Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/CodeGen/MachinePipeliner.cpp
Warning:line 1963, column 13
Value stored to 'Order' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name MachinePipeliner.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/CodeGen -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/CodeGen -I include -I /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-04-20-140412-16051-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220420111733+e13d2efed663/llvm/lib/CodeGen/MachinePipeliner.cpp
1//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
10//
11// This SMS implementation is a target-independent back-end pass. When enabled,
12// the pass runs just prior to the register allocation pass, while the machine
13// IR is in SSA form. If software pipelining is successful, then the original
14// loop is replaced by the optimized loop. The optimized loop contains one or
15// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
16// the instructions cannot be scheduled in a given MII, we increase the MII by
17// one and try again.
18//
19// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
20// represent loop carried dependences in the DAG as order edges to the Phi
21// nodes. We also perform several passes over the DAG to eliminate unnecessary
22// edges that inhibit the ability to pipeline. The implementation uses the
23// DFAPacketizer class to compute the minimum initiation interval and the check
24// where an instruction may be inserted in the pipelined schedule.
25//
26// In order for the SMS pass to work, several target specific hooks need to be
27// implemented to get information about the loop structure and to rewrite
28// instructions.
29//
30//===----------------------------------------------------------------------===//
31
32#include "llvm/CodeGen/MachinePipeliner.h"
33#include "llvm/ADT/ArrayRef.h"
34#include "llvm/ADT/BitVector.h"
35#include "llvm/ADT/DenseMap.h"
36#include "llvm/ADT/MapVector.h"
37#include "llvm/ADT/PriorityQueue.h"
38#include "llvm/ADT/SetOperations.h"
39#include "llvm/ADT/SetVector.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallSet.h"
42#include "llvm/ADT/SmallVector.h"
43#include "llvm/ADT/Statistic.h"
44#include "llvm/ADT/iterator_range.h"
45#include "llvm/Analysis/AliasAnalysis.h"
46#include "llvm/Analysis/MemoryLocation.h"
47#include "llvm/Analysis/OptimizationRemarkEmitter.h"
48#include "llvm/Analysis/ValueTracking.h"
49#include "llvm/CodeGen/DFAPacketizer.h"
50#include "llvm/CodeGen/LiveIntervals.h"
51#include "llvm/CodeGen/MachineBasicBlock.h"
52#include "llvm/CodeGen/MachineDominators.h"
53#include "llvm/CodeGen/MachineFunction.h"
54#include "llvm/CodeGen/MachineFunctionPass.h"
55#include "llvm/CodeGen/MachineInstr.h"
56#include "llvm/CodeGen/MachineInstrBuilder.h"
57#include "llvm/CodeGen/MachineLoopInfo.h"
58#include "llvm/CodeGen/MachineMemOperand.h"
59#include "llvm/CodeGen/MachineOperand.h"
60#include "llvm/CodeGen/MachineRegisterInfo.h"
61#include "llvm/CodeGen/ModuloSchedule.h"
62#include "llvm/CodeGen/RegisterPressure.h"
63#include "llvm/CodeGen/ScheduleDAG.h"
64#include "llvm/CodeGen/ScheduleDAGMutation.h"
65#include "llvm/CodeGen/TargetOpcodes.h"
66#include "llvm/CodeGen/TargetRegisterInfo.h"
67#include "llvm/CodeGen/TargetSubtargetInfo.h"
68#include "llvm/Config/llvm-config.h"
69#include "llvm/IR/Attributes.h"
70#include "llvm/IR/Function.h"
71#include "llvm/MC/LaneBitmask.h"
72#include "llvm/MC/MCInstrDesc.h"
73#include "llvm/MC/MCInstrItineraries.h"
74#include "llvm/MC/MCRegisterInfo.h"
75#include "llvm/Pass.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Compiler.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/MathExtras.h"
80#include "llvm/Support/raw_ostream.h"
81#include <algorithm>
82#include <cassert>
83#include <climits>
84#include <cstdint>
85#include <deque>
86#include <functional>
87#include <iterator>
88#include <map>
89#include <memory>
90#include <tuple>
91#include <utility>
92#include <vector>
93
94using namespace llvm;
95
96#define DEBUG_TYPE"pipeliner" "pipeliner"
97
98STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline")static llvm::Statistic NumTrytoPipeline = {"pipeliner", "NumTrytoPipeline"
, "Number of loops that we attempt to pipeline"}
;
99STATISTIC(NumPipelined, "Number of loops software pipelined")static llvm::Statistic NumPipelined = {"pipeliner", "NumPipelined"
, "Number of loops software pipelined"}
;
100STATISTIC(NumNodeOrderIssues, "Number of node order issues found")static llvm::Statistic NumNodeOrderIssues = {"pipeliner", "NumNodeOrderIssues"
, "Number of node order issues found"}
;
101STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch")static llvm::Statistic NumFailBranch = {"pipeliner", "NumFailBranch"
, "Pipeliner abort due to unknown branch"}
;
102STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop")static llvm::Statistic NumFailLoop = {"pipeliner", "NumFailLoop"
, "Pipeliner abort due to unsupported loop"}
;
103STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader")static llvm::Statistic NumFailPreheader = {"pipeliner", "NumFailPreheader"
, "Pipeliner abort due to missing preheader"}
;
104STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large")static llvm::Statistic NumFailLargeMaxMII = {"pipeliner", "NumFailLargeMaxMII"
, "Pipeliner abort due to MaxMII too large"}
;
105STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII")static llvm::Statistic NumFailZeroMII = {"pipeliner", "NumFailZeroMII"
, "Pipeliner abort due to zero MII"}
;
106STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found")static llvm::Statistic NumFailNoSchedule = {"pipeliner", "NumFailNoSchedule"
, "Pipeliner abort due to no schedule found"}
;
107STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage")static llvm::Statistic NumFailZeroStage = {"pipeliner", "NumFailZeroStage"
, "Pipeliner abort due to zero stage"}
;
108STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages")static llvm::Statistic NumFailLargeMaxStage = {"pipeliner", "NumFailLargeMaxStage"
, "Pipeliner abort due to too many stages"}
;
109
110/// A command line option to turn software pipelining on or off.
111static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
112 cl::ZeroOrMore,
113 cl::desc("Enable Software Pipelining"));
114
115/// A command line option to enable SWP at -Os.
116static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
117 cl::desc("Enable SWP at Os."), cl::Hidden,
118 cl::init(false));
119
120/// A command line argument to limit minimum initial interval for pipelining.
121static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
122 cl::desc("Size limit for the MII."),
123 cl::Hidden, cl::init(27));
124
125/// A command line argument to limit the number of stages in the pipeline.
126static cl::opt<int>
127 SwpMaxStages("pipeliner-max-stages",
128 cl::desc("Maximum stages allowed in the generated scheduled."),
129 cl::Hidden, cl::init(3));
130
131/// A command line option to disable the pruning of chain dependences due to
132/// an unrelated Phi.
133static cl::opt<bool>
134 SwpPruneDeps("pipeliner-prune-deps",
135 cl::desc("Prune dependences between unrelated Phi nodes."),
136 cl::Hidden, cl::init(true));
137
138/// A command line option to disable the pruning of loop carried order
139/// dependences.
140static cl::opt<bool>
141 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
142 cl::desc("Prune loop carried order dependences."),
143 cl::Hidden, cl::init(true));
144
145#ifndef NDEBUG
146static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
147#endif
148
149static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
150 cl::ReallyHidden, cl::init(false),
151 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
152
153static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
154 cl::init(false));
155static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
156 cl::init(false));
157
158static cl::opt<bool> EmitTestAnnotations(
159 "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
160 cl::desc("Instead of emitting the pipelined code, annotate instructions "
161 "with the generated schedule for feeding into the "
162 "-modulo-schedule-test pass"));
163
164static cl::opt<bool> ExperimentalCodeGen(
165 "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
166 cl::desc(
167 "Use the experimental peeling code generator for software pipelining"));
168
169namespace llvm {
170
171// A command line option to enable the CopyToPhi DAG mutation.
172cl::opt<bool>
173 SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
174 cl::init(true), cl::ZeroOrMore,
175 cl::desc("Enable CopyToPhi DAG Mutation"));
176
177} // end namespace llvm
178
179unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
180char MachinePipeliner::ID = 0;
181#ifndef NDEBUG
182int MachinePipeliner::NumTries = 0;
183#endif
184char &llvm::MachinePipelinerID = MachinePipeliner::ID;
185
186INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,static void *initializeMachinePipelinerPassOnce(PassRegistry &
Registry) {
187 "Modulo Software Pipelining", false, false)static void *initializeMachinePipelinerPassOnce(PassRegistry &
Registry) {
188INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
189INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry);
190INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry);
191INITIALIZE_PASS_DEPENDENCY(LiveIntervals)initializeLiveIntervalsPass(Registry);
192INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,PassInfo *PI = new PassInfo( "Modulo Software Pipelining", "pipeliner"
, &MachinePipeliner::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MachinePipeliner>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMachinePipelinerPassFlag
; void llvm::initializeMachinePipelinerPass(PassRegistry &
Registry) { llvm::call_once(InitializeMachinePipelinerPassFlag
, initializeMachinePipelinerPassOnce, std::ref(Registry)); }
193 "Modulo Software Pipelining", false, false)PassInfo *PI = new PassInfo( "Modulo Software Pipelining", "pipeliner"
, &MachinePipeliner::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MachinePipeliner>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMachinePipelinerPassFlag
; void llvm::initializeMachinePipelinerPass(PassRegistry &
Registry) { llvm::call_once(InitializeMachinePipelinerPassFlag
, initializeMachinePipelinerPassOnce, std::ref(Registry)); }
194
195/// The "main" function for implementing Swing Modulo Scheduling.
196bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
197 if (skipFunction(mf.getFunction()))
198 return false;
199
200 if (!EnableSWP)
201 return false;
202
203 if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) &&
204 !EnableSWPOptSize.getPosition())
205 return false;
206
207 if (!mf.getSubtarget().enableMachinePipeliner())
208 return false;
209
210 // Cannot pipeline loops without instruction itineraries if we are using
211 // DFA for the pipeliner.
212 if (mf.getSubtarget().useDFAforSMS() &&
213 (!mf.getSubtarget().getInstrItineraryData() ||
214 mf.getSubtarget().getInstrItineraryData()->isEmpty()))
215 return false;
216
217 MF = &mf;
218 MLI = &getAnalysis<MachineLoopInfo>();
219 MDT = &getAnalysis<MachineDominatorTree>();
220 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
221 TII = MF->getSubtarget().getInstrInfo();
222 RegClassInfo.runOnMachineFunction(*MF);
223
224 for (auto &L : *MLI)
225 scheduleLoop(*L);
226
227 return false;
228}
229
230/// Attempt to perform the SMS algorithm on the specified loop. This function is
231/// the main entry point for the algorithm. The function identifies candidate
232/// loops, calculates the minimum initiation interval, and attempts to schedule
233/// the loop.
234bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
235 bool Changed = false;
236 for (auto &InnerLoop : L)
237 Changed |= scheduleLoop(*InnerLoop);
238
239#ifndef NDEBUG
240 // Stop trying after reaching the limit (if any).
241 int Limit = SwpLoopLimit;
242 if (Limit >= 0) {
243 if (NumTries >= SwpLoopLimit)
244 return Changed;
245 NumTries++;
246 }
247#endif
248
249 setPragmaPipelineOptions(L);
250 if (!canPipelineLoop(L)) {
251 LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "\n!!! Can not pipeline loop.\n"
; } } while (false)
;
252 ORE->emit([&]() {
253 return MachineOptimizationRemarkMissed(DEBUG_TYPE"pipeliner", "canPipelineLoop",
254 L.getStartLoc(), L.getHeader())
255 << "Failed to pipeline loop";
256 });
257
258 return Changed;
259 }
260
261 ++NumTrytoPipeline;
262
263 Changed = swingModuloScheduler(L);
264
265 return Changed;
266}
267
268void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
269 // Reset the pragma for the next loop in iteration.
270 disabledByPragma = false;
271 II_setByPragma = 0;
272
273 MachineBasicBlock *LBLK = L.getTopBlock();
274
275 if (LBLK == nullptr)
276 return;
277
278 const BasicBlock *BBLK = LBLK->getBasicBlock();
279 if (BBLK == nullptr)
280 return;
281
282 const Instruction *TI = BBLK->getTerminator();
283 if (TI == nullptr)
284 return;
285
286 MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
287 if (LoopID == nullptr)
288 return;
289
290 assert(LoopID->getNumOperands() > 0 && "requires atleast one operand")(static_cast <bool> (LoopID->getNumOperands() > 0
&& "requires atleast one operand") ? void (0) : __assert_fail
("LoopID->getNumOperands() > 0 && \"requires atleast one operand\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 290, __extension__
__PRETTY_FUNCTION__))
;
291 assert(LoopID->getOperand(0) == LoopID && "invalid loop")(static_cast <bool> (LoopID->getOperand(0) == LoopID
&& "invalid loop") ? void (0) : __assert_fail ("LoopID->getOperand(0) == LoopID && \"invalid loop\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 291, __extension__
__PRETTY_FUNCTION__))
;
292
293 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
294 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
295
296 if (MD == nullptr)
297 continue;
298
299 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
300
301 if (S == nullptr)
302 continue;
303
304 if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
305 assert(MD->getNumOperands() == 2 &&(static_cast <bool> (MD->getNumOperands() == 2 &&
"Pipeline initiation interval hint metadata should have two operands."
) ? void (0) : __assert_fail ("MD->getNumOperands() == 2 && \"Pipeline initiation interval hint metadata should have two operands.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 306, __extension__
__PRETTY_FUNCTION__))
306 "Pipeline initiation interval hint metadata should have two operands.")(static_cast <bool> (MD->getNumOperands() == 2 &&
"Pipeline initiation interval hint metadata should have two operands."
) ? void (0) : __assert_fail ("MD->getNumOperands() == 2 && \"Pipeline initiation interval hint metadata should have two operands.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 306, __extension__
__PRETTY_FUNCTION__))
;
307 II_setByPragma =
308 mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
309 assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.")(static_cast <bool> (II_setByPragma >= 1 && "Pipeline initiation interval must be positive."
) ? void (0) : __assert_fail ("II_setByPragma >= 1 && \"Pipeline initiation interval must be positive.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 309, __extension__
__PRETTY_FUNCTION__))
;
310 } else if (S->getString() == "llvm.loop.pipeline.disable") {
311 disabledByPragma = true;
312 }
313 }
314}
315
316/// Return true if the loop can be software pipelined. The algorithm is
317/// restricted to loops with a single basic block. Make sure that the
318/// branch in the loop can be analyzed.
319bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
320 if (L.getNumBlocks() != 1) {
321 ORE->emit([&]() {
322 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE"pipeliner", "canPipelineLoop",
323 L.getStartLoc(), L.getHeader())
324 << "Not a single basic block: "
325 << ore::NV("NumBlocks", L.getNumBlocks());
326 });
327 return false;
328 }
329
330 if (disabledByPragma) {
331 ORE->emit([&]() {
332 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE"pipeliner", "canPipelineLoop",
333 L.getStartLoc(), L.getHeader())
334 << "Disabled by Pragma.";
335 });
336 return false;
337 }
338
339 // Check if the branch can't be understood because we can't do pipelining
340 // if that's the case.
