Bug Summary

File:llvm/lib/CodeGen/MachineDebugify.cpp
Warning:line 115, column 16
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name MachineDebugify.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/CodeGen -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-08-28-193554-24367-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/MachineDebugify.cpp

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/MachineDebugify.cpp

1//===- MachineDebugify.cpp - Attach synthetic debug info to everything ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file This pass attaches synthetic debug info to everything. It can be used
10/// to create targeted tests for debug info preservation, or test for CodeGen
11/// differences with vs. without debug info.
12///
13/// This isn't intended to have feature parity with Debugify.
14//===----------------------------------------------------------------------===//
15
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/SmallSet.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/CodeGen/MachineFunctionPass.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineModuleInfo.h"
22#include "llvm/CodeGen/Passes.h"
23#include "llvm/CodeGen/TargetInstrInfo.h"
24#include "llvm/CodeGen/TargetSubtargetInfo.h"
25#include "llvm/IR/DIBuilder.h"
26#include "llvm/IR/DebugInfo.h"
27#include "llvm/IR/IntrinsicInst.h"
28#include "llvm/InitializePasses.h"
29#include "llvm/Transforms/Utils/Debugify.h"
30
31#define DEBUG_TYPE"mir-debugify" "mir-debugify"
32
33using namespace llvm;
34
35namespace {
36bool applyDebugifyMetadataToMachineFunction(MachineModuleInfo &MMI,
37 DIBuilder &DIB, Function &F) {
38 MachineFunction *MaybeMF = MMI.getMachineFunction(F);
39 if (!MaybeMF)
2
Assuming 'MaybeMF' is non-null
3
Taking false branch
40 return false;
41 MachineFunction &MF = *MaybeMF;
42 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
43
44 DISubprogram *SP = F.getSubprogram();
45 assert(SP && "IR Debugify just created it?")(static_cast <bool> (SP && "IR Debugify just created it?"
) ? void (0) : __assert_fail ("SP && \"IR Debugify just created it?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/MachineDebugify.cpp"
, 45, __extension__ __PRETTY_FUNCTION__))
;
4
Assuming 'SP' is non-null
5
'?' condition is true
46
47 Module &M = *F.getParent();
48 LLVMContext &Ctx = M.getContext();
49
50 unsigned NextLine = SP->getLine();
51 for (MachineBasicBlock &MBB : MF) {
52 for (MachineInstr &MI : MBB) {
53 // This will likely emit line numbers beyond the end of the imagined
54 // source function and into subsequent ones. We don't do anything about
55 // that as it doesn't really matter to the compiler where the line is in
56 // the imaginary source code.
57 MI.setDebugLoc(DILocation::get(Ctx, NextLine++, 1, SP));
58 }
59 }
60
61 // Find local variables defined by debugify. No attempt is made to match up
62 // MIR-level regs to the 'correct' IR-level variables: there isn't a simple
63 // way to do that, and it isn't necessary to find interesting CodeGen bugs.
64 // Instead, simply keep track of one variable per line. Later, we can insert
65 // DBG_VALUE insts that point to these local variables. Emitting DBG_VALUEs
66 // which cover a wide range of lines can help stress the debug info passes:
67 // if we can't do that, fall back to using the local variable which precedes
68 // all the others.
69 Function *DbgValF = M.getFunction("llvm.dbg.value");
70 DbgValueInst *EarliestDVI = nullptr;
6
'EarliestDVI' initialized to a null pointer value
71 DenseMap<unsigned, DILocalVariable *> Line2Var;
72 DIExpression *Expr = nullptr;
73 if (DbgValF) {
7
Assuming 'DbgValF' is null
8
Taking false branch
74 for (const Use &U : DbgValF->uses()) {
75 auto *DVI = dyn_cast<DbgValueInst>(U.getUser());
76 if (!DVI || DVI->getFunction() != &F)
77 continue;
78 unsigned Line = DVI->getDebugLoc().getLine();
79 assert(Line != 0 && "debugify should not insert line 0 locations")(static_cast <bool> (Line != 0 && "debugify should not insert line 0 locations"
) ? void (0) : __assert_fail ("Line != 0 && \"debugify should not insert line 0 locations\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/MachineDebugify.cpp"
, 79, __extension__ __PRETTY_FUNCTION__))
;
80 Line2Var[Line] = DVI->getVariable();
81 if (!EarliestDVI || Line < EarliestDVI->getDebugLoc().getLine())
82 EarliestDVI = DVI;
83 Expr = DVI->getExpression();
84 }
85 }
86 if (Line2Var.empty())
9
Assuming the condition is false
10
Taking false branch
87 return true;
88
89 // Now, try to insert a DBG_VALUE instruction after each real instruction.
90 // Do this by introducing debug uses of each register definition. If that is
91 // not possible (e.g. we have a phi or a meta instruction), emit a constant.
92 uint64_t NextImm = 0;
93 SmallSet<DILocalVariable *, 16> VarSet;
94 const MCInstrDesc &DbgValDesc = TII.get(TargetOpcode::DBG_VALUE);
95 for (MachineBasicBlock &MBB : MF) {
96 MachineBasicBlock::iterator FirstNonPHIIt = MBB.getFirstNonPHI();
97 for (auto I = MBB.begin(), E = MBB.end(); I != E;) {
11
Calling 'operator!='
20
Returning from 'operator!='
21
Loop condition is true. Entering loop body
98 MachineInstr &MI = *I;
99 ++I;
100
101 // `I` may point to a DBG_VALUE created in the previous loop iteration.
102 if (MI.isDebugInstr())
22
Calling 'MachineInstr::isDebugInstr'
24
Returning from 'MachineInstr::isDebugInstr'
25
Taking false branch
103 continue;
104
105 // It's not allowed to insert DBG_VALUEs after a terminator.
106 if (MI.isTerminator())
26
Calling 'MachineInstr::isTerminator'
33
Returning from 'MachineInstr::isTerminator'
34
Assuming the condition is false
107 continue;
108
109 // Find a suitable insertion point for the DBG_VALUE.
110 auto InsertBeforeIt = MI.isPHI() ? FirstNonPHIIt : I;
35
Taking false branch
36
'?' condition is true
111
112 // Find a suitable local variable for the DBG_VALUE.
113 unsigned Line = MI.getDebugLoc().getLine();
114 if (!Line2Var.count(Line))
37
Assuming the condition is true
38
Taking true branch
115 Line = EarliestDVI->getDebugLoc().getLine();
39
Called C++ object pointer is null
116 DILocalVariable *LocalVar = Line2Var[Line];
117 assert(LocalVar && "No variable for current line?")(static_cast <bool> (LocalVar && "No variable for current line?"
) ? void (0) : __assert_fail ("LocalVar && \"No variable for current line?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/MachineDebugify.cpp"
, 117, __extension__ __PRETTY_FUNCTION__))
;
118 VarSet.insert(LocalVar);
119
120 // Emit DBG_VALUEs for register definitions.
121 SmallVector<MachineOperand *, 4> RegDefs;
122 for (MachineOperand &MO : MI.operands())
123 if (MO.isReg() && MO.isDef() && MO.getReg())
124 RegDefs.push_back(&MO);
125 for (MachineOperand *MO : RegDefs)
126 BuildMI(MBB, InsertBeforeIt, MI.getDebugLoc(), DbgValDesc,
127 /*IsIndirect=*/false, *MO, LocalVar, Expr);
128
129 // OK, failing that, emit a constant DBG_VALUE.
130 if (RegDefs.empty()) {
131 auto ImmOp = MachineOperand::CreateImm(NextImm++);
132 BuildMI(MBB, InsertBeforeIt, MI.getDebugLoc(), DbgValDesc,
133 /*IsIndirect=*/false, ImmOp, LocalVar, Expr);
134 }
135 }
136 }
137
138 // Here we save the number of lines and variables into "llvm.mir.debugify".
139 // It is useful for mir-check-debugify.
140 NamedMDNode *NMD = M.getNamedMetadata("llvm.mir.debugify");
141 IntegerType *Int32Ty = Type::getInt32Ty(Ctx);
142 if (!NMD) {
143 NMD = M.getOrInsertNamedMetadata("llvm.mir.debugify");
144 auto addDebugifyOperand = [&](unsigned N) {
145 NMD->addOperand(MDNode::get(
146 Ctx, ValueAsMetadata::getConstant(ConstantInt::get(Int32Ty, N))));
147 };
148 // Add number of lines.
149 addDebugifyOperand(NextLine - 1);
150 // Add number of variables.
151 addDebugifyOperand(VarSet.size());
152 } else {
153 assert(NMD->getNumOperands() == 2 &&(static_cast <bool> (NMD->getNumOperands() == 2 &&
"llvm.mir.debugify should have exactly 2 operands!") ? void (
0) : __assert_fail ("NMD->getNumOperands() == 2 && \"llvm.mir.debugify should have exactly 2 operands!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/MachineDebugify.cpp"
, 154, __extension__ __PRETTY_FUNCTION__))
154 "llvm.mir.debugify should have exactly 2 operands!")(static_cast <bool> (NMD->getNumOperands() == 2 &&
"llvm.mir.debugify should have exactly 2 operands!") ? void (
0) : __assert_fail ("NMD->getNumOperands() == 2 && \"llvm.mir.debugify should have exactly 2 operands!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/lib/CodeGen/MachineDebugify.cpp"
, 154, __extension__ __PRETTY_FUNCTION__))
;
155 auto setDebugifyOperand = [&](unsigned Idx, unsigned N) {
156 NMD->setOperand(Idx, MDNode::get(Ctx, ValueAsMetadata::getConstant(
157 ConstantInt::get(Int32Ty, N))));
158 };
159 // Set number of lines.
160 setDebugifyOperand(0, NextLine - 1);
161 // Set number of variables.
162 setDebugifyOperand(1, VarSet.size());
163 }
164
165 return true;
166}
167
168/// ModulePass for attaching synthetic debug info to everything, used with the
169/// legacy module pass manager.
170struct DebugifyMachineModule : public ModulePass {
171 bool runOnModule(Module &M) override {
172 MachineModuleInfo &MMI =
173 getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
174 return applyDebugifyMetadata(
175 M, M.functions(),
176 "ModuleDebugify: ", [&](DIBuilder &DIB, Function &F) -> bool {
177 return applyDebugifyMetadataToMachineFunction(MMI, DIB, F);
1
Calling 'applyDebugifyMetadataToMachineFunction'
178 });
179 }
180
181 DebugifyMachineModule() : ModulePass(ID) {}
182
183 void getAnalysisUsage(AnalysisUsage &AU) const override {
184 AU.addRequired<MachineModuleInfoWrapperPass>();
185 AU.addPreserved<MachineModuleInfoWrapperPass>();
186 AU.setPreservesCFG();
187 }
188
189 static char ID; // Pass identification.
190};
191char DebugifyMachineModule::ID = 0;
192
193} // end anonymous namespace
194
195INITIALIZE_PASS_BEGIN(DebugifyMachineModule, DEBUG_TYPE,static void *initializeDebugifyMachineModulePassOnce(PassRegistry
&Registry) {
196 "Machine Debugify Module", false, false)static void *initializeDebugifyMachineModulePassOnce(PassRegistry
&Registry) {
197INITIALIZE_PASS_END(DebugifyMachineModule, DEBUG_TYPE,PassInfo *PI = new PassInfo( "Machine Debugify Module", "mir-debugify"
, &DebugifyMachineModule::ID, PassInfo::NormalCtor_t(callDefaultCtor
<DebugifyMachineModule>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeDebugifyMachineModulePassFlag
; void llvm::initializeDebugifyMachineModulePass(PassRegistry
&Registry) { llvm::call_once(InitializeDebugifyMachineModulePassFlag
, initializeDebugifyMachineModulePassOnce, std::ref(Registry)
); }
198 "Machine Debugify Module", false, false)PassInfo *PI = new PassInfo( "Machine Debugify Module", "mir-debugify"
, &DebugifyMachineModule::ID, PassInfo::NormalCtor_t(callDefaultCtor
<DebugifyMachineModule>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeDebugifyMachineModulePassFlag
; void llvm::initializeDebugifyMachineModulePass(PassRegistry
&Registry) { llvm::call_once(InitializeDebugifyMachineModulePassFlag
, initializeDebugifyMachineModulePassOnce, std::ref(Registry)
); }
199
200ModulePass *llvm::createDebugifyMachineModulePass() {
201 return new DebugifyMachineModule();
202}

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstrBundleIterator.h

1//===- llvm/CodeGen/MachineInstrBundleIterator.h ----------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Defines an iterator class that bundles MachineInstr.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CODEGEN_MACHINEINSTRBUNDLEITERATOR_H
14#define LLVM_CODEGEN_MACHINEINSTRBUNDLEITERATOR_H
15
16#include "llvm/ADT/ilist.h"
17#include "llvm/ADT/simple_ilist.h"
18#include <cassert>
19#include <iterator>
20#include <type_traits>
21
22namespace llvm {
23
24template <class T, bool IsReverse> struct MachineInstrBundleIteratorTraits;
25template <class T> struct MachineInstrBundleIteratorTraits<T, false> {
26 using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>;
27 using instr_iterator = typename list_type::iterator;
28 using nonconst_instr_iterator = typename list_type::iterator;
29 using const_instr_iterator = typename list_type::const_iterator;
30};
31template <class T> struct MachineInstrBundleIteratorTraits<T, true> {
32 using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>;
33 using instr_iterator = typename list_type::reverse_iterator;
34 using nonconst_instr_iterator = typename list_type::reverse_iterator;
35 using const_instr_iterator = typename list_type::const_reverse_iterator;
36};
37template <class T> struct MachineInstrBundleIteratorTraits<const T, false> {
38 using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>;
39 using instr_iterator = typename list_type::const_iterator;
40 using nonconst_instr_iterator = typename list_type::iterator;
41 using const_instr_iterator = typename list_type::const_iterator;
42};
43template <class T> struct MachineInstrBundleIteratorTraits<const T, true> {
44 using list_type = simple_ilist<T, ilist_sentinel_tracking<true>>;
45 using instr_iterator = typename list_type::const_reverse_iterator;
46 using nonconst_instr_iterator = typename list_type::reverse_iterator;
47 using const_instr_iterator = typename list_type::const_reverse_iterator;
48};
49
50template <bool IsReverse> struct MachineInstrBundleIteratorHelper;
51template <> struct MachineInstrBundleIteratorHelper<false> {
52 /// Get the beginning of the current bundle.
