because of reductions.\n" ; } } while (false); | ||||||||
| 5811 | return IC; | ||||||||
| 5812 | } | ||||||||
| 5813 | |||||||||
| 5814 | // For any scalar loop that either requires runtime checks or predication we | ||||||||
| 5815 | // are better off leaving this to the unroller. Note that if we've already | ||||||||
| 5816 | // vectorized the loop we will have done the runtime check and so interleaving | ||||||||
| 5817 | // won't require further checks. | ||||||||
| 5818 | bool ScalarInterleavingRequiresPredication = | ||||||||
| 5819 | (VF.isScalar() && any_of(TheLoop->blocks(), [this](BasicBlock *BB) { | ||||||||
| 5820 | return Legal->blockNeedsPredication(BB); | ||||||||
| 5821 | })); | ||||||||
| 5822 | bool ScalarInterleavingRequiresRuntimePointerCheck = | ||||||||
| 5823 | (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); | ||||||||
| 5824 | |||||||||
| 5825 | // We want to interleave small loops in order to reduce the loop overhead and | ||||||||
| 5826 | // potentially expose ILP opportunities. | ||||||||
| 5827 | LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop cost is " << LoopCost << '\n' << "LV: IC is " << IC << '\n' << "LV: VF is " << VF << '\n'; } } while (false) | ||||||||
| 5828 | << "LV: IC is " << IC << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop cost is " << LoopCost << '\n' << "LV: IC is " << IC << '\n' << "LV: VF is " << VF << '\n'; } } while (false) | ||||||||
| 5829 | << "LV: VF is " << VF << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop cost is " << LoopCost << '\n' << "LV: IC is " << IC << '\n' << "LV: VF is " << VF << '\n'; } } while (false); | ||||||||
| 5830 | const bool AggressivelyInterleaveReductions = | ||||||||
| 5831 | TTI.enableAggressiveInterleaving(HasReductions); | ||||||||
| 5832 | if (!ScalarInterleavingRequiresRuntimePointerCheck && | ||||||||
| 5833 | !ScalarInterleavingRequiresPredication && LoopCost < SmallLoopCost) { | ||||||||
| 5834 | // We assume that the cost overhead is 1 and we use the cost model | ||||||||
| 5835 | // to estimate the cost of the loop and interleave until the cost of the | ||||||||
| 5836 | // loop overhead is about 5% of the cost of the loop. | ||||||||
| 5837 | unsigned SmallIC = std::min( | ||||||||
| 5838 | IC, (unsigned)PowerOf2Floor(SmallLoopCost / *LoopCost.getValue())); | ||||||||
| 5839 | |||||||||
| 5840 | // Interleave until store/load ports (estimated by max interleave count) are | ||||||||
| 5841 | // saturated. | ||||||||
| 5842 | unsigned NumStores = Legal->getNumStores(); | ||||||||
| 5843 | unsigned NumLoads = Legal->getNumLoads(); | ||||||||
| 5844 | unsigned StoresIC = IC / (NumStores ? NumStores : 1); | ||||||||
| 5845 | unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); | ||||||||
| 5846 | |||||||||
| 5847 | // There is little point in interleaving for reductions containing selects | ||||||||
| 5848 | // and compares when VF=1 since it may just create more overhead than it's | ||||||||
| 5849 | // worth for loops with small trip counts. This is because we still have to | ||||||||
| 5850 | // do the final reduction after the loop. | ||||||||
| 5851 | bool HasSelectCmpReductions = | ||||||||
| 5852 | HasReductions && | ||||||||
| 5853 | any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { | ||||||||
| 5854 | const RecurrenceDescriptor &RdxDesc = Reduction.second; | ||||||||
| 5855 | return RecurrenceDescriptor::isSelectCmpRecurrenceKind( | ||||||||
| 5856 | RdxDesc.getRecurrenceKind()); | ||||||||
| 5857 | }); | ||||||||
| 5858 | if (HasSelectCmpReductions) { | ||||||||
| 5859 | LLVM_DEBUG(dbgs() << "LV: Not interleaving select-cmp reductions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not interleaving select-cmp reductions.\n" ; } } while (false); | ||||||||
| 5860 | return 1; | ||||||||
| 5861 | } | ||||||||
| 5862 | |||||||||
| 5863 | // If we have a scalar reduction (vector reductions are already dealt with | ||||||||
| 5864 | // by this point), we can increase the critical path length if the loop | ||||||||
| 5865 | // we're interleaving is inside another loop. For tree-wise reductions | ||||||||
| 5866 | // set the limit to 2, and for ordered reductions it's best to disable | ||||||||
| 5867 | // interleaving entirely. | ||||||||
| 5868 | if (HasReductions && TheLoop->getLoopDepth() > 1) { | ||||||||
| 5869 | bool HasOrderedReductions = | ||||||||
| 5870 | any_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { | ||||||||
| 5871 | const RecurrenceDescriptor &RdxDesc = Reduction.second; | ||||||||
| 5872 | return RdxDesc.isOrdered(); | ||||||||
| 5873 | }); | ||||||||
| 5874 | if (HasOrderedReductions) { | ||||||||
| 5875 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not interleaving scalar ordered reductions.\n" ; } } while (false) | ||||||||
| 5876 | dbgs() << "LV: Not interleaving scalar ordered reductions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not interleaving scalar ordered reductions.\n" ; } } while (false); | ||||||||
| 5877 | return 1; | ||||||||
| 5878 | } | ||||||||
| 5879 | |||||||||
| 5880 | unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); | ||||||||
| 5881 | SmallIC = std::min(SmallIC, F); | ||||||||
| 5882 | StoresIC = std::min(StoresIC, F); | ||||||||
| 5883 | LoadsIC = std::min(LoadsIC, F); | ||||||||
| 5884 | } | ||||||||
| 5885 | |||||||||
| 5886 | if (EnableLoadStoreRuntimeInterleave && | ||||||||
| 5887 | std::max(StoresIC, LoadsIC) > SmallIC) { | ||||||||
| 5888 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving to saturate store or load ports.\n" ; } } while (false) | ||||||||
| 5889 | dbgs() << "LV: Interleaving to saturate store or load ports.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving to saturate store or load ports.\n" ; } } while (false); | ||||||||
| 5890 | return std::max(StoresIC, LoadsIC); | ||||||||
| 5891 | } | ||||||||
| 5892 | |||||||||
| 5893 | // If there are scalar reductions and TTI has enabled aggressive | ||||||||
| 5894 | // interleaving for reductions, we will interleave to expose ILP. | ||||||||
| 5895 | if (InterleaveSmallLoopScalarReduction && VF.isScalar() && | ||||||||
| 5896 | AggressivelyInterleaveReductions) { | ||||||||
| 5897 | LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving to expose ILP.\n" ; } } while (false); | ||||||||
| 5898 | // Interleave no less than SmallIC but not as aggressive as the normal IC | ||||||||
| 5899 | // to satisfy the rare situation when resources are too limited. | ||||||||
| 5900 | return std::max(IC / 2, SmallIC); | ||||||||
| 5901 | } else { | ||||||||
| 5902 | LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving to reduce branch cost.\n" ; } } while (false); | ||||||||
| 5903 | return SmallIC; | ||||||||
| 5904 | } | ||||||||
| 5905 | } | ||||||||
| 5906 | |||||||||
| 5907 | // Interleave if this is a large loop (small loops are already dealt with by | ||||||||
| 5908 | // this point) that could benefit from interleaving. | ||||||||
| 5909 | if (AggressivelyInterleaveReductions) { | ||||||||
| 5910 | LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving to expose ILP.\n" ; } } while (false); | ||||||||
| 5911 | return IC; | ||||||||
| 5912 | } | ||||||||
| 5913 | |||||||||
| 5914 | LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not Interleaving.\n" ; } } while (false); | ||||||||
| 5915 | return 1; | ||||||||
| 5916 | } | ||||||||
| 5917 | |||||||||
| 5918 | SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> | ||||||||
| 5919 | LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { | ||||||||
| 5920 | // This function calculates the register usage by measuring the highest number | ||||||||
| 5921 | // of values that are alive at a single location. Obviously, this is a very | ||||||||
| 5922 | // rough estimation. We scan the loop in a topological order in order and | ||||||||
| 5923 | // assign a number to each instruction. We use RPO to ensure that defs are | ||||||||
| 5924 | // met before their users. We assume that each instruction that has in-loop | ||||||||
| 5925 | // users starts an interval. We record every time that an in-loop value is | ||||||||
| 5926 | // used, so we have a list of the first and last occurrences of each | ||||||||
| 5927 | // instruction. Next, we transpose this data structure into a multi map that | ||||||||
| 5928 | // holds the list of intervals that *end* at a specific location. This multi | ||||||||
| 5929 | // map allows us to perform a linear search. We scan the instructions linearly | ||||||||
| 5930 | // and record each time that a new interval starts, by placing it in a set. | ||||||||
| 5931 | // If we find this value in the multi-map then we remove it from the set. | ||||||||
| 5932 | // The max register usage is the maximum size of the set. | ||||||||
| 5933 | // We also search for instructions that are defined outside the loop, but are | ||||||||
| 5934 | // used inside the loop. We need this number separately from the max-interval | ||||||||
| 5935 | // usage number because when we unroll, loop-invariant values do not take | ||||||||
| 5936 | // more register. | ||||||||
| 5937 | LoopBlocksDFS DFS(TheLoop); | ||||||||
| 5938 | DFS.perform(LI); | ||||||||
| 5939 | |||||||||
| 5940 | RegisterUsage RU; | ||||||||
| 5941 | |||||||||
| 5942 | // Each 'key' in the map opens a new interval. The values | ||||||||
| 5943 | // of the map are the index of the 'last seen' usage of the | ||||||||
| 5944 | // instruction that is the key. | ||||||||
| 5945 | using IntervalMap = DenseMap<Instruction *, unsigned>; | ||||||||
| 5946 | |||||||||
| 5947 | // Maps instruction to its index. | ||||||||
| 5948 | SmallVector<Instruction *, 64> IdxToInstr; | ||||||||
| 5949 | // Marks the end of each interval. | ||||||||
| 5950 | IntervalMap EndPoint; | ||||||||
| 5951 | // Saves the list of instruction indices that are used in the loop. | ||||||||
| 5952 | SmallPtrSet<Instruction *, 8> Ends; | ||||||||
| 5953 | // Saves the list of values that are used in the loop but are defined outside | ||||||||
| 5954 | // the loop (not including non-instruction values such as arguments and | ||||||||
| 5955 | // constants). | ||||||||
| 5956 | SmallPtrSet<Value *, 8> LoopInvariants; | ||||||||
| 5957 | |||||||||
| 5958 | for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { | ||||||||
| 5959 | for (Instruction &I : BB->instructionsWithoutDebug()) { | ||||||||
| 5960 | IdxToInstr.push_back(&I); | ||||||||
| 5961 | |||||||||
| 5962 | // Save the end location of each USE. | ||||||||
| 5963 | for (Value *U : I.operands()) { | ||||||||
| 5964 | auto *Instr = dyn_cast<Instruction>(U); | ||||||||
| 5965 | |||||||||
| 5966 | // Ignore non-instruction values such as arguments, constants, etc. | ||||||||
| 5967 | // FIXME: Might need some motivation why these values are ignored. If | ||||||||
| 5968 | // for example an argument is used inside the loop it will increase the | ||||||||
| 5969 | // register pressure (so shouldn't we add it to LoopInvariants). | ||||||||
| 5970 | if (!Instr) | ||||||||
| 5971 | continue; | ||||||||
| 5972 | |||||||||
| 5973 | // If this instruction is outside the loop then record it and continue. | ||||||||
| 5974 | if (!TheLoop->contains(Instr)) { | ||||||||
| 5975 | LoopInvariants.insert(Instr); | ||||||||
| 5976 | continue; | ||||||||
| 5977 | } | ||||||||
| 5978 | |||||||||
| 5979 | // Overwrite previous end points. | ||||||||
| 5980 | EndPoint[Instr] = IdxToInstr.size(); | ||||||||
| 5981 | Ends.insert(Instr); | ||||||||
| 5982 | } | ||||||||
| 5983 | } | ||||||||
| 5984 | } | ||||||||
| 5985 | |||||||||
| 5986 | // Saves the list of intervals that end with the index in 'key'. | ||||||||
| 5987 | using InstrList = SmallVector<Instruction *, 2>; | ||||||||
| 5988 | DenseMap<unsigned, InstrList> TransposeEnds; | ||||||||
| 5989 | |||||||||
| 5990 | // Transpose the EndPoints to a list of values that end at each index. | ||||||||
| 5991 | for (auto &Interval : EndPoint) | ||||||||
| 5992 | TransposeEnds[Interval.second].push_back(Interval.first); | ||||||||
| 5993 | |||||||||
| 5994 | SmallPtrSet<Instruction *, 8> OpenIntervals; | ||||||||
| 5995 | SmallVector<RegisterUsage, 8> RUs(VFs.size()); | ||||||||
| 5996 | SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); | ||||||||
| 5997 | |||||||||
| 5998 | LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV(REG): Calculating max register usage:\n" ; } } while (false); | ||||||||
| 5999 | |||||||||
| 6000 | const auto &TTICapture = TTI; | ||||||||
| 6001 | auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) -> unsigned { | ||||||||
| 6002 | if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) | ||||||||
| 6003 | return 0; | ||||||||
| 6004 | return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); | ||||||||
| 6005 | }; | ||||||||
| 6006 | |||||||||
| 6007 | for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { | ||||||||
| 6008 | Instruction *I = IdxToInstr[i]; | ||||||||
| 6009 | |||||||||
| 6010 | // Remove all of the instructions that end at this location. | ||||||||
| 6011 | InstrList &List = TransposeEnds[i]; | ||||||||
| 6012 | for (Instruction *ToRemove : List) | ||||||||
| 6013 | OpenIntervals.erase(ToRemove); | ||||||||
| 6014 | |||||||||
| 6015 | // Ignore instructions that are never used within the loop. | ||||||||
| 6016 | if (!Ends.count(I)) | ||||||||
| 6017 | continue; | ||||||||
| 6018 | |||||||||
| 6019 | // Skip ignored values. | ||||||||
| 6020 | if (ValuesToIgnore.count(I)) | ||||||||
| 6021 | continue; | ||||||||
| 6022 | |||||||||
| 6023 | // For each VF find the maximum usage of registers. | ||||||||
| 6024 | for (unsigned j = 0, e = VFs.size(); j < e; ++j) { | ||||||||
| 6025 | // Count the number of registers used, per register class, given all open | ||||||||
| 6026 | // intervals. | ||||||||
| 6027 | // Note that elements in this SmallMapVector will be default constructed | ||||||||
| 6028 | // as 0. So we can use "RegUsage[ClassID] += n" in the code below even if | ||||||||
| 6029 | // there is no previous entry for ClassID. | ||||||||
| 6030 | SmallMapVector<unsigned, unsigned, 4> RegUsage; | ||||||||
| 6031 | |||||||||
| 6032 | if (VFs[j].isScalar()) { | ||||||||
| 6033 | for (auto *Inst : OpenIntervals) { | ||||||||
| 6034 | unsigned ClassID = | ||||||||
| 6035 | TTI.getRegisterClassForType(false, Inst->getType()); | ||||||||
| 6036 | // FIXME: The target might use more than one register for the type | ||||||||
| 6037 | // even in the scalar case. | ||||||||
| 6038 | RegUsage[ClassID] += 1; | ||||||||
| 6039 | } | ||||||||
| 6040 | } else { | ||||||||
| 6041 | collectUniformsAndScalars(VFs[j]); | ||||||||
| 6042 | for (auto *Inst : OpenIntervals) { | ||||||||
| 6043 | // Skip ignored values for VF > 1. | ||||||||
| 6044 | if (VecValuesToIgnore.count(Inst)) | ||||||||
| 6045 | continue; | ||||||||
| 6046 | if (isScalarAfterVectorization(Inst, VFs[j])) { | ||||||||
| 6047 | unsigned ClassID = | ||||||||
| 6048 | TTI.getRegisterClassForType(false, Inst->getType()); | ||||||||
| 6049 | // FIXME: The target might use more than one register for the type | ||||||||
| 6050 | // even in the scalar case. | ||||||||
| 6051 | RegUsage[ClassID] += 1; | ||||||||
| 6052 | } else { | ||||||||
| 6053 | unsigned ClassID = | ||||||||
| 6054 | TTI.getRegisterClassForType(true, Inst->getType()); | ||||||||
| 6055 | RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); | ||||||||
| 6056 | } | ||||||||
| 6057 | } | ||||||||
| 6058 | } | ||||||||
| 6059 | |||||||||
| 6060 | for (auto& pair : RegUsage) { | ||||||||
| 6061 | auto &Entry = MaxUsages[j][pair.first]; | ||||||||
| 6062 | Entry = std::max(Entry, pair.second); | ||||||||
| 6063 | } | ||||||||
| 6064 | } | ||||||||
| 6065 | |||||||||
| 6066 | LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV(REG): At #" << i << " Interval # " << OpenIntervals.size() << '\n'; } } while (false) | ||||||||
| 6067 | << OpenIntervals.size() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV(REG): At #" << i << " Interval # " << OpenIntervals.size() << '\n'; } } while (false); | ||||||||
| 6068 | |||||||||
| 6069 | // Add the current instruction to the list of open intervals. | ||||||||
| 6070 | OpenIntervals.insert(I); | ||||||||
| 6071 | } | ||||||||
| 6072 | |||||||||
| 6073 | for (unsigned i = 0, e = VFs.size(); i < e; ++i) { | ||||||||
| 6074 | // Note that elements in this SmallMapVector will be default constructed | ||||||||
| 6075 | // as 0. So we can use "Invariant[ClassID] += n" in the code below even if | ||||||||
| 6076 | // there is no previous entry for ClassID. | ||||||||
| 6077 | SmallMapVector<unsigned, unsigned, 4> Invariant; | ||||||||
| 6078 | |||||||||
| 6079 | for (auto *Inst : LoopInvariants) { | ||||||||
| 6080 | // FIXME: The target might use more than one register for the type | ||||||||
| 6081 | // even in the scalar case. | ||||||||
| 6082 | unsigned Usage = | ||||||||
| 6083 | VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); | ||||||||
| 6084 | unsigned ClassID = | ||||||||
| 6085 | TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); | ||||||||
| 6086 | Invariant[ClassID] += Usage; | ||||||||
| 6087 | } | ||||||||
| 6088 | |||||||||
| 6089 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6090 | dbgs() << "LV(REG): VF = " << VFs[i] << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6091 | dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6092 | << " item\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6093 | for (const auto &pair : MaxUsages[i]) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6094 | dbgs() << "LV(REG): RegisterClass: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6095 | << TTI.getRegisterClassName(pair.first) << ", " << pair.seconddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6096 | << " registers\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6097 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6098 | dbgs() << "LV(REG): Found invariant usage: " << Invariant.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6099 | << " item\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6100 | for (const auto &pair : Invariant) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6101 | dbgs() << "LV(REG): RegisterClass: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6102 | << TTI.getRegisterClassName(pair.first) << ", " << pair.seconddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6103 | << " registers\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6104 | }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false) | ||||||||
| 6105 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() << " item\n"; for (const auto &pair : MaxUsages[i]) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() << " item\n"; for (const auto &pair : Invariant) { dbgs() << "LV(REG): RegisterClass: " << TTI.getRegisterClassName(pair.first) << ", " << pair.second << " registers\n"; } }; } } while (false); | ||||||||
| 6106 | |||||||||
| 6107 | RU.LoopInvariantRegs = Invariant; | ||||||||
| 6108 | RU.MaxLocalUsers = MaxUsages[i]; | ||||||||
| 6109 | RUs[i] = RU; | ||||||||
| 6110 | } | ||||||||
| 6111 | |||||||||
| 6112 | return RUs; | ||||||||
| 6113 | } | ||||||||
| 6114 | |||||||||
| 6115 | bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I, | ||||||||
| 6116 | ElementCount VF) { | ||||||||
| 6117 | // TODO: Cost model for emulated masked load/store is completely | ||||||||
| 6118 | // broken. This hack guides the cost model to use an artificially | ||||||||
| 6119 | // high enough value to practically disable vectorization with such | ||||||||
| 6120 | // operations, except where previously deployed legality hack allowed | ||||||||
| 6121 | // using very low cost values. This is to avoid regressions coming simply | ||||||||
| 6122 | // from moving "masked load/store" check from legality to cost model. | ||||||||
| 6123 | // Masked Load/Gather emulation was previously never allowed. | ||||||||
| 6124 | // Limited number of Masked Store/Scatter emulation was allowed. | ||||||||
| 6125 | assert((isPredicatedInst(I)) &&(static_cast <bool> ((isPredicatedInst(I)) && "Expecting a scalar emulated instruction" ) ? void (0) : __assert_fail ("(isPredicatedInst(I)) && \"Expecting a scalar emulated instruction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6126, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 6126 | "Expecting a scalar emulated instruction")(static_cast <bool> ((isPredicatedInst(I)) && "Expecting a scalar emulated instruction" ) ? void (0) : __assert_fail ("(isPredicatedInst(I)) && \"Expecting a scalar emulated instruction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6126, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 6127 | return isa<LoadInst>(I) || | ||||||||
| 6128 | (isa<StoreInst>(I) && | ||||||||
| 6129 | NumPredStores > NumberOfStoresToPredicate); | ||||||||
| 6130 | } | ||||||||
| 6131 | |||||||||
| 6132 | void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { | ||||||||
| 6133 | // If we aren't vectorizing the loop, or if we've already collected the | ||||||||
| 6134 | // instructions to scalarize, there's nothing to do. Collection may already | ||||||||
| 6135 | // have occurred if we have a user-selected VF and are now computing the | ||||||||
| 6136 | // expected cost for interleaving. | ||||||||
| 6137 | if (VF.isScalar() || VF.isZero() || | ||||||||
| 6138 | InstsToScalarize.find(VF) != InstsToScalarize.end()) | ||||||||
| 6139 | return; | ||||||||
| 6140 | |||||||||
| 6141 | // Initialize a mapping for VF in InstsToScalalarize. If we find that it's | ||||||||
| 6142 | // not profitable to scalarize any instructions, the presence of VF in the | ||||||||
| 6143 | // map will indicate that we've analyzed it already. | ||||||||
| 6144 | ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; | ||||||||
| 6145 | |||||||||
| 6146 | PredicatedBBsAfterVectorization[VF].clear(); | ||||||||
| 6147 | |||||||||
| 6148 | // Find all the instructions that are scalar with predication in the loop and | ||||||||
| 6149 | // determine if it would be better to not if-convert the blocks they are in. | ||||||||
| 6150 | // If so, we also record the instructions to scalarize. | ||||||||
| 6151 | for (BasicBlock *BB : TheLoop->blocks()) { | ||||||||
| 6152 | if (!blockNeedsPredicationForAnyReason(BB)) | ||||||||
| 6153 | continue; | ||||||||
| 6154 | for (Instruction &I : *BB) | ||||||||
| 6155 | if (isScalarWithPredication(&I, VF)) { | ||||||||
| 6156 | ScalarCostsTy ScalarCosts; | ||||||||
| 6157 | // Do not apply discount if scalable, because that would lead to | ||||||||
| 6158 | // invalid scalarization costs. | ||||||||
| 6159 | // Do not apply discount logic if hacked cost is needed | ||||||||
| 6160 | // for emulated masked memrefs. | ||||||||
| 6161 | if (!VF.isScalable() && !useEmulatedMaskMemRefHack(&I, VF) && | ||||||||
| 6162 | computePredInstDiscount(&I, ScalarCosts, VF) >= 0) | ||||||||
| 6163 | ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); | ||||||||
| 6164 | // Remember that BB will remain after vectorization. | ||||||||
| 6165 | PredicatedBBsAfterVectorization[VF].insert(BB); | ||||||||
| 6166 | } | ||||||||
| 6167 | } | ||||||||
| 6168 | } | ||||||||
| 6169 | |||||||||
| 6170 | InstructionCost LoopVectorizationCostModel::computePredInstDiscount( | ||||||||
| 6171 | Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { | ||||||||
| 6172 | assert(!isUniformAfterVectorization(PredInst, VF) &&(static_cast <bool> (!isUniformAfterVectorization(PredInst , VF) && "Instruction marked uniform-after-vectorization will be predicated" ) ? void (0) : __assert_fail ("!isUniformAfterVectorization(PredInst, VF) && \"Instruction marked uniform-after-vectorization will be predicated\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6173, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 6173 | "Instruction marked uniform-after-vectorization will be predicated")(static_cast <bool> (!isUniformAfterVectorization(PredInst , VF) && "Instruction marked uniform-after-vectorization will be predicated" ) ? void (0) : __assert_fail ("!isUniformAfterVectorization(PredInst, VF) && \"Instruction marked uniform-after-vectorization will be predicated\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6173, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 6174 | |||||||||
| 6175 | // Initialize the discount to zero, meaning that the scalar version and the | ||||||||
| 6176 | // vector version cost the same. | ||||||||
| 6177 | InstructionCost Discount = 0; | ||||||||
| 6178 | |||||||||
| 6179 | // Holds instructions to analyze. The instructions we visit are mapped in | ||||||||
| 6180 | // ScalarCosts. Those instructions are the ones that would be scalarized if | ||||||||
| 6181 | // we find that the scalar version costs less. | ||||||||
| 6182 | SmallVector<Instruction *, 8> Worklist; | ||||||||
| 6183 | |||||||||
| 6184 | // Returns true if the given instruction can be scalarized. | ||||||||
| 6185 | auto canBeScalarized = [&](Instruction *I) -> bool { | ||||||||
| 6186 | // We only attempt to scalarize instructions forming a single-use chain | ||||||||
| 6187 | // from the original predicated block that would otherwise be vectorized. | ||||||||
| 6188 | // Although not strictly necessary, we give up on instructions we know will | ||||||||
| 6189 | // already be scalar to avoid traversing chains that are unlikely to be | ||||||||
| 6190 | // beneficial. | ||||||||
| 6191 | if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || | ||||||||
| 6192 | isScalarAfterVectorization(I, VF)) | ||||||||
| 6193 | return false; | ||||||||
| 6194 | |||||||||
| 6195 | // If the instruction is scalar with predication, it will be analyzed | ||||||||
| 6196 | // separately. We ignore it within the context of PredInst. | ||||||||
| 6197 | if (isScalarWithPredication(I, VF)) | ||||||||
| 6198 | return false; | ||||||||
| 6199 | |||||||||
| 6200 | // If any of the instruction's operands are uniform after vectorization, | ||||||||
| 6201 | // the instruction cannot be scalarized. This prevents, for example, a | ||||||||
| 6202 | // masked load from being scalarized. | ||||||||
| 6203 | // | ||||||||
| 6204 | // We assume we will only emit a value for lane zero of an instruction | ||||||||
| 6205 | // marked uniform after vectorization, rather than VF identical values. | ||||||||
| 6206 | // Thus, if we scalarize an instruction that uses a uniform, we would | ||||||||
| 6207 | // create uses of values corresponding to the lanes we aren't emitting code | ||||||||
| 6208 | // for. This behavior can be changed by allowing getScalarValue to clone | ||||||||
| 6209 | // the lane zero values for uniforms rather than asserting. | ||||||||
| 6210 | for (Use &U : I->operands()) | ||||||||
| 6211 | if (auto *J = dyn_cast<Instruction>(U.get())) | ||||||||
| 6212 | if (isUniformAfterVectorization(J, VF)) | ||||||||
| 6213 | return false; | ||||||||
| 6214 | |||||||||
| 6215 | // Otherwise, we can scalarize the instruction. | ||||||||
| 6216 | return true; | ||||||||
| 6217 | }; | ||||||||
| 6218 | |||||||||
| 6219 | // Compute the expected cost discount from scalarizing the entire expression | ||||||||
| 6220 | // feeding the predicated instruction. We currently only consider expressions | ||||||||
| 6221 | // that are single-use instruction chains. | ||||||||
| 6222 | Worklist.push_back(PredInst); | ||||||||
| 6223 | while (!Worklist.empty()) { | ||||||||
| 6224 | Instruction *I = Worklist.pop_back_val(); | ||||||||
| 6225 | |||||||||
| 6226 | // If we've already analyzed the instruction, there's nothing to do. | ||||||||
| 6227 | if (ScalarCosts.find(I) != ScalarCosts.end()) | ||||||||
| 6228 | continue; | ||||||||
| 6229 | |||||||||
| 6230 | // Compute the cost of the vector instruction. Note that this cost already | ||||||||
| 6231 | // includes the scalarization overhead of the predicated instruction. | ||||||||
| 6232 | InstructionCost VectorCost = getInstructionCost(I, VF).first; | ||||||||
| 6233 | |||||||||
| 6234 | // Compute the cost of the scalarized instruction. This cost is the cost of | ||||||||
| 6235 | // the instruction as if it wasn't if-converted and instead remained in the | ||||||||
| 6236 | // predicated block. We will scale this cost by block probability after | ||||||||
| 6237 | // computing the scalarization overhead. | ||||||||
| 6238 | InstructionCost ScalarCost = | ||||||||
| 6239 | VF.getFixedValue() * | ||||||||
| 6240 | getInstructionCost(I, ElementCount::getFixed(1)).first; | ||||||||
| 6241 | |||||||||
| 6242 | // Compute the scalarization overhead of needed insertelement instructions | ||||||||
| 6243 | // and phi nodes. | ||||||||
| 6244 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; | ||||||||
| 6245 | if (isScalarWithPredication(I, VF) && !I->getType()->isVoidTy()) { | ||||||||
| 6246 | ScalarCost += TTI.getScalarizationOverhead( | ||||||||
| 6247 | cast<VectorType>(ToVectorTy(I->getType(), VF)), | ||||||||
| 6248 | APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ true, | ||||||||
| 6249 | /*Extract*/ false, CostKind); | ||||||||
| 6250 | ScalarCost += | ||||||||
| 6251 | VF.getFixedValue() * TTI.getCFInstrCost(Instruction::PHI, CostKind); | ||||||||
| 6252 | } | ||||||||
| 6253 | |||||||||
| 6254 | // Compute the scalarization overhead of needed extractelement | ||||||||
| 6255 | // instructions. For each of the instruction's operands, if the operand can | ||||||||
| 6256 | // be scalarized, add it to the worklist; otherwise, account for the | ||||||||
| 6257 | // overhead. | ||||||||
| 6258 | for (Use &U : I->operands()) | ||||||||
| 6259 | if (auto *J = dyn_cast<Instruction>(U.get())) { | ||||||||
| 6260 | assert(VectorType::isValidElementType(J->getType()) &&(static_cast <bool> (VectorType::isValidElementType(J-> getType()) && "Instruction has non-scalar type") ? void (0) : __assert_fail ("VectorType::isValidElementType(J->getType()) && \"Instruction has non-scalar type\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6261, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 6261 | "Instruction has non-scalar type")(static_cast <bool> (VectorType::isValidElementType(J-> getType()) && "Instruction has non-scalar type") ? void (0) : __assert_fail ("VectorType::isValidElementType(J->getType()) && \"Instruction has non-scalar type\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6261, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 6262 | if (canBeScalarized(J)) | ||||||||
| 6263 | Worklist.push_back(J); | ||||||||
| 6264 | else if (needsExtract(J, VF)) { | ||||||||
| 6265 | ScalarCost += TTI.getScalarizationOverhead( | ||||||||
| 6266 | cast<VectorType>(ToVectorTy(J->getType(), VF)), | ||||||||
| 6267 | APInt::getAllOnes(VF.getFixedValue()), /*Insert*/ false, | ||||||||
| 6268 | /*Extract*/ true, CostKind); | ||||||||
| 6269 | } | ||||||||
| 6270 | } | ||||||||
| 6271 | |||||||||
| 6272 | // Scale the total scalar cost by block probability. | ||||||||
| 6273 | ScalarCost /= getReciprocalPredBlockProb(); | ||||||||
| 6274 | |||||||||
| 6275 | // Compute the discount. A non-negative discount means the vector version | ||||||||
| 6276 | // of the instruction costs more, and scalarizing would be beneficial. | ||||||||
| 6277 | Discount += VectorCost - ScalarCost; | ||||||||
| 6278 | ScalarCosts[I] = ScalarCost; | ||||||||
| 6279 | } | ||||||||
| 6280 | |||||||||
| 6281 | return Discount; | ||||||||
| 6282 | } | ||||||||
| 6283 | |||||||||
| 6284 | LoopVectorizationCostModel::VectorizationCostTy | ||||||||
| 6285 | LoopVectorizationCostModel::expectedCost( | ||||||||
| 6286 | ElementCount VF, SmallVectorImpl<InstructionVFPair> *Invalid) { | ||||||||
| 6287 | VectorizationCostTy Cost; | ||||||||
| 6288 | |||||||||
| 6289 | // For each block. | ||||||||
| 6290 | for (BasicBlock *BB : TheLoop->blocks()) { | ||||||||
| 6291 | VectorizationCostTy BlockCost; | ||||||||
| 6292 | |||||||||
| 6293 | // For each instruction in the old loop. | ||||||||
| 6294 | for (Instruction &I : BB->instructionsWithoutDebug()) { | ||||||||
| 6295 | // Skip ignored values. | ||||||||
| 6296 | if (ValuesToIgnore.count(&I) || | ||||||||
| 6297 | (VF.isVector() && VecValuesToIgnore.count(&I))) | ||||||||
| 6298 | continue; | ||||||||
| 6299 | |||||||||
| 6300 | VectorizationCostTy C = getInstructionCost(&I, VF); | ||||||||
| 6301 | |||||||||
| 6302 | // Check if we should override the cost. | ||||||||
| 6303 | if (C.first.isValid() && | ||||||||
| 6304 | ForceTargetInstructionCost.getNumOccurrences() > 0) | ||||||||
| 6305 | C.first = InstructionCost(ForceTargetInstructionCost); | ||||||||
| 6306 | |||||||||
| 6307 | // Keep a list of instructions with invalid costs. | ||||||||
| 6308 | if (Invalid && !C.first.isValid()) | ||||||||
| 6309 | Invalid->emplace_back(&I, VF); | ||||||||
| 6310 | |||||||||
| 6311 | BlockCost.first += C.first; | ||||||||
| 6312 | BlockCost.second |= C.second; | ||||||||
| 6313 | LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.firstdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " << VF << " For instruction: " << I << '\n'; } } while (false) | ||||||||
| 6314 | << " for VF " << VF << " For instruction: " << Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " << VF << " For instruction: " << I << '\n'; } } while (false) | ||||||||
| 6315 | << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found an estimated cost of " << C.first << " for VF " << VF << " For instruction: " << I << '\n'; } } while (false); | ||||||||
| 6316 | } | ||||||||
| 6317 | |||||||||
| 6318 | // If we are vectorizing a predicated block, it will have been | ||||||||
| 6319 | // if-converted. This means that the block's instructions (aside from | ||||||||
| 6320 | // stores and instructions that may divide by zero) will now be | ||||||||
| 6321 | // unconditionally executed. For the scalar case, we may not always execute | ||||||||
| 6322 | // the predicated block, if it is an if-else block. Thus, scale the block's | ||||||||
| 6323 | // cost by the probability of executing it. blockNeedsPredication from | ||||||||
| 6324 | // Legal is used so as to not include all blocks in tail folded loops. | ||||||||
| 6325 | if (VF.isScalar() && Legal->blockNeedsPredication(BB)) | ||||||||
| 6326 | BlockCost.first /= getReciprocalPredBlockProb(); | ||||||||
| 6327 | |||||||||
| 6328 | Cost.first += BlockCost.first; | ||||||||
| 6329 | Cost.second |= BlockCost.second; | ||||||||
| 6330 | } | ||||||||
| 6331 | |||||||||
| 6332 | return Cost; | ||||||||
| 6333 | } | ||||||||
| 6334 | |||||||||
| 6335 | /// Gets Address Access SCEV after verifying that the access pattern | ||||||||
| 6336 | /// is loop invariant except the induction variable dependence. | ||||||||
| 6337 | /// | ||||||||
| 6338 | /// This SCEV can be sent to the Target in order to estimate the address | ||||||||
| 6339 | /// calculation cost. | ||||||||
| 6340 | static const SCEV *getAddressAccessSCEV( | ||||||||
| 6341 | Value *Ptr, | ||||||||
| 6342 | LoopVectorizationLegality *Legal, | ||||||||
| 6343 | PredicatedScalarEvolution &PSE, | ||||||||
| 6344 | const Loop *TheLoop) { | ||||||||
| 6345 | |||||||||
| 6346 | auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); | ||||||||
| 6347 | if (!Gep) | ||||||||
| 6348 | return nullptr; | ||||||||
| 6349 | |||||||||
| 6350 | // We are looking for a gep with all loop invariant indices except for one | ||||||||
| 6351 | // which should be an induction variable. | ||||||||
| 6352 | auto SE = PSE.getSE(); | ||||||||
| 6353 | unsigned NumOperands = Gep->getNumOperands(); | ||||||||
| 6354 | for (unsigned i = 1; i < NumOperands; ++i) { | ||||||||
| 6355 | Value *Opd = Gep->getOperand(i); | ||||||||
| 6356 | if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && | ||||||||
| 6357 | !Legal->isInductionVariable(Opd)) | ||||||||
| 6358 | return nullptr; | ||||||||
| 6359 | } | ||||||||
| 6360 | |||||||||
| 6361 | // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. | ||||||||
| 6362 | return PSE.getSCEV(Ptr); | ||||||||
| 6363 | } | ||||||||
| 6364 | |||||||||
| 6365 | static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { | ||||||||
| 6366 | return Legal->hasStride(I->getOperand(0)) || | ||||||||
| 6367 | Legal->hasStride(I->getOperand(1)); | ||||||||
| 6368 | } | ||||||||
| 6369 | |||||||||
| 6370 | InstructionCost | ||||||||
| 6371 | LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, | ||||||||
| 6372 | ElementCount VF) { | ||||||||
| 6373 | assert(VF.isVector() &&(static_cast <bool> (VF.isVector() && "Scalarization cost of instruction implies vectorization." ) ? void (0) : __assert_fail ("VF.isVector() && \"Scalarization cost of instruction implies vectorization.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6374, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 6374 | "Scalarization cost of instruction implies vectorization.")(static_cast <bool> (VF.isVector() && "Scalarization cost of instruction implies vectorization." ) ? void (0) : __assert_fail ("VF.isVector() && \"Scalarization cost of instruction implies vectorization.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6374, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 6375 | if (VF.isScalable()) | ||||||||
| 6376 | return InstructionCost::getInvalid(); | ||||||||
| 6377 | |||||||||
| 6378 | Type *ValTy = getLoadStoreType(I); | ||||||||
| 6379 | auto SE = PSE.getSE(); | ||||||||
| 6380 | |||||||||
| 6381 | unsigned AS = getLoadStoreAddressSpace(I); | ||||||||
| 6382 | Value *Ptr = getLoadStorePointerOperand(I); | ||||||||
| 6383 | Type *PtrTy = ToVectorTy(Ptr->getType(), VF); | ||||||||
| 6384 | // NOTE: PtrTy is a vector to signal `TTI::getAddressComputationCost` | ||||||||
| 6385 | // that it is being called from this specific place. | ||||||||
| 6386 | |||||||||
| 6387 | // Figure out whether the access is strided and get the stride value | ||||||||
| 6388 | // if it's known in compile time | ||||||||
| 6389 | const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); | ||||||||
| 6390 | |||||||||
| 6391 | // Get the cost of the scalar memory instruction and address computation. | ||||||||
| 6392 | InstructionCost Cost = | ||||||||
| 6393 | VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); | ||||||||
| 6394 | |||||||||
| 6395 | // Don't pass *I here, since it is scalar but will actually be part of a | ||||||||
| 6396 | // vectorized loop where the user of it is a vectorized instruction. | ||||||||
| 6397 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; | ||||||||
| 6398 | const Align Alignment = getLoadStoreAlignment(I); | ||||||||
| 6399 | Cost += VF.getKnownMinValue() * TTI.getMemoryOpCost(I->getOpcode(), | ||||||||
| 6400 | ValTy->getScalarType(), | ||||||||
| 6401 | Alignment, AS, CostKind); | ||||||||
| 6402 | |||||||||
| 6403 | // Get the overhead of the extractelement and insertelement instructions | ||||||||
| 6404 | // we might create due to scalarization. | ||||||||
| 6405 | Cost += getScalarizationOverhead(I, VF, CostKind); | ||||||||
| 6406 | |||||||||
| 6407 | // If we have a predicated load/store, it will need extra i1 extracts and | ||||||||
| 6408 | // conditional branches, but may not be executed for each vector lane. Scale | ||||||||
| 6409 | // the cost by the probability of executing the predicated block. | ||||||||
| 6410 | if (isPredicatedInst(I)) { | ||||||||
| 6411 | Cost /= getReciprocalPredBlockProb(); | ||||||||
| 6412 | |||||||||
| 6413 | // Add the cost of an i1 extract and a branch | ||||||||
| 6414 | auto *Vec_i1Ty = | ||||||||
| 6415 | VectorType::get(IntegerType::getInt1Ty(ValTy->getContext()), VF); | ||||||||
| 6416 | Cost += TTI.getScalarizationOverhead( | ||||||||
| 6417 | Vec_i1Ty, APInt::getAllOnes(VF.getKnownMinValue()), | ||||||||
| 6418 | /*Insert=*/false, /*Extract=*/true, CostKind); | ||||||||
| 6419 | Cost += TTI.getCFInstrCost(Instruction::Br, CostKind); | ||||||||
| 6420 | |||||||||
| 6421 | if (useEmulatedMaskMemRefHack(I, VF)) | ||||||||
| 6422 | // Artificially setting to a high enough value to practically disable | ||||||||
| 6423 | // vectorization with such operations. | ||||||||
| 6424 | Cost = 3000000; | ||||||||
| 6425 | } | ||||||||
| 6426 | |||||||||
| 6427 | return Cost; | ||||||||
| 6428 | } | ||||||||
| 6429 | |||||||||
| 6430 | InstructionCost | ||||||||
| 6431 | LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, | ||||||||
| 6432 | ElementCount VF) { | ||||||||
| 6433 | Type *ValTy = getLoadStoreType(I); | ||||||||
| 6434 | auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); | ||||||||
| 6435 | Value *Ptr = getLoadStorePointerOperand(I); | ||||||||
| 6436 | unsigned AS = getLoadStoreAddressSpace(I); | ||||||||
| 6437 | int ConsecutiveStride = Legal->isConsecutivePtr(ValTy, Ptr); | ||||||||
| 6438 | enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; | ||||||||
| 6439 | |||||||||
| 6440 | assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride == -1) && "Stride should be 1 or -1 for consecutive memory access" ) ? void (0) : __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Stride should be 1 or -1 for consecutive memory access\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6441, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 6441 | "Stride should be 1 or -1 for consecutive memory access")(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride == -1) && "Stride should be 1 or -1 for consecutive memory access" ) ? void (0) : __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Stride should be 1 or -1 for consecutive memory access\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6441, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 6442 | const Align Alignment = getLoadStoreAlignment(I); | ||||||||
| 6443 | InstructionCost Cost = 0; | ||||||||
| 6444 | if (Legal->isMaskRequired(I)) { | ||||||||
| 6445 | Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, | ||||||||
| 6446 | CostKind); | ||||||||
| 6447 | } else { | ||||||||
| 6448 | TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0)); | ||||||||
| 6449 | Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, | ||||||||
| 6450 | CostKind, OpInfo, I); | ||||||||
| 6451 | } | ||||||||
| 6452 | |||||||||
| 6453 | bool Reverse = ConsecutiveStride < 0; | ||||||||
| 6454 | if (Reverse) | ||||||||
| 6455 | Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, | ||||||||
| 6456 | std::nullopt, CostKind, 0); | ||||||||
| 6457 | return Cost; | ||||||||
| 6458 | } | ||||||||
| 6459 | |||||||||
| 6460 | InstructionCost | ||||||||
| 6461 | LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, | ||||||||
| 6462 | ElementCount VF) { | ||||||||
| 6463 | assert(Legal->isUniformMemOp(*I))(static_cast <bool> (Legal->isUniformMemOp(*I)) ? void (0) : __assert_fail ("Legal->isUniformMemOp(*I)", "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp" , 6463, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 6464 | |||||||||
| 6465 | Type *ValTy = getLoadStoreType(I); | ||||||||
| 6466 | auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); | ||||||||
| 6467 | const Align Alignment = getLoadStoreAlignment(I); | ||||||||
| 6468 | unsigned AS = getLoadStoreAddressSpace(I); | ||||||||
| 6469 | enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; | ||||||||
| 6470 | if (isa<LoadInst>(I)) { | ||||||||
| 6471 | return TTI.getAddressComputationCost(ValTy) + | ||||||||
| 6472 | TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, | ||||||||
| 6473 | CostKind) + | ||||||||
| 6474 | TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); | ||||||||
| 6475 | } | ||||||||
| 6476 | StoreInst *SI = cast<StoreInst>(I); | ||||||||
| 6477 | |||||||||
| 6478 | bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); | ||||||||
| 6479 | return TTI.getAddressComputationCost(ValTy) + | ||||||||
| 6480 | TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, | ||||||||
| 6481 | CostKind) + | ||||||||
| 6482 | (isLoopInvariantStoreValue | ||||||||
| 6483 | ? 0 | ||||||||
| 6484 | : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, | ||||||||
| 6485 | CostKind, VF.getKnownMinValue() - 1)); | ||||||||
| 6486 | } | ||||||||
| 6487 | |||||||||
| 6488 | InstructionCost | ||||||||
| 6489 | LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, | ||||||||
| 6490 | ElementCount VF) { | ||||||||
| 6491 | Type *ValTy = getLoadStoreType(I); | ||||||||
| 6492 | auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); | ||||||||
| 6493 | const Align Alignment = getLoadStoreAlignment(I); | ||||||||
| 6494 | const Value *Ptr = getLoadStorePointerOperand(I); | ||||||||
| 6495 | |||||||||
| 6496 | return TTI.getAddressComputationCost(VectorTy) + | ||||||||
| 6497 | TTI.getGatherScatterOpCost( | ||||||||
| 6498 | I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, | ||||||||
| 6499 | TargetTransformInfo::TCK_RecipThroughput, I); | ||||||||
| 6500 | } | ||||||||
| 6501 | |||||||||
| 6502 | InstructionCost | ||||||||
| 6503 | LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, | ||||||||
| 6504 | ElementCount VF) { | ||||||||
| 6505 | // TODO: Once we have support for interleaving with scalable vectors | ||||||||
| 6506 | // we can calculate the cost properly here. | ||||||||
| 6507 | if (VF.isScalable()) | ||||||||
| 6508 | return InstructionCost::getInvalid(); | ||||||||
| 6509 | |||||||||
| 6510 | Type *ValTy = getLoadStoreType(I); | ||||||||
| 6511 | auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); | ||||||||
| 6512 | unsigned AS = getLoadStoreAddressSpace(I); | ||||||||
| 6513 | enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; | ||||||||
| 6514 | |||||||||
| 6515 | auto Group = getInterleavedAccessGroup(I); | ||||||||