341 LI.TBB = nullptr;
342 LI.FBB = nullptr;
343 LI.BrCond.clear();
344 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
345 LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"
; } } while (false)
;
346 NumFailBranch++;
347 ORE->emit([&]() {
348 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE"pipeliner", "canPipelineLoop",
349 L.getStartLoc(), L.getHeader())
350 << "The branch can't be understood";
351 });
352 return false;
353 }
354
355 LI.LoopInductionVar = nullptr;
356 LI.LoopCompare = nullptr;
357 if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
358 LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"
; } } while (false)
;
359 NumFailLoop++;
360 ORE->emit([&]() {
361 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE"pipeliner", "canPipelineLoop",
362 L.getStartLoc(), L.getHeader())
363 << "The loop structure is not supported";
364 });
365 return false;
366 }
367
368 if (!L.getLoopPreheader()) {
369 LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Preheader not found, can NOT pipeline Loop\n"
; } } while (false)
;
370 NumFailPreheader++;
371 ORE->emit([&]() {
372 return MachineOptimizationRemarkAnalysis(DEBUG_TYPE"pipeliner", "canPipelineLoop",
373 L.getStartLoc(), L.getHeader())
374 << "No loop preheader found";
375 });
376 return false;
377 }
378
379 // Remove any subregisters from inputs to phi nodes.
380 preprocessPhiNodes(*L.getHeader());
381 return true;
382}
383
384void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
385 MachineRegisterInfo &MRI = MF->getRegInfo();
386 SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
387
388 for (MachineInstr &PI : B.phis()) {
389 MachineOperand &DefOp = PI.getOperand(0);
390 assert(DefOp.getSubReg() == 0)(static_cast <bool> (DefOp.getSubReg() == 0) ? void (0)
: __assert_fail ("DefOp.getSubReg() == 0", "llvm/lib/CodeGen/MachinePipeliner.cpp"
, 390, __extension__ __PRETTY_FUNCTION__))
;
391 auto *RC = MRI.getRegClass(DefOp.getReg());
392
393 for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
394 MachineOperand &RegOp = PI.getOperand(i);
395 if (RegOp.getSubReg() == 0)
396 continue;
397
398 // If the operand uses a subregister, replace it with a new register
399 // without subregisters, and generate a copy to the new register.
400 Register NewReg = MRI.createVirtualRegister(RC);
401 MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
402 MachineBasicBlock::iterator At = PredB.getFirstTerminator();
403 const DebugLoc &DL = PredB.findDebugLoc(At);
404 auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
405 .addReg(RegOp.getReg(), getRegState(RegOp),
406 RegOp.getSubReg());
407 Slots.insertMachineInstrInMaps(*Copy);
408 RegOp.setReg(NewReg);
409 RegOp.setSubReg(0);
410 }
411 }
412}
413
414/// The SMS algorithm consists of the following main steps:
415/// 1. Computation and analysis of the dependence graph.
416/// 2. Ordering of the nodes (instructions).
417/// 3. Attempt to Schedule the loop.
418bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
419 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.")(static_cast <bool> (L.getBlocks().size() == 1 &&
"SMS works on single blocks only.") ? void (0) : __assert_fail
("L.getBlocks().size() == 1 && \"SMS works on single blocks only.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 419, __extension__
__PRETTY_FUNCTION__))
;
420
421 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
422 II_setByPragma);
423
424 MachineBasicBlock *MBB = L.getHeader();
425 // The kernel should not include any terminator instructions. These
426 // will be added back later.
427 SMS.startBlock(MBB);
428
429 // Compute the number of 'real' instructions in the basic block by
430 // ignoring terminators.
431 unsigned size = MBB->size();
432 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
433 E = MBB->instr_end();
434 I != E; ++I, --size)
435 ;
436
437 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
438 SMS.schedule();
439 SMS.exitRegion();
440
441 SMS.finishBlock();
442 return SMS.hasNewSchedule();
443}
444
445void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
446 AU.addRequired<AAResultsWrapperPass>();
447 AU.addPreserved<AAResultsWrapperPass>();
448 AU.addRequired<MachineLoopInfo>();
449 AU.addRequired<MachineDominatorTree>();
450 AU.addRequired<LiveIntervals>();
451 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
452 MachineFunctionPass::getAnalysisUsage(AU);
453}
454
455void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
456 if (II_setByPragma > 0)
457 MII = II_setByPragma;
458 else
459 MII = std::max(ResMII, RecMII);
460}
461
462void SwingSchedulerDAG::setMAX_II() {
463 if (II_setByPragma > 0)
464 MAX_II = II_setByPragma;
465 else
466 MAX_II = MII + 10;
467}
468
469/// We override the schedule function in ScheduleDAGInstrs to implement the
470/// scheduling part of the Swing Modulo Scheduling algorithm.
471void SwingSchedulerDAG::schedule() {
472 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
473 buildSchedGraph(AA);
474 addLoopCarriedDependences(AA);
475 updatePhiDependences();
476 Topo.InitDAGTopologicalSorting();
477 changeDependences();
478 postprocessDAG();
479 LLVM_DEBUG(dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dump(); } } while (false)
;
480
481 NodeSetType NodeSets;
482 findCircuits(NodeSets);
483 NodeSetType Circuits = NodeSets;
484
485 // Calculate the MII.
486 unsigned ResMII = calculateResMII();
487 unsigned RecMII = calculateRecMII(NodeSets);
488
489 fuseRecs(NodeSets);
490
491 // This flag is used for testing and can cause correctness problems.
492 if (SwpIgnoreRecMII)
493 RecMII = 0;
494
495 setMII(ResMII, RecMII);
496 setMAX_II();
497
498 LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_IIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "MII = " << MII <<
" MAX_II = " << MAX_II << " (rec=" << RecMII
<< ", res=" << ResMII << ")\n"; } } while (
false)
499 << " (rec=" << RecMII << ", res=" << ResMII << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "MII = " << MII <<
" MAX_II = " << MAX_II << " (rec=" << RecMII
<< ", res=" << ResMII << ")\n"; } } while (
false)
;
500
501 // Can't schedule a loop without a valid MII.
502 if (MII == 0) {
503 LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Invalid Minimal Initiation Interval: 0\n"
; } } while (false)
;
504 NumFailZeroMII++;
505 Pass.ORE->emit([&]() {
506 return MachineOptimizationRemarkAnalysis(
507 DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader())
508 << "Invalid Minimal Initiation Interval: 0";
509 });
510 return;
511 }
512
513 // Don't pipeline large loops.
514 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
515 LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMiido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "MII > " << SwpMaxMii
<< ", we don't pipleline large loops\n"; } } while (false
)
516 << ", we don't pipleline large loops\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "MII > " << SwpMaxMii
<< ", we don't pipleline large loops\n"; } } while (false
)
;
517 NumFailLargeMaxMII++;
518 Pass.ORE->emit([&]() {
519 return MachineOptimizationRemarkAnalysis(
520 DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader())
521 << "Minimal Initiation Interval too large: "
522 << ore::NV("MII", (int)MII) << " > "
523 << ore::NV("SwpMaxMii", SwpMaxMii) << "."
524 << "Refer to -pipeliner-max-mii.";
525 });
526 return;
527 }
528
529 computeNodeFunctions(NodeSets);
530
531 registerPressureFilter(NodeSets);
532
533 colocateNodeSets(NodeSets);
534
535 checkNodeSets(NodeSets);
536
537 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
538 for (auto &I : NodeSets) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
539 dbgs() << " Rec NodeSet ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
540 I.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
541 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
542 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
;
543
544 llvm::stable_sort(NodeSets, std::greater<NodeSet>());
545
546 groupRemainingNodes(NodeSets);
547
548 removeDuplicateNodes(NodeSets);
549
550 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
551 for (auto &I : NodeSets) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
552 dbgs() << " NodeSet ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
553 I.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
554 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
555 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
;
556
557 computeNodeOrder(NodeSets);
558
559 // check for node order issues
560 checkValidNodeOrder(Circuits);
561
562 SMSchedule Schedule(Pass.MF);
563 Scheduled = schedulePipeline(Schedule);
564
565 if (!Scheduled){
566 LLVM_DEBUG(dbgs() << "No schedule found, return\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "No schedule found, return\n"
; } } while (false)
;
567 NumFailNoSchedule++;
568 Pass.ORE->emit([&]() {
569 return MachineOptimizationRemarkAnalysis(
570 DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader())
571 << "Unable to find schedule";
572 });
573 return;
574 }
575
576 unsigned numStages = Schedule.getMaxStageCount();
577 // No need to generate pipeline if there are no overlapped iterations.
578 if (numStages == 0) {
579 LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "No overlapped iterations, skip.\n"
; } } while (false)
;
580 NumFailZeroStage++;
581 Pass.ORE->emit([&]() {
582 return MachineOptimizationRemarkAnalysis(
583 DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader())
584 << "No need to pipeline - no overlapped iterations in schedule.";
585 });
586 return;
587 }
588 // Check that the maximum stage count is less than user-defined limit.
589 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
590 LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStagesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "numStages:" << numStages
<< ">" << SwpMaxStages << " : too many stages, abort\n"
; } } while (false)
591 << " : too many stages, abort\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "numStages:" << numStages
<< ">" << SwpMaxStages << " : too many stages, abort\n"
; } } while (false)
;
592 NumFailLargeMaxStage++;
593 Pass.ORE->emit([&]() {
594 return MachineOptimizationRemarkAnalysis(
595 DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader())
596 << "Too many stages in schedule: "
597 << ore::NV("numStages", (int)numStages) << " > "
598 << ore::NV("SwpMaxStages", SwpMaxStages)
599 << ". Refer to -pipeliner-max-stages.";
600 });
601 return;
602 }
603
604 Pass.ORE->emit([&]() {
605 return MachineOptimizationRemark(DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(),
606 Loop.getHeader())
607 << "Pipelined succesfully!";
608 });
609
610 // Generate the schedule as a ModuloSchedule.
611 DenseMap<MachineInstr *, int> Cycles, Stages;
612 std::vector<MachineInstr *> OrderedInsts;
613 for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
614 ++Cycle) {
615 for (SUnit *SU : Schedule.getInstructions(Cycle)) {
616 OrderedInsts.push_back(SU->getInstr());
617 Cycles[SU->getInstr()] = Cycle;
618 Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
619 }
620 }
621 DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
622 for (auto &KV : NewMIs) {
623 Cycles[KV.first] = Cycles[KV.second];
624 Stages[KV.first] = Stages[KV.second];
625 NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
626 }
627
628 ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
629 std::move(Stages));
630 if (EmitTestAnnotations) {
631 assert(NewInstrChanges.empty() &&(static_cast <bool> (NewInstrChanges.empty() &&
"Cannot serialize a schedule with InstrChanges!") ? void (0)
: __assert_fail ("NewInstrChanges.empty() && \"Cannot serialize a schedule with InstrChanges!\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 632, __extension__
__PRETTY_FUNCTION__))
632 "Cannot serialize a schedule with InstrChanges!")(static_cast <bool> (NewInstrChanges.empty() &&
"Cannot serialize a schedule with InstrChanges!") ? void (0)
: __assert_fail ("NewInstrChanges.empty() && \"Cannot serialize a schedule with InstrChanges!\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 632, __extension__
__PRETTY_FUNCTION__))
;
633 ModuloScheduleTestAnnotater MSTI(MF, MS);
634 MSTI.annotate();
635 return;
636 }
637 // The experimental code generator can't work if there are InstChanges.
638 if (ExperimentalCodeGen && NewInstrChanges.empty()) {
639 PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
640 MSE.expand();
641 } else {
642 ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
643 MSE.expand();
644 MSE.cleanup();
645 }
646 ++NumPipelined;
647}
648
649/// Clean up after the software pipeliner runs.
650void SwingSchedulerDAG::finishBlock() {
651 for (auto &KV : NewMIs)
652 MF.deleteMachineInstr(KV.second);
653 NewMIs.clear();
654
655 // Call the superclass.
656 ScheduleDAGInstrs::finishBlock();
657}
658
659/// Return the register values for the operands of a Phi instruction.
660/// This function assume the instruction is a Phi.
661static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
662 unsigned &InitVal, unsigned &LoopVal) {
663 assert(Phi.isPHI() && "Expecting a Phi.")(static_cast <bool> (Phi.isPHI() && "Expecting a Phi."
) ? void (0) : __assert_fail ("Phi.isPHI() && \"Expecting a Phi.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 663, __extension__
__PRETTY_FUNCTION__))
;
664
665 InitVal = 0;
666 LoopVal = 0;
667 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
668 if (Phi.getOperand(i + 1).getMBB() != Loop)
669 InitVal = Phi.getOperand(i).getReg();
670 else
671 LoopVal = Phi.getOperand(i).getReg();
672
673 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.")(static_cast <bool> (InitVal != 0 && LoopVal !=
0 && "Unexpected Phi structure.") ? void (0) : __assert_fail
("InitVal != 0 && LoopVal != 0 && \"Unexpected Phi structure.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 673, __extension__
__PRETTY_FUNCTION__))
;
674}
675
676/// Return the Phi register value that comes the loop block.
677static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
678 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
679 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
680 return Phi.getOperand(i).getReg();
681 return 0;
682}
683
684/// Return true if SUb can be reached from SUa following the chain edges.
685static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
686 SmallPtrSet<SUnit *, 8> Visited;
687 SmallVector<SUnit *, 8> Worklist;
688 Worklist.push_back(SUa);
689 while (!Worklist.empty()) {
690 const SUnit *SU = Worklist.pop_back_val();
691 for (auto &SI : SU->Succs) {
692 SUnit *SuccSU = SI.getSUnit();
693 if (SI.getKind() == SDep::Order) {
694 if (Visited.count(SuccSU))
695 continue;
696 if (SuccSU == SUb)
697 return true;
698 Worklist.push_back(SuccSU);
699 Visited.insert(SuccSU);
700 }
701 }
702 }
703 return false;
704}
705
706/// Return true if the instruction causes a chain between memory
707/// references before and after it.
708static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
709 return MI.isCall() || MI.mayRaiseFPException() ||
710 MI.hasUnmodeledSideEffects() ||
711 (MI.hasOrderedMemoryRef() &&
712 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
713}
714
715/// Return the underlying objects for the memory references of an instruction.
716/// This function calls the code in ValueTracking, but first checks that the
717/// instruction has a memory operand.
718static void getUnderlyingObjects(const MachineInstr *MI,
719 SmallVectorImpl<const Value *> &Objs) {
720 if (!MI->hasOneMemOperand())
721 return;
722 MachineMemOperand *MM = *MI->memoperands_begin();
723 if (!MM->getValue())
724 return;
725 getUnderlyingObjects(MM->getValue(), Objs);
726 for (const Value *V : Objs) {
727 if (!isIdentifiedObject(V)) {
728 Objs.clear();
729 return;
730 }
731 Objs.push_back(V);
732 }
733}
734
735/// Add a chain edge between a load and store if the store can be an
736/// alias of the load on a subsequent iteration, i.e., a loop carried
737/// dependence. This code is very similar to the code in ScheduleDAGInstrs
738/// but that code doesn't create loop carried dependences.
739void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
740 MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
741 Value *UnknownValue =
742 UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
743 for (auto &SU : SUnits) {
744 MachineInstr &MI = *SU.getInstr();
745 if (isDependenceBarrier(MI, AA))
746 PendingLoads.clear();
747 else if (MI.mayLoad()) {
748 SmallVector<const Value *, 4> Objs;
749 ::getUnderlyingObjects(&MI, Objs);
750 if (Objs.empty())
751 Objs.push_back(UnknownValue);
752 for (auto V : Objs) {
753 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
754 SUs.push_back(&SU);
755 }
756 } else if (MI.mayStore()) {
757 SmallVector<const Value *, 4> Objs;
758 ::getUnderlyingObjects(&MI, Objs);
759 if (Objs.empty())
760 Objs.push_back(UnknownValue);
761 for (auto V : Objs) {
762 MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
763 PendingLoads.find(V);
764 if (I == PendingLoads.end())
765 continue;
766 for (auto Load : I->second) {
767 if (isSuccOrder(Load, &SU))
768 continue;
769 MachineInstr &LdMI = *Load->getInstr();
770 // First, perform the cheaper check that compares the base register.