53 template <class Iterator> static Iterator getBundleBegin(Iterator I) {
54 if (!I.isEnd())
55 while (I->isBundledWithPred())
56 --I;
57 return I;
58 }
59
60 /// Get the final node of the current bundle.
61 template <class Iterator> static Iterator getBundleFinal(Iterator I) {
62 if (!I.isEnd())
63 while (I->isBundledWithSucc())
64 ++I;
65 return I;
66 }
67
68 /// Increment forward ilist iterator.
69 template <class Iterator> static void increment(Iterator &I) {
70 I = std::next(getBundleFinal(I));
71 }
72
73 /// Decrement forward ilist iterator.
74 template <class Iterator> static void decrement(Iterator &I) {
75 I = getBundleBegin(std::prev(I));
76 }
77};
78
79template <> struct MachineInstrBundleIteratorHelper<true> {
80 /// Get the beginning of the current bundle.
81 template <class Iterator> static Iterator getBundleBegin(Iterator I) {
82 return MachineInstrBundleIteratorHelper<false>::getBundleBegin(
83 I.getReverse())
84 .getReverse();
85 }
86
87 /// Get the final node of the current bundle.
88 template <class Iterator> static Iterator getBundleFinal(Iterator I) {
89 return MachineInstrBundleIteratorHelper<false>::getBundleFinal(
90 I.getReverse())
91 .getReverse();
92 }
93
94 /// Increment reverse ilist iterator.
95 template <class Iterator> static void increment(Iterator &I) {
96 I = getBundleBegin(std::next(I));
97 }
98
99 /// Decrement reverse ilist iterator.
100 template <class Iterator> static void decrement(Iterator &I) {
101 I = std::prev(getBundleFinal(I));
102 }
103};
104
105/// MachineBasicBlock iterator that automatically skips over MIs that are
106/// inside bundles (i.e. walk top level MIs only).
107template <typename Ty, bool IsReverse = false>
108class MachineInstrBundleIterator : MachineInstrBundleIteratorHelper<IsReverse> {
109 using Traits = MachineInstrBundleIteratorTraits<Ty, IsReverse>;
110 using instr_iterator = typename Traits::instr_iterator;
111
112 instr_iterator MII;
113
114public:
115 using value_type = typename instr_iterator::value_type;
116 using difference_type = typename instr_iterator::difference_type;
117 using pointer = typename instr_iterator::pointer;
118 using reference = typename instr_iterator::reference;
119 using const_pointer = typename instr_iterator::const_pointer;
120 using const_reference = typename instr_iterator::const_reference;
121 using iterator_category = std::bidirectional_iterator_tag;
122
123private:
124 using nonconst_instr_iterator = typename Traits::nonconst_instr_iterator;
125 using const_instr_iterator = typename Traits::const_instr_iterator;
126 using nonconst_iterator =
127 MachineInstrBundleIterator<typename nonconst_instr_iterator::value_type,
128 IsReverse>;
129 using reverse_iterator = MachineInstrBundleIterator<Ty, !IsReverse>;
130
131public:
132 MachineInstrBundleIterator(instr_iterator MI) : MII(MI) {
133 assert((!MI.getNodePtr() || MI.isEnd() || !MI->isBundledWithPred()) &&(static_cast <bool> ((!MI.getNodePtr() || MI.isEnd() ||
!MI->isBundledWithPred()) && "It's not legal to initialize MachineInstrBundleIterator with a "
"bundled MI") ? void (0) : __assert_fail ("(!MI.getNodePtr() || MI.isEnd() || !MI->isBundledWithPred()) && \"It's not legal to initialize MachineInstrBundleIterator with a \" \"bundled MI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstrBundleIterator.h"
, 135, __extension__ __PRETTY_FUNCTION__))
134 "It's not legal to initialize MachineInstrBundleIterator with a "(static_cast <bool> ((!MI.getNodePtr() || MI.isEnd() ||
!MI->isBundledWithPred()) && "It's not legal to initialize MachineInstrBundleIterator with a "
"bundled MI") ? void (0) : __assert_fail ("(!MI.getNodePtr() || MI.isEnd() || !MI->isBundledWithPred()) && \"It's not legal to initialize MachineInstrBundleIterator with a \" \"bundled MI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstrBundleIterator.h"
, 135, __extension__ __PRETTY_FUNCTION__))
135 "bundled MI")(static_cast <bool> ((!MI.getNodePtr() || MI.isEnd() ||
!MI->isBundledWithPred()) && "It's not legal to initialize MachineInstrBundleIterator with a "
"bundled MI") ? void (0) : __assert_fail ("(!MI.getNodePtr() || MI.isEnd() || !MI->isBundledWithPred()) && \"It's not legal to initialize MachineInstrBundleIterator with a \" \"bundled MI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstrBundleIterator.h"
, 135, __extension__ __PRETTY_FUNCTION__))
;
136 }
137
138 MachineInstrBundleIterator(reference MI) : MII(MI) {
139 assert(!MI.isBundledWithPred() && "It's not legal to initialize "(static_cast <bool> (!MI.isBundledWithPred() &&
"It's not legal to initialize " "MachineInstrBundleIterator with a "
"bundled MI") ? void (0) : __assert_fail ("!MI.isBundledWithPred() && \"It's not legal to initialize \" \"MachineInstrBundleIterator with a \" \"bundled MI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstrBundleIterator.h"
, 141, __extension__ __PRETTY_FUNCTION__))
140 "MachineInstrBundleIterator with a "(static_cast <bool> (!MI.isBundledWithPred() &&
"It's not legal to initialize " "MachineInstrBundleIterator with a "
"bundled MI") ? void (0) : __assert_fail ("!MI.isBundledWithPred() && \"It's not legal to initialize \" \"MachineInstrBundleIterator with a \" \"bundled MI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstrBundleIterator.h"
, 141, __extension__ __PRETTY_FUNCTION__))
141 "bundled MI")(static_cast <bool> (!MI.isBundledWithPred() &&
"It's not legal to initialize " "MachineInstrBundleIterator with a "
"bundled MI") ? void (0) : __assert_fail ("!MI.isBundledWithPred() && \"It's not legal to initialize \" \"MachineInstrBundleIterator with a \" \"bundled MI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstrBundleIterator.h"
, 141, __extension__ __PRETTY_FUNCTION__))
;
142 }
143
144 MachineInstrBundleIterator(pointer MI) : MII(MI) {
145 // FIXME: This conversion should be explicit.
146 assert((!MI || !MI->isBundledWithPred()) && "It's not legal to initialize "(static_cast <bool> ((!MI || !MI->isBundledWithPred(
)) && "It's not legal to initialize " "MachineInstrBundleIterator "
"with a bundled MI") ? void (0) : __assert_fail ("(!MI || !MI->isBundledWithPred()) && \"It's not legal to initialize \" \"MachineInstrBundleIterator \" \"with a bundled MI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstrBundleIterator.h"
, 148, __extension__ __PRETTY_FUNCTION__))
147 "MachineInstrBundleIterator "(static_cast <bool> ((!MI || !MI->isBundledWithPred(
)) && "It's not legal to initialize " "MachineInstrBundleIterator "
"with a bundled MI") ? void (0) : __assert_fail ("(!MI || !MI->isBundledWithPred()) && \"It's not legal to initialize \" \"MachineInstrBundleIterator \" \"with a bundled MI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstrBundleIterator.h"
, 148, __extension__ __PRETTY_FUNCTION__))
148 "with a bundled MI")(static_cast <bool> ((!MI || !MI->isBundledWithPred(
)) && "It's not legal to initialize " "MachineInstrBundleIterator "
"with a bundled MI") ? void (0) : __assert_fail ("(!MI || !MI->isBundledWithPred()) && \"It's not legal to initialize \" \"MachineInstrBundleIterator \" \"with a bundled MI\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstrBundleIterator.h"
, 148, __extension__ __PRETTY_FUNCTION__))
;
149 }
150
151 // Template allows conversion from const to nonconst.
152 template <class OtherTy>
153 MachineInstrBundleIterator(
154 const MachineInstrBundleIterator<OtherTy, IsReverse> &I,
155 std::enable_if_t<std::is_convertible<OtherTy *, Ty *>::value, void *> =
156 nullptr)
157 : MII(I.getInstrIterator()) {}
158
159 MachineInstrBundleIterator() : MII(nullptr) {}
160
161 /// Explicit conversion between forward/reverse iterators.
162 ///
163 /// Translate between forward and reverse iterators without changing range
164 /// boundaries. The resulting iterator will dereference (and have a handle)
165 /// to the previous node, which is somewhat unexpected; but converting the
166 /// two endpoints in a range will give the same range in reverse.
167 ///
168 /// This matches std::reverse_iterator conversions.
169 explicit MachineInstrBundleIterator(
170 const MachineInstrBundleIterator<Ty, !IsReverse> &I)
171 : MachineInstrBundleIterator(++I.getReverse()) {}
172
173 /// Get the bundle iterator for the given instruction's bundle.
174 static MachineInstrBundleIterator getAtBundleBegin(instr_iterator MI) {
175 return MachineInstrBundleIteratorHelper<IsReverse>::getBundleBegin(MI);
176 }
177
178 reference operator*() const { return *MII; }
179 pointer operator->() const { return &operator*(); }
180
181 /// Check for null.
182 bool isValid() const { return MII.getNodePtr(); }
183
184 friend bool operator==(const MachineInstrBundleIterator &L,
185 const MachineInstrBundleIterator &R) {
186 return L.MII == R.MII;
13
Calling 'operator=='
16
Returning from 'operator=='
17
Returning zero, which participates in a condition later
187 }
188 friend bool operator==(const MachineInstrBundleIterator &L,
189 const const_instr_iterator &R) {
190 return L.MII == R; // Avoid assertion about validity of R.
191 }
192 friend bool operator==(const const_instr_iterator &L,
193 const MachineInstrBundleIterator &R) {
194 return L == R.MII; // Avoid assertion about validity of L.
195 }
196 friend bool operator==(const MachineInstrBundleIterator &L,
197 const nonconst_instr_iterator &R) {
198 return L.MII == R; // Avoid assertion about validity of R.
199 }
200 friend bool operator==(const nonconst_instr_iterator &L,
201 const MachineInstrBundleIterator &R) {
202 return L == R.MII; // Avoid assertion about validity of L.
203 }
204 friend bool operator==(const MachineInstrBundleIterator &L, const_pointer R) {
205 return L == const_instr_iterator(R); // Avoid assertion about validity of R.
206 }
207 friend bool operator==(const_pointer L, const MachineInstrBundleIterator &R) {
208 return const_instr_iterator(L) == R; // Avoid assertion about validity of L.
209 }
210 friend bool operator==(const MachineInstrBundleIterator &L,
211 const_reference R) {
212 return L == &R; // Avoid assertion about validity of R.
213 }
214 friend bool operator==(const_reference L,
215 const MachineInstrBundleIterator &R) {
216 return &L == R; // Avoid assertion about validity of L.
217 }
218
219 friend bool operator!=(const MachineInstrBundleIterator &L,
220 const MachineInstrBundleIterator &R) {
221 return !(L == R);
12
Calling 'operator=='
18
Returning from 'operator=='
19
Returning the value 1, which participates in a condition later
222 }
223 friend bool operator!=(const MachineInstrBundleIterator &L,
224 const const_instr_iterator &R) {
225 return !(L == R);
226 }
227 friend bool operator!=(const const_instr_iterator &L,
228 const MachineInstrBundleIterator &R) {
229 return !(L == R);
230 }
231 friend bool operator!=(const MachineInstrBundleIterator &L,
232 const nonconst_instr_iterator &R) {
233 return !(L == R);
234 }
235 friend bool operator!=(const nonconst_instr_iterator &L,
236 const MachineInstrBundleIterator &R) {
237 return !(L == R);
238 }
239 friend bool operator!=(const MachineInstrBundleIterator &L, const_pointer R) {
240 return !(L == R);
241 }
242 friend bool operator!=(const_pointer L, const MachineInstrBundleIterator &R) {
243 return !(L == R);
244 }
245 friend bool operator!=(const MachineInstrBundleIterator &L,
246 const_reference R) {
247 return !(L == R);
248 }
249 friend bool operator!=(const_reference L,
250 const MachineInstrBundleIterator &R) {
251 return !(L == R);
252 }
253
254 // Increment and decrement operators...
255 MachineInstrBundleIterator &operator--() {
256 this->decrement(MII);
257 return *this;
258 }
259 MachineInstrBundleIterator &operator++() {
260 this->increment(MII);
261 return *this;
262 }
263 MachineInstrBundleIterator operator--(int) {
264 MachineInstrBundleIterator Temp = *this;
265 --*this;
266 return Temp;
267 }
268 MachineInstrBundleIterator operator++(int) {
269 MachineInstrBundleIterator Temp = *this;
270 ++*this;
271 return Temp;
272 }
273
274 instr_iterator getInstrIterator() const { return MII; }
275
276 nonconst_iterator getNonConstIterator() const { return MII.getNonConst(); }
277
278 /// Get a reverse iterator to the same node.
279 ///
280 /// Gives a reverse iterator that will dereference (and have a handle) to the
281 /// same node. Converting the endpoint iterators in a range will give a
282 /// different range; for range operations, use the explicit conversions.
283 reverse_iterator getReverse() const { return MII.getReverse(); }
284};
285
286} // end namespace llvm
287
288#endif // LLVM_CODEGEN_MACHINEINSTRBUNDLEITERATOR_H

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/ilist_iterator.h

1//===- llvm/ADT/ilist_iterator.h - Intrusive List Iterator ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef LLVM_ADT_ILIST_ITERATOR_H
10#define LLVM_ADT_ILIST_ITERATOR_H
11
12#include "llvm/ADT/ilist_node.h"
13#include <cassert>
14#include <cstddef>
15#include <iterator>
16#include <type_traits>
17
18namespace llvm {
19
20namespace ilist_detail {
21
22/// Find const-correct node types.
