Bug Summary

File:include/llvm/Support/Error.h
Warning:line 201, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name MCDwarf.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/MC -I /build/llvm-toolchain-snapshot-8~svn350071/lib/MC -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/MC -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp

1//===- lib/MC/MCDwarf.cpp - MCDwarf implementation ------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#include "llvm/MC/MCDwarf.h"
11#include "llvm/ADT/ArrayRef.h"
12#include "llvm/ADT/DenseMap.h"
13#include "llvm/ADT/Hashing.h"
14#include "llvm/ADT/Optional.h"
15#include "llvm/ADT/STLExtras.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/BinaryFormat/Dwarf.h"
21#include "llvm/Config/config.h"
22#include "llvm/MC/MCAsmInfo.h"
23#include "llvm/MC/MCContext.h"
24#include "llvm/MC/MCExpr.h"
25#include "llvm/MC/MCObjectFileInfo.h"
26#include "llvm/MC/MCObjectStreamer.h"
27#include "llvm/MC/MCRegisterInfo.h"
28#include "llvm/MC/MCSection.h"
29#include "llvm/MC/MCStreamer.h"
30#include "llvm/MC/MCSymbol.h"
31#include "llvm/MC/StringTableBuilder.h"
32#include "llvm/Support/Casting.h"
33#include "llvm/Support/Endian.h"
34#include "llvm/Support/EndianStream.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/LEB128.h"
37#include "llvm/Support/MathExtras.h"
38#include "llvm/Support/Path.h"
39#include "llvm/Support/SourceMgr.h"
40#include "llvm/Support/raw_ostream.h"
41#include <cassert>
42#include <cstdint>
43#include <string>
44#include <utility>
45#include <vector>
46
47using namespace llvm;
48
49/// Manage the .debug_line_str section contents, if we use it.
50class llvm::MCDwarfLineStr {
51 MCSymbol *LineStrLabel = nullptr;
52 StringTableBuilder LineStrings{StringTableBuilder::DWARF};
53 bool UseRelocs = false;
54
55public:
56 /// Construct an instance that can emit .debug_line_str (for use in a normal
57 /// v5 line table).
58 explicit MCDwarfLineStr(MCContext &Ctx) {
59 UseRelocs = Ctx.getAsmInfo()->doesDwarfUseRelocationsAcrossSections();
60 if (UseRelocs)
61 LineStrLabel =
62 Ctx.getObjectFileInfo()->getDwarfLineStrSection()->getBeginSymbol();
63 }
64
65 /// Emit a reference to the string.
66 void emitRef(MCStreamer *MCOS, StringRef Path);
67
68 /// Emit the .debug_line_str section if appropriate.
69 void emitSection(MCStreamer *MCOS);
70};
71
72static inline uint64_t ScaleAddrDelta(MCContext &Context, uint64_t AddrDelta) {
73 unsigned MinInsnLength = Context.getAsmInfo()->getMinInstAlignment();
74 if (MinInsnLength == 1)
75 return AddrDelta;
76 if (AddrDelta % MinInsnLength != 0) {
77 // TODO: report this error, but really only once.
78 ;
79 }
80 return AddrDelta / MinInsnLength;
81}
82
83//
84// This is called when an instruction is assembled into the specified section
85// and if there is information from the last .loc directive that has yet to have
86// a line entry made for it is made.
87//
88void MCDwarfLineEntry::Make(MCObjectStreamer *MCOS, MCSection *Section) {
89 if (!MCOS->getContext().getDwarfLocSeen())
90 return;
91
92 // Create a symbol at in the current section for use in the line entry.
93 MCSymbol *LineSym = MCOS->getContext().createTempSymbol();
94 // Set the value of the symbol to use for the MCDwarfLineEntry.
95 MCOS->EmitLabel(LineSym);
96
97 // Get the current .loc info saved in the context.
98 const MCDwarfLoc &DwarfLoc = MCOS->getContext().getCurrentDwarfLoc();
99
100 // Create a (local) line entry with the symbol and the current .loc info.
101 MCDwarfLineEntry LineEntry(LineSym, DwarfLoc);
102
103 // clear DwarfLocSeen saying the current .loc info is now used.
104 MCOS->getContext().clearDwarfLocSeen();
105
106 // Add the line entry to this section's entries.
107 MCOS->getContext()
108 .getMCDwarfLineTable(MCOS->getContext().getDwarfCompileUnitID())
109 .getMCLineSections()
110 .addLineEntry(LineEntry, Section);
111}
112
113//
114// This helper routine returns an expression of End - Start + IntVal .
115//
116static inline const MCExpr *MakeStartMinusEndExpr(const MCStreamer &MCOS,
117 const MCSymbol &Start,
118 const MCSymbol &End,
119 int IntVal) {
120 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
121 const MCExpr *Res =
122 MCSymbolRefExpr::create(&End, Variant, MCOS.getContext());
123 const MCExpr *RHS =
124 MCSymbolRefExpr::create(&Start, Variant, MCOS.getContext());
125 const MCExpr *Res1 =
126 MCBinaryExpr::create(MCBinaryExpr::Sub, Res, RHS, MCOS.getContext());
127 const MCExpr *Res2 =
128 MCConstantExpr::create(IntVal, MCOS.getContext());
129 const MCExpr *Res3 =
130 MCBinaryExpr::create(MCBinaryExpr::Sub, Res1, Res2, MCOS.getContext());
131 return Res3;
132}
133
134//
135// This helper routine returns an expression of Start + IntVal .
136//
137static inline const MCExpr *
138makeStartPlusIntExpr(MCContext &Ctx, const MCSymbol &Start, int IntVal) {
139 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
140 const MCExpr *LHS = MCSymbolRefExpr::create(&Start, Variant, Ctx);
141 const MCExpr *RHS = MCConstantExpr::create(IntVal, Ctx);
142 const MCExpr *Res = MCBinaryExpr::create(MCBinaryExpr::Add, LHS, RHS, Ctx);
143 return Res;
144}
145
146//
147// This emits the Dwarf line table for the specified section from the entries
148// in the LineSection.
149//
150static inline void
151EmitDwarfLineTable(MCObjectStreamer *MCOS, MCSection *Section,
152 const MCLineSection::MCDwarfLineEntryCollection &LineEntries) {
153 unsigned FileNum = 1;
154 unsigned LastLine = 1;
155 unsigned Column = 0;
156 unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT1 ? DWARF2_FLAG_IS_STMT(1 << 0) : 0;
157 unsigned Isa = 0;
158 unsigned Discriminator = 0;
159 MCSymbol *LastLabel = nullptr;
160
161 // Loop through each MCDwarfLineEntry and encode the dwarf line number table.
162 for (const MCDwarfLineEntry &LineEntry : LineEntries) {
163 int64_t LineDelta = static_cast<int64_t>(LineEntry.getLine()) - LastLine;
164
165 if (FileNum != LineEntry.getFileNum()) {
166 FileNum = LineEntry.getFileNum();
167 MCOS->EmitIntValue(dwarf::DW_LNS_set_file, 1);
168 MCOS->EmitULEB128IntValue(FileNum);
169 }
170 if (Column != LineEntry.getColumn()) {
171 Column = LineEntry.getColumn();
172 MCOS->EmitIntValue(dwarf::DW_LNS_set_column, 1);
173 MCOS->EmitULEB128IntValue(Column);
174 }
175 if (Discriminator != LineEntry.getDiscriminator() &&
176 MCOS->getContext().getDwarfVersion() >= 4) {
177 Discriminator = LineEntry.getDiscriminator();
178 unsigned Size = getULEB128Size(Discriminator);
179 MCOS->EmitIntValue(dwarf::DW_LNS_extended_op, 1);
180 MCOS->EmitULEB128IntValue(Size + 1);
181 MCOS->EmitIntValue(dwarf::DW_LNE_set_discriminator, 1);
182 MCOS->EmitULEB128IntValue(Discriminator);
183 }
184 if (Isa != LineEntry.getIsa()) {
185 Isa = LineEntry.getIsa();
186 MCOS->EmitIntValue(dwarf::DW_LNS_set_isa, 1);
187 MCOS->EmitULEB128IntValue(Isa);
188 }
189 if ((LineEntry.getFlags() ^ Flags) & DWARF2_FLAG_IS_STMT(1 << 0)) {
190 Flags = LineEntry.getFlags();
191 MCOS->EmitIntValue(dwarf::DW_LNS_negate_stmt, 1);
192 }
193 if (LineEntry.getFlags() & DWARF2_FLAG_BASIC_BLOCK(1 << 1))
194 MCOS->EmitIntValue(dwarf::DW_LNS_set_basic_block, 1);
195 if (LineEntry.getFlags() & DWARF2_FLAG_PROLOGUE_END(1 << 2))
196 MCOS->EmitIntValue(dwarf::DW_LNS_set_prologue_end, 1);
197 if (LineEntry.getFlags() & DWARF2_FLAG_EPILOGUE_BEGIN(1 << 3))
198 MCOS->EmitIntValue(dwarf::DW_LNS_set_epilogue_begin, 1);
199
200 MCSymbol *Label = LineEntry.getLabel();
201
202 // At this point we want to emit/create the sequence to encode the delta in
203 // line numbers and the increment of the address from the previous Label
204 // and the current Label.
205 const MCAsmInfo *asmInfo = MCOS->getContext().getAsmInfo();
206 MCOS->EmitDwarfAdvanceLineAddr(LineDelta, LastLabel, Label,
207 asmInfo->getCodePointerSize());
208
209 Discriminator = 0;
210 LastLine = LineEntry.getLine();
211 LastLabel = Label;
212 }
213
214 // Emit a DW_LNE_end_sequence for the end of the section.
215 // Use the section end label to compute the address delta and use INT64_MAX
216 // as the line delta which is the signal that this is actually a
217 // DW_LNE_end_sequence.
218 MCSymbol *SectionEnd = MCOS->endSection(Section);
219
220 // Switch back the dwarf line section, in case endSection had to switch the
221 // section.
222 MCContext &Ctx = MCOS->getContext();
223 MCOS->SwitchSection(Ctx.getObjectFileInfo()->getDwarfLineSection());
224
225 const MCAsmInfo *AsmInfo = Ctx.getAsmInfo();
226 MCOS->EmitDwarfAdvanceLineAddr(INT64_MAX(9223372036854775807L), LastLabel, SectionEnd,
227 AsmInfo->getCodePointerSize());
228}
229
230//
231// This emits the Dwarf file and the line tables.
232//
233void MCDwarfLineTable::Emit(MCObjectStreamer *MCOS,
234 MCDwarfLineTableParams Params) {
235 MCContext &context = MCOS->getContext();
236
237 auto &LineTables = context.getMCDwarfLineTables();
238
239 // Bail out early so we don't switch to the debug_line section needlessly and
240 // in doing so create an unnecessary (if empty) section.
241 if (LineTables.empty())
242 return;
243
244 // In a v5 non-split line table, put the strings in a separate section.
245 Optional<MCDwarfLineStr> LineStr;
246 if (context.getDwarfVersion() >= 5)
247 LineStr = MCDwarfLineStr(context);
248
249 // Switch to the section where the table will be emitted into.
250 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfLineSection());
251
252 // Handle the rest of the Compile Units.
253 for (const auto &CUIDTablePair : LineTables) {
254 CUIDTablePair.second.EmitCU(MCOS, Params, LineStr);
255 }
256
257 if (LineStr)
258 LineStr->emitSection(MCOS);
259}
260
261void MCDwarfDwoLineTable::Emit(MCStreamer &MCOS, MCDwarfLineTableParams Params,
262 MCSection *Section) const {
263 if (Header.MCDwarfFiles.empty())
264 return;
265 Optional<MCDwarfLineStr> NoLineStr(None);
266 MCOS.SwitchSection(Section);
267 MCOS.EmitLabel(Header.Emit(&MCOS, Params, None, NoLineStr).second);
268}
269
270std::pair<MCSymbol *, MCSymbol *>
271MCDwarfLineTableHeader::Emit(MCStreamer *MCOS, MCDwarfLineTableParams Params,
272 Optional<MCDwarfLineStr> &LineStr) const {
273 static const char StandardOpcodeLengths[] = {
274 0, // length of DW_LNS_copy
275 1, // length of DW_LNS_advance_pc
276 1, // length of DW_LNS_advance_line
277 1, // length of DW_LNS_set_file
278 1, // length of DW_LNS_set_column
279 0, // length of DW_LNS_negate_stmt
280 0, // length of DW_LNS_set_basic_block
281 0, // length of DW_LNS_const_add_pc
282 1, // length of DW_LNS_fixed_advance_pc
283 0, // length of DW_LNS_set_prologue_end
284 0, // length of DW_LNS_set_epilogue_begin
285 1 // DW_LNS_set_isa
286 };
287 assert(array_lengthof(StandardOpcodeLengths) >=((array_lengthof(StandardOpcodeLengths) >= (Params.DWARF2LineOpcodeBase
- 1U)) ? static_cast<void> (0) : __assert_fail ("array_lengthof(StandardOpcodeLengths) >= (Params.DWARF2LineOpcodeBase - 1U)"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 288, __PRETTY_FUNCTION__))
288 (Params.DWARF2LineOpcodeBase - 1U))((array_lengthof(StandardOpcodeLengths) >= (Params.DWARF2LineOpcodeBase
- 1U)) ? static_cast<void> (0) : __assert_fail ("array_lengthof(StandardOpcodeLengths) >= (Params.DWARF2LineOpcodeBase - 1U)"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 288, __PRETTY_FUNCTION__))
;
289 return Emit(
290 MCOS, Params,
291 makeArrayRef(StandardOpcodeLengths, Params.DWARF2LineOpcodeBase - 1),
292 LineStr);
293}
294
295static const MCExpr *forceExpAbs(MCStreamer &OS, const MCExpr* Expr) {
296 MCContext &Context = OS.getContext();
297 assert(!isa<MCSymbolRefExpr>(Expr))((!isa<MCSymbolRefExpr>(Expr)) ? static_cast<void>
(0) : __assert_fail ("!isa<MCSymbolRefExpr>(Expr)", "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 297, __PRETTY_FUNCTION__))
;
298 if (Context.getAsmInfo()->hasAggressiveSymbolFolding())
299 return Expr;
300
301 MCSymbol *ABS = Context.createTempSymbol();
302 OS.EmitAssignment(ABS, Expr);
303 return MCSymbolRefExpr::create(ABS, Context);
304}
305
306static void emitAbsValue(MCStreamer &OS, const MCExpr *Value, unsigned Size) {
307 const MCExpr *ABS = forceExpAbs(OS, Value);
308 OS.EmitValue(ABS, Size);
309}
310
311void MCDwarfLineStr::emitSection(MCStreamer *MCOS) {
312 // Switch to the .debug_line_str section.
313 MCOS->SwitchSection(
314 MCOS->getContext().getObjectFileInfo()->getDwarfLineStrSection());
315 // Emit the strings without perturbing the offsets we used.
316 LineStrings.finalizeInOrder();
317 SmallString<0> Data;
318 Data.resize(LineStrings.getSize());
319 LineStrings.write((uint8_t *)Data.data());
320 MCOS->EmitBinaryData(Data.str());
321}
322
323void MCDwarfLineStr::emitRef(MCStreamer *MCOS, StringRef Path) {
324 int RefSize = 4; // FIXME: Support DWARF-64
325 size_t Offset = LineStrings.add(Path);
326 if (UseRelocs) {
327 MCContext &Ctx = MCOS->getContext();
328 MCOS->EmitValue(makeStartPlusIntExpr(Ctx, *LineStrLabel, Offset), RefSize);
329 } else
330 MCOS->EmitIntValue(Offset, RefSize);
331}
332
333void MCDwarfLineTableHeader::emitV2FileDirTables(MCStreamer *MCOS) const {
334 // First the directory table.
335 for (auto &Dir : MCDwarfDirs) {
336 MCOS->EmitBytes(Dir); // The DirectoryName, and...
337 MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator.
338 }
339 MCOS->EmitIntValue(0, 1); // Terminate the directory list.
340
341 // Second the file table.
342 for (unsigned i = 1; i < MCDwarfFiles.size(); i++) {
343 assert(!MCDwarfFiles[i].Name.empty())((!MCDwarfFiles[i].Name.empty()) ? static_cast<void> (0
) : __assert_fail ("!MCDwarfFiles[i].Name.empty()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 343, __PRETTY_FUNCTION__))
;
344 MCOS->EmitBytes(MCDwarfFiles[i].Name); // FileName and...
345 MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator.
346 MCOS->EmitULEB128IntValue(MCDwarfFiles[i].DirIndex); // Directory number.
347 MCOS->EmitIntValue(0, 1); // Last modification timestamp (always 0).
348 MCOS->EmitIntValue(0, 1); // File size (always 0).
349 }
350 MCOS->EmitIntValue(0, 1); // Terminate the file list.
351}
352
353static void emitOneV5FileEntry(MCStreamer *MCOS, const MCDwarfFile &DwarfFile,
354 bool EmitMD5, bool HasSource,
355 Optional<MCDwarfLineStr> &LineStr) {
356 assert(!DwarfFile.Name.empty())((!DwarfFile.Name.empty()) ? static_cast<void> (0) : __assert_fail
("!DwarfFile.Name.empty()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 356, __PRETTY_FUNCTION__))
;
357 if (LineStr)
358 LineStr->emitRef(MCOS, DwarfFile.Name);
359 else {
360 MCOS->EmitBytes(DwarfFile.Name); // FileName and...
361 MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator.
362 }
363 MCOS->EmitULEB128IntValue(DwarfFile.DirIndex); // Directory number.
364 if (EmitMD5) {
365 MD5::MD5Result *Cksum = DwarfFile.Checksum;
366 MCOS->EmitBinaryData(
367 StringRef(reinterpret_cast<const char *>(Cksum->Bytes.data()),
368 Cksum->Bytes.size()));
369 }
370 if (HasSource) {
371 if (LineStr)
372 LineStr->emitRef(MCOS, DwarfFile.Source.getValueOr(StringRef()));
373 else {
374 MCOS->EmitBytes(
375 DwarfFile.Source.getValueOr(StringRef())); // Source and...
376 MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator.
377 }
378 }
379}
380
381void MCDwarfLineTableHeader::emitV5FileDirTables(
382 MCStreamer *MCOS, Optional<MCDwarfLineStr> &LineStr,
383 StringRef CtxCompilationDir) const {
384 // The directory format, which is just a list of the directory paths. In a
385 // non-split object, these are references to .debug_line_str; in a split
386 // object, they are inline strings.
387 MCOS->EmitIntValue(1, 1);
388 MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_path);
389 MCOS->EmitULEB128IntValue(LineStr ? dwarf::DW_FORM_line_strp
390 : dwarf::DW_FORM_string);
391 MCOS->EmitULEB128IntValue(MCDwarfDirs.size() + 1);
392 // Try not to emit an empty compilation directory.
393 const StringRef CompDir =
394 CompilationDir.empty() ? CtxCompilationDir : StringRef(CompilationDir);
395 if (LineStr) {
396 // Record path strings, emit references here.
397 LineStr->emitRef(MCOS, CompDir);
398 for (const auto &Dir : MCDwarfDirs)
399 LineStr->emitRef(MCOS, Dir);
400 } else {
401 // The list of directory paths. Compilation directory comes first.
402 MCOS->EmitBytes(CompDir);
403 MCOS->EmitBytes(StringRef("\0", 1));
404 for (const auto &Dir : MCDwarfDirs) {
405 MCOS->EmitBytes(Dir); // The DirectoryName, and...
406 MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator.
407 }
408 }
409
410 // The file format, which is the inline null-terminated filename and a
411 // directory index. We don't track file size/timestamp so don't emit them
412 // in the v5 table. Emit MD5 checksums and source if we have them.
413 uint64_t Entries = 2;
414 if (HasAllMD5)
415 Entries += 1;
416 if (HasSource)
417 Entries += 1;
418 MCOS->EmitIntValue(Entries, 1);
419 MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_path);
420 MCOS->EmitULEB128IntValue(LineStr ? dwarf::DW_FORM_line_strp
421 : dwarf::DW_FORM_string);
422 MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_directory_index);
423 MCOS->EmitULEB128IntValue(dwarf::DW_FORM_udata);
424 if (HasAllMD5) {
425 MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_MD5);
426 MCOS->EmitULEB128IntValue(dwarf::DW_FORM_data16);
427 }
428 if (HasSource) {
429 MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_LLVM_source);
430 MCOS->EmitULEB128IntValue(LineStr ? dwarf::DW_FORM_line_strp
431 : dwarf::DW_FORM_string);
432 }
433 // Then the counted list of files. The root file is file #0, then emit the
434 // files as provide by .file directives. To accommodate assembler source
435 // written for DWARF v4 but trying to emit v5, if we didn't see a root file
436 // explicitly, replicate file #1.
437 MCOS->EmitULEB128IntValue(MCDwarfFiles.size());
438 emitOneV5FileEntry(MCOS, RootFile.Name.empty() ? MCDwarfFiles[1] : RootFile,
439 HasAllMD5, HasSource, LineStr);
440 for (unsigned i = 1; i < MCDwarfFiles.size(); ++i)
441 emitOneV5FileEntry(MCOS, MCDwarfFiles[i], HasAllMD5, HasSource, LineStr);
442}
443
444std::pair<MCSymbol *, MCSymbol *>
445MCDwarfLineTableHeader::Emit(MCStreamer *MCOS, MCDwarfLineTableParams Params,
446 ArrayRef<char> StandardOpcodeLengths,
447 Optional<MCDwarfLineStr> &LineStr) const {
448 MCContext &context = MCOS->getContext();
449
450 // Create a symbol at the beginning of the line table.