771 // If they are the same and the load offset is less than the store
772 // offset, then mark the dependence as loop carried potentially.
773 const MachineOperand *BaseOp1, *BaseOp2;
774 int64_t Offset1, Offset2;
775 bool Offset1IsScalable, Offset2IsScalable;
776 if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
777 Offset1IsScalable, TRI) &&
778 TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
779 Offset2IsScalable, TRI)) {
780 if (BaseOp1->isIdenticalTo(*BaseOp2) &&
781 Offset1IsScalable == Offset2IsScalable &&
782 (int)Offset1 < (int)Offset2) {
783 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&(static_cast <bool> (TII->areMemAccessesTriviallyDisjoint
(LdMI, MI) && "What happened to the chain edge?") ? void
(0) : __assert_fail ("TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && \"What happened to the chain edge?\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 784, __extension__
__PRETTY_FUNCTION__))
784 "What happened to the chain edge?")(static_cast <bool> (TII->areMemAccessesTriviallyDisjoint
(LdMI, MI) && "What happened to the chain edge?") ? void
(0) : __assert_fail ("TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && \"What happened to the chain edge?\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 784, __extension__
__PRETTY_FUNCTION__))
;
785 SDep Dep(Load, SDep::Barrier);
786 Dep.setLatency(1);
787 SU.addPred(Dep);
788 continue;
789 }
790 }
791 // Second, the more expensive check that uses alias analysis on the
792 // base registers. If they alias, and the load offset is less than
793 // the store offset, the mark the dependence as loop carried.
794 if (!AA) {
795 SDep Dep(Load, SDep::Barrier);
796 Dep.setLatency(1);
797 SU.addPred(Dep);
798 continue;
799 }
800 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
801 MachineMemOperand *MMO2 = *MI.memoperands_begin();
802 if (!MMO1->getValue() || !MMO2->getValue()) {
803 SDep Dep(Load, SDep::Barrier);
804 Dep.setLatency(1);
805 SU.addPred(Dep);
806 continue;
807 }
808 if (MMO1->getValue() == MMO2->getValue() &&
809 MMO1->getOffset() <= MMO2->getOffset()) {
810 SDep Dep(Load, SDep::Barrier);
811 Dep.setLatency(1);
812 SU.addPred(Dep);
813 continue;
814 }
815 if (!AA->isNoAlias(
816 MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
817 MemoryLocation::getAfter(MMO2->getValue(),
818 MMO2->getAAInfo()))) {
819 SDep Dep(Load, SDep::Barrier);
820 Dep.setLatency(1);
821 SU.addPred(Dep);
822 }
823 }
824 }
825 }
826 }
827}
828
829/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
830/// processes dependences for PHIs. This function adds true dependences
831/// from a PHI to a use, and a loop carried dependence from the use to the
832/// PHI. The loop carried dependence is represented as an anti dependence
833/// edge. This function also removes chain dependences between unrelated
834/// PHIs.
835void SwingSchedulerDAG::updatePhiDependences() {
836 SmallVector<SDep, 4> RemoveDeps;
837 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
838
839 // Iterate over each DAG node.
840 for (SUnit &I : SUnits) {
841 RemoveDeps.clear();
842 // Set to true if the instruction has an operand defined by a Phi.
843 unsigned HasPhiUse = 0;
844 unsigned HasPhiDef = 0;
845 MachineInstr *MI = I.getInstr();
846 // Iterate over each operand, and we process the definitions.
847 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
848 MOE = MI->operands_end();
849 MOI != MOE; ++MOI) {
850 if (!MOI->isReg())
851 continue;
852 Register Reg = MOI->getReg();
853 if (MOI->isDef()) {
854 // If the register is used by a Phi, then create an anti dependence.
855 for (MachineRegisterInfo::use_instr_iterator
856 UI = MRI.use_instr_begin(Reg),
857 UE = MRI.use_instr_end();
858 UI != UE; ++UI) {
859 MachineInstr *UseMI = &*UI;
860 SUnit *SU = getSUnit(UseMI);
861 if (SU != nullptr && UseMI->isPHI()) {
862 if (!MI->isPHI()) {
863 SDep Dep(SU, SDep::Anti, Reg);
864 Dep.setLatency(1);
865 I.addPred(Dep);
866 } else {
867 HasPhiDef = Reg;
868 // Add a chain edge to a dependent Phi that isn't an existing
869 // predecessor.
870 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
871 I.addPred(SDep(SU, SDep::Barrier));
872 }
873 }
874 }
875 } else if (MOI->isUse()) {
876 // If the register is defined by a Phi, then create a true dependence.
877 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
878 if (DefMI == nullptr)
879 continue;
880 SUnit *SU = getSUnit(DefMI);
881 if (SU != nullptr && DefMI->isPHI()) {
882 if (!MI->isPHI()) {
883 SDep Dep(SU, SDep::Data, Reg);
884 Dep.setLatency(0);
885 ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
886 I.addPred(Dep);
887 } else {
888 HasPhiUse = Reg;
889 // Add a chain edge to a dependent Phi that isn't an existing
890 // predecessor.
891 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
892 I.addPred(SDep(SU, SDep::Barrier));
893 }
894 }
895 }
896 }
897 // Remove order dependences from an unrelated Phi.
898 if (!SwpPruneDeps)
899 continue;
900 for (auto &PI : I.Preds) {
901 MachineInstr *PMI = PI.getSUnit()->getInstr();
902 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
903 if (I.getInstr()->isPHI()) {
904 if (PMI->getOperand(0).getReg() == HasPhiUse)
905 continue;
906 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
907 continue;
908 }
909 RemoveDeps.push_back(PI);
910 }
911 }
912 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
913 I.removePred(RemoveDeps[i]);
914 }
915}
916
917/// Iterate over each DAG node and see if we can change any dependences
918/// in order to reduce the recurrence MII.
919void SwingSchedulerDAG::changeDependences() {
920 // See if an instruction can use a value from the previous iteration.
921 // If so, we update the base and offset of the instruction and change
922 // the dependences.
923 for (SUnit &I : SUnits) {
924 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
925 int64_t NewOffset = 0;
926 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
927 NewOffset))
928 continue;
929
930 // Get the MI and SUnit for the instruction that defines the original base.
931 Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
932 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
933 if (!DefMI)
934 continue;
935 SUnit *DefSU = getSUnit(DefMI);
936 if (!DefSU)
937 continue;
938 // Get the MI and SUnit for the instruction that defins the new base.
939 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
940 if (!LastMI)
941 continue;
942 SUnit *LastSU = getSUnit(LastMI);
943 if (!LastSU)
944 continue;
945
946 if (Topo.IsReachable(&I, LastSU))
947 continue;
948
949 // Remove the dependence. The value now depends on a prior iteration.
950 SmallVector<SDep, 4> Deps;
951 for (const SDep &P : I.Preds)
952 if (P.getSUnit() == DefSU)
953 Deps.push_back(P);
954 for (int i = 0, e = Deps.size(); i != e; i++) {
955 Topo.RemovePred(&I, Deps[i].getSUnit());
956 I.removePred(Deps[i]);
957 }
958 // Remove the chain dependence between the instructions.
959 Deps.clear();
960 for (auto &P : LastSU->Preds)
961 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
962 Deps.push_back(P);
963 for (int i = 0, e = Deps.size(); i != e; i++) {
964 Topo.RemovePred(LastSU, Deps[i].getSUnit());
965 LastSU->removePred(Deps[i]);
966 }
967
968 // Add a dependence between the new instruction and the instruction
969 // that defines the new base.
970 SDep Dep(&I, SDep::Anti, NewBase);
971 Topo.AddPred(LastSU, &I);
972 LastSU->addPred(Dep);
973
974 // Remember the base and offset information so that we can update the
975 // instruction during code generation.
976 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
977 }
978}
979
980namespace {
981
982// FuncUnitSorter - Comparison operator used to sort instructions by
983// the number of functional unit choices.
984struct FuncUnitSorter {
985 const InstrItineraryData *InstrItins;
986 const MCSubtargetInfo *STI;
987 DenseMap<InstrStage::FuncUnits, unsigned> Resources;
988
989 FuncUnitSorter(const TargetSubtargetInfo &TSI)
990 : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
991
992 // Compute the number of functional unit alternatives needed
993 // at each stage, and take the minimum value. We prioritize the
994 // instructions by the least number of choices first.
995 unsigned minFuncUnits(const MachineInstr *Inst,
996 InstrStage::FuncUnits &F) const {
997 unsigned SchedClass = Inst->getDesc().getSchedClass();
998 unsigned min = UINT_MAX(2147483647 *2U +1U);
999 if (InstrItins && !InstrItins->isEmpty()) {
1000 for (const InstrStage &IS :
1001 make_range(InstrItins->beginStage(SchedClass),
1002 InstrItins->endStage(SchedClass))) {
1003 InstrStage::FuncUnits funcUnits = IS.getUnits();
1004 unsigned numAlternatives = countPopulation(funcUnits);
1005 if (numAlternatives < min) {
1006 min = numAlternatives;
1007 F = funcUnits;
1008 }
1009 }
1010 return min;
1011 }
1012 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1013 const MCSchedClassDesc *SCDesc =
1014 STI->getSchedModel().getSchedClassDesc(SchedClass);
1015 if (!SCDesc->isValid())
1016 // No valid Schedule Class Desc for schedClass, should be
1017 // Pseudo/PostRAPseudo
1018 return min;
1019
1020 for (const MCWriteProcResEntry &PRE :
1021 make_range(STI->getWriteProcResBegin(SCDesc),
1022 STI->getWriteProcResEnd(SCDesc))) {
1023 if (!PRE.Cycles)
1024 continue;
1025 const MCProcResourceDesc *ProcResource =
1026 STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
1027 unsigned NumUnits = ProcResource->NumUnits;
1028 if (NumUnits < min) {
1029 min = NumUnits;
1030 F = PRE.ProcResourceIdx;
1031 }
1032 }
1033 return min;
1034 }
1035 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!")::llvm::llvm_unreachable_internal("Should have non-empty InstrItins or hasInstrSchedModel!"
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 1035)
;
1036 }
1037
1038 // Compute the critical resources needed by the instruction. This
1039 // function records the functional units needed by instructions that
1040 // must use only one functional unit. We use this as a tie breaker
1041 // for computing the resource MII. The instrutions that require
1042 // the same, highly used, functional unit have high priority.
1043 void calcCriticalResources(MachineInstr &MI) {
1044 unsigned SchedClass = MI.getDesc().getSchedClass();
1045 if (InstrItins && !InstrItins->isEmpty()) {
1046 for (const InstrStage &IS :
1047 make_range(InstrItins->beginStage(SchedClass),
1048 InstrItins->endStage(SchedClass))) {
1049 InstrStage::FuncUnits FuncUnits = IS.getUnits();
1050 if (countPopulation(FuncUnits) == 1)
1051 Resources[FuncUnits]++;
1052 }
1053 return;
1054 }
1055 if (STI && STI->getSchedModel().hasInstrSchedModel()) {
1056 const MCSchedClassDesc *SCDesc =
1057 STI->getSchedModel().getSchedClassDesc(SchedClass);
1058 if (!SCDesc->isValid())
1059 // No valid Schedule Class Desc for schedClass, should be
1060 // Pseudo/PostRAPseudo
1061 return;
1062
1063 for (const MCWriteProcResEntry &PRE :
1064 make_range(STI->getWriteProcResBegin(SCDesc),
1065 STI->getWriteProcResEnd(SCDesc))) {
1066 if (!PRE.Cycles)
1067 continue;
1068 Resources[PRE.ProcResourceIdx]++;
1069 }
1070 return;
1071 }
1072 llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!")::llvm::llvm_unreachable_internal("Should have non-empty InstrItins or hasInstrSchedModel!"
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 1072)
;
1073 }
1074
1075 /// Return true if IS1 has less priority than IS2.
1076 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1077 InstrStage::FuncUnits F1 = 0, F2 = 0;
1078 unsigned MFUs1 = minFuncUnits(IS1, F1);
1079 unsigned MFUs2 = minFuncUnits(IS2, F2);
1080 if (MFUs1 == MFUs2)
1081 return Resources.lookup(F1) < Resources.lookup(F2);
1082 return MFUs1 > MFUs2;
1083 }
1084};
1085
1086} // end anonymous namespace
1087
1088/// Calculate the resource constrained minimum initiation interval for the
1089/// specified loop. We use the DFA to model the resources needed for
1090/// each instruction, and we ignore dependences. A different DFA is created
1091/// for each cycle that is required. When adding a new instruction, we attempt
1092/// to add it to each existing DFA, until a legal space is found. If the
1093/// instruction cannot be reserved in an existing DFA, we create a new one.
1094unsigned SwingSchedulerDAG::calculateResMII() {
1095
1096 LLVM_DEBUG(dbgs() << "calculateResMII:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "calculateResMII:\n"; } } while
(false)
;
1097 SmallVector<ResourceManager*, 8> Resources;
1098 MachineBasicBlock *MBB = Loop.getHeader();
1099 Resources.push_back(new ResourceManager(&MF.getSubtarget()));
1100
1101 // Sort the instructions by the number of available choices for scheduling,
1102 // least to most. Use the number of critical resources as the tie breaker.
1103 FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
1104 for (MachineInstr &MI :
1105 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator()))
1106 FUS.calcCriticalResources(MI);
1107 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1108 FuncUnitOrder(FUS);
1109
1110 for (MachineInstr &MI :
1111 llvm::make_range(MBB->getFirstNonPHI(), MBB->getFirstTerminator()))
1112 FuncUnitOrder.push(&MI);
1113
1114 while (!FuncUnitOrder.empty()) {
1115 MachineInstr *MI = FuncUnitOrder.top();
1116 FuncUnitOrder.pop();
1117 if (TII->isZeroCost(MI->getOpcode()))
1118 continue;
1119 // Attempt to reserve the instruction in an existing DFA. At least one
1120 // DFA is needed for each cycle.
1121 unsigned NumCycles = getSUnit(MI)->Latency;
1122 unsigned ReservedCycles = 0;
1123 SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
1124 SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
1125 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to reserve resource for "
<< NumCycles << " cycles for \n"; MI->dump();
}; } } while (false)
1126 dbgs() << "Trying to reserve resource for " << NumCyclesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to reserve resource for "
<< NumCycles << " cycles for \n"; MI->dump();
}; } } while (false)
1127 << " cycles for \n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to reserve resource for "
<< NumCycles << " cycles for \n"; MI->dump();
}; } } while (false)
1128 MI->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to reserve resource for "
<< NumCycles << " cycles for \n"; MI->dump();
}; } } while (false)
1129 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to reserve resource for "
<< NumCycles << " cycles for \n"; MI->dump();
}; } } while (false)
;
1130 for (unsigned C = 0; C < NumCycles; ++C)
1131 while (RI != RE) {
1132 if ((*RI)->canReserveResources(*MI)) {
1133 (*RI)->reserveResources(*MI);
1134 ++ReservedCycles;
1135 break;
1136 }
1137 RI++;
1138 }
1139 LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCyclesdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "ReservedCycles:" << ReservedCycles
<< ", NumCycles:" << NumCycles << "\n"; } }
while (false)
1140 << ", NumCycles:" << NumCycles << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "ReservedCycles:" << ReservedCycles
<< ", NumCycles:" << NumCycles << "\n"; } }
while (false)
;
1141 // Add new DFAs, if needed, to reserve resources.