23template <class OptionsT, bool IsConst> struct IteratorTraits;
24template <class OptionsT> struct IteratorTraits<OptionsT, false> {
25 using value_type = typename OptionsT::value_type;
26 using pointer = typename OptionsT::pointer;
27 using reference = typename OptionsT::reference;
28 using node_pointer = ilist_node_impl<OptionsT> *;
29 using node_reference = ilist_node_impl<OptionsT> &;
30};
31template <class OptionsT> struct IteratorTraits<OptionsT, true> {
32 using value_type = const typename OptionsT::value_type;
33 using pointer = typename OptionsT::const_pointer;
34 using reference = typename OptionsT::const_reference;
35 using node_pointer = const ilist_node_impl<OptionsT> *;
36 using node_reference = const ilist_node_impl<OptionsT> &;
37};
38
39template <bool IsReverse> struct IteratorHelper;
40template <> struct IteratorHelper<false> : ilist_detail::NodeAccess {
41 using Access = ilist_detail::NodeAccess;
42
43 template <class T> static void increment(T *&I) { I = Access::getNext(*I); }
44 template <class T> static void decrement(T *&I) { I = Access::getPrev(*I); }
45};
46template <> struct IteratorHelper<true> : ilist_detail::NodeAccess {
47 using Access = ilist_detail::NodeAccess;
48
49 template <class T> static void increment(T *&I) { I = Access::getPrev(*I); }
50 template <class T> static void decrement(T *&I) { I = Access::getNext(*I); }
51};
52
53} // end namespace ilist_detail
54
55/// Iterator for intrusive lists based on ilist_node.
56template <class OptionsT, bool IsReverse, bool IsConst>
57class ilist_iterator : ilist_detail::SpecificNodeAccess<OptionsT> {
58 friend ilist_iterator<OptionsT, IsReverse, !IsConst>;
59 friend ilist_iterator<OptionsT, !IsReverse, IsConst>;
60 friend ilist_iterator<OptionsT, !IsReverse, !IsConst>;
61
62 using Traits = ilist_detail::IteratorTraits<OptionsT, IsConst>;
63 using Access = ilist_detail::SpecificNodeAccess<OptionsT>;
64
65public:
66 using value_type = typename Traits::value_type;
67 using pointer = typename Traits::pointer;
68 using reference = typename Traits::reference;
69 using difference_type = ptrdiff_t;
70 using iterator_category = std::bidirectional_iterator_tag;
71 using const_pointer = typename OptionsT::const_pointer;
72 using const_reference = typename OptionsT::const_reference;
73
74private:
75 using node_pointer = typename Traits::node_pointer;
76 using node_reference = typename Traits::node_reference;
77
78 node_pointer NodePtr = nullptr;
79
80public:
81 /// Create from an ilist_node.
82 explicit ilist_iterator(node_reference N) : NodePtr(&N) {}
83
84 explicit ilist_iterator(pointer NP) : NodePtr(Access::getNodePtr(NP)) {}
85 explicit ilist_iterator(reference NR) : NodePtr(Access::getNodePtr(&NR)) {}
86 ilist_iterator() = default;
87
88 // This is templated so that we can allow constructing a const iterator from
89 // a nonconst iterator...
90 template <bool RHSIsConst>
91 ilist_iterator(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS,
92 std::enable_if_t<IsConst || !RHSIsConst, void *> = nullptr)
93 : NodePtr(RHS.NodePtr) {}
94
95 // This is templated so that we can allow assigning to a const iterator from
96 // a nonconst iterator...
97 template <bool RHSIsConst>
98 std::enable_if_t<IsConst || !RHSIsConst, ilist_iterator &>
99 operator=(const ilist_iterator<OptionsT, IsReverse, RHSIsConst> &RHS) {
100 NodePtr = RHS.NodePtr;
101 return *this;
102 }
103
104 /// Explicit conversion between forward/reverse iterators.
105 ///
106 /// Translate between forward and reverse iterators without changing range
107 /// boundaries. The resulting iterator will dereference (and have a handle)
108 /// to the previous node, which is somewhat unexpected; but converting the
109 /// two endpoints in a range will give the same range in reverse.
110 ///
111 /// This matches std::reverse_iterator conversions.
112 explicit ilist_iterator(
113 const ilist_iterator<OptionsT, !IsReverse, IsConst> &RHS)
114 : ilist_iterator(++RHS.getReverse()) {}
115
116 /// Get a reverse iterator to the same node.
117 ///
118 /// Gives a reverse iterator that will dereference (and have a handle) to the
119 /// same node. Converting the endpoint iterators in a range will give a
120 /// different range; for range operations, use the explicit conversions.
121 ilist_iterator<OptionsT, !IsReverse, IsConst> getReverse() const {
122 if (NodePtr)
123 return ilist_iterator<OptionsT, !IsReverse, IsConst>(*NodePtr);
124 return ilist_iterator<OptionsT, !IsReverse, IsConst>();
125 }
126
127 /// Const-cast.
128 ilist_iterator<OptionsT, IsReverse, false> getNonConst() const {
129 if (NodePtr)
130 return ilist_iterator<OptionsT, IsReverse, false>(
131 const_cast<typename ilist_iterator<OptionsT, IsReverse,
132 false>::node_reference>(*NodePtr));
133 return ilist_iterator<OptionsT, IsReverse, false>();
134 }
135
136 // Accessors...
137 reference operator*() const {
138 assert(!NodePtr->isKnownSentinel())(static_cast <bool> (!NodePtr->isKnownSentinel()) ? void
(0) : __assert_fail ("!NodePtr->isKnownSentinel()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/ADT/ilist_iterator.h"
, 138, __extension__ __PRETTY_FUNCTION__))
;
139 return *Access::getValuePtr(NodePtr);
140 }
141 pointer operator->() const { return &operator*(); }
142
143 // Comparison operators
144 friend bool operator==(const ilist_iterator &LHS, const ilist_iterator &RHS) {
145 return LHS.NodePtr == RHS.NodePtr;
14
Assuming 'LHS.NodePtr' is not equal to 'RHS.NodePtr'
15
Returning zero, which participates in a condition later
146 }
147 friend bool operator!=(const ilist_iterator &LHS, const ilist_iterator &RHS) {
148 return LHS.NodePtr != RHS.NodePtr;
149 }
150
151 // Increment and decrement operators...
152 ilist_iterator &operator--() {
153 NodePtr = IsReverse ? NodePtr->getNext() : NodePtr->getPrev();
154 return *this;
155 }
156 ilist_iterator &operator++() {
157 NodePtr = IsReverse ? NodePtr->getPrev() : NodePtr->getNext();
158 return *this;
159 }
160 ilist_iterator operator--(int) {
161 ilist_iterator tmp = *this;
162 --*this;
163 return tmp;
164 }
165 ilist_iterator operator++(int) {
166 ilist_iterator tmp = *this;
167 ++*this;
168 return tmp;
169 }
170
171 /// Get the underlying ilist_node.
172 node_pointer getNodePtr() const { return static_cast<node_pointer>(NodePtr); }
173
174 /// Check for end. Only valid if ilist_sentinel_tracking<true>.
175 bool isEnd() const { return NodePtr ? NodePtr->isSentinel() : false; }
176};
177
178template <typename From> struct simplify_type;
179
180/// Allow ilist_iterators to convert into pointers to a node automatically when
181/// used by the dyn_cast, cast, isa mechanisms...
182///
183/// FIXME: remove this, since there is no implicit conversion to NodeTy.
184template <class OptionsT, bool IsConst>
185struct simplify_type<ilist_iterator<OptionsT, false, IsConst>> {
186 using iterator = ilist_iterator<OptionsT, false, IsConst>;
187 using SimpleType = typename iterator::pointer;
188
189 static SimpleType getSimplifiedValue(const iterator &Node) { return &*Node; }
190};
191template <class OptionsT, bool IsConst>
192struct simplify_type<const ilist_iterator<OptionsT, false, IsConst>>
193 : simplify_type<ilist_iterator<OptionsT, false, IsConst>> {};
194
195} // end namespace llvm
196
197#endif // LLVM_ADT_ILIST_ITERATOR_H

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h

1//===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the MachineInstr class, which is the
10// basic representation for all target dependent machine instructions used by
11// the back end.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_MACHINEINSTR_H
16#define LLVM_CODEGEN_MACHINEINSTR_H
17
18#include "llvm/ADT/DenseMapInfo.h"
19#include "llvm/ADT/PointerSumType.h"
20#include "llvm/ADT/SmallSet.h"
21#include "llvm/ADT/ilist.h"
22#include "llvm/ADT/ilist_node.h"
23#include "llvm/ADT/iterator_range.h"
24#include "llvm/CodeGen/MachineMemOperand.h"
25#include "llvm/CodeGen/MachineOperand.h"
26#include "llvm/CodeGen/TargetOpcodes.h"
27#include "llvm/IR/DebugLoc.h"
28#include "llvm/IR/InlineAsm.h"
29#include "llvm/IR/PseudoProbe.h"
30#include "llvm/MC/MCInstrDesc.h"
31#include "llvm/MC/MCSymbol.h"
32#include "llvm/Support/ArrayRecycler.h"
33#include "llvm/Support/TrailingObjects.h"
34#include <algorithm>
35#include <cassert>
36#include <cstdint>
37#include <utility>
38
39namespace llvm {
40
41class AAResults;
42template <typename T> class ArrayRef;
43class DIExpression;
44class DILocalVariable;
45class MachineBasicBlock;
46class MachineFunction;
47class MachineRegisterInfo;
48class ModuleSlotTracker;
49class raw_ostream;
50template <typename T> class SmallVectorImpl;
51class SmallBitVector;
52class StringRef;
53class TargetInstrInfo;
54class TargetRegisterClass;
55class TargetRegisterInfo;
56
57//===----------------------------------------------------------------------===//
58/// Representation of each machine instruction.
59///
60/// This class isn't a POD type, but it must have a trivial destructor. When a
61/// MachineFunction is deleted, all the contained MachineInstrs are deallocated
62/// without having their destructor called.
63///
64class MachineInstr
65 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
66 ilist_sentinel_tracking<true>> {
67public:
68 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
69
70 /// Flags to specify different kinds of comments to output in
71 /// assembly code. These flags carry semantic information not
72 /// otherwise easily derivable from the IR text.
73 ///
74 enum CommentFlag {
75 ReloadReuse = 0x1, // higher bits are reserved for target dep comments.
76 NoSchedComment = 0x2,
77 TAsmComments = 0x4 // Target Asm comments should start from this value.
78 };
79
80 enum MIFlag {
81 NoFlags = 0,
82 FrameSetup = 1 << 0, // Instruction is used as a part of
83 // function frame setup code.
84 FrameDestroy = 1 << 1, // Instruction is used as a part of
85 // function frame destruction code.
86 BundledPred = 1 << 2, // Instruction has bundled predecessors.
87 BundledSucc = 1 << 3, // Instruction has bundled successors.
88 FmNoNans = 1 << 4, // Instruction does not support Fast
89 // math nan values.
90 FmNoInfs = 1 << 5, // Instruction does not support Fast
91 // math infinity values.
92 FmNsz = 1 << 6, // Instruction is not required to retain
93 // signed zero values.
94 FmArcp = 1 << 7, // Instruction supports Fast math
95 // reciprocal approximations.
96 FmContract = 1 << 8, // Instruction supports Fast math
97 // contraction operations like fma.
98 FmAfn = 1 << 9, // Instruction may map to Fast math
99 // instrinsic approximation.
100 FmReassoc = 1 << 10, // Instruction supports Fast math
101 // reassociation of operand order.
102 NoUWrap = 1 << 11, // Instruction supports binary operator
103 // no unsigned wrap.
104 NoSWrap = 1 << 12, // Instruction supports binary operator
105 // no signed wrap.
106 IsExact = 1 << 13, // Instruction supports division is
107 // known to be exact.
108 NoFPExcept = 1 << 14, // Instruction does not raise
109 // floatint-point exceptions.
110 NoMerge = 1 << 15, // Passes that drop source location info
111 // (e.g. branch folding) should skip
112 // this instruction.
113 };
114
115private:
116 const MCInstrDesc *MCID; // Instruction descriptor.
117 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
118
119 // Operands are allocated by an ArrayRecycler.
120 MachineOperand *Operands = nullptr; // Pointer to the first operand.
121 unsigned NumOperands = 0; // Number of operands on instruction.
122
123 uint16_t Flags = 0; // Various bits of additional
124 // information about machine
125 // instruction.
126
127 uint8_t AsmPrinterFlags = 0; // Various bits of information used by
128 // the AsmPrinter to emit helpful
129 // comments. This is *not* semantic
130 // information. Do not use this for
131 // anything other than to convey comment
132 // information to AsmPrinter.
133
134 // OperandCapacity has uint8_t size, so it should be next to AsmPrinterFlags
135 // to properly pack.
136 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
137 OperandCapacity CapOperands; // Capacity of the Operands array.
138
139 /// Internal implementation detail class that provides out-of-line storage for
140 /// extra info used by the machine instruction when this info cannot be stored
141 /// in-line within the instruction itself.
142 ///
143 /// This has to be defined eagerly due to the implementation constraints of
144 /// `PointerSumType` where it is used.
145 class ExtraInfo final
146 : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> {
147 public:
148 static ExtraInfo *create(BumpPtrAllocator &Allocator,
149 ArrayRef<MachineMemOperand *> MMOs,
150 MCSymbol *PreInstrSymbol = nullptr,
151 MCSymbol *PostInstrSymbol = nullptr,
152 MDNode *HeapAllocMarker = nullptr) {
153 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
154 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
155 bool HasHeapAllocMarker = HeapAllocMarker != nullptr;
156 auto *Result = new (Allocator.Allocate(
157 totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>(
158 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol,
159 HasHeapAllocMarker),
160 alignof(ExtraInfo)))
161 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol,
162 HasHeapAllocMarker);
163
164 // Copy the actual data into the trailing objects.