| 6516 | assert(Group && "Fail to get an interleaved access group.")(static_cast <bool> (Group && "Fail to get an interleaved access group." ) ? void (0) : __assert_fail ("Group && \"Fail to get an interleaved access group.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6516, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 6517 | |||||||||
| 6518 | unsigned InterleaveFactor = Group->getFactor(); | ||||||||
| 6519 | auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); | ||||||||
| 6520 | |||||||||
| 6521 | // Holds the indices of existing members in the interleaved group. | ||||||||
| 6522 | SmallVector<unsigned, 4> Indices; | ||||||||
| 6523 | for (unsigned IF = 0; IF < InterleaveFactor; IF++) | ||||||||
| 6524 | if (Group->getMember(IF)) | ||||||||
| 6525 | Indices.push_back(IF); | ||||||||
| 6526 | |||||||||
| 6527 | // Calculate the cost of the whole interleaved group. | ||||||||
| 6528 | bool UseMaskForGaps = | ||||||||
| 6529 | (Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed()) || | ||||||||
| 6530 | (isa<StoreInst>(I) && (Group->getNumMembers() < Group->getFactor())); | ||||||||
| 6531 | InstructionCost Cost = TTI.getInterleavedMemoryOpCost( | ||||||||
| 6532 | I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), | ||||||||
| 6533 | AS, CostKind, Legal->isMaskRequired(I), UseMaskForGaps); | ||||||||
| 6534 | |||||||||
| 6535 | if (Group->isReverse()) { | ||||||||
| 6536 | // TODO: Add support for reversed masked interleaved access. | ||||||||
| 6537 | assert(!Legal->isMaskRequired(I) &&(static_cast <bool> (!Legal->isMaskRequired(I) && "Reverse masked interleaved access not supported.") ? void ( 0) : __assert_fail ("!Legal->isMaskRequired(I) && \"Reverse masked interleaved access not supported.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6538, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 6538 | "Reverse masked interleaved access not supported.")(static_cast <bool> (!Legal->isMaskRequired(I) && "Reverse masked interleaved access not supported.") ? void ( 0) : __assert_fail ("!Legal->isMaskRequired(I) && \"Reverse masked interleaved access not supported.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6538, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 6539 | Cost += Group->getNumMembers() * | ||||||||
| 6540 | TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, | ||||||||
| 6541 | std::nullopt, CostKind, 0); | ||||||||
| 6542 | } | ||||||||
| 6543 | return Cost; | ||||||||
| 6544 | } | ||||||||
| 6545 | |||||||||
| 6546 | std::optional<InstructionCost> | ||||||||
| 6547 | LoopVectorizationCostModel::getReductionPatternCost( | ||||||||
| 6548 | Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { | ||||||||
| 6549 | using namespace llvm::PatternMatch; | ||||||||
| 6550 | // Early exit for no inloop reductions | ||||||||
| 6551 | if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) | ||||||||
| 6552 | return std::nullopt; | ||||||||
| 6553 | auto *VectorTy = cast<VectorType>(Ty); | ||||||||
| 6554 | |||||||||
| 6555 | // We are looking for a pattern of, and finding the minimal acceptable cost: | ||||||||
| 6556 | // reduce(mul(ext(A), ext(B))) or | ||||||||
| 6557 | // reduce(mul(A, B)) or | ||||||||
| 6558 | // reduce(ext(A)) or | ||||||||
| 6559 | // reduce(A). | ||||||||
| 6560 | // The basic idea is that we walk down the tree to do that, finding the root | ||||||||
| 6561 | // reduction instruction in InLoopReductionImmediateChains. From there we find | ||||||||
| 6562 | // the pattern of mul/ext and test the cost of the entire pattern vs the cost | ||||||||
| 6563 | // of the components. If the reduction cost is lower then we return it for the | ||||||||
| 6564 | // reduction instruction and 0 for the other instructions in the pattern. If | ||||||||
| 6565 | // it is not we return an invalid cost specifying the orignal cost method | ||||||||
| 6566 | // should be used. | ||||||||
| 6567 | Instruction *RetI = I; | ||||||||
| 6568 | if (match(RetI, m_ZExtOrSExt(m_Value()))) { | ||||||||
| 6569 | if (!RetI->hasOneUser()) | ||||||||
| 6570 | return std::nullopt; | ||||||||
| 6571 | RetI = RetI->user_back(); | ||||||||
| 6572 | } | ||||||||
| 6573 | |||||||||
| 6574 | if (match(RetI, m_OneUse(m_Mul(m_Value(), m_Value()))) && | ||||||||
| 6575 | RetI->user_back()->getOpcode() == Instruction::Add) { | ||||||||
| 6576 | RetI = RetI->user_back(); | ||||||||
| 6577 | } | ||||||||
| 6578 | |||||||||
| 6579 | // Test if the found instruction is a reduction, and if not return an invalid | ||||||||
| 6580 | // cost specifying the parent to use the original cost modelling. | ||||||||
| 6581 | if (!InLoopReductionImmediateChains.count(RetI)) | ||||||||
| 6582 | return std::nullopt; | ||||||||
| 6583 | |||||||||
| 6584 | // Find the reduction this chain is a part of and calculate the basic cost of | ||||||||
| 6585 | // the reduction on its own. | ||||||||
| 6586 | Instruction *LastChain = InLoopReductionImmediateChains[RetI]; | ||||||||
| 6587 | Instruction *ReductionPhi = LastChain; | ||||||||
| 6588 | while (!isa<PHINode>(ReductionPhi)) | ||||||||
| 6589 | ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; | ||||||||
| 6590 | |||||||||
| 6591 | const RecurrenceDescriptor &RdxDesc = | ||||||||
| 6592 | Legal->getReductionVars().find(cast<PHINode>(ReductionPhi))->second; | ||||||||
| 6593 | |||||||||
| 6594 | InstructionCost BaseCost = TTI.getArithmeticReductionCost( | ||||||||
| 6595 | RdxDesc.getOpcode(), VectorTy, RdxDesc.getFastMathFlags(), CostKind); | ||||||||
| 6596 | |||||||||
| 6597 | // For a call to the llvm.fmuladd intrinsic we need to add the cost of a | ||||||||
| 6598 | // normal fmul instruction to the cost of the fadd reduction. | ||||||||
| 6599 | if (RdxDesc.getRecurrenceKind() == RecurKind::FMulAdd) | ||||||||
| 6600 | BaseCost += | ||||||||
| 6601 | TTI.getArithmeticInstrCost(Instruction::FMul, VectorTy, CostKind); | ||||||||
| 6602 | |||||||||
| 6603 | // If we're using ordered reductions then we can just return the base cost | ||||||||
| 6604 | // here, since getArithmeticReductionCost calculates the full ordered | ||||||||
| 6605 | // reduction cost when FP reassociation is not allowed. | ||||||||
| 6606 | if (useOrderedReductions(RdxDesc)) | ||||||||
| 6607 | return BaseCost; | ||||||||
| 6608 | |||||||||
| 6609 | // Get the operand that was not the reduction chain and match it to one of the | ||||||||
| 6610 | // patterns, returning the better cost if it is found. | ||||||||
| 6611 | Instruction *RedOp = RetI->getOperand(1) == LastChain | ||||||||
| 6612 | ? dyn_cast<Instruction>(RetI->getOperand(0)) | ||||||||
| 6613 | : dyn_cast<Instruction>(RetI->getOperand(1)); | ||||||||
| 6614 | |||||||||
| 6615 | VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); | ||||||||
| 6616 | |||||||||
| 6617 | Instruction *Op0, *Op1; | ||||||||
| 6618 | if (RedOp && RdxDesc.getOpcode() == Instruction::Add && | ||||||||
| 6619 | match(RedOp, | ||||||||
| 6620 | m_ZExtOrSExt(m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) && | ||||||||
| 6621 | match(Op0, m_ZExtOrSExt(m_Value())) && | ||||||||
| 6622 | Op0->getOpcode() == Op1->getOpcode() && | ||||||||
| 6623 | Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && | ||||||||
| 6624 | !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1) && | ||||||||
| 6625 | (Op0->getOpcode() == RedOp->getOpcode() || Op0 == Op1)) { | ||||||||
| 6626 | |||||||||
| 6627 | // Matched reduce.add(ext(mul(ext(A), ext(B))) | ||||||||
| 6628 | // Note that the extend opcodes need to all match, or if A==B they will have | ||||||||
| 6629 | // been converted to zext(mul(sext(A), sext(A))) as it is known positive, | ||||||||
| 6630 | // which is equally fine. | ||||||||
| 6631 | bool IsUnsigned = isa<ZExtInst>(Op0); | ||||||||
| 6632 | auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); | ||||||||
| 6633 | auto *MulType = VectorType::get(Op0->getType(), VectorTy); | ||||||||
| 6634 | |||||||||
| 6635 | InstructionCost ExtCost = | ||||||||
| 6636 | TTI.getCastInstrCost(Op0->getOpcode(), MulType, ExtType, | ||||||||
| 6637 | TTI::CastContextHint::None, CostKind, Op0); | ||||||||
| 6638 | InstructionCost MulCost = | ||||||||
| 6639 | TTI.getArithmeticInstrCost(Instruction::Mul, MulType, CostKind); | ||||||||
| 6640 | InstructionCost Ext2Cost = | ||||||||
| 6641 | TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, MulType, | ||||||||
| 6642 | TTI::CastContextHint::None, CostKind, RedOp); | ||||||||
| 6643 | |||||||||
| 6644 | InstructionCost RedCost = TTI.getMulAccReductionCost( | ||||||||
| 6645 | IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind); | ||||||||
| 6646 | |||||||||
| 6647 | if (RedCost.isValid() && | ||||||||
| 6648 | RedCost < ExtCost * 2 + MulCost + Ext2Cost + BaseCost) | ||||||||
| 6649 | return I == RetI ? RedCost : 0; | ||||||||
| 6650 | } else if (RedOp && match(RedOp, m_ZExtOrSExt(m_Value())) && | ||||||||
| 6651 | !TheLoop->isLoopInvariant(RedOp)) { | ||||||||
| 6652 | // Matched reduce(ext(A)) | ||||||||
| 6653 | bool IsUnsigned = isa<ZExtInst>(RedOp); | ||||||||
| 6654 | auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); | ||||||||
| 6655 | InstructionCost RedCost = TTI.getExtendedReductionCost( | ||||||||
| 6656 | RdxDesc.getOpcode(), IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, | ||||||||
| 6657 | RdxDesc.getFastMathFlags(), CostKind); | ||||||||
| 6658 | |||||||||
| 6659 | InstructionCost ExtCost = | ||||||||
| 6660 | TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, | ||||||||
| 6661 | TTI::CastContextHint::None, CostKind, RedOp); | ||||||||
| 6662 | if (RedCost.isValid() && RedCost < BaseCost + ExtCost) | ||||||||
| 6663 | return I == RetI ? RedCost : 0; | ||||||||
| 6664 | } else if (RedOp && RdxDesc.getOpcode() == Instruction::Add && | ||||||||
| 6665 | match(RedOp, m_Mul(m_Instruction(Op0), m_Instruction(Op1)))) { | ||||||||
| 6666 | if (match(Op0, m_ZExtOrSExt(m_Value())) && | ||||||||
| 6667 | Op0->getOpcode() == Op1->getOpcode() && | ||||||||
| 6668 | !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { | ||||||||
| 6669 | bool IsUnsigned = isa<ZExtInst>(Op0); | ||||||||
| 6670 | Type *Op0Ty = Op0->getOperand(0)->getType(); | ||||||||
| 6671 | Type *Op1Ty = Op1->getOperand(0)->getType(); | ||||||||
| 6672 | Type *LargestOpTy = | ||||||||
| 6673 | Op0Ty->getIntegerBitWidth() < Op1Ty->getIntegerBitWidth() ? Op1Ty | ||||||||
| 6674 | : Op0Ty; | ||||||||
| 6675 | auto *ExtType = VectorType::get(LargestOpTy, VectorTy); | ||||||||
| 6676 | |||||||||
| 6677 | // Matched reduce.add(mul(ext(A), ext(B))), where the two ext may be of | ||||||||
| 6678 | // different sizes. We take the largest type as the ext to reduce, and add | ||||||||
| 6679 | // the remaining cost as, for example reduce(mul(ext(ext(A)), ext(B))). | ||||||||
| 6680 | InstructionCost ExtCost0 = TTI.getCastInstrCost( | ||||||||
| 6681 | Op0->getOpcode(), VectorTy, VectorType::get(Op0Ty, VectorTy), | ||||||||
| 6682 | TTI::CastContextHint::None, CostKind, Op0); | ||||||||
| 6683 | InstructionCost ExtCost1 = TTI.getCastInstrCost( | ||||||||
| 6684 | Op1->getOpcode(), VectorTy, VectorType::get(Op1Ty, VectorTy), | ||||||||
| 6685 | TTI::CastContextHint::None, CostKind, Op1); | ||||||||
| 6686 | InstructionCost MulCost = | ||||||||
| 6687 | TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); | ||||||||
| 6688 | |||||||||
| 6689 | InstructionCost RedCost = TTI.getMulAccReductionCost( | ||||||||
| 6690 | IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, CostKind); | ||||||||
| 6691 | InstructionCost ExtraExtCost = 0; | ||||||||
| 6692 | if (Op0Ty != LargestOpTy || Op1Ty != LargestOpTy) { | ||||||||
| 6693 | Instruction *ExtraExtOp = (Op0Ty != LargestOpTy) ? Op0 : Op1; | ||||||||
| 6694 | ExtraExtCost = TTI.getCastInstrCost( | ||||||||
| 6695 | ExtraExtOp->getOpcode(), ExtType, | ||||||||
| 6696 | VectorType::get(ExtraExtOp->getOperand(0)->getType(), VectorTy), | ||||||||
| 6697 | TTI::CastContextHint::None, CostKind, ExtraExtOp); | ||||||||
| 6698 | } | ||||||||
| 6699 | |||||||||
| 6700 | if (RedCost.isValid() && | ||||||||
| 6701 | (RedCost + ExtraExtCost) < (ExtCost0 + ExtCost1 + MulCost + BaseCost)) | ||||||||
| 6702 | return I == RetI ? RedCost : 0; | ||||||||
| 6703 | } else if (!match(I, m_ZExtOrSExt(m_Value()))) { | ||||||||
| 6704 | // Matched reduce.add(mul()) | ||||||||
| 6705 | InstructionCost MulCost = | ||||||||
| 6706 | TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); | ||||||||
| 6707 | |||||||||
| 6708 | InstructionCost RedCost = TTI.getMulAccReductionCost( | ||||||||
| 6709 | true, RdxDesc.getRecurrenceType(), VectorTy, CostKind); | ||||||||
| 6710 | |||||||||
| 6711 | if (RedCost.isValid() && RedCost < MulCost + BaseCost) | ||||||||
| 6712 | return I == RetI ? RedCost : 0; | ||||||||
| 6713 | } | ||||||||
| 6714 | } | ||||||||
| 6715 | |||||||||
| 6716 | return I == RetI ? std::optional<InstructionCost>(BaseCost) : std::nullopt; | ||||||||
| 6717 | } | ||||||||
| 6718 | |||||||||
| 6719 | InstructionCost | ||||||||
| 6720 | LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, | ||||||||
| 6721 | ElementCount VF) { | ||||||||
| 6722 | // Calculate scalar cost only. Vectorization cost should be ready at this | ||||||||
| 6723 | // moment. | ||||||||
| 6724 | if (VF.isScalar()) { | ||||||||
| 6725 | Type *ValTy = getLoadStoreType(I); | ||||||||
| 6726 | const Align Alignment = getLoadStoreAlignment(I); | ||||||||
| 6727 | unsigned AS = getLoadStoreAddressSpace(I); | ||||||||
| 6728 | |||||||||
| 6729 | TTI::OperandValueInfo OpInfo = TTI::getOperandInfo(I->getOperand(0)); | ||||||||
| 6730 | return TTI.getAddressComputationCost(ValTy) + | ||||||||
| 6731 | TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, | ||||||||
| 6732 | TTI::TCK_RecipThroughput, OpInfo, I); | ||||||||
| 6733 | } | ||||||||
| 6734 | return getWideningCost(I, VF); | ||||||||
| 6735 | } | ||||||||
| 6736 | |||||||||
| 6737 | LoopVectorizationCostModel::VectorizationCostTy | ||||||||
| 6738 | LoopVectorizationCostModel::getInstructionCost(Instruction *I, | ||||||||
| 6739 | ElementCount VF) { | ||||||||
| 6740 | // If we know that this instruction will remain uniform, check the cost of | ||||||||
| 6741 | // the scalar version. | ||||||||
| 6742 | if (isUniformAfterVectorization(I, VF)) | ||||||||
| 6743 | VF = ElementCount::getFixed(1); | ||||||||
| 6744 | |||||||||
| 6745 | if (VF.isVector() && isProfitableToScalarize(I, VF)) | ||||||||
| 6746 | return VectorizationCostTy(InstsToScalarize[VF][I], false); | ||||||||
| 6747 | |||||||||
| 6748 | // Forced scalars do not have any scalarization overhead. | ||||||||
| 6749 | auto ForcedScalar = ForcedScalars.find(VF); | ||||||||
| 6750 | if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { | ||||||||
| 6751 | auto InstSet = ForcedScalar->second; | ||||||||
| 6752 | if (InstSet.count(I)) | ||||||||
| 6753 | return VectorizationCostTy( | ||||||||
| 6754 | (getInstructionCost(I, ElementCount::getFixed(1)).first * | ||||||||
| 6755 | VF.getKnownMinValue()), | ||||||||
| 6756 | false); | ||||||||
| 6757 | } | ||||||||
| 6758 | |||||||||
| 6759 | Type *VectorTy; | ||||||||
| 6760 | InstructionCost C = getInstructionCost(I, VF, VectorTy); | ||||||||
| 6761 | |||||||||
| 6762 | bool TypeNotScalarized = false; | ||||||||
| 6763 | if (VF.isVector() && VectorTy->isVectorTy()) { | ||||||||
| 6764 | if (unsigned NumParts = TTI.getNumberOfParts(VectorTy)) { | ||||||||
| 6765 | if (VF.isScalable()) | ||||||||
| 6766 | // <vscale x 1 x iN> is assumed to be profitable over iN because | ||||||||
| 6767 | // scalable registers are a distinct register class from scalar ones. | ||||||||
| 6768 | // If we ever find a target which wants to lower scalable vectors | ||||||||
| 6769 | // back to scalars, we'll need to update this code to explicitly | ||||||||
| 6770 | // ask TTI about the register class uses for each part. | ||||||||
| 6771 | TypeNotScalarized = NumParts <= VF.getKnownMinValue(); | ||||||||
| 6772 | else | ||||||||
| 6773 | TypeNotScalarized = NumParts < VF.getKnownMinValue(); | ||||||||
| 6774 | } else | ||||||||
| 6775 | C = InstructionCost::getInvalid(); | ||||||||
| 6776 | } | ||||||||
| 6777 | return VectorizationCostTy(C, TypeNotScalarized); | ||||||||
| 6778 | } | ||||||||
| 6779 | |||||||||
| 6780 | InstructionCost LoopVectorizationCostModel::getScalarizationOverhead( | ||||||||
| 6781 | Instruction *I, ElementCount VF, TTI::TargetCostKind CostKind) const { | ||||||||
| 6782 | |||||||||
| 6783 | // There is no mechanism yet to create a scalable scalarization loop, | ||||||||
| 6784 | // so this is currently Invalid. | ||||||||
| 6785 | if (VF.isScalable()) | ||||||||
| 6786 | return InstructionCost::getInvalid(); | ||||||||
| 6787 | |||||||||
| 6788 | if (VF.isScalar()) | ||||||||
| 6789 | return 0; | ||||||||
| 6790 | |||||||||
| 6791 | InstructionCost Cost = 0; | ||||||||
| 6792 | Type *RetTy = ToVectorTy(I->getType(), VF); | ||||||||
| 6793 | if (!RetTy->isVoidTy() && | ||||||||
| 6794 | (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) | ||||||||
| 6795 | Cost += TTI.getScalarizationOverhead( | ||||||||
| 6796 | cast<VectorType>(RetTy), APInt::getAllOnes(VF.getKnownMinValue()), | ||||||||
| 6797 | /*Insert*/ true, | ||||||||
| 6798 | /*Extract*/ false, CostKind); | ||||||||
| 6799 | |||||||||
| 6800 | // Some targets keep addresses scalar. | ||||||||
| 6801 | if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) | ||||||||
| 6802 | return Cost; | ||||||||
| 6803 | |||||||||
| 6804 | // Some targets support efficient element stores. | ||||||||
| 6805 | if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) | ||||||||
| 6806 | return Cost; | ||||||||
| 6807 | |||||||||
| 6808 | // Collect operands to consider. | ||||||||
| 6809 | CallInst *CI = dyn_cast<CallInst>(I); | ||||||||
| 6810 | Instruction::op_range Ops = CI ? CI->args() : I->operands(); | ||||||||
| 6811 | |||||||||
| 6812 | // Skip operands that do not require extraction/scalarization and do not incur | ||||||||
| 6813 | // any overhead. | ||||||||
| 6814 | SmallVector<Type *> Tys; | ||||||||
| 6815 | for (auto *V : filterExtractingOperands(Ops, VF)) | ||||||||
| 6816 | Tys.push_back(MaybeVectorizeType(V->getType(), VF)); | ||||||||
| 6817 | return Cost + TTI.getOperandsScalarizationOverhead( | ||||||||
| 6818 | filterExtractingOperands(Ops, VF), Tys, CostKind); | ||||||||
| 6819 | } | ||||||||
| 6820 | |||||||||
| 6821 | void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { | ||||||||
| 6822 | if (VF.isScalar()) | ||||||||
| 6823 | return; | ||||||||
| 6824 | NumPredStores = 0; | ||||||||
| 6825 | for (BasicBlock *BB : TheLoop->blocks()) { | ||||||||
| 6826 | // For each instruction in the old loop. | ||||||||
| 6827 | for (Instruction &I : *BB) { | ||||||||
| 6828 | Value *Ptr = getLoadStorePointerOperand(&I); | ||||||||
| 6829 | if (!Ptr) | ||||||||
| 6830 | continue; | ||||||||
| 6831 | |||||||||
| 6832 | // TODO: We should generate better code and update the cost model for | ||||||||
| 6833 | // predicated uniform stores. Today they are treated as any other | ||||||||
| 6834 | // predicated store (see added test cases in | ||||||||
| 6835 | // invariant-store-vectorization.ll). | ||||||||
| 6836 | if (isa<StoreInst>(&I) && isScalarWithPredication(&I, VF)) | ||||||||
| 6837 | NumPredStores++; | ||||||||
| 6838 | |||||||||
| 6839 | if (Legal->isUniformMemOp(I)) { | ||||||||
| 6840 | auto isLegalToScalarize = [&]() { | ||||||||
| 6841 | if (!VF.isScalable()) | ||||||||
| 6842 | // Scalarization of fixed length vectors "just works". | ||||||||
| 6843 | return true; | ||||||||
| 6844 | |||||||||
| 6845 | // We have dedicated lowering for unpredicated uniform loads and | ||||||||
| 6846 | // stores. Note that even with tail folding we know that at least | ||||||||
| 6847 | // one lane is active (i.e. generalized predication is not possible | ||||||||
| 6848 | // here), and the logic below depends on this fact. | ||||||||
| 6849 | if (!foldTailByMasking()) | ||||||||
| 6850 | return true; | ||||||||
| 6851 | |||||||||
| 6852 | // For scalable vectors, a uniform memop load is always | ||||||||
| 6853 | // uniform-by-parts and we know how to scalarize that. | ||||||||
| 6854 | if (isa<LoadInst>(I)) | ||||||||
| 6855 | return true; | ||||||||
| 6856 | |||||||||
| 6857 | // A uniform store isn't neccessarily uniform-by-part | ||||||||
| 6858 | // and we can't assume scalarization. | ||||||||
| 6859 | auto &SI = cast<StoreInst>(I); | ||||||||
| 6860 | return TheLoop->isLoopInvariant(SI.getValueOperand()); | ||||||||
| 6861 | }; | ||||||||
| 6862 | |||||||||
| 6863 | const InstructionCost GatherScatterCost = | ||||||||
| 6864 | isLegalGatherOrScatter(&I, VF) ? | ||||||||
| 6865 | getGatherScatterCost(&I, VF) : InstructionCost::getInvalid(); | ||||||||
| 6866 | |||||||||
| 6867 | // Load: Scalar load + broadcast | ||||||||
| 6868 | // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract | ||||||||
| 6869 | // FIXME: This cost is a significant under-estimate for tail folded | ||||||||
| 6870 | // memory ops. | ||||||||
| 6871 | const InstructionCost ScalarizationCost = isLegalToScalarize() ? | ||||||||
| 6872 | getUniformMemOpCost(&I, VF) : InstructionCost::getInvalid(); | ||||||||
| 6873 | |||||||||
| 6874 | // Choose better solution for the current VF, Note that Invalid | ||||||||
| 6875 | // costs compare as maximumal large. If both are invalid, we get | ||||||||
| 6876 | // scalable invalid which signals a failure and a vectorization abort. | ||||||||
| 6877 | if (GatherScatterCost < ScalarizationCost) | ||||||||
| 6878 | setWideningDecision(&I, VF, CM_GatherScatter, GatherScatterCost); | ||||||||
| 6879 | else | ||||||||
| 6880 | setWideningDecision(&I, VF, CM_Scalarize, ScalarizationCost); | ||||||||
| 6881 | continue; | ||||||||
| 6882 | } | ||||||||
| 6883 | |||||||||
| 6884 | // We assume that widening is the best solution when possible. | ||||||||
| 6885 | if (memoryInstructionCanBeWidened(&I, VF)) { | ||||||||
| 6886 | InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); | ||||||||
| 6887 | int ConsecutiveStride = Legal->isConsecutivePtr( | ||||||||
| 6888 | getLoadStoreType(&I), getLoadStorePointerOperand(&I)); | ||||||||
| 6889 | assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) &&(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride == -1) && "Expected consecutive stride.") ? void (0) : __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Expected consecutive stride.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6890, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 6890 | "Expected consecutive stride.")(static_cast <bool> ((ConsecutiveStride == 1 || ConsecutiveStride == -1) && "Expected consecutive stride.") ? void (0) : __assert_fail ("(ConsecutiveStride == 1 || ConsecutiveStride == -1) && \"Expected consecutive stride.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6890, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 6891 | InstWidening Decision = | ||||||||
| 6892 | ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; | ||||||||
| 6893 | setWideningDecision(&I, VF, Decision, Cost); | ||||||||
| 6894 | continue; | ||||||||
| 6895 | } | ||||||||
| 6896 | |||||||||
| 6897 | // Choose between Interleaving, Gather/Scatter or Scalarization. | ||||||||
| 6898 | InstructionCost InterleaveCost = InstructionCost::getInvalid(); | ||||||||
| 6899 | unsigned NumAccesses = 1; | ||||||||
| 6900 | if (isAccessInterleaved(&I)) { | ||||||||
| 6901 | auto Group = getInterleavedAccessGroup(&I); | ||||||||
| 6902 | assert(Group && "Fail to get an interleaved access group.")(static_cast <bool> (Group && "Fail to get an interleaved access group." ) ? void (0) : __assert_fail ("Group && \"Fail to get an interleaved access group.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 6902, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 6903 | |||||||||
| 6904 | // Make one decision for the whole group. | ||||||||
| 6905 | if (getWideningDecision(&I, VF) != CM_Unknown) | ||||||||
| 6906 | continue; | ||||||||
| 6907 | |||||||||
| 6908 | NumAccesses = Group->getNumMembers(); | ||||||||
| 6909 | if (interleavedAccessCanBeWidened(&I, VF)) | ||||||||
| 6910 | InterleaveCost = getInterleaveGroupCost(&I, VF); | ||||||||
| 6911 | } | ||||||||
| 6912 | |||||||||
| 6913 | InstructionCost GatherScatterCost = | ||||||||
| 6914 | isLegalGatherOrScatter(&I, VF) | ||||||||
| 6915 | ? getGatherScatterCost(&I, VF) * NumAccesses | ||||||||
| 6916 | : InstructionCost::getInvalid(); | ||||||||
| 6917 | |||||||||
| 6918 | InstructionCost ScalarizationCost = | ||||||||
| 6919 | getMemInstScalarizationCost(&I, VF) * NumAccesses; | ||||||||
| 6920 | |||||||||
| 6921 | // Choose better solution for the current VF, | ||||||||
| 6922 | // write down this decision and use it during vectorization. | ||||||||
| 6923 | InstructionCost Cost; | ||||||||
| 6924 | InstWidening Decision; | ||||||||
| 6925 | if (InterleaveCost <= GatherScatterCost && | ||||||||
| 6926 | InterleaveCost < ScalarizationCost) { | ||||||||
| 6927 | Decision = CM_Interleave; | ||||||||
| 6928 | Cost = InterleaveCost; | ||||||||
| 6929 | } else if (GatherScatterCost < ScalarizationCost) { | ||||||||
| 6930 | Decision = CM_GatherScatter; | ||||||||
| 6931 | Cost = GatherScatterCost; | ||||||||
| 6932 | } else { | ||||||||
| 6933 | Decision = CM_Scalarize; | ||||||||
| 6934 | Cost = ScalarizationCost; | ||||||||
| 6935 | } | ||||||||
| 6936 | // If the instructions belongs to an interleave group, the whole group | ||||||||
| 6937 | // receives the same decision. The whole group receives the cost, but | ||||||||
| 6938 | // the cost will actually be assigned to one instruction. | ||||||||
| 6939 | if (auto Group = getInterleavedAccessGroup(&I)) | ||||||||
| 6940 | setWideningDecision(Group, VF, Decision, Cost); | ||||||||
| 6941 | else | ||||||||
| 6942 | setWideningDecision(&I, VF, Decision, Cost); | ||||||||
| 6943 | } | ||||||||
| 6944 | } | ||||||||
| 6945 | |||||||||
| 6946 | // Make sure that any load of address and any other address computation | ||||||||
| 6947 | // remains scalar unless there is gather/scatter support. This avoids | ||||||||
| 6948 | // inevitable extracts into address registers, and also has the benefit of | ||||||||
| 6949 | // activating LSR more, since that pass can't optimize vectorized | ||||||||
| 6950 | // addresses. | ||||||||
| 6951 | if (TTI.prefersVectorizedAddressing()) | ||||||||
| 6952 | return; | ||||||||
| 6953 | |||||||||
| 6954 | // Start with all scalar pointer uses. | ||||||||
| 6955 | SmallPtrSet<Instruction *, 8> AddrDefs; | ||||||||
| 6956 | for (BasicBlock *BB : TheLoop->blocks()) | ||||||||
| 6957 | for (Instruction &I : *BB) { | ||||||||
| 6958 | Instruction *PtrDef = | ||||||||
| 6959 | dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); | ||||||||
| 6960 | if (PtrDef && TheLoop->contains(PtrDef) && | ||||||||
| 6961 | getWideningDecision(&I, VF) != CM_GatherScatter) | ||||||||
| 6962 | AddrDefs.insert(PtrDef); | ||||||||
| 6963 | } | ||||||||
| 6964 | |||||||||
| 6965 | // Add all instructions used to generate the addresses. | ||||||||
| 6966 | SmallVector<Instruction *, 4> Worklist; | ||||||||
| 6967 | append_range(Worklist, AddrDefs); | ||||||||
| 6968 | while (!Worklist.empty()) { | ||||||||
| 6969 | Instruction *I = Worklist.pop_back_val(); | ||||||||
| 6970 | for (auto &Op : I->operands()) | ||||||||
| 6971 | if (auto *InstOp = dyn_cast<Instruction>(Op)) | ||||||||
| 6972 | if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && | ||||||||
| 6973 | AddrDefs.insert(InstOp).second) | ||||||||
| 6974 | Worklist.push_back(InstOp); | ||||||||
| 6975 | } | ||||||||
| 6976 | |||||||||
| 6977 | for (auto *I : AddrDefs) { | ||||||||
| 6978 | if (isa<LoadInst>(I)) { | ||||||||
| 6979 | // Setting the desired widening decision should ideally be handled in | ||||||||
| 6980 | // by cost functions, but since this involves the task of finding out | ||||||||
| 6981 | // if the loaded register is involved in an address computation, it is | ||||||||
| 6982 | // instead changed here when we know this is the case. | ||||||||
| 6983 | InstWidening Decision = getWideningDecision(I, VF); | ||||||||
| 6984 | if (Decision == CM_Widen || Decision == CM_Widen_Reverse) | ||||||||
| 6985 | // Scalarize a widened load of address. | ||||||||
| 6986 | setWideningDecision( | ||||||||
| 6987 | I, VF, CM_Scalarize, | ||||||||
| 6988 | (VF.getKnownMinValue() * | ||||||||
| 6989 | getMemoryInstructionCost(I, ElementCount::getFixed(1)))); | ||||||||
| 6990 | else if (auto Group = getInterleavedAccessGroup(I)) { | ||||||||
| 6991 | // Scalarize an interleave group of address loads. | ||||||||
| 6992 | for (unsigned I = 0; I < Group->getFactor(); ++I) { | ||||||||
| 6993 | if (Instruction *Member = Group->getMember(I)) | ||||||||
| 6994 | setWideningDecision( | ||||||||
| 6995 | Member, VF, CM_Scalarize, | ||||||||
| 6996 | (VF.getKnownMinValue() * | ||||||||
| 6997 | getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); | ||||||||
| 6998 | } | ||||||||
| 6999 | } | ||||||||
| 7000 | } else | ||||||||
| 7001 | // Make sure I gets scalarized and a cost estimate without | ||||||||
| 7002 | // scalarization overhead. | ||||||||
| 7003 | ForcedScalars[VF].insert(I); | ||||||||
| 7004 | } | ||||||||
| 7005 | } | ||||||||
| 7006 | |||||||||
| 7007 | InstructionCost | ||||||||
| 7008 | LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, | ||||||||
| 7009 | Type *&VectorTy) { | ||||||||
| 7010 | Type *RetTy = I->getType(); | ||||||||
| 7011 | if (canTruncateToMinimalBitwidth(I, VF)) | ||||||||
| 7012 | RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); | ||||||||
| 7013 | auto SE = PSE.getSE(); | ||||||||
| 7014 | TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; | ||||||||
| 7015 | |||||||||
| 7016 | auto hasSingleCopyAfterVectorization = [this](Instruction *I, | ||||||||
| 7017 | ElementCount VF) -> bool { | ||||||||
| 7018 | if (VF.isScalar()) | ||||||||
| 7019 | return true; | ||||||||
| 7020 | |||||||||
| 7021 | auto Scalarized = InstsToScalarize.find(VF); | ||||||||
| 7022 | assert(Scalarized != InstsToScalarize.end() &&(static_cast <bool> (Scalarized != InstsToScalarize.end () && "VF not yet analyzed for scalarization profitability" ) ? void (0) : __assert_fail ("Scalarized != InstsToScalarize.end() && \"VF not yet analyzed for scalarization profitability\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7023, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7023 | "VF not yet analyzed for scalarization profitability")(static_cast <bool> (Scalarized != InstsToScalarize.end () && "VF not yet analyzed for scalarization profitability" ) ? void (0) : __assert_fail ("Scalarized != InstsToScalarize.end() && \"VF not yet analyzed for scalarization profitability\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7023, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7024 | return !Scalarized->second.count(I) && | ||||||||
| 7025 | llvm::all_of(I->users(), [&](User *U) { | ||||||||
| 7026 | auto *UI = cast<Instruction>(U); | ||||||||
| 7027 | return !Scalarized->second.count(UI); | ||||||||
| 7028 | }); | ||||||||
| 7029 | }; | ||||||||
| 7030 | (void) hasSingleCopyAfterVectorization; | ||||||||
| 7031 | |||||||||
| 7032 | if (isScalarAfterVectorization(I, VF)) { | ||||||||
| 7033 | // With the exception of GEPs and PHIs, after scalarization there should | ||||||||
| 7034 | // only be one copy of the instruction generated in the loop. This is | ||||||||
| 7035 | // because the VF is either 1, or any instructions that need scalarizing | ||||||||
| 7036 | // have already been dealt with by the the time we get here. As a result, | ||||||||
| 7037 | // it means we don't have to multiply the instruction cost by VF. | ||||||||
| 7038 | assert(I->getOpcode() == Instruction::GetElementPtr ||(static_cast <bool> (I->getOpcode() == Instruction:: GetElementPtr || I->getOpcode() == Instruction::PHI || (I-> getOpcode() == Instruction::BitCast && I->getType( )->isPointerTy()) || hasSingleCopyAfterVectorization(I, VF )) ? void (0) : __assert_fail ("I->getOpcode() == Instruction::GetElementPtr || I->getOpcode() == Instruction::PHI || (I->getOpcode() == Instruction::BitCast && I->getType()->isPointerTy()) || hasSingleCopyAfterVectorization(I, VF)" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7042, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7039 | I->getOpcode() == Instruction::PHI ||(static_cast <bool> (I->getOpcode() == Instruction:: GetElementPtr || I->getOpcode() == Instruction::PHI || (I-> getOpcode() == Instruction::BitCast && I->getType( )->isPointerTy()) || hasSingleCopyAfterVectorization(I, VF )) ? void (0) : __assert_fail ("I->getOpcode() == Instruction::GetElementPtr || I->getOpcode() == Instruction::PHI || (I->getOpcode() == Instruction::BitCast && I->getType()->isPointerTy()) || hasSingleCopyAfterVectorization(I, VF)" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7042, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7040 | (I->getOpcode() == Instruction::BitCast &&(static_cast <bool> (I->getOpcode() == Instruction:: GetElementPtr || I->getOpcode() == Instruction::PHI || (I-> getOpcode() == Instruction::BitCast && I->getType( )->isPointerTy()) || hasSingleCopyAfterVectorization(I, VF )) ? void (0) : __assert_fail ("I->getOpcode() == Instruction::GetElementPtr || I->getOpcode() == Instruction::PHI || (I->getOpcode() == Instruction::BitCast && I->getType()->isPointerTy()) || hasSingleCopyAfterVectorization(I, VF)" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7042, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7041 | I->getType()->isPointerTy()) ||(static_cast <bool> (I->getOpcode() == Instruction:: GetElementPtr || I->getOpcode() == Instruction::PHI || (I-> getOpcode() == Instruction::BitCast && I->getType( )->isPointerTy()) || hasSingleCopyAfterVectorization(I, VF )) ? void (0) : __assert_fail ("I->getOpcode() == Instruction::GetElementPtr || I->getOpcode() == Instruction::PHI || (I->getOpcode() == Instruction::BitCast && I->getType()->isPointerTy()) || hasSingleCopyAfterVectorization(I, VF)" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7042, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7042 | hasSingleCopyAfterVectorization(I, VF))(static_cast <bool> (I->getOpcode() == Instruction:: GetElementPtr || I->getOpcode() == Instruction::PHI || (I-> getOpcode() == Instruction::BitCast && I->getType( )->isPointerTy()) || hasSingleCopyAfterVectorization(I, VF )) ? void (0) : __assert_fail ("I->getOpcode() == Instruction::GetElementPtr || I->getOpcode() == Instruction::PHI || (I->getOpcode() == Instruction::BitCast && I->getType()->isPointerTy()) || hasSingleCopyAfterVectorization(I, VF)" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7042, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7043 | VectorTy = RetTy; | ||||||||
| 7044 | } else | ||||||||
| 7045 | VectorTy = ToVectorTy(RetTy, VF); | ||||||||
| 7046 | |||||||||
| 7047 | // TODO: We need to estimate the cost of intrinsic calls. | ||||||||
| 7048 | switch (I->getOpcode()) { | ||||||||
| 7049 | case Instruction::GetElementPtr: | ||||||||
| 7050 | // We mark this instruction as zero-cost because the cost of GEPs in | ||||||||
| 7051 | // vectorized code depends on whether the corresponding memory instruction | ||||||||
| 7052 | // is scalarized or not. Therefore, we handle GEPs with the memory | ||||||||
| 7053 | // instruction cost. | ||||||||
| 7054 | return 0; | ||||||||
| 7055 | case Instruction::Br: { | ||||||||
| 7056 | // In cases of scalarized and predicated instructions, there will be VF | ||||||||
| 7057 | // predicated blocks in the vectorized loop. Each branch around these | ||||||||
| 7058 | // blocks requires also an extract of its vector compare i1 element. | ||||||||
| 7059 | bool ScalarPredicatedBB = false; | ||||||||
| 7060 | BranchInst *BI = cast<BranchInst>(I); | ||||||||
| 7061 | if (VF.isVector() && BI->isConditional() && | ||||||||
| 7062 | (PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(0)) || | ||||||||
| 7063 | PredicatedBBsAfterVectorization[VF].count(BI->getSuccessor(1)))) | ||||||||
| 7064 | ScalarPredicatedBB = true; | ||||||||
| 7065 | |||||||||
| 7066 | if (ScalarPredicatedBB) { | ||||||||
| 7067 | // Not possible to scalarize scalable vector with predicated instructions. | ||||||||
| 7068 | if (VF.isScalable()) | ||||||||
| 7069 | return InstructionCost::getInvalid(); | ||||||||
| 7070 | // Return cost for branches around scalarized and predicated blocks. | ||||||||
| 7071 | auto *Vec_i1Ty = | ||||||||
| 7072 | VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); | ||||||||
| 7073 | return ( | ||||||||
| 7074 | TTI.getScalarizationOverhead( | ||||||||
| 7075 | Vec_i1Ty, APInt::getAllOnes(VF.getFixedValue()), | ||||||||
| 7076 | /*Insert*/ false, /*Extract*/ true, CostKind) + | ||||||||
| 7077 | (TTI.getCFInstrCost(Instruction::Br, CostKind) * VF.getFixedValue())); | ||||||||
| 7078 | } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) | ||||||||
| 7079 | // The back-edge branch will remain, as will all scalar branches. | ||||||||
| 7080 | return TTI.getCFInstrCost(Instruction::Br, CostKind); | ||||||||
| 7081 | else | ||||||||
| 7082 | // This branch will be eliminated by if-conversion. | ||||||||
| 7083 | return 0; | ||||||||
| 7084 | // Note: We currently assume zero cost for an unconditional branch inside | ||||||||
| 7085 | // a predicated block since it will become a fall-through, although we | ||||||||
| 7086 | // may decide in the future to call TTI for all branches. | ||||||||
| 7087 | } | ||||||||
| 7088 | case Instruction::PHI: { | ||||||||
| 7089 | auto *Phi = cast<PHINode>(I); | ||||||||
| 7090 | |||||||||
| 7091 | // First-order recurrences are replaced by vector shuffles inside the loop. | ||||||||
| 7092 | if (VF.isVector() && Legal->isFixedOrderRecurrence(Phi)) { | ||||||||
| 7093 | SmallVector<int> Mask(VF.getKnownMinValue()); | ||||||||
| 7094 | std::iota(Mask.begin(), Mask.end(), VF.getKnownMinValue() - 1); | ||||||||
| 7095 | return TTI.getShuffleCost(TargetTransformInfo::SK_Splice, | ||||||||
| 7096 | cast<VectorType>(VectorTy), Mask, CostKind, | ||||||||
| 7097 | VF.getKnownMinValue() - 1); | ||||||||
| 7098 | } | ||||||||
| 7099 | |||||||||
| 7100 | // Phi nodes in non-header blocks (not inductions, reductions, etc.) are | ||||||||
| 7101 | // converted into select instructions. We require N - 1 selects per phi | ||||||||
| 7102 | // node, where N is the number of incoming values. | ||||||||
| 7103 | if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) | ||||||||
| 7104 | return (Phi->getNumIncomingValues() - 1) * | ||||||||
| 7105 | TTI.getCmpSelInstrCost( | ||||||||
| 7106 | Instruction::Select, ToVectorTy(Phi->getType(), VF), | ||||||||
| 7107 | ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), | ||||||||
| 7108 | CmpInst::BAD_ICMP_PREDICATE, CostKind); | ||||||||
| 7109 | |||||||||
| 7110 | return TTI.getCFInstrCost(Instruction::PHI, CostKind); | ||||||||
| 7111 | } | ||||||||
| 7112 | case Instruction::UDiv: | ||||||||
| 7113 | case Instruction::SDiv: | ||||||||
| 7114 | case Instruction::URem: | ||||||||
| 7115 | case Instruction::SRem: | ||||||||
| 7116 | if (VF.isVector() && isPredicatedInst(I)) { | ||||||||
| 7117 | const auto [ScalarCost, SafeDivisorCost] = getDivRemSpeculationCost(I, VF); | ||||||||
| 7118 | return isDivRemScalarWithPredication(ScalarCost, SafeDivisorCost) ? | ||||||||
| 7119 | ScalarCost : SafeDivisorCost; | ||||||||
| 7120 | } | ||||||||
| 7121 | // We've proven all lanes safe to speculate, fall through. | ||||||||
| 7122 | [[fallthrough]]; | ||||||||
| 7123 | case Instruction::Add: | ||||||||
| 7124 | case Instruction::FAdd: | ||||||||
| 7125 | case Instruction::Sub: | ||||||||
| 7126 | case Instruction::FSub: | ||||||||
| 7127 | case Instruction::Mul: | ||||||||
| 7128 | case Instruction::FMul: | ||||||||
| 7129 | case Instruction::FDiv: | ||||||||
| 7130 | case Instruction::FRem: | ||||||||
| 7131 | case Instruction::Shl: | ||||||||
| 7132 | case Instruction::LShr: | ||||||||
| 7133 | case Instruction::AShr: | ||||||||
| 7134 | case Instruction::And: | ||||||||
| 7135 | case Instruction::Or: | ||||||||
| 7136 | case Instruction::Xor: { | ||||||||
| 7137 | // Since we will replace the stride by 1 the multiplication should go away. | ||||||||
| 7138 | if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) | ||||||||
| 7139 | return 0; | ||||||||
| 7140 | |||||||||
| 7141 | // Detect reduction patterns | ||||||||
| 7142 | if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) | ||||||||
| 7143 | return *RedCost; | ||||||||
| 7144 | |||||||||
| 7145 | // Certain instructions can be cheaper to vectorize if they have a constant | ||||||||
| 7146 | // second vector operand. One example of this are shifts on x86. | ||||||||
| 7147 | Value *Op2 = I->getOperand(1); | ||||||||
| 7148 | auto Op2Info = TTI.getOperandInfo(Op2); | ||||||||
| 7149 | if (Op2Info.Kind == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) | ||||||||
| 7150 | Op2Info.Kind = TargetTransformInfo::OK_UniformValue; | ||||||||
| 7151 | |||||||||
| 7152 | SmallVector<const Value *, 4> Operands(I->operand_values()); | ||||||||
| 7153 | return TTI.getArithmeticInstrCost( | ||||||||
| 7154 | I->getOpcode(), VectorTy, CostKind, | ||||||||
| 7155 | {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, | ||||||||
| 7156 | Op2Info, Operands, I); | ||||||||
| 7157 | } | ||||||||
| 7158 | case Instruction::FNeg: { | ||||||||
| 7159 | return TTI.getArithmeticInstrCost( | ||||||||
| 7160 | I->getOpcode(), VectorTy, CostKind, | ||||||||
| 7161 | {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, | ||||||||
| 7162 | {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None}, | ||||||||
| 7163 | I->getOperand(0), I); | ||||||||
| 7164 | } | ||||||||
| 7165 | case Instruction::Select: { | ||||||||
| 7166 | SelectInst *SI = cast<SelectInst>(I); | ||||||||
| 7167 | const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); | ||||||||
| 7168 | bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); | ||||||||
| 7169 | |||||||||
| 7170 | const Value *Op0, *Op1; | ||||||||
| 7171 | using namespace llvm::PatternMatch; | ||||||||
| 7172 | if (!ScalarCond && (match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1))) || | ||||||||
| 7173 | match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))))) { | ||||||||
| 7174 | // select x, y, false --> x & y | ||||||||
| 7175 | // select x, true, y --> x | y | ||||||||
| 7176 | const auto [Op1VK, Op1VP] = TTI::getOperandInfo(Op0); | ||||||||
| 7177 | const auto [Op2VK, Op2VP] = TTI::getOperandInfo(Op1); | ||||||||
| 7178 | assert(Op0->getType()->getScalarSizeInBits() == 1 &&(static_cast <bool> (Op0->getType()->getScalarSizeInBits () == 1 && Op1->getType()->getScalarSizeInBits( ) == 1) ? void (0) : __assert_fail ("Op0->getType()->getScalarSizeInBits() == 1 && Op1->getType()->getScalarSizeInBits() == 1" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7179, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7179 | Op1->getType()->getScalarSizeInBits() == 1)(static_cast <bool> (Op0->getType()->getScalarSizeInBits () == 1 && Op1->getType()->getScalarSizeInBits( ) == 1) ? void (0) : __assert_fail ("Op0->getType()->getScalarSizeInBits() == 1 && Op1->getType()->getScalarSizeInBits() == 1" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7179, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7180 | |||||||||
| 7181 | SmallVector<const Value *, 2> Operands{Op0, Op1}; | ||||||||
| 7182 | return TTI.getArithmeticInstrCost( | ||||||||
| 7183 | match(I, m_LogicalOr()) ? Instruction::Or : Instruction::And, VectorTy, | ||||||||
| 7184 | CostKind, {Op1VK, Op1VP}, {Op2VK, Op2VP}, Operands, I); | ||||||||
| 7185 | } | ||||||||
| 7186 | |||||||||
| 7187 | Type *CondTy = SI->getCondition()->getType(); | ||||||||
| 7188 | if (!ScalarCond) | ||||||||
| 7189 | CondTy = VectorType::get(CondTy, VF); | ||||||||
| 7190 | |||||||||
| 7191 | CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE; | ||||||||
| 7192 | if (auto *Cmp = dyn_cast<CmpInst>(SI->getCondition())) | ||||||||
| 7193 | Pred = Cmp->getPredicate(); | ||||||||
| 7194 | return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, Pred, | ||||||||
| 7195 | CostKind, I); | ||||||||
| 7196 | } | ||||||||
| 7197 | case Instruction::ICmp: | ||||||||
| 7198 | case Instruction::FCmp: { | ||||||||
| 7199 | Type *ValTy = I->getOperand(0)->getType(); | ||||||||
| 7200 | Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); | ||||||||
| 7201 | if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) | ||||||||
| 7202 | ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); | ||||||||
| 7203 | VectorTy = ToVectorTy(ValTy, VF); | ||||||||
| 7204 | return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, | ||||||||
| 7205 | cast<CmpInst>(I)->getPredicate(), CostKind, | ||||||||
| 7206 | I); | ||||||||
| 7207 | } | ||||||||
| 7208 | case Instruction::Store: | ||||||||
| 7209 | case Instruction::Load: { | ||||||||
| 7210 | ElementCount Width = VF; | ||||||||
| 7211 | if (Width.isVector()) { | ||||||||
| 7212 | InstWidening Decision = getWideningDecision(I, Width); | ||||||||
| 7213 | assert(Decision != CM_Unknown &&(static_cast <bool> (Decision != CM_Unknown && "CM decision should be taken at this point" ) ? void (0) : __assert_fail ("Decision != CM_Unknown && \"CM decision should be taken at this point\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7214, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7214 | "CM decision should be taken at this point")(static_cast <bool> (Decision != CM_Unknown && "CM decision should be taken at this point" ) ? void (0) : __assert_fail ("Decision != CM_Unknown && \"CM decision should be taken at this point\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7214, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7215 | if (getWideningCost(I, VF) == InstructionCost::getInvalid()) | ||||||||