1142 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1143 LLVM_DEBUG(if (SwpDebugResource) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { if (SwpDebugResource) dbgs() << "NewResource created to reserve resources"
<< "\n"; } } while (false)
1144 << "NewResource created to reserve resources"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { if (SwpDebugResource) dbgs() << "NewResource created to reserve resources"
<< "\n"; } } while (false)
1145 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { if (SwpDebugResource) dbgs() << "NewResource created to reserve resources"
<< "\n"; } } while (false)
;
1146 ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
1147 assert(NewResource->canReserveResources(*MI) && "Reserve error.")(static_cast <bool> (NewResource->canReserveResources
(*MI) && "Reserve error.") ? void (0) : __assert_fail
("NewResource->canReserveResources(*MI) && \"Reserve error.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 1147, __extension__
__PRETTY_FUNCTION__))
;
1148 NewResource->reserveResources(*MI);
1149 Resources.push_back(NewResource);
1150 }
1151 }
1152 int Resmii = Resources.size();
1153 LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Return Res MII:" << Resmii
<< "\n"; } } while (false)
;
1154 // Delete the memory for each of the DFAs that were created earlier.
1155 for (ResourceManager *RI : Resources) {
1156 ResourceManager *D = RI;
1157 delete D;
1158 }
1159 Resources.clear();
1160 return Resmii;
1161}
1162
1163/// Calculate the recurrence-constrainted minimum initiation interval.
1164/// Iterate over each circuit. Compute the delay(c) and distance(c)
1165/// for each circuit. The II needs to satisfy the inequality
1166/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1167/// II that satisfies the inequality, and the RecMII is the maximum
1168/// of those values.
1169unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1170 unsigned RecMII = 0;
1171
1172 for (NodeSet &Nodes : NodeSets) {
1173 if (Nodes.empty())
1174 continue;
1175
1176 unsigned Delay = Nodes.getLatency();
1177 unsigned Distance = 1;
1178
1179 // ii = ceil(delay / distance)
1180 unsigned CurMII = (Delay + Distance - 1) / Distance;
1181 Nodes.setRecMII(CurMII);
1182 if (CurMII > RecMII)
1183 RecMII = CurMII;
1184 }
1185
1186 return RecMII;
1187}
1188
1189/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1190/// but we do this to find the circuits, and then change them back.
1191static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1192 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1193 for (SUnit &SU : SUnits) {
1194 for (SDep &Pred : SU.Preds)
1195 if (Pred.getKind() == SDep::Anti)
1196 DepsAdded.push_back(std::make_pair(&SU, Pred));
1197 }
1198 for (std::pair<SUnit *, SDep> &P : DepsAdded) {
1199 // Remove this anti dependency and add one in the reverse direction.
1200 SUnit *SU = P.first;
1201 SDep &D = P.second;
1202 SUnit *TargetSU = D.getSUnit();
1203 unsigned Reg = D.getReg();
1204 unsigned Lat = D.getLatency();
1205 SU->removePred(D);
1206 SDep Dep(SU, SDep::Anti, Reg);
1207 Dep.setLatency(Lat);
1208 TargetSU->addPred(Dep);
1209 }
1210}
1211
1212/// Create the adjacency structure of the nodes in the graph.
1213void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1214 SwingSchedulerDAG *DAG) {
1215 BitVector Added(SUnits.size());
1216 DenseMap<int, int> OutputDeps;
1217 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1218 Added.reset();
1219 // Add any successor to the adjacency matrix and exclude duplicates.
1220 for (auto &SI : SUnits[i].Succs) {
1221 // Only create a back-edge on the first and last nodes of a dependence
1222 // chain. This records any chains and adds them later.
1223 if (SI.getKind() == SDep::Output) {
1224 int N = SI.getSUnit()->NodeNum;
1225 int BackEdge = i;
1226 auto Dep = OutputDeps.find(BackEdge);
1227 if (Dep != OutputDeps.end()) {
1228 BackEdge = Dep->second;
1229 OutputDeps.erase(Dep);
1230 }
1231 OutputDeps[N] = BackEdge;
1232 }
1233 // Do not process a boundary node, an artificial node.
1234 // A back-edge is processed only if it goes to a Phi.
1235 if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
1236 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1237 continue;
1238 int N = SI.getSUnit()->NodeNum;
1239 if (!Added.test(N)) {
1240 AdjK[i].push_back(N);
1241 Added.set(N);
1242 }
1243 }
1244 // A chain edge between a store and a load is treated as a back-edge in the
1245 // adjacency matrix.
1246 for (auto &PI : SUnits[i].Preds) {
1247 if (!SUnits[i].getInstr()->mayStore() ||
1248 !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
1249 continue;
1250 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1251 int N = PI.getSUnit()->NodeNum;
1252 if (!Added.test(N)) {
1253 AdjK[i].push_back(N);
1254 Added.set(N);
1255 }
1256 }
1257 }
1258 }
1259 // Add back-edges in the adjacency matrix for the output dependences.
1260 for (auto &OD : OutputDeps)
1261 if (!Added.test(OD.second)) {
1262 AdjK[OD.first].push_back(OD.second);
1263 Added.set(OD.second);
1264 }
1265}
1266
1267/// Identify an elementary circuit in the dependence graph starting at the
1268/// specified node.
1269bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1270 bool HasBackedge) {
1271 SUnit *SV = &SUnits[V];
1272 bool F = false;
1273 Stack.insert(SV);
1274 Blocked.set(V);
1275
1276 for (auto W : AdjK[V]) {
1277 if (NumPaths > MaxPaths)
1278 break;
1279 if (W < S)
1280 continue;
1281 if (W == S) {
1282 if (!HasBackedge)
1283 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1284 F = true;
1285 ++NumPaths;
1286 break;
1287 } else if (!Blocked.test(W)) {
1288 if (circuit(W, S, NodeSets,
1289 Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
1290 F = true;
1291 }
1292 }
1293
1294 if (F)
1295 unblock(V);
1296 else {
1297 for (auto W : AdjK[V]) {
1298 if (W < S)
1299 continue;
1300 if (B[W].count(SV) == 0)
1301 B[W].insert(SV);
1302 }
1303 }
1304 Stack.pop_back();
1305 return F;
1306}
1307
1308/// Unblock a node in the circuit finding algorithm.
1309void SwingSchedulerDAG::Circuits::unblock(int U) {
1310 Blocked.reset(U);
1311 SmallPtrSet<SUnit *, 4> &BU = B[U];
1312 while (!BU.empty()) {
1313 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1314 assert(SI != BU.end() && "Invalid B set.")(static_cast <bool> (SI != BU.end() && "Invalid B set."
) ? void (0) : __assert_fail ("SI != BU.end() && \"Invalid B set.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 1314, __extension__
__PRETTY_FUNCTION__))
;
1315 SUnit *W = *SI;
1316 BU.erase(W);
1317 if (Blocked.test(W->NodeNum))
1318 unblock(W->NodeNum);
1319 }
1320}
1321
1322/// Identify all the elementary circuits in the dependence graph using
1323/// Johnson's circuit algorithm.
1324void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1325 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1326 // but we do this to find the circuits, and then change them back.
1327 swapAntiDependences(SUnits);
1328
1329 Circuits Cir(SUnits, Topo);
1330 // Create the adjacency structure.
1331 Cir.createAdjacencyStructure(this);
1332 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1333 Cir.reset();
1334 Cir.circuit(i, i, NodeSets);
1335 }
1336
1337 // Change the dependences back so that we've created a DAG again.
1338 swapAntiDependences(SUnits);
1339}
1340
1341// Create artificial dependencies between the source of COPY/REG_SEQUENCE that
1342// is loop-carried to the USE in next iteration. This will help pipeliner avoid
1343// additional copies that are needed across iterations. An artificial dependence
1344// edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
1345
1346// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
1347// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
1348// PHI-------True-Dep------> USEOfPhi
1349
1350// The mutation creates
1351// USEOfPHI -------Artificial-Dep---> SRCOfCopy
1352
1353// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
1354// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
1355// late to avoid additional copies across iterations. The possible scheduling
1356// order would be
1357// USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
1358
1359void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
1360 for (SUnit &SU : DAG->SUnits) {
1361 // Find the COPY/REG_SEQUENCE instruction.
1362 if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
1363 continue;
1364
1365 // Record the loop carried PHIs.
1366 SmallVector<SUnit *, 4> PHISUs;
1367 // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
1368 SmallVector<SUnit *, 4> SrcSUs;
1369
1370 for (auto &Dep : SU.Preds) {
1371 SUnit *TmpSU = Dep.getSUnit();
1372 MachineInstr *TmpMI = TmpSU->getInstr();
1373 SDep::Kind DepKind = Dep.getKind();
1374 // Save the loop carried PHI.
1375 if (DepKind == SDep::Anti && TmpMI->isPHI())
1376 PHISUs.push_back(TmpSU);
1377 // Save the source of COPY/REG_SEQUENCE.
1378 // If the source has no pre-decessors, we will end up creating cycles.
1379 else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
1380 SrcSUs.push_back(TmpSU);
1381 }
1382
1383 if (PHISUs.size() == 0 || SrcSUs.size() == 0)
1384 continue;
1385
1386 // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
1387 // SUnit to the container.
1388 SmallVector<SUnit *, 8> UseSUs;
1389 // Do not use iterator based loop here as we are updating the container.
1390 for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1391 for (auto &Dep : PHISUs[Index]->Succs) {
1392 if (Dep.getKind() != SDep::Data)
1393 continue;
1394
1395 SUnit *TmpSU = Dep.getSUnit();
1396 MachineInstr *TmpMI = TmpSU->getInstr();
1397 if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
1398 PHISUs.push_back(TmpSU);
1399 continue;
1400 }
1401 UseSUs.push_back(TmpSU);
1402 }
1403 }
1404
1405 if (UseSUs.size() == 0)
1406 continue;
1407
1408 SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
1409 // Add the artificial dependencies if it does not form a cycle.
1410 for (auto I : UseSUs) {
1411 for (auto Src : SrcSUs) {
1412 if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
1413 Src->addPred(SDep(I, SDep::Artificial));
1414 SDAG->Topo.AddPred(Src, I);
1415 }
1416 }
1417 }
1418 }
1419}
1420
1421/// Return true for DAG nodes that we ignore when computing the cost functions.
1422/// We ignore the back-edge recurrence in order to avoid unbounded recursion
1423/// in the calculation of the ASAP, ALAP, etc functions.
1424static bool ignoreDependence(const SDep &D, bool isPred) {
1425 if (D.isArtificial())
1426 return true;
1427 return D.getKind() == SDep::Anti && isPred;
1428}
1429
1430/// Compute several functions need to order the nodes for scheduling.
1431/// ASAP - Earliest time to schedule a node.
1432/// ALAP - Latest time to schedule a node.
1433/// MOV - Mobility function, difference between ALAP and ASAP.
1434/// D - Depth of each node.
1435/// H - Height of each node.
1436void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1437 ScheduleInfo.resize(SUnits.size());
1438
1439 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (int I : Topo) { const SUnit &SU =
SUnits[I]; dumpNode(SU); } }; } } while (false)
1440 for (int I : Topo) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (int I : Topo) { const SUnit &SU =
SUnits[I]; dumpNode(SU); } }; } } while (false)
1441 const SUnit &SU = SUnits[I];do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (int I : Topo) { const SUnit &SU =
SUnits[I]; dumpNode(SU); } }; } } while (false)
1442 dumpNode(SU);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (int I : Topo) { const SUnit &SU =
SUnits[I]; dumpNode(SU); } }; } } while (false)
1443 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (int I : Topo) { const SUnit &SU =
SUnits[I]; dumpNode(SU); } }; } } while (false)
1444 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (int I : Topo) { const SUnit &SU =
SUnits[I]; dumpNode(SU); } }; } } while (false)
;
1445
1446 int maxASAP = 0;
1447 // Compute ASAP and ZeroLatencyDepth.
1448 for (int I : Topo) {
1449 int asap = 0;
1450 int zeroLatencyDepth = 0;
1451 SUnit *SU = &SUnits[I];
1452 for (const SDep &P : SU->Preds) {
1453 SUnit *pred = P.getSUnit();
1454 if (P.getLatency() == 0)
1455 zeroLatencyDepth =
1456 std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
1457 if (ignoreDependence(P, true))
1458 continue;
1459 asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() -
1460 getDistance(pred, SU, P) * MII));
1461 }
1462 maxASAP = std::max(maxASAP, asap);
1463 ScheduleInfo[I].ASAP = asap;
1464 ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
1465 }
1466
1467 // Compute ALAP, ZeroLatencyHeight, and MOV.
1468 for (int I : llvm::reverse(Topo)) {
1469 int alap = maxASAP;
1470 int zeroLatencyHeight = 0;
1471 SUnit *SU = &SUnits[I];
1472 for (const SDep &S : SU->Succs) {
1473 SUnit *succ = S.getSUnit();
1474 if (S.getLatency() == 0)
1475 zeroLatencyHeight =
1476 std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
1477 if (ignoreDependence(S, true))
1478 continue;
1479 alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() +
1480 getDistance(SU, succ, S) * MII));
1481 }
1482
1483 ScheduleInfo[I].ALAP = alap;
1484 ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight;
1485 }
1486
1487 // After computing the node functions, compute the summary for each node set.
1488 for (NodeSet &I : NodeSets)
1489 I.computeNodeSetInfo(this);
1490
1491 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1492 for (unsigned i = 0; i < SUnits.size(); i++) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1493 dbgs() << "\tNode " << i << ":\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1494 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1495 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1496 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1497 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1498 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1499 dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1500 dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1501 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
1502 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; dbgs() << "\t ZLD = " << getZeroLatencyDepth
(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = "
<< getZeroLatencyHeight(&SUnits[i]) << "\n";
} }; } } while (false)
;
1503}
1504
1505/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1506/// as the predecessors of the elements of NodeOrder that are not also in
1507/// NodeOrder.
1508static bool pred_L(SetVector<SUnit *> &NodeOrder,
1509 SmallSetVector<SUnit *, 8> &Preds,
1510 const NodeSet *S = nullptr) {
1511 Preds.clear();
1512 for (const SUnit *SU : NodeOrder) {
1513 for (const SDep &Pred : SU->Preds) {
1514 if (S && S->count(Pred.getSUnit()) == 0)
1515 continue;
1516 if (ignoreDependence(Pred, true))
1517 continue;
1518 if (NodeOrder.count(Pred.getSUnit()) == 0)
1519 Preds.insert(Pred.getSUnit());
1520 }
1521 // Back-edges are predecessors with an anti-dependence.
1522 for (const SDep &Succ : SU->Succs) {
1523 if (Succ.getKind() != SDep::Anti)
1524 continue;
1525 if (S && S->count(Succ.getSUnit()) == 0)
1526 continue;
1527 if (NodeOrder.count(Succ.getSUnit()) == 0)
1528 Preds.insert(Succ.getSUnit());
1529 }
1530 }
1531 return !Preds.empty();
1532}
1533
1534/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1535/// as the successors of the elements of NodeOrder that are not also in
1536/// NodeOrder.
1537static bool succ_L(SetVector<SUnit *> &NodeOrder,
1538 SmallSetVector<SUnit *, 8> &Succs,
1539 const NodeSet *S = nullptr) {
1540 Succs.clear();
1541 for (const SUnit *SU : NodeOrder) {
1542 for (const SDep &Succ : SU->Succs) {
1543 if (S && S->count(Succ.getSUnit()) == 0)
1544 continue;
1545 if (ignoreDependence(Succ, false))
1546 continue;
1547 if (NodeOrder.count(Succ.getSUnit()) == 0)
1548 Succs.insert(Succ.getSUnit());
1549 }
1550 for (const SDep &Pred : SU->Preds) {
1551 if (Pred.getKind() != SDep::Anti)
1552 continue;
1553 if (S && S->count(Pred.getSUnit()) == 0)
1554 continue;
1555 if (NodeOrder.count(Pred.getSUnit()) == 0)
1556 Succs.insert(Pred.getSUnit());
1557 }
1558 }
1559 return !Succs.empty();
1560}
1561
1562/// Return true if there is a path from the specified node to any of the nodes
1563/// in DestNodes. Keep track and return the nodes in any path.