451 MCSymbol *LineStartSym = Label;
452 if (!LineStartSym)
453 LineStartSym = context.createTempSymbol();
454 // Set the value of the symbol, as we are at the start of the line table.
455 MCOS->EmitLabel(LineStartSym);
456
457 // Create a symbol for the end of the section (to be set when we get there).
458 MCSymbol *LineEndSym = context.createTempSymbol();
459
460 // The first 4 bytes is the total length of the information for this
461 // compilation unit (not including these 4 bytes for the length).
462 emitAbsValue(*MCOS,
463 MakeStartMinusEndExpr(*MCOS, *LineStartSym, *LineEndSym, 4), 4);
464
465 // Next 2 bytes is the Version.
466 unsigned LineTableVersion = context.getDwarfVersion();
467 MCOS->EmitIntValue(LineTableVersion, 2);
468
469 // Keep track of the bytes between the very start and where the header length
470 // comes out.
471 unsigned PreHeaderLengthBytes = 4 + 2;
472
473 // In v5, we get address info next.
474 if (LineTableVersion >= 5) {
475 MCOS->EmitIntValue(context.getAsmInfo()->getCodePointerSize(), 1);
476 MCOS->EmitIntValue(0, 1); // Segment selector; same as EmitGenDwarfAranges.
477 PreHeaderLengthBytes += 2;
478 }
479
480 // Create a symbol for the end of the prologue (to be set when we get there).
481 MCSymbol *ProEndSym = context.createTempSymbol(); // Lprologue_end
482
483 // Length of the prologue, is the next 4 bytes. This is actually the length
484 // from after the length word, to the end of the prologue.
485 emitAbsValue(*MCOS,
486 MakeStartMinusEndExpr(*MCOS, *LineStartSym, *ProEndSym,
487 (PreHeaderLengthBytes + 4)),
488 4);
489
490 // Parameters of the state machine, are next.
491 MCOS->EmitIntValue(context.getAsmInfo()->getMinInstAlignment(), 1);
492 // maximum_operations_per_instruction
493 // For non-VLIW architectures this field is always 1.
494 // FIXME: VLIW architectures need to update this field accordingly.
495 if (LineTableVersion >= 4)
496 MCOS->EmitIntValue(1, 1);
497 MCOS->EmitIntValue(DWARF2_LINE_DEFAULT_IS_STMT1, 1);
498 MCOS->EmitIntValue(Params.DWARF2LineBase, 1);
499 MCOS->EmitIntValue(Params.DWARF2LineRange, 1);
500 MCOS->EmitIntValue(StandardOpcodeLengths.size() + 1, 1);
501
502 // Standard opcode lengths
503 for (char Length : StandardOpcodeLengths)
504 MCOS->EmitIntValue(Length, 1);
505
506 // Put out the directory and file tables. The formats vary depending on
507 // the version.
508 if (LineTableVersion >= 5)
509 emitV5FileDirTables(MCOS, LineStr, context.getCompilationDir());
510 else
511 emitV2FileDirTables(MCOS);
512
513 // This is the end of the prologue, so set the value of the symbol at the
514 // end of the prologue (that was used in a previous expression).
515 MCOS->EmitLabel(ProEndSym);
516
517 return std::make_pair(LineStartSym, LineEndSym);
518}
519
520void MCDwarfLineTable::EmitCU(MCObjectStreamer *MCOS,
521 MCDwarfLineTableParams Params,
522 Optional<MCDwarfLineStr> &LineStr) const {
523 MCSymbol *LineEndSym = Header.Emit(MCOS, Params, LineStr).second;
524
525 // Put out the line tables.
526 for (const auto &LineSec : MCLineSections.getMCLineEntries())
527 EmitDwarfLineTable(MCOS, LineSec.first, LineSec.second);
528
529 // This is the end of the section, so set the value of the symbol at the end
530 // of this section (that was used in a previous expression).
531 MCOS->EmitLabel(LineEndSym);
532}
533
534Expected<unsigned> MCDwarfLineTable::tryGetFile(StringRef &Directory,
535 StringRef &FileName,
536 MD5::MD5Result *Checksum,
537 Optional<StringRef> Source,
538 unsigned FileNumber) {
539 return Header.tryGetFile(Directory, FileName, Checksum, Source, FileNumber);
1
Calling 'MCDwarfLineTableHeader::tryGetFile'
540}
541
542Expected<unsigned>
543MCDwarfLineTableHeader::tryGetFile(StringRef &Directory,
544 StringRef &FileName,
545 MD5::MD5Result *Checksum,
546 Optional<StringRef> &Source,
547 unsigned FileNumber) {
548 if (Directory == CompilationDir)
2
Assuming the condition is false
3
Taking false branch
549 Directory = "";
550 if (FileName.empty()) {
4
Assuming the condition is false
5
Taking false branch
551 FileName = "<stdin>";
552 Directory = "";
553 }
554 assert(!FileName.empty())((!FileName.empty()) ? static_cast<void> (0) : __assert_fail
("!FileName.empty()", "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 554, __PRETTY_FUNCTION__))
;
6
Assuming the condition is true
7
'?' condition is true
555 // Keep track of whether any or all files have an MD5 checksum.
556 // If any files have embedded source, they all must.
557 if (MCDwarfFiles.empty()) {
8
Taking false branch
558 trackMD5Usage(Checksum);
559 HasSource = (Source != None);
560 }
561 if (FileNumber == 0) {
9
Assuming 'FileNumber' is not equal to 0
10
Taking false branch
562 // File numbers start with 1 and/or after any file numbers
563 // allocated by inline-assembler .file directives.
564 FileNumber = MCDwarfFiles.empty() ? 1 : MCDwarfFiles.size();
565 SmallString<256> Buffer;
566 auto IterBool = SourceIdMap.insert(
567 std::make_pair((Directory + Twine('\0') + FileName).toStringRef(Buffer),
568 FileNumber));
569 if (!IterBool.second)
570 return IterBool.first->second;
571 }
572 // Make space for this FileNumber in the MCDwarfFiles vector if needed.
573 if (FileNumber >= MCDwarfFiles.size())
11
Assuming the condition is false
12
Taking false branch
574 MCDwarfFiles.resize(FileNumber + 1);
575
576 // Get the new MCDwarfFile slot for this FileNumber.
577 MCDwarfFile &File = MCDwarfFiles[FileNumber];
578
579 // It is an error to see the same number more than once.
580 if (!File.Name.empty())
13
Assuming the condition is true
14
Taking true branch
581 return make_error<StringError>("file number already allocated",
15
Calling 'make_error<llvm::StringError, char const (&)[30], std::error_code>'
582 inconvertibleErrorCode());
583
584 // If any files have embedded source, they all must.
585 if (HasSource != (Source != None))
586 return make_error<StringError>("inconsistent use of embedded source",
587 inconvertibleErrorCode());
588
589 if (Directory.empty()) {
590 // Separate the directory part from the basename of the FileName.
591 StringRef tFileName = sys::path::filename(FileName);
592 if (!tFileName.empty()) {
593 Directory = sys::path::parent_path(FileName);
594 if (!Directory.empty())
595 FileName = tFileName;
596 }
597 }
598
599 // Find or make an entry in the MCDwarfDirs vector for this Directory.
600 // Capture directory name.
601 unsigned DirIndex;
602 if (Directory.empty()) {
603 // For FileNames with no directories a DirIndex of 0 is used.
604 DirIndex = 0;
605 } else {
606 DirIndex = 0;
607 for (unsigned End = MCDwarfDirs.size(); DirIndex < End; DirIndex++) {
608 if (Directory == MCDwarfDirs[DirIndex])
609 break;
610 }
611 if (DirIndex >= MCDwarfDirs.size())
612 MCDwarfDirs.push_back(Directory);
613 // The DirIndex is one based, as DirIndex of 0 is used for FileNames with
614 // no directories. MCDwarfDirs[] is unlike MCDwarfFiles[] in that the
615 // directory names are stored at MCDwarfDirs[DirIndex-1] where FileNames
616 // are stored at MCDwarfFiles[FileNumber].Name .
617 DirIndex++;
618 }
619
620 File.Name = FileName;
621 File.DirIndex = DirIndex;
622 File.Checksum = Checksum;
623 trackMD5Usage(Checksum);
624 File.Source = Source;
625 if (Source)
626 HasSource = true;
627
628 // return the allocated FileNumber.
629 return FileNumber;
630}
631
632/// Utility function to emit the encoding to a streamer.
633void MCDwarfLineAddr::Emit(MCStreamer *MCOS, MCDwarfLineTableParams Params,
634 int64_t LineDelta, uint64_t AddrDelta) {
635 MCContext &Context = MCOS->getContext();
636 SmallString<256> Tmp;
637 raw_svector_ostream OS(Tmp);
638 MCDwarfLineAddr::Encode(Context, Params, LineDelta, AddrDelta, OS);
639 MCOS->EmitBytes(OS.str());
640}
641
642/// Given a special op, return the address skip amount (in units of
643/// DWARF2_LINE_MIN_INSN_LENGTH).
644static uint64_t SpecialAddr(MCDwarfLineTableParams Params, uint64_t op) {
645 return (op - Params.DWARF2LineOpcodeBase) / Params.DWARF2LineRange;
646}
647
648/// Utility function to encode a Dwarf pair of LineDelta and AddrDeltas.
649void MCDwarfLineAddr::Encode(MCContext &Context, MCDwarfLineTableParams Params,
650 int64_t LineDelta, uint64_t AddrDelta,
651 raw_ostream &OS) {
652 uint64_t Temp, Opcode;
653 bool NeedCopy = false;
654
655 // The maximum address skip amount that can be encoded with a special op.
656 uint64_t MaxSpecialAddrDelta = SpecialAddr(Params, 255);
657
658 // Scale the address delta by the minimum instruction length.
659 AddrDelta = ScaleAddrDelta(Context, AddrDelta);
660
661 // A LineDelta of INT64_MAX is a signal that this is actually a
662 // DW_LNE_end_sequence. We cannot use special opcodes here, since we want the
663 // end_sequence to emit the matrix entry.
664 if (LineDelta == INT64_MAX(9223372036854775807L)) {
665 if (AddrDelta == MaxSpecialAddrDelta)
666 OS << char(dwarf::DW_LNS_const_add_pc);
667 else if (AddrDelta) {
668 OS << char(dwarf::DW_LNS_advance_pc);
669 encodeULEB128(AddrDelta, OS);
670 }
671 OS << char(dwarf::DW_LNS_extended_op);
672 OS << char(1);
673 OS << char(dwarf::DW_LNE_end_sequence);
674 return;
675 }
676
677 // Bias the line delta by the base.
678 Temp = LineDelta - Params.DWARF2LineBase;
679
680 // If the line increment is out of range of a special opcode, we must encode
681 // it with DW_LNS_advance_line.
682 if (Temp >= Params.DWARF2LineRange ||
683 Temp + Params.DWARF2LineOpcodeBase > 255) {
684 OS << char(dwarf::DW_LNS_advance_line);
685 encodeSLEB128(LineDelta, OS);
686
687 LineDelta = 0;
688 Temp = 0 - Params.DWARF2LineBase;
689 NeedCopy = true;
690 }
691
692 // Use DW_LNS_copy instead of a "line +0, addr +0" special opcode.
693 if (LineDelta == 0 && AddrDelta == 0) {
694 OS << char(dwarf::DW_LNS_copy);
695 return;
696 }
697
698 // Bias the opcode by the special opcode base.
699 Temp += Params.DWARF2LineOpcodeBase;
700
701 // Avoid overflow when addr_delta is large.
702 if (AddrDelta < 256 + MaxSpecialAddrDelta) {
703 // Try using a special opcode.
704 Opcode = Temp + AddrDelta * Params.DWARF2LineRange;
705 if (Opcode <= 255) {
706 OS << char(Opcode);
707 return;
708 }
709
710 // Try using DW_LNS_const_add_pc followed by special op.
711 Opcode = Temp + (AddrDelta - MaxSpecialAddrDelta) * Params.DWARF2LineRange;
712 if (Opcode <= 255) {
713 OS << char(dwarf::DW_LNS_const_add_pc);
714 OS << char(Opcode);
715 return;
716 }
717 }
718
719 // Otherwise use DW_LNS_advance_pc.
720 OS << char(dwarf::DW_LNS_advance_pc);
721 encodeULEB128(AddrDelta, OS);
722
723 if (NeedCopy)
724 OS << char(dwarf::DW_LNS_copy);
725 else {
726 assert(Temp <= 255 && "Buggy special opcode encoding.")((Temp <= 255 && "Buggy special opcode encoding.")
? static_cast<void> (0) : __assert_fail ("Temp <= 255 && \"Buggy special opcode encoding.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 726, __PRETTY_FUNCTION__))
;
727 OS << char(Temp);
728 }
729}
730
731bool MCDwarfLineAddr::FixedEncode(MCContext &Context,
732 MCDwarfLineTableParams Params,
733 int64_t LineDelta, uint64_t AddrDelta,
734 raw_ostream &OS,
735 uint32_t *Offset, uint32_t *Size) {
736 if (LineDelta != INT64_MAX(9223372036854775807L)) {
737 OS << char(dwarf::DW_LNS_advance_line);
738 encodeSLEB128(LineDelta, OS);
739 }
740
741 // Use address delta to adjust address or use absolute address to adjust
742 // address.
743 bool SetDelta;
744 // According to DWARF spec., the DW_LNS_fixed_advance_pc opcode takes a
745 // single uhalf (unencoded) operand. So, the maximum value of AddrDelta
746 // is 65535. We set a conservative upper bound for it for relaxation.
747 if (AddrDelta > 60000) {
748 const MCAsmInfo *asmInfo = Context.getAsmInfo();
749 unsigned AddrSize = asmInfo->getCodePointerSize();
750
751 OS << char(dwarf::DW_LNS_extended_op);
752 encodeULEB128(1 + AddrSize, OS);
753 OS << char(dwarf::DW_LNE_set_address);
754 // Generate fixup for the address.
755 *Offset = OS.tell();
756 *Size = AddrSize;
757 SetDelta = false;
758 std::vector<uint8_t> FillData;
759 FillData.insert(FillData.begin(), AddrSize, 0);
760 OS.write(reinterpret_cast<char *>(FillData.data()), AddrSize);
761 } else {
762 OS << char(dwarf::DW_LNS_fixed_advance_pc);
763 // Generate fixup for 2-bytes address delta.
764 *Offset = OS.tell();
765 *Size = 2;
766 SetDelta = true;
767 OS << char(0);
768 OS << char(0);
769 }
770
771 if (LineDelta == INT64_MAX(9223372036854775807L)) {
772 OS << char(dwarf::DW_LNS_extended_op);
773 OS << char(1);
774 OS << char(dwarf::DW_LNE_end_sequence);
775 } else {
776 OS << char(dwarf::DW_LNS_copy);
777 }
778
779 return SetDelta;
780}
781
782// Utility function to write a tuple for .debug_abbrev.
783static void EmitAbbrev(MCStreamer *MCOS, uint64_t Name, uint64_t Form) {
784 MCOS->EmitULEB128IntValue(Name);
785 MCOS->EmitULEB128IntValue(Form);
786}
787
788// When generating dwarf for assembly source files this emits
789// the data for .debug_abbrev section which contains three DIEs.
790static void EmitGenDwarfAbbrev(MCStreamer *MCOS) {
791 MCContext &context = MCOS->getContext();
792 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfAbbrevSection());
793
794 // DW_TAG_compile_unit DIE abbrev (1).
795 MCOS->EmitULEB128IntValue(1);
796 MCOS->EmitULEB128IntValue(dwarf::DW_TAG_compile_unit);
797 MCOS->EmitIntValue(dwarf::DW_CHILDREN_yes, 1);
798 EmitAbbrev(MCOS, dwarf::DW_AT_stmt_list, context.getDwarfVersion() >= 4
799 ? dwarf::DW_FORM_sec_offset
800 : dwarf::DW_FORM_data4);
801 if (context.getGenDwarfSectionSyms().size() > 1 &&
802 context.getDwarfVersion() >= 3) {
803 EmitAbbrev(MCOS, dwarf::DW_AT_ranges, context.getDwarfVersion() >= 4
804 ? dwarf::DW_FORM_sec_offset
805 : dwarf::DW_FORM_data4);
806 } else {
807 EmitAbbrev(MCOS, dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr);
808 EmitAbbrev(MCOS, dwarf::DW_AT_high_pc, dwarf::DW_FORM_addr);
809 }
810 EmitAbbrev(MCOS, dwarf::DW_AT_name, dwarf::DW_FORM_string);
811 if (!context.getCompilationDir().empty())
812 EmitAbbrev(MCOS, dwarf::DW_AT_comp_dir, dwarf::DW_FORM_string);
813 StringRef DwarfDebugFlags = context.getDwarfDebugFlags();
814 if (!DwarfDebugFlags.empty())
815 EmitAbbrev(MCOS, dwarf::DW_AT_APPLE_flags, dwarf::DW_FORM_string);
816 EmitAbbrev(MCOS, dwarf::DW_AT_producer, dwarf::DW_FORM_string);
817 EmitAbbrev(MCOS, dwarf::DW_AT_language, dwarf::DW_FORM_data2);
818 EmitAbbrev(MCOS, 0, 0);
819
820 // DW_TAG_label DIE abbrev (2).
821 MCOS->EmitULEB128IntValue(2);
822 MCOS->EmitULEB128IntValue(dwarf::DW_TAG_label);
823 MCOS->EmitIntValue(dwarf::DW_CHILDREN_yes, 1);
824 EmitAbbrev(MCOS, dwarf::DW_AT_name, dwarf::DW_FORM_string);
825 EmitAbbrev(MCOS, dwarf::DW_AT_decl_file, dwarf::DW_FORM_data4);
826 EmitAbbrev(MCOS, dwarf::DW_AT_decl_line, dwarf::DW_FORM_data4);
827 EmitAbbrev(MCOS, dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr);
828 EmitAbbrev(MCOS, dwarf::DW_AT_prototyped, dwarf::DW_FORM_flag);
829 EmitAbbrev(MCOS, 0, 0);
830
831 // DW_TAG_unspecified_parameters DIE abbrev (3).
832 MCOS->EmitULEB128IntValue(3);
833 MCOS->EmitULEB128IntValue(dwarf::DW_TAG_unspecified_parameters);
834 MCOS->EmitIntValue(dwarf::DW_CHILDREN_no, 1);
835 EmitAbbrev(MCOS, 0, 0);
836
837 // Terminate the abbreviations for this compilation unit.
838 MCOS->EmitIntValue(0, 1);
839}
840
841// When generating dwarf for assembly source files this emits the data for
842// .debug_aranges section. This section contains a header and a table of pairs
843// of PointerSize'ed values for the address and size of section(s) with line
844// table entries.
845static void EmitGenDwarfAranges(MCStreamer *MCOS,
846 const MCSymbol *InfoSectionSymbol) {
847 MCContext &context = MCOS->getContext();
848
849 auto &Sections = context.getGenDwarfSectionSyms();
850
851 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfARangesSection());
852
853 // This will be the length of the .debug_aranges section, first account for
854 // the size of each item in the header (see below where we emit these items).
855 int Length = 4 + 2 + 4 + 1 + 1;
856
857 // Figure the padding after the header before the table of address and size
858 // pairs who's values are PointerSize'ed.
859 const MCAsmInfo *asmInfo = context.getAsmInfo();
860 int AddrSize = asmInfo->getCodePointerSize();
861 int Pad = 2 * AddrSize - (Length & (2 * AddrSize - 1));
862 if (Pad == 2 * AddrSize)
863 Pad = 0;
864 Length += Pad;
865
866 // Add the size of the pair of PointerSize'ed values for the address and size
867 // of each section we have in the table.
868 Length += 2 * AddrSize * Sections.size();
869 // And the pair of terminating zeros.
870 Length += 2 * AddrSize;
871
872 // Emit the header for this section.
873 // The 4 byte length not including the 4 byte value for the length.
874 MCOS->EmitIntValue(Length - 4, 4);
875 // The 2 byte version, which is 2.
876 MCOS->EmitIntValue(2, 2);
877 // The 4 byte offset to the compile unit in the .debug_info from the start
878 // of the .debug_info.
879 if (InfoSectionSymbol)
880 MCOS->EmitSymbolValue(InfoSectionSymbol, 4,
881 asmInfo->needsDwarfSectionOffsetDirective());
882 else
883 MCOS->EmitIntValue(0, 4);
884 // The 1 byte size of an address.
885 MCOS->EmitIntValue(AddrSize, 1);
886 // The 1 byte size of a segment descriptor, we use a value of zero.
887 MCOS->EmitIntValue(0, 1);
888 // Align the header with the padding if needed, before we put out the table.
889 for(int i = 0; i < Pad; i++)
890 MCOS->EmitIntValue(0, 1);
891
892 // Now emit the table of pairs of PointerSize'ed values for the section
893 // addresses and sizes.
894 for (MCSection *Sec : Sections) {
895 const MCSymbol *StartSymbol = Sec->getBeginSymbol();
896 MCSymbol *EndSymbol = Sec->getEndSymbol(context);
897 assert(StartSymbol && "StartSymbol must not be NULL")((StartSymbol && "StartSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("StartSymbol && \"StartSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 897, __PRETTY_FUNCTION__))
;
898 assert(EndSymbol && "EndSymbol must not be NULL")((EndSymbol && "EndSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("EndSymbol && \"EndSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 898, __PRETTY_FUNCTION__))
;
899
900 const MCExpr *Addr = MCSymbolRefExpr::create(
901 StartSymbol, MCSymbolRefExpr::VK_None, context);
902 const MCExpr *Size = MakeStartMinusEndExpr(*MCOS,
903 *StartSymbol, *EndSymbol, 0);
904 MCOS->EmitValue(Addr, AddrSize);
905 emitAbsValue(*MCOS, Size, AddrSize);
906 }
907
908 // And finally the pair of terminating zeros.