| 7216 | return InstructionCost::getInvalid(); | ||||||||
| 7217 | if (Decision == CM_Scalarize) | ||||||||
| 7218 | Width = ElementCount::getFixed(1); | ||||||||
| 7219 | } | ||||||||
| 7220 | VectorTy = ToVectorTy(getLoadStoreType(I), Width); | ||||||||
| 7221 | return getMemoryInstructionCost(I, VF); | ||||||||
| 7222 | } | ||||||||
| 7223 | case Instruction::BitCast: | ||||||||
| 7224 | if (I->getType()->isPointerTy()) | ||||||||
| 7225 | return 0; | ||||||||
| 7226 | [[fallthrough]]; | ||||||||
| 7227 | case Instruction::ZExt: | ||||||||
| 7228 | case Instruction::SExt: | ||||||||
| 7229 | case Instruction::FPToUI: | ||||||||
| 7230 | case Instruction::FPToSI: | ||||||||
| 7231 | case Instruction::FPExt: | ||||||||
| 7232 | case Instruction::PtrToInt: | ||||||||
| 7233 | case Instruction::IntToPtr: | ||||||||
| 7234 | case Instruction::SIToFP: | ||||||||
| 7235 | case Instruction::UIToFP: | ||||||||
| 7236 | case Instruction::Trunc: | ||||||||
| 7237 | case Instruction::FPTrunc: { | ||||||||
| 7238 | // Computes the CastContextHint from a Load/Store instruction. | ||||||||
| 7239 | auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { | ||||||||
| 7240 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa< StoreInst>(I)) && "Expected a load or a store!") ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected a load or a store!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7241, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7241 | "Expected a load or a store!")(static_cast <bool> ((isa<LoadInst>(I) || isa< StoreInst>(I)) && "Expected a load or a store!") ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected a load or a store!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7241, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7242 | |||||||||
| 7243 | if (VF.isScalar() || !TheLoop->contains(I)) | ||||||||
| 7244 | return TTI::CastContextHint::Normal; | ||||||||
| 7245 | |||||||||
| 7246 | switch (getWideningDecision(I, VF)) { | ||||||||
| 7247 | case LoopVectorizationCostModel::CM_GatherScatter: | ||||||||
| 7248 | return TTI::CastContextHint::GatherScatter; | ||||||||
| 7249 | case LoopVectorizationCostModel::CM_Interleave: | ||||||||
| 7250 | return TTI::CastContextHint::Interleave; | ||||||||
| 7251 | case LoopVectorizationCostModel::CM_Scalarize: | ||||||||
| 7252 | case LoopVectorizationCostModel::CM_Widen: | ||||||||
| 7253 | return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked | ||||||||
| 7254 | : TTI::CastContextHint::Normal; | ||||||||
| 7255 | case LoopVectorizationCostModel::CM_Widen_Reverse: | ||||||||
| 7256 | return TTI::CastContextHint::Reversed; | ||||||||
| 7257 | case LoopVectorizationCostModel::CM_Unknown: | ||||||||
| 7258 | llvm_unreachable("Instr did not go through cost modelling?")::llvm::llvm_unreachable_internal("Instr did not go through cost modelling?" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7258); | ||||||||
| 7259 | } | ||||||||
| 7260 | |||||||||
| 7261 | llvm_unreachable("Unhandled case!")::llvm::llvm_unreachable_internal("Unhandled case!", "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp" , 7261); | ||||||||
| 7262 | }; | ||||||||
| 7263 | |||||||||
| 7264 | unsigned Opcode = I->getOpcode(); | ||||||||
| 7265 | TTI::CastContextHint CCH = TTI::CastContextHint::None; | ||||||||
| 7266 | // For Trunc, the context is the only user, which must be a StoreInst. | ||||||||
| 7267 | if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { | ||||||||
| 7268 | if (I->hasOneUse()) | ||||||||
| 7269 | if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) | ||||||||
| 7270 | CCH = ComputeCCH(Store); | ||||||||
| 7271 | } | ||||||||
| 7272 | // For Z/Sext, the context is the operand, which must be a LoadInst. | ||||||||
| 7273 | else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || | ||||||||
| 7274 | Opcode == Instruction::FPExt) { | ||||||||
| 7275 | if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) | ||||||||
| 7276 | CCH = ComputeCCH(Load); | ||||||||
| 7277 | } | ||||||||
| 7278 | |||||||||
| 7279 | // We optimize the truncation of induction variables having constant | ||||||||
| 7280 | // integer steps. The cost of these truncations is the same as the scalar | ||||||||
| 7281 | // operation. | ||||||||
| 7282 | if (isOptimizableIVTruncate(I, VF)) { | ||||||||
| 7283 | auto *Trunc = cast<TruncInst>(I); | ||||||||
| 7284 | return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), | ||||||||
| 7285 | Trunc->getSrcTy(), CCH, CostKind, Trunc); | ||||||||
| 7286 | } | ||||||||
| 7287 | |||||||||
| 7288 | // Detect reduction patterns | ||||||||
| 7289 | if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) | ||||||||
| 7290 | return *RedCost; | ||||||||
| 7291 | |||||||||
| 7292 | Type *SrcScalarTy = I->getOperand(0)->getType(); | ||||||||
| 7293 | Type *SrcVecTy = | ||||||||
| 7294 | VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; | ||||||||
| 7295 | if (canTruncateToMinimalBitwidth(I, VF)) { | ||||||||
| 7296 | // This cast is going to be shrunk. This may remove the cast or it might | ||||||||
| 7297 | // turn it into slightly different cast. For example, if MinBW == 16, | ||||||||
| 7298 | // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". | ||||||||
| 7299 | // | ||||||||
| 7300 | // Calculate the modified src and dest types. | ||||||||
| 7301 | Type *MinVecTy = VectorTy; | ||||||||
| 7302 | if (Opcode == Instruction::Trunc) { | ||||||||
| 7303 | SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); | ||||||||
| 7304 | VectorTy = | ||||||||
| 7305 | largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); | ||||||||
| 7306 | } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { | ||||||||
| 7307 | SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); | ||||||||
| 7308 | VectorTy = | ||||||||
| 7309 | smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); | ||||||||
| 7310 | } | ||||||||
| 7311 | } | ||||||||
| 7312 | |||||||||
| 7313 | return TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); | ||||||||
| 7314 | } | ||||||||
| 7315 | case Instruction::Call: { | ||||||||
| 7316 | if (RecurrenceDescriptor::isFMulAddIntrinsic(I)) | ||||||||
| 7317 | if (auto RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) | ||||||||
| 7318 | return *RedCost; | ||||||||
| 7319 | bool NeedToScalarize; | ||||||||
| 7320 | CallInst *CI = cast<CallInst>(I); | ||||||||
| 7321 | InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); | ||||||||
| 7322 | if (getVectorIntrinsicIDForCall(CI, TLI)) { | ||||||||
| 7323 | InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); | ||||||||
| 7324 | return std::min(CallCost, IntrinsicCost); | ||||||||
| 7325 | } | ||||||||
| 7326 | return CallCost; | ||||||||
| 7327 | } | ||||||||
| 7328 | case Instruction::ExtractValue: | ||||||||
| 7329 | return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); | ||||||||
| 7330 | case Instruction::Alloca: | ||||||||
| 7331 | // We cannot easily widen alloca to a scalable alloca, as | ||||||||
| 7332 | // the result would need to be a vector of pointers. | ||||||||
| 7333 | if (VF.isScalable()) | ||||||||
| 7334 | return InstructionCost::getInvalid(); | ||||||||
| 7335 | [[fallthrough]]; | ||||||||
| 7336 | default: | ||||||||
| 7337 | // This opcode is unknown. Assume that it is the same as 'mul'. | ||||||||
| 7338 | return TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy, CostKind); | ||||||||
| 7339 | } // end of switch. | ||||||||
| 7340 | } | ||||||||
| 7341 | |||||||||
| 7342 | char LoopVectorize::ID = 0; | ||||||||
| 7343 | |||||||||
| 7344 | static const char lv_name[] = "Loop Vectorization"; | ||||||||
| 7345 | |||||||||
| 7346 | INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false)static void *initializeLoopVectorizePassOnce(PassRegistry & Registry) { | ||||||||
| 7347 | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry); | ||||||||
| 7348 | INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)initializeBasicAAWrapperPassPass(Registry); | ||||||||
| 7349 | INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)initializeGlobalsAAWrapperPassPass(Registry); | ||||||||
| 7350 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry); | ||||||||
| 7351 | INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)initializeBlockFrequencyInfoWrapperPassPass(Registry); | ||||||||
| 7352 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry); | ||||||||
| 7353 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry); | ||||||||
| 7354 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry); | ||||||||
| 7355 | INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis)initializeLoopAccessLegacyAnalysisPass(Registry); | ||||||||
| 7356 | INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)initializeDemandedBitsWrapperPassPass(Registry); | ||||||||
| 7357 | INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry); | ||||||||
| 7358 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)initializeProfileSummaryInfoWrapperPassPass(Registry); | ||||||||
| 7359 | INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy)initializeInjectTLIMappingsLegacyPass(Registry); | ||||||||
| 7360 | INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo( lv_name, "loop-vectorize", & LoopVectorize::ID, PassInfo::NormalCtor_t(callDefaultCtor< LoopVectorize>), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeLoopVectorizePassFlag ; void llvm::initializeLoopVectorizePass(PassRegistry &Registry ) { llvm::call_once(InitializeLoopVectorizePassFlag, initializeLoopVectorizePassOnce , std::ref(Registry)); } | ||||||||
| 7361 | |||||||||
| 7362 | namespace llvm { | ||||||||
| 7363 | |||||||||
| 7364 | Pass *createLoopVectorizePass() { return new LoopVectorize(); } | ||||||||
| 7365 | |||||||||
| 7366 | Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, | ||||||||
| 7367 | bool VectorizeOnlyWhenForced) { | ||||||||
| 7368 | return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); | ||||||||
| 7369 | } | ||||||||
| 7370 | |||||||||
| 7371 | } // end namespace llvm | ||||||||
| 7372 | |||||||||
| 7373 | void LoopVectorizationCostModel::collectValuesToIgnore() { | ||||||||
| 7374 | // Ignore ephemeral values. | ||||||||
| 7375 | CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); | ||||||||
| 7376 | |||||||||
| 7377 | // Find all stores to invariant variables. Since they are going to sink | ||||||||
| 7378 | // outside the loop we do not need calculate cost for them. | ||||||||
| 7379 | for (BasicBlock *BB : TheLoop->blocks()) | ||||||||
| 7380 | for (Instruction &I : *BB) { | ||||||||
| 7381 | StoreInst *SI; | ||||||||
| 7382 | if ((SI = dyn_cast<StoreInst>(&I)) && | ||||||||
| 7383 | Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) | ||||||||
| 7384 | ValuesToIgnore.insert(&I); | ||||||||
| 7385 | } | ||||||||
| 7386 | |||||||||
| 7387 | // Ignore type-promoting instructions we identified during reduction | ||||||||
| 7388 | // detection. | ||||||||
| 7389 | for (const auto &Reduction : Legal->getReductionVars()) { | ||||||||
| 7390 | const RecurrenceDescriptor &RedDes = Reduction.second; | ||||||||
| 7391 | const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); | ||||||||
| 7392 | VecValuesToIgnore.insert(Casts.begin(), Casts.end()); | ||||||||
| 7393 | } | ||||||||
| 7394 | // Ignore type-casting instructions we identified during induction | ||||||||
| 7395 | // detection. | ||||||||
| 7396 | for (const auto &Induction : Legal->getInductionVars()) { | ||||||||
| 7397 | const InductionDescriptor &IndDes = Induction.second; | ||||||||
| 7398 | const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); | ||||||||
| 7399 | VecValuesToIgnore.insert(Casts.begin(), Casts.end()); | ||||||||
| 7400 | } | ||||||||
| 7401 | } | ||||||||
| 7402 | |||||||||
| 7403 | void LoopVectorizationCostModel::collectInLoopReductions() { | ||||||||
| 7404 | for (const auto &Reduction : Legal->getReductionVars()) { | ||||||||
| 7405 | PHINode *Phi = Reduction.first; | ||||||||
| 7406 | const RecurrenceDescriptor &RdxDesc = Reduction.second; | ||||||||
| 7407 | |||||||||
| 7408 | // We don't collect reductions that are type promoted (yet). | ||||||||
| 7409 | if (RdxDesc.getRecurrenceType() != Phi->getType()) | ||||||||
| 7410 | continue; | ||||||||
| 7411 | |||||||||
| 7412 | // If the target would prefer this reduction to happen "in-loop", then we | ||||||||
| 7413 | // want to record it as such. | ||||||||
| 7414 | unsigned Opcode = RdxDesc.getOpcode(); | ||||||||
| 7415 | if (!PreferInLoopReductions && !useOrderedReductions(RdxDesc) && | ||||||||
| 7416 | !TTI.preferInLoopReduction(Opcode, Phi->getType(), | ||||||||
| 7417 | TargetTransformInfo::ReductionFlags())) | ||||||||
| 7418 | continue; | ||||||||
| 7419 | |||||||||
| 7420 | // Check that we can correctly put the reductions into the loop, by | ||||||||
| 7421 | // finding the chain of operations that leads from the phi to the loop | ||||||||
| 7422 | // exit value. | ||||||||
| 7423 | SmallVector<Instruction *, 4> ReductionOperations = | ||||||||
| 7424 | RdxDesc.getReductionOpChain(Phi, TheLoop); | ||||||||
| 7425 | bool InLoop = !ReductionOperations.empty(); | ||||||||
| 7426 | if (InLoop) { | ||||||||
| 7427 | InLoopReductionChains[Phi] = ReductionOperations; | ||||||||
| 7428 | // Add the elements to InLoopReductionImmediateChains for cost modelling. | ||||||||
| 7429 | Instruction *LastChain = Phi; | ||||||||
| 7430 | for (auto *I : ReductionOperations) { | ||||||||
| 7431 | InLoopReductionImmediateChains[I] = LastChain; | ||||||||
| 7432 | LastChain = I; | ||||||||
| 7433 | } | ||||||||
| 7434 | } | ||||||||
| 7435 | LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Using " << ( InLoop ? "inloop" : "out of loop") << " reduction for phi: " << *Phi << "\n"; } } while (false) | ||||||||
| 7436 | << " reduction for phi: " << *Phi << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Using " << ( InLoop ? "inloop" : "out of loop") << " reduction for phi: " << *Phi << "\n"; } } while (false); | ||||||||
| 7437 | } | ||||||||
| 7438 | } | ||||||||
| 7439 | |||||||||
| 7440 | // TODO: we could return a pair of values that specify the max VF and | ||||||||
| 7441 | // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of | ||||||||
| 7442 | // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment | ||||||||
| 7443 | // doesn't have a cost model that can choose which plan to execute if | ||||||||
| 7444 | // more than one is generated. | ||||||||
| 7445 | static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, | ||||||||
| 7446 | LoopVectorizationCostModel &CM) { | ||||||||
| 7447 | unsigned WidestType; | ||||||||
| 7448 | std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); | ||||||||
| 7449 | return WidestVectorRegBits / WidestType; | ||||||||
| 7450 | } | ||||||||
| 7451 | |||||||||
| 7452 | VectorizationFactor | ||||||||
| 7453 | LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { | ||||||||
| 7454 | assert(!UserVF.isScalable() && "scalable vectors not yet supported")(static_cast <bool> (!UserVF.isScalable() && "scalable vectors not yet supported" ) ? void (0) : __assert_fail ("!UserVF.isScalable() && \"scalable vectors not yet supported\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7454, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7455 | ElementCount VF = UserVF; | ||||||||
| 7456 | // Outer loop handling: They may require CFG and instruction level | ||||||||
| 7457 | // transformations before even evaluating whether vectorization is profitable. | ||||||||
| 7458 | // Since we cannot modify the incoming IR, we need to build VPlan upfront in | ||||||||
| 7459 | // the vectorization pipeline. | ||||||||
| 7460 | if (!OrigLoop->isInnermost()) { | ||||||||
| 7461 | // If the user doesn't provide a vectorization factor, determine a | ||||||||
| 7462 | // reasonable one. | ||||||||
| 7463 | if (UserVF.isZero()) { | ||||||||
| 7464 | VF = ElementCount::getFixed(determineVPlanVF( | ||||||||
| 7465 | TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) | ||||||||
| 7466 | .getFixedValue(), | ||||||||
| 7467 | CM)); | ||||||||
| 7468 | LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: VPlan computed VF " << VF << ".\n"; } } while (false); | ||||||||
| 7469 | |||||||||
| 7470 | // Make sure we have a VF > 1 for stress testing. | ||||||||
| 7471 | if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { | ||||||||
| 7472 | LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: VPlan stress testing: " << "overriding computed VF.\n"; } } while (false) | ||||||||
| 7473 | << "overriding computed VF.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: VPlan stress testing: " << "overriding computed VF.\n"; } } while (false); | ||||||||
| 7474 | VF = ElementCount::getFixed(4); | ||||||||
| 7475 | } | ||||||||
| 7476 | } | ||||||||
| 7477 | assert(EnableVPlanNativePath && "VPlan-native path is not enabled.")(static_cast <bool> (EnableVPlanNativePath && "VPlan-native path is not enabled." ) ? void (0) : __assert_fail ("EnableVPlanNativePath && \"VPlan-native path is not enabled.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7477, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7478 | assert(isPowerOf2_32(VF.getKnownMinValue()) &&(static_cast <bool> (isPowerOf2_32(VF.getKnownMinValue( )) && "VF needs to be a power of two") ? void (0) : __assert_fail ("isPowerOf2_32(VF.getKnownMinValue()) && \"VF needs to be a power of two\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7479, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7479 | "VF needs to be a power of two")(static_cast <bool> (isPowerOf2_32(VF.getKnownMinValue( )) && "VF needs to be a power of two") ? void (0) : __assert_fail ("isPowerOf2_32(VF.getKnownMinValue()) && \"VF needs to be a power of two\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7479, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7480 | LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Using " << ( !UserVF.isZero() ? "user " : "") << "VF " << VF << " to build VPlans.\n"; } } while (false) | ||||||||
| 7481 | << "VF " << VF << " to build VPlans.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Using " << ( !UserVF.isZero() ? "user " : "") << "VF " << VF << " to build VPlans.\n"; } } while (false); | ||||||||
| 7482 | buildVPlans(VF, VF); | ||||||||
| 7483 | |||||||||
| 7484 | // For VPlan build stress testing, we bail out after VPlan construction. | ||||||||
| 7485 | if (VPlanBuildStressTest) | ||||||||
| 7486 | return VectorizationFactor::Disabled(); | ||||||||
| 7487 | |||||||||
| 7488 | return {VF, 0 /*Cost*/, 0 /* ScalarCost */}; | ||||||||
| 7489 | } | ||||||||
| 7490 | |||||||||
| 7491 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " "VPlan-native path.\n"; } } while (false) | ||||||||
| 7492 | dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " "VPlan-native path.\n"; } } while (false) | ||||||||
| 7493 | "VPlan-native path.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " "VPlan-native path.\n"; } } while (false); | ||||||||
| 7494 | return VectorizationFactor::Disabled(); | ||||||||
| 7495 | } | ||||||||
| 7496 | |||||||||
| 7497 | std::optional<VectorizationFactor> | ||||||||
| 7498 | LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { | ||||||||
| 7499 | assert(OrigLoop->isInnermost() && "Inner loop expected.")(static_cast <bool> (OrigLoop->isInnermost() && "Inner loop expected.") ? void (0) : __assert_fail ("OrigLoop->isInnermost() && \"Inner loop expected.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7499, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7500 | FixedScalableVFPair MaxFactors = CM.computeMaxVF(UserVF, UserIC); | ||||||||
| 7501 | if (!MaxFactors) // Cases that should not to be vectorized nor interleaved. | ||||||||
| 7502 | return std::nullopt; | ||||||||
| 7503 | |||||||||
| 7504 | // Invalidate interleave groups if all blocks of loop will be predicated. | ||||||||
| 7505 | if (CM.blockNeedsPredicationForAnyReason(OrigLoop->getHeader()) && | ||||||||
| 7506 | !useMaskedInterleavedAccesses(*TTI)) { | ||||||||
| 7507 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Invalidate all interleaved groups due to fold-tail by masking " "which requires masked-interleaved support.\n"; } } while (false ) | ||||||||
| 7508 | dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Invalidate all interleaved groups due to fold-tail by masking " "which requires masked-interleaved support.\n"; } } while (false ) | ||||||||
| 7509 | << "LV: Invalidate all interleaved groups due to fold-tail by masking "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Invalidate all interleaved groups due to fold-tail by masking " "which requires masked-interleaved support.\n"; } } while (false ) | ||||||||
| 7510 | "which requires masked-interleaved support.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Invalidate all interleaved groups due to fold-tail by masking " "which requires masked-interleaved support.\n"; } } while (false ); | ||||||||
| 7511 | if (CM.InterleaveInfo.invalidateGroups()) | ||||||||
| 7512 | // Invalidating interleave groups also requires invalidating all decisions | ||||||||
| 7513 | // based on them, which includes widening decisions and uniform and scalar | ||||||||
| 7514 | // values. | ||||||||
| 7515 | CM.invalidateCostModelingDecisions(); | ||||||||
| 7516 | } | ||||||||
| 7517 | |||||||||
| 7518 | ElementCount MaxUserVF = | ||||||||
| 7519 | UserVF.isScalable() ? MaxFactors.ScalableVF : MaxFactors.FixedVF; | ||||||||
| 7520 | bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxUserVF); | ||||||||
| 7521 | if (!UserVF.isZero() && UserVFIsLegal) { | ||||||||
| 7522 | assert(isPowerOf2_32(UserVF.getKnownMinValue()) &&(static_cast <bool> (isPowerOf2_32(UserVF.getKnownMinValue ()) && "VF needs to be a power of two") ? void (0) : __assert_fail ("isPowerOf2_32(UserVF.getKnownMinValue()) && \"VF needs to be a power of two\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7523, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7523 | "VF needs to be a power of two")(static_cast <bool> (isPowerOf2_32(UserVF.getKnownMinValue ()) && "VF needs to be a power of two") ? void (0) : __assert_fail ("isPowerOf2_32(UserVF.getKnownMinValue()) && \"VF needs to be a power of two\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7523, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7524 | // Collect the instructions (and their associated costs) that will be more | ||||||||
| 7525 | // profitable to scalarize. | ||||||||
| 7526 | if (CM.selectUserVectorizationFactor(UserVF)) { | ||||||||
| 7527 | LLVM_DEBUG(dbgs() << "LV: Using user VF " << UserVF << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Using user VF " << UserVF << ".\n"; } } while (false); | ||||||||
| 7528 | CM.collectInLoopReductions(); | ||||||||
| 7529 | buildVPlansWithVPRecipes(UserVF, UserVF); | ||||||||
| 7530 | LLVM_DEBUG(printPlans(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { printPlans(dbgs()); } } while (false); | ||||||||
| 7531 | return {{UserVF, 0, 0}}; | ||||||||
| 7532 | } else | ||||||||
| 7533 | reportVectorizationInfo("UserVF ignored because of invalid costs.", | ||||||||
| 7534 | "InvalidCost", ORE, OrigLoop); | ||||||||
| 7535 | } | ||||||||
| 7536 | |||||||||
| 7537 | // Populate the set of Vectorization Factor Candidates. | ||||||||
| 7538 | ElementCountSet VFCandidates; | ||||||||
| 7539 | for (auto VF = ElementCount::getFixed(1); | ||||||||
| 7540 | ElementCount::isKnownLE(VF, MaxFactors.FixedVF); VF *= 2) | ||||||||
| 7541 | VFCandidates.insert(VF); | ||||||||
| 7542 | for (auto VF = ElementCount::getScalable(1); | ||||||||
| 7543 | ElementCount::isKnownLE(VF, MaxFactors.ScalableVF); VF *= 2) | ||||||||
| 7544 | VFCandidates.insert(VF); | ||||||||
| 7545 | |||||||||
| 7546 | for (const auto &VF : VFCandidates) { | ||||||||
| 7547 | // Collect Uniform and Scalar instructions after vectorization with VF. | ||||||||
| 7548 | CM.collectUniformsAndScalars(VF); | ||||||||
| 7549 | |||||||||
| 7550 | // Collect the instructions (and their associated costs) that will be more | ||||||||
| 7551 | // profitable to scalarize. | ||||||||
| 7552 | if (VF.isVector()) | ||||||||
| 7553 | CM.collectInstsToScalarize(VF); | ||||||||
| 7554 | } | ||||||||
| 7555 | |||||||||
| 7556 | CM.collectInLoopReductions(); | ||||||||
| 7557 | buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxFactors.FixedVF); | ||||||||
| 7558 | buildVPlansWithVPRecipes(ElementCount::getScalable(1), MaxFactors.ScalableVF); | ||||||||
| 7559 | |||||||||
| 7560 | LLVM_DEBUG(printPlans(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { printPlans(dbgs()); } } while (false); | ||||||||
| 7561 | if (!MaxFactors.hasVector()) | ||||||||
| 7562 | return VectorizationFactor::Disabled(); | ||||||||
| 7563 | |||||||||
| 7564 | // Select the optimal vectorization factor. | ||||||||
| 7565 | VectorizationFactor VF = CM.selectVectorizationFactor(VFCandidates); | ||||||||
| 7566 | assert((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero.")(static_cast <bool> ((VF.Width.isScalar() || VF.ScalarCost > 0) && "when vectorizing, the scalar cost must be non-zero." ) ? void (0) : __assert_fail ("(VF.Width.isScalar() || VF.ScalarCost > 0) && \"when vectorizing, the scalar cost must be non-zero.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7566, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7567 | return VF; | ||||||||
| 7568 | } | ||||||||
| 7569 | |||||||||
| 7570 | VPlan &LoopVectorizationPlanner::getBestPlanFor(ElementCount VF) const { | ||||||||
| 7571 | assert(count_if(VPlans,(static_cast <bool> (count_if(VPlans, [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1 && "Best VF has not a single VPlan." ) ? void (0) : __assert_fail ("count_if(VPlans, [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1 && \"Best VF has not a single VPlan.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7574, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7572 | [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) ==(static_cast <bool> (count_if(VPlans, [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1 && "Best VF has not a single VPlan." ) ? void (0) : __assert_fail ("count_if(VPlans, [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1 && \"Best VF has not a single VPlan.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7574, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7573 | 1 &&(static_cast <bool> (count_if(VPlans, [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1 && "Best VF has not a single VPlan." ) ? void (0) : __assert_fail ("count_if(VPlans, [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1 && \"Best VF has not a single VPlan.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7574, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7574 | "Best VF has not a single VPlan.")(static_cast <bool> (count_if(VPlans, [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1 && "Best VF has not a single VPlan." ) ? void (0) : __assert_fail ("count_if(VPlans, [VF](const VPlanPtr &Plan) { return Plan->hasVF(VF); }) == 1 && \"Best VF has not a single VPlan.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7574, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7575 | |||||||||
| 7576 | for (const VPlanPtr &Plan : VPlans) { | ||||||||
| 7577 | if (Plan->hasVF(VF)) | ||||||||
| 7578 | return *Plan.get(); | ||||||||
| 7579 | } | ||||||||
| 7580 | llvm_unreachable("No plan found!")::llvm::llvm_unreachable_internal("No plan found!", "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp" , 7580); | ||||||||
| 7581 | } | ||||||||
| 7582 | |||||||||
| 7583 | static void AddRuntimeUnrollDisableMetaData(Loop *L) { | ||||||||
| 7584 | SmallVector<Metadata *, 4> MDs; | ||||||||
| 7585 | // Reserve first location for self reference to the LoopID metadata node. | ||||||||
| 7586 | MDs.push_back(nullptr); | ||||||||
| 7587 | bool IsUnrollMetadata = false; | ||||||||
| 7588 | MDNode *LoopID = L->getLoopID(); | ||||||||
| 7589 | if (LoopID) { | ||||||||
| 7590 | // First find existing loop unrolling disable metadata. | ||||||||
| 7591 | for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { | ||||||||
| 7592 | auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); | ||||||||
| 7593 | if (MD) { | ||||||||
| 7594 | const auto *S = dyn_cast<MDString>(MD->getOperand(0)); | ||||||||
| 7595 | IsUnrollMetadata = | ||||||||
| 7596 | S && S->getString().startswith("llvm.loop.unroll.disable"); | ||||||||
| 7597 | } | ||||||||
| 7598 | MDs.push_back(LoopID->getOperand(i)); | ||||||||
| 7599 | } | ||||||||
| 7600 | } | ||||||||
| 7601 | |||||||||
| 7602 | if (!IsUnrollMetadata) { | ||||||||
| 7603 | // Add runtime unroll disable metadata. | ||||||||
| 7604 | LLVMContext &Context = L->getHeader()->getContext(); | ||||||||
| 7605 | SmallVector<Metadata *, 1> DisableOperands; | ||||||||
| 7606 | DisableOperands.push_back( | ||||||||
| 7607 | MDString::get(Context, "llvm.loop.unroll.runtime.disable")); | ||||||||
| 7608 | MDNode *DisableNode = MDNode::get(Context, DisableOperands); | ||||||||
| 7609 | MDs.push_back(DisableNode); | ||||||||
| 7610 | MDNode *NewLoopID = MDNode::get(Context, MDs); | ||||||||
| 7611 | // Set operand 0 to refer to the loop id itself. | ||||||||
| 7612 | NewLoopID->replaceOperandWith(0, NewLoopID); | ||||||||
| 7613 | L->setLoopID(NewLoopID); | ||||||||
| 7614 | } | ||||||||
| 7615 | } | ||||||||
| 7616 | |||||||||
| 7617 | void LoopVectorizationPlanner::executePlan(ElementCount BestVF, unsigned BestUF, | ||||||||
| 7618 | VPlan &BestVPlan, | ||||||||
| 7619 | InnerLoopVectorizer &ILV, | ||||||||
| 7620 | DominatorTree *DT, | ||||||||
| 7621 | bool IsEpilogueVectorization) { | ||||||||
| 7622 | assert(BestVPlan.hasVF(BestVF) &&(static_cast <bool> (BestVPlan.hasVF(BestVF) && "Trying to execute plan with unsupported VF") ? void (0) : __assert_fail ("BestVPlan.hasVF(BestVF) && \"Trying to execute plan with unsupported VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7623, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7623 | "Trying to execute plan with unsupported VF")(static_cast <bool> (BestVPlan.hasVF(BestVF) && "Trying to execute plan with unsupported VF") ? void (0) : __assert_fail ("BestVPlan.hasVF(BestVF) && \"Trying to execute plan with unsupported VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7623, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7624 | assert(BestVPlan.hasUF(BestUF) &&(static_cast <bool> (BestVPlan.hasUF(BestUF) && "Trying to execute plan with unsupported UF") ? void (0) : __assert_fail ("BestVPlan.hasUF(BestUF) && \"Trying to execute plan with unsupported UF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7625, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7625 | "Trying to execute plan with unsupported UF")(static_cast <bool> (BestVPlan.hasUF(BestUF) && "Trying to execute plan with unsupported UF") ? void (0) : __assert_fail ("BestVPlan.hasUF(BestUF) && \"Trying to execute plan with unsupported UF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7625, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7626 | |||||||||
| 7627 | LLVM_DEBUG(dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF << '\n' ; } } while (false) | ||||||||
| 7628 | << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "Executing best plan with VF=" << BestVF << ", UF=" << BestUF << '\n' ; } } while (false); | ||||||||
| 7629 | |||||||||
| 7630 | // Workaround! Compute the trip count of the original loop and cache it | ||||||||
| 7631 | // before we start modifying the CFG. This code has a systemic problem | ||||||||
| 7632 | // wherein it tries to run analysis over partially constructed IR; this is | ||||||||
| 7633 | // wrong, and not simply for SCEV. The trip count of the original loop | ||||||||
| 7634 | // simply happens to be prone to hitting this in practice. In theory, we | ||||||||
| 7635 | // can hit the same issue for any SCEV, or ValueTracking query done during | ||||||||
| 7636 | // mutation. See PR49900. | ||||||||
| 7637 | ILV.getOrCreateTripCount(OrigLoop->getLoopPreheader()); | ||||||||
| 7638 | |||||||||
| 7639 | if (!IsEpilogueVectorization) | ||||||||
| 7640 | VPlanTransforms::optimizeForVFAndUF(BestVPlan, BestVF, BestUF, PSE); | ||||||||
| 7641 | |||||||||
| 7642 | // Perform the actual loop transformation. | ||||||||
| 7643 | |||||||||
| 7644 | // 1. Set up the skeleton for vectorization, including vector pre-header and | ||||||||
| 7645 | // middle block. The vector loop is created during VPlan execution. | ||||||||
| 7646 | VPTransformState State{BestVF, BestUF, LI, DT, ILV.Builder, &ILV, &BestVPlan}; | ||||||||
| 7647 | Value *CanonicalIVStartValue; | ||||||||
| 7648 | std::tie(State.CFG.PrevBB, CanonicalIVStartValue) = | ||||||||
| 7649 | ILV.createVectorizedLoopSkeleton(); | ||||||||
| 7650 | |||||||||
| 7651 | // Only use noalias metadata when using memory checks guaranteeing no overlap | ||||||||
| 7652 | // across all iterations. | ||||||||
| 7653 | const LoopAccessInfo *LAI = ILV.Legal->getLAI(); | ||||||||
| 7654 | if (LAI && !LAI->getRuntimePointerChecking()->getChecks().empty() && | ||||||||
| 7655 | !LAI->getRuntimePointerChecking()->getDiffChecks()) { | ||||||||
| 7656 | |||||||||
| 7657 | // We currently don't use LoopVersioning for the actual loop cloning but we | ||||||||
| 7658 | // still use it to add the noalias metadata. | ||||||||
| 7659 | // TODO: Find a better way to re-use LoopVersioning functionality to add | ||||||||
| 7660 | // metadata. | ||||||||
| 7661 | State.LVer = std::make_unique<LoopVersioning>( | ||||||||
| 7662 | *LAI, LAI->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, DT, | ||||||||
| 7663 | PSE.getSE()); | ||||||||
| 7664 | State.LVer->prepareNoAliasMetadata(); | ||||||||
| 7665 | } | ||||||||
| 7666 | |||||||||
| 7667 | ILV.collectPoisonGeneratingRecipes(State); | ||||||||
| 7668 | |||||||||
| 7669 | ILV.printDebugTracesAtStart(); | ||||||||
| 7670 | |||||||||
| 7671 | //===------------------------------------------------===// | ||||||||
| 7672 | // | ||||||||
| 7673 | // Notice: any optimization or new instruction that go | ||||||||
| 7674 | // into the code below should also be implemented in | ||||||||
| 7675 | // the cost-model. | ||||||||
| 7676 | // | ||||||||
| 7677 | //===------------------------------------------------===// | ||||||||
| 7678 | |||||||||
| 7679 | // 2. Copy and widen instructions from the old loop into the new loop. | ||||||||
| 7680 | BestVPlan.prepareToExecute(ILV.getOrCreateTripCount(nullptr), | ||||||||
| 7681 | ILV.getOrCreateVectorTripCount(nullptr), | ||||||||
| 7682 | CanonicalIVStartValue, State, | ||||||||
| 7683 | IsEpilogueVectorization); | ||||||||
| 7684 | |||||||||
| 7685 | BestVPlan.execute(&State); | ||||||||
| 7686 | |||||||||
| 7687 | // Keep all loop hints from the original loop on the vector loop (we'll | ||||||||
| 7688 | // replace the vectorizer-specific hints below). | ||||||||
| 7689 | MDNode *OrigLoopID = OrigLoop->getLoopID(); | ||||||||
| 7690 | |||||||||
| 7691 | std::optional<MDNode *> VectorizedLoopID = | ||||||||
| 7692 | makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, | ||||||||
| 7693 | LLVMLoopVectorizeFollowupVectorized}); | ||||||||
| 7694 | |||||||||
| 7695 | VPBasicBlock *HeaderVPBB = | ||||||||
| 7696 | BestVPlan.getVectorLoopRegion()->getEntryBasicBlock(); | ||||||||
| 7697 | Loop *L = LI->getLoopFor(State.CFG.VPBB2IRBB[HeaderVPBB]); | ||||||||
| 7698 | if (VectorizedLoopID) | ||||||||
| 7699 | L->setLoopID(*VectorizedLoopID); | ||||||||
| 7700 | else { | ||||||||
| 7701 | // Keep all loop hints from the original loop on the vector loop (we'll | ||||||||
| 7702 | // replace the vectorizer-specific hints below). | ||||||||
| 7703 | if (MDNode *LID = OrigLoop->getLoopID()) | ||||||||
| 7704 | L->setLoopID(LID); | ||||||||
| 7705 | |||||||||
| 7706 | LoopVectorizeHints Hints(L, true, *ORE); | ||||||||
| 7707 | Hints.setAlreadyVectorized(); | ||||||||
| 7708 | } | ||||||||
| 7709 | AddRuntimeUnrollDisableMetaData(L); | ||||||||
| 7710 | |||||||||
| 7711 | // 3. Fix the vectorized code: take care of header phi's, live-outs, | ||||||||
| 7712 | // predication, updating analyses. | ||||||||
| 7713 | ILV.fixVectorizedLoop(State, BestVPlan); | ||||||||
| 7714 | |||||||||
| 7715 | ILV.printDebugTracesAtEnd(); | ||||||||
| 7716 | } | ||||||||
| 7717 | |||||||||
| 7718 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | ||||||||
| 7719 | void LoopVectorizationPlanner::printPlans(raw_ostream &O) { | ||||||||
| 7720 | for (const auto &Plan : VPlans) | ||||||||
| 7721 | if (PrintVPlansInDotFormat) | ||||||||
| 7722 | Plan->printDOT(O); | ||||||||
| 7723 | else | ||||||||
| 7724 | Plan->print(O); | ||||||||
| 7725 | } | ||||||||
| 7726 | #endif | ||||||||
| 7727 | |||||||||
| 7728 | Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } | ||||||||
| 7729 | |||||||||
| 7730 | //===--------------------------------------------------------------------===// | ||||||||
| 7731 | // EpilogueVectorizerMainLoop | ||||||||
| 7732 | //===--------------------------------------------------------------------===// | ||||||||
| 7733 | |||||||||
| 7734 | /// This function is partially responsible for generating the control flow | ||||||||
| 7735 | /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. | ||||||||
| 7736 | std::pair<BasicBlock *, Value *> | ||||||||
| 7737 | EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { | ||||||||
| 7738 | createVectorLoopSkeleton(""); | ||||||||
| 7739 | |||||||||
| 7740 | // Generate the code to check the minimum iteration count of the vector | ||||||||
| 7741 | // epilogue (see below). | ||||||||
| 7742 | EPI.EpilogueIterationCountCheck = | ||||||||
| 7743 | emitIterationCountCheck(LoopScalarPreHeader, true); | ||||||||
| 7744 | EPI.EpilogueIterationCountCheck->setName("iter.check"); | ||||||||
| 7745 | |||||||||
| 7746 | // Generate the code to check any assumptions that we've made for SCEV | ||||||||
| 7747 | // expressions. | ||||||||
| 7748 | EPI.SCEVSafetyCheck = emitSCEVChecks(LoopScalarPreHeader); | ||||||||
| 7749 | |||||||||
| 7750 | // Generate the code that checks at runtime if arrays overlap. We put the | ||||||||
| 7751 | // checks into a separate block to make the more common case of few elements | ||||||||
| 7752 | // faster. | ||||||||
| 7753 | EPI.MemSafetyCheck = emitMemRuntimeChecks(LoopScalarPreHeader); | ||||||||
| 7754 | |||||||||
| 7755 | // Generate the iteration count check for the main loop, *after* the check | ||||||||
| 7756 | // for the epilogue loop, so that the path-length is shorter for the case | ||||||||
| 7757 | // that goes directly through the vector epilogue. The longer-path length for | ||||||||
| 7758 | // the main loop is compensated for, by the gain from vectorizing the larger | ||||||||
| 7759 | // trip count. Note: the branch will get updated later on when we vectorize | ||||||||
| 7760 | // the epilogue. | ||||||||
| 7761 | EPI.MainLoopIterationCountCheck = | ||||||||
| 7762 | emitIterationCountCheck(LoopScalarPreHeader, false); | ||||||||
| 7763 | |||||||||
| 7764 | // Generate the induction variable. | ||||||||
| 7765 | EPI.VectorTripCount = getOrCreateVectorTripCount(LoopVectorPreHeader); | ||||||||
| 7766 | |||||||||
| 7767 | // Skip induction resume value creation here because they will be created in | ||||||||
| 7768 | // the second pass for the scalar loop. The induction resume values for the | ||||||||
| 7769 | // inductions in the epilogue loop are created before executing the plan for | ||||||||
| 7770 | // the epilogue loop. | ||||||||
| 7771 | |||||||||
| 7772 | return {completeLoopSkeleton(), nullptr}; | ||||||||
| 7773 | } | ||||||||
| 7774 | |||||||||
| 7775 | void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { | ||||||||
| 7776 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" << "Main Loop VF:" << EPI.MainLoopVF << ", Main Loop UF:" << EPI.MainLoopUF << ", Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false) | ||||||||
| 7777 | dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" << "Main Loop VF:" << EPI.MainLoopVF << ", Main Loop UF:" << EPI.MainLoopUF << ", Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false) | ||||||||
| 7778 | << "Main Loop VF:" << EPI.MainLoopVFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" << "Main Loop VF:" << EPI.MainLoopVF << ", Main Loop UF:" << EPI.MainLoopUF << ", Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false) | ||||||||
| 7779 | << ", Main Loop UF:" << EPI.MainLoopUFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" << "Main Loop VF:" << EPI.MainLoopVF << ", Main Loop UF:" << EPI.MainLoopUF << ", Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false) | ||||||||
| 7780 | << ", Epilogue Loop VF:" << EPI.EpilogueVFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" << "Main Loop VF:" << EPI.MainLoopVF << ", Main Loop UF:" << EPI.MainLoopUF << ", Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false) | ||||||||
| 7781 | << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" << "Main Loop VF:" << EPI.MainLoopVF << ", Main Loop UF:" << EPI.MainLoopUF << ", Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false) | ||||||||
| 7782 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" << "Main Loop VF:" << EPI.MainLoopVF << ", Main Loop UF:" << EPI.MainLoopUF << ", Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false); | ||||||||
| 7783 | } | ||||||||
| 7784 | |||||||||
| 7785 | void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { | ||||||||
| 7786 | DEBUG_WITH_TYPE(VerboseDebug, {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType (VerboseDebug)) { { dbgs() << "intermediate fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; }; } } while (false) | ||||||||
| 7787 | dbgs() << "intermediate fn:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType (VerboseDebug)) { { dbgs() << "intermediate fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; }; } } while (false) | ||||||||
| 7788 | << *OrigLoop->getHeader()->getParent() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType (VerboseDebug)) { { dbgs() << "intermediate fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; }; } } while (false) | ||||||||
| 7789 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType (VerboseDebug)) { { dbgs() << "intermediate fn:\n" << *OrigLoop->getHeader()->getParent() << "\n"; }; } } while (false); | ||||||||
| 7790 | } | ||||||||
| 7791 | |||||||||
| 7792 | BasicBlock * | ||||||||
| 7793 | EpilogueVectorizerMainLoop::emitIterationCountCheck(BasicBlock *Bypass, | ||||||||
| 7794 | bool ForEpilogue) { | ||||||||
| 7795 | assert(Bypass && "Expected valid bypass basic block.")(static_cast <bool> (Bypass && "Expected valid bypass basic block." ) ? void (0) : __assert_fail ("Bypass && \"Expected valid bypass basic block.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7795, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7796 | ElementCount VFactor = ForEpilogue ? EPI.EpilogueVF : VF; | ||||||||
| 7797 | unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; | ||||||||
| 7798 | Value *Count = getOrCreateTripCount(LoopVectorPreHeader); | ||||||||
| 7799 | // Reuse existing vector loop preheader for TC checks. | ||||||||
| 7800 | // Note that new preheader block is generated for vector loop. | ||||||||
| 7801 | BasicBlock *const TCCheckBlock = LoopVectorPreHeader; | ||||||||
| 7802 | IRBuilder<> Builder(TCCheckBlock->getTerminator()); | ||||||||
| 7803 | |||||||||
| 7804 | // Generate code to check if the loop's trip count is less than VF * UF of the | ||||||||
| 7805 | // main vector loop. | ||||||||
| 7806 | auto P = Cost->requiresScalarEpilogue(ForEpilogue ? EPI.EpilogueVF : VF) ? | ||||||||
| 7807 | ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; | ||||||||
| 7808 | |||||||||
| 7809 | Value *CheckMinIters = Builder.CreateICmp( | ||||||||
| 7810 | P, Count, createStepForVF(Builder, Count->getType(), VFactor, UFactor), | ||||||||
| 7811 | "min.iters.check"); | ||||||||
| 7812 | |||||||||
| 7813 | if (!ForEpilogue) | ||||||||
| 7814 | TCCheckBlock->setName("vector.main.loop.iter.check"); | ||||||||
| 7815 | |||||||||
| 7816 | // Create new preheader for vector loop. | ||||||||
| 7817 | LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), | ||||||||
| 7818 | DT, LI, nullptr, "vector.ph"); | ||||||||
| 7819 | |||||||||
| 7820 | if (ForEpilogue) { | ||||||||
| 7821 | assert(DT->properlyDominates(DT->getNode(TCCheckBlock),(static_cast <bool> (DT->properlyDominates(DT->getNode (TCCheckBlock), DT->getNode(Bypass)->getIDom()) && "TC check is expected to dominate Bypass") ? void (0) : __assert_fail ("DT->properlyDominates(DT->getNode(TCCheckBlock), DT->getNode(Bypass)->getIDom()) && \"TC check is expected to dominate Bypass\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7823, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7822 | DT->getNode(Bypass)->getIDom()) &&(static_cast <bool> (DT->properlyDominates(DT->getNode (TCCheckBlock), DT->getNode(Bypass)->getIDom()) && "TC check is expected to dominate Bypass") ? void (0) : __assert_fail ("DT->properlyDominates(DT->getNode(TCCheckBlock), DT->getNode(Bypass)->getIDom()) && \"TC check is expected to dominate Bypass\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7823, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7823 | "TC check is expected to dominate Bypass")(static_cast <bool> (DT->properlyDominates(DT->getNode (TCCheckBlock), DT->getNode(Bypass)->getIDom()) && "TC check is expected to dominate Bypass") ? void (0) : __assert_fail ("DT->properlyDominates(DT->getNode(TCCheckBlock), DT->getNode(Bypass)->getIDom()) && \"TC check is expected to dominate Bypass\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7823, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7824 | |||||||||