1564static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1565 SetVector<SUnit *> &DestNodes,
1566 SetVector<SUnit *> &Exclude,
1567 SmallPtrSet<SUnit *, 8> &Visited) {
1568 if (Cur->isBoundaryNode())
1569 return false;
1570 if (Exclude.contains(Cur))
1571 return false;
1572 if (DestNodes.contains(Cur))
1573 return true;
1574 if (!Visited.insert(Cur).second)
1575 return Path.contains(Cur);
1576 bool FoundPath = false;
1577 for (auto &SI : Cur->Succs)
1578 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1579 for (auto &PI : Cur->Preds)
1580 if (PI.getKind() == SDep::Anti)
1581 FoundPath |=
1582 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1583 if (FoundPath)
1584 Path.insert(Cur);
1585 return FoundPath;
1586}
1587
1588/// Compute the live-out registers for the instructions in a node-set.
1589/// The live-out registers are those that are defined in the node-set,
1590/// but not used. Except for use operands of Phis.
1591static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1592 NodeSet &NS) {
1593 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1594 MachineRegisterInfo &MRI = MF.getRegInfo();
1595 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1596 SmallSet<unsigned, 4> Uses;
1597 for (SUnit *SU : NS) {
1598 const MachineInstr *MI = SU->getInstr();
1599 if (MI->isPHI())
1600 continue;
1601 for (const MachineOperand &MO : MI->operands())
1602 if (MO.isReg() && MO.isUse()) {
1603 Register Reg = MO.getReg();
1604 if (Register::isVirtualRegister(Reg))
1605 Uses.insert(Reg);
1606 else if (MRI.isAllocatable(Reg))
1607 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1608 ++Units)
1609 Uses.insert(*Units);
1610 }
1611 }
1612 for (SUnit *SU : NS)
1613 for (const MachineOperand &MO : SU->getInstr()->operands())
1614 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1615 Register Reg = MO.getReg();
1616 if (Register::isVirtualRegister(Reg)) {
1617 if (!Uses.count(Reg))
1618 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1619 LaneBitmask::getNone()));
1620 } else if (MRI.isAllocatable(Reg)) {
1621 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1622 ++Units)
1623 if (!Uses.count(*Units))
1624 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1625 LaneBitmask::getNone()));
1626 }
1627 }
1628 RPTracker.addLiveRegs(LiveOutRegs);
1629}
1630
1631/// A heuristic to filter nodes in recurrent node-sets if the register
1632/// pressure of a set is too high.
1633void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1634 for (auto &NS : NodeSets) {
1635 // Skip small node-sets since they won't cause register pressure problems.
1636 if (NS.size() <= 2)
1637 continue;
1638 IntervalPressure RecRegPressure;
1639 RegPressureTracker RecRPTracker(RecRegPressure);
1640 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1641 computeLiveOuts(MF, RecRPTracker, NS);
1642 RecRPTracker.closeBottom();
1643
1644 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1645 llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
1646 return A->NodeNum > B->NodeNum;
1647 });
1648
1649 for (auto &SU : SUnits) {
1650 // Since we're computing the register pressure for a subset of the
1651 // instructions in a block, we need to set the tracker for each
1652 // instruction in the node-set. The tracker is set to the instruction
1653 // just after the one we're interested in.
1654 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1655 RecRPTracker.setPos(std::next(CurInstI));
1656
1657 RegPressureDelta RPDelta;
1658 ArrayRef<PressureChange> CriticalPSets;
1659 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1660 CriticalPSets,
1661 RecRegPressure.MaxSetPressure);
1662 if (RPDelta.Excess.isValid()) {
1663 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Excess register pressure: SU("
<< SU->NodeNum << ") " << TRI->getRegPressureSetName
(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess
.getUnitInc(); } } while (false)
1664 dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Excess register pressure: SU("
<< SU->NodeNum << ") " << TRI->getRegPressureSetName
(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess
.getUnitInc(); } } while (false)
1665 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Excess register pressure: SU("
<< SU->NodeNum << ") " << TRI->getRegPressureSetName
(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess
.getUnitInc(); } } while (false)
1666 << ":" << RPDelta.Excess.getUnitInc())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Excess register pressure: SU("
<< SU->NodeNum << ") " << TRI->getRegPressureSetName
(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess
.getUnitInc(); } } while (false)
;
1667 NS.setExceedPressure(SU);
1668 break;
1669 }
1670 RecRPTracker.recede();
1671 }
1672 }
1673}
1674
1675/// A heuristic to colocate node sets that have the same set of
1676/// successors.
1677void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1678 unsigned Colocate = 0;
1679 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1680 NodeSet &N1 = NodeSets[i];
1681 SmallSetVector<SUnit *, 8> S1;
1682 if (N1.empty() || !succ_L(N1, S1))
1683 continue;
1684 for (int j = i + 1; j < e; ++j) {
1685 NodeSet &N2 = NodeSets[j];
1686 if (N1.compareRecMII(N2) != 0)
1687 continue;
1688 SmallSetVector<SUnit *, 8> S2;
1689 if (N2.empty() || !succ_L(N2, S2))
1690 continue;
1691 if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
1692 N1.setColocate(++Colocate);
1693 N2.setColocate(Colocate);
1694 break;
1695 }
1696 }
1697 }
1698}
1699
1700/// Check if the existing node-sets are profitable. If not, then ignore the
1701/// recurrent node-sets, and attempt to schedule all nodes together. This is
1702/// a heuristic. If the MII is large and all the recurrent node-sets are small,
1703/// then it's best to try to schedule all instructions together instead of
1704/// starting with the recurrent node-sets.
1705void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1706 // Look for loops with a large MII.
1707 if (MII < 17)
1708 return;
1709 // Check if the node-set contains only a simple add recurrence.
1710 for (auto &NS : NodeSets) {
1711 if (NS.getRecMII() > 2)
1712 return;
1713 if (NS.getMaxDepth() > MII)
1714 return;
1715 }
1716 NodeSets.clear();
1717 LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Clear recurrence node-sets\n"
; } } while (false)
;
1718}
1719
1720/// Add the nodes that do not belong to a recurrence set into groups
1721/// based upon connected components.
1722void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1723 SetVector<SUnit *> NodesAdded;
1724 SmallPtrSet<SUnit *, 8> Visited;
1725 // Add the nodes that are on a path between the previous node sets and
1726 // the current node set.
1727 for (NodeSet &I : NodeSets) {
1728 SmallSetVector<SUnit *, 8> N;
1729 // Add the nodes from the current node set to the previous node set.
1730 if (succ_L(I, N)) {
1731 SetVector<SUnit *> Path;
1732 for (SUnit *NI : N) {
1733 Visited.clear();
1734 computePath(NI, Path, NodesAdded, I, Visited);
1735 }
1736 if (!Path.empty())
1737 I.insert(Path.begin(), Path.end());
1738 }
1739 // Add the nodes from the previous node set to the current node set.
1740 N.clear();
1741 if (succ_L(NodesAdded, N)) {
1742 SetVector<SUnit *> Path;
1743 for (SUnit *NI : N) {
1744 Visited.clear();
1745 computePath(NI, Path, I, NodesAdded, Visited);
1746 }
1747 if (!Path.empty())
1748 I.insert(Path.begin(), Path.end());
1749 }
1750 NodesAdded.insert(I.begin(), I.end());
1751 }
1752
1753 // Create a new node set with the connected nodes of any successor of a node
1754 // in a recurrent set.
1755 NodeSet NewSet;
1756 SmallSetVector<SUnit *, 8> N;
1757 if (succ_L(NodesAdded, N))
1758 for (SUnit *I : N)
1759 addConnectedNodes(I, NewSet, NodesAdded);
1760 if (!NewSet.empty())
1761 NodeSets.push_back(NewSet);
1762
1763 // Create a new node set with the connected nodes of any predecessor of a node
1764 // in a recurrent set.
1765 NewSet.clear();
1766 if (pred_L(NodesAdded, N))
1767 for (SUnit *I : N)
1768 addConnectedNodes(I, NewSet, NodesAdded);
1769 if (!NewSet.empty())
1770 NodeSets.push_back(NewSet);
1771
1772 // Create new nodes sets with the connected nodes any remaining node that
1773 // has no predecessor.
1774 for (SUnit &SU : SUnits) {
1775 if (NodesAdded.count(&SU) == 0) {
1776 NewSet.clear();
1777 addConnectedNodes(&SU, NewSet, NodesAdded);
1778 if (!NewSet.empty())
1779 NodeSets.push_back(NewSet);
1780 }
1781 }
1782}
1783
1784/// Add the node to the set, and add all of its connected nodes to the set.
1785void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1786 SetVector<SUnit *> &NodesAdded) {
1787 NewSet.insert(SU);
1788 NodesAdded.insert(SU);
1789 for (auto &SI : SU->Succs) {
1790 SUnit *Successor = SI.getSUnit();
1791 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1792 addConnectedNodes(Successor, NewSet, NodesAdded);
1793 }
1794 for (auto &PI : SU->Preds) {
1795 SUnit *Predecessor = PI.getSUnit();
1796 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1797 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1798 }
1799}
1800
1801/// Return true if Set1 contains elements in Set2. The elements in common
1802/// are returned in a different container.
1803static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1804 SmallSetVector<SUnit *, 8> &Result) {
1805 Result.clear();
1806 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1807 SUnit *SU = Set1[i];
1808 if (Set2.count(SU) != 0)
1809 Result.insert(SU);
1810 }
1811 return !Result.empty();
1812}
1813
1814/// Merge the recurrence node sets that have the same initial node.
1815void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1816 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1817 ++I) {
1818 NodeSet &NI = *I;
1819 for (NodeSetType::iterator J = I + 1; J != E;) {
1820 NodeSet &NJ = *J;
1821 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1822 if (NJ.compareRecMII(NI) > 0)
1823 NI.setRecMII(NJ.getRecMII());
1824 for (SUnit *SU : *J)
1825 I->insert(SU);
1826 NodeSets.erase(J);
1827 E = NodeSets.end();
1828 } else {
1829 ++J;
1830 }
1831 }
1832 }
1833}
1834
1835/// Remove nodes that have been scheduled in previous NodeSets.
1836void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1837 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1838 ++I)
1839 for (NodeSetType::iterator J = I + 1; J != E;) {
1840 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1841
1842 if (J->empty()) {
1843 NodeSets.erase(J);
1844 E = NodeSets.end();
1845 } else {
1846 ++J;
1847 }
1848 }
1849}
1850
1851/// Compute an ordered list of the dependence graph nodes, which
1852/// indicates the order that the nodes will be scheduled. This is a
1853/// two-level algorithm. First, a partial order is created, which
1854/// consists of a list of sets ordered from highest to lowest priority.
1855void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1856 SmallSetVector<SUnit *, 8> R;
1857 NodeOrder.clear();
1858
1859 for (auto &Nodes : NodeSets) {
1860 LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "NodeSet size " << Nodes
.size() << "\n"; } } while (false)
;
1861 OrderKind Order;
1862 SmallSetVector<SUnit *, 8> N;
1863 if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1864 R.insert(N.begin(), N.end());
1865 Order = BottomUp;
1866 LLVM_DEBUG(dbgs() << " Bottom up (preds) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Bottom up (preds) "; } } while
(false)
;
1867 } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
1868 R.insert(N.begin(), N.end());
1869 Order = TopDown;
1870 LLVM_DEBUG(dbgs() << " Top down (succs) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Top down (succs) "; } } while
(false)
;
1871 } else if (isIntersect(N, Nodes, R)) {
1872 // If some of the successors are in the existing node-set, then use the
1873 // top-down ordering.
1874 Order = TopDown;
1875 LLVM_DEBUG(dbgs() << " Top down (intersect) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Top down (intersect) "; }
} while (false)
;
1876 } else if (NodeSets.size() == 1) {
1877 for (auto &N : Nodes)
1878 if (N->Succs.size() == 0)
1879 R.insert(N);
1880 Order = BottomUp;
1881 LLVM_DEBUG(dbgs() << " Bottom up (all) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Bottom up (all) "; } } while
(false)
;
1882 } else {
1883 // Find the node with the highest ASAP.
1884 SUnit *maxASAP = nullptr;
1885 for (SUnit *SU : Nodes) {
1886 if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
1887 (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
1888 maxASAP = SU;
1889 }
1890 R.insert(maxASAP);
1891 Order = BottomUp;
1892 LLVM_DEBUG(dbgs() << " Bottom up (default) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Bottom up (default) "; } }
while (false)
;
1893 }
1894
1895 while (!R.empty()) {
1896 if (Order == TopDown) {
1897 // Choose the node with the maximum height. If more than one, choose
1898 // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
1899 // choose the node with the lowest MOV.
1900 while (!R.empty()) {
1901 SUnit *maxHeight = nullptr;
1902 for (SUnit *I : R) {
1903 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
1904 maxHeight = I;
1905 else if (getHeight(I) == getHeight(maxHeight) &&
1906 getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
1907 maxHeight = I;
1908 else if (getHeight(I) == getHeight(maxHeight) &&
1909 getZeroLatencyHeight(I) ==
1910 getZeroLatencyHeight(maxHeight) &&
1911 getMOV(I) < getMOV(maxHeight))
1912 maxHeight = I;
1913 }
1914 NodeOrder.insert(maxHeight);
1915 LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << maxHeight->NodeNum <<
" "; } } while (false)
;
1916 R.remove(maxHeight);
1917 for (const auto &I : maxHeight->Succs) {
1918 if (Nodes.count(I.getSUnit()) == 0)
1919 continue;
1920 if (NodeOrder.contains(I.getSUnit()))
1921 continue;
1922 if (ignoreDependence(I, false))
1923 continue;
1924 R.insert(I.getSUnit());
1925 }
1926 // Back-edges are predecessors with an anti-dependence.
1927 for (const auto &I : maxHeight->Preds) {
1928 if (I.getKind() != SDep::Anti)
1929 continue;
1930 if (Nodes.count(I.getSUnit()) == 0)
1931 continue;
1932 if (NodeOrder.contains(I.getSUnit()))
1933 continue;
1934 R.insert(I.getSUnit());
1935 }
1936 }
1937 Order = BottomUp;
1938 LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "\n Switching order to bottom up "
; } } while (false)
;
1939 SmallSetVector<SUnit *, 8> N;
1940 if (pred_L(NodeOrder, N, &Nodes))
1941 R.insert(N.begin(), N.end());
1942 } else {
1943 // Choose the node with the maximum depth. If more than one, choose
1944 // the node with the maximum ZeroLatencyDepth. If still more than one,
1945 // choose the node with the lowest MOV.
1946 while (!R.empty()) {
1947 SUnit *maxDepth = nullptr;
1948 for (SUnit *I : R) {
1949 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
1950 maxDepth = I;
1951 else if (getDepth(I) == getDepth(maxDepth) &&
1952 getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
1953 maxDepth = I;
1954 else if (getDepth(I) == getDepth(maxDepth) &&
1955 getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
1956 getMOV(I) < getMOV(maxDepth))
1957 maxDepth = I;
1958 }
1959 NodeOrder.insert(maxDepth);
1960 LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << maxDepth->NodeNum <<
" "; } } while (false)
;
1961 R.remove(maxDepth);
1962 if (Nodes.isExceedSU(maxDepth)) {
1963 Order = TopDown;
Value stored to 'Order' is never read
1964 R.clear();
1965 R.insert(Nodes.getNode(0));
1966 break;
1967 }
1968 for (const auto &I : maxDepth->Preds) {
1969 if (Nodes.count(I.getSUnit()) == 0)
1970 continue;
1971 if (NodeOrder.contains(I.getSUnit()))
1972 continue;
1973 R.insert(I.getSUnit());
1974 }
1975 // Back-edges are predecessors with an anti-dependence.