165 std::copy(MMOs.begin(), MMOs.end(),
166 Result->getTrailingObjects<MachineMemOperand *>());
167
168 if (HasPreInstrSymbol)
169 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
170 if (HasPostInstrSymbol)
171 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
172 PostInstrSymbol;
173 if (HasHeapAllocMarker)
174 Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker;
175
176 return Result;
177 }
178
179 ArrayRef<MachineMemOperand *> getMMOs() const {
180 return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
181 }
182
183 MCSymbol *getPreInstrSymbol() const {
184 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
185 }
186
187 MCSymbol *getPostInstrSymbol() const {
188 return HasPostInstrSymbol
189 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
190 : nullptr;
191 }
192
193 MDNode *getHeapAllocMarker() const {
194 return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr;
195 }
196
197 private:
198 friend TrailingObjects;
199
200 // Description of the extra info, used to interpret the actual optional
201 // data appended.
202 //
203 // Note that this is not terribly space optimized. This leaves a great deal
204 // of flexibility to fit more in here later.
205 const int NumMMOs;
206 const bool HasPreInstrSymbol;
207 const bool HasPostInstrSymbol;
208 const bool HasHeapAllocMarker;
209
210 // Implement the `TrailingObjects` internal API.
211 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
212 return NumMMOs;
213 }
214 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
215 return HasPreInstrSymbol + HasPostInstrSymbol;
216 }
217 size_t numTrailingObjects(OverloadToken<MDNode *>) const {
218 return HasHeapAllocMarker;
219 }
220
221 // Just a boring constructor to allow us to initialize the sizes. Always use
222 // the `create` routine above.
223 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol,
224 bool HasHeapAllocMarker)
225 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
226 HasPostInstrSymbol(HasPostInstrSymbol),
227 HasHeapAllocMarker(HasHeapAllocMarker) {}
228 };
229
230 /// Enumeration of the kinds of inline extra info available. It is important
231 /// that the `MachineMemOperand` inline kind has a tag value of zero to make
232 /// it accessible as an `ArrayRef`.
233 enum ExtraInfoInlineKinds {
234 EIIK_MMO = 0,
235 EIIK_PreInstrSymbol,
236 EIIK_PostInstrSymbol,
237 EIIK_OutOfLine
238 };
239
240 // We store extra information about the instruction here. The common case is
241 // expected to be nothing or a single pointer (typically a MMO or a symbol).
242 // We work to optimize this common case by storing it inline here rather than
243 // requiring a separate allocation, but we fall back to an allocation when
244 // multiple pointers are needed.
245 PointerSumType<ExtraInfoInlineKinds,
246 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
247 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
248 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
249 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
250 Info;
251
252 DebugLoc debugLoc; // Source line information.
253
254 /// Unique instruction number. Used by DBG_INSTR_REFs to refer to the values
255 /// defined by this instruction.
256 unsigned DebugInstrNum;
257
258 // Intrusive list support
259 friend struct ilist_traits<MachineInstr>;
260 friend struct ilist_callback_traits<MachineBasicBlock>;
261 void setParent(MachineBasicBlock *P) { Parent = P; }
262
263 /// This constructor creates a copy of the given
264 /// MachineInstr in the given MachineFunction.
265 MachineInstr(MachineFunction &, const MachineInstr &);
266
267 /// This constructor create a MachineInstr and add the implicit operands.
268 /// It reserves space for number of operands specified by
269 /// MCInstrDesc. An explicit DebugLoc is supplied.
270 MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
271 bool NoImp = false);
272
273 // MachineInstrs are pool-allocated and owned by MachineFunction.
274 friend class MachineFunction;
275
276 void
277 dumprImpl(const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth,
278 SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const;
279
280public:
281 MachineInstr(const MachineInstr &) = delete;
282 MachineInstr &operator=(const MachineInstr &) = delete;
283 // Use MachineFunction::DeleteMachineInstr() instead.
284 ~MachineInstr() = delete;
285
286 const MachineBasicBlock* getParent() const { return Parent; }
287 MachineBasicBlock* getParent() { return Parent; }
288
289 /// Move the instruction before \p MovePos.
290 void moveBefore(MachineInstr *MovePos);
291
292 /// Return the function that contains the basic block that this instruction
293 /// belongs to.
294 ///
295 /// Note: this is undefined behaviour if the instruction does not have a
296 /// parent.
297 const MachineFunction *getMF() const;
298 MachineFunction *getMF() {
299 return const_cast<MachineFunction *>(
300 static_cast<const MachineInstr *>(this)->getMF());
301 }
302
303 /// Return the asm printer flags bitvector.
304 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
305
306 /// Clear the AsmPrinter bitvector.
307 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
308
309 /// Return whether an AsmPrinter flag is set.
310 bool getAsmPrinterFlag(CommentFlag Flag) const {
311 return AsmPrinterFlags & Flag;
312 }
313
314 /// Set a flag for the AsmPrinter.
315 void setAsmPrinterFlag(uint8_t Flag) {
316 AsmPrinterFlags |= Flag;
317 }
318
319 /// Clear specific AsmPrinter flags.
320 void clearAsmPrinterFlag(CommentFlag Flag) {
321 AsmPrinterFlags &= ~Flag;
322 }
323
324 /// Return the MI flags bitvector.
325 uint16_t getFlags() const {
326 return Flags;
327 }
328
329 /// Return whether an MI flag is set.
330 bool getFlag(MIFlag Flag) const {
331 return Flags & Flag;
332 }
333
334 /// Set a MI flag.
335 void setFlag(MIFlag Flag) {
336 Flags |= (uint16_t)Flag;
337 }
338
339 void setFlags(unsigned flags) {
340 // Filter out the automatically maintained flags.
341 unsigned Mask = BundledPred | BundledSucc;
342 Flags = (Flags & Mask) | (flags & ~Mask);
343 }
344
345 /// clearFlag - Clear a MI flag.
346 void clearFlag(MIFlag Flag) {
347 Flags &= ~((uint16_t)Flag);
348 }
349
350 /// Return true if MI is in a bundle (but not the first MI in a bundle).
351 ///
352 /// A bundle looks like this before it's finalized:
353 /// ----------------
354 /// | MI |
355 /// ----------------
356 /// |
357 /// ----------------
358 /// | MI * |
359 /// ----------------
360 /// |
361 /// ----------------
362 /// | MI * |
363 /// ----------------
364 /// In this case, the first MI starts a bundle but is not inside a bundle, the
365 /// next 2 MIs are considered "inside" the bundle.
366 ///
367 /// After a bundle is finalized, it looks like this:
368 /// ----------------
369 /// | Bundle |
370 /// ----------------
371 /// |
372 /// ----------------
373 /// | MI * |
374 /// ----------------
375 /// |
376 /// ----------------
377 /// | MI * |
378 /// ----------------
379 /// |
380 /// ----------------
381 /// | MI * |
382 /// ----------------
383 /// The first instruction has the special opcode "BUNDLE". It's not "inside"
384 /// a bundle, but the next three MIs are.
385 bool isInsideBundle() const {
386 return getFlag(BundledPred);
387 }
388
389 /// Return true if this instruction part of a bundle. This is true
390 /// if either itself or its following instruction is marked "InsideBundle".
391 bool isBundled() const {
392 return isBundledWithPred() || isBundledWithSucc();
393 }
394
395 /// Return true if this instruction is part of a bundle, and it is not the
396 /// first instruction in the bundle.
397 bool isBundledWithPred() const { return getFlag(BundledPred); }
398
399 /// Return true if this instruction is part of a bundle, and it is not the
400 /// last instruction in the bundle.
401 bool isBundledWithSucc() const { return getFlag(BundledSucc); }
402
403 /// Bundle this instruction with its predecessor. This can be an unbundled
404 /// instruction, or it can be the first instruction in a bundle.
405 void bundleWithPred();
406
407 /// Bundle this instruction with its successor. This can be an unbundled
408 /// instruction, or it can be the last instruction in a bundle.
409 void bundleWithSucc();
410
411 /// Break bundle above this instruction.
412 void unbundleFromPred();
413
414 /// Break bundle below this instruction.
415 void unbundleFromSucc();
416
417 /// Returns the debug location id of this MachineInstr.
418 const DebugLoc &getDebugLoc() const { return debugLoc; }
419
420 /// Return the operand containing the offset to be used if this DBG_VALUE
421 /// instruction is indirect; will be an invalid register if this value is
422 /// not indirect, and an immediate with value 0 otherwise.
423 const MachineOperand &getDebugOffset() const {
424 assert(isNonListDebugValue() && "not a DBG_VALUE")(static_cast <bool> (isNonListDebugValue() && "not a DBG_VALUE"
) ? void (0) : __assert_fail ("isNonListDebugValue() && \"not a DBG_VALUE\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 424, __extension__ __PRETTY_FUNCTION__))
;
425 return getOperand(1);
426 }
427 MachineOperand &getDebugOffset() {
428 assert(isNonListDebugValue() && "not a DBG_VALUE")(static_cast <bool> (isNonListDebugValue() && "not a DBG_VALUE"
) ? void (0) : __assert_fail ("isNonListDebugValue() && \"not a DBG_VALUE\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 428, __extension__ __PRETTY_FUNCTION__))
;
429 return getOperand(1);
430 }
431
432 /// Return the operand for the debug variable referenced by
433 /// this DBG_VALUE instruction.
434 const MachineOperand &getDebugVariableOp() const;
435 MachineOperand &getDebugVariableOp();
436
437 /// Return the debug variable referenced by
438 /// this DBG_VALUE instruction.
439 const DILocalVariable *getDebugVariable() const;
440
441 /// Return the operand for the complex address expression referenced by
442 /// this DBG_VALUE instruction.
443 const MachineOperand &getDebugExpressionOp() const;
444 MachineOperand &getDebugExpressionOp();
445
446 /// Return the complex address expression referenced by
447 /// this DBG_VALUE instruction.
448 const DIExpression *getDebugExpression() const;
449
450 /// Return the debug label referenced by
451 /// this DBG_LABEL instruction.
452 const DILabel *getDebugLabel() const;
453
454 /// Fetch the instruction number of this MachineInstr. If it does not have
455 /// one already, a new and unique number will be assigned.
456 unsigned getDebugInstrNum();
457
458 /// Fetch instruction number of this MachineInstr -- but before it's inserted
459 /// into \p MF. Needed for transformations that create an instruction but
460 /// don't immediately insert them.
461 unsigned getDebugInstrNum(MachineFunction &MF);
462
463 /// Examine the instruction number of this MachineInstr. May be zero if
464 /// it hasn't been assigned a number yet.
465 unsigned peekDebugInstrNum() const { return DebugInstrNum; }
466
467 /// Set instruction number of this MachineInstr. Avoid using unless you're
468 /// deserializing this information.
469 void setDebugInstrNum(unsigned Num) { DebugInstrNum = Num; }
470
471 /// Drop any variable location debugging information associated with this
472 /// instruction. Use when an instruction is modified in such a way that it no
473 /// longer defines the value it used to. Variable locations using that value
474 /// will be dropped.
475 void dropDebugNumber() { DebugInstrNum = 0; }
476
477 /// Emit an error referring to the source location of this instruction.
478 /// This should only be used for inline assembly that is somehow
479 /// impossible to compile. Other errors should have been handled much
480 /// earlier.
481 ///
482 /// If this method returns, the caller should try to recover from the error.
483 void emitError(StringRef Msg) const;
484
485 /// Returns the target instruction descriptor of this MachineInstr.
486 const MCInstrDesc &getDesc() const { return *MCID; }
487
488 /// Returns the opcode of this MachineInstr.
489 unsigned getOpcode() const { return MCID->Opcode; }
490
491 /// Retuns the total number of operands.
492 unsigned getNumOperands() const { return NumOperands; }
493
494 /// Returns the total number of operands which are debug locations.
495 unsigned getNumDebugOperands() const {
496 return std::distance(debug_operands().begin(), debug_operands().end());
497 }
498
499 const MachineOperand& getOperand(unsigned i) const {
500 assert(i < getNumOperands() && "getOperand() out of range!")(static_cast <bool> (i < getNumOperands() &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i < getNumOperands() && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 500, __extension__ __PRETTY_FUNCTION__))
;
501 return Operands[i];
502 }
503 MachineOperand& getOperand(unsigned i) {
504 assert(i < getNumOperands() && "getOperand() out of range!")(static_cast <bool> (i < getNumOperands() &&
"getOperand() out of range!") ? void (0) : __assert_fail ("i < getNumOperands() && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 504, __extension__ __PRETTY_FUNCTION__))
;
505 return Operands[i];
506 }
507
508 MachineOperand &getDebugOperand(unsigned Index) {
509 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!")(static_cast <bool> (Index < getNumDebugOperands() &&
"getDebugOperand() out of range!") ? void (0) : __assert_fail
("Index < getNumDebugOperands() && \"getDebugOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 509, __extension__ __PRETTY_FUNCTION__))
;
510 return *(debug_operands().begin() + Index);
511 }
512 const MachineOperand &getDebugOperand(unsigned Index) const {
513 assert(Index < getNumDebugOperands() && "getDebugOperand() out of range!")(static_cast <bool> (Index < getNumDebugOperands() &&
"getDebugOperand() out of range!") ? void (0) : __assert_fail
("Index < getNumDebugOperands() && \"getDebugOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 513, __extension__ __PRETTY_FUNCTION__))
;
514 return *(debug_operands().begin() + Index);
515 }
516
517 SmallSet<Register, 4> getUsedDebugRegs() const {
518 assert(isDebugValue() && "not a DBG_VALUE*")(static_cast <bool> (isDebugValue() && "not a DBG_VALUE*"
) ? void (0) : __assert_fail ("isDebugValue() && \"not a DBG_VALUE*\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 518, __extension__ __PRETTY_FUNCTION__))
;
519 SmallSet<Register, 4> UsedRegs;
520 for (auto MO : debug_operands())
521 if (MO.isReg() && MO.getReg())
522 UsedRegs.insert(MO.getReg());
523 return UsedRegs;
524 }
525
526 /// Returns whether this debug value has at least one debug operand with the
527 /// register \p Reg.
528 bool hasDebugOperandForReg(Register Reg) const {
529 return any_of(debug_operands(), [Reg](const MachineOperand &Op) {
530 return Op.isReg() && Op.getReg() == Reg;
531 });
532 }
533
534 /// Returns a range of all of the operands that correspond to a debug use of
535 /// \p Reg.