| 7825 | // Update dominator for Bypass & LoopExit. | ||||||||
| 7826 | DT->changeImmediateDominator(Bypass, TCCheckBlock); | ||||||||
| 7827 | if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) | ||||||||
| 7828 | // For loops with multiple exits, there's no edge from the middle block | ||||||||
| 7829 | // to exit blocks (as the epilogue must run) and thus no need to update | ||||||||
| 7830 | // the immediate dominator of the exit blocks. | ||||||||
| 7831 | DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); | ||||||||
| 7832 | |||||||||
| 7833 | LoopBypassBlocks.push_back(TCCheckBlock); | ||||||||
| 7834 | |||||||||
| 7835 | // Save the trip count so we don't have to regenerate it in the | ||||||||
| 7836 | // vec.epilog.iter.check. This is safe to do because the trip count | ||||||||
| 7837 | // generated here dominates the vector epilog iter check. | ||||||||
| 7838 | EPI.TripCount = Count; | ||||||||
| 7839 | } | ||||||||
| 7840 | |||||||||
| 7841 | ReplaceInstWithInst( | ||||||||
| 7842 | TCCheckBlock->getTerminator(), | ||||||||
| 7843 | BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); | ||||||||
| 7844 | |||||||||
| 7845 | return TCCheckBlock; | ||||||||
| 7846 | } | ||||||||
| 7847 | |||||||||
| 7848 | //===--------------------------------------------------------------------===// | ||||||||
| 7849 | // EpilogueVectorizerEpilogueLoop | ||||||||
| 7850 | //===--------------------------------------------------------------------===// | ||||||||
| 7851 | |||||||||
| 7852 | /// This function is partially responsible for generating the control flow | ||||||||
| 7853 | /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. | ||||||||
| 7854 | std::pair<BasicBlock *, Value *> | ||||||||
| 7855 | EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { | ||||||||
| 7856 | createVectorLoopSkeleton("vec.epilog."); | ||||||||
| 7857 | |||||||||
| 7858 | // Now, compare the remaining count and if there aren't enough iterations to | ||||||||
| 7859 | // execute the vectorized epilogue skip to the scalar part. | ||||||||
| 7860 | BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; | ||||||||
| 7861 | VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); | ||||||||
| 7862 | LoopVectorPreHeader = | ||||||||
| 7863 | SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, | ||||||||
| 7864 | LI, nullptr, "vec.epilog.ph"); | ||||||||
| 7865 | emitMinimumVectorEpilogueIterCountCheck(LoopScalarPreHeader, | ||||||||
| 7866 | VecEpilogueIterationCountCheck); | ||||||||
| 7867 | |||||||||
| 7868 | // Adjust the control flow taking the state info from the main loop | ||||||||
| 7869 | // vectorization into account. | ||||||||
| 7870 | assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck &&(static_cast <bool> (EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && "expected this to be saved from the previous pass." ) ? void (0) : __assert_fail ("EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && \"expected this to be saved from the previous pass.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7871, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7871 | "expected this to be saved from the previous pass.")(static_cast <bool> (EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && "expected this to be saved from the previous pass." ) ? void (0) : __assert_fail ("EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && \"expected this to be saved from the previous pass.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7871, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7872 | EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( | ||||||||
| 7873 | VecEpilogueIterationCountCheck, LoopVectorPreHeader); | ||||||||
| 7874 | |||||||||
| 7875 | DT->changeImmediateDominator(LoopVectorPreHeader, | ||||||||
| 7876 | EPI.MainLoopIterationCountCheck); | ||||||||
| 7877 | |||||||||
| 7878 | EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( | ||||||||
| 7879 | VecEpilogueIterationCountCheck, LoopScalarPreHeader); | ||||||||
| 7880 | |||||||||
| 7881 | if (EPI.SCEVSafetyCheck) | ||||||||
| 7882 | EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( | ||||||||
| 7883 | VecEpilogueIterationCountCheck, LoopScalarPreHeader); | ||||||||
| 7884 | if (EPI.MemSafetyCheck) | ||||||||
| 7885 | EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( | ||||||||
| 7886 | VecEpilogueIterationCountCheck, LoopScalarPreHeader); | ||||||||
| 7887 | |||||||||
| 7888 | DT->changeImmediateDominator( | ||||||||
| 7889 | VecEpilogueIterationCountCheck, | ||||||||
| 7890 | VecEpilogueIterationCountCheck->getSinglePredecessor()); | ||||||||
| 7891 | |||||||||
| 7892 | DT->changeImmediateDominator(LoopScalarPreHeader, | ||||||||
| 7893 | EPI.EpilogueIterationCountCheck); | ||||||||
| 7894 | if (!Cost->requiresScalarEpilogue(EPI.EpilogueVF)) | ||||||||
| 7895 | // If there is an epilogue which must run, there's no edge from the | ||||||||
| 7896 | // middle block to exit blocks and thus no need to update the immediate | ||||||||
| 7897 | // dominator of the exit blocks. | ||||||||
| 7898 | DT->changeImmediateDominator(LoopExitBlock, | ||||||||
| 7899 | EPI.EpilogueIterationCountCheck); | ||||||||
| 7900 | |||||||||
| 7901 | // Keep track of bypass blocks, as they feed start values to the induction and | ||||||||
| 7902 | // reduction phis in the scalar loop preheader. | ||||||||
| 7903 | if (EPI.SCEVSafetyCheck) | ||||||||
| 7904 | LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); | ||||||||
| 7905 | if (EPI.MemSafetyCheck) | ||||||||
| 7906 | LoopBypassBlocks.push_back(EPI.MemSafetyCheck); | ||||||||
| 7907 | LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); | ||||||||
| 7908 | |||||||||
| 7909 | // The vec.epilog.iter.check block may contain Phi nodes from inductions or | ||||||||
| 7910 | // reductions which merge control-flow from the latch block and the middle | ||||||||
| 7911 | // block. Update the incoming values here and move the Phi into the preheader. | ||||||||
| 7912 | SmallVector<PHINode *, 4> PhisInBlock; | ||||||||
| 7913 | for (PHINode &Phi : VecEpilogueIterationCountCheck->phis()) | ||||||||
| 7914 | PhisInBlock.push_back(&Phi); | ||||||||
| 7915 | |||||||||
| 7916 | for (PHINode *Phi : PhisInBlock) { | ||||||||
| 7917 | Phi->moveBefore(LoopVectorPreHeader->getFirstNonPHI()); | ||||||||
| 7918 | Phi->replaceIncomingBlockWith( | ||||||||
| 7919 | VecEpilogueIterationCountCheck->getSinglePredecessor(), | ||||||||
| 7920 | VecEpilogueIterationCountCheck); | ||||||||
| 7921 | |||||||||
| 7922 | // If the phi doesn't have an incoming value from the | ||||||||
| 7923 | // EpilogueIterationCountCheck, we are done. Otherwise remove the incoming | ||||||||
| 7924 | // value and also those from other check blocks. This is needed for | ||||||||
| 7925 | // reduction phis only. | ||||||||
| 7926 | if (none_of(Phi->blocks(), [&](BasicBlock *IncB) { | ||||||||
| 7927 | return EPI.EpilogueIterationCountCheck == IncB; | ||||||||
| 7928 | })) | ||||||||
| 7929 | continue; | ||||||||
| 7930 | Phi->removeIncomingValue(EPI.EpilogueIterationCountCheck); | ||||||||
| 7931 | if (EPI.SCEVSafetyCheck) | ||||||||
| 7932 | Phi->removeIncomingValue(EPI.SCEVSafetyCheck); | ||||||||
| 7933 | if (EPI.MemSafetyCheck) | ||||||||
| 7934 | Phi->removeIncomingValue(EPI.MemSafetyCheck); | ||||||||
| 7935 | } | ||||||||
| 7936 | |||||||||
| 7937 | // Generate a resume induction for the vector epilogue and put it in the | ||||||||
| 7938 | // vector epilogue preheader | ||||||||
| 7939 | Type *IdxTy = Legal->getWidestInductionType(); | ||||||||
| 7940 | PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", | ||||||||
| 7941 | LoopVectorPreHeader->getFirstNonPHI()); | ||||||||
| 7942 | EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); | ||||||||
| 7943 | EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), | ||||||||
| 7944 | EPI.MainLoopIterationCountCheck); | ||||||||
| 7945 | |||||||||
| 7946 | // Generate induction resume values. These variables save the new starting | ||||||||
| 7947 | // indexes for the scalar loop. They are used to test if there are any tail | ||||||||
| 7948 | // iterations left once the vector loop has completed. | ||||||||
| 7949 | // Note that when the vectorized epilogue is skipped due to iteration count | ||||||||
| 7950 | // check, then the resume value for the induction variable comes from | ||||||||
| 7951 | // the trip count of the main vector loop, hence passing the AdditionalBypass | ||||||||
| 7952 | // argument. | ||||||||
| 7953 | createInductionResumeValues({VecEpilogueIterationCountCheck, | ||||||||
| 7954 | EPI.VectorTripCount} /* AdditionalBypass */); | ||||||||
| 7955 | |||||||||
| 7956 | return {completeLoopSkeleton(), EPResumeVal}; | ||||||||
| 7957 | } | ||||||||
| 7958 | |||||||||
| 7959 | BasicBlock * | ||||||||
| 7960 | EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( | ||||||||
| 7961 | BasicBlock *Bypass, BasicBlock *Insert) { | ||||||||
| 7962 | |||||||||
| 7963 | assert(EPI.TripCount &&(static_cast <bool> (EPI.TripCount && "Expected trip count to have been safed in the first pass." ) ? void (0) : __assert_fail ("EPI.TripCount && \"Expected trip count to have been safed in the first pass.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7964, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7964 | "Expected trip count to have been safed in the first pass.")(static_cast <bool> (EPI.TripCount && "Expected trip count to have been safed in the first pass." ) ? void (0) : __assert_fail ("EPI.TripCount && \"Expected trip count to have been safed in the first pass.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7964, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7965 | assert((static_cast <bool> ((!isa<Instruction>(EPI.TripCount ) || DT->dominates(cast<Instruction>(EPI.TripCount)-> getParent(), Insert)) && "saved trip count does not dominate insertion point." ) ? void (0) : __assert_fail ("(!isa<Instruction>(EPI.TripCount) || DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && \"saved trip count does not dominate insertion point.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7968, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7966 | (!isa<Instruction>(EPI.TripCount) ||(static_cast <bool> ((!isa<Instruction>(EPI.TripCount ) || DT->dominates(cast<Instruction>(EPI.TripCount)-> getParent(), Insert)) && "saved trip count does not dominate insertion point." ) ? void (0) : __assert_fail ("(!isa<Instruction>(EPI.TripCount) || DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && \"saved trip count does not dominate insertion point.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7968, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7967 | DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) &&(static_cast <bool> ((!isa<Instruction>(EPI.TripCount ) || DT->dominates(cast<Instruction>(EPI.TripCount)-> getParent(), Insert)) && "saved trip count does not dominate insertion point." ) ? void (0) : __assert_fail ("(!isa<Instruction>(EPI.TripCount) || DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && \"saved trip count does not dominate insertion point.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7968, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 7968 | "saved trip count does not dominate insertion point.")(static_cast <bool> ((!isa<Instruction>(EPI.TripCount ) || DT->dominates(cast<Instruction>(EPI.TripCount)-> getParent(), Insert)) && "saved trip count does not dominate insertion point." ) ? void (0) : __assert_fail ("(!isa<Instruction>(EPI.TripCount) || DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && \"saved trip count does not dominate insertion point.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 7968, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 7969 | Value *TC = EPI.TripCount; | ||||||||
| 7970 | IRBuilder<> Builder(Insert->getTerminator()); | ||||||||
| 7971 | Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); | ||||||||
| 7972 | |||||||||
| 7973 | // Generate code to check if the loop's trip count is less than VF * UF of the | ||||||||
| 7974 | // vector epilogue loop. | ||||||||
| 7975 | auto P = Cost->requiresScalarEpilogue(EPI.EpilogueVF) ? | ||||||||
| 7976 | ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; | ||||||||
| 7977 | |||||||||
| 7978 | Value *CheckMinIters = | ||||||||
| 7979 | Builder.CreateICmp(P, Count, | ||||||||
| 7980 | createStepForVF(Builder, Count->getType(), | ||||||||
| 7981 | EPI.EpilogueVF, EPI.EpilogueUF), | ||||||||
| 7982 | "min.epilog.iters.check"); | ||||||||
| 7983 | |||||||||
| 7984 | ReplaceInstWithInst( | ||||||||
| 7985 | Insert->getTerminator(), | ||||||||
| 7986 | BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); | ||||||||
| 7987 | |||||||||
| 7988 | LoopBypassBlocks.push_back(Insert); | ||||||||
| 7989 | return Insert; | ||||||||
| 7990 | } | ||||||||
| 7991 | |||||||||
| 7992 | void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { | ||||||||
| 7993 | LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" << "Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false) | ||||||||
| 7994 | dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" << "Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false) | ||||||||
| 7995 | << "Epilogue Loop VF:" << EPI.EpilogueVFdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" << "Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false) | ||||||||
| 7996 | << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" << "Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false) | ||||||||
| 7997 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { { dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" << "Epilogue Loop VF:" << EPI.EpilogueVF << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; }; } } while (false); | ||||||||
| 7998 | } | ||||||||
| 7999 | |||||||||
| 8000 | void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { | ||||||||
| 8001 | DEBUG_WITH_TYPE(VerboseDebug, {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType (VerboseDebug)) { { dbgs() << "final fn:\n" << *OrigLoop ->getHeader()->getParent() << "\n"; }; } } while ( false) | ||||||||
| 8002 | dbgs() << "final fn:\n" << *OrigLoop->getHeader()->getParent() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType (VerboseDebug)) { { dbgs() << "final fn:\n" << *OrigLoop ->getHeader()->getParent() << "\n"; }; } } while ( false) | ||||||||
| 8003 | })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType (VerboseDebug)) { { dbgs() << "final fn:\n" << *OrigLoop ->getHeader()->getParent() << "\n"; }; } } while ( false); | ||||||||
| 8004 | } | ||||||||
| 8005 | |||||||||
| 8006 | bool LoopVectorizationPlanner::getDecisionAndClampRange( | ||||||||
| 8007 | const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { | ||||||||
| 8008 | assert(!Range.isEmpty() && "Trying to test an empty VF range.")(static_cast <bool> (!Range.isEmpty() && "Trying to test an empty VF range." ) ? void (0) : __assert_fail ("!Range.isEmpty() && \"Trying to test an empty VF range.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8008, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8009 | bool PredicateAtRangeStart = Predicate(Range.Start); | ||||||||
| 8010 | |||||||||
| 8011 | for (ElementCount TmpVF = Range.Start * 2; | ||||||||
| 8012 | ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) | ||||||||
| 8013 | if (Predicate(TmpVF) != PredicateAtRangeStart) { | ||||||||
| 8014 | Range.End = TmpVF; | ||||||||
| 8015 | break; | ||||||||
| 8016 | } | ||||||||
| 8017 | |||||||||
| 8018 | return PredicateAtRangeStart; | ||||||||
| 8019 | } | ||||||||
| 8020 | |||||||||
| 8021 | /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, | ||||||||
| 8022 | /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range | ||||||||
| 8023 | /// of VF's starting at a given VF and extending it as much as possible. Each | ||||||||
| 8024 | /// vectorization decision can potentially shorten this sub-range during | ||||||||
| 8025 | /// buildVPlan(). | ||||||||
| 8026 | void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, | ||||||||
| 8027 | ElementCount MaxVF) { | ||||||||
| 8028 | auto MaxVFPlusOne = MaxVF.getWithIncrement(1); | ||||||||
| 8029 | for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { | ||||||||
| 8030 | VFRange SubRange = {VF, MaxVFPlusOne}; | ||||||||
| 8031 | VPlans.push_back(buildVPlan(SubRange)); | ||||||||
| 8032 | VF = SubRange.End; | ||||||||
| 8033 | } | ||||||||
| 8034 | } | ||||||||
| 8035 | |||||||||
| 8036 | VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, | ||||||||
| 8037 | VPlanPtr &Plan) { | ||||||||
| 8038 | assert(is_contained(predecessors(Dst), Src) && "Invalid edge")(static_cast <bool> (is_contained(predecessors(Dst), Src ) && "Invalid edge") ? void (0) : __assert_fail ("is_contained(predecessors(Dst), Src) && \"Invalid edge\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8038, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8039 | |||||||||
| 8040 | // Look for cached value. | ||||||||
| 8041 | std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); | ||||||||
| 8042 | EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); | ||||||||
| 8043 | if (ECEntryIt != EdgeMaskCache.end()) | ||||||||
| 8044 | return ECEntryIt->second; | ||||||||
| 8045 | |||||||||
| 8046 | VPValue *SrcMask = createBlockInMask(Src, Plan); | ||||||||
| 8047 | |||||||||
| 8048 | // The terminator has to be a branch inst! | ||||||||
| 8049 | BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); | ||||||||
| 8050 | assert(BI && "Unexpected terminator found")(static_cast <bool> (BI && "Unexpected terminator found" ) ? void (0) : __assert_fail ("BI && \"Unexpected terminator found\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8050, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8051 | |||||||||
| 8052 | if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) | ||||||||
| 8053 | return EdgeMaskCache[Edge] = SrcMask; | ||||||||
| 8054 | |||||||||
| 8055 | // If source is an exiting block, we know the exit edge is dynamically dead | ||||||||
| 8056 | // in the vector loop, and thus we don't need to restrict the mask. Avoid | ||||||||
| 8057 | // adding uses of an otherwise potentially dead instruction. | ||||||||
| 8058 | if (OrigLoop->isLoopExiting(Src)) | ||||||||
| 8059 | return EdgeMaskCache[Edge] = SrcMask; | ||||||||
| 8060 | |||||||||
| 8061 | VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); | ||||||||
| 8062 | assert(EdgeMask && "No Edge Mask found for condition")(static_cast <bool> (EdgeMask && "No Edge Mask found for condition" ) ? void (0) : __assert_fail ("EdgeMask && \"No Edge Mask found for condition\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8062, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8063 | |||||||||
| 8064 | if (BI->getSuccessor(0) != Dst) | ||||||||
| 8065 | EdgeMask = Builder.createNot(EdgeMask, BI->getDebugLoc()); | ||||||||
| 8066 | |||||||||
| 8067 | if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. | ||||||||
| 8068 | // The condition is 'SrcMask && EdgeMask', which is equivalent to | ||||||||
| 8069 | // 'select i1 SrcMask, i1 EdgeMask, i1 false'. | ||||||||
| 8070 | // The select version does not introduce new UB if SrcMask is false and | ||||||||
| 8071 | // EdgeMask is poison. Using 'and' here introduces undefined behavior. | ||||||||
| 8072 | VPValue *False = Plan->getOrAddVPValue( | ||||||||
| 8073 | ConstantInt::getFalse(BI->getCondition()->getType())); | ||||||||
| 8074 | EdgeMask = | ||||||||
| 8075 | Builder.createSelect(SrcMask, EdgeMask, False, BI->getDebugLoc()); | ||||||||
| 8076 | } | ||||||||
| 8077 | |||||||||
| 8078 | return EdgeMaskCache[Edge] = EdgeMask; | ||||||||
| 8079 | } | ||||||||
| 8080 | |||||||||
| 8081 | VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { | ||||||||
| 8082 | assert(OrigLoop->contains(BB) && "Block is not a part of a loop")(static_cast <bool> (OrigLoop->contains(BB) && "Block is not a part of a loop") ? void (0) : __assert_fail ( "OrigLoop->contains(BB) && \"Block is not a part of a loop\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8082, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8083 | |||||||||
| 8084 | // Look for cached value. | ||||||||
| 8085 | BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); | ||||||||
| 8086 | if (BCEntryIt != BlockMaskCache.end()) | ||||||||
| 8087 | return BCEntryIt->second; | ||||||||
| 8088 | |||||||||
| 8089 | // All-one mask is modelled as no-mask following the convention for masked | ||||||||
| 8090 | // load/store/gather/scatter. Initialize BlockMask to no-mask. | ||||||||
| 8091 | VPValue *BlockMask = nullptr; | ||||||||
| 8092 | |||||||||
| 8093 | if (OrigLoop->getHeader() == BB) { | ||||||||
| 8094 | if (!CM.blockNeedsPredicationForAnyReason(BB)) | ||||||||
| 8095 | return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. | ||||||||
| 8096 | |||||||||
| 8097 | assert(CM.foldTailByMasking() && "must fold the tail")(static_cast <bool> (CM.foldTailByMasking() && "must fold the tail" ) ? void (0) : __assert_fail ("CM.foldTailByMasking() && \"must fold the tail\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8097, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8098 | |||||||||
| 8099 | // If we're using the active lane mask for control flow, then we get the | ||||||||
| 8100 | // mask from the active lane mask PHI that is cached in the VPlan. | ||||||||
| 8101 | PredicationStyle EmitGetActiveLaneMask = CM.TTI.emitGetActiveLaneMask(); | ||||||||
| 8102 | if (EmitGetActiveLaneMask == PredicationStyle::DataAndControlFlow) | ||||||||
| 8103 | return BlockMaskCache[BB] = Plan->getActiveLaneMaskPhi(); | ||||||||
| 8104 | |||||||||
| 8105 | // Introduce the early-exit compare IV <= BTC to form header block mask. | ||||||||
| 8106 | // This is used instead of IV < TC because TC may wrap, unlike BTC. Start by | ||||||||
| 8107 | // constructing the desired canonical IV in the header block as its first | ||||||||
| 8108 | // non-phi instructions. | ||||||||
| 8109 | |||||||||
| 8110 | VPBasicBlock *HeaderVPBB = | ||||||||
| 8111 | Plan->getVectorLoopRegion()->getEntryBasicBlock(); | ||||||||
| 8112 | auto NewInsertionPoint = HeaderVPBB->getFirstNonPhi(); | ||||||||
| 8113 | auto *IV = new VPWidenCanonicalIVRecipe(Plan->getCanonicalIV()); | ||||||||
| 8114 | HeaderVPBB->insert(IV, HeaderVPBB->getFirstNonPhi()); | ||||||||
| 8115 | |||||||||
| 8116 | VPBuilder::InsertPointGuard Guard(Builder); | ||||||||
| 8117 | Builder.setInsertPoint(HeaderVPBB, NewInsertionPoint); | ||||||||
| 8118 | if (EmitGetActiveLaneMask != PredicationStyle::None) { | ||||||||
| 8119 | VPValue *TC = Plan->getOrCreateTripCount(); | ||||||||
| 8120 | BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV, TC}, | ||||||||
| 8121 | nullptr, "active.lane.mask"); | ||||||||
| 8122 | } else { | ||||||||
| 8123 | VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); | ||||||||
| 8124 | BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); | ||||||||
| 8125 | } | ||||||||
| 8126 | return BlockMaskCache[BB] = BlockMask; | ||||||||
| 8127 | } | ||||||||
| 8128 | |||||||||
| 8129 | // This is the block mask. We OR all incoming edges. | ||||||||
| 8130 | for (auto *Predecessor : predecessors(BB)) { | ||||||||
| 8131 | VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); | ||||||||
| 8132 | if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. | ||||||||
| 8133 | return BlockMaskCache[BB] = EdgeMask; | ||||||||
| |||||||||
| 8134 | |||||||||
| 8135 | if (!BlockMask
| ||||||||
| 8136 | BlockMask = EdgeMask; | ||||||||
| 8137 | continue; | ||||||||
| 8138 | } | ||||||||
| 8139 | |||||||||
| 8140 | BlockMask = Builder.createOr(BlockMask, EdgeMask, {}); | ||||||||
| 8141 | } | ||||||||
| 8142 | |||||||||
| 8143 | return BlockMaskCache[BB] = BlockMask; | ||||||||
| 8144 | } | ||||||||
| 8145 | |||||||||
| 8146 | VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, | ||||||||
| 8147 | ArrayRef<VPValue *> Operands, | ||||||||
| 8148 | VFRange &Range, | ||||||||
| 8149 | VPlanPtr &Plan) { | ||||||||
| 8150 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa< StoreInst>(I)) && "Must be called with either a load or store" ) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Must be called with either a load or store\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8151, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8151 | "Must be called with either a load or store")(static_cast <bool> ((isa<LoadInst>(I) || isa< StoreInst>(I)) && "Must be called with either a load or store" ) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Must be called with either a load or store\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8151, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8152 | |||||||||
| 8153 | auto willWiden = [&](ElementCount VF) -> bool { | ||||||||
| 8154 | LoopVectorizationCostModel::InstWidening Decision = | ||||||||
| 8155 | CM.getWideningDecision(I, VF); | ||||||||
| 8156 | assert(Decision != LoopVectorizationCostModel::CM_Unknown &&(static_cast <bool> (Decision != LoopVectorizationCostModel ::CM_Unknown && "CM decision should be taken at this point." ) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Unknown && \"CM decision should be taken at this point.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8157, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8157 | "CM decision should be taken at this point.")(static_cast <bool> (Decision != LoopVectorizationCostModel ::CM_Unknown && "CM decision should be taken at this point." ) ? void (0) : __assert_fail ("Decision != LoopVectorizationCostModel::CM_Unknown && \"CM decision should be taken at this point.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8157, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8158 | if (Decision == LoopVectorizationCostModel::CM_Interleave) | ||||||||
| 8159 | return true; | ||||||||
| 8160 | if (CM.isScalarAfterVectorization(I, VF) || | ||||||||
| 8161 | CM.isProfitableToScalarize(I, VF)) | ||||||||
| 8162 | return false; | ||||||||
| 8163 | return Decision != LoopVectorizationCostModel::CM_Scalarize; | ||||||||
| 8164 | }; | ||||||||
| 8165 | |||||||||
| 8166 | if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) | ||||||||
| 8167 | return nullptr; | ||||||||
| 8168 | |||||||||
| 8169 | VPValue *Mask = nullptr; | ||||||||
| 8170 | if (Legal->isMaskRequired(I)) | ||||||||
| 8171 | Mask = createBlockInMask(I->getParent(), Plan); | ||||||||
| 8172 | |||||||||
| 8173 | // Determine if the pointer operand of the access is either consecutive or | ||||||||
| 8174 | // reverse consecutive. | ||||||||
| 8175 | LoopVectorizationCostModel::InstWidening Decision = | ||||||||
| 8176 | CM.getWideningDecision(I, Range.Start); | ||||||||
| 8177 | bool Reverse = Decision == LoopVectorizationCostModel::CM_Widen_Reverse; | ||||||||
| 8178 | bool Consecutive = | ||||||||
| 8179 | Reverse || Decision == LoopVectorizationCostModel::CM_Widen; | ||||||||
| 8180 | |||||||||
| 8181 | if (LoadInst *Load = dyn_cast<LoadInst>(I)) | ||||||||
| 8182 | return new VPWidenMemoryInstructionRecipe(*Load, Operands[0], Mask, | ||||||||
| 8183 | Consecutive, Reverse); | ||||||||
| 8184 | |||||||||
| 8185 | StoreInst *Store = cast<StoreInst>(I); | ||||||||
| 8186 | return new VPWidenMemoryInstructionRecipe(*Store, Operands[1], Operands[0], | ||||||||
| 8187 | Mask, Consecutive, Reverse); | ||||||||
| 8188 | } | ||||||||
| 8189 | |||||||||
| 8190 | /// Creates a VPWidenIntOrFpInductionRecpipe for \p Phi. If needed, it will also | ||||||||
| 8191 | /// insert a recipe to expand the step for the induction recipe. | ||||||||
| 8192 | static VPWidenIntOrFpInductionRecipe *createWidenInductionRecipes( | ||||||||
| 8193 | PHINode *Phi, Instruction *PhiOrTrunc, VPValue *Start, | ||||||||
| 8194 | const InductionDescriptor &IndDesc, LoopVectorizationCostModel &CM, | ||||||||
| 8195 | VPlan &Plan, ScalarEvolution &SE, Loop &OrigLoop, VFRange &Range) { | ||||||||
| 8196 | // Returns true if an instruction \p I should be scalarized instead of | ||||||||
| 8197 | // vectorized for the chosen vectorization factor. | ||||||||
| 8198 | auto ShouldScalarizeInstruction = [&CM](Instruction *I, ElementCount VF) { | ||||||||
| 8199 | return CM.isScalarAfterVectorization(I, VF) || | ||||||||
| 8200 | CM.isProfitableToScalarize(I, VF); | ||||||||
| 8201 | }; | ||||||||
| 8202 | |||||||||
| 8203 | bool NeedsScalarIVOnly = LoopVectorizationPlanner::getDecisionAndClampRange( | ||||||||
| 8204 | [&](ElementCount VF) { | ||||||||
| 8205 | return ShouldScalarizeInstruction(PhiOrTrunc, VF); | ||||||||
| 8206 | }, | ||||||||
| 8207 | Range); | ||||||||
| 8208 | assert(IndDesc.getStartValue() ==(static_cast <bool> (IndDesc.getStartValue() == Phi-> getIncomingValueForBlock(OrigLoop.getLoopPreheader())) ? void (0) : __assert_fail ("IndDesc.getStartValue() == Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8209, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8209 | Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader()))(static_cast <bool> (IndDesc.getStartValue() == Phi-> getIncomingValueForBlock(OrigLoop.getLoopPreheader())) ? void (0) : __assert_fail ("IndDesc.getStartValue() == Phi->getIncomingValueForBlock(OrigLoop.getLoopPreheader())" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8209, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8210 | assert(SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) &&(static_cast <bool> (SE.isLoopInvariant(IndDesc.getStep (), &OrigLoop) && "step must be loop invariant") ? void (0) : __assert_fail ("SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && \"step must be loop invariant\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8211, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8211 | "step must be loop invariant")(static_cast <bool> (SE.isLoopInvariant(IndDesc.getStep (), &OrigLoop) && "step must be loop invariant") ? void (0) : __assert_fail ("SE.isLoopInvariant(IndDesc.getStep(), &OrigLoop) && \"step must be loop invariant\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8211, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8212 | |||||||||
| 8213 | VPValue *Step = | ||||||||
| 8214 | vputils::getOrCreateVPValueForSCEVExpr(Plan, IndDesc.getStep(), SE); | ||||||||
| 8215 | if (auto *TruncI = dyn_cast<TruncInst>(PhiOrTrunc)) { | ||||||||
| 8216 | return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, TruncI, | ||||||||
| 8217 | !NeedsScalarIVOnly); | ||||||||
| 8218 | } | ||||||||
| 8219 | assert(isa<PHINode>(PhiOrTrunc) && "must be a phi node here")(static_cast <bool> (isa<PHINode>(PhiOrTrunc) && "must be a phi node here") ? void (0) : __assert_fail ("isa<PHINode>(PhiOrTrunc) && \"must be a phi node here\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8219, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8220 | return new VPWidenIntOrFpInductionRecipe(Phi, Start, Step, IndDesc, | ||||||||
| 8221 | !NeedsScalarIVOnly); | ||||||||
| 8222 | } | ||||||||
| 8223 | |||||||||
| 8224 | VPRecipeBase *VPRecipeBuilder::tryToOptimizeInductionPHI( | ||||||||
| 8225 | PHINode *Phi, ArrayRef<VPValue *> Operands, VPlan &Plan, VFRange &Range) { | ||||||||
| 8226 | |||||||||
| 8227 | // Check if this is an integer or fp induction. If so, build the recipe that | ||||||||
| 8228 | // produces its scalar and vector values. | ||||||||
| 8229 | if (auto *II = Legal->getIntOrFpInductionDescriptor(Phi)) | ||||||||
| 8230 | return createWidenInductionRecipes(Phi, Phi, Operands[0], *II, CM, Plan, | ||||||||
| 8231 | *PSE.getSE(), *OrigLoop, Range); | ||||||||
| 8232 | |||||||||
| 8233 | // Check if this is pointer induction. If so, build the recipe for it. | ||||||||
| 8234 | if (auto *II = Legal->getPointerInductionDescriptor(Phi)) { | ||||||||
| 8235 | VPValue *Step = vputils::getOrCreateVPValueForSCEVExpr(Plan, II->getStep(), | ||||||||
| 8236 | *PSE.getSE()); | ||||||||
| 8237 | assert(isa<SCEVConstant>(II->getStep()))(static_cast <bool> (isa<SCEVConstant>(II->getStep ())) ? void (0) : __assert_fail ("isa<SCEVConstant>(II->getStep())" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8237, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8238 | return new VPWidenPointerInductionRecipe( | ||||||||
| 8239 | Phi, Operands[0], Step, *II, | ||||||||
| 8240 | LoopVectorizationPlanner::getDecisionAndClampRange( | ||||||||
| 8241 | [&](ElementCount VF) { | ||||||||
| 8242 | return CM.isScalarAfterVectorization(Phi, VF); | ||||||||
| 8243 | }, | ||||||||
| 8244 | Range)); | ||||||||
| 8245 | } | ||||||||
| 8246 | return nullptr; | ||||||||
| 8247 | } | ||||||||
| 8248 | |||||||||
| 8249 | VPWidenIntOrFpInductionRecipe *VPRecipeBuilder::tryToOptimizeInductionTruncate( | ||||||||
| 8250 | TruncInst *I, ArrayRef<VPValue *> Operands, VFRange &Range, VPlan &Plan) { | ||||||||
| 8251 | // Optimize the special case where the source is a constant integer | ||||||||
| 8252 | // induction variable. Notice that we can only optimize the 'trunc' case | ||||||||
| 8253 | // because (a) FP conversions lose precision, (b) sext/zext may wrap, and | ||||||||
| 8254 | // (c) other casts depend on pointer size. | ||||||||
| 8255 | |||||||||
| 8256 | // Determine whether \p K is a truncation based on an induction variable that | ||||||||
| 8257 | // can be optimized. | ||||||||
| 8258 | auto isOptimizableIVTruncate = | ||||||||
| 8259 | [&](Instruction *K) -> std::function<bool(ElementCount)> { | ||||||||
| 8260 | return [=](ElementCount VF) -> bool { | ||||||||
| 8261 | return CM.isOptimizableIVTruncate(K, VF); | ||||||||
| 8262 | }; | ||||||||
| 8263 | }; | ||||||||
| 8264 | |||||||||
| 8265 | if (LoopVectorizationPlanner::getDecisionAndClampRange( | ||||||||
| 8266 | isOptimizableIVTruncate(I), Range)) { | ||||||||
| 8267 | |||||||||
| 8268 | auto *Phi = cast<PHINode>(I->getOperand(0)); | ||||||||
| 8269 | const InductionDescriptor &II = *Legal->getIntOrFpInductionDescriptor(Phi); | ||||||||
| 8270 | VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); | ||||||||
| 8271 | return createWidenInductionRecipes(Phi, I, Start, II, CM, Plan, | ||||||||
| 8272 | *PSE.getSE(), *OrigLoop, Range); | ||||||||
| 8273 | } | ||||||||
| 8274 | return nullptr; | ||||||||
| 8275 | } | ||||||||
| 8276 | |||||||||
| 8277 | VPRecipeOrVPValueTy VPRecipeBuilder::tryToBlend(PHINode *Phi, | ||||||||
| 8278 | ArrayRef<VPValue *> Operands, | ||||||||
| 8279 | VPlanPtr &Plan) { | ||||||||
| 8280 | // If all incoming values are equal, the incoming VPValue can be used directly | ||||||||
| 8281 | // instead of creating a new VPBlendRecipe. | ||||||||
| 8282 | if (llvm::all_equal(Operands)) | ||||||||
| 8283 | return Operands[0]; | ||||||||
| 8284 | |||||||||
| 8285 | unsigned NumIncoming = Phi->getNumIncomingValues(); | ||||||||
| 8286 | // For in-loop reductions, we do not need to create an additional select. | ||||||||
| 8287 | VPValue *InLoopVal = nullptr; | ||||||||
| 8288 | for (unsigned In = 0; In < NumIncoming; In++) { | ||||||||
| 8289 | PHINode *PhiOp = | ||||||||
| 8290 | dyn_cast_or_null<PHINode>(Operands[In]->getUnderlyingValue()); | ||||||||
| 8291 | if (PhiOp && CM.isInLoopReduction(PhiOp)) { | ||||||||
| 8292 | assert(!InLoopVal && "Found more than one in-loop reduction!")(static_cast <bool> (!InLoopVal && "Found more than one in-loop reduction!" ) ? void (0) : __assert_fail ("!InLoopVal && \"Found more than one in-loop reduction!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8292, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8293 | InLoopVal = Operands[In]; | ||||||||
| 8294 | } | ||||||||
| 8295 | } | ||||||||
| 8296 | |||||||||
| 8297 | assert((!InLoopVal || NumIncoming == 2) &&(static_cast <bool> ((!InLoopVal || NumIncoming == 2) && "Found an in-loop reduction for PHI with unexpected number of " "incoming values") ? void (0) : __assert_fail ("(!InLoopVal || NumIncoming == 2) && \"Found an in-loop reduction for PHI with unexpected number of \" \"incoming values\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8299, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8298 | "Found an in-loop reduction for PHI with unexpected number of "(static_cast <bool> ((!InLoopVal || NumIncoming == 2) && "Found an in-loop reduction for PHI with unexpected number of " "incoming values") ? void (0) : __assert_fail ("(!InLoopVal || NumIncoming == 2) && \"Found an in-loop reduction for PHI with unexpected number of \" \"incoming values\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8299, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8299 | "incoming values")(static_cast <bool> ((!InLoopVal || NumIncoming == 2) && "Found an in-loop reduction for PHI with unexpected number of " "incoming values") ? void (0) : __assert_fail ("(!InLoopVal || NumIncoming == 2) && \"Found an in-loop reduction for PHI with unexpected number of \" \"incoming values\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8299, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8300 | if (InLoopVal) | ||||||||
| 8301 | return Operands[Operands[0] == InLoopVal ? 1 : 0]; | ||||||||
| 8302 | |||||||||
| 8303 | // We know that all PHIs in non-header blocks are converted into selects, so | ||||||||
| 8304 | // we don't have to worry about the insertion order and we can just use the | ||||||||
| 8305 | // builder. At this point we generate the predication tree. There may be | ||||||||
| 8306 | // duplications since this is a simple recursive scan, but future | ||||||||
| 8307 | // optimizations will clean it up. | ||||||||
| 8308 | SmallVector<VPValue *, 2> OperandsWithMask; | ||||||||
| 8309 | |||||||||
| 8310 | for (unsigned In = 0; In < NumIncoming; In++) { | ||||||||
| 8311 | VPValue *EdgeMask = | ||||||||
| 8312 | createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); | ||||||||
| 8313 | assert((EdgeMask || NumIncoming == 1) &&(static_cast <bool> ((EdgeMask || NumIncoming == 1) && "Multiple predecessors with one having a full mask") ? void ( 0) : __assert_fail ("(EdgeMask || NumIncoming == 1) && \"Multiple predecessors with one having a full mask\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8314, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8314 | "Multiple predecessors with one having a full mask")(static_cast <bool> ((EdgeMask || NumIncoming == 1) && "Multiple predecessors with one having a full mask") ? void ( 0) : __assert_fail ("(EdgeMask || NumIncoming == 1) && \"Multiple predecessors with one having a full mask\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8314, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8315 | OperandsWithMask.push_back(Operands[In]); | ||||||||
| 8316 | if (EdgeMask) | ||||||||
| 8317 | OperandsWithMask.push_back(EdgeMask); | ||||||||
| 8318 | } | ||||||||
| 8319 | return toVPRecipeResult(new VPBlendRecipe(Phi, OperandsWithMask)); | ||||||||
| 8320 | } | ||||||||
| 8321 | |||||||||
| 8322 | VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, | ||||||||
| 8323 | ArrayRef<VPValue *> Operands, | ||||||||
| 8324 | VFRange &Range) const { | ||||||||
| 8325 | |||||||||
| 8326 | bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( | ||||||||
| 8327 | [this, CI](ElementCount VF) { | ||||||||
| 8328 | return CM.isScalarWithPredication(CI, VF); | ||||||||
| 8329 | }, | ||||||||
| 8330 | Range); | ||||||||
| 8331 | |||||||||
| 8332 | if (IsPredicated) | ||||||||
| 8333 | return nullptr; | ||||||||
| 8334 | |||||||||
| 8335 | Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); | ||||||||
| 8336 | if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || | ||||||||
| 8337 | ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || | ||||||||
| 8338 | ID == Intrinsic::pseudoprobe || | ||||||||
| 8339 | ID == Intrinsic::experimental_noalias_scope_decl)) | ||||||||
| 8340 | return nullptr; | ||||||||
| 8341 | |||||||||
| 8342 | ArrayRef<VPValue *> Ops = Operands.take_front(CI->arg_size()); | ||||||||
| 8343 | |||||||||
| 8344 | // Is it beneficial to perform intrinsic call compared to lib call? | ||||||||
| 8345 | bool ShouldUseVectorIntrinsic = | ||||||||
| 8346 | ID && LoopVectorizationPlanner::getDecisionAndClampRange( | ||||||||
| 8347 | [&](ElementCount VF) -> bool { | ||||||||
| 8348 | bool NeedToScalarize = false; | ||||||||
| 8349 | // Is it beneficial to perform intrinsic call compared to lib | ||||||||
| 8350 | // call? | ||||||||
| 8351 | InstructionCost CallCost = | ||||||||
| 8352 | CM.getVectorCallCost(CI, VF, NeedToScalarize); | ||||||||
| 8353 | InstructionCost IntrinsicCost = | ||||||||
| 8354 | CM.getVectorIntrinsicCost(CI, VF); | ||||||||
| 8355 | return IntrinsicCost <= CallCost; | ||||||||
| 8356 | }, | ||||||||
| 8357 | Range); | ||||||||
| 8358 | if (ShouldUseVectorIntrinsic) | ||||||||
| 8359 | return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()), ID); | ||||||||
| 8360 | |||||||||
| 8361 | // Is better to call a vectorized version of the function than to to scalarize | ||||||||
| 8362 | // the call? | ||||||||
| 8363 | auto ShouldUseVectorCall = LoopVectorizationPlanner::getDecisionAndClampRange( | ||||||||
| 8364 | [&](ElementCount VF) -> bool { | ||||||||
| 8365 | // The following case may be scalarized depending on the VF. | ||||||||
| 8366 | // The flag shows whether we can use a usual Call for vectorized | ||||||||
| 8367 | // version of the instruction. | ||||||||
| 8368 | bool NeedToScalarize = false; | ||||||||
| 8369 | CM.getVectorCallCost(CI, VF, NeedToScalarize); | ||||||||
| 8370 | return !NeedToScalarize; | ||||||||
| 8371 | }, | ||||||||
| 8372 | Range); | ||||||||
| 8373 | if (ShouldUseVectorCall) | ||||||||
| 8374 | return new VPWidenCallRecipe(*CI, make_range(Ops.begin(), Ops.end()), | ||||||||
| 8375 | Intrinsic::not_intrinsic); | ||||||||
| 8376 | |||||||||
| 8377 | return nullptr; | ||||||||
| 8378 | } | ||||||||
| 8379 | |||||||||
| 8380 | bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { | ||||||||
| 8381 | assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) &&(static_cast <bool> (!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && !isa<StoreInst>(I) && "Instruction should have been handled earlier" ) ? void (0) : __assert_fail ("!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && !isa<StoreInst>(I) && \"Instruction should have been handled earlier\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8382, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8382 | !isa<StoreInst>(I) && "Instruction should have been handled earlier")(static_cast <bool> (!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && !isa<StoreInst>(I) && "Instruction should have been handled earlier" ) ? void (0) : __assert_fail ("!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && !isa<StoreInst>(I) && \"Instruction should have been handled earlier\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8382, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8383 | // Instruction should be widened, unless it is scalar after vectorization, | ||||||||
| 8384 | // scalarization is profitable or it is predicated. | ||||||||
| 8385 | auto WillScalarize = [this, I](ElementCount VF) -> bool { | ||||||||
| 8386 | return CM.isScalarAfterVectorization(I, VF) || | ||||||||
| 8387 | CM.isProfitableToScalarize(I, VF) || | ||||||||
| 8388 | CM.isScalarWithPredication(I, VF); | ||||||||
| 8389 | }; | ||||||||
| 8390 | return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, | ||||||||
| 8391 | Range); | ||||||||
| 8392 | } | ||||||||
| 8393 | |||||||||
| 8394 | VPRecipeBase *VPRecipeBuilder::tryToWiden(Instruction *I, | ||||||||
| 8395 | ArrayRef<VPValue *> Operands, | ||||||||
| 8396 | VPBasicBlock *VPBB, VPlanPtr &Plan) { | ||||||||
| 8397 | switch (I->getOpcode()) { | ||||||||
| 8398 | default: | ||||||||
| 8399 | return nullptr; | ||||||||
| 8400 | case Instruction::SDiv: | ||||||||
| 8401 | case Instruction::UDiv: | ||||||||
| 8402 | case Instruction::SRem: | ||||||||
| 8403 | case Instruction::URem: { | ||||||||
| 8404 | // If not provably safe, use a select to form a safe divisor before widening the | ||||||||
| 8405 | // div/rem operation itself. Otherwise fall through to general handling below. | ||||||||
| 8406 | if (CM.isPredicatedInst(I)) { | ||||||||
| 8407 | SmallVector<VPValue *> Ops(Operands.begin(), Operands.end()); | ||||||||
| 8408 | VPValue *Mask = createBlockInMask(I->getParent(), Plan); | ||||||||
| 8409 | VPValue *One = | ||||||||
| 8410 | Plan->getOrAddExternalDef(ConstantInt::get(I->getType(), 1u, false)); | ||||||||
| 8411 | auto *SafeRHS = | ||||||||
| 8412 | new VPInstruction(Instruction::Select, {Mask, Ops[1], One}, | ||||||||
| 8413 | I->getDebugLoc()); | ||||||||
| 8414 | VPBB->appendRecipe(SafeRHS); | ||||||||
| 8415 | Ops[1] = SafeRHS; | ||||||||
| 8416 | return new VPWidenRecipe(*I, make_range(Ops.begin(), Ops.end())); | ||||||||
| 8417 | } | ||||||||
| 8418 | LLVM_FALLTHROUGH[[fallthrough]]; | ||||||||
| 8419 | } | ||||||||
| 8420 | case Instruction::Add: | ||||||||
| 8421 | case Instruction::And: | ||||||||
| 8422 | case Instruction::AShr: | ||||||||
| 8423 | case Instruction::BitCast: | ||||||||
| 8424 | case Instruction::FAdd: | ||||||||
| 8425 | case Instruction::FCmp: | ||||||||
| 8426 | case Instruction::FDiv: | ||||||||
| 8427 | case Instruction::FMul: | ||||||||
| 8428 | case Instruction::FNeg: | ||||||||
| 8429 | case Instruction::FPExt: | ||||||||
| 8430 | case Instruction::FPToSI: | ||||||||
| 8431 | case Instruction::FPToUI: | ||||||||
| 8432 | case Instruction::FPTrunc: | ||||||||
| 8433 | case Instruction::FRem: | ||||||||
| 8434 | case Instruction::FSub: | ||||||||
| 8435 | case Instruction::ICmp: | ||||||||