1976 for (const auto &I : maxDepth->Succs) {
1977 if (I.getKind() != SDep::Anti)
1978 continue;
1979 if (Nodes.count(I.getSUnit()) == 0)
1980 continue;
1981 if (NodeOrder.contains(I.getSUnit()))
1982 continue;
1983 R.insert(I.getSUnit());
1984 }
1985 }
1986 Order = TopDown;
1987 LLVM_DEBUG(dbgs() << "\n Switching order to top down ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "\n Switching order to top down "
; } } while (false)
;
1988 SmallSetVector<SUnit *, 8> N;
1989 if (succ_L(NodeOrder, N, &Nodes))
1990 R.insert(N.begin(), N.end());
1991 }
1992 }
1993 LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "\nDone with Nodeset\n"; } }
while (false)
;
1994 }
1995
1996 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
1997 dbgs() << "Node order: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
1998 for (SUnit *I : NodeOrder)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
1999 dbgs() << " " << I->NodeNum << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
2000 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
2001 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
;
2002}
2003
2004/// Process the nodes in the computed order and create the pipelined schedule
2005/// of the instructions, if possible. Return true if a schedule is found.
2006bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2007
2008 if (NodeOrder.empty()){
2009 LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" )do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "NodeOrder is empty! abort scheduling\n"
; } } while (false)
;
2010 return false;
2011 }
2012
2013 bool scheduleFound = false;
2014 // Keep increasing II until a valid schedule is found.
2015 for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
2016 Schedule.reset();
2017 Schedule.setInitiationInterval(II);
2018 LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Try to schedule with " <<
II << "\n"; } } while (false)
;
2019
2020 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2021 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2022 do {
2023 SUnit *SU = *NI;
2024
2025 // Compute the schedule time for the instruction, which is based
2026 // upon the scheduled time for any predecessors/successors.
2027 int EarlyStart = INT_MIN(-2147483647 -1);
2028 int LateStart = INT_MAX2147483647;
2029 // These values are set when the size of the schedule window is limited
2030 // due to chain dependences.
2031 int SchedEnd = INT_MAX2147483647;
2032 int SchedStart = INT_MIN(-2147483647 -1);
2033 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2034 II, this);
2035 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
2036 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
2037 dbgs() << "Inst (" << SU->NodeNum << ") ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
2038 SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
2039 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
2040 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\n"; dbgs() << "Inst ("
<< SU->NodeNum << ") "; SU->getInstr()->
dump(); dbgs() << "\n"; }; } } while (false)
;
2041 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n"
, EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while (
false)
2042 dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n"
, EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while (
false)
2043 LateStart, SchedEnd, SchedStart);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n"
, EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while (
false)
2044 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n"
, EarlyStart, LateStart, SchedEnd, SchedStart); }; } } while (
false)
;
2045
2046 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2047 SchedStart > LateStart)
2048 scheduleFound = false;
2049 else if (EarlyStart != INT_MIN(-2147483647 -1) && LateStart == INT_MAX2147483647) {
2050 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2051 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2052 } else if (EarlyStart == INT_MIN(-2147483647 -1) && LateStart != INT_MAX2147483647) {
2053 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2054 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2055 } else if (EarlyStart != INT_MIN(-2147483647 -1) && LateStart != INT_MAX2147483647) {
2056 SchedEnd =
2057 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2058 // When scheduling a Phi it is better to start at the late cycle and go
2059 // backwards. The default order may insert the Phi too far away from
2060 // its first dependence.
2061 if (SU->getInstr()->isPHI())
2062 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2063 else
2064 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2065 } else {
2066 int FirstCycle = Schedule.getFirstCycle();
2067 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2068 FirstCycle + getASAP(SU) + II - 1, II);
2069 }
2070 // Even if we find a schedule, make sure the schedule doesn't exceed the
2071 // allowable number of stages. We keep trying if this happens.
2072 if (scheduleFound)
2073 if (SwpMaxStages > -1 &&
2074 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2075 scheduleFound = false;
2076
2077 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
2078 if (!scheduleFound)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
2079 dbgs() << "\tCan't schedule\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
2080 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
;
2081 } while (++NI != NE && scheduleFound);
2082
2083 // If a schedule is found, check if it is a valid schedule too.
2084 if (scheduleFound)
2085 scheduleFound = Schedule.isValidSchedule(this);
2086 }
2087
2088 LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFounddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Schedule Found? " << scheduleFound
<< " (II=" << Schedule.getInitiationInterval() <<
")\n"; } } while (false)
2089 << " (II=" << Schedule.getInitiationInterval()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Schedule Found? " << scheduleFound
<< " (II=" << Schedule.getInitiationInterval() <<
")\n"; } } while (false)
2090 << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Schedule Found? " << scheduleFound
<< " (II=" << Schedule.getInitiationInterval() <<
")\n"; } } while (false)
;
2091
2092 if (scheduleFound) {
2093 Schedule.finalizeSchedule(this);
2094 Pass.ORE->emit([&]() {
2095 return MachineOptimizationRemarkAnalysis(
2096 DEBUG_TYPE"pipeliner", "schedule", Loop.getStartLoc(), Loop.getHeader())
2097 << "Schedule found with Initiation Interval: "
2098 << ore::NV("II", Schedule.getInitiationInterval())
2099 << ", MaxStageCount: "
2100 << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
2101 });
2102 } else
2103 Schedule.reset();
2104
2105 return scheduleFound && Schedule.getMaxStageCount() > 0;
2106}
2107
2108/// Return true if we can compute the amount the instruction changes
2109/// during each iteration. Set Delta to the amount of the change.
2110bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
2111 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2112 const MachineOperand *BaseOp;
2113 int64_t Offset;
2114 bool OffsetIsScalable;
2115 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
2116 return false;
2117
2118 // FIXME: This algorithm assumes instructions have fixed-size offsets.
2119 if (OffsetIsScalable)
2120 return false;
2121
2122 if (!BaseOp->isReg())
2123 return false;
2124
2125 Register BaseReg = BaseOp->getReg();
2126
2127 MachineRegisterInfo &MRI = MF.getRegInfo();
2128 // Check if there is a Phi. If so, get the definition in the loop.
2129 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
2130 if (BaseDef && BaseDef->isPHI()) {
2131 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
2132 BaseDef = MRI.getVRegDef(BaseReg);
2133 }
2134 if (!BaseDef)
2135 return false;
2136
2137 int D = 0;
2138 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
2139 return false;
2140
2141 Delta = D;
2142 return true;
2143}
2144
2145/// Check if we can change the instruction to use an offset value from the
2146/// previous iteration. If so, return true and set the base and offset values
2147/// so that we can rewrite the load, if necessary.
2148/// v1 = Phi(v0, v3)
2149/// v2 = load v1, 0
2150/// v3 = post_store v1, 4, x
2151/// This function enables the load to be rewritten as v2 = load v3, 4.
2152bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
2153 unsigned &BasePos,
2154 unsigned &OffsetPos,
2155 unsigned &NewBase,
2156 int64_t &Offset) {
2157 // Get the load instruction.
2158 if (TII->isPostIncrement(*MI))
2159 return false;
2160 unsigned BasePosLd, OffsetPosLd;
2161 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
2162 return false;
2163 Register BaseReg = MI->getOperand(BasePosLd).getReg();
2164
2165 // Look for the Phi instruction.
2166 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
2167 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
2168 if (!Phi || !Phi->isPHI())
2169 return false;
2170 // Get the register defined in the loop block.
2171 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
2172 if (!PrevReg)
2173 return false;
2174
2175 // Check for the post-increment load/store instruction.
2176 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
2177 if (!PrevDef || PrevDef == MI)
2178 return false;
2179
2180 if (!TII->isPostIncrement(*PrevDef))
2181 return false;
2182
2183 unsigned BasePos1 = 0, OffsetPos1 = 0;
2184 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
2185 return false;
2186
2187 // Make sure that the instructions do not access the same memory location in
2188 // the next iteration.
2189 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
2190 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
2191 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2192 NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
2193 bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
2194 MF.deleteMachineInstr(NewMI);
2195 if (!Disjoint)
2196 return false;
2197
2198 // Set the return value once we determine that we return true.
2199 BasePos = BasePosLd;
2200 OffsetPos = OffsetPosLd;
2201 NewBase = PrevReg;
2202 Offset = StoreOffset;
2203 return true;
2204}
2205
2206/// Apply changes to the instruction if needed. The changes are need
2207/// to improve the scheduling and depend up on the final schedule.
2208void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
2209 SMSchedule &Schedule) {
2210 SUnit *SU = getSUnit(MI);
2211 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2212 InstrChanges.find(SU);
2213 if (It != InstrChanges.end()) {
2214 std::pair<unsigned, int64_t> RegAndOffset = It->second;
2215 unsigned BasePos, OffsetPos;
2216 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2217 return;
2218 Register BaseReg = MI->getOperand(BasePos).getReg();
2219 MachineInstr *LoopDef = findDefInLoop(BaseReg);
2220 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
2221 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
2222 int BaseStageNum = Schedule.stageScheduled(SU);
2223 int BaseCycleNum = Schedule.cycleScheduled(SU);
2224 if (BaseStageNum < DefStageNum) {
2225 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2226 int OffsetDiff = DefStageNum - BaseStageNum;
2227 if (DefCycleNum < BaseCycleNum) {
2228 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
2229 if (OffsetDiff > 0)
2230 --OffsetDiff;
2231 }
2232 int64_t NewOffset =
2233 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
2234 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2235 SU->setInstr(NewMI);
2236 MISUnitMap[NewMI] = SU;
2237 NewMIs[MI] = NewMI;
2238 }
2239 }
2240}
2241
2242/// Return the instruction in the loop that defines the register.
2243/// If the definition is a Phi, then follow the Phi operand to
2244/// the instruction in the loop.
2245MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
2246 SmallPtrSet<MachineInstr *, 8> Visited;
2247 MachineInstr *Def = MRI.getVRegDef(Reg);
2248 while (Def->isPHI()) {
2249 if (!Visited.insert(Def).second)
2250 break;
2251 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
2252 if (Def->getOperand(i + 1).getMBB() == BB) {
2253 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
2254 break;
2255 }
2256 }
2257 return Def;
2258}
2259
2260/// Return true for an order or output dependence that is loop carried
2261/// potentially. A dependence is loop carried if the destination defines a valu
2262/// that may be used or defined by the source in a subsequent iteration.
2263bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
2264 bool isSucc) {
2265 if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
2266 Dep.isArtificial())
2267 return false;
2268
2269 if (!SwpPruneLoopCarried)
2270 return true;
2271
2272 if (Dep.getKind() == SDep::Output)
2273 return true;
2274
2275 MachineInstr *SI = Source->getInstr();
2276 MachineInstr *DI = Dep.getSUnit()->getInstr();
2277 if (!isSucc)
2278 std::swap(SI, DI);
2279 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.")(static_cast <bool> (SI != nullptr && DI != nullptr
&& "Expecting SUnit with an MI.") ? void (0) : __assert_fail
("SI != nullptr && DI != nullptr && \"Expecting SUnit with an MI.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 2279, __extension__
__PRETTY_FUNCTION__))
;
2280
2281 // Assume ordered loads and stores may have a loop carried dependence.
2282 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
2283 SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
2284 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
2285 return true;
2286
2287 // Only chain dependences between a load and store can be loop carried.
2288 if (!DI->mayStore() || !SI->mayLoad())
2289 return false;
2290
2291 unsigned DeltaS, DeltaD;
2292 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
2293 return true;
2294
2295 const MachineOperand *BaseOpS, *BaseOpD;
2296 int64_t OffsetS, OffsetD;
2297 bool OffsetSIsScalable, OffsetDIsScalable;
2298 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2299 if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
2300 TRI) ||
2301 !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
2302 TRI))
2303 return true;
2304
2305 assert(!OffsetSIsScalable && !OffsetDIsScalable &&(static_cast <bool> (!OffsetSIsScalable && !OffsetDIsScalable
&& "Expected offsets to be byte offsets") ? void (0)
: __assert_fail ("!OffsetSIsScalable && !OffsetDIsScalable && \"Expected offsets to be byte offsets\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 2306, __extension__
__PRETTY_FUNCTION__))
2306 "Expected offsets to be byte offsets")(static_cast <bool> (!OffsetSIsScalable && !OffsetDIsScalable
&& "Expected offsets to be byte offsets") ? void (0)
: __assert_fail ("!OffsetSIsScalable && !OffsetDIsScalable && \"Expected offsets to be byte offsets\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 2306, __extension__
__PRETTY_FUNCTION__))
;
2307
2308 if (!BaseOpS->isIdenticalTo(*BaseOpD))
2309 return true;
2310
2311 // Check that the base register is incremented by a constant value for each
2312 // iteration.
2313 MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
2314 if (!Def || !Def->isPHI())
2315 return true;
2316 unsigned InitVal = 0;
2317 unsigned LoopVal = 0;
2318 getPhiRegs(*Def, BB, InitVal, LoopVal);
2319 MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
2320 int D = 0;
2321 if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
2322 return true;
2323
2324 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
2325 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
2326
2327 // This is the main test, which checks the offset values and the loop
2328 // increment value to determine if the accesses may be loop carried.
2329 if (AccessSizeS == MemoryLocation::UnknownSize ||
2330 AccessSizeD == MemoryLocation::UnknownSize)
2331 return true;
2332
2333 if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
2334 return true;
2335
2336 return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
2337}
2338
2339void SwingSchedulerDAG::postprocessDAG() {
2340 for (auto &M : Mutations)
2341 M->apply(this);
2342}
2343
2344/// Try to schedule the node at the specified StartCycle and continue
2345/// until the node is schedule or the EndCycle is reached. This function
2346/// returns true if the node is scheduled. This routine may search either
2347/// forward or backward for a place to insert the instruction based upon
2348/// the relative values of StartCycle and EndCycle.
2349bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
2350 bool forward = true;
2351 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to insert node between "
<< StartCycle << " and " << EndCycle <<
" II: " << II << "\n"; }; } } while (false)
2352 dbgs() << "Trying to insert node between " << StartCycle << " and "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to insert node between "
<< StartCycle << " and " << EndCycle <<
" II: " << II << "\n"; }; } } while (false)
2353 << EndCycle << " II: " << II << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to insert node between "
<< StartCycle << " and " << EndCycle <<
" II: " << II << "\n"; }; } } while (false)
2354 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Trying to insert node between "
<< StartCycle << " and " << EndCycle <<
" II: " << II << "\n"; }; } } while (false)
;
2355 if (StartCycle > EndCycle)
2356 forward = false;
2357
2358 // The terminating condition depends on the direction.
2359 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
2360 for (int curCycle = StartCycle; curCycle != termCycle;
2361 forward ? ++curCycle : --curCycle) {
2362
2363 // Add the already scheduled instructions at the specified cycle to the
2364 // DFA.
2365 ProcItinResources.clearResources();
2366 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
2367 checkCycle <= LastCycle; checkCycle += II) {
2368 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
2369
2370 for (SUnit *CI : cycleInstrs) {
2371 if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode()))
2372 continue;
2373 assert(ProcItinResources.canReserveResources(*CI->getInstr()) &&(static_cast <bool> (ProcItinResources.canReserveResources
(*CI->getInstr()) && "These instructions have already been scheduled."
) ? void (0) : __assert_fail ("ProcItinResources.canReserveResources(*CI->getInstr()) && \"These instructions have already been scheduled.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 2374, __extension__
__PRETTY_FUNCTION__))
2374 "These instructions have already been scheduled.")(static_cast <bool> (ProcItinResources.canReserveResources
(*CI->getInstr()) && "These instructions have already been scheduled."