536 template <typename Operand, typename Instruction>
537 static iterator_range<
538 filter_iterator<Operand *, std::function<bool(Operand &Op)>>>
539 getDebugOperandsForReg(Instruction *MI, Register Reg) {
540 std::function<bool(Operand & Op)> OpUsesReg(
541 [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; });
542 return make_filter_range(MI->debug_operands(), OpUsesReg);
543 }
544 iterator_range<filter_iterator<const MachineOperand *,
545 std::function<bool(const MachineOperand &Op)>>>
546 getDebugOperandsForReg(Register Reg) const {
547 return MachineInstr::getDebugOperandsForReg<const MachineOperand,
548 const MachineInstr>(this, Reg);
549 }
550 iterator_range<filter_iterator<MachineOperand *,
551 std::function<bool(MachineOperand &Op)>>>
552 getDebugOperandsForReg(Register Reg) {
553 return MachineInstr::getDebugOperandsForReg<MachineOperand, MachineInstr>(
554 this, Reg);
555 }
556
557 bool isDebugOperand(const MachineOperand *Op) const {
558 return Op >= adl_begin(debug_operands()) && Op <= adl_end(debug_operands());
559 }
560
561 unsigned getDebugOperandIndex(const MachineOperand *Op) const {
562 assert(isDebugOperand(Op) && "Expected a debug operand.")(static_cast <bool> (isDebugOperand(Op) && "Expected a debug operand."
) ? void (0) : __assert_fail ("isDebugOperand(Op) && \"Expected a debug operand.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 562, __extension__ __PRETTY_FUNCTION__))
;
563 return std::distance(adl_begin(debug_operands()), Op);
564 }
565
566 /// Returns the total number of definitions.
567 unsigned getNumDefs() const {
568 return getNumExplicitDefs() + MCID->getNumImplicitDefs();
569 }
570
571 /// Returns true if the instruction has implicit definition.
572 bool hasImplicitDef() const {
573 for (unsigned I = getNumExplicitOperands(), E = getNumOperands();
574 I != E; ++I) {
575 const MachineOperand &MO = getOperand(I);
576 if (MO.isDef() && MO.isImplicit())
577 return true;
578 }
579 return false;
580 }
581
582 /// Returns the implicit operands number.
583 unsigned getNumImplicitOperands() const {
584 return getNumOperands() - getNumExplicitOperands();
585 }
586
587 /// Return true if operand \p OpIdx is a subregister index.
588 bool isOperandSubregIdx(unsigned OpIdx) const {
589 assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&(static_cast <bool> (getOperand(OpIdx).getType() == MachineOperand
::MO_Immediate && "Expected MO_Immediate operand type."
) ? void (0) : __assert_fail ("getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && \"Expected MO_Immediate operand type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 590, __extension__ __PRETTY_FUNCTION__))
590 "Expected MO_Immediate operand type.")(static_cast <bool> (getOperand(OpIdx).getType() == MachineOperand
::MO_Immediate && "Expected MO_Immediate operand type."
) ? void (0) : __assert_fail ("getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && \"Expected MO_Immediate operand type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 590, __extension__ __PRETTY_FUNCTION__))
;
591 if (isExtractSubreg() && OpIdx == 2)
592 return true;
593 if (isInsertSubreg() && OpIdx == 3)
594 return true;
595 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
596 return true;
597 if (isSubregToReg() && OpIdx == 3)
598 return true;
599 return false;
600 }
601
602 /// Returns the number of non-implicit operands.
603 unsigned getNumExplicitOperands() const;
604
605 /// Returns the number of non-implicit definitions.
606 unsigned getNumExplicitDefs() const;
607
608 /// iterator/begin/end - Iterate over all operands of a machine instruction.
609 using mop_iterator = MachineOperand *;
610 using const_mop_iterator = const MachineOperand *;
611
612 mop_iterator operands_begin() { return Operands; }
613 mop_iterator operands_end() { return Operands + NumOperands; }
614
615 const_mop_iterator operands_begin() const { return Operands; }
616 const_mop_iterator operands_end() const { return Operands + NumOperands; }
617
618 iterator_range<mop_iterator> operands() {
619 return make_range(operands_begin(), operands_end());
620 }
621 iterator_range<const_mop_iterator> operands() const {
622 return make_range(operands_begin(), operands_end());
623 }
624 iterator_range<mop_iterator> explicit_operands() {
625 return make_range(operands_begin(),
626 operands_begin() + getNumExplicitOperands());
627 }
628 iterator_range<const_mop_iterator> explicit_operands() const {
629 return make_range(operands_begin(),
630 operands_begin() + getNumExplicitOperands());
631 }
632 iterator_range<mop_iterator> implicit_operands() {
633 return make_range(explicit_operands().end(), operands_end());
634 }
635 iterator_range<const_mop_iterator> implicit_operands() const {
636 return make_range(explicit_operands().end(), operands_end());
637 }
638 /// Returns a range over all operands that are used to determine the variable
639 /// location for this DBG_VALUE instruction.
640 iterator_range<mop_iterator> debug_operands() {
641 assert(isDebugValue() && "Must be a debug value instruction.")(static_cast <bool> (isDebugValue() && "Must be a debug value instruction."
) ? void (0) : __assert_fail ("isDebugValue() && \"Must be a debug value instruction.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 641, __extension__ __PRETTY_FUNCTION__))
;
642 return isDebugValueList()
643 ? make_range(operands_begin() + 2, operands_end())
644 : make_range(operands_begin(), operands_begin() + 1);
645 }
646 /// \copydoc debug_operands()
647 iterator_range<const_mop_iterator> debug_operands() const {
648 assert(isDebugValue() && "Must be a debug value instruction.")(static_cast <bool> (isDebugValue() && "Must be a debug value instruction."
) ? void (0) : __assert_fail ("isDebugValue() && \"Must be a debug value instruction.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 648, __extension__ __PRETTY_FUNCTION__))
;
649 return isDebugValueList()
650 ? make_range(operands_begin() + 2, operands_end())
651 : make_range(operands_begin(), operands_begin() + 1);
652 }
653 /// Returns a range over all explicit operands that are register definitions.
654 /// Implicit definition are not included!
655 iterator_range<mop_iterator> defs() {
656 return make_range(operands_begin(),
657 operands_begin() + getNumExplicitDefs());
658 }
659 /// \copydoc defs()
660 iterator_range<const_mop_iterator> defs() const {
661 return make_range(operands_begin(),
662 operands_begin() + getNumExplicitDefs());
663 }
664 /// Returns a range that includes all operands that are register uses.
665 /// This may include unrelated operands which are not register uses.
666 iterator_range<mop_iterator> uses() {
667 return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
668 }
669 /// \copydoc uses()
670 iterator_range<const_mop_iterator> uses() const {
671 return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
672 }
673 iterator_range<mop_iterator> explicit_uses() {
674 return make_range(operands_begin() + getNumExplicitDefs(),
675 operands_begin() + getNumExplicitOperands());
676 }
677 iterator_range<const_mop_iterator> explicit_uses() const {
678 return make_range(operands_begin() + getNumExplicitDefs(),
679 operands_begin() + getNumExplicitOperands());
680 }
681
682 /// Returns the number of the operand iterator \p I points to.
683 unsigned getOperandNo(const_mop_iterator I) const {
684 return I - operands_begin();
685 }
686
687 /// Access to memory operands of the instruction. If there are none, that does
688 /// not imply anything about whether the function accesses memory. Instead,
689 /// the caller must behave conservatively.
690 ArrayRef<MachineMemOperand *> memoperands() const {
691 if (!Info)
692 return {};
693
694 if (Info.is<EIIK_MMO>())
695 return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
696
697 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
698 return EI->getMMOs();
699
700 return {};
701 }
702
703 /// Access to memory operands of the instruction.
704 ///
705 /// If `memoperands_begin() == memoperands_end()`, that does not imply
706 /// anything about whether the function accesses memory. Instead, the caller
707 /// must behave conservatively.
708 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
709
710 /// Access to memory operands of the instruction.
711 ///
712 /// If `memoperands_begin() == memoperands_end()`, that does not imply
713 /// anything about whether the function accesses memory. Instead, the caller
714 /// must behave conservatively.
715 mmo_iterator memoperands_end() const { return memoperands().end(); }
716
717 /// Return true if we don't have any memory operands which described the
718 /// memory access done by this instruction. If this is true, calling code
719 /// must be conservative.
720 bool memoperands_empty() const { return memoperands().empty(); }
721
722 /// Return true if this instruction has exactly one MachineMemOperand.
723 bool hasOneMemOperand() const { return memoperands().size() == 1; }
724
725 /// Return the number of memory operands.
726 unsigned getNumMemOperands() const { return memoperands().size(); }
727
728 /// Helper to extract a pre-instruction symbol if one has been added.
729 MCSymbol *getPreInstrSymbol() const {
730 if (!Info)
731 return nullptr;
732 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
733 return S;
734 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
735 return EI->getPreInstrSymbol();
736
737 return nullptr;
738 }
739
740 /// Helper to extract a post-instruction symbol if one has been added.
741 MCSymbol *getPostInstrSymbol() const {
742 if (!Info)
743 return nullptr;
744 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
745 return S;
746 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
747 return EI->getPostInstrSymbol();
748
749 return nullptr;
750 }
751
752 /// Helper to extract a heap alloc marker if one has been added.
753 MDNode *getHeapAllocMarker() const {
754 if (!Info)
755 return nullptr;
756 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
757 return EI->getHeapAllocMarker();
758
759 return nullptr;
760 }
761
762 /// API for querying MachineInstr properties. They are the same as MCInstrDesc
763 /// queries but they are bundle aware.
764
765 enum QueryType {
766 IgnoreBundle, // Ignore bundles
767 AnyInBundle, // Return true if any instruction in bundle has property
768 AllInBundle // Return true if all instructions in bundle have property
769 };
770
771 /// Return true if the instruction (or in the case of a bundle,
772 /// the instructions inside the bundle) has the specified property.
773 /// The first argument is the property being queried.
774 /// The second argument indicates whether the query should look inside
775 /// instruction bundles.
776 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
777 assert(MCFlag < 64 &&(static_cast <bool> (MCFlag < 64 && "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."
) ? void (0) : __assert_fail ("MCFlag < 64 && \"MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 778, __extension__ __PRETTY_FUNCTION__))
28
'?' condition is true
778 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.")(static_cast <bool> (MCFlag < 64 && "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."
) ? void (0) : __assert_fail ("MCFlag < 64 && \"MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 778, __extension__ __PRETTY_FUNCTION__))
;
779 // Inline the fast path for unbundled or bundle-internal instructions.
780 if (Type
28.1
'Type' is not equal to IgnoreBundle
28.1
'Type' is not equal to IgnoreBundle
28.1
'Type' is not equal to IgnoreBundle
28.1
'Type' is not equal to IgnoreBundle
== IgnoreBundle || !isBundled() || isBundledWithPred())
29
Taking true branch
781 return getDesc().getFlags() & (1ULL << MCFlag);
30
Returning value, which participates in a condition later
782
783 // If this is the first instruction in a bundle, take the slow path.
784 return hasPropertyInBundle(1ULL << MCFlag, Type);
785 }
786
787 /// Return true if this is an instruction that should go through the usual
788 /// legalization steps.
789 bool isPreISelOpcode(QueryType Type = IgnoreBundle) const {
790 return hasProperty(MCID::PreISelOpcode, Type);
791 }
792
793 /// Return true if this instruction can have a variable number of operands.
794 /// In this case, the variable operands will be after the normal
795 /// operands but before the implicit definitions and uses (if any are
796 /// present).
797 bool isVariadic(QueryType Type = IgnoreBundle) const {
798 return hasProperty(MCID::Variadic, Type);
799 }
800
801 /// Set if this instruction has an optional definition, e.g.
802 /// ARM instructions which can set condition code if 's' bit is set.
803 bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
804 return hasProperty(MCID::HasOptionalDef, Type);
805 }
806
807 /// Return true if this is a pseudo instruction that doesn't
808 /// correspond to a real machine instruction.
809 bool isPseudo(QueryType Type = IgnoreBundle) const {
810 return hasProperty(MCID::Pseudo, Type);
811 }
812
813 bool isReturn(QueryType Type = AnyInBundle) const {
814 return hasProperty(MCID::Return, Type);
815 }
816
817 /// Return true if this is an instruction that marks the end of an EH scope,
818 /// i.e., a catchpad or a cleanuppad instruction.
819 bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
820 return hasProperty(MCID::EHScopeReturn, Type);
821 }
822
823 bool isCall(QueryType Type = AnyInBundle) const {
824 return hasProperty(MCID::Call, Type);
825 }
826
827 /// Return true if this is a call instruction that may have an associated
828 /// call site entry in the debug info.
829 bool isCandidateForCallSiteEntry(QueryType Type = IgnoreBundle) const;
830 /// Return true if copying, moving, or erasing this instruction requires
831 /// updating Call Site Info (see \ref copyCallSiteInfo, \ref moveCallSiteInfo,
832 /// \ref eraseCallSiteInfo).
833 bool shouldUpdateCallSiteInfo() const;
834
835 /// Returns true if the specified instruction stops control flow
836 /// from executing the instruction immediately following it. Examples include
837 /// unconditional branches and return instructions.
838 bool isBarrier(QueryType Type = AnyInBundle) const {
839 return hasProperty(MCID::Barrier, Type);
840 }
841
842 /// Returns true if this instruction part of the terminator for a basic block.
843 /// Typically this is things like return and branch instructions.
844 ///
845 /// Various passes use this to insert code into the bottom of a basic block,
846 /// but before control flow occurs.
847 bool isTerminator(QueryType Type = AnyInBundle) const {
848 return hasProperty(MCID::Terminator, Type);
27
Calling 'MachineInstr::hasProperty'
31
Returning from 'MachineInstr::hasProperty'
32
Returning value, which participates in a condition later
849 }
850
851 /// Returns true if this is a conditional, unconditional, or indirect branch.
852 /// Predicates below can be used to discriminate between
853 /// these cases, and the TargetInstrInfo::analyzeBranch method can be used to
854 /// get more information.