| 8436 | case Instruction::IntToPtr: | ||||||||
| 8437 | case Instruction::LShr: | ||||||||
| 8438 | case Instruction::Mul: | ||||||||
| 8439 | case Instruction::Or: | ||||||||
| 8440 | case Instruction::PtrToInt: | ||||||||
| 8441 | case Instruction::Select: | ||||||||
| 8442 | case Instruction::SExt: | ||||||||
| 8443 | case Instruction::Shl: | ||||||||
| 8444 | case Instruction::SIToFP: | ||||||||
| 8445 | case Instruction::Sub: | ||||||||
| 8446 | case Instruction::Trunc: | ||||||||
| 8447 | case Instruction::UIToFP: | ||||||||
| 8448 | case Instruction::Xor: | ||||||||
| 8449 | case Instruction::ZExt: | ||||||||
| 8450 | case Instruction::Freeze: | ||||||||
| 8451 | return new VPWidenRecipe(*I, make_range(Operands.begin(), Operands.end())); | ||||||||
| 8452 | }; | ||||||||
| 8453 | } | ||||||||
| 8454 | |||||||||
| 8455 | void VPRecipeBuilder::fixHeaderPhis() { | ||||||||
| 8456 | BasicBlock *OrigLatch = OrigLoop->getLoopLatch(); | ||||||||
| 8457 | for (VPHeaderPHIRecipe *R : PhisToFix) { | ||||||||
| 8458 | auto *PN = cast<PHINode>(R->getUnderlyingValue()); | ||||||||
| 8459 | VPRecipeBase *IncR = | ||||||||
| 8460 | getRecipe(cast<Instruction>(PN->getIncomingValueForBlock(OrigLatch))); | ||||||||
| 8461 | R->addOperand(IncR->getVPSingleValue()); | ||||||||
| 8462 | } | ||||||||
| 8463 | } | ||||||||
| 8464 | |||||||||
| 8465 | VPBasicBlock *VPRecipeBuilder::handleReplication( | ||||||||
| 8466 | Instruction *I, VFRange &Range, VPBasicBlock *VPBB, | ||||||||
| 8467 | VPlanPtr &Plan) { | ||||||||
| 8468 | bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( | ||||||||
| 8469 | [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, | ||||||||
| 8470 | Range); | ||||||||
| 8471 | |||||||||
| 8472 | bool IsPredicated = CM.isPredicatedInst(I); | ||||||||
| 8473 | |||||||||
| 8474 | // Even if the instruction is not marked as uniform, there are certain | ||||||||
| 8475 | // intrinsic calls that can be effectively treated as such, so we check for | ||||||||
| 8476 | // them here. Conservatively, we only do this for scalable vectors, since | ||||||||
| 8477 | // for fixed-width VFs we can always fall back on full scalarization. | ||||||||
| 8478 | if (!IsUniform && Range.Start.isScalable() && isa<IntrinsicInst>(I)) { | ||||||||
| 8479 | switch (cast<IntrinsicInst>(I)->getIntrinsicID()) { | ||||||||
| 8480 | case Intrinsic::assume: | ||||||||
| 8481 | case Intrinsic::lifetime_start: | ||||||||
| 8482 | case Intrinsic::lifetime_end: | ||||||||
| 8483 | // For scalable vectors if one of the operands is variant then we still | ||||||||
| 8484 | // want to mark as uniform, which will generate one instruction for just | ||||||||
| 8485 | // the first lane of the vector. We can't scalarize the call in the same | ||||||||
| 8486 | // way as for fixed-width vectors because we don't know how many lanes | ||||||||
| 8487 | // there are. | ||||||||
| 8488 | // | ||||||||
| 8489 | // The reasons for doing it this way for scalable vectors are: | ||||||||
| 8490 | // 1. For the assume intrinsic generating the instruction for the first | ||||||||
| 8491 | // lane is still be better than not generating any at all. For | ||||||||
| 8492 | // example, the input may be a splat across all lanes. | ||||||||
| 8493 | // 2. For the lifetime start/end intrinsics the pointer operand only | ||||||||
| 8494 | // does anything useful when the input comes from a stack object, | ||||||||
| 8495 | // which suggests it should always be uniform. For non-stack objects | ||||||||
| 8496 | // the effect is to poison the object, which still allows us to | ||||||||
| 8497 | // remove the call. | ||||||||
| 8498 | IsUniform = true; | ||||||||
| 8499 | break; | ||||||||
| 8500 | default: | ||||||||
| 8501 | break; | ||||||||
| 8502 | } | ||||||||
| 8503 | } | ||||||||
| 8504 | |||||||||
| 8505 | auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), | ||||||||
| 8506 | IsUniform, IsPredicated); | ||||||||
| 8507 | |||||||||
| 8508 | // Find if I uses a predicated instruction. If so, it will use its scalar | ||||||||
| 8509 | // value. Avoid hoisting the insert-element which packs the scalar value into | ||||||||
| 8510 | // a vector value, as that happens iff all users use the vector value. | ||||||||
| 8511 | for (VPValue *Op : Recipe->operands()) { | ||||||||
| 8512 | auto *PredR = | ||||||||
| 8513 | dyn_cast_or_null<VPPredInstPHIRecipe>(Op->getDefiningRecipe()); | ||||||||
| 8514 | if (!PredR) | ||||||||
| 8515 | continue; | ||||||||
| 8516 | auto *RepR = cast<VPReplicateRecipe>( | ||||||||
| 8517 | PredR->getOperand(0)->getDefiningRecipe()); | ||||||||
| 8518 | assert(RepR->isPredicated() &&(static_cast <bool> (RepR->isPredicated() && "expected Replicate recipe to be predicated") ? void (0) : __assert_fail ("RepR->isPredicated() && \"expected Replicate recipe to be predicated\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8519, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8519 | "expected Replicate recipe to be predicated")(static_cast <bool> (RepR->isPredicated() && "expected Replicate recipe to be predicated") ? void (0) : __assert_fail ("RepR->isPredicated() && \"expected Replicate recipe to be predicated\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8519, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8520 | RepR->setAlsoPack(false); | ||||||||
| 8521 | } | ||||||||
| 8522 | |||||||||
| 8523 | // Finalize the recipe for Instr, first if it is not predicated. | ||||||||
| 8524 | if (!IsPredicated) { | ||||||||
| 8525 | LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Scalarizing:" << *I << "\n"; } } while (false); | ||||||||
| 8526 | setRecipe(I, Recipe); | ||||||||
| 8527 | Plan->addVPValue(I, Recipe); | ||||||||
| 8528 | VPBB->appendRecipe(Recipe); | ||||||||
| 8529 | return VPBB; | ||||||||
| 8530 | } | ||||||||
| 8531 | LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"; } } while (false); | ||||||||
| 8532 | |||||||||
| 8533 | VPBlockBase *SingleSucc = VPBB->getSingleSuccessor(); | ||||||||
| 8534 | assert(SingleSucc && "VPBB must have a single successor when handling "(static_cast <bool> (SingleSucc && "VPBB must have a single successor when handling " "predicated replication.") ? void (0) : __assert_fail ("SingleSucc && \"VPBB must have a single successor when handling \" \"predicated replication.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8535, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8535 | "predicated replication.")(static_cast <bool> (SingleSucc && "VPBB must have a single successor when handling " "predicated replication.") ? void (0) : __assert_fail ("SingleSucc && \"VPBB must have a single successor when handling \" \"predicated replication.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8535, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8536 | VPBlockUtils::disconnectBlocks(VPBB, SingleSucc); | ||||||||
| 8537 | // Record predicated instructions for above packing optimizations. | ||||||||
| 8538 | VPBlockBase *Region = createReplicateRegion(Recipe, Plan); | ||||||||
| 8539 | VPBlockUtils::insertBlockAfter(Region, VPBB); | ||||||||
| 8540 | auto *RegSucc = new VPBasicBlock(); | ||||||||
| 8541 | VPBlockUtils::insertBlockAfter(RegSucc, Region); | ||||||||
| 8542 | VPBlockUtils::connectBlocks(RegSucc, SingleSucc); | ||||||||
| 8543 | return RegSucc; | ||||||||
| 8544 | } | ||||||||
| 8545 | |||||||||
| 8546 | VPRegionBlock * | ||||||||
| 8547 | VPRecipeBuilder::createReplicateRegion(VPReplicateRecipe *PredRecipe, | ||||||||
| 8548 | VPlanPtr &Plan) { | ||||||||
| 8549 | Instruction *Instr = PredRecipe->getUnderlyingInstr(); | ||||||||
| 8550 | // Instructions marked for predication are replicated and placed under an | ||||||||
| 8551 | // if-then construct to prevent side-effects. | ||||||||
| 8552 | // Generate recipes to compute the block mask for this region. | ||||||||
| 8553 | VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); | ||||||||
| |||||||||
| 8554 | |||||||||
| 8555 | // Build the triangular if-then region. | ||||||||
| 8556 | std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); | ||||||||
| 8557 | assert(Instr->getParent() && "Predicated instruction not in any basic block")(static_cast <bool> (Instr->getParent() && "Predicated instruction not in any basic block" ) ? void (0) : __assert_fail ("Instr->getParent() && \"Predicated instruction not in any basic block\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8557, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8558 | auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); | ||||||||
| 8559 | auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); | ||||||||
| 8560 | auto *PHIRecipe = Instr->getType()->isVoidTy() | ||||||||
| 8561 | ? nullptr | ||||||||
| 8562 | : new VPPredInstPHIRecipe(PredRecipe); | ||||||||
| 8563 | if (PHIRecipe) { | ||||||||
| 8564 | setRecipe(Instr, PHIRecipe); | ||||||||
| 8565 | Plan->addVPValue(Instr, PHIRecipe); | ||||||||
| 8566 | } else { | ||||||||
| 8567 | setRecipe(Instr, PredRecipe); | ||||||||
| 8568 | Plan->addVPValue(Instr, PredRecipe); | ||||||||
| 8569 | } | ||||||||
| 8570 | |||||||||
| 8571 | auto *Exiting = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); | ||||||||
| 8572 | auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); | ||||||||
| 8573 | VPRegionBlock *Region = new VPRegionBlock(Entry, Exiting, RegionName, true); | ||||||||
| 8574 | |||||||||
| 8575 | // Note: first set Entry as region entry and then connect successors starting | ||||||||
| 8576 | // from it in order, to propagate the "parent" of each VPBasicBlock. | ||||||||
| 8577 | VPBlockUtils::insertTwoBlocksAfter(Pred, Exiting, Entry); | ||||||||
| 8578 | VPBlockUtils::connectBlocks(Pred, Exiting); | ||||||||
| 8579 | |||||||||
| 8580 | return Region; | ||||||||
| 8581 | } | ||||||||
| 8582 | |||||||||
| 8583 | VPRecipeOrVPValueTy | ||||||||
| 8584 | VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, | ||||||||
| 8585 | ArrayRef<VPValue *> Operands, | ||||||||
| 8586 | VFRange &Range, VPBasicBlock *VPBB, | ||||||||
| 8587 | VPlanPtr &Plan) { | ||||||||
| 8588 | // First, check for specific widening recipes that deal with inductions, Phi | ||||||||
| 8589 | // nodes, calls and memory operations. | ||||||||
| 8590 | VPRecipeBase *Recipe; | ||||||||
| 8591 | if (auto Phi = dyn_cast<PHINode>(Instr)) { | ||||||||
| 8592 | if (Phi->getParent() != OrigLoop->getHeader()) | ||||||||
| 8593 | return tryToBlend(Phi, Operands, Plan); | ||||||||
| 8594 | |||||||||
| 8595 | // Always record recipes for header phis. Later first-order recurrence phis | ||||||||
| 8596 | // can have earlier phis as incoming values. | ||||||||
| 8597 | recordRecipeOf(Phi); | ||||||||
| 8598 | |||||||||
| 8599 | if ((Recipe = tryToOptimizeInductionPHI(Phi, Operands, *Plan, Range))) | ||||||||
| 8600 | return toVPRecipeResult(Recipe); | ||||||||
| 8601 | |||||||||
| 8602 | VPHeaderPHIRecipe *PhiRecipe = nullptr; | ||||||||
| 8603 | assert((Legal->isReductionVariable(Phi) ||(static_cast <bool> ((Legal->isReductionVariable(Phi ) || Legal->isFixedOrderRecurrence(Phi)) && "can only widen reductions and fixed-order recurrences here" ) ? void (0) : __assert_fail ("(Legal->isReductionVariable(Phi) || Legal->isFixedOrderRecurrence(Phi)) && \"can only widen reductions and fixed-order recurrences here\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8605, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8604 | Legal->isFixedOrderRecurrence(Phi)) &&(static_cast <bool> ((Legal->isReductionVariable(Phi ) || Legal->isFixedOrderRecurrence(Phi)) && "can only widen reductions and fixed-order recurrences here" ) ? void (0) : __assert_fail ("(Legal->isReductionVariable(Phi) || Legal->isFixedOrderRecurrence(Phi)) && \"can only widen reductions and fixed-order recurrences here\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8605, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8605 | "can only widen reductions and fixed-order recurrences here")(static_cast <bool> ((Legal->isReductionVariable(Phi ) || Legal->isFixedOrderRecurrence(Phi)) && "can only widen reductions and fixed-order recurrences here" ) ? void (0) : __assert_fail ("(Legal->isReductionVariable(Phi) || Legal->isFixedOrderRecurrence(Phi)) && \"can only widen reductions and fixed-order recurrences here\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8605, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8606 | VPValue *StartV = Operands[0]; | ||||||||
| 8607 | if (Legal->isReductionVariable(Phi)) { | ||||||||
| 8608 | const RecurrenceDescriptor &RdxDesc = | ||||||||
| 8609 | Legal->getReductionVars().find(Phi)->second; | ||||||||
| 8610 | assert(RdxDesc.getRecurrenceStartValue() ==(static_cast <bool> (RdxDesc.getRecurrenceStartValue() == Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader ())) ? void (0) : __assert_fail ("RdxDesc.getRecurrenceStartValue() == Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8611, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8611 | Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))(static_cast <bool> (RdxDesc.getRecurrenceStartValue() == Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader ())) ? void (0) : __assert_fail ("RdxDesc.getRecurrenceStartValue() == Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader())" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8611, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8612 | PhiRecipe = new VPReductionPHIRecipe(Phi, RdxDesc, *StartV, | ||||||||
| 8613 | CM.isInLoopReduction(Phi), | ||||||||
| 8614 | CM.useOrderedReductions(RdxDesc)); | ||||||||
| 8615 | } else { | ||||||||
| 8616 | // TODO: Currently fixed-order recurrences are modeled as chains of | ||||||||
| 8617 | // first-order recurrences. If there are no users of the intermediate | ||||||||
| 8618 | // recurrences in the chain, the fixed order recurrence should be modeled | ||||||||
| 8619 | // directly, enabling more efficient codegen. | ||||||||
| 8620 | PhiRecipe = new VPFirstOrderRecurrencePHIRecipe(Phi, *StartV); | ||||||||
| 8621 | } | ||||||||
| 8622 | |||||||||
| 8623 | // Record the incoming value from the backedge, so we can add the incoming | ||||||||
| 8624 | // value from the backedge after all recipes have been created. | ||||||||
| 8625 | auto *Inc = cast<Instruction>( | ||||||||
| 8626 | Phi->getIncomingValueForBlock(OrigLoop->getLoopLatch())); | ||||||||
| 8627 | auto RecipeIter = Ingredient2Recipe.find(Inc); | ||||||||
| 8628 | if (RecipeIter == Ingredient2Recipe.end()) | ||||||||
| 8629 | recordRecipeOf(Inc); | ||||||||
| 8630 | |||||||||
| 8631 | PhisToFix.push_back(PhiRecipe); | ||||||||
| 8632 | return toVPRecipeResult(PhiRecipe); | ||||||||
| 8633 | } | ||||||||
| 8634 | |||||||||
| 8635 | if (isa<TruncInst>(Instr) && | ||||||||
| 8636 | (Recipe = tryToOptimizeInductionTruncate(cast<TruncInst>(Instr), Operands, | ||||||||
| 8637 | Range, *Plan))) | ||||||||
| 8638 | return toVPRecipeResult(Recipe); | ||||||||
| 8639 | |||||||||
| 8640 | // All widen recipes below deal only with VF > 1. | ||||||||
| 8641 | if (LoopVectorizationPlanner::getDecisionAndClampRange( | ||||||||
| 8642 | [&](ElementCount VF) { return VF.isScalar(); }, Range)) | ||||||||
| 8643 | return nullptr; | ||||||||
| 8644 | |||||||||
| 8645 | if (auto *CI = dyn_cast<CallInst>(Instr)) | ||||||||
| 8646 | return toVPRecipeResult(tryToWidenCall(CI, Operands, Range)); | ||||||||
| 8647 | |||||||||
| 8648 | if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) | ||||||||
| 8649 | return toVPRecipeResult(tryToWidenMemory(Instr, Operands, Range, Plan)); | ||||||||
| 8650 | |||||||||
| 8651 | if (!shouldWiden(Instr, Range)) | ||||||||
| 8652 | return nullptr; | ||||||||
| 8653 | |||||||||
| 8654 | if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) | ||||||||
| 8655 | return toVPRecipeResult(new VPWidenGEPRecipe( | ||||||||
| 8656 | GEP, make_range(Operands.begin(), Operands.end()), OrigLoop)); | ||||||||
| 8657 | |||||||||
| 8658 | if (auto *SI = dyn_cast<SelectInst>(Instr)) { | ||||||||
| 8659 | bool InvariantCond = | ||||||||
| 8660 | PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); | ||||||||
| 8661 | return toVPRecipeResult(new VPWidenSelectRecipe( | ||||||||
| 8662 | *SI, make_range(Operands.begin(), Operands.end()), InvariantCond)); | ||||||||
| 8663 | } | ||||||||
| 8664 | |||||||||
| 8665 | return toVPRecipeResult(tryToWiden(Instr, Operands, VPBB, Plan)); | ||||||||
| 8666 | } | ||||||||
| 8667 | |||||||||
| 8668 | void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, | ||||||||
| 8669 | ElementCount MaxVF) { | ||||||||
| 8670 | assert(OrigLoop->isInnermost() && "Inner loop expected.")(static_cast <bool> (OrigLoop->isInnermost() && "Inner loop expected.") ? void (0) : __assert_fail ("OrigLoop->isInnermost() && \"Inner loop expected.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8670, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8671 | |||||||||
| 8672 | // Add assume instructions we need to drop to DeadInstructions, to prevent | ||||||||
| 8673 | // them from being added to the VPlan. | ||||||||
| 8674 | // TODO: We only need to drop assumes in blocks that get flattend. If the | ||||||||
| 8675 | // control flow is preserved, we should keep them. | ||||||||
| 8676 | SmallPtrSet<Instruction *, 4> DeadInstructions; | ||||||||
| 8677 | auto &ConditionalAssumes = Legal->getConditionalAssumes(); | ||||||||
| 8678 | DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); | ||||||||
| 8679 | |||||||||
| 8680 | MapVector<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); | ||||||||
| 8681 | // Dead instructions do not need sinking. Remove them from SinkAfter. | ||||||||
| 8682 | for (Instruction *I : DeadInstructions) | ||||||||
| 8683 | SinkAfter.erase(I); | ||||||||
| 8684 | |||||||||
| 8685 | // Cannot sink instructions after dead instructions (there won't be any | ||||||||
| 8686 | // recipes for them). Instead, find the first non-dead previous instruction. | ||||||||
| 8687 | for (auto &P : Legal->getSinkAfter()) { | ||||||||
| 8688 | Instruction *SinkTarget = P.second; | ||||||||
| 8689 | Instruction *FirstInst = &*SinkTarget->getParent()->begin(); | ||||||||
| 8690 | (void)FirstInst; | ||||||||
| 8691 | while (DeadInstructions.contains(SinkTarget)) { | ||||||||
| 8692 | assert((static_cast <bool> (SinkTarget != FirstInst && "Must find a live instruction (at least the one feeding the " "fixed-order recurrence PHI) before reaching beginning of the block" ) ? void (0) : __assert_fail ("SinkTarget != FirstInst && \"Must find a live instruction (at least the one feeding the \" \"fixed-order recurrence PHI) before reaching beginning of the block\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8695, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8693 | SinkTarget != FirstInst &&(static_cast <bool> (SinkTarget != FirstInst && "Must find a live instruction (at least the one feeding the " "fixed-order recurrence PHI) before reaching beginning of the block" ) ? void (0) : __assert_fail ("SinkTarget != FirstInst && \"Must find a live instruction (at least the one feeding the \" \"fixed-order recurrence PHI) before reaching beginning of the block\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8695, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8694 | "Must find a live instruction (at least the one feeding the "(static_cast <bool> (SinkTarget != FirstInst && "Must find a live instruction (at least the one feeding the " "fixed-order recurrence PHI) before reaching beginning of the block" ) ? void (0) : __assert_fail ("SinkTarget != FirstInst && \"Must find a live instruction (at least the one feeding the \" \"fixed-order recurrence PHI) before reaching beginning of the block\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8695, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8695 | "fixed-order recurrence PHI) before reaching beginning of the block")(static_cast <bool> (SinkTarget != FirstInst && "Must find a live instruction (at least the one feeding the " "fixed-order recurrence PHI) before reaching beginning of the block" ) ? void (0) : __assert_fail ("SinkTarget != FirstInst && \"Must find a live instruction (at least the one feeding the \" \"fixed-order recurrence PHI) before reaching beginning of the block\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8695, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8696 | SinkTarget = SinkTarget->getPrevNode(); | ||||||||
| 8697 | assert(SinkTarget != P.first &&(static_cast <bool> (SinkTarget != P.first && "sink source equals target, no sinking required" ) ? void (0) : __assert_fail ("SinkTarget != P.first && \"sink source equals target, no sinking required\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8698, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8698 | "sink source equals target, no sinking required")(static_cast <bool> (SinkTarget != P.first && "sink source equals target, no sinking required" ) ? void (0) : __assert_fail ("SinkTarget != P.first && \"sink source equals target, no sinking required\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8698, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8699 | } | ||||||||
| 8700 | P.second = SinkTarget; | ||||||||
| 8701 | } | ||||||||
| 8702 | |||||||||
| 8703 | auto MaxVFPlusOne = MaxVF.getWithIncrement(1); | ||||||||
| 8704 | for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { | ||||||||
| 8705 | VFRange SubRange = {VF, MaxVFPlusOne}; | ||||||||
| 8706 | VPlans.push_back( | ||||||||
| 8707 | buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); | ||||||||
| 8708 | VF = SubRange.End; | ||||||||
| 8709 | } | ||||||||
| 8710 | } | ||||||||
| 8711 | |||||||||
| 8712 | // Add the necessary canonical IV and branch recipes required to control the | ||||||||
| 8713 | // loop. | ||||||||
| 8714 | static void addCanonicalIVRecipes(VPlan &Plan, Type *IdxTy, DebugLoc DL, | ||||||||
| 8715 | bool HasNUW, | ||||||||
| 8716 | bool UseLaneMaskForLoopControlFlow) { | ||||||||
| 8717 | Value *StartIdx = ConstantInt::get(IdxTy, 0); | ||||||||
| 8718 | auto *StartV = Plan.getOrAddVPValue(StartIdx); | ||||||||
| 8719 | |||||||||
| 8720 | // Add a VPCanonicalIVPHIRecipe starting at 0 to the header. | ||||||||
| 8721 | auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL); | ||||||||
| 8722 | VPRegionBlock *TopRegion = Plan.getVectorLoopRegion(); | ||||||||
| 8723 | VPBasicBlock *Header = TopRegion->getEntryBasicBlock(); | ||||||||
| 8724 | Header->insert(CanonicalIVPHI, Header->begin()); | ||||||||
| 8725 | |||||||||
| 8726 | // Add a CanonicalIVIncrement{NUW} VPInstruction to increment the scalar | ||||||||
| 8727 | // IV by VF * UF. | ||||||||
| 8728 | auto *CanonicalIVIncrement = | ||||||||
| 8729 | new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementNUW | ||||||||
| 8730 | : VPInstruction::CanonicalIVIncrement, | ||||||||
| 8731 | {CanonicalIVPHI}, DL, "index.next"); | ||||||||
| 8732 | CanonicalIVPHI->addOperand(CanonicalIVIncrement); | ||||||||
| 8733 | |||||||||
| 8734 | VPBasicBlock *EB = TopRegion->getExitingBasicBlock(); | ||||||||
| 8735 | EB->appendRecipe(CanonicalIVIncrement); | ||||||||
| 8736 | |||||||||
| 8737 | if (UseLaneMaskForLoopControlFlow) { | ||||||||
| 8738 | // Create the active lane mask instruction in the vplan preheader. | ||||||||
| 8739 | VPBasicBlock *Preheader = Plan.getEntry()->getEntryBasicBlock(); | ||||||||
| 8740 | |||||||||
| 8741 | // We can't use StartV directly in the ActiveLaneMask VPInstruction, since | ||||||||
| 8742 | // we have to take unrolling into account. Each part needs to start at | ||||||||
| 8743 | // Part * VF | ||||||||
| 8744 | auto *CanonicalIVIncrementParts = | ||||||||
| 8745 | new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW | ||||||||
| 8746 | : VPInstruction::CanonicalIVIncrementForPart, | ||||||||
| 8747 | {StartV}, DL, "index.part.next"); | ||||||||
| 8748 | Preheader->appendRecipe(CanonicalIVIncrementParts); | ||||||||
| 8749 | |||||||||
| 8750 | // Create the ActiveLaneMask instruction using the correct start values. | ||||||||
| 8751 | VPValue *TC = Plan.getOrCreateTripCount(); | ||||||||
| 8752 | auto *EntryALM = new VPInstruction(VPInstruction::ActiveLaneMask, | ||||||||
| 8753 | {CanonicalIVIncrementParts, TC}, DL, | ||||||||
| 8754 | "active.lane.mask.entry"); | ||||||||
| 8755 | Preheader->appendRecipe(EntryALM); | ||||||||
| 8756 | |||||||||
| 8757 | // Now create the ActiveLaneMaskPhi recipe in the main loop using the | ||||||||
| 8758 | // preheader ActiveLaneMask instruction. | ||||||||
| 8759 | auto *LaneMaskPhi = new VPActiveLaneMaskPHIRecipe(EntryALM, DebugLoc()); | ||||||||
| 8760 | Header->insert(LaneMaskPhi, Header->getFirstNonPhi()); | ||||||||
| 8761 | |||||||||
| 8762 | // Create the active lane mask for the next iteration of the loop. | ||||||||
| 8763 | CanonicalIVIncrementParts = | ||||||||
| 8764 | new VPInstruction(HasNUW ? VPInstruction::CanonicalIVIncrementForPartNUW | ||||||||
| 8765 | : VPInstruction::CanonicalIVIncrementForPart, | ||||||||
| 8766 | {CanonicalIVIncrement}, DL); | ||||||||
| 8767 | EB->appendRecipe(CanonicalIVIncrementParts); | ||||||||
| 8768 | |||||||||
| 8769 | auto *ALM = new VPInstruction(VPInstruction::ActiveLaneMask, | ||||||||
| 8770 | {CanonicalIVIncrementParts, TC}, DL, | ||||||||
| 8771 | "active.lane.mask.next"); | ||||||||
| 8772 | EB->appendRecipe(ALM); | ||||||||
| 8773 | LaneMaskPhi->addOperand(ALM); | ||||||||
| 8774 | |||||||||
| 8775 | // We have to invert the mask here because a true condition means jumping | ||||||||
| 8776 | // to the exit block. | ||||||||
| 8777 | auto *NotMask = new VPInstruction(VPInstruction::Not, ALM, DL); | ||||||||
| 8778 | EB->appendRecipe(NotMask); | ||||||||
| 8779 | |||||||||
| 8780 | VPInstruction *BranchBack = | ||||||||
| 8781 | new VPInstruction(VPInstruction::BranchOnCond, {NotMask}, DL); | ||||||||
| 8782 | EB->appendRecipe(BranchBack); | ||||||||
| 8783 | } else { | ||||||||
| 8784 | // Add the BranchOnCount VPInstruction to the latch. | ||||||||
| 8785 | VPInstruction *BranchBack = new VPInstruction( | ||||||||
| 8786 | VPInstruction::BranchOnCount, | ||||||||
| 8787 | {CanonicalIVIncrement, &Plan.getVectorTripCount()}, DL); | ||||||||
| 8788 | EB->appendRecipe(BranchBack); | ||||||||
| 8789 | } | ||||||||
| 8790 | } | ||||||||
| 8791 | |||||||||
| 8792 | // Add exit values to \p Plan. VPLiveOuts are added for each LCSSA phi in the | ||||||||
| 8793 | // original exit block. | ||||||||
| 8794 | static void addUsersInExitBlock(VPBasicBlock *HeaderVPBB, | ||||||||
| 8795 | VPBasicBlock *MiddleVPBB, Loop *OrigLoop, | ||||||||
| 8796 | VPlan &Plan) { | ||||||||
| 8797 | BasicBlock *ExitBB = OrigLoop->getUniqueExitBlock(); | ||||||||
| 8798 | BasicBlock *ExitingBB = OrigLoop->getExitingBlock(); | ||||||||
| 8799 | // Only handle single-exit loops with unique exit blocks for now. | ||||||||
| 8800 | if (!ExitBB || !ExitBB->getSinglePredecessor() || !ExitingBB) | ||||||||
| 8801 | return; | ||||||||
| 8802 | |||||||||
| 8803 | // Introduce VPUsers modeling the exit values. | ||||||||
| 8804 | for (PHINode &ExitPhi : ExitBB->phis()) { | ||||||||
| 8805 | Value *IncomingValue = | ||||||||
| 8806 | ExitPhi.getIncomingValueForBlock(ExitingBB); | ||||||||
| 8807 | VPValue *V = Plan.getOrAddVPValue(IncomingValue, true); | ||||||||
| 8808 | Plan.addLiveOut(&ExitPhi, V); | ||||||||
| 8809 | } | ||||||||
| 8810 | } | ||||||||
| 8811 | |||||||||
| 8812 | VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( | ||||||||
| 8813 | VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, | ||||||||
| 8814 | const MapVector<Instruction *, Instruction *> &SinkAfter) { | ||||||||
| 8815 | |||||||||
| 8816 | SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; | ||||||||
| 8817 | |||||||||
| 8818 | VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); | ||||||||
| 8819 | |||||||||
| 8820 | // --------------------------------------------------------------------------- | ||||||||
| 8821 | // Pre-construction: record ingredients whose recipes we'll need to further | ||||||||
| 8822 | // process after constructing the initial VPlan. | ||||||||
| 8823 | // --------------------------------------------------------------------------- | ||||||||
| 8824 | |||||||||
| 8825 | // Mark instructions we'll need to sink later and their targets as | ||||||||
| 8826 | // ingredients whose recipe we'll need to record. | ||||||||
| 8827 | for (const auto &Entry : SinkAfter) { | ||||||||
| 8828 | RecipeBuilder.recordRecipeOf(Entry.first); | ||||||||
| 8829 | RecipeBuilder.recordRecipeOf(Entry.second); | ||||||||
| 8830 | } | ||||||||
| 8831 | for (const auto &Reduction : CM.getInLoopReductionChains()) { | ||||||||
| 8832 | PHINode *Phi = Reduction.first; | ||||||||
| 8833 | RecurKind Kind = | ||||||||
| 8834 | Legal->getReductionVars().find(Phi)->second.getRecurrenceKind(); | ||||||||
| 8835 | const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; | ||||||||
| 8836 | |||||||||
| 8837 | RecipeBuilder.recordRecipeOf(Phi); | ||||||||
| 8838 | for (const auto &R : ReductionOperations) { | ||||||||
| 8839 | RecipeBuilder.recordRecipeOf(R); | ||||||||
| 8840 | // For min/max reductions, where we have a pair of icmp/select, we also | ||||||||
| 8841 | // need to record the ICmp recipe, so it can be removed later. | ||||||||
| 8842 | assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&(static_cast <bool> (!RecurrenceDescriptor::isSelectCmpRecurrenceKind (Kind) && "Only min/max recurrences allowed for inloop reductions" ) ? void (0) : __assert_fail ("!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && \"Only min/max recurrences allowed for inloop reductions\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8843, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8843 | "Only min/max recurrences allowed for inloop reductions")(static_cast <bool> (!RecurrenceDescriptor::isSelectCmpRecurrenceKind (Kind) && "Only min/max recurrences allowed for inloop reductions" ) ? void (0) : __assert_fail ("!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && \"Only min/max recurrences allowed for inloop reductions\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8843, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8844 | if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) | ||||||||
| 8845 | RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); | ||||||||
| 8846 | } | ||||||||
| 8847 | } | ||||||||
| 8848 | |||||||||
| 8849 | // For each interleave group which is relevant for this (possibly trimmed) | ||||||||
| 8850 | // Range, add it to the set of groups to be later applied to the VPlan and add | ||||||||
| 8851 | // placeholders for its members' Recipes which we'll be replacing with a | ||||||||
| 8852 | // single VPInterleaveRecipe. | ||||||||
| 8853 | for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { | ||||||||
| 8854 | auto applyIG = [IG, this](ElementCount VF) -> bool { | ||||||||
| 8855 | return (VF.isVector() && // Query is illegal for VF == 1 | ||||||||
| 8856 | CM.getWideningDecision(IG->getInsertPos(), VF) == | ||||||||
| 8857 | LoopVectorizationCostModel::CM_Interleave); | ||||||||
| 8858 | }; | ||||||||
| 8859 | if (!getDecisionAndClampRange(applyIG, Range)) | ||||||||
| 8860 | continue; | ||||||||
| 8861 | InterleaveGroups.insert(IG); | ||||||||
| 8862 | for (unsigned i = 0; i < IG->getFactor(); i++) | ||||||||
| 8863 | if (Instruction *Member = IG->getMember(i)) | ||||||||
| 8864 | RecipeBuilder.recordRecipeOf(Member); | ||||||||
| 8865 | }; | ||||||||
| 8866 | |||||||||
| 8867 | // --------------------------------------------------------------------------- | ||||||||
| 8868 | // Build initial VPlan: Scan the body of the loop in a topological order to | ||||||||
| 8869 | // visit each basic block after having visited its predecessor basic blocks. | ||||||||
| 8870 | // --------------------------------------------------------------------------- | ||||||||
| 8871 | |||||||||
| 8872 | // Create initial VPlan skeleton, starting with a block for the pre-header, | ||||||||
| 8873 | // followed by a region for the vector loop, followed by the middle block. The | ||||||||
| 8874 | // skeleton vector loop region contains a header and latch block. | ||||||||
| 8875 | VPBasicBlock *Preheader = new VPBasicBlock("vector.ph"); | ||||||||
| 8876 | auto Plan = std::make_unique<VPlan>(Preheader); | ||||||||
| 8877 | |||||||||
| 8878 | VPBasicBlock *HeaderVPBB = new VPBasicBlock("vector.body"); | ||||||||
| 8879 | VPBasicBlock *LatchVPBB = new VPBasicBlock("vector.latch"); | ||||||||
| 8880 | VPBlockUtils::insertBlockAfter(LatchVPBB, HeaderVPBB); | ||||||||
| 8881 | auto *TopRegion = new VPRegionBlock(HeaderVPBB, LatchVPBB, "vector loop"); | ||||||||
| 8882 | VPBlockUtils::insertBlockAfter(TopRegion, Preheader); | ||||||||
| 8883 | VPBasicBlock *MiddleVPBB = new VPBasicBlock("middle.block"); | ||||||||
| 8884 | VPBlockUtils::insertBlockAfter(MiddleVPBB, TopRegion); | ||||||||
| 8885 | |||||||||
| 8886 | Instruction *DLInst = | ||||||||
| 8887 | getDebugLocFromInstOrOperands(Legal->getPrimaryInduction()); | ||||||||
| 8888 | addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), | ||||||||
| 8889 | DLInst ? DLInst->getDebugLoc() : DebugLoc(), | ||||||||
| 8890 | !CM.foldTailByMasking(), | ||||||||
| 8891 | CM.useActiveLaneMaskForControlFlow()); | ||||||||
| 8892 | |||||||||
| 8893 | // Scan the body of the loop in a topological order to visit each basic block | ||||||||
| 8894 | // after having visited its predecessor basic blocks. | ||||||||
| 8895 | LoopBlocksDFS DFS(OrigLoop); | ||||||||
| 8896 | DFS.perform(LI); | ||||||||
| 8897 | |||||||||
| 8898 | VPBasicBlock *VPBB = HeaderVPBB; | ||||||||
| 8899 | SmallVector<VPWidenIntOrFpInductionRecipe *> InductionsToMove; | ||||||||
| 8900 | for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { | ||||||||
| 8901 | // Relevant instructions from basic block BB will be grouped into VPRecipe | ||||||||
| 8902 | // ingredients and fill a new VPBasicBlock. | ||||||||
| 8903 | unsigned VPBBsForBB = 0; | ||||||||
| 8904 | if (VPBB != HeaderVPBB) | ||||||||
| 8905 | VPBB->setName(BB->getName()); | ||||||||
| 8906 | Builder.setInsertPoint(VPBB); | ||||||||
| 8907 | |||||||||
| 8908 | // Introduce each ingredient into VPlan. | ||||||||
| 8909 | // TODO: Model and preserve debug intrinsics in VPlan. | ||||||||
| 8910 | for (Instruction &I : BB->instructionsWithoutDebug()) { | ||||||||
| 8911 | Instruction *Instr = &I; | ||||||||
| 8912 | |||||||||
| 8913 | // First filter out irrelevant instructions, to ensure no recipes are | ||||||||
| 8914 | // built for them. | ||||||||
| 8915 | if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) | ||||||||
| 8916 | continue; | ||||||||
| 8917 | |||||||||
| 8918 | SmallVector<VPValue *, 4> Operands; | ||||||||
| 8919 | auto *Phi = dyn_cast<PHINode>(Instr); | ||||||||
| 8920 | if (Phi && Phi->getParent() == OrigLoop->getHeader()) { | ||||||||
| 8921 | Operands.push_back(Plan->getOrAddVPValue( | ||||||||
| 8922 | Phi->getIncomingValueForBlock(OrigLoop->getLoopPreheader()))); | ||||||||
| 8923 | } else { | ||||||||
| 8924 | auto OpRange = Plan->mapToVPValues(Instr->operands()); | ||||||||
| 8925 | Operands = {OpRange.begin(), OpRange.end()}; | ||||||||
| 8926 | } | ||||||||
| 8927 | |||||||||
| 8928 | // Invariant stores inside loop will be deleted and a single store | ||||||||
| 8929 | // with the final reduction value will be added to the exit block | ||||||||
| 8930 | StoreInst *SI; | ||||||||
| 8931 | if ((SI = dyn_cast<StoreInst>(&I)) && | ||||||||
| 8932 | Legal->isInvariantAddressOfReduction(SI->getPointerOperand())) | ||||||||
| 8933 | continue; | ||||||||
| 8934 | |||||||||
| 8935 | if (auto RecipeOrValue = RecipeBuilder.tryToCreateWidenRecipe( | ||||||||
| 8936 | Instr, Operands, Range, VPBB, Plan)) { | ||||||||
| 8937 | // If Instr can be simplified to an existing VPValue, use it. | ||||||||
| 8938 | if (RecipeOrValue.is<VPValue *>()) { | ||||||||
| 8939 | auto *VPV = RecipeOrValue.get<VPValue *>(); | ||||||||
| 8940 | Plan->addVPValue(Instr, VPV); | ||||||||
| 8941 | // If the re-used value is a recipe, register the recipe for the | ||||||||
| 8942 | // instruction, in case the recipe for Instr needs to be recorded. | ||||||||
| 8943 | if (VPRecipeBase *R = VPV->getDefiningRecipe()) | ||||||||
| 8944 | RecipeBuilder.setRecipe(Instr, R); | ||||||||
| 8945 | continue; | ||||||||
| 8946 | } | ||||||||
| 8947 | // Otherwise, add the new recipe. | ||||||||
| 8948 | VPRecipeBase *Recipe = RecipeOrValue.get<VPRecipeBase *>(); | ||||||||
| 8949 | for (auto *Def : Recipe->definedValues()) { | ||||||||
| 8950 | auto *UV = Def->getUnderlyingValue(); | ||||||||
| 8951 | Plan->addVPValue(UV, Def); | ||||||||
| 8952 | } | ||||||||
| 8953 | |||||||||
| 8954 | if (isa<VPWidenIntOrFpInductionRecipe>(Recipe) && | ||||||||
| 8955 | HeaderVPBB->getFirstNonPhi() != VPBB->end()) { | ||||||||
| 8956 | // Keep track of VPWidenIntOrFpInductionRecipes not in the phi section | ||||||||
| 8957 | // of the header block. That can happen for truncates of induction | ||||||||
| 8958 | // variables. Those recipes are moved to the phi section of the header | ||||||||
| 8959 | // block after applying SinkAfter, which relies on the original | ||||||||
| 8960 | // position of the trunc. | ||||||||
| 8961 | assert(isa<TruncInst>(Instr))(static_cast <bool> (isa<TruncInst>(Instr)) ? void (0) : __assert_fail ("isa<TruncInst>(Instr)", "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp" , 8961, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8962 | InductionsToMove.push_back( | ||||||||
| 8963 | cast<VPWidenIntOrFpInductionRecipe>(Recipe)); | ||||||||
| 8964 | } | ||||||||
| 8965 | RecipeBuilder.setRecipe(Instr, Recipe); | ||||||||
| 8966 | VPBB->appendRecipe(Recipe); | ||||||||
| 8967 | continue; | ||||||||
| 8968 | } | ||||||||
| 8969 | |||||||||
| 8970 | // Otherwise, if all widening options failed, Instruction is to be | ||||||||
| 8971 | // replicated. This may create a successor for VPBB. | ||||||||
| 8972 | VPBasicBlock *NextVPBB = | ||||||||
| 8973 | RecipeBuilder.handleReplication(Instr, Range, VPBB, Plan); | ||||||||
| 8974 | if (NextVPBB != VPBB) { | ||||||||
| 8975 | VPBB = NextVPBB; | ||||||||
| 8976 | VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) | ||||||||
| 8977 | : ""); | ||||||||
| 8978 | } | ||||||||
| 8979 | } | ||||||||
| 8980 | |||||||||
| 8981 | VPBlockUtils::insertBlockAfter(new VPBasicBlock(), VPBB); | ||||||||
| 8982 | VPBB = cast<VPBasicBlock>(VPBB->getSingleSuccessor()); | ||||||||
| 8983 | } | ||||||||
| 8984 | |||||||||
| 8985 | // After here, VPBB should not be used. | ||||||||
| 8986 | VPBB = nullptr; | ||||||||
| 8987 | |||||||||
| 8988 | addUsersInExitBlock(HeaderVPBB, MiddleVPBB, OrigLoop, *Plan); | ||||||||
| 8989 | |||||||||
| 8990 | assert(isa<VPRegionBlock>(Plan->getVectorLoopRegion()) &&(static_cast <bool> (isa<VPRegionBlock>(Plan-> getVectorLoopRegion()) && !Plan->getVectorLoopRegion ()->getEntryBasicBlock()->empty() && "entry block must be set to a VPRegionBlock having a non-empty entry " "VPBasicBlock") ? void (0) : __assert_fail ("isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && \"entry block must be set to a VPRegionBlock having a non-empty entry \" \"VPBasicBlock\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8993, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8991 | !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() &&(static_cast <bool> (isa<VPRegionBlock>(Plan-> getVectorLoopRegion()) && !Plan->getVectorLoopRegion ()->getEntryBasicBlock()->empty() && "entry block must be set to a VPRegionBlock having a non-empty entry " "VPBasicBlock") ? void (0) : __assert_fail ("isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && \"entry block must be set to a VPRegionBlock having a non-empty entry \" \"VPBasicBlock\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8993, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8992 | "entry block must be set to a VPRegionBlock having a non-empty entry "(static_cast <bool> (isa<VPRegionBlock>(Plan-> getVectorLoopRegion()) && !Plan->getVectorLoopRegion ()->getEntryBasicBlock()->empty() && "entry block must be set to a VPRegionBlock having a non-empty entry " "VPBasicBlock") ? void (0) : __assert_fail ("isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && \"entry block must be set to a VPRegionBlock having a non-empty entry \" \"VPBasicBlock\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8993, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 8993 | "VPBasicBlock")(static_cast <bool> (isa<VPRegionBlock>(Plan-> getVectorLoopRegion()) && !Plan->getVectorLoopRegion ()->getEntryBasicBlock()->empty() && "entry block must be set to a VPRegionBlock having a non-empty entry " "VPBasicBlock") ? void (0) : __assert_fail ("isa<VPRegionBlock>(Plan->getVectorLoopRegion()) && !Plan->getVectorLoopRegion()->getEntryBasicBlock()->empty() && \"entry block must be set to a VPRegionBlock having a non-empty entry \" \"VPBasicBlock\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 8993, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 8994 | RecipeBuilder.fixHeaderPhis(); | ||||||||
| 8995 | |||||||||
| 8996 | // --------------------------------------------------------------------------- | ||||||||
| 8997 | // Transform initial VPlan: Apply previously taken decisions, in order, to | ||||||||
| 8998 | // bring the VPlan to its final state. | ||||||||
| 8999 | // --------------------------------------------------------------------------- | ||||||||
| 9000 | |||||||||
| 9001 | // Apply Sink-After legal constraints. | ||||||||
| 9002 | auto GetReplicateRegion = [](VPRecipeBase *R) -> VPRegionBlock * { | ||||||||
| 9003 | auto *Region = dyn_cast_or_null<VPRegionBlock>(R->getParent()->getParent()); | ||||||||
| 9004 | if (Region && Region->isReplicator()) { | ||||||||
| 9005 | assert(Region->getNumSuccessors() == 1 &&(static_cast <bool> (Region->getNumSuccessors() == 1 && Region->getNumPredecessors() == 1 && "Expected SESE region!" ) ? void (0) : __assert_fail ("Region->getNumSuccessors() == 1 && Region->getNumPredecessors() == 1 && \"Expected SESE region!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9006, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9006 | Region->getNumPredecessors() == 1 && "Expected SESE region!")(static_cast <bool> (Region->getNumSuccessors() == 1 && Region->getNumPredecessors() == 1 && "Expected SESE region!" ) ? void (0) : __assert_fail ("Region->getNumSuccessors() == 1 && Region->getNumPredecessors() == 1 && \"Expected SESE region!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9006, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9007 | assert(R->getParent()->size() == 1 &&(static_cast <bool> (R->getParent()->size() == 1 && "A recipe in an original replicator region must be the only " "recipe in its block") ? void (0) : __assert_fail ("R->getParent()->size() == 1 && \"A recipe in an original replicator region must be the only \" \"recipe in its block\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9009, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9008 | "A recipe in an original replicator region must be the only "(static_cast <bool> (R->getParent()->size() == 1 && "A recipe in an original replicator region must be the only " "recipe in its block") ? void (0) : __assert_fail ("R->getParent()->size() == 1 && \"A recipe in an original replicator region must be the only \" \"recipe in its block\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9009, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9009 | "recipe in its block")(static_cast <bool> (R->getParent()->size() == 1 && "A recipe in an original replicator region must be the only " "recipe in its block") ? void (0) : __assert_fail ("R->getParent()->size() == 1 && \"A recipe in an original replicator region must be the only \" \"recipe in its block\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9009, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9010 | return Region; | ||||||||
| 9011 | } | ||||||||
| 9012 | return nullptr; | ||||||||
| 9013 | }; | ||||||||
| 9014 | for (const auto &Entry : SinkAfter) { | ||||||||
| 9015 | VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); | ||||||||
| 9016 | VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); | ||||||||
| 9017 | |||||||||
| 9018 | auto *TargetRegion = GetReplicateRegion(Target); | ||||||||
| 9019 | auto *SinkRegion = GetReplicateRegion(Sink); | ||||||||
| 9020 | if (!SinkRegion) { | ||||||||
| 9021 | // If the sink source is not a replicate region, sink the recipe directly. | ||||||||
| 9022 | if (TargetRegion) { | ||||||||
| 9023 | // The target is in a replication region, make sure to move Sink to | ||||||||
| 9024 | // the block after it, not into the replication region itself. | ||||||||
| 9025 | VPBasicBlock *NextBlock = | ||||||||
| 9026 | cast<VPBasicBlock>(TargetRegion->getSuccessors().front()); | ||||||||
| 9027 | Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); | ||||||||
| 9028 | } else | ||||||||
| 9029 | Sink->moveAfter(Target); | ||||||||
| 9030 | continue; | ||||||||
| 9031 | } | ||||||||
| 9032 | |||||||||
| 9033 | // The sink source is in a replicate region. Unhook the region from the CFG. | ||||||||
| 9034 | auto *SinkPred = SinkRegion->getSinglePredecessor(); | ||||||||
| 9035 | auto *SinkSucc = SinkRegion->getSingleSuccessor(); | ||||||||
| 9036 | VPBlockUtils::disconnectBlocks(SinkPred, SinkRegion); | ||||||||
| 9037 | VPBlockUtils::disconnectBlocks(SinkRegion, SinkSucc); | ||||||||
| 9038 | VPBlockUtils::connectBlocks(SinkPred, SinkSucc); | ||||||||
| 9039 | |||||||||
| 9040 | if (TargetRegion) { | ||||||||
| 9041 | // The target recipe is also in a replicate region, move the sink region | ||||||||