) ? void (0) : __assert_fail ("ProcItinResources.canReserveResources(*CI->getInstr()) && \"These instructions have already been scheduled.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 2374, __extension__
__PRETTY_FUNCTION__))
;
2375 ProcItinResources.reserveResources(*CI->getInstr());
2376 }
2377 }
2378 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
2379 ProcItinResources.canReserveResources(*SU->getInstr())) {
2380 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
2381 dbgs() << "\tinsert at cycle " << curCycle << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
2382 SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
2383 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
;
2384
2385 ScheduledInstrs[curCycle].push_back(SU);
2386 InstrToCycle.insert(std::make_pair(SU, curCycle));
2387 if (curCycle > LastCycle)
2388 LastCycle = curCycle;
2389 if (curCycle < FirstCycle)
2390 FirstCycle = curCycle;
2391 return true;
2392 }
2393 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
2394 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
2395 SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
2396 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
;
2397 }
2398 return false;
2399}
2400
2401// Return the cycle of the earliest scheduled instruction in the chain.
2402int SMSchedule::earliestCycleInChain(const SDep &Dep) {
2403 SmallPtrSet<SUnit *, 8> Visited;
2404 SmallVector<SDep, 8> Worklist;
2405 Worklist.push_back(Dep);
2406 int EarlyCycle = INT_MAX2147483647;
2407 while (!Worklist.empty()) {
2408 const SDep &Cur = Worklist.pop_back_val();
2409 SUnit *PrevSU = Cur.getSUnit();
2410 if (Visited.count(PrevSU))
2411 continue;
2412 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
2413 if (it == InstrToCycle.end())
2414 continue;
2415 EarlyCycle = std::min(EarlyCycle, it->second);
2416 for (const auto &PI : PrevSU->Preds)
2417 if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
2418 Worklist.push_back(PI);
2419 Visited.insert(PrevSU);
2420 }
2421 return EarlyCycle;
2422}
2423
2424// Return the cycle of the latest scheduled instruction in the chain.
2425int SMSchedule::latestCycleInChain(const SDep &Dep) {
2426 SmallPtrSet<SUnit *, 8> Visited;
2427 SmallVector<SDep, 8> Worklist;
2428 Worklist.push_back(Dep);
2429 int LateCycle = INT_MIN(-2147483647 -1);
2430 while (!Worklist.empty()) {
2431 const SDep &Cur = Worklist.pop_back_val();
2432 SUnit *SuccSU = Cur.getSUnit();
2433 if (Visited.count(SuccSU))
2434 continue;
2435 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
2436 if (it == InstrToCycle.end())
2437 continue;
2438 LateCycle = std::max(LateCycle, it->second);
2439 for (const auto &SI : SuccSU->Succs)
2440 if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
2441 Worklist.push_back(SI);
2442 Visited.insert(SuccSU);
2443 }
2444 return LateCycle;
2445}
2446
2447/// If an instruction has a use that spans multiple iterations, then
2448/// return true. These instructions are characterized by having a back-ege
2449/// to a Phi, which contains a reference to another Phi.
2450static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
2451 for (auto &P : SU->Preds)
2452 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
2453 for (auto &S : P.getSUnit()->Succs)
2454 if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
2455 return P.getSUnit();
2456 return nullptr;
2457}
2458
2459/// Compute the scheduling start slot for the instruction. The start slot
2460/// depends on any predecessor or successor nodes scheduled already.
2461void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
2462 int *MinEnd, int *MaxStart, int II,
2463 SwingSchedulerDAG *DAG) {
2464 // Iterate over each instruction that has been scheduled already. The start
2465 // slot computation depends on whether the previously scheduled instruction
2466 // is a predecessor or successor of the specified instruction.
2467 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
2468
2469 // Iterate over each instruction in the current cycle.
2470 for (SUnit *I : getInstructions(cycle)) {
2471 // Because we're processing a DAG for the dependences, we recognize
2472 // the back-edge in recurrences by anti dependences.
2473 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
2474 const SDep &Dep = SU->Preds[i];
2475 if (Dep.getSUnit() == I) {
2476 if (!DAG->isBackedge(SU, Dep)) {
2477 int EarlyStart = cycle + Dep.getLatency() -
2478 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2479 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2480 if (DAG->isLoopCarriedDep(SU, Dep, false)) {
2481 int End = earliestCycleInChain(Dep) + (II - 1);
2482 *MinEnd = std::min(*MinEnd, End);
2483 }
2484 } else {
2485 int LateStart = cycle - Dep.getLatency() +
2486 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2487 *MinLateStart = std::min(*MinLateStart, LateStart);
2488 }
2489 }
2490 // For instruction that requires multiple iterations, make sure that
2491 // the dependent instruction is not scheduled past the definition.
2492 SUnit *BE = multipleIterations(I, DAG);
2493 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
2494 !SU->isPred(I))
2495 *MinLateStart = std::min(*MinLateStart, cycle);
2496 }
2497 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
2498 if (SU->Succs[i].getSUnit() == I) {
2499 const SDep &Dep = SU->Succs[i];
2500 if (!DAG->isBackedge(SU, Dep)) {
2501 int LateStart = cycle - Dep.getLatency() +
2502 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
2503 *MinLateStart = std::min(*MinLateStart, LateStart);
2504 if (DAG->isLoopCarriedDep(SU, Dep)) {
2505 int Start = latestCycleInChain(Dep) + 1 - II;
2506 *MaxStart = std::max(*MaxStart, Start);
2507 }
2508 } else {
2509 int EarlyStart = cycle + Dep.getLatency() -
2510 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
2511 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
2512 }
2513 }
2514 }
2515 }
2516 }
2517}
2518
2519/// Order the instructions within a cycle so that the definitions occur
2520/// before the uses. Returns true if the instruction is added to the start
2521/// of the list, or false if added to the end.
2522void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
2523 std::deque<SUnit *> &Insts) {
2524 MachineInstr *MI = SU->getInstr();
2525 bool OrderBeforeUse = false;
2526 bool OrderAfterDef = false;
2527 bool OrderBeforeDef = false;
2528 unsigned MoveDef = 0;
2529 unsigned MoveUse = 0;
2530 int StageInst1 = stageScheduled(SU);
2531
2532 unsigned Pos = 0;
2533 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
2534 ++I, ++Pos) {
2535 for (MachineOperand &MO : MI->operands()) {
2536 if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
2537 continue;
2538
2539 Register Reg = MO.getReg();
2540 unsigned BasePos, OffsetPos;
2541 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
2542 if (MI->getOperand(BasePos).getReg() == Reg)
2543 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
2544 Reg = NewReg;
2545 bool Reads, Writes;
2546 std::tie(Reads, Writes) =
2547 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
2548 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
2549 OrderBeforeUse = true;
2550 if (MoveUse == 0)
2551 MoveUse = Pos;
2552 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
2553 // Add the instruction after the scheduled instruction.
2554 OrderAfterDef = true;
2555 MoveDef = Pos;
2556 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
2557 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
2558 OrderBeforeUse = true;
2559 if (MoveUse == 0)
2560 MoveUse = Pos;
2561 } else {
2562 OrderAfterDef = true;
2563 MoveDef = Pos;
2564 }
2565 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
2566 OrderBeforeUse = true;
2567 if (MoveUse == 0)
2568 MoveUse = Pos;
2569 if (MoveUse != 0) {
2570 OrderAfterDef = true;
2571 MoveDef = Pos - 1;
2572 }
2573 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
2574 // Add the instruction before the scheduled instruction.
2575 OrderBeforeUse = true;
2576 if (MoveUse == 0)
2577 MoveUse = Pos;
2578 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
2579 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
2580 if (MoveUse == 0) {
2581 OrderBeforeDef = true;
2582 MoveUse = Pos;
2583 }
2584 }
2585 }
2586 // Check for order dependences between instructions. Make sure the source
2587 // is ordered before the destination.
2588 for (auto &S : SU->Succs) {
2589 if (S.getSUnit() != *I)
2590 continue;
2591 if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2592 OrderBeforeUse = true;
2593 if (Pos < MoveUse)
2594 MoveUse = Pos;
2595 }
2596 // We did not handle HW dependences in previous for loop,
2597 // and we normally set Latency = 0 for Anti deps,
2598 // so may have nodes in same cycle with Anti denpendent on HW regs.
2599 else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
2600 OrderBeforeUse = true;
2601 if ((MoveUse == 0) || (Pos < MoveUse))
2602 MoveUse = Pos;
2603 }
2604 }
2605 for (auto &P : SU->Preds) {
2606 if (P.getSUnit() != *I)
2607 continue;
2608 if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
2609 OrderAfterDef = true;
2610 MoveDef = Pos;
2611 }
2612 }
2613 }
2614
2615 // A circular dependence.
2616 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
2617 OrderBeforeUse = false;
2618
2619 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
2620 // to a loop-carried dependence.
2621 if (OrderBeforeDef)
2622 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
2623
2624 // The uncommon case when the instruction order needs to be updated because
2625 // there is both a use and def.
2626 if (OrderBeforeUse && OrderAfterDef) {
2627 SUnit *UseSU = Insts.at(MoveUse);
2628 SUnit *DefSU = Insts.at(MoveDef);
2629 if (MoveUse > MoveDef) {
2630 Insts.erase(Insts.begin() + MoveUse);
2631 Insts.erase(Insts.begin() + MoveDef);
2632 } else {
2633 Insts.erase(Insts.begin() + MoveDef);
2634 Insts.erase(Insts.begin() + MoveUse);
2635 }
2636 orderDependence(SSD, UseSU, Insts);
2637 orderDependence(SSD, SU, Insts);
2638 orderDependence(SSD, DefSU, Insts);
2639 return;
2640 }
2641 // Put the new instruction first if there is a use in the list. Otherwise,
2642 // put it at the end of the list.
2643 if (OrderBeforeUse)
2644 Insts.push_front(SU);
2645 else
2646 Insts.push_back(SU);
2647}
2648
2649/// Return true if the scheduled Phi has a loop carried operand.
2650bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
2651 if (!Phi.isPHI())
2652 return false;
2653 assert(Phi.isPHI() && "Expecting a Phi.")(static_cast <bool> (Phi.isPHI() && "Expecting a Phi."
) ? void (0) : __assert_fail ("Phi.isPHI() && \"Expecting a Phi.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 2653, __extension__
__PRETTY_FUNCTION__))
;
2654 SUnit *DefSU = SSD->getSUnit(&Phi);
2655 unsigned DefCycle = cycleScheduled(DefSU);
2656 int DefStage = stageScheduled(DefSU);
2657
2658 unsigned InitVal = 0;
2659 unsigned LoopVal = 0;
2660 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
2661 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
2662 if (!UseSU)
2663 return true;
2664 if (UseSU->getInstr()->isPHI())
2665 return true;
2666 unsigned LoopCycle = cycleScheduled(UseSU);
2667 int LoopStage = stageScheduled(UseSU);
2668 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
2669}
2670
2671/// Return true if the instruction is a definition that is loop carried
2672/// and defines the use on the next iteration.
2673/// v1 = phi(v2, v3)
2674/// (Def) v3 = op v1
2675/// (MO) = v1
2676/// If MO appears before Def, then then v1 and v3 may get assigned to the same
2677/// register.
2678bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
2679 MachineInstr *Def, MachineOperand &MO) {
2680 if (!MO.isReg())
2681 return false;
2682 if (Def->isPHI())
2683 return false;
2684 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
2685 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
2686 return false;
2687 if (!isLoopCarried(SSD, *Phi))
2688 return false;
2689 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
2690 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
2691 MachineOperand &DMO = Def->getOperand(i);
2692 if (!DMO.isReg() || !DMO.isDef())
2693 continue;
2694 if (DMO.getReg() == LoopReg)
2695 return true;
2696 }
2697 return false;
2698}
2699
2700// Check if the generated schedule is valid. This function checks if
2701// an instruction that uses a physical register is scheduled in a
2702// different stage than the definition. The pipeliner does not handle
2703// physical register values that may cross a basic block boundary.
2704bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2705 for (SUnit &SU : SSD->SUnits) {
2706 if (!SU.hasPhysRegDefs)
2707 continue;
2708 int StageDef = stageScheduled(&SU);
2709 assert(StageDef != -1 && "Instruction should have been scheduled.")(static_cast <bool> (StageDef != -1 && "Instruction should have been scheduled."
) ? void (0) : __assert_fail ("StageDef != -1 && \"Instruction should have been scheduled.\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 2709, __extension__
__PRETTY_FUNCTION__))
;
2710 for (auto &SI : SU.Succs)
2711 if (SI.isAssignedRegDep())
2712 if (Register::isPhysicalRegister(SI.getReg()))
2713 if (stageScheduled(SI.getSUnit()) != StageDef)
2714 return false;
2715 }
2716 return true;
2717}
2718
2719/// A property of the node order in swing-modulo-scheduling is
2720/// that for nodes outside circuits the following holds:
2721/// none of them is scheduled after both a successor and a
2722/// predecessor.
2723/// The method below checks whether the property is met.
2724/// If not, debug information is printed and statistics information updated.
2725/// Note that we do not use an assert statement.
2726/// The reason is that although an invalid node oder may prevent
2727/// the pipeliner from finding a pipelined schedule for arbitrary II,
2728/// it does not lead to the generation of incorrect code.
2729void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
2730
2731 // a sorted vector that maps each SUnit to its index in the NodeOrder
2732 typedef std::pair<SUnit *, unsigned> UnitIndex;
2733 std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
2734
2735 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
2736 Indices.push_back(std::make_pair(NodeOrder[i], i));
2737
2738 auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
2739 return std::get<0>(i1) < std::get<0>(i2);
2740 };
2741
2742 // sort, so that we can perform a binary search
2743 llvm::sort(Indices, CompareKey);
2744
2745 bool Valid = true;
2746 (void)Valid;
2747 // for each SUnit in the NodeOrder, check whether
2748 // it appears after both a successor and a predecessor
2749 // of the SUnit. If this is the case, and the SUnit
2750 // is not part of circuit, then the NodeOrder is not
2751 // valid.
2752 for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
2753 SUnit *SU = NodeOrder[i];
2754 unsigned Index = i;
2755
2756 bool PredBefore = false;
2757 bool SuccBefore = false;
2758
2759 SUnit *Succ;
2760 SUnit *Pred;
2761 (void)Succ;
2762 (void)Pred;
2763
2764 for (SDep &PredEdge : SU->Preds) {
2765 SUnit *PredSU = PredEdge.getSUnit();
2766 unsigned PredIndex = std::get<1>(
2767 *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
2768 if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
2769 PredBefore = true;
2770 Pred = PredSU;
2771 break;
2772 }
2773 }
2774
2775 for (SDep &SuccEdge : SU->Succs) {
2776 SUnit *SuccSU = SuccEdge.getSUnit();
2777 // Do not process a boundary node, it was not included in NodeOrder,
2778 // hence not in Indices either, call to std::lower_bound() below will
2779 // return Indices.end().
2780 if (SuccSU->isBoundaryNode())
2781 continue;
2782 unsigned SuccIndex = std::get<1>(
2783 *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
2784 if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
2785 SuccBefore = true;
2786 Succ = SuccSU;
2787 break;
2788 }
2789 }
2790
2791 if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
2792 // instructions in circuits are allowed to be scheduled
2793 // after both a successor and predecessor.