855 bool isBranch(QueryType Type = AnyInBundle) const {
856 return hasProperty(MCID::Branch, Type);
857 }
858
859 /// Return true if this is an indirect branch, such as a
860 /// branch through a register.
861 bool isIndirectBranch(QueryType Type = AnyInBundle) const {
862 return hasProperty(MCID::IndirectBranch, Type);
863 }
864
865 /// Return true if this is a branch which may fall
866 /// through to the next instruction or may transfer control flow to some other
867 /// block. The TargetInstrInfo::analyzeBranch method can be used to get more
868 /// information about this branch.
869 bool isConditionalBranch(QueryType Type = AnyInBundle) const {
870 return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type);
871 }
872
873 /// Return true if this is a branch which always
874 /// transfers control flow to some other block. The
875 /// TargetInstrInfo::analyzeBranch method can be used to get more information
876 /// about this branch.
877 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
878 return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type);
879 }
880
881 /// Return true if this instruction has a predicate operand that
882 /// controls execution. It may be set to 'always', or may be set to other
883 /// values. There are various methods in TargetInstrInfo that can be used to
884 /// control and modify the predicate in this instruction.
885 bool isPredicable(QueryType Type = AllInBundle) const {
886 // If it's a bundle than all bundled instructions must be predicable for this
887 // to return true.
888 return hasProperty(MCID::Predicable, Type);
889 }
890
891 /// Return true if this instruction is a comparison.
892 bool isCompare(QueryType Type = IgnoreBundle) const {
893 return hasProperty(MCID::Compare, Type);
894 }
895
896 /// Return true if this instruction is a move immediate
897 /// (including conditional moves) instruction.
898 bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
899 return hasProperty(MCID::MoveImm, Type);
900 }
901
902 /// Return true if this instruction is a register move.
903 /// (including moving values from subreg to reg)
904 bool isMoveReg(QueryType Type = IgnoreBundle) const {
905 return hasProperty(MCID::MoveReg, Type);
906 }
907
908 /// Return true if this instruction is a bitcast instruction.
909 bool isBitcast(QueryType Type = IgnoreBundle) const {
910 return hasProperty(MCID::Bitcast, Type);
911 }
912
913 /// Return true if this instruction is a select instruction.
914 bool isSelect(QueryType Type = IgnoreBundle) const {
915 return hasProperty(MCID::Select, Type);
916 }
917
918 /// Return true if this instruction cannot be safely duplicated.
919 /// For example, if the instruction has a unique labels attached
920 /// to it, duplicating it would cause multiple definition errors.
921 bool isNotDuplicable(QueryType Type = AnyInBundle) const {
922 return hasProperty(MCID::NotDuplicable, Type);
923 }
924
925 /// Return true if this instruction is convergent.
926 /// Convergent instructions can not be made control-dependent on any
927 /// additional values.
928 bool isConvergent(QueryType Type = AnyInBundle) const {
929 if (isInlineAsm()) {
930 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
931 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
932 return true;
933 }
934 return hasProperty(MCID::Convergent, Type);
935 }
936
937 /// Returns true if the specified instruction has a delay slot
938 /// which must be filled by the code generator.
939 bool hasDelaySlot(QueryType Type = AnyInBundle) const {
940 return hasProperty(MCID::DelaySlot, Type);
941 }
942
943 /// Return true for instructions that can be folded as
944 /// memory operands in other instructions. The most common use for this
945 /// is instructions that are simple loads from memory that don't modify
946 /// the loaded value in any way, but it can also be used for instructions
947 /// that can be expressed as constant-pool loads, such as V_SETALLONES
948 /// on x86, to allow them to be folded when it is beneficial.
949 /// This should only be set on instructions that return a value in their
950 /// only virtual register definition.
951 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
952 return hasProperty(MCID::FoldableAsLoad, Type);
953 }
954
955 /// Return true if this instruction behaves
956 /// the same way as the generic REG_SEQUENCE instructions.
957 /// E.g., on ARM,
958 /// dX VMOVDRR rY, rZ
959 /// is equivalent to
960 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
961 ///
962 /// Note that for the optimizers to be able to take advantage of
963 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
964 /// override accordingly.
965 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
966 return hasProperty(MCID::RegSequence, Type);
967 }
968
969 /// Return true if this instruction behaves
970 /// the same way as the generic EXTRACT_SUBREG instructions.
971 /// E.g., on ARM,
972 /// rX, rY VMOVRRD dZ
973 /// is equivalent to two EXTRACT_SUBREG:
974 /// rX = EXTRACT_SUBREG dZ, ssub_0
975 /// rY = EXTRACT_SUBREG dZ, ssub_1
976 ///
977 /// Note that for the optimizers to be able to take advantage of
978 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
979 /// override accordingly.
980 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
981 return hasProperty(MCID::ExtractSubreg, Type);
982 }
983
984 /// Return true if this instruction behaves
985 /// the same way as the generic INSERT_SUBREG instructions.
986 /// E.g., on ARM,
987 /// dX = VSETLNi32 dY, rZ, Imm
988 /// is equivalent to a INSERT_SUBREG:
989 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
990 ///
991 /// Note that for the optimizers to be able to take advantage of
992 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
993 /// override accordingly.
994 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
995 return hasProperty(MCID::InsertSubreg, Type);
996 }
997
998 //===--------------------------------------------------------------------===//
999 // Side Effect Analysis
1000 //===--------------------------------------------------------------------===//
1001
1002 /// Return true if this instruction could possibly read memory.
1003 /// Instructions with this flag set are not necessarily simple load
1004 /// instructions, they may load a value and modify it, for example.
1005 bool mayLoad(QueryType Type = AnyInBundle) const {
1006 if (isInlineAsm()) {
1007 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1008 if (ExtraInfo & InlineAsm::Extra_MayLoad)
1009 return true;
1010 }
1011 return hasProperty(MCID::MayLoad, Type);
1012 }
1013
1014 /// Return true if this instruction could possibly modify memory.
1015 /// Instructions with this flag set are not necessarily simple store
1016 /// instructions, they may store a modified value based on their operands, or
1017 /// may not actually modify anything, for example.
1018 bool mayStore(QueryType Type = AnyInBundle) const {
1019 if (isInlineAsm()) {
1020 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1021 if (ExtraInfo & InlineAsm::Extra_MayStore)
1022 return true;
1023 }
1024 return hasProperty(MCID::MayStore, Type);
1025 }
1026
1027 /// Return true if this instruction could possibly read or modify memory.
1028 bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
1029 return mayLoad(Type) || mayStore(Type);
1030 }
1031
1032 /// Return true if this instruction could possibly raise a floating-point
1033 /// exception. This is the case if the instruction is a floating-point
1034 /// instruction that can in principle raise an exception, as indicated
1035 /// by the MCID::MayRaiseFPException property, *and* at the same time,
1036 /// the instruction is used in a context where we expect floating-point
1037 /// exceptions are not disabled, as indicated by the NoFPExcept MI flag.
1038 bool mayRaiseFPException() const {
1039 return hasProperty(MCID::MayRaiseFPException) &&
1040 !getFlag(MachineInstr::MIFlag::NoFPExcept);
1041 }
1042
1043 //===--------------------------------------------------------------------===//
1044 // Flags that indicate whether an instruction can be modified by a method.
1045 //===--------------------------------------------------------------------===//
1046
1047 /// Return true if this may be a 2- or 3-address
1048 /// instruction (of the form "X = op Y, Z, ..."), which produces the same
1049 /// result if Y and Z are exchanged. If this flag is set, then the
1050 /// TargetInstrInfo::commuteInstruction method may be used to hack on the
1051 /// instruction.
1052 ///
1053 /// Note that this flag may be set on instructions that are only commutable
1054 /// sometimes. In these cases, the call to commuteInstruction will fail.
1055 /// Also note that some instructions require non-trivial modification to
1056 /// commute them.
1057 bool isCommutable(QueryType Type = IgnoreBundle) const {
1058 return hasProperty(MCID::Commutable, Type);
1059 }
1060
1061 /// Return true if this is a 2-address instruction
1062 /// which can be changed into a 3-address instruction if needed. Doing this
1063 /// transformation can be profitable in the register allocator, because it
1064 /// means that the instruction can use a 2-address form if possible, but
1065 /// degrade into a less efficient form if the source and dest register cannot
1066 /// be assigned to the same register. For example, this allows the x86
1067 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
1068 /// is the same speed as the shift but has bigger code size.
1069 ///
1070 /// If this returns true, then the target must implement the
1071 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
1072 /// is allowed to fail if the transformation isn't valid for this specific
1073 /// instruction (e.g. shl reg, 4 on x86).
1074 ///
1075 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
1076 return hasProperty(MCID::ConvertibleTo3Addr, Type);
1077 }
1078
1079 /// Return true if this instruction requires
1080 /// custom insertion support when the DAG scheduler is inserting it into a
1081 /// machine basic block. If this is true for the instruction, it basically
1082 /// means that it is a pseudo instruction used at SelectionDAG time that is
1083 /// expanded out into magic code by the target when MachineInstrs are formed.
1084 ///
1085 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
1086 /// is used to insert this into the MachineBasicBlock.
1087 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
1088 return hasProperty(MCID::UsesCustomInserter, Type);
1089 }
1090
1091 /// Return true if this instruction requires *adjustment*
1092 /// after instruction selection by calling a target hook. For example, this
1093 /// can be used to fill in ARM 's' optional operand depending on whether
1094 /// the conditional flag register is used.
1095 bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
1096 return hasProperty(MCID::HasPostISelHook, Type);
1097 }
1098
1099 /// Returns true if this instruction is a candidate for remat.
1100 /// This flag is deprecated, please don't use it anymore. If this
1101 /// flag is set, the isReallyTriviallyReMaterializable() method is called to
1102 /// verify the instruction is really rematable.
1103 bool isRematerializable(QueryType Type = AllInBundle) const {
1104 // It's only possible to re-mat a bundle if all bundled instructions are
1105 // re-materializable.
1106 return hasProperty(MCID::Rematerializable, Type);
1107 }
1108
1109 /// Returns true if this instruction has the same cost (or less) than a move
1110 /// instruction. This is useful during certain types of optimizations
1111 /// (e.g., remat during two-address conversion or machine licm)
1112 /// where we would like to remat or hoist the instruction, but not if it costs
1113 /// more than moving the instruction into the appropriate register. Note, we
1114 /// are not marking copies from and to the same register class with this flag.
1115 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
1116 // Only returns true for a bundle if all bundled instructions are cheap.
1117 return hasProperty(MCID::CheapAsAMove, Type);
1118 }
1119
1120 /// Returns true if this instruction source operands
1121 /// have special register allocation requirements that are not captured by the
1122 /// operand register classes. e.g. ARM::STRD's two source registers must be an
1123 /// even / odd pair, ARM::STM registers have to be in ascending order.
1124 /// Post-register allocation passes should not attempt to change allocations
1125 /// for sources of instructions with this flag.
1126 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
1127 return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
1128 }
1129
1130 /// Returns true if this instruction def operands
1131 /// have special register allocation requirements that are not captured by the
1132 /// operand register classes. e.g. ARM::LDRD's two def registers must be an
1133 /// even / odd pair, ARM::LDM registers have to be in ascending order.
1134 /// Post-register allocation passes should not attempt to change allocations
1135 /// for definitions of instructions with this flag.
1136 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
1137 return hasProperty(MCID::ExtraDefRegAllocReq, Type);
1138 }
1139
1140 enum MICheckType {
1141 CheckDefs, // Check all operands for equality
1142 CheckKillDead, // Check all operands including kill / dead markers
1143 IgnoreDefs, // Ignore all definitions
1144 IgnoreVRegDefs // Ignore virtual register definitions
1145 };
1146
1147 /// Return true if this instruction is identical to \p Other.
1148 /// Two instructions are identical if they have the same opcode and all their
1149 /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
1150 /// Note that this means liveness related flags (dead, undef, kill) do not
1151 /// affect the notion of identical.
1152 bool isIdenticalTo(const MachineInstr &Other,
1153 MICheckType Check = CheckDefs) const;
1154
1155 /// Unlink 'this' from the containing basic block, and return it without
1156 /// deleting it.
1157 ///
1158 /// This function can not be used on bundled instructions, use
1159 /// removeFromBundle() to remove individual instructions from a bundle.
1160 MachineInstr *removeFromParent();
1161
1162 /// Unlink this instruction from its basic block and return it without
1163 /// deleting it.
1164 ///
1165 /// If the instruction is part of a bundle, the other instructions in the
1166 /// bundle remain bundled.
1167 MachineInstr *removeFromBundle();
1168
1169 /// Unlink 'this' from the containing basic block and delete it.
1170 ///
1171 /// If this instruction is the header of a bundle, the whole bundle is erased.
1172 /// This function can not be used for instructions inside a bundle, use
1173 /// eraseFromBundle() to erase individual bundled instructions.
1174 void eraseFromParent();
1175
1176 /// Unlink 'this' from the containing basic block and delete it.
1177 ///
1178 /// For all definitions mark their uses in DBG_VALUE nodes
1179 /// as undefined. Otherwise like eraseFromParent().
1180 void eraseFromParentAndMarkDBGValuesForRemoval();
1181
1182 /// Unlink 'this' form its basic block and delete it.
1183 ///
1184 /// If the instruction is part of a bundle, the other instructions in the
1185 /// bundle remain bundled.
1186 void eraseFromBundle();
1187
1188 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
1189 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
1190 bool isAnnotationLabel() const {
1191 return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
1192 }
1193
1194 /// Returns true if the MachineInstr represents a label.
1195 bool isLabel() const {
1196 return isEHLabel() || isGCLabel() || isAnnotationLabel();
1197 }
1198
1199 bool isCFIInstruction() const {
1200 return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
1201 }
1202
1203 bool isPseudoProbe() const {
1204 return getOpcode() == TargetOpcode::PSEUDO_PROBE;
1205 }
1206
1207 // True if the instruction represents a position in the function.