| 9042 | // after the target region. | ||||||||
| 9043 | auto *TargetSucc = TargetRegion->getSingleSuccessor(); | ||||||||
| 9044 | VPBlockUtils::disconnectBlocks(TargetRegion, TargetSucc); | ||||||||
| 9045 | VPBlockUtils::connectBlocks(TargetRegion, SinkRegion); | ||||||||
| 9046 | VPBlockUtils::connectBlocks(SinkRegion, TargetSucc); | ||||||||
| 9047 | } else { | ||||||||
| 9048 | // The sink source is in a replicate region, we need to move the whole | ||||||||
| 9049 | // replicate region, which should only contain a single recipe in the | ||||||||
| 9050 | // main block. | ||||||||
| 9051 | auto *SplitBlock = | ||||||||
| 9052 | Target->getParent()->splitAt(std::next(Target->getIterator())); | ||||||||
| 9053 | |||||||||
| 9054 | auto *SplitPred = SplitBlock->getSinglePredecessor(); | ||||||||
| 9055 | |||||||||
| 9056 | VPBlockUtils::disconnectBlocks(SplitPred, SplitBlock); | ||||||||
| 9057 | VPBlockUtils::connectBlocks(SplitPred, SinkRegion); | ||||||||
| 9058 | VPBlockUtils::connectBlocks(SinkRegion, SplitBlock); | ||||||||
| 9059 | } | ||||||||
| 9060 | } | ||||||||
| 9061 | |||||||||
| 9062 | VPlanTransforms::removeRedundantCanonicalIVs(*Plan); | ||||||||
| 9063 | VPlanTransforms::removeRedundantInductionCasts(*Plan); | ||||||||
| 9064 | |||||||||
| 9065 | // Now that sink-after is done, move induction recipes for optimized truncates | ||||||||
| 9066 | // to the phi section of the header block. | ||||||||
| 9067 | for (VPWidenIntOrFpInductionRecipe *Ind : InductionsToMove) | ||||||||
| 9068 | Ind->moveBefore(*HeaderVPBB, HeaderVPBB->getFirstNonPhi()); | ||||||||
| 9069 | |||||||||
| 9070 | // Adjust the recipes for any inloop reductions. | ||||||||
| 9071 | adjustRecipesForReductions(cast<VPBasicBlock>(TopRegion->getExiting()), Plan, | ||||||||
| 9072 | RecipeBuilder, Range.Start); | ||||||||
| 9073 | |||||||||
| 9074 | // Introduce a recipe to combine the incoming and previous values of a | ||||||||
| 9075 | // fixed-order recurrence. | ||||||||
| 9076 | for (VPRecipeBase &R : | ||||||||
| 9077 | Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { | ||||||||
| 9078 | auto *RecurPhi = dyn_cast<VPFirstOrderRecurrencePHIRecipe>(&R); | ||||||||
| 9079 | if (!RecurPhi) | ||||||||
| 9080 | continue; | ||||||||
| 9081 | |||||||||
| 9082 | VPRecipeBase *PrevRecipe = &RecurPhi->getBackedgeRecipe(); | ||||||||
| 9083 | // Fixed-order recurrences do not contain cycles, so this loop is guaranteed | ||||||||
| 9084 | // to terminate. | ||||||||
| 9085 | while (auto *PrevPhi = | ||||||||
| 9086 | dyn_cast<VPFirstOrderRecurrencePHIRecipe>(PrevRecipe)) | ||||||||
| 9087 | PrevRecipe = &PrevPhi->getBackedgeRecipe(); | ||||||||
| 9088 | VPBasicBlock *InsertBlock = PrevRecipe->getParent(); | ||||||||
| 9089 | auto *Region = GetReplicateRegion(PrevRecipe); | ||||||||
| 9090 | if (Region) | ||||||||
| 9091 | InsertBlock = dyn_cast<VPBasicBlock>(Region->getSingleSuccessor()); | ||||||||
| 9092 | if (!InsertBlock) { | ||||||||
| 9093 | InsertBlock = new VPBasicBlock(Region->getName() + ".succ"); | ||||||||
| 9094 | VPBlockUtils::insertBlockAfter(InsertBlock, Region); | ||||||||
| 9095 | } | ||||||||
| 9096 | if (Region || PrevRecipe->isPhi()) | ||||||||
| 9097 | Builder.setInsertPoint(InsertBlock, InsertBlock->getFirstNonPhi()); | ||||||||
| 9098 | else | ||||||||
| 9099 | Builder.setInsertPoint(InsertBlock, std::next(PrevRecipe->getIterator())); | ||||||||
| 9100 | |||||||||
| 9101 | auto *RecurSplice = cast<VPInstruction>( | ||||||||
| 9102 | Builder.createNaryOp(VPInstruction::FirstOrderRecurrenceSplice, | ||||||||
| 9103 | {RecurPhi, RecurPhi->getBackedgeValue()})); | ||||||||
| 9104 | |||||||||
| 9105 | RecurPhi->replaceAllUsesWith(RecurSplice); | ||||||||
| 9106 | // Set the first operand of RecurSplice to RecurPhi again, after replacing | ||||||||
| 9107 | // all users. | ||||||||
| 9108 | RecurSplice->setOperand(0, RecurPhi); | ||||||||
| 9109 | } | ||||||||
| 9110 | |||||||||
| 9111 | // Interleave memory: for each Interleave Group we marked earlier as relevant | ||||||||
| 9112 | // for this VPlan, replace the Recipes widening its memory instructions with a | ||||||||
| 9113 | // single VPInterleaveRecipe at its insertion point. | ||||||||
| 9114 | for (const auto *IG : InterleaveGroups) { | ||||||||
| 9115 | auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( | ||||||||
| 9116 | RecipeBuilder.getRecipe(IG->getInsertPos())); | ||||||||
| 9117 | SmallVector<VPValue *, 4> StoredValues; | ||||||||
| 9118 | for (unsigned i = 0; i < IG->getFactor(); ++i) | ||||||||
| 9119 | if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) { | ||||||||
| 9120 | auto *StoreR = | ||||||||
| 9121 | cast<VPWidenMemoryInstructionRecipe>(RecipeBuilder.getRecipe(SI)); | ||||||||
| 9122 | StoredValues.push_back(StoreR->getStoredValue()); | ||||||||
| 9123 | } | ||||||||
| 9124 | |||||||||
| 9125 | auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, | ||||||||
| 9126 | Recipe->getMask()); | ||||||||
| 9127 | VPIG->insertBefore(Recipe); | ||||||||
| 9128 | unsigned J = 0; | ||||||||
| 9129 | for (unsigned i = 0; i < IG->getFactor(); ++i) | ||||||||
| 9130 | if (Instruction *Member = IG->getMember(i)) { | ||||||||
| 9131 | if (!Member->getType()->isVoidTy()) { | ||||||||
| 9132 | VPValue *OriginalV = Plan->getVPValue(Member); | ||||||||
| 9133 | Plan->removeVPValueFor(Member); | ||||||||
| 9134 | Plan->addVPValue(Member, VPIG->getVPValue(J)); | ||||||||
| 9135 | OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); | ||||||||
| 9136 | J++; | ||||||||
| 9137 | } | ||||||||
| 9138 | RecipeBuilder.getRecipe(Member)->eraseFromParent(); | ||||||||
| 9139 | } | ||||||||
| 9140 | } | ||||||||
| 9141 | |||||||||
| 9142 | for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); | ||||||||
| 9143 | VF *= 2) | ||||||||
| 9144 | Plan->addVF(VF); | ||||||||
| 9145 | Plan->setName("Initial VPlan"); | ||||||||
| 9146 | |||||||||
| 9147 | // From this point onwards, VPlan-to-VPlan transformations may change the plan | ||||||||
| 9148 | // in ways that accessing values using original IR values is incorrect. | ||||||||
| 9149 | Plan->disableValue2VPValue(); | ||||||||
| 9150 | |||||||||
| 9151 | VPlanTransforms::optimizeInductions(*Plan, *PSE.getSE()); | ||||||||
| 9152 | VPlanTransforms::removeDeadRecipes(*Plan); | ||||||||
| 9153 | |||||||||
| 9154 | bool ShouldSimplify = true; | ||||||||
| 9155 | while (ShouldSimplify) { | ||||||||
| 9156 | ShouldSimplify = VPlanTransforms::sinkScalarOperands(*Plan); | ||||||||
| 9157 | ShouldSimplify |= | ||||||||
| 9158 | VPlanTransforms::mergeReplicateRegionsIntoSuccessors(*Plan); | ||||||||
| 9159 | ShouldSimplify |= VPlanTransforms::mergeBlocksIntoPredecessors(*Plan); | ||||||||
| 9160 | } | ||||||||
| 9161 | |||||||||
| 9162 | VPlanTransforms::removeRedundantExpandSCEVRecipes(*Plan); | ||||||||
| 9163 | VPlanTransforms::mergeBlocksIntoPredecessors(*Plan); | ||||||||
| 9164 | |||||||||
| 9165 | assert(VPlanVerifier::verifyPlanIsValid(*Plan) && "VPlan is invalid")(static_cast <bool> (VPlanVerifier::verifyPlanIsValid(* Plan) && "VPlan is invalid") ? void (0) : __assert_fail ("VPlanVerifier::verifyPlanIsValid(*Plan) && \"VPlan is invalid\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9165, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9166 | return Plan; | ||||||||
| 9167 | } | ||||||||
| 9168 | |||||||||
| 9169 | VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { | ||||||||
| 9170 | // Outer loop handling: They may require CFG and instruction level | ||||||||
| 9171 | // transformations before even evaluating whether vectorization is profitable. | ||||||||
| 9172 | // Since we cannot modify the incoming IR, we need to build VPlan upfront in | ||||||||
| 9173 | // the vectorization pipeline. | ||||||||
| 9174 | assert(!OrigLoop->isInnermost())(static_cast <bool> (!OrigLoop->isInnermost()) ? void (0) : __assert_fail ("!OrigLoop->isInnermost()", "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp" , 9174, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9175 | assert(EnableVPlanNativePath && "VPlan-native path is not enabled.")(static_cast <bool> (EnableVPlanNativePath && "VPlan-native path is not enabled." ) ? void (0) : __assert_fail ("EnableVPlanNativePath && \"VPlan-native path is not enabled.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9175, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9176 | |||||||||
| 9177 | // Create new empty VPlan | ||||||||
| 9178 | auto Plan = std::make_unique<VPlan>(); | ||||||||
| 9179 | |||||||||
| 9180 | // Build hierarchical CFG | ||||||||
| 9181 | VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); | ||||||||
| 9182 | HCFGBuilder.buildHierarchicalCFG(); | ||||||||
| 9183 | |||||||||
| 9184 | for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); | ||||||||
| 9185 | VF *= 2) | ||||||||
| 9186 | Plan->addVF(VF); | ||||||||
| 9187 | |||||||||
| 9188 | SmallPtrSet<Instruction *, 1> DeadInstructions; | ||||||||
| 9189 | VPlanTransforms::VPInstructionsToVPRecipes( | ||||||||
| 9190 | OrigLoop, Plan, | ||||||||
| 9191 | [this](PHINode *P) { return Legal->getIntOrFpInductionDescriptor(P); }, | ||||||||
| 9192 | DeadInstructions, *PSE.getSE(), *TLI); | ||||||||
| 9193 | |||||||||
| 9194 | // Remove the existing terminator of the exiting block of the top-most region. | ||||||||
| 9195 | // A BranchOnCount will be added instead when adding the canonical IV recipes. | ||||||||
| 9196 | auto *Term = | ||||||||
| 9197 | Plan->getVectorLoopRegion()->getExitingBasicBlock()->getTerminator(); | ||||||||
| 9198 | Term->eraseFromParent(); | ||||||||
| 9199 | |||||||||
| 9200 | addCanonicalIVRecipes(*Plan, Legal->getWidestInductionType(), DebugLoc(), | ||||||||
| 9201 | true, CM.useActiveLaneMaskForControlFlow()); | ||||||||
| 9202 | return Plan; | ||||||||
| 9203 | } | ||||||||
| 9204 | |||||||||
| 9205 | // Adjust the recipes for reductions. For in-loop reductions the chain of | ||||||||
| 9206 | // instructions leading from the loop exit instr to the phi need to be converted | ||||||||
| 9207 | // to reductions, with one operand being vector and the other being the scalar | ||||||||
| 9208 | // reduction chain. For other reductions, a select is introduced between the phi | ||||||||
| 9209 | // and live-out recipes when folding the tail. | ||||||||
| 9210 | void LoopVectorizationPlanner::adjustRecipesForReductions( | ||||||||
| 9211 | VPBasicBlock *LatchVPBB, VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder, | ||||||||
| 9212 | ElementCount MinVF) { | ||||||||
| 9213 | for (const auto &Reduction : CM.getInLoopReductionChains()) { | ||||||||
| 9214 | PHINode *Phi = Reduction.first; | ||||||||
| 9215 | const RecurrenceDescriptor &RdxDesc = | ||||||||
| 9216 | Legal->getReductionVars().find(Phi)->second; | ||||||||
| 9217 | const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; | ||||||||
| 9218 | |||||||||
| 9219 | if (MinVF.isScalar() && !CM.useOrderedReductions(RdxDesc)) | ||||||||
| 9220 | continue; | ||||||||
| 9221 | |||||||||
| 9222 | // ReductionOperations are orders top-down from the phi's use to the | ||||||||
| 9223 | // LoopExitValue. We keep a track of the previous item (the Chain) to tell | ||||||||
| 9224 | // which of the two operands will remain scalar and which will be reduced. | ||||||||
| 9225 | // For minmax the chain will be the select instructions. | ||||||||
| 9226 | Instruction *Chain = Phi; | ||||||||
| 9227 | for (Instruction *R : ReductionOperations) { | ||||||||
| 9228 | VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); | ||||||||
| 9229 | RecurKind Kind = RdxDesc.getRecurrenceKind(); | ||||||||
| 9230 | |||||||||
| 9231 | VPValue *ChainOp = Plan->getVPValue(Chain); | ||||||||
| 9232 | unsigned FirstOpId; | ||||||||
| 9233 | assert(!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) &&(static_cast <bool> (!RecurrenceDescriptor::isSelectCmpRecurrenceKind (Kind) && "Only min/max recurrences allowed for inloop reductions" ) ? void (0) : __assert_fail ("!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && \"Only min/max recurrences allowed for inloop reductions\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9234, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9234 | "Only min/max recurrences allowed for inloop reductions")(static_cast <bool> (!RecurrenceDescriptor::isSelectCmpRecurrenceKind (Kind) && "Only min/max recurrences allowed for inloop reductions" ) ? void (0) : __assert_fail ("!RecurrenceDescriptor::isSelectCmpRecurrenceKind(Kind) && \"Only min/max recurrences allowed for inloop reductions\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9234, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9235 | // Recognize a call to the llvm.fmuladd intrinsic. | ||||||||
| 9236 | bool IsFMulAdd = (Kind == RecurKind::FMulAdd); | ||||||||
| 9237 | assert((!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) &&(static_cast <bool> ((!IsFMulAdd || RecurrenceDescriptor ::isFMulAddIntrinsic(R)) && "Expected instruction to be a call to the llvm.fmuladd intrinsic" ) ? void (0) : __assert_fail ("(!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && \"Expected instruction to be a call to the llvm.fmuladd intrinsic\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9238, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9238 | "Expected instruction to be a call to the llvm.fmuladd intrinsic")(static_cast <bool> ((!IsFMulAdd || RecurrenceDescriptor ::isFMulAddIntrinsic(R)) && "Expected instruction to be a call to the llvm.fmuladd intrinsic" ) ? void (0) : __assert_fail ("(!IsFMulAdd || RecurrenceDescriptor::isFMulAddIntrinsic(R)) && \"Expected instruction to be a call to the llvm.fmuladd intrinsic\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9238, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9239 | if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { | ||||||||
| 9240 | assert(isa<VPWidenSelectRecipe>(WidenRecipe) &&(static_cast <bool> (isa<VPWidenSelectRecipe>(WidenRecipe ) && "Expected to replace a VPWidenSelectSC") ? void ( 0) : __assert_fail ("isa<VPWidenSelectRecipe>(WidenRecipe) && \"Expected to replace a VPWidenSelectSC\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9241, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9241 | "Expected to replace a VPWidenSelectSC")(static_cast <bool> (isa<VPWidenSelectRecipe>(WidenRecipe ) && "Expected to replace a VPWidenSelectSC") ? void ( 0) : __assert_fail ("isa<VPWidenSelectRecipe>(WidenRecipe) && \"Expected to replace a VPWidenSelectSC\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9241, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9242 | FirstOpId = 1; | ||||||||
| 9243 | } else { | ||||||||
| 9244 | assert((MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) ||(static_cast <bool> ((MinVF.isScalar() || isa<VPWidenRecipe >(WidenRecipe) || (IsFMulAdd && isa<VPWidenCallRecipe >(WidenRecipe))) && "Expected to replace a VPWidenSC" ) ? void (0) : __assert_fail ("(MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && \"Expected to replace a VPWidenSC\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9246, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9245 | (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) &&(static_cast <bool> ((MinVF.isScalar() || isa<VPWidenRecipe >(WidenRecipe) || (IsFMulAdd && isa<VPWidenCallRecipe >(WidenRecipe))) && "Expected to replace a VPWidenSC" ) ? void (0) : __assert_fail ("(MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && \"Expected to replace a VPWidenSC\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9246, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9246 | "Expected to replace a VPWidenSC")(static_cast <bool> ((MinVF.isScalar() || isa<VPWidenRecipe >(WidenRecipe) || (IsFMulAdd && isa<VPWidenCallRecipe >(WidenRecipe))) && "Expected to replace a VPWidenSC" ) ? void (0) : __assert_fail ("(MinVF.isScalar() || isa<VPWidenRecipe>(WidenRecipe) || (IsFMulAdd && isa<VPWidenCallRecipe>(WidenRecipe))) && \"Expected to replace a VPWidenSC\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9246, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9247 | FirstOpId = 0; | ||||||||
| 9248 | } | ||||||||
| 9249 | unsigned VecOpId = | ||||||||
| 9250 | R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; | ||||||||
| 9251 | VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); | ||||||||
| 9252 | |||||||||
| 9253 | VPValue *CondOp = nullptr; | ||||||||
| 9254 | if (CM.blockNeedsPredicationForAnyReason(R->getParent())) { | ||||||||
| 9255 | VPBuilder::InsertPointGuard Guard(Builder); | ||||||||
| 9256 | Builder.setInsertPoint(WidenRecipe->getParent(), | ||||||||
| 9257 | WidenRecipe->getIterator()); | ||||||||
| 9258 | CondOp = RecipeBuilder.createBlockInMask(R->getParent(), Plan); | ||||||||
| 9259 | } | ||||||||
| 9260 | |||||||||
| 9261 | if (IsFMulAdd) { | ||||||||
| 9262 | // If the instruction is a call to the llvm.fmuladd intrinsic then we | ||||||||
| 9263 | // need to create an fmul recipe to use as the vector operand for the | ||||||||
| 9264 | // fadd reduction. | ||||||||
| 9265 | VPInstruction *FMulRecipe = new VPInstruction( | ||||||||
| 9266 | Instruction::FMul, {VecOp, Plan->getVPValue(R->getOperand(1))}); | ||||||||
| 9267 | FMulRecipe->setFastMathFlags(R->getFastMathFlags()); | ||||||||
| 9268 | WidenRecipe->getParent()->insert(FMulRecipe, | ||||||||
| 9269 | WidenRecipe->getIterator()); | ||||||||
| 9270 | VecOp = FMulRecipe; | ||||||||
| 9271 | } | ||||||||
| 9272 | VPReductionRecipe *RedRecipe = | ||||||||
| 9273 | new VPReductionRecipe(&RdxDesc, R, ChainOp, VecOp, CondOp, TTI); | ||||||||
| 9274 | WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); | ||||||||
| 9275 | Plan->removeVPValueFor(R); | ||||||||
| 9276 | Plan->addVPValue(R, RedRecipe); | ||||||||
| 9277 | // Append the recipe to the end of the VPBasicBlock because we need to | ||||||||
| 9278 | // ensure that it comes after all of it's inputs, including CondOp. | ||||||||
| 9279 | WidenRecipe->getParent()->appendRecipe(RedRecipe); | ||||||||
| 9280 | WidenRecipe->getVPSingleValue()->replaceAllUsesWith(RedRecipe); | ||||||||
| 9281 | WidenRecipe->eraseFromParent(); | ||||||||
| 9282 | |||||||||
| 9283 | if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { | ||||||||
| 9284 | VPRecipeBase *CompareRecipe = | ||||||||
| 9285 | RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); | ||||||||
| 9286 | assert(isa<VPWidenRecipe>(CompareRecipe) &&(static_cast <bool> (isa<VPWidenRecipe>(CompareRecipe ) && "Expected to replace a VPWidenSC") ? void (0) : __assert_fail ("isa<VPWidenRecipe>(CompareRecipe) && \"Expected to replace a VPWidenSC\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9287, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9287 | "Expected to replace a VPWidenSC")(static_cast <bool> (isa<VPWidenRecipe>(CompareRecipe ) && "Expected to replace a VPWidenSC") ? void (0) : __assert_fail ("isa<VPWidenRecipe>(CompareRecipe) && \"Expected to replace a VPWidenSC\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9287, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9288 | assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 &&(static_cast <bool> (cast<VPWidenRecipe>(CompareRecipe )->getNumUsers() == 0 && "Expected no remaining users" ) ? void (0) : __assert_fail ("cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && \"Expected no remaining users\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9289, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9289 | "Expected no remaining users")(static_cast <bool> (cast<VPWidenRecipe>(CompareRecipe )->getNumUsers() == 0 && "Expected no remaining users" ) ? void (0) : __assert_fail ("cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && \"Expected no remaining users\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9289, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9290 | CompareRecipe->eraseFromParent(); | ||||||||
| 9291 | } | ||||||||
| 9292 | Chain = R; | ||||||||
| 9293 | } | ||||||||
| 9294 | } | ||||||||
| 9295 | |||||||||
| 9296 | // If tail is folded by masking, introduce selects between the phi | ||||||||
| 9297 | // and the live-out instruction of each reduction, at the beginning of the | ||||||||
| 9298 | // dedicated latch block. | ||||||||
| 9299 | if (CM.foldTailByMasking()) { | ||||||||
| 9300 | Builder.setInsertPoint(LatchVPBB, LatchVPBB->begin()); | ||||||||
| 9301 | for (VPRecipeBase &R : | ||||||||
| 9302 | Plan->getVectorLoopRegion()->getEntryBasicBlock()->phis()) { | ||||||||
| 9303 | VPReductionPHIRecipe *PhiR = dyn_cast<VPReductionPHIRecipe>(&R); | ||||||||
| 9304 | if (!PhiR || PhiR->isInLoop()) | ||||||||
| 9305 | continue; | ||||||||
| 9306 | VPValue *Cond = | ||||||||
| 9307 | RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); | ||||||||
| 9308 | VPValue *Red = PhiR->getBackedgeValue(); | ||||||||
| 9309 | assert(Red->getDefiningRecipe()->getParent() != LatchVPBB &&(static_cast <bool> (Red->getDefiningRecipe()->getParent () != LatchVPBB && "reduction recipe must be defined before latch" ) ? void (0) : __assert_fail ("Red->getDefiningRecipe()->getParent() != LatchVPBB && \"reduction recipe must be defined before latch\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9310, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9310 | "reduction recipe must be defined before latch")(static_cast <bool> (Red->getDefiningRecipe()->getParent () != LatchVPBB && "reduction recipe must be defined before latch" ) ? void (0) : __assert_fail ("Red->getDefiningRecipe()->getParent() != LatchVPBB && \"reduction recipe must be defined before latch\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9310, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9311 | Builder.createNaryOp(Instruction::Select, {Cond, Red, PhiR}); | ||||||||
| 9312 | } | ||||||||
| 9313 | } | ||||||||
| 9314 | } | ||||||||
| 9315 | |||||||||
| 9316 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | ||||||||
| 9317 | void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, | ||||||||
| 9318 | VPSlotTracker &SlotTracker) const { | ||||||||
| 9319 | O << Indent << "INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; | ||||||||
| 9320 | IG->getInsertPos()->printAsOperand(O, false); | ||||||||
| 9321 | O << ", "; | ||||||||
| 9322 | getAddr()->printAsOperand(O, SlotTracker); | ||||||||
| 9323 | VPValue *Mask = getMask(); | ||||||||
| 9324 | if (Mask) { | ||||||||
| 9325 | O << ", "; | ||||||||
| 9326 | Mask->printAsOperand(O, SlotTracker); | ||||||||
| 9327 | } | ||||||||
| 9328 | |||||||||
| 9329 | unsigned OpIdx = 0; | ||||||||
| 9330 | for (unsigned i = 0; i < IG->getFactor(); ++i) { | ||||||||
| 9331 | if (!IG->getMember(i)) | ||||||||
| 9332 | continue; | ||||||||
| 9333 | if (getNumStoreOperands() > 0) { | ||||||||
| 9334 | O << "\n" << Indent << " store "; | ||||||||
| 9335 | getOperand(1 + OpIdx)->printAsOperand(O, SlotTracker); | ||||||||
| 9336 | O << " to index " << i; | ||||||||
| 9337 | } else { | ||||||||
| 9338 | O << "\n" << Indent << " "; | ||||||||
| 9339 | getVPValue(OpIdx)->printAsOperand(O, SlotTracker); | ||||||||
| 9340 | O << " = load from index " << i; | ||||||||
| 9341 | } | ||||||||
| 9342 | ++OpIdx; | ||||||||
| 9343 | } | ||||||||
| 9344 | } | ||||||||
| 9345 | #endif | ||||||||
| 9346 | |||||||||
| 9347 | void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { | ||||||||
| 9348 | assert(!State.Instance && "Int or FP induction being replicated.")(static_cast <bool> (!State.Instance && "Int or FP induction being replicated." ) ? void (0) : __assert_fail ("!State.Instance && \"Int or FP induction being replicated.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9348, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9349 | |||||||||
| 9350 | Value *Start = getStartValue()->getLiveInIRValue(); | ||||||||
| 9351 | const InductionDescriptor &ID = getInductionDescriptor(); | ||||||||
| 9352 | TruncInst *Trunc = getTruncInst(); | ||||||||
| 9353 | IRBuilderBase &Builder = State.Builder; | ||||||||
| 9354 | assert(IV->getType() == ID.getStartValue()->getType() && "Types must match")(static_cast <bool> (IV->getType() == ID.getStartValue ()->getType() && "Types must match") ? void (0) : __assert_fail ("IV->getType() == ID.getStartValue()->getType() && \"Types must match\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9354, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9355 | assert(State.VF.isVector() && "must have vector VF")(static_cast <bool> (State.VF.isVector() && "must have vector VF" ) ? void (0) : __assert_fail ("State.VF.isVector() && \"must have vector VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9355, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9356 | |||||||||
| 9357 | // The value from the original loop to which we are mapping the new induction | ||||||||
| 9358 | // variable. | ||||||||
| 9359 | Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; | ||||||||
| 9360 | |||||||||
| 9361 | // Fast-math-flags propagate from the original induction instruction. | ||||||||
| 9362 | IRBuilder<>::FastMathFlagGuard FMFG(Builder); | ||||||||
| 9363 | if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp())) | ||||||||
| 9364 | Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags()); | ||||||||
| 9365 | |||||||||
| 9366 | // Now do the actual transformations, and start with fetching the step value. | ||||||||
| 9367 | Value *Step = State.get(getStepValue(), VPIteration(0, 0)); | ||||||||
| 9368 | |||||||||
| 9369 | assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&(static_cast <bool> ((isa<PHINode>(EntryVal) || isa <TruncInst>(EntryVal)) && "Expected either an induction phi-node or a truncate of it!" ) ? void (0) : __assert_fail ("(isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && \"Expected either an induction phi-node or a truncate of it!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9370, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9370 | "Expected either an induction phi-node or a truncate of it!")(static_cast <bool> ((isa<PHINode>(EntryVal) || isa <TruncInst>(EntryVal)) && "Expected either an induction phi-node or a truncate of it!" ) ? void (0) : __assert_fail ("(isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && \"Expected either an induction phi-node or a truncate of it!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9370, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9371 | |||||||||
| 9372 | // Construct the initial value of the vector IV in the vector loop preheader | ||||||||
| 9373 | auto CurrIP = Builder.saveIP(); | ||||||||
| 9374 | BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); | ||||||||
| 9375 | Builder.SetInsertPoint(VectorPH->getTerminator()); | ||||||||
| 9376 | if (isa<TruncInst>(EntryVal)) { | ||||||||
| 9377 | assert(Start->getType()->isIntegerTy() &&(static_cast <bool> (Start->getType()->isIntegerTy () && "Truncation requires an integer type") ? void ( 0) : __assert_fail ("Start->getType()->isIntegerTy() && \"Truncation requires an integer type\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9378, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9378 | "Truncation requires an integer type")(static_cast <bool> (Start->getType()->isIntegerTy () && "Truncation requires an integer type") ? void ( 0) : __assert_fail ("Start->getType()->isIntegerTy() && \"Truncation requires an integer type\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9378, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9379 | auto *TruncType = cast<IntegerType>(EntryVal->getType()); | ||||||||
| 9380 | Step = Builder.CreateTrunc(Step, TruncType); | ||||||||
| 9381 | Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); | ||||||||
| 9382 | } | ||||||||
| 9383 | |||||||||
| 9384 | Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0); | ||||||||
| 9385 | Value *SplatStart = Builder.CreateVectorSplat(State.VF, Start); | ||||||||
| 9386 | Value *SteppedStart = getStepVector( | ||||||||
| 9387 | SplatStart, Zero, Step, ID.getInductionOpcode(), State.VF, State.Builder); | ||||||||
| 9388 | |||||||||
| 9389 | // We create vector phi nodes for both integer and floating-point induction | ||||||||
| 9390 | // variables. Here, we determine the kind of arithmetic we will perform. | ||||||||
| 9391 | Instruction::BinaryOps AddOp; | ||||||||
| 9392 | Instruction::BinaryOps MulOp; | ||||||||
| 9393 | if (Step->getType()->isIntegerTy()) { | ||||||||
| 9394 | AddOp = Instruction::Add; | ||||||||
| 9395 | MulOp = Instruction::Mul; | ||||||||
| 9396 | } else { | ||||||||
| 9397 | AddOp = ID.getInductionOpcode(); | ||||||||
| 9398 | MulOp = Instruction::FMul; | ||||||||
| 9399 | } | ||||||||
| 9400 | |||||||||
| 9401 | // Multiply the vectorization factor by the step using integer or | ||||||||
| 9402 | // floating-point arithmetic as appropriate. | ||||||||
| 9403 | Type *StepType = Step->getType(); | ||||||||
| 9404 | Value *RuntimeVF; | ||||||||
| 9405 | if (Step->getType()->isFloatingPointTy()) | ||||||||
| 9406 | RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, State.VF); | ||||||||
| 9407 | else | ||||||||
| 9408 | RuntimeVF = getRuntimeVF(Builder, StepType, State.VF); | ||||||||
| 9409 | Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF); | ||||||||
| 9410 | |||||||||
| 9411 | // Create a vector splat to use in the induction update. | ||||||||
| 9412 | // | ||||||||
| 9413 | // FIXME: If the step is non-constant, we create the vector splat with | ||||||||
| 9414 | // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't | ||||||||
| 9415 | // handle a constant vector splat. | ||||||||
| 9416 | Value *SplatVF = isa<Constant>(Mul) | ||||||||
| 9417 | ? ConstantVector::getSplat(State.VF, cast<Constant>(Mul)) | ||||||||
| 9418 | : Builder.CreateVectorSplat(State.VF, Mul); | ||||||||
| 9419 | Builder.restoreIP(CurrIP); | ||||||||
| 9420 | |||||||||
| 9421 | // We may need to add the step a number of times, depending on the unroll | ||||||||
| 9422 | // factor. The last of those goes into the PHI. | ||||||||
| 9423 | PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", | ||||||||
| 9424 | &*State.CFG.PrevBB->getFirstInsertionPt()); | ||||||||
| 9425 | VecInd->setDebugLoc(EntryVal->getDebugLoc()); | ||||||||
| 9426 | Instruction *LastInduction = VecInd; | ||||||||
| 9427 | for (unsigned Part = 0; Part < State.UF; ++Part) { | ||||||||
| 9428 | State.set(this, LastInduction, Part); | ||||||||
| 9429 | |||||||||
| 9430 | if (isa<TruncInst>(EntryVal)) | ||||||||
| 9431 | State.addMetadata(LastInduction, EntryVal); | ||||||||
| 9432 | |||||||||
| 9433 | LastInduction = cast<Instruction>( | ||||||||
| 9434 | Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add")); | ||||||||
| 9435 | LastInduction->setDebugLoc(EntryVal->getDebugLoc()); | ||||||||
| 9436 | } | ||||||||
| 9437 | |||||||||
| 9438 | LastInduction->setName("vec.ind.next"); | ||||||||
| 9439 | VecInd->addIncoming(SteppedStart, VectorPH); | ||||||||
| 9440 | // Add induction update using an incorrect block temporarily. The phi node | ||||||||
| 9441 | // will be fixed after VPlan execution. Note that at this point the latch | ||||||||
| 9442 | // block cannot be used, as it does not exist yet. | ||||||||
| 9443 | // TODO: Model increment value in VPlan, by turning the recipe into a | ||||||||
| 9444 | // multi-def and a subclass of VPHeaderPHIRecipe. | ||||||||
| 9445 | VecInd->addIncoming(LastInduction, VectorPH); | ||||||||
| 9446 | } | ||||||||
| 9447 | |||||||||
| 9448 | void VPWidenPointerInductionRecipe::execute(VPTransformState &State) { | ||||||||
| 9449 | assert(IndDesc.getKind() == InductionDescriptor::IK_PtrInduction &&(static_cast <bool> (IndDesc.getKind() == InductionDescriptor ::IK_PtrInduction && "Not a pointer induction according to InductionDescriptor!" ) ? void (0) : __assert_fail ("IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && \"Not a pointer induction according to InductionDescriptor!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9450, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9450 | "Not a pointer induction according to InductionDescriptor!")(static_cast <bool> (IndDesc.getKind() == InductionDescriptor ::IK_PtrInduction && "Not a pointer induction according to InductionDescriptor!" ) ? void (0) : __assert_fail ("IndDesc.getKind() == InductionDescriptor::IK_PtrInduction && \"Not a pointer induction according to InductionDescriptor!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9450, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9451 | assert(cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() &&(static_cast <bool> (cast<PHINode>(getUnderlyingInstr ())->getType()->isPointerTy() && "Unexpected type." ) ? void (0) : __assert_fail ("cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && \"Unexpected type.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9452, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9452 | "Unexpected type.")(static_cast <bool> (cast<PHINode>(getUnderlyingInstr ())->getType()->isPointerTy() && "Unexpected type." ) ? void (0) : __assert_fail ("cast<PHINode>(getUnderlyingInstr())->getType()->isPointerTy() && \"Unexpected type.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9452, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9453 | |||||||||
| 9454 | auto *IVR = getParent()->getPlan()->getCanonicalIV(); | ||||||||
| 9455 | PHINode *CanonicalIV = cast<PHINode>(State.get(IVR, 0)); | ||||||||
| 9456 | |||||||||
| 9457 | if (onlyScalarsGenerated(State.VF)) { | ||||||||
| 9458 | // This is the normalized GEP that starts counting at zero. | ||||||||
| 9459 | Value *PtrInd = State.Builder.CreateSExtOrTrunc( | ||||||||
| 9460 | CanonicalIV, IndDesc.getStep()->getType()); | ||||||||
| 9461 | // Determine the number of scalars we need to generate for each unroll | ||||||||
| 9462 | // iteration. If the instruction is uniform, we only need to generate the | ||||||||
| 9463 | // first lane. Otherwise, we generate all VF values. | ||||||||
| 9464 | bool IsUniform = vputils::onlyFirstLaneUsed(this); | ||||||||
| 9465 | assert((IsUniform || !State.VF.isScalable()) &&(static_cast <bool> ((IsUniform || !State.VF.isScalable ()) && "Cannot scalarize a scalable VF") ? void (0) : __assert_fail ("(IsUniform || !State.VF.isScalable()) && \"Cannot scalarize a scalable VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9466, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9466 | "Cannot scalarize a scalable VF")(static_cast <bool> ((IsUniform || !State.VF.isScalable ()) && "Cannot scalarize a scalable VF") ? void (0) : __assert_fail ("(IsUniform || !State.VF.isScalable()) && \"Cannot scalarize a scalable VF\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9466, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9467 | unsigned Lanes = IsUniform ? 1 : State.VF.getFixedValue(); | ||||||||
| 9468 | |||||||||
| 9469 | for (unsigned Part = 0; Part < State.UF; ++Part) { | ||||||||
| 9470 | Value *PartStart = | ||||||||
| 9471 | createStepForVF(State.Builder, PtrInd->getType(), State.VF, Part); | ||||||||
| 9472 | |||||||||
| 9473 | for (unsigned Lane = 0; Lane < Lanes; ++Lane) { | ||||||||
| 9474 | Value *Idx = State.Builder.CreateAdd( | ||||||||
| 9475 | PartStart, ConstantInt::get(PtrInd->getType(), Lane)); | ||||||||
| 9476 | Value *GlobalIdx = State.Builder.CreateAdd(PtrInd, Idx); | ||||||||
| 9477 | |||||||||
| 9478 | Value *Step = State.get(getOperand(1), VPIteration(0, Part)); | ||||||||
| 9479 | Value *SclrGep = emitTransformedIndex( | ||||||||
| 9480 | State.Builder, GlobalIdx, IndDesc.getStartValue(), Step, IndDesc); | ||||||||
| 9481 | SclrGep->setName("next.gep"); | ||||||||
| 9482 | State.set(this, SclrGep, VPIteration(Part, Lane)); | ||||||||
| 9483 | } | ||||||||
| 9484 | } | ||||||||
| 9485 | return; | ||||||||
| 9486 | } | ||||||||
| 9487 | |||||||||
| 9488 | assert(isa<SCEVConstant>(IndDesc.getStep()) &&(static_cast <bool> (isa<SCEVConstant>(IndDesc.getStep ()) && "Induction step not a SCEV constant!") ? void ( 0) : __assert_fail ("isa<SCEVConstant>(IndDesc.getStep()) && \"Induction step not a SCEV constant!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9489, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9489 | "Induction step not a SCEV constant!")(static_cast <bool> (isa<SCEVConstant>(IndDesc.getStep ()) && "Induction step not a SCEV constant!") ? void ( 0) : __assert_fail ("isa<SCEVConstant>(IndDesc.getStep()) && \"Induction step not a SCEV constant!\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9489, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9490 | Type *PhiType = IndDesc.getStep()->getType(); | ||||||||
| 9491 | |||||||||
| 9492 | // Build a pointer phi | ||||||||
| 9493 | Value *ScalarStartValue = getStartValue()->getLiveInIRValue(); | ||||||||
| 9494 | Type *ScStValueType = ScalarStartValue->getType(); | ||||||||
| 9495 | PHINode *NewPointerPhi = | ||||||||
| 9496 | PHINode::Create(ScStValueType, 2, "pointer.phi", CanonicalIV); | ||||||||
| 9497 | |||||||||
| 9498 | BasicBlock *VectorPH = State.CFG.getPreheaderBBFor(this); | ||||||||
| 9499 | NewPointerPhi->addIncoming(ScalarStartValue, VectorPH); | ||||||||
| 9500 | |||||||||
| 9501 | // A pointer induction, performed by using a gep | ||||||||
| 9502 | Instruction *InductionLoc = &*State.Builder.GetInsertPoint(); | ||||||||
| 9503 | |||||||||
| 9504 | Value *ScalarStepValue = State.get(getOperand(1), VPIteration(0, 0)); | ||||||||
| 9505 | Value *RuntimeVF = getRuntimeVF(State.Builder, PhiType, State.VF); | ||||||||
| 9506 | Value *NumUnrolledElems = | ||||||||
| 9507 | State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, State.UF)); | ||||||||
| 9508 | Value *InductionGEP = GetElementPtrInst::Create( | ||||||||
| 9509 | IndDesc.getElementType(), NewPointerPhi, | ||||||||
| 9510 | State.Builder.CreateMul(ScalarStepValue, NumUnrolledElems), "ptr.ind", | ||||||||
| 9511 | InductionLoc); | ||||||||
| 9512 | // Add induction update using an incorrect block temporarily. The phi node | ||||||||
| 9513 | // will be fixed after VPlan execution. Note that at this point the latch | ||||||||
| 9514 | // block cannot be used, as it does not exist yet. | ||||||||
| 9515 | // TODO: Model increment value in VPlan, by turning the recipe into a | ||||||||
| 9516 | // multi-def and a subclass of VPHeaderPHIRecipe. | ||||||||
| 9517 | NewPointerPhi->addIncoming(InductionGEP, VectorPH); | ||||||||
| 9518 | |||||||||
| 9519 | // Create UF many actual address geps that use the pointer | ||||||||
| 9520 | // phi as base and a vectorized version of the step value | ||||||||
| 9521 | // (<step*0, ..., step*N>) as offset. | ||||||||
| 9522 | for (unsigned Part = 0; Part < State.UF; ++Part) { | ||||||||
| 9523 | Type *VecPhiType = VectorType::get(PhiType, State.VF); | ||||||||
| 9524 | Value *StartOffsetScalar = | ||||||||
| 9525 | State.Builder.CreateMul(RuntimeVF, ConstantInt::get(PhiType, Part)); | ||||||||
| 9526 | Value *StartOffset = | ||||||||
| 9527 | State.Builder.CreateVectorSplat(State.VF, StartOffsetScalar); | ||||||||
| 9528 | // Create a vector of consecutive numbers from zero to VF. | ||||||||
| 9529 | StartOffset = State.Builder.CreateAdd( | ||||||||
| 9530 | StartOffset, State.Builder.CreateStepVector(VecPhiType)); | ||||||||
| 9531 | |||||||||
| 9532 | assert(ScalarStepValue == State.get(getOperand(1), VPIteration(0, Part)) &&(static_cast <bool> (ScalarStepValue == State.get(getOperand (1), VPIteration(0, Part)) && "scalar step must be the same across all parts" ) ? void (0) : __assert_fail ("ScalarStepValue == State.get(getOperand(1), VPIteration(0, Part)) && \"scalar step must be the same across all parts\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9533, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9533 | "scalar step must be the same across all parts")(static_cast <bool> (ScalarStepValue == State.get(getOperand (1), VPIteration(0, Part)) && "scalar step must be the same across all parts" ) ? void (0) : __assert_fail ("ScalarStepValue == State.get(getOperand(1), VPIteration(0, Part)) && \"scalar step must be the same across all parts\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9533, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9534 | Value *GEP = State.Builder.CreateGEP( | ||||||||
| 9535 | IndDesc.getElementType(), NewPointerPhi, | ||||||||
| 9536 | State.Builder.CreateMul( | ||||||||
| 9537 | StartOffset, | ||||||||
| 9538 | State.Builder.CreateVectorSplat(State.VF, ScalarStepValue), | ||||||||
| 9539 | "vector.gep")); | ||||||||
| 9540 | State.set(this, GEP, Part); | ||||||||
| 9541 | } | ||||||||
| 9542 | } | ||||||||
| 9543 | |||||||||
| 9544 | void VPDerivedIVRecipe::execute(VPTransformState &State) { | ||||||||
| 9545 | assert(!State.Instance && "VPDerivedIVRecipe being replicated.")(static_cast <bool> (!State.Instance && "VPDerivedIVRecipe being replicated." ) ? void (0) : __assert_fail ("!State.Instance && \"VPDerivedIVRecipe being replicated.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9545, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9546 | |||||||||
| 9547 | // Fast-math-flags propagate from the original induction instruction. | ||||||||
| 9548 | IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); | ||||||||
| 9549 | if (IndDesc.getInductionBinOp() && | ||||||||
| 9550 | isa<FPMathOperator>(IndDesc.getInductionBinOp())) | ||||||||
| 9551 | State.Builder.setFastMathFlags( | ||||||||
| 9552 | IndDesc.getInductionBinOp()->getFastMathFlags()); | ||||||||
| 9553 | |||||||||
| 9554 | Value *Step = State.get(getStepValue(), VPIteration(0, 0)); | ||||||||
| 9555 | Value *CanonicalIV = State.get(getCanonicalIV(), VPIteration(0, 0)); | ||||||||
| 9556 | Value *DerivedIV = | ||||||||
| 9557 | emitTransformedIndex(State.Builder, CanonicalIV, | ||||||||
| 9558 | getStartValue()->getLiveInIRValue(), Step, IndDesc); | ||||||||
| 9559 | DerivedIV->setName("offset.idx"); | ||||||||
| 9560 | if (ResultTy != DerivedIV->getType()) { | ||||||||
| 9561 | assert(Step->getType()->isIntegerTy() &&(static_cast <bool> (Step->getType()->isIntegerTy () && "Truncation requires an integer step") ? void ( 0) : __assert_fail ("Step->getType()->isIntegerTy() && \"Truncation requires an integer step\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9562, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9562 | "Truncation requires an integer step")(static_cast <bool> (Step->getType()->isIntegerTy () && "Truncation requires an integer step") ? void ( 0) : __assert_fail ("Step->getType()->isIntegerTy() && \"Truncation requires an integer step\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9562, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9563 | DerivedIV = State.Builder.CreateTrunc(DerivedIV, ResultTy); | ||||||||
| 9564 | } | ||||||||
| 9565 | assert(DerivedIV != CanonicalIV && "IV didn't need transforming?")(static_cast <bool> (DerivedIV != CanonicalIV && "IV didn't need transforming?") ? void (0) : __assert_fail ( "DerivedIV != CanonicalIV && \"IV didn't need transforming?\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9565, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9566 | |||||||||
| 9567 | State.set(this, DerivedIV, VPIteration(0, 0)); | ||||||||
| 9568 | } | ||||||||
| 9569 | |||||||||
| 9570 | void VPScalarIVStepsRecipe::execute(VPTransformState &State) { | ||||||||
| 9571 | // Fast-math-flags propagate from the original induction instruction. | ||||||||
| 9572 | IRBuilder<>::FastMathFlagGuard FMFG(State.Builder); | ||||||||
| 9573 | if (IndDesc.getInductionBinOp() && | ||||||||
| 9574 | isa<FPMathOperator>(IndDesc.getInductionBinOp())) | ||||||||
| 9575 | State.Builder.setFastMathFlags( | ||||||||
| 9576 | IndDesc.getInductionBinOp()->getFastMathFlags()); | ||||||||
| 9577 | |||||||||
| 9578 | Value *BaseIV = State.get(getOperand(0), VPIteration(0, 0)); | ||||||||
| 9579 | Value *Step = State.get(getStepValue(), VPIteration(0, 0)); | ||||||||
| 9580 | |||||||||
| 9581 | buildScalarSteps(BaseIV, Step, IndDesc, this, State); | ||||||||
| 9582 | } | ||||||||
| 9583 | |||||||||
| 9584 | void VPInterleaveRecipe::execute(VPTransformState &State) { | ||||||||
| 9585 | assert(!State.Instance && "Interleave group being replicated.")(static_cast <bool> (!State.Instance && "Interleave group being replicated." ) ? void (0) : __assert_fail ("!State.Instance && \"Interleave group being replicated.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9585, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9586 | State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), | ||||||||
| 9587 | getStoredValues(), getMask()); | ||||||||
| 9588 | } | ||||||||
| 9589 | |||||||||
| 9590 | void VPReductionRecipe::execute(VPTransformState &State) { | ||||||||
| 9591 | assert(!State.Instance && "Reduction being replicated.")(static_cast <bool> (!State.Instance && "Reduction being replicated." ) ? void (0) : __assert_fail ("!State.Instance && \"Reduction being replicated.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9591, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9592 | Value *PrevInChain = State.get(getChainOp(), 0); | ||||||||
| 9593 | RecurKind Kind = RdxDesc->getRecurrenceKind(); | ||||||||
| 9594 | bool IsOrdered = State.ILV->useOrderedReductions(*RdxDesc); | ||||||||
| 9595 | // Propagate the fast-math flags carried by the underlying instruction. | ||||||||
| 9596 | IRBuilderBase::FastMathFlagGuard FMFGuard(State.Builder); | ||||||||
| 9597 | State.Builder.setFastMathFlags(RdxDesc->getFastMathFlags()); | ||||||||
| 9598 | for (unsigned Part = 0; Part < State.UF; ++Part) { | ||||||||
| 9599 | Value *NewVecOp = State.get(getVecOp(), Part); | ||||||||
| 9600 | if (VPValue *Cond = getCondOp()) { | ||||||||
| 9601 | Value *NewCond = State.get(Cond, Part); | ||||||||