2794 bool InCircuit = llvm::any_of(
2795 Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
2796 if (InCircuit)
2797 LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "In a circuit, predecessor "
;; } } while (false)
;
2798 else {
2799 Valid = false;
2800 NumNodeOrderIssues++;
2801 LLVM_DEBUG(dbgs() << "Predecessor ";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Predecessor ";; } } while (
false)
;
2802 }
2803 LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << Pred->NodeNum << " and successor "
<< Succ->NodeNum << " are scheduled before node "
<< SU->NodeNum << "\n";; } } while (false)
2804 << " are scheduled before node " << SU->NodeNumdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << Pred->NodeNum << " and successor "
<< Succ->NodeNum << " are scheduled before node "
<< SU->NodeNum << "\n";; } } while (false)
2805 << "\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << Pred->NodeNum << " and successor "
<< Succ->NodeNum << " are scheduled before node "
<< SU->NodeNum << "\n";; } } while (false)
;
2806 }
2807 }
2808
2809 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n"
; }; } } while (false)
2810 if (!Valid)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n"
; }; } } while (false)
2811 dbgs() << "Invalid node order found!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n"
; }; } } while (false)
2812 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!Valid) dbgs() << "Invalid node order found!\n"
; }; } } while (false)
;
2813}
2814
2815/// Attempt to fix the degenerate cases when the instruction serialization
2816/// causes the register lifetimes to overlap. For example,
2817/// p' = store_pi(p, b)
2818/// = load p, offset
2819/// In this case p and p' overlap, which means that two registers are needed.
2820/// Instead, this function changes the load to use p' and updates the offset.
2821void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
2822 unsigned OverlapReg = 0;
2823 unsigned NewBaseReg = 0;
2824 for (SUnit *SU : Instrs) {
2825 MachineInstr *MI = SU->getInstr();
2826 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
2827 const MachineOperand &MO = MI->getOperand(i);
2828 // Look for an instruction that uses p. The instruction occurs in the
2829 // same cycle but occurs later in the serialized order.
2830 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
2831 // Check that the instruction appears in the InstrChanges structure,
2832 // which contains instructions that can have the offset updated.
2833 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
2834 InstrChanges.find(SU);
2835 if (It != InstrChanges.end()) {
2836 unsigned BasePos, OffsetPos;
2837 // Update the base register and adjust the offset.
2838 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
2839 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
2840 NewMI->getOperand(BasePos).setReg(NewBaseReg);
2841 int64_t NewOffset =
2842 MI->getOperand(OffsetPos).getImm() - It->second.second;
2843 NewMI->getOperand(OffsetPos).setImm(NewOffset);
2844 SU->setInstr(NewMI);
2845 MISUnitMap[NewMI] = SU;
2846 NewMIs[MI] = NewMI;
2847 }
2848 }
2849 OverlapReg = 0;
2850 NewBaseReg = 0;
2851 break;
2852 }
2853 // Look for an instruction of the form p' = op(p), which uses and defines
2854 // two virtual registers that get allocated to the same physical register.
2855 unsigned TiedUseIdx = 0;
2856 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
2857 // OverlapReg is p in the example above.
2858 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
2859 // NewBaseReg is p' in the example above.
2860 NewBaseReg = MI->getOperand(i).getReg();
2861 break;
2862 }
2863 }
2864 }
2865}
2866
2867/// After the schedule has been formed, call this function to combine
2868/// the instructions from the different stages/cycles. That is, this
2869/// function creates a schedule that represents a single iteration.
2870void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
2871 // Move all instructions to the first stage from later stages.
2872 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2873 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
2874 ++stage) {
2875 std::deque<SUnit *> &cycleInstrs =
2876 ScheduledInstrs[cycle + (stage * InitiationInterval)];
2877 for (SUnit *SU : llvm::reverse(cycleInstrs))
2878 ScheduledInstrs[cycle].push_front(SU);
2879 }
2880 }
2881
2882 // Erase all the elements in the later stages. Only one iteration should
2883 // remain in the scheduled list, and it contains all the instructions.
2884 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
2885 ScheduledInstrs.erase(cycle);
2886
2887 // Change the registers in instruction as specified in the InstrChanges
2888 // map. We need to use the new registers to create the correct order.
2889 for (const SUnit &SU : SSD->SUnits)
2890 SSD->applyInstrChange(SU.getInstr(), *this);
2891
2892 // Reorder the instructions in each cycle to fix and improve the
2893 // generated code.
2894 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
2895 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
2896 std::deque<SUnit *> newOrderPhi;
2897 for (SUnit *SU : cycleInstrs) {
2898 if (SU->getInstr()->isPHI())
2899 newOrderPhi.push_back(SU);
2900 }
2901 std::deque<SUnit *> newOrderI;
2902 for (SUnit *SU : cycleInstrs) {
2903 if (!SU->getInstr()->isPHI())
2904 orderDependence(SSD, SU, newOrderI);
2905 }
2906 // Replace the old order with the new order.
2907 cycleInstrs.swap(newOrderPhi);
2908 llvm::append_range(cycleInstrs, newOrderI);
2909 SSD->fixupRegisterOverlaps(cycleInstrs);
2910 }
2911
2912 LLVM_DEBUG(dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dump();; } } while (false)
;
2913}
2914
2915void NodeSet::print(raw_ostream &os) const {
2916 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
2917 << " depth " << MaxDepth << " col " << Colocate << "\n";
2918 for (const auto &I : Nodes)
2919 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
2920 os << "\n";
2921}
2922
2923#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2924/// Print the schedule information to the given output.
2925void SMSchedule::print(raw_ostream &os) const {
2926 // Iterate over each cycle.
2927 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
2928 // Iterate over each instruction in the cycle.
2929 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
2930 for (SUnit *CI : cycleInstrs->second) {
2931 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
2932 os << "(" << CI->NodeNum << ") ";
2933 CI->getInstr()->print(os);
2934 os << "\n";
2935 }
2936 }
2937}
2938
2939/// Utility function used for debugging to print the schedule.
2940LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void SMSchedule::dump() const { print(dbgs()); }
2941LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void NodeSet::dump() const { print(dbgs()); }
2942
2943#endif
2944
2945void ResourceManager::initProcResourceVectors(
2946 const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
2947 unsigned ProcResourceID = 0;
2948
2949 // We currently limit the resource kinds to 64 and below so that we can use
2950 // uint64_t for Masks
2951 assert(SM.getNumProcResourceKinds() < 64 &&(static_cast <bool> (SM.getNumProcResourceKinds() < 64
&& "Too many kinds of resources, unsupported") ? void
(0) : __assert_fail ("SM.getNumProcResourceKinds() < 64 && \"Too many kinds of resources, unsupported\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 2952, __extension__
__PRETTY_FUNCTION__))
2952 "Too many kinds of resources, unsupported")(static_cast <bool> (SM.getNumProcResourceKinds() < 64
&& "Too many kinds of resources, unsupported") ? void
(0) : __assert_fail ("SM.getNumProcResourceKinds() < 64 && \"Too many kinds of resources, unsupported\""
, "llvm/lib/CodeGen/MachinePipeliner.cpp", 2952, __extension__
__PRETTY_FUNCTION__))
;
2953 // Create a unique bitmask for every processor resource unit.
2954 // Skip resource at index 0, since it always references 'InvalidUnit'.
2955 Masks.resize(SM.getNumProcResourceKinds());
2956 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2957 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2958 if (Desc.SubUnitsIdxBegin)
2959 continue;
2960 Masks[I] = 1ULL << ProcResourceID;
2961 ProcResourceID++;
2962 }
2963 // Create a unique bitmask for every processor resource group.
2964 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
2965 const MCProcResourceDesc &Desc = *SM.getProcResource(I);
2966 if (!Desc.SubUnitsIdxBegin)
2967 continue;
2968 Masks[I] = 1ULL << ProcResourceID;
2969 for (unsigned U = 0; U < Desc.NumUnits; ++U)
2970 Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
2971 ProcResourceID++;
2972 }
2973 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
2974 if (SwpShowResMask) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
2975 dbgs() << "ProcResourceDesc:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
2976 for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
2977 const MCProcResourceDesc *ProcResource = SM.getProcResource(I);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
2978 dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
2979 ProcResource->Name, I, Masks[I],do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
2980 ProcResource->NumUnits);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
2981 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
2982 dbgs() << " -----------------\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
2983 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
2984 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"
; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I <
E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource
(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n"
, ProcResource->Name, I, Masks[I], ProcResource->NumUnits
); } dbgs() << " -----------------\n"; } }; } } while (
false)
;
2985}
2986
2987bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
2988
2989 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "canReserveResources:\n"
; }; } } while (false)
2990 if (SwpDebugResource)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "canReserveResources:\n"
; }; } } while (false)
2991 dbgs() << "canReserveResources:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "canReserveResources:\n"
; }; } } while (false)
2992 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "canReserveResources:\n"
; }; } } while (false)
;
2993 if (UseDFA)
2994 return DFAResources->canReserveResources(MID);
2995
2996 unsigned InsnClass = MID->getSchedClass();
2997 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
2998 if (!SCDesc->isValid()) {
2999 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseudo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
3000 dbgs() << "No valid Schedule Class Desc for schedClass!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseudo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
3001 dbgs() << "isPseudo:" << MID->isPseudo() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseudo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
3002 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseudo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
;
3003 return true;
3004 }
3005
3006 const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
3007 const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
3008 for (; I != E; ++I) {
3009 if (!I->Cycles)
3010 continue;
3011 const MCProcResourceDesc *ProcResource =
3012 SM.getProcResource(I->ProcResourceIdx);
3013 unsigned NumUnits = ProcResource->NumUnits;
3014 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, I->ProcResourceIdx, ProcResourceCount[I->ProcResourceIdx
], NumUnits, I->Cycles); }; } } while (false)
3015 if (SwpDebugResource)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, I->ProcResourceIdx, ProcResourceCount[I->ProcResourceIdx
], NumUnits, I->Cycles); }; } } while (false)
3016 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, I->ProcResourceIdx, ProcResourceCount[I->ProcResourceIdx
], NumUnits, I->Cycles); }; } } while (false)
3017 ProcResource->Name, I->ProcResourceIdx,do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, I->ProcResourceIdx, ProcResourceCount[I->ProcResourceIdx
], NumUnits, I->Cycles); }; } } while (false)
3018 ProcResourceCount[I->ProcResourceIdx], NumUnits,do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, I->ProcResourceIdx, ProcResourceCount[I->ProcResourceIdx
], NumUnits, I->Cycles); }; } } while (false)
3019 I->Cycles);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, I->ProcResourceIdx, ProcResourceCount[I->ProcResourceIdx
], NumUnits, I->Cycles); }; } } while (false)
3020 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << format
(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", ProcResource
->Name, I->ProcResourceIdx, ProcResourceCount[I->ProcResourceIdx
], NumUnits, I->Cycles); }; } } while (false)
;
3021 if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
3022 return false;
3023 }
3024 LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { if (SwpDebugResource) dbgs() << "return true\n\n"
;; } } while (false)
;
3025 return true;
3026}
3027
3028void ResourceManager::reserveResources(const MCInstrDesc *MID) {
3029 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources:\n"
; }; } } while (false)
3030 if (SwpDebugResource)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources:\n"
; }; } } while (false)
3031 dbgs() << "reserveResources:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources:\n"
; }; } } while (false)
3032 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources:\n"
; }; } } while (false)
;
3033 if (UseDFA)
3034 return DFAResources->reserveResources(MID);
3035
3036 unsigned InsnClass = MID->getSchedClass();
3037 const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
3038 if (!SCDesc->isValid()) {
3039 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseudo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
3040 dbgs() << "No valid Schedule Class Desc for schedClass!\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseudo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
3041 dbgs() << "isPseudo:" << MID->isPseudo() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseudo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
3042 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "No valid Schedule Class Desc for schedClass!\n"
; dbgs() << "isPseudo:" << MID->isPseudo() <<
"\n"; }; } } while (false)
;
3043 return;
3044 }
3045 for (const MCWriteProcResEntry &PRE :
3046 make_range(STI->getWriteProcResBegin(SCDesc),
3047 STI->getWriteProcResEnd(SCDesc))) {
3048 if (!PRE.Cycles)
3049 continue;
3050 ++ProcResourceCount[PRE.ProcResourceIdx];
3051 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc
*ProcResource = SM.getProcResource(PRE.ProcResourceIdx); dbgs
() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, PRE.ProcResourceIdx, ProcResourceCount
[PRE.ProcResourceIdx], ProcResource->NumUnits, PRE.Cycles)
; } }; } } while (false)
3052 if (SwpDebugResource) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc
*ProcResource = SM.getProcResource(PRE.ProcResourceIdx); dbgs
() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, PRE.ProcResourceIdx, ProcResourceCount
[PRE.ProcResourceIdx], ProcResource->NumUnits, PRE.Cycles)
; } }; } } while (false)
3053 const MCProcResourceDesc *ProcResource =do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc
*ProcResource = SM.getProcResource(PRE.ProcResourceIdx); dbgs
() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, PRE.ProcResourceIdx, ProcResourceCount
[PRE.ProcResourceIdx], ProcResource->NumUnits, PRE.Cycles)
; } }; } } while (false)
3054 SM.getProcResource(PRE.ProcResourceIdx);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc
*ProcResource = SM.getProcResource(PRE.ProcResourceIdx); dbgs
() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, PRE.ProcResourceIdx, ProcResourceCount
[PRE.ProcResourceIdx], ProcResource->NumUnits, PRE.Cycles)
; } }; } } while (false)
3055 dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc
*ProcResource = SM.getProcResource(PRE.ProcResourceIdx); dbgs
() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, PRE.ProcResourceIdx, ProcResourceCount
[PRE.ProcResourceIdx], ProcResource->NumUnits, PRE.Cycles)
; } }; } } while (false)
3056 ProcResource->Name, PRE.ProcResourceIdx,do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc
*ProcResource = SM.getProcResource(PRE.ProcResourceIdx); dbgs
() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, PRE.ProcResourceIdx, ProcResourceCount
[PRE.ProcResourceIdx], ProcResource->NumUnits, PRE.Cycles)
; } }; } } while (false)
3057 ProcResourceCount[PRE.ProcResourceIdx],do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc
*ProcResource = SM.getProcResource(PRE.ProcResourceIdx); dbgs
() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, PRE.ProcResourceIdx, ProcResourceCount
[PRE.ProcResourceIdx], ProcResource->NumUnits, PRE.Cycles)
; } }; } } while (false)
3058 ProcResource->NumUnits, PRE.Cycles);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc
*ProcResource = SM.getProcResource(PRE.ProcResourceIdx); dbgs
() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, PRE.ProcResourceIdx, ProcResourceCount
[PRE.ProcResourceIdx], ProcResource->NumUnits, PRE.Cycles)
; } }; } } while (false)
3059 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc
*ProcResource = SM.getProcResource(PRE.ProcResourceIdx); dbgs
() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, PRE.ProcResourceIdx, ProcResourceCount
[PRE.ProcResourceIdx], ProcResource->NumUnits, PRE.Cycles)
; } }; } } while (false)
3060 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) { const MCProcResourceDesc
*ProcResource = SM.getProcResource(PRE.ProcResourceIdx); dbgs
() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n"
, ProcResource->Name, PRE.ProcResourceIdx, ProcResourceCount
[PRE.ProcResourceIdx], ProcResource->NumUnits, PRE.Cycles)
; } }; } } while (false)
;
3061 }
3062 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources: done!\n\n"
; }; } } while (false)
3063 if (SwpDebugResource)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources: done!\n\n"
; }; } } while (false)
3064 dbgs() << "reserveResources: done!\n\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources: done!\n\n"
; }; } } while (false)
3065 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (SwpDebugResource) dbgs() << "reserveResources: done!\n\n"
; }; } } while (false)
;
3066}
3067
3068bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
3069 return canReserveResources(&MI.getDesc());
3070}
3071
3072void ResourceManager::reserveResources(const MachineInstr &MI) {
3073 return reserveResources(&MI.getDesc());
3074}
3075
3076void ResourceManager::clearResources() {
3077 if (UseDFA)
3078 return DFAResources->clearResources();
3079 std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
3080}