909 MCOS->EmitIntValue(0, AddrSize);
910 MCOS->EmitIntValue(0, AddrSize);
911}
912
913// When generating dwarf for assembly source files this emits the data for
914// .debug_info section which contains three parts. The header, the compile_unit
915// DIE and a list of label DIEs.
916static void EmitGenDwarfInfo(MCStreamer *MCOS,
917 const MCSymbol *AbbrevSectionSymbol,
918 const MCSymbol *LineSectionSymbol,
919 const MCSymbol *RangesSectionSymbol) {
920 MCContext &context = MCOS->getContext();
921
922 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfInfoSection());
923
924 // Create a symbol at the start and end of this section used in here for the
925 // expression to calculate the length in the header.
926 MCSymbol *InfoStart = context.createTempSymbol();
927 MCOS->EmitLabel(InfoStart);
928 MCSymbol *InfoEnd = context.createTempSymbol();
929
930 // First part: the header.
931
932 // The 4 byte total length of the information for this compilation unit, not
933 // including these 4 bytes.
934 const MCExpr *Length = MakeStartMinusEndExpr(*MCOS, *InfoStart, *InfoEnd, 4);
935 emitAbsValue(*MCOS, Length, 4);
936
937 // The 2 byte DWARF version.
938 MCOS->EmitIntValue(context.getDwarfVersion(), 2);
939
940 // The DWARF v5 header has unit type, address size, abbrev offset.
941 // Earlier versions have abbrev offset, address size.
942 const MCAsmInfo &AsmInfo = *context.getAsmInfo();
943 int AddrSize = AsmInfo.getCodePointerSize();
944 if (context.getDwarfVersion() >= 5) {
945 MCOS->EmitIntValue(dwarf::DW_UT_compile, 1);
946 MCOS->EmitIntValue(AddrSize, 1);
947 }
948 // The 4 byte offset to the debug abbrevs from the start of the .debug_abbrev,
949 // it is at the start of that section so this is zero.
950 if (AbbrevSectionSymbol == nullptr)
951 MCOS->EmitIntValue(0, 4);
952 else
953 MCOS->EmitSymbolValue(AbbrevSectionSymbol, 4,
954 AsmInfo.needsDwarfSectionOffsetDirective());
955 if (context.getDwarfVersion() <= 4)
956 MCOS->EmitIntValue(AddrSize, 1);
957
958 // Second part: the compile_unit DIE.
959
960 // The DW_TAG_compile_unit DIE abbrev (1).
961 MCOS->EmitULEB128IntValue(1);
962
963 // DW_AT_stmt_list, a 4 byte offset from the start of the .debug_line section,
964 // which is at the start of that section so this is zero.
965 if (LineSectionSymbol)
966 MCOS->EmitSymbolValue(LineSectionSymbol, 4,
967 AsmInfo.needsDwarfSectionOffsetDirective());
968 else
969 MCOS->EmitIntValue(0, 4);
970
971 if (RangesSectionSymbol) {
972 // There are multiple sections containing code, so we must use the
973 // .debug_ranges sections.
974
975 // AT_ranges, the 4 byte offset from the start of the .debug_ranges section
976 // to the address range list for this compilation unit.
977 MCOS->EmitSymbolValue(RangesSectionSymbol, 4);
978 } else {
979 // If we only have one non-empty code section, we can use the simpler
980 // AT_low_pc and AT_high_pc attributes.
981
982 // Find the first (and only) non-empty text section
983 auto &Sections = context.getGenDwarfSectionSyms();
984 const auto TextSection = Sections.begin();
985 assert(TextSection != Sections.end() && "No text section found")((TextSection != Sections.end() && "No text section found"
) ? static_cast<void> (0) : __assert_fail ("TextSection != Sections.end() && \"No text section found\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 985, __PRETTY_FUNCTION__))
;
986
987 MCSymbol *StartSymbol = (*TextSection)->getBeginSymbol();
988 MCSymbol *EndSymbol = (*TextSection)->getEndSymbol(context);
989 assert(StartSymbol && "StartSymbol must not be NULL")((StartSymbol && "StartSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("StartSymbol && \"StartSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 989, __PRETTY_FUNCTION__))
;
990 assert(EndSymbol && "EndSymbol must not be NULL")((EndSymbol && "EndSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("EndSymbol && \"EndSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 990, __PRETTY_FUNCTION__))
;
991
992 // AT_low_pc, the first address of the default .text section.
993 const MCExpr *Start = MCSymbolRefExpr::create(
994 StartSymbol, MCSymbolRefExpr::VK_None, context);
995 MCOS->EmitValue(Start, AddrSize);
996
997 // AT_high_pc, the last address of the default .text section.
998 const MCExpr *End = MCSymbolRefExpr::create(
999 EndSymbol, MCSymbolRefExpr::VK_None, context);
1000 MCOS->EmitValue(End, AddrSize);
1001 }
1002
1003 // AT_name, the name of the source file. Reconstruct from the first directory
1004 // and file table entries.
1005 const SmallVectorImpl<std::string> &MCDwarfDirs = context.getMCDwarfDirs();
1006 if (MCDwarfDirs.size() > 0) {
1007 MCOS->EmitBytes(MCDwarfDirs[0]);
1008 MCOS->EmitBytes(sys::path::get_separator());
1009 }
1010 const SmallVectorImpl<MCDwarfFile> &MCDwarfFiles =
1011 MCOS->getContext().getMCDwarfFiles();
1012 MCOS->EmitBytes(MCDwarfFiles[1].Name);
1013 MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string.
1014
1015 // AT_comp_dir, the working directory the assembly was done in.
1016 if (!context.getCompilationDir().empty()) {
1017 MCOS->EmitBytes(context.getCompilationDir());
1018 MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string.
1019 }
1020
1021 // AT_APPLE_flags, the command line arguments of the assembler tool.
1022 StringRef DwarfDebugFlags = context.getDwarfDebugFlags();
1023 if (!DwarfDebugFlags.empty()){
1024 MCOS->EmitBytes(DwarfDebugFlags);
1025 MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string.
1026 }
1027
1028 // AT_producer, the version of the assembler tool.
1029 StringRef DwarfDebugProducer = context.getDwarfDebugProducer();
1030 if (!DwarfDebugProducer.empty())
1031 MCOS->EmitBytes(DwarfDebugProducer);
1032 else
1033 MCOS->EmitBytes(StringRef("llvm-mc (based on LLVM " PACKAGE_VERSION"8.0.0" ")"));
1034 MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string.
1035
1036 // AT_language, a 4 byte value. We use DW_LANG_Mips_Assembler as the dwarf2
1037 // draft has no standard code for assembler.
1038 MCOS->EmitIntValue(dwarf::DW_LANG_Mips_Assembler, 2);
1039
1040 // Third part: the list of label DIEs.
1041
1042 // Loop on saved info for dwarf labels and create the DIEs for them.
1043 const std::vector<MCGenDwarfLabelEntry> &Entries =
1044 MCOS->getContext().getMCGenDwarfLabelEntries();
1045 for (const auto &Entry : Entries) {
1046 // The DW_TAG_label DIE abbrev (2).
1047 MCOS->EmitULEB128IntValue(2);
1048
1049 // AT_name, of the label without any leading underbar.
1050 MCOS->EmitBytes(Entry.getName());
1051 MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string.
1052
1053 // AT_decl_file, index into the file table.
1054 MCOS->EmitIntValue(Entry.getFileNumber(), 4);
1055
1056 // AT_decl_line, source line number.
1057 MCOS->EmitIntValue(Entry.getLineNumber(), 4);
1058
1059 // AT_low_pc, start address of the label.
1060 const MCExpr *AT_low_pc = MCSymbolRefExpr::create(Entry.getLabel(),
1061 MCSymbolRefExpr::VK_None, context);
1062 MCOS->EmitValue(AT_low_pc, AddrSize);
1063
1064 // DW_AT_prototyped, a one byte flag value of 0 saying we have no prototype.
1065 MCOS->EmitIntValue(0, 1);
1066
1067 // The DW_TAG_unspecified_parameters DIE abbrev (3).
1068 MCOS->EmitULEB128IntValue(3);
1069
1070 // Add the NULL DIE terminating the DW_TAG_unspecified_parameters DIE's.
1071 MCOS->EmitIntValue(0, 1);
1072 }
1073
1074 // Add the NULL DIE terminating the Compile Unit DIE's.
1075 MCOS->EmitIntValue(0, 1);
1076
1077 // Now set the value of the symbol at the end of the info section.
1078 MCOS->EmitLabel(InfoEnd);
1079}
1080
1081// When generating dwarf for assembly source files this emits the data for
1082// .debug_ranges section. We only emit one range list, which spans all of the
1083// executable sections of this file.
1084static void EmitGenDwarfRanges(MCStreamer *MCOS) {
1085 MCContext &context = MCOS->getContext();
1086 auto &Sections = context.getGenDwarfSectionSyms();
1087
1088 const MCAsmInfo *AsmInfo = context.getAsmInfo();
1089 int AddrSize = AsmInfo->getCodePointerSize();
1090
1091 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfRangesSection());
1092
1093 for (MCSection *Sec : Sections) {
1094 const MCSymbol *StartSymbol = Sec->getBeginSymbol();
1095 MCSymbol *EndSymbol = Sec->getEndSymbol(context);
1096 assert(StartSymbol && "StartSymbol must not be NULL")((StartSymbol && "StartSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("StartSymbol && \"StartSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 1096, __PRETTY_FUNCTION__))
;
1097 assert(EndSymbol && "EndSymbol must not be NULL")((EndSymbol && "EndSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("EndSymbol && \"EndSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 1097, __PRETTY_FUNCTION__))
;
1098
1099 // Emit a base address selection entry for the start of this section
1100 const MCExpr *SectionStartAddr = MCSymbolRefExpr::create(
1101 StartSymbol, MCSymbolRefExpr::VK_None, context);
1102 MCOS->emitFill(AddrSize, 0xFF);
1103 MCOS->EmitValue(SectionStartAddr, AddrSize);
1104
1105 // Emit a range list entry spanning this section
1106 const MCExpr *SectionSize = MakeStartMinusEndExpr(*MCOS,
1107 *StartSymbol, *EndSymbol, 0);
1108 MCOS->EmitIntValue(0, AddrSize);
1109 emitAbsValue(*MCOS, SectionSize, AddrSize);
1110 }
1111
1112 // Emit end of list entry
1113 MCOS->EmitIntValue(0, AddrSize);
1114 MCOS->EmitIntValue(0, AddrSize);
1115}
1116
1117//
1118// When generating dwarf for assembly source files this emits the Dwarf
1119// sections.
1120//
1121void MCGenDwarfInfo::Emit(MCStreamer *MCOS) {
1122 MCContext &context = MCOS->getContext();
1123
1124 // Create the dwarf sections in this order (.debug_line already created).
1125 const MCAsmInfo *AsmInfo = context.getAsmInfo();
1126 bool CreateDwarfSectionSymbols =
1127 AsmInfo->doesDwarfUseRelocationsAcrossSections();
1128 MCSymbol *LineSectionSymbol = nullptr;
1129 if (CreateDwarfSectionSymbols)
1130 LineSectionSymbol = MCOS->getDwarfLineTableSymbol(0);
1131 MCSymbol *AbbrevSectionSymbol = nullptr;
1132 MCSymbol *InfoSectionSymbol = nullptr;
1133 MCSymbol *RangesSectionSymbol = nullptr;
1134
1135 // Create end symbols for each section, and remove empty sections
1136 MCOS->getContext().finalizeDwarfSections(*MCOS);
1137
1138 // If there are no sections to generate debug info for, we don't need
1139 // to do anything
1140 if (MCOS->getContext().getGenDwarfSectionSyms().empty())
1141 return;
1142
1143 // We only use the .debug_ranges section if we have multiple code sections,
1144 // and we are emitting a DWARF version which supports it.
1145 const bool UseRangesSection =
1146 MCOS->getContext().getGenDwarfSectionSyms().size() > 1 &&
1147 MCOS->getContext().getDwarfVersion() >= 3;
1148 CreateDwarfSectionSymbols |= UseRangesSection;
1149
1150 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfInfoSection());
1151 if (CreateDwarfSectionSymbols) {
1152 InfoSectionSymbol = context.createTempSymbol();
1153 MCOS->EmitLabel(InfoSectionSymbol);
1154 }
1155 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfAbbrevSection());
1156 if (CreateDwarfSectionSymbols) {
1157 AbbrevSectionSymbol = context.createTempSymbol();
1158 MCOS->EmitLabel(AbbrevSectionSymbol);
1159 }
1160 if (UseRangesSection) {
1161 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfRangesSection());
1162 if (CreateDwarfSectionSymbols) {
1163 RangesSectionSymbol = context.createTempSymbol();
1164 MCOS->EmitLabel(RangesSectionSymbol);
1165 }
1166 }
1167
1168 assert((RangesSectionSymbol != nullptr) || !UseRangesSection)(((RangesSectionSymbol != nullptr) || !UseRangesSection) ? static_cast
<void> (0) : __assert_fail ("(RangesSectionSymbol != nullptr) || !UseRangesSection"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 1168, __PRETTY_FUNCTION__))
;
1169
1170 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfARangesSection());
1171
1172 // Output the data for .debug_aranges section.
1173 EmitGenDwarfAranges(MCOS, InfoSectionSymbol);
1174
1175 if (UseRangesSection)
1176 EmitGenDwarfRanges(MCOS);
1177
1178 // Output the data for .debug_abbrev section.
1179 EmitGenDwarfAbbrev(MCOS);
1180
1181 // Output the data for .debug_info section.
1182 EmitGenDwarfInfo(MCOS, AbbrevSectionSymbol, LineSectionSymbol,
1183 RangesSectionSymbol);
1184}
1185
1186//
1187// When generating dwarf for assembly source files this is called when symbol
1188// for a label is created. If this symbol is not a temporary and is in the
1189// section that dwarf is being generated for, save the needed info to create
1190// a dwarf label.
1191//
1192void MCGenDwarfLabelEntry::Make(MCSymbol *Symbol, MCStreamer *MCOS,
1193 SourceMgr &SrcMgr, SMLoc &Loc) {
1194 // We won't create dwarf labels for temporary symbols.
1195 if (Symbol->isTemporary())
1196 return;
1197 MCContext &context = MCOS->getContext();
1198 // We won't create dwarf labels for symbols in sections that we are not
1199 // generating debug info for.
1200 if (!context.getGenDwarfSectionSyms().count(MCOS->getCurrentSectionOnly()))
1201 return;
1202
1203 // The dwarf label's name does not have the symbol name's leading
1204 // underbar if any.
1205 StringRef Name = Symbol->getName();
1206 if (Name.startswith("_"))
1207 Name = Name.substr(1, Name.size()-1);
1208
1209 // Get the dwarf file number to be used for the dwarf label.
1210 unsigned FileNumber = context.getGenDwarfFileNumber();
1211
1212 // Finding the line number is the expensive part which is why we just don't
1213 // pass it in as for some symbols we won't create a dwarf label.
1214 unsigned CurBuffer = SrcMgr.FindBufferContainingLoc(Loc);
1215 unsigned LineNumber = SrcMgr.FindLineNumber(Loc, CurBuffer);
1216
1217 // We create a temporary symbol for use for the AT_high_pc and AT_low_pc
1218 // values so that they don't have things like an ARM thumb bit from the
1219 // original symbol. So when used they won't get a low bit set after
1220 // relocation.
1221 MCSymbol *Label = context.createTempSymbol();
1222 MCOS->EmitLabel(Label);
1223
1224 // Create and entry for the info and add it to the other entries.
1225 MCOS->getContext().addMCGenDwarfLabelEntry(
1226 MCGenDwarfLabelEntry(Name, FileNumber, LineNumber, Label));
1227}
1228
1229static int getDataAlignmentFactor(MCStreamer &streamer) {
1230 MCContext &context = streamer.getContext();
1231 const MCAsmInfo *asmInfo = context.getAsmInfo();
1232 int size = asmInfo->getCalleeSaveStackSlotSize();
1233 if (asmInfo->isStackGrowthDirectionUp())
1234 return size;
1235 else
1236 return -size;
1237}
1238
1239static unsigned getSizeForEncoding(MCStreamer &streamer,
1240 unsigned symbolEncoding) {
1241 MCContext &context = streamer.getContext();
1242 unsigned format = symbolEncoding & 0x0f;
1243 switch (format) {
1244 default: llvm_unreachable("Unknown Encoding")::llvm::llvm_unreachable_internal("Unknown Encoding", "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 1244)
;
1245 case dwarf::DW_EH_PE_absptr:
1246 case dwarf::DW_EH_PE_signed:
1247 return context.getAsmInfo()->getCodePointerSize();
1248 case dwarf::DW_EH_PE_udata2:
1249 case dwarf::DW_EH_PE_sdata2:
1250 return 2;
1251 case dwarf::DW_EH_PE_udata4:
1252 case dwarf::DW_EH_PE_sdata4:
1253 return 4;
1254 case dwarf::DW_EH_PE_udata8:
1255 case dwarf::DW_EH_PE_sdata8:
1256 return 8;
1257 }
1258}
1259
1260static void emitFDESymbol(MCObjectStreamer &streamer, const MCSymbol &symbol,
1261 unsigned symbolEncoding, bool isEH) {
1262 MCContext &context = streamer.getContext();
1263 const MCAsmInfo *asmInfo = context.getAsmInfo();
1264 const MCExpr *v = asmInfo->getExprForFDESymbol(&symbol,
1265 symbolEncoding,
1266 streamer);
1267 unsigned size = getSizeForEncoding(streamer, symbolEncoding);
1268 if (asmInfo->doDwarfFDESymbolsUseAbsDiff() && isEH)
1269 emitAbsValue(streamer, v, size);
1270 else
1271 streamer.EmitValue(v, size);
1272}
1273
1274static void EmitPersonality(MCStreamer &streamer, const MCSymbol &symbol,
1275 unsigned symbolEncoding) {
1276 MCContext &context = streamer.getContext();
1277 const MCAsmInfo *asmInfo = context.getAsmInfo();
1278 const MCExpr *v = asmInfo->getExprForPersonalitySymbol(&symbol,
1279 symbolEncoding,
1280 streamer);
1281 unsigned size = getSizeForEncoding(streamer, symbolEncoding);
1282 streamer.EmitValue(v, size);
1283}
1284
1285namespace {
1286
1287class FrameEmitterImpl {
1288 int CFAOffset = 0;
1289 int InitialCFAOffset = 0;
1290 bool IsEH;
1291 MCObjectStreamer &Streamer;
1292
1293public:
1294 FrameEmitterImpl(bool IsEH, MCObjectStreamer &Streamer)
1295 : IsEH(IsEH), Streamer(Streamer) {}
1296
1297 /// Emit the unwind information in a compact way.