| 9602 | VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); | ||||||||
| 9603 | Value *Iden = RdxDesc->getRecurrenceIdentity( | ||||||||
| 9604 | Kind, VecTy->getElementType(), RdxDesc->getFastMathFlags()); | ||||||||
| 9605 | Value *IdenVec = | ||||||||
| 9606 | State.Builder.CreateVectorSplat(VecTy->getElementCount(), Iden); | ||||||||
| 9607 | Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); | ||||||||
| 9608 | NewVecOp = Select; | ||||||||
| 9609 | } | ||||||||
| 9610 | Value *NewRed; | ||||||||
| 9611 | Value *NextInChain; | ||||||||
| 9612 | if (IsOrdered) { | ||||||||
| 9613 | if (State.VF.isVector()) | ||||||||
| 9614 | NewRed = createOrderedReduction(State.Builder, *RdxDesc, NewVecOp, | ||||||||
| 9615 | PrevInChain); | ||||||||
| 9616 | else | ||||||||
| 9617 | NewRed = State.Builder.CreateBinOp( | ||||||||
| 9618 | (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), PrevInChain, | ||||||||
| 9619 | NewVecOp); | ||||||||
| 9620 | PrevInChain = NewRed; | ||||||||
| 9621 | } else { | ||||||||
| 9622 | PrevInChain = State.get(getChainOp(), Part); | ||||||||
| 9623 | NewRed = createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); | ||||||||
| 9624 | } | ||||||||
| 9625 | if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { | ||||||||
| 9626 | NextInChain = | ||||||||
| 9627 | createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), | ||||||||
| 9628 | NewRed, PrevInChain); | ||||||||
| 9629 | } else if (IsOrdered) | ||||||||
| 9630 | NextInChain = NewRed; | ||||||||
| 9631 | else | ||||||||
| 9632 | NextInChain = State.Builder.CreateBinOp( | ||||||||
| 9633 | (Instruction::BinaryOps)RdxDesc->getOpcode(Kind), NewRed, | ||||||||
| 9634 | PrevInChain); | ||||||||
| 9635 | State.set(this, NextInChain, Part); | ||||||||
| 9636 | } | ||||||||
| 9637 | } | ||||||||
| 9638 | |||||||||
| 9639 | void VPReplicateRecipe::execute(VPTransformState &State) { | ||||||||
| 9640 | Instruction *UI = getUnderlyingInstr(); | ||||||||
| 9641 | if (State.Instance) { // Generate a single instance. | ||||||||
| 9642 | assert(!State.VF.isScalable() && "Can't scalarize a scalable vector")(static_cast <bool> (!State.VF.isScalable() && "Can't scalarize a scalable vector" ) ? void (0) : __assert_fail ("!State.VF.isScalable() && \"Can't scalarize a scalable vector\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9642, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9643 | State.ILV->scalarizeInstruction(UI, this, *State.Instance, | ||||||||
| 9644 | IsPredicated, State); | ||||||||
| 9645 | // Insert scalar instance packing it into a vector. | ||||||||
| 9646 | if (AlsoPack && State.VF.isVector()) { | ||||||||
| 9647 | // If we're constructing lane 0, initialize to start from poison. | ||||||||
| 9648 | if (State.Instance->Lane.isFirstLane()) { | ||||||||
| 9649 | assert(!State.VF.isScalable() && "VF is assumed to be non scalable.")(static_cast <bool> (!State.VF.isScalable() && "VF is assumed to be non scalable." ) ? void (0) : __assert_fail ("!State.VF.isScalable() && \"VF is assumed to be non scalable.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9649, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9650 | Value *Poison = PoisonValue::get( | ||||||||
| 9651 | VectorType::get(UI->getType(), State.VF)); | ||||||||
| 9652 | State.set(this, Poison, State.Instance->Part); | ||||||||
| 9653 | } | ||||||||
| 9654 | State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); | ||||||||
| 9655 | } | ||||||||
| 9656 | return; | ||||||||
| 9657 | } | ||||||||
| 9658 | |||||||||
| 9659 | if (IsUniform) { | ||||||||
| 9660 | // If the recipe is uniform across all parts (instead of just per VF), only | ||||||||
| 9661 | // generate a single instance. | ||||||||
| 9662 | if ((isa<LoadInst>(UI) || isa<StoreInst>(UI)) && | ||||||||
| 9663 | all_of(operands(), [](VPValue *Op) { | ||||||||
| 9664 | return Op->isDefinedOutsideVectorRegions(); | ||||||||
| 9665 | })) { | ||||||||
| 9666 | State.ILV->scalarizeInstruction(UI, this, VPIteration(0, 0), IsPredicated, | ||||||||
| 9667 | State); | ||||||||
| 9668 | if (user_begin() != user_end()) { | ||||||||
| 9669 | for (unsigned Part = 1; Part < State.UF; ++Part) | ||||||||
| 9670 | State.set(this, State.get(this, VPIteration(0, 0)), | ||||||||
| 9671 | VPIteration(Part, 0)); | ||||||||
| 9672 | } | ||||||||
| 9673 | return; | ||||||||
| 9674 | } | ||||||||
| 9675 | |||||||||
| 9676 | // Uniform within VL means we need to generate lane 0 only for each | ||||||||
| 9677 | // unrolled copy. | ||||||||
| 9678 | for (unsigned Part = 0; Part < State.UF; ++Part) | ||||||||
| 9679 | State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, 0), | ||||||||
| 9680 | IsPredicated, State); | ||||||||
| 9681 | return; | ||||||||
| 9682 | } | ||||||||
| 9683 | |||||||||
| 9684 | // A store of a loop varying value to a loop invariant address only | ||||||||
| 9685 | // needs only the last copy of the store. | ||||||||
| 9686 | if (isa<StoreInst>(UI) && !getOperand(1)->hasDefiningRecipe()) { | ||||||||
| 9687 | auto Lane = VPLane::getLastLaneForVF(State.VF); | ||||||||
| 9688 | State.ILV->scalarizeInstruction(UI, this, VPIteration(State.UF - 1, Lane), IsPredicated, | ||||||||
| 9689 | State); | ||||||||
| 9690 | return; | ||||||||
| 9691 | } | ||||||||
| 9692 | |||||||||
| 9693 | // Generate scalar instances for all VF lanes of all UF parts. | ||||||||
| 9694 | assert(!State.VF.isScalable() && "Can't scalarize a scalable vector")(static_cast <bool> (!State.VF.isScalable() && "Can't scalarize a scalable vector" ) ? void (0) : __assert_fail ("!State.VF.isScalable() && \"Can't scalarize a scalable vector\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9694, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9695 | const unsigned EndLane = State.VF.getKnownMinValue(); | ||||||||
| 9696 | for (unsigned Part = 0; Part < State.UF; ++Part) | ||||||||
| 9697 | for (unsigned Lane = 0; Lane < EndLane; ++Lane) | ||||||||
| 9698 | State.ILV->scalarizeInstruction(UI, this, VPIteration(Part, Lane), | ||||||||
| 9699 | IsPredicated, State); | ||||||||
| 9700 | } | ||||||||
| 9701 | |||||||||
| 9702 | void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { | ||||||||
| 9703 | VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; | ||||||||
| 9704 | |||||||||
| 9705 | // Attempt to issue a wide load. | ||||||||
| 9706 | LoadInst *LI = dyn_cast<LoadInst>(&Ingredient); | ||||||||
| 9707 | StoreInst *SI = dyn_cast<StoreInst>(&Ingredient); | ||||||||
| 9708 | |||||||||
| 9709 | assert((LI || SI) && "Invalid Load/Store instruction")(static_cast <bool> ((LI || SI) && "Invalid Load/Store instruction" ) ? void (0) : __assert_fail ("(LI || SI) && \"Invalid Load/Store instruction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9709, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9710 | assert((!SI || StoredValue) && "No stored value provided for widened store")(static_cast <bool> ((!SI || StoredValue) && "No stored value provided for widened store" ) ? void (0) : __assert_fail ("(!SI || StoredValue) && \"No stored value provided for widened store\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9710, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9711 | assert((!LI || !StoredValue) && "Stored value provided for widened load")(static_cast <bool> ((!LI || !StoredValue) && "Stored value provided for widened load" ) ? void (0) : __assert_fail ("(!LI || !StoredValue) && \"Stored value provided for widened load\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9711, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9712 | |||||||||
| 9713 | Type *ScalarDataTy = getLoadStoreType(&Ingredient); | ||||||||
| 9714 | |||||||||
| 9715 | auto *DataTy = VectorType::get(ScalarDataTy, State.VF); | ||||||||
| 9716 | const Align Alignment = getLoadStoreAlignment(&Ingredient); | ||||||||
| 9717 | bool CreateGatherScatter = !Consecutive; | ||||||||
| 9718 | |||||||||
| 9719 | auto &Builder = State.Builder; | ||||||||
| 9720 | InnerLoopVectorizer::VectorParts BlockInMaskParts(State.UF); | ||||||||
| 9721 | bool isMaskRequired = getMask(); | ||||||||
| 9722 | if (isMaskRequired) | ||||||||
| 9723 | for (unsigned Part = 0; Part < State.UF; ++Part) | ||||||||
| 9724 | BlockInMaskParts[Part] = State.get(getMask(), Part); | ||||||||
| 9725 | |||||||||
| 9726 | const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { | ||||||||
| 9727 | // Calculate the pointer for the specific unroll-part. | ||||||||
| 9728 | GetElementPtrInst *PartPtr = nullptr; | ||||||||
| 9729 | |||||||||
| 9730 | bool InBounds = false; | ||||||||
| 9731 | if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) | ||||||||
| 9732 | InBounds = gep->isInBounds(); | ||||||||
| 9733 | if (Reverse) { | ||||||||
| 9734 | // If the address is consecutive but reversed, then the | ||||||||
| 9735 | // wide store needs to start at the last vector element. | ||||||||
| 9736 | // RunTimeVF = VScale * VF.getKnownMinValue() | ||||||||
| 9737 | // For fixed-width VScale is 1, then RunTimeVF = VF.getKnownMinValue() | ||||||||
| 9738 | Value *RunTimeVF = getRuntimeVF(Builder, Builder.getInt32Ty(), State.VF); | ||||||||
| 9739 | // NumElt = -Part * RunTimeVF | ||||||||
| 9740 | Value *NumElt = Builder.CreateMul(Builder.getInt32(-Part), RunTimeVF); | ||||||||
| 9741 | // LastLane = 1 - RunTimeVF | ||||||||
| 9742 | Value *LastLane = Builder.CreateSub(Builder.getInt32(1), RunTimeVF); | ||||||||
| 9743 | PartPtr = | ||||||||
| 9744 | cast<GetElementPtrInst>(Builder.CreateGEP(ScalarDataTy, Ptr, NumElt)); | ||||||||
| 9745 | PartPtr->setIsInBounds(InBounds); | ||||||||
| 9746 | PartPtr = cast<GetElementPtrInst>( | ||||||||
| 9747 | Builder.CreateGEP(ScalarDataTy, PartPtr, LastLane)); | ||||||||
| 9748 | PartPtr->setIsInBounds(InBounds); | ||||||||
| 9749 | if (isMaskRequired) // Reverse of a null all-one mask is a null mask. | ||||||||
| 9750 | BlockInMaskParts[Part] = | ||||||||
| 9751 | Builder.CreateVectorReverse(BlockInMaskParts[Part], "reverse"); | ||||||||
| 9752 | } else { | ||||||||
| 9753 | Value *Increment = | ||||||||
| 9754 | createStepForVF(Builder, Builder.getInt32Ty(), State.VF, Part); | ||||||||
| 9755 | PartPtr = cast<GetElementPtrInst>( | ||||||||
| 9756 | Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); | ||||||||
| 9757 | PartPtr->setIsInBounds(InBounds); | ||||||||
| 9758 | } | ||||||||
| 9759 | |||||||||
| 9760 | unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); | ||||||||
| 9761 | return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); | ||||||||
| 9762 | }; | ||||||||
| 9763 | |||||||||
| 9764 | // Handle Stores: | ||||||||
| 9765 | if (SI) { | ||||||||
| 9766 | State.setDebugLocFromInst(SI); | ||||||||
| 9767 | |||||||||
| 9768 | for (unsigned Part = 0; Part < State.UF; ++Part) { | ||||||||
| 9769 | Instruction *NewSI = nullptr; | ||||||||
| 9770 | Value *StoredVal = State.get(StoredValue, Part); | ||||||||
| 9771 | if (CreateGatherScatter) { | ||||||||
| 9772 | Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; | ||||||||
| 9773 | Value *VectorGep = State.get(getAddr(), Part); | ||||||||
| 9774 | NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, | ||||||||
| 9775 | MaskPart); | ||||||||
| 9776 | } else { | ||||||||
| 9777 | if (Reverse) { | ||||||||
| 9778 | // If we store to reverse consecutive memory locations, then we need | ||||||||
| 9779 | // to reverse the order of elements in the stored value. | ||||||||
| 9780 | StoredVal = Builder.CreateVectorReverse(StoredVal, "reverse"); | ||||||||
| 9781 | // We don't want to update the value in the map as it might be used in | ||||||||
| 9782 | // another expression. So don't call resetVectorValue(StoredVal). | ||||||||
| 9783 | } | ||||||||
| 9784 | auto *VecPtr = | ||||||||
| 9785 | CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); | ||||||||
| 9786 | if (isMaskRequired) | ||||||||
| 9787 | NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, | ||||||||
| 9788 | BlockInMaskParts[Part]); | ||||||||
| 9789 | else | ||||||||
| 9790 | NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); | ||||||||
| 9791 | } | ||||||||
| 9792 | State.addMetadata(NewSI, SI); | ||||||||
| 9793 | } | ||||||||
| 9794 | return; | ||||||||
| 9795 | } | ||||||||
| 9796 | |||||||||
| 9797 | // Handle loads. | ||||||||
| 9798 | assert(LI && "Must have a load instruction")(static_cast <bool> (LI && "Must have a load instruction" ) ? void (0) : __assert_fail ("LI && \"Must have a load instruction\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9798, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9799 | State.setDebugLocFromInst(LI); | ||||||||
| 9800 | for (unsigned Part = 0; Part < State.UF; ++Part) { | ||||||||
| 9801 | Value *NewLI; | ||||||||
| 9802 | if (CreateGatherScatter) { | ||||||||
| 9803 | Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; | ||||||||
| 9804 | Value *VectorGep = State.get(getAddr(), Part); | ||||||||
| 9805 | NewLI = Builder.CreateMaskedGather(DataTy, VectorGep, Alignment, MaskPart, | ||||||||
| 9806 | nullptr, "wide.masked.gather"); | ||||||||
| 9807 | State.addMetadata(NewLI, LI); | ||||||||
| 9808 | } else { | ||||||||
| 9809 | auto *VecPtr = | ||||||||
| 9810 | CreateVecPtr(Part, State.get(getAddr(), VPIteration(0, 0))); | ||||||||
| 9811 | if (isMaskRequired) | ||||||||
| 9812 | NewLI = Builder.CreateMaskedLoad( | ||||||||
| 9813 | DataTy, VecPtr, Alignment, BlockInMaskParts[Part], | ||||||||
| 9814 | PoisonValue::get(DataTy), "wide.masked.load"); | ||||||||
| 9815 | else | ||||||||
| 9816 | NewLI = | ||||||||
| 9817 | Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); | ||||||||
| 9818 | |||||||||
| 9819 | // Add metadata to the load, but setVectorValue to the reverse shuffle. | ||||||||
| 9820 | State.addMetadata(NewLI, LI); | ||||||||
| 9821 | if (Reverse) | ||||||||
| 9822 | NewLI = Builder.CreateVectorReverse(NewLI, "reverse"); | ||||||||
| 9823 | } | ||||||||
| 9824 | |||||||||
| 9825 | State.set(getVPSingleValue(), NewLI, Part); | ||||||||
| 9826 | } | ||||||||
| 9827 | } | ||||||||
| 9828 | |||||||||
| 9829 | // Determine how to lower the scalar epilogue, which depends on 1) optimising | ||||||||
| 9830 | // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing | ||||||||
| 9831 | // predication, and 4) a TTI hook that analyses whether the loop is suitable | ||||||||
| 9832 | // for predication. | ||||||||
| 9833 | static ScalarEpilogueLowering getScalarEpilogueLowering( | ||||||||
| 9834 | Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, | ||||||||
| 9835 | BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, | ||||||||
| 9836 | AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, | ||||||||
| 9837 | LoopVectorizationLegality &LVL, InterleavedAccessInfo *IAI) { | ||||||||
| 9838 | // 1) OptSize takes precedence over all other options, i.e. if this is set, | ||||||||
| 9839 | // don't look at hints or options, and don't request a scalar epilogue. | ||||||||
| 9840 | // (For PGSO, as shouldOptimizeForSize isn't currently accessible from | ||||||||
| 9841 | // LoopAccessInfo (due to code dependency and not being able to reliably get | ||||||||
| 9842 | // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection | ||||||||
| 9843 | // of strides in LoopAccessInfo::analyzeLoop() and vectorize without | ||||||||
| 9844 | // versioning when the vectorization is forced, unlike hasOptSize. So revert | ||||||||
| 9845 | // back to the old way and vectorize with versioning when forced. See D81345.) | ||||||||
| 9846 | if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, | ||||||||
| 9847 | PGSOQueryType::IRPass) && | ||||||||
| 9848 | Hints.getForce() != LoopVectorizeHints::FK_Enabled)) | ||||||||
| 9849 | return CM_ScalarEpilogueNotAllowedOptSize; | ||||||||
| 9850 | |||||||||
| 9851 | // 2) If set, obey the directives | ||||||||
| 9852 | if (PreferPredicateOverEpilogue.getNumOccurrences()) { | ||||||||
| 9853 | switch (PreferPredicateOverEpilogue) { | ||||||||
| 9854 | case PreferPredicateTy::ScalarEpilogue: | ||||||||
| 9855 | return CM_ScalarEpilogueAllowed; | ||||||||
| 9856 | case PreferPredicateTy::PredicateElseScalarEpilogue: | ||||||||
| 9857 | return CM_ScalarEpilogueNotNeededUsePredicate; | ||||||||
| 9858 | case PreferPredicateTy::PredicateOrDontVectorize: | ||||||||
| 9859 | return CM_ScalarEpilogueNotAllowedUsePredicate; | ||||||||
| 9860 | }; | ||||||||
| 9861 | } | ||||||||
| 9862 | |||||||||
| 9863 | // 3) If set, obey the hints | ||||||||
| 9864 | switch (Hints.getPredicate()) { | ||||||||
| 9865 | case LoopVectorizeHints::FK_Enabled: | ||||||||
| 9866 | return CM_ScalarEpilogueNotNeededUsePredicate; | ||||||||
| 9867 | case LoopVectorizeHints::FK_Disabled: | ||||||||
| 9868 | return CM_ScalarEpilogueAllowed; | ||||||||
| 9869 | }; | ||||||||
| 9870 | |||||||||
| 9871 | // 4) if the TTI hook indicates this is profitable, request predication. | ||||||||
| 9872 | if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, &LVL, IAI)) | ||||||||
| 9873 | return CM_ScalarEpilogueNotNeededUsePredicate; | ||||||||
| 9874 | |||||||||
| 9875 | return CM_ScalarEpilogueAllowed; | ||||||||
| 9876 | } | ||||||||
| 9877 | |||||||||
| 9878 | Value *VPTransformState::get(VPValue *Def, unsigned Part) { | ||||||||
| 9879 | // If Values have been set for this Def return the one relevant for \p Part. | ||||||||
| 9880 | if (hasVectorValue(Def, Part)) | ||||||||
| 9881 | return Data.PerPartOutput[Def][Part]; | ||||||||
| 9882 | |||||||||
| 9883 | if (!hasScalarValue(Def, {Part, 0})) { | ||||||||
| 9884 | Value *IRV = Def->getLiveInIRValue(); | ||||||||
| 9885 | Value *B = ILV->getBroadcastInstrs(IRV); | ||||||||
| 9886 | set(Def, B, Part); | ||||||||
| 9887 | return B; | ||||||||
| 9888 | } | ||||||||
| 9889 | |||||||||
| 9890 | Value *ScalarValue = get(Def, {Part, 0}); | ||||||||
| 9891 | // If we aren't vectorizing, we can just copy the scalar map values over | ||||||||
| 9892 | // to the vector map. | ||||||||
| 9893 | if (VF.isScalar()) { | ||||||||
| 9894 | set(Def, ScalarValue, Part); | ||||||||
| 9895 | return ScalarValue; | ||||||||
| 9896 | } | ||||||||
| 9897 | |||||||||
| 9898 | bool IsUniform = vputils::isUniformAfterVectorization(Def); | ||||||||
| 9899 | |||||||||
| 9900 | unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; | ||||||||
| 9901 | // Check if there is a scalar value for the selected lane. | ||||||||
| 9902 | if (!hasScalarValue(Def, {Part, LastLane})) { | ||||||||
| 9903 | // At the moment, VPWidenIntOrFpInductionRecipes and VPScalarIVStepsRecipes can also be uniform. | ||||||||
| 9904 | assert((isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) ||(static_cast <bool> ((isa<VPWidenIntOrFpInductionRecipe >(Def->getDefiningRecipe()) || isa<VPScalarIVStepsRecipe >(Def->getDefiningRecipe())) && "unexpected recipe found to be invariant" ) ? void (0) : __assert_fail ("(isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe())) && \"unexpected recipe found to be invariant\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9906, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9905 | isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe())) &&(static_cast <bool> ((isa<VPWidenIntOrFpInductionRecipe >(Def->getDefiningRecipe()) || isa<VPScalarIVStepsRecipe >(Def->getDefiningRecipe())) && "unexpected recipe found to be invariant" ) ? void (0) : __assert_fail ("(isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe())) && \"unexpected recipe found to be invariant\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9906, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 9906 | "unexpected recipe found to be invariant")(static_cast <bool> ((isa<VPWidenIntOrFpInductionRecipe >(Def->getDefiningRecipe()) || isa<VPScalarIVStepsRecipe >(Def->getDefiningRecipe())) && "unexpected recipe found to be invariant" ) ? void (0) : __assert_fail ("(isa<VPWidenIntOrFpInductionRecipe>(Def->getDefiningRecipe()) || isa<VPScalarIVStepsRecipe>(Def->getDefiningRecipe())) && \"unexpected recipe found to be invariant\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9906, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9907 | IsUniform = true; | ||||||||
| 9908 | LastLane = 0; | ||||||||
| 9909 | } | ||||||||
| 9910 | |||||||||
| 9911 | auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); | ||||||||
| 9912 | // Set the insert point after the last scalarized instruction or after the | ||||||||
| 9913 | // last PHI, if LastInst is a PHI. This ensures the insertelement sequence | ||||||||
| 9914 | // will directly follow the scalar definitions. | ||||||||
| 9915 | auto OldIP = Builder.saveIP(); | ||||||||
| 9916 | auto NewIP = | ||||||||
| 9917 | isa<PHINode>(LastInst) | ||||||||
| 9918 | ? BasicBlock::iterator(LastInst->getParent()->getFirstNonPHI()) | ||||||||
| 9919 | : std::next(BasicBlock::iterator(LastInst)); | ||||||||
| 9920 | Builder.SetInsertPoint(&*NewIP); | ||||||||
| 9921 | |||||||||
| 9922 | // However, if we are vectorizing, we need to construct the vector values. | ||||||||
| 9923 | // If the value is known to be uniform after vectorization, we can just | ||||||||
| 9924 | // broadcast the scalar value corresponding to lane zero for each unroll | ||||||||
| 9925 | // iteration. Otherwise, we construct the vector values using | ||||||||
| 9926 | // insertelement instructions. Since the resulting vectors are stored in | ||||||||
| 9927 | // State, we will only generate the insertelements once. | ||||||||
| 9928 | Value *VectorValue = nullptr; | ||||||||
| 9929 | if (IsUniform) { | ||||||||
| 9930 | VectorValue = ILV->getBroadcastInstrs(ScalarValue); | ||||||||
| 9931 | set(Def, VectorValue, Part); | ||||||||
| 9932 | } else { | ||||||||
| 9933 | // Initialize packing with insertelements to start from undef. | ||||||||
| 9934 | assert(!VF.isScalable() && "VF is assumed to be non scalable.")(static_cast <bool> (!VF.isScalable() && "VF is assumed to be non scalable." ) ? void (0) : __assert_fail ("!VF.isScalable() && \"VF is assumed to be non scalable.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9934, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9935 | Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); | ||||||||
| 9936 | set(Def, Undef, Part); | ||||||||
| 9937 | for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) | ||||||||
| 9938 | ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); | ||||||||
| 9939 | VectorValue = get(Def, Part); | ||||||||
| 9940 | } | ||||||||
| 9941 | Builder.restoreIP(OldIP); | ||||||||
| 9942 | return VectorValue; | ||||||||
| 9943 | } | ||||||||
| 9944 | |||||||||
| 9945 | // Process the loop in the VPlan-native vectorization path. This path builds | ||||||||
| 9946 | // VPlan upfront in the vectorization pipeline, which allows to apply | ||||||||
| 9947 | // VPlan-to-VPlan transformations from the very beginning without modifying the | ||||||||
| 9948 | // input LLVM IR. | ||||||||
| 9949 | static bool processLoopInVPlanNativePath( | ||||||||
| 9950 | Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, | ||||||||
| 9951 | LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, | ||||||||
| 9952 | TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, | ||||||||
| 9953 | OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, | ||||||||
| 9954 | ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints, | ||||||||
| 9955 | LoopVectorizationRequirements &Requirements) { | ||||||||
| 9956 | |||||||||
| 9957 | if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { | ||||||||
| 9958 | LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: cannot compute the outer-loop trip count\n" ; } } while (false); | ||||||||
| 9959 | return false; | ||||||||
| 9960 | } | ||||||||
| 9961 | assert(EnableVPlanNativePath && "VPlan-native path is disabled.")(static_cast <bool> (EnableVPlanNativePath && "VPlan-native path is disabled." ) ? void (0) : __assert_fail ("EnableVPlanNativePath && \"VPlan-native path is disabled.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 9961, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 9962 | Function *F = L->getHeader()->getParent(); | ||||||||
| 9963 | InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); | ||||||||
| 9964 | |||||||||
| 9965 | ScalarEpilogueLowering SEL = getScalarEpilogueLowering( | ||||||||
| 9966 | F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL, &IAI); | ||||||||
| 9967 | |||||||||
| 9968 | LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, | ||||||||
| 9969 | &Hints, IAI); | ||||||||
| 9970 | // Use the planner for outer loop vectorization. | ||||||||
| 9971 | // TODO: CM is not used at this point inside the planner. Turn CM into an | ||||||||
| 9972 | // optional argument if we don't need it in the future. | ||||||||
| 9973 | LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE, Hints, ORE); | ||||||||
| 9974 | |||||||||
| 9975 | // Get user vectorization factor. | ||||||||
| 9976 | ElementCount UserVF = Hints.getWidth(); | ||||||||
| 9977 | |||||||||
| 9978 | CM.collectElementTypesForWidening(); | ||||||||
| 9979 | |||||||||
| 9980 | // Plan how to best vectorize, return the best VF and its cost. | ||||||||
| 9981 | const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); | ||||||||
| 9982 | |||||||||
| 9983 | // If we are stress testing VPlan builds, do not attempt to generate vector | ||||||||
| 9984 | // code. Masked vector code generation support will follow soon. | ||||||||
| 9985 | // Also, do not attempt to vectorize if no vector code will be produced. | ||||||||
| 9986 | if (VPlanBuildStressTest || VectorizationFactor::Disabled() == VF) | ||||||||
| 9987 | return false; | ||||||||
| 9988 | |||||||||
| 9989 | VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); | ||||||||
| 9990 | |||||||||
| 9991 | { | ||||||||
| 9992 | GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, | ||||||||
| 9993 | F->getParent()->getDataLayout()); | ||||||||
| 9994 | InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, | ||||||||
| 9995 | VF.Width, 1, LVL, &CM, BFI, PSI, Checks); | ||||||||
| 9996 | LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \""do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "Vectorizing outer loop in \"" << L->getHeader()->getParent()->getName() << "\"\n"; } } while (false) | ||||||||
| 9997 | << L->getHeader()->getParent()->getName() << "\"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "Vectorizing outer loop in \"" << L->getHeader()->getParent()->getName() << "\"\n"; } } while (false); | ||||||||
| 9998 | LVP.executePlan(VF.Width, 1, BestPlan, LB, DT, false); | ||||||||
| 9999 | } | ||||||||
| 10000 | |||||||||
| 10001 | // Mark the loop as already vectorized to avoid vectorizing again. | ||||||||
| 10002 | Hints.setAlreadyVectorized(); | ||||||||
| 10003 | assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()))(static_cast <bool> (!verifyFunction(*L->getHeader() ->getParent(), &dbgs())) ? void (0) : __assert_fail ("!verifyFunction(*L->getHeader()->getParent(), &dbgs())" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 10003, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 10004 | return true; | ||||||||
| 10005 | } | ||||||||
| 10006 | |||||||||
| 10007 | // Emit a remark if there are stores to floats that required a floating point | ||||||||
| 10008 | // extension. If the vectorized loop was generated with floating point there | ||||||||
| 10009 | // will be a performance penalty from the conversion overhead and the change in | ||||||||
| 10010 | // the vector width. | ||||||||
| 10011 | static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { | ||||||||
| 10012 | SmallVector<Instruction *, 4> Worklist; | ||||||||
| 10013 | for (BasicBlock *BB : L->getBlocks()) { | ||||||||
| 10014 | for (Instruction &Inst : *BB) { | ||||||||
| 10015 | if (auto *S = dyn_cast<StoreInst>(&Inst)) { | ||||||||
| 10016 | if (S->getValueOperand()->getType()->isFloatTy()) | ||||||||
| 10017 | Worklist.push_back(S); | ||||||||
| 10018 | } | ||||||||
| 10019 | } | ||||||||
| 10020 | } | ||||||||
| 10021 | |||||||||
| 10022 | // Traverse the floating point stores upwards searching, for floating point | ||||||||
| 10023 | // conversions. | ||||||||
| 10024 | SmallPtrSet<const Instruction *, 4> Visited; | ||||||||
| 10025 | SmallPtrSet<const Instruction *, 4> EmittedRemark; | ||||||||
| 10026 | while (!Worklist.empty()) { | ||||||||
| 10027 | auto *I = Worklist.pop_back_val(); | ||||||||
| 10028 | if (!L->contains(I)) | ||||||||
| 10029 | continue; | ||||||||
| 10030 | if (!Visited.insert(I).second) | ||||||||
| 10031 | continue; | ||||||||
| 10032 | |||||||||
| 10033 | // Emit a remark if the floating point store required a floating | ||||||||
| 10034 | // point conversion. | ||||||||
| 10035 | // TODO: More work could be done to identify the root cause such as a | ||||||||
| 10036 | // constant or a function return type and point the user to it. | ||||||||
| 10037 | if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) | ||||||||
| 10038 | ORE->emit([&]() { | ||||||||
| 10039 | return OptimizationRemarkAnalysis(LV_NAME"loop-vectorize", "VectorMixedPrecision", | ||||||||
| 10040 | I->getDebugLoc(), L->getHeader()) | ||||||||
| 10041 | << "floating point conversion changes vector width. " | ||||||||
| 10042 | << "Mixed floating point precision requires an up/down " | ||||||||
| 10043 | << "cast that will negatively impact performance."; | ||||||||
| 10044 | }); | ||||||||
| 10045 | |||||||||
| 10046 | for (Use &Op : I->operands()) | ||||||||
| 10047 | if (auto *OpI = dyn_cast<Instruction>(Op)) | ||||||||
| 10048 | Worklist.push_back(OpI); | ||||||||
| 10049 | } | ||||||||
| 10050 | } | ||||||||
| 10051 | |||||||||
| 10052 | static bool areRuntimeChecksProfitable(GeneratedRTChecks &Checks, | ||||||||
| 10053 | VectorizationFactor &VF, | ||||||||
| 10054 | std::optional<unsigned> VScale, Loop *L, | ||||||||
| 10055 | ScalarEvolution &SE) { | ||||||||
| 10056 | InstructionCost CheckCost = Checks.getCost(); | ||||||||
| 10057 | if (!CheckCost.isValid()) | ||||||||
| 10058 | return false; | ||||||||
| 10059 | |||||||||
| 10060 | // When interleaving only scalar and vector cost will be equal, which in turn | ||||||||
| 10061 | // would lead to a divide by 0. Fall back to hard threshold. | ||||||||
| 10062 | if (VF.Width.isScalar()) { | ||||||||
| 10063 | if (CheckCost > VectorizeMemoryCheckThreshold) { | ||||||||
| 10064 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving only is not profitable due to runtime checks\n" ; } } while (false) | ||||||||
| 10065 | dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving only is not profitable due to runtime checks\n" ; } } while (false) | ||||||||
| 10066 | << "LV: Interleaving only is not profitable due to runtime checks\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving only is not profitable due to runtime checks\n" ; } } while (false); | ||||||||
| 10067 | return false; | ||||||||
| 10068 | } | ||||||||
| 10069 | return true; | ||||||||
| 10070 | } | ||||||||
| 10071 | |||||||||
| 10072 | // The scalar cost should only be 0 when vectorizing with a user specified VF/IC. In those cases, runtime checks should always be generated. | ||||||||
| 10073 | double ScalarC = *VF.ScalarCost.getValue(); | ||||||||
| 10074 | if (ScalarC == 0) | ||||||||
| 10075 | return true; | ||||||||
| 10076 | |||||||||
| 10077 | // First, compute the minimum iteration count required so that the vector | ||||||||
| 10078 | // loop outperforms the scalar loop. | ||||||||
| 10079 | // The total cost of the scalar loop is | ||||||||
| 10080 | // ScalarC * TC | ||||||||
| 10081 | // where | ||||||||
| 10082 | // * TC is the actual trip count of the loop. | ||||||||
| 10083 | // * ScalarC is the cost of a single scalar iteration. | ||||||||
| 10084 | // | ||||||||
| 10085 | // The total cost of the vector loop is | ||||||||
| 10086 | // RtC + VecC * (TC / VF) + EpiC | ||||||||
| 10087 | // where | ||||||||
| 10088 | // * RtC is the cost of the generated runtime checks | ||||||||
| 10089 | // * VecC is the cost of a single vector iteration. | ||||||||
| 10090 | // * TC is the actual trip count of the loop | ||||||||
| 10091 | // * VF is the vectorization factor | ||||||||
| 10092 | // * EpiCost is the cost of the generated epilogue, including the cost | ||||||||
| 10093 | // of the remaining scalar operations. | ||||||||
| 10094 | // | ||||||||
| 10095 | // Vectorization is profitable once the total vector cost is less than the | ||||||||
| 10096 | // total scalar cost: | ||||||||
| 10097 | // RtC + VecC * (TC / VF) + EpiC < ScalarC * TC | ||||||||
| 10098 | // | ||||||||
| 10099 | // Now we can compute the minimum required trip count TC as | ||||||||
| 10100 | // (RtC + EpiC) / (ScalarC - (VecC / VF)) < TC | ||||||||
| 10101 | // | ||||||||
| 10102 | // For now we assume the epilogue cost EpiC = 0 for simplicity. Note that | ||||||||
| 10103 | // the computations are performed on doubles, not integers and the result | ||||||||
| 10104 | // is rounded up, hence we get an upper estimate of the TC. | ||||||||
| 10105 | unsigned IntVF = VF.Width.getKnownMinValue(); | ||||||||
| 10106 | if (VF.Width.isScalable()) { | ||||||||
| 10107 | unsigned AssumedMinimumVscale = 1; | ||||||||
| 10108 | if (VScale) | ||||||||
| 10109 | AssumedMinimumVscale = *VScale; | ||||||||
| 10110 | IntVF *= AssumedMinimumVscale; | ||||||||
| 10111 | } | ||||||||
| 10112 | double VecCOverVF = double(*VF.Cost.getValue()) / IntVF; | ||||||||
| 10113 | double RtC = *CheckCost.getValue(); | ||||||||
| 10114 | double MinTC1 = RtC / (ScalarC - VecCOverVF); | ||||||||
| 10115 | |||||||||
| 10116 | // Second, compute a minimum iteration count so that the cost of the | ||||||||
| 10117 | // runtime checks is only a fraction of the total scalar loop cost. This | ||||||||
| 10118 | // adds a loop-dependent bound on the overhead incurred if the runtime | ||||||||
| 10119 | // checks fail. In case the runtime checks fail, the cost is RtC + ScalarC | ||||||||
| 10120 | // * TC. To bound the runtime check to be a fraction 1/X of the scalar | ||||||||
| 10121 | // cost, compute | ||||||||
| 10122 | // RtC < ScalarC * TC * (1 / X) ==> RtC * X / ScalarC < TC | ||||||||
| 10123 | double MinTC2 = RtC * 10 / ScalarC; | ||||||||
| 10124 | |||||||||
| 10125 | // Now pick the larger minimum. If it is not a multiple of VF, choose the | ||||||||
| 10126 | // next closest multiple of VF. This should partly compensate for ignoring | ||||||||
| 10127 | // the epilogue cost. | ||||||||
| 10128 | uint64_t MinTC = std::ceil(std::max(MinTC1, MinTC2)); | ||||||||
| 10129 | VF.MinProfitableTripCount = ElementCount::getFixed(alignTo(MinTC, IntVF)); | ||||||||
| 10130 | |||||||||
| 10131 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" << VF.MinProfitableTripCount << "\n"; } } while ( false) | ||||||||
| 10132 | dbgs() << "LV: Minimum required TC for runtime checks to be profitable:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" << VF.MinProfitableTripCount << "\n"; } } while ( false) | ||||||||
| 10133 | << VF.MinProfitableTripCount << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Minimum required TC for runtime checks to be profitable:" << VF.MinProfitableTripCount << "\n"; } } while ( false); | ||||||||
| 10134 | |||||||||
| 10135 | // Skip vectorization if the expected trip count is less than the minimum | ||||||||
| 10136 | // required trip count. | ||||||||
| 10137 | if (auto ExpectedTC = getSmallBestKnownTC(SE, L)) { | ||||||||
| 10138 | if (ElementCount::isKnownLT(ElementCount::getFixed(*ExpectedTC), | ||||||||
| 10139 | VF.MinProfitableTripCount)) { | ||||||||
| 10140 | LLVM_DEBUG(dbgs() << "LV: Vectorization is not beneficial: expected "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Vectorization is not beneficial: expected " "trip count < minimum profitable VF (" << *ExpectedTC << " < " << VF.MinProfitableTripCount << ")\n"; } } while (false) | ||||||||
| 10141 | "trip count < minimum profitable VF ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Vectorization is not beneficial: expected " "trip count < minimum profitable VF (" << *ExpectedTC << " < " << VF.MinProfitableTripCount << ")\n"; } } while (false) | ||||||||
| 10142 | << *ExpectedTC << " < " << VF.MinProfitableTripCountdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Vectorization is not beneficial: expected " "trip count < minimum profitable VF (" << *ExpectedTC << " < " << VF.MinProfitableTripCount << ")\n"; } } while (false) | ||||||||
| 10143 | << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Vectorization is not beneficial: expected " "trip count < minimum profitable VF (" << *ExpectedTC << " < " << VF.MinProfitableTripCount << ")\n"; } } while (false); | ||||||||
| 10144 | |||||||||
| 10145 | return false; | ||||||||
| 10146 | } | ||||||||
| 10147 | } | ||||||||
| 10148 | return true; | ||||||||
| 10149 | } | ||||||||
| 10150 | |||||||||
| 10151 | LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) | ||||||||
| 10152 | : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || | ||||||||
| 10153 | !EnableLoopInterleaving), | ||||||||
| 10154 | VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || | ||||||||
| 10155 | !EnableLoopVectorization) {} | ||||||||
| 10156 | |||||||||
| 10157 | bool LoopVectorizePass::processLoop(Loop *L) { | ||||||||
| 10158 | assert((EnableVPlanNativePath || L->isInnermost()) &&(static_cast <bool> ((EnableVPlanNativePath || L->isInnermost ()) && "VPlan-native path is not enabled. Only process inner loops." ) ? void (0) : __assert_fail ("(EnableVPlanNativePath || L->isInnermost()) && \"VPlan-native path is not enabled. Only process inner loops.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 10159, __extension__ __PRETTY_FUNCTION__)) | ||||||||
| 10159 | "VPlan-native path is not enabled. Only process inner loops.")(static_cast <bool> ((EnableVPlanNativePath || L->isInnermost ()) && "VPlan-native path is not enabled. Only process inner loops." ) ? void (0) : __assert_fail ("(EnableVPlanNativePath || L->isInnermost()) && \"VPlan-native path is not enabled. Only process inner loops.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 10159, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 10160 | |||||||||
| 10161 | #ifndef NDEBUG | ||||||||
| 10162 | const std::string DebugLocStr = getDebugLocString(L); | ||||||||
| 10163 | #endif /* NDEBUG */ | ||||||||
| 10164 | |||||||||
| 10165 | LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in '"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in '" << L->getHeader()->getParent()->getName() << "' from " << DebugLocStr << "\n"; } } while (false ) | ||||||||
| 10166 | << L->getHeader()->getParent()->getName() << "' from "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in '" << L->getHeader()->getParent()->getName() << "' from " << DebugLocStr << "\n"; } } while (false ) | ||||||||
| 10167 | << DebugLocStr << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "\nLV: Checking a loop in '" << L->getHeader()->getParent()->getName() << "' from " << DebugLocStr << "\n"; } } while (false ); | ||||||||
| 10168 | |||||||||
| 10169 | LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE, TTI); | ||||||||
| 10170 | |||||||||
| 10171 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints:: FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints ::FK_Enabled ? "enabled" : "?")) << " width=" << Hints .getWidth() << " interleave=" << Hints.getInterleave () << "\n"; } } while (false) | ||||||||
| 10172 | dbgs() << "LV: Loop hints:"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints:: FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints ::FK_Enabled ? "enabled" : "?")) << " width=" << Hints .getWidth() << " interleave=" << Hints.getInterleave () << "\n"; } } while (false) | ||||||||
| 10173 | << " force="do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints:: FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints ::FK_Enabled ? "enabled" : "?")) << " width=" << Hints .getWidth() << " interleave=" << Hints.getInterleave () << "\n"; } } while (false) | ||||||||
| 10174 | << (Hints.getForce() == LoopVectorizeHints::FK_Disableddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints:: FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints ::FK_Enabled ? "enabled" : "?")) << " width=" << Hints .getWidth() << " interleave=" << Hints.getInterleave () << "\n"; } } while (false) | ||||||||
| 10175 | ? "disabled"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints:: FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints ::FK_Enabled ? "enabled" : "?")) << " width=" << Hints .getWidth() << " interleave=" << Hints.getInterleave () << "\n"; } } while (false) | ||||||||
| 10176 | : (Hints.getForce() == LoopVectorizeHints::FK_Enableddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints:: FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints ::FK_Enabled ? "enabled" : "?")) << " width=" << Hints .getWidth() << " interleave=" << Hints.getInterleave () << "\n"; } } while (false) | ||||||||
| 10177 | ? "enabled"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints:: FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints ::FK_Enabled ? "enabled" : "?")) << " width=" << Hints .getWidth() << " interleave=" << Hints.getInterleave () << "\n"; } } while (false) | ||||||||
| 10178 | : "?"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints:: FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints ::FK_Enabled ? "enabled" : "?")) << " width=" << Hints .getWidth() << " interleave=" << Hints.getInterleave () << "\n"; } } while (false) | ||||||||
| 10179 | << " width=" << Hints.getWidth()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints:: FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints ::FK_Enabled ? "enabled" : "?")) << " width=" << Hints .getWidth() << " interleave=" << Hints.getInterleave () << "\n"; } } while (false) | ||||||||
| 10180 | << " interleave=" << Hints.getInterleave() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints:" << " force=" << (Hints.getForce() == LoopVectorizeHints:: FK_Disabled ? "disabled" : (Hints.getForce() == LoopVectorizeHints ::FK_Enabled ? "enabled" : "?")) << " width=" << Hints .getWidth() << " interleave=" << Hints.getInterleave () << "\n"; } } while (false); | ||||||||
| 10181 | |||||||||
| 10182 | // Function containing loop | ||||||||
| 10183 | Function *F = L->getHeader()->getParent(); | ||||||||
| 10184 | |||||||||
| 10185 | // Looking at the diagnostic output is the only way to determine if a loop | ||||||||
| 10186 | // was vectorized (other than looking at the IR or machine code), so it | ||||||||
| 10187 | // is important to generate an optimization remark for each loop. Most of | ||||||||
| 10188 | // these messages are generated as OptimizationRemarkAnalysis. Remarks | ||||||||
| 10189 | // generated as OptimizationRemark and OptimizationRemarkMissed are | ||||||||
| 10190 | // less verbose reporting vectorized loops and unvectorized loops that may | ||||||||
| 10191 | // benefit from vectorization, respectively. | ||||||||
| 10192 | |||||||||
| 10193 | if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { | ||||||||
| 10194 | LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Loop hints prevent vectorization.\n" ; } } while (false); | ||||||||
| 10195 | return false; | ||||||||
| 10196 | } | ||||||||
| 10197 | |||||||||
| 10198 | PredicatedScalarEvolution PSE(*SE, *L); | ||||||||
| 10199 | |||||||||
| 10200 | // Check if it is legal to vectorize the loop. | ||||||||
| 10201 | LoopVectorizationRequirements Requirements; | ||||||||
| 10202 | LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, F, *LAIs, LI, ORE, | ||||||||
| 10203 | &Requirements, &Hints, DB, AC, BFI, PSI); | ||||||||
| 10204 | if (!LVL.canVectorize(EnableVPlanNativePath)) { | ||||||||
| 10205 | LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Not vectorizing: Cannot prove legality.\n" ; } } while (false); | ||||||||
| 10206 | Hints.emitRemarkWithHints(); | ||||||||
| 10207 | return false; | ||||||||
| 10208 | } | ||||||||
| 10209 | |||||||||
| 10210 | // Entrance to the VPlan-native vectorization path. Outer loops are processed | ||||||||
| 10211 | // here. They may require CFG and instruction level transformations before | ||||||||
| 10212 | // even evaluating whether vectorization is profitable. Since we cannot modify | ||||||||
| 10213 | // the incoming IR, we need to build VPlan upfront in the vectorization | ||||||||
| 10214 | // pipeline. | ||||||||
| 10215 | if (!L->isInnermost()) | ||||||||
| 10216 | return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, | ||||||||
| 10217 | ORE, BFI, PSI, Hints, Requirements); | ||||||||
| 10218 | |||||||||
| 10219 | assert(L->isInnermost() && "Inner loop expected.")(static_cast <bool> (L->isInnermost() && "Inner loop expected." ) ? void (0) : __assert_fail ("L->isInnermost() && \"Inner loop expected.\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 10219, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 10220 | |||||||||
| 10221 | InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); | ||||||||
| 10222 | bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); | ||||||||
| 10223 | |||||||||
| 10224 | // If an override option has been passed in for interleaved accesses, use it. | ||||||||
| 10225 | if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) | ||||||||
| 10226 | UseInterleaved = EnableInterleavedMemAccesses; | ||||||||
| 10227 | |||||||||
| 10228 | // Analyze interleaved memory accesses. | ||||||||
| 10229 | if (UseInterleaved) | ||||||||
| 10230 | IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); | ||||||||
| 10231 | |||||||||
| 10232 | // Check the function attributes and profiles to find out if this function | ||||||||