1208 bool isPosition() const { return isLabel() || isCFIInstruction(); }
1209
1210 bool isNonListDebugValue() const {
1211 return getOpcode() == TargetOpcode::DBG_VALUE;
1212 }
1213 bool isDebugValueList() const {
1214 return getOpcode() == TargetOpcode::DBG_VALUE_LIST;
1215 }
1216 bool isDebugValue() const {
1217 return isNonListDebugValue() || isDebugValueList();
1218 }
1219 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
1220 bool isDebugRef() const { return getOpcode() == TargetOpcode::DBG_INSTR_REF; }
1221 bool isDebugPHI() const { return getOpcode() == TargetOpcode::DBG_PHI; }
1222 bool isDebugInstr() const {
1223 return isDebugValue() || isDebugLabel() || isDebugRef() || isDebugPHI();
23
Returning zero, which participates in a condition later
1224 }
1225 bool isDebugOrPseudoInstr() const {
1226 return isDebugInstr() || isPseudoProbe();
1227 }
1228
1229 bool isDebugOffsetImm() const {
1230 return isNonListDebugValue() && getDebugOffset().isImm();
1231 }
1232
1233 /// A DBG_VALUE is indirect iff the location operand is a register and
1234 /// the offset operand is an immediate.
1235 bool isIndirectDebugValue() const {
1236 return isDebugOffsetImm() && getDebugOperand(0).isReg();
1237 }
1238
1239 /// A DBG_VALUE is an entry value iff its debug expression contains the
1240 /// DW_OP_LLVM_entry_value operation.
1241 bool isDebugEntryValue() const;
1242
1243 /// Return true if the instruction is a debug value which describes a part of
1244 /// a variable as unavailable.
1245 bool isUndefDebugValue() const {
1246 if (!isDebugValue())
1247 return false;
1248 // If any $noreg locations are given, this DV is undef.
1249 for (const MachineOperand &Op : debug_operands())
1250 if (Op.isReg() && !Op.getReg().isValid())
1251 return true;
1252 return false;
1253 }
1254
1255 bool isPHI() const {
1256 return getOpcode() == TargetOpcode::PHI ||
1257 getOpcode() == TargetOpcode::G_PHI;
1258 }
1259 bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1260 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1261 bool isInlineAsm() const {
1262 return getOpcode() == TargetOpcode::INLINEASM ||
1263 getOpcode() == TargetOpcode::INLINEASM_BR;
1264 }
1265
1266 /// FIXME: Seems like a layering violation that the AsmDialect, which is X86
1267 /// specific, be attached to a generic MachineInstr.
1268 bool isMSInlineAsm() const {
1269 return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1270 }
1271
1272 bool isStackAligningInlineAsm() const;
1273 InlineAsm::AsmDialect getInlineAsmDialect() const;
1274
1275 bool isInsertSubreg() const {
1276 return getOpcode() == TargetOpcode::INSERT_SUBREG;
1277 }
1278
1279 bool isSubregToReg() const {
1280 return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1281 }
1282
1283 bool isRegSequence() const {
1284 return getOpcode() == TargetOpcode::REG_SEQUENCE;
1285 }
1286
1287 bool isBundle() const {
1288 return getOpcode() == TargetOpcode::BUNDLE;
1289 }
1290
1291 bool isCopy() const {
1292 return getOpcode() == TargetOpcode::COPY;
1293 }
1294
1295 bool isFullCopy() const {
1296 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1297 }
1298
1299 bool isExtractSubreg() const {
1300 return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1301 }
1302
1303 /// Return true if the instruction behaves like a copy.
1304 /// This does not include native copy instructions.
1305 bool isCopyLike() const {
1306 return isCopy() || isSubregToReg();
1307 }
1308
1309 /// Return true is the instruction is an identity copy.
1310 bool isIdentityCopy() const {
1311 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1312 getOperand(0).getSubReg() == getOperand(1).getSubReg();
1313 }
1314
1315 /// Return true if this instruction doesn't produce any output in the form of
1316 /// executable instructions.
1317 bool isMetaInstruction() const {
1318 switch (getOpcode()) {
1319 default:
1320 return false;
1321 case TargetOpcode::IMPLICIT_DEF:
1322 case TargetOpcode::KILL:
1323 case TargetOpcode::CFI_INSTRUCTION:
1324 case TargetOpcode::EH_LABEL:
1325 case TargetOpcode::GC_LABEL:
1326 case TargetOpcode::DBG_VALUE:
1327 case TargetOpcode::DBG_VALUE_LIST:
1328 case TargetOpcode::DBG_INSTR_REF:
1329 case TargetOpcode::DBG_PHI:
1330 case TargetOpcode::DBG_LABEL:
1331 case TargetOpcode::LIFETIME_START:
1332 case TargetOpcode::LIFETIME_END:
1333 case TargetOpcode::PSEUDO_PROBE:
1334 return true;
1335 }
1336 }
1337
1338 /// Return true if this is a transient instruction that is either very likely
1339 /// to be eliminated during register allocation (such as copy-like
1340 /// instructions), or if this instruction doesn't have an execution-time cost.
1341 bool isTransient() const {
1342 switch (getOpcode()) {
1343 default:
1344 return isMetaInstruction();
1345 // Copy-like instructions are usually eliminated during register allocation.
1346 case TargetOpcode::PHI:
1347 case TargetOpcode::G_PHI:
1348 case TargetOpcode::COPY:
1349 case TargetOpcode::INSERT_SUBREG:
1350 case TargetOpcode::SUBREG_TO_REG:
1351 case TargetOpcode::REG_SEQUENCE:
1352 return true;
1353 }
1354 }
1355
1356 /// Return the number of instructions inside the MI bundle, excluding the
1357 /// bundle header.
1358 ///
1359 /// This is the number of instructions that MachineBasicBlock::iterator
1360 /// skips, 0 for unbundled instructions.
1361 unsigned getBundleSize() const;
1362
1363 /// Return true if the MachineInstr reads the specified register.
1364 /// If TargetRegisterInfo is passed, then it also checks if there
1365 /// is a read of a super-register.
1366 /// This does not count partial redefines of virtual registers as reads:
1367 /// %reg1024:6 = OP.
1368 bool readsRegister(Register Reg,
1369 const TargetRegisterInfo *TRI = nullptr) const {
1370 return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1371 }
1372
1373 /// Return true if the MachineInstr reads the specified virtual register.
1374 /// Take into account that a partial define is a
1375 /// read-modify-write operation.
1376 bool readsVirtualRegister(Register Reg) const {
1377 return readsWritesVirtualRegister(Reg).first;
1378 }
1379
1380 /// Return a pair of bools (reads, writes) indicating if this instruction
1381 /// reads or writes Reg. This also considers partial defines.
1382 /// If Ops is not null, all operand indices for Reg are added.
1383 std::pair<bool,bool> readsWritesVirtualRegister(Register Reg,
1384 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1385
1386 /// Return true if the MachineInstr kills the specified register.
1387 /// If TargetRegisterInfo is passed, then it also checks if there is
1388 /// a kill of a super-register.
1389 bool killsRegister(Register Reg,
1390 const TargetRegisterInfo *TRI = nullptr) const {
1391 return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1392 }
1393
1394 /// Return true if the MachineInstr fully defines the specified register.
1395 /// If TargetRegisterInfo is passed, then it also checks
1396 /// if there is a def of a super-register.
1397 /// NOTE: It's ignoring subreg indices on virtual registers.
1398 bool definesRegister(Register Reg,
1399 const TargetRegisterInfo *TRI = nullptr) const {
1400 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1401 }
1402
1403 /// Return true if the MachineInstr modifies (fully define or partially
1404 /// define) the specified register.
1405 /// NOTE: It's ignoring subreg indices on virtual registers.
1406 bool modifiesRegister(Register Reg,
1407 const TargetRegisterInfo *TRI = nullptr) const {
1408 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1409 }
1410
1411 /// Returns true if the register is dead in this machine instruction.
1412 /// If TargetRegisterInfo is passed, then it also checks
1413 /// if there is a dead def of a super-register.
1414 bool registerDefIsDead(Register Reg,
1415 const TargetRegisterInfo *TRI = nullptr) const {
1416 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1417 }
1418
1419 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1420 /// the given register (not considering sub/super-registers).
1421 bool hasRegisterImplicitUseOperand(Register Reg) const;
1422
1423 /// Returns the operand index that is a use of the specific register or -1
1424 /// if it is not found. It further tightens the search criteria to a use
1425 /// that kills the register if isKill is true.
1426 int findRegisterUseOperandIdx(Register Reg, bool isKill = false,
1427 const TargetRegisterInfo *TRI = nullptr) const;
1428
1429 /// Wrapper for findRegisterUseOperandIdx, it returns
1430 /// a pointer to the MachineOperand rather than an index.
1431 MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false,
1432 const TargetRegisterInfo *TRI = nullptr) {
1433 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1434 return (Idx == -1) ? nullptr : &getOperand(Idx);
1435 }
1436
1437 const MachineOperand *findRegisterUseOperand(
1438 Register Reg, bool isKill = false,
1439 const TargetRegisterInfo *TRI = nullptr) const {
1440 return const_cast<MachineInstr *>(this)->
1441 findRegisterUseOperand(Reg, isKill, TRI);
1442 }
1443
1444 /// Returns the operand index that is a def of the specified register or
1445 /// -1 if it is not found. If isDead is true, defs that are not dead are
1446 /// skipped. If Overlap is true, then it also looks for defs that merely
1447 /// overlap the specified register. If TargetRegisterInfo is non-null,
1448 /// then it also checks if there is a def of a super-register.
1449 /// This may also return a register mask operand when Overlap is true.
1450 int findRegisterDefOperandIdx(Register Reg,
1451 bool isDead = false, bool Overlap = false,
1452 const TargetRegisterInfo *TRI = nullptr) const;
1453
1454 /// Wrapper for findRegisterDefOperandIdx, it returns
1455 /// a pointer to the MachineOperand rather than an index.
1456 MachineOperand *
1457 findRegisterDefOperand(Register Reg, bool isDead = false,
1458 bool Overlap = false,
1459 const TargetRegisterInfo *TRI = nullptr) {
1460 int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI);
1461 return (Idx == -1) ? nullptr : &getOperand(Idx);
1462 }
1463
1464 const MachineOperand *
1465 findRegisterDefOperand(Register Reg, bool isDead = false,
1466 bool Overlap = false,
1467 const TargetRegisterInfo *TRI = nullptr) const {
1468 return const_cast<MachineInstr *>(this)->findRegisterDefOperand(
1469 Reg, isDead, Overlap, TRI);
1470 }
1471
1472 /// Find the index of the first operand in the
1473 /// operand list that is used to represent the predicate. It returns -1 if
1474 /// none is found.
1475 int findFirstPredOperandIdx() const;
1476
1477 /// Find the index of the flag word operand that
1478 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
1479 /// getOperand(OpIdx) does not belong to an inline asm operand group.
1480 ///
1481 /// If GroupNo is not NULL, it will receive the number of the operand group
1482 /// containing OpIdx.
1483 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1484
1485 /// Compute the static register class constraint for operand OpIdx.
1486 /// For normal instructions, this is derived from the MCInstrDesc.
1487 /// For inline assembly it is derived from the flag words.
1488 ///
1489 /// Returns NULL if the static register class constraint cannot be
1490 /// determined.
1491 const TargetRegisterClass*
1492 getRegClassConstraint(unsigned OpIdx,
1493 const TargetInstrInfo *TII,
1494 const TargetRegisterInfo *TRI) const;
1495
1496 /// Applies the constraints (def/use) implied by this MI on \p Reg to
1497 /// the given \p CurRC.
1498 /// If \p ExploreBundle is set and MI is part of a bundle, all the
1499 /// instructions inside the bundle will be taken into account. In other words,
1500 /// this method accumulates all the constraints of the operand of this MI and
1501 /// the related bundle if MI is a bundle or inside a bundle.
1502 ///
1503 /// Returns the register class that satisfies both \p CurRC and the
1504 /// constraints set by MI. Returns NULL if such a register class does not
1505 /// exist.
1506 ///
1507 /// \pre CurRC must not be NULL.
1508 const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1509 Register Reg, const TargetRegisterClass *CurRC,
1510 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1511 bool ExploreBundle = false) const;
1512
1513 /// Applies the constraints (def/use) implied by the \p OpIdx operand
1514 /// to the given \p CurRC.
1515 ///
1516 /// Returns the register class that satisfies both \p CurRC and the
1517 /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1518 /// does not exist.
1519 ///
1520 /// \pre CurRC must not be NULL.
1521 /// \pre The operand at \p OpIdx must be a register.
1522 const TargetRegisterClass *
1523 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1524 const TargetInstrInfo *TII,
1525 const TargetRegisterInfo *TRI) const;
1526
1527 /// Add a tie between the register operands at DefIdx and UseIdx.
1528 /// The tie will cause the register allocator to ensure that the two
1529 /// operands are assigned the same physical register.
1530 ///
1531 /// Tied operands are managed automatically for explicit operands in the
1532 /// MCInstrDesc. This method is for exceptional cases like inline asm.
1533 void tieOperands(unsigned DefIdx, unsigned UseIdx);
1534
1535 /// Given the index of a tied register operand, find the
1536 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1537 /// index of the tied operand which must exist.
1538 unsigned findTiedOperandIdx(unsigned OpIdx) const;
1539
1540 /// Given the index of a register def operand,
1541 /// check if the register def is tied to a source operand, due to either
1542 /// two-address elimination or inline assembly constraints. Returns the
1543 /// first tied use operand index by reference if UseOpIdx is not null.
1544 bool isRegTiedToUseOperand(unsigned DefOpIdx,
1545 unsigned *UseOpIdx = nullptr) const {
1546 const MachineOperand &MO = getOperand(DefOpIdx);
1547 if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1548 return false;
1549 if (UseOpIdx)
1550 *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1551 return true;
1552 }
1553
1554 /// Return true if the use operand of the specified index is tied to a def
1555 /// operand. It also returns the def operand index by reference if DefOpIdx
1556 /// is not null.
1557 bool isRegTiedToDefOperand(unsigned UseOpIdx,
1558 unsigned *DefOpIdx = nullptr) const {
1559 const MachineOperand &MO = getOperand(UseOpIdx);
1560 if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1561 return false;
1562 if (DefOpIdx)
1563 *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1564 return true;
1565 }
1566
1567 /// Clears kill flags on all operands.
1568 void clearKillInfo();
1569
1570 /// Replace all occurrences of FromReg with ToReg:SubIdx,
1571 /// properly composing subreg indices where necessary.
1572 void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx,
1573 const TargetRegisterInfo &RegInfo);
1574
1575 /// We have determined MI kills a register. Look for the
1576 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1577 /// add a implicit operand if it's not found. Returns true if the operand
1578 /// exists / is added.
1579 bool addRegisterKilled(Register IncomingReg,
1580 const TargetRegisterInfo *RegInfo,
1581 bool AddIfNotFound = false);
1582
1583 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
1584 /// all aliasing registers.
1585 void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo);
1586
1587 /// We have determined MI defined a register without a use.
1588 /// Look for the operand that defines it and mark it as IsDead. If
1589 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1590 /// true if the operand exists / is added.
1591 bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo,
1592 bool AddIfNotFound = false);
1593
1594 /// Clear all dead flags on operands defining register @p Reg.
1595 void clearRegisterDeads(Register Reg);
1596
1597 /// Mark all subregister defs of register @p Reg with the undef flag.
1598 /// This function is used when we determined to have a subregister def in an
1599 /// otherwise undefined super register.
1600 void setRegisterDefReadUndef(Register Reg, bool IsUndef = true);
1601
1602 /// We have determined MI defines a register. Make sure there is an operand
1603 /// defining Reg.
1604 void addRegisterDefined(Register Reg,
1605 const TargetRegisterInfo *RegInfo = nullptr);
1606
1607 /// Mark every physreg used by this instruction as
1608 /// dead except those in the UsedRegs list.
1609 ///
1610 /// On instructions with register mask operands, also add implicit-def
1611 /// operands for all registers in UsedRegs.
1612 void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs,
1613 const TargetRegisterInfo &TRI);
1614
1615 /// Return true if it is safe to move this instruction. If
1616 /// SawStore is set to true, it means that there is a store (or call) between
1617 /// the instruction's location and its intended destination.
1618 bool isSafeToMove(AAResults *AA, bool &SawStore) const;
1619
1620 /// Returns true if this instruction's memory access aliases the memory
1621 /// access of Other.
1622 //
1623 /// Assumes any physical registers used to compute addresses
1624 /// have the same value for both instructions. Returns false if neither
1625 /// instruction writes to memory.
1626 ///
1627 /// @param AA Optional alias analysis, used to compare memory operands.
1628 /// @param Other MachineInstr to check aliasing against.
1629 /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1630 bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const;
1631
1632 /// Return true if this instruction may have an ordered
1633 /// or volatile memory reference, or if the information describing the memory
1634 /// reference is not available. Return false if it is known to have no
1635 /// ordered or volatile memory references.
1636 bool hasOrderedMemoryRef() const;
1637
1638 /// Return true if this load instruction never traps and points to a memory
1639 /// location whose value doesn't change during the execution of this function.
1640 ///
1641 /// Examples include loading a value from the constant pool or from the
1642 /// argument area of a function (if it does not change). If the instruction
1643 /// does multiple loads, this returns true only if all of the loads are
1644 /// dereferenceable and invariant.
1645 bool isDereferenceableInvariantLoad(AAResults *AA) const;
1646
1647 /// If the specified instruction is a PHI that always merges together the
1648 /// same virtual register, return the register, otherwise return 0.
1649 unsigned isConstantValuePHI() const;
1650
1651 /// Return true if this instruction has side effects that are not modeled
1652 /// by mayLoad / mayStore, etc.
1653 /// For all instructions, the property is encoded in MCInstrDesc::Flags
1654 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1655 /// INLINEASM instruction, in which case the side effect property is encoded
1656 /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1657 ///
1658 bool hasUnmodeledSideEffects() const;
1659
1660 /// Returns true if it is illegal to fold a load across this instruction.
1661 bool isLoadFoldBarrier() const;
1662
1663 /// Return true if all the defs of this instruction are dead.
1664 bool allDefsAreDead() const;
1665
1666 /// Return a valid size if the instruction is a spill instruction.
1667 Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1668
1669 /// Return a valid size if the instruction is a folded spill instruction.
1670 Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1671
1672 /// Return a valid size if the instruction is a restore instruction.
1673 Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1674
1675 /// Return a valid size if the instruction is a folded restore instruction.
1676 Optional<unsigned>
1677 getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1678
1679 /// Copy implicit register operands from specified
1680 /// instruction to this instruction.
1681 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1682
1683 /// Debugging support
1684 /// @{
1685 /// Determine the generic type to be printed (if needed) on uses and defs.
1686 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1687 const MachineRegisterInfo &MRI) const;
1688
1689 /// Return true when an instruction has tied register that can't be determined
1690 /// by the instruction's descriptor. This is useful for MIR printing, to
1691 /// determine whether we need to print the ties or not.
1692 bool hasComplexRegisterTies() const;
1693
1694 /// Print this MI to \p OS.
1695 /// Don't print information that can be inferred from other instructions if
1696 /// \p IsStandalone is false. It is usually true when only a fragment of the
1697 /// function is printed.
1698 /// Only print the defs and the opcode if \p SkipOpers is true.
1699 /// Otherwise, also print operands if \p SkipDebugLoc is true.
1700 /// Otherwise, also print the debug loc, with a terminating newline.
1701 /// \p TII is used to print the opcode name. If it's not present, but the
1702 /// MI is in a function, the opcode will be printed using the function's TII.
1703 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1704 bool SkipDebugLoc = false, bool AddNewLine = true,
1705 const TargetInstrInfo *TII = nullptr) const;
1706 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1707 bool SkipOpers = false, bool SkipDebugLoc = false,
1708 bool AddNewLine = true,
1709 const TargetInstrInfo *TII = nullptr) const;
1710 void dump() const;
1711 /// Print on dbgs() the current instruction and the instructions defining its
1712 /// operands and so on until we reach \p MaxDepth.
1713 void dumpr(const MachineRegisterInfo &MRI,
1714 unsigned MaxDepth = UINT_MAX(2147483647 *2U +1U)) const;
1715 /// @}
1716
1717 //===--------------------------------------------------------------------===//
1718 // Accessors used to build up machine instructions.
1719
1720 /// Add the specified operand to the instruction. If it is an implicit
1721 /// operand, it is added to the end of the operand list. If it is an
1722 /// explicit operand it is added at the end of the explicit operand list
1723 /// (before the first implicit operand).
1724 ///
1725 /// MF must be the machine function that was used to allocate this
1726 /// instruction.
1727 ///
1728 /// MachineInstrBuilder provides a more convenient interface for creating
1729 /// instructions and adding operands.
1730 void addOperand(MachineFunction &MF, const MachineOperand &Op);
1731
1732 /// Add an operand without providing an MF reference. This only works for
1733 /// instructions that are inserted in a basic block.
1734 ///
1735 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1736 /// preferred.
1737 void addOperand(const MachineOperand &Op);
1738
1739 /// Replace the instruction descriptor (thus opcode) of
1740 /// the current instruction with a new one.
1741 void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1742
1743 /// Replace current source information with new such.
1744 /// Avoid using this, the constructor argument is preferable.
1745 void setDebugLoc(DebugLoc dl) {
1746 debugLoc = std::move(dl);
1747 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor")(static_cast <bool> (debugLoc.hasTrivialDestructor() &&
"Expected trivial destructor") ? void (0) : __assert_fail ("debugLoc.hasTrivialDestructor() && \"Expected trivial destructor\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 1747, __extension__ __PRETTY_FUNCTION__))
;
1748 }
1749
1750 /// Erase an operand from an instruction, leaving it with one
1751 /// fewer operand than it started with.
1752 void RemoveOperand(unsigned OpNo);
1753
1754 /// Clear this MachineInstr's memory reference descriptor list. This resets
1755 /// the memrefs to their most conservative state. This should be used only
1756 /// as a last resort since it greatly pessimizes our knowledge of the memory
1757 /// access performed by the instruction.
1758 void dropMemRefs(MachineFunction &MF);
1759
1760 /// Assign this MachineInstr's memory reference descriptor list.
1761 ///
1762 /// Unlike other methods, this *will* allocate them into a new array
1763 /// associated with the provided `MachineFunction`.
1764 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1765
1766 /// Add a MachineMemOperand to the machine instruction.
1767 /// This function should be used only occasionally. The setMemRefs function
1768 /// is the primary method for setting up a MachineInstr's MemRefs list.
1769 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1770
1771 /// Clone another MachineInstr's memory reference descriptor list and replace
1772 /// ours with it.
1773 ///
1774 /// Note that `*this` may be the incoming MI!
1775 ///
1776 /// Prefer this API whenever possible as it can avoid allocations in common
1777 /// cases.
1778 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1779
1780 /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1781 /// list and replace ours with it.
1782 ///
1783 /// Note that `*this` may be one of the incoming MIs!
1784 ///
1785 /// Prefer this API whenever possible as it can avoid allocations in common
1786 /// cases.
1787 void cloneMergedMemRefs(MachineFunction &MF,
1788 ArrayRef<const MachineInstr *> MIs);
1789
1790 /// Set a symbol that will be emitted just prior to the instruction itself.
1791 ///
1792 /// Setting this to a null pointer will remove any such symbol.
1793 ///
1794 /// FIXME: This is not fully implemented yet.
1795 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1796
1797 /// Set a symbol that will be emitted just after the instruction itself.
1798 ///
1799 /// Setting this to a null pointer will remove any such symbol.
1800 ///
1801 /// FIXME: This is not fully implemented yet.
1802 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1803
1804 /// Clone another MachineInstr's pre- and post- instruction symbols and
1805 /// replace ours with it.
1806 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI);
1807
1808 /// Set a marker on instructions that denotes where we should create and emit
1809 /// heap alloc site labels. This waits until after instruction selection and
1810 /// optimizations to create the label, so it should still work if the
1811 /// instruction is removed or duplicated.
1812 void setHeapAllocMarker(MachineFunction &MF, MDNode *MD);
1813
1814 /// Return the MIFlags which represent both MachineInstrs. This
1815 /// should be used when merging two MachineInstrs into one. This routine does
1816 /// not modify the MIFlags of this MachineInstr.
1817 uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1818
1819 static uint16_t copyFlagsFromInstruction(const Instruction &I);
1820
1821 /// Copy all flags to MachineInst MIFlags
1822 void copyIRFlags(const Instruction &I);
1823
1824 /// Break any tie involving OpIdx.
1825 void untieRegOperand(unsigned OpIdx) {
1826 MachineOperand &MO = getOperand(OpIdx);
1827 if (MO.isReg() && MO.isTied()) {
1828 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1829 MO.TiedTo = 0;
1830 }
1831 }
1832
1833 /// Add all implicit def and use operands to this instruction.
1834 void addImplicitDefUseOperands(MachineFunction &MF);
1835
1836 /// Scan instructions immediately following MI and collect any matching
1837 /// DBG_VALUEs.
1838 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1839
1840 /// Find all DBG_VALUEs that point to the register def in this instruction
1841 /// and point them to \p Reg instead.
1842 void changeDebugValuesDefReg(Register Reg);
1843
1844 /// Returns the Intrinsic::ID for this instruction.
1845 /// \pre Must have an intrinsic ID operand.
1846 unsigned getIntrinsicID() const {
1847 return getOperand(getNumExplicitDefs()).getIntrinsicID();
1848 }
1849
1850 /// Sets all register debug operands in this debug value instruction to be
1851 /// undef.
1852 void setDebugValueUndef() {
1853 assert(isDebugValue() && "Must be a debug value instruction.")(static_cast <bool> (isDebugValue() && "Must be a debug value instruction."
) ? void (0) : __assert_fail ("isDebugValue() && \"Must be a debug value instruction.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include/llvm/CodeGen/MachineInstr.h"
, 1853, __extension__ __PRETTY_FUNCTION__))
;
1854 for (MachineOperand &MO : debug_operands()) {
1855 if (MO.isReg()) {
1856 MO.setReg(0);
1857 MO.setSubReg(0);
1858 }
1859 }
1860 }
1861
1862private:
1863 /// If this instruction is embedded into a MachineFunction, return the
1864 /// MachineRegisterInfo object for the current function, otherwise
1865 /// return null.
1866 MachineRegisterInfo *getRegInfo();
1867
1868 /// Unlink all of the register operands in this instruction from their
1869 /// respective use lists. This requires that the operands already be on their
1870 /// use lists.
1871 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1872
1873 /// Add all of the register operands in this instruction from their
1874 /// respective use lists. This requires that the operands not be on their
1875 /// use lists yet.
1876 void AddRegOperandsToUseLists(MachineRegisterInfo&);
1877
1878 /// Slow path for hasProperty when we're dealing with a bundle.
1879 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1880
1881 /// Implements the logic of getRegClassConstraintEffectForVReg for the
1882 /// this MI and the given operand index \p OpIdx.
1883 /// If the related operand does not constrained Reg, this returns CurRC.
1884 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1885 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC,
1886 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1887
1888 /// Stores extra instruction information inline or allocates as ExtraInfo
1889 /// based on the number of pointers.
1890 void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs,
1891 MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol,
1892 MDNode *HeapAllocMarker);
1893};
1894
1895/// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1896/// instruction rather than by pointer value.
1897/// The hashing and equality testing functions ignore definitions so this is
1898/// useful for CSE, etc.
1899struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1900 static inline MachineInstr *getEmptyKey() {
1901 return nullptr;
1902 }
1903
1904 static inline MachineInstr *getTombstoneKey() {
1905 return reinterpret_cast<MachineInstr*>(-1);
1906 }
1907
1908 static unsigned getHashValue(const MachineInstr* const &MI);
1909
1910 static bool isEqual(const MachineInstr* const &LHS,
1911 const MachineInstr* const &RHS) {
1912 if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1913 LHS == getEmptyKey() || LHS == getTombstoneKey())
1914 return LHS == RHS;
1915 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1916 }
1917};
1918
1919//===----------------------------------------------------------------------===//
1920// Debugging Support
1921
1922inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1923 MI.print(OS);
1924 return OS;
1925}
1926
1927} // end namespace llvm
1928
1929#endif // LLVM_CODEGEN_MACHINEINSTR_H