1298 void EmitCompactUnwind(const MCDwarfFrameInfo &frame);
1299
1300 const MCSymbol &EmitCIE(const MCDwarfFrameInfo &F);
1301 void EmitFDE(const MCSymbol &cieStart, const MCDwarfFrameInfo &frame,
1302 bool LastInSection, const MCSymbol &SectionStart);
1303 void EmitCFIInstructions(ArrayRef<MCCFIInstruction> Instrs,
1304 MCSymbol *BaseLabel);
1305 void EmitCFIInstruction(const MCCFIInstruction &Instr);
1306};
1307
1308} // end anonymous namespace
1309
1310static void emitEncodingByte(MCObjectStreamer &Streamer, unsigned Encoding) {
1311 Streamer.EmitIntValue(Encoding, 1);
1312}
1313
1314void FrameEmitterImpl::EmitCFIInstruction(const MCCFIInstruction &Instr) {
1315 int dataAlignmentFactor = getDataAlignmentFactor(Streamer);
1316 auto *MRI = Streamer.getContext().getRegisterInfo();
1317
1318 switch (Instr.getOperation()) {
1319 case MCCFIInstruction::OpRegister: {
1320 unsigned Reg1 = Instr.getRegister();
1321 unsigned Reg2 = Instr.getRegister2();
1322 if (!IsEH) {
1323 Reg1 = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg1);
1324 Reg2 = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg2);
1325 }
1326 Streamer.EmitIntValue(dwarf::DW_CFA_register, 1);
1327 Streamer.EmitULEB128IntValue(Reg1);
1328 Streamer.EmitULEB128IntValue(Reg2);
1329 return;
1330 }
1331 case MCCFIInstruction::OpWindowSave:
1332 Streamer.EmitIntValue(dwarf::DW_CFA_GNU_window_save, 1);
1333 return;
1334
1335 case MCCFIInstruction::OpNegateRAState:
1336 Streamer.EmitIntValue(dwarf::DW_CFA_AARCH64_negate_ra_state, 1);
1337 return;
1338
1339 case MCCFIInstruction::OpUndefined: {
1340 unsigned Reg = Instr.getRegister();
1341 Streamer.EmitIntValue(dwarf::DW_CFA_undefined, 1);
1342 Streamer.EmitULEB128IntValue(Reg);
1343 return;
1344 }
1345 case MCCFIInstruction::OpAdjustCfaOffset:
1346 case MCCFIInstruction::OpDefCfaOffset: {
1347 const bool IsRelative =
1348 Instr.getOperation() == MCCFIInstruction::OpAdjustCfaOffset;
1349
1350 Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa_offset, 1);
1351
1352 if (IsRelative)
1353 CFAOffset += Instr.getOffset();
1354 else
1355 CFAOffset = -Instr.getOffset();
1356
1357 Streamer.EmitULEB128IntValue(CFAOffset);
1358
1359 return;
1360 }
1361 case MCCFIInstruction::OpDefCfa: {
1362 unsigned Reg = Instr.getRegister();
1363 if (!IsEH)
1364 Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg);
1365 Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa, 1);
1366 Streamer.EmitULEB128IntValue(Reg);
1367 CFAOffset = -Instr.getOffset();
1368 Streamer.EmitULEB128IntValue(CFAOffset);
1369
1370 return;
1371 }
1372 case MCCFIInstruction::OpDefCfaRegister: {
1373 unsigned Reg = Instr.getRegister();
1374 if (!IsEH)
1375 Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg);
1376 Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa_register, 1);
1377 Streamer.EmitULEB128IntValue(Reg);
1378
1379 return;
1380 }
1381 case MCCFIInstruction::OpOffset:
1382 case MCCFIInstruction::OpRelOffset: {
1383 const bool IsRelative =
1384 Instr.getOperation() == MCCFIInstruction::OpRelOffset;
1385
1386 unsigned Reg = Instr.getRegister();
1387 if (!IsEH)
1388 Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg);
1389
1390 int Offset = Instr.getOffset();
1391 if (IsRelative)
1392 Offset -= CFAOffset;
1393 Offset = Offset / dataAlignmentFactor;
1394
1395 if (Offset < 0) {
1396 Streamer.EmitIntValue(dwarf::DW_CFA_offset_extended_sf, 1);
1397 Streamer.EmitULEB128IntValue(Reg);
1398 Streamer.EmitSLEB128IntValue(Offset);
1399 } else if (Reg < 64) {
1400 Streamer.EmitIntValue(dwarf::DW_CFA_offset + Reg, 1);
1401 Streamer.EmitULEB128IntValue(Offset);
1402 } else {
1403 Streamer.EmitIntValue(dwarf::DW_CFA_offset_extended, 1);
1404 Streamer.EmitULEB128IntValue(Reg);
1405 Streamer.EmitULEB128IntValue(Offset);
1406 }
1407 return;
1408 }
1409 case MCCFIInstruction::OpRememberState:
1410 Streamer.EmitIntValue(dwarf::DW_CFA_remember_state, 1);
1411 return;
1412 case MCCFIInstruction::OpRestoreState:
1413 Streamer.EmitIntValue(dwarf::DW_CFA_restore_state, 1);
1414 return;
1415 case MCCFIInstruction::OpSameValue: {
1416 unsigned Reg = Instr.getRegister();
1417 Streamer.EmitIntValue(dwarf::DW_CFA_same_value, 1);
1418 Streamer.EmitULEB128IntValue(Reg);
1419 return;
1420 }
1421 case MCCFIInstruction::OpRestore: {
1422 unsigned Reg = Instr.getRegister();
1423 if (!IsEH)
1424 Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg);
1425 if (Reg < 64) {
1426 Streamer.EmitIntValue(dwarf::DW_CFA_restore | Reg, 1);
1427 } else {
1428 Streamer.EmitIntValue(dwarf::DW_CFA_restore_extended, 1);
1429 Streamer.EmitULEB128IntValue(Reg);
1430 }
1431 return;
1432 }
1433 case MCCFIInstruction::OpGnuArgsSize:
1434 Streamer.EmitIntValue(dwarf::DW_CFA_GNU_args_size, 1);
1435 Streamer.EmitULEB128IntValue(Instr.getOffset());
1436 return;
1437
1438 case MCCFIInstruction::OpEscape:
1439 Streamer.EmitBytes(Instr.getValues());
1440 return;
1441 }
1442 llvm_unreachable("Unhandled case in switch")::llvm::llvm_unreachable_internal("Unhandled case in switch",
"/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 1442)
;
1443}
1444
1445/// Emit frame instructions to describe the layout of the frame.
1446void FrameEmitterImpl::EmitCFIInstructions(ArrayRef<MCCFIInstruction> Instrs,
1447 MCSymbol *BaseLabel) {
1448 for (const MCCFIInstruction &Instr : Instrs) {
1449 MCSymbol *Label = Instr.getLabel();
1450 // Throw out move if the label is invalid.
1451 if (Label && !Label->isDefined()) continue; // Not emitted, in dead code.
1452
1453 // Advance row if new location.
1454 if (BaseLabel && Label) {
1455 MCSymbol *ThisSym = Label;
1456 if (ThisSym != BaseLabel) {
1457 Streamer.EmitDwarfAdvanceFrameAddr(BaseLabel, ThisSym);
1458 BaseLabel = ThisSym;
1459 }
1460 }
1461
1462 EmitCFIInstruction(Instr);
1463 }
1464}
1465
1466/// Emit the unwind information in a compact way.
1467void FrameEmitterImpl::EmitCompactUnwind(const MCDwarfFrameInfo &Frame) {
1468 MCContext &Context = Streamer.getContext();
1469 const MCObjectFileInfo *MOFI = Context.getObjectFileInfo();
1470
1471 // range-start range-length compact-unwind-enc personality-func lsda
1472 // _foo LfooEnd-_foo 0x00000023 0 0
1473 // _bar LbarEnd-_bar 0x00000025 __gxx_personality except_tab1
1474 //
1475 // .section __LD,__compact_unwind,regular,debug
1476 //
1477 // # compact unwind for _foo
1478 // .quad _foo
1479 // .set L1,LfooEnd-_foo
1480 // .long L1
1481 // .long 0x01010001
1482 // .quad 0
1483 // .quad 0
1484 //
1485 // # compact unwind for _bar
1486 // .quad _bar
1487 // .set L2,LbarEnd-_bar
1488 // .long L2
1489 // .long 0x01020011
1490 // .quad __gxx_personality
1491 // .quad except_tab1
1492
1493 uint32_t Encoding = Frame.CompactUnwindEncoding;
1494 if (!Encoding) return;
1495 bool DwarfEHFrameOnly = (Encoding == MOFI->getCompactUnwindDwarfEHFrameOnly());
1496
1497 // The encoding needs to know we have an LSDA.
1498 if (!DwarfEHFrameOnly && Frame.Lsda)
1499 Encoding |= 0x40000000;
1500
1501 // Range Start
1502 unsigned FDEEncoding = MOFI->getFDEEncoding();
1503 unsigned Size = getSizeForEncoding(Streamer, FDEEncoding);
1504 Streamer.EmitSymbolValue(Frame.Begin, Size);
1505
1506 // Range Length
1507 const MCExpr *Range = MakeStartMinusEndExpr(Streamer, *Frame.Begin,
1508 *Frame.End, 0);
1509 emitAbsValue(Streamer, Range, 4);
1510
1511 // Compact Encoding
1512 Size = getSizeForEncoding(Streamer, dwarf::DW_EH_PE_udata4);
1513 Streamer.EmitIntValue(Encoding, Size);
1514
1515 // Personality Function
1516 Size = getSizeForEncoding(Streamer, dwarf::DW_EH_PE_absptr);
1517 if (!DwarfEHFrameOnly && Frame.Personality)
1518 Streamer.EmitSymbolValue(Frame.Personality, Size);
1519 else
1520 Streamer.EmitIntValue(0, Size); // No personality fn
1521
1522 // LSDA
1523 Size = getSizeForEncoding(Streamer, Frame.LsdaEncoding);
1524 if (!DwarfEHFrameOnly && Frame.Lsda)
1525 Streamer.EmitSymbolValue(Frame.Lsda, Size);
1526 else
1527 Streamer.EmitIntValue(0, Size); // No LSDA
1528}
1529
1530static unsigned getCIEVersion(bool IsEH, unsigned DwarfVersion) {
1531 if (IsEH)
1532 return 1;
1533 switch (DwarfVersion) {
1534 case 2:
1535 return 1;
1536 case 3:
1537 return 3;
1538 case 4:
1539 case 5:
1540 return 4;
1541 }
1542 llvm_unreachable("Unknown version")::llvm::llvm_unreachable_internal("Unknown version", "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 1542)
;
1543}
1544
1545const MCSymbol &FrameEmitterImpl::EmitCIE(const MCDwarfFrameInfo &Frame) {
1546 MCContext &context = Streamer.getContext();
1547 const MCRegisterInfo *MRI = context.getRegisterInfo();
1548 const MCObjectFileInfo *MOFI = context.getObjectFileInfo();
1549
1550 MCSymbol *sectionStart = context.createTempSymbol();
1551 Streamer.EmitLabel(sectionStart);
1552
1553 MCSymbol *sectionEnd = context.createTempSymbol();
1554
1555 // Length
1556 const MCExpr *Length =
1557 MakeStartMinusEndExpr(Streamer, *sectionStart, *sectionEnd, 4);
1558 emitAbsValue(Streamer, Length, 4);
1559
1560 // CIE ID
1561 unsigned CIE_ID = IsEH ? 0 : -1;
1562 Streamer.EmitIntValue(CIE_ID, 4);
1563
1564 // Version
1565 uint8_t CIEVersion = getCIEVersion(IsEH, context.getDwarfVersion());
1566 Streamer.EmitIntValue(CIEVersion, 1);
1567
1568 if (IsEH) {
1569 SmallString<8> Augmentation;
1570 Augmentation += "z";
1571 if (Frame.Personality)
1572 Augmentation += "P";
1573 if (Frame.Lsda)
1574 Augmentation += "L";
1575 Augmentation += "R";
1576 if (Frame.IsSignalFrame)
1577 Augmentation += "S";
1578 if (Frame.IsBKeyFrame)
1579 Augmentation += "B";
1580 Streamer.EmitBytes(Augmentation);
1581 }
1582 Streamer.EmitIntValue(0, 1);
1583
1584 if (CIEVersion >= 4) {
1585 // Address Size
1586 Streamer.EmitIntValue(context.getAsmInfo()->getCodePointerSize(), 1);
1587
1588 // Segment Descriptor Size
1589 Streamer.EmitIntValue(0, 1);
1590 }
1591
1592 // Code Alignment Factor
1593 Streamer.EmitULEB128IntValue(context.getAsmInfo()->getMinInstAlignment());
1594
1595 // Data Alignment Factor
1596 Streamer.EmitSLEB128IntValue(getDataAlignmentFactor(Streamer));
1597
1598 // Return Address Register
1599 unsigned RAReg = Frame.RAReg;
1600 if (RAReg == static_cast<unsigned>(INT_MAX2147483647))
1601 RAReg = MRI->getDwarfRegNum(MRI->getRARegister(), IsEH);
1602
1603 if (CIEVersion == 1) {
1604 assert(RAReg <= 255 &&((RAReg <= 255 && "DWARF 2 encodes return_address_register in one byte"
) ? static_cast<void> (0) : __assert_fail ("RAReg <= 255 && \"DWARF 2 encodes return_address_register in one byte\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 1605, __PRETTY_FUNCTION__))
1605 "DWARF 2 encodes return_address_register in one byte")((RAReg <= 255 && "DWARF 2 encodes return_address_register in one byte"
) ? static_cast<void> (0) : __assert_fail ("RAReg <= 255 && \"DWARF 2 encodes return_address_register in one byte\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 1605, __PRETTY_FUNCTION__))
;
1606 Streamer.EmitIntValue(RAReg, 1);
1607 } else {
1608 Streamer.EmitULEB128IntValue(RAReg);
1609 }
1610
1611 // Augmentation Data Length (optional)
1612 unsigned augmentationLength = 0;
1613 if (IsEH) {
1614 if (Frame.Personality) {
1615 // Personality Encoding
1616 augmentationLength += 1;
1617 // Personality
1618 augmentationLength +=
1619 getSizeForEncoding(Streamer, Frame.PersonalityEncoding);
1620 }
1621 if (Frame.Lsda)
1622 augmentationLength += 1;
1623 // Encoding of the FDE pointers
1624 augmentationLength += 1;
1625
1626 Streamer.EmitULEB128IntValue(augmentationLength);
1627
1628 // Augmentation Data (optional)
1629 if (Frame.Personality) {
1630 // Personality Encoding
1631 emitEncodingByte(Streamer, Frame.PersonalityEncoding);
1632 // Personality
1633 EmitPersonality(Streamer, *Frame.Personality, Frame.PersonalityEncoding);
1634 }
1635
1636 if (Frame.Lsda)
1637 emitEncodingByte(Streamer, Frame.LsdaEncoding);
1638
1639 // Encoding of the FDE pointers
1640 emitEncodingByte(Streamer, MOFI->getFDEEncoding());
1641 }
1642
1643 // Initial Instructions
1644
1645 const MCAsmInfo *MAI = context.getAsmInfo();
1646 if (!Frame.IsSimple) {
1647 const std::vector<MCCFIInstruction> &Instructions =
1648 MAI->getInitialFrameState();
1649 EmitCFIInstructions(Instructions, nullptr);
1650 }
1651
1652 InitialCFAOffset = CFAOffset;
1653
1654 // Padding
1655 Streamer.EmitValueToAlignment(IsEH ? 4 : MAI->getCodePointerSize());
1656
1657 Streamer.EmitLabel(sectionEnd);
1658 return *sectionStart;
1659}
1660
1661void FrameEmitterImpl::EmitFDE(const MCSymbol &cieStart,
1662 const MCDwarfFrameInfo &frame,
1663 bool LastInSection,
1664 const MCSymbol &SectionStart) {
1665 MCContext &context = Streamer.getContext();
1666 MCSymbol *fdeStart = context.createTempSymbol();
1667 MCSymbol *fdeEnd = context.createTempSymbol();
1668 const MCObjectFileInfo *MOFI = context.getObjectFileInfo();
1669
1670 CFAOffset = InitialCFAOffset;
1671
1672 // Length
1673 const MCExpr *Length = MakeStartMinusEndExpr(Streamer, *fdeStart, *fdeEnd, 0);
1674 emitAbsValue(Streamer, Length, 4);
1675
1676 Streamer.EmitLabel(fdeStart);
1677
1678 // CIE Pointer
1679 const MCAsmInfo *asmInfo = context.getAsmInfo();
1680 if (IsEH) {
1681 const MCExpr *offset =
1682 MakeStartMinusEndExpr(Streamer, cieStart, *fdeStart, 0);
1683 emitAbsValue(Streamer, offset, 4);
1684 } else if (!asmInfo->doesDwarfUseRelocationsAcrossSections()) {
1685 const MCExpr *offset =
1686 MakeStartMinusEndExpr(Streamer, SectionStart, cieStart, 0);
1687 emitAbsValue(Streamer, offset, 4);
1688 } else {
1689 Streamer.EmitSymbolValue(&cieStart, 4);
1690 }
1691
1692 // PC Begin
1693 unsigned PCEncoding =
1694 IsEH ? MOFI->getFDEEncoding() : (unsigned)dwarf::DW_EH_PE_absptr;
1695 unsigned PCSize = getSizeForEncoding(Streamer, PCEncoding);
1696 emitFDESymbol(Streamer, *frame.Begin, PCEncoding, IsEH);
1697
1698 // PC Range
1699 const MCExpr *Range =
1700 MakeStartMinusEndExpr(Streamer, *frame.Begin, *frame.End, 0);
1701 emitAbsValue(Streamer, Range, PCSize);
1702
1703 if (IsEH) {
1704 // Augmentation Data Length
1705 unsigned augmentationLength = 0;
1706
1707 if (frame.Lsda)
1708 augmentationLength += getSizeForEncoding(Streamer, frame.LsdaEncoding);
1709
1710 Streamer.EmitULEB128IntValue(augmentationLength);
1711
1712 // Augmentation Data
1713 if (frame.Lsda)
1714 emitFDESymbol(Streamer, *frame.Lsda, frame.LsdaEncoding, true);
1715 }
1716
1717 // Call Frame Instructions
1718 EmitCFIInstructions(frame.Instructions, frame.Begin);
1719
1720 // Padding
1721 // The size of a .eh_frame section has to be a multiple of the alignment
1722 // since a null CIE is interpreted as the end. Old systems overaligned
1723 // .eh_frame, so we do too and account for it in the last FDE.
1724 unsigned Align = LastInSection ? asmInfo->getCodePointerSize() : PCSize;
1725 Streamer.EmitValueToAlignment(Align);
1726
1727 Streamer.EmitLabel(fdeEnd);
1728}
1729
1730namespace {
1731
1732struct CIEKey {
1733 static const CIEKey getEmptyKey() {
1734 return CIEKey(nullptr, 0, -1, false, false, static_cast<unsigned>(INT_MAX2147483647),
1735 false);
1736 }
1737
1738 static const CIEKey getTombstoneKey() {
1739 return CIEKey(nullptr, -1, 0, false, false, static_cast<unsigned>(INT_MAX2147483647),
1740 false);
1741 }
1742
1743 CIEKey(const MCSymbol *Personality, unsigned PersonalityEncoding,
1744 unsigned LSDAEncoding, bool IsSignalFrame, bool IsSimple,
1745 unsigned RAReg, bool IsBKeyFrame)
1746 : Personality(Personality), PersonalityEncoding(PersonalityEncoding),
1747 LsdaEncoding(LSDAEncoding), IsSignalFrame(IsSignalFrame),
1748 IsSimple(IsSimple), RAReg(RAReg), IsBKeyFrame(IsBKeyFrame) {}
1749
1750 explicit CIEKey(const MCDwarfFrameInfo &Frame)
1751 : Personality(Frame.Personality),
1752 PersonalityEncoding(Frame.PersonalityEncoding),
1753 LsdaEncoding(Frame.LsdaEncoding), IsSignalFrame(Frame.IsSignalFrame),
1754 IsSimple(Frame.IsSimple), RAReg(Frame.RAReg),
1755 IsBKeyFrame(Frame.IsBKeyFrame) {}
1756
1757 const MCSymbol *Personality;
1758 unsigned PersonalityEncoding;
1759 unsigned LsdaEncoding;
1760 bool IsSignalFrame;
1761 bool IsSimple;
1762 unsigned RAReg;
1763 bool IsBKeyFrame;
1764};
1765
1766} // end anonymous namespace
1767
1768namespace llvm {
1769
1770template <> struct DenseMapInfo<CIEKey> {
1771 static CIEKey getEmptyKey() { return CIEKey::getEmptyKey(); }
1772 static CIEKey getTombstoneKey() { return CIEKey::getTombstoneKey(); }
1773
1774 static unsigned getHashValue(const CIEKey &Key) {
1775 return static_cast<unsigned>(hash_combine(
1776 Key.Personality, Key.PersonalityEncoding, Key.LsdaEncoding,
1777 Key.IsSignalFrame, Key.IsSimple, Key.RAReg, Key.IsBKeyFrame));
1778 }
1779
1780 static bool isEqual(const CIEKey &LHS, const CIEKey &RHS) {
1781 return LHS.Personality == RHS.Personality &&
1782 LHS.PersonalityEncoding == RHS.PersonalityEncoding &&
1783 LHS.LsdaEncoding == RHS.LsdaEncoding &&
1784 LHS.IsSignalFrame == RHS.IsSignalFrame &&
1785 LHS.IsSimple == RHS.IsSimple && LHS.RAReg == RHS.RAReg &&
1786 LHS.IsBKeyFrame == RHS.IsBKeyFrame;
1787 }
1788};
1789
1790} // end namespace llvm
1791
1792void MCDwarfFrameEmitter::Emit(MCObjectStreamer &Streamer, MCAsmBackend *MAB,
1793 bool IsEH) {
1794 Streamer.generateCompactUnwindEncodings(MAB);
1795
1796 MCContext &Context = Streamer.getContext();
1797 const MCObjectFileInfo *MOFI = Context.getObjectFileInfo();
1798 const MCAsmInfo *AsmInfo = Context.getAsmInfo();
1799 FrameEmitterImpl Emitter(IsEH, Streamer);
1800 ArrayRef<MCDwarfFrameInfo> FrameArray = Streamer.getDwarfFrameInfos();
1801
1802 // Emit the compact unwind info if available.
1803 bool NeedsEHFrameSection = !MOFI->getSupportsCompactUnwindWithoutEHFrame();
1804 if (IsEH && MOFI->getCompactUnwindSection()) {
1805 bool SectionEmitted = false;
1806 for (const MCDwarfFrameInfo &Frame : FrameArray) {
1807 if (Frame.CompactUnwindEncoding == 0) continue;
1808 if (!SectionEmitted) {
1809 Streamer.SwitchSection(MOFI->getCompactUnwindSection());
1810 Streamer.EmitValueToAlignment(AsmInfo->getCodePointerSize());
1811 SectionEmitted = true;
1812 }
1813 NeedsEHFrameSection |=
1814 Frame.CompactUnwindEncoding ==
1815 MOFI->getCompactUnwindDwarfEHFrameOnly();
1816 Emitter.EmitCompactUnwind(Frame);
1817 }
1818 }
1819
1820 if (!NeedsEHFrameSection) return;
1821
1822 MCSection &Section =
1823 IsEH ? *const_cast<MCObjectFileInfo *>(MOFI)->getEHFrameSection()
1824 : *MOFI->getDwarfFrameSection();
1825
1826 Streamer.SwitchSection(&Section);
1827 MCSymbol *SectionStart = Context.createTempSymbol();
1828 Streamer.EmitLabel(SectionStart);
1829
1830 DenseMap<CIEKey, const MCSymbol *> CIEStarts;
1831
1832 const MCSymbol *DummyDebugKey = nullptr;
1833 bool CanOmitDwarf = MOFI->getOmitDwarfIfHaveCompactUnwind();
1834 for (auto I = FrameArray.begin(), E = FrameArray.end(); I != E;) {
1835 const MCDwarfFrameInfo &Frame = *I;
1836 ++I;
1837 if (CanOmitDwarf && Frame.CompactUnwindEncoding !=
1838 MOFI->getCompactUnwindDwarfEHFrameOnly())
1839 // Don't generate an EH frame if we don't need one. I.e., it's taken care
1840 // of by the compact unwind encoding.
1841 continue;
1842
1843 CIEKey Key(Frame);
1844 const MCSymbol *&CIEStart = IsEH ? CIEStarts[Key] : DummyDebugKey;
1845 if (!CIEStart)
1846 CIEStart = &Emitter.EmitCIE(Frame);
1847
1848 Emitter.EmitFDE(*CIEStart, Frame, I == E, *SectionStart);
1849 }
1850}
1851
1852void MCDwarfFrameEmitter::EmitAdvanceLoc(MCObjectStreamer &Streamer,
1853 uint64_t AddrDelta) {
1854 MCContext &Context = Streamer.getContext();
1855 SmallString<256> Tmp;
1856 raw_svector_ostream OS(Tmp);
1857 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OS);
1858 Streamer.EmitBytes(OS.str());
1859}
1860
1861void MCDwarfFrameEmitter::EncodeAdvanceLoc(MCContext &Context,
1862 uint64_t AddrDelta,
1863 raw_ostream &OS) {
1864 // Scale the address delta by the minimum instruction length.
1865 AddrDelta = ScaleAddrDelta(Context, AddrDelta);
1866
1867 support::endianness E =
1868 Context.getAsmInfo()->isLittleEndian() ? support::little : support::big;
1869 if (AddrDelta == 0) {
1870 } else if (isUIntN(6, AddrDelta)) {
1871 uint8_t Opcode = dwarf::DW_CFA_advance_loc | AddrDelta;
1872 OS << Opcode;
1873 } else if (isUInt<8>(AddrDelta)) {
1874 OS << uint8_t(dwarf::DW_CFA_advance_loc1);
1875 OS << uint8_t(AddrDelta);
1876 } else if (isUInt<16>(AddrDelta)) {
1877 OS << uint8_t(dwarf::DW_CFA_advance_loc2);
1878 support::endian::write<uint16_t>(OS, AddrDelta, E);
1879 } else {
1880 assert(isUInt<32>(AddrDelta))((isUInt<32>(AddrDelta)) ? static_cast<void> (0) :
__assert_fail ("isUInt<32>(AddrDelta)", "/build/llvm-toolchain-snapshot-8~svn350071/lib/MC/MCDwarf.cpp"
, 1880, __PRETTY_FUNCTION__))
;
1881 OS << uint8_t(dwarf::DW_CFA_advance_loc4);
1882 support::endian::write<uint32_t>(OS, AddrDelta, E);
1883 }
1884}

/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an API used to report recoverable errors.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_ERROR_H
15#define LLVM_SUPPORT_ERROR_H
16
17#include "llvm-c/Error.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/Config/abi-breaking.h"
23#include "llvm/Support/AlignOf.h"
24#include "llvm/Support/Compiler.h"
25#include "llvm/Support/Debug.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/ErrorOr.h"
28#include "llvm/Support/Format.h"
29#include "llvm/Support/raw_ostream.h"
30#include <algorithm>
31#include <cassert>
32#include <cstdint>
33#include <cstdlib>
34#include <functional>
35#include <memory>
36#include <new>
37#include <string>
38#include <system_error>
39#include <type_traits>
40#include <utility>
41#include <vector>
42
43namespace llvm {
44
45class ErrorSuccess;
46
47/// Base class for error info classes. Do not extend this directly: Extend
48/// the ErrorInfo template subclass instead.
49class ErrorInfoBase {
50public:
51 virtual ~ErrorInfoBase() = default;
52
53 /// Print an error message to an output stream.
54 virtual void log(raw_ostream &OS) const = 0;
55
56 /// Return the error message as a string.
57 virtual std::string message() const {
58 std::string Msg;
59 raw_string_ostream OS(Msg);
60 log(OS);
61 return OS.str();
62 }
63
64 /// Convert this error to a std::error_code.
65 ///
66 /// This is a temporary crutch to enable interaction with code still
67 /// using std::error_code. It will be removed in the future.
68 virtual std::error_code convertToErrorCode() const = 0;
69
70 // Returns the class ID for this type.
71 static const void *classID() { return &ID; }
72
73 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
74 virtual const void *dynamicClassID() const = 0;
75
76 // Check whether this instance is a subclass of the class identified by
77 // ClassID.
78 virtual bool isA(const void *const ClassID) const {
79 return ClassID == classID();
80 }
81
82 // Check whether this instance is a subclass of ErrorInfoT.
83 template <typename ErrorInfoT> bool isA() const {
84 return isA(ErrorInfoT::classID());
85 }
86
87private:
88 virtual void anchor();
89
90 static char ID;
91};
92
93/// Lightweight error class with error context and mandatory checking.
94///
95/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
96/// are represented by setting the pointer to a ErrorInfoBase subclass
97/// instance containing information describing the failure. Success is
98/// represented by a null pointer value.
99///
100/// Instances of Error also contains a 'Checked' flag, which must be set
101/// before the destructor is called, otherwise the destructor will trigger a
102/// runtime error. This enforces at runtime the requirement that all Error
103/// instances be checked or returned to the caller.
104///
105/// There are two ways to set the checked flag, depending on what state the
106/// Error instance is in. For Error instances indicating success, it
107/// is sufficient to invoke the boolean conversion operator. E.g.:
108///
109/// @code{.cpp}
110/// Error foo(<...>);
111///
112/// if (auto E = foo(<...>))
113/// return E; // <- Return E if it is in the error state.
114/// // We have verified that E was in the success state. It can now be safely
115/// // destroyed.
116/// @endcode
117///
118/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
119/// without testing the return value will raise a runtime error, even if foo
120/// returns success.
121///
122/// For Error instances representing failure, you must use either the
123/// handleErrors or handleAllErrors function with a typed handler. E.g.:
124///
125/// @code{.cpp}
126/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
127/// // Custom error info.
128/// };
129///
130/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
131///
132/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
133/// auto NewE =
134/// handleErrors(E,
135/// [](const MyErrorInfo &M) {
136/// // Deal with the error.
137/// },
138/// [](std::unique_ptr<OtherError> M) -> Error {
139/// if (canHandle(*M)) {
140/// // handle error.
141/// return Error::success();
142/// }
143/// // Couldn't handle this error instance. Pass it up the stack.
144/// return Error(std::move(M));
145/// );
146/// // Note - we must check or return NewE in case any of the handlers
147/// // returned a new error.
148/// @endcode
149///
150/// The handleAllErrors function is identical to handleErrors, except
151/// that it has a void return type, and requires all errors to be handled and
152/// no new errors be returned. It prevents errors (assuming they can all be
153/// handled) from having to be bubbled all the way to the top-level.
154///
155/// *All* Error instances must be checked before destruction, even if
156/// they're moved-assigned or constructed from Success values that have already
157/// been checked. This enforces checking through all levels of the call stack.
158class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
159 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
160 // pointers out of this class to add to the error list.
161 friend class ErrorList;
162 friend class FileError;
163
164 // handleErrors needs to be able to set the Checked flag.
165 template <typename... HandlerTs>
166 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
167
168 // Expected<T> needs to be able to steal the payload when constructed from an
169 // error.
170 template <typename T> friend class Expected;
171
172 // wrap needs to be able to steal the payload.
173 friend LLVMErrorRef wrap(Error);
174
175protected:
176 /// Create a success value. Prefer using 'Error::success()' for readability
177 Error() {
178 setPtr(nullptr);
179 setChecked(false);
180 }
181
182public:
183 /// Create a success value.
184 static ErrorSuccess success();
185
186 // Errors are not copy-constructable.
187 Error(const Error &Other) = delete;
188
189 /// Move-construct an error value. The newly constructed error is considered
190 /// unchecked, even if the source error had been checked. The original error
191 /// becomes a checked Success value, regardless of its original state.
192 Error(Error &&Other) {
193 setChecked(true);
194 *this = std::move(Other);
195 }
196
197 /// Create an error value. Prefer using the 'make_error' function, but
198 /// this constructor can be useful when "re-throwing" errors from handlers.
199 Error(std::unique_ptr<ErrorInfoBase> Payload) {
200 setPtr(Payload.release());
201 setChecked(false);
20
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
202 }
203
204 // Errors are not copy-assignable.
205 Error &operator=(const Error &Other) = delete;
206
207 /// Move-assign an error value. The current error must represent success, you
208 /// you cannot overwrite an unhandled error. The current error is then
209 /// considered unchecked. The source error becomes a checked success value,
210 /// regardless of its original state.
211 Error &operator=(Error &&Other) {
212 // Don't allow overwriting of unchecked values.
213 assertIsChecked();
214 setPtr(Other.getPtr());
215
216 // This Error is unchecked, even if the source error was checked.
217 setChecked(false);
218
219 // Null out Other's payload and set its checked bit.
220 Other.setPtr(nullptr);
221 Other.setChecked(true);
222
223 return *this;
224 }
225
226 /// Destroy a Error. Fails with a call to abort() if the error is
227 /// unchecked.
228 ~Error() {
229 assertIsChecked();
230 delete getPtr();
231 }
232
233 /// Bool conversion. Returns true if this Error is in a failure state,
234 /// and false if it is in an accept state. If the error is in a Success state
235 /// it will be considered checked.
236 explicit operator bool() {
237 setChecked(getPtr() == nullptr);
238 return getPtr() != nullptr;
239 }
240
241 /// Check whether one error is a subclass of another.
242 template <typename ErrT> bool isA() const {
243 return getPtr() && getPtr()->isA(ErrT::classID());
244 }
245
246 /// Returns the dynamic class id of this error, or null if this is a success
247 /// value.
248 const void* dynamicClassID() const {
249 if (!getPtr())
250 return nullptr;
251 return getPtr()->dynamicClassID();
252 }
253
254private:
255#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
256 // assertIsChecked() happens very frequently, but under normal circumstances
257 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
258 // of debug prints can cause the function to be too large for inlining. So
259 // it's important that we define this function out of line so that it can't be
260 // inlined.
261 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
262 void fatalUncheckedError() const;
263#endif
264
265 void assertIsChecked() {
266#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
267 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
268 fatalUncheckedError();
269#endif
270 }
271
272 ErrorInfoBase *getPtr() const {
273 return reinterpret_cast<ErrorInfoBase*>(
274 reinterpret_cast<uintptr_t>(Payload) &
275 ~static_cast<uintptr_t>(0x1));
276 }
277
278 void setPtr(ErrorInfoBase *EI) {
279#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
280 Payload = reinterpret_cast<ErrorInfoBase*>(
281 (reinterpret_cast<uintptr_t>(EI) &
282 ~static_cast<uintptr_t>(0x1)) |
283 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
284#else
285 Payload = EI;
286#endif
287 }
288
289 bool getChecked() const {
290#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
291 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
292#else
293 return true;
294#endif
295 }
296
297 void setChecked(bool V) {
298 Payload = reinterpret_cast<ErrorInfoBase*>(
299 (reinterpret_cast<uintptr_t>(Payload) &
300 ~static_cast<uintptr_t>(0x1)) |
301 (V ? 0 : 1));
302 }
303
304 std::unique_ptr<ErrorInfoBase> takePayload() {
305 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
306 setPtr(nullptr);
307 setChecked(true);
308 return Tmp;
309 }
310
311 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
312 if (auto P = E.getPtr())
313 P->log(OS);
314 else
315 OS << "success";
316 return OS;
317 }
318
319 ErrorInfoBase *Payload = nullptr;
320};
321
322/// Subclass of Error for the sole purpose of identifying the success path in
323/// the type system. This allows to catch invalid conversion to Expected<T> at
324/// compile time.
325class ErrorSuccess final : public Error {};
326
327inline ErrorSuccess Error::success() { return ErrorSuccess(); }
328
329/// Make a Error instance representing failure using the given error info
330/// type.
331template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
332 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
16
Calling 'make_unique<llvm::StringError, char const (&)[30], std::error_code>'
18
Returned allocated memory
19
Calling constructor for 'Error'
333}
334
335/// Base class for user error types. Users should declare their error types
336/// like:
337///
338/// class MyError : public ErrorInfo<MyError> {
339/// ....
340/// };
341///
342/// This class provides an implementation of the ErrorInfoBase::kind
343/// method, which is used by the Error RTTI system.
344template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
345class ErrorInfo : public ParentErrT {
346public:
347 using ParentErrT::ParentErrT; // inherit constructors
348
349 static const void *classID() { return &ThisErrT::ID; }
350
351 const void *dynamicClassID() const override { return &ThisErrT::ID; }
352
353 bool isA(const void *const ClassID) const override {
354 return ClassID == classID() || ParentErrT::isA(ClassID);
355 }
356};
357
358/// Special ErrorInfo subclass representing a list of ErrorInfos.
359/// Instances of this class are constructed by joinError.
360class ErrorList final : public ErrorInfo<ErrorList> {
361 // handleErrors needs to be able to iterate the payload list of an
362 // ErrorList.
363 template <typename... HandlerTs>
364 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
365
366 // joinErrors is implemented in terms of join.
367 friend Error joinErrors(Error, Error);
368
369public:
370 void log(raw_ostream &OS) const override {
371 OS << "Multiple errors:\n";
372 for (auto &ErrPayload : Payloads) {
373 ErrPayload->log(OS);
374 OS << "\n";
375 }
376 }
377
378 std::error_code convertToErrorCode() const override;
379
380 // Used by ErrorInfo::classID.
381 static char ID;
382
383private:
384 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
385 std::unique_ptr<ErrorInfoBase> Payload2) {
386 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
387 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 387, __PRETTY_FUNCTION__))
;
388 Payloads.push_back(std::move(Payload1));
389 Payloads.push_back(std::move(Payload2));
390 }
391
392 static Error join(Error E1, Error E2) {
393 if (!E1)
394 return E2;
395 if (!E2)
396 return E1;
397 if (E1.isA<ErrorList>()) {
398 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
399 if (E2.isA<ErrorList>()) {
400 auto E2Payload = E2.takePayload();
401 auto &E2List = static_cast<ErrorList &>(*E2Payload);
402 for (auto &Payload : E2List.Payloads)
403 E1List.Payloads.push_back(std::move(Payload));
404 } else
405 E1List.Payloads.push_back(E2.takePayload());
406
407 return E1;
408 }
409 if (E2.isA<ErrorList>()) {
410 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
411 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
412 return E2;
413 }
414 return Error(std::unique_ptr<ErrorList>(
415 new ErrorList(E1.takePayload(), E2.takePayload())));
416 }
417
418 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
419};
420
421/// Concatenate errors. The resulting Error is unchecked, and contains the
422/// ErrorInfo(s), if any, contained in E1, followed by the
423/// ErrorInfo(s), if any, contained in E2.
424inline Error joinErrors(Error E1, Error E2) {
425 return ErrorList::join(std::move(E1), std::move(E2));
426}
427
428/// Tagged union holding either a T or a Error.
429///
430/// This class parallels ErrorOr, but replaces error_code with Error. Since
431/// Error cannot be copied, this class replaces getError() with
432/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
433/// error class type.
434template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
435 template <class T1> friend class ExpectedAsOutParameter;
436 template <class OtherT> friend class Expected;
437
438 static const bool isRef = std::is_reference<T>::value;
439
440 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
441
442 using error_type = std::unique_ptr<ErrorInfoBase>;
443
444public:
445 using storage_type = typename std::conditional<isRef, wrap, T>::type;
446 using value_type = T;
447
448private:
449 using reference = typename std::remove_reference<T>::type &;
450 using const_reference = const typename std::remove_reference<T>::type &;
451 using pointer = typename std::remove_reference<T>::type *;
452 using const_pointer = const typename std::remove_reference<T>::type *;
453
454public:
455 /// Create an Expected<T> error value from the given Error.
456 Expected(Error Err)
457 : HasError(true)
458#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
459 // Expected is unchecked upon construction in Debug builds.
460 , Unchecked(true)
461#endif
462 {
463 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 463, __PRETTY_FUNCTION__))
;
464 new (getErrorStorage()) error_type(Err.takePayload());
465 }
466
467 /// Forbid to convert from Error::success() implicitly, this avoids having
468 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
469 /// but triggers the assertion above.
470 Expected(ErrorSuccess) = delete;
471
472 /// Create an Expected<T> success value from the given OtherT value, which
473 /// must be convertible to T.
474 template <typename OtherT>
475 Expected(OtherT &&Val,
476 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
477 * = nullptr)
478 : HasError(false)
479#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
480 // Expected is unchecked upon construction in Debug builds.
481 , Unchecked(true)
482#endif
483 {
484 new (getStorage()) storage_type(std::forward<OtherT>(Val));
485 }
486
487 /// Move construct an Expected<T> value.
488 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
489
490 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
491 /// must be convertible to T.
492 template <class OtherT>
493 Expected(Expected<OtherT> &&Other,
494 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
495 * = nullptr) {
496 moveConstruct(std::move(Other));
497 }
498
499 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
500 /// isn't convertible to T.
501 template <class OtherT>
502 explicit Expected(
503 Expected<OtherT> &&Other,
504 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
505 nullptr) {
506 moveConstruct(std::move(Other));
507 }
508
509 /// Move-assign from another Expected<T>.
510 Expected &operator=(Expected &&Other) {
511 moveAssign(std::move(Other));
512 return *this;
513 }
514
515 /// Destroy an Expected<T>.
516 ~Expected() {
517 assertIsChecked();
518 if (!HasError)
519 getStorage()->~storage_type();
520 else
521 getErrorStorage()->~error_type();
522 }
523
524 /// Return false if there is an error.
525 explicit operator bool() {
526#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
527 Unchecked = HasError;
528#endif
529 return !HasError;
530 }
531
532 /// Returns a reference to the stored T value.
533 reference get() {
534 assertIsChecked();
535 return *getStorage();
536 }
537
538 /// Returns a const reference to the stored T value.
539 const_reference get() const {
540 assertIsChecked();
541 return const_cast<Expected<T> *>(this)->get();
542 }
543
544 /// Check that this Expected<T> is an error of type ErrT.
545 template <typename ErrT> bool errorIsA() const {
546 return HasError && (*getErrorStorage())->template isA<ErrT>();
547 }
548
549 /// Take ownership of the stored error.
550 /// After calling this the Expected<T> is in an indeterminate state that can
551 /// only be safely destructed. No further calls (beside the destructor) should
552 /// be made on the Expected<T> vaule.
553 Error takeError() {
554#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
555 Unchecked = false;
556#endif
557 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
558 }
559
560 /// Returns a pointer to the stored T value.
561 pointer operator->() {
562 assertIsChecked();
563 return toPointer(getStorage());
564 }
565
566 /// Returns a const pointer to the stored T value.
567 const_pointer operator->() const {
568 assertIsChecked();
569 return toPointer(getStorage());
570 }
571
572 /// Returns a reference to the stored T value.
573 reference operator*() {
574 assertIsChecked();
575 return *getStorage();
576 }
577
578 /// Returns a const reference to the stored T value.
579 const_reference operator*() const {
580 assertIsChecked();
581 return *getStorage();
582 }
583
584private:
585 template <class T1>
586 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
587 return &a == &b;
588 }
589
590 template <class T1, class T2>
591 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
592 return false;
593 }
594
595 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
596 HasError = Other.HasError;
597#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
598 Unchecked = true;
599 Other.Unchecked = false;
600#endif
601
602 if (!HasError)
603 new (getStorage()) storage_type(std::move(*Other.getStorage()));
604 else
605 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
606 }
607
608 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
609 assertIsChecked();
610
611 if (compareThisIfSameType(*this, Other))
612 return;
613
614 this->~Expected();
615 new (this) Expected(std::move(Other));
616 }
617
618 pointer toPointer(pointer Val) { return Val; }
619
620 const_pointer toPointer(const_pointer Val) const { return Val; }
621
622 pointer toPointer(wrap *Val) { return &Val->get(); }
623
624 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
625
626 storage_type *getStorage() {
627 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 627, __PRETTY_FUNCTION__))
;
628 return reinterpret_cast<storage_type *>(TStorage.buffer);
629 }
630
631 const storage_type *getStorage() const {
632 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 632, __PRETTY_FUNCTION__))
;
633 return reinterpret_cast<const storage_type *>(TStorage.buffer);
634 }
635
636 error_type *getErrorStorage() {
637 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 637, __PRETTY_FUNCTION__))
;
638 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
639 }
640
641 const error_type *getErrorStorage() const {
642 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 642, __PRETTY_FUNCTION__))
;
643 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
644 }
645
646 // Used by ExpectedAsOutParameter to reset the checked flag.
647 void setUnchecked() {
648#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
649 Unchecked = true;
650#endif
651 }
652
653#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
654 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
655 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
656 void fatalUncheckedExpected() const {
657 dbgs() << "Expected<T> must be checked before access or destruction.\n";
658 if (HasError) {
659 dbgs() << "Unchecked Expected<T> contained error:\n";
660 (*getErrorStorage())->log(dbgs());
661 } else
662 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
663 "values in success mode must still be checked prior to being "
664 "destroyed).\n";
665 abort();
666 }
667#endif
668
669 void assertIsChecked() {
670#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
671 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
672 fatalUncheckedExpected();
673#endif
674 }
675
676 union {
677 AlignedCharArrayUnion<storage_type> TStorage;
678 AlignedCharArrayUnion<error_type> ErrorStorage;
679 };
680 bool HasError : 1;
681#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
682 bool Unchecked : 1;
683#endif
684};
685
686/// Report a serious error, calling any installed error handler. See
687/// ErrorHandling.h.
688LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
689 bool gen_crash_diag = true);
690
691/// Report a fatal error if Err is a failure value.
692///
693/// This function can be used to wrap calls to fallible functions ONLY when it
694/// is known that the Error will always be a success value. E.g.
695///
696/// @code{.cpp}
697/// // foo only attempts the fallible operation if DoFallibleOperation is
698/// // true. If DoFallibleOperation is false then foo always returns
699/// // Error::success().
700/// Error foo(bool DoFallibleOperation);
701///
702/// cantFail(foo(false));
703/// @endcode
704inline void cantFail(Error Err, const char *Msg = nullptr) {
705 if (Err) {
706 if (!Msg)
707 Msg = "Failure value returned from cantFail wrapped call";
708 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 708)
;
709 }
710}
711
712/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
713/// returns the contained value.
714///
715/// This function can be used to wrap calls to fallible functions ONLY when it
716/// is known that the Error will always be a success value. E.g.
717///
718/// @code{.cpp}
719/// // foo only attempts the fallible operation if DoFallibleOperation is
720/// // true. If DoFallibleOperation is false then foo always returns an int.
721/// Expected<int> foo(bool DoFallibleOperation);
722///
723/// int X = cantFail(foo(false));
724/// @endcode
725template <typename T>
726T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
727 if (ValOrErr)
728 return std::move(*ValOrErr);
729 else {
730 if (!Msg)
731 Msg = "Failure value returned from cantFail wrapped call";
732 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 732)
;
733 }
734}
735
736/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
737/// returns the contained reference.
738///
739/// This function can be used to wrap calls to fallible functions ONLY when it
740/// is known that the Error will always be a success value. E.g.
741///
742/// @code{.cpp}
743/// // foo only attempts the fallible operation if DoFallibleOperation is
744/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
745/// Expected<Bar&> foo(bool DoFallibleOperation);
746///
747/// Bar &X = cantFail(foo(false));
748/// @endcode
749template <typename T>
750T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
751 if (ValOrErr)
752 return *ValOrErr;
753 else {
754 if (!Msg)
755 Msg = "Failure value returned from cantFail wrapped call";
756 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 756)
;
757 }
758}
759
760/// Helper for testing applicability of, and applying, handlers for
761/// ErrorInfo types.
762template <typename HandlerT>
763class ErrorHandlerTraits
764 : public ErrorHandlerTraits<decltype(
765 &std::remove_reference<HandlerT>::type::operator())> {};
766
767// Specialization functions of the form 'Error (const ErrT&)'.
768template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
769public:
770 static bool appliesTo(const ErrorInfoBase &E) {
771 return E.template isA<ErrT>();
772 }
773
774 template <typename HandlerT>
775 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
776 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 776, __PRETTY_FUNCTION__))
;
777 return H(static_cast<ErrT &>(*E));
778 }
779};
780
781// Specialization functions of the form 'void (const ErrT&)'.
782template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
783public:
784 static bool appliesTo(const ErrorInfoBase &E) {
785 return E.template isA<ErrT>();
786 }
787
788 template <typename HandlerT>
789 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
790 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 790, __PRETTY_FUNCTION__))
;
791 H(static_cast<ErrT &>(*E));
792 return Error::success();
793 }
794};
795
796/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
797template <typename ErrT>
798class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
799public:
800 static bool appliesTo(const ErrorInfoBase &E) {
801 return E.template isA<ErrT>();
802 }
803
804 template <typename HandlerT>
805 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
806 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 806, __PRETTY_FUNCTION__))
;
807 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
808 return H(std::move(SubE));
809 }
810};
811
812/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
813template <typename ErrT>
814class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
815public:
816 static bool appliesTo(const ErrorInfoBase &E) {
817 return E.template isA<ErrT>();
818 }
819
820 template <typename HandlerT>
821 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
822 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 822, __PRETTY_FUNCTION__))
;
823 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
824 H(std::move(SubE));
825 return Error::success();
826 }
827};
828
829// Specialization for member functions of the form 'RetT (const ErrT&)'.
830template <typename C, typename RetT, typename ErrT>
831class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
832 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
833
834// Specialization for member functions of the form 'RetT (const ErrT&) const'.
835template <typename C, typename RetT, typename ErrT>
836class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
837 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
838
839// Specialization for member functions of the form 'RetT (const ErrT&)'.
840template <typename C, typename RetT, typename ErrT>
841class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
842 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
843
844// Specialization for member functions of the form 'RetT (const ErrT&) const'.
845template <typename C, typename RetT, typename ErrT>
846class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
847 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
848
849/// Specialization for member functions of the form
850/// 'RetT (std::unique_ptr<ErrT>)'.
851template <typename C, typename RetT, typename ErrT>
852class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
853 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
854
855/// Specialization for member functions of the form
856/// 'RetT (std::unique_ptr<ErrT>) const'.
857template <typename C, typename RetT, typename ErrT>
858class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
859 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
860
861inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
862 return Error(std::move(Payload));
863}
864
865template <typename HandlerT, typename... HandlerTs>
866Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
867 HandlerT &&Handler, HandlerTs &&... Handlers) {
868 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
869 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
870 std::move(Payload));
871 return handleErrorImpl(std::move(Payload),
872 std::forward<HandlerTs>(Handlers)...);
873}
874
875/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
876/// unhandled errors (or Errors returned by handlers) are re-concatenated and
877/// returned.
878/// Because this function returns an error, its result must also be checked
879/// or returned. If you intend to handle all errors use handleAllErrors
880/// (which returns void, and will abort() on unhandled errors) instead.
881template <typename... HandlerTs>
882Error handleErrors(Error E, HandlerTs &&... Hs) {
883 if (!E)
884 return Error::success();
885
886 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
887
888 if (Payload->isA<ErrorList>()) {
889 ErrorList &List = static_cast<ErrorList &>(*Payload);
890 Error R;
891 for (auto &P : List.Payloads)
892 R = ErrorList::join(
893 std::move(R),
894 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
895 return R;
896 }
897
898 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
899}
900
901/// Behaves the same as handleErrors, except that by contract all errors
902/// *must* be handled by the given handlers (i.e. there must be no remaining
903/// errors after running the handlers, or llvm_unreachable is called).
904template <typename... HandlerTs>
905void handleAllErrors(Error E, HandlerTs &&... Handlers) {
906 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
907}
908
909/// Check that E is a non-error, then drop it.
910/// If E is an error, llvm_unreachable will be called.
911inline void handleAllErrors(Error E) {
912 cantFail(std::move(E));
913}
914
915/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
916///
917/// If the incoming value is a success value it is returned unmodified. If it
918/// is a failure value then it the contained error is passed to handleErrors.
919/// If handleErrors is able to handle the error then the RecoveryPath functor
920/// is called to supply the final result. If handleErrors is not able to
921/// handle all errors then the unhandled errors are returned.
922///
923/// This utility enables the follow pattern:
924///
925/// @code{.cpp}
926/// enum FooStrategy { Aggressive, Conservative };
927/// Expected<Foo> foo(FooStrategy S);
928///
929/// auto ResultOrErr =
930/// handleExpected(
931/// foo(Aggressive),
932/// []() { return foo(Conservative); },
933/// [](AggressiveStrategyError&) {
934/// // Implicitly conusme this - we'll recover by using a conservative
935/// // strategy.
936/// });
937///
938/// @endcode
939template <typename T, typename RecoveryFtor, typename... HandlerTs>
940Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
941 HandlerTs &&... Handlers) {
942 if (ValOrErr)
943 return ValOrErr;
944
945 if (auto Err = handleErrors(ValOrErr.takeError(),
946 std::forward<HandlerTs>(Handlers)...))
947 return std::move(Err);
948
949 return RecoveryPath();
950}
951
952/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
953/// will be printed before the first one is logged. A newline will be printed
954/// after each error.
955///
956/// This function is compatible with the helpers from Support/WithColor.h. You
957/// can pass any of them as the OS. Please consider using them instead of
958/// including 'error: ' in the ErrorBanner.
959///
960/// This is useful in the base level of your program to allow clean termination
961/// (allowing clean deallocation of resources, etc.), while reporting error
962/// information to the user.
963void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
964
965/// Write all error messages (if any) in E to a string. The newline character
966/// is used to separate error messages.
967inline std::string toString(Error E) {
968 SmallVector<std::string, 2> Errors;
969 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
970 Errors.push_back(EI.message());
971 });
972 return join(Errors.begin(), Errors.end(), "\n");
973}
974
975/// Consume a Error without doing anything. This method should be used
976/// only where an error can be considered a reasonable and expected return
977/// value.
978///
979/// Uses of this method are potentially indicative of design problems: If it's
980/// legitimate to do nothing while processing an "error", the error-producer
981/// might be more clearly refactored to return an Optional<T>.
982inline void consumeError(Error Err) {
983 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
984}
985
986/// Helper for converting an Error to a bool.
987///
988/// This method returns true if Err is in an error state, or false if it is
989/// in a success state. Puts Err in a checked state in both cases (unlike
990/// Error::operator bool(), which only does this for success states).
991inline bool errorToBool(Error Err) {
992 bool IsError = static_cast<bool>(Err);
993 if (IsError)
994 consumeError(std::move(Err));
995 return IsError;
996}
997
998/// Helper for Errors used as out-parameters.
999///
1000/// This helper is for use with the Error-as-out-parameter idiom, where an error
1001/// is passed to a function or method by reference, rather than being returned.
1002/// In such cases it is helpful to set the checked bit on entry to the function
1003/// so that the error can be written to (unchecked Errors abort on assignment)
1004/// and clear the checked bit on exit so that clients cannot accidentally forget
1005/// to check the result. This helper performs these actions automatically using
1006/// RAII:
1007///
1008/// @code{.cpp}
1009/// Result foo(Error &Err) {
1010/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1011/// // <body of foo>
1012/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1013/// }
1014/// @endcode
1015///
1016/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1017/// used with optional Errors (Error pointers that are allowed to be null). If
1018/// ErrorAsOutParameter took an Error reference, an instance would have to be
1019/// created inside every condition that verified that Error was non-null. By
1020/// taking an Error pointer we can just create one instance at the top of the
1021/// function.
1022class ErrorAsOutParameter {
1023public:
1024 ErrorAsOutParameter(Error *Err) : Err(Err) {
1025 // Raise the checked bit if Err is success.
1026 if (Err)
1027 (void)!!*Err;
1028 }
1029
1030 ~ErrorAsOutParameter() {
1031 // Clear the checked bit.
1032 if (Err && !*Err)
1033 *Err = Error::success();
1034 }
1035
1036private:
1037 Error *Err;
1038};
1039
1040/// Helper for Expected<T>s used as out-parameters.
1041///
1042/// See ErrorAsOutParameter.
1043template <typename T>
1044class ExpectedAsOutParameter {
1045public:
1046 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1047 : ValOrErr(ValOrErr) {
1048 if (ValOrErr)
1049 (void)!!*ValOrErr;
1050 }
1051
1052 ~ExpectedAsOutParameter() {
1053 if (ValOrErr)
1054 ValOrErr->setUnchecked();
1055 }
1056
1057private:
1058 Expected<T> *ValOrErr;
1059};
1060
1061/// This class wraps a std::error_code in a Error.
1062///
1063/// This is useful if you're writing an interface that returns a Error
1064/// (or Expected) and you want to call code that still returns
1065/// std::error_codes.
1066class ECError : public ErrorInfo<ECError> {
1067 friend Error errorCodeToError(std::error_code);
1068
1069public:
1070 void setErrorCode(std::error_code EC) { this->EC = EC; }
1071 std::error_code convertToErrorCode() const override { return EC; }
1072 void log(raw_ostream &OS) const override { OS << EC.message(); }
1073
1074 // Used by ErrorInfo::classID.
1075 static char ID;
1076
1077protected:
1078 ECError() = default;
1079 ECError(std::error_code EC) : EC(EC) {}
1080
1081 std::error_code EC;
1082};
1083
1084/// The value returned by this function can be returned from convertToErrorCode
1085/// for Error values where no sensible translation to std::error_code exists.
1086/// It should only be used in this situation, and should never be used where a
1087/// sensible conversion to std::error_code is available, as attempts to convert
1088/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1089///error to try to convert such a value).
1090std::error_code inconvertibleErrorCode();
1091
1092/// Helper for converting an std::error_code to a Error.
1093Error errorCodeToError(std::error_code EC);
1094
1095/// Helper for converting an ECError to a std::error_code.
1096///
1097/// This method requires that Err be Error() or an ECError, otherwise it
1098/// will trigger a call to abort().
1099std::error_code errorToErrorCode(Error Err);
1100
1101/// Convert an ErrorOr<T> to an Expected<T>.
1102template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1103 if (auto EC = EO.getError())
1104 return errorCodeToError(EC);
1105 return std::move(*EO);
1106}
1107
1108/// Convert an Expected<T> to an ErrorOr<T>.
1109template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1110 if (auto Err = E.takeError())
1111 return errorToErrorCode(std::move(Err));
1112 return std::move(*E);
1113}
1114
1115/// This class wraps a string in an Error.
1116///
1117/// StringError is useful in cases where the client is not expected to be able
1118/// to consume the specific error message programmatically (for example, if the
1119/// error message is to be presented to the user).
1120///
1121/// StringError can also be used when additional information is to be printed
1122/// along with a error_code message. Depending on the constructor called, this
1123/// class can either display:
1124/// 1. the error_code message (ECError behavior)
1125/// 2. a string
1126/// 3. the error_code message and a string
1127///
1128/// These behaviors are useful when subtyping is required; for example, when a
1129/// specific library needs an explicit error type. In the example below,
1130/// PDBError is derived from StringError:
1131///
1132/// @code{.cpp}
1133/// Expected<int> foo() {
1134/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1135/// "Additional information");
1136/// }
1137/// @endcode
1138///
1139class StringError : public ErrorInfo<StringError> {
1140public:
1141 static char ID;
1142
1143 // Prints EC + S and converts to EC
1144 StringError(std::error_code EC, const Twine &S = Twine());
1145
1146 // Prints S and converts to EC
1147 StringError(const Twine &S, std::error_code EC);
1148
1149 void log(raw_ostream &OS) const override;
1150 std::error_code convertToErrorCode() const override;
1151
1152 const std::string &getMessage() const { return Msg; }
1153
1154private:
1155 std::string Msg;
1156 std::error_code EC;
1157 const bool PrintMsgOnly = false;
1158};
1159
1160/// Create formatted StringError object.
1161template <typename... Ts>
1162Error createStringError(std::error_code EC, char const *Fmt,
1163 const Ts &... Vals) {
1164 std::string Buffer;
1165 raw_string_ostream Stream(Buffer);
1166 Stream << format(Fmt, Vals...);
1167 return make_error<StringError>(Stream.str(), EC);
1168}
1169
1170Error createStringError(std::error_code EC, char const *Msg);
1171
1172/// This class wraps a filename and another Error.
1173///
1174/// In some cases, an error needs to live along a 'source' name, in order to
1175/// show more detailed information to the user.
1176class FileError final : public ErrorInfo<FileError> {
1177
1178 friend Error createFileError(std::string, Error);
1179
1180public:
1181 void log(raw_ostream &OS) const override {
1182 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1182, __PRETTY_FUNCTION__))
;
1183 OS << "'" << FileName << "': ";
1184 Err->log(OS);
1185 }
1186
1187 Error takeError() { return Error(std::move(Err)); }
1188
1189 std::error_code convertToErrorCode() const override;
1190
1191 // Used by ErrorInfo::classID.
1192 static char ID;
1193
1194private:
1195 FileError(std::string F, std::unique_ptr<ErrorInfoBase> E) {
1196 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1196, __PRETTY_FUNCTION__))
;
1197 assert(!F.empty() &&((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1198, __PRETTY_FUNCTION__))
1198 "The file name provided to FileError must not be empty.")((!F.empty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.empty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/Support/Error.h"
, 1198, __PRETTY_FUNCTION__))
;
1199 FileName = F;
1200 Err = std::move(E);
1201 }
1202
1203 static Error build(std::string F, Error E) {
1204 return Error(std::unique_ptr<FileError>(new FileError(F, E.takePayload())));
1205 }
1206
1207 std::string FileName;
1208 std::unique_ptr<ErrorInfoBase> Err;
1209};
1210
1211/// Concatenate a source file path and/or name with an Error. The resulting
1212/// Error is unchecked.
1213inline Error createFileError(std::string F, Error E) {
1214 return FileError::build(F, std::move(E));
1215}
1216
1217Error createFileError(std::string F, ErrorSuccess) = delete;
1218
1219/// Helper for check-and-exit error handling.
1220///
1221/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1222///
1223class ExitOnError {
1224public:
1225 /// Create an error on exit helper.
1226 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1227 : Banner(std::move(Banner)),
1228 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1229
1230 /// Set the banner string for any errors caught by operator().
1231 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1232
1233 /// Set the exit-code mapper function.
1234 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1235 this->GetExitCode = std::move(GetExitCode);
1236 }
1237
1238 /// Check Err. If it's in a failure state log the error(s) and exit.
1239 void operator()(Error Err) const { checkError(std::move(Err)); }
1240
1241 /// Check E. If it's in a success state then return the contained value. If
1242 /// it's in a failure state log the error(s) and exit.
1243 template <typename T> T operator()(Expected<T> &&E) const {
1244 checkError(E.takeError());
1245 return std::move(*E);
1246 }
1247
1248 /// Check E. If it's in a success state then return the contained reference. If
1249 /// it's in a failure state log the error(s) and exit.
1250 template <typename T> T& operator()(Expected<T&> &&E) const {
1251 checkError(E.takeError());
1252 return *E;
1253 }
1254
1255private:
1256 void checkError(Error Err) const {
1257 if (Err) {
1258 int ExitCode = GetExitCode(Err);
1259 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1260 exit(ExitCode);
1261 }
1262 }
1263
1264 std::string Banner;
1265 std::function<int(const Error &)> GetExitCode;
1266};
1267
1268/// Conversion from Error to LLVMErrorRef for C error bindings.
1269inline LLVMErrorRef wrap(Error Err) {
1270 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1271}
1272
1273/// Conversion from LLVMErrorRef to Error for C error bindings.
1274inline Error unwrap(LLVMErrorRef ErrRef) {
1275 return Error(std::unique_ptr<ErrorInfoBase>(
1276 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1277}
1278
1279} // end namespace llvm
1280
1281#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains some templates that are useful if you are working with the
11// STL at all.
12//
13// No library is required when using these functions.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_ADT_STLEXTRAS_H
18#define LLVM_ADT_STLEXTRAS_H
19
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/iterator.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/Config/abi-breaking.h"
25#include "llvm/Support/ErrorHandling.h"
26#include <algorithm>
27#include <cassert>
28#include <cstddef>
29#include <cstdint>
30#include <cstdlib>
31#include <functional>
32#include <initializer_list>
33#include <iterator>
34#include <limits>
35#include <memory>
36#include <tuple>
37#include <type_traits>
38#include <utility>
39
40#ifdef EXPENSIVE_CHECKS
41#include <random> // for std::mt19937
42#endif
43
44namespace llvm {
45
46// Only used by compiler if both template types are the same. Useful when
47// using SFINAE to test for the existence of member functions.
48template <typename T, T> struct SameType;
49
50namespace detail {
51
52template <typename RangeT>
53using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
54
55template <typename RangeT>
56using ValueOfRange = typename std::remove_reference<decltype(
57 *std::begin(std::declval<RangeT &>()))>::type;
58
59} // end namespace detail
60
61//===----------------------------------------------------------------------===//
62// Extra additions to <type_traits>
63//===----------------------------------------------------------------------===//
64
65template <typename T>
66struct negation : std::integral_constant<bool, !bool(T::value)> {};
67
68template <typename...> struct conjunction : std::true_type {};
69template <typename B1> struct conjunction<B1> : B1 {};
70template <typename B1, typename... Bn>
71struct conjunction<B1, Bn...>
72 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
73
74template <typename T> struct make_const_ptr {
75 using type =
76 typename std::add_pointer<typename std::add_const<T>::type>::type;
77};
78//===----------------------------------------------------------------------===//
79// Extra additions to <functional>
80//===----------------------------------------------------------------------===//
81
82template <class Ty> struct identity {
83 using argument_type = Ty;
84
85 Ty &operator()(Ty &self) const {
86 return self;
87 }
88 const Ty &operator()(const Ty &self) const {
89 return self;
90 }
91};
92
93template <class Ty> struct less_ptr {
94 bool operator()(const Ty* left, const Ty* right) const {
95 return *left < *right;
96 }
97};
98
99template <class Ty> struct greater_ptr {
100 bool operator()(const Ty* left, const Ty* right) const {
101 return *right < *left;
102 }
103};
104
105/// An efficient, type-erasing, non-owning reference to a callable. This is
106/// intended for use as the type of a function parameter that is not used
107/// after the function in question returns.
108///
109/// This class does not own the callable, so it is not in general safe to store
110/// a function_ref.
111template<typename Fn> class function_ref;
112
113template<typename Ret, typename ...Params>
114class function_ref<Ret(Params...)> {
115 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
116 intptr_t callable;
117
118 template<typename Callable>
119 static Ret callback_fn(intptr_t callable, Params ...params) {
120 return (*reinterpret_cast<Callable*>(callable))(
121 std::forward<Params>(params)...);
122 }
123
124public:
125 function_ref() = default;
126 function_ref(std::nullptr_t) {}
127
128 template <typename Callable>
129 function_ref(Callable &&callable,
130 typename std::enable_if<
131 !std::is_same<typename std::remove_reference<Callable>::type,
132 function_ref>::value>::type * = nullptr)
133 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
134 callable(reinterpret_cast<intptr_t>(&callable)) {}
135
136 Ret operator()(Params ...params) const {
137 return callback(callable, std::forward<Params>(params)...);
138 }
139
140 operator bool() const { return callback; }
141};
142
143// deleter - Very very very simple method that is used to invoke operator
144// delete on something. It is used like this:
145//
146// for_each(V.begin(), B.end(), deleter<Interval>);
147template <class T>
148inline void deleter(T *Ptr) {
149 delete Ptr;
150}
151
152//===----------------------------------------------------------------------===//
153// Extra additions to <iterator>
154//===----------------------------------------------------------------------===//
155
156namespace adl_detail {
157
158using std::begin;
159
160template <typename ContainerTy>
161auto adl_begin(ContainerTy &&container)
162 -> decltype(begin(std::forward<ContainerTy>(container))) {
163 return begin(std::forward<ContainerTy>(container));
164}
165
166using std::end;
167
168template <typename ContainerTy>
169auto adl_end(ContainerTy &&container)
170 -> decltype(end(std::forward<ContainerTy>(container))) {
171 return end(std::forward<ContainerTy>(container));
172}
173
174using std::swap;
175
176template <typename T>
177void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
178 std::declval<T>()))) {
179 swap(std::forward<T>(lhs), std::forward<T>(rhs));
180}
181
182} // end namespace adl_detail
183
184template <typename ContainerTy>
185auto adl_begin(ContainerTy &&container)
186 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
187 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
188}
189
190template <typename ContainerTy>
191auto adl_end(ContainerTy &&container)
192 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
193 return adl_detail::adl_end(std::forward<ContainerTy>(container));
194}
195
196template <typename T>
197void adl_swap(T &&lhs, T &&rhs) noexcept(
198 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
199 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
200}
201
202/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
203template <typename T>
204constexpr bool empty(const T &RangeOrContainer) {
205 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
206}
207
208// mapped_iterator - This is a simple iterator adapter that causes a function to
209// be applied whenever operator* is invoked on the iterator.
210
211template <typename ItTy, typename FuncTy,
212 typename FuncReturnTy =
213 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
214class mapped_iterator
215 : public iterator_adaptor_base<
216 mapped_iterator<ItTy, FuncTy>, ItTy,
217 typename std::iterator_traits<ItTy>::iterator_category,
218 typename std::remove_reference<FuncReturnTy>::type> {
219public:
220 mapped_iterator(ItTy U, FuncTy F)
221 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
222
223 ItTy getCurrent() { return this->I; }
224
225 FuncReturnTy operator*() { return F(*this->I); }
226
227private:
228 FuncTy F;
229};
230
231// map_iterator - Provide a convenient way to create mapped_iterators, just like
232// make_pair is useful for creating pairs...
233template <class ItTy, class FuncTy>
234inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
235 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
236}
237
238/// Helper to determine if type T has a member called rbegin().
239template <typename Ty> class has_rbegin_impl {
240 using yes = char[1];
241 using no = char[2];
242
243 template <typename Inner>
244 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
245
246 template <typename>
247 static no& test(...);
248
249public:
250 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
251};
252
253/// Metafunction to determine if T& or T has a member called rbegin().
254template <typename Ty>
255struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
256};
257
258// Returns an iterator_range over the given container which iterates in reverse.
259// Note that the container must have rbegin()/rend() methods for this to work.
260template <typename ContainerTy>
261auto reverse(ContainerTy &&C,
262 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
263 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
264 return make_range(C.rbegin(), C.rend());
265}
266
267// Returns a std::reverse_iterator wrapped around the given iterator.
268template <typename IteratorTy>
269std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
270 return std::reverse_iterator<IteratorTy>(It);
271}
272
273// Returns an iterator_range over the given container which iterates in reverse.
274// Note that the container must have begin()/end() methods which return
275// bidirectional iterators for this to work.
276template <typename ContainerTy>
277auto reverse(
278 ContainerTy &&C,
279 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
280 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
281 llvm::make_reverse_iterator(std::begin(C)))) {
282 return make_range(llvm::make_reverse_iterator(std::end(C)),
283 llvm::make_reverse_iterator(std::begin(C)));
284}
285
286/// An iterator adaptor that filters the elements of given inner iterators.
287///
288/// The predicate parameter should be a callable object that accepts the wrapped
289/// iterator's reference type and returns a bool. When incrementing or
290/// decrementing the iterator, it will call the predicate on each element and
291/// skip any where it returns false.
292///
293/// \code
294/// int A[] = { 1, 2, 3, 4 };
295/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
296/// // R contains { 1, 3 }.
297/// \endcode
298///
299/// Note: filter_iterator_base implements support for forward iteration.
300/// filter_iterator_impl exists to provide support for bidirectional iteration,
301/// conditional on whether the wrapped iterator supports it.
302template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
303class filter_iterator_base
304 : public iterator_adaptor_base<
305 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
306 WrappedIteratorT,
307 typename std::common_type<
308 IterTag, typename std::iterator_traits<
309 WrappedIteratorT>::iterator_category>::type> {
310 using BaseT = iterator_adaptor_base<
311 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
312 WrappedIteratorT,
313 typename std::common_type<
314 IterTag, typename std::iterator_traits<
315 WrappedIteratorT>::iterator_category>::type>;
316
317protected:
318 WrappedIteratorT End;
319 PredicateT Pred;
320
321 void findNextValid() {
322 while (this->I != End && !Pred(*this->I))
323 BaseT::operator++();
324 }
325
326 // Construct the iterator. The begin iterator needs to know where the end
327 // is, so that it can properly stop when it gets there. The end iterator only
328 // needs the predicate to support bidirectional iteration.
329 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
330 PredicateT Pred)
331 : BaseT(Begin), End(End), Pred(Pred) {
332 findNextValid();
333 }
334
335public:
336 using BaseT::operator++;
337
338 filter_iterator_base &operator++() {
339 BaseT::operator++();
340 findNextValid();
341 return *this;
342 }
343};
344
345/// Specialization of filter_iterator_base for forward iteration only.
346template <typename WrappedIteratorT, typename PredicateT,
347 typename IterTag = std::forward_iterator_tag>
348class filter_iterator_impl
349 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
350 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
351
352public:
353 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
354 PredicateT Pred)
355 : BaseT(Begin, End, Pred) {}
356};
357
358/// Specialization of filter_iterator_base for bidirectional iteration.
359template <typename WrappedIteratorT, typename PredicateT>
360class filter_iterator_impl<WrappedIteratorT, PredicateT,
361 std::bidirectional_iterator_tag>
362 : public filter_iterator_base<WrappedIteratorT, PredicateT,
363 std::bidirectional_iterator_tag> {
364 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
365 std::bidirectional_iterator_tag>;
366 void findPrevValid() {
367 while (!this->Pred(*this->I))
368 BaseT::operator--();
369 }
370
371public:
372 using BaseT::operator--;
373
374 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
375 PredicateT Pred)
376 : BaseT(Begin, End, Pred) {}
377
378 filter_iterator_impl &operator--() {
379 BaseT::operator--();
380 findPrevValid();
381 return *this;
382 }
383};
384
385namespace detail {
386
387template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
388 using type = std::forward_iterator_tag;
389};
390
391template <> struct fwd_or_bidi_tag_impl<true> {
392 using type = std::bidirectional_iterator_tag;
393};
394
395/// Helper which sets its type member to forward_iterator_tag if the category
396/// of \p IterT does not derive from bidirectional_iterator_tag, and to
397/// bidirectional_iterator_tag otherwise.
398template <typename IterT> struct fwd_or_bidi_tag {
399 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
400 std::bidirectional_iterator_tag,
401 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
402};
403
404} // namespace detail
405
406/// Defines filter_iterator to a suitable specialization of
407/// filter_iterator_impl, based on the underlying iterator's category.
408template <typename WrappedIteratorT, typename PredicateT>
409using filter_iterator = filter_iterator_impl<
410 WrappedIteratorT, PredicateT,
411 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
412
413/// Convenience function that takes a range of elements and a predicate,
414/// and return a new filter_iterator range.
415///
416/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
417/// lifetime of that temporary is not kept by the returned range object, and the
418/// temporary is going to be dropped on the floor after the make_iterator_range
419/// full expression that contains this function call.
420template <typename RangeT, typename PredicateT>
421iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
422make_filter_range(RangeT &&Range, PredicateT Pred) {
423 using FilterIteratorT =
424 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
425 return make_range(
426 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
427 std::end(std::forward<RangeT>(Range)), Pred),
428 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
429 std::end(std::forward<RangeT>(Range)), Pred));
430}
431
432/// A pseudo-iterator adaptor that is designed to implement "early increment"
433/// style loops.
434///
435/// This is *not a normal iterator* and should almost never be used directly. It
436/// is intended primarily to be used with range based for loops and some range
437/// algorithms.
438///
439/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
440/// somewhere between them. The constraints of these iterators are:
441///
442/// - On construction or after being incremented, it is comparable and
443/// dereferencable. It is *not* incrementable.
444/// - After being dereferenced, it is neither comparable nor dereferencable, it
445/// is only incrementable.
446///
447/// This means you can only dereference the iterator once, and you can only
448/// increment it once between dereferences.
449template <typename WrappedIteratorT>
450class early_inc_iterator_impl
451 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
452 WrappedIteratorT, std::input_iterator_tag> {
453 using BaseT =
454 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
455 WrappedIteratorT, std::input_iterator_tag>;
456
457 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
458
459protected:
460#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
461 bool IsEarlyIncremented = false;
462#endif
463
464public:
465 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
466
467 using BaseT::operator*;
468 typename BaseT::reference operator*() {
469#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
470 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 470, __PRETTY_FUNCTION__))
;
471 IsEarlyIncremented = true;
472#endif
473 return *(this->I)++;
474 }
475
476 using BaseT::operator++;
477 early_inc_iterator_impl &operator++() {
478#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
479 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 479, __PRETTY_FUNCTION__))
;
480 IsEarlyIncremented = false;
481#endif
482 return *this;
483 }
484
485 using BaseT::operator==;
486 bool operator==(const early_inc_iterator_impl &RHS) const {
487#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
488 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 488, __PRETTY_FUNCTION__))
;
489#endif
490 return BaseT::operator==(RHS);
491 }
492};
493
494/// Make a range that does early increment to allow mutation of the underlying
495/// range without disrupting iteration.
496///
497/// The underlying iterator will be incremented immediately after it is
498/// dereferenced, allowing deletion of the current node or insertion of nodes to
499/// not disrupt iteration provided they do not invalidate the *next* iterator --
500/// the current iterator can be invalidated.
501///
502/// This requires a very exact pattern of use that is only really suitable to
503/// range based for loops and other range algorithms that explicitly guarantee
504/// to dereference exactly once each element, and to increment exactly once each
505/// element.
506template <typename RangeT>
507iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
508make_early_inc_range(RangeT &&Range) {
509 using EarlyIncIteratorT =
510 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
511 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
512 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
513}
514
515// forward declarations required by zip_shortest/zip_first/zip_longest
516template <typename R, typename UnaryPredicate>
517bool all_of(R &&range, UnaryPredicate P);
518template <typename R, typename UnaryPredicate>
519bool any_of(R &&range, UnaryPredicate P);
520
521template <size_t... I> struct index_sequence;
522
523template <class... Ts> struct index_sequence_for;
524
525namespace detail {
526
527using std::declval;
528
529// We have to alias this since inlining the actual type at the usage site
530// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
531template<typename... Iters> struct ZipTupleType {
532 using type = std::tuple<decltype(*declval<Iters>())...>;
533};
534
535template <typename ZipType, typename... Iters>
536using zip_traits = iterator_facade_base<
537 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
538 typename std::iterator_traits<
539 Iters>::iterator_category...>::type,
540 // ^ TODO: Implement random access methods.
541 typename ZipTupleType<Iters...>::type,
542 typename std::iterator_traits<typename std::tuple_element<
543 0, std::tuple<Iters...>>::type>::difference_type,
544 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
545 // inner iterators have the same difference_type. It would fail if, for
546 // instance, the second field's difference_type were non-numeric while the
547 // first is.
548 typename ZipTupleType<Iters...>::type *,
549 typename ZipTupleType<Iters...>::type>;
550
551template <typename ZipType, typename... Iters>
552struct zip_common : public zip_traits<ZipType, Iters...> {
553 using Base = zip_traits<ZipType, Iters...>;
554 using value_type = typename Base::value_type;
555
556 std::tuple<Iters...> iterators;
557
558protected:
559 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
560 return value_type(*std::get<Ns>(iterators)...);
561 }
562
563 template <size_t... Ns>
564 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
565 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
566 }
567
568 template <size_t... Ns>
569 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
571 }
572
573public:
574 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
575
576 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
577
578 const value_type operator*() const {
579 return deref(index_sequence_for<Iters...>{});
580 }
581
582 ZipType &operator++() {
583 iterators = tup_inc(index_sequence_for<Iters...>{});
584 return *reinterpret_cast<ZipType *>(this);
585 }
586
587 ZipType &operator--() {
588 static_assert(Base::IsBidirectional,
589 "All inner iterators must be at least bidirectional.");
590 iterators = tup_dec(index_sequence_for<Iters...>{});
591 return *reinterpret_cast<ZipType *>(this);
592 }
593};
594
595template <typename... Iters>
596struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
597 using Base = zip_common<zip_first<Iters...>, Iters...>;
598
599 bool operator==(const zip_first<Iters...> &other) const {
600 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
601 }
602
603 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
604};
605
606template <typename... Iters>
607class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
608 template <size_t... Ns>
609 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
610 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
611 std::get<Ns>(other.iterators)...},
612 identity<bool>{});
613 }
614
615public:
616 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
617
618 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
619
620 bool operator==(const zip_shortest<Iters...> &other) const {
621 return !test(other, index_sequence_for<Iters...>{});
622 }
623};
624
625template <template <typename...> class ItType, typename... Args> class zippy {
626public:
627 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
628 using iterator_category = typename iterator::iterator_category;
629 using value_type = typename iterator::value_type;
630 using difference_type = typename iterator::difference_type;
631 using pointer = typename iterator::pointer;
632 using reference = typename iterator::reference;
633
634private:
635 std::tuple<Args...> ts;
636
637 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
638 return iterator(std::begin(std::get<Ns>(ts))...);
639 }
640 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
641 return iterator(std::end(std::get<Ns>(ts))...);
642 }
643
644public:
645 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
646
647 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
648 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
649};
650
651} // end namespace detail
652
653/// zip iterator for two or more iteratable types.
654template <typename T, typename U, typename... Args>
655detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
656 Args &&... args) {
657 return detail::zippy<detail::zip_shortest, T, U, Args...>(
658 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
659}
660
661/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
662/// be the shortest.
663template <typename T, typename U, typename... Args>
664detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
665 Args &&... args) {
666 return detail::zippy<detail::zip_first, T, U, Args...>(
667 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
668}
669
670namespace detail {
671template <typename Iter>
672static Iter next_or_end(const Iter &I, const Iter &End) {
673 if (I == End)
674 return End;
675 return std::next(I);
676}
677
678template <typename Iter>
679static auto deref_or_none(const Iter &I, const Iter &End)
680 -> llvm::Optional<typename std::remove_const<
681 typename std::remove_reference<decltype(*I)>::type>::type> {
682 if (I == End)
683 return None;
684 return *I;
685}
686
687template <typename Iter> struct ZipLongestItemType {
688 using type =
689 llvm::Optional<typename std::remove_const<typename std::remove_reference<
690 decltype(*std::declval<Iter>())>::type>::type>;
691};
692
693template <typename... Iters> struct ZipLongestTupleType {
694 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
695};
696
697template <typename... Iters>
698class zip_longest_iterator
699 : public iterator_facade_base<
700 zip_longest_iterator<Iters...>,
701 typename std::common_type<
702 std::forward_iterator_tag,
703 typename std::iterator_traits<Iters>::iterator_category...>::type,
704 typename ZipLongestTupleType<Iters...>::type,
705 typename std::iterator_traits<typename std::tuple_element<
706 0, std::tuple<Iters...>>::type>::difference_type,
707 typename ZipLongestTupleType<Iters...>::type *,
708 typename ZipLongestTupleType<Iters...>::type> {
709public:
710 using value_type = typename ZipLongestTupleType<Iters...>::type;
711
712private:
713 std::tuple<Iters...> iterators;
714 std::tuple<Iters...> end_iterators;
715
716 template <size_t... Ns>
717 bool test(const zip_longest_iterator<Iters...> &other,
718 index_sequence<Ns...>) const {
719 return llvm::any_of(
720 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
721 std::get<Ns>(other.iterators)...},
722 identity<bool>{});
723 }
724
725 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
726 return value_type(
727 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
728 }
729
730 template <size_t... Ns>
731 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
732 return std::tuple<Iters...>(
733 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
734 }
735
736public:
737 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
738 : iterators(std::forward<Iters>(ts.first)...),
739 end_iterators(std::forward<Iters>(ts.second)...) {}
740
741 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
742
743 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
744
745 zip_longest_iterator<Iters...> &operator++() {
746 iterators = tup_inc(index_sequence_for<Iters...>{});
747 return *this;
748 }
749
750 bool operator==(const zip_longest_iterator<Iters...> &other) const {
751 return !test(other, index_sequence_for<Iters...>{});
752 }
753};
754
755template <typename... Args> class zip_longest_range {
756public:
757 using iterator =
758 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
759 using iterator_category = typename iterator::iterator_category;
760 using value_type = typename iterator::value_type;
761 using difference_type = typename iterator::difference_type;
762 using pointer = typename iterator::pointer;
763 using reference = typename iterator::reference;
764
765private:
766 std::tuple<Args...> ts;
767
768 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
769 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
770 adl_end(std::get<Ns>(ts)))...);
771 }
772
773 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
776 }
777
778public:
779 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
780
781 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
782 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
783};
784} // namespace detail
785
786/// Iterate over two or more iterators at the same time. Iteration continues
787/// until all iterators reach the end. The llvm::Optional only contains a value
788/// if the iterator has not reached the end.
789template <typename T, typename U, typename... Args>
790detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
791 Args &&... args) {
792 return detail::zip_longest_range<T, U, Args...>(
793 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
794}
795
796/// Iterator wrapper that concatenates sequences together.
797///
798/// This can concatenate different iterators, even with different types, into
799/// a single iterator provided the value types of all the concatenated
800/// iterators expose `reference` and `pointer` types that can be converted to
801/// `ValueT &` and `ValueT *` respectively. It doesn't support more
802/// interesting/customized pointer or reference types.
803///
804/// Currently this only supports forward or higher iterator categories as
805/// inputs and always exposes a forward iterator interface.
806template <typename ValueT, typename... IterTs>
807class concat_iterator
808 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
809 std::forward_iterator_tag, ValueT> {
810 using BaseT = typename concat_iterator::iterator_facade_base;
811
812 /// We store both the current and end iterators for each concatenated
813 /// sequence in a tuple of pairs.
814 ///
815 /// Note that something like iterator_range seems nice at first here, but the
816 /// range properties are of little benefit and end up getting in the way
817 /// because we need to do mutation on the current iterators.
818 std::tuple<IterTs...> Begins;
819 std::tuple<IterTs...> Ends;
820
821 /// Attempts to increment a specific iterator.
822 ///
823 /// Returns true if it was able to increment the iterator. Returns false if
824 /// the iterator is already at the end iterator.
825 template <size_t Index> bool incrementHelper() {
826 auto &Begin = std::get<Index>(Begins);
827 auto &End = std::get<Index>(Ends);
828 if (Begin == End)
829 return false;
830
831 ++Begin;
832 return true;
833 }
834
835 /// Increments the first non-end iterator.
836 ///
837 /// It is an error to call this with all iterators at the end.
838 template <size_t... Ns> void increment(index_sequence<Ns...>) {
839 // Build a sequence of functions to increment each iterator if possible.
840 bool (concat_iterator::*IncrementHelperFns[])() = {
841 &concat_iterator::incrementHelper<Ns>...};
842
843 // Loop over them, and stop as soon as we succeed at incrementing one.
844 for (auto &IncrementHelperFn : IncrementHelperFns)
845 if ((this->*IncrementHelperFn)())
846 return;
847
848 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 848)
;
849 }
850
851 /// Returns null if the specified iterator is at the end. Otherwise,
852 /// dereferences the iterator and returns the address of the resulting
853 /// reference.
854 template <size_t Index> ValueT *getHelper() const {
855 auto &Begin = std::get<Index>(Begins);
856 auto &End = std::get<Index>(Ends);
857 if (Begin == End)
858 return nullptr;
859
860 return &*Begin;
861 }
862
863 /// Finds the first non-end iterator, dereferences, and returns the resulting
864 /// reference.
865 ///
866 /// It is an error to call this with all iterators at the end.
867 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
868 // Build a sequence of functions to get from iterator if possible.
869 ValueT *(concat_iterator::*GetHelperFns[])() const = {
870 &concat_iterator::getHelper<Ns>...};
871
872 // Loop over them, and return the first result we find.
873 for (auto &GetHelperFn : GetHelperFns)
874 if (ValueT *P = (this->*GetHelperFn)())
875 return *P;
876
877 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 877)
;
878 }
879
880public:
881 /// Constructs an iterator from a squence of ranges.
882 ///
883 /// We need the full range to know how to switch between each of the
884 /// iterators.
885 template <typename... RangeTs>
886 explicit concat_iterator(RangeTs &&... Ranges)
887 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
888
889 using BaseT::operator++;
890
891 concat_iterator &operator++() {
892 increment(index_sequence_for<IterTs...>());
893 return *this;
894 }
895
896 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
897
898 bool operator==(const concat_iterator &RHS) const {
899 return Begins == RHS.Begins && Ends == RHS.Ends;
900 }
901};
902
903namespace detail {
904
905/// Helper to store a sequence of ranges being concatenated and access them.
906///
907/// This is designed to facilitate providing actual storage when temporaries
908/// are passed into the constructor such that we can use it as part of range
909/// based for loops.
910template <typename ValueT, typename... RangeTs> class concat_range {
911public:
912 using iterator =
913 concat_iterator<ValueT,
914 decltype(std::begin(std::declval<RangeTs &>()))...>;
915
916private:
917 std::tuple<RangeTs...> Ranges;
918
919 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
920 return iterator(std::get<Ns>(Ranges)...);
921 }
922 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
923 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
924 std::end(std::get<Ns>(Ranges)))...);
925 }
926
927public:
928 concat_range(RangeTs &&... Ranges)
929 : Ranges(std::forward<RangeTs>(Ranges)...) {}
930
931 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
932 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
933};
934
935} // end namespace detail
936
937/// Concatenated range across two or more ranges.
938///
939/// The desired value type must be explicitly specified.
940template <typename ValueT, typename... RangeTs>
941detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
942 static_assert(sizeof...(RangeTs) > 1,
943 "Need more than one range to concatenate!");
944 return detail::concat_range<ValueT, RangeTs...>(
945 std::forward<RangeTs>(Ranges)...);
946}
947
948//===----------------------------------------------------------------------===//
949// Extra additions to <utility>
950//===----------------------------------------------------------------------===//
951
952/// Function object to check whether the first component of a std::pair
953/// compares less than the first component of another std::pair.
954struct less_first {
955 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
956 return lhs.first < rhs.first;
957 }
958};
959
960/// Function object to check whether the second component of a std::pair
961/// compares less than the second component of another std::pair.
962struct less_second {
963 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
964 return lhs.second < rhs.second;
965 }
966};
967
968/// \brief Function object to apply a binary function to the first component of
969/// a std::pair.
970template<typename FuncTy>
971struct on_first {
972 FuncTy func;
973
974 template <typename T>
975 auto operator()(const T &lhs, const T &rhs) const
976 -> decltype(func(lhs.first, rhs.first)) {
977 return func(lhs.first, rhs.first);
978 }
979};
980
981// A subset of N3658. More stuff can be added as-needed.
982
983/// Represents a compile-time sequence of integers.
984template <class T, T... I> struct integer_sequence {
985 using value_type = T;
986
987 static constexpr size_t size() { return sizeof...(I); }
988};
989
990/// Alias for the common case of a sequence of size_ts.
991template <size_t... I>
992struct index_sequence : integer_sequence<std::size_t, I...> {};
993
994template <std::size_t N, std::size_t... I>
995struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
996template <std::size_t... I>
997struct build_index_impl<0, I...> : index_sequence<I...> {};
998
999/// Creates a compile-time integer sequence for a parameter pack.
1000template <class... Ts>
1001struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1002
1003/// Utility type to build an inheritance chain that makes it easy to rank
1004/// overload candidates.
1005template <int N> struct rank : rank<N - 1> {};
1006template <> struct rank<0> {};
1007
1008/// traits class for checking whether type T is one of any of the given
1009/// types in the variadic list.
1010template <typename T, typename... Ts> struct is_one_of {
1011 static const bool value = false;
1012};
1013
1014template <typename T, typename U, typename... Ts>
1015struct is_one_of<T, U, Ts...> {
1016 static const bool value =
1017 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1018};
1019
1020/// traits class for checking whether type T is a base class for all
1021/// the given types in the variadic list.
1022template <typename T, typename... Ts> struct are_base_of {
1023 static const bool value = true;
1024};
1025
1026template <typename T, typename U, typename... Ts>
1027struct are_base_of<T, U, Ts...> {
1028 static const bool value =
1029 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1030};
1031
1032//===----------------------------------------------------------------------===//
1033// Extra additions for arrays
1034//===----------------------------------------------------------------------===//
1035
1036/// Find the length of an array.
1037template <class T, std::size_t N>
1038constexpr inline size_t array_lengthof(T (&)[N]) {
1039 return N;
1040}
1041
1042/// Adapt std::less<T> for array_pod_sort.
1043template<typename T>
1044inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1045 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1046 *reinterpret_cast<const T*>(P2)))
1047 return -1;
1048 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1049 *reinterpret_cast<const T*>(P1)))
1050 return 1;
1051 return 0;
1052}
1053
1054/// get_array_pod_sort_comparator - This is an internal helper function used to
1055/// get type deduction of T right.
1056template<typename T>
1057inline int (*get_array_pod_sort_comparator(const T &))
1058 (const void*, const void*) {
1059 return array_pod_sort_comparator<T>;
1060}
1061
1062/// array_pod_sort - This sorts an array with the specified start and end
1063/// extent. This is just like std::sort, except that it calls qsort instead of
1064/// using an inlined template. qsort is slightly slower than std::sort, but
1065/// most sorts are not performance critical in LLVM and std::sort has to be
1066/// template instantiated for each type, leading to significant measured code
1067/// bloat. This function should generally be used instead of std::sort where
1068/// possible.
1069///
1070/// This function assumes that you have simple POD-like types that can be
1071/// compared with std::less and can be moved with memcpy. If this isn't true,
1072/// you should use std::sort.
1073///
1074/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1075/// default to std::less.
1076template<class IteratorTy>
1077inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1078 // Don't inefficiently call qsort with one element or trigger undefined
1079 // behavior with an empty sequence.
1080 auto NElts = End - Start;
1081 if (NElts <= 1) return;
1082#ifdef EXPENSIVE_CHECKS
1083 std::mt19937 Generator(std::random_device{}());
1084 std::shuffle(Start, End, Generator);
1085#endif
1086 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1087}
1088
1089template <class IteratorTy>
1090inline void array_pod_sort(
1091 IteratorTy Start, IteratorTy End,
1092 int (*Compare)(
1093 const typename std::iterator_traits<IteratorTy>::value_type *,
1094 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1095 // Don't inefficiently call qsort with one element or trigger undefined
1096 // behavior with an empty sequence.
1097 auto NElts = End - Start;
1098 if (NElts <= 1) return;
1099#ifdef EXPENSIVE_CHECKS
1100 std::mt19937 Generator(std::random_device{}());
1101 std::shuffle(Start, End, Generator);
1102#endif
1103 qsort(&*Start, NElts, sizeof(*Start),
1104 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1105}
1106
1107// Provide wrappers to std::sort which shuffle the elements before sorting
1108// to help uncover non-deterministic behavior (PR35135).
1109template <typename IteratorTy>
1110inline void sort(IteratorTy Start, IteratorTy End) {
1111#ifdef EXPENSIVE_CHECKS
1112 std::mt19937 Generator(std::random_device{}());
1113 std::shuffle(Start, End, Generator);
1114#endif
1115 std::sort(Start, End);
1116}
1117
1118template <typename Container> inline void sort(Container &&C) {
1119 llvm::sort(adl_begin(C), adl_end(C));
1120}
1121
1122template <typename IteratorTy, typename Compare>
1123inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1124#ifdef EXPENSIVE_CHECKS
1125 std::mt19937 Generator(std::random_device{}());
1126 std::shuffle(Start, End, Generator);
1127#endif
1128 std::sort(Start, End, Comp);
1129}
1130
1131template <typename Container, typename Compare>
1132inline void sort(Container &&C, Compare Comp) {
1133 llvm::sort(adl_begin(C), adl_end(C), Comp);
1134}
1135
1136//===----------------------------------------------------------------------===//
1137// Extra additions to <algorithm>
1138//===----------------------------------------------------------------------===//
1139
1140/// For a container of pointers, deletes the pointers and then clears the
1141/// container.
1142template<typename Container>
1143void DeleteContainerPointers(Container &C) {
1144 for (auto V : C)
1145 delete V;
1146 C.clear();
1147}
1148
1149/// In a container of pairs (usually a map) whose second element is a pointer,
1150/// deletes the second elements and then clears the container.
1151template<typename Container>
1152void DeleteContainerSeconds(Container &C) {
1153 for (auto &V : C)
1154 delete V.second;
1155 C.clear();
1156}
1157
1158/// Get the size of a range. This is a wrapper function around std::distance
1159/// which is only enabled when the operation is O(1).
1160template <typename R>
1161auto size(R &&Range, typename std::enable_if<
1162 std::is_same<typename std::iterator_traits<decltype(
1163 Range.begin())>::iterator_category,
1164 std::random_access_iterator_tag>::value,
1165 void>::type * = nullptr)
1166 -> decltype(std::distance(Range.begin(), Range.end())) {
1167 return std::distance(Range.begin(), Range.end());
1168}
1169
1170/// Provide wrappers to std::for_each which take ranges instead of having to
1171/// pass begin/end explicitly.
1172template <typename R, typename UnaryPredicate>
1173UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1174 return std::for_each(adl_begin(Range), adl_end(Range), P);
1175}
1176
1177/// Provide wrappers to std::all_of which take ranges instead of having to pass
1178/// begin/end explicitly.
1179template <typename R, typename UnaryPredicate>
1180bool all_of(R &&Range, UnaryPredicate P) {
1181 return std::all_of(adl_begin(Range), adl_end(Range), P);
1182}
1183
1184/// Provide wrappers to std::any_of which take ranges instead of having to pass
1185/// begin/end explicitly.
1186template <typename R, typename UnaryPredicate>
1187bool any_of(R &&Range, UnaryPredicate P) {
1188 return std::any_of(adl_begin(Range), adl_end(Range), P);
1189}
1190
1191/// Provide wrappers to std::none_of which take ranges instead of having to pass
1192/// begin/end explicitly.
1193template <typename R, typename UnaryPredicate>
1194bool none_of(R &&Range, UnaryPredicate P) {
1195 return std::none_of(adl_begin(Range), adl_end(Range), P);
1196}
1197
1198/// Provide wrappers to std::find which take ranges instead of having to pass
1199/// begin/end explicitly.
1200template <typename R, typename T>
1201auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1202 return std::find(adl_begin(Range), adl_end(Range), Val);
1203}
1204
1205/// Provide wrappers to std::find_if which take ranges instead of having to pass
1206/// begin/end explicitly.
1207template <typename R, typename UnaryPredicate>
1208auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1209 return std::find_if(adl_begin(Range), adl_end(Range), P);
1210}
1211
1212template <typename R, typename UnaryPredicate>
1213auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1215}
1216
1217/// Provide wrappers to std::remove_if which take ranges instead of having to
1218/// pass begin/end explicitly.
1219template <typename R, typename UnaryPredicate>
1220auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1221 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1222}
1223
1224/// Provide wrappers to std::copy_if which take ranges instead of having to
1225/// pass begin/end explicitly.
1226template <typename R, typename OutputIt, typename UnaryPredicate>
1227OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1228 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1229}
1230
1231template <typename R, typename OutputIt>
1232OutputIt copy(R &&Range, OutputIt Out) {
1233 return std::copy(adl_begin(Range), adl_end(Range), Out);
1234}
1235
1236/// Wrapper function around std::find to detect if an element exists
1237/// in a container.
1238template <typename R, typename E>
1239bool is_contained(R &&Range, const E &Element) {
1240 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1241}
1242
1243/// Wrapper function around std::count to count the number of times an element
1244/// \p Element occurs in the given range \p Range.
1245template <typename R, typename E>
1246auto count(R &&Range, const E &Element) ->
1247 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1248 return std::count(adl_begin(Range), adl_end(Range), Element);
1249}
1250
1251/// Wrapper function around std::count_if to count the number of times an
1252/// element satisfying a given predicate occurs in a range.
1253template <typename R, typename UnaryPredicate>
1254auto count_if(R &&Range, UnaryPredicate P) ->
1255 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1256 return std::count_if(adl_begin(Range), adl_end(Range), P);
1257}
1258
1259/// Wrapper function around std::transform to apply a function to a range and
1260/// store the result elsewhere.
1261template <typename R, typename OutputIt, typename UnaryPredicate>
1262OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1263 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1264}
1265
1266/// Provide wrappers to std::partition which take ranges instead of having to
1267/// pass begin/end explicitly.
1268template <typename R, typename UnaryPredicate>
1269auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1270 return std::partition(adl_begin(Range), adl_end(Range), P);
1271}
1272
1273/// Provide wrappers to std::lower_bound which take ranges instead of having to
1274/// pass begin/end explicitly.
1275template <typename R, typename ForwardIt>
1276auto lower_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1277 return std::lower_bound(adl_begin(Range), adl_end(Range), I);
1278}
1279
1280template <typename R, typename ForwardIt, typename Compare>
1281auto lower_bound(R &&Range, ForwardIt I, Compare C)
1282 -> decltype(adl_begin(Range)) {
1283 return std::lower_bound(adl_begin(Range), adl_end(Range), I, C);
1284}
1285
1286/// Provide wrappers to std::upper_bound which take ranges instead of having to
1287/// pass begin/end explicitly.
1288template <typename R, typename ForwardIt>
1289auto upper_bound(R &&Range, ForwardIt I) -> decltype(adl_begin(Range)) {
1290 return std::upper_bound(adl_begin(Range), adl_end(Range), I);
1291}
1292
1293template <typename R, typename ForwardIt, typename Compare>
1294auto upper_bound(R &&Range, ForwardIt I, Compare C)
1295 -> decltype(adl_begin(Range)) {
1296 return std::upper_bound(adl_begin(Range), adl_end(Range), I, C);
1297}
1298/// Wrapper function around std::equal to detect if all elements
1299/// in a container are same.
1300template <typename R>
1301bool is_splat(R &&Range) {
1302 size_t range_size = size(Range);
1303 return range_size != 0 && (range_size == 1 ||
1304 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1305}
1306
1307/// Given a range of type R, iterate the entire range and return a
1308/// SmallVector with elements of the vector. This is useful, for example,
1309/// when you want to iterate a range and then sort the results.
1310template <unsigned Size, typename R>
1311SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1312to_vector(R &&Range) {
1313 return {adl_begin(Range), adl_end(Range)};
1314}
1315
1316/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1317/// `erase_if` which is equivalent to:
1318///
1319/// C.erase(remove_if(C, pred), C.end());
1320///
1321/// This version works for any container with an erase method call accepting
1322/// two iterators.
1323template <typename Container, typename UnaryPredicate>
1324void erase_if(Container &C, UnaryPredicate P) {
1325 C.erase(remove_if(C, P), C.end());
1326}
1327
1328//===----------------------------------------------------------------------===//
1329// Extra additions to <memory>
1330//===----------------------------------------------------------------------===//
1331
1332// Implement make_unique according to N3656.
1333
1334/// Constructs a `new T()` with the given args and returns a
1335/// `unique_ptr<T>` which owns the object.
1336///
1337/// Example:
1338///
1339/// auto p = make_unique<int>();
1340/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1341template <class T, class... Args>
1342typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1343make_unique(Args &&... args) {
1344 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
17
Memory is allocated
1345}
1346
1347/// Constructs a `new T[n]` with the given args and returns a
1348/// `unique_ptr<T[]>` which owns the object.
1349///
1350/// \param n size of the new array.
1351///
1352/// Example:
1353///
1354/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1355template <class T>
1356typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1357 std::unique_ptr<T>>::type
1358make_unique(size_t n) {
1359 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1360}
1361
1362/// This function isn't used and is only here to provide better compile errors.
1363template <class T, class... Args>
1364typename std::enable_if<std::extent<T>::value != 0>::type
1365make_unique(Args &&...) = delete;
1366
1367struct FreeDeleter {
1368 void operator()(void* v) {
1369 ::free(v);
1370 }
1371};
1372
1373template<typename First, typename Second>
1374struct pair_hash {
1375 size_t operator()(const std::pair<First, Second> &P) const {
1376 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1377 }
1378};
1379
1380/// A functor like C++14's std::less<void> in its absence.
1381struct less {
1382 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1383 return std::forward<A>(a) < std::forward<B>(b);
1384 }
1385};
1386
1387/// A functor like C++14's std::equal<void> in its absence.
1388struct equal {
1389 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1390 return std::forward<A>(a) == std::forward<B>(b);
1391 }
1392};
1393
1394/// Binary functor that adapts to any other binary functor after dereferencing
1395/// operands.
1396template <typename T> struct deref {
1397 T func;
1398
1399 // Could be further improved to cope with non-derivable functors and
1400 // non-binary functors (should be a variadic template member function
1401 // operator()).
1402 template <typename A, typename B>
1403 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1404 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1404, __PRETTY_FUNCTION__))
;
1405 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1405, __PRETTY_FUNCTION__))
;
1406 return func(*lhs, *rhs);
1407 }
1408};
1409
1410namespace detail {
1411
1412template <typename R> class enumerator_iter;
1413
1414template <typename R> struct result_pair {
1415 friend class enumerator_iter<R>;
1416
1417 result_pair() = default;
1418 result_pair(std::size_t Index, IterOfRange<R> Iter)
1419 : Index(Index), Iter(Iter) {}
1420
1421 result_pair<R> &operator=(const result_pair<R> &Other) {
1422 Index = Other.Index;
1423 Iter = Other.Iter;
1424 return *this;
1425 }
1426
1427 std::size_t index() const { return Index; }
1428 const ValueOfRange<R> &value() const { return *Iter; }
1429 ValueOfRange<R> &value() { return *Iter; }
1430
1431private:
1432 std::size_t Index = std::numeric_limits<std::size_t>::max();
1433 IterOfRange<R> Iter;
1434};
1435
1436template <typename R>
1437class enumerator_iter
1438 : public iterator_facade_base<
1439 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1440 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1441 typename std::iterator_traits<IterOfRange<R>>::pointer,
1442 typename std::iterator_traits<IterOfRange<R>>::reference> {
1443 using result_type = result_pair<R>;
1444
1445public:
1446 explicit enumerator_iter(IterOfRange<R> EndIter)
1447 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1448
1449 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1450 : Result(Index, Iter) {}
1451
1452 result_type &operator*() { return Result; }
1453 const result_type &operator*() const { return Result; }
1454
1455 enumerator_iter<R> &operator++() {
1456 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-8~svn350071/include/llvm/ADT/STLExtras.h"
, 1456, __PRETTY_FUNCTION__))
;
1457 ++Result.Iter;
1458 ++Result.Index;
1459 return *this;
1460 }
1461
1462 bool operator==(const enumerator_iter<R> &RHS) const {
1463 // Don't compare indices here, only iterators. It's possible for an end
1464 // iterator to have different indices depending on whether it was created
1465 // by calling std::end() versus incrementing a valid iterator.
1466 return Result.Iter == RHS.Result.Iter;
1467 }
1468
1469 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1470 Result = Other.Result;
1471 return *this;
1472 }
1473
1474private:
1475 result_type Result;
1476};
1477
1478template <typename R> class enumerator {
1479public:
1480 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1481
1482 enumerator_iter<R> begin() {
1483 return enumerator_iter<R>(0, std::begin(TheRange));
1484 }
1485
1486 enumerator_iter<R> end() {
1487 return enumerator_iter<R>(std::end(TheRange));
1488 }
1489
1490private:
1491 R TheRange;
1492};
1493
1494} // end namespace detail
1495
1496/// Given an input range, returns a new range whose values are are pair (A,B)
1497/// such that A is the 0-based index of the item in the sequence, and B is
1498/// the value from the original sequence. Example:
1499///
1500/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1501/// for (auto X : enumerate(Items)) {
1502/// printf("Item %d - %c\n", X.index(), X.value());
1503/// }
1504///
1505/// Output:
1506/// Item 0 - A
1507/// Item 1 - B
1508/// Item 2 - C
1509/// Item 3 - D
1510///
1511template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1512 return detail::enumerator<R>(std::forward<R>(TheRange));
1513}
1514
1515namespace detail {
1516
1517template <typename F, typename Tuple, std::size_t... I>
1518auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1519 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1520 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1521}
1522
1523} // end namespace detail
1524
1525/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1526/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1527/// return the result.
1528template <typename F, typename Tuple>
1529auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1530 std::forward<F>(f), std::forward<Tuple>(t),
1531 build_index_impl<
1532 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1533 using Indices = build_index_impl<
1534 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1535
1536 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1537 Indices{});
1538}
1539
1540/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1541/// time. Not meant for use with random-access iterators.
1542template <typename IterTy>
1543bool hasNItems(
1544 IterTy &&Begin, IterTy &&End, unsigned N,
1545 typename std::enable_if<
1546 !std::is_same<
1547 typename std::iterator_traits<typename std::remove_reference<
1548 decltype(Begin)>::type>::iterator_category,
1549 std::random_access_iterator_tag>::value,
1550 void>::type * = nullptr) {
1551 for (; N; --N, ++Begin)
1552 if (Begin == End)
1553 return false; // Too few.
1554 return Begin == End;
1555}
1556
1557/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1558/// time. Not meant for use with random-access iterators.
1559template <typename IterTy>
1560bool hasNItemsOrMore(
1561 IterTy &&Begin, IterTy &&End, unsigned N,
1562 typename std::enable_if<
1563 !std::is_same<
1564 typename std::iterator_traits<typename std::remove_reference<
1565 decltype(Begin)>::type>::iterator_category,
1566 std::random_access_iterator_tag>::value,
1567 void>::type * = nullptr) {
1568 for (; N; --N, ++Begin)
1569 if (Begin == End)
1570 return false; // Too few.
1571 return true;
1572}
1573
1574} // end namespace llvm
1575
1576#endif // LLVM_ADT_STLEXTRAS_H