| 10233 | // should be optimized for size. | ||||||||
| 10234 | ScalarEpilogueLowering SEL = getScalarEpilogueLowering( | ||||||||
| 10235 | F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL, &IAI); | ||||||||
| 10236 | |||||||||
| 10237 | // Check the loop for a trip count threshold: vectorize loops with a tiny trip | ||||||||
| 10238 | // count by optimizing for size, to minimize overheads. | ||||||||
| 10239 | auto ExpectedTC = getSmallBestKnownTC(*SE, L); | ||||||||
| 10240 | if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { | ||||||||
| 10241 | LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found a loop with a very small trip count. " << "This loop is worth vectorizing only if no scalar " << "iteration overheads are incurred."; } } while (false ) | ||||||||
| 10242 | << "This loop is worth vectorizing only if no scalar "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found a loop with a very small trip count. " << "This loop is worth vectorizing only if no scalar " << "iteration overheads are incurred."; } } while (false ) | ||||||||
| 10243 | << "iteration overheads are incurred.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found a loop with a very small trip count. " << "This loop is worth vectorizing only if no scalar " << "iteration overheads are incurred."; } } while (false ); | ||||||||
| 10244 | if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) | ||||||||
| 10245 | LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << " But vectorizing was explicitly forced.\n" ; } } while (false); | ||||||||
| 10246 | else { | ||||||||
| 10247 | if (*ExpectedTC > TTI->getMinTripCountTailFoldingThreshold()) { | ||||||||
| 10248 | LLVM_DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "\n"; } } while (false); | ||||||||
| 10249 | SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; | ||||||||
| 10250 | } else { | ||||||||
| 10251 | LLVM_DEBUG(dbgs() << " But the target considers the trip count too "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << " But the target considers the trip count too " "small to consider vectorizing.\n"; } } while (false) | ||||||||
| 10252 | "small to consider vectorizing.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << " But the target considers the trip count too " "small to consider vectorizing.\n"; } } while (false); | ||||||||
| 10253 | reportVectorizationFailure( | ||||||||
| 10254 | "The trip count is below the minial threshold value.", | ||||||||
| 10255 | "loop trip count is too low, avoiding vectorization", | ||||||||
| 10256 | "LowTripCount", ORE, L); | ||||||||
| 10257 | Hints.emitRemarkWithHints(); | ||||||||
| 10258 | return false; | ||||||||
| 10259 | } | ||||||||
| 10260 | } | ||||||||
| 10261 | } | ||||||||
| 10262 | |||||||||
| 10263 | // Check the function attributes to see if implicit floats or vectors are | ||||||||
| 10264 | // allowed. | ||||||||
| 10265 | if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { | ||||||||
| 10266 | reportVectorizationFailure( | ||||||||
| 10267 | "Can't vectorize when the NoImplicitFloat attribute is used", | ||||||||
| 10268 | "loop not vectorized due to NoImplicitFloat attribute", | ||||||||
| 10269 | "NoImplicitFloat", ORE, L); | ||||||||
| 10270 | Hints.emitRemarkWithHints(); | ||||||||
| 10271 | return false; | ||||||||
| 10272 | } | ||||||||
| 10273 | |||||||||
| 10274 | // Check if the target supports potentially unsafe FP vectorization. | ||||||||
| 10275 | // FIXME: Add a check for the type of safety issue (denormal, signaling) | ||||||||
| 10276 | // for the target we're vectorizing for, to make sure none of the | ||||||||
| 10277 | // additional fp-math flags can help. | ||||||||
| 10278 | if (Hints.isPotentiallyUnsafe() && | ||||||||
| 10279 | TTI->isFPVectorizationPotentiallyUnsafe()) { | ||||||||
| 10280 | reportVectorizationFailure( | ||||||||
| 10281 | "Potentially unsafe FP op prevents vectorization", | ||||||||
| 10282 | "loop not vectorized due to unsafe FP support.", | ||||||||
| 10283 | "UnsafeFP", ORE, L); | ||||||||
| 10284 | Hints.emitRemarkWithHints(); | ||||||||
| 10285 | return false; | ||||||||
| 10286 | } | ||||||||
| 10287 | |||||||||
| 10288 | bool AllowOrderedReductions; | ||||||||
| 10289 | // If the flag is set, use that instead and override the TTI behaviour. | ||||||||
| 10290 | if (ForceOrderedReductions.getNumOccurrences() > 0) | ||||||||
| 10291 | AllowOrderedReductions = ForceOrderedReductions; | ||||||||
| 10292 | else | ||||||||
| 10293 | AllowOrderedReductions = TTI->enableOrderedReductions(); | ||||||||
| 10294 | if (!LVL.canVectorizeFPMath(AllowOrderedReductions)) { | ||||||||
| 10295 | ORE->emit([&]() { | ||||||||
| 10296 | auto *ExactFPMathInst = Requirements.getExactFPInst(); | ||||||||
| 10297 | return OptimizationRemarkAnalysisFPCommute(DEBUG_TYPE"loop-vectorize", "CantReorderFPOps", | ||||||||
| 10298 | ExactFPMathInst->getDebugLoc(), | ||||||||
| 10299 | ExactFPMathInst->getParent()) | ||||||||
| 10300 | << "loop not vectorized: cannot prove it is safe to reorder " | ||||||||
| 10301 | "floating-point operations"; | ||||||||
| 10302 | }); | ||||||||
| 10303 | LLVM_DEBUG(dbgs() << "LV: loop not vectorized: cannot prove it is safe to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: loop not vectorized: cannot prove it is safe to " "reorder floating-point operations\n"; } } while (false) | ||||||||
| 10304 | "reorder floating-point operations\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: loop not vectorized: cannot prove it is safe to " "reorder floating-point operations\n"; } } while (false); | ||||||||
| 10305 | Hints.emitRemarkWithHints(); | ||||||||
| 10306 | return false; | ||||||||
| 10307 | } | ||||||||
| 10308 | |||||||||
| 10309 | // Use the cost model. | ||||||||
| 10310 | LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, | ||||||||
| 10311 | F, &Hints, IAI); | ||||||||
| 10312 | CM.collectValuesToIgnore(); | ||||||||
| 10313 | CM.collectElementTypesForWidening(); | ||||||||
| 10314 | |||||||||
| 10315 | // Use the planner for vectorization. | ||||||||
| 10316 | LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE, Hints, ORE); | ||||||||
| 10317 | |||||||||
| 10318 | // Get user vectorization factor and interleave count. | ||||||||
| 10319 | ElementCount UserVF = Hints.getWidth(); | ||||||||
| 10320 | unsigned UserIC = Hints.getInterleave(); | ||||||||
| 10321 | |||||||||
| 10322 | // Plan how to best vectorize, return the best VF and its cost. | ||||||||
| 10323 | std::optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); | ||||||||
| 10324 | |||||||||
| 10325 | VectorizationFactor VF = VectorizationFactor::Disabled(); | ||||||||
| 10326 | unsigned IC = 1; | ||||||||
| 10327 | |||||||||
| 10328 | GeneratedRTChecks Checks(*PSE.getSE(), DT, LI, TTI, | ||||||||
| 10329 | F->getParent()->getDataLayout()); | ||||||||
| 10330 | if (MaybeVF) { | ||||||||
| 10331 | VF = *MaybeVF; | ||||||||
| 10332 | // Select the interleave count. | ||||||||
| 10333 | IC = CM.selectInterleaveCount(VF.Width, VF.Cost); | ||||||||
| 10334 | |||||||||
| 10335 | unsigned SelectedIC = std::max(IC, UserIC); | ||||||||
| 10336 | // Optimistically generate runtime checks if they are needed. Drop them if | ||||||||
| 10337 | // they turn out to not be profitable. | ||||||||
| 10338 | if (VF.Width.isVector() || SelectedIC > 1) | ||||||||
| 10339 | Checks.Create(L, *LVL.getLAI(), PSE.getPredicate(), VF.Width, SelectedIC); | ||||||||
| 10340 | |||||||||
| 10341 | // Check if it is profitable to vectorize with runtime checks. | ||||||||
| 10342 | bool ForceVectorization = | ||||||||
| 10343 | Hints.getForce() == LoopVectorizeHints::FK_Enabled; | ||||||||
| 10344 | if (!ForceVectorization && | ||||||||
| 10345 | !areRuntimeChecksProfitable(Checks, VF, CM.getVScaleForTuning(), L, | ||||||||
| 10346 | *PSE.getSE())) { | ||||||||
| 10347 | ORE->emit([&]() { | ||||||||
| 10348 | return OptimizationRemarkAnalysisAliasing( | ||||||||
| 10349 | DEBUG_TYPE"loop-vectorize", "CantReorderMemOps", L->getStartLoc(), | ||||||||
| 10350 | L->getHeader()) | ||||||||
| 10351 | << "loop not vectorized: cannot prove it is safe to reorder " | ||||||||
| 10352 | "memory operations"; | ||||||||
| 10353 | }); | ||||||||
| 10354 | LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Too many memory checks needed.\n" ; } } while (false); | ||||||||
| 10355 | Hints.emitRemarkWithHints(); | ||||||||
| 10356 | return false; | ||||||||
| 10357 | } | ||||||||
| 10358 | } | ||||||||
| 10359 | |||||||||
| 10360 | // Identify the diagnostic messages that should be produced. | ||||||||
| 10361 | std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; | ||||||||
| 10362 | bool VectorizeLoop = true, InterleaveLoop = true; | ||||||||
| 10363 | if (VF.Width.isScalar()) { | ||||||||
| 10364 | LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Vectorization is possible but not beneficial.\n" ; } } while (false); | ||||||||
| 10365 | VecDiagMsg = std::make_pair( | ||||||||
| 10366 | "VectorizationNotBeneficial", | ||||||||
| 10367 | "the cost-model indicates that vectorization is not beneficial"); | ||||||||
| 10368 | VectorizeLoop = false; | ||||||||
| 10369 | } | ||||||||
| 10370 | |||||||||
| 10371 | if (!MaybeVF && UserIC > 1) { | ||||||||
| 10372 | // Tell the user interleaving was avoided up-front, despite being explicitly | ||||||||
| 10373 | // requested. | ||||||||
| 10374 | LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Ignoring UserIC, because vectorization and " "interleaving should be avoided up front\n"; } } while (false ) | ||||||||
| 10375 | "interleaving should be avoided up front\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Ignoring UserIC, because vectorization and " "interleaving should be avoided up front\n"; } } while (false ); | ||||||||
| 10376 | IntDiagMsg = std::make_pair( | ||||||||
| 10377 | "InterleavingAvoided", | ||||||||
| 10378 | "Ignoring UserIC, because interleaving was avoided up front"); | ||||||||
| 10379 | InterleaveLoop = false; | ||||||||
| 10380 | } else if (IC == 1 && UserIC <= 1) { | ||||||||
| 10381 | // Tell the user interleaving is not beneficial. | ||||||||
| 10382 | LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving is not beneficial.\n" ; } } while (false); | ||||||||
| 10383 | IntDiagMsg = std::make_pair( | ||||||||
| 10384 | "InterleavingNotBeneficial", | ||||||||
| 10385 | "the cost-model indicates that interleaving is not beneficial"); | ||||||||
| 10386 | InterleaveLoop = false; | ||||||||
| 10387 | if (UserIC == 1) { | ||||||||
| 10388 | IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; | ||||||||
| 10389 | IntDiagMsg.second += | ||||||||
| 10390 | " and is explicitly disabled or interleave count is set to 1"; | ||||||||
| 10391 | } | ||||||||
| 10392 | } else if (IC > 1 && UserIC == 1) { | ||||||||
| 10393 | // Tell the user interleaving is beneficial, but it explicitly disabled. | ||||||||
| 10394 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving is beneficial but is explicitly disabled." ; } } while (false) | ||||||||
| 10395 | dbgs() << "LV: Interleaving is beneficial but is explicitly disabled.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleaving is beneficial but is explicitly disabled." ; } } while (false); | ||||||||
| 10396 | IntDiagMsg = std::make_pair( | ||||||||
| 10397 | "InterleavingBeneficialButDisabled", | ||||||||
| 10398 | "the cost-model indicates that interleaving is beneficial " | ||||||||
| 10399 | "but is explicitly disabled or interleave count is set to 1"); | ||||||||
| 10400 | InterleaveLoop = false; | ||||||||
| 10401 | } | ||||||||
| 10402 | |||||||||
| 10403 | // Override IC if user provided an interleave count. | ||||||||
| 10404 | IC = UserIC > 0 ? UserIC : IC; | ||||||||
| 10405 | |||||||||
| 10406 | // Emit diagnostic messages, if any. | ||||||||
| 10407 | const char *VAPassName = Hints.vectorizeAnalysisPassName(); | ||||||||
| 10408 | if (!VectorizeLoop && !InterleaveLoop) { | ||||||||
| 10409 | // Do not vectorize or interleaving the loop. | ||||||||
| 10410 | ORE->emit([&]() { | ||||||||
| 10411 | return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, | ||||||||
| 10412 | L->getStartLoc(), L->getHeader()) | ||||||||
| 10413 | << VecDiagMsg.second; | ||||||||
| 10414 | }); | ||||||||
| 10415 | ORE->emit([&]() { | ||||||||
| 10416 | return OptimizationRemarkMissed(LV_NAME"loop-vectorize", IntDiagMsg.first, | ||||||||
| 10417 | L->getStartLoc(), L->getHeader()) | ||||||||
| 10418 | << IntDiagMsg.second; | ||||||||
| 10419 | }); | ||||||||
| 10420 | return false; | ||||||||
| 10421 | } else if (!VectorizeLoop && InterleaveLoop) { | ||||||||
| 10422 | LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleave Count is " << IC << '\n'; } } while (false); | ||||||||
| 10423 | ORE->emit([&]() { | ||||||||
| 10424 | return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, | ||||||||
| 10425 | L->getStartLoc(), L->getHeader()) | ||||||||
| 10426 | << VecDiagMsg.second; | ||||||||
| 10427 | }); | ||||||||
| 10428 | } else if (VectorizeLoop && !InterleaveLoop) { | ||||||||
| 10429 | LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Widthdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " << DebugLocStr << '\n'; } } while (false) | ||||||||
| 10430 | << ") in " << DebugLocStr << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " << DebugLocStr << '\n'; } } while (false); | ||||||||
| 10431 | ORE->emit([&]() { | ||||||||
| 10432 | return OptimizationRemarkAnalysis(LV_NAME"loop-vectorize", IntDiagMsg.first, | ||||||||
| 10433 | L->getStartLoc(), L->getHeader()) | ||||||||
| 10434 | << IntDiagMsg.second; | ||||||||
| 10435 | }); | ||||||||
| 10436 | } else if (VectorizeLoop && InterleaveLoop) { | ||||||||
| 10437 | LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Widthdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " << DebugLocStr << '\n'; } } while (false) | ||||||||
| 10438 | << ") in " << DebugLocStr << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in " << DebugLocStr << '\n'; } } while (false); | ||||||||
| 10439 | LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("loop-vectorize")) { dbgs() << "LV: Interleave Count is " << IC << '\n'; } } while (false); | ||||||||
| 10440 | } | ||||||||
| 10441 | |||||||||
| 10442 | bool DisableRuntimeUnroll = false; | ||||||||
| 10443 | MDNode *OrigLoopID = L->getLoopID(); | ||||||||
| 10444 | { | ||||||||
| 10445 | using namespace ore; | ||||||||
| 10446 | if (!VectorizeLoop) { | ||||||||
| 10447 | assert(IC > 1 && "interleave count should not be 1 or 0")(static_cast <bool> (IC > 1 && "interleave count should not be 1 or 0" ) ? void (0) : __assert_fail ("IC > 1 && \"interleave count should not be 1 or 0\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 10447, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 10448 | // If we decided that it is not legal to vectorize the loop, then | ||||||||
| 10449 | // interleave it. | ||||||||
| 10450 | InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, | ||||||||
| 10451 | &CM, BFI, PSI, Checks); | ||||||||
| 10452 | |||||||||
| 10453 | VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); | ||||||||
| 10454 | LVP.executePlan(VF.Width, IC, BestPlan, Unroller, DT, false); | ||||||||
| 10455 | |||||||||
| 10456 | ORE->emit([&]() { | ||||||||
| 10457 | return OptimizationRemark(LV_NAME"loop-vectorize", "Interleaved", L->getStartLoc(), | ||||||||
| 10458 | L->getHeader()) | ||||||||
| 10459 | << "interleaved loop (interleaved count: " | ||||||||
| 10460 | << NV("InterleaveCount", IC) << ")"; | ||||||||
| 10461 | }); | ||||||||
| 10462 | } else { | ||||||||
| 10463 | // If we decided that it is *legal* to vectorize the loop, then do it. | ||||||||
| 10464 | |||||||||
| 10465 | // Consider vectorizing the epilogue too if it's profitable. | ||||||||
| 10466 | VectorizationFactor EpilogueVF = | ||||||||
| 10467 | CM.selectEpilogueVectorizationFactor(VF.Width, LVP); | ||||||||
| 10468 | if (EpilogueVF.Width.isVector()) { | ||||||||
| 10469 | |||||||||
| 10470 | // The first pass vectorizes the main loop and creates a scalar epilogue | ||||||||
| 10471 | // to be vectorized by executing the plan (potentially with a different | ||||||||
| 10472 | // factor) again shortly afterwards. | ||||||||
| 10473 | EpilogueLoopVectorizationInfo EPI(VF.Width, IC, EpilogueVF.Width, 1); | ||||||||
| 10474 | EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, | ||||||||
| 10475 | EPI, &LVL, &CM, BFI, PSI, Checks); | ||||||||
| 10476 | |||||||||
| 10477 | VPlan &BestMainPlan = LVP.getBestPlanFor(EPI.MainLoopVF); | ||||||||
| 10478 | LVP.executePlan(EPI.MainLoopVF, EPI.MainLoopUF, BestMainPlan, MainILV, | ||||||||
| 10479 | DT, true); | ||||||||
| 10480 | ++LoopsVectorized; | ||||||||
| 10481 | |||||||||
| 10482 | // Second pass vectorizes the epilogue and adjusts the control flow | ||||||||
| 10483 | // edges from the first pass. | ||||||||
| 10484 | EPI.MainLoopVF = EPI.EpilogueVF; | ||||||||
| 10485 | EPI.MainLoopUF = EPI.EpilogueUF; | ||||||||
| 10486 | EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, | ||||||||
| 10487 | ORE, EPI, &LVL, &CM, BFI, PSI, | ||||||||
| 10488 | Checks); | ||||||||
| 10489 | |||||||||
| 10490 | VPlan &BestEpiPlan = LVP.getBestPlanFor(EPI.EpilogueVF); | ||||||||
| 10491 | VPRegionBlock *VectorLoop = BestEpiPlan.getVectorLoopRegion(); | ||||||||
| 10492 | VPBasicBlock *Header = VectorLoop->getEntryBasicBlock(); | ||||||||
| 10493 | Header->setName("vec.epilog.vector.body"); | ||||||||
| 10494 | |||||||||
| 10495 | // Ensure that the start values for any VPWidenIntOrFpInductionRecipe, | ||||||||
| 10496 | // VPWidenPointerInductionRecipe and VPReductionPHIRecipes are updated | ||||||||
| 10497 | // before vectorizing the epilogue loop. | ||||||||
| 10498 | for (VPRecipeBase &R : Header->phis()) { | ||||||||
| 10499 | if (isa<VPCanonicalIVPHIRecipe>(&R)) | ||||||||
| 10500 | continue; | ||||||||
| 10501 | |||||||||
| 10502 | Value *ResumeV = nullptr; | ||||||||
| 10503 | // TODO: Move setting of resume values to prepareToExecute. | ||||||||
| 10504 | if (auto *ReductionPhi = dyn_cast<VPReductionPHIRecipe>(&R)) { | ||||||||
| 10505 | ResumeV = MainILV.getReductionResumeValue( | ||||||||
| 10506 | ReductionPhi->getRecurrenceDescriptor()); | ||||||||
| 10507 | } else { | ||||||||
| 10508 | // Create induction resume values for both widened pointer and | ||||||||
| 10509 | // integer/fp inductions and update the start value of the induction | ||||||||
| 10510 | // recipes to use the resume value. | ||||||||
| 10511 | PHINode *IndPhi = nullptr; | ||||||||
| 10512 | const InductionDescriptor *ID; | ||||||||
| 10513 | if (auto *Ind = dyn_cast<VPWidenPointerInductionRecipe>(&R)) { | ||||||||
| 10514 | IndPhi = cast<PHINode>(Ind->getUnderlyingValue()); | ||||||||
| 10515 | ID = &Ind->getInductionDescriptor(); | ||||||||
| 10516 | } else { | ||||||||
| 10517 | auto *WidenInd = cast<VPWidenIntOrFpInductionRecipe>(&R); | ||||||||
| 10518 | IndPhi = WidenInd->getPHINode(); | ||||||||
| 10519 | ID = &WidenInd->getInductionDescriptor(); | ||||||||
| 10520 | } | ||||||||
| 10521 | |||||||||
| 10522 | ResumeV = MainILV.createInductionResumeValue( | ||||||||
| 10523 | IndPhi, *ID, {EPI.MainLoopIterationCountCheck}); | ||||||||
| 10524 | } | ||||||||
| 10525 | assert(ResumeV && "Must have a resume value")(static_cast <bool> (ResumeV && "Must have a resume value" ) ? void (0) : __assert_fail ("ResumeV && \"Must have a resume value\"" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 10525, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 10526 | VPValue *StartVal = BestEpiPlan.getOrAddExternalDef(ResumeV); | ||||||||
| 10527 | cast<VPHeaderPHIRecipe>(&R)->setStartValue(StartVal); | ||||||||
| 10528 | } | ||||||||
| 10529 | |||||||||
| 10530 | LVP.executePlan(EPI.EpilogueVF, EPI.EpilogueUF, BestEpiPlan, EpilogILV, | ||||||||
| 10531 | DT, true); | ||||||||
| 10532 | ++LoopsEpilogueVectorized; | ||||||||
| 10533 | |||||||||
| 10534 | if (!MainILV.areSafetyChecksAdded()) | ||||||||
| 10535 | DisableRuntimeUnroll = true; | ||||||||
| 10536 | } else { | ||||||||
| 10537 | InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, | ||||||||
| 10538 | VF.MinProfitableTripCount, IC, &LVL, &CM, BFI, | ||||||||
| 10539 | PSI, Checks); | ||||||||
| 10540 | |||||||||
| 10541 | VPlan &BestPlan = LVP.getBestPlanFor(VF.Width); | ||||||||
| 10542 | LVP.executePlan(VF.Width, IC, BestPlan, LB, DT, false); | ||||||||
| 10543 | ++LoopsVectorized; | ||||||||
| 10544 | |||||||||
| 10545 | // Add metadata to disable runtime unrolling a scalar loop when there | ||||||||
| 10546 | // are no runtime checks about strides and memory. A scalar loop that is | ||||||||
| 10547 | // rarely used is not worth unrolling. | ||||||||
| 10548 | if (!LB.areSafetyChecksAdded()) | ||||||||
| 10549 | DisableRuntimeUnroll = true; | ||||||||
| 10550 | } | ||||||||
| 10551 | // Report the vectorization decision. | ||||||||
| 10552 | ORE->emit([&]() { | ||||||||
| 10553 | return OptimizationRemark(LV_NAME"loop-vectorize", "Vectorized", L->getStartLoc(), | ||||||||
| 10554 | L->getHeader()) | ||||||||
| 10555 | << "vectorized loop (vectorization width: " | ||||||||
| 10556 | << NV("VectorizationFactor", VF.Width) | ||||||||
| 10557 | << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; | ||||||||
| 10558 | }); | ||||||||
| 10559 | } | ||||||||
| 10560 | |||||||||
| 10561 | if (ORE->allowExtraAnalysis(LV_NAME"loop-vectorize")) | ||||||||
| 10562 | checkMixedPrecision(L, ORE); | ||||||||
| 10563 | } | ||||||||
| 10564 | |||||||||
| 10565 | std::optional<MDNode *> RemainderLoopID = | ||||||||
| 10566 | makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, | ||||||||
| 10567 | LLVMLoopVectorizeFollowupEpilogue}); | ||||||||
| 10568 | if (RemainderLoopID) { | ||||||||
| 10569 | L->setLoopID(*RemainderLoopID); | ||||||||
| 10570 | } else { | ||||||||
| 10571 | if (DisableRuntimeUnroll) | ||||||||
| 10572 | AddRuntimeUnrollDisableMetaData(L); | ||||||||
| 10573 | |||||||||
| 10574 | // Mark the loop as already vectorized to avoid vectorizing again. | ||||||||
| 10575 | Hints.setAlreadyVectorized(); | ||||||||
| 10576 | } | ||||||||
| 10577 | |||||||||
| 10578 | assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()))(static_cast <bool> (!verifyFunction(*L->getHeader() ->getParent(), &dbgs())) ? void (0) : __assert_fail ("!verifyFunction(*L->getHeader()->getParent(), &dbgs())" , "llvm/lib/Transforms/Vectorize/LoopVectorize.cpp", 10578, __extension__ __PRETTY_FUNCTION__)); | ||||||||
| 10579 | return true; | ||||||||
| 10580 | } | ||||||||
| 10581 | |||||||||
| 10582 | LoopVectorizeResult LoopVectorizePass::runImpl( | ||||||||
| 10583 | Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, | ||||||||
| 10584 | DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, | ||||||||
| 10585 | DemandedBits &DB_, AssumptionCache &AC_, LoopAccessInfoManager &LAIs_, | ||||||||
| 10586 | OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { | ||||||||
| 10587 | SE = &SE_; | ||||||||
| 10588 | LI = &LI_; | ||||||||
| 10589 | TTI = &TTI_; | ||||||||
| 10590 | DT = &DT_; | ||||||||
| 10591 | BFI = &BFI_; | ||||||||
| 10592 | TLI = TLI_; | ||||||||
| 10593 | AC = &AC_; | ||||||||
| 10594 | LAIs = &LAIs_; | ||||||||
| 10595 | DB = &DB_; | ||||||||
| 10596 | ORE = &ORE_; | ||||||||
| 10597 | PSI = PSI_; | ||||||||
| 10598 | |||||||||
| 10599 | // Don't attempt if | ||||||||
| 10600 | // 1. the target claims to have no vector registers, and | ||||||||
| 10601 | // 2. interleaving won't help ILP. | ||||||||
| 10602 | // | ||||||||
| 10603 | // The second condition is necessary because, even if the target has no | ||||||||
| 10604 | // vector registers, loop vectorization may still enable scalar | ||||||||
| 10605 | // interleaving. | ||||||||
| 10606 | if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && | ||||||||
| 10607 | TTI->getMaxInterleaveFactor(1) < 2) | ||||||||
| 10608 | return LoopVectorizeResult(false, false); | ||||||||
| 10609 | |||||||||
| 10610 | bool Changed = false, CFGChanged = false; | ||||||||
| 10611 | |||||||||
| 10612 | // The vectorizer requires loops to be in simplified form. | ||||||||
| 10613 | // Since simplification may add new inner loops, it has to run before the | ||||||||
| 10614 | // legality and profitability checks. This means running the loop vectorizer | ||||||||
| 10615 | // will simplify all loops, regardless of whether anything end up being | ||||||||
| 10616 | // vectorized. | ||||||||
| 10617 | for (const auto &L : *LI) | ||||||||
| 10618 | Changed |= CFGChanged |= | ||||||||
| 10619 | simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); | ||||||||
| 10620 | |||||||||
| 10621 | // Build up a worklist of inner-loops to vectorize. This is necessary as | ||||||||
| 10622 | // the act of vectorizing or partially unrolling a loop creates new loops | ||||||||
| 10623 | // and can invalidate iterators across the loops. | ||||||||
| 10624 | SmallVector<Loop *, 8> Worklist; | ||||||||
| 10625 | |||||||||
| 10626 | for (Loop *L : *LI) | ||||||||
| 10627 | collectSupportedLoops(*L, LI, ORE, Worklist); | ||||||||
| 10628 | |||||||||
| 10629 | LoopsAnalyzed += Worklist.size(); | ||||||||
| 10630 | |||||||||
| 10631 | // Now walk the identified inner loops. | ||||||||
| 10632 | while (!Worklist.empty()) { | ||||||||
| 10633 | Loop *L = Worklist.pop_back_val(); | ||||||||
| 10634 | |||||||||
| 10635 | // For the inner loops we actually process, form LCSSA to simplify the | ||||||||
| 10636 | // transform. | ||||||||
| 10637 | Changed |= formLCSSARecursively(*L, *DT, LI, SE); | ||||||||
| 10638 | |||||||||
| 10639 | Changed |= CFGChanged |= processLoop(L); | ||||||||
| 10640 | |||||||||
| 10641 | if (Changed) | ||||||||
| 10642 | LAIs->clear(); | ||||||||
| 10643 | } | ||||||||
| 10644 | |||||||||
| 10645 | // Process each loop nest in the function. | ||||||||
| 10646 | return LoopVectorizeResult(Changed, CFGChanged); | ||||||||
| 10647 | } | ||||||||
| 10648 | |||||||||
| 10649 | PreservedAnalyses LoopVectorizePass::run(Function &F, | ||||||||
| 10650 | FunctionAnalysisManager &AM) { | ||||||||
| 10651 | auto &LI = AM.getResult<LoopAnalysis>(F); | ||||||||
| 10652 | // There are no loops in the function. Return before computing other expensive | ||||||||
| 10653 | // analyses. | ||||||||
| 10654 | if (LI.empty()) | ||||||||
| 10655 | return PreservedAnalyses::all(); | ||||||||
| 10656 | auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); | ||||||||
| 10657 | auto &TTI = AM.getResult<TargetIRAnalysis>(F); | ||||||||
| 10658 | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | ||||||||
| 10659 | auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); | ||||||||
| 10660 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); | ||||||||
| 10661 | auto &AC = AM.getResult<AssumptionAnalysis>(F); | ||||||||
| 10662 | auto &DB = AM.getResult<DemandedBitsAnalysis>(F); | ||||||||
| 10663 | auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); | ||||||||
| 10664 | |||||||||
| 10665 | LoopAccessInfoManager &LAIs = AM.getResult<LoopAccessAnalysis>(F); | ||||||||
| 10666 | auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); | ||||||||
| 10667 | ProfileSummaryInfo *PSI = | ||||||||
| 10668 | MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); | ||||||||
| 10669 | LoopVectorizeResult Result = | ||||||||
| 10670 | runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AC, LAIs, ORE, PSI); | ||||||||
| 10671 | if (!Result.MadeAnyChange) | ||||||||
| 10672 | return PreservedAnalyses::all(); | ||||||||
| 10673 | PreservedAnalyses PA; | ||||||||
| 10674 | |||||||||
| 10675 | // We currently do not preserve loopinfo/dominator analyses with outer loop | ||||||||
| 10676 | // vectorization. Until this is addressed, mark these analyses as preserved | ||||||||
| 10677 | // only for non-VPlan-native path. | ||||||||
| 10678 | // TODO: Preserve Loop and Dominator analyses for VPlan-native path. | ||||||||
| 10679 | if (!EnableVPlanNativePath) { | ||||||||
| 10680 | PA.preserve<LoopAnalysis>(); | ||||||||
| 10681 | PA.preserve<DominatorTreeAnalysis>(); | ||||||||
| 10682 | } | ||||||||
| 10683 | |||||||||
| 10684 | if (Result.MadeCFGChange) { | ||||||||
| 10685 | // Making CFG changes likely means a loop got vectorized. Indicate that | ||||||||
| 10686 | // extra simplification passes should be run. | ||||||||
| 10687 | // TODO: MadeCFGChanges is not a prefect proxy. Extra passes should only | ||||||||
| 10688 | // be run if runtime checks have been added. | ||||||||
| 10689 | AM.getResult<ShouldRunExtraVectorPasses>(F); | ||||||||
| 10690 | PA.preserve<ShouldRunExtraVectorPasses>(); | ||||||||
| 10691 | } else { | ||||||||
| 10692 | PA.preserveSet<CFGAnalyses>(); | ||||||||
| 10693 | } | ||||||||
| 10694 | return PA; | ||||||||
| 10695 | } | ||||||||
| 10696 | |||||||||
| 10697 | void LoopVectorizePass::printPipeline( | ||||||||
| 10698 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { | ||||||||
| 10699 | static_cast<PassInfoMixin<LoopVectorizePass> *>(this)->printPipeline( | ||||||||
| 10700 | OS, MapClassName2PassName); | ||||||||
| 10701 | |||||||||
| 10702 | OS << "<"; | ||||||||
| 10703 | OS << (InterleaveOnlyWhenForced ? "" : "no-") << "interleave-forced-only;"; | ||||||||
| 10704 | OS << (VectorizeOnlyWhenForced ? "" : "no-") << "vectorize-forced-only;"; | ||||||||
| 10705 | OS << ">"; | ||||||||
| 10706 | } |
| 1 | //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file provides a LoopVectorizationPlanner class. |
| 11 | /// InnerLoopVectorizer vectorizes loops which contain only one basic |
| 12 | /// LoopVectorizationPlanner - drives the vectorization process after having |
| 13 | /// passed Legality checks. |
| 14 | /// The planner builds and optimizes the Vectorization Plans which record the |
| 15 | /// decisions how to vectorize the given loop. In particular, represent the |
| 16 | /// control-flow of the vectorized version, the replication of instructions that |
| 17 | /// are to be scalarized, and interleave access groups. |
| 18 | /// |
| 19 | /// Also provides a VPlan-based builder utility analogous to IRBuilder. |
| 20 | /// It provides an instruction-level API for generating VPInstructions while |
| 21 | /// abstracting away the Recipe manipulation details. |
| 22 | //===----------------------------------------------------------------------===// |
| 23 | |
| 24 | #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H |
| 25 | #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H |
| 26 | |
| 27 | #include "VPlan.h" |
| 28 | #include "llvm/Support/InstructionCost.h" |
| 29 | |
| 30 | namespace llvm { |
| 31 | |
| 32 | class LoopInfo; |
| 33 | class LoopVectorizationLegality; |
| 34 | class LoopVectorizationCostModel; |
| 35 | class PredicatedScalarEvolution; |
| 36 | class LoopVectorizeHints; |
| 37 | class OptimizationRemarkEmitter; |
| 38 | class TargetTransformInfo; |
| 39 | class TargetLibraryInfo; |
| 40 | class VPRecipeBuilder; |
| 41 | |
| 42 | /// VPlan-based builder utility analogous to IRBuilder. |
| 43 | class VPBuilder { |
| 44 | VPBasicBlock *BB = nullptr; |
| 45 | VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); |
| 46 | |
| 47 | VPInstruction *createInstruction(unsigned Opcode, |
| 48 | ArrayRef<VPValue *> Operands, DebugLoc DL, |
| 49 | const Twine &Name = "") { |
| 50 | VPInstruction *Instr = new VPInstruction(Opcode, Operands, DL, Name); |
| 51 | if (BB) |
| 52 | BB->insert(Instr, InsertPt); |
| 53 | return Instr; |
| 54 | } |
| 55 | |
| 56 | VPInstruction *createInstruction(unsigned Opcode, |
| 57 | std::initializer_list<VPValue *> Operands, |
| 58 | DebugLoc DL, const Twine &Name = "") { |
| 59 | return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name); |
| 60 | } |
| 61 | |
| 62 | public: |
| 63 | VPBuilder() = default; |
| 64 | |
| 65 | /// Clear the insertion point: created instructions will not be inserted into |
| 66 | /// a block. |
| 67 | void clearInsertionPoint() { |
| 68 | BB = nullptr; |
| 69 | InsertPt = VPBasicBlock::iterator(); |
| 70 | } |
| 71 | |
| 72 | VPBasicBlock *getInsertBlock() const { return BB; } |
| 73 | VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } |
| 74 | |
| 75 | /// InsertPoint - A saved insertion point. |
| 76 | class VPInsertPoint { |
| 77 | VPBasicBlock *Block = nullptr; |
| 78 | VPBasicBlock::iterator Point; |
| 79 | |
| 80 | public: |
| 81 | /// Creates a new insertion point which doesn't point to anything. |
| 82 | VPInsertPoint() = default; |
| 83 | |
| 84 | /// Creates a new insertion point at the given location. |
| 85 | VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) |
| 86 | : Block(InsertBlock), Point(InsertPoint) {} |
| 87 | |
| 88 | /// Returns true if this insert point is set. |
| 89 | bool isSet() const { return Block != nullptr; } |
| 90 | |
| 91 | VPBasicBlock *getBlock() const { return Block; } |
| 92 | VPBasicBlock::iterator getPoint() const { return Point; } |
| 93 | }; |
| 94 | |
| 95 | /// Sets the current insert point to a previously-saved location. |
| 96 | void restoreIP(VPInsertPoint IP) { |
| 97 | if (IP.isSet()) |
| 98 | setInsertPoint(IP.getBlock(), IP.getPoint()); |
| 99 | else |
| 100 | clearInsertionPoint(); |
| 101 | } |
| 102 | |
| 103 | /// This specifies that created VPInstructions should be appended to the end |
| 104 | /// of the specified block. |
| 105 | void setInsertPoint(VPBasicBlock *TheBB) { |
| 106 | assert(TheBB && "Attempting to set a null insert point")(static_cast <bool> (TheBB && "Attempting to set a null insert point" ) ? void (0) : __assert_fail ("TheBB && \"Attempting to set a null insert point\"" , "llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h", 106, __extension__ __PRETTY_FUNCTION__)); |
| 107 | BB = TheBB; |
| 108 | InsertPt = BB->end(); |
| 109 | } |
| 110 | |
| 111 | /// This specifies that created instructions should be inserted at the |
| 112 | /// specified point. |
| 113 | void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { |
| 114 | BB = TheBB; |
| 115 | InsertPt = IP; |
| 116 | } |
| 117 | |
| 118 | /// Insert and return the specified instruction. |
| 119 | VPInstruction *insert(VPInstruction *I) const { |
| 120 | BB->insert(I, InsertPt); |
| 121 | return I; |
| 122 | } |
| 123 | |
| 124 | /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as |
| 125 | /// its underlying Instruction. |
| 126 | VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| 127 | Instruction *Inst = nullptr, const Twine &Name = "") { |
| 128 | DebugLoc DL; |
| 129 | if (Inst) |
| 130 | DL = Inst->getDebugLoc(); |
| 131 | VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name); |
| 132 | NewVPInst->setUnderlyingValue(Inst); |
| 133 | return NewVPInst; |
| 134 | } |
| 135 | VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, |
| 136 | DebugLoc DL, const Twine &Name = "") { |
| 137 | return createInstruction(Opcode, Operands, DL, Name); |
| 138 | } |
| 139 | |
| 140 | VPValue *createNot(VPValue *Operand, DebugLoc DL, const Twine &Name = "") { |
| 141 | return createInstruction(VPInstruction::Not, {Operand}, DL, Name); |
| 142 | } |
| 143 | |
| 144 | VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL, |
| 145 | const Twine &Name = "") { |
| 146 | return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name); |
| 147 | } |
| 148 | |
| 149 | VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL, |
| 150 | const Twine &Name = "") { |
| 151 | return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL, Name); |
| 152 | } |
| 153 | |
| 154 | VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, |
| 155 | DebugLoc DL, const Twine &Name = "") { |
| 156 | return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL, |
| 157 | Name); |
| 158 | } |
| 159 | |
| 160 | //===--------------------------------------------------------------------===// |
| 161 | // RAII helpers. |
| 162 | //===--------------------------------------------------------------------===// |
| 163 | |
| 164 | /// RAII object that stores the current insertion point and restores it when |
| 165 | /// the object is destroyed. |
| 166 | class InsertPointGuard { |
| 167 | VPBuilder &Builder; |
| 168 | VPBasicBlock *Block; |
| 169 | VPBasicBlock::iterator Point; |
| 170 | |
| 171 | public: |
| 172 | InsertPointGuard(VPBuilder &B) |
| 173 | : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} |
| 174 | |
| 175 | InsertPointGuard(const InsertPointGuard &) = delete; |
| 176 | InsertPointGuard &operator=(const InsertPointGuard &) = delete; |
| 177 | |
| 178 | ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } |
| 179 | }; |
| 180 | }; |
| 181 | |
| 182 | /// TODO: The following VectorizationFactor was pulled out of |
| 183 | /// LoopVectorizationCostModel class. LV also deals with |
| 184 | /// VectorizerParams::VectorizationFactor and VectorizationCostTy. |
| 185 | /// We need to streamline them. |
| 186 | |
| 187 | /// Information about vectorization costs. |
| 188 | struct VectorizationFactor { |
| 189 | /// Vector width with best cost. |
| 190 | ElementCount Width; |
| 191 | |
| 192 | /// Cost of the loop with that width. |
| 193 | InstructionCost Cost; |
| 194 | |
| 195 | /// Cost of the scalar loop. |
| 196 | InstructionCost ScalarCost; |
| 197 | |
| 198 | /// The minimum trip count required to make vectorization profitable, e.g. due |
| 199 | /// to runtime checks. |
| 200 | ElementCount MinProfitableTripCount; |
| 201 | |
| 202 | VectorizationFactor(ElementCount Width, InstructionCost Cost, |
| 203 | InstructionCost ScalarCost) |
| 204 | : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {} |
| 205 | |
| 206 | /// Width 1 means no vectorization, cost 0 means uncomputed cost. |
| 207 | static VectorizationFactor Disabled() { |
| 208 | return {ElementCount::getFixed(1), 0, 0}; |
| 209 | } |
| 210 | |
| 211 | bool operator==(const VectorizationFactor &rhs) const { |
| 212 | return Width == rhs.Width && Cost == rhs.Cost; |
| 213 | } |
| 214 | |
| 215 | bool operator!=(const VectorizationFactor &rhs) const { |
| 216 | return !(*this == rhs); |
| 217 | } |
| 218 | }; |
| 219 | |
| 220 | /// A class that represents two vectorization factors (initialized with 0 by |
| 221 | /// default). One for fixed-width vectorization and one for scalable |
| 222 | /// vectorization. This can be used by the vectorizer to choose from a range of |
| 223 | /// fixed and/or scalable VFs in order to find the most cost-effective VF to |
| 224 | /// vectorize with. |
| 225 | struct FixedScalableVFPair { |
| 226 | ElementCount FixedVF; |
| 227 | ElementCount ScalableVF; |
| 228 | |
| 229 | FixedScalableVFPair() |
| 230 | : FixedVF(ElementCount::getFixed(0)), |
| 231 | ScalableVF(ElementCount::getScalable(0)) {} |
| 232 | FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() { |
| 233 | *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max; |
| 234 | } |
| 235 | FixedScalableVFPair(const ElementCount &FixedVF, |
| 236 | const ElementCount &ScalableVF) |
| 237 | : FixedVF(FixedVF), ScalableVF(ScalableVF) { |
| 238 | assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&(static_cast <bool> (!FixedVF.isScalable() && ScalableVF .isScalable() && "Invalid scalable properties") ? void (0) : __assert_fail ("!FixedVF.isScalable() && ScalableVF.isScalable() && \"Invalid scalable properties\"" , "llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h", 239, __extension__ __PRETTY_FUNCTION__)) |
| 239 | "Invalid scalable properties")(static_cast <bool> (!FixedVF.isScalable() && ScalableVF .isScalable() && "Invalid scalable properties") ? void (0) : __assert_fail ("!FixedVF.isScalable() && ScalableVF.isScalable() && \"Invalid scalable properties\"" , "llvm/lib/Transforms/Vectorize/LoopVectorizationPlanner.h", 239, __extension__ __PRETTY_FUNCTION__)); |
| 240 | } |
| 241 | |
| 242 | static FixedScalableVFPair getNone() { return FixedScalableVFPair(); } |
| 243 | |
| 244 | /// \return true if either fixed- or scalable VF is non-zero. |
| 245 | explicit operator bool() const { return FixedVF || ScalableVF; } |
| 246 | |
| 247 | /// \return true if either fixed- or scalable VF is a valid vector VF. |
| 248 | bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); } |
| 249 | }; |
| 250 | |
| 251 | /// Planner drives the vectorization process after having passed |
| 252 | /// Legality checks. |
| 253 | class LoopVectorizationPlanner { |
| 254 | /// The loop that we evaluate. |
| 255 | Loop *OrigLoop; |
| 256 | |
| 257 | /// Loop Info analysis. |
| 258 | LoopInfo *LI; |
| 259 | |
| 260 | /// Target Library Info. |
| 261 | const TargetLibraryInfo *TLI; |
| 262 | |
| 263 | /// Target Transform Info. |
| 264 | const TargetTransformInfo *TTI; |
| 265 | |
| 266 | /// The legality analysis. |
| 267 | LoopVectorizationLegality *Legal; |
| 268 | |
| 269 | /// The profitability analysis. |
| 270 | LoopVectorizationCostModel &CM; |
| 271 | |
| 272 | /// The interleaved access analysis. |
| 273 | InterleavedAccessInfo &IAI; |
| 274 | |
| 275 | PredicatedScalarEvolution &PSE; |
| 276 | |
| 277 | const LoopVectorizeHints &Hints; |
| 278 | |
| 279 | OptimizationRemarkEmitter *ORE; |
| 280 | |
| 281 | SmallVector<VPlanPtr, 4> VPlans; |
| 282 | |
| 283 | /// A builder used to construct the current plan. |
| 284 | VPBuilder Builder; |
| 285 | |
| 286 | public: |
| 287 | LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, |
| 288 | const TargetTransformInfo *TTI, |
| 289 | LoopVectorizationLegality *Legal, |
| 290 | LoopVectorizationCostModel &CM, |
| 291 | InterleavedAccessInfo &IAI, |
| 292 | PredicatedScalarEvolution &PSE, |
| 293 | const LoopVectorizeHints &Hints, |
| 294 | OptimizationRemarkEmitter *ORE) |
| 295 | : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI), |
| 296 | PSE(PSE), Hints(Hints), ORE(ORE) {} |
| 297 | |
| 298 | /// Plan how to best vectorize, return the best VF and its cost, or |
| 299 | /// std::nullopt if vectorization and interleaving should be avoided up front. |
| 300 | std::optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC); |
| 301 | |
| 302 | /// Use the VPlan-native path to plan how to best vectorize, return the best |
| 303 | /// VF and its cost. |
| 304 | VectorizationFactor planInVPlanNativePath(ElementCount UserVF); |
| 305 | |
| 306 | /// Return the best VPlan for \p VF. |
| 307 | VPlan &getBestPlanFor(ElementCount VF) const; |
| 308 | |
| 309 | /// Generate the IR code for the body of the vectorized loop according to the |
| 310 | /// best selected \p VF, \p UF and VPlan \p BestPlan. |
| 311 | /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue |
| 312 | /// vectorization re-using plans for both the main and epilogue vector loops. |
| 313 | /// It should be removed once the re-use issue has been fixed. |
| 314 | void executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, |
| 315 | InnerLoopVectorizer &LB, DominatorTree *DT, |
| 316 | bool IsEpilogueVectorization); |
| 317 | |
| 318 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 319 | void printPlans(raw_ostream &O); |
| 320 | #endif |
| 321 | |
| 322 | /// Look through the existing plans and return true if we have one with all |
| 323 | /// the vectorization factors in question. |
| 324 | bool hasPlanWithVF(ElementCount VF) const { |
| 325 | return any_of(VPlans, |
| 326 | [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); }); |
| 327 | } |
| 328 | |
| 329 | /// Test a \p Predicate on a \p Range of VF's. Return the value of applying |
| 330 | /// \p Predicate on Range.Start, possibly decreasing Range.End such that the |
| 331 | /// returned value holds for the entire \p Range. |
| 332 | static bool |
| 333 | getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, |
| 334 | VFRange &Range); |
| 335 | |
| 336 | /// Check if the number of runtime checks exceeds the threshold. |
| 337 | bool requiresTooManyRuntimeChecks() const; |
| 338 | |
| 339 | protected: |
| 340 | /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, |
| 341 | /// according to the information gathered by Legal when it checked if it is |
| 342 | /// legal to vectorize the loop. |
| 343 | void buildVPlans(ElementCount MinVF, ElementCount MaxVF); |
| 344 | |
| 345 | private: |
| 346 | /// Build a VPlan according to the information gathered by Legal. \return a |
| 347 | /// VPlan for vectorization factors \p Range.Start and up to \p Range.End |
| 348 | /// exclusive, possibly decreasing \p Range.End. |
| 349 | VPlanPtr buildVPlan(VFRange &Range); |
| 350 | |
| 351 | /// Build a VPlan using VPRecipes according to the information gather by |
| 352 | /// Legal. This method is only used for the legacy inner loop vectorizer. |
| 353 | VPlanPtr buildVPlanWithVPRecipes( |
| 354 | VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, |
| 355 | const MapVector<Instruction *, Instruction *> &SinkAfter); |
| 356 | |
| 357 | /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, |
| 358 | /// according to the information gathered by Legal when it checked if it is |
| 359 | /// legal to vectorize the loop. This method creates VPlans using VPRecipes. |
| 360 | void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); |
| 361 | |
| 362 | // Adjust the recipes for reductions. For in-loop reductions the chain of |
| 363 | // instructions leading from the loop exit instr to the phi need to be |
| 364 | // converted to reductions, with one operand being vector and the other being |
| 365 | // the scalar reduction chain. For other reductions, a select is introduced |
| 366 | // between the phi and live-out recipes when folding the tail. |
| 367 | void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan, |
| 368 | VPRecipeBuilder &RecipeBuilder, |
| 369 | ElementCount MinVF); |
| 370 | }; |
| 371 | |
| 372 | } // namespace llvm |
| 373 | |
| 374 | #